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ABSTRACT

Bettinger, Mark K. MSEE, Purdue University. December 1985. A Com
parison of E/D-MESFET Gallium Arsenide and CMOS Silicon for VLSI Pro
cessor Design Major Professor: Veljko Milutinovic.

Gallium Arsenide (GaAs) circuits have long been known for their speed. 

They are now being considered for single chip processors since GaAs chips are 

reaching VLSI complexities. Design constraints that affect both system and 

processor design accompany the new technology. The goal of this work is to 

compare and contrast designs in GaAs-E/D MESFET and Si-CMOS technolo

gies as they apply to ALU design. These differences are emphasized by exa

mining the design of several structures in GaAs for implementation of Stanford 

University’s MIPS processor in GaAs. The three topics discussed are adder 

design, multiplier placement and design, and cache effects on multiplier design. 

The comparisons were made to help optimize the design of 32-bit GaAs 

microprocessor for RCA. The results show that the high speed of GaAs devices 

allows serial rather than parallel implementation of structures in GaAs; these 

serial structures use less area than their parallel counterparts without any 

degradation of performance. The total reduction in area is necessary to com

pensate for the area used by large fanin and fanout structures. In addition, 

any solutions proposed for each structure must also take into account the long 

off-chip delays.
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CHAPTER 1 
INTRODUCTION

Device physicists and circuit designers have long been interested in gallium 
arsenide (GaAs) technology. As GaAs technology matured, it caught the 
attention of digital circuit designers. Recently, the speed of GaAs devices has 
captured the serious interest of system designers; they see the potential for 
order of magnitude increases in computer system performance over silicon 
systems becoming a reality.

Although speed is a major advantage, it is not the sole reason that 
computer architects are taking a closer look at designing systems in GaAs. 
GaAs fabrication techniques have made significant advances in recent years and 
have allowed GaAs chips to reach VLSI levels of complexity. As designers 
become more aware of the advantages and disadvantages of the new 
technology; they are realizing that their old design methodologies are based on 
the properties of silicon. Therefore, they are searching for new design 
methodologies that take advantage of the different design parameters of GaAs. 
Lack of design experience and unfamiliarity with the advantages and 
disadvantages of GaAs technology and how they relate to silicon technology are 
obstacles preventing full exploitation of the characteristics of GaAs.

To help overcome these obstacles, knowledge of the advantages and 
disadvantages of GaAs and how they relate to the design methodology must be 
increased. To accomplish this goal, work is being conducted to study issues 
relevant to the design of a 32-bit GaAs processor. As an early participant in 
the design of GaAs processors [HeScZ85], RCA corporation selected Purdue 
University as a partner to study several of these issues. The goal of the study 
is to experimentally determine the effect of the silicon/GaAs differences on 
possible d®§igns- The results can then be used as guidelines for a set of design 
solutions which use the advantages of GaAs while minimizing the 
disadvantages of GaAs. These results were also used by RCA to help optimize 
the design of a 32-bit GaAs microprocessor.

This portion of the study presents three sets of experiments covering three 
different aspects of the design issues as they relate to ALU design in a wide
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The remainder of this introductory chapter will provide a brief perspective 
on the differences between GaAs and silicon, the logic families used in GaAs 
and their characteristics, and a comparison between the GaAs and silicon 
design parameters.

1*1» GaAs Advantages and Disadvantages
The advantages and disadvantages of using GaAs technology in computer 

systems are the result of inherent differences between current silicon and GaAs 
technologies. The differences are attributed to two major advantages and 
disadvantages of GaAs compared with silicon. The advantages of GaAs 
technology are a higher resistance to adverse environmental conditions arid 
faster switching speeds than silicon. The disadvantages of GaAs technology are 
higher cost and lower transistor count per chip than silicon.

The advantages are the result of the physics of the materials. Because of 
the short minority carrier lifetime, GaAs devices have a high resistance to 
radiation and can withstand dosages of 10-100 million RADS compared to 5-6 
thousand RADS for silicon devices [Heage85]. The large bandgap allows a 
range of operating temperatures from -200 and +200 degrees centigrade 
[EdLiW83] as opposed to silicon CMOS operating temperatures of -55 to +125 
degrees centigrade. These two facts alone make GaAs very promising for both 
military and aerospace applications where extreme operating conditions are the 
rule rather than the exception.

GaAs also performs better than silicon devices when comparing switching 
speeds [EdLiW83], The larger mobility and peak velocity of carriers allows 
GaAs gates to switch faster than silicon Transistor-Transistor Logic (TTL) 
gates by up to an order of magnitude. In addition to the switching speed 
advantage, GaAs gates also consume less power than the fastest silicon gates. 
The power consumed is an order of magnitude lower than that of the fastest 
silicon logic, Emitter-Coupled Logic (ECL), yet the gates remain faster than 
silicon ECL gates. This power speed product makes GaAs even more 
attractive for high performance computers.

GaAs technologies unfortunately have tremendous manufacturing costs: 
two orders of magnitude more expensive than their silicon counterparts. There 
are several reasons for the high cost and only five of these will be mentioned

sense. Arithmetic and logic unit design, and multiplier design and related
issues are the issues discussed in this thesis. Other processor issues such as
pipelining, instruction format, and register file design are covered in another
thesis [Fura85].
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here. One of the basic reasons is the scarcity of gallium. Silicon makes up a. 
large percentage of the earth’s crust while gallium is a rare metal. Second, 
since GaAs is a composite material, the additional processing needed to create 
the compound and verify its composition [Namor84] increases the cost. Third, 
because of its structure, GaAs is also characterized by a higher dislocation 
density than silicon [Walle84]. This results in a poorer yield for GaAs 
fabrication processes. The fourth factor that raises the cost of GaAs is the 
sophisticated processing techniques required to produce working GaAs 
transistors. One example is the uniformity of threshold voltages that must be 
maintained. Voltage swings for some GaAs devices are as low as 0.5 volts and 
require that threshold voltages be uniform to within a very narrow range. This 
narrow range also adds to the fifth factor: design costs. Digital designers are 
discouraged from using NAND logic because they cannot use multiple input (> 
2) NAND gates because each additional input requires a significant amount of 
additional voltage swing and the total voltage required quickly passes the 0.5 
volt limit. Designers are also limited by the low fanin and fanout maximums 
of the GaAs E/D-MESFET technology. . Although these problems exist, the 
solutions are currently being pursued. By the end of the decade, solutions will 
be found which should reduce the cost difference to only one order of 
magnitude [Namor84].

The second disadvantage of GaAs processes, their low transistor count, is 
limited by two factors. Initially, the high defect density required that chips be 
manufactured with a small area and corresponding low transistor count to 
achieve adequate yields. As the quality of GaAs materials and processing 
improved, larger and more complex chips became possible. An increase in 
power that strained the limits of available heat dissipation techniques followed 
the increase in complexity. Although new techniques were developed to 
improve the heat dissipation, the added power increased the number of 
potential reliability problems. Currently, the restrictions on transistor count 
are power dissipation and defect density.

Although the problems present in the GaAs environment may he resolved, 
it is believed that none of these four GaAs-Si advantages and disadvantages are 
temporary in nature; they result from inherent differences between GaAs and 
silicon materials [Coope84b]. Therefore, conclusions that are based on these 
four fundamental characteristics will remain valid as GaAs technology matures.



1.2. Design Methodology Changes
Because the differences between the GaAs and the silicon environment are 

not trivial in nature and affect some of the fundamental design decisions, 
merely copying existing silicon designs into the GaAs environment will not 
obtain the most robust GaAs performance. The new environment sets up a 
new set of rules and challenges. Although the hurdles that must be leaped to 
meet these challenges are higher, the rewards for successfully exploiting this 
technology are also greater. With the proven high speeds of GaAs circuits and 
the VLSI integration levels that are now appearing, we are on the verge of 
achieving single chip processors capable of speeds for scalar operations 
approaching that of present-day supercomputers [Hwang84].

To achieve the performance expected from GaAs, the design must be 
considered from more than one viewpoint. The differences can be looked at 
from a processor standpoint. How the GaAs technology affects the internal 
processor logic becomes important. The transistor count limits how many and 
what functions can be placed on the chip. The device limitations determine 
how structures such as the ALU can be designed and which structures are 
possible in the GaAs environment.

The design can also be considered from a system standpoint. How device 
delays affect offchip communication delays becomes important. The device 
delays determine what structures can be placed offchip without adversely 
degrading system performance and the communication of these structures with 
the system. The transistor count limits the complexity of the support chips 
and the number of support functions that can be efficiently used by the system.

1.3. Overview of Thesis
The purpose of this thesis is to relate these new design parameters to 

specific applications. The parameters will be examined to see how they affect 
design both from the system standpoint and from the processor standpoint in 
relation to CMOS and GaAs designs. Tradeoffs which must be made when 
going from CMOS designs to GaAs designs, and the impact of technology on 
the designs will be examined. There have already been papers on the general 
problems of GaAs from both standpoints [MiSiF86][MiFull86]. This thesis will 
cover details of the differences as they apply to specific problems. The effect of 
the technology on the design of the processor’s adder will be covered to 
acquaint the reader with processor design problems. ALU design is covered in 
a broad sense by examining possible multiplier choices and tradeoffs between 
multipliers and barrel shifters. These choices cover placement as well as
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complexity and structure. Both adder and multiplier performance can be 
affected by system issues such as cache design. Therefore the impacts of the 
technology change on cache design and how this affects adder and multiplier 
design will also be examined. GaAs designs in each of these three areas will be 
contrasted with similar CMOS designs to provide the basis for comparison of 
the technology generated differences.

Chapter two begins the comparison by examining the differences between 
GaAs and silicon relevant to these structures (adders, multipliers, cache) 
regardless of application. Chapter three describes the tools used for the 
evaluation and the evaluation methodology. Chapters four through six 
describe in detail the experiments done to evaluate the GaAs/silicon differences 
in designs. Chapter seven summarizes the results of the experiments in the 
previous three chapters.
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CHAPTER 2
TECHNOLOGY AND IC DESIGN

As Si technology matured, it went through major changes. Similarly, 
GaAs technology is still developing and maturing. This growth is accompanied 
by the development of new logic families such as High Electron Mobility 
Transistors (IIEMT), Hetero-Junction Bipolar Transistors (HJBTj, and 
Enhancement mode MEtal Semiconductor FETs (E-MESFET). These families 
are an addition to existing families such as IGFETs and JFETs, and the 
earliest family, Depletion mode MESFETs.

As GaAs IC development matured, the level of integration of each family 
also increased. The family chosen for implementation of single chip processors 
and their support chips such as those discussed here must be able to support 
VLSI levels of integration. The MESFET families have reached a level of 
integratibn higher than any other logic family. Other families have achieved 
better performance than MESFETs but no others have achieved VLSI levels of 
integration. Therefore, we have confined our work to the GaAs MESFET 
family.

