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Abstract '

l ,‘COSMC, the Combined Ordering Scheme Model with Isolated Com—
ponents, describes the execution of specific algorithms on multiprocessors and
facilitates' analysis of their performance. Building upon preV«ioﬁs ‘modeling

efforts such as Petri nets, COSMIC structures the modeling of a system ‘a:lo'n‘g‘
| several issues including computational and overhead costs due to se’quencing of
opearations, ,,’s'ynch'ronization between operations,  and contention forvi*limit,ved
resources. ‘This structuring allows us to isolate the performance impact asé.ooi:
' at’ed _with'each issue. Finally, studying the performance of a system while ex_e-
cuti‘ﬁg a specific algorithm gives insight‘ into its performance under 'rea,listic‘
opérating conditions. The model also allows us to study realistically sized algo—

rlthms Wlth ease, especially when they are regularly structured.

During the analysis of a system modeled by COSMIC, a set tuned Petrl
nets is produced. These Petri nets are then analyzed to determlne measures of
the systems performance. To facilitate the speclﬁcatlon, mampulatlon, and
analysis of large‘ timed Petri nets, a set of tools has been developed. These
tools take advantage of several s‘pecial properties of the timed Petri nets that -
Vgreatly reduce the computational resources required to calculate the required
- measures. From this analysis, performance measures show not only total per-'
formance, but also present a breakdown of these results into several specific

categories.
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1. Introduction
' The complexity and variety of recent multiprocessor developments require -

new models which allow studies and comparisons of their diverse fe'a‘tur'esﬁ'a;'nd :

- functions. Such models must allow researchers to concentrate their éﬁdrté_-én o

the essential issues confronting muitip'rocessors and ignore those features which
merely serve to distract. To this end, we propose the use of a new model, called
COSMIC' (Comblned Ordermg Scheme Model with Isolated Components) for the '
study and comparison of multiprocessor systems. The underlying prlnclples of -
this model are the isolation of individual performance issues and the study of
systems under realistic operating conditions. COSMIC cons1sts of both' formal
parameters that describe a multlprocessor system and the algorlthm it executes,'

_' and analy51s techmques that produce performance measures.

 Our goals in developing this model have been to gain the ablhty to study
- multlprocessor systems with a varlety of schemes for ordering operations. The:
model must _also represent time and resource utilization so comparative studies
may be made. The major concern is a class of systems called Combined: Data,
Flow and Control Flow Systems which. were describe in a previous paper
[Ca.F87]~. ’Ifo'.achleve this goal; our model must represent both hardware and
" software issues, as well as the binding mechanism between them. The ‘binding
mechanism, which we call the Ordering Scheme, describes how operations are

ordered on a multiprocessor system.

Previous work in modeling multiprocessors has centered in several distinct
areas. Program behavior models endeavor to model the fundamental properties
of a program without regard for hard’wa're considerations or performance ‘meas-
urement. They center on the 1mportant areas of investigating such problems as
the determinacy, boundedness, and termination of programs. Models which fit
‘into this category include Petri nets [Pet66] and Parallel Program Schemata
[KaM66]. The second major category of current models we call machine
behav1or models as they describe the behavior of machines in their execution of
. programs as opposed to the behavior of programs themselves. Examples of this
class include Turing Machines, Functional Programming Systems, and the von
Neumann Model [Bac78]. Classification models describe the configuration and
operation of -mult'iproeessors, including Flynn’s Model v[Fly66], Handler’s
Classification System [Han77], and the ‘‘essential issues” of Gajski and Peir
[GaP85._].' Stochastic models based on queueing theory [Kle75] have also been



used to model multlprocessor systems

- Using these previous models as a basis, COSMIC combmes both program
'and machine descriptions, as well as performance measures. Its usefulness is 1n_
this combination, allowing the study of complete systems under vé_fied, condi-
tions. ‘ | : o

This report is organized into 4 major sections. Section 2 eonfa.ihs a survey
of previous efforts in modeling multiprocessors. Its purpose is to‘pres_elit a back- |
ground for our model as several key concepts found in previous efforts are used.
Section 3 formally presents COSMIC, describing the parameters of the model,
its performance measures, and a method used to determine the measures from
the parameters. Section 4 contains descriptions of several tools whlch were
: developed to expedite the analysis of modeled systems. Flnally, Sectlon 5 con-
51sts of several examples of systems modeled using COSMIC. It shows that
COSMIC can be used to determine the performance of systems which vary

. greatly.. Appendices provide documentation for the modeled systems. -



2. Computer System Models

- Models- allow researchers to dlsregard dlstractlng detalls assoclated with
real systems.and concentrate on the issues con51dered essential. A model of
' computer -systems is simply a mechanlsm to describe some aspect of the -
system’s -operation. Some models of computation, such as those presented by |
| Karp and Miller [KaM66], are used to represent execution of programs to inves-
tlgate such problems as deternnnacy, boundedness, and termination. . Other -
models, »such as _those by Flynn »[Fly66], are used to represent the :organlzation
of ‘a computer. These models are sometimes called classiﬁcation 'systems' and
are used to ‘classify the modes of operatlon and interconnection of computer ele-
' 'ments Fmally, a thlrd class of models, such as the von Neumann model,

- describe how programs execute on -a machine.

“As ‘stated in the 1ntroductlon, our goals require a model to. mnot only
represent ‘the organization of a computer system, but also its schemes for exe-

'cutlng programs. The requlrement for comparatlve studies places heavy

demands on a modehng system This sectlon presents a survey of several -

- models- showmg that ‘'while none are approprlate for our needs, several prov1de

a foundatlon for COSMIC

Current models of computatlon can be d1V1ded mto three categorles The
~ first category contains models which can be described as program beha,vzor
: vmodels because researchers use them to study the abstract execution of pro-‘
grams -in a parallel env1ronment These models lack convenlent methods to
descrlbe or experiment with system organizations. Most would also present
1nsurmountable problems for our comparative study as they fail to in,c’orporat'e
time and resource consumption. The second category consists of ‘models that |
“can be described as machine behavior models because they are used to describe :
“the behav1or of machines while they execute programs, as opposed to individual '_
_program behavmr These models cannot describe the exact executlon of a gwen
program and do not contain machine organizational details. The third category .
: contams models that can be descrlbed as classification models, as they are used'
to categorlze and descrlbe systems Unfortunately, they contain no capaclty to
represent the executlon of a program, or even to define the operation of the sys-
tem, - i '

Aside 'from the catéegorization just ,discussed models may be informally =

classified as ‘either tight or loose. Tight models consist - of well deflned L
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mathematlcal descrlptlons They are useful in proving characteri‘stics of the ’
systems they describe, and developlng accurate performance predlctlons Alter—
natlvely, loose models offer only vague descriptions and class1ﬁcatlons of system
issues. Loose models are useful for several reasons, not the least of which are )
" course nomenclature and taxonomy. However, because of the. comparatrverv

nature of our study, only tlght models are acceptable

Another distinction Wlllch can be drawn between the varlous models is
their ablhty to. describe _determrmstlc and non-deterministic behavior. Deter—
~ ministic models describe constant events and are considerably easier to analyze.

‘Models which describe non—deterministic events usually associate random. vari-
” ._ables with deCISIOD points allowmg the descrlptlon of more complex phenomena

' Unfortunately, the analysis of such models is far less stralght forward

21 P'r'ogram‘ Behavior Models A |

© Our survey is not the first of models used to study the executi'on of parallel
B programs. Consequently we endeavor not to repeat past work. Miller- [M1173]
-presents a good survey of models in the program behavior class, descrlblng and
comparlng several of the numerous theoretical models for representlng parallel
processes. The models described (and focused on here) are Petri nets [Pet66],
Computation Graphs [KaM66], and Parallel Program Schemata [KaM69)].
Queueing ‘network models [Kle75] are also briefly discussed. These models fit
our category of program behavior models and while each is tight, all have other
shortcomings that make them unsuitable for our research. Several ‘may be used "

to descrlbe either determlmstxc or non-determlmstlc events

‘Petrl Nets
Petr1 nets, developed by Petri [Pet66], have been used wrdely to descrlbe

the: sequenc1ng of concurrent events [Pet81] A Petri net 1s a dlrected b1part1te
graph with vertices called places and transitions, Places can hold tokens, the
collectron of which is called a marlung Every Petri net has associated with it
an. tnitial marking which is the marking present before any transitions fire.. In~
effect it_is the initial state of the net. The set of input places for a transition

vcons1sts of those places Jomed by an arc entering the transition. Correspond—

o 1ngly, an.arc joins each trans1tlon to the members of 1ts set of output places If

every mput place for a transltlon contalns at least one token then the trans1t10n'
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is active, and may fzre at any time. The ﬁrmg of a transition removes a single

token from each 1nput place and adds a new token to each output place. Con- o

current events are modeled by the simultaneous firing of a Petri net’s transi-

tions. The presence of tokens at input places represents the satisfaction' of con- :

ditions on the occurrence of an event. The firing of one transition Wlll in turn

cause other. ‘events”’ to become active and subsequently fire.

“An extensxon of this concept, called the timed Petri net [Ram74|, assoc1ates _'

a non—negatlve number with each transition representing the time between the

consumptlon of a token from an input place and the productron of a token at -

the output. Flgure 2.1 illustrates this phenomena in a simple tlmed Petri net,
showing its marklngs before, during, and after the firing of a 3 time unit transi- -
tion. Timed Petri nets are analyzable using timed reachability graphs or.-'re'duc-'
tion techniques to determine the composite firing time of an entire net. Addi_-
tionally, bra’nchingv probabilities can be assigned to outputs of transi‘tions-to_.
allow. conditional firing. The concept of a random variable associated with ther
time - each transition: requires to ﬁre has also been studied in ‘stochastic Petri
nets [M0182] o

In 'attempting to use Petri nets to model the execution of algorithrns on'.

multlprocessors, a deficiency becomes apparent. The entire system (1nclud1ng

orgamzatlon, software, operating schemes, etc.,) would have to be 1ncorporated B

into a single Petri net. For example, to change a sequencing pohcy an entlrely

‘new model Would have to be ‘developed, Whlch would in turn make any com- '

parative study infeasible. Desplte this shortcomlng, the model is extremely nse-
ful for des}crlbmg arbitrary concurrent events. The Petri net concept is used in
t_he‘devbelopment of COSMIC for this purpose. ' '

. _Computatlon Graphs _
h Computatlon ‘graphs were proposed by Karp and Mlller [KaM66] as a

graph-theoretic model for the description and analysis of parallel computatlons.
Vertices correspond to computation steps and arcs represent a queue for data:
dlre( ted from one vertex to another. Associated with each arc is the 4- tuple (A .
’U W T) where the elements are: '
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. Figure-2.1

Timed Petri Net Markings: r(a;) Before Firing (t < to); (b) During Firing .
- (to< t < o+ 3); (c) After Firing (t, +3<t). o S



A | data items initially in a queue;

U data items added whenever an operation is performed

by the tail vertex of the arc;

LW data 1tems deleted when an operation is performed
o by the head vertex of the. arc;

‘ Y the mlmmum length of queue to allow the operatlon at

the head vertex of the arc to begin.

' Computation‘ Graphs are most useful when studying the parallelism‘ l-njsi-mple

repetitive processes, such as ‘“‘inner loops’ of computations. For example, ‘the

~ computation of Fibonacci numbers is simply a graph with a si‘ngleAverte')ria'nd"!au ,
arc ,joining#the vertex to itself. ‘The 4-tuple (A,U,W,T) is (2,1,1,2) indicating
‘ th'at”there’ are ‘2 items initially in the queue, each operation produces and con-
sumes a single item, and that there must be 2 numbers in the queue to start an
“operation. From thls it can be seen that the operatlon never terminates, as
queue length is llmlted to 2 and’ each item placed in the queue is used tw1ce

Computatlon graphs facilitates analysrs of this form.

Several major problems prevent us from adopting computatlon graphs for

| performance modeling. The most severe dlfﬁculty results from the model’s ma—'»

‘ blllty to represent the time consumed by a system, makmg such a comparatnve :

study 1mpossxble The descrlptlon of complex processes (e.g. sequenclng}» o

schemes) with computatlon graphs would be dlfﬁcult and helghtened by the .
requlrement of cyclxc computatlon Addltlonally, the ﬂexrblhty of computatlon_'
v graphs is limited. Only one arc may leave each vertex, preventmg the modelmg_

“of conditional branchmg or fork and join constructs. These llmltatlons make '

}computatlon graphs infeasible for modellng complex systems.

-Parollel Program Schemata ' : N |
Karp and Miller [KaM69] also developed Parallel Program Schemata. Thils'._'_'

model is the most complex of the several models presented here and also the

most flexible. A Parallel Program Schema (MAT) consists of a set M of |

‘memory locatlons, a finite set A of operatlons, and the transition functlon T to -

sequence the ,operatlons. Assoclated with each operation in A is a set of domam
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locations in M and a set of range locations, also in M. To represent conditional

transfers, each operation has several possible outcomes. An interpretation func-

tion, I, can spe'cify the exact function of the operations in A. Karp and Miller - 3

use this model to determlne the conditions under which programs are ‘deter-

minate, bounded, and repetltlon free.

In one respect Parallel Program Schemata serves as an inspi'ration for onr' _
 model of computatlon, as the concept of d1v1d1ng the model into components
that work together to describe complex issues is most appllcable to our probiem
Unfortunately, the model still lacks in the areas of defining time requlrements of

operations and in the incorporation of certain organlz_atlonalaspects of systems.

' Queuelng Network Models A , ,
Queuelng Network Models (QNM) have been Wldely use to descrlbe the

operation of multitasking computer systems and numerous analy51s techmques
exist to analyze such systems [Kle75] Operating system terminology i is used to:
‘ describe the components of a QNM, as the study of such systems has been their
chief appllcatlon The components of a QNM are sources, servers, and queues

- Servers generally represent resources demanded by jobs, and require’ some tlme
to service, specified by a random variable. Sources create jobs at a certain
rate, specified by another random variable. Associated with serv_ers'. a-re'qnenes
" to hold waiting jobs. The connection of these components is a queueing net-
work tno'del. Figure 2.2 shows a simple eXample of a QNM, with one. source, one -
‘server, _and one queue. Jobs are placed in Q by either the comple_ti_on of ‘service
-or creation hy a source. This model can be analyzed to determine performanCe

cr1ter1a like system throughput and mean queue length.

The major advantage of this type of model is its ability to be solved by
well known analytlc technlques, and its faithful representatlon of time ‘consump-
,‘ tion.. The" problem in using this of model is its inherent adoption of the use/of
qnenes to'contend for limited resources. quenes may not- feal'is_t_ically, model

~ events in the systems in our study.

22 Machine Behavior Models

" Backus [Bac78] classiﬁes several models of’lcomputation includi'ng"Tul;ing"

vmachlnes, "Functional Programmmg systems, and the von Neumann model B

,These models are termed machine behavior models because they ‘describe the o
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_ Figﬁre 2.2
Queueing Network Model for Single Server System
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‘behavior of machines in their execution of prograims asvoppOSed to‘the’behavior.
of programs themselves. They do not contain ‘mechanisms to describe the
sequencrng of specific programs, nor specifics of machine organization. There- -
fore, all are unsultable for our needs. For 1llustrat1ve purposes, three models -

‘ spanmng this category are br1eﬂy descrlbed

Turmg Machlnes :

A Turing machine is an example of what Backus terms 81mple operatlonal'
,models An example of such a machine is a finite state machine with an
attached memory device. This machine has the ability. to advance the memory‘
in- elther direction and either read or write to the memory "This is a tlght'." "
’fmodel that has a 31mple and concise mathematrcal foundatlon resultmg from

v_the finite state machine. It uses storage to save 1nformatlon that can: later

~affect the behavior of programs. This makes the model hlstory sensrtlve How- e

“ever, the clarity is not great as only simple state tran31trons are allowed Thls_‘-_,f»
'model is clearly not adequate for representrng such complex 1ssues as ordermg"’

schemes and multrprocessor orgamzatlon

Functlonal Programmlng Systems

Functional Programming Systems are an example of what Backus terms :
the applicative model. Such systems con31st simply of a set of objects, a set of ~
‘functions which. map objects onto obJects, and an appllcatlon operation Whlch‘
applles a functlon to an object producmg another object. Models like 'this have
- no concept of storage, are not hlstory sensitive, and programs ertten for them
are clear. Such a model is the basis of several data flow systems and languages.
While this form of model is useful in descrlblng programs or programmmg sys-

-tems, they will be of little use in a comparat1ve study such as ours:

The von Neumann Model -

} The von Neumann model of machlne behav1or is srmply an extension of the |
, computer developed by von Neumann many years ago. In its 51mplest form 1t
 has a srngle central processmg unit, a store, and some method to connect the |
“ processor to the store.- This model is the ba51s of all “conventional” program—
mmg languages. As the concept of these languages is the stored program, they

are. h1story sensitive and not mathematlcally concrse Agaln, note that machlne :
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“ behav1or models do not prov1de the support needed to descrlbe the speclﬁcs of g

' program sequenclng and machlne orgamzatlon

- 2. 3 Classxﬁcatlon Models _

Class1ﬁcatlon models allow descnptlon of the conﬁguratlon and operatlon
of parallel systems Whlle this class of models is wide, all members share s1m1- "
~ lar deficiencies for use as performance characterization models. In general there

_isa lack of both tlghtness and ablllty to concisely describe the program portlon ‘

of a. ‘system.’ Three classification models are discussed. Flynn [Fly66] presents K

N 'perhaps the" most well know system, describing instruction and data streams.

