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ABSTRACT

The kinematic equation of an fi-link manipulator involves the chain product of n 
homogeneous link transformation matrices and reveals the requirement for computing 
a large set of elementary operations: multiplications, additions, and trigonometric 
functions. However, these elementary operations, in general, cannot be efficiently 
computed in general-purpose uniprocessor computers. The CORDIC (COordinate 
Rotation DIgital Computer) algorithms are the natural candidates for efficiently com
puting these elementary operations and the interconnection of these CORDIC proces
sors to exploit the great potential of pipelining provides a better solution for comput
ing the direct kinematics. This paper describes a novel CORDIC-based pipelined 
architecture for the computation of direct kinematic position solution based on the 
decomposition of the homogeneous link transformation matrix. It is found that a 
homogeneous link transformation matrix can be decomposed into a product of two 
matrices, each of which can be computed by two CORDIC processors arranged in 
parallel, forming a 2-stage cascade CORDIC computational module. Extending this 
idea to an n-link manipulator, n 2-stage CORDIC computational modules, consisting 
of 4n CORDIC processors, can be concatenated to form a pipelined architecture for 
computing the position and orientation of the end-effector of the manipulator. Since 
the initial delay time of the proposed pipelined architecture is 80n μs and the pipe
lined time is 40μs, the proposed CORDIC-based architecture requires a total compu
tation time of (80n + 120)μs for computing the position and orientation of the end- 
effector of an n-link manipulator.

This work was supported in part by the National Science Foundation Engineering Research Center 
Grant CDR-8500022. Any opinions, findings, and conclusions or recommendations expressed in this 
article are those of the authors and do not necessarily reflect the views of the funding agency.
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1. Introduction

Robot manipulators are highly nonlinear systems and their motion control is usu
ally specified in terms of the Cartesian path traveled by the end-effector in Cartesian 
coordinates. If the manipulator is moving in a crowded environment, knowing the 
location (position and orientation) of its end-effector in real time, as well as its inter
mediate rigid links, will assist it tremendously in negotiating around the obstacles. 
The problem of computing the location of the end-effector of a manipulator from the 
measured data of angular displacements of all the joints is known as the direct 
kinematics (position) problem [l]. Using the Denavit-Hartenberg matrix representa
tion [lj, [2] to describe the translational and rotational relationship between adjacent 
robot links, the direct kinematics problem reduces to the problem of computing a 
chain of n 4x4 homogeneous link transformation matrices for an n-link manipulator. 
This paper presents a novel CORDIC-based pipelined architecture for the computa
tion of these n homogeneous link transformation matrices which yields the location of 
the end-effector of the manipulator.

The chain multiplication of n homogeneous link transformation matrices yields a 
set of 12 equations, 9 for orientation matrix and 3 for position information. These 
equations involve a large set of elementary operations: scalar multiplications, scalar 
additions, and transcendental functions (sine and cosine). However, these elementary 
operations, in general, cannot be efficiently computed in general-purpose uniprocessor 
computers. Moreover, in order to achieve a real-time computation of the end-effector 
location, time-consuming transcendental functions are implemented as table look-up 
at the expense of the solution accuracy. Other methods for computing the time- 
consuming transcendental functions such as the trigonometric function chip [4] and 
the Taylor series expansion [5] with VLSI implementation have also been proposed. 
These methods tend to optimize a critical bottleneck computation rather than obtain
ing an efficient computational scheme for the end-effector location based on the 
functional/data flow of the kinematic equations.

This paper addresses the computational complexity of the direct kinematic posi
tion problem and presents a CORDIC-based pipelined architecture for computing the 
location of the end-effector of an n-link manipulator in (80n + 120) fxs. This efficient 
CORDIC-based pipelined architecture functions as a peripheral device attached to a 
conventional hpst computer (or workstation) which provides the measured data of the 
manipulator’s joint displacements. The CORDIC processors are configured and 
arranged based on the functional/data flow of the kinematic equations. The architec
ture design problem was tackled in two separate, but coherent, phases of design. 
First, the 4x4 homogeneous link transformation matrix for link i of a manipu
lator was examined and decomposed into a product of two matrices, each of which 
can be efficiently computed and realized by 2 CORDIC processors arranged in paral
lel, forming a 2-stage cascade CORDIC computational module. Next, for an n-link
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manipulator, n 2-stage CORDIC computational modules, consisting of 4n. CORDIC 
processors, are concatenated to form a pipelined architecture for computing the n 
homogeneous link transformation matrices of the manipulator and the outputs from 
the pipelined architecture yield the location of the end-effector of the manipulator. 
Since the execution time of a CORDIC processor is about 40/is [8], the execution time 
of a 2-stage CORDIC computational module is 80jj,s and the initial delay time of the 
proposed pipelined architecture for an n-link manipulator is 80nfxs. Since the pipe
line is balanced [9], [10], the pipelined time of the proposed architecture is 40fj,s.

