
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

2-1-1987

A CORDIC-Based Pipelined Architecture for
Direct Kinematic Position Computation
C. S. G. Lee
Purdue University

C. L. Chen
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Lee, C. S. G. and Chen, C. L., "A CORDIC-Based Pipelined Architecture for Direct Kinematic Position Computation" (1987).
Department of Electrical and Computer Engineering Technical Reports. Paper 553.
https://docs.lib.purdue.edu/ecetr/553

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F553&utm_medium=PDF&utm_campaign=PDFCoverPages

A CORDIC-Based
Pipelined Architecture
for Direct Kinematic
Position Computation

C. S. G. Lee
C. L. Chen

TR-EE 87-2
February 1987

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

c

A CORDIC-Based Pipelined Architecture

For Direct Kinematic Position Computation

C. S. G. Lee and C. L. Chen

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

TR-EE-87-2

February 1987

- 2 -

ABSTRACT

The kinematic equation of an fi-link manipulator involves the chain product of n
homogeneous link transformation matrices and reveals the requirement for computing
a large set of elementary operations: multiplications, additions, and trigonometric
functions. However, these elementary operations, in general, cannot be efficiently
computed in general-purpose uniprocessor computers. The CORDIC (COordinate
Rotation DIgital Computer) algorithms are the natural candidates for efficiently com­
puting these elementary operations and the interconnection of these CORDIC proces­
sors to exploit the great potential of pipelining provides a better solution for comput­
ing the direct kinematics. This paper describes a novel CORDIC-based pipelined
architecture for the computation of direct kinematic position solution based on the
decomposition of the homogeneous link transformation matrix. It is found that a
homogeneous link transformation matrix can be decomposed into a product of two
matrices, each of which can be computed by two CORDIC processors arranged in
parallel, forming a 2-stage cascade CORDIC computational module. Extending this
idea to an n-link manipulator, n 2-stage CORDIC computational modules, consisting
of 4n CORDIC processors, can be concatenated to form a pipelined architecture for
computing the position and orientation of the end-effector of the manipulator. Since
the initial delay time of the proposed pipelined architecture is 80n μs and the pipe­
lined time is 40μs, the proposed CORDIC-based architecture requires a total compu­
tation time of (80n + 120)μs for computing the position and orientation of the end-
effector of an n-link manipulator.

This work was supported in part by the National Science Foundation Engineering Research Center
Grant CDR-8500022. Any opinions, findings, and conclusions or recommendations expressed in this
article are those of the authors and do not necessarily reflect the views of the funding agency.

- 3 -

1. Introduction

Robot manipulators are highly nonlinear systems and their motion control is usu­
ally specified in terms of the Cartesian path traveled by the end-effector in Cartesian
coordinates. If the manipulator is moving in a crowded environment, knowing the
location (position and orientation) of its end-effector in real time, as well as its inter­
mediate rigid links, will assist it tremendously in negotiating around the obstacles.
The problem of computing the location of the end-effector of a manipulator from the
measured data of angular displacements of all the joints is known as the direct
kinematics (position) problem [l]. Using the Denavit-Hartenberg matrix representa­
tion [lj, [2] to describe the translational and rotational relationship between adjacent
robot links, the direct kinematics problem reduces to the problem of computing a
chain of n 4x4 homogeneous link transformation matrices for an n-link manipulator.
This paper presents a novel CORDIC-based pipelined architecture for the computa­
tion of these n homogeneous link transformation matrices which yields the location of
the end-effector of the manipulator.

The chain multiplication of n homogeneous link transformation matrices yields a
set of 12 equations, 9 for orientation matrix and 3 for position information. These
equations involve a large set of elementary operations: scalar multiplications, scalar
additions, and transcendental functions (sine and cosine). However, these elementary
operations, in general, cannot be efficiently computed in general-purpose uniprocessor
computers. Moreover, in order to achieve a real-time computation of the end-effector
location, time-consuming transcendental functions are implemented as table look-up
at the expense of the solution accuracy. Other methods for computing the time-
consuming transcendental functions such as the trigonometric function chip [4] and
the Taylor series expansion [5] with VLSI implementation have also been proposed.
These methods tend to optimize a critical bottleneck computation rather than obtain­
ing an efficient computational scheme for the end-effector location based on the
functional/data flow of the kinematic equations.

