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ABSTRACT

The kinematic equation of an n-link manipulator involves the chain product of n
homogeneous link transformation matrices and reveals the requirement for computing
a large set of elementary operations: multiplications, additions, and trigonometric
~ functions. However, these elementary operations, in general, cannot be efficiently
computed in . general-purpose uniprocessor computers. The CORDIC (COordinate
Rotation DIgital Computer) algorithms are the natural candidates for efficiently com-
puting these elementary operations and the interconnection of these CORDIC proces-
sors to exploit the great potential of pipelining provides a better solution for comput-
~ ing the direct kinematics. This paper describes a novel CORDIC-based pipelined
architecture for the computation of direct kinematic position solution based on the
decomposition of the homogeneous link transformation matrix. It is found that a
homogeneous link transformation matrix can be decomposed into a product of two
matrices, each of which can be computed by two CORDIC processors arranged in
parallel, forming a 2-stage cascade CORDIC computational module. Extending this
idea to an n-link manipulator, n 2-stage CORDIC computational modules, consisting
of 4n CORDIC processors, can be concatenated to form a pipelined architecture for
computing the position and orientation of the end-effector of the manipulator. Since
the initial delay time of the proposed pipelined architecture is 80n s and the pipe-
lined time is 40us, the proposed CORDIC-based architecture requires a total compu-
tation time of (80n + 120)us for computlng the position and orlentatlon of the end-
effector of an n-link manipulator. -

This work was supported in part by the National Science Foundation Engmeenng Research Center
Grant CDR-8500022. Any opinions, findings, and conclusions or recommendations expressed in this
article are those of the authors and do not necessarily reflect the views of the funding agency.



‘1. Introdnction

- Robot manipulators are highly nonlinear systems and their motlon control is usu-
ally spe01ﬁed in. terms of the Cartesian path traveled by the end-effector in Cartesian
'coordmates If the manipulator is moving in a crowded enwronment knowing the
location (position and orientation) of its end-effector in real time, as Well as its inter-
medlate rigid links, will assist it tremendously in negotiating around the obstacles.
‘The: problem. of computing the location of the end-effector of a mampulator from the
measured ‘d,a__ta of angular displacements of all the joints is known as the direct
kinematics (position) problem [1]. Using the Denavit-Hartenberg matrix representa-
tion [1], [2]-to describe the translational and rotational relationship between adjacent
robot links, the d1rect kinematics problem reduces to the problem of computing a
chain of n 4x4 homogeneous link transformation matrices for an n-link manipulator.
This paper presents a novel CORDIC-based pipelined archltecture for the computa-
tion of these n homogeneous link transformatron matrlces which ylelds the locatlon of
the end-effector of the manipulator. ‘

The chain multiplication of n homogeneous link transformation matr-i,ces yields a
set of 12 equations, 9 for orientation matrix and 3 for position information. These
equations involve a large set of elementary operations: scalar multiplications, scalar
additions, . and transcendental functions (sine and cos1ne) However, these elementary

operatlons, in general, cannot be efficiently computed in general-purpose uniprocessor

computers.: Moreover, in order to achieve a real-time computation of the end-effector
location-,i_time—cons_uming transcendental functions are implemented as table look-up
at the expense of the solution accuracy. Other methods for computing the time-
consuming -transcendental functions such as the trlgonometrxc function chip [4] and
the Taylor series expansion [6] with VLSI 1mplementatlon have also been proposed.
These methods tend to optimize a critical bottleneck computation rather than obtain-
ing an efficient computational scheme for the end—eﬁector location based on the
functional/data flow of the kinematic equations. o _ o