2. Coordinate Transformation and Kinematic Equation

To describe the translational and rotational relationship between adjacent robot 
links, an orthonormal link % coordinate frame, ( x,, y,-, z,- ), based on the Denavit- 
Hartenberg matrix representation is assigned to link i. Once the link coordinate sys
tem has been established for each link, a homogeneous transformation matrix, 
can easily be developed relating the &’th coordinate frame to the (* — l)th coordinate 
frame. Using the * *A,- matrix, one can relate a point p, at rest in link i and 
expressed in homogeneous coordinates with respect to the % th coordinate system to 
the (z—l)th coordinate system established at link (i—1) by

P»—1 = Pi (1)

i-1'A,-

(*%—1 > Vi-1» zi-i, i)7 y II iT Vi , ' if,

cos 0,- — cos at- sin 9i sin a,- sin 9i a,- cos 0,-
sin 0,- cos cos 9- — sin a,- cos 0,- a,- sin0,-

0 sin a,- cos a,- d, ; for a rotary joint i

0 0 0 1
(2)

cos 9i — cos a,- sin (9,- sin a,- sin 0,- 0
sin 0,- cos a,- cos 9i — sin a,- cos 0,- 0

0 sin a,- cos a,- di ; for a prismatic joint i

o 0 0 1

and the superscript “T” denotes matrix/vector transpose. The homogeneous 
transformation matrix °T,-, which specifies the position and orientation of the tth 
coordinate frame with respect to the base coordinate system, is the chain product of 
successive homogeneous link transformation matrices of expressed as:
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UA, XA„ ‘"A* ir
y-i.

xt yt- zi Pi 
0 0 0 1 ; for * = 1,2, • • • ,n

(3)

Specifically, for i —n, we obtain the T matrix, T = °Tn, which specifies the position 
and orientation of the end-effector of a manipulator with respect to the base coordi
nate system. Consider the T matrix to be of the form:

xn yn zn Pn n s a P
0 0 0 1 0 0 0 1

nz sx ax Px

ny sy ay Py

nz sz az Pz

0 0 0 1

(4)

and using the six * 1At- matrices of the PUMA robot arm in [1], the elements of the T 
matrix are found to be

nx = C1[C'23(C4C5C'6 - S4S6) - S23S5C6] - S'1[54C5C'6 + C4S6]

ny = SX[C23{C4C3C3 - S4S6) - S23S5C&} + CX[S4C5C6 + C456] (5)

nz = -S23[C4C3C6 - S4S6] - C23SsC6

sx = Ci\—C23(C4C556 + S4C6) + S23SsS&) - SX[-S4C5S6 + C4C6]

= sx[-c23(c4c5s6 + s4c6) + s23s5s&] + CX[-S4C3S& + C4C6] (6)

sz=S23(C4C5S6 + S4C6) + C23S5S6

ax=Ci(C23C4Ss + S23Cs)-S1S4S5

ay = SX(C23C4S5 + S23C5) + CXS4S5 (7)

az ~ 4S3 + C23CS

px = C1[d&(C23C4S5 + S23Cs) + S23d4 + a3C23 + a2C2] — Sx(d6S4Ss + d2)

Py = + S23Cs) + S23d4 + a3C23 + a2c2] + Cx(d6S4Ss + d2) (8)
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Pz ^6(^23^5 ^23^4^5) + ^23^4 “ a3^23 ~~ #2^2

where di and are known PUMA’s link parameters, and C{ = cos di, S{ = sin 0iy
C^=eos(i9e- + 6^y), and 5z*y=sin((92- + l9y).