This paper addresses the computational complexity of the direct kinematic posi­
tion problem and presents a CORDIC-based pipelined architecture for computing the
location of the end-effector of an n-link manipulator in (80n + 120) fxs. This efficient
CORDIC-based pipelined architecture functions as a peripheral device attached to a
conventional hpst computer (or workstation) which provides the measured data of the
manipulator’s joint displacements. The CORDIC processors are configured and
arranged based on the functional/data flow of the kinematic equations. The architec­
ture design problem was tackled in two separate, but coherent, phases of design.
First, the 4x4 homogeneous link transformation matrix for link i of a manipu­
lator was examined and decomposed into a product of two matrices, each of which
can be efficiently computed and realized by 2 CORDIC processors arranged in paral­
lel, forming a 2-stage cascade CORDIC computational module. Next, for an n-link

- 4 -

manipulator, n 2-stage CORDIC computational modules, consisting of 4n. CORDIC
processors, are concatenated to form a pipelined architecture for computing the n
homogeneous link transformation matrices of the manipulator and the outputs from
the pipelined architecture yield the location of the end-effector of the manipulator.
Since the execution time of a CORDIC processor is about 40/is [8], the execution time
of a 2-stage CORDIC computational module is 80jj,s and the initial delay time of the
proposed pipelined architecture for an n-link manipulator is 80nfxs. Since the pipe­
line is balanced [9], [10], the pipelined time of the proposed architecture is 40fj,s.

2. Coordinate Transformation and Kinematic Equation

To describe the translational and rotational relationship between adjacent robot
links, an orthonormal link % coordinate frame, (x,, y,-, z,-), based on the Denavit-
Hartenberg matrix representation is assigned to link i. Once the link coordinate sys­
tem has been established for each link, a homogeneous transformation matrix,
can easily be developed relating the &’th coordinate frame to the (* — l)th coordinate
frame. Using the * *A,- matrix, one can relate a point p, at rest in link i and
expressed in homogeneous coordinates with respect to the % th coordinate system to
the (z—l)th coordinate system established at link (i—1) by

P»—1 = Pi (1)

i-1'A,-

(*%—1 > Vi-1» zi-i, i)7 y II iT Vi , ' if,

cos 0,- — cos at- sin 9i sin a,- sin 9i a,- cos 0,-
sin 0,- cos cos 9- — sin a,- cos 0,- a,- sin0,-

0 sin a,- cos a,- d, ; for a rotary joint i

0 0 0 1
(2)

cos 9i — cos a,- sin (9,- sin a,- sin 0,- 0
sin 0,- cos a,- cos 9i — sin a,- cos 0,- 0

0 sin a,- cos a,- di ; for a prismatic joint i

o 0 0 1

and the superscript “T” denotes matrix/vector transpose. The homogeneous
transformation matrix °T,-, which specifies the position and orientation of the tth
coordinate frame with respect to the base coordinate system, is the chain product of
successive homogeneous link transformation matrices of expressed as:

- 5 -

UA, XA„ ‘"A* ir
y-i.

xt yt- zi Pi
0 0 0 1 ; for * = 1,2, • • • ,n

(3)

Specifically, for i —n, we obtain the T matrix, T = °Tn, which specifies the position
and orientation of the end-effector of a manipulator with respect to the base coordi­
nate system. Consider the T matrix to be of the form:

xn yn zn Pn n s a P
0 0 0 1 0 0 0 1

nz sx ax Px

ny sy ay Py

nz sz az Pz

0 0 0 1

(4)

and using the six * 1At- matrices of the PUMA robot arm in [1], the elements of the T
matrix are found to be

nx = C1[C'23(C4C5C'6 - S4S6) - S23S5C6] - S'1[54C5C'6 + C4S6]

ny = SX[C23{C4C3C3 - S4S6) - S23S5C&} + CX[S4C5C6 + C456] (5)

nz = -S23[C4C3C6 - S4S6] - C23SsC6

sx = Ci\—C23(C4C556 + S4C6) + S23SsS&) - SX[-S4C5S6 + C4C6]

= sx[-c23(c4c5s6 + s4c6) + s23s5s&] + CX[-S4C3S& + C4C6] (6)

sz=S23(C4C5S6 + S4C6) + C23S5S6

ax=Ci(C23C4Ss + S23Cs)-S1S4S5

ay = SX(C23C4S5 + S23C5) + CXS4S5 (7)

az ~ 4S3 + C23CS

px = C1[d&(C23C4S5 + S23Cs) + S23d4 + a3C23 + a2C2] — Sx(d6S4Ss + d2)

Py = + S23Cs) + S23d4 + a3C23 + a2c2] + Cx(d6S4Ss + d2) (8)

-6 -

Pz ^6(^23^5 ^23^4^5) + ^23^4 “ a3^23 ~~ #2^2

where di and are known PUMA’s link parameters, and C{ = cos di, S{ = sin 0iy
C^=eos(i9e- + 6^y), and 5z*y=sin((92- + l9y).

