
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

12-1-1987

COSMIC: A Model for Multiprocessor
Performance Analysis
William W. Carlson
Purdue University

Jose A. B. Fortes
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Carlson, William W. and Fortes, Jose A. B., "COSMIC: A Model for Multiprocessor Performance Analysis" (1987). Department of
Electrical and Computer Engineering Technical Reports. Paper 560.
https://docs.lib.purdue.edu/ecetr/560

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F560&utm_medium=PDF&utm_campaign=PDFCoverPages

COSMIC:
A Model for Multiprocessor
Performance Analysis

William W. Carlson
Jose A. B. Fortes

TR-EE 87-13
December 1987

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

COSMIC:
A Model for Multiprocessor Performance Analysis

TR-EE 87-13

William W. Carlson and Jose A.B. Fortes
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

Abstract

COSMIC, the Combined Ordering Scheme Model with Isolated Com­
ponents, describes the execution of specific algorithms on multiprocessors and
facilitates analysis of their performance. Building upon previous modeling
efforts such as Petri nets, COSMIC structures the modeling of a system along
several issues including computational and overhead costs due to sequencing of
operations, synchronization between operations, and contention for limited
resources. This structuring allows us to isolate the performance impact associ­
ated with each issue. Finally, studying the performance of a system while exe­
cuting a specific algorithm gives insight into its performance under realistic
operating conditions. The model also allows us to study realistically sized algo­
rithms with ease, especially when they are regularly structured.

During the analysis of a system modeled by COSMIC, a set timed Petri
nets is produced. These Petri nets are then analyzed to determine measures of
the systems performance. To facilitate the specification, manipulation, and
analysis of large timed Petri nets, a set of tools has been developed. These
tools take advantage of several special properties of the timed Petri nets that
greatly reduce the computational resources required to calculate the required
measures. From this analysis, performance measures show not only total per­
formance, but also present a breakdown of these results into several specific
categories.

- - 2 - ..

Table of Contents

1. Introduction 3

2. Computer System Models....

2.1 Program Behavior Models ...

2.3 Classification Models......
2.4 Model Summary.... ••• •ro

••••«••••••••••••••••••»••••• •••■+ *6.

• ••••••••••••••• ••• * •••••••••• 10.

13
15

....
..................

3 • • • • • • • • • • • 16

3.1 COSMIC Parameters....16
3.2 Analysis and Measures...... . •• 34
3.3 COSMIC Summary............ ,v..r...36

4. Tools37

4.1 Hierarchical Timed Petri Net Language....................37
4.2 HTP Compiler....................i....43
4.3 HTP Analyzer.....47
4.4 Future Tools......50

5. Examples Using COSMIC.......52

5.1 The Organization...........
5.2 The Dependency Graphs
5.3 The Ordering Schemes ...
5.4 The Ordering Nets
5.5 The Experiments

.......................

............
• •••••••••••••••a* •••■

.....................

..52

..53

..56

..57

..58

6. Conclusions and Further Work 74

7. References ••••«••••••i 75

Appendix....... 77

Append}^ A HTP Grammar77
Appendix B CP ART Matrix Multiply Net......80
Appendix C DP ART Matrix Multiply Net.................................84
Appendix D CPART Iterative Relaxation Net.............,...,...,......,..,.,....,......,....88
Appendix E DP ART Iterative Relaxation Net.........—95

- 3 -

1. Introduction

The complexity and variety of recent multiprocessor developments require
new models which allow studies and comparisons of their diverse features and
functions. Such models must allow researchers to concentrate their efforts on
the essential issues confronting multiprocessors and ignore those features Which
merely serve to distract. To this end, we propose the use of a new model, called
COSMIC (Combined Ordering Scheme Model with Isolated Components), for the
study and comparison of multiprocessor systems. The underlying principles of
this model are the isolation of individual performance issues and the study of
systems under realistic operating conditions. COSMIC consists of both formal
parameters that describe a multiprocessor system and the algorithm it executes,
and analysis techniques that produce performance measures.

Our goals in developing this model have been to gain the ability to study
multiprocessor systems with a variety of schemes for ordering operations. The
model must also represent time and resource utilization so comparative studies
may be made. The major concern is a class of systems called Combined Bttta
Flow and Control Flow Systems which. were describe in a previous paper
[CaF87]. To achieve this goal, our model must represent both hardware and
software issues, as well as the binding mechanism between them. The binding
mechanism, which we call the Ordering Scheme, describes how operations are
ordered on a multiprocessor system.

Previous work in modeling multiprocessors has centered in several distinct
areas. Program behavior models endeavor to model the fundamental properties
of a program without regard for hardware considerations or performance meas­
urement. They center on the important areas of investigating such problems as
the determinacy, boundedness, and termination of programs. Models which fit
into this category include Petri nets [Pet66] and Parallel Program Schemata
[KaM66]. The second major category of current models we call machine
behavior models as they describe the behavior of machines in their execution of
programs as opposed to the behavior of programs themselves. Examples of this
class include Turing Machines, Functional Programming Systems, and the von
Neumann Model [Bac78]. Classification models describe the configuration and
operation of multiprocessors, including Flynn’s Model [Fly66], Handler’s
Classification System [Han77], and the “essential issues” of Gajski and Peir
[GaP85]. Stochastic models based on queueing theory [Kle75] have also been

used to model multiprocessor systems.
Using these previous models as a basis, COSMIC combines both program

and machine descriptions, as well as performance measures. Its usefulness is in
this combination, allowing the study of complete systems under varied condi­
tions.

This report is organized into 4 major sections. Section 2 contains a survey
of previous efforts in modeling multiprocessors. Its purpose is to present a back­
ground for our model, as several key concepts found in previous efforts are used.
Section 3 formally presents COSMIC, describing the parameters of the model,
its performance measures, and a method used to determine the measures from
the parameters. Section 4 contains descriptions of several tools which were
developed to expedite the analysis of modeled systems. Finally, Section 5 con­
sists of several examples of systems modeled using COSMIC. It shows that
COSMIC can be used to determine the performance of systems which vary
greatly. Appendices provide documentation for the modeled systems.

2. Computer System Models i- ■

Models allow researchers to disregard distracting details associated with
real systems and concentrate on the issues considered essential. A model of
computer systems is simply a mechanism to describe some aspect of the
system’s operation. Some models of computation, such as those presented by
Karp and Miller [KaM66], are used to represent execution of programs to inves­
tigate such problems as determinacy, boundedness, and termination. Other
models, such as those by Flynn [Fly66], are used to represent the organization
of a computer. These models are sometimes called classification systems and
are used to classify the modes of operation and interconnection of computer ele­
ments. Finally, a third class of models, such as the von Neumann model,
describe how programs execute on a machine.

As stated in the introduction, our goals require a model to not only
represent the organization of a computer system, but also its schemes for exe­
cuting programs. The requirement for comparative studies places heavy
demands on a modeling system. This section presents a survey of several
models showing that, while none are appropriate for our needs, several provide
a foundation for COSMIC.

Current models of computation can be divided into three categories. The
first category contains models which can be described as program behavior
models because researchers use them to study the abstract execution of pro­
grams in a parallel environment. These models lack convenient methods to
describe or experiment with system organizations. Most would also present
insurmountable problems for our comparative study as they fail to incorporate
time and resource consumption. The second category consists of models that
can be described as machine behavior models because they are used to describe
the behavior of machines while they execute programs, as opposed to individual
program behavior. These models cannot describe the exact execution of a given
program and do not contain machine organizational details. The third category
contains models that can be described as classification models, as they are used
to categorize and describe systems. Unfortunately, they contain no capacity to
represent the execution of a program, or even to define the operation of the sys­
tem.

Aside from the categorization just discussed models may be informally
classified as either tight or loose. Tight models consist of well defined

- 6 -

mathematical descriptions. They are useful in proving characteristics of the
systems they describe, and developing accurate performance predictions. Alter­
natively, loose models offer only vague descriptions and classifications of system
issues. Loose models are useful for several reasons, not the least of which are
course nomenclature and taxonomy. However, because of the comparative
nature of our study, only tight models are acceptable.

Another distinction which can be drawn between the various models is
their ability to describe deterministic and non-deterministic behavior. Deter­
ministic models describe constant events and are considerably easier to analyze.
Models which describe non-deterministic events usually associate random vari­
ables with decision points allowing the description of more complex phenomena.
Unfortunately, the analysis of such models is far less straight forward.

2,1. Program Behavior Models

Our survey is not the first of models used to study the execution of parallel
programs. Consequently we endeavor not to repeat past work. Miller [Mil73]
presents a good survey of models in the program behavior class, describing and
comparing several of the numerous theoretical models for representing parallel
processes. The models described (and focused on here) are Petri nets [Pet66],
Computation Graphs [KaM66], and Parallel Program Schemata [KaM69].
Queueing network models [Kle75] are also briefly discussed. These models fit
our category of program behavior models and while each is tight, all have other
shortcomings that make them unsuitable for our research. Several may be used
to describe either deterministic or non-deterministic events.

Petri Nets
Petri nets, developed by Petri [Pet66], have been used widely to describe

the sequencing of concurrent events [Pet8l]. A Petri net is a directed bipartite
graph, with vertices called places and transitions. Places can hold tokens, the
collection of which is called a marking. Every Petri net has associated with it

initial marking which is the marking present before any transitions fire. In
effect, it is the initial state of the net. The set of input places for a transition
consists of those places joined by an arc entering the transition. Correspond­
ingly, an arc joins each transition to the members of its set of output places. If
every input place for a transition contains at least one token then the transition

- 7 -

is active, and may fire at any time. The firing of a transition removes a single
token from each input place and adds a new token to each output place. Con­
current events are modeled by the simultaneous firing of a Petri net’s transi­
tions. The presence of tokens at input places represents the satisfaction of con­
ditions on the occurrence of an event. The firing of one transition will in turn
cause other “events” to become active and subsequently fire.

An extension of this concept, called the timed Petri net [Ram74], associates
a non-negative number with each transition representing the time between the
consumption of a token from an "input place and the production of a token at
the output. Figure 2.1 illustrates this phenomena in a simple timed Petri net,
showing its markings before, during, and after the firing of a 3 time unit transi­
tion. Timed Petri nets are analyzable using timed reachability graphs or reduc­
tion techniques to determine the composite fifing time of an entire net. Addi­
tionally, branching probabilities can be assigned to outputs of transitions to
allow conditional firing. The concept of a random variable associated with the
time each transition requires to fire has also been studied in stochastic Petri
nets [Mol82],

In attempting to use Petri nets to model the execution of algorithms on
multiprocessors, a deficiency becomes apparent. The entire system (including
organization, software, operating schemes, etc.,) would have to be incorporated
into a single Petri net. For example, to change a sequencing policy an entirely
new model would have to be developed, which would in turn make any com­
parative study infeasible. Despite this shortcoming, the model is extremely use­
ful for describing arbitrary concurrent events. The Petri net concept is used in
the development of COSMIC for this purpose.

Computation Graphs

Computation graphs were proposed by Karp and Miller [KaM66] as a
graph-theoretic model for the description and analysis of parallel computations.
Vertices correspond to computation steps and arcs represent a queue for data
directed from one vertex to another. Associated with each arc is the 4-tuple (A,
U, W, T), where the elements are:

Figure 2.1

Timed Petri Net Markings: (a) Before Firing (t < <0); (b) During Firing
(t0< t < t0 + 3);'(c) After Firing (t„ + 3 < <).

■ Va.:;- data items initially in a queue;

u data items added whenever an operation is performed
1 by the tail vertex of the arc;

w data items deleted when an operation is performed
by the head vertex of the arc;

.-:Y; the minimum length of queue to allow the operation at
the head vertex of the arc to begin.

Computation Graphs are most useful when studying the parallelism in simple
repetitive processes, such as “inner loops” of computations. For example, the
computation of Fibonacci numbers is simply a graph with a single vertex and an
arc joining the vertex to itself. The 4-tuple (A,U,W,T) is (2,1,1,2) indicating
that there are 2 items initially in the queue, each operation produces and con­
sumes a single item, and that there must be 2 numbers in the queue to start an
operation. From this it can be seen that the operation never terminates, as
queues length is limited to 2 and each item placed in the queue is used twice.
Computation graphs facilitates analysis of this form.

Several major problems prevent us from adopting computation graphs for
performance modeling. The most severe difficulty results from the model’s ina­
bility to represent the time consumed by a system, making such a comparative
study impossible. The description of complex processes (e.g. sequencing
schemes) with computation graphs would be difficult, and heightened by the
requirement of cyclic computation. Additionally, the flexibility of computation
graphs is limited. Only one arc may leave each vertex, preventing the modeling
of conditional branching or fork and join constructs. These limitations make
computation graphs infeasible for modeling complex systems.

Parallel Program Schemata

Karp and Miller [KaM69] also developed Parallel Program Schemata. This
model is the most complex of the several models presented here and also the
most flexible. A Parallel Program Schema (M,A,T) consists of a set M of
memory locations; a finite set A of operations; and the transition function T to
sequence the operations. Associated with each operation in A is a set of domain

locations in M and a set of range locations, also in M. To represent conditional
transfers, each operation has several possible outcomes. An interpretation func­
tion, I, can specify the exact function of the 'operations, in A. Karp and Miller
use this model to determine the conditions under which programs are deter­
minate, bounded, and repetition free.

In one respect Parallel Program Schemata serves as an inspiration for our
model of computation, as the concept of dividing the model into components
that work together to describe complex issues is most applicable to our problem.
Unfortunately, the model still lacks in the areas of defining time requirements of
operations and in the incorporation of certain organizational aspects of systems.

Queueing Network Models

Queueing Network Models (QNM) have been widely use to describe the
operation of multitasking computer systems and numerous analysis techniques
exist to analyze such systems [Kle75]. Operating system terminology is used to
describe the components of a QNM, as the study of such systems ha,s been their
chief application. The components of a QNM are sources, servers, and queues.
Servers generally represent resources demanded by jobs, and require some time
to service, specified by a random variable. Sources create jobs at a certain
rate, specified by another random variable. Associated with servers are queues
to hold waiting jobs. The connection of these components is a queueing net­
work model. Figure 2.2 shows a simple example of a QNM, with one source, one
server, and one queue. Jobs are placed in Q by either the completion of service
dr creation by a source. This model can be analyzed to determine performance
criteria like system throughput and mean queue length.

The major advantage of this type of model is its ability to be solved by
well known analytic techniques, and its faithful representation of time consump­
tion. The problem in using this of model is its inherent adoption of the use of
queues to contend for limited resources. Queues may not realistically model
events in the systems in our study.

2.2. Machine Behavior Models

Backus [Bac78] classifies several models of computation including Turing
machines, Functional Programming systems, and the von Neumann model.
These models are termed machine behavior models because they describe the

♦f ServerSource

Figure 2.2
Queueing Network Model for Single Server System

-12 -

behavior of machines in their execution of programs as opposed, to the behavior
of programs themselves. They do not contain mechanisms to describe the
sequencing of specific programs, nor specifics of machine organization. There­
fore, all are unsuitable for our needs. For illustrative purposes, three models
spanning this category are briefly described.

Turing Machines
A Turing machine is an example of what Backus terms simple operational

models. An example of such a machine is a finite state machine with an
attached memory device. This machine has the ability to advance the memory
in either direction and either read or write to the memory. This is a tight
model that has a simple and concise mathematical foundation resulting from
the finite state machine. It uses storage to save information that can later
affect the behavior of programs. This makes the model history sensitive. How­
ever, the clarity is not great as only simple state transitions are allowed. This
model is clearly not adequate for representing such complex issues as ordering
schemes and multiprocessor organization.

Functional Programming Systems

Functional Programming Systems are an example of what Backus terms
the applicative model. Such systems consist simply of a set of objects, a set of
functions which map objects onto objects, and an application operation which
applies a function to an object producing another object. Models like this have
no concept of storage, are not history sensitive, and programs written for them
are clear. Such a model is the basis of several data flow systems and languages.
While this form of model is useful in describing programs or programming sys­
tems, they will be of little use in a comparative study such as ours.