Some of this information is also presented in [MiFuH86]. This chapter 
contains an update of this information and additional material dealing with 
E/D-MESFET technology is presented here. The material is presented here as 
an aid to the reader.

2.1. GaAs MESFET Logic Families
Both depletion-mode MESFETs (D-MESFETs) and enhancement mode 

MESFETs (E-MESFETs) have been used to build MESFET logic circuits in 
GaAs. The depletion mode devices are generally considered better than the 
enhancement mode devices because of several important differences, D- 
MESFETs have better noise immunity, have fewer fabrication problems, are 
less sensitive to increases in fanin and fanout, and are generally faster than E- 
MESFETs. Their disadvantages are that D-MESFETs require a second power 
supply and extra logic to provide level shifting. E-MESFET designs with their 
low area requirements are often used because they require less power and less
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complex circuit design than D-MESFETs [EdWeZ79]. In addition, E-MESFET 
designs are not saddled with the disadvantages of D-MESFET designs.

Three principal GaAs MESFET logic families are in use today. They are 
Buffered FET Logic (BFL) and Schottky Diode FET Logic (SDFL) of the D- 
MESFET family, and Direct Coupled FET Logic (DCFL) of the E-MESFET 
family [NuPeB82].

The earliest work in GaAs digital circuits was done with BFL D- 
MESFETs [VanLi74]. The disadvantages of these gates are their requirement 
for much power and area, and their need for two power supplies and voltage 
shifting logic. These disadvantages are compensated for by the large fanout 
capabilities and large noise margin of BFL gates. In an effort to reduce power 
requirements, low-power BFL (LPBFL) circuits were introduced.

Early BFL gates were characterized by propagation delays of 34 ps with 
power dissipation of 41.0 mw/gate [NuPe82]. The LPBFL gates reduced power 
dissipation to 6.0 mw/gate with delays of 250 ps as part of a 40 gate 4-bit 
ripple carry adder [PeDaN83]. A more recent LPBFL design used 420 gates to 
implement a 32-bit adder with gate delays of 230 ps dissipating only 2.8 
mw/gate [YaIIiA83]. The most advanced BFL design is a 12x12 bit multiplier 
implemented with only 1083 gates [FuTal84]. The gate delays were only 170 
ps and each gate dissipated 1.7mw.

SDFL D-MESFET gates are a low power alternative to BFL logic gates 
since SDFL gates generally require less power and area than BFL gates. 
Because of the reduction in area, this family has received considerable interest 
for LSI circuit applications [EdWeZ79][NuPeB82] and was the first to reach LSI 
levels of integration. Despite the improvements, SDFL gates still need two 
power supplies and level shifting logic.

One of the first LSI GaAs applications was an 8x8 bit multiplier 
containing 1008 gates using SDFL logic [LeKaW82]. Gate delays Were 150 ps 
and power dissipation was only 1.5 mw/gate. More recently, an SDFL 
RAM/gate array chip with 8000 devices has been built [VuRoN84]. 
Approximately 3000 FETs and 5000 diodes were used to create a chip with 432 
programmable SDFL cells, 64 bits of RAM, and 32 interface cells. Although 
the complexity had increased over previous designs, the speed and power 
remained the same. Low-power predictions for the same design suggest that 
gate delays of 300 ps and power levels of 0.2 mw/gate are possible.

Although E-MESFETs lack some of the advantages of D-MESFETs, they 
are considered suitable for VLSI implementations because of their low power 
requirements and simpler circuit designs. They have long been considered
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suitable for VLSI implementation [NuPeB82]. Their suitability is enhanced 
because they require no logic level shifting logic and only a single power supply. 
The most common E-MESFET logic gate is the Enhancement mode driver/ 
Depletion mode load MESFET (E/D-MESFET). Since E/D-MESFETs are 
more difficult to fabricate than the previous two logic families, it was not until 
recent advances in GaAs fabrication technology were made that this family was 
able to reach VLSI levels of integration and began to dominate GaAs digital 
designs.

A number of designs have been introduced using DCFL E/D MESFET 
logic gates. A 1000 gate gate array has been designed with loadless gate delays 
of TOO ps and power dissipation of 0.2 mw/gate [IkToM84]. This was proof 
that DCFL circuits could switch faster while using less power than SDFL 
circuits. A slightly larger 16x16 bit parallel multiplier containing 3168 gates 
with gate delays of 150 ps at 0.3 mw/gate has also been reported [NaSuS83]. 
The highest level of integration reported so far for any GaAs process is a 16kxl 
SRAM containing 102,300 devices with an access time of 4.1 ns and power 
dissipation of 2.5 w [IsInI84].

2.2. Characteristics of GaAs MESFET Designs
Table 1. is presented here to compare the performance characteristics of 

some GaAs MESFET designs. Based on the power and complexity of the chips 
presented in the table, GaAs technology is clearly becoming a suitable vehicle 
for microprocessor implementations. Based on its low power requirements, the 
most promising MESFET solution is provided by the DCFL E/D-MESFET 
approach. The merits of DCFL are demonstrated by the SRAM which 
provides a high level of integration, 102,300 FETs, with low power, 2.5 watts 
[IsInI84]. The current major drawback to this approach is its fabrication 
complexity and resulting low yield and high cost. Based on the present rate of 
fabrication technology improvement, however, the introduction of GaAs 
microprocessors should occur within the next two or three years. We must, 
therefore, begin to understand the GaAs environment now and determine how 
the characteristics of GaAs will influence processor and system architecture 
design in the new environment. We will then be ready as it steps to the 
forefront of high-speed, environmentally adverse applications.



Table 1. Performance Characteristics of GaAs Designs [Fura85|.

Unit

ARITHMETIC
32-bit adder(BFL)
8x8 multiplier (SDFL) 
16x16 multiplier
(DCFL)

Speed
M

2.9 total
5.2 total

10.5 total

Power
(W)

1.2W
2.2W
LOW

Device
Count

2.5K
6.0K

10. OK

Reference

[YaIIiA83]
[LeKaW82]
[NaSuS83]

CONTROL
gate array/SRAM 0.15/gate 3.0W 8 OK [VuRoN84]
(SDFL)
1000-gate gate (DCFL) 0.10/gate 0.4W 3.0K [IkToM84]
MEMORY
IK bit SRAM (DCFL) 2.0 total 0.5W 7 IK [AsIvuH83]
4Kbit SRAM (DCFL) 2.8 total 1.2W 26.6K [HiInM84]
16K bit SRAM (DCFL) 4.1 total 2.5W 102.3K [Islnl84]
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2.3. GaAs/Silicon Comparison
Since DCFL has been shown to have a sufficient level of integration with 

acceptable speed and power, all discussion of GaAs circuits will be based on the 
DCFL E/D MESFET logic family. All of our Si discussion will be based on 
CMOS/SOS (silicon on sapphire).

Table 2 [BasNe84] compares several characteristics of GaAs and Si 
technologies that are important for processor and system design and 
optimization. Significant GaAs/Si differences can be observed in four areas: (1) 
transistor count per chip, (2) on-chip gate delay, (3) the ratio of off-chip to on- 
chip memory access time, and (4) gate fanin and fanout. The rest of this 
section will concentrate on the GaAs/Si differences from Table 2. The 
implications of these differences on processor and system design will be 
presented in the following sections.

The differences between GaAs and Si are substantial and will affect 
processor and system designs. The next section will discuss the implications of 
GaAs characteristics on aspects of specific design issues.



Table 2. Performance Comparison of E/D-MESFET GaAs, 
CMOS/SOS, and Bulk Silicon.

GaAs CMOS/SOS CMOS/BULK

COMPLEXITY
Transistor Count/Chip 20-30K 150 K plus 150 R plus

Chip Area yield & power yield & power yield fc power
dependent dependent dependent

SPEED
Gate Delay 50-150 ps .8-1.5 ns 1-3 ns

On-chip Memory Access 0.5-2.0 ns 10-20 ns 20-40 ns
Off-chip/On- package 

Memory Access

4-8 ns 30-40 ns 40-80 ns

Off-chip/Off- package 10-60 ns 60-100 ns 100-200 ns

Memory Access •

IC DESIGN

Transistors/Gate 

Transistqrs/Memory Cell
1 + fanin 2*fanin 2*fanin

Static 6 5-6 5-6
Dynamic 1 n/a n/a

Fanin (typical transistor 2-3 5 5

■ size)'
Fanout (typical transis 3-5 5 5
tor size)
Gate Delay Increase for 
each Additional Fanout 
(relative to gate delay

25-45% 25-40% 20-30%

with fanout =0)
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CHAPTER 3 
EVALUATION TOOLS AND METHODOLOGY

For each of the three areas of interest (ALU, multiplier, and cache effects 
on multiplier design). Experiments were run to determine optimal 
implementations. The circuit level and instruction level simulators used 
required two sets of support tools for the evaluation. The circuit level 
simulator was used for the adder experiments and the instruction level 
simulator was used for the multiplier and cache experiments.

3.1. Circuit Level Simulation
The goal of the circuit level simulation was to obtain a realistic measure of 

circuit complexity and delay and to determine if the resulting VLSI adder 
implementation was fast enough and small enough to meet the limits imposed 
by RCA. Delay estimates for the circuits were included. The relevant aspects 
of this methodology, the delay estimation and the area estimation, are now 
discussed.

3.1.1. Area Estimation
The circuit level simulation is based on the Hardware Description 

Language (HDL) [T.I84] design tool made available to us by RCA. A digital 
design could be entered into HDL using the description language. Once the 
circuit was properly described, usually on a gate by gate basis, the input file 
was compiled into a database and a simulation could be run on the compiled 
database. This database was also used as an input to RCA’s Multi-Port 2- 
Dimensional (MP2D) placement and routing program that could provide 
layouts of the circuits described. The goal of this was to obtain a realistic 
measure of complexity and to determine if the area of the VLSI 
implementation was small enough. Rather than estimating gate counts and 
wiring space for an adder, these programs allowed us to obtain layout statistics 
for structures without having to go through fabrication.

Each design was entered into the database using HDL. Once the circuit 
was described on a gate by gate basis, the input file was compiled into the



13

database. A list of devices and connections was then extracted from the 
compiled data base for the layout program, MP2D. MP2D then took the lists 
and created a layout that could be used for fabrication of the devices. Five 
different word lengths were used for the layouts. The areas for the layouts 
Were used to derive the equations used to approximate the area occupied by 
each adder. The equations were then entered into a C-language program which 

used to approximate the area for individual adders. This program was 
used to calculate the area required for the 35 adders that were not described on 
a gate by gate basis using HDL.