Next Handler [Han77] proposes a more complex system. GaJSkl [GaP85]“

presents. “essential issues’ ' for parallel processing. - In a recent presentatlon,

Browne [Bro85] suggested a new classification scheme based on the time of bind-

-ing.. All of these classﬂicatlon schemes can be used to describe multlprocessmg

_ | systems in- varymg detail.

Flynn S Model _ _
-Flynn’s models [Fly66] for parallel processmg are perhaps ‘the most W1dely

: tused in’ descrlblng computer systems. Flynn class1ﬁes computers with two cri-
teria: the parallehsm in 1nstructlon streams and data streams There are four
possible comblnatlons SISD, SIMZD MISD, and MIMD; referrlng to single and
multlple 1nstructlon and data streams 'SISD machines are conventlonal”
: unlprocessor systems, in which one thread of control operates on a a s1ngle set of
ke data. SIMD machmes allow multlple data items to be operated on- 51multane-.
ously by the available processing units, yet still under unified control. Gen—
. erally SIMD machlnes are. either vector or array processing archltectures
MIMD computers allow more than one thread of control, each W1th either single-
or. ‘multiple data 1tems operated on by each instruction stream. Many modern
- multiprocessors are MIMD, 1nclud1ng multiprocessor data flow machlnes MISD :
varchltectures would require multlple operations on a single thread of data. |
"They are far less common and one generally needs to stretch deﬁnltlons to ﬁnd
~an example » ' | ’
This model_of p'arallel processing is unacceptable for use in performance '
modeling, Not only does it not allow any consideration of the eiecution of pro-

grams, but also fdoes not go into enough detail to describe such ”issues_' as
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interconnection systems and memory organization.

The Erla.ngen Cla.ssxﬁca.tron System

, Handler proposed a more explicit <lassnﬁcatlon systun, whlch h(* (‘alled the
»’Erlangen Classification System [Han77|. Under this class1ﬁcat10n, each system
is d1v1ded into three levels of complexity. The Elementary Loglc Cireuit level |
(ELC) is the most basic, operating at the’ single bit level. The Arlthmetlc and -
Logic Unit. level (ALU) executes sequences of operatlons at ‘the ELC level.
 Finally, the Program Control Unit level (P CU) interprets a program instruction
by instruction. ‘Each PCU can control several ALU level components, and in
‘ jturn each ALU can control several ELC level components, each dedlcated to
onej it pos1t10n ,-A system under - this - model "~ is the 3-tuple ‘
| (k X k’ d X d’ w X w’), where the elements are: - L " o

N k Parallehsm at PCU level
k’ Length of each PCU pipeline;
'd_ Parallelism at ALU level; B
d’ Length of each ALU pipeline;‘ :
w  Parallelism at ELC level;
w’ . Length of each ELC pipeline‘.

‘With thls system it is possrble to describe the parallel and p1pehne complexrty

of a system at the three levels shown

2 Unfortunately, this model also suﬁers several fatal flaws when cons1der1ng

‘applicability to our goals. Again, no memory or interconnection issues are

addressed nor any concept of a program executing on such a system. - The -
expansion of Flynn s stream concept allows more detailed descrlptlon of systems
but does not bridge the gap to understandmg the operation of such systems.

However, the concept of h1erarch1cal control contrlbuted to the development of
: -COSMIC o ‘

B vGa.,]skx s Essential Issues -

Whlle Ga_]skl s ideas on the essentlal 1ssues in parallel processing [GaP85] '
‘do’ not form a formal classification system as in the previous “two examples, they

~do tend to classrfy systems by their common and divergent traits and thus are '
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discussed LOW. Th'ey describe five issues that must be coni.'ronted when design-
ing an effective multiprocessor. system These 1ssues are control, partltlonlng,
schedulxng, synchron1zat1on, and memory access.

‘ vPartltlonlng is the. JOb of" dividing a program into unlts that can be ‘e;(ej"
cutedrinvparallel, given proper synchroniz_ationand scheduling. It involv'es first
i ,deteeting parallelism and then elustering-several operations : bas_e'd on some
optlmahty considerations. The control issue is similar to other"classiﬁ'eatiOn
systems in that it deﬁnes several levels of control and 1f each of- those levels
operate,ln\ serial or parallel. Sequencing is the process of determlnlng which
operations occur after the complet’ion_ of other within a segment. ‘ Syno,hronlzaf
tion is required to ensure data dependencies are observed between two
separately sequenced modules. Finally, the memory access issue takesinto
account "thef.overhead that a program will encounter because accesses ‘to
- memory incl‘uding network traversal and contention issues. By simply compar-
ing and"'contrasting the methods 'various systems use to confront these issues, a
basic clasmﬁcatmn system is dev1sed These issues are indeed essential and -
1nﬂuenced the development of COSMIC. ' '

rBrownesBlndlng Tlme KN =
A class1ﬁcat10n scheme has been developed by - Browne [Br085] “This

cla381ﬁcatlon is'based on the binding time, an indication of when functions are

_ bound to the resources that will execute them and when they are bound to the

o tlme they Wlll begm execution. For example, a system with dynamlc scheduhng

will have a later binding time (run-time) than one with static scheduling (load-
tlme) Thls system can classify a large number of systems, ranging from systollc
arrays Where b1nd1ng will oceur at design time to dynamic data flow machlnes

Where blndlng can happen lmmedlately before execut1on

2.4. Survey Summary

A Wlde varlety of mechamsms have been used to descnbe multiprocessors,
While some of these models will serve as ‘a useful basis for the design a model
fitting the goals speclﬁed in thls report none Would be approprlate unmodified. -
In the next sectlon COSMIC is presented The inspiration from several of the

models descrlbed above will be quite evident in its development
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: 3 The COSMIC Performance Evalua.tl,on Model

" To analyze the performance of multiprocessors executing spec1ﬁc algo—
rlthms, we have developed COSMIC’, the Combined Ordering Scheme Model '
with. Isolated Components. COSMIC consists of both formal ‘parameters _
_'descrlblng a multiprocessor ‘system (1nclud1ng the algorlthm it executes) and
“analysis techniques producing performance measures. The underlylng principles
of thisf model are the isolation of individual performance issues and the study' of
systems under conditions close to those encountered when a system is: perform—
ing useful calculations. This section descnbes the parameters and analysm of

' ‘,systems represented by COSMIC. B

31 COSMIC Parameters » . o
A system S is defined by the triple §=(0, Gg , 08), Where O is the
) systems organlzatlon, Gd a dependence graph descrlblng a speclﬁc algorlthm,

and OS is the ordering scheme used to execute algorithms on the.orgamzatlon.

Included in a system’s organization are such features as the number and Speed

| " of processmg elements, the amount and organlzatlon of memory, and the inter-

‘connection amongst processors and memory. The dependence: graph issimply
an operation level precedence graph for a certain algorithm. Tlns graph
includes only algorithmic constraints, not those induced by operation sequencing
or programming languages. Finally, the'order‘ing scheme describes how algo-
rithms are executed on the organization. The ordering scheme is further seg-
mented into descriptions of a system’s mechanisms for part-itiOning, sequencing,

resource allocation, and memory utilization.

3.1.1. Orgamzatlon (0)

The organization represents the arrangement of hardware elements of a
sjrstem Every ‘multiprocessor has three basic components, processing elements
(PE), ‘memory locations, and some method to mterconnect them.: Input and
Output devices are simply speclahzed processing or memory elements. Conse-
quently, our model for organization is represented by the trlple O = (P M I), B
whereP M, and I are: ' S

"P-- A set of processing elements. Each processing element has a set |
> of 1nstructlons that it can execute and a relative speed The ordermg

scheme descnbes how these instructions are. ordered
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. M - A set of memory locations.

© I - An 1nterconnectlon function M XP — M XP ThlS function
' deﬁnes the possible interconnections, and with each outcome there is a

* related cost function that describes the cost of trairersing that connec-

- tion. Local memory on a PE can be modeled by a low cost function
(perhaps zero). Inaccessible memory (another PE’s local memory) can -

be modeled by I being partialon M X P — M X P.

3.1.2. Data Dependency Gra.ph (Gy)

The data dependence graph is an arc and vertex Welghted directed graph
in which vertices represent operatlons and arcs represent data. dependencles
between operations. The weight of a vertex represents the relative tlme that it
will. consume when executed. The weight of an arc represents the size of the
- data needing transfer to satisfy the dependency. These Welghts can also be
viewed as the number of \“atomic'operations” required to complete the compu-
tational or transfer operation. This graph is acyclic, as any loops: in a‘program
are unfolded in creating the dependency graph. Data dependent behavior is not

con81dered but ‘will be included in future research

3 1.3. Ordermg Scheme Functlon (0S)

The ordering scheme for any system i is a function mapping the dependency
| graph into an ordering net, based on the orgamzatlon parameters An ordering
net is a timed Petri net [Ram74] which depicts ordering constraints placed on
the execution of operatlons, as well as the cost of each operation in the modeled

'system. The ordering scheme for an organization O can be defined as:
0S(0): G — N,
“where G is the set of all possible dependency graphs and N is the set of all pos-

sible ordering’ nets. This function is the composition of several smaller, more

- easrly deﬁned functions. Thus the ordering scheme function,
05(0)= ’7(0) okoXrod0)on0),

(where the usual composition notatlon 1mplles that (f o g)(x) is equlvalent to

! (¢ (2)), ) contarns the component functions:
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nGy =N Creates an ordering net Gy,
HO):N—N Adds partitioning constraints, :
- NMN-—N Adds sequencing constraints, . -
p: N— N - Adds memory access constraints'; ey
H0):N—N Adds resource constraints. IR

Whrle the next sections detail each function, several observatrons apply to

 all. Functions described as system independent never change over all possrble

~ ordering schemes. A function will be system dependent if the functlon itself
, _changes from one ordering scheme to the next. Addltlonally, some functions
may be orgamzatzon dependent indicating that the result of applying the func-
tlon to a net varies according to some aspect of the orgamzatlon A functlon
' may be orgamzatlon mdependent while being system dependent. For example,

_is system and organization independent, ¢ is system and organization depen-

'_dent and )\ is system dependent and organization independent.

Note that because an ordering net is a timed Petri net, 1t has an underly—
ing directed bipartite graph. In this bipartite graph nodes represent places and
transitions, and edges occur only between places and transitions. In the follow-
1ng descriptions we take the liberty of referring to the features of this graph as
if they were features of the ordering net. For example, the 1ndegree of a transi-

" tion refers to the indegree of the corresponding vertex in the underlylng graph.

" Related to each ordering scheme function is a measure which indicates the
performance lmpact of that function. A measure is a triple whose élements are
the serial time and the critical path time and space requirements to fire an ord-
ering net. ‘While a precise definition of these measures 1sprovrded in Section.
3.2, this section provides a brief description of the measures corresponding to

the composite OS functions.

Computation Function (7) |
The computatlon function creates an initial ordering net from a data
dependency graph. Its sole purpose is to change domains from data dependency'

graphs to ordering nets and is organization and system independent. Formally

the cemputation function is defined as

Ivc =T[Gd]’
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- where N is the computatlon ordermg net for a given Gd produced by 7. This

‘. functlon requlres five steps, Whlch are now detailed.

Step 7; -~ Arcs and Vertices in Gy
‘o For each vertex in Gy create a trans1t10n in N.
e For each arc in Gd create a place in N.

o For -each arc, a;, in G;, with head v;,, create an arc in N joining the
tran81t10n correspondmg to v;;, to the place correspondlng to a;. ‘

" e For each arc, a;, in Gy, with tail vy, create an arc in N Jommg the place
'correspondlng to a; to the tran81t10n correspondmg to v o
Thls step crea.tes the first approxxmatlon to an ordermg net from a data

dependency graph. Transitions m the net will correspond to operations and
- places to the,storage or movement of data between operations. The structure |
- of the net is identical to that of the dependency graph. An example Gy is

shown in Figure 3.1a and the result ,Of Step 7is shown in Figure 3.1b.

| Step 7, -- Initial Transition - |
‘® Create an initial transition.
° For each transition created by step 7; with 1ndegree zero, create a place.

. ® For.each newly created pla.ce, create an arc joining the initial tran81t10n
e to the place.
T e For each newly created place, create an arc Jommg the place to the
correspondmg transition with mdegree zero.
This step ensures that there is only one mput to the ordermg net. Flgure ,

3. 1c shows the result of applying 7, to the net in Figure 3. 1b
Step 73 - Imtlal Place

@ Create an initial place, containing a smgle token.

e Create an arc from the initial place to the initial transition.

‘This step creates an initial place for the ordering net and makes the initial
transition active. Flgure 3. 1d shows the result of applymg 73 to the net is Flg-

ure 3.1c. .

' Step Ty = Fmal Trans1t10n
) Create a final transition. .
® For each transmon with: outdegree zero, create a place.

e For each newly created place, create an arc Jommg ‘the correspondlng'
tran51t10n w1th outdegree zero to the place. | . ,
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o Flgure 3.1 | L . |

Computatlon Ordermg Net ' Creation From Data Dependency Graph (a).
Shows: (b) Initial Ordering Net; (c) Imtlal Transﬁawn, (d) Imtlal Place, (e)
Fmal Transmon, and (f) Welghts , _ ,
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"Figu.re 3.1, continued.
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. Figure 3.1, continued. :



° For each newly created place, create an arc Jommg the place to the ﬁnal .
transrtlon : : -

ThlS step ensures that there is only one output of the ordering net Step 74 |

s 1llustrated by the transformation from Figure 3.1d to. Figure 3. le _} e

) Step T — Transrtion Firing Times and Place Weights

o0 Associate with each tranS1tion in the ordering net a ﬁrlng time Those

__transitions that correspond to vertices in G; should be assigned the weight o

of the vertex. The initial and ﬁnal transxtions should be glven ﬁring times
- of zero. : : : .

] e Associate W1th each place in N a We1ght proportronal to the arc weights N
in Gd The places added in steps 7y and 7, are given Weight zero.
:ThlS step associates approprlate ‘weights with each place and trans1tion
The weight of a transmon is its firing time, which is the elapsed time between
: the consumption of tokens from input places and the generation of tokens at

- output plaCes The weight of a place is representative of the amount of infor-

mation stored in the place or transferred between two transitions. Figure 3. 1f .

o shows the orderlng net resulting from the apphcation for 75 to the ordering net

.. shown i in Flgure 3.1e. The result of this function is a hve timed Petri net in
whlch only the 1mt1al transition may fire. _ SR '_
_ When N 1s analyzed by the technique descrlbed in- Section 3. 2 the compu- '
tation measure (M) is obtained. This measure indicates the tlme and space_

requirements of the system when only computational operations. are concerned

e and serves as ‘a baseline for further studies of overhead. Note that thls measure" 3

is always 1ndependent of ordering scheme and orgamzatlon

Partitioning Function (4) |

| Partit’ionin_g is the process of dividing a program into. segments: to allow
_ their execution on possibly distinct execution units. This  division requires the
addition of' explicit synchroni'zati()n between segments to preserve data depen-
g ,dencies The partltloning function creates a new ordermg net, N, parts based on
these added synchromzation requirements '

. ,Npa'ft-=¢[‘0: Nc]

‘Unlike the computatlon functlon, the partitlonmg funct ion is system dependent

but always follows a srmllar form, described in the followmg steps (An example E
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Jis. presented after the descrlptlon of all steps ).

o ‘Step ¢y =- Segment Constructlon L
‘ e Assign. each transition in the input net to one, and only one, segment
@ Assign each place for which all neighboring transitions belong to the
same segment to that segment All other places are not contalned in any_
~ segment. ; : e
' ThlS step defines the creatlon of segments from the 1nput net. The system
dependent portion of this step is- the algonthm used to choose the transrtlons

ass1gned to a specific segment

.T»,Step &y — Addmg Synchronlzatlon Operatlons :
° For each unassigned place, create two places and a transntlon

e Add an arc joining each transition for whlch the unasmgned place is an "~
S voutput place to the first newly created place. : v

"o Add an arc joining the second newly created place to each transrtlon for, '
o which the unass1gned place is an input place. ,

T e Add an arc joining the first newly created place to the new transrtlon‘

- and one joining this transition to the other new place.
bThlS step adds constraints to the model of the system whlch represent syn—
chronlzatlon requirements added by a given partltlonlng of a net Thls step is’

system 1ndependent

| ‘Step ¢3 -- Firing Times and Place Weights
e For each transrtlon added in step ¢, ass1gn a ﬁrlng tlme

o For each place added in step $,, assign a weight.