An examination of the above kinematic equations (Eqs. (5)-(8)) shows a large set 
of elementary operations: multiplications, additions, and transcendental functions. 
One can use an interconnection of microprocessors with co-processors and an 
appropriate table look-up technique for the transcendental functions to compute the 
end-effector location. Although this microprocessor-based computing system is widely 
used in present day robot controllers, it suffers from the solution accuracy, and lacks 
flexibility and; modularity. The solution inaccuracy is due to the table look-up, while 
the flexibility is due to the need for changing the link coordinate frames of the mani
pulator if desired. Furthermore, if one wants to obtain the location of the end- 
effector with respect to a world coordinate frame instead of the robot’s base coordi
nate frame, then an additional homogeneous transformation matrix relating the base 
coordinate frame to the external world coordinate frame must be included in Eq. (3). 
Thus, computing a fixed set of equations as in Eqs. (5)-(8) does not present an attrac
tive solution to the real-time computational problem of the end-effector location. A 
better solution to the problem is to design a computational architecture that will 
improve solution accuracy, and achieve flexibility and modularity for computing the 
location of the end-effector of a manipulator in real time. We propose an interconnec
tion of CORDIC processors to form a pipelined computing machine that efficiently 
computes the direct kinematics solution. This CORDIC-based pipelined architecture 
is quite flexible and is based on the concatenation of CORDIC computational modules 
to form a pipelined machine. A CORDIC computational module consists of 4 
CORDIC processors for the computation of a homogeneous link transformation matrix 

Ai-. An introduction to CORDIC algorithms and processor is given in the next sec
tion and the proposed CORDIC-based pipelined architecture is discussed in section 4.

3. CORDIC Algorithms and Processors

The kinematic equations of an n-link manipulator require the computation of a 
large set of elementary operations: multiplications, additions, and trigonometric func
tions. However, these elementary operations, in general, cannot be efficiently com
puted in general-purpose uniprocessor computers. The CORDIC algorithms [3], [6]-[8], 
are the natural candidates for efficiently computing these elementary operations. 
They represent an efficient way to compute a variety of functions related to coordi
nate transformations with iterative procedures involving only shift-and-add operations 
at each step. Thus, cordic processing elements are extremely simple and quite com
pact to realize [7], [8] and the interconnection of CORDIC processors to exploit the 
great potential of pipelining provides a novel solution for computing the direct
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kinematic position solution.
To establish connections between cordic and rotation-based algorithms, let the 

angle of rotation # be decomposed into a sum of n sub-angles {d,-; i = 0, n— l}

0-E1 Mi (9)
i=0

where the sign (±1) is chosen based on the direction of rotation. Similarly, the 
plane rotation matrix R(#)

R(0) =
cos# sin# 

—sin# cos# (lO.a)

or the hyperbolic rotation matrix R(#)

R(#)
cosh# sinh# 

—sinh# cosh# (10.b)

can also be decomposed into a product of sub-angle rotation matrices
r(«) = n’RK) (ii)

i-0
Thus, a single rotation of # angle can be replaced by n smaller rotations with dj angle 
each. In the cordic algorithms, d,- is chosen such that

tan-1(2-s^)

tanh_1(2_s^)

, m — 1 (circular)
, m = 0 (linear)
, m — — 1 (hyperbolic)

(12)

where m = ( — —1,0, l) determines the type of rotations and |s(i); i — 0, n— l} is a 
non-decreasing integer sequence. Using d,- from Eq. (12), R(d,) can be written as

R(d») = Pi
1 —mtij-2 *(*)

tii 1 (13)

where ip a sealing factor and equals to (1 + m 2 2*(’)) Let HN{0) ahd Rbe 
the normalized form of R(#) and R(dt), respectively, then from Eq. (11), we have

r(«) = "n pi ”n (i4.a)
«=o 1=0

^=km’tnRN{di)=kmRN(ff) (14.b)
*'=0

where
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II Pi = II (1 + m 2~2s^)~Vz 
8=0 8=0

and

rw(«) = n
n—1

i =0

1 -m«;2 a(*)
u{ 2 -S(t)

(14.c)

(14.d)

Usually, km is a machine constant and km ~ 0.6072 (for m = l) or 1.00 (for m = 0) or 
1.205 (for m — — 1), when n > 10 [6], [11]. The normalized rotation matrix of Eq. 
(14*d) indicates that each small rotation can be realized with one simple shift-and-add 
operation. Hence, ths computation of a trigonometric function can be accomplished 
with n shift-and-add operations, which is comparable to conventional multiplications. 
This makes a CORDIC ALU a very appealing alternative to the traditional ALU for 
implementing the elementary functions. In general, the normalized CORDIC algo
rithm can be written as follows:

FOR i= 0, 1, • • - , n-1, DO

„Nxi+l
„iV =
Vi+1

1
2-s(*)

-m u{

1

„N%
„NVi

(15.a)

zili = zi + u{ d{ (15.b)

where x0 = x0) j/q = t/gj m determines the type of rotation, d,- is chosen as in Eq. 
(12), and the auxiliary variable z^ is introduced to accumulate the rotation after each 
iteration. And the corresponding “unnormalized” CORDIC algorithm is described as: 

FOR t= 0, 1, ••• , n-1, DO

xi+i 
Pi+i = Pi

1 — m ut- 2
u{ 2~SW 1

xi
Vi

(I6.a)

zi+i = zi + (I6.b)

where x0 = x0 and y0 = y0. It can be shown that a,- and will accumulate the angle 
of the total rotation and have the same value after n iterations. However, the end 
results of (xn ,yn) from the iterations of Eq. (I6.a) and the end results of {x„,y*) 
from the iterations of Eq. (15.a) are related according to

xn km xn ; yn = km y^ (17)

Consequently, one may evaluate x„ and y„ by using only the shift-and-add operations
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in Eq. (16.a), then realize xn and yn by other simple methods such as ROM look-up 
tables and regular combinatorial logic, etc. Fortunately, it is possible to find a simple 
way to normalize the scale factor km using the same shift-and-add hardware [8], [llj. 
The supplementary operations that are used to force the scale factor km to converge 
toward unity can be either performed after all the operations of Eq. (15.a) are ter
minated, that is,

tf+i — (1 + '7*2-*) (18)

■ Vi+1 = (1.+ 7t 2 *)vi

where Xq = xy$ = y^ , and 0 < i < n— 1, or interleaved with the operations of Eq. 
(15.a), that is,

x/ = (l+7i2-l')x/" (19)

Vi = (1 + li 2”"’ ) y{*

where 0 < i < n—1. The parameter 7i in Eq. (18) or Eq. (19) may be -1 or 0 or 1 
depending on the value of * and the type of rotations (i.e. m) [8], [ll[.

Haviland et al. [8] realized the CORDIC algorithm on a CMOS chip and showed 
that the processing time of the CORDIC chip is 40 fxs. They also showed the SPICE 
analysis [12] of the chip and suggested n = 13 as the minimum cycle time of a two- 
byte (24-bit) fixed-point operation. However, in practice, they used n = 24. For a 
conventional CORDIC module, it requires 5 shift-and-add modules to compute one 
CORDIC iteration and one normalization iteration in parallel (that is, 3 shift-and-add 
modules for Eqs. (15.a) and (I5.b), and 2 shift-and-add modules for Eq. (19)). The 
desired output can be obtained in 24 iterations (n = 24). Thus, 24 iterations of 5 
shift-and-add modules computing in parallel will be enough to realize CORDIC algo
rithms. This indicates that the CORDIC processing time is no slower than the time 
for a serial multiplier computing two 24-bit operands.

It is possible to enhance the throughput of a conventional CORDIC module by 
using a pipelined CORDIC module or a doubly-piped CORDIC module [11]. For 
example, if a conventional CORDIC module requires T = nTc time to complete the 
computation (where Tc is the time for one CORDIC iteration of Eq. (15) and one nor
malisation jtorntion of Eq. (19)), where n is the number of iterations, ]t fs snggqsted 
that a CORDIC pipe consists of a cascade of n layers and each layer has 3 shift-and- 
add processing elements computing one CORDIC iteration of Eq. (15) in parallel, then 
2 shift-and-add processing elements can compute one normalization iteration of Eq. 
(19) in parallel. Thus, the CORDIC pipe is operating at an effective rate of Tc per 
operation rather than n Tc, where Tc is the time for one shift-and-add operation 
which is always less than Tc. Furthermore, a doubly-piped CORDIC module has been 
introduced [11] to operate at bit level and has a throughput of one sample per clock



period. This enhancement will truly improve the performance and throughput of the 
proposed CORDIC-based architecture.