The von Neumann Model

The von Neumann model of machine behavior is simply an extension of the
computer developed by von Neumann many years ago. In its simplest form it
has a single central processing unit, a store, and some method to connect the
processor to the store. This model is the basis of all “conventional” program­
ming languages. As the concept of these languages is the stored program, they
are history sensitive and not mathematically concise. Again, note that machine

; -13 - ■'

behavior models do not provide the support needed to describe the specifics of
program sequencing and machine organization.

2.3. Classification Models

Classification models allow description of the configuration and operation
of parallel systems. While this class of models is wide, all members share simi­
lar deficiencies for use as performance characterization models. In general there
is a lack of both tightness and ability to concisely describe the program portion
of a system. Three classification models are discussed. Flynn [Fly66] presents
perhaps the most well know system, describing instruction and data streams.
Next, Handler [Han77] proposes a more complex system. Gajski [GaP85]
presents “essential issues” for parallel processing. In a recent presentation,
Browne [Bro85] suggested a new classification scheme based on the time of bind­
ing. All of these classification schemes can be used to describe multiprocessing
systems in varying detail.

Flynn’s Model

Flynn’s models [Fly66] for parallel processing are perhaps the most widely
used in describing computer systems. Flynn classifies computers with two cri­
teria: the parallelism in instruction streams and data streams. There are four
possible combinations: SISD, SIMD, MISD, and MIMD; referring to single and
multiple instruction and data streams, SISD machines are “conventional”
uniprocessor systems, in which one thread of control operates on a single set of
data. SIMD machines allow multiple data items to be operated on simultane­
ously by the available processing units, yet still under unified control. Gen­
erally SIMD machines are either vector or array processing architectures.
MIMD computers allow more than one thread of control, each with either single
or multiple data items operated on by each instruction stream. Many modern
multiprocessors are MIMD, including multiprocessor data flow machines. MISD
architectures would require multiple operations on a single thread of data.
They are far less common and one generally needs to stretch definitions to find
an example.

This model of parallel processing is unacceptable for use in performance
modeling. Not only does it not allow any consideration of the execution of pro­
grams, but also does not go into enough detail to describe such issues as

- 14 -

interconnection systems and memory organization.

The Erlangen Classification System

Handler proposed a more explicit classification system, which he called the
Erlangen Classification System [Han77]. Under this classification* each system
is divided into three levels of complexity. The Elementary Logic Circuit level
(ELC) is the most basic, operating at the single bit level. The Arithmetic and
Logic Unit level (ALU) executes sequences of operations at the ELC level.
Finally, the Program Control Unit level (PCU) interprets a program instruction
by instruction. Each PCU can control several ALU level components, and in
turn each ALU can control several ELC level components, each dedicated to
one bit position. A system under this model is the 3-tuple
t = (k X kl, d X d', w X vJ), where the elements are:

k Parallelism at PCU level;
k’ Length of each PCU pipeline; u
d Parallelism at ALU level;
d’ Length of each ALU pipeline;
w Parallelism at ELC level;
w’ Length of each ELC pipeline.

With this system it is possible to describe the parallel and pipeline complexity
of a system at the three levels shown.

Unfortunately, this model also suffers several fatal flaws when considering
applicability to our goals. Again, no memory or interconnection issues are
addressed, nor any concept of a program executing on such a system. The
expansion of Flynn’s stream concept allows more detailed description of systems
but does not bridge the gap to understanding the operation of such systems.
However, the concept of hierarchical control contributed to the development of

; -COSMIC.

Gajski’s Essential Issues

While Gajski’s ideas on the essential issues in parallel processing [GaP85]
do not form a formal classification system as in the previous two examples, they
do tend to classify systems by their common and divergent traits and thus are

j

- 15 -

discussed now. They describe five issues that must be confronted when design­
ing an effective multiprocessor system. These issues are control, partitioning,
scheduling, synchronization, and memory access.

Partitioning is the job of dividing a program into units that can be exe­
cuted in parallel, given proper synchronization and scheduling. It involves first
detecting parallelism and then clustering several operations based on some
optimality considerations. The control issue is similar to other classification
systems in that it defines several; levels of control and if each of those levels
operate in serial or parallel. Sequencing is the process of determining which
operations occur after the completion of other within a segment. Synchroniza­
tion is required to ensure data dependencies are observed between two
separately sequenced modules. Finally, the memory access issue takes into
account the overhead that a program will encounter because accesses to
memory including network traversal and contention issues. By simply compar­
ing and; contrasting the methods various systems use to confront these issues, a
basic classification system is devised. These issues are indeed essential and
influenced the development of COSMIC.

Browne’s, Binding Time

A classification scheme has been developed by Browne [Bro85]. This
classification is based on the binding time, an indication of when functions are
bound to the resources that Will execute them and when they are bound to the
time they will begin execution. For example, a system with dynamic scheduling
will have a later binding time (run-time) than one with static scheduling (load­
time); This system can classify a large number of systems, ranging from systolic
arrays where binding will occur at design time to dynamic data flow machines
where binding can happen immediately before execution.

2.4. Survey Summary

wide variety of mechanisms have been used to describe multiprocessors.
While some of these models will serve as a useful basis for the design a model
fitting the goals specified in this report, none would be appropriate unmodified.
In the next section COSMIC is presented. The inspiration from several of the
models described above will be quite evident in its development,

3. The COSMIC Performance Evaluation Model

To analyze the performance of multiprocessors executing specific algo­
rithms, we have developed COSMIC, the Combined Ordering Scheme Model
with Isolated Components. COSMIC consists of both formal parameters
describing a multiprocessor system (including the algorithm it executes) and
analysis techniques producing performance measures. The underlying principles
of this model are the isolation of individual performance issues and the study of
systems under conditions close to those encountered when a system is perform­
ing useful calculations. This section describes the parameters and analysis of
systems represented by COSMIC.

3.1. COSMIC Parameters

A system S is defined by the triple S ■— (O Gd , OS), where O is the
system’s organization; Gd a dependence graph describing a specific algorithm;
and OS is the ordering scheme used to execute algorithms on the organization.
Included in a system’s organization are such features as the number and speed
of processing elements, the amount and organization of memory, and the inter­
connection amongst processors and memory. The dependence graph is simply
an operation level precedence graph for a certain algorithm. This graph
includes only algorithmic constraints, not those induced by operation sequencing
or programming languages. Finally, the ordering scheme describes how algo­
rithms are executed on the organization. The ordering scheme is further seg­
mented into descriptions of a system’s mechanisms for partitioning, sequencing,
resource allocation, and memory utilization.

3.1.1. Organization (0)

The organization represents the arrangement of hardware elements of a
system. Every multiprocessor has three basic components; processing elements
(PE), memory locations, and some method to interconnect them. Input and
output devices are simply specialized processing or memory elements. Conse­
quently, our model for organization is represented by the triple 0 = (P, M, I),
where P, M, and I are:

• P — A set of processing elements. Each processing element has a set
of instructions that it can execute and a relative speed. The ordering
scheme describes how these instructions are ordered.

-17 -

• M — A set of memory locations.

• I — An interconnection function M X P—+ M XP, This function
defines the possible interconnections, and with each outcome there is a
related cost function that describes the cost of traversing that connec­
tion. Local memory on a PE can be modeled by a low cost function
(perhaps zero). Inaccessible memory (another PE’s local memory) can
be modeled by / being partial on M X P M X P.

3.1.2. Data Dependency Graph (Gd)

The data dependence graph is an arc and vertex weighted directed graph
in which vertices represent operations and arcs represent data dependencies
between operations. The weight of a vertex represents the relative time that it
will consume when executed. The weight of an arc represents the size of the
data needing transfer to Satisfy the dependency. These weights can also be
viewed as the number of “atomic operations” required to complete the compu­
tational or transfer operation. This graph is acyclic, as any loops in a program
are unfolded in creating the dependency graph. Data dependent behavior is not
considered, but will be included in future research.

3.1.3. Ordering Scheme Function (OS)

The ordering scheme for any system is a function mapping the dependency
graph into an ordering net, based on the organization parameters. An ordering
net is a timed Petri net [Ram74] which depicts ordering constraints placed on
the execution of operations, as well as the cost of each operation in the modeled
system. The ordering scheme for an organization O can be defined as:

0S(0): G —*■ N,

where G is the set of all possible dependency graphs and N is the set of all pos­
sible ordering nets. This function is the composition of several smaller, more
easily defined functions. Thus the ordering scheme function,

OS(0)— l{0)o A* o X o 4^0) o r{0),

(where the usual composition notation implies that (/ o <jr)(x) is equivalent to
/ (^ (x)),) contains the component functions:

- 18 -

7i G,i —► N Creates an ordering net G^ ,

0(0): N —* N Adds partitioning constraints,
X: N—*■ N Adds sequencing constraints,
fx: N —*■ N Adds memory access constraints,

7(0): N —► N Adds resource constraints.

While the next sections detail each function, several observations apply to
all. Functions described as system independent never change over all possible
ordering schemes. A function will be system dependent if the function itself
changes from one ordering scheme to the next. Additionally, some functions
may be organization dependent indicating that the result of applying the func­
tion to a net varies according to some aspect of the organization. A function
may be organization independent while being system dependent. For example, r
is system and organization independent, (f> is system and organization depen­
dent, and X is system dependent and organization independent.

Note that because an ordering net is a timed Petri net, it has an underly­
ing directed bipartite graph. In this bipartite graph nodes represent places and
transitions, and edges occur only between places and transitions. In the follow­
ing descriptions we take the liberty of referring to the features of this graph as
if they were features of the ordering net. For example, the indegree of a transi­
tion refers to the indegree of the corresponding vertex in the underlying graph.

Related to each ordering scheme function is a measure which indicates the
performance impact of that function. A measure is a triple whose elements are
the serial time and the critical path time and space requirements to fire an ord­
ering net. While a precise definition of these measures is provided in Section
3.2, this section provides a brief description of the measures corresponding to
the composite OS functions.

Computation Function (f)
The computation function creates an initial ordering net from a data

dependency graph. Its sole purpose is to change domains from data dependency
graphs to ordering nets and is organization and system independent. Formally
the computation function is defined as

N'

- 19 -

where Nc is the computation ordering net for a given produced hy f. This
function requires five steps, which are now detailed.
Step tx — Arcs and Vertices in Gd •

• For each vertex in G& create a transition in N.
• For each arc in Gd create a place in N.
• Fpr each arc, a,-, in Gj, with head' create an arc in N joining the
transition corresponding to vik to the place corresponding to a,.
• For each arc, at-, in G^, with tail v#, create an arc in N joining the place
corresponding to a,- to the transition corresponding to %.

This step creates the first approximation to an ordering net from ;a data
dependency graph. Transitions in the net will correspond to operations and
places to the storage or movement of data between operations. The structure
of the net is identical to that of the dependency graph. An example G^ is
shown in Figure 3.1a and the result of Step r2is shown in Figure 3.1b.
Step r2 -- Initial Transition

• Create an initial transition.
• For each transition created by step Tj with indegree zero, create a place.
• For each newly created place, create an arc joining the initial transition
to the place.
• For each newly created place, create an arc joining the place to the
corresponding transition with indegree zero.

This step ensures that there is only one input to the ordering net. Figure
3.1c shows the result of applying r2 to the net in Figure 3.1b.
Step r3 -- Initial Place

• Create an initial place, containing a single token.
• Create an arc from the initial place to the initial transition.

This step creates an initial place for the ordering net and makes the initial
transition active. Figure 3. Id shows the result of applying r3 to the net is Fig­
ure 3.1c."... .

Step r4 — Final Transition
• Create a final transition.
• For each transition with outdegree zero, create a place.
• For each newly created place, create an arc joining the corresponding
transition with outdegree zero to the place.

Figure 3.1
Computation Ordering Net Creation From Data Dependency Graph (a)
Shows: (b) Initial Ordering Net; (c) Initial Transition; (d) Initial Place; (e)
Final Transition; and (f) Weights.

-21 -

(c) (d)

Figure 3.1, continued.

Figure 3.1, continued,

- 23 -

• For each newly created place, create an arc joining the place to the final
transition.
This step ensures that there is only one output of the ordering net. Step %

is illustrated by the transformation from Figure 3.1d to Figure 3.1e.

Step r5 — Transition Firing Times land Plaice Weights
• Associate with each transition in the ordering net a firing time. Those
transitions that correspond to vertices in Gd should be assigned the weight
of the vertex. The initial and final transitions should be given firing times
of zero. .
• Associate with each place in N a weight proportional to the arc weights
in Gd. The places added in steps r2 and r4 are given weight zero.

This step associates appropriate weights with each place and transition.
The weight of a transition is its firing time, which is the elapsed time between
the consumption of tokens from input places and the generation of tokens at
output places. The weight of a place is representative of the amount of infor­
mation stored in the place or transferred between two transitions. Figure 3.If
shows the ordering net resulting from the application for r5 to the ordering net
shown in Figure 3.1e. The result of this function is a live timed Petri net in
which only the initial transition may fire.

When Nc is analyzed by the technique described in Section 3.2 the compu­
tation measure (Ad£) is obtained. This measure indicates the time and space
requirements of the system when only computational operations are concerned
and serves as a baseline for further studies of overhead. Note that this measure
is always independent of ordering scheme and organization.

Partitioning Function (4>)

Partitioning is the process of dividing a program into segments to allow
their execution on possibly distinct execution units. This division requires the
addition of explicit synchronization between segments to preserve data depen­
dencies. The partitioning function creates a new ordering net, Npart, based on
these added synchronization requirements:

Unlike the computation function, the partitioning function is system dependent
but always follows a similar form, described in the following steps. (An example

- 24 -

is presented after the description of all steps.)

Step <j>x -- Segment Construction
• Assign each transition in the input net to one, and only one, segment;
• Assign each place for which all neighboring transitions belong to the
same segment to that segment. All other places are not contained in any
segment.
This step defines the creation of segments from the input net. The system

dependent portion of this step is the algorithm used to choose the transitions
assigned to a specific segment.

Step <j>2 — Adding Synchronization Operations
• For each unassigned place, create two places and a transition.
• Add an arc joining each transition for which the unassigned place is an
output place to the first newly created place.
• Add an arc joining the second newly created place to each transition for
which the unassigned place is an input place.
• Add an arc joining the first newly created place to the new transition
and one joining this transition to the other new place.

This step adds constraints to the model of the system which represent Syn­
chronization requirements added by a given partitioning of a net. This step is
system independent.
Step </>3 -- Firing Times and Place Weights

• For each transition added in step (f>2, assign a firing time.
• For each place added in step 02> assign a weight.

This step assigns costs to synchronization requirements. The firing time
and weight chosen are organization dependent and proportional to the cost of
synchronization in a given system.
Step <f>4 -- Recursion

• Apply this function to each newly created segment if additional partition­
ing is required for a given system.

An example of the application of the partitioning function is shown in Fig­
ure 3.2. Three segments are shown encircled by dashed lines in the initial net
in Figure 3.2a, which is the result of applying step <j>\. Four places require syn­
chronization; between the a-b, a-c, b-d, and d-e transitions. Figure 3.2b shows
the new net, after transitions and places have been added. The new elements
are shown in boxes and segments encircled in dashed lines for clarity.

26

When Npart is analyzed a measure is produced. After Mg subtracted from
this measure, the partitioning measure, Mpart is arrived at. This measure indi­
cates the overhead induced on the system by partitioning the algorithm accord­
ing to the ordering scheme.