An examination of the above kinematic equations (Eqs. (5)-(8)) shows a large set
of elementary operations: multiplications, additions, and transcendental functions.
One can use an interconnection of microprocessors with co-processors and an
appropriate table look-up technique for the transcendental functions to compute the
end-effector location. Although this microprocessor-based computing system is widely
used in present day robot controllers, it suffers from the solution accuracy, and lacks
flexibility and; modularity. The solution inaccuracy is due to the table look-up, while
the flexibility is due to the need for changing the link coordinate frames of the mani­
pulator if desired. Furthermore, if one wants to obtain the location of the end-
effector with respect to a world coordinate frame instead of the robot’s base coordi­
nate frame, then an additional homogeneous transformation matrix relating the base
coordinate frame to the external world coordinate frame must be included in Eq. (3).
Thus, computing a fixed set of equations as in Eqs. (5)-(8) does not present an attrac­
tive solution to the real-time computational problem of the end-effector location. A
better solution to the problem is to design a computational architecture that will
improve solution accuracy, and achieve flexibility and modularity for computing the
location of the end-effector of a manipulator in real time. We propose an interconnec­
tion of CORDIC processors to form a pipelined computing machine that efficiently
computes the direct kinematics solution. This CORDIC-based pipelined architecture
is quite flexible and is based on the concatenation of CORDIC computational modules
to form a pipelined machine. A CORDIC computational module consists of 4
CORDIC processors for the computation of a homogeneous link transformation matrix

Ai-. An introduction to CORDIC algorithms and processor is given in the next sec­
tion and the proposed CORDIC-based pipelined architecture is discussed in section 4.

3. CORDIC Algorithms and Processors

The kinematic equations of an n-link manipulator require the computation of a
large set of elementary operations: multiplications, additions, and trigonometric func­
tions. However, these elementary operations, in general, cannot be efficiently com­
puted in general-purpose uniprocessor computers. The CORDIC algorithms [3], [6]-[8],
are the natural candidates for efficiently computing these elementary operations.
They represent an efficient way to compute a variety of functions related to coordi­
nate transformations with iterative procedures involving only shift-and-add operations
at each step. Thus, cordic processing elements are extremely simple and quite com­
pact to realize [7], [8] and the interconnection of CORDIC processors to exploit the
great potential of pipelining provides a novel solution for computing the direct

- 7 -

kinematic position solution.
To establish connections between cordic and rotation-based algorithms, let the

angle of rotation # be decomposed into a sum of n sub-angles {d,-; i = 0, n— l}

0-E1 Mi (9)
i=0

where the sign (±1) is chosen based on the direction of rotation. Similarly, the
plane rotation matrix R(#)

R(0) =
cos# sin#

—sin# cos# (lO.a)

or the hyperbolic rotation matrix R(#)

R(#)
cosh# sinh#

—sinh# cosh# (10.b)

can also be decomposed into a product of sub-angle rotation matrices
r(«) = n’RK) (ii)

i-0
Thus, a single rotation of # angle can be replaced by n smaller rotations with dj angle
each. In the cordic algorithms, d,- is chosen such that

tan-1(2-s^)

tanh_1(2_s^)

, m — 1 (circular)
, m = 0 (linear)
, m — — 1 (hyperbolic)

(12)

where m = (— —1,0, l) determines the type of rotations and |s(i); i — 0, n— l} is a
non-decreasing integer sequence. Using d,- from Eq. (12), R(d,) can be written as

R(d») = Pi
1 —mtij-2 *(*)

tii 1 (13)

where ip a sealing factor and equals to (1 + m 2 2*(’)) Let HN{0) ahd Rbe
the normalized form of R(#) and R(dt), respectively, then from Eq. (11), we have

r(«) = "n pi ”n (i4.a)
«=o 1=0

^=km’tnRN{di)=kmRN(ff) (14.b)
*'=0

where

km =

- 8 -

II Pi = II (1 + m 2~2s^)~Vz
8=0 8=0

and

rw(«) = n
n—1

i =0

1 -m«;2 a(*)
u{ 2 -S(t)

(14.c)

(14.d)