ThlS step asmgns costs to synchromzatlon requlrements The ﬁrlng t1me _
and welght chosen are organlzatlon dependent and proportlonal to the cost of

" 'synchronrzatlon in a glven system

b’ Step ¢4 - Recursion o
.. Apply this function to each newly created segment if addltlonal partltlon- -

mg is requlred for a given system o SRR :
An example of the apphcatlon of the partltlonlng functlon is shown in Flg—
ure 3. 2 Three segments are shown encircled by dashed llnes in the initial- net
1n Flgure 3.2a, which is the result of applylng step &;. Four places require syn-

chromzatlon, between the a-b, a-c, b-d, and d-e transrtlons Flgure 3.2b shows

’ .the new net after transrtlons and places have been added. The new elements’n -

are shown in boxes and segments enclrcled in dashed hnes for clarlty
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(b)

L 'Figure 3.2
~ Partitioning of Ordering Net (a) Produces Ordering Net
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When N, part 18 analyzed a measure is produced. After M, subtracted from
this measure, the partitioning measure, M,y is arrived at. This measure indi-.
cates the overhead induced on the system by partitioning the algorlthm accord-

1ng to the orderlng scheme

Sequencmg Function (X\)

The sequencing function is responsible for adding constraints to the model
induced by the sequencing of operations within the smallest segments of a given
system, as well as the sequencing amongst those segments. Basically, this func-_
tion causes the interpretation of either control flow, data flow, or combined
schemes. Formally, the sequencing function produces a new ordering net from

its input: | |
‘._,Nseq =\ [Np_art ]

Again, this function is system dependent, and must be specifically defined for
~each system. The following steps describe the sequencing function:
Step >\1 -- Operation sequencing

° For each smallest segment produced by @, determine one or more execu-
tion traces of transitions which will occur. when the segment is executed on

~ the system. This trace must not violate any dependency currently ex1st1ng
1n the net (i.e. do not create a dependency loop.)

e For each execution trace, add a place-trans1t10n-place sequence between -

each pair of adjacent transitions along the trace.

- o The firing time of the added transition will be proportlonal to the cost of
sequencing on the system. The weight of the added places will be propor-
~ tional to the amount of information transfer required to sequence

J

This step creates one or more execution traces for a given schedulable seg- -
ment which was previously defined by partitioning. It reflects the A;iinplementa-
tion of the sequencing scheme at the operation level. Figure 3.3a shows a seg-
ment of the ordering net shown in Figure 3.1f, and Figure 3.3b shows the result

of the apphcatlon of this step, with a single execution trace.

Step X, -~ Segment level sequencing

¢ Connect each transition at the tail of a trace list produced by step A\; to -

the,head of some other trace list or the final transition, by a place-

transition-place sequence. If this connection is already made by a syn--
~ chronization operation, do not add a new one. The trace list must not
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(b)

Figure 3.3

Sequencing Example Showing (a) Partial Ordering Net and (b) Correspondlng
Operation Sequencing Net
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“ Violateany‘ previously existent depend‘encies (i.e. no dependency loopS);
@ Connect the initial transition to the head of any list not used in the last
. step by a place—tran51t10n-place sequence.

o The firing time of each added transition is set equal ‘to the segment

: sequencmg cost for this system. The weight is again proportional to- the v
réquired information transfer for segment sequencing. Modify the weights |
and ﬁrmg times of synchronlzatlon operations appropriately.

‘This step implements the sequencing of groups of operatlons at various lev-
~els, dependent on the ordering scheme of the system. Figure 3.2 can also
demonstrate segment level sequencing. If the ordering scheme vrequired a serial

trace of ‘seg»ments,‘ a sequencing operation could be placed between the transi-

~ tions la_beled “q” ‘and “b”. This would ensure the segments themselves execute
E in a serial fashion while operations within the segments could operate in paral-
| When Nseq s analyzed a new performance measure is’ produced When
M, + A@m subtracted from this measure, the the sequenclng measure, M, is
-arrived at.. ThlS measure indicates the overhead induced on the- system by‘

sequenclng the algorlthm accordlng to the current orderlng scheme

Memory Access Funetion (1)

" To this point, the welght of each place in an ordering net has held all
'memory access and interconnection network traversal 1nformat10n The
memory access function produces a new orderlng net Whlch reﬁects added con-

'stralnts 1nduced by these factors
Npo = 10 [vaeq ]

" This funetion is mdependent of any system speclﬁcs and simply replaces each
vnon-zero welghted place with a place-transition-place sequence. The new tran-
- gition is glven a weight equal to the weight of the place it replaces Flgure 3.4
shows: the result of applymg u to the 1n1t1al ordering net, whlch was shown m :

. Flgure 3.11.

When N is analyzed a = measure is produced. - Th’en," af_ter
'M + %art + M, Leq 15 subtracted from this measure, the memory access meas-
- ure, M, is- obtained. - This measure indicates the overhead 1nduced on the sys-

tem- by accessmg memory
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Figure 3.4
Ordering Net with Memory Access Constraints
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Resource Allocation Function (7) _

‘Resource allocation is the process of assigning a set of vertices (transitions
and places) to a s‘et‘ of resources (processing elements and memory locations.)
Transitions represent computation and are assigned to processing elements,
while places represent data storage (or transfer) and are assigned to memory
locations. This function produces a new ordering net which reflects these eon-

straints:
No=9(0, N

I should be noted that if one wishes to model resource contention for memory
devices, the memory access -function y must be applied before 7. _After the
- application of «y the ordering net may agam have u applied to show the cost of -
the ‘memory access added by 4. The resource allocation functlon is orgamzatxon'
dependent and must be defined for each system modeled. Fortunately, all

resource allocation functions follow the same general form:
_ Step M .- Resource Set Designé,tion

- @ Create mutually exclusive sets of resources to be allocated before run-
- time. In this case a resource is considered a member of the set P | j M,

- the set of all processing and memory elements.

- o For each resource set, determine the subsets to be allocated at run tlme

Thls step requires the designation of which groups of resources will be allo-
cated before run time, and within those groups, which will be allocated at run
time. This allows for the modeling of both static and dynamic resource assign-

ment as well as hybrld approaches

‘Step Yo == Resource Creation :
.o Create a place for each resource set to be allocated before runtime. -

:‘ o Place one token for each run time allocated subset contalned within a
resource set in the corresponding place. :

e Asmgn a weight of zero to each new place.

This step creates resourctes, and is system independent. Obviously the
number of resources created is organization dependent. Each place is used to
represent a distinct pool from which a resource may be taken. The tokens in
this _place‘ represent the degree of run time parallelism available from that

‘resource pool. -
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Step 3 — Resource Assignment

e With the exception of the initial and ﬁnal transxtlons, assxgn each transn—
tion in N to one or more resource sets which are required for its execution.

e For each transition assigned to a given resource set, add arcs to create a
directed cycle containing both place corresponding to the resource set and
‘the transxtlon ‘The outdegree of each non-resource place on the cycle must
_be one. ,
lThls is system dependent and assigns the individual transitions to a speclﬁc
resource pool There are two convenient methods of resource assxgnment avall-
able: '

1) For each transition, create a length two cycle containing the tran51tlon and
" the resource place. :

2) If a segment of N with one input transmon and one output transition is to
use a . resource, an arc can join the resource place to the 1nput transxtlon
“and another can join the output transition back to the resource place
This models a system which allocates a resource to a group of operatlons
that hold it until their completlon :
Step Vi Place Weight and ang Time Adjustment

- @'For each place in N, adjust its weight to account for added commumca—
- tion required.

® For each transition in N, adjust its firing time to adJust for changes in

processor speed.

This step is system dependent, adjusting the firing times. and place welghts
Firlng times must be adjusted after the resource assignment to account for
differences’ in processor speed Place weights must be adjusted based on the

cost of communication, as descrlbed in the system’s organization.

As an example, consider Flgure 3.5. Figure 3.5a shows the same N, found
in Figure 3.1f, with the transitions labeled a through i for convenience. Figure
3.5b s’how's' two resources are added,'with‘ the places labeled R1 and R2. Each
of these resources is a one element resource set, as defined by step ;. Resource
1 is" used . to ekecute the subgraph consisting of transitions b through’ 1.
Resource 2 is used to execute transitions g and h. Additionally, the welghts of
the 1nput places of g and h were doubled to reflect 1nterconnectlon network
delays. It can be seen that by the rules of Petri net firing, each resource can
only be used for one transition (or subgraph) at a time, and that the token ‘

representlng the resource is preserved.
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(a)

' Figure 3.6
Resource Constraints Featuring (a) Labeled Orderlng Net And (b) Correspond—
_ing Net With Added Constraints
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(b)

. Figure 3.6, Continued.
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~An analysis of N,, produces a measure.' When the sum of ‘previous meas-
,ures (M, + My, + M, ieq +]\4m) is subtracted, the resource allocation measure,'

= ’Ma, is arrived at. This measure 1nd1cates the overhead induced on the system

by resource allocation the algorithm ,accordlng to the current orderv_l_ng scheme. o

3.2 Analy51s and Measures

-After a system has been: descrlbed by the parameters of COSMIC, it is
\ analyzed to determine several performance measures. This analy81s 1nvolves the
~determination of the time between the firing of the initial and final transitions )
in an orderlng net Computerlzed analysis tools, detailed in the next sectlon, :

| aid in thls determination. The analysis begins by creating orderlng nets us1ng a

‘ j--hlgh-level descrlptlon language that -enables the speclﬁcatlon of parameterlzed

o nets Generally, these parameters include the problem size and relatlve costs -
~ for computatlon, 'sequencing, and synchronization. A compiler then' fixes values
for these parameters and produces a set of interconnected places and transi-

’,tlons., Next, a net analyzer determines the various measures by firing the net ,

k B ; _following the rules of timed Petri nets. .Finally the results of many analyses are

,Mg'at'hered into a database for further off-line studles. ‘The entire system is capa-

ble of analyzing nets up to about 50,000 places and transitions while consuming
“reasonable: computational resources. This enables the analysis of moderately

o large problems

Three - values are ‘associated W1th each performance measure: the serial

time, the critical path tlme, and: the number of resources required to- achleve

- the critical path time. These values describe both the time and space require- s

ments of the modeled system for a glven conﬁguratlon Two classes of measures :
are used: - primdry measures represent consumpt1on of resources directly related
to the algorithmic requirements of the system, and overhead,measures show the
' cOnsumption of resources unrelated to any algorithmic requirements. ~The
analy51s consists of the apphcatlon of two analy81s functlons " The serzal i

i analyszs functlon is: 7 ‘ o
© ANgi : N — IR,

‘where IR ’represents the set of real numbers and' N the' set of ordering nets. Tt
- computes the time requlred to fire all nodes in an ordering net with the added

constralnt that no two trans1t10ns may ﬁre mmultaneously The critical »path'
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analy‘sié function is:
ANCrzt : N — IR XW,

where IR represents the set of real numbers, IN the set of nonj—‘nega_ti_ve )

integers, N the set of orderiﬁg nets, and X the cross product. It computes the

time require’d to fire all nodes in an ordering net, with Only the constraints

presented by the net, as well as the number of resources required to achleve o

that level of performance Fmally the general analysis functlon, ,
AN: N — IR X IR X IN,

sunply combmes of the two previous functions, the result of whlch is a trlple of _.
values (Serlal Time, Crltlcal Path Time, Critical Path Space).

If Mis such a trlple, the total execution measure for a model with organi-

zation O, ordering scheme OS‘, and data dependency graph G; is:
M, recution = AN[OS'[Gd’ O ]]

The ‘execution measure is also, by definition, the sum of the five prev10usly '

deﬁned measures:
Mzecution =M, + %art + Mseq + Mna + M,

where M, is the computatioh measure, M,y the partitionihg costs ineasure,
Me(;‘ the sequencing costs measure, M,,, is the memory access measure,;‘_agd M,,
is the res‘ou;rce allocation costs measure. These measures are also triples,‘ the
addition of which is defined in the usual manner by adding corresponding
entries. These measures represent the analysis of an ordering net resulting from
the application of a subset of the ordering scheme function. M, is the primary
measure, while the others are overhead measures. Overhead measures may con-
tain negative entries for Critical Path Space since, as the critical path time
. grows, ‘the space required to achieve that performance may decrease. These

measures were described in the previous section.

" Each of these measure components is unitless and should be expressed in a
ba.se'unit related to one component. For example, if each synchronization
operatioﬁ‘takes_ one measure unit, then memory access or computatien compu-
- tations could take n synchronization operations. Alterﬁatively, the base unit

'could be taken to be the memory access measure or scheduling measure. The
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important feature to observe is that these measures are represented in relatitre
terms and the exact relatlonshlp must be determined. This data can also gen—-
erate a measure of the efficiency of a system by con51der1ng the ratlos of ‘the

prlmary and overhead measures to the total execution measure.

3. 3 COSMIC Summary

This section has presented the model with examples to show 1ts mechamcal
operation. By allowing the specification of complete systems in an orderly
manner; COSMIC allows performance analysis of complex systems. “This orderlj}
specification in turn allows individual performance issues (e.g. sequencing over-.
head) to be separated from the total performance. The next sectlon descnbes

several tools required for successful analysis of larger systems
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- 4. Tools
- This séction describes in some detail a set of tools developed to aldlnthe .
analysis of systems modeled by COSMIC. The first tool di{scusse'd ‘cd‘r:np'iles__.a__
hierarchical description of a timed Petri net into a single level internal format.

The second tool analyzes this internal representation to determine various

measures. Finally, several ancillary tools allow the user to examine the _inte__rnal S

descriptions “and debug networks. This section will present the language

describing timed Petri nets and discuss the implementation of the two major

tools;,‘,;Examples are given to illustrate their use.

4.1, Hlera.rchlcal Timed Petri Net Language
HTP is a language designed to h1erarch1cally describe tlmed Petrl nets A

timed Petri net consists of a set of places, a set of transitions, a set of dlrected"
arcs -connecting transitions to places and vice versa, a real number associated
 with each transition which is its ﬁrihg time, and a marking which indicate,s:the_
number of tokens initially at each place. In addition to HTP’s 'ab.ility"to'
- represent.each of these items, it also allows for parametérizatidn, 'con-ditibn‘al.
expreSsions, ‘and repeat loops. Capablhtles also exist to allow groupings. of
: placos and transitions in the form of arrays. The grammar for this language is

_ glven in Appendlx A.

The “basic strategy used When describing a net with HTP is ‘suc”ceési;zely
finer detailing until individual places and transitions are defined. By this
method even large, complex nets can be described with relative ease. The
mechanism used to accomplish this hierarchical description is the subnet, which
’ : is analogous to the subroutine in avconventiOnal prograrhming language. A sub-

met is capable of describing an arbitrarily complex net which can be used many
times in the overall description of the net. Of course subnets vmay‘th,emselves
refer to other eubnets To allow a “calling” net access to the internal com-
ponents w1th1n a subnet each has a defined set of 1nput and output ports. In
descrlbmg a Petri net, a subnet’ s name and a port name are used to refer tg a
specific place or transition within that subnet. In reality places and transitions
themsclves are simply special subnets. Each has one input and onc output
which are used to access the place or transition. They are also the quantum
" units of the language in that every reference used in a connection must evaluate

4 to an ‘indi'vidual place or transition.
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“This section serves as a programmer’s (or more accurately “descrlber’ ”)
manual for HTP, providing information about the language as well as examples
of 1ts use. While many HTP features differ from programming languages, there:
are common features. In these areas readers famlhar w1th the C programmmg. e

language [KeR78] will notice similarities.

The maJor components of HTP are parameters, expresszons, declamtzons,
: statements, and global de finitions. Parameters hold values durmg the deﬁnmg |

process so they may be reused and combined with other parameters Expres-'
' sions may be used to manipulate parameters and constants. Declarations define
the components of a net and associate names with them. Statements ‘operate
on these components. Finally global definitions syntacticallyﬂ.hold the

definitions of the net or its subnets.

4.1.1. Lexical Conventions
This subsection presents some lexical conventions used in HTP. TA'llv

correspond to equivalent C language constructs.-

Comments

' Comments start with the character sequence ‘/*” and end with the
sequence ok /. Any characters in a comment are 1gnored by the compiler.

Comments do not nest.

Identlﬁers

» An identifier i is any sequence of characters starting w1th a letter and con-

(1

sisting of the letters, numbers and the “_" character. All characters in an

identifier are significant. An identifier may not be a keyword.

Keywords -

The followmg are the reserved keywords in HTP, and may not be used as
,1dent1ﬁers
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‘ else_ model repeat
- af output subnet
input - place trans

Constants
.- Integer constants may be expressed in either decimal, octal, or hexadecimalr-
notation, using the same conventions as used in the C language. Octal numbers

are_signiﬁed by a leading “p” character, hexadecimal numbers by the sequence

“Ox” Floating point constants are only accepted in decimal notation. The pre- B

cxsmn of constants is machine dependent.

