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ABSTRACT

'Viswn can be used to posﬂ;lon a robot relative to a known object or a
‘ known environment in 3D. If the object has enough feature points, one
- view is sufficient for determining the relative position between the object
a.nd the camera, otherwise, multiple views are required.. We discuss the
mathematics of viewpoint determination, using a combination of calibra--
- tion matrix decomposition and space resection. The combined method

has low noise sensitivity and does not require knowledge of camera. .

' parameters If the object does not have enough features, multlple views
o are requlred to determine its position and orientation; an example of this

s be given. The formulation of homogeneous transform equa.txons to

o dnve the ma.mpulator to the goal posmon is a.lso be glven
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1. _Introd.u‘ction

It is possible to find the position of an object using one view by identifying and
finding the 2D locations of unobstructed visual features (such as points and lines).
This set of i image coordinates will be fed to a viewpoint determination algorithm to
find the 3D position and orientation of the object. We will address only the viewpoint
determmatlon problem; the 2D locations of visual features are assumed to be provided
by a computer vision system. In this ‘report, we will only address pomt features.

Viewpomts can be determined by the combmatlon of calibration matrix decompo-
sition [Gana83] and space resection [Wolf83]; the results of calibration matrix decom-
position are used as an initial estimate for the iterative space resection method. The
first method alone is noise sensitive (a technical report will be published to compare
noise sensitivity of various viewpoint determination methods). The second method
requires an initial estimate of the viewpoint because it uses the Newton-Raphson algo-
rithm [Dode78] to solve for a non-linear system of equations Another disadvantage of
the second method is that the solutions may not be unique [Fisc81]. These problems
will be solved when the two methods are used together.

In some cases, there may not be enough feature points for one-view methods to
work; we will show an example that does not require as many features but requires
multiple views. Finally, we will show how the relative position between an object and
the camera can be incorporated into a transform equation necessary for the manipula-
tion of the object.
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2. Fmdmg Object Position with a Smgle Ima.ge

We want to find the 3-D position and orientation of an object using model-ba.sed
vision. ‘It is possible to find the 3-D position using only one view because of the
knowledge of object dimensions. We will limit ourselves to methods that use image
coordinates of local features such as corners and sma.ll holes instead of methods that
uses extended features such as lines and curves. Let (u;, v;)* be image coordmates of
feature number i and (x;, ¥i, %)’ be the coordinates of the feature with respect to the
object frame OBJ, {2 be the set of 2D positions of image features and T ‘be the set of
corresponding 3D positions of the object features relative to the obJect If there are n
- corres ondmg pomts,

1= ',(?17 Vl) ’(u2’ vg), * (up vn)} ‘ S ’(2°1)

= { (xl’ yl’ .:.?.1) ’ (x2: Yo Z2) 5 " (Xa Y:;a zn)} o | B : (2-2)

We requlre a functlon F which takes the arguments {2, I', n , and produce the homo-
geneous transform CAMTOBJ which specifies the position of the OBJ fra.me with
respect to the CAM frame. B

F(QTa). e (2.3)

~ We will discuss calibration matrix decomposition [Gana84] and space resection
[Wolf83].  Calibration matrix decomposition is a non-iterative method that solves for
both the transform C¢4MT,p; and the camera parameters uniquely. This ‘mrethodk .
requires at least 6 feature points to be seen on the image. Space resection is an itera-
tive method used in photogrammetry to locate a camera-equlpped airplane with
respect to some ‘'known ground control points. It requires a minimum of three feature
- points, ca.mera. parameters and an initial estimate. The space resection solutlon may
not be unique if less than 6 feature points are used [Fisc81]. ‘

We have found from simulation that calibration matrix decomposition is much
more noise sensitive than space resection. The noise sensitivity and the non-
uniqueness problems can be solved by using space resection to find the final result,
while the calibration matrix decomposition is used to find the initial estimate and the
camera parameters.
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2.1. Camera Matrix Decomposition

In this: section, we will find that the calibration matrix C can be solved when
glven a set of i image coordinates and the corresponding set of 3-D feature coordlnates
with respect to the object frame OBJ. Then we can decompose C to find the posltlon
of the OBJ with respect to CAM and also the camera parameters. ,