Sequencing Function (X)
The sequencing function is responsible for adding constraints to the model

induced by the sequencing of operations within the smallest segments of a given
system, as well as the sequencing amongst those segments. Basically, this func­
tion causes the interpretation of either control flow, data flow, or combined
schemes. Formally, the sequencing function produces a new ordering net from
its input:

Again, this function is system dependent, and must be specifically defined for
each system. The following steps describe the sequencing function:

Step \ -- Operation sequencing
• For each smallest segment produced by <f>, determine one or more execu­
tion'-traces of transitions which will occur when the segment is executed on
the system. This trace must not violate any dependency currently existing
in the net (i.e. do not create a dependency loop.)
• For each execution trace, add a place-transition-place sequence between
each pair of adjacent transitions along the trace.
• The firing time of the added transition will be proportional to the cost of
sequencing on the system. The weight of the added places will be propor­
tional to the amount of information transfer required to sequence.
This step creates one or more execution traces for a given schedulable seg­

ment which was previously defined by partitioning. It reflects the implementa­
tion of the sequencing scheme at the operation level. Figure 3.3a shows a seg­
ment of the ordering net shown in Figure 3.1f, and Figure 3.3b shows the result
6f the application of this step, with a single execution trace.

Step X2 -- Segment level sequencing
• Connect each transition at the tail of a trace list produced by step \ to
the head of some other trace list or the final transition, by a place-
transition-place sequence. If this connection is already made by a syn­
chronization operation, do not add a new one. The trace list must not

- 27 -

Figure 3.3
Sequencing Example Showing (a) Partial Ordering Net and (b) Corresponding
Operation Sequencing Net

28 -

violate any previously existent dependencies (i.e. no dependency loops).
• Connect the initial transition to the head of any list not used in the last
step by a place-transition-place sequence.
• The firing time of each added transition is set equal to the segment
sequencing cost for this system. The weight is again proportional to the
required information transfer for segment sequencing. Modify the weights
and firing times of synchronization operations appropriately.

This step implements the sequencing of groups of operations at various lev­
els, dependent on the ordering scheme of the system. Figure 3.2 can also
demonstrate segment level sequencing. If the ordering scheme required a serial
trace of segments, a sequencing operation could be placed between the transi­
tions labeled “d” and “b”. This would ensure the segments themselves execute
in a serial fashion while operations within the segments could operate in paral­
lel. \

When Nseg is analyzed a new performance measure is produced. When
+ Mpart subtracted from this measure, the the sequencing measure, Mseq is

arrived at. This measure indicates the overhead induced on the system by
sequencing the algorithm according to the current ordering scheme.

Memory Access Function (/u)

To this point, the weight of each place in an ordering net has held all
memory access and interconnection network traversal information. The
memory access function produces a new ordering net which reflects added con­
straints induced by these factors.

This function is independent of any system specifics and simply replaces each
non-zero weighted place with a place-transition-place sequence. The new tran­
sition is given a weight equal to the weight of the place it replaces. Figure 3.4
shows the result of applying fj, to the initial ordering net, which was shown in
Figure 3.1f.

When is analyzed a measure is produced. Then, after
Mf. + Mparf + Mseq is subtracted from this measure, the memory access meas­
ure, is obtained. This measure indicates the overhead induced on the sys­
tem by accessing memory.

- 29 -

Figure 3.4
Ordering Net with Memory Access Constraints

- 30 -

Resource Allocation Function (7)

Resource allocation is the process of assigning a set of vertices (transitions
and places) to a set of resources (processing elements and memory locations.)
Transitions represent computation and are assigned to processing elements,
while places represent data storage (or transfer) and are assigned to memory
locations. This function produces a new ordering net which reflects these con­
straints:

It should be noted that if one wishes to model resource contention for memory
devices, the memory access function (J, must be applied before 7. After the
application of •7 the ordering net may again have fj, applied to show the cost of
the memory access added by 7. The resource allocation function is organization
dependent and must be defined for each system modeled. Fortunately, all
resource allocation functions follow the same general form:

Step 7X — Resource Set Designation
• Create mutually exclusive sets of resources to be allocated before run-
time. In this case a resource is considered a member of the set M,
the set of all processing and memory elements.
• For each resource set, determine the subsets to be allocated at run time.
This step requires the designation of which groups of resources will be allo­

cated before run time, and within those groups, which will be allocated at run
time, This allows for the modeling of both static and dynamic resource assign­
ment, as well as hybrid approaches.

Step 72 — Resource Creation
• Create a place for each resource set to be allocated before runtime.
• Place one token for each run time allocated subset contained within a
resource set in the corresponding place.
• Assign a weight of zero to each new place.
This step creates resources, and is system independent. Obviously the

number of resources created is organization dependent. Each place is used to
represent a distinct pool from which a resource may be taken. The tokens in
this place represent the degree of run time parallelism available from that
resource pool.

- 31 -

Step 73 — Resource Assignment
• With the exception of the initial and final transitions, assign each transi­
tion in N to one or more resource sets which are required for its execution.
• For each transition assigned to a given resource set, add arcs to create a
directed cycle containing both place corresponding to the resource set and
the transition. The outdegree of each non-resource place on the cycle must
be one.

This is system dependent and assigns the individual transitions to a specific
resource pool. There are two convenient methods of resource assignment avail­
able:
1) For each transition, create a length two cycle containing the transition and

the resource place.
2) If a segment of N with one input transition and one output transition is to

use a resource, an arc can join the resource place to the input transition
and another can join the output transition back to the resource place.
This models a system which allocates a resource to a group of operations
that hold it until their completion.

Step 74 — Place Weight and Firing Time Adjustment
• For each place in N, adjust its weight to account for added communica­
tion required.
• For each transition in N, adjust its firing time to adjust for changes in
processor speed.

This step is system dependent, adjusting the firing times and place weights.
Firing times must be adjusted after the resource assignment to account for
differences in processor speed. Place weights must be adjusted based on the
cost of communication, as described in the system’s organization.

As an example, consider Figure 3.5. Figure 3.5a shows the same Nc found
in Figure 3.If, with the transitions labeled a through i for convenience. Figure
3.5b shows two resources are added, with the places labeled Rl and R2. Each
of these resources is a one element resource set, as defined by step 7j. Resource
1 is used to execute the subgraph consisting of transitions b through f.
Resource 2 is used to execute transitions g and h. Additionally, the weights of
the input places of g and h were doubled to reflect interconnection network
delays. It can be seen that by the rules of Petri net firing, each resource can
only be used for one transition (or subgraph) at a time, and that the token
representing the resource is preserved.

Figure 3.6
Resource Constraints Featuring (a) Labeled Ordering Net And (b) Correspond­
ing Net With Added Constraints

33 -

(b)

Figure 3.6, Continued.

. - 34 -

An analysis of Nra produces a measure. When the sum of previous meas­
ures (Mc + Mpart + + Mna) is subtracted, the resource allocation measure,
Mra, is arrived at. This measure indicates the overhead induced on the system
by resource allocation the algorithm according to the current ordering scheme.

3.2* Analysis and Measures

After a system has been described by the parameters of COSMIC, it is
analyzed to determine several performance measures. This analysis involves the
determination of the time between the firing of the initial and final transitions
in an ordering net. Computerized analysis tools, detailed in the next section,
aid in this determination. The analysis begins by creating ordering nets using a
high-level description language that enables the specification of parameterized
nets. Generally, these parameters include the problem size and relative costs
for computation, sequencing, and synchronization. A compiler then fixes values
for these parameters and produces a set of interconnected places and transi­
tions. Next, a net analyzer determines the various measures by firing the net
following the rules of timed Petri nets. .Finally the results of many analyses are
gathered into a database for further off-line studies. The entire system is capa­
ble of analyzing nets up to about 50,000 places and transitions while consuming
reasonable computational resources. This enables the analysis of moderately
large problems.

Three values are associated with each performance measure: the serial
time, the critical path time, and the number of resources required to achieve
the critical path time. These values describe both the time and space require­
ments of the modeled system for a given configuration. Two classes of measures
are used: primary measures represent consumption of resources directly related
to the algorithmic requirements of the system, and overhead measures show the
consumption of resources unrelated to any algorithmic requirements. The
analysis consists of the application of two analysis functions; The serial
analysis function is:

ANserial : N IR>

where IR represents the set of real numbers and N the set of ordering nets. It
computes the time required to fire all nodes in an ordering net, with the added
constraint that no two transitions may fire simultaneously. The critical path

- 35 -

analysis function is

ANcrit '• N —+IR X IN,

where IR represents the set of real numbers, IN the set of non-negative
integers, N the set of ordering nets, and X the cross product. It computes the
time required to fire all nodes in an ordering net, with only the constraints
presented by the net, as well as the number of resources required to achieve
that level of performance. Finally the general analysis function,

AN : N —*■ IR X IR X IN,

simply combines of the two previous functions, the result of which is a triple of
values: (Serial Time, Critical Path Time, Critical Path Space).

If M is such a triple, the total execution measure for a model with organi­
zation O, ordering scheme OS, and data dependency graph is:

=^Jv(os(gj, o]|.

The execution measure is also, by definition, the sum of the five previously
defined measures:

^execution "b Mpart ~b -^4seq ~b ^rna “b ra>

where Mc is the computation measure, Mpart the partitioning costs measure,
Mseq the sequencing costs measure, is the memory access measure, and Mra
is the resource allocation costs measure. These measures are also triples, the
addition of which is defined in the usual manner by adding corresponding
entries. These measures represent the analysis of an ordering net resulting from
the application of a subset of the ordering scheme function. Mc is the primary
measure, while the others are overhead measures. Overhead measures may con­
tain negative entries for Critical Path Space since, as the critical path time
grows, the space required to achieve that performance may decrease. These
measures were described in the previous section.

Each of these measure components is unitless and should be expressed in a
base unit related to one component. For example, if each synchronization
operation takes one measure unit, then memory access or computation compu­
tations could take n synchronization operations. Alternatively, the base unit
could be taken to be the memory access measure or scheduling measure. The

important feature to observe is that these measures are represented in relative
terms and the exact relationship must be determined. This data can also gen­
erate a measure of the efficiency of a system by considering the ratios of the
primary and overhead measures to the total execution measure.

3.3. COSMIC Summary
This section has presented the model with examples to show its mechanical

operation. By allowing the specification of complete systems in an orderly
manner, COSMIC allows performance analysis of complex systems. This orderly
specification in turn allows individual performance issues (e.g. sequencing over­
head) to be separated from the total performance. The next section describes
several tools required for successful analysis of larger systems.

-37 -

4. Tools

This section describes in some detail a set of tools developed to aid in the
analysis of systems modeled by COSMIC. The first tool discussed compiles a
hierarchical description of a timed Petri net into a single level internal format.
The second tool analyzes this internal representation to determine various
measures. Finally, several ancillary tools allow the user to examine the internal
descriptions and debug networks. This section will present the language
describing timed Petri nets and discuss the implementation of the two major
tools. Examples are given to illustrate their use.

4.1. Hierarchical Timed Petri Net Language

HTP is a language designed to hierarchically describe timed Petri nets. A
timed Petri net consists of a set of places, a set of transitions, a set of directed
arcs connecting transitions to places and vice versa, a real number associated
with each transition which is its firing time, and a marking which indicates the
number of tokens initially at each place. In addition to HTP’s ability to
represent each of these items, it also allows for parameterization, conditional
expressions, and repeat loops. Capabilities also exist to allow groupings of
places and transitions in the form of arrays. The grammar for this language is
given in Appendix A.

The basic strategy used when describing a net with HTP is successively
finer detailing until individual places and transitions are defined. By this
method even large, complex nets can be described with relative ease. The
mechanism used to accomplish this hierarchical description is the subnet, which
is analogous to the subroutine in a conventional programming language. A sub­
net is capable of describing an arbitrarily complex net which can be used many
times in the overall description of the net. Of course subnets may themselves
refer to other subnets. To allow a “calling” net access to the internal com­
ponents within a subnet, each has a defined set of input and output ports. In
describing a Petri net, a subnet’s name and a port name are used to refer to a
specific place or transition within that subnet. In reality places and transitions
themselves are simply special subnets. Each has one input and one output
which are used to access the place or transition. They are also the quantum
units of the language in that every reference used in a connection must evaluate
to an individual place or transition.

- 38 -

This section serves as a programmer’s (or more accurately “describer’s”)
manual for HTP, providing information about the language as well as examples
of its use. While many HTP features differ from programming languages, there
are common features. In these areas readers familiar with the C programming
language [KeR78] will notice similarities.

The major components of HTP are parameters, expressions, declarations,
statements, and global definitions. Parameters hold values during the defining
process so they may be reused and combined with other parameters. Expres­
sions may be used to manipulate parameters and constants. Declarations define
the components of a net and associate names with them. Statements operate
on these components. Finally global definitions syntactically hold the
definitions of the net or its subnets.

4.1.1. Lexical Conventions

This subsection presents some lexical Conventions used in HTP. All
correspond to equivalent C language constructs.

Comments
Comments start with the character sequence “/*” and end with the

sequence Any characters in a comment are ignored by the compiler.
Comments do not nest.

Identifiers
An identifier is any sequence of characters starting with a letter and con­

sisting of the letters, numbers and the character. All characters in an
identifier are significant. An identifier may not be a keyword.

Keywords

The following are the reserved keywords in HTP, and may not be used as
identifiers.

- 39 -

else model repeat
if output subnet

input place trans

Constants

Integer constants may be expressed in either decimal, octal, or hexadecimal
notation, using the same conventions as used in the C language. Octal numbers
are signified by a leading “0” character, hexadecimal numbers by the sequence
“Ox”. Floating point constants arc only accepted in decimal notation. The pre­
cision of constants is machine dependent.

4.1.2. Expressions

Expressions allow the combination of parameters to form new parameters.
All expressions correspond to equivalent C language expressions. Expressions
may be parenthesized to indicate precedence, which is left to right if
unspecified.

Arithmetic Operations

Addition, subtraction, multiplication, division, and modulus operations are
defined using the conventional symbols : “*”, “/”, and “%” respec­
tively. Each combines the expressions on its right and left, performing the
appropriate operation.

Logical Operations

The logical AND and OR operations are defined using the “&&” and “jj”
symbols respectively. These operations are logical, as opposed to bitwise, pro­
ducing either 1 for true or 0 for false. For example, the expression “A && B”
would produce 1 if A and B were both nonzero expressions, 0 otherwise.

Comparison Operations

The comparison operations yield either 1 indicating true or zero indicating
false based on the comparison of two expressions. Implemented operations are
equal; not equal; less than; greater than; less than or equal; and greater than or

- 40 -

equal. Symbolically these operations are represented by “
and “>=” respectively.

7J U|_J1
> *--- > S >

4.1.3. Declarations
Declarations define the places, transitions, and subnets to be used in form­

ing a net or subnet, as well as the input and output ports of the net or subnet.
The general format of a declaration is:

type decljlist ;

where type is one of trans, place, input, output, or subnet and indicates
which item is being declared, and decl_list describes the names and parameters
of each item. It takes the form:

narnel (paraml,param2, ...) , name2 , nameS [sizel] [size&J ...

where one or more items may be declared, perhaps with parameters assigned to
the items declared. A multi-dimensional array may be declared using the
square' bracket convention. Parameters will be used to specify the firing time or
initial marking for each transition or place.

trans declaration
The “ trans decljist” statement defines one or more transitions. One

parameter is allowed which indicates the firing time of the transition. The
default value is 1. In an array of transitions, each element has the same firing
time Each transition has two hard-wired ports, one input called “i” and one
output called “o”. These are used when forming connections to the transition.

place declaration
The “ place decljist” statement defines places. Two parameters are

allowed which indicates the weight of the place and the initial marking. The
default value of the weight is 1, while the default of the marking is zero. In an
array of places, each element has the same weight and marking. Each place
has two hard-wired ports, one input called “i” and one output called “o”.

- 41 -

subnet declaration ;

The “ subnet name decl_list” statement defines occurrences of the subnet
with the name name. No parameters are allowed. The subnet mentioned must
be defined elsewhere in the description. Recursive definitions are not allowed.

input declaration

The “ input decljlist” statement defines input ports to the current
definition (i.e. net or subnet). No parameters are allowed.

output declaration

The “ output decljlist” statement defines one or more output ports to the
current definition. No parameters are allowed.