" 4.1.2. Expressions ,

Expressions allow the combination of parameters to form new parameters.
All expressions correspond to equivalent C language expressions. Expressions
may be parenthesized to 1nd1cate precedence, whlch is left to rlght :if

unspec1ﬁed

Arithmetic Operations

Addltlon, subtractlon, multiplication, division, and modulus operatlons are
defined using the conventlonal symbols S “/”, and “,%_”,respec—
tively. Each combines the expressions on its right and left, performing the

appropriate operation.

Logical Operations

The logical AND and OR operations are defined using the “E & and Ll
‘syrnbols respectively. These operatlons. are logical, as opposed to bitwise, pro-
ducing either 1 for true or 0 for false. For example, the expression “A && B”.

- would produce 1 if A and B were both nonzero expressions, 0 otherwise.

Comparison Operations

The comparison operations yield either 1 indicating true or zero indicating
false based on the comparison of two expressions. Implemented operations are

equal; not equal; less than; greater than; less than or equal; and greater than or
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equal. Symbolically these operations are represented by “==", '“!z—-':_’,’_,"-',:r“'<-’__’,_
N w=""and “>="" respectively. o

4.1.3. Decla.ra.tlons

Declaratmns define the places, transitions, and subnets to be used in form- |
" ing a net or subnet, as well as the input and output ports of the net or subnet.

The general format of a declaration is:
type decl_list ;

Where type is one of trans, place, input, output, or subnet and indicates
" which item is being declared, and decl_list describes the names and parameters

of each item It takes the form:
name1 ( param1 param2 , ... ), name2 , name3 [ sizel / [ szze? ]

where one or more 1tems may be declared, perhaps with parameters assrgned to
‘the items declared. A multi-dimensional array may be declared using the'
square bracket convention. Parameters will be used to specify the- ﬁnng tlme or

initial -markmg for each transition or place.

trans declaration

The ‘ trans decl_ list’3 statement defines one or more transitions. One
parameter is allowed which indicates the firing time of the tran81t10n ~ The
default value is 1. In an array of transitions, each element has the same firing
time. Each transition has two hard-wired ports, one input called ‘i’ and one

output called 0. These are used when forming connections to the transition.

place declaration

The ‘“ place decl list”’ statement defines places. Two vparam‘eters are
‘allowed which indicates the weight of the place and the initial marking. The
default value of the weight is 1, while the default of the marking is zero. In an
array of places, each element has the same weight and marking. Each place

has two' hard-wired ports, one input called “i”’ and one output called
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subnet declaratlon S

The subnet name decl list’’ statement defines occurrences of the subnet :
with the name name. No parameters are allowed. The subnet mentloned must

be deﬁned elsewhere in the description. Recursive deﬁnltlons are not allowed

: lnput declara.txon

The ‘,‘ mput decl_list”’ statement defines input ports to the - current

definition: (1 e. net or subnet). No parameters are allowed

’ outnut declaration
The * output decl_list”’ statement defines one or more output ports to the

current definition. No parameters are allowed.

| 4.1.4. Statements

Statements are used to define a timed Petri net. They perform. the

“action” of forming a complete net when compiled.

assxgnrnent statement

A neW parameter can be created from prev1ously defined parameters and ’

constants usmg the assignment operatlon
param_name = expression ;

Parameters may be redefined at any time, with the new value replacing the }old. -

Parameters do not carry a specific type and do not require declaration.

“connect statement

The connectlon statement is used to connect one or more declared ports to

‘one or more others, using the *“->" symbol.
| .out;port;list -> in_port_list ;

In this statement each list is alcomma separated list of ports, either of thevarm
“portname:”,' previously declared as an input or output port; or as
“itemname.portname’”, where itemname is the name of a previously declared
place, transition, or subnet and portname is the name of an input or output

port associated with that item. If an item on the left side of the operator
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~evaluates to a place, the right side must evaluate to transitions. Ajterﬁstively,
if an item on the left side of the operator evaluates to a transition, the right

side must evaluate to places. One of the list must have only one _element.

repea.t statement

- The repeat statement is used to repeat a group of statements several times,

‘Wlth a parameter indicating which loop instance is currently executlng

. repeat (name,min_ezpression,maz_ezpression ) {

| statements;
In this case name is a parameter which is created by the execution of the
repeat statement. It has a “value which- ranges from nun. ezpresszon to-
.mLexpression, one per 1nstance of the loop. Therefore . total of

maz_expression — min_expression instances of the body W1ll be created Each

‘instance is 1ndependent of all others.

1f-else statement

The 1f-else sta.tement is used to conditionally execute a group of statements
based on the outcome of a conditional expression. The else. portion of this

statement is not required.

if ( conditional_expression ) {
statements; ' '

Jelse {

statements;

4.1.5. Global Definitions
A HTP net is made up of one model definition and zero or ,Iv»n,ore‘ subhe_t
~ definitions. ' '
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" model definition’ , :
One model definition is requlred in each net definition and serves as the

base of expandmg the net. The model_name is used only for external

, A1dent1ﬁcat10n

model model_name {
»declamtzons H

statements

Note that items must he declared before used.

subnet deﬁmtlon

Any number of subnet definitions may be used in deﬁnmg a network. Each

- time the subnet is referred to in another definition, a copy is made The

subnet_name is used to refer to the subnet in declaratlons Subnets may not

refer to themselves _

X ,,s‘ub,r_let model_name {
~declarations ;

~statements ; :

4. 1 6. Exa.mples

Flgure 4 1 shows HTP definitions produce the Petri net shown in Flgure‘
3.3b. Note that the subnet “seq”” will appear three times in the net produced

by the compller, called sl1, s2, ‘and s3 respectlvely The connections and
| declaratlons inside are automatically duplicated in each instance. Appendices B

through E show more complex examples of HTP net descriptions.

4.2. HTP Compiler
Once a Petri net has been defined in HTP, it is “‘compiled” into an internal
format by‘ the program mknet. The compiler has three distinct phases in pro-
cessing the input description of a Petri net. The first phase simply parses the
input description into a tree structure to allow more efficient manipulation.

The second phase expands the description into a ‘single flat network of places
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SEQTIME = 1; ' ' o /* a parameter definition

model figure3_3_b { : /% the model is called f1gure3 3 b
input i1,1i2; : /%2 inputs
‘output o; , " /% a single output
trans t1(7),t2(3),t3(4),t4(0); 7/* declare 4 tran51t10ns
place p1(1),p2(4),p3(0),p4(0); /* declare 4 places
subnet seq s1,s2,s3; /* 3 copies of subnet seq
i1,i2 -> t1.i /* the inputs connected to t1
t1.0 -> s1.i,p1.i,p2. 1, /* £t1 out to 1 seq and 2 places
-sl.o,pl.0 -> t2.1i; /* seq and one place to t2
t2.0 -> p3.i,s82.i; /% t2 out to 1 place and 1 seq
p2.0,s2.0 -> t3.i; /* p2 and s2 out to t3 in
t3.0 -> p4.i,s3.1i; /¥ t3 out to p4 and s3
p3.o,pd.0,s3.0 -> t4.i; /* p3,p4,s3 all to t4
td.o -> o; . /* t4 is the net output
/*
* . a subnet to handle a sequenc1ng operation
*/ . |
subnet'Seq { } ' /* the subnet is called seq
: input i; /* one input...
output . o; - /* ... and one output
place p1,p2; ' /% two places , »
trans t(SEQTIME); .. /* one transition, param time
i.->=p1.i} S /% in -> p1 =-> t => p2 -> out
pl.o -> t.i; : - o
t.o -> p2.i;
_ p2.o0 -> 0}
}

Flgure 4.1
HTP Description of Figure 3.3b
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and transitions with appropriate interconnection. The final phése’assigns a
unique number to each node in the network and produces an output file which
is a simple node list. This section describes each phase in some detail, discuss-
ing the algorithmicvcomplexity of each phase. To allow the analysis of the larg-

est possible nets, the algorithmic complexity must be kept at a. mihimum. ‘ o

During the first phase the input description is parsed using é_simple parser
built by theYACC compiler compiler [Joh75] and LEX lexical analyzer [Les75].
These tooIs are generally available under the UNIX operating“syster_n'. Each
Ak declaration, statement, and definition causes the creation of a n_ode‘ in a tree
~data structure. In this data structure each definition has as its children all
statements within that definition. Similarly statements which may syntactically
cibntain'other statements (i.e. the repeat and if statements) have as their chil- -
dren. the statements they contain. Finally statements requiring lists such as
declératidns and connections have as their children the elements of those lists.
When a symbol is defined by definition or declaration it is placed in a symbol
table and referenced to the item it defines (e.g. a subnet or transition.) During
thisﬁphase symbol conflicts and syntax errors are detected and reported to.the
wer.. o

. The‘tifee structure allows the easy expansion of subnets and other struc- ‘
tures by simply replicating the internal structure of their definition. In assess-
ing the -‘coinpl’exity of this phase the two major components are building a sym-
bol ta.Bl_e of Neym symbols and creating a tree of Niqse statements. As N, is
generally small, the symbol table is implemented as an unordered list in which
the ldokup and insertion of each symbol requires O (N,,,,) time and O(1) space.
Therefore symbol table complexity is O (Nsim) time and O (Ng,,) space. The
parsing of statements and creating nodes for them is a simple one pass ‘p‘rocess
requiring O (1) time and space per statement. Addiné the symbol and state-
ment complexity, the complete phase requires O(stm + Ny ) time and
O (Nyym +'Nmte) space. The number of statements and symbols used in
describing a Petri net is related to how well the describer can break the net into
subnets. In general this complexity is small as even very large nets do not
require many statements or symbols. Experience verifies this result as the first
phase requires a very small portion of the total execution time Qf the ’~‘mknet

program.
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The second phase of this program is the most complex and where the most
attention to performance needed to be placed. The process begins by simply
“expanding” and ‘‘executing’ the model definition. Expénsion of a net- involves
creating all the places and transitions within it, while execution cre_aivie:s‘,'f the con-

nections between them.

For each place and transition declared in a definition, a dupliéaf,e of a
master place or transition node is created and appropriate firing times or
weights assigned. If an array of places or transitions is declared, a ‘multi dimen-
sional tree of duplicates is created each node having appropriate’ weights or

firing times. Subnet declarations cause the immediate expansion and execution

of the subnet definition in question if it has not already been processed. Obvi- B

~ ously if a subnet definition declares other subnets they too will be expanded and
executed in a recursive manner. After a subnet’s processing is complete, - its
tree is pruned to remove all information not required for duplication and 1/0
port accessing. This step significantly reduces both the space and time require-
ments to copy the structure. The remaining subnet definition is duplicated as
many times as required to fulfill the declaration. Input and output declarations
create simple nodes which are used by external statements to access the places

and transition of a net or subnet.

.- After all declarations have been expanded, the statements of the definition
‘are executed. The connect statement will simply cause the connection of places
and transitibns. Error reports are issued if a statement connects a place to a
place or a transition to a transition. Also, either the source or destination list
- must have only one element, 'aﬁd all nodes and porté must be defined. : The
'body,df an if statement will only be executed if ‘the condition is true." A r'épea.t
statement simply executes the loop the specified number of times after defining
a new local symbol. The symbol is removed after the execution of the body;

In asSéssing the complexity of this phase of the compilation ‘p‘ro:cess; ‘con-
" sider the costs of two operations: the duplication of defined items and the exe-
cution of connections and other statements. Each node (i.e. place or transition)
requires O (1) space and time to define and duplicate it. If' N,,5, nodes exist in
the final net, then the space and time requirenients will be O(N,,4.).- The addi-
tional space requirements of the original nodes were either accounted for in the
parsing phase (for subnets) or O (1) (for places and transitions.) The connection

processes requires two symbol lookups for each connection statement executed.



- 47-

Note here that because of our hierarchical definition there is no‘t:"a connection
statement per node as subnet connections are performed before subnet duplica-
tion. Assummg Neonnect connections statements are executed, the time complex—

ity is O(N,

- onmnect sym) No additional space is required for this operation.

Finally, the execution of if and repeat statements can be assumed to require
O (N, on,mt) as at most one if or repeat statement is in general executed per.
connection ‘execution.  In summary this . phase ' requires
O(Neonnect * Nyym + Npoge) time and O (N,,4, ) space. Experience shows that in
general N, 4, is much larger than Ngup.cs, as each the hierarchical nature of
- HTP requires connections within e, subnet be created only once, regardless of
how often the subnet is used. Thus, the duplication time becomes dominant.
Finally, the third phase uniquely numbers the nodes in the network by
recurswely traversmg it in O (N, 4. ) time and then traverses it again to output
each place ‘and transition. This process is also used to check the connectivity of
nodes in the net.. Totally unused nodes are ignored by the traversal The total

time complex1ty of the entire compilation process is

0 (vatate + (Ivsym + ]Vconnect )N + N, de)’

In assessing this complexity, assume N, state =~ Nygm = J\Icommt (which is the

usual cOndition). The total time complexity reduces to

o ('szym2 + Nnode )'

- The total space requirements are
0( state + vaym + Nnode)

The only non—optimal portion of this performance is the symbol table lookup,

but experience shows that as, N,,;, much larger than N,,,, the code overhead

sym>»
for a more complex lookup algorithm is not justified. Space requlrements are

optlmal as each node, symbol and statement requires storage

4.3, HTP Ana.lyzer

After an HTP description has been complled the place and transxtlon llst is
passed to the net analyzer, anet. This program is responsible for determlmng
the measures described in Section 3. Several distinct phases make up this pro-

gram, depending on the results desired. During first phase the net is read into a
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~ multiply linked data structure. The next several phases determine thé critical
path time,‘ serial time, and optionally the critical path width. Finally results
are output indicating the value of the various ‘measures. This section d‘es'c’ribe‘s
the actions of these phases and their time and space complexity. ' '
 The input phase is impIemented as a state machine which parsés"the list
output of mknet. For each node read, one is created and connected‘écédrding
to the 'inpﬁt specifications. Additionally, any parameters are assigned to the
node. Any errors in syntax (which should not occur as mknet produces this
input), are reported, as well as exceeding a compiled parameter for the max-
imum number of nodes allowed. This limit is currently set at 50,000 nodes but
could be increased at a cost of about 40 memory bytes per node. As no search-
ing is required this phase requires O(Nm,de) in both time and space. At the end
of this phase a single extra place, connected to each transition with a non—zero
firing time is created. This place, called the resource limitation place is used to
control concurrency during analysis. The limitation is accomplished by placlng
"~ a number of 'token.s, corresponding to the desired limitation, in the place. This
results in allowing only this limited number of transitions to be in' an active.
‘ s‘taﬁt‘e.«simultanedusly.’ This connection process has time complexity of O(N,oq)
aﬁd uses O (1) space. '
The next several phases perform composite firing time analysis, each phase
with a different limit on the number of transitions which may fire simultane-
ouély. In each case the time required to fire all transitions in the net is deter-
mined. The first analysis phase places no limit on concurrency (i.e. an infinite
supply of tokens is available at the resource limitation place) and an analysis -
shows the critical path time. Serial time is next found placing a’s_inglé token in
the resource limitation place and" performing andther firing ﬁiﬁ;e -analysis.
'Finally a binary search is performed to determine the number ‘of resources
required to achieve critical path performance. In each step of the search an
analysis is performed. The lower bound on the limits of this search is the ratio
of serial to critical path time, and the upper bound is the maximum number of
- transitions ﬁrmg 31multaneous1y during the critical path measurement. The
search. termlnates when it finds the smallest number of resources requlred to

achleve critical path performance.

Each analysis phase computes the firing time of the net with a speclﬁed

hmlt placed on concurrency. The typical method _for accomphshlng this
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calculatlon would be to build a reachability tree for the net. A reachablhty
~ tree is a graph in which each vertex represents a marking; edges ¢onnect mark-
mgs reachable from other markmgs in which a single transition fires, and edges
are weighted with the firing time of that. transition. After constructlon of the
tree, one ‘would then find the shortest path through this tree from the initial
marking to. the final marking. Unfortunately the reachability tree grows
expenentially with the number of nodes in a net, making thié method unusable
foi' all but the smallest of nets. In fact, any method which relieé on seafching
the state space of net markings w1ll be unsuitable for our goal of analyzmg

large nets

~To overcome the problem of state space explosmn we have developed a
heurlstlc' approach to the problem. Several strategies are used to pick a single
thread of the reachability tree between the initial and final markings. In each
pass, one of these strategies is chosen and the minimal time over all strategies is
taken as the composite time. These strategies, which are similar to scheduling
strategies in multiprocessors, allow us to quickly analyze the net while achieving

a close appfoximation to the actual shortest path in the reachability tree.