This paper addresses the computational comple)rity of the direct kinematicv posi-
tion problem and presents a CORDIC-based pipelined architecture for computing the
location ‘of the end-effector of an n-link manipulator in (80n. + 120) us. Th'is' efficient
CORDIC-based pipelined architecture functions as a.peripheral device attached to a
conventional host computer (or workstation) which provides the measured data of the-
manipulator’s »jdoint displacements. The CORDIC processors are configured and
arranged based on the functional/data flow of the kinematic equations. The architec-
ture design problem was tackled in two separate, but coherent, phases of design. .
First, the 4x4 homogeneous link transformation matrix i—lAi for link ¢ of a manipu-
lator was examined -and decomposed into a product of two matrices, each of which-
can be efficiently computed and realized by 2 CORDIC processors arranged in paral-
lel, forming a 2-stage cascade CORDIC computational module. Next, for an n-link
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manipulator, n 2-stage CORDIC computational modules, consisting of 4n CORDIC
processors, are concatenated to form a pipelined architecture for computing the n
homogeneous link transformation matrices of the manipulator and the outputs from
the pipelined architecture yield the location of the end-effector of the manipulator.
Since the execution time of a CORDIC processor is about 40us (8], the execution time
of a 2-stage CORDIC computational module is 80us and the initial delay time of the
proposed pipelined architecture for an n-link manipulator is 80nus. Since the pipe-
line is balanced [9], [10], the pipelined time of the proposed architecture is 40pus.

2. Coordinate Transformation and Kinematic Equation

To describe the translational and rotational relationship between adjacent robot
links, an orthonormal link 3 coordinate frame, ( x;,y;,2; ), based on the Denavit-
Hartenberg matrix representation is assigned to link . Once the link coordinate Sys-
tem has been established for each link, a homogeneous transformation matrix, ’."lAi,
can easily be developed relating the ¢th coordinate frame to the (¢—1)th coordinate
frame. Using the '~lA, matrix, one can relate a point p; at rest in link 7 and
expressed in homogeneous coordinates with respect to the sth coordinate system to
the (7—1)th coordinate system established at link (:—1) by

Py = "TA; p;

(1)

where Pi1 = (xi——l s Yi—19 %1 1)T y P = (IIJ,- » Yy & 1)T7

[ cos ; —cosa; sinf; sino; sinf; a; cos; 1

sinf; cosoy; cosf; —sinco; cosb; a; sinb;
' 0 sin o cos d; ; for a rotary joint ¢

o 0 0 1]

A = (2)
[ cos 0; —coso; sinf; sing; sinf;, 0 _
sinf; cosq; cost; —sing; cosf; 0
0 sin o cos o d; ; for a prismatic joint ¢

0 0 0 1]

and the superscript “T" denotes matrix /vector transpose. The -homogeneous
transformation matrix OT,- , which specifies the position and orientation of the sth
coordinate frame with respect to the base coordinate system, is the chain product of

successive homogeneous link transformation matrices of ’"IA,- expressed as:
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o . i
T; = A 'Ay - TTA =TT 77A (3)
7=1
% Y Py _ .
=10 0 0 1 sfor 1 =12, -+ ,n

Specifically, for 1 =n, we obtain the T matrix, T = OT'n, which specifies the position
and orientation of the end-effector of a manipulator with respect to the base coordi-
nate system. Consider the T matrix to be of the form:

n’.’l SZ a!l'. pz
Xpn Yn Zn Pn nsap Ny Sy Gy Dy
T = = = (4)
0 0 0 1 0001 n, S, a, P, _
00 0 1 ]

and using the six ‘T1A, matrices of the PUMA robot arm in [1], the elements of the T
matrix are found to be '

n, = C[Cy5(C4C5Cq — S4S) — Sp355Ce] — S1[S4C5Cs + C4Se]
ny = 51[Cy5(C4CsCs — S48g) — S9355C 6] + C1[S4C5Cg + C 4S¢] (5)