3.1.2. Delay Estimation
The design delays were implemented in C-language because access to the 

circuit simulation software was not granted. Optimization was done in a 
manner analogous to hand optimization in all but the most complex design 
choices. Many of the choices were also fixed before optimization began. The 
use of the C-language programs allowed the flexibility to change any of the 
delay parameters at any time and see the results in the period of a few minutes 
rather than a few days. Accuracy compared to HDL was not lost from lack of 
wiring information since the circuit simulation program did not include wire 
delays in any delay calculations. The section on adder design shows that this 
was not a severe problem.

3.2. Instruction Level Simulation
The instruction level simulator was used to obtain program execution time 

to determine the performance of the architectures. The relevant aspects of this 
methodology are the workload model, the baseline architecture, and the 
method of translation between them.

3.2.1. Workload model

The workload model was a set of ten small benchmark programs obtained 
from Stanford University written in the high level language PASCAL. The 
following list gives their names and their functions:

(A) ack a highly recursive program to compute Acker maim’s 
function,

(2) bubble a program to perform a bubble sort of 500 integers,
(3) fib a highly recursive program to compute a Fibonacci number,
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(4) intmm a computation heavy program to multiply two 40x10 
element integer matrices,

(5) perm a highly recursive program to calculate all permutations of 
the numbers one through seven,

(6) puzzle an iteration heavy, computation heavy program to solve a 
three dimensional cube packing problem,

(7) queen a program to solve the eight queens problem,
(8) quick a program to perform a quick sort of 5000 integers,
m sieve a program which implements Erathosthenes sieve to compute 

the number of primes between 0 and 8190,
(10) towers a highly recursive program to solve the towers of hanoi 

problem with 18 discs.

This set of benchmarks represents a broad range of program classification, 
from highly recursive programs such as towers and ack to computationally in
tensive programs such as puzzle and intmm.

3.2.2. Architecture Simulator and Analysis
The architecture simulation tools are based on an instruction level 

simulator [Gross84] written by Stanford University for the SU-MIPS processor. 
SU-MIPS is an example of a Reduced Instruction Set Computer (RISC) 
architecture, and was one of the first “RISCs”, preceded only by the IBM 801 
[Radin83] and Berkeley RISC [Katev83]. The SU-MIPS architecture was 
selected by Darpa [Barne85] because its low transistor count is compatible with 
GaAs E/D MESFET capabilities of the near future.

To better understand the experiments, several SU-MIPS features must be 
explained. First, SU-MIPS uses a “delayed branching” scheme with a branch 
delay of one. This means that the first instruction after every branch operation 
is always executed. This places a burden on the compiler to find a useful 
instruction for the fillin slot or to insert a NOOP into the slot if no instruction 
can be found. Second, the data from a data load operation is not valid until 
after the instruction following the data load instruction. The compiler must 
therefore find useful instructions for the fillin slots after load instructions. 
Third, “instruction packing” is employed by the SU-MIPS processor. Certain 
SU-MIPS instructions contain two operations, one of which is always an ALU 
operation. The operations are executed sequentially in the time necessary for a 
single instruction fetch. Since not all instruction combinations may be packed, 
instructions may contain either one or two operations. In addition, the system
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clock runs at twice the frequency of instruction fetches to subdivide each 
instruction cycle.

These features of SU-MIPS result from implementing the pipeline interlock 
mechanism in software rather than hardware. This eliminates hardware that 
suspends the pipeline waiting for data loads and branches. In addition to a 
reduced transistor count, performance increases since some instructions 
following a branch or load will be executed. In a conventional architecture, the 
processor is suspended during that time and does nothing.

I designed and helped implement the cache simulator that was used as 
part of the SU-MIPS simulator. The cache simulator receives both an address 
and data and returns the number of instruction cycles required for the access 
while updating the data and tag information. The cache simulator was 
designed to allow run-time modifications to the cache size, block size, prefetch 
strategy, cache miss delay, and memory access delay.

The different architectural features were studied by making appropriate 
modifications to the SU-MIPS simulator and cache simulation programs and 
then recording the benchmark execution time. These changes were necessary 
due to the differences between the SU-MIPS architecture and the architecture 
being studied. The changes were also generated by the GaAs processor 
implementation.

3.2.3. SU-MIPS Compiler and Translation Software
This study used a compiler, reorganizer, optimizer, and linker/loader 

written by Stanford. This translation software was not modified by us, and 
hence, was limited to translation of PASCAL source code into the instruction 
set of the Si based SU-MIPS instruction set. Modifications were not done 
because they involved understanding and rewriting the topic of a PhD thesis 
[Gross83], Much of the difficulty in performing the experiments resulted from 
our inability to generate optimized code targeted to each of the candidate 
architectures. The implications of this are described in the following sections.
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CHAPTER 4
CHOICE OF ADDER DESIGNS

4.1. Introduction
As previously mentioned, the differences between Si and GaAs technologies 

require different solutions to the same problem. Silicon technologies typically 
require high-speed adders to achieve high performance. This is because of the 
relatively small ratio of the memory access time to the data-path times. For 
example, the NMOS-silicon HP-FOCUS utilized a full carry look-ahead adder 
to satisfy its 55ns cycle time [BeDoF81].

Several adder designs for GaAs technologies are available ranging from the 
high-speed, large area full-carry-look-ahead adder to the low-speed, small area 
ripple-carry adder. Others having speeds and resource requirements between 
these two extremes include conditional-sum and carry-select adders [Hwang79].

When the switch from Si to GaAs technologies is made, the design changes 
are the direct result of three of the major Si/GaAs differences and the indirect 
result of the fourth. The differences as they apply to adder design are 
examined because the adder is an integral part of the cpu and directly affects 
the data-path time and performance.

The transistor count limits the complexity of any adder that is 
implemented. If the chip is limited to 30K transistors, then any adder that 
requires 10K transistors is unacceptable. Even lower limits may be established 
if some chip area is reserved for a large register file. The low on-chip gate 
delays can enhance performance by simply replacing their Si counterparts and 
reducing total delay. Often, implementation of high-speed adders requires high 
gate count designs.

The limited gate fanin and fanout affect both the area needed and the 
delay incurred. Single gates with high fanin and fanout must be implemented 
as a series of gates with low fanin and fanout which increases transistor count. 
Because delay is highly dependent on load capacitance, high fanout devices 
have a relatively large delay. If a tree is built in a random fashion, this 
dependence may cause the delay through N levels of high fanout gates to
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exceed the delay through N + l levels of low fanout gates.
The ratio of off-chip memory access time to on-chip memory access time 

indirectly creates additional GaAs/Si differences. When this ratio is large, a 
memory pipeline is often used and is several levels deep. When this depth 
exceeds the average distance between branch instructions or the branch delay, 
NOOPs must be found to fill the pipeline until execution of the branch 
instruction is completed.

4.1.1. Pipeline Depth

The memory pipeline depth is determined by ratio of the memory fetch 
time to the data path time. If the data path time is lengthened by allowing 
the adder to take longer, then the pipeline depth decreases and fewer NOOPs 
must be inserted into the instruction stream. This decreases both idle time of 
each processor stage and memory usage. The lengthening of the adder time 
can be done by replacing a full carry look-ahead adder with a ripple carry 
adder. This will probably occur only in a GaAs environment since most Si 
systems do not have deep memory pipelines. Without a deep pipeline, 
increasing the data path time would increase execution time. In addition, the 
delay of the ripple carry adder is of the same order of magnitude as the delay 
of the full carry look-ahead adder with GaAs technology. The narrow 
separation of the delays is different from Si technology where the delays are 
vastly different.

4.1.2. Adder Type
As mentioned, this set of changes (transistor count per chip, on-chip gate 

delay, the ratio of off-chip to on-chip memory access time, and gate fan in arid 
fanout) affects the choice of adders in many ways. Traditionally, the full carry 
look-ahead has been preferred for high speed applications and ripple carry 
adders have been discounted for all but the shortest wordlength. Reevaluation 
of the adders may show that the fastest adder in Si is not the best or fastest in 
GaAs technology. The new technology will also improve the performance of 
the slower adders. Therefore, this section is devoted to the change in adder 
performance from the Si environment to the GaAs environment arid how it 
affects the choice of adder designs.
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4.2. Evaluation Methodology

The choice of adder structures was influenced by previous research 
[FurMi85], [Sherb84]. To cover the range of possibilities for our analysis, an 
adder with a low number of stages but with high fanin and fanout 
requirements and another adder with low fanin and fanout requirements were 
chosen: the full carry look-ahead adder and the ripple carry adder. To make 
the list complete, an adder that was a compromise between the two extremes 
was chosen. This choice was the carry select adder presented in [Katev83] 
which ran stages in parallel rather than serially while still keeping the fanin 
and fanout requirements low.

To complete the list of adder parameters for various applications, each 
adder type was examined for bit lengths from four to thirty-two bits. To 
determine the effect of technology changes, designs with the following fanin and 
fanout limitations were examined: fanin = two and fanout = two, fanin = two 
and fanout = five, and fanin = five and fanout = five. To show the effects of 
different technologies when determining gate delays, the delay per fanin and 
fanout and the base delay for each gate was varied. These parameters were 
then used to generate delay information for each adder for the first test. Adder 
delays give no information about implementation difficulties. Therefore, for 
the second test, we generated a hardware description for a subset of adder 
lengths for each adder type. The descriptions were input to the automatic 
layout tool, MP2D, which then calculated areas for each adder type.

4.3. Experiment Procedure
The first of the two tests was to determine the delay for each adder type 

by deriving the delay formulas for speed comparisons based on fanin, fanout 
and bit length. In addition, the delay per additional fanin and fanout and the 
base delay for gates could be controlled. These formulas could then be used to 
compare the adders. When the formulas were developed the circuit simulation 
software was not available. Therefore, the formulas were implemented in C 
language for each of the three adder types.

4.3.1. Adder Delays
The first step was to derive equations for a simple NOR gate which 

include the delays for the different inputs. Each NOR gate has five 
parameters:
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the rise and fall delay of the fast input, 
the rise and fall delay of the slow input, 
the fast input load capacitance, 
the fanout capacitance, 
the delay per additional fanout, 
the maximum fanin, 
and the maximum fanout.

The delay formula is 
delay ~ ( f logmaxfanin(Fanin)

+ (2 * * | ( [ logmaxfanout(Fanout) |+l)/2 J| - 1)

* (basefast(l) + Fast*Cfast) + basefast(l)+Fast*C0Ut.

where

f- l)*(baseslow(maxfanin) + Slow * Cfast

F ast 
Slow 
Gfast 
C0ut

F ast*C0Ut 
max fanin 
max fanout

and
basesiow(fanin) — delaybase+fanin*delay per fanin

— delaybase+fanin*delay per fanin

Another question is whether the delay caused by the conductors is 
significant compared to the delay of each gate. Given information on the 
Tektronix E/D MESFET process and information from their GaAs standard 
cell library, I was able to determine that the capacitance of the longest 
expected conductor was less than 1/4 of the lowest input capacitance of any 
device in the Tektronix GaAs standard cell library *.