Flgure 2.1 shows the geometry of a. camera viewing an obJect G TOB s is the
homogeneous transform that relates the frames OBJ and CAM. The camera calibra-

tion matrix C transforms 3-D coordinates with respect to the object frame 1nto 2-D
1ma.ge coordinates. In homogeneous transform notation, this is written as

u Cu Ciz Cy3 Cyy
vi= C_z_l Caz Cp3 Cay
w Ca1 C3z Cy3 Cyy

B (2.4)

o8N 9 R

where. (x ,y,z)" is the feature position measured with respect to OBJ, and (u v, w')t is
the feature position in homogeneous transform notation. Because of the nature of
homogeneous transformation, Equation (2.4) still holds if C is scaled. In order to have
a unique C, we will fix C3, to 1. The actual image position (u,v)" in pixel units can be
calculated by

~
w'’

u=—3—,;'v= (2.5)

Given (1 (set of image coordinates) and I' (set of 3-D coordinates with respect to
OBJ ), we want to find the elements of the calibration matrix C. From the _position
(u, vl) of each image feature, we have from (2.5) '

l —u; Wli = 0; Vli -V Wli = 0. ' : » (2.6) -

But u';, v/;, and w/; can be expressed in terms of elements of C as:
i Vis i®

u'j = Cyy x+Cy3 ¥;4+Cy3 R - (2.73)

V)i = Cg; %+Cyy 7;+Cy3 (2.7b)
Wli = C3l Xi+C32 Yi+C33 o (2.70)

Subsfitution (2.7) into (2.8) and using 6 points, we will arrive at the following matrix
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and can solve for the elements of C.

X3 . 71 % 1 0 o 0 0 —uxp-uy;—ws || Cy ||

Xy Yy zg 1 0 0 0 0 —uX,—upy,—upzg || Cpp | | ug

X3 Y3 o B 1 ] ] ] ] —UgX3—U3Y3—U3Z3 Cis ] ug

Xs Y5 2z 1 0 0 0 0  —ugxg—ugys—ugzs || Cyy | | U

Xg Yg % 1 0 0 0 0  —ugxg—ugyg—UgZg || Cop | = | U4

0 0 0 0 x ¥y 7 1 VXV~ || G | 4!

0 0 0 0 X3 ¥y Zg 1 —VoXp—Va¥y—Vyzp || Cy | Ve

0 0 -0 0 x Y3 Z3 1 —V3X3—V3¥Y3—V3l3 Capo |- {73

-0 0 0 0 x, y, % 1 —vx vy v, || Cy V4

) 0 0o o Xs Ys Zg 1 —V5Xg—V5Ys—VsIs Cis Vs

Let us abbreviate the Equation (2.8) to e _

R XC =U. » T (29)
C' can be solve as » :
c=Xx"'u. o (2a0)

If there are more than 6 points, we will have redundant equations. In_this case, we

~ can minimize the mean square error of the image coordinates by

(2.8)

c=xTx)'xTu. o (211)

Now we will express C in terms of the elements of the elements of CAMm .57 and
the camera parameters. To do this, we need to understand the geometry of the sys-
tem. S_hbwnﬂ in F:igure 2.1 are the coordinates (xf,yf,zf)t of a feature point with respect
to OBJ , and> the coordinates (x’f,y’f,z’f)t of the same feature point with respect to the
CAM. The ray that emanates from the focal point to the feature point intérsects the

image plane at (x'y, ¥',)" The image coordinates read out from the vision system is -

not (x'y, v',)" because they are expressed in pixels instead of millimeters and the origin
may not be at the center of the image. Thus we can view (u,v)* as the results of scal-
ing and translating (x’u,y’u)t. Let S, and S, be the scaling factors in the u and v
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directions, and ug and v, be the translations. We have

u=§, ¥y + g, T (2a2a)
V——-Sv y.lu + Vo K | : | : e | (2.12b)
‘Using, similar tria.ngleé, '
; v , | |
Xy =F —, , (2.13a)
y,=F ¢ o © (2.13b)
Z f‘ : . ’ S

where F is the foca.l length of the camera. Substltutmg (2 13) mto (2 12) and rewnt-'
tmg in homogeneous nota.tlons, '

- - - k’f. ’
u’ SuF 0 U.o 0 ny
vV =] 0 SF v 0 'z,f (2.14)
w' 0 0 1 0| L
" Nl
and u=—;—;x, v=%:

"~ We. need to express the 3-D coordinates with respect to OBJ mstea.d of C’A.M this -
can be done with homogeneous transformatlons

r , |
. caM | X't 0BJ (xf
| 7| can ] SR
'y | - [T]OBJ ol | g (2'15)
|1 | oLt
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Dy Ox ay Px