= —323[040506 - 8486] - OZSSSCB

8 = C1[—C3(C4C586 + S4C) + 833555g] — §1[—S4C5S¢ + C4Cy
s, = 81[—Cy3(C 4C5Ss + S4C¢) + S33855g] + C1[—=54C 55 + C,Cl (6)

s, = 893(C4C5Ss + S4C¢) + C13555

a, = C1(Cy3C4Ss + 553C5) - 515455 |

= 51(0230455 + S93C5) + C1545;5 | (M
2 = —8930 485 + Cg3C5

Ps = C1[dg(C3C 4S5 + 853C5) + 5;3d4 + a3C a3 + a3C;] — 51(deS4Ss + do)

py = S1d6(C33C 4S5 + S23C'5) + Saady + a3C a3 + a3Cy) + Cy(deS,S5 + dy) (8)



2 = de(Cy3C5 — 5330 4S5) + Coady — a3Sys — ay5,

~ where d and a; are known PUMA’s link parameters, and C; = cos (9,;, S; = sin o;,
Cij=cos (0; + 6,), and S ;=sin (6; +0;).

An examination of the above kinematic equations (Egs. (5)- (8)) shows a large set
of elementary operations: multiplications, additions, and transcendental functions.
One ‘can use an interconnection of microprecessors with .co-processors ‘‘and an
appropriate table look-up technique for the transcendental flinctions to cempute the
end-effector location. Although this microprocessor-based computlng system is widely
used in present day robot controllers, it suffers from the solution accuracy, and lacks ,
flexibility and. modularity. The solution i inaccuracy is due to the table look-up, while
the flexibility is due to the need for changing the link coordinate frames of the mani-
pulator if desire_d, Furthermore, if one wants to obtain the location of the end-
effector ‘with respect to a world coordinate frame instead of the robot’s base coordi-
nate frame, then an additional homogeneous transformation matrix relating the base
coordinate frame to the external world coordinate frame must be included in Eq. (3).

Thus, computing a fixed set of equations as in Eqs. (5)-(8) does not present an attrac-

‘tive solution to the real-time computational problem of the end-effector location. A
better solution to the problem is to design a computational architecture that will
improve solution accuracy, and achieve flexibility and modularity for computing the
location of the end-effector of a manipulator in real time. We propose an 1nterconnec-
tion of CORDIC processors to form a pipelined computing machine that efﬁc1ently
computes- the direct kinematics solution. This CORDIC-based p1pelmed architecture
is quite flexible and is based on the concatenation of CORDIC computational modules
to form a 'pipelined machine. A CORDIC computational module consists of 4
CORDIC processors for the computation of a homogeneous link transformation matrix
'~1A1_'> An introduction to CORDIC algorithms and processor is given in the next sec-
tion and the proposed CORDIC-based pipelined architecture is discussed in section 4.

3. CORDIC Algorithms and Processors

The kinematic equations of an n- hnk manipulator require the computatlon of a
large set of elementary operations: multiplications, additions, and trigonometric func-
tions. However, these elementary operations, in general, cannot be efficiently com-
puted in general-purpose. uniprocessor computers. The CORDIC algorithms [3], [6]- 8],
are the natural candidates for efficiently computing these elementary operations.
_They represent an efficient way to compute a variety of functions related to coordi-
nate transformations with iterative procedures involving only shift-and-add operations
“at each step.- Thus, cordic processing elements are extremely simple and quite com-
pact to realize [7], [8] and the interconnection of CORDIC processors to exploit the
great potential of pipelining provides a novel solution for computing the direct



kinematic position solution.