The delay for each adder depends on several parameters:

D - the delay of the critical path,
N - the number of bits in the adder,
B - the value of the base time,
Cfi - the capacitance per additional fanin,
Cfo- the capacitance per additional fanout,
Nfi - the number of fanins,

t XI, the ceiling function, picks the smallest integer greater than X 
t IXJ, the floor function, picks the largest integer smaller than X.
* This information is not specified because it is Tektronix Confidential.
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Nfo - the number of fanouts,
T - adder type.

The overall formulas for delay generated always consider the varying 
delays between inputs. The formulas also take into account varying fanin and 
fanbut limitations. The general formula varies as D(N) = f(N, B, Cfi, Gfo, T, 
Nfi, Nfo).

For D(N) given T=ripple carry as shown in figure 4.1,

D(N) =■ xor(Cfifast + Cfislow) + carry(2*Cfifast)*N + xorfast(Cfifast) 

where

xor(Cout) = max( basefast(2)+Fast*Cfifast*2 +

basefast(2) + Fast*Cfislow + baseslow(2) + Slow*Cout, 

baseslow(2) + Slow*Cfifast*2 +

basefast(2) +Fast*Cfifast + basefast(2) +Fast*Cout ), 

xorfa8t(Gout) = min( basefast(2)+Fast*Cfifast*2 +

basefast(2) +Fast*Cfislow + baseslow(2) +Slow*Cout , 

basesk)W(2) + Slow*Cfifast*2 +

basefast(2) +Fast*Cfifast + basefast(2) +Fast*C0Ut), : ;

carry(C0Ut) = basefagt(2)+Fast*Cfifast + basefagt(2)+Fast*C0Ut , 

and once again

basesiow(fanin) = delaybase+fanin*delay per fanin

and

basefast(fanin) = delaybase + fanin*delay per fanin.

For D(N) given T=carry select as shown in figure 4.2, when m ^ |VnJ 

D(N) = xor(Cfifast + Cfislow) + carry(2*Cfifart)*m + xorfast(Cfifast) +

mux(m, 2*Ofifast)*'l.N/m J + mux(N%m,2*Cfifast)

where
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Figure 4.1 Block Diagram of Ripple Carry Adder
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mux(m, Cout) = outtree(m, Cfifast) + basefast(l)+Fast*Cfifast + 

basefast(2)+Fast*Cfifast + basefast(2)+Fast*c0Ut)

and - v.
outtree(m, Cout) = ( | logmaj{fanout(m) |-1)

* (basefast(l)+Fast*Cfifast*maxfanout)

+ basefast+Fast*Cout*maxfanout,

but if | loSixiaxfaiiou^ni) | is odd then 

delay = delay +basefast(l)+Fast*Cfifast.

For D(N) given T=full carry look ahead as shown in figure 4.3,

D(N) = xor(Cfifast + Cfislow) + carrytree(N, 2*Cfifas(.) + xorfast(Cfifast). 

where

carry tree(m,Cout) = outtree(^—+l,Cfifast)

+ intree(m,Cfifast) + intree(m,Cout) ,

and

intree(m, ^out) = ( f logmaxfanin(m) |-1)

* ((baseslow(maxfanin)+Slow*Cfifast)

+ basefast(l) +Fast + Cfislow)

+ baseslow(maxfanin) + Slow*Cout.

These equations were then implemented in C for each adder. The base 
gate delays and delays per additional fanin and fanout were implemented as 
variables set at compile time. This information was then plotted to show the 
difference between the adders as the technology parameters were varied.
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Figure 4.3 Block Diagram of Full Carry Look*Ahead Adder
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4.3.2. Adder Area

So far only the delay of the individual adders has been discussed. The 
delays can then be used in conjunction with the area consumed to evaluate 
each adder Determining the area consumed was done as part of the second 
test where each adder was created with HDL. Gate level descriptions of each 
adder complete with timing information could be entered using the description 
language. The resulting description was run through a translation program 
that extracted and formatted the data for MP2D, the automatic layout 
program. MP2D, multi-port 2-dimensional placement and routing program, 
took the translated HDL information and generated layouts for portions of the 
adders and for complete adders. Included with this information was the actual 
layout and area that each design required, as well as the approximate area per 
transistor including wiring areas. The data was then used to build general 
curves and equations to approximate any of our adders. These curves allowed 
us to compare the adders on this second criterion to better estimate their 
viability in a GaAs environment.

The area of ripple carry adders was calculated by interpolation along a 
straight line between known points. This was relatively accurate since the data 
were very linear. The area for a carry select adder of bit length N, when
m= \/N , is approximated by the following formulas.

A(N)=areapg(m) + areapg(N%m)

+(m-l)*2*(areacg(m) +areacg(N%m)) +areacg(m)

V + (m—1)*( areamux(m)+areamux(N%m))

m*(areaSum(m) +areaSum(N%m))

where

Pg(m) = area of an m-bit propagate generate box,
cg(m) = area of an m-bit carry generation box,
mux(m) = '■ area of an m-bit mux, and
siim(m) = area of an m-bit summation box.

The area for a full carry look-ahead adder of bit length N is approximated by 
the following formulas.

A{N)=areapg(N) + areasum(N) + fanoutcarry_in(N)
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i=n-l
+ E (markfanOUtsenerate(N-i)

i=0

+fanoutpropagate((i + l)*(n-i) +1) + areacarry(i +1)) 

whiere

area of an m-bit fanout tree and 
area of the mth carry bit.

4.4. Presentation of Results
Using all the delays and the areas for each adder type, the difference in 

adder design for Si and GaAs technologies can be described.

4.4.1. Adder Delays
The delay programs used the given formulas to generate the delay data 

presented in figures 4.4 through 4.9. The first set of three figures displays the 
delay of each adder in a GaAs technology for the three fanin and fanout 
configurations. The second set of three figures displays the delay of the adders 
in a Si technology for the fanin and fanout configurations. Each figure shows 
delay in picoseconds versus word length in bits. Simplifying the adder 
equations shows that the delay of the ripple carry adder increases by O(N) 
(Order N), the carry select adder increases by 0(log(N)N1/2), and the full carry 
look-ahead adder increases by 0(log(N)), where N is the bit length of each 
adder. For large N, the comparison shows that the full carry look-ahead adder 
will always be faster than the carry select adder, and both will be faster than 
the ripple carry adder. The technology determines the key parameters that 
determine the magnitude of the difference in delay time and the fastest adder 
for short bit length adders.

Although the ripple carry adder has delays increasing linearly to values 
greater than either of the other two adders, the delays of the carry select adder 
and the full carry look-ahead adder are increasing at almost the same rate. For 
the bit length of interest (32 bits), the propagation delay through the full carry 
look-ahead adder is two-thirds that of the carry select adder. Figure 4.6, where 
the maximum fanin and fanout are five, shows this much more clearly than 
figure 4.4 where the maximum fanin and fanout are only two. The differences 
in the delays are due to the slow rise time of the E/D-MESFET gates and the 
long base delays of the CMOS/SOS gates.

fanout(m) — 
carry(m) —
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The slow rise time severely degrades performance as fanin and fanout 
increases as shown by the large difference in execution times for figures 4.4 and 
4.6, and 4.7 and 4.9. When only the rise time is changed, the speed of the 
individual adders increases dramatically as shown in figures 4.10 through 4.12. 
Unfortunately, the GaAs E/D-MESFET process is not characterized by such 
fast rise times and fast total delays.

If the designer wants to avoid an excessively deep memory pipeline, then 
he should also consider the ripple carry adder. Since the design is characterized 
by low fanout, the change in maximum fanout from Si has almost no effect. In 
addition, the delay is only twice that of the full carry look-ahead adder and 
could increase the total data path time of a processor such as SU-MIPS 
[Gross82] by 30 percent. This would allow the designer to reduce the memory 
pipeline depth by the same amount.

4.4.2. Adder Area

As mentioned before, comparisons solely on the basis of adder delays are 
deficient. Therefore, the area consumed by each of the adders was plotted and 
is presented in figures 4.13 through 4.15. The area of each adder is shown in 
terms of mils squared and is plotted against the bit length of each adder The 
area required by the ripple carry adder increases linearly with bit length and 
rises at the slowest rate of the three adders. The area of the carry select adder 
is growing a little faster: O(N) plus an N1/2 component. The fastest adder, the 
full carry look-ahead adder, consumes area at a much higher rate, 0(N3). 
Although this is not surprising, the cubic growth rate quickly uses up the 
available area on a chip. This may not be obvious where fanout limitations are 
large and the fanout trees will not occupy a large area. A quick glance at the 
graphs quickly shows that even for large maximum fanin and fanout, the area 
consumed by the full carry look-ahead adder is unreasonable for large bit 
length adders. Only the ripple carry adder and the carry select adder conserve 
enough area to allow other structures to be placed onchip.

In summary, the GaAs environment quickly challenges long-standing 
conventions. Ripple carry adders are capable of performing the job without 
severe degradation of performance and can help reduce memory pipeline depths 
and improve performance. This supports using serial operations in GaAs, 
particularly when such, operations have low fanin and fanout requirements. 
For adders such as full carry look-ahead adders, the parallel nature uses area in 
such large quantities that they are not useful in a GaAs environment. Those 
adders that serialize operations with high fanin and fanout requirements while
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parallelizing operations with low fanin and fanout requirements make a good 
compromise. Carry select adders, which follow this principle, are shown as one 
of the fastest adders available as well as one of the more area efficient 
structures.
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CHAPTER 5
MULTIPLIER PLACEMENT

5.1. Introduction
Current RISC processors such as UCB-RISC [Patte85] have shown the 

usefulness of large register files and of windowed register sets. The area 
limitations of the GaAs environment do not allow such large structures. 
Possible GaAs architectures include as many as 32 registers, but this may not 
be the best use of space. The proposals discussed here use the area of 16 of 
those 32 registers for other structures such as barrel shifters and multipliers.

The choice of the proposed multiplier and barrel shifter was heavily 
influenced by previous work in this area. One influence was from the 
instruction mixes presented in [Knuth71]. Although these mixes are 
predominantly simple arithmetic and branching operations, multiplication was 
still significantly more frequent than operations such as division and shifting. 
By themselves, these mixes do not show the most important operations to 
investigate. However, the instruction mix of the benchmarks presented in 
figure 5.1 is used to describe the possible applications of the processor and help 
highlight promising operations to investigate. The instruction mix distribution 
shows that after the common operations such as loads, branches and simple 
arithmetic operations, multiplication was the most frequent operation and shift 
or rotate instructions occurred relatively infrequently. Since area is often 
sacrificed for performance and vice-versa, shifting speed can he reduced and 
area can be freed while multiplication speed can be increased by using the freed 
area. Since multiplication occurs so frequently and shifting occurs so 
infrequently, performance should improve when these changes are made.