, ' : n, o p
CAM |77 % Py

where [T ]OBJ_ n, 0, 3, P,
0 0 0 1

Substituting (2.15) into (2.14) allows C to be expréssed in terms of the components of
“Toss a.nd the camera parameters (F, S, S,,uy, Vo)- The C;, element is p, so we
" need to-divide all elements by p, to have C34 = 1. '

Cn Ciz »C1_3 Ci4
Ca Cao Czs ‘ng_‘

 (216)

| 0.8, F+nuy 0,8, F+o,up 2 S.F+auy  pyS.F+p,ug
P . ¥ Py Py
o n,S,F+n,vg oS F+o,vq a,5,F+a,vg PyS,F+p,vo
R . Py
n o 2 ,
| Ps , Ps Pz

The elements Cy;, Cqg, Ci3 etc. are known because they can be solved by (2.8).
We will equate both sides of (2.16) to solve for the components of CAMT ,p; and the
camera parameters. From (2.16), we can see that the parameters S, Sv,' and F occurs
in either SuF or S,F and therefore cannot be solved for individually. We will solve for
k, and k, instead, where

\

k, =S, F o o (2.17a)
k,=S,F ,  (2.17b)
Frdxﬁ the last row of (2.16),
’ 2 2 2
n o a 1
Cal+Ca? +Col =S5 +—5 + —7 = —7 (2.18)
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We will have two solutlons for p, from (2.18). However, if the a'-axis of the camera is.
pointing to the direction of sight and OBJ’s origin is within the obJect volume, p, will
be physma.lly constrained to be posmve Thus, ‘

Py = —— 1 | o (2.1§) o

V Cél + Cso

- Once Py is found n, 0,, and a, can be found by equa.txng the last row of equatlon
(2. 16) L

n, = p, Cay | = . - g '_f’ij’.«(2.20)v
0,=p,Css o - (2.21)
a; = P, Cg , ' , (229

To. solve vfojr k,, we use the first and second rows of C:

C11 C3y — Cyy Cpy = — (g 0, — 0 o) 0 (2248)

C11 C33 —C5 Ci3 = p-—‘;‘(nx a; =Dy ay) -‘:;;5',(2-241))' '
: k, . - -
Ci12 C33 — C32 Cy3 = F(Oi 8; = 05 3y) R (2.24¢)
) z . ' C
Taking sums of squares of (2.24a)-(2.24c), we obtain .
-+ (€13C35C31 C15)*+(C13C33—C31C13)*HC12Caa - (2.28)
L3 | el . _

The sxgn of ku is implementation dependent. In our system, we have a.smgned the
coordinate frame to the camera such that u points to the same direction as x' and v
pomts to the same direction as y’. In this case, both k and k, are posntlve Thus,
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ky = p,z‘\/(CuC324—C32012)2+(011033—C31’013)2+(012033——C32013)

'(2 286) |

To find uy, we sum the squares of the elements of the first column.
CR+CH+CE = Z5 kil ol +a)) @y
P

+2k, (00, 40,0, +852,)+ug(n) +o; +2;)].

Simplifying (2.27) using properties of n, o, and a, and choosing the correct sign, we
can solve for uy. From Equation (2.12), and from the assumption that k, and k, are
positive, we can interprete a positive ugy to be the distance of the u—v origin left of
the image center, and a positive v4 to be the distance of the origin below the image
center. In our vision system, the origin of the coordinate axes is at the lower left
hand corner of the i 1mage plane so our uy and Vo are positive. ' - ”

uo—'\/sz(Cu'{'Clz-*'Cm) %I '(2'28);

Finding k, is similar to finding k, except that we are working Wlth the second and
third rows of the C matrix. We will just state the results here.

ky = Pzz'\/(cncsz"cnczz)z+(C21033—'Ca1C23)2+(022033—032023)2' (2.29)

To find vy, it is similar to the method for finding uy except that we are workmg with
the second row. We get

= fo(0221+0222+0223)_k3 : (2.30)

Now that n,, 0, a,, P, ku, k¢, 4o, and v, are found, we can use equate the eight
elements of both sides of (2.16) and solve for the eight remaining unknowns, -

Py

Dy = I'-(Cll_n uo) S . (2.31)
u : o v

P ' v :