To establish connections between cordic and rotation-based algorithms, let the
angle of rotation ¢ be decomposed into a sum of n sub-angles {d;; 1 =0, n—1} i ‘
n—1 ) :
i=0 : o ,
where the Sign u; (&1) is chosen based on the direction of rotation. Similarly, the
plane rotation matrix R(6) N

| cost sind : : :
R(0) = —sinf cosf - (102)
or the hyperbolic rotation matrix R()

‘ coshf sinhf '
R(6 (10.b)

~ |—sinhf coshé
- can also be decomposed into a product of sub-angle rotation matrices _ o
n—1 . E .
R() = T R() @

Thus, a smgle rotation of # angle can be replaced by n smaller rotations Wlth d angle
each. In the cordic algorithms, d; is chosen such that ‘

tan—1(2"6(i)) , Th =1 (circular) » |
d; = 12750 , m =0 (linear) : o (12)
tanh_1(2_s(i)) , m = —1 (hyperbolic) ' '

where m = (= —1,0,1) determines the type of rotations and {s(¢); 7 =0, n—1} isa
non-decreasing integer sequence. Using d; from Eq. (12), R(d;) can be written as

1 —mu; 27C)

R(d;) = p; o= - o (13)

where p; is a sga-ling factor and equals to (1 + m 2_2s(i))_1/2. Let RYV(6) and RN(dg) be
the normalized form of R(f) and R(d;), respectively, then from Eq. (11), we have -

n—1 . n-1 : 7
RO = T1 5 T RY(4) - (s
=k, T RY(&) = k, RY(9) © (14.b)

i=0

where



n—1 n—1" o1 - ' . .
=TI p; = [] (1 + ma 2y | (14.c)
ie i=0 ,
and
Nom "1 1 | —rmu; 20 o -
RO =11 |, o) . C (14.4)
. $=0 ) : : B .

Usually,. km is a machlne constant and k,, =~ 0.6072 (for m = 1) or 1.00 (for m = 0) or
1.205 (for m = — 1), when n > 10 [6], [11]. The normalized rotation matrix of Eq.
(14.d) indicates that each small rotation can be realized with one simple shift-and-add
operation.  Hence, the computation of a trigonometric function can be accomplished
with n shift-and-add operations, which is comparable to conventional multiplications.
This makes a CORDIC ALU a very appealing alternative to the traditional ALU for
implementing the elementary funct1ons In general, the normalized CORDIC algo-
rithm can be written as follows: ' ' '

FORi=0,1, - , n—1, DO
N, : 1 —m u; 2750) N |

= —sls : o 15.a

yi]—\lr-l U; 2 S(z) 1 yi]v - ) ( )

' Zilil = ZZN + ’U.i di . ‘ ‘ . (15.b)

where xév = x4, yév = Yo; m determines the type of rotation, d; is chosen as in Eq.
(12), and the auxiliary variable z" is introduced to accumulate the rotation after each
iteration. And the corresponding “unnormalized’”’ CORDIC algorithm is described as:

"FORi=0,1, - -+ , n—1, DO
.’Ez'+1 1 SoTmo Yy 2_s(i) x| ) |
== . A‘ 6.
N1 p; u; 2—3(;) 1 Y; | (1 a‘)
Z4 =7 -+ Ud v T (16 b)

where Ty = T and Yo = Yo- It can be shown that z and 2 N will accumulate the angle
of the total rotation and have the same value after n 1teratlons However, the end
results of (z,,y,) from the iterations of Eq. (16.a) and the end results of (zN, y]
from the iterations of Eq. (15.2) are related according to

A SR ¢ £

N

Consequently, one may evaluate z, and y, by using only the shlft-and-add operatlons :
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in Eq. (16.a), then realize z, and y, by other simple methods such as ROM look-up
tables and regular combinatorial logic, etc. Fortunately, it is possible to find a simple
way to normalize the scale factor k,, using the same shift-and-add hardware (8], [11].
The supplementary operations that are used to force the scale factor k,, to converge
toward unity can be either performed after all the operations of Eq. (15.a) are. ter-
minated, that is,

g =1 +%27) zf L : (18)

Y = (145 27%)yf

where zg = =, .yg =y, and 0 < ¢ < n—1, or interleaved with the operations of Eq.
- (15.a), that is, ' o

f =0+ 2N o (19)

w=1+%27)y"

Wheré og zg n—1. The parameter ; in Eq. (18) or Eq. (19) may be -1 or 0 or 1 .
depending on the value of 7 and the type of rotations (i.e. m) [8], [11].