4.1.4. Statements

Statements are used to define a timed Petri net. They perform the
“action” of forming a complete net when compiled.

assignment statement

A new parameter can be created from previously defined parameters and
constants using the assignment operation:

paranmrvame = expression ;

Parameters may be redefined at any time, with the new value replacing the old.
Parameters do not carry a specific type and do not require declaration.

connect statement

The connection statement is used to connect one or more declared ports to
one or more others, using the “->” symbol.

out_port_list -> in_port_2ist ;

In this statement each list is a comma separated list of ports, either of the form
“portname”, previously declared as an input or output port; or as
“itemname.portname”, where itemname is the name of a previously declared
place, transition, or subnet and portname is the name of an input or output
port associated with that item. If an item on the left side of the operator

- 42 -

evaluates to a place, the right side must evaluate to transitions. Alternatively,
if an item on the left side of the operator evaluates to a transition, the right
side must evaluate to places. One of the list must have only one element.

repeat statement
The repeat statement is used to repeat a group of statements several times,

with a parameter indicating which loop instance is currently executing.

repeat (narne9min__expression,max__.expression) {
statements;

■ /:;
In this case name is a parameter which is created by the execution of the
repeat statement. It has a value which ranges from min_ezjiression to
max_expression, one per instance of the loop. Therefore a total of
max_expression — rmn_expression instances of the body will be created. Each
instance is independent of all others.

if-else statement
The if-else statement is used to conditionally execute a group of statements

based on the outcome of a conditional expression. The else portion of this
statement is not required.

if (conditional_expression) {
statements;

• } else {
statements;

4.1.5. Global Definitions

.;'.:'v";-:A-'.HTP .net-, is -made' up of one model definition and zero or more subnet
definitions.

- 43 -

model definition
One model definition is required in each net definition and serves as the

base of expanding the net. The model_name is used only for external
identification.

model model_name {
declarations’,
statements;

} :;;r;- ■■

Note that items must be declared before used.

subnet definition

Any number of subnet definitions may be used in defining a network. Each
time the subnet is referred to in another definition, a copy is made. The
subnet_name is used to refer to the subnet in declarations. Subnets may not
refer to themselves.

subnet model_name {
declarations;
statements 5

0../'V

4.1.6. Examples

Figure 4.1 shows HTP definitions produce the Petri net shown in Figure
3.3b. Note that the subnet “seq” will appear three times in the net produced
by the compiler, called si, s2, and s3 respectively. The connections and
declarations inside are automatically duplicated in each instance. Appendices B
through E show more complex examples of HTP net descriptions.

4.2. HTP Compiler
Once a Petri net has been defined in HTP, it is “compiled” into an internal

format by the program mknet. The compiler has three distinct phases in pro­
cessing the input description of a Petri net. The first phase simply parses the
input description into a tree structure to allow more efficient manipulation.
The second phase expands the description into a single flat network of places

- 44 -

SEQTIME = 1; /* a parameter definition */
model figure3_3_b { /* the model is called figure3_3_b */

input i 1 , i2 ; /* 2 inputs ;*/
Output o; /* a single output */
trans 11 (7) , t2 (3) , t3 (4) , t4 (0) ; /.* declare 4 transitions */
place pi (1) ,p2(4) ,p3(0) tp4{0) ; /* declare 4 places
subnet seq s1,s2,s3; /*■ 3 copies of subnet seq */

11,12 -> t1.i /* the inputs connected to t1 */
t1.o -> s1.i,p1.i,p2.i; /* t1 out to 1 seq and 2 places */
s1.o,p1.o -> t2.i; /* seq and one place to t2 */
t2.o -> p3.i,s2.i; /* t2 out to 1 place and 1 seq */
p2.o,s2.o -> t3.i; /* p2 and s2 out to t3 in */
t3.o -> p4.i,s3.i; /* t3 out to p4 and s3 */
p3.o,p4.o,s3.o -> t4.i; /* p3,p4,s3 all to t4 */
t4.o -> o; /* t4 is the net output */

} •
/*
* a subnet to handle a sequencing operation
*/ :vV:::

subnet seq { /* the subnet is called seq */
input i; /* one input... */
output o; . and one output */
place p1,p2; /* two places */
trans t(SEQTIME); /* one transition, param time */

i -> pl.i; /* in -> p1 -> t -> p2 -> out */
pi.o -> t.i;
t.o -> p2.i ;
p2.o -> o;

Figure 4.1
HTP Description of Figure 3.3b

- 45 -

and transitions with appropriate interconnection. The final phase assigns a
unique number to each node in the network and produces an output file which
is a simple node list. This section describes each phase in some detail* discuss­
ing the algorithmic complexity of each phase. To allow the analysis of the larg­
est possible pets, the algorithmic complexity must be kept at a minimum.

During the first phase the input description is parsed using a simple parser
built by the YACC compiler compiler [Joh75] and LEX lexical analyzer [Les75].
These tools are generally available under the UNIX operating system. Each
declaration, statement, and definition causes the creation of a node in a tree
data structure. In this data structure each definition has as its children all
statements within that definition. Similarly statements which may syntactically
contain other statements (i.e. the repeat and if statements) have as their chil­
dren the statements they contain. Finally statements requiring lists such as
declarations and connections have as their children the elements of those lists.
When a symbol is defined by definition or declaration it is placed in a symbol
table and referenced to the item it defines (e.g. a subnet or transition.) During
this phase symbol conflicts and syntax errors are detected and reported to the
user.

The tree structure allows the easy expansion of subnets and other struc­
tures by simply replicating the internal structure of their definition. In assess­
ing the complexity of this phase the two major components are building a sym­
bol table of Nsym symbols and creating a tree of Nstate statements. As Nsym is
generally small, the symbol table is implemented as an unordered list in which
the lookup and insertion of each symbol requires 0(Nsym) time and 0 (1) space.
Therefore symbol table complexity is Q(N*ym) time and 0(Nsym) space. The
parsing of statements and creating nodes for them is a simple one pass process
requiring 0(1) time and space per statement. Adding the symbol and state­
ment complexity, the complete phase requires O (N^ym + N^r) time and
O (Nfyyr, + 'Nrf„fr) space. The number of statements and symbols used in
describing a Petri net is related to how well the describer can break the net into
subnets. In general this complexity is small as even very large nets do not
require many statements or symbols. Experience verifies this result as the first
phase requires a very small portion of the total execution time of the mknet
program.

The second phase of this program is the most complex and where the most
attention to performance needed to be placed. The process begins by simply
“expanding” and “executing” the model definition. Expansion of a net involves
creating all the places and transitions within it, while execution creates the con­
nections between them.

For each place and transition declared in a definition, a duplicate of a
master place or transition node is created and appropriate firing times or
weights assigned. If an array of places or transitions is declared, a multi dimen­
sional tree of duplicates is created each node having appropriate weights or
firing times. Subnet declarations cause the immediate expansion and execution
of the subnet definition in question if it has not already been processed. Obvi­
ously if a subnet definition declares other subnets they too will be expanded and
executed in a recursive manner. After a subnet’s processing is complete, its
tree is pruned to remove all information not required for duplication and I/O
port accessing. This step significantly reduces both the space and time require­
ments to copy the structure. The remaining subnet definition is duplicated as
many times as required to fulfill the declaration. Input and output declarations
create simple nodes which are used by external statements to access the places
and transition of a net or subnet.

After all declarations have been expanded, the statements of the definition
are executed. The connect statement will simply cause the connection of places
and transitions. Error reports are issued if a statement connects a place to a
place or a transition to a transition. Also, either the source or destination list

■ must have only one element, and all nodes and ports must be defined. The
body of an if statement will only be executed if the condition is true. A repeat
statement simply executes the loop the specified number of times after defining
a new local symbol. The symbol is removed after the execution of the body.

In assessing the complexity of this phase of the compilation process, con­
sider the costs of two operations: the duplication of defined items and the exe­
cution of connections and other statements. Each node (i.e. place or transition)
requires 0(1) space and time to define and duplicate it. If N^de nodes exist in
the final net, then the space and time requirements will be 0{Nno^e). The addi­
tional space requirements of the original nodes were either accounted for in the
parsing phase (for subnets) or 0(1) (for places and transitions.) The connection
processes requires two symbol lookups for each connection statement executed.

Note here that because of our hierarchical definition there is not a connection

statement per node as subnet connections are performed before subnet duplica­
tion. Assuming Nconnect connections statements are executed, the time complex­
ity is O(Nc0nnect * Nsym). No additional space is required for this operation.
Finally, the execution of if and repeat statements can be assumed to require
O{NC0nnect) as most one if or repeat statement is in general executed per
connection execution. In summary this phase requires
0{Nconnect * ^Ysym + ^node) time and O (iVn0(je) space. Experience shows that in
general Nnode is much larger than Nconnect, as each the hierarchical nature of
HTP requires connections within a subnet be created only once, regardless of
how often the subnet is used. Thus, the duplication time becomes dominant.

Finally, the third phase uniquely numbers the nodes in the network by
recursively traversing it in 0{Nnode) time and then traverses it again to output
each place and transition. This process is also used to check the connectivity of
nodes in the net. Totally unused nodes are ignored by the traversal. The total
time complexity of the entire compilation process is

O instate ”1" {NSym "h -^connect)-^sym d” ^node)•

In assessing this complexity, assume Nstate ^ Niym ^ Ncontieci (which is the
usual condition). The total time complexity reduces to

OiN^2 + Nnode).

The total, space requirements are

O instate "k ^Vsym *k ^node)•

The only non-optimal portion of this performance is the symbol table lookup,
but experience shows that as, much larger than the code overhead
for a more complex lookup algorithm is not justified. Space requirements are
optimal as each node, symbol, and statement requires storage.

4.3. HTP Analyzer

After an HTP description has been compiled the place and transition list is
passed to the net analyzer, anet. This program is responsible for determining
the measures described in Section 3. Several distinct phases make up this pro­
gram, depending on the results desired. During first phase the net is read into a

multiply linked data structure. The next several phases determine the critical
path time, serial time, and optionally the critical path width. Finally results
are output indicating the value of the various measures. This section describes
the actions of these phases and their time and space complexity.

The input phase is implemented as a state machine which parses the list
output of mknet. For each node read, one is created and connected acebfding
to the input specifications. Additionally, any parameters are assigned to the
node. Any errors in syntax (which should not occur as mknet produces this
input), are reported, as well as exceeding a compiled parameter for the max­
imum number of nodes allowed. This limit is currently set at 50,000 nodes but
could be increased at a cost of about 40 memory bytes per node. As no search­
ing is required this phase requires O) in both time and space. At the end
of this phase a single extra place, connected to each transition with a non-zero
firing time is created. This place, called the resource limitation place is used to
control concurrency during analysis. The limitation is accomplished by placing
a number of tokens, corresponding to the desired limitation, in the place. This
results in allowing only this limited number of transitions to be in an active
State simultaneously. This connection process has time complexity of O)
and uses O (l) space.

The next several phases perform composite firing time analysis, each phase
with a different limit on the number of transitions which may fire simultane­
ously. In each case the time required to fire all transitions in the net is deter­
mined. The first analysis phase places no limit on concurrency (i.e. an infinite
supply of tbkens is available at the resource limitation place) and an analysis
shows the critical path time. Serial time is next found placing a single token in
the resource limitation place and performing another firing time analysis.
Finally a binary search is performed to determine the number of resources
required to achieve critical path performance. In each step of the search an
analysis is performed. The lower bound on the limits of this search is the ratio
of serial to critical path time, and the upper bound is the maximum number of
transitions firing simultaneously during the critical path measurement. The
search terminates when it finds the smallest number of resources required to
achieve critical path performance.

Each analysis phase computes the firing time of the net with a specified
limit placed on concurrency. The typical method for accomplishing this

- 48 -

calculation would be to build a reachability tree for the net. A teachability
tree is a graph in which each vertex represents a marking, edges connect mark­
ings reachable from other markings in which a single transition fires, and edges
are weighted with the firing time of that transition. After construction of the
tree, one would then find the shortest path through this tree from the initial
marking to the final marking. Unfortunately the reachability tree grows
exponentially with the number of nodes in a net, making this method unusable
for all but the smallest of nets. In fact, any method which relies on searching
the state space of net markings will be unsuitable for our goal of analyzing
large nets.

To overcome the problem of state space explosion we have developed a
heuristic approach to the problem. Several strategies are used to pick a single
thread of the reachability tree between the initial and final markings. In each
pass, one of these strategies is chosen and the minimal time over all strategies is
taken as the composite time. These strategies, which are similar to scheduling
strategies in multiprocessors, allow us to quickly analyze the net while achieving
a close approximation to the actual shortest path in the reachability tree.

.. - 49 - ,■ •

The approach to each pass of the analysis phase (during each of which one
of the heuristic strategies is applied) is an iterative approach. First the net is
restored to its initial marking which is saved during the input phase. A number
of iterations then take place in which three steps occur. First a list of candi­
date transitions is found. A candidate node is one that has at least one token
in each input place. The list is then pruned using the strategy to a firing list,
which is conflict free. This achieves the goal of reducing the tree fanout to one.
Finally the firing list is fired. The firing of transitions is accomplished by an
event driven simulation. First a token is removed from each input place. Then
an event is Scheduled to occur after the firing time has elapsed. When this
event occurs, tokens are given to each output place. These steps iterate until
the candidate list is empty.

In examining the complexity of the analysis process, note that each transi­
tion is fired once. The time complexity is thus limited to 0iNnode2) as there
will be at most iVn0(ie searches for candidate nodes, each taking 0(Nnode) time
to complete. However, due to fanout, fewer candidate lists are actually formed.
Also, a faster search for candidate transitions is employed by maintaining a list
of potentially active transitions (those with a token in at least one input place.)

- 50 -

Under ideal conditions this can lower the time complexity to O (Nno(ie \ogNnode).
No additional storage is required for this operation. The total analysis phase
will require O {Npass NMde 2) time, were Npass is the number of iterations required
to determine the critical path width. Due to the binary search used, Npass is
O (\ogcpath_width)i

The final phase simply reports accumulates data for further processing, in
constant time. Combining the time and space requirements for this entire tool,
the time complexity has a best case of

^ {.Npass Nnode l®6-^no<ie)>

and a worst case of

O {Npass Nftode

Space complexity of the algorithm is 0{Nno^e). As an example of the execution
times, Table 4.1 shows execution time required to analyze various net sizes on a
CCI 6/32 computer system.

Table 4.1
Analyzer Execution Times

Nnode N1Ypass Execution Time
(seconds)

1500 7 15
4500 8 60
10000 9 250

4.4. Future Tools and Conclusions

The tools described in this section perform the most mechanical and long­
est tasks in the analysis of COSMIC models. They allow us to analyze realisti­
cally sized problems and perform a wide variety of experiments on them. How­
ever, we Would like to expand our set of tools to allow the automatic generation
of ordering nets from a higher level description of the algorithms, ordering
scheme, and organization. This tool would allow the study of a much wider
variety of algorithms than can currently be generated. The next section

describes several experiments performed using the tools described in this section.
Finally, it should be noted that the programs described here should be portable
to most UNIX environments and are available from the authors.

- 52 -

5. Examples Using COSMIC
The use of COSMIC is illustrated by several experiments conducted to

study the behavior of iterative algorithms on combined data flow and control
flow multiprocessors [CaF87]. These experiments were performed on a
hypothetical architecture capable of executing instructions under a variety of
Control schemes ranging from control flow to data flow. The major variable of
experimentation was the number of partition elements (segments) and conse­
quently the granularity. This report presents a fragment of these results to give
a flavor of COSMIC’s use. More complete results are available in [CaF87].
This section proceeds by describing the organization, data dependency graphs,
and the various functions of the ordering scheme that manipulate them. The
numerical results from these experiments are presented graphically and in the
form of polynomial equations.