Oy = '1'(3'(012—0»‘10)» (2.32)

a
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D _ )
ay = ‘1;1(013‘3':“0)’ - (2.33)
1 _ :
P
Px = —ki(cu—pzuO): _ (2'34)
u .
p
Dy = E:_(C2I—sz0)’ - (2.35)
p
0y = Tli(cn‘%"o)’ (2.36)
P ' . '
ay = -k—z(C%—a,vo), - (237)
v
P L |
Py = "'z"(Czr'PzVo)- : , (2.38)

ky
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2.2. Space Resection .
This technique involves the formulation of nonlinear equations involving the posi;'
tion and orientation parameters, and then solving for the solution 1tera.t1vely by the
Newton-Ra.phson algorithm.
Figure 2.2 shows the relationship between the frames CAM and OBJ. We want

to find ©4M TOBJ, this is equivalent to finding a sequence of transformations which
takes a frame from CAM to OBJ: '

CAMTOBJ = Rot(z,—K,)Rot(y,—¢)Rot(x,-‘-w)Tra.ns(—xc, —Yer— c) '(2 39)

- CAM is rotated about its z-axis by —k, followed by a rotation about the y-axis of the
rotated frame by —@, a rotation about the x-axis of the rotated frame by —w, fol-
lowed by a translation of (—x¢,—y.,— ) with respect to the resultmg frame, the final
frame will coincide with OBJ Multlplymg the matnces in (2 39) together we have

the n, o, a, and p vectors of & TOB s as follows:
| |
Oy Ox 3y Px
T 1 |2 o arpy - -
CAM [T ] e - . (2.40)
. OBJ D, 0, 3a; Py . ¢
0 0 0 1
L .4

"C¢Clc SwS¢C‘K+CwSK —Cws¢cn+swsu —n'fo—Oxy_F-ﬁi;fo‘:%} 1
—CySe —S,545:+C.Cr Cu84S.+8,C  —nyXr—oyyi—ayss

S, —S8.Cy C,Cy —n,xf_--o,yf—a,'z’f
0o 0 0 1

A set of collinearity equations are formed when we rotate CAM by the three
rotations so that CAM and OBJ have the same orientation. Notice that we have not
translated CAM at this point so it is still at a different position from OBJ, as shown
in Figure 2.3. The OBJ frame has coordinate axes x—y—z; (X,¥1,2¢)" and (xc,yc,zc)t
are the coordinates of the feature point and the CAM origin with respect to OBJ.
CAM has coordinate axes x'—y'—s' and (¥'y,y',,2',)" is the point where the line that

'joins the feature point and the focal point intersects the image plane, with respect to
CAM. After the rotation, as shown in Figure 2.3, the resulting frame is x/-y"—3",
and the intersection point expressed in this coordinate axes is (x'y,y",,z",)%. From
similar triangles in Figure 2.3, we have
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These equations can be rewritten as

x"y

i

"
Zy

= Z

. 192-

© Shiu, Ahmad, Paul, Nov. 1986

XX ,

L o

o -
___yf Ye 7"

[ <, —1 ]

S

u |
S P

T—T

e

X", N ¥, 2",
xf—xc B TtV B 24—32,

|

»(2;41-) |

(2.423)
(2.42b)

(2.42¢)

‘Since we have rotated CAM to the same orientation‘as OBJ, we can use the i'dté.tion
vectors (n,0,a)! of CAMT . to relate (x" 43" 2" )"

[, ]
xll
Yy

Ty

1

|

Multiplying out, we have

n, o, a, 0

n, o, a, 0

Yy Vv %y
n, o, a, 0

0 0 01
L JL

and (X'y,¥'y,2'y)" We have

"
x|

Y
zIIu N

1

xIu = nxx"u'i'oxyl 'n+axz”u

Y = nyxyto,y" +aya”,

r "o "
Zy, =1D,X u+°zyl u+a'zz a

T T"f’(2.43)

(2.44a)

(2.44b)

(2.44¢)

Substitutiﬁg (2.43a, 2.43b, 2.43c, 2.44¢) into (2.44a, 2.44b),'and substituting z’, by the

focal length F, we have
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_ nx(xf—xc)+°x(Yf—Yc)+ax(zf—'zc) :

o= F { PP vy Fy - } (2:452)
_ ny(xf’__'xc)+°y(yf—yC)+ay(zf—zc)

Vo=F [ nz(xf"'xc)'*'oz(yr')'c)+a’z(zf—zc) } (2.45b)

In these two non-linear equations, (x;,y,%)¢ is known, and (x'y,y',)* can be calculated
from (u,v)" with (2.12) assuming the camera parameters are known. The unknowns
- we want to solve are the rotations w, ¢, and x (concealed in n, o, a), and the origin of
- CAM (xc’yc,zc)t. We will arrange these two equations in suitable form before applying
the Newton-Raphson algorithm. Equations (2.45a,b) are rewritten as