Haviland et al. [8] realized the CORDIC algorithm on a CMOS chip and showed
that the processing time of the CORDIC chip is 40 ts. They also showed the SPICE
analysis '["12]"'of" the chip and suggested n = 13 as the minimum cycle time of a two-
byte (24-bit) fixed-point operation. However, in practice, they used n = 24. For a
conventional CORDIC module, it requires 5 shift-and-add modules to compute one
CORDIC iteration and bne normalization iteration in parallel (that is, 3 shift-and-add
modules for Egs. (15.2) and (15.b), and 2 shift-and-add modules for Eq. (19)). The
desired output can be obtained in 24 iterations (n = 24). Thus, 24 iterations of 5
shift-and-add modules computing in parallel will be enough to realize CORDIC algo-
rithms. This indicates that the CORDIC processing time is no slower than the time
for a serial multiplier computing two 24-bit operands.

It is possible to enhance the throughput of a conventional CORDIC module by
using a pipelined CORDIC module or a doubly-piped CORDIC module [11]. For.
example, if a conventional CORDIC module requires T = n T', time to complete the
computation (where T, is the time for one CORDIC iteration of Eq. (15) and one nor-
malization iteration of Eq. (19)), where n is the number of iterations, it is guggested
~ that a CORDIC pipe consists of a cascade of n layers and each layer has 3 shift-and-
- add processing elements computing one CORDIC iteration of Eq. (15) in parallel, then
2 shift-and-add processing elements can compute one normalization iteration of Eq.
(19) in parallel. Thus, the CORDIC pipe is operating at an effective rate of Tc' per
operation rather than n T, where Tc' is the time for one shift-and-add operation
which is always less than T',. Furthermore, a doubly-piped CORDIC module has been
introduced [11] to operate at bit level and has a throughput of one sample per clock
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period. - This enhancement will truly improve the performance and throughput of the
proposed CORDIC based architecture. '

‘ Flgure 1 summarizes the elementary functions that can be obtained from the
CORDIC processor when m is set to -1,.0, or 1. In this figure, a CORDIC processor is
depicted as a box with three 1nputs Zg , Yo » 29, Which are the initial values of Ty Ui
and’ z .in Eq. (16), as well as three outputs that correspond to the ﬁnal values of
Ty, yn , and 2, in Eq (16). - Thus, the outputs z, , y, , 2, are the desired elementary
- functions, when m is appropriately set to -1, 0 or 1. These CORDIC processors will
be conﬁgured and connected, based on the decompos1t10n of the homogeneous link
transformatlon matrices of a. mampulator, to arrive at an efﬁcrent CORDIC-based
‘ p1pehned archltecture for the computatlon of the direct kinematic. position solution. "

4. CORDIC-Based Pipevlined Architecture

" The desrgn philosophy of the proposed CORDIC- based p1pe11ned archltecture is
to examine the direct kinematic position solution for its computatlonal flow and data
dependenc1es in order to functionally decompose the computations into a cascade of
CORDIC computational modules (CCMs) with an objective that each CCM will be
realizable by CORDIC processors. For an n-link manlpulator, the kinematic equa-
tions reveal the chain product of successive homogeneous link transformation matrices
of = 1A,-, t=1,2, * ,n. Thus, we first look at the possible decompos1tlon of the
link ¢ homogeneous transformation matrix *~ 1A,- For the link ¢ homogeneous

i—1

transformation matrix A;, it can be decomposed as a product of four basic homo-

~ geneous translation/rotation matrices as [1],

TlA, =Tmn(z,-_1,d,-) Rot(z;_,0;) Tran(x;,a;) Rot(x; oz,) o . B (20)
IVO 0 O‘ cosl; —sinf;, 0 0] 10 Ovai 1 0 0‘ 0
0100 sinf; cosf; 00|19 10 o]0 cosq —sina; 0
1001 g 0 0 10||001 0[]0 sine; cosa, 0
000 1 0 0 01f]000 1]fg o 0 1