The approach to each pass of the analysis phase (during each of which one
of the heufistic strategies is applied) is an iterative approach. First the net is
reStored to its initial marking which is saved during the input phase. A number
of iterations then take place in Whieh three steps occur. First a list of candi-
date transitions is found. A candidate node is one that has at least o"neb token
in ebé.c’hbilllpl_lt place. The list is then pruned using the strategy to a firing list,
which is conflict free. This achieves the goal of reducing the tree fanout to one.
Finally the firing list is fired. The firing of transitions is accomplished by an
eirent‘ driven simulation. First a token is removed from each input place. Then

‘an event is scheduled to occur after the firing time has elapsed. When this

event, occurs, tokens are given to each output place. These steps iterate until -

., the candldate list is empty.

In exammlng ‘the complexity of the analysm process, note that each transi--
tion is fired once. The time complexity is thus limited to O (N4 %) as there
will be at most Nnode searches for candidate nodes, each taking O(N,,;. ) time
to complete. However, due to fanout, fewer candidate lists are actually formed.
Also, a faster search for candidate transitions is employed by maintaining a list

of potentially active transitions (those with a token in at least one input place.)
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‘Under ideal conditions this can lower the time complexity to O (N,,z. 108 N;04c )-
No additional storage is required for this operation. The total analy51s phase
will require O (Nyq55 Nyoge %) time, were N,gss is the number of iterations required
to determme the critical path width. Due to the binary search used Npass
O (logcpath_urdth). ' ’

The final phase simply reports accumulates data for further processing, in
constant time. Combining the time and space requirements for this entire tool,

the time complexity has a best case of

o (N N, node logN ode )

pass

and a worst case of

O ( pass ode 2)'

Space complex1ty of the algorlthm is O(Nypge)- As an example of. the executlon
times, Table 4.1 shows execution tlme required to analyze various net sizes on a
'CCI 6/32 computer system. |
Table 4.1

Analyzer Execution Times

Noode | Npass |  Execution Time
(seconds)

1500 | 7 15

4500 8 60

10000 9 250

44 Future Tools and Conclusions

, " The tools described in this section perform the most mechanical and long-
est tasks in the analysis of ‘COSMIC models. They allow us to analyze realisti-
cally sized problems and perform a wide variety of experiments on them: How-
ever, we would like to expand our set of tools to allow the automatic generation
of ordermg nets from a hlgher level description of the algorithms, ordermg
scheme, and‘orgamzatlon. Th;s tool would allow the study of a much wider

- variety of algorithms than can currently be generated. The next section .
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describes 'sevveral experiments pérfor_med using the tools described in this section.
Finally, it should be noted that the programs deseribed here should be portable

td most UNIX environments and are available from the authors.
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5. Examples Usmg COSMIC

The use of COSMIC is xllustrated by several experiments conducted to
study the behavior of iterative algorithms on combined data flow and control
flow multlprocessors [CaF87]. These experiments were performed on a
‘hypothetlcal architecture capable of executing instructions under a variety of
control schemes ranging from control flow to data flow. The major variable of
experlmentatlon was the number of partition elements (segments) and conse-
quently the granularity. This report presents a fragment of these results to give
a flavor of COSMIC’s use. More complete results are avallable in [CaF87]|.
This section :proceeds by describing the organization, data dependency graphs,
and the various functions of the ordering scheme that manipulate them. The
numerical results fromlthese' experiments are presented graphically and in the
form of polynomial equations. » '

As a compromise between the infinite variability of this hypothetlcal archi-
tecture. and the avallablllty of computational resources to analyze systems, a
restriction is imposed on the experiments. Specifically, the scope of the
analysis is limited by assuming resource allocation constraints will be ignored.
This will lead to the resource allocation function being set equal to the identity
function. In turn, this can be justified by assuming equally fair and efficient -
implementations on all systems. However, resource allocation factors may
effect system performance and ongoing research is aimed at eliminating the res-

trictions.

5.1. The Organization

‘ The organization parameters of cOnseqnence for the hypothetical architec-
ture are the number and speed of the processing elements and the speed of
memory access. Both are treated as variables i in these experiments. It is also
assumed that all processing and memory elements are 1nterconnected, Wlth a
_parameterized fixed communication cost. from any source to ‘any destination.
Future research is planned to investigate the effects of interconnection topology

on. combmed system performance by a more complex model of 1nterconncct10n
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5.2, The Dependency Grdphs | |
- The first algorlthm studled is for- matrlx—vector multlphcatlon using the
algorithm shown in Figure 5. 1a, in which the matrix has size (SIZE’XSIZE') In
forming- the data dependency graph for this algorithm, note ‘the central opera-
tions in the algorithm are the rhultiplication of two numbers and_tlienf the addi-
- tion of .'the"result_to a running sum. This central operatioh'will occur SIZE?®
times in the dependency graph. Therefore, a base structure is'created to con-
nect two 'Vei'ticesv>by a directed arc. The vertex at the tail of the arc 'represents
the maultiplication operation, while the vertex at the head represents the addi-
_tion. : Two arcs enter the multiplication vertex, representing the matrix/vector
input values, and one -sdditional arc enters the addition vertex to represent the
previous value of the running sum. The addition vertex has a single output arc.
‘Therefore, creating a ,dependehcy graph for the algorithm involves replicating

~ this structure SIZE? times and interconnecting appropriately. Added to this

_graph are SIZE vertices representing the input vector and SIZE? -vertices

repre‘sentin'gvthe input array. Figure 5.1b shows such a graph for the case when
v SIZE_ = 3. 'In this figure the computational vertices are fepresented by cir’cle_s -
- and the in’p'ut matrix /vector vertices by squares. Note that the input vertices
are c'onlvlected to the ‘multiplication operation and the addition _operations:'are

chained to form the complete dot product operation.

The second algonthm studied computes a 4-pomt iterative relaxation func- '
tion, using the algorithm shown in Figure 5.2a, in which the matrix has size
(SIZEXSIZE) and computes ITER iterations. When all loops are unfolded into
their basic components, a central computational block is again repeated many
times_throughout the algorithm. Here, the computational block consists of
three additions and a division, therefore resulting in a 4 vertex graph with 4
inputs and one output. This basic graph is repeated SIZE2'X ITER times and
appropriat‘e interconnections are made. As the dependency graph forthe com-
pleter_. algorit_hm is complex, Figure 5.2b shows only the central computational
block In th'is algorithm indices which are out of the valid range of array sub-
scripts ‘wrap-around” using the modulus function. For sxmphclty 1mt1al 1nput

arcs are ignored. -
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" For i From 1 To SIZE Do
~For j From 1 To SIZE Do
result[i] = result[i] + a[i,j] * bfj];
EndDo
EndDo

()

(b)

" Figure 5.1
' Matrlx-Vector Multlply (2) Algorlthm and (b) Data Dependency Graph.
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For r From 1 To ITER Do
For i From 1 To SIZE Do ’ , :
' For j From 1 To SIZE Do ' :
ali] = (ali-Li] + ali+Li] + alij-1] + afij+1])/4
- EndDo ' : .
EndDo
EndDo

(b)

B Figure 5.2 : - :
Iterative Relaxation (a) Algorithm and (b) Data Dependency Graph Frag-
ment. '
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5.3. 'ThevOrdering Schemes

The experiments investigated two classes of ordering schemes. Both are
two level combined approaches which require the. partitioning of an ordering net
into segments. The segment size is a variable for experimentation. The first
“ordering scheme, denoted Cpart, sequences segments using a control flow order-
ing scheme, while individual operations within a segment are sequenced usmg
data flow concepts The other ordering scheme, ‘denoted Dpart, sequences seg-
ments using a data flow ordermg scheme, while individual operations. within a
segment are sequenced using control flow concepts. In this section the specifics
of the partltlomng and sequencing functions will be discussed for each case.
) The generation function, 7, assigns firing times to the transitions it creates
- based on a parameter of the experiments called the computatzon time. Again

note that ~, the resource allocation function, is the identity function.

The partitioning function,‘ ¢, is the same for both the Cpart and Dpart
ordering schemes. As both algorithms have a grid structure, the initial ordering
net is partitioned first by columns in that grid of operations, and- then it
required by rows. For example, if 3 segments were to be created from a matrix
example with SIZE = 3, each column in the grid of operations (see Figure 5.1b)
would be placed in its own segment. If six segments were required, then each of
those segments would be divided in two. This strategy keeps operations that
communicate most often in the same segment whenever possible. »SYnchrOniia— '
tion operations are then placed between each pair of connected computational
vertices in different segments. The firing time of the additional transitions is

varlable and called the synchromzatzon time.

The sequencing function for the Cpart orderlng scheme, >\C, creates
sequencing operations to cause segments to be sequenced using control flow
techniques. When more,segmeﬁts are created than columns in the grid struc-
ture of operations, the segments are sequenced so that in each group of indepen-
dent segments: must entlrely complete before the next group is started. To this
end Mo also forces each ply of segments to complete before starting the next,
enforced by adding a single transition and many connecting places ‘between

plies. A data flow sequencing operatlon is placed in parallel with each unsyn-

' chromzed place, to enforces a low level data flow scheme. The firing times of

the addltlonal transitions is variable and called the sequencing time.
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The sequencmg functlon for the Dpart ordering scheme, D enforces data.
flow sequencing amongst the segments, which is already accomplished by the
previously added synchronization operations. To enforce control ﬂow sequenc—"
| ing within segments, it places a sequencing operatlon between opera.tlons Wlthln
segments to assure that no concurrency will take place within a segments (i.e. a
single trace of operations is executed serially.) The firing time of the addltlonal-

tra.nsmons is agam called the sequencing lime.

-.The memory access functlon for both ordering schemes, i, simply repla.ces
each ‘non-zero weighted place with a memory access operation. Whose

trans1tlon 'S ﬁrmg t1me is called the memory access time.

5. 4, The Ordermg Nets

- This section presents the parameterlzed orderlng nets for both algorithms
and orderlng schemes. These ordermg nets are the result of applying the order-
ing scheme function just described to the appropriate organization and data
dependency graph Appendices B through E give the complete, parameterlzed
nets for the two algorithms and two ordering schemes. Each Petri net descrip-
tion has a main definition which describes its overall structure . Subnets are"
included to describe the exact operation at each point in the grld as well as

operatlons for synchromzatlon, sequencing, and memory accessing..

The Petri net described in Appendix B is for the CPART ordering' scheme
and matrix multiply algorithm. Parameters speclfy the size of problem, number
of partltlons, and costs for each type of operation. These parameters are the
ones varied in the experiments. Next the model defines all the places, transi-
tions, and subnets used to create the net, and the overall structure is formed by
their connection.r Note that repeat structures are used to allow variable sized
nets to be constructed,»and» conditional expressions enforce,sequencing and
sche‘duling of operations based on the desired partitioning. The subnet “innerp—
~rod” ca.lculates a pomt of the grid of operations, and contalns all sequencing
and memory access details required. Finally, three simple subnets provide for a
descrlptlon of 51mple sequencing, synchronlzatlon, and memory access opera—‘

tlons

. The Petrl net descrlbed in Appendlx C is for the DPART ordering scheme
and matrix multiply algorithm. The structure of this description is quite similar

to that shown in Appendix B. The differences occur in the sequencing
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operations which enforce the different ordering scheme and require'different con-
nections in the model definition. The parameters and operatlon subnets are
identical to the CPART case.

 The Petri net described in Appendix D is for the CPART ordermg scheme
and iterative relaxation algorithm. An additional parameter descnbes the
number of iterations to be modeled. Again, the model defines all the places, :
~transitions, and subnets used to create the net, and the overall structure is
formed by their connection. Repeat structures are again used te allow variable
sized nets to be constructed, and conditional expressions enforce sequencing and
scheduling of operations based on the desired partitioning. The subnet, “calé"’_
» calculates a point of the grid of operations, and contains all sequencing and
memory access details required. Finally, three simple Subnets provide for a
description of simple sequencing, synchronizatioﬁ, and memory access "o‘p‘e'ra- '
tlons . ‘ o ' ' e

The Petr1 net descrlbed in Appendlx E is for the DPART ordering scheme
and iterative relaxation algorithm. The structure of this description is quite
" similar to that shown in Appendix D. As with the matrix multiplication alg‘:o?
rithms, the differences occur in the sequencing operations which enforce the
different ordering ‘scheme and require differeht connections in the model
definition. The parameters and operation subnets are identical to the CPART

case

5. 5. The Experlments

. Four experlments were: conducted to determme the system’s sensitivity to
changes in problem size and in the relatlve time required to execute computa—
t10na1 synchromzatxon, sequencing, and memory access operations. In each
case, the execution measure was determined, 1e the triple ]Vl;uwtwn Two
values Were varled in each experiment: that correspondmg to the experiment’s
name (e.g. sequenc,mg“trme) and the number of segments (and consequently the
size of every segment.) The problem size in these experiments was varied from
4 by 4 to 12 by 12 The segment sizes range from 1 to the problem size -
squared '

""«'After 'riumeri_'ca-l-results from the experiments were obtained, those related
~ to the critical path execution time were fit to polynomial curves based on the

ﬁhmbe"r of seéments. Except for a few “off by one” errors at extreme segment
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sizes, all cases exhibit a p1eceW1se ‘linear relatlonsh1p between the number of

segments and the critical path- performance of the algor1thm Next several

equatlons from experrments corresponding to- varlatlons of the. time varlables’ -

were. combmed to obtain polynomlal equations for each measure: based on both
the number of segments and the time variables (e g. sequenclng time). Aga1n all ‘
equatlons could be combined in a p1eceW1se linear fashlon At this point in the

, analysls several equations represented each measure, one in terms of each tlme

. 'varlable These equations were then unified to a smgle equatlon for each meas—

ure in’ terms of all the t1me variables and the number of segments ‘These equa-
tions can be verlﬁed by substituting appropriate constant for the trme”'variables
 to obtain " the component equations. - Finally, the results of eXperiments on
dlﬂ'erent problems sizes were combined to obtain- the final cr1t1cal path equa—

tlons for each measure.

The crltlcal path measurement equatlons are shown in Tables 5.1 and 5 2
for the matrlx multiplication and iterative relaxatlon algorithms respectlvely
- In these tables (and the remainder of this paper), N represents the number of

’ 'segments; 'S the problem size; T, the computation time; T’ the synchronlza-

‘ sync
- tion tlme, T seq the sequencing time; and T the memory access time.. Also,-

notc the ceiling fun(tlon [ l represents the smallest mteger >a; and 9_

represents the unit step function:

I 10 if z<0

=)= {1 if £0.
Figures 5.3 through 5.6 shoW graphical interpretations of the results of the
experiments, for the 8 by 8 problem size, showing critical path‘ time.  In each’
: ﬁgure four plots depict the family of curves resulting from plotting the number
of segments versus critical path execution time for various values of one of the
- cost. variables. Figures 5.3 and 5.4 are related to the matrrx—v.ector multlphca—
tion experiments, while Figures 5.5 and 5.6 ‘correspond to the relaxation experi-

ments. Figures 5.3 and 5.5 are results for the Cpart ordering scheme, whlle Flg-

<. ures 5.4 and 5.6 show those from the Dpart scheme.

anmmatlon of the measure equatlons yields a good understandmg of the '

performance of these two algorlthms The matrix multlphcatlon algorlthms ‘

computation measure is {S + 1] T,, whlch is easxly explalned by exammlng'
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» Table 5.1 .
Matrix Multiplication Critical Path Measures

(DPART)

Measure - - Equation
Computation [S’ + 1] T.
Partitioni T 9(N 2 N T 0N SG[S’Q—N]ﬂT T (T’ T
ruivioning syne + L - S sync + — Aeyne T Lo l sync — + ¢
Sequencing % : {3TW + T, =Ty ] + [S’—l ]Tseq + 0 (N - 5]0 [52 — N] »
(CPART) 0 [\T,sym - 2Tc - T»‘eq ] {Tsync - 2Tc - Tseq] - 0 [TB“_WLC - Tc ] [Tsync - Tc ]]
Sequenci s— | M|z 0N - s - Np (T ~ ) [T - T
quencmg S ¢ - syne — + ¢ sync ¢
"(DPART) 2 ls+1- (DT +9[T -T ][T - T, ]
v S seq geq syne seq sync
e (v o[
- Memory Access 25 +3+|3+20 LN -2 r] T..
(CPART) '
v N
Memory Access 48 +6+14-—20 [N —'2] r T,

N — Number of Segments

T,., — Sequencing Time T,

seq

{0 if 2<0
Nz

=11 if 2>0.- [z] = Smallest integer > z.

S — Problem Size = T, — Computation Time

— Synchroniztion Time T,,, — Memory Access Time
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Table 5.2

Iterative Relaxation Critical Path Measures

Measure Equation
1 Comput-atioh [12 S — 3] T, .
Partition ol sy —s] [N »
artitioning miny {3N — 3J g +388 4Ty +0{N—-2]27T,,,
Séquenéing [QS — 9] [% — 38 +>3 T, + | [I—’SY- [3S’ — 4] —-20—1¢ [N — 2]2 T eyne
R . b ]
(CPART) + max{ {185 — 6 - 3N|, |95 + r 65 — 6 Tpeq
‘Seguencing 38 -3|= +20[S'—N] T, + 14S—1—6'% +40[S—N] T ey
NN N| o
(DPART) + 2S—2—2§—0 S —Njl258 -2 —-2N +20LN_2 T oyn

Memory Access

(CPART)

N

S

T

ma

18.5'+[185—18J

Memory Access

(DPART)

N

3055 +0‘[s—N]’[N—s+4] T,

0 if <0
(z) =

1 if 2>0 [z] = Smallest integer > z.