G=qd,—rf=0 (2.46a)
H = qy',—sf =0 - (2.46b)
where , .
q= nz(xf—xc)+°z(Yf—Yc)+az(zf—zg)
r = Dy(Xr—Xc)+ox(F1—Ye) Fax(2—2)

s = ny{X—xc)+0y(yr—Yc) tay(2—2c)

Eqﬁation (2;46a,b) are linearized using Taylor’s theorem,

(G)ot gxi*]odxﬁ g—ide %%Ld¢+ a—’C:Ldfc | (2.472)
+ g}i dec+ g}i Léyc+_ gz Ldz° =0
- (H)o+ gy(,;“ LdX’u+ %de %%]Odaw[—g%]odn (2.47b)
+ 21: ]dec.*. g}li ]Udy9+ gz ’]odzé = 0 .v

'(G)d‘, (H)o, (8G/3w)o,, etc., are the functions G, H and their partial derivatives
evaluated at the initial approximations. The dw, d¢, dx, dx,, dy. and dz, are correc-.
tions to the initial approximations. From Equations (2.46a,b),
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oG _ oH

| 'y oy,
Performmg the partial differentiations and sumphfymg, Equations (2 47a,b) can be
- written as follows:

=q - (2.48)

dx’ u=blld('u.+-bl2d¢+bl3d"c-b14dxc—bldeC—blﬂdzC+J (2.493)
dy’,=bg,dw+byedd+bezdk—bydx,—bysdy. —bygdz.+K | (2.49b)
where ‘ : o '
Ax=x—x,
AY:Yf— Ye
Az=g,—1z,

I

by = —(o Az—a Ay)+ (agAy—o,Az)

x’ , _
b12=—u(Axcos¢+Aysinu.sin¢——Azsin¢cosw)
q 5 ‘

+L (Axsingeos—Aysinacospeosk)
q

—Azcoscucpsd)cosm
b13__—(nyAx+O Ay+a AZ)

'
X'y f

b14=,-;nz—"nx
Xy Ot

blS=T°z__°x
xlu - f

b16=—q_-a'z——ax
J= qx,u—rf

- q



Submit_ted to Int. Jour. of Rob. Sys. - 15 - © Shiu, Ahma.d; Paul, Nov. 1986

: b21=ﬂ(oz Az—a Ay)-!— (a.yAy—o Az)

b22=%(Axcos¢+Aysina.sind>—Azsin¢cosu))

+-£-(—Axsin¢sinlc+AYSinW¢°5¢SinK')
q

+Azcosweosgsink

b23=——§_(nxAx%xAy+axAz)

poJu f
24—:(1 nz—qny
?u £
b =T —-—
25 q q°y}
Y’u £
bpg=""2,——
26 q z qa'y
e
- q

Equations (2.49ba.,b) can be used to solve for dw, d¢, dx, dx,, dy. and dzc, the correc-
tions for the orientation and position of the camera in order to improve the accuracy
after each iteration. These changes are then added on to the previous estimate of w,
@, K, X,, Y., and z. to get more accurate values. The iterations are terminated when
the differential changes are smaller than the desired tolerance.

Three points are required to set up six equations in order to solve for the six unk-
nowns. If there are more than three unknowns, mean square method can be used to
minimize the sum of squares of the errors on the image positions ,(X'ui,y’ui)t. For three

different image. features, Equations (2.49a,b) can be written in a matrix form.
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o v 1 [ 1
FJI _blll _—b121 _'b131 b141 blsl blel B T dx‘ul

K;| |~D21, —bag, —bys, by, bos, bas, do dy'y,
Js ~by1, —byg, —by3, by, b5, bis, || dx dx'y,

= ' 2.50
Kz | [—b21, —baz, —bas, bay, bys, byg ||dx, + dy’y, - (259
I3 —=by1, —bia, —byg, bi4, bis, big, ‘dyc dxlua‘
K| —bgy, —bag, —baz, byy, bs, bze:,J dz. | |dy',,

This equation is rewritten as

L=AX_+V - (2.51)
where the error V is commonly known as residue. To minimize the residue with more
than 3 points, X, can be solved as follows

= (ATA)IATL (2.52)
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2. 3. Comblmng Space Resection with Camera Matrix Decomposxtlon "

Smce space resection has inherently better behaviour in a noisy envu'onment it is
used to calcula.te the position of an object. However, this method does require an ini-
tial estlmate ‘of the position and requires the camera parameters; this can be achieved
usmg cahbratlon matrix decomposition. Camera parameters. only have to be found
once as long as the same camera and the same lenses are used; a calibration object
with abundant features should be used to find the parameters as accurately as possi-
ble. When camera calibration is used to find the initial estimate of the position of an
" object, the camera parameters are re-calculated as a by-product; these values can be
ignored because they are not accurate as the one calculated initially.