Or, from Eq. (20), i- 1A.l- can be decomposed as a product of two matrlces as,

cos9 —sinfd; 0 0 (1. 0 0 g
. sinf; cos6; 0 0|0 coso; —sina; 0 S
$- — . ‘
A= 0 1d;||0 sino; cose;, O (21)

0 0 o1jfo o 0o 1]

Since as stated earlier, the homogeneous link transformation matrix ’_lAi is used to
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transform a vector expressed in the 7th coordinate frame to the same vector expressed
in the (i —1)th coordinate frame, this coordinate transformation can be performed in
two sequential steps as indicated in Eq. (21). That is, the first step is transforming a
vector p; = (z;,Y;, z,-,l)T in the 7th coordinate frame to an intermediate vector

A A A A T
X, =(xi 'Y 9 & ’1) )

‘a:,A (1 0 o a,-_ z, [ z +a;

yiA 0 cos o;  —sing; 0 Y; ina,- — S .

P 0 sin o cos o 0 5| |zCo +ySo 22)
1 0 0 0 1111, - 1 ]

and the second step is to map the intermediate vector x,-A to the desired vector

4T
Pi-1 = (xi—19yi~17zif1a1) ’

-xi*i 1 1 cost; —sinf; 0 IR £C 6, — yAS0;

Vi1 sinf); cosf;, 0 yit y2CO, + 56, | 7
| | 0 0 14| = 2+ d; | (23)
1] . 0 0 0 Il 1 |

Léokin_g' at the elementary functions computed by CORDIC processors in-Figure 1, Eq.
(22) can be computed and realized by two CORDIC processors arranged in parallel as

follows:

Step 1—a: CORDIC Processor: CIRC1

To = ¥Y;
Input = 1Yo =%
ZO = O[i

| u'
Output = jyl, = %Co; + y; S E‘z{“
z1, = Not used

: IEln = inO[i — Z.‘SCY,’

Step 1—-b:  CORDIC Processor: LIN1

$0=1v
- Input =y, =g

20 = I
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- |#2, =Not used
Outnut = y2, — 5 + a; =z
- 22, = Not, used
Note that‘st'eps- 1-a and 1-b are computed in bparallel Slmllarly, Eq (23) can be com-
. puted and realized by two CORDIC processors arranged in parallel as follows
- - Step. 2——a g CORDIC Processor CIRC1 ’

A
]
A

. ) 3:0 = y2n =
o Input = Yy =171, =y

zo = 0;

7 z3, AC’(9 1 E:z: -1
Output = y3, =y C o, + :z:ASH =y
' = Not used

Substltutmg ot and yz from Eq (22) into the above output equatlons, we have

. . $3 —IEC@ y,Coz,S@, 'EZ{SOQS@,‘ +a.,-C(9,~ .-=— a‘:i—I'
Output = y3n = 23159, + in'a,-C'Hi —_ z,-S’aiCé’,-»+ a,-S@,-
23, = Not used

vyi—l

Step‘ 2—b :v _":COR'DIC_ Processor: LIN1
T =1
: Inpnt = 1Yy = d
zo = yl = 214

. z4,, = Not used
" - Output = y4, = z,-A + d; = Z%_q
24, = Not used
Substituting z,-A from Eg. (22) into the above output equations, we have
B _ x4, = Not used
"'—»Output= y4, -—y,Sa +zCoz +d; =2,
R 24, = Not used -
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Note that the outputs in steps 2-a and 2-b (i.e. 3, ,y3,, and y4, ) correspond to the
result of the matrix-vector multiplication in Eq. (1).