N — Number of Segments S — Problem Size T, — Computation Time

T,., — Sequencing Time T,y.c — Synchroniztion Time T,,, — Memory Access Time
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' - Number of Segments
(a) Computation Time Experiment ‘
1000 —
800 —
Execution
Time
600 —
- 400 —
| ; T

2. 64
Number of Segmgnts ‘ S
(b) Synchronization Time Experiment

. : ~ Figure 5.3 : _ ‘
CPART Matrix Multiplication Critical Path Execution Time. Circles indicate actual meas-
ures; curves show polynomial curve fit; and family of curves represent varied values of
experimental time.
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(c) Sequencing Time Experiment

‘Number of ‘Segments

(d) Memory Access Time Experiment

Figure 5.3, continued.
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1500
| © 1000 —
- Execution
- Time
500 —
“—%\ 016.
lI_I'I.,I._ T
124 - 8 16 . 32 - a . '64'
' “ Number of Segments
(a) Computation Time Experiment
800
o 600 —|
Execution N B
-+ Time
400 -

mTr T 11 — 1
124 8 16 32 I 7a
’ ‘Number of Segments : "

'(b) Synchronization ‘Time Experiment

, _ " Figure 5.4 . S
. DPART Matrix Multlphcatlon Critical Path Execution Time. Circles indicate actual meas-

“ures; curves show polynomial curve ﬁt and family of curves represent va.rled values of
. expenmenta.l time. :
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500 —
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(¢) Sequencing Time Experiment
2500 =4
2000 <
Execution 1500 —
Time
1000 —
500 —
T 1 l ¥ — T

124 8 16 32 64
' Number of Segments

(d) Memory Access Time Experiment

Figure 5.4, continued.
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50000 —
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(a) Computation Time Experiment

25000 —
20000 —
Exechtion .
- Time 15000 —

‘ 10000 —

5000

124 8 16 - 32 ' 64
‘ ' Number of Segments

(b) Synchronization Time Experiment
Figure 5.5 _ -
CPART lterative Relaxation Critical Path Execution Time. Circles indicate actual meas- -

ures; curves show polynomial curve fit; and family of curves represent varied values of -
experimental time. s
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(c) Sequencing Time Experiment
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(d) Memory Access Time Experiment

Figure 5.5, continued.
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124 8. 16 ‘ 32 ' - 64
Number of Segments '

(b) Synchronization Time Experiment
. Figure 5.8 o -
DPART Itera.tlve Relaxation Cntlcal Path Execution Time. Circles indicate actual meas-

ures; curves show polynomlal curve ﬁt and family of curves represent varied values of
experlmental tlme
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Figure 5.8, continued.
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Figure 5. 1b. The length of a critical path is one greater than the size of the
problem, and each computation requires T'; to complete. Therefore, the entlre

time is that glven

‘This algorithm’s partltlomng measure contains three components. The first

two indicate that two synchronization operations will enter the critical path
when N < S This number increases ‘with the number of segments after it
exceeds the problem size. Two initial operations result from the synchroniza- '
tion operations required to start and end each segments. The increasing factor
‘that exists when there are more segments than columns of computations (S) -
results from added synchronization operations needed between serial segments.
- This increase produces the staircase nature of Figures 5.3 and 5.4 and results
when a single segment is added to a “uniform’ number the causing critical path '

| length to increase. The final factor results from an increased domlnance of a

‘ synchronlzatlon operation in parallel with a computation operatlon

The sequencing time measures for the two respective ordering schemes are
obvioﬁsly more complex. The Cpart ordering scheme’s sequencing'mea;sii}e con-
“sists of three parts. The first indicates that an additional computa.tiohal- Vertex
per. "ply"” will come into the critical path due to the sequencing function: The
next component indicates that there are S — 1 sequencing operatlons in the
' critical path, one between each stage of the computation, plus those required
for the synchronization operations. The third, and most complex, factor indi-
“cates that the added sequencing constraints induce some synchroniiaiidn' opera-
- tions (%peclﬁcally those between plies) to leave the critical path. Thoro is, how-
ever, an upper bound on the operatlons that may be removed before stlll other
~operations appear in the critical path. Fmally, this factor 1ncludes an adjust-

ment similar to the final factor of the partitioning measure.

The »Dpart ordering scheme’s sequencing measure consists of four terms.
The first factor indicates that indicates that as the number :df segments
dec,reas‘es‘, computational operations enter the critical path. This will continue
until S operations are present. ‘The third factor shows the same trend as the
first and that there are two sequencing operations associated with edchj compu-
tation. Sequencing operations enter the critical path as the number of segments
decreases. The second and fo_urth factors are similar adjustment factors similar ..

to those found in the CPART sequencing measure.
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The final measures are those related to memory access. As each operation
“(i.e. computation, sequencing, and synchronization) in these experiments was

given the same memory ‘access time, T, the measures’ dependence -on only

that time, problem size and number of segments is quite logical Each measure -

'_Simply reﬁects the weight of the places previously along the critical path

Now consider the’ 1terat1ve relaxatlon experiments. In these. experiments,

three iterations of the algorithm were run (i.e. ITER = 3) which indicates that :

the critical path (using a wavefront strategy) will be four times the'sme of the
problem, minus 1. As the critical path through a single operation is 3 opera-

tions long, the computation measure is (12 S — 3)T,. The partitioning measure '
1nd1cates that when N < S three synchronization operatlons are required - for
each segment: one between each stage of the wavefront. As with the matrix
’ multiplicatlon algorithm, additional "ply" oriented synchronization operations-

exist above this level. The final factor is a minor correction for the IV = 1 case. :

The Cpart sequencing measure consists of three components, one for each
time variable. The first component indicates that as sequencing constraints are.
added to_the model more of the computational operations fall along the critical '
path When fewer than S segments are present, this is a constant factor for .
. ‘any given problem size. Above this number an increase is seen proportional to
" the number of segments. The second component shows synchronization opera- -
tions that fall along the critical path, which has similar form to the added com-
putational operations. This component also includes a corresponding.correction

factor to the one in the partitioning measure. Finally, the sequencing opera-

tlons added are linear below § segments and increase proportionally above that

. level.

The Dpart sequencing measure is similar in form to the Cpart measure,

except that the weight of the computational and sequencing terms decreaSes

above S segments instead of increasing. These factors are also responsible for |

the discontinuities that exist at exactly S segments. The final two terms_ of this
expression indicate the removal of synchronization operations is limited, as in

the matrix multiplication sequencing measures.

Finally, the memory access measures are of the same form found in the
matrix multiplication memory access measures. Once again these measures
show that the costs of other operations do not enter as memory access costs are

constant for all classes of operations. Each measure simply reflects the wfe_ight
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of the places previously along the critical path.

The

following general observations result from the outcomes of the experi-

ments, as depicted in Tables 5.1 and 5.2 and Figures 5.3 through 5. 6.

The

relationship between granularrty and execution time.

‘ Flgures 5.3 through 5.6 show that granularity has a notrceable effect

“on the execution time performance of these algorrthms in the comblned

environment. Figure 5.3 demonstrates that, as N 1ncreases, the execu-
tion time increases. This is a logical outcome for the Cpart scheme, as:
parallehsm is restricted when the segment size drops below the size

containing a complete column of the calculation. Figure 5.4, however, :

‘shows decreasing execution time with increasing N. Agaln, thls 1s logi-

cal as the Dpart scheme restricts parallelism when there are many cal-

"culatlons in a single segment. Interestingly, that analogous general

trends hold in the relaxation algorithm, as illustrated by Flgures 5.5

and 5.6. Tables 5.1 and 5 9 confirm these results.

The

effects of changmg the relatlve costs of computatlon, synchronlzatlon, :

and sequencmg

| The

Tables 5.1 and 5.2 show the relatlonshlps between executlon time and
Tc, Tseq, T oyncs and Ty, are all linear for a given problem size and

number of segments.

dominant costs in the performance of these algorithms.

‘Figures 5.3 through 5.6 show that memory access time;_is.‘dommaﬁ_t,

followed by the computation and sequencing time. The effect of
increasing or decreasing computation and sequencing time cost by a

constant factor increases or decreases the execution t1me by a factor

~at least three times the effect of changing the synchronlzatlon time by

‘the same amount. Tables 5.1 and 5.2 confirm these results as the larg-

- est factors are associated With“T and there are larger factors assocl-
ated with the T, and T, terms than the Ty, terms

The

optlmal number of segments.

o In the experiments, the optimal (in the sense of critical path executlon

tlme) number of segments varies and i is dependent on the relatlve costs

of computation, synchronization, sequencmg, and memory access'

- operations.
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- Matrix Multiplication, Cpart Ordering Scheme -- Figure 5.3 shows the
'ept-i‘mal N is 1 for all cases. . IR

- .Ma‘tri'x Multiplication, Dpart Ordering . Scheme - Figureu5 4b shows
that as synchronization tune increases the optlmal number of segments

changes from 64 (S?%) to one.
- Iteratlve Relaxation, Cpart Ordering Scheme -- Flgure 5.5¢ shows that‘

as, sequencing time becomes dominant, the optimal number of seg-
ments is 8 (S), while Figure 5.5b shows that when the synchronlzatlon

time becomes dominant the optimal number is one.

- Iterative Relaxation, Dpart Ordering Scheme -- Figure 5.6b- 1llustrates
' that as synchronization time becomes dominant, the optimal segment k
size moves from 64 (S?) to 1, while Flgure 5.6¢ demonstrates the oppo-

site trend.
e The eﬂ'ect of changing problem size.
Tables 5.1 and 5.2 show that problem size plays two roles in the per-

formance of these algorithms. The first is the linearly increasing criti-
cal path execution time with increasing problems size, which is the
critical path performance of these algorithms. The second role is the

determination of the ‘“‘uniform’ number of segments as evidenced by

the [%l terms throughout these tables.

To summarize the results of these experiments, we have seen that the
granularity of partitioning is crucial to the performance of these algorith_ms‘in a
combined environment. Moredver, the optimal granularity is related to a
number of system parameters. These cxperiments have not only given us a
better understandi_ng of combined systems, but have also shown COSMIC to be

a useful system to model their performance.-
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6. Conclusions and Further Work

We have shown COSMIC can be used to study combined systems. We
illustrated the use of COSMIC with two algorithms where we showed the
1mpa.ct of partition size on a system’s performance. This allowed us to identify
the optlmal partition size in relation to given system parameters. While these
results apply directly only to two iterative algorithms (differing mainly in their
1nterconnect1v1ty), they prov1ded hints as to what factors effect the performance
“of combined systems. Future work will focus on efforts. to genera.hze these

results to other algorithms and include the effect of resource allocation.
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Appendlx A -- HTP Syntax

This appendlx contains the the syntax for the HTP deﬁmtlon language
All upper case words are keywords with the exception of NAME whlch is any
identifier and NUMBER which is any constant number.

deflnltlon.
‘node_defs

node_defsﬁ
node_def
]
! .

node_defs node_def

.-
’

node_def:
'MODEL NAME { ‘sdefs }
I

SUBNET NAME { sdefs }
1 e

S v
SUBNET NAME decl_list ;
. .

]
NAME = expression ;

PLACE decl_list ;
]

1. )

TRANS decl_list ;
; ,

sdefs: . sdef

sdefs sdef

.
’

sdef: : »
SUBNET NAME decl_list ;

REPEAT : ( NAME , expression , expression ) { statements'}
[]
1 .
- - IF ( expression ) { statements }
1 . .
! ) ;
IF ( expression ) { statements } ELSE { statements }

P
NN

PLACE decl_1list ;
1

1 .
TRANS decl_list ;
]

]

INPUT decl_1list ;

OUTPUT decl_list ;
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NAME = expression ;
i .
con_list -> con_ list ;

.
b

statements:
statement
M .
statements statement

.
’

statement:
REPEAT ( NAME , expression , expression ) { statements }
]
)
IF | expression )y { statements }
]
]
IF ( expression ) { statements } ELSE { statements }
b
NAME = expression ;

con_list —-> con_1list ;3

’

con_1list:
con_element
. -

]

con_list , con_element

con_element:
NAME

NAME index_1list

NAME . NAME

NAME index_list . NAME

NAME . NAME index_1list
1
1

NAME index_list . NAME index_1list

.
b

decl_list:
decl
i
decl_1list , decl
H
decl:
NAME
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‘NAME ( expression )

)

]

NAME ( expression , expression )
) .

i o
NAME index_list

NAME index_list ( expression )
) . . _
] . .
NAME;indéx;list ( expression , expression )

3
?

index_lis;: v
[ expression ]

]
]

index_list [ expression ]

?

.expression:
NAME:

]

]

NUMBER

expression )

—— . ——

expression + expression
b ’
expression - expression
: ' .
expréssion * expression
P ’

expression / expression
e i
expression % expression
g _— ‘ :
expression == expression
e ,
"expression != expression
expression < expression
; ,

1

xpression > expression

-0

expression <= expression
. » : . v
'

expression >= expression
expression && expression
i :

expression || expression

’
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Appendix B -- CPART Matrix Multiplication Net

This appendix contains the source code for the CPART matrix multiplica-

tion algorithm.
/T
* Matrix=Vect
*

* High level

*

*/.

/* .
* Some consta
*/

SIZE = 8;

NPART = 8

ROWMOD = (SIZE

or Multiplication.

control flow, low level data flow.

nts

/* the size of the problem */ -
/* the number of partitions */
*SIZE)/NPART; /% modulus operation foxr rows */

3
{ )
COLMOD = SIZE/NPART; ’ ~ /* modulus operation for columns */

CTIME = 1;
SYNTIME = 1;
13

SEQTIME =
MTIME = 1;

/* 7 .
* model matmu
" model matmult_

input
place
trans
place
trans
place
subnet
subnet
subnet
subnet
trans
subnet
subnet
subnet
subnet
subnet
subnet
‘subnet
‘'subnet
subnet

in ->
ip.o -

/* the computatation time */-
/* the synchronization time */
/* the sequencing time */

/* memory access time */

lt_part is the top level model
part {

ing - : /* the input to the model */
ip(0,1); ' /* the initial place, one initial token
it(0),£ft(0) © /% initial and final transitions ¥/
ip1[SIZE]; - /* secondary initial places and trans --
it1[SIZE](0); /* —-- to reduce initial syhcs'—*one/sub
fp[SIZE](0}); . /* final places */ '__

seq fseq[SIZE]; /* the final sequencers */

innerprod icalc[SIZE][SIZE]; /* inner product ops */

seq iseq[SIZE][SIZE]; /* inner product segs */ -

sync isync[SIZE][SIZE]; /* inner product syncs */
cfseqt[SIZE](SEQTIME); /* the control flow sequencers */
mem cfseqpl1[SIZE][SIZE]; /* first place */ :

mem cfseqp2[SIZE]J[SIZE]; /* second place */

start vectstart[SIZE]; /* SIZE vector start locations */
start arrstart[SIZE][SIZE]; /* SIZE"2 arr " " %/

sync vsync[SIZE][SIZE]; /* vector synchronizations */
sync ssync[SIZE]; /* startup synchronizations. -*/

sync esync[SIZE]; /* ending synchronizations */.

seq aseq[SIZE][SIZE]; /* the sequencer-foﬁ array inputs *
seq vseq[SIZE][SIZE]; /* the sequencer fbf_vector inputs

ip.i; Lo/* din->ip->it %/
> it.i; '
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' repeat (i,1,S1Iz2E) { - /¥ for each vector element and array rowv*/

it.o -> ip1[i].i; /* dit->ip1->it1->... */
ip1[i].o. -> it1[i].4i; : ;
it1[i].0 => vectstart[i].i,vectstart[i]. is, 1calc[1][1] is:

if (((NPART >= SIZE) && (i != 1))
il ((NPART < SIZE) && (NPART > 1) _
8&& (i != 1) && ((i%COLMOD) == 1))) {

it.o => ssync[l] i;
ssync[i].o —-> it1[i].1i;