In order ‘to combine the two techniques, we need to be able to convert their

dlﬂ'erent notations to one another. Calibration matrix used homogeneous transforms
while space resectxon expresses positions and orientations in terms of (xc,yc‘,zc,w (b,/c)t

~ The results of space resection will be in terms of (xc,yc,zc,w,¢,fc) , We can convert
them into a homogeneous transform using (2.40) .

The initial estimate found by calibration matrix decomposition is a homogeneous
transform. : To convert it to (Xo,¥ey3e,Wsdyk)* , we will use a method used by Paul,
Renald, and Stevenson. [Paul83]. We will first solve for the rotation part of the
matrfi_x;)Let r |

x Ox 3y

n
M= [n, o; a, (2.53)
n, o, a,
Let us define U and V matrices as in [Paul83]. | |
Vo = R1R2R3—M—U1 | (2.54)
V; = R,R;=R,'M=U, | | (2.55)
V2 = R3 = R2—1V1 = U3.' R ‘ (2.56)

where ”Rl, R,, andR; are the rotational matrices about the z, y, and X axes by —k,
~, and. ~, reepectively. Let Vi,- denote the jth column of V; and let Mj"‘_"[s-,i'ri:ti]’r
stands for the jth column of M, i.e., '

Ml'—‘[nx Dy nz]T’M2=[°x Oy ole’M3_[a’ ay az]T

From (2.55),
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C,c —'SK 0 Sj
Vi=R{'M;=(s, C, o||r (2.57)
0 0 1 b
3
' C,CSj‘-SNrj Vuj
= Sh:sj+Clcrj = vl2j
b b
where
V11=Cu8j=S.r; - (2.58)
V12j=S,8;+C,r; (2.59)
From (2.56), to express V, in terms of M, |
C¢V11+S¢tj
V2;=R2—1Mj= - Vio ‘ (2.60)
'—S¢V11+C¢tj ‘

Now.we can equate V, to R;,
CovintSsn,  Cyvypp+Ss0,  Cyvygp+Ssa, 1 0 _0]
[Vzlvz.zvza] V121 V122 V123 =|0 C, S, |(2.61)
—Sgvin+Csn, —8yvq19+Cho, —Syvy13+Cha, | |0 —S, C,

Cw=Vi22=SNOx+C~0y (2. 62)

Su=84V112—C40,=84(C0,—8S05)—Cyo0, (2.63)

A unique value of w can be found by the atan2 function using sine and cosine as argu-
ments.

w=tan‘ls—” (2.84)
C.,
To solve for ¢, we equate V, to U,.
Cex—S,y
8:x—C.y [=R,R; 7 (2.85)



£
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Cs S48, —5,C,
=lo c. s,
S, —C48, C,C,

Cs=C,ny—S,n, | o (2.67)

S,15=lll.z : L s (2.68)'
S TR |
p=tan”!=> | . (2.69)

Finally, to solve for x, we equate V, to Uy,
Ny Oy 3y C.Csy 77

n, oy ay|={—S5,Cy ? ? : (2.70)
|n; o, a, S ?7? o ' E

where the terms with question marks are not used.

C =% T e
- (@)
n. R e
y o -
P A e (2.72)
TG o &14)
It can be concluded that
, , L, -n, , .
K = tan~ —— ifCy >0 R (2.73)
_ n, _ 4 .
. _
Kk = tan~1— if Cy <0

‘—.-nx

Note that « is undefined when C; = 0. There are multiple solutions to x, ¢ and w.
We only have to find one set of these solutions since we are only translating one set of
notation to another and are not concerned about the mechanical configurations of an
arm. _ ’ ;

To find x,, y. and z is straightforward once one realizes that they are the origin

of the camera coordinate axes with respect to the objeg:t. The transform of the cam-
era with respect to the object is just CAM To, }gj
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0y Oy D, —n.p
0y 0y 0, —0.p

| 2.74)
a; a, a, —a.p -
000 1 J
,Therefbi‘e, | -
——np ()
Y. = —o.p L - (2.78)

p=—ap L (217)
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3. Fmdlng Ob,]ect Position with Two Views