As a compromise between the infinite variability of this hypothetical archi­
tecture and the availability of computational resources to analyze systems, a
restriction is imposed on the experiments. Specifically, the scope of the
analysis is limited by assuming resource allocation constraints will be ignored.
This will lead to the resource allocation function being set equal to the identity
function. In turn, this can be justified by assuming equally fair and efficient
implementations on all systems. However, resource allocation factors may
effect system performance and ongoing research is aimed at eliminating the res­
trictions.

5.1. The Organization
The organization parameters of consequence for the hypothetical architec­

ture are the number and speed of the processing elements and the speed of
memory access. Both are treated as variables in these experiments. It is also
assumed that all processing and memory elements are interconnected, with a
parameterized fixed communication cost from any source to any destination.
Future research is planned to investigate the effects of interconnection topology
on combined system performance by a more complex model of interconnection.

- 53

5.2. The Dependency Graphs

The first algorithm studied is for matrix-vector multiplication using the
algorithm shown in Figure 5.1a, in which the matrix has size (SIZEXSIZE). In
forming the data, dependency graph for this algorithm, note the central opera­
tions in the algorithm are the multiplication of two numbers and then the addi­
tion of the result to a running sum. This central operation will occur SIZE2
times in the dependency graph. Therefore, a base structure is created to con­
nect two vertices by a directed arc. The vertex at the tail of the arc represents
the imiltiplication operation, while the vertex at the head represents the addi­
tion. Two arcs enter the multiplication vertex, representing the matrix/vector
input values, and one additional arc enters the addition vertex to represent the
previous value of the running sum. The addition vertex has a single output arc.
Therefore, creating a dependency graph for the algorithm involves replicating
this structure SIZE2 times and interconnecting appropriately. Added to this
graph are SIZE vertices representing the input vector and SIZE2 vertices
representing the input array. Figure 5.1b shows such a graph for the case when
SIZE = 3. In this figure the computational vertices are represented by circles
and the input matrix/vector vertices by squares. Note that the input vertices
are connected to the multiplication operation and the addition operations are
chained to form the complete dot product operation.

The second algorithm studied computes a 4-point iterative relaxation func­
tion, using the algorithm shown in Figure 5.2a, in which the matrix has size
(SIZEXSIZE) and computes ITER iterations. When all loops are unfolded into
their basic components, a central computational block is again repeated many
times throughout the algorithm. Here, the computational block consists of
three additions and a division, therefore resulting in a 4 vertex graph with 4
inputs and one output. This basic graph is repeated SIZE* X ITER times and
appropriate interconnections are made. As the dependency graph for the com­
plete algorithm is complex, Figure 5.2b shows only the central computational
block. In this algorithm indices which are out of the valid range of array sub­
scripts “wrap-around” using the modulus function. For simplicity initial input
arcs are ignored.

54 -

For i From 1 To SIZE Do
For j From 1 To SIZE Do

result [i] = result [i] + a[i,j] * b[j];
EndDo

EndDo

(a)

(b)

Figure 5.1

- 55 -

For r From 1 To ITER Do
For i From 1 To SIZE Do

For j From 1 To SIZE Do
a[i>j] = (a[i-ljj] + a[i+iJ] + a[i,j-l] -f a[i,j+l])/4

EndDo
EndDo

EndDo

a

(b)

Figure 5.2
Iterative Relaxation (a) Algorithm and (b) Data Dependency Graph Frag­
ment.

- 56 -

5.3. The Ordering Schemes

The experiments investigated two classes of ordering schemes. Both are
two level combined approaches which require the partitioning of an ordering net
into segments. The segment size is a variable for experimentation. The first
ordering scheme, denoted Cpart, sequences segments using a control flow order­
ing scheme, while individual operations within a segment are sequenced using
data flow concepts. The other ordering scheme, denoted Dpart, sequences seg­
ments using a data flow ordering scheme, while individual operations within a
segment are sequenced using control flow concepts. In this section the specifics
of the partitioning and sequencing functions will be discussed for each case.
The generation function, t, assigns firing times to the transitions it creates
based on a parameter of the experiments called the computation time. Again
note that 7, the resource allocation function, is the identity function.

The partitioning function, (f), is the same for both the Cpart and Dpart
ordering schemes. As both algorithms have a grid structure, the initial ordering
net is partitioned first by columns in that grid of operations, and then if
required by rows. For example, if 3 segments were to be created from a matrix
example with SIZE = 3, each column in the grid of operations (see Figure 5.1b)
would be placed in its own segment. If six segments were required, then each of
those segments would be divided in two. This strategy keeps operations that
communicate most often in the same segment whenever possible. Synchroniza­
tion operations are then placed between each pair of connected computational
vertices in different segments. The firing time of the additional transitions is
variable and called the synchronization time.

The sequencing function for the Cpart ordering scheme, \q , creates
sequencing operations to cause segments to be sequenced using control flow
techniques. When more segments are created than columns in the grid struc­
ture of operations, the segments are sequenced so that in each group of indepen­
dent segments must entirely complete before the next group is started. To this
end \q also forces each ply of segments to complete before starting the next,
enforced by adding a single transition and many connecting places between
plies. A data flow sequencing operation is placed in parallel with each unsyn­
chronized place, to enforces a low level data flow scheme. The firing times of
the additional transitions is variable and called the sequencing time.

- 57 -

The sequencing function for the Dpart ordering scheme, enforces data
flow sequencing amongst the segments, which is already accomplished by the
previously added synchronization operations. To enforce control flow sequenc­
ing within segments, it places a sequencing operation between operations within
segments to assure that no concurrency will take place within a segments (i.e. a
single trace of operations is executed serially.) The firing time of the additional
transitions isagain called the sequencing time.

The memory access function for both ordering schemes, /i, simply replaces
each non-zero weighted place with a memory access operation whose
transition’s firing time is called the memory access time.

5.4. The Ordering Nets

This section presents the parameterized ordering nets for both algorithms
and ordering schemes. These ordering nets are the result of applying the order­
ing scheme function just described to the appropriate organization and data
dependency graph. Appendices B through E give the complete, parameterized
nets for the two algorithms and two ordering schemes. Each Petri net descrip­
tion has a main definition which describes its overall structure. Subnets are
included to describe the exact operation at each point in the grid, as well as
operations for synchronization, sequencing, and memory accessing.

The Petri net described in Appendix B is for the CPART ordering scheme
and matrix multiply algorithm. Parameters specify the size of problem, number
of partitions, and costs for each type of operation. These parameters are the
ones varied in the experiments. Next the model defines all the places, transi­
tions, and subnets used to create the net, and the overall structure is formed by
their connection. Note that repeat structures are used to allow variable sized
nets to be constructed, and conditional expressions enforce sequencing and
scheduling of operations based on the desired partitioning. The subnet “innerp-
rod” calculates a point of the grid of operations, and contains all sequencing
and memory access details required. Finally, three simple subnets provide for a
description of simple sequencing, synchronization, and memory access opera­
tions.

The Petri net described in Appendix C is for the DPART ordering scheme
and matrix multiply algorithm. The structure of this description is quite similar
to that shown in Appendix B. The differences occur in the sequencing

operations which enforce the different ordering scheme and require different con­
nections in the model definition. The parameters and operation subnets are
identical to the CPART case.

The Petri net described in Appendix D is for the CPART ordering scheme
and iterative relaxation algorithm. An additional parameter describes the
number of iterations to be modeled. Again, the model defines all the places,
transitions, and subnets used to create the net, and the overall structure is
formed by their connection. Repeat structures are again used to allow variable
sized nets to be constructed, and conditional expressions enforce sequencing and
scheduling of operations based on the desired partitioning. The subnet “calc”
calculates a point of the grid of operations, and contains all sequencing and
memory access details required. Finally, three simple subnets provide for a
description of simple sequencing, synchronization, and memory access opera­
tions.

The Petri net described in Appendix E is for the DP ART ordering scheme
and iterative relaxation algorithm. The structure of this description is quite
similar to that shown in Appendix D. As with the matrix multiplication algo­
rithms, the differences occur in the sequencing operations which enforce the
different ordering scheme and require different connections in the model
definition. The parameters and operation subnets are identical to the CPART
case.

. - 58 - . , >

5.5. The Experiments
Four experiments were conducted to determine the system’s sensitivity to

changes in problem size and in the relative time required to execute computa­
tional, synchronization, sequencing, and memory access operations. In each
case, the execution measure was determined, i.e. the triple A4aec«ifc£m. Two
values were varied in each experiment: that corresponding to the experiment’s
name (e.g. sequencing time) and the number of segments (and consequently the
size of every segment.) The problem size in these experiments was varied from
4 by 4 to 12 by 12. The segment sizes range from 1 to the problem size
squared.

After numerical results from the experiments were obtained, those related
to the critical path execution time were fit to polynomial curves based on the
number of segments. Except for a few “off by one” errors at extreme segment

- 59 -

Sizes, all cases exhibit a piecewise linear relationship between the number of
segments and the critical path performance of the algorithm. Next, several
equations from experiments corresponding to variations of the time variables
were combined to obtain polynomial equations for each measure based on both
the number of segments and the time variables (e.g. sequencing time). Again all
equations could be combined in a piecewise linear fashion. At this point in the
analysis several equations represented each measure, one in terms of each time
variable. These equations were then unified to a single equation for each meas­
ure in terms of all the time variables and the number of segments. These equa­
tions can be verified by substituting appropriate constant for the time variables
to obtain the component equations. Finally, the results of experiments on
different problems sizes were combined to obtain the final critical path equa­
tions for each measure.

The critical path measurement equations are shown in Tables 5.1 and 5.2
for the matrix multiplication and iterative relaxation algorithms respectively.
In these tables (and the remainder of this paper), N represents the number of
segments; S the problem size; Tc the computation time; Tsync the synchroniza­
tion time; Tseq the sequencing time; and the memory access time. Also,

note the function x represents the smallest integer > x and 0

represents the unit step function:

e(x)
0 if:r<0
1 if £>0.

Figures 5.3 through 5.6 show graphical interpretations of the results of the
experiments, for the 8 by 8 problem size, showing critical path time. In each
figure four plots depict the family of curves resulting from plotting the number
of segments versus critical path execution time for various values of one of the
cost variables. Figures 5.3 and 5.4 are related to the matrix-vector multiplica­
tion experiments, while Figures 5.5 and 5.6 correspond to the relaxation experi­
ments. Figures 5.3 and 5.5 are results for the Cpart ordering scheme, while Fig­
ures 5.4 and 5.6 show those from the Dpart scheme.

Examination of the measure equations yields a good understanding of the
performance of these two algorithms. The matrix multiplication algorithm’s

S + 1 j Tc , which is easily explained by examiningcomputation measure is

- 60 -

Table 5.1
Matrix Multiplication Critical Path Measures

Measure

Computation

Partitioning

Sequencing

(CP ART)

Sequencing

(DPART)

Equation

S + 1 T

^sync + 0 \N — 2
N_
S

Tftne + 0 (n - 5)0 (s2 - n)o \rsmc - t,) [reync - tc

N
5

+ Tc — Tsync j 4- 5-1)t„, +^(jv-s)^ [s2- N

[T>ync - 2Tc - Tfeq) (2V - 2T' - Tuq) - 6 (T - T T — TM sync c I I sync J- c

Memory Access

(CP ART)

5 -

+ 2

K
s

T' -o[n- 5)0 (s2 - N\d (r8S)nc - Tc] \rmc - Tc

S + 1 - K
s Tscy + 0 (T — Tseq sync | {^sey ~ Tgync |

/ \ \
3 + 20"[iV - 2 j N2 5 + 3 + S

Memory Access

(DPART)

4 5 + 6 + 4-2 0\Nk-2) N
S

j 0 if x<0
%) = 1 if x>0. = Smallest integer > x.

N — Number of Segments S — Problem Size Tc — Computation Time

Tseq Sequencing Time T gync — Synchroniztion Time Tma - Memory Access Time

- 61 -

Table 5.2
Iterative Relaxation Critical Path Measures

Measure

Computation

Partitioning

Sequencing

' / \

(OPART) -f max< (l85 - 6 - 3Ar) , 9 5 + AT
S

[e5 - ej

/

Sequencing

(DP ART)

Memory Access

(OPART)

Equation

(l2 5 - 3) Tc

min (sW- 3) I+3S-4 T +-*■ sync ' (*-*) 2 T»ync

/
[95 - 9) JV

s
- 35 + 3 Tt + 5

\
[35 - 4] - 20 - 6 [fV - 2)2

, • .

»tq

r \ / \

3 5- 3 N_
S

+ 26 [5 - N)
Tc + 14 5 - 1 - 6 AT

5
+ 46 [5 - n]

, /

+ 25-2-2 N_
5

- 6 (5 - Jv) (25 - 2 - 2Af) + 26 (jV - 2]
eyn

18 5 + [l8 S - 18] N
S

Memory Access

(DP ART)

f
N

\

30 5 - 5 - ~S + 6 (5 - ATJ [AT - 5 + 4 j

t

0 if x<0
h if i>0. = Smallest integer > x.

N — Number of Segments S — Problem Size Tc — Computation Time

T8eg - Sequencing Time Tsync - Synchroniztion Time Tma - Memory Access Time

- 62 -

Execution
Time

500-

I
16 32

Number of Segments

(a) Computation Time Experiment

12 4 8

Execution
Time

CPART Matrix Multiplication Critical Path Execution Time. Circles indicate actual meas­
ures; curves show polynomial curve fit; and family of curves represent varied values of
experimental time.

- 63 -

Execution
Time

2500-

2000 -

1500 -

1000-

500-

12 4 8
Number of Segments

(c) Sequencing Time Experiment

Execution
Time

4000 -

3000-

2000-

1000-

12 4 8 16 32 64
Number of Segments

(d) Memory Access Time Experiment

Figure 5.3, continued.

- 64 -

1500

1000

500
S—Sl

12 4 8
Number of Segments

(a) Computation Time Experiment

Execution
Time

16 32
Number of Segments

(b) Synchronization Time Experiment

12 4 8

Figure 5.4
DP ART Matrix Multiplication Critical Path Execution Time. Circles indicate actual meas­
ures; curves show polynomial curve fit; and family of curves represent varied values of
experimental time.

- 65-

Execution
Time

Execution
Time

1000-

500- O1" Q

12 4 8
Number of Seginents

(c) Sequencing Time Experiment

2500 -

2000-

1500-

1000 -

12 4 8 16 32 64
Number of Segments

(d) Memory Access Time Experiment

Figure 5.4, continued.

- 66 -

50000 -

40000

30000-Executioii
Time

20000 -

10000

0
12 4 8 16

Number of Segments

(a) Computation Time Experiment

25000 -

20000 -

Execution
Time 15000

10000

6412 4 8
Number of Segments

(b) Synchronization Time Experiment
Figure 5.5

CP ART Iterative Relaxation Critical Path Execution Time, Circles indicate actual meas­
ures; curves show polynomial curve fit; and family of curves represent varied values of
experimental time.

- 67 -

Execution
Time

Execution
Time

40000 -

30000 -

20000-

10000 -

Number of Segments

(c) Sequencing Time Experiment

80000 -

60000 -

40000 -

20000 -

Number of Segments

(d) Memory Access Time Experiment

Figure 5.5, continued.

- 68 -

10000

8000 —

4000-

2000

16 32
Number of Segments

(a) Computation Time Experiment

12 4 8

Execution
Time

ttt r
12 4 8 16 32 64

Number of Segments

(b) Synchronization Time Experiment
Figure 5.6

DPART Iterative Relaxation Critical Path Execution Time. Circles indicate actual meas­
ures; curves show polynomial curve fit; and family of curves represent varied values of
experimental time.

- 69 -

Execution
Time

Execution
Time

10000 -

8000 —

6000 —

12 4 8 16 32 64
Number of Segments

(c) Sequencing Time Experiment

15000 —

10000 -

5000 —

Number of Segments

(d) Memory Access Time Experiment

Figure 5.6, continued.

- 70 -

Figure 5.1b. The length of a critical path is one greater than the size of the
problem, and each computation requires Tc to complete. Therefore, the entire
time is that given.