5.1.1. Shifter Choice
The type of multiplier and barrel shifter still must be decided since there 

is a wide variety in their speed and complexity. The choice of shifters is 
relatively simple: use a full barrel shifter or a barrel shifter with a small shift 
capability. The implementation of any shifter for SU-MIPS allows a maximum 
shift of 2n—1. Since the shifter was chosen to minimize area and still be able to
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shift one and two bit positions, the maximum shift was chosen to be three. 
Choosing a shifter which shifts by one, two, or three bit positions requires that 
all large shift counts be synthesized with a series of smaller shifts. This does 
not incur a large penalty when there are very few shift instructions or most 
shift instructions have a small displacement.

5.1.2. Multiplier Choice
The choice of multipliers is a little more complex, ranging from parallel 

multipliers to synthesis of multiplication from shift and add instructions. After 
the initial evaluation, parallel multipliers were discarded because their 
complexity violates the transistor count limitations of the chip. Synthesis is 
discarded because of the excessive time necessary for a multiplication. Two of 
the remaining options are booth-step algorithms built into the hardware or 
bit-serial multipliers.

The booth algorithm can be built to multiply two bits of the multiplicand 
during each instruction cycle so that a 32x32 multiply takes 16 instructions 
plus the overhead instructions (loading and storing the operands and results). 
Although the booth-step algorithm can be built into the ALU and will be part 
of the data path, the bit-serial multiplier must be off the data path because it 
takes many system clock cycles to complete the multiplication. The bit-serial 
multiplier works serially and can take only one bit at a time which results in 32 
clock cycles to do a multiplication. Only 16 instruction cycles are needed to 
complete a multiply since the system clock runs at twice the instructions fetch 
rate. The performance can be improved by increasing the frequency of the 
bit-serial multiplier clock. The range of clock frequencies examined and the 
execution time are discussed later in this chapter. Another possibility 
investigated is to put the bit-serial multiplier off-chip and access it as a 
coprocessor.

Either of the bit-serial multiplier solutions create a delay fillin problem. 
Since the multiplier takes n cycles to complete, n-1 slots must be filled with 
other instructions waiting for the product to become valid. This is aggravated 
in the case of the off-chip multiplier since the delay to send operands off-chip 
and receive the results increases the delay fillin time. If the frequency of the 
bit-serial multiplier clock were increased, multiplication would take less time. 
This would require less delay fillin which consequently conserves memory.

Temporal conflicts between multiplication operations in multiplication 
intensive applications are also reduced. In multiplication intensive 
applications, the number of instructions (distance) between multiplication
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instructions is small. If the delay fillin is always smaller than this distance 
then the reorganizer may be able to fillin with useful instructions rather than 
NOOPs. Large delay fillins, however, may exceed the distance between 
multiplication instructions and require the reorganizer to insert NOOPs into 
the code. These unproductive instructions then reduce performance and 
increase memory usage.

The Addition of instructions also affects how the processor performs with 
cache. If the instructions are part of a loop, an instruction or data cache may 
improve performance.

5.2. Multiplier Placement Evaluation Methodology
With the above facts in mind, three implementations were examined. The 

first implementation is the original SU-MIPS [HeJoP83]. This implementation 
supports the booth-step multiplication algorithm which is built into the ALU 
and includes a full 32-bit barrel shifter. The SU-MIPS also has 16 32-bit 
general purpose registers. The second implementation, RCA-MIPS#Ml, 
retains the 16 registers but the barrel shifter is replaced by a simple shifter 
capable of shifting a 32-bit word one, two, or three bit positions. The space 
freed by the smaller shifter is used by a 32x32 bit-serial multiplier running on 
its own clock and faster than the system clock. The third implementation, 
RCA-MIPS#M2, uses the same one-two-three shifter as RCA-MIPS#Ml, but 
the bit-serial multiplier is moved to an off-chip on-package location. The space 
no longer used by the multiplier and shifter is used to increase the register file 
size from 16 to 32 registers.

5.3. Multiplier Experimental Procedure
The analysis of the various implementations was done in four parts. First, 

the SU-MIPS simulator [Gross83] was run to determine the performance of the 
baseline architecture for each benchmark. Second, the RCA-MII\S#Ml version 
of the simulator was run with the bit-serial multiplier clock rate set'to two; 
four, sue, eight, and ten times the system clock in the GaAs tests and one; two! 
four, six, and eight times the system clock in the Si tests. The difference 
between GaAs and Si parameters was due to the smaller ratio of instruction 
cycle time to device delay time in the Si technology compared to the GaAs 
technology. The number of NOOPs replaced by useful instructions during the 
multiply delay was set to zero, one, or two.

Third, the RCA-MIPS#M2 version of the simulator was run with the 
same fillin and system clock parameters. In addition, the time to get
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information from the cpu to the ofif-ehip on-package multiplier was set equal to 
two and four instruction cycles in the GaAs tests and one and two in the Si 
tests. The difference in parameters was due to the larger ratio of off-chip 
memory access time to on-chip memory access time in GaAs compared to Si. 
Each set of tests was run for the case of an optimized program and an 
unoptimized program. This optimization was an assembly level optimizer and 
is described in [GroHe82].

Before conducting each test, the changes in executable code for each of the 
simulator versions was determined. The simulator was then modified to 
interpret the execution of the instructions being examined. Each shift, by a 
constant was transformed to a series of smaller shifts demonstrated by sll #11, 
Rsrc which is transformed into

sll #3, Rsrc 
sll #3, Rsrc 
sll #3, Rsrc 
sll #2, Rsrc.

register for a variable count shifts use a jump table as

srl> $2, RCnt,^tmp
subr #8, Rtmp
bra #1, LI [Rtmp]
nop

sll #2, Rsrc sll #2, Rsrc
sll #2, Rsrc sll #2, Rsrc
sll #2, Rsrc sll #2, Rsrc
sll #2, Rsrc sll #2, Rsrc
sll #2, Rsrc sll #2, Rsrc
sll #2, Rsrc sll #2, Rsrc
sll $2, Rsrc sll #2, Esrc
sll #2, Rsrc sll #2, Rsrc
and #3, Rcnt,Rtmp
beq #0, Rtmp, LEND
nop
beq #1, Rtmp, LEND
sll #1, RSrc
beq #2, Rtmp, LEND

Shifts using the Lo 
shown below.
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sll $1, Rsrc 
sll Rsrc

LEND:

Shifting by a count was not done with a loop because the SU-MIPS instructions 
allowed a shorter assembly code implementation for a jump table. When a 
multiply or shift instruction was interpreted, the original instruction was 
executed. The benchmark statistics were then modified to reflect the execution 
of the sequence of instructions for the modified architecture.

Since the original code was always executed, the statistics were modified 
by the simulator to reflect the instruction mix and execution time of the 
modified code. This meant that the reorganizer could not do compile time fillin 
after multiplication instructions and forced us to assume the compiler would do 
delay fillin with a certain efficiency. We assume that the compiler will only 
fillin zero, one, or two instructions since the SU-MIPS reorganization algorithm 
was efficient for a fillin of one, was marginally effective for a fillin of two, and 
produced no noticeable improvement for fillin greater than two.

In addition, we tried to reduce the workload by limiting the performance 
analysis to the five benchmarks which have multiplication in them: bubble, 
mtmtn, puzzle, quick, and towers. The information gathered for the 
multiplication tests is shown in tables 3 through 8 for GaAs data and tables 9 
through 14 for Si data.

5.4. Presentation of Results
All the figures presented show the results with unoptimized code. The 

figures with optimized code are similar. However, the curves are all shifted 
down and the curves in each family have less separation between them. 
Figures 5.2 through 5.5 display the execution time of a benchmark against the 
ratio of the multiplier clock to the system clock for the on-chip bit-serial 
multiplier of RCA-MIPS#M1 for the GaAs parameters. The execution time 
for the Si parameters is shown in figures 5.6 through 5.9. Each curve 
represents a different delay fillin constant: zero, one, or two. Although the 
curves show the execution time decreasing as the multiplier clock ratio 
increases, the execution time is never better than in the case of the baseline 
architecture. This is true for any values of the delay fillin parameter used and 
for both GaAs and Si technologies. This could be due to many shift 
instructions with a large shift count. An example is the sra #31,Rsrc 
instruction which is frequently used for sign extension.
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The benchmarks available to run on the simulator never fully utilize the 
16 registers available on SU-MIPS. Therefore, they could not possibly use all 
32 registers on RCA-MIPS#M2. For this reason, changing the simulator to use 
32 registers would not change the results and, hence, was not done. As an 
alternative, a certain percentage of all loads and stores are assumed to occur 
because the register file has overflowed and memory had to be used for 
information storage. The load and store operations are tallied during 
execution. A percentage of the load and store operations corresponding to the 
amount of register file overflow are then subtracted from the total execution 
time. This percentage could then be varied for each run of the simulator. The 
effect of this is indicated in figures 5.10 through 5.13 for GaAs parameters and 
figures 5.14 through 5.17 for Si parameters. When the offehip delay parameters 
are increased, the plots shift up to show the increased execution time. Since 
the addition is linear, the shape of the graphs is unchanged as the delay is 
increased.

The next sets of curve families include register utilization percentages. 
Figures 5.18 through 5.21 again map the execution time of a typical benchmark 
against the clock ratio for GaAs parameters while figures 5.22 through 5 25 
map the execution time for Si parameters. Notice that as the percentage of 
load and store operations for register overflow increases from 30 to 90 percent, 
the execution time decreases. This would be an ideal situation, especially 
considering that the execution time of the baseline architecture was surpassed 
at around 20 percent. Even during parameter passing, the biggest user of the 
register file, none of our benchmarks came even close to complete utilization of 
16 registers. This low utilization gives a percentage of loads and stores used for 
overflow close to zero. An architecture with a larger register file would perform 
better with a compiler that utilizes registers more fully. Such compilers would 
have to do more register lifetime maximization, do more parameter passing in 
registers, save more data or pointers in registers, and otherwise utilize the 
register file more fully. Until such software is written, and benchmarks which 
will make use of such software are available, the point on the curve remains in 
question. The software was not modified because of time limitations and the 
large amount of software which would have to be modified. The details of this 
software are part a PhD dissertation [Gross84|.