Figure 1 summarizes the elementary functions that can be obtained from the 
CORDIC processor when m is set to -1, 0, or 1. In this figure, a CORDIC processor is 
depicted as a box with three inputs x0 , y0 , z0, which are the initial values of xi, yi, 
and 2,- in Eq. (16), as well as three outputs that correspond to the final values of 
xn t Vn i and i:n in Eq. (16). Thus, the outputs xn , yn , zn are the desired elementary 
functions, when m is appropriately set to -1, 0, or 1. These CORDIC processors will 
be configured and connected, based on the decomposition of the homogeneous link 
transformation matrices of a manipulator, to arrive at an eflicient CORDIC-based 
pipelined architecture for the computation of the direct kinematic position solution.

- 10 -

CORDIG-Based Pipelined Architecture

The design philosophy of the proposed CORDIC-based pipelined architecture is 
to examine the direct kinematic position solution for its computational flow and data 
dependencies in order to functionally decompose the computations into a cascade of 
CORDIC computational modules (CCMs) with an objective that each CCM will be 
realizable by CORDIC processors. For an n-link manipulator, the kinematic equa
tions reveal the chain product of successive homogeneous link transformation matrices 
of A,-, i =1,2, • ,n. Thus, we first look at the possible decomposition of the
link % homogeneous transformation matrix * ^A^. For the link i homogeneous 
transformatipn matrix t~1Ai, it can be decomposed as a product of four basic homo
geneous translation/rotation matrices as [1],

lAj = Tran(zi_1,dt) Rot(zi_v0i) Tran(xt->df-) Rot(xi,ai) (20)

1 0 0 0
cos 8i —sin di 0 0

0 1 0 0 sin 0i cos 0i 0 0
0 0 1 di 0 0 1 0
0 0 0 1 0 0 0 1

1 0 0 ai 1 0 0 0
0 1 0 0 0 cos ai —sin ai 0
0 0 1 0 0 sin ai coso;,- 0
0 0 0 1 0 o 0 1

Or, from fiP)? * 1Aa- can be decomposed as a product of two matriceg agj
cos —sin 6i 0 0 1 0 0 ai
sin 9{ cos 6i 0 0 0 COS Q!t- —sin Qfj 0

0 0 1 di 0 sin a,- COS O',- 0
0 o 0 1 t .0 0 0 1.

(21)

Since as stated earlier, the homogeneous link transformation matrix * 1At* is used to
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transform a vector expressed in the *'th coordinate frame to the same vector expressed 
in the (*■—l)th coordinate frame, this coordinate transformation can be performed in 
two sequential steps as indicated in Eq. (21). That is, the first step is transforming a 
vector p2 = , y{ ,2^,1) in the *th coordinate frame to an intermediate vector

a,A
xi ( xi »y«* ,^,i Y

xf

vt

1

*

—
—
1

rH
.... 

1

-

0 0
0 cos a,- —sin a,-
0 sin at- 
0 0

COS Ofj

ai
0
0
1

Xi

V-

zi
=

. i.

a* + a{
Vi C a{ - z{ S a{ 
ZiCai + y{ S at- 

1

(22)

and the second step is to map the intermediate vector x/4 to the desired vector
i—1 * Vi—1 j ■Zi-1 > 1 ) T

j

Xi- i cos 9i —sin 8{ 0 0

Vi-1 sin 9t cos 9{ 0 0
'Zi-1 0 0 1 di

1 o 0 0 1

-i AXi
„,AVi
~A ='

J
zi
1

xf-COi - yfLS9i 

yfCdi'+xfSOt 

zf + di (23)

Looking at the elementary functions computed by CORDIC processors in Figure 1, Eq. 
(22) can be computed and realized by two CORDIC processors arranged in parallel as 
follows:

Step 1—a: CORDIC Processor: CIRC 1

Input
xo = Vi 
Vo “A-

Output =
xln = y{Ga{ - %Sa{ = yf 

yln = ZiCaf + y{ S a{ = zf

zln = Not used

Step 1—b: CORDIC Processor: LIN1

Input =
x0 1

Vo = ai 
z0 = Xi
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Output
x2n = Not used 

■ y 2n = Xi + a{ = xf 
z2n — Not used

\

Note that steps 1-a and 1-b are computed in parallel. Similarly, Eq. (23) can he 
puted and realized by two CORDIC processors arranged in parallel as follows:

• Step- 2—a :• CORDIC Processor: CIRC 1

Input =
'*o = V2n = xf- 

y0 = xln=yf

zo

Output
x3n = xf-C0{ - yf-Stii = %_x 
y3n = yfcOi + xfsdi = yi_x 

z3n — Not used

Substituting xf' and yf~ from Eq. (22) into the above output equations, we have

Output
x3 n = xiC6i — y{ C «,■ S ^ S a{ S 9{ + C 9{ =
y3n = XiSOi + y,-Ca^C6i - ^So^Cdi + = yt_x

z3n — Not used

Step 2—b: CORDIC Processor: LIN 1

Input
x0 = 1
Vo = d%

zo = VK = zt\

Output
x4n = Not used 
y4n = zf + d{ = Zi_x 
z4n — Not used

Substituting zj^ from Eq. (22) into the above output equations, we have

x4n — Not used
Output = ] y4tt = yiSoci + + d{ = z{_x

z4n — Not used

com-
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Note that the. outputs in steps 2-a and 2-b (i.e. x3n , t/3w, and y4n) correspond to the 
result of the matrix-vector multiplication in Eq. (1).

Since the outputs of the CORDIC processors in steps 1-a and 1-b are fed into the 
inputs of the CORDIC processors in steps 2-a and 2-b, the interconnection of these 
four CODIC processors forms a 2-stage cascade CORDIC computational module 
(CCM) for computing a general homogeneous link transformation matrix of a
manipulator. This 2-stage cascade CORDIC computational module is shown in Figure 
2. Extending this idea to an n-link manipulator, we need to cascade n CCMs, con
sisting of 4n CORDIC processors, to form a pipelined architecture for computing the 
n homogeneous link transformation matrices in the kinematic equation, and the out
puts of this pipelined architecture transform the vector pn expressed in the nth coor
dinate frame to the same vector expressed in the base coordinate frame of the mani
pulator. Since the vector pn is chosen arbitrarily, if we let pn = (0,0,0,1)T, then 
the output of ,the proposed CORDIC-based pipelined architecture is the position of 
the origin of the link n coordinate frame with respect to the base coordinate frame. 
Similarly, letting pn = (l,0,0,l)T, pn = (0,l,0,l)r, and pn = (0,0,l,l)r, we, 
respectively, obtain the orientation (normal, sliding, and approach vectors) of the link 
n coordinate frame with respect to the base coordinate frame. Thus, in order to 
obtain the location of the end-effector of a manipulator, we need to pipe a set of 4 
input vectors (or a 4x4 identity matrix) into the proposed pipelined architecture to 
obtain the [n,s,a,p]. For a PUMA robot arm in [1], where n — 6, a pipelined archi
tecture of 6 CORDIC computational modules with 24 CORDIC processors can be used 
to compute the kinematic equation in Eq. (3) and is shown in Figure 3.

Several key features and characteristics about this CORDIC-based pipelined 
architecture should be addressed and discussed:

(1) Flexibility. The 2-stage CORDIC computational module shown in Figure 2 com
putes a general homogeneous link transformation matrix !_1A^-. Thus, the CCM 
is suitable for any manipulator (with prismatic or rotary joints) whose link coor
dinate frames are described by 4x4 homogeneous transformation matrices. The 
inputs to the CORDIC processors in the CCM are link/joint parameters (i.e. 
df , , a,- , at ) of link/joint i and a vector pt- = (x,-, yt-, zi, l)T expressed in the
tth coordinate frame. Thus, changing the link coordinate frames of the manipu
lator will only affect the input values of the CORDIC processors nnd wUl not 
alter the structure of the CCM and the proposed pipelined architecture.

(2) Modularity. The idea of using 4 CORDIC processors to form a 2-stage cascade 
CORDIC computational module provides a modular approach in designing our 
proposed pipelined architecture. This modularity is based on the characteristics 
of the kinematic equation which involves the computation of the chain product of 
n homogeneous link transformation matrices for an n-link manipulator. Each 
CCM becomes a building block (or computational block) for computing one of the



homogeneous link transformation matrices in the kinematic equation in Eq. (3). 
If one wants to relate the link n coordinate frame to an external world coordi
nate frame instead of the robot’s base coordinate frame, then an additional 
CORDIC computational module can be appropriately put in cascade with the 
existing n CCMs. This additional CCM computes the homogeneous transforma
tion matrix which relates the base coordinate frame to the external world coordi
nate frame. Similarly, an additional CCM can be appropriately cascaded into 
the existing pipeline to compute the homogeneous transformation matrix which 
relates the tool coordinate frame to the link n coordinate frame of the manipula
tor. This homogeneous-transformation-matrix-based CORDIC module concept 
changes the building block of our architecture from CORDIC processors to CCMs. 
Thus, the number of CCMs in the pipelined architecture directly corresponds to 
the number of homogeneous link transformation matrices in the kinematic equa
tion of the manipulator.