Usually, km is a machine constant and km ~ 0.6072 (for m = l) or 1.00 (for m = 0) or
1.205 (for m — — 1), when n > 10 [6], [11]. The normalized rotation matrix of Eq.
(14*d) indicates that each small rotation can be realized with one simple shift-and-add
operation. Hence, ths computation of a trigonometric function can be accomplished
with n shift-and-add operations, which is comparable to conventional multiplications.
This makes a CORDIC ALU a very appealing alternative to the traditional ALU for
implementing the elementary functions. In general, the normalized CORDIC algo­
rithm can be written as follows:

FOR i= 0, 1, • • - , n-1, DO

„Nxi+l
„iV =
Vi+1

1
2-s(*)

-m u{

1

„N%
„NVi

(15.a)

zili = zi + u{ d{ (15.b)

where x0 = x0) j/q = t/gj m determines the type of rotation, d,- is chosen as in Eq.
(12), and the auxiliary variable z^ is introduced to accumulate the rotation after each
iteration. And the corresponding “unnormalized” CORDIC algorithm is described as:

FOR t= 0, 1, ••• , n-1, DO

xi+i
Pi+i = Pi

1 — m ut- 2
u{ 2~SW 1

xi
Vi

(I6.a)

zi+i = zi + (I6.b)

where x0 = x0 and y0 = y0. It can be shown that a,- and will accumulate the angle
of the total rotation and have the same value after n iterations. However, the end
results of (xn ,yn) from the iterations of Eq. (I6.a) and the end results of {x„,y*)
from the iterations of Eq. (15.a) are related according to

xn km xn ; yn = km y^ (17)

Consequently, one may evaluate x„ and y„ by using only the shift-and-add operations

- 9 -

in Eq. (16.a), then realize xn and yn by other simple methods such as ROM look-up
tables and regular combinatorial logic, etc. Fortunately, it is possible to find a simple
way to normalize the scale factor km using the same shift-and-add hardware [8], [llj.
The supplementary operations that are used to force the scale factor km to converge
toward unity can be either performed after all the operations of Eq. (15.a) are ter­
minated, that is,

tf+i — (1 + '7*2-*) (18)

■ Vi+1 = (1.+ 7t 2 *)vi

where Xq = xy$ = y^ , and 0 < i < n— 1, or interleaved with the operations of Eq.
(15.a), that is,

x/ = (l+7i2-l')x/" (19)

Vi = (1 + li 2”"’) y{*

where 0 < i < n—1. The parameter 7i in Eq. (18) or Eq. (19) may be -1 or 0 or 1
depending on the value of * and the type of rotations (i.e. m) [8], [ll[.

Haviland et al. [8] realized the CORDIC algorithm on a CMOS chip and showed
that the processing time of the CORDIC chip is 40 fxs. They also showed the SPICE
analysis [12] of the chip and suggested n = 13 as the minimum cycle time of a two-
byte (24-bit) fixed-point operation. However, in practice, they used n = 24. For a
conventional CORDIC module, it requires 5 shift-and-add modules to compute one
CORDIC iteration and one normalization iteration in parallel (that is, 3 shift-and-add
modules for Eqs. (15.a) and (I5.b), and 2 shift-and-add modules for Eq. (19)). The
desired output can be obtained in 24 iterations (n = 24). Thus, 24 iterations of 5
shift-and-add modules computing in parallel will be enough to realize CORDIC algo­
rithms. This indicates that the CORDIC processing time is no slower than the time
for a serial multiplier computing two 24-bit operands.

It is possible to enhance the throughput of a conventional CORDIC module by
using a pipelined CORDIC module or a doubly-piped CORDIC module [11]. For
example, if a conventional CORDIC module requires T = nTc time to complete the
computation (where Tc is the time for one CORDIC iteration of Eq. (15) and one nor­
malisation jtorntion of Eq. (19)), where n is the number of iterations,]t fs snggqsted
that a CORDIC pipe consists of a cascade of n layers and each layer has 3 shift-and-
add processing elements computing one CORDIC iteration of Eq. (15) in parallel, then
2 shift-and-add processing elements can compute one normalization iteration of Eq.
(19) in parallel. Thus, the CORDIC pipe is operating at an effective rate of Tc per
operation rather than n Tc, where Tc is the time for one shift-and-add operation
which is always less than Tc. Furthermore, a doubly-piped CORDIC module has been
introduced [11] to operate at bit level and has a throughput of one sample per clock

period. This enhancement will truly improve the performance and throughput of the
proposed CORDIC-based architecture.