This algorithm’s partitioning measure contains three components. The first
two indicate that two synchronization operations will enter the critical path
when N < S. This number increases with the number of segments after it
exceeds the problem size. Two initial operations result from the synchroniza­
tion operations required to start and end each segments. The increasing factor
that exists when there are more segments than columns of computations (S)
results from added synchronization operations needed between serial segments.
This increase produces the staircase nature of Figures 5.3 and 5.4 and results
when a single segment is added to a “uniform” number the causing critical path
length to increase. The final factor results from an increased dominance of a
synchronization operation in parallel with a computation operation.

The sequencing time measures for the two respective ordering schemes are
obviously more complex. The Cpart ordering scheme’s sequencing measure con­
sists of three parts. The first indicates that an additional computational vertex
per "ply" will come into the critical path due to the sequencing function. The
next component indicates that there are S — 1 sequencing operations in the
critical path, one between each stage of the computation, plus those required
for the synchronization operations. The third, and most complex, factor indi­
cates that the added sequencing constraints induce some synchronization opera­
tions (specifically those between plies) to leave the critical path. There is, how­
ever, an upper bound on the operations that may be removed before still other
operations appear in the critical path. Finally, this factor includes an adjust­
ment similar to the final factor of the partitioning measure.

The Dpart ordering scheme’s sequencing measure consists of four terms.
The first factor indicates that indicates that as the number of segments
decreases, computational operations enter the critical path. This will continue
until S operations are present. The third factor shows the same trend as the
first and that there are two sequencing operations associated with each compu­
tation. Sequencing operations enter the critical path as the number of segments
decreases. The second and fourth factors are similar adjustment factors similar
to those found in the CPART sequencing measure.

71 -

The final measures are those related to memory access. As each operation
(i.e. computation, sequencing, and synchronization) in these experiments was
given the same memory access time, T^, the measures’ dependence on only
that time, problem size and number of segments is quite logical. Each measure
simply reflects the weight of the places previously along the critical path.

Now consider the iterative relaxation experiments. In these experiments,
three iterations of the algorithm were run (i.e. ITER = 3) which indicates that
the critical path (using a wavefront strategy) will be four times the size of the
problem, minus 1. As the critical path through a single operation is 3 opera­
tions long, the computation measure is (12 S — 3)TC. The partitioning measure
indicates that when N < S three synchronization operations are required for
each segment: one between each stage of the wavefront. As with the matrix
multiplication algorithm, additional ’ply" oriented synchronization operations
exist above this level. The final factor is a minor correction for the N = 1 case.

The Cpart sequencing measure consists of three components, one for each
time variable. The first component indicates that as sequencing constraints are
added to the model more of the computational operations fall along the critical
path. When fewer than S segments are present, this is a constant factor for
any given problem size. Above this number an increase is seen proportional to
the number of segments. The second component shows synchronization opera­
tions that fall along the critical path, which has similar form to the added com­
putational operations. This component also includes a corresponding correction
factor to the one in the partitioning measure. Finally, the sequencing opera­
tions added are linear below S segments and increase proportionally above that
level.

The Dpart sequencing measure is similar in form to the Opart measure,
except that the weight of the computational and sequencing terms decreases
above S' segments instead of increasing. These factors are also responsible for
the discontinuities that exist at exactly S segments. The final two terms of this
expression indicate the removal of synchronization operations is limited, as in
the matrix multiplication sequencing measures.

Finally, the memory access measures are of the same form found in the
matrix multiplication memory access measures. Once again these measures
show that the costs of other operations do not enter as memory access costs are
constant for all classes of operations. Each measure simply reflects the weight

- 72 -

of the places previously along the critical path.

The following general observations result from the outcomes of the experi­
ments, as depicted in Tables 5.1 and 5.2 and Figures 5.3 through 5.6.

• The relationship between granularity and execution time.
Figures 5.3 through 5.6 show that granularity has a noticeable effect
on the execution time performance of these algorithms in the combined
environment. Figure 5.3 demonstrates that, as iV increases, the execu­
tion time increases. This is a logical outcome for the Cpart scheme, as
parallelism is restricted when the segment size drops below the size
containing a complete column of the calculation. Figure 5.4, however,
shows decreasing execution time with increasing N. Again, this is logi­
cal as the Dpart scheme restricts parallelism when there are many cal­
culations in a single segment. Interestingly, that analogous general
trends hold in the relaxation algorithm, as illustrated by Figures 5.5
and 5.6. Tables 5.1 and 5.2 confirm these results.

• The effects of changing the relative costs of computation, synchronization,
and sequencing.

Tables 5.1 and 5.2 show the relationships between execution time and
Tc, Tseq, Tsync, and are all linear for a given problem size and
number of segments.

• The dominant costs in the performance of these algorithms.
Figures 5.3 through 5.6 show that memory access time is dominant,
followed by the computation and sequencing time. The effect of
increasing or decreasing computation and sequencing time cost by a
constant factor increases or decreases the execution time by a factor
at least three times the effect of changing the synchronization time by
the same amount. Tables 5.1 and 5.2 confirm these results as the larg­
est factors are associated with and there are larger factors associ­
ated with the Tc and Tseq terms than the TSJ/nc terms.

• The optimal number of segments.
In the experiments, the optimal (in the sense of critical path execution
time) number of segments varies and is dependent on the relative costs
of computation, synchronization, sequencing, and memory access
operations.

- 73 -

Matrix Multiplication, Cpart Ordering Scheme — Figure 5.3 shows the
optimal IV is 1 for all cases.

Matrix Multiplication, Dpart Ordering Scheme -- Figure 5.4b shows
that as synchronization time increases the optimal number of segments
changes from 64 (S2) to one.
Iterative Relaxation, Cpart Ordering Scheme — Figure 5.5c shows that
as sequencing time becomes dominant, the optimal number of seg­
ments is 8 (S'), while Figure 5.5b shows that when the synchronization
time becomes dominant the optimal number is one.

Iterative Relaxation, Dpart Ordering Scheme — Figure 5.6b illustrates
that as synchronization time becomes dominant, the optimal segment
size moves from 64 (S2) to 1, while Figure 5.6c demonstrates the oppo­
site trend.

The effect of changing problem size.

Tables 5.1 and 5.2 show that problem size plays two roles in the per­
formance of these algorithms. The first is the linearly increasing criti­
cal path execution time with increasing problems size, which is the
critical path performance of these algorithms. The second role is the
determination of the “uniform” number of segments as evidenced by

the N
S terms throughout these tables.

To summarize the results of these experiments, we have seen that the
granularity of partitioning is crucial to the performance of these algorithms in a
combined environment. Moreover, the optimal granularity is related to a
number of system parameters. These experiments have not only given us a
better understanding of combined systems, but have also shown COSMIC to be
a useful system to model their performance.

' - 74 - ■ '

6. Conclusions and Further Work
We have shown COSMIC can be used to study combined systems. We

illustrated the use of COSMIC with two algorithms where we showed the
impact of partition size on a system’s performance. This allowed us to identify
the optimal partition size in relation to given system parameters. While these
results apply directly only to two iterative algorithms (differing m&iiily in their
interconnectivity), they provided hints as to what factors effect the performance
of combined systems. Future work will focus on efforts to generalize these
results to other algorithms and include the effect of resource allocation.

7. References
[Bac78] J. Backus, “Can Programming Be Liberated from the von Neumann

Style? A Functional Style and Its Algebra of Programs,” Communi­
cations of the ACM, Vol. 21, August 1978, pp. 613-641.

[Bro85] J.C. Browne, “Characterization of Parallel Architecture,” 1985 Inti.
Conf. on Parallel Processing, August 1985, pp. 665.

[CaF87] W.W. Carlson and J.A.B. Fortes, “On the Performance of Combined
Data Flow and Control Flow Systems: Experiments Using Two Itera­
tive Algorithms,” 1987 Inti. Conf. on Parallel Processing, August
1987, pp. 671-679.

[Fly66] M.J. Flynn, “Very High-Speed Computing Systems,” Proceedings of
the IEEE, Vol. 54, December 1966, pp. 1901-1909.

[GaP85] D.D. Gajski and J-K. Peir, “Essential Issues in Multiprocessor Sys­
tems,” IEEE Computer, Vol. 18, June 1985, pp. 9-27.

[Han77] W. Handler, “The Impact of Classification Schemes on Computer
Architecture,” 1977 Inti, Conf. on Parallel Processing, August 1977,
pp. 7-13.

[Joh75] S.C. Johnson, Yacc: Yet Another Compiler Compiler, Computer Sci­
ence Technical Report No. 32, Bell Laboratories, 1975.

[KaM66] R.M. Karp and R.E. Miller, “Properties of a Model for Parallel Com­
putations: Determinacy, Termination, Queueing,” SIAM J of App.
Math, Vol. 14, November 1966, pp. 1390-1411.

[KaM69] R.M. Karp and R.E. Miller, “Parallel Program Schemata,” Journal
of Computer and System Sciences, May 1969, pp. 147-195.

[KeR78] B.W. Kernighan and D.M. Ritchie, The C Programming Language,
Prentice Hall, Englewood Cliffs, NJ, 1978.

[Kle75] L. Kleinrock, Queueing Systems, John Wiley and Sons, New York,
1975.

[Les75] M.E. Lesk, Lex - A Lexical Analyzer Generator, Computer Science
Technical Report No. 39, Bell Laboratories, 1975.

[Mil73] R.E. Miller, “A Comparison of Some Theoretical Models of Parallel
Computation,” IEEE Transactions on Computers, Vol. C-22, August
1973, pp. 710-717.

[Mol82] M.K. Molloy, “Performance Analysis Using Stochastic Petri Nets,”
IEEE Transactions on Computers, September 1982, pp. 913-917.

[Pet66] C.A. Petri, Communication with Automata, Supplement to RAD C-
TR-65-337, Graffis Air Force Base (translated from Kommunikation
mit Automatin, Univ. Bonn, Bonn, Germany, 1962), 1966.

[Pet8l] J.L. Peterson, Petri Net Theory and the Modeling of Systems, Pren­
tice Hall, Englewood Cliffs, N.J., 1981.

- 76 -

[Ram74] C. Ramchandani, Analysis of Asynchronous Concurrent Systems by
Timed Perti Nets, MAC-TR-120, Project MAC, MIT, 1974.

- 77 -

Appendix A — HTP Syntax

This appendix contains the the syntax for the HTP definition language.
All upper case words are keywords with the exception of NAME which is any
identifier and NUMBER which is any constant number,
definition:

node_defs
>

node_defs:
node_def

... i
node_defs node_def
>

node_def:
MODEL NAME { sdefs }
i .
SUBNET NAME { sdefs }
!
SUBNET NAME decl.list ;
!

NAME - expression ;
!
PLACE decl_list ;

TRANS decl.list ;
»

sdefs: sdef
!
sdefs sdef

■ ■

sdef:
SUBNET NAME decl.list ;
j

REPEAT (NAME , expression , expression) { statements }
IF (expression) { statements }s
IF (expression) { statements } ELSE {statements }
PLACE decl.list ;

TRANS decl.list ;
!
INPUT decl_list ;I
OUTPUT decl_list ;
!

- 78 -

NAME = expression ;II
con.list -> con_list ;

statements:
statementii

statements statement

statement:
REPEAT { NAME , expression , expression

ii
IF (expression) { statements }
i
6

IF (expression) { statements } ELSE {
iI ;
NAME = expression ;i
con.list ~> con.list ;

con.list:
con.elementii

con.list , con.element

con.element:
NAME II
NAME indexulisti
NAME . NAMEii
NAME . index.list . NAME

ii
NAME . NAME index.list

S
NAME index.list . NAME index.list

decl.list:
declii
decl.list , decl

5
decl :

NAME

) { statements }

statements }

- 79 -

NAME (expression)II
NAME (expression , expression)

!
NAME index_listi

1

NAME index_list (expression)ii
NAME index.list (expression , expression

index_list:
[expression]
!
index_list [expression]

expression:
NAME ■
!
NUMBER

(expression)ii
expression + expressionj
expression - expressionii
expression * expressionj
expression / expressionii
expression % expression

expression == expressionj
expression != expression
!
expression < expressioni ’ i
expression > expressionii
expression <= expression
i
expression > = expression■ | .
expression &.&. expression

expression !! expression

- 80 -

Appendix B — CP ART Matrix Multiplication Net

This appendix contains the source code for the CP ART matrix multiplica­
tion algorithm.
'/*

* Matrix-Vector Multiplication.
■*
* High level control flow, low level data flow.
*

*/; ■

* Some constants
*/ '■

SIZE =8;
NPART =8;
ROWMOD = (SIZE*SIZE)/NPART;
COLMOD = SIZE/NPART;
CTIME = 1;
SYNTIME = 1;
SEQTIME = 1 ;
MTIME =1;

/*
* model matmult_part is the top level model
*/

model matmult_part {

/* the size of the problem */
/* the number of partitions */

/* modulus operation for rows */
/* modulus operation for columns */
/* the computatation time */
/* the synchronization time */
/* the sequencing time */
/* memory access time */

input in; /* the input to the model */
place ip(0,1); /* the initial place, one initial token
trans it(0),ft(0); /* initial and final transitions */
place ip1[SIZE]; /* secondary initial places and trans --
trans it 1[SIZE](0); /* to reduce initial syncs --one/sub
place fp[SIZE](0); /* final places */
subnet s,eq fseq[SIZE]; /* the final sequencers */
subnet innerprod icalc[SIZE][SIZE]; /* inner product ops */
subnet seq iseq[SIZE][SIZE] ; /* inner product seqs */
subnet sync isync[SIZE][SIZE]; /* inner product syncs */
trans cfseqt[SIZE](SEQTIME);/* the control flow sequencers */
subnet mem cfseqpl[SIZE][SIZE]; /* first place */.
subnet mem cfseqp2[SIZE][SIZE]; /* second place */
subnet start vectstart[SIZE]; /* SIZE vector start locations */
subnet start arrstart[SIZE][SIZE] ; /* SIZEA2 arr " " ;*/
subnet sync vsync[SIZE][SIZE]; /* vector synchronizations */
subnet sync ssync[SIZE]; /* startup synchronizations */

subnet sync esync[SIZE]; /* ending synchronizations */■
subnet seq aseq[SIZE][SIZE];■/* the sequencer for array inputs *
subnet seq vseq[SIZE][SIZE]; /* the sequencer for vector inputs

in -> ip.i; /* in->ip->it */

ip.o -> it.i;

- 81 -

repeat (i,1,SIZE) { /* for each vector element and array row */
it.o -> ip1[i] . i ; 7* it->ip1->it1->... */ \
ip1[i].o -> it 1[i] .i;
it1[i] .o -> vectstart[i]. i ,vectstart[i].is,icalc[i] [1] . i;
if (((NPART >= SIZE) && (i != 1))

!! ((NPART < SIZE) &.& (NPART > 1)
&&.'.(i != 1) && ((i%COLMOD) == 1))) {
it.o -> ssync[i] . i ;
s-sync [i] . o '-> it1[i].i;

• ' } ■/;

repeat (j,1,SlZE) { /* for each array element */
if ((NPART <= SIZE) !! (j < (ROWMOD+1))) {

it1[i].o -> arrstart[i][j].i,arrstart[i][j]
} else {

Cf seqt[(((j- 1)/ROWMOD)%SIZE)*(ROWMOD)] .o ->
arrstart[i][j].i,arrstart[i][j].is;

■ } 'vectstart[j].o -> icalc[i][j].iv;
if (((NPART >= SIZE) &.& (i ! = j)) !!

{■(NPART .<' SIZE) &S. ((i%COLMOD) ! = (j %COLMOD))))
■vectstart [j] * o -> vsync [i] [j] . i ;
vsync [i] [j] . o -> icalc [i][: j] . isyn ;

} else {
vectstart[j].o -> vseq[i][j].i;
vseq[i][j],o “> icalc[i][j].isyn;

• , } ;■ i : .
arrstart[i][j].o -> icalc[i] [j].ia;
arrstart[i][j].o -> aseq[i][j].i;
aseq[i][j].o -> icalc[i][j].isyn;

• V >repeat (j,1,SIZE- 1) {
icalc[i][j].o -> icalc[i][j + i] .i;
if ((NPART>SIZE) && ((j%ROWMOD) == 0)) {

icalc[i][j].o -> isync[i][j].i;
isync[i][j]„o -> icalc[i][j+1].o;
/*
* here we sequence using control flow...