The cache experiments could not be done by putting a cache simulator 
into the MIPS simulator because of our method of expanding and interpreting 
shift and multiply instructions at runtime. Inserting the expanded instructions 
into memory at runtime would change the model of memory during execution 
and would make the cache model inaccurate. In addition, the complexity of



48

modifying branch addresses on the fly is a larger task than could be 
accomplished in the available time. Alternatively, the compiler could be 
rewritten to do multiply fillin, but once again, the amount of work required is 
massive. Cache and multiplier simulation in the SU-MIPS simulator is of 
questionable value because of the implementation of the multiplier simulator. 
Therefore, the following chapter presents an experiment to determine the effect 
5f (Sahhd issues on multiplier design.
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Table 3
Execution Time for GaAs Onchip Multiplier with Optimized Code

bench ackp

(in terms of instruction fetches)

bubblep flbp iiimnop perm puzzfep queen quick sievep towerap

baseline 8180804 1190874 884880 1701020 887882 8040988 0829 1132900 100049 8888189

1=2, s=0 8180848 1240697 884880 2006849 887006 4988102 7290 1887720 100090 4601212

i= 2,8=1 8180848 1240097 884830 2882249 887008 4988102 7290 1882720 100090 4880712

i= 2,8=2 8180848 1289697 884880 2488049 887008 4988102 7290 1877720 100090 4272212

i= 4,8=0 8180848 1288897 884880 2311449 887008 4988102 7290 1807720 100090 4048212

i= 4,8=1 8180848 1288097 884330 2287849 887008 4988102 7290 1802720 100090 8928712

II«il 8180848 1237697 884880 2104249 887006 4988102 7290 1867720 100090 8814212

i= 6,8=0 8180848 1288097 884380 2287849 887008 4988102 7290 1802720 100090 8928712

i= 8,8=1 3180848 1287697 884880 2104249 887008 4988102 7290 1867720 100090 8814212

1= 6,8=2 3180848 1287097 884880 2090049 887008 4988102 7290 1662720 100090 8099712

i= 8,8=0 8180848 1287697 884880 2104249 887008 4988102 7290 1667720 100090 8928712

i= 8,8=1 8180848 1287097 884830 2090049 887006 4988102 7290 1882720 100090 8099712

i= 8,8=2 3180848 1280697 884880 2017049 887008 4988102 7290 1847720 100090 3886212

1=10,8=0 3180848 1237097 884880 2090049 887008 4988102 7290 1662720 100090 8888212

1=10,8=1 3180848 1280897 884880 2017049 887008 4988102 7290 1847720 100090 8888212

1=10,8=2 3180848 1280697 884380 2017049 337606

Table 4

4988102 7290 1647720 100090 8888212

Execution Time for GaAs Onchip Multiplier with Unoptimized Code

bench ackp

(

bubblep

in terms of instruction fetches)

flbp intmmp perm puzzlep queen quick sievep towerep

baseline 3101489 8171079 602121 8882427 481167 19313270 39280 1984792 397121 3888189

1=2,s=0 3101480 8216102 002121 8708480 431190 28486897 40047 2889308 397162 4801212

i= 2,8=1 3101480 3214002 002121 8808480 431190 24689809 40047 2884368 397162 4386712

i= 2,8=2 3101480 3214102 602121 8808480 431190 28922721 40047 2849368 397162 4272212

i= 4,8=0 3101480 3213102 602121 4908480 431190 22888846 40047 2839368 397162 4043212

i= 4,8=1 3101480 3212602 602121 4708480 431190 21621487 40047 2834368 397162 3928712

i= 4,8=2 3101480 8212102 002121 4808480 431190 20884809 40047 2829308 397162 3814212

i= 0,8=0 3101480 8212602 002121 4708480 431190 21021487 40047 2834308 397102 3928712

i= 0,8=1 3101480 8212102 602121 4808480 431190 20884309 40047 2829368 397162 3814212
|= 0,8=2 3101480 3211002 602121 4808480 431190 20087281 40047 2824308 397162 3699712

1= 8,8=0 3101480 3212102 002121 4808480 431190 20884869 40047 2829308 397162 3814212

i= 8,8=1 3101480 8211002 602121 4308480 431190 20087281 40047 2824368 397162 3699712

|=8,8=2 3101480 8211102 602121 4108480 431190 19320193 40047 2819368 397102 3888212

1=10,8=0 8101480 3211002 002121 4808480 431190 20087281 40047 2824368 397162 3099712

1=10,8=1 8101480 3211102 602121 4108480 481190 19320193 40047 2819368 397162 3888212

1=10,8=2 3101480 3211102 002121 4108480 431190 19320193 40047 2819368 397102 3888212
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Table 5
Execution Time for GaAs Offchip Multiplier with Optimized Code

(in terms of instruction fetches)
Offchip Delay of 2

bench ackp bubblep fibp intmmp perm puzzlep queen quick sfevep towersp
baseline 3180804 1190374 384330 1701026 337382 3040988 0329 1132900 16004# i&tem
i= 2,8=0 3180843 1240397 384330 3489049 337603 4983102 7290 1647720 166090 14175970
1= 2,s=l 3180843 1243397 384330 3341849 337603 4983102 7290 1037720 166090 14175970
i= 2,8=2 3180843 1244597 384330 3194049 337003 4983102 7290 1027720 106690 14176970
i= 4^=0 3180843 1242397 384330 2900249 337003 4983102 7290 1007720 100090 14173970
!= 4,8=1 3180843 1241597 384330 2733049 337603 4983102 7290 1597726 160690 14173970
i= 4,8=2 3180843 1240397 384330 2603849 337603 4983102 7290 1387726 166090 14176970
i=C^=0 3180843 1241597 384330 2733049 337603 4983102 7290 1397720 160090 14175970
i=e^=i 3180843 1240397 384330 2603849 837603 4983102 7290 1387720 166690 14176970
1= 6^=2 3180843 1239397 384330 2438649 337603 4983102 7290 1577726 160690 14175970
1= 8,8=0 3180843 1240397 384330 2603849 337003 4983102 7290 1387720 160690 14176970
i= 8,s=l 3180843 1239397 384330 2438049 337003 4983102 7290 1377720 160690 14176970
1= 8,s=2 3180843 1238397 384330 2311449 337003 4983102 7290 1307720 100090 14173970
1=10,8=0 3180843 1239397 384330 2438649 337603 4983102 7280 1577720 100090 14176970
1=10,8=1 3180843 1238397 384330 2311449 337603 4983102 7290 1567720 166090 14175970
1=10,8=2 3180843 1238397 384330 2311449 337603 4983102 7290 1567726 100090 14176970
1= 2,8=0,R=0.3 2018438 1129173 472780 3309988 271642 4398145 6462 1333327 142734 11703637
1= 2,8=1,R=0.8 2018438 1128175 472780 3222788 271042 4398145 6402 1343327 142734 11706037
i= 2,8=2,R=0.3 2018438 1127175 472780 3073388 271642 4398143 6462 1333327 142764 11703637
i= 4js=0,R=0.3 2018438 1123175 472780 2781188 271642 4398143 0402 1513327 142764 11706637
1= 4,8=1,R=0.S 2018438 1124175 472780 2033988 271042 4398143 6462 1303327 142764 11706637
1= 4,8=2,R=0.3 2018438 1123175 472780 2480788 271642 4898143 0402 1493327 142734 11706637
i= 6,8=0,R=0.3 2618438 1124175 472780 2633988 271642 4398145 6402 1303327 142734 11703637
i= 0,8=1,R=0.S 2618438 1123175 472780 2480788 271642 4398143 6402 1493327 142734 11703637
i= 6,s=2,R=0.3 2618438 1122175 472780 2339388 271042 4398143 0402 1483327 142734 11706637
1= 8,8=0,R=0.S 2618438 1128175 472780 2486788 271042 4398143 0462 1493327 142764 11703037
i= 8,8=1,R=0.3 2618438 1122175 472780 2339388 271642 4398143 6462 1483327 142734 11706037
i= 8,s=2,R=0.S 2618438 1121175 472780 2192388 271642 4398145 6402 1475327 142734 11706637
1=10,8=0, R=0.3 2618438 1122175 472780 2339388 271642 4398143 6402 1483327 142734 11703637
1=10,8=1,R=0.S 2618438 1121175 472780 2192388 271042 4398145 6402 1476327 142734 11706637
l=10,s=2,R=0.3 2618438 1121175 472780 2192388 271642 4398143 0462 1473327 142764 11703637
i= 2,8=0,R=0.9 1481623 894331 249681 3131806 139716 3224231 4807 1371129 94883 6704972
1= 2,8=1,R=0.9 1481623 893331 249681 2984660 139710 3224231 4807 1301129 94883 0764972
i= 2,s=2,R=0.9 1481623 892331 249681 2837400 139710 3224231 4807 1331129 94883 0704972
1= 4^=0;R=0.9 1481023 890331 249681 2343000 139716 3224231 4807 1331129 94883 0764972
1= 4,8=1,R=0.9 1481623 889331 249681 2393806 139710 3224231 4807 1321129 94883 0764972
1= 4,s=2,R=0.9 1481623 888331 249681 2248606 139710 3224231 4807 1311129 94883 0764972
i= 6,8=0,R=0.9 1481023 889331 249681 2393806 139716 3224231 4807 1321129 94883 6704972
1= 6,8=1,R=0.9 1481023 888331 249081 2248600 139716 3224231 4807 1311129 94883 0704972
i= 6,8=2,R=0.9 1481625 887881 249681 2101460 139710 3224231 4807 1801129 94888 0764972
1= 8,8=0,R=0.9 1481623 888331 249081 2248660 139710 3224231 4807 1311129 94883 6704972
i = 8 jS=l, R=0.9 1481623 887331 249081 2101400 139716 3224231 4807 1301129 94883 0764972
1= 8^=2,R=0.9 1481023 880331 249681 1934206 139716 3224231 4807 1291129 94883 6704972
i=10^=0jR=0.9 1481623 887331 249081 2101466 139716 3224231 4807 1301129 94883 0704972
i=10ys=l^R=0.9 1481623 886331 249081 1934260 139716 3224231 4807 1291129 94883 0764972
i =10,8=2, R=0.9 1481023 880331 249081 1934200 139716 3224231 4807 1291129 94883 0704972
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Table 6
Execution Time for GaAs Offchip Multiplier with Unoptimized Code

(in terms of instruction fetches)
Offchip Delay of 2

bench ackp babble? flbp intmmp perm puzzle? queen quick sievep towerep

baseline 3101439 3171079 302121 1781023 431137 19313270 39286 1984792 397121 3585189

1= 2,8=0 3101480 3221102 302121 8108450 431190 34331953 40047 2619335 397162 5876212

1= 2^=1 '.:v 3101480 3220102 302121 3489049 431190 33127777 40047 2609335 397162 5343212

1—2,8=2 3101480 8219102 302121 3341849 431190 31593801 40047 2599335 397162 5417212