Figure 1 summarizes the elementary functions that can be obtained from the
CORDIC processor when m is set to -1, 0, or 1. In this figure, a CORDIC processor is
depicted as a box with three inputs x0 , y0 , z0, which are the initial values of xi, yi,
and 2,- in Eq. (16), as well as three outputs that correspond to the final values of
xn t Vn i and i:n in Eq. (16). Thus, the outputs xn , yn , zn are the desired elementary
functions, when m is appropriately set to -1, 0, or 1. These CORDIC processors will
be configured and connected, based on the decomposition of the homogeneous link
transformation matrices of a manipulator, to arrive at an eflicient CORDIC-based
pipelined architecture for the computation of the direct kinematic position solution.

- 10 -

CORDIG-Based Pipelined Architecture

The design philosophy of the proposed CORDIC-based pipelined architecture is
to examine the direct kinematic position solution for its computational flow and data
dependencies in order to functionally decompose the computations into a cascade of
CORDIC computational modules (CCMs) with an objective that each CCM will be
realizable by CORDIC processors. For an n-link manipulator, the kinematic equa­
tions reveal the chain product of successive homogeneous link transformation matrices
of A,-, i =1,2, • ,n. Thus, we first look at the possible decomposition of the
link % homogeneous transformation matrix * ^A^. For the link i homogeneous
transformatipn matrix t~1Ai, it can be decomposed as a product of four basic homo­
geneous translation/rotation matrices as [1],

lAj = Tran(zi_1,dt) Rot(zi_v0i) Tran(xt->df-) Rot(xi,ai) (20)

1 0 0 0
cos 8i —sin di 0 0

0 1 0 0 sin 0i cos 0i 0 0
0 0 1 di 0 0 1 0
0 0 0 1 0 0 0 1

1 0 0 ai 1 0 0 0
0 1 0 0 0 cos ai —sin ai 0
0 0 1 0 0 sin ai coso;,- 0
0 0 0 1 0 o 0 1

Or, from fiP)? * 1Aa- can be decomposed as a product of two matriceg agj
cos —sin 6i 0 0 1 0 0 ai
sin 9{ cos 6i 0 0 0 COS Q!t- —sin Qfj 0

0 0 1 di 0 sin a,- COS O',- 0
0 o 0 1 t .0 0 0 1.

(21)

Since as stated earlier, the homogeneous link transformation matrix * 1At* is used to

-11 -

transform a vector expressed in the *'th coordinate frame to the same vector expressed
in the (*■—l)th coordinate frame, this coordinate transformation can be performed in
two sequential steps as indicated in Eq. (21). That is, the first step is transforming a
vector p2 = , y{ ,2^,1) in the *th coordinate frame to an intermediate vector

a,A
xi (xi »y«* ,^,i Y

xf

vt

1

*

—
—
1

rH
....

1

-

0 0
0 cos a,- —sin a,-
0 sin at-
0 0

COS Ofj

ai
0
0
1

Xi

V-

zi
=

. i.

a* + a{
Vi C a{ - z{ S a{
ZiCai + y{ S at-

1

(22)

and the second step is to map the intermediate vector x/4 to the desired vector
i—1 * Vi—1 j ■Zi-1 > 1) T

j

Xi- i cos 9i —sin 8{ 0 0

Vi-1 sin 9t cos 9{ 0 0
'Zi-1 0 0 1 di

1 o 0 0 1

-i AXi
„,AVi
~A ='

J
zi
1

xf-COi - yfLS9i

yfCdi'+xfSOt

zf + di (23)

Looking at the elementary functions computed by CORDIC processors in Figure 1, Eq.
(22) can be computed and realized by two CORDIC processors arranged in parallel as
follows:

Step 1—a: CORDIC Processor: CIRC 1

Input
xo = Vi
Vo “A-

Output =
xln = y{Ga{ - %Sa{ = yf

yln = ZiCaf + y{ S a{ = zf

zln = Not used

Step 1—b: CORDIC Processor: LIN1

Input =
x0 1

Vo = ai
z0 = Xi

- 12 -

Output
x2n = Not used

■ y 2n = Xi + a{ = xf
z2n — Not used

\

Note that steps 1-a and 1-b are computed in parallel. Similarly, Eq. (23) can he
puted and realized by two CORDIC processors arranged in parallel as follows:

• Step- 2—a :• CORDIC Processor: CIRC 1

Input =
'*o = V2n = xf-

y0 = xln=yf

zo

Output
x3n = xf-C0{ - yf-Stii = %_x
y3n = yfcOi + xfsdi = yi_x

z3n — Not used

Substituting xf' and yf~ from Eq. (22) into the above output equations, we have

Output
x3 n = xiC6i — y{ C «,■ S ^ S a{ S 9{ + C 9{ =
y3n = XiSOi + y,-Ca^C6i - ^So^Cdi + = yt_x

z3n — Not used

Step 2—b: CORDIC Processor: LIN 1

Input
x0 = 1
Vo = d%

zo = VK = zt\

Output
x4n = Not used
y4n = zf + d{ = Zi_x
z4n — Not used

Substituting zj^ from Eq. (22) into the above output equations, we have

x4n — Not used
Output =] y4tt = yiSoci + + d{ = z{_x

z4n — Not used

com-

-13 -

Note that the. outputs in steps 2-a and 2-b (i.e. x3n , t/3w, and y4n) correspond to the
result of the matrix-vector multiplication in Eq. (1).

Since the outputs of the CORDIC processors in steps 1-a and 1-b are fed into the
inputs of the CORDIC processors in steps 2-a and 2-b, the interconnection of these
four CODIC processors forms a 2-stage cascade CORDIC computational module
(CCM) for computing a general homogeneous link transformation matrix of a
manipulator. This 2-stage cascade CORDIC computational module is shown in Figure
2. Extending this idea to an n-link manipulator, we need to cascade n CCMs, con­
sisting of 4n CORDIC processors, to form a pipelined architecture for computing the
n homogeneous link transformation matrices in the kinematic equation, and the out­
puts of this pipelined architecture transform the vector pn expressed in the nth coor­
dinate frame to the same vector expressed in the base coordinate frame of the mani­
pulator. Since the vector pn is chosen arbitrarily, if we let pn = (0,0,0,1)T, then
the output of ,the proposed CORDIC-based pipelined architecture is the position of
the origin of the link n coordinate frame with respect to the base coordinate frame.
Similarly, letting pn = (l,0,0,l)T, pn = (0,l,0,l)r, and pn = (0,0,l,l)r, we,
respectively, obtain the orientation (normal, sliding, and approach vectors) of the link
n coordinate frame with respect to the base coordinate frame. Thus, in order to
obtain the location of the end-effector of a manipulator, we need to pipe a set of 4
input vectors (or a 4x4 identity matrix) into the proposed pipelined architecture to
obtain the [n,s,a,p]. For a PUMA robot arm in [1], where n — 6, a pipelined archi­
tecture of 6 CORDIC computational modules with 24 CORDIC processors can be used
to compute the kinematic equation in Eq. (3) and is shown in Figure 3.

Several key features and characteristics about this CORDIC-based pipelined
architecture should be addressed and discussed:

(1) Flexibility. The 2-stage CORDIC computational module shown in Figure 2 com­
putes a general homogeneous link transformation matrix !_1A^-. Thus, the CCM
is suitable for any manipulator (with prismatic or rotary joints) whose link coor­
dinate frames are described by 4x4 homogeneous transformation matrices. The
inputs to the CORDIC processors in the CCM are link/joint parameters (i.e.
df , , a,- , at) of link/joint i and a vector pt- = (x,-, yt-, zi, l)T expressed in the
tth coordinate frame. Thus, changing the link coordinate frames of the manipu­
lator will only affect the input values of the CORDIC processors nnd wUl not
alter the structure of the CCM and the proposed pipelined architecture.

(2) Modularity. The idea of using 4 CORDIC processors to form a 2-stage cascade
CORDIC computational module provides a modular approach in designing our
proposed pipelined architecture. This modularity is based on the characteristics
of the kinematic equation which involves the computation of the chain product of
n homogeneous link transformation matrices for an n-link manipulator. Each
CCM becomes a building block (or computational block) for computing one of the

homogeneous link transformation matrices in the kinematic equation in Eq. (3).
If one wants to relate the link n coordinate frame to an external world coordi­
nate frame instead of the robot’s base coordinate frame, then an additional
CORDIC computational module can be appropriately put in cascade with the
existing n CCMs. This additional CCM computes the homogeneous transforma­
tion matrix which relates the base coordinate frame to the external world coordi­
nate frame. Similarly, an additional CCM can be appropriately cascaded into
the existing pipeline to compute the homogeneous transformation matrix which
relates the tool coordinate frame to the link n coordinate frame of the manipula­
tor. This homogeneous-transformation-matrix-based CORDIC module concept
changes the building block of our architecture from CORDIC processors to CCMs.
Thus, the number of CCMs in the pipelined architecture directly corresponds to
the number of homogeneous link transformation matrices in the kinematic equa­
tion of the manipulator.