Since the -outputs of the CORDIC processors in steps 1-a and 1-b are fed into the-
inputs of the CORDIC processors in steps 2-a and 2-b, the interconnection of these
four CODIC processors forms a 2-stage cascade CORDIC computational module
(CCM) for computing a general homogeneous link transformation matrix i"lAi of a
manipulator. This 2-stage cascade CORDIC computational module is shown in- Flgure
2. Extending this idea to an n-link manipulator, we need to cascade n CCMs, con-
sisting of 4n CORDIC processors, to form a pipelined architecture for computlng the
n homogeneous link transformation matrices in the kinematic equatlon, and the out-
~ puts of this plpehned architecture transform the vector p, expressed in the nth coor-
_dinate frame to the same vector expressed in the base coordinate frame of the mani-
pulator. Since the vector p, is chosen arbitrarily, if we let p, = (0,0,0, 1)7, then
- the output of the proposed CORDIC-based pipelined architecture is the position of
the origin of the link n coordinate frame with respect to the base coordinate frame.
Similarly, letting p, = (1,0,0,1) y Pp = (0,1,0,1) , and p, = (0,0,1,1)T, we,
respectively, obtain the orientation (normal, sliding, and approach vectors) of the link
n coordinate frame with respect to the base coordinate frame. Thus, in order to
. obtain the location of the end-effector of a manipulator, we need to pipe a set of 4
input vectors (or a 4x4 identity matrix) into the proposed pipelined architecture to
‘obtain the ‘[n,s ,a,p]. For a PUMA robot arm in {1], where n = 6, a pipelined archi-
~ tecture of 6 CORDIC computational modules with 24 CORDIC processors can be used
to compute the kinematic equation i in Eq. (3) and is shown in Figure 3.

Several key features and characterlstlcs about this CORDIC based p1pe11ned
archltecture should be addressed and discussed:

(1) Fle:cibilz't.y. The 2—stage- CORDIC computational module shown in Figure 2 com-
putes a general homogeneous link transformation matrix i_lAi. Thus, the CCM
is suitable for any manipulator (With prismatic or rotary joints) whose link coor-
dlnate frames are described by 4x4 homogeneous transformation matrices. The
1nputs to the CORDIC processors in the CCM are hnk/_]omt parameters (i.e.
d; , 0; ,a;, ) of link/joint 7 and a vector p; = (z;,¥; , % ,1) expressed in the .
tth coordinate frame. Thus, changing the link coordinate frames of the manipu-
lator will only affect the input values of the CORDIC processors and will not
alter the structure of the CCM and the proposed pipelined architecture.

(2) Modularity. The idea of using 4 CORDIC processors to form a 2-stage cascade
- CORDIC eomputational module provides a modular approach in designing our
proposed pipelined architecture. This modularity is based on the characteristics
 of the kinematic equation which involves the computation of the chain product of
n homogeneous link transformation matrices for an n-link manipulator. Each -
CCM becomes a building block (or computational block) for computing one of the



)

2

- 14 -

homogeneous link transformation matrices in the kinematic equation in Eq (3).
If one wants to relate the link n coordinate frame to an external world coordi-
nate frame instead of the robot’s base coordinate frame, then an additional ;
CORDIC . computational module can be approprlately put in cascade with the
existing n CCMs. This additional CCM computes the homogeneous transforma-

tion matrix which relates the base coordinate frame to the external World coordl-- :

nate frame. Similarly, an additional CCM can be appropriately cascaded into
the exxstmg pipeline to compute the homogeneous transformation rnatrlx Whlch
relates the tool coordinate frame to the link n coordinate frame of the manipula-
tor. This homogeneous- transformat1on—matr1x—based CORDIC module concept'
changes the building block of our architecture from CORDIC processors to CCMs.

Thus, the number of CCMs in the pipelined architecture directly corresponds to
the number of homogeneous link transformation matrices in the kinematic equa-
tion of the manipulator.