~We have discussed finding an object posmon with a single view in the last sec-
tion. Ganapathy s method requlres six points while space resection method requires
three points. Fischler and Bolles [Fisc 81] showed that space resection with less than
6 points may have multiple solutions. To disambiguate the solutions, we can either
check the consistencies of the solutions with the image, or we can use more than one
view. . | : '

Multlple views are also useful when we deal with an obJect w1th very few local
~features, or when the v1ewpomt is degenerate (when the features and the focal point
lie on the same circle), or when some of the features are occluded. An example of this
kind of apphcatlon is locating a wire or a thin peg; a wire has only two features.

% we will discuss a method which uses two views to find the positions of individual
feature points. Figure 3.1 shows a thin rod and its image on two cameras whose posi-
tions and orientations are known. CAM and CAM' are the coordinate frames of the
two cameras. We can find the 3D coordinates of P1 and P2 by ﬁnding intersection of
lines /, and ', and intersection of lines l, and ', respectively. For demonstration
purposes, we will find P1 with respect to CAM whose coordinate frame lS X—y—z.
The parametrlc equation of / is

(x,y,z)t (0,0 —f)t+t(x1,y1,f)t, ' B (3. 1)

where (xl,yl) are the image coordinates of the point P1 and f is the focal length.
The equa.tlon of I', with respect to CAM' is

. (x,y,2)t = (0,0,—f)*+t'(x'1,¥'1, )" | - (32
We' can specify this equation with respect to CAM by specifying the point (0,0,'—f)t
and the vector (x';,y',,f)* with respect to CAM. If

Dy Oy 2y Px ,
o, a -
T = Yy VY Y py ) el (3.3)
nz OZ az pZ . .
’ 0 0 0 1
is the transform matrix from CAM to CAM', then the point CAM' (0,'0,—1')t is
transformed too ' B

CAM('_a'xf+p!’ —a'Yf +pY’ —a zf+p z)t’

a.;id the vector M’ (x',.y',,f)* is transformed to
| | nyx'1+°y l+ayf’nzx'1+°zyll+azf)t

“Thus the equation of I'; is
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(_x9Y)z)t = (_axf+px:‘ayf+pyi_azf+pz)t+ E " : (3'4) C

t'(nxx’ 1+nyy’ 1'*'n frnyx,1+°yyll+ayfrnlel+°zy’1+a f)t -

The two lines generally may not intersect because of errors; we will find the mld-pomt
of the shortest line segment joining 1, and Iy. Let us rewrite the two hnes as

( ,y,z) = (xo,yo,zo) +t(a,b, c)t | ) | ": ’ (3 5)
l' ( ,y,z) - (x O’yIO’z 0)t+t'(a' bl,cl)t : ‘ o (3.6) g
Let D be the distance form a point on l; to 15, L

. D? = (xp+at—xg—a't’)’+ (y0+bt—y’°—a’t’)2+(z°+ct—z o—c’t’)2 o (3 7

Taking partlal derivatives with respect to t and t/, we will have two hnea.r equatlons :
from Wthh we can solve for t and t': ' '

2/ (ko) +b'(o—y'o) +</(s0— 0)+t(a.a.’+bb’+cc’)—t'( '2+b’2+c’2)=0 (38)

a(Xg—xg)+b(yo—¥'0)+c(z9—2 o)—t’(a.a’+bb’+cc’)+t(a.2+b2+c2)=0 o (3 9)

From the values of t and t/, we can find points on the two lines that are closest to one

“another. We will take the mid-point as the estimate of the intersection of these two

lines. Once P1 and P2 are found by this method, we can find the P a.nd a vector of
the homogeneous frame of the peg. There are infinite number of solutlons for the n
and o vector since the peg is symmetric about the z-axis. If P1 = (plx,ply,plz) a.nd

P2 = (pzx,pzy,pz,)t e o
| (px,py,pz) (p2x,p2y,p2z), T (3-_1'0)'"'

xr%ysdy) = L . - .
\/(p1,—p2,)2+(p1,—p2y)2(p1,—p2,)2 R
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Formulatmg The Mampula.tor Sequences in terms. of Homogeneous‘
Transform Equatxons '

- We w1ll show two examples of formulatmg transform equatlons In the first
example, we assume the camera is mounted on the robot wrist and the task is to pick
up. an obJect in a two-move sequence. The second example shows an assembly task
where the camera is located arbitrarily. We will also show the use of a tlme-va.rlant
R('v) transform which is servoed visually.