(3) Solution. Accuracy. As indicated in [8], CORDIC algorithms were realized on a
CMOS chip with 24-bit data processing. Based on fixed-point arithmetic, the
iterative algorithm converges with an error of 2~24. This solution accuracy is
much better than those quoted in [4], [5].

(4) Computational Time. In developing the CORDIC computational module, we used
an arbitrary vector p,- expressed in link i coordinate frame as an input to the ith
CORDIC computational module. If we extend this idea to the link n coordinate
frame for an n-fink manipulator and let pn = (0,0,0,1)T, then the output of this
pipeline is the position of the origin of the link n coordinate frame with respect to
the base coordinate frame. Similarly, letting pR = (1,0,0,1)T, pn = (0,1,0, l)r,
and pn = (0,0,1,1)T, we, respectively, obtain the orientation (i.e. [n ,a, a]) of the
link n coordinate frame with respect to the base coordinate frame. Since a reason­
able execution time for a CORDIC processor is 40 /ns, the processing time of a 2-
stage cascade CCM is 80/ns. For a pipelined architecture consisting of n CORDIC
computational modules (with 4n CORDIC processors) for an n-link manipulator,
the initial delay time in the pipeline is 80n/ns and the pipelined time is 40/ns. Thus,
in order to obtain the position and orientation of the end-effector of a manipulator,
we need to pipe a set of 4 input vectors (or a 4x4 identity matrix) into the proposed
pipelined architecture to obtain the [n,s,a,p]. The first output from this set of 4
input vectors will take an initial delay time of SOnfis, then the successive outputs
will be 40/ns apart because of the pipelined architecture. This gives a total compu­
tation time of (80rc +120)/ns for computing the position and orientation of the
end-effector for an n-link manipulator. For a PUMA robot arm, the computation
time for obtaining the location of the end-effector is the initial delay time (for posi­
tion) plus 3 pipelined time (for [n,s,a]) for a total of 600/ns. The proposed

'■ : -15-

pipelined architecture consists of 6 CCMs with 24 CORDIC processors.

5.'Conclusion.

The kinematic equation of an n-link manipulator requires the computation of n
homogeneous link transformation matrices. The decomposition of a homogeneous link
transformation matrix into a product of two matrices reveals that the computation of
the homogeneous transformation matrix can be accomplished by a 2-stage CORDIC
computational module consisting of 4 CORDIC processors. Thus, n'2-stage CORDIC
computational modules, consisting of 4n CORDIC processors, can be cascaded together
to form a CORDIC-based pipelined architecture for computing the position and orienta­
tion of the end-effector of the manipulator. The proposed pipelined architecture with a
cascade of n CORDIC computational modules has an initial delay time of 80nfxs and a
pipelined time of 40/ns. The CORDIC-based pipelined architecture requires a total com­
putation time of (80n + 120)/is for computing the position and orientation of the end-
effector of an n-link manipulator. For a PUMA robot arm, given the measured data of
the angular displacements of all the joints and the link/joint parameters of the robot,
the computation time for locating the end-effector is 600fis and the pipelined architec­
ture consists ol 6 CCMs with 24 CORDIC processors.

- 16 -

6. References

1. K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision,
and Intelligence, McGraw-Hill, Chapter 2, September 1986.

2. J. Denavit and R. S. Hartenberg, “A Kinematic Notation for Lower-Pair
Mechanisms Based on Matrices,” Journal of Applied Mechanics, pp. 215-221,
1955,

3. J. E. Voider, “The CORDIC Trigonometric Computing Technique,” IRE Trans.
Electronic Computers, vol. EC-8, no. 3, pp. 330-334, Sept. 1959.

4. S. S. Leung and M. A. Shanblatt, “A VLSI Chip Architecture for the Real-Time
Computation of Direct Kinematics,” Proc. of 1986 IEEE Int’l Conf. on Robot­
ics and Automation, San Francisco, CA, pp. 1717-1722, AprilT986.

5. V. Seshadri, “A Real-Time VLSI Architecture for Direct Kinematics,” Proc. of
1987 IEEE Int’l Conf. on Robotics and Automation, Raleigh, NC, March 30 -
April 3, 1987.