Solutzon Accumcy As indicated in [8], CORDIC algorithms were reahzed on a
CMOS chip with 24-bit data processing. Based on fixed-point arithmetic, the

iterative algorithm converges with an error of 2724 This solution accuracy is

much better than those quoted in [4], [5].

Computatzonal Time. In developmg the CORDIC computational module, we: used
an arbitrary vector P; expressed in link ¢ coordinate frame as an input to the ¢th
CORDIC computatwnal module. If we extend this idea to the link n coordinate
frame for an n-link manipulator and let p, =(0,0,0 1) then the output of this

- pipeline is the position of the origin of the link n coordinate frame with respect to

the base coordinate frame. Similarly, letting p, = (1,0,0 1)T P, =(0,1,0, 1)

and p, = (0,0,1,1)7, we, respectively, obtain the orientation (i.e. [n,s,a]) of the
link n coordinate frame with respect to the base coordinate frame. Since a reason-
able execution time for a CORDIC processor is 40 us, the processing time of a 2-
stage cascade CCM is 80us. For a pipelined architecture consisting of n CORDIC |

* computational modules (with 4n CORDIC processors) for an n-link manipulator,

the initial delay time in the pipeline is 80n is and the p1pehned time is 40us. Thus,
in order to obtain the position and orientation of the end-effector of a manipulator,

- we need to pipe a set of 4 input vectors (or a 4x4 identity matrix) into the proposed

pipelined architecture to obtain the [n,s,a ,P|. The first output from this set of 4
1nput vectors will take an initial delay time of 80n us, then the successive outputs
will be 40us apart because of the pipelined architecture. This gives a total compu-
tation time of (80n 4 120)us for computing the position and orientation of the
end-effector for an n-link manipulator. For a PUMA robot arm, the computation
time for obtaining the location of the end-effector is the initial delay time (for posi-
tion) plus 3 pipelined time (for [n s a]) for a total of 600us. The proposed



Z15-

~ pipelined aréhitec‘mre consists of 6 CCMs with 24 CORDIC processors. -
5. Conclusion

The kinematic equation of an n-link manipulator requires the computation of n
homogeneous link transformation matrices. The decomposition of a homogeneous link
transformation matrix into a product of two matrices reveals that the computation of
the homogeneous transformation matrix ean be accomplished by a 2-stage CORDIC
computational module consisting of 4 CORDIC processors. Thus, n 2-stage CORDIC
computational modules, consisting of 4n CORDIC processors, can be cascaded together
~to form a CORDIC-based pipelined architecture for computing the position and orlenta—
tion of the end-effector of the mampulator The proposed pipelined architecture with a
cascade of n CORDIC computational modules has an initial delay time of 807 s and a
pipelined time of 40us. The CORDIC-based pipelined architecture requires a total com-
putation time of (80n 4 120)us for computing the position and orientation of the end-
effector of an n-link manipulator. For a PUMA robot arm, given the measured data of
~ the angular displacements of all the Jomts and the link /joint parameters of the robot,
the computation time for locating the end-effector is 600/s and the pipelined archltec—
ture (mmsLs of 6 CCMs with 24 CORDIC processors.
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Figure 1 Elementary Functions Computed by CORDIC Prdcessofs
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Figure 2 A 2-Stage CORDIC Computational Module for Computing i_lA,-
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Compute 5A‘

Figure 3 = A CORDIC-Based Pipelined Architecture for Direct Kinematics Compu-
tation. P, = (5,3, ) is the input vector and P = (Zo, yu)73)! is
the output vector. ' . » -

- When p,, =(0,0,0 T, Py is the position vector of the end-effector.

When p, =(1,0,0 T, Py is the normal vector of the end-effector.
When p, =(0,1,0 T, Py is the sliding vector of the end-effector.
=(0,0,1 T, Py is the approach vector of the end-effector. .

When p,,
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