(3) Solution. Accuracy. As indicated in [8], CORDIC algorithms were realized on a 
CMOS chip with 24-bit data processing. Based on fixed-point arithmetic, the 
iterative algorithm converges with an error of 2~24. This solution accuracy is 
much better than those quoted in [4], [5].

(4) Computational Time. In developing the CORDIC computational module, we used 
an arbitrary vector p,- expressed in link i coordinate frame as an input to the ith 
CORDIC computational module. If we extend this idea to the link n coordinate 
frame for an n-fink manipulator and let pn = (0,0,0,1)T, then the output of this 
pipeline is the position of the origin of the link n coordinate frame with respect to 
the base coordinate frame. Similarly, letting pR = (1,0,0,1)T, pn = (0,1,0, l)r, 
and pn = (0,0,1,1)T, we, respectively, obtain the orientation (i.e. [n ,a, a]) of the 
link n coordinate frame with respect to the base coordinate frame. Since a reason
able execution time for a CORDIC processor is 40 /ns, the processing time of a 2- 
stage cascade CCM is 80/ns. For a pipelined architecture consisting of n CORDIC 
computational modules (with 4n CORDIC processors) for an n-link manipulator, 
the initial delay time in the pipeline is 80n/ns and the pipelined time is 40/ns. Thus, 
in order to obtain the position and orientation of the end-effector of a manipulator, 
we need to pipe a set of 4 input vectors (or a 4x4 identity matrix) into the proposed 
pipelined architecture to obtain the [n,s,a,p]. The first output from this set of 4 
input vectors will take an initial delay time of SOnfis, then the successive outputs 
will be 40/ns apart because of the pipelined architecture. This gives a total compu
tation time of (80rc +120)/ns for computing the position and orientation of the 
end-effector for an n-link manipulator. For a PUMA robot arm, the computation 
time for obtaining the location of the end-effector is the initial delay time (for posi
tion) plus 3 pipelined time (for [n,s,a]) for a total of 600/ns. The proposed
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pipelined architecture consists of 6 CCMs with 24 CORDIC processors.

5.'Conclusion.

The kinematic equation of an n-link manipulator requires the computation of n 
homogeneous link transformation matrices. The decomposition of a homogeneous link 
transformation matrix into a product of two matrices reveals that the computation of 
the homogeneous transformation matrix can be accomplished by a 2-stage CORDIC 
computational module consisting of 4 CORDIC processors. Thus, n'2-stage CORDIC 
computational modules, consisting of 4n CORDIC processors, can be cascaded together 
to form a CORDIC-based pipelined architecture for computing the position and orienta
tion of the end-effector of the manipulator. The proposed pipelined architecture with a 
cascade of n CORDIC computational modules has an initial delay time of 80nfxs and a 
pipelined time of 40/ns. The CORDIC-based pipelined architecture requires a total com
putation time of (80n + 120)/is for computing the position and orientation of the end- 
effector of an n-link manipulator. For a PUMA robot arm, given the measured data of 
the angular displacements of all the joints and the link/joint parameters of the robot, 
the computation time for locating the end-effector is 600fis and the pipelined architec
ture consists ol 6 CCMs with 24 CORDIC processors.
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Figure 1 Elementary Functions Computed by COEDIC Processors
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Figure 2 A 2-Stage CORDIC Computational Module for Computing * 1At-
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Figure 3 A CORDIC-Based Pipelined Architecture for Direct Kinematics Compu- 
tation. PR = (a* )T is the input vector and P0 = {xq,y0,z0y is
the output vector.
When pn = (0,0,oF, p0 is the position vector of the end-effector.
When Pr — (1,0,0 F, p0 is the normal vector of the end-effector.
When pn = (0,1,OF, p0 is the sliding vector of the end-effector.
When Pr = (0,0,1) , pg is the approach vector of the end-effector.
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