'*/■
icalc[i][j].o -> cfseqpl[i][j].i;
cfseqpl[i][j].o -> cfseqt[j].i;
cfseqt[j].o -> cfseqp2[i][j].i;
cfseqp2[i][j].o -> icalc[i][j+1].it;

} else {
icalc[i][j].o -> iseq[i][j].i;
iseq[i][j].o -> icalc[i][j+1] .it;

... }
}
icalc[i][SIZE].p -> fp[i].i,fseq[i].i;
fseq[i].o,fp[i].o -> ft.i;
if (((NPART >= SIZE) &S. (i ! = 1))

!! ((NPART < SIZE) && (NPART > 1)
LS. (i ! = 1) && ((i%COLMOD) == 1))) {
icalc[i][SIZE].o -> esync[i].i;

- 82 -

}

esync[i].o -> ft.i;
}

/* ...* subnet start is simply a holder of an initial value
*/

subnet start {
input i , is ;
output o,os;

place p(0); /* zero memory time
trans t(0); /* zero execute time
subnet seq seq;

i *-> p . i ; /* i->p->t->o */
is -> seq.i;
seq.o,p.o ~> t.i;
t.o -> o;

/** subnet inner prod does a multiply and add operation
*/

subnet innerprod
{ input i , it;

input iv;
input ia;
input isyn;
subnet mem p[3];
subnet mem pint;
trans t[2](CTIME);
subnet seq intseq;
output o;

/* the input to accumulate to */
/* one multiply input */
/* the other multiply input */
/* the synchronization input */
/* three places, to hold 3 inputs */
/* an internal place */
/* the computations, takes CTIME to comp*
/* the internal sequencer */
/* the output */

iv->p[1].i; /* each input goes to one place V
ia->p[2].i;
i->p[3].i;
isyn ,p[1].o,p[2].o -> t [1] . i ;■
t[1].o ->pint.i,intseq.i;

it, intseq.o, pint.o ,p[3].o -> t[2].i;
t[2].o -> o; /* trans goes to output */

}

/*
* subnet sync
*/ '

subnet sync {
input
output

i

performs

o ;

the place,trans,place synchronization

/* input and outputs */

- 83 -

subnet mem p1, p2; /* two places */
trans t(SYNTIME); /* one trans, STIME is sync time */

i -> Pl.'i; /* i->p1->t->p2->o */
p1.o -> t.i;

t.o -> p2.i;
p 2 . o - > o ;

} : ;; ■ ■ ■ .'/ ■

/*
* subnet seq performs the place,trans,place sequencing
*/

subnet seq {
input i; /* input and outputs */
output p;
subnet mem p1, p2; /* two places */
trans t{SEQTIME); /* one trans, STIME is sync time */

i —> p 1 . i ; /* i->p1->t->p2->o */
p1.o■-> t.i;
t.o -> p2.i;
p2.o -> o;

/*
* subnet mem performs the
*/ \

subnet mem {
input i;
output o;
place p1,p2;
trans t(MTIME);

i -> pl.i;
p1.o -> t.i ;
t.o -> p2.i;
p2.o o;

place,trans,place memory accessing

/* input and outputs */

/* two places */
/* one trans, STIME is sync time */

/* i->p1->t->p2->o */

- 84 -

Appendix C--DP ART Matrix Multiplication Net

This appendix contains the source code for the DPART ordering scheme,
matrix multiplication algorithm.
/* : .

* Matrix-Vector Multiplication.
*

* Sequencing Net, High level data flow, low level control flow.
*

*/

/* .
* Some constants
*/

SIZE =8; ■ /* the size of the problem */
NPART =16; /* the number of partitions */
ROWMOD = (SIZE* SIZE)/NPART; /* modulus operation for rows V
COLMOD = SIZE/NPART; /* modulus operation for columns */
CTIME =1; /* the computatation time */
SYNTIME = 1; . •' /* the synchronization time */
SEQTIME = 1; /* the sequencing time */
MTIME =1; /* memory access time */

/*
* model matmult_part is the top level model
*/ ; ;

model matmult.part {

input
place
trans
place
trans
place
subnet
subnet
subnet
subnet
subnet
subnet
subnet
subnet
subnet
subnet
subnet

in;
ip(0,1);
it(0),ft(0) ;
ip1[SIZE];
itT[SIZE](0);
fp[SIZE] (0) ;
seq fseq[SIZE];
innerprod icalc
sync isyncfSIZE
seq iseq[SIZE][
start vectstart
start arrstart[
sync vsync[SIZE
sync ssync[SIZE
sync esync[SIZE
seq aseq[SIZE][
seq vseq[SIZE][

/*
/.*

/*

/*
/*

/* the input to the model */
/* the initial place, one initial token *

initial and final transitions */
secondary initial places and trans --
— to reduce initial syncs --one/subn*

final places */
the final sequencers */

[SIZE][SIZE]; /* inner product ops */
][SIZE]; /* inner product syncs */
SIZE]; /* inner product seqs */
[SIZE]; /* SIZE vector start locations */
SIZE][SIZE]; /* SIZEA2 arr " " */
][SIZE]; /* vector synchronizations */
]; /* startup synchronizations */
]; /* ending synchronizations */
SIZE]; /* the sequencer for array inputs */
SIZE]; /* the sequencer for vector inputs *■

in -> ip.i; /* in->ip->it */
ip.o -> it.i;
repeat (i,1,SIZE) { /* for each vector element and array .row

it.o -> ip1[i].i; /* it->ip1->it1->,..
ip1[i].o -> it 1[i].i;

- 85 -

it 1[i].o -> vectstart[i]. i ,icalc[i][1].i;
if (((NPART >= SIZE) &&. (i ! = 1))

! i ((NPART < SIZE) SlSl (NPART > 1)
&& (i != 1) ((i%COLMOD) == 1))) {
it.6 -> ssync[i}.i;
ssync[i].o -> it 1[i].i;

} 7repeat (j, 1,-SIZE) { /* for each array element */
it1[i].o -> arrstart[i][j].i;
vectstart[j].o -> icalc[i][j].iv;
if (((NPART >= SIZE) &&.'(i‘ != j)) ! !

((NPART < SIZE) && ((i%COLMOD) != (j%COLMOD))))
vectstart[j].o -> vsync[i][j}.i;
vsync[i][j].o ->. icalc[i][j].isyn;

} else {
vectstart[j].o -> vseq[i][j].i;
vseq[i][j].o -> icalc[i][j].isyn;

. . }

arrstart[i][j].o -> icalc[i][j].ia;
arrstart[i][j].o -> aseq[i][j].i;
aseq[i][j].o -> icalc[i][j].isyn;

} '
repeat (j', T, SIZE- 1) {

icalc[i}[jj.o -> icalc[i][j + 1] . i ;
if ((NPART>SIZE) ((j%ROWMOD) == 0)) {

V* ' '
* here we sequence using data flow...
*
* no need to sequence, already synced
*/

icalc[i][j].o -> isync[i][j].i;
isync[i][j].o -> icalc[i][j+1].it;

} else {
/*
* control flow sequence between steps
*/
icalc[i]t j]*o -> iseq[i][j].i;
iseq[i][j].o -> icalc[i][j+1].isyn;

}■
} '
icalc[i][SIZE].o -> fp[i].i,fseq[i].i;
fseq[i].o,fp[i].o -> ft.i;
if ({(NPART >= SIZE) &&. (i ! = 1))

ii ((NPART < SIZE) && (NPART >1)
StSt (i ! = 1) && ((i%COLMOD) == 1))) {
icalc[I][SIZE].o -> esync[i].i;
esync[i].o -> ft.i;

/** subnet start is simply a holder of an initial value

- 86 -

*/
subnet start {

input i;
output o;
place p (0) ; /* zero memory time */
trans t(0); /* zero execute time */

i -> p.i; /* i->p->t->o */.
p.6 -> t.i;
t.o -> o;

} , .

/* '* subnet inner prod does a multiply and add operation
*/
subnet innerprod
^ input i,it; /* the input to accumulate to */

input iv; /* one multiply input */
input ia; 7* the other multiply input */
input isyn; /* the synchronization input */

subnet mem p[3]; /* three places, to hold 3 inputs */

subnet mem pint; /* an internal place */
trans t[2](CTIME); /* the computations, takes CTIME to compu
subnet seq intseq; /* the internal sequencer */
output o; /* the output */
iv->p[1].i; /* each input goes to one place */
ia->p[2].i;
i->p[3].i;
isyn,p[1].o,p[2].o -> t[1].i;
t[1].o ->pint.i,intseq.i;
it, intseq.o, pint.o ,p[3].o -> t[2].i;
t[2].o -> o; /* trans goes to output */

} ■ ■■

/* .* subnet sync performs the place,trans,place synchronization
*/

subnet sync {
input i; /* input and outputs */

output o;
subnet mem p1,p.2; /* two places */
trans t{SYNTIME); /* one trans, STIME is sync time */

i -> p1.i; /* i->p1->t->p2->o */
pi. o -> t. i ;
t.o -> p2.i;
p2.o -> o;

- 87 -

* subnet seq perforins the place, trans,place sequencing
*/ .. '■ ;

subnet seq {
input i; /* input and outputs */
output o;
subnet mem p1,p2; /* two places */
trans t(SEQTIME); /* one trans, STIME is sync time */

i ”> p 1 , i ; /*. i->p1->t->p2->o */
p1 .o -> t.i;
t.o -> p2.i;
p2.o ~ > o;

/*'■■

* subnet mem performs the place,trans,place memory accessing
'*/■
subnet mem {

input i; /* input and outputs */
output o;
place p1,p2; /* two places */
trans t(MTIME); /* one trans, STIME is sync time */

i -> pt.i; /* i->p1->t->.p2->o */
p1.o -> t.i;
t.o -> p2.i;
p 2 . o - > o ;

- 88 -

Appendix D — CP ART Iterative Relaxation Net
This appendix contains the source code for the CPART ordering scheme,

iterative relaxation algorithm
/*
* 4“point relaxation problem:
* . ' '
* do r = 1, ITER
* do i = 1, SIZE
* do j == 1 , SIZE* a (i , j) := (a (i- 1 , j) + a(i, j-1) + a(i+1,j) + a(i, . j.+1)) / 4.
* end_do
* end_do
* end_do
*/

* Sequencing Net. High Level Control Flow (Sequenced by "ply")
* Low Level Data Flow (Sequenced by data)
*

* Partitioned into NPART partitions.

the size of the problem */
the number of relaxations to perform *

the number of partitions */
modulus operation for rows */.
modulus operation for columns */

*

*/

SIZE =8; /*
ITER = 3; /*
NPART = 4; /*
ROWMOD = (SIZE*SIZE)/NPART; /*
COLMOD = SIZE/NPART; /*

CTIME * 1; /*
SYNTIME = 1 ; /*
SEQTIME = 1 ; /*
MTIME = 1;
model relax
{ ■ input in;

time to do an add or division */
the synchronization time */
the sequencing time */
memory access time */

subnet calc calc[ITER][SIZE][SIZE];
subnet sync sync 1[ITER][SIZE][SIZE];
subnet sync sync2[ITER][SIZE][SIZE];
subnet sync sync3[ITER][SIZE][SIZE];
subnet sync sync4[ITER][SIZE][SIZE];
subnet seq seq1[ITER][SIZE][SIZE];
subnet seq seq2[ITER][SIZE][SIZE] ;
subnet seq seq3[ITER][SIZE][SIZE];
subnet seq seq4[ITER][SIZE][SIZE];
trans Cfseqt[ITER][SIZE](SEQTIME);
subnet mem cfseqpl[ITER][SIZE][SIZE] ;
subnet mem cfseqp2[ITER][SIZE][SIZE] ;

- 89 -

place ip(0,1);
trans it(0);
place fp[SIZE][SIZE];
trans ft(0);
in -> ip.i;
ip.i ->. it. i;

repeat (i, 1, SIZE) {
repeat (j, 1, SIZE) {

if (i != SIZE) {
it.o -> calc[1][i][j].i[1];
if { (NPART < = SIZE) i! ((i%ROWMOD) != 1)) {

it.o -> seq1[1][i][j] .i[1] ;
seq1[1][i][j].o -> calc[1][i][j].it[1];

}
}
if (j != SIZE) {

it.o ->calc[1] [i] [j] . i [2] ;
if {(NPART == 1) ! !

((NPART < SIZE) && ((j%COLMOD) ! = 1))) {
it.o ~> seq2[1][i][j].i[1];
seq2[1][i][j].o -> calc[1][i][j].it[1] ;

}
>if (i == 1) {

it.o -> calc[1][i][j].i[3];
if ((NPART <= SIZE) !! ((i%ROWMOD) != 0)) {

it.o -> seq3[1] [i] [j] .i;
seq3[1][i][j].o -> calc[1][i][j].it[2] ;

}
}
if (j == 1) {

it .o -> calc[1][i][j].i[4] ;
if ((NPART == 1) ! !

((NPART <= SIZE) && ((j%COLMOD) !=0))) {
it.o -> seq4[1][i][j].i ;
seq4[1][i][j].o -> calc[1][i][j].it[2] ;

repeat (r,1,ITER) {
repeat (i,1,SIZE) {

repeat (j , 1,SIZE) {
if (r < ITER) {

/*
* Connection 1 connects to previous row, same
*/

if (i > 1) {
calc[r][i][j].o -> calc[r+1][i-1][j] i[1];

column

- 90 -

/*
* On diff partition only if more part than colum.
* and when mod is not right.
*/if ((NPART > SIZE) &.&. ((i%ROWMOD) == 1)) {

calc[r] [i] [j] . o -> sync 1[r+1][i-1][j].i;
sync 1[r+1][i-1][j].o -> calc[r+1][i-1][j].it[

} else {
calc[r][i][j].o -> seq1[r+1][i-1][j].i;
seq1 [r+1] [i-1] [j] . o -> calc [r+ 1] [i- 1] [j] . it [1-

}
} else {

calc[r][i][j].o -> calc[r][SIZE][j].i[1];
/*
* On diff partition only if more part than colum
*/

if (NPART > SIZE) {
calc[r][i] [j].o.-> sync 1[r] [SIZE][j].i;
synci[r][SIZE][j].o -> calc[r] [SIZE][j].it[1]

} else {
calc[r] [i] [j].o -> seq1[r][SIZE][j].i;
seq1 [r] [SIZE] [j] .o -> calc [r][SIZE][j]. it [1] j.