6. J. S. Walther, “A Unified Algorithm for Elementary Function,” AFIPS Conf.
Proc., vol. 38, 1971 SJCC, pp. 379-385.

7. H. M. Ahmed, J. M. Delosme and M. Morf, “Highly Concurrent Computing
Structures for Matrix Arithmetic and Signal Processing,” IEEE Computer, vol.
15, no. 1, pp. 65-82, Jan. 1982*

8. G. L. Haviland and A. A. Tuszynski, “A CORDIC Arithmetic Processor Chip,”
IEEETrans. Comput., vol. C-29, no. 2, pp. 68-79, Feb. 1980.

9. P. M. Kogge, The Architecture of Pipelined Computers, McGraw-Hill, New
York, 1981.

10. C. S. G. Lee and P. R. Chang, “A Maximum Pipelined CORDIC Architecture
for Robot Inverse Kinematics Computation,” School of Electrical Engineering,
Technical Report TR-EE 86-5, Purdue University, January 1986.

11. P. Dewide et al., “Parallel and Pipelined VLSI Implementation of Signal Pro­
cessing Algorithms,” in VLSI and Modern Signal Processing, S. Y. Kung, H. J.
Whitehouse, T. Kailath, (eds.), Prentice-Hall, Inc., Englewood Cliffs, NJ, pp.
257-276.

12. L. W. Nagel, “Spice2: A computer program to simulate semiconductor cir­
cuits,” Univ. of California, Berkeley, ELR, 1975.

-■17-

xn -t0 cos z0-y0 sin z0

*. =0.0

^=0.0

m = 0

LIN2LIN1

CIRC2CIRC1

2-0 cosh Zq jiq sinh Zq Xq

Vn ~Vo cosh %+:r0 sinh z0 y0

Figure 1 Elementary Functions Computed by COEDIC Processors

- 18 -

CIRC 1 CIRC 1

(Step 1-a) (Step 2-a)

a, —

(Step 1-b) (Step 2-b)

Figure 2 A 2-Stage CORDIC Computational Module for Computing * 1At-

- 19 -

Compute 5A6

Vi — Xo Xn xo x„

zi—
CIRC 1

y0 yn
CIRC 1

V yn

V Z0 Zn \/A Z0 Zn

Compute 4A5

1 ----- *0 Xn
0 UN 1 "

y y7 0 vn

X;----- ■2„ 21 0 n

x0 Xn — /\ — r x _/\ 1_ X ' X
LIN 1 _Jf \ fs LIN 1 " / \ds ° LIN 1 "

C
a*o>N yo y. / I ^ yo y„

Z 2
0 n Z0 Zn V Zn

Compute 3A4

X. X

CIRC 1y y70 7 n

zo 2
n

xo
yo

LIN 1 X"

yn

zo Zn

Compute zA3

X^ X X X
°CIRC1 " v y

°CIRC1 "

yo y n
Z0 Zn

yo yn
Zn 20 n \ A*W 3

*
0 UN 1 " —/\ — J \^3

XA X
0 LIN 1 n

y0 y» y0 yn

20 zn Z0 Zn

Compute \ Compute °A1

X. X x^ X X X x . X

CIRC 1 CIRC 1 CIRC1 " CIRC 1 "

yo yn yo yn yo y„ yo yn

2 / — z„ 2 mmmm \ / o. 2 _ 2 2 2 ■0 n
/ % 0 n V 0 n / 0 n

I 1

xo X \ —
x0 X _/\

XA X
\ —

XA XU UN 1 n \d2 U LIN 1 " _/ \a1 0 LIN 1 " \d1 ° LIN 1 n

yo yn \ JL V yn o yn yo yn

ZA z ZA z 2 ' z z 20 n 0 n 0 n 0 n

— y0

Figure 3 A CORDIC-Based Pipelined Architecture for Direct Kinematics Compu-
tation. PR = (a*)T is the input vector and P0 = {xq,y0,z0y is
the output vector.
When pn = (0,0,oF, p0 is the position vector of the end-effector.
When Pr — (1,0,0 F, p0 is the normal vector of the end-effector.
When pn = (0,1,OF, p0 is the sliding vector of the end-effector.
When Pr = (0,0,1) , pg is the approach vector of the end-effector.

	Purdue University
	Purdue e-Pubs
	2-1-1987

	A CORDIC-Based Pipelined Architecture for Direct Kinematic Position Computation
	C. S. G. Lee
	C. L. Chen

	tmp.1542052450.pdf.iuMy5