1= 4^t=0 3101480 3217102 302121 3508450 431190 28525249 40047 2579335 397132 4959212

i= 4,8=1 3101480 3213102 302121 2900249 431190 23991073 40047 2539365 897182 4730212

1= 4,8=2 3101480 3215102 302121 2753049 431190 25453897 40047 2559335 397132 4501212

i=^=o 3101480 3218102 302121 3108450 431190 23991073 40047 2539335 397132 4730212

l=6^=l 3101480 3215102 302121 2753049 431190 25453897 40047 2559365 397132 4501212

1=«.*=2 3101480 8214102 302121 2305849 431190 23922721 40047 2549365 397132 4272212

«=8^=0 3101480 3215102 302121 5708450 431190 25453897 40047 2559335 897162 4501212

1= 8,8=1 3101480 3214102 602121 2805849 431190 23922721 40047 2549335 397132 4272212

1= 8,8=2 3101480 3213102 302121 2458349 431190 22388545 40047 2539335 397132 4043212

i=10,s=0 3101480 3214102 302121 5308450 431190 23922721 40047 2549335 397132 4272212

1=10,8=1 3101480 3213102 302121 2458349 431190 22388545 40047 2539335 397162 4043212

1=10,8=2 3101480 3213102 302121 2458349 431190 22388545 40047 2539365 397132 4043212

1=2,8=0,11=0.3 2429734 2910317 479951 7741229 348160 31839933 32513 2293219 338312 5339185

i= 2,8=1,R=0.S 2429784 2909317 479951 3339988 348130 30305787 32513 2283219 338312 6140185

i= 2^=2,R=0.3 2429734 2908317 479951 3222788 348130 28771311 32516 2273219 338312 4911185

1= 4,8=0,R=0.3 2429734 2903317 479951 3141229 348130 25703259 32516 2253219 338312 4453185

1= 4>=1,R=0.3 2429734 2905317 479951 2781188 348160 24169083 32518 2243219 338312 4224185

1= 4j8=2,R=0.3 2429734 2904317 479951 2333988 348130 22334907 32516 2233219 338312 3995185

i= o^=o,R=as 2429734 2905317 479951 5741229 348130 24139083 32516 2243219 338312 4224185

1= 0,8=1,R=0.S 2429734 2904817 479951 2633988 348160 22334907 32518 2233219 338312 3995185

i= 6,s=2,R=0.3 2429734 2903317 479951 2483788 348130 21100731 32518 2223219 338312 3760185

i= 8,8=0,R=0.S 2429734 2904817 479951 5341229 348160 22334907 32516 2233219 338312 3995185

1= 8,8=1,R=0.3 2429734 2903317 479951 2483788 348130 21100731 32516 2223219 338312 8763185

i= 8,s=2,R=0.S 2429734 2902317 479951 2839588 348130 19533555 32516 2213219 338312 3537185

1=10,8=0,R=0.3 2429734 2903317 479951 4941229 348160 21100731 32516 2223219 368312 3700185

1=10,8=1,R=0.S 2429734 2902317 479951 2839588 348130 19533555 32518 2213219 368312 3537185

i=10,8=2,R=0.3 2429734 2902317 479951 2339588 348160 19563555 32516 2213219 338312 3537185

1= 2,8=0,R=0.9 1083242 2289343 235312 7003787 182099 26195984 17454 1640927 310614 4357132

1= 2,8=1,R=0.9 1083242 2288343 235312 3131883 182099 24331808 17454 1630927 310614 4128132

1= 2,s=2,R=0.9 1083242 2287343 235312 2984333 182099 23127632 17454 1620927 310314 3899132

1= 4,8=0,R=0.9 1083242 2285348 235312 5406787 182099 20059280 17454 1600927 310614 3441132

1= 4,8=1,R=0.9 1083242 2284343 235312 2543063 182099 18525104 17454 1590927 310314 8212132

i= 4,8=2,R=b.9 1088242 2283343 235312 2395833 182099 16990928 17454 1580927 810314 2983132

1= 0,8=0,R=0.9 1083242 2284343 235612 5003787 182099 18525104 17454 1590927 310614 3212132

1= 0,8=1,R=0.9 1083242 2288343 235312 2395863 182099 16990928 17454 1580927 310614 2983132

i=0,s=2,R=0.9 1083242 2282343 235312 2248333 182099 15453752 17454 1670927 310314 2754132

i=8^=0?R=0?9 1088242 2283343 235312 4303787 182099 16990928 17454 1580927 310614

Is? 8,8=1, R=Q,9 1088242 2282843 235312 2248333 182099 15456752 17454 1670927 310614 2754182

1= 8,s=2,R=0.9 1083242 2281343 235312 2101433 182099 13922576 17454 1560927 310614 2525132

i=10,s=0,R=0.9 1083242 2282343 235312 4203787 182099 15456752 17454 1570927 310314 2764132

1=10,8=1,R=0.9 1083242 2281843 235312 2101438 182099 13922576 17454 1560927 310614 2525132

i=10,s=2,R=0.9 1083242 2281343 235312 2101433 182099 13922576 17454 1560927 310314 2525182
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Table 7
Execution Time for GaAs Offchip Multiplier with Optimized Code

(in terms of instruction fetches)
Offchip Delay of 4

bench ackp bubblep fibp

ttie 0 1190574 584330
i= 2,8=0 0 1247597 584330
i= 2,8=1 0 1240597 584880
i= 2,8=2 0 1245597 584880
i= 4,s=0 0 1243597 584830
i= 4,8=1 0 1242597 584380
i= 4,8=2 0 1241597 584880
1= 0,8=0 0 1242597 584880
1= 6,s=l 0 1241597 584330
i= 0,8=2 0 1240597 584880
i= 8,8=0 0 1241597 584880
i= 8,8=1 0 1240597 584830
i= 8,8=2 0 1289597 584880
1=10,8=0 0 1240597 584380
1=10,8=1 0 1239597 584830
1=10,8=2 0 1289597 584830
i= 2,8=0,R=0.S 0 1180175 472780
i= 2,8=1,R=0.S 0 1129175 472780
1= 2,s=2,R=0.S 0 1128175 472780
i= 4,8=0,R=0.8 0 1120175 472780
1= 4,8=;,R=0.S 0 1125175 472780
i= 4*s=2,R=0.3 o 1124175 472780
i= 0,8=0,R=0.S 0 1125175 472780
i= 0,8=1, R=0.S 0 1124175 472780
i= 0,s=2,R=0.S 0 1128176 472780
i= 8,8=0,R=0.3 0 1124176 472780
1= 8,8=1,R=0.0 0 1128176 472780
i= 8,8=2, R=0.8 0 1122176 472780
i=10,8=0, R=0. 8 0 1128176 472780
i=10,s=l,R=0.3 0 1122176 472780
i=lO,s=2,R=0.8 0 1122176 472780
i= 2,8=0,R=0.0 0 895881 249681
i= 2,8=1,R=0.9 0 894831 249681
1= 2,s=2,R=0.9 0 898831 249681
i= 4,8=0,R=0.9 0 891831 249681
1= 4,8=1,R=0.9 0 890331 249681
i= 4,8=2,R=0.9 0 889881 249681
1= 0,8=0,R=0.9 0 890381 249681
1= 6,s=l,R=0.9 0 889881 249681
i= 0,8=2,R=0.9 0 888831 249681
i= 8,8=0, R=0.9 0 889381 249681
i= 8,8=1,R=0.9 0 888881 249681
i= 8,8=2, R=0.9 0 887831 249681
i=i6,s==0,R=0.9 0 888881 249681
1=10,8=1,R=0.9 0 887831 249681
i= 10,8=2, R=0.9 o 887881 249681

intmmp perm puzzlcp queen quick

1761026 387582 5040988 6529 1132966
8686249 337605 4985102 7290 1657726
8489049 337605 4985102 7290 1647726
8841849 337605 4985102 7290 1637726
8047449 337605 4985102 7290 1617726
2900249 887605 4985102 7290 1607726
2758049 337605 4985102 7290 1597726
2900249 387605 4985102 7290 1607726
2758049 387605 4985102 7290 1597726
2605849 387605 4985102 7290 1587726
2758049 337605 4985102 7290 1697726
2605849 337605 4985102 7290 1687726
2458649 387605 4985102 7290 1677726
2605849 887605 4985102 7290 1587726
2458649 387605 4985102 7290 1577726
2458649 337605 4985102 7290 1677726
8517188 271642 4398145 6462 1565527
8869988 271642 4898145 6462 1555527
3222788 271642 4898145 6462 1545527
2928888 271642 4398145 6462 1625527
2781188 271642 4398145 6462 1615527
2688988 271642 4398145 6462 1506527
2781188 271642 4398146 6462 1615527
2688988 271642 4398145 6462 1505527
2486788 271642 4398145 6462 1495527
2688988 271642 4398145 6462 1505527
2486788 271642 4398145 6462 1495527
2389588 271642 4898145 6462 1485527
2486788 271642 4398145 6462 1495527
2889588 271642 4398145 6462 1485527
2339588 271642 4398145 6462 1485527
3279066 139716 3224231 4807 1381129
3131866 139716 3224231 4807 1371129
2984666 139716 3224231 4807 1861129
2690266 139716 3224231 4807 1841129
2548066 189716 3224231 4807 1881129
2895866 139716 3224231 4807 1821129
2548066 139716 3224231 4807 1331129
2895866 139716 3224231 4807 1321129
2248666 139716 3224231 4807 1311129
2395866 189716 3224231 4807 1321129
2248666 189716 3224231 4807 1811129
2101466 139716 3224231 4807 1301129
2248666 139716 3224231 4807 1311129
2101466 139716 3224231 4807 1301129
2101466 139716 3224231 4807 1301129

sievep towersp

166649 132265771
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14176970
166690 14175970
166690 14175970
166690 14175970
142754 11705637
142754 11706687
142754 11705637
142754 11705637
142754 11*05637
142754 11705637
142754 11706637
142754 11705687
142754 11705687
142754 11705637
142754 11705637
142754 11705687
142754 11705687
142754 11706637
142754 11705637
94883 6764972
94883 6764972
94883 6764972
94888 6764972
94883 6764972
94883 6764972
94883 6764972
94883 6764972;
94888 6764672
94883 6764972
94888 6764972
94883 6764972
94883 6764972
94883 6764972
94883 6764972
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Table 8
Execution Time for GaAs Offchip Multiplier with Unoptimized Code 

(in terms of instruction fetches)
Offchip Delay of 4

bench ackp bubblep flbp intmmp perm puzzlep queen quick sievep towerep

bsweline 8101439 3171079 002121 3862427 431107 19313270 39286 1984792 897121 3586189