■ }
}

/*
* Connection 2 connects to same row, previous columi

if (j > D {
calc[r][i][j].o-> calc[r+1][i][j-1].i[2];
/*
* On diff. partition when more partitions than
* columns or when mod eqn. is satisfied
*/

if ((NPART >= SIZE) !!
((NPART > 1) && ((j%COLMOD)=-1))) {
calc[r] [i][j].o -> • Sync2[r+1][i][j~1].i;
sync2[r+1][i][j-1].o -> calc[r+1][i][j-1].it;

} else {
calc[r] [i][j].o -> seq2[r+1][i][j~1].i;
seq2[r+1][i][j-1].o -> calc[r+1][i][j-1].it[

}
} else {

calc[r] [i][j].o -> calc[r][i][SIZE].i[2];
/*
* On diff. partition whenever more than 1 parti”
*/

if (NPART > 1) {
calc[r][i][j].o -> sync2[r][i][SIZE] . i;
sync2[r][i][SIZE].o -> calc[r][i][SIZE].it[1

} else {
Calc[r][i][j].o -> seq2[r][i][SIZE].i;
seq2[r][i][SIZE].o -> calc[r][i][SIZE].it[1]

- 91 -

. } ; ' : ■..■■■.v .\ .
} else { ' ■

'if '(i = = 1) {
calc[r][i][j],o —> calc[r][SIZE][j].i[1] ;
/* •

* On diff partition only if more part than columns.
*/

if (NPART > SIZE) {
calc[r] [i] [ji.o -> synci[r][SIZE][j].i;
sync 1[r][SIZE][j].o -> calc[r][SIZE][j].it[1];

} else {
calc[r] [i][j].o -> seq1[r][SIZE][j].i;
seq1[r][SIZE][j].o -> calc[r][SIZE][j].it[1];

■ }
}
if (j == 1) {

calc[r][i][j].o -> calc[r] [i][SIZE].i[2];
V*

* On diff. partition whenever more than 1 partition
*/

if (NPART > 1) {
calc[r] [i] [j].o -> sync2[r][1][SIZE].i;
sync2[r][i][SIZE].o -> calc[r] [i] [SIZE] .it[1] ;

} else {
calc[r] [i] [j].o -> seq2[r][i][SIZE].i;
seq2[r][i][SIZE].o -> calc[r][i] [SIZE]. it[1] ;

} ' ■:

calc[r][i][j].o -> fp[i][j].i;
fp[i][j]•o->ft.i;

}

* Connection 3 connects next row, same column
*

* This is where partition sequencing is done
V *:/ ;

if (i < SIZE) {
calc[r][i][j].o -> calc[r][i+1][j].i[3] ;
/*
* On diff partition only when more partition than
* columns and mod eqn is satisfied.
*/

if ((NPART > SIZE) && ((i%ROWMOD) == 0)) {
ca1c[r][i][j].o -> sync3[r][i+1][j].i;
sync3[r][i+1][j].o -> calc[r][i+1][j].it[2];
/’*
* Here we sequence using control flow...

. ■ . ■*/ '

ca1c[r][i][j].o -> cfseqpl[r][i][j].i;
cfseqpl[r][i][j].o -> cfseqt[r][i].i;
cfseqt[r][i].o -> cfseqp2[r][i][j].i;

- 92 -

cfseqp2[r][i][j].o -■>calc[r][i+1][j]•it[2];
else {

calc[r][i][j].o -> seq3[r][i+1][j].i;
seq3[r][i+1][j].o -> calc[r] [i+1][j].it[2];

' }
} else {

if (r < ITER) {
calc[r][i][j].o -> calc[r+1] [1] [j] . i [3] ;
if (NPART > SIZE) {

calc[r][i][j].o -> sync3[r+1][1][j].i;
sync3[r+1][1][j].o -> calc[r +T][1][j].it[2];

} ■■■■

/* ■

* control flow sequencing between iterations
*/
calc[r][i][j].o -> cfseqpl[r][i][j].i;
cfseqp1[r][i][j].o -> cfseqt[r]£i].i;
cfseqt[r][i].o -> cfseqp2[r][i][j].i;
cfseqp2[r][i][j].o -> calc[r+1][1][j].it[2];

}
}

/*
* connection 4 connects same row, next column
*/

if <j < SIZE) {
calc[r][i][j].o -> calc[r][i][j +1] .i£4];
/* , ; "

* Here we are in different partitions if there is
* more than 1 partition and either there are more
* partitions than columns and the mod eqn. is satis!
*/ . ■

if ((NPART >1)&&.
((NPART > SIZE) !! ((j%COLMOD)==0))) {
calc[r][i][j].o sync4[r][i][j+1].i;
sync4[r][i][j+1].o -> calc[r][i][j+1].itt2];

} else {
Calc[r] [i][j]•o -> seq4[r][i][j+1].i;
seq4[r][i][j+1].o -> calc[r][i]£j+1].it[2];

; }
} else {

if (r < ITER) {
calc[r][i][j].o -> calc[r+1][i][1]•i£4] ;
/*
* Here we go to different partitions only
* if is more than 1 partition
*/

if (NPART > 1) {
calc[r][i][j].o -> sync4[r+1][i][1].i;
sync 4 [r+1][i][1].o .-> calc [r+ 1] [i] [1] . it [2] ;

} else {
calc[r][i][j].o -> seq4[r+1]£i][1].i;
seq4[r+1][i][1].o -> calc[r+1][i][1].it[2];

-93-.

}

}

}
}

subnet calc
{ ; ;

input i[4];
input it[2];
butput o;

subnet mem pin[4]; /* places to receive inputs */
subnet mem padd[3] ; /* internal places */
trans tadd[3](CTIME); /> three addition operation */
trans tdiv(CTIME); /* the division */
subnet seq intseq[3]; /* internal sequencing */

i [.1] ~> pin [1] . i ;
i12] "■> pin [2] . i ;
it[1], pin[1].o, pin[2].o -> tadd[1].i;
tadd[1].o -> padd[1].i, intseq[1].i;
i[3] -> pin[3].i;
i[4] ->■pin[4].i;
i-t [2] , pin[3] . o , pin[4].o -> tadd[2].i;
tadd[2].o -> padd[2].i, intseq[2].i;

intseq[1] .o, intseq[2] . o , padd[1] . o , padd [2] . o-> tadd [3] . i
tadd[3]yo -> padd[3]•i, intseq[3].i;
intseq[3].o, padd[3].o -> tdiv.i;
tdiv.o -> o;

/*
* subnet sync performs the
*/

subnet sync {
input i;
output o;
subnet mem p1,p2;
trans t(SYNTIME);

place,trans,place synchronization

/* input and outputs */
'/♦■'two places */
/* one trans, SYNTIME is sync time

i -> p1.i; /* 'i->p1->.t->p2->o */
p1 .o ~> t.i;
t.o -> p2.i;
p2.o -> o;

- 94 -

/* .

* subnet seq performs the place,trans,place sequencing
*/

subnet seq {
input i; /* input and outputs */
output o;
subnet mem p1,p2; /* two places */
trans t(SEQTIME); /* one trans, SEQTIME is seq time */

^ i ’-> p1.i; /* i“>p1”>t->p2“>o */
p1.o -> t.i;
t.o p2.i;
p 2 . o - > o ;

}

/*■■'. —; . ■;
* subnet mem performs the place,trans,place memory accessing

*A
subnet mem {

input i; /* input and outputs */
output o;
place p1,p2; /* two places */
trans t(MTIME); /* one trans, STIME is sync time */

i -> p1.i; /* i->p1->t->p2->o */
p 1 . o -> t. i ;
t e o -> p2.i;
p2.o -> o;

- 95 -

Appendix E--DP ART Iterative Relaxation Net

This appendix contains the source code for the DPART ordering scheme,
iterative relaxation algorithm

/*
* 4-point relaxation problem:
*
* do r = 1, ITER
* do i = 1, SIZE
*/ . ''“do j = 1, SIZE
* a(i,j) := (a(i- 1,j) + a(i,j-1) + a(i+1,j) + a(i, j+1)) / 4
* end_do
* end.do
* / end_do
*/ ; :

/*
* Sequencing Net.
■*
* Partitioned into NPART partitions.
*
*/

/* the size of the problem */
/* the number of relaxations to perform */
/* the number of partitions */

ROWMOD = (SIZE*SIZE)/NPART; /* modulus operation for rows */
COLMOD = SIZE/NPART; /* modulus operation for columns */

CTIME =1; /* time to do an add or division */
SYNTIME > 1; /* the synchronization time */
SEQTIME = 1; /* the sequencing time */
MTIME = 1.5. /*- memory access time * /
model relax
{

input in;

SIZE = 10;
ITER = 3;
NPART = 5;

subnet calc calc[ITER][SIZE][SIZE];
subnet sync sync 1[ITER][SIZE] [SIZE];
subnet sync sync2[ITER][SIZE][SIZE] ;
subnet sync sync 3 [ITER] [SIZE.]'[SIZE].;
subnet sync sync4[ITER][SIZE][SIZE];
subnet seq seq[ITER][SIZE][SIZE];

place ip(0,1) ;
trans it(0);
place fp[SIZE][SIZE];
trans ft(0) ;

in -> ip.i;

- 96 -

ip.i -> it.i;

repeat (i, 1, SIZE) {
repeat (j, 1, SIZE) {

if (i != SIZE) {
it.o -> calc[131i][j] - i11] ;

} ■ ' . ■ \ - ;

if (j != SIZE) {
it.o ->calc[1][i][j].i[2];

}
if (i == 1) {

it.o -> calc[1][i][j].i[3] ;
it.o -> seq[1][i][j].i ;
seq[1][i][j].o -> calc[1][i][j].it[2] ;

}
if (j == 1) {

it.o -> calc[1][i][j].i[4];
. }

■' }
r ' ■ ■ ■ v ■

repeat (r,1,ITER) {
repeat (i,1,SIZE) {

repeat (j , 1,SIZE) {
if (r < ITER) {

/*
* Connection 1 connects to previous row, same columr

if (i > 1) {
calc[r][i][j].o -> calc[r+1] [i- 1] [j] . i[1];
/*.

* On diff partition only if more part than colur
* and when mod is not right.
*/

if ((NPART > SIZE) &6c {(i%ROWMOD) == 1)) {
calc[r][i] [j] . o -> sync 1[r+1][i-1][j].i;
sync1[r+1][i-1][j].o -> calc[r+1] [i-1] [j].it|

- }
} else {

calc[r][i][j].o-> calc[r][SIZE] [j].i11] 5
/*
* On diff partition only if more part than colua
*/

if (NPART > SIZE) {
calc[r][i][j].o -> sync 1[r][SIZE][j].i;
syncl[r][SIZE][j].o -> calc[r][SIZE][j].it[1

}
} .

/* ■ ; ^
* Connection 2 connects to same row, previous colum;
*/

if

- 97 -

calc[r][i][j].o -> calc[r+1][i][j-1].i[2];
/*
* Syncronize if more partitions than size or
* mod equation works.
*/

if ((NPART >= SIZE) I!
((NPART > 1) &&. ((j%C0LM0D)==1))) {
calc[r][i][j].o -> sync2[r+1][i][j-1].i;
sync2[r+1][i][j-1].o -> calc[r+1][i][j-1].it[1];

■' >

} else {
calc[r][i][j].o -> calc[r][i][SIZE].i[2];
/*
* On diff partition whenever more than,one partitio
*/

if (NPART > 1) {
calc[r][i][j].o -> sync2[r][i][SIZE].i;
sync2[r][i][SIZE].o -> calc[r][i][SIZE].it[1];

' ■ ' ' }

■ > ■ . ':
} else {

if (i == 1) {
calc[r][i][j].o -> calc[r][SIZE][j] . i [1] ;
/*
* On diff partition only if more part than columns.
*/

if (NPART > SIZE) {
calc[r][i][j].o -> sync1[r][SIZE][j].i;
syncl[r][SIZE][j].o -> calc[r][SIZE][j].it[1];

}
}
if < j -- 1) {

calc[r][i][j].o -> calc[r][i][SIZE].i[2]
/*
* On diff partition whenever more than one partitio
*/

if (NPART > 1) {
calc[r][i][j].o -> sync2[r][i][SIZE].i;
sync2[r][i][SIZE].o -> calc[r][i][SIZE].it[1];

}
'}

calc[r][i][j].o -> fp[i][j].i;
f P [i] [j] • o - > f t. i ;

/*
*Connection 3 connects next row, same column
*
* This is where partition sequencing is done
*/

if (i < SIZE) {
calc[r][i][j].o -> calc[r][i+1][j].i[3];

- 98 -

* On diff partition only when more partition than
* columns and mod eqn is satisfied.
*/if ((NPART > SIZE) &.&. ((i%ROWMOD) *== 0)) {

/*
* Here we sequence using data flow between
* partitions.
*

* already synched, no need to seq
*/
calc[r][i][j].o -> sync3[r][i+1][j] . i ;
sync3[r][i+1][j].o -> calc[r] [i+1][j].it[2];

} else {
/*

■ * Control Flow Sequencing Between steps
*/calc[r][i][j]. o -> seq[r][i+1][j].i;
seq[r][i+1][j].o.-> calc[r][i+1][j].it[1];

} ■■ .; ■ j;.:; ::

} else {
if (r < ITER) {

calc[r][i][j].o -> calc[r+1][1][j].i[3] ;
/*
* Data flow sequencing between iterations
*/

/*
* no need to seq if already synched
*/

if (NPART > SIZE) {
calc[r][i][j].o -> sync3[r+1][1][j].i;
sync3[r+1][1][j]•o -> calc[r+1][1][j].it[

} else {
calc[r][i][j].o -> seq[r+1][1][j].i;
seq[r+1][1][j].o -> calc(r+1][1][j].it[1]

}
} ■ ' ■ . • ■■ . ■ ' ' ■: : : . : ■,

}

'/*■■■

* connection 4 connects same row, next column
*/

if (j < SIZE) {
calc[r][i][j].o -> calc[r][i][j+1].i[4];
* Here we are in different partitions if there is
* more than 1 partition and either there are more
* partitions than columns and the mod eqn. is satisf
* /

if ((NPART > 1) &&
((NPART > SIZE) !! ((j%COLMOD)==0))) {
calc[r][i][j].o -> sync4[r][i][j+1].i;
sync4[r][i][j+1].o -> calc[r][i][j+1].it(2];

}

- 99 -

} else {
if (r < ITER) {

c a 1 c [r][i][j].o -> calc[r+1][i][1].i[4] ;
/*
* Here we go to different partitions only
*' if is more than 1 partition
*/

if (NPART > 1) {
calc[r][i][j].o -> sync4[r+1][i][1].i ;
sync4[r+1][i][1].o-> calc[r+1][i][1].it[2] ;

}

subnet calc
{

input i[4];
input it[2];
output o;

}

subnet mem pin[4];
subnet mem padd[3];
trans tadd[3](CTIME);
trans tdiv(CTIME);
subnet seq intseq[3];

i[1] -> pin[1].i;
i[2] -> pin[2].i;
it[1], pin[1].o, pin[2].o -> tadd[1].i;
tadd[1].o -> padd[1].i, intseq[1].i;
i[3] -> pin[3].i;
i[4] -> pin[4].i;
intseq[1].o,it[2], pin[3].o, pin[4].o -> tadd[2].i;
tadd[2].o ~> padd[2].i, intseq[2].i;

/* places to receive inputs */
/* internal places */
/* three addition operation */
/* the division */
/* internal sequencing */

intseq[2].o, padd[1].o, padd[2].o -> tadd[3].i;
tadd[3].o -> padd[3].i, intseq[3].i;
int3eq[3].o, padd[3].o -> tdiv.i;
tdiv.o -> o;

7*
* subnet sync performs the place,trans,place synchronization
*/

subnet sync {
input i; /* input and outputs */

- 100 -

output o;
subnet mem p1,p2; /* two places */
trans t(SYNTIME); /* one trans, SYNTIME is sync time */

i -> p 1 . i ; /* i->p1->t->p.2->o */
pi*o -> t.i;
t. o -> p2.i;
p2 . o -> o;

/* . . '
* subnet seq performs the place,trans,place sequencing

*/
subnet seq {

input i; /* input and outputs */
output o;
subnet mem p1,p2;. /* two places */
trans t(SEQTIME); /* one trans, SEQTIME i

i -> p1.i; /* i->p1->t->p2~>o */
p1.o -> t.i;
t.o ~> p2.i;
p2.o -> o;

/*
* subnet mem performs the place,trans,place memory accessing

*/
subnet mem {

input i; /*
output o;
place p1,p2; /*

trans t(MTIME); /*

i '-» p1.i; /*
p1.o "> t.i;
t.o -> p2.i;
p2.o ~> o;

input and outputs */

two places*/
one trans, STIME is sync time */

i->p1->t->p2~>o */

	Purdue University
	Purdue e-Pubs
	12-1-1987

	COSMIC: A Model for Multiprocessor Performance Analysis
	William W. Carlson
	Jose A. B. Fortes

	tmp.1542052450.pdf.buYga