In- the ﬁrst example, the camera is fixed to the robot wrist, and the obJect to be
grasped is’ assumed to be within the view of the camera The relatwe pomtmn of the .
object. Wlth_ respect to the camera can be calculated using techniques described in the -
last section, let us denote this transformed as CAM 5;. We also. let TB(k) and
TB(k+1) be ‘the current position and the next position of the manlpulator end,
H.AND be the gripper position w1th respect to manlpula.tor wrist ﬂange, TCAM be
the camera posmon * L

relatwe to mampulator wrist ﬁange, and A.PPR be the predeﬁned approach posi-
tlon of the gnpper with respect to the obJect From Figure 4.1, we have

| 'T6(k+17)'~’canf_b.e solved as
| | B T6(k+1) = T6(k) TToaar

A.fter the move ‘to the ' approach posmon, the robot wxll move on to the gra.sp p031- :

tion. The’ TB will be calculated using an equation 31m11ar to the prevxous one, ‘except
that APPR 1s repla.ced by GRASP.

Figure 4.2 shows two robots assembling two parts and the camera is at_an arbi-
trary position viewing the part-mating operation; visual Servoing is used to overcome "
the mismatch of the two robot spaces (see next section). The camera position-is not
assumed to be known since the method described will be independent of it. Let
OBJ1 and OBJ2 be the top object and the bottom object respectively. The relatlve’
position of QBJ 1 ‘with respect to OBJ2 ( * OBJ2p ,ps1) can be found by vigion,. -

Assume Robot2 holding OBJ2 remains stationary and we want to move the Robotl
which mampulates OBJ1. We want to move Robotl such that OBJ1 is at the
* desired  "approach” posltlon with respect to OBJ2, and let this tra.nsform be
oBJ2 TA.PPROBH Initially, due to coordinate mismatch,  OBJ1 s at
OB"?.T(k)OB J1, We want to move Robotl such that OBJ1 is at the correct “approach'
position. Let T6(k) and T6(k+1) be the position of the current posxtlo_n and next
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posmon of Robotl respectively, and GRASP1 and HAND1 be defined mmﬂar to the
previous example. From Figure 4.2, we can see that
T6(k+1) = T8(k) HAND1 GRASP1™! GRASP1 HAND1™!

Once OBJ1 is at the "approach” position, we now can proceed to the "mate” position.
We can just use an equation similar to the last one except substituting TAPPR by
-TMATE However, if the resolution of the vision system is better than the robot
a.ccura.cy, ‘we should \nsually servo on all the intermediate positions from the
approach position to "mate" position in order to acquire better accuracy. This can
be accomplished by defining a variable transform D(v) such that it changes from
TAPPR to TMATE when < changes from 0 to 1. For example, if we want Robotl
to move down from TAPPR to TMATE at a constant speed and if :

100 0
o100
*[TAPPRloss: = |3 0.1 a1
~ looo 1
OBl TMATEog; =
we can d_eﬁned D(7) as
100 0
010 0
DM =g 0 1 (1—y)d1+1d2
000 1

where <y changes from 0 to 1. For general tranéitions from one transform to another,
we can use the more general "drive" function described in Paul's book [Paul83].
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5. Conclusions

We have presented methods of calculating object positions from camera images.
For objects with enough visible features, we used a combination of calibration matrix
decomposition and space resection, and have achieved low noise sensitivity without
requiring an initial estimate of the object position. For objects with very few
features, we have presented a method which uses multiple views to find the 3D posi-
tions of feature points. We have also discussed the usage of the transforms-to-drive
the manipulator during the visual servoeing.
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Appendix: Simulations of Noise Sensitivities
‘We simulated the noise sensitivities of camera calibration matrix decomposition
and space resection by disturbing the 2D position of an feature point at pixel incre-
ments, assuming we have a 256 by 256 image. Fxgure Al shows the viewpoint of the
object and the feature to be disturbed. Figure A2 shows the comparatxve noise sensi-
tlvxtxes
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Fxgure 2.1. Geometry of the relationship between a camera and an object
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Figure 3.1. Finding object position with two views
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 Figure Al  Simulated image of a cube. The feature to be perturbed is circled. The
simulated image has a resolution of 256x256 pixels and the camera is 500
mm from the closest corner of the cube. '
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