} ; - ; .
repeat (j,1,8SIZE) { /* for each array element */
if ((NPART <= SIZE) 1} (j < (ROWMOD+1))) {
it1[i].0 -> arrstart[i][j].i,arrstart[i][]].
} else { ' o - '
cfseqt[(((j-1)/ROWMOD)%SIZE)* (ROWMOD)].0 —->
arrstart[i][j).i,arrstart[i][Jj].is;
} o ' ,
vectstart[j].o -> icalc[i][]j].iv;
if ({(NPART >= SIZE) && (i != 3J)) i1
((NPART < SIZE) && ((i%COLMOD) != (j%COLMOD))))
vectstart[j]l.o -> vsync[i][j].i;
) vsync[i][Jj]l.o —-> icalc[i][j].isyn;
} else { . IR
: vectstart[j].o -> vseqg[i][Jjl.1;
vseq[i][j].o -> icalc[i][3j].isyn;
} ' - :
arrstart[i][j].o -> icalc[i][j].ia;
arrstart[i][Jj].o -> aseq[i][3j].1i;
» aseq[il[jl.o -> icalc[il[j].isyn;
} ‘ :

repeat (3,1,SIZE-1) {
icalc[i][j]l.0 -> icalc[i][3j+1].1i; :
if ((NPART>SIZE) && ((J%ROWMOD) == 0)) {
icalc[il[J].0 -> isync[i][J].1i;
isync[i][3j].0o -> icalc[i][jt1].0;
/¥ . ‘
* here we sequence u51ng contrxol flow...
*/
icale[i][j]l.0 -> cfseqp1[1][j].1;
cfseqpl1[i][j).0o -> cfseqt[j].i}
cfseqt[jl.o -> cfseqp2[il[j].i;
. cfseqp2[i][j].o -> dcalc[i][j+1].it;
} else { LT
icalec[i][jl.o -> diseq[i][3J].1i5
: iseq[il[j]l.0 -> icalc[i][j+1].it;
. } ‘ '
} .
+icalc[i][SIZE].o -> fp(i]l.i,fseq[i]. 1,
 fseq[i].o,fp[i].o —-> ft.ij; ,

if (((NPART >= SIZE) && (i != 1))
i1 ((NPART < SIZE) && (NPART > 1) »
&& (i !'= 1) && ((i%COLMOD) == 1)}) {

icalc[i][SIZE].o -> esync[i].i}
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esync[i].o

/* :
* subnet start is simply a holder
*/
subnet start {
input i,is;
output o,0s;

place p(0); /¥
trans t(0); /¥
subnet seq seq;

i => p.i; /¥
is -> seq.i; ’
seq.o,p.0 —-> t.ij;

t.o -> o;

-> ft.i;

of an initial value

zero memory time */
zero execute time */

i->p=->t->0 */

the input to accumulate to */

one multiply input */

the other multiply input */

the synchronization input */

three places, to hold 3 inputs */

an internal place */

the computations, takes CTIME to comp»
the internal sequencer */

the output */

each input goes to one place */

ij

t[2].0 —> 0O} /¥ trans goes to output */

* subnet‘sync performs the place,trans,place synchronization

}
/* . :
* gsubnet inner prod does a multiply and add operation
*/
subnet innerprod
{
input i,it; /¥
input iv; o /*
input ia; ' /¥
input isyn; /*
subnet mem p[3]; /*
subnet mem pint; /*
trans t[2](CTIME); /*
subnet seq intseq; VA
output o; ' /*
iv->p[1].41i; /¥
ia->p[2].4;
i->p[3].4;
isyn,p[1].0,p{2].0 -> t[1].
t[1].0 ->pint.i,intseq.i; :
it, intseq.o, pint.o ,p[3].0 -> t[2].1}
/*
*/
subnet sync {

input i; ’ S
output o;. ’

input and outputs */
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subnet mem p1,p2; /* two places */ - .

trans t(SYNTIME); . /* one trans, STIME is sync time */
i -> p1.i; S © /% i->pl1->t->p2->0 */

pl.o -> t.i;
t.o -> p2.i;
p2.o -> o}
} ‘ '
VA .
% subnet seqlperforms tlie place,trans,place sequencing

* / .
subnet seq {

cdnput i; 0 - /* input -and outputs */
output o} ‘
subnet mem p1,p2; . /* two places */ _
trxans t(SEQTIME); /* one trans, STIME is sync time */
i-> p1.i; _ /% i=>p1->t->p2-30 */

pl.o ~-> t.ij
t.o -> p2.i;
pP2.0 -> 0;

/* : v
* subnet mem performs the place,trans,place memory accessing
% .

subnet mem {

input ij /* input and Outputs'*/

output o; ) ) ) :

place p1,p2; /* two places */ ’ :
‘trans t(MTIME); /* one trans, STIME is sync time */
i -> pl.i; - /* i->p1->t->p2->0 */

plt.o =-> t.1i;-
t.o -> p2.1i;
p2.0 -> o3
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Appendix C -- DPART Matrix Multlphcatlon Net
This appendix contains the source code for the DPART orderlng scheme,

atrlx multiplication algorithm.

/*
* Matrix-Vector Multiplication.
" - _

* Sequencing Net, High level data flow, low level control flow.
*

*/
/* .

* Some constants

*/
SIZE = 8; ' /% the size of the problem */
NPART = 16; : /* the number of partitions */
ROWMOD = (SIZE*SIZE)/NPART; - /* modulus operation for rows */

- .COLMOD = SIZE/NPART; ' - /* modulus operation for columns */

CTIME = 1; /% the computatation time */
SYNTIME = 1; : v /* the synchronization time ¥/~
SEQTIME = 1; : /* the sequencing time #*/ ’
MTIME = 1; /% memory access time */
/* .

* model matmult_part is the top level model

* / .

model matmult_part {

input in; - /* the input to the model */

place ip(0,1); /* the initial place, one initial token *
trans it(0),ft(0); /% initial and final transitions */

place ip1{SIZE]; /* secondary initial places and trans --
trans it1[SIZE](0);- /% -—-- to reduce initial syncs --one/subr.
place fp[SIZE](0); /% final places */ '

subnet seq fseq[SIZE]; /* the final sequencexs */

subnet innerprod icalc[SIZE][SIZE]; /* inner produét ops */

subnet sync isync[SIZE][SIZE]}; /* inner product syncs */

subnet seq iseq[SIZE][SIZE]; /* inner product seqs */

subnet start vectstart[SIZE]; /* SIZE vector start locations */

subnet start arrstart[SIZE][SIZE]; /* SIZE"2 arr " noxy

subnet sync vsync{SIZE][SIZE]; /* vector synchronizations */

subnet sync ssync[SIZE]; /* startup synchronizations */

subnet sync esync[SIZE]; /* ending synchronizations */

subnet seq aseq[SIZE][SIZE]; /* the sequencer for array inputs *,
. .subnet seq vseq[SIZE][SIZE]; /* the sequencer for vector inputs *

in -> ip.i; v /% in->ip->it */
ip.o -> it.i; '

repeat (i,1,SIZE) { /* for each vector. elemeﬁt'and array.xrow
' it.o -> ipi1[i].i; /* it->ip1- >1t1 >0, */0 )
ip1{il.o -> it1[i].1i;
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it1[i].o f>‘vectstart[i].i,icalc[i][1].i;a

if (((NPART >= SIZE) && (i != 1))
! ((NPART < SIZE) && (NPART > 1) .
&& (i 1= 1) && ((i%COLMOD) == 1))) {

it.o -> ssync[il.i;’
» ssync[i]l.o -> it1[i].i;
-}
repeat (j,1,SIZE) { /* for edch array element */
it1[i}.o -> arrstart[l][j] i :
vectstart[j].o -> icalc[i][j].iv; )
if (((NPART >= SIZE) && (i != j)) 11~
( (NPART < SIZE) && ((i%COLMOD). I= (J%COLMOD))))
vectstart[j]{o -> vsync[iJ[jT.1;
vsync[i][jl.o0 -> icalc[i][3j].isyn;
} else { ’ o v
' vectstart[j].o -> vseq[il[Jj}.4i;
vseq[i][j].o -> icalc[i][j].isyn;
} . T
arrstart[i][j].o -> icalc[i][j].ia;
arrstart[i][j].o -> aseq[i]l[j].i;
_ aseq[i][j]l.o -> dicalc[i][J].isyn;
y o
repeat (j,1,SIZE-1) {
"~ icalc[i][j]l.0 -> icalc[i][j+1].4i;
if ((NPART>SIZE) && ((J%ROWMOD) == 0))'{'

/%
* heré we sequence u51ng data flow
* .
* no need to sequence, already synced
*‘/ E

icalc[i][j].o -> isync[i][3].i;
isync[i][jl.o -> dicalc[i][j+1].4it;

} else {
/*
* control flow sequence between steps
*/ .
1ca10[i][j]-o -> iseq[i][J].1;
iseqf[i]J[Jj].0o —-> dicalc[i][j+1].isyn;
} ’ ,

} .
'1calc[1][SIZE] o -> fp[i].i, fseq[l] i
fseq[i}.o,fp[i].0o -> ft.i;

if (((NPART >= SIZE) && (i != 1))
i1 ((NPART < SIZE) && (NPART > 1) B
&& (i != 1) && ((i%COLMOD) == 1))) {

~icalc[i][SIZE]}.o -> esync[i].i;
esync[i].o -> ft.i; IR
}

* subnet start is simply a holder of an initial value
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*/

subnet start {
input i;
output o;

place p(0); vz

trans t(0); /*
i -> p.ij; ' RV

b.o -> t.ij
t.o -> 0o;

zero memory time */
zero execute time */

i->p->t->0 */

input to accumulate to */
multiply input */

other multiply input */
synchronization input */

three places, to hold 3 inputs */
an intermal place */

computations, takes CTIME to compw
internal sequencer */
output ¥*/

each input goes to one place */

input and outputs */ .

places */ .
trans, STIME is sync time_*/'

}
/¥ ) .
*+ subnet inner prod does a multiply and add operation
*/ :
subnet innerprod
{ : ,
input i,it;’ o /% the
input iwv; ' /* one
“input ia; /* the
inptt isyn; /* the
-subnet mem p[3}; /*
subnet mem pint§ /¥
trans t[2](CTIME); /* the
subnet seq intseq; /* the
output o} /* the
iv->p[1].1; ; /*
ia->p[2].i;
i->p[3].1i}
isyn,p(1}.0,pP[2].0 ~> t[11.1;
t[1].0 ->pint.i,intseq.i;
it, intseq.o, pint.o ,p[3].0 -> t[2].i;
,t[2].o -> 0; /* trans goes to output */
}
/* |
* subnet sync performs: the place,trans,place synchronization
*/ . _ :
subnet sync {
input ij; o
output o; » . »
SUbhet mem p1,p2; ’ /* two
trans t(SYNTIME); . ./* one
i ->pt.i;y L Sy

pl.o -> t.ij
t.o -> p2.1i;
'pzro -> 03

i->p1->t->p2->0 */
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* Subnét'seq‘performs the place,trans,place sequencing
subnet seq {

input iy A - /* input and outputs */

output o; ’ ' ‘

subnet mem p1,p2; /* two places */ ‘ :
trans t(SEQTIME); /* one trans, STIME is sync time’*/
i -> p1.i; /% i->pl1->t->p2->0 */

pl.o -> t.i; -
t.o,->,p2;i;
P2.0 > o}

/* ) . .
- ¥ 'subnet mem performs the place,trans,place memory accessing
*/ o ’ .

subnet mem {

input i; v /* input and outputs */
output o; . v
place p1,p2; : /% two places */ ' :
~ trans t(MTIME); /¥ onertrans, STIME is sync time */

i -> p1.i; , ' /* 1->p1->t->p2->0 */
ptl.o => t.i; .

t.o -> p2.1i;

pr2.0 -> o;
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Appendix D -- CPART Iterative Relaxation Net

This appendix contains the source code for the CPART ordering scheme,

iterative relaxation algorithm
/* |

*

model~rélax'
{

input in;

calc
sync
sync
sync
sync

subnet
subnet
subnet
- subnet
subnet
subnet

4-point relaxation problem:

+ a(i+1,3) + a(i,

Low Level Data Flow (Sequenced by data)

the size of the problem */

j+riyy / 4.

the numbexr of relaxations to perform *

the number of partitions */

modulus operation for rows - */

modulus operation for columns */

time to do an add oxr division */

the synchronization time */
the sequencing time */
memory access time */

*
* do . r =1, ITER
* do'i = 1, SIZE
* do j = 1, SIZE
‘* a(i,j) = (a(i-1,3) + a(i,j-"Mm
* end_do : '
* end_do
* - end_do
*/ '
*
* Sequen01ng Net. High Level Control Flow (Sequenced by "ply")
.
-*® N . .
* Partitioned into NPART partitions.
*/
SIZE = 8; /*
"ITER = 33 VA
NPART = 4; J*
ROWMOD = (SIZE*SIZE)/NPART; /*
COLMOD = SIZE/NPART; /¥
CTIME = 1 /¥
SYN’.]'.‘IM = 13 /*
SEQTIME = 1; /*
MTIME = 1; /*

calc[ITER][SIZE][SIZE];

sync1[ITER][SIZE][SIZE];
Sync2[ITER][SIZE][SIZE];
sync3[ITER][SIZE][SIZE];
SYnc4[ITER][SIZE][SIZE];

subnet
‘subnet
subnet

seq seqi[ITER][SIZE][SIZE];
seq seq2[ITER][SIZE][SIZE];
seq seq3[ITER][SIZE][SIZE];
seq seq4[ITER][SIZE][SIZE];

trans cfseqt[ITER][SIZE](SEQTIME);

‘subnet mem cfseqpl[ITER][SIZE][SIZE];
subnet mem cfseqp2[ITER][SIZE][SIZE];
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place ip(0,1);
trans it(0);
place fp[SIZE][SIZE],
trans £ft(0);

in -~> ip.i;

ip.i -> it.i;

repeat (i, 1, SIZE) {
repeat (3j, 1, SIZE) {

if (i != SIZE) {
it.o -> cale[11[1]1[3F1.401]; ‘
if ((NPART <= SIZE) i ((i%ROWMOD) != 1)) {

it.o -> seq1[11[4i][31.4[17;
seq1[1][11[J]1.0 -> calc{1][1][J] 1t[1],

}
}
if (j != SIZE) {
it.o ->calc[1]1[1i][3]. 1[2],
if ((NPART == 1) 1}
{ (NPART < SIZE) && ((J%COLMOD)'-1))) {
it.o => seq2[13[11[3].4[1];
seq2[1][i][j].0 -> calc[11[4][J]).4it[1];
} ’ :
1}
Sif (1 == 1) {
- it.o -> cale[1]1(i1[3].4[3];
if ((NPART <= SIZE) i ((i%ROWMOD) != 0)) {
it.o -> seq3[11{i]1[3].4i;
seq3[1][i)[J].0 -> ~calce[1]1[1i][3J]. lt[2],
}
3
if (j == 1) {
it.o -> calce[1]1([11[31.4[4];
if ((NPART == 1) ||
( (NPART <= SIZE) && ((3J%COLMOD)!=0))) {
it.o -> seq4[11[il[5]1.4; :
. seq4[1][1][3).0 -> calec[1][1i]1[3F].it[2];
}
}

}

repeat (r,1,ITER) {
repeat (i,1,SIZE) {
‘repeat (j,1,SIZE) {
if (r < ITER) {
/* .
* Connection 1 connects to previous row, same column
*/
if (i > 1) {
cale[r][i][]].0 -> caIC[r+1][1 1][3] if171;
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/*_ . c .

* On diff partition only if more part than colum

* and when mod is mnot right. -

*/ ’ »

if ((NPART > SIZE) && ((i%ROWMOD) == 1)) {
calc(r])[il[3).0o -> synci[r+1][i- 11031.4;
synci[r+1][i-1]1[j].0 —> calc[r+1][1 1][3] it[

} else {

calc{r][l][a] o -> seq1[r+1][1-1]EJ].1, _

seqi[r+11[i- 1][j].o'—> cale[z+1][i-11[3).it[*

}
} else {
calc[r][l][J] o -> calc[r][SIZE][j] 1[1],
/*
* On diff partltlon only if more part than colun
*/

“if- (NPART > SIZE) {
calc[r][il[j].o —-> sync1[r][SIZE][j] i
_ sync1[r][SIZE][J] o ~> calc[r][SIZE][j] it[1]
) else {
cale[x][il[3).0o —> seq1[r][SIZE][j] i3
seqli[r][SIZE][j).0o —-> calc[r][SIZE][j] it{1]

P

/¥ o o ) ‘
* Connection 2 connects to same row, previous columr
3 > |

cale[z][i][3].0 > calc[r+1][1][3 1]. 1[2],

/* :
%.0n Aiff. part;tlon when more partltlons‘than
* columns -or when mod eqn. is satisfied
“if. ((NPART >= SIZE) HH
~ ((NPART > 1) && ((J%COLMOD) 1))) {.

calef[x][i][Jj).o -> sync2[r+1][1][j 1.4

sync2[r+1][1][j 17.0 —> calc[r+1][1][j 17.it
'} else {

calc[r][1][31.o_-> seq2[r+1][1][3-1].;,
seq2[r+11[i1[J=11.0 —-> cale[x+1][i1[3-1].4it][

}
3} else {
ks calc[r][l][J] o -> calc[r][l][SIZE] if2];
/¥ :
* On dlff partltlon whenever more than~1 parti-
.*/

if (NPART > 1) { .
calc[r][il[3j]).0o —> sync2[r][1][SIZE] is
syncZ[r][l][SIZE] o —-> calc[r][l][SIZE] it[1
} else {
vcalc[r][l][J] o -> seq2[r][1][SIZE] 1,
‘ seq2[xr])J[i][SIZE]).0o —-> calc[r]J[i][SIZE].it[1]
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}
} else {
if (i == 1) {
calc[r][i][j].o -> calc[r][SIZE][j] 1[1],
VA2 . ‘
*.0n dlff partition only 1f more part than columns.
*/
if (NPART > SIZE) { , S
) calc[r][il[j]l.o -> sync1[r][SIZE][j].1i;
 sync1[r][SIZE][j].o -> calc[r][SIZE][j] it[1];
'} else {
calc[r][il[j]l.o -> Seq1[r][SIZE][J] ij
_ seql[x][SIZE][(Jj].o —-> calc[r][SIZE][j].it[1];
} . .
}
if (3 == 1) {
calc[r][l][j] o -> calc[r][l][SIZE] 1[2],
/-l-
* On diff. partition whenever‘more than 1 partition
*/ L
if (NPART > 1) {
calc[r][l][j] o -> syncZ[r][l][SIZE] i
sync2[r]J[i][SIZE].o -> calc[r][i][SIZE]. 1t[1],
} else { ) .
calcl{r][i][Jj].o -> seq2[r][i][SIZE].i;
seq2[r][{i]J[SIZE].o -> calc[xr]{i][SIZE].it[1]; .
} _ .
cale[r][i]1[Jl.0 —-> £p[i][J].i;
fpl[il[jl.o—>ft.i;

}
/* :

* Connection 3 connects next row, same column

* This is where partition sequencing is done
*./ )

if (i < SIZE) { | | , :
cale[r][i][3].0 -> calec[xr][i+1][3j].i[3];
/* :
* On diff partition only when more partltlon than
* columns and mod eqn is satlsfled
*/
if ((NPART > SIZE) && ((i%ROWMOD) == 0)) {
calc[r][i][j].o -> sync3[r][i+1][]].1;
sync3[r][1+1][J] o -> calc{r][1+1][J] it(2];
/*, .
* Here we. sequence u51ng control flow.
o/ : _
calc[r][il[j].o -> cfseqp1[r][iltj]:i;
cfseqpl[x]1[i)[j].o -> cfseqt[r][i].i;
. cfseqt[r][i].o -> cfseqp2[r][i][j].4i;
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cfseqp2[r][1][J] o —> calc[r][1+1][J] it[2];
} else {

calc[r]{ill(jl.o —> seq3[r)[i+11[3].1;

seq3[r][i+1][jl.0 —> calc[r][i+1][3J1.4it[2];

o }.

} else {

if (r < ITER) { '
calc[r][il[j).o -> calelx+1][1][31.4[31];
if (NPART > SIZE) {
cale[r][il[j].o -> syne3[r+1][1][3]1.45
sync3[r+11[11[j).0 -> calc[r+1][1][J]1.it[2];
S
* control flow sequencing between iterations
*/

_cale[r][il[jl.o —-> cfseqpi[r][i][J].1;
cfseqpl{r][il[jl.o —> cfseqtlr][i]. i;
cfseqt[r][i].o -> cfseqp2[r][1][j] i; )
cfseqp2([r][il[j).o —> calc[r+11[11[3).it[2];

}

/* . .
* connection 4 connects same row, next column
*/
if (j < SIZE) { .
calc[rl[i][]j]l.o —> CalC[r][i][j+1]-i[4];,
/* »
* Here we are in different partltlons if there is
* more than 1 partition and eitherx there are more
* partitions than columns and the mod eqn.
*/
-~ if ((NPART > 1) && ‘ »
( (NPART > SIZE) 1. ((3F%COLMOD)==0))) " {
calc[r][il[jl.0 -> sync4[r][i][j+1].4;
sync4{r][i)[j+1].0 —> calc{r][l][3+1] it[2]);
} else {
calecfr](i][j].0o —> seq4[r][1][3+1] 1, _
seq4[r1(i}[j*1].0 -> calelx][i1[J*1]. it[2];

is satisx

}
} else {
A{r < ITER) {
calc[r][l][J] o ~> calc[r+1][1][1] 1[4],
/*
* Here we go to different partitions only
* if is more than 1 partition
*/
if (NPART > 1) { . =
calc[r][l][J] o -> sync4[r+1][1][1] 1, :
sync4[r+1][1][1] o —> calc[r+1][1][1] it{2];
} else {
calc(r][il[j). o —> seq4[r+1][1][1] ij
: seq4[r+1][1][1] o => calc[r+1][1][1] 1t[2],
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_éubnét*éai¢1‘7'.

input i[47;

-1nput 1t[2],
output o3
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subnet mem pin[4]; A
subnet mem padd[31]; VA
trans tadd[3](CTIME);  /*
. trans tdiv(CTIME); . /*
~subnet seq intseq[3]; -~ /*

i)
S if2).
Cie[1]

i(3)
i04]
it[2)

tadd[zj.q ->

inf3e§[1]

tadd[

~intseq([3]
tdiv.o ->

}
/%

* / .
subnet sync {

input i;
output o3 . i
.-subnet mem p1,p2 /¥
trans t(SYNTIME), : /*
i -> p1.i; /%

pt.o =-> t.i;

3].0

.0,

->

.0,
o;.

t.o => p2.i;

vp2,o

=> 03,

<> pin(1].4;
-> pin([2].1i;
» pin[1].0,
tadd[ﬂ].o--> padd[1].1i,

=> pin[3].1i}
-> pin[4].1i;
» pin[31.o0,

.places to receive inputs”*/.

internal places */ -
three addition operatlon */
the division */.

internal sequenclng */

pin[2].0 -> tadd[1].i;
intseq[1].i;

pinf[4].0 -> tadd[2].i;

padd[2].i, intseq[2].i;

intseq[2].0, padd[1].0, padd[2].0.-> tadd[3].i;

‘padd(3].i, intseq[3].1i;

padd[3].0 -> tdiv.i;

;/*

* subnet sync performs the place trans,place synchronlzatlon

input and outputs */

two places */
one trans, SYNTIME is -syne¢ tlme */

‘i->pi1->t->p2->o0 */
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/* o : : )
- % gubnet seq pérforms the place,trans,place sequencing
‘subnet seq {

“input i; /* input and outputs */

‘output o; , ' » : '

subnet mem p1,p2; .. /% two places */ o _

trans t(SEQTIME); ) /* one trans, SEQTIME is seq time */.
i -> pl.i; /* i->pi->t->p2->0 */

~pl.o -> t.ij
t.o -> p2.ij
pP2.0 ->.0;

/* = : oo : - : . .
* Subnet.mem’performs the place,trans,place memory accéSsing
VA R o ‘ ' o ‘ o '

.- subnet mem- { o _ ' : : : v

’ y input 1i; - . /% input’and outputs */

output o; -

place p1,p2; /* two places */ : :

- trans t(MTIME); - /* one trans, STIME is sync time */
i -> pi.i; ‘ " /% i->pil->t->p2->0 */

pl.o -> t.ij
t.o -> p2.i;
~ P2.0 > o}
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Appendlx E -- DPART Iteratlve Relaxatlon Net

This appendxx contams the source code for the DPART ordermg scheme,

1terat1ve relaxatlon algorlthm
/*

*

* " do r = 1, ITER

* " do i = 1, SIZE

¥ a0 3 =1, sizk - S T S PRI
* T a(i,j) = (a(i-1,3) + a(i,j-1) '+ a(i+1,35) + a(i,
* end_do ’ ' ‘ o '
* end do

o end do

VA

**‘SeQuehCihgeNet.

* .

Py
SIZE = 10} /*
ITER = 3;- /¥
NPART =5} /*
ROWMOD = (SIZE*SIZE)/NPART; Ve
COLMOD'= SIZE/NPART; /¥
CTIME = 1; /*
SYNTIME = 1; /¥
SEQTIME = 1; - /*
MTIME = 1; /¥

model relax-
t o
input in;

,4—peinﬁ‘relaxetion problem:

* © Partitioned into NPART partitions.

the size of the problem */

j+1)) / 4

the number of relaxations to perform */

the number of partltlons */

modulus operation for rows */’ :
modulus operation for columns */

time to do an add or division'*/,v

the synchronization time */
the sequencing time */
memory access time ¥/

subnet calc calc[ITER][SIZE][SIZE];

subnet
_subnet
subnet
subnet
subnet

place
jtrans
prlace
trans

in  -»>

sync synci1[ITER][SIZE][SIZE];
sync
sync sync3[ITER][SIZE][SIZE];

sync sync4[ITER][SIZE]}[SIZE]; -

seq seq[ITER][SIZE][SIZE];

ip(0,1};
it(0);
fp[SIZE][SIZE];

'ft(0)9'

ip.i;

sync2[ITER][SIZE][SIZE];"
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ip.i -> it.ij.

repeat (i, 1, SIZE) {
repeat (j, 1, SIZE) {
if (i != SIZE) {
 it.o -> calc[1][1][3] 1[1],-

if (j !'= SIZE) { _
it.o —>ca1c[1][i][j].i[2];.

} .
S if (i == 1) {
- S it.o -> calc[1][1][3] 1[3],
it.o -> seq[11[11[31.4; '
seq[11[11(J]l.0 -> cale[1]1[i][3].4t[2];
} . : _
if (3 == 1) {
it.o => calc[13[11(J1-1[41];

repeat (r,1,ITER) {
repeat (i,1,SIZE) {
' repeat (3,1,SIZE) {
if (r < ITER) {
/* . , )
* Connection 1 connects to prev1ous row, same columr
*/
if (i > 1) Fi
' caIC[r][1][J] o -> calc{r+1][1 1][3] 1[1],
/*
* On dlff partition only if more part than colur
* and when mod is not right.
ks o : .
if ((NPART > SIZE) && ((i%ROWMOD) == 1)) {
~calec[x][i][Jl.0 —-> synci[x+1][i-1][]].1;
sync1[x+1]{i-1][j].0 -> calec[x+1]1[i-1][j].1it]

oy
} else { - o » » .
cale[zr][il[j].0 .-> calc{r][SIZEJ[j]-i[1];
/*
* On d1ff partltlon only 1f more part than colun
*/

if (NPART > SIZE) { B
calc[r][i][j].0 -> synci[r]1[SIZE][3].i;
sync1[r][SIZE1[3].0 -> cale[x][SIZE][J].it[?

}
Za - »
*. Connection 2 connects to same xow, prévioﬁs colum:

CAf (3> M) |
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calc{r][l][:] o -> calc{r+1][1][3 1] 1[2],
vas . ‘
* Syncronlze if more partltlons than size or -
* mod equation works ' ’ '
*/
if ((NPART >= SIZE) H
~((NPART > 1) && ((5%COLMQD)—-1))) {
calc[r][il[j].0 -> sync2[x+1][i]1[3j-11.4;
. sync2[r+1][i][J-1].0 -> calc[x+11[i][J-11.it[1];

} else { : o o -
cale[r][i][j].0 -> calc[r][i][SIZE].i[2];
/* : . o ST _
% On diff partition whenever more than, one partitio
*/ ‘ . : » .

if (NPART > 1) { N o ,
ccale[x][il[j).0o -> sync2[x][i][SIZE]:.i; »
' sync2[r][i][SIZE].o -> calC[r]ti][SIZE],it[1];

. }
. oo
'} else { .
“if (4 == 1) { o o , T
calc[r][z][j] o -> calc[r][SIZE]Lj].i[1];,
* On 4iff partition only if more part than columns.
. if (NPART > SIZE) {
calc[r][i][j].o -> sync1[r][SIZE)}[J].i}; .
sync1[x][SIZE][j]l.o -> calc[r][SIZE][Jj]).it{1];
1 .
if (3 == 1) { :
‘calc[r][l][j] o -> calc[r][l][SIZE] 1[2],
/* _
* On diff partltlon whenever more than one partitio'
*/ . L .
if (NPART > 1) {
calc[r]l[il[jl.o -> sync2[r][i][SIZE]. 1' :
- sync2[(r][i][SIZE].o —-> calc[r][;][SIZE] it[1];_
“} ‘ . : o L o
}

cale(x][11[3].0 ~> £p[1][5]. i;
£p[11[3].0-> £t 4;

’* ‘ . o
'* Connection 3 connects next row, same ¢olumn
o i . i . o S
* This is where partition sequencing'is done-
%/ : :
if (i < SIZE) {

cale[r][i](j].0 -> calc{r][1+1][J] i[3];

A '
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* On diff partition only when more partition than
"% columns and mod eqn is satisfied.
*/ . .
if ((NPART > SIZE) && ((1%ROWMOD) == 0)) |
/* . .
* Here we sequence using data flow between
* partitions.
* . )
‘% already synched no need to seq
*/
calc[z][il[j).o0 -> sync3[r][1+1][31 i
sync3[r][1+1][j] o -> calc[r][1+1][j] 1t[2],
"} else {- .
/*
* Control Flow Sequen01ng Between steps
*/
calc(x}[il[j].0 —> seq[r][1+1][J] is
seq[r][1+1][J] o => calc{r][1+1][J] 1t[1],

e

)
} else {
(xr < ITER) { :
~cale[x][ij[(j}.o 7> calc{r+1][1][J] if3]; -
S
* Data flow sequenc1ng between 1terat10n5'
v*/ ’
VAE _ .
. ~* no need to seq if already synched
.*/ .
if (NPART > SIZE) {
cale(r][i](jl.o0 > sync3[r+1][1][31 ij
syne3[r+1][1][3].0 —> cale[r+1]1[13031.it(
} else { ' S
: “cale[xr](i][Jj].0 —> seq[xr+1]1[11[J].1;
seq[r+1][1][j].o => calc[r+1]1(11[31.it([1]
} o - _ .
}
.)*

* connectlon 4. connects same row, next column
*/ .
if (j < SIZE) { '
‘ calc[r][1][J] o —-> calc{r][l][3+1] 1[4],
/* :
* Here we . are in different partltlons if there is
"* more than 1.part1t10n.and either there are more.
- * partitions than columns and the mod eqgn. is satisf
xS/ ’ . - )
if ((NPART > 1) && , o
((NPART > SIZE) i ((J%COLMOD)==0}))) {
calc[ri[il[jl.o -> syncd4[x][i1[+1].45
-sync4[r][i][j+1],o‘—>»calc[r][i][j+1].it[2];
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} else {
if (r < ITER) {
cale[r][il[jl.o -> calc[r+1][i][1].4i[4];
/*
* Here we go to different partitions only
* if is more than 1 partition
*/
if (NPART > 1) {
calc[xr][il[j]l.o -> syncd4[x+1][i][1].4;
syncd4[x+1]1[i1[{1].0 -> calc[x+1][i][1].1it[2];

}
}
}
}
}
¥
}
subnet calc
{
input i[4];
input it[2];
output o;
subnet mem pin[4]; /* places to receive inputs */
subnet mem padd[3]; /* internal places */
trans tadd{3](CTIME); /* three addition operation */
trans tdiv(CTIME); /* the division */
subnet seq intseq([3]; /*¥ internal sequencing */
if(1] -> pin{1].1i;
if2] -> pin[2].4i;
it[1], pin[(1).0, pin{2].0 -> tadd[1].i;
tadd[1}.0 -> padd[1].i, intseq[1].i;
i[3] -> pin[3].i;
i[4] -> pin[4].1i;
intseq[1].0,it[2], pin[3].0, pin[4].0 ~-> tadd[2].i;
tadd[2].0 -> padd[2].i, intseq[2].i; '
intseq[2]).0, padd{1].o0, padd[2].0 -> tadd[3].i;
tadd[3).0 -> padd([3].i, intseq[3].i;
intseq[3].0, padd[3].0 -> tdiv.i;
tdiv.o -> o;
}
/*

* subnet sync performs the place,trans,place synchronization
*/
subnet sync {

input ij; /* input and outputs */



/*

* subnet
*/

subnet seq
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output o;
subnet mem pi,p2;
trans t(SYNTIME);

/*
./;
i -> pl.iy /*
pl.o -> t.ij;

t.o -> p2.i;
p2.o —-> oj

seq performs the

1

input i; /*
output o;

subnet mem p1,p2; /¥
trans t{SEQTIME); /*
i => pl.i; /*

. pl.o -> t.ij;

/* _
* - subnet
* / :

t.o -> p2.i;
p2.o -> oj

mem performs

subnet mem {

input i /*
output o} ,
place p1,p2; /¥
trans t{MTIME); /*
i -> pl.i;. /¥
pl.o -> t.ij;

t.o -> p2.i;

p2

.0 —> 0;

two places */ .
one trans, SYNTIME is

i->p1->t->p2->0 */

input and outputs */

two places */
one trans, SEQTIME is

‘i—>p1—>t->p2->o */

input and outputs */

two places */

sync time */

place,trans,place sequencing

seq time */

the place,trans,place memory accessing

one trans, STIME is sync time */

i->p1->t->p2->0 */
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