1= 2,8=0 3101480 3222102 002121 8608460 431190 30190129 40047 2629306 397102 0104212
8101480 3221102 002121 8108460 431190 34601963 40047 2619306 397102 6876212

1= 2,8=2 8101480 3220102 002121 7708460 431190 33127777 40047 2009306 397162 6046212

l— 4f8=0 . 3101480 3218102 002121 0908460 431190 30069426 40047 2689306 397102 6188212

i=4,s=I 3101480 3217102 002121 0608460 431190 28625249 40047 2679306 897162 4959212

l=4^=2 8101480 3210102 002121 0108450 431190 26991073 40047 2609365 897102 4730212

i= 6^=0 8101480 3217102 002121 0608450 481190 28626249 40047 2679306 397102 4959212

1= 6*8=1 8101480 3210102 002121 0108460 431190 26991073 40047 2609366 397102 4730212

1= 6,8=2 3101480 3216102 002121 5708460 431190 25460897 40047 2669306 397102 4601212

1= 8,8=0 3101480 3210102 002121 0108450 431190 26991073 40047 2609306 897162 4730212

1= 8,8=1 3101480 3216102 002121 6708460 431190 26460897 40047 2669306 897162 4501212

i=8,s=2 8101480 3214102 002121 6308460 431190 23922721 40047 2649306 397102 4272212

1=10,8=0 3101480 3216102 002121 6708460 431190 26460897 40047 2669305 397162 4601212

i=io^=i 3101480 3214102 002121 6308460 431190 23922721 40047 2649306 397102 4272212

1=10,8=2 3101480 3214102 002121 6308460 431190 23922721 40047 2649306 397162 4272212

1= 2*8=0,R=0.3 2429734 2911017 479961 8141229 348100 33374139 32610 2303219 368312 6598186

1= 2,8=1,R=0.8 2429784 2910017 479961 7741229 348100 31839903 32616 2293219 868312 6309186

i= 2,8=2,R=0.S 2429784 2909017 479961 7841229 348100 30306787 82610 2283219 808312 6140186

i= 4*8=0,R=0.3 2429734 2907017 479961 0641229 348100 27237436 32510 2263219 308312 4682185

1= 4,8=1, R=o.s 2429734 2908017 479961 0141229 348100 26703269 32610 2263219 368312 4463186

1= 4,s=2,R=0.3 2429784 2906017 479961 6741229 348100 24109083 32610 2243219 308312 4224186

1= e^=o,R=o.s 2429734 2900017 479961 0141229 348100 26703269 82610 2263219 308312 4453186

i= o,s=i,r=o.3 2429734 2906017 479961 6741229 348100 24169083 32510 2243219 368312 4224185

i= 0,8—2,R—0.3 2429734 2904017 479961 6341229 348100 22034907 32510 2233219 868812 3995185

i= 8,8=0,R=0.S 2429734 2906017 479961 5741229 348100 24109083 32510 2243219 308312 4224186

i= 8,8=1,R=0.3 2429734 2904017 479961 6341229 348100 22034907 32510 2233219 308312 3996185

i= 8,8=2,R=0.S 2429734 2903017 479961 4941229 348100 21100731 32516 2223219 368312 3766186

1=10,8=0,R=0.3 2429734 2904017 479961 6341229 348100 22034907 32610 2233219 308312 3996186

1=10,8=1,R=0.3 2429734 2903017 479961 4941229 348100 21100731 32610 2223219 308312 8760186

i=10^=2,R=0.S 2429734 2903017 479961 4941229 348160 21100731 32616 2223219 368312 3700186

i= 2*8=0,R=0.9 1083242 2290040 236012 7400787 182099 27730100 17464 1060927 310014 4586132

i= 2,8=1,R=0.9 1080242 2289040 236012 7000787 182099 26196984 17464 1640927 310014 4367132

1= 2,s=2,R=0.9 1080242 2288040 236012 0000787 182099 24001808 17464 1030927 310614 4128132

i= 4,8=0,R=0.9 1080242 2280040 236012 6800787 182099 21593466 17464 1610927 810614 3670182
1= 4,8=1,R=0.9 1080242 2286040 236012 6400787 182099 20069280 17464 1600927 310014 3441132

i= 4,s=2,R=0.9 1080242 2284040 236012 6000787 182099 18626104 17464 1690927 310014 3212132

1= 0,8=0,R=0.9 1088242 2285040 236012 6400787 182099 20069280 17464 1600927 310014 3441132

i= 6,s=l,R=0.9 1088242 2284040 236012 6000787 182099 18626104 17464 1690927 310014 3212132

l=8^=2,R=a» 1080242 2283040 236012 4000787 182099 10990928 17464 1680927 310014 2983132

1= 8,8=0,R=Q.9 1088242 2284040 236012 6000787 182099 18626104 17454 1590927 310614 3212132

1= 8,9=1,R=0.9 1080242 2283040 236012 4000787 182099 16990928 17464 1680927 810014 2983132

1= 8,s=2,R=0.0 1080242 2282040 236012 4200787 182099 16460762 17464 1670927 810614 2764132

1=10,8=0,R=0.9 1088242 2283040 286012 4000787 182099 10990928 17464 1680927 310014 2983132

i=10,8=l;R=Q.9 1080242 2282040 286012 4200787 182099 16460762 17464 1670927 310014 2764132

1=10,8=2,R=0.9 1080242 2282040 236012 4200787 182099 16460762 17454 1670927 310014 2764132
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Table 9
Execution Time for Silicon Onchip Multiplier with Optimized Code 

(in terms of instruction fetches)

bench ackp bubblep flbp intinmp perm puzzfep queenp quickp sievep towerap

baseline 3186804 1196574 384330 1761028 337582 3040988 6329 1132963 166649 13265771
1= 1,8^0 3186843 1244697 384330 3194649 337605 4983102 7290 1627726 166690 14173976
i= 1,8=1 3186843 1244097 384330 3121049 337605 4985102 7290 1622726 166690 14176970
1= 1,8=2 3186843 1243397 384330 3047449 337605 4983102 7290 1617726 166690 14175970
1= 2,8=0 3186843 1240697 384330 2603849 337605 4983102 7290 1687726 166690 14175970
1 = 2,8=1 3186843 1240097 384330 2332249 337606 4983102 7290 1382726 166690 14175970
1= 2,8=2 3186843 1239597 384330 2438649 337605 4983102 7290 1677726 166690 14176970
1= 4,8=0 3186843 1238597 384330 2311449 337605 4983102 7290 1667726 166690 14175970
1= 4,8=1 8186843 1238097 384330 2237849 337605 4983102 7290 1362726 166690 14176970
|= 4f8=2 3186843 1237597 384330 2164249 337606 4983102 7290 1657726 166690 14175970
i= 6,8=0 3186843 1238097 384330 2237849 337605 4983102 7290 1362726 166690 14176970
i= 6,8=1 3186843 1237597 384330 2164249 337605 4983102 7290 1367726 166690 14175970
i= 6,8=2 3186843 1237097 384330 2090649 337606 4983102 7290 1332726 166690 14175970
1= 8,8=0 3186843 1237697 384330 2164249 337605 4983102 7280 1657728 166690 14176970
1 = 8,8=1 3186843 1237097 384330 2090649 337605 4983102 7290 1352726 166690 14176970
1= 8,8=2 8186843 1236397 384330 2017049 337606 4983102 7290 1647726 166690 14175970

Table 10
Execution Time for Silicon Onchip Multiplier with Unoptimized Code 

(in terms of instruction fetches)

bench ackp bubblep flbp intmmp perm puzzlep queenp quickp sievep towerep

baseline 3101439 3171079 602121 3852427 431167 19313270. 39286 1984792 397121 3385189
i= 1,8=0 3101480 3219102 602121 7306430 431190 31593601 40047 2599363 397162 3417212
1=1,8=1' 3101480 3218602 602121 7106430 431190 30826313 40047 2594363 397162 3302712
1= 1,8=2 8101480 3218102 602121 6906450 431190 30039423 40047 2589363 397162 3188212
i= 2,8=0 3101480 3215102 602121 6706450 431190 23456897 40047 2539363 397162 4301212
i=2,s=l 3101480 3214602 602121 3306450 431190 24689809 40047 2534363 397162 4388712
i= 2,8=2 3101480 3214102 602121 3306450 431190 23922721 40047 2549363 397162 4272212
1=4,8=0 3101480 3213102 602121 4906450 431190 22388545 40047 2539363 397162 4043212
i= 4,8=1 3101480 3212602 602121 4708450 431190 21621457 40047 2534363 397162 3928712
i= 4,8=2 3101480 3212102 602121 4306450 431190 20634369 40047 2529363 397162 3814212
i= 6*8=0 3101480 3212602 602121 4706450 431190 21621437 40047 2534363 397162 3928712
i= 6,8=1 3101480 3212102 602121 4308430 431190 20834369 40047 2529363 397162 3814212
!= 6,8=2 3101480 3211602 602121 4306450 431190 20087281 40047 2524363 397102 3699712
1= 8,8=0 3101480 3212102 602121 4506450 431190 20634369 40047 2529363 397162 3814212
i= 8,8=1 3101480 3211602 602121 4306450 431190 20087281 40047 2524363 397162 3699712
1= 8,8=2 3101480 3211102 602121 4106450 431190 19320193 40047 2519363 397162 3385212
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Table 11
Execution Time for Silicon Offchip Multiplier with Optimized Code

(in terms of instruction fetches)
Offchip Delay of 1

bench ickp bnbbfep flbp ininnnp perm ptuzlep; qneenp quickp sievep toweisp

baseline ? 8180804 1190574 584330 1761026 337582 5040988 6529 1132966 166649 13285771
i= y=6 3180845 1254097 584330 4593049 337605 4985102 7290 1722726 166690 14176970

i= 1,8=1 3180845 1253097 584330 4445849 337605 4985102 7290 1712726 166690 14176970

1= 1,8=2 3180845 1252097 584330 4298649 337605 4985102 7290 1702726 166690 14176970

i= 2,8=0 3180845 1240097 584330 3415449 337605 4985102 7290 1642726 166690 14175970

i= 2,8=1 8180845 1245097 584330 3268249 337605 4985102 7290 1632726 166690 14176970

i= 2,8=2 3180845 1244097 584330 3121049 337605 4986102 7290 1622726 166690 14176970

1= 4,8=0 3180845 1242097 584330 2826649 337605 4985102 7290 1602726 166690 14176970

i= 4,8=1 3180845 1241097 584330 2679449 337605 4985102 7290 1592726 166690 14175970

l=4,s=2 3180845 1240097 584330 2532249 337605 4985102 7290 1582726 166690 14175970

i= 0,8=0 3180845 1241097 584330 2679449 337605 4985102 7290 1592726 166690 14175970

i=e,s=i 3180845 1240097 584330 2532249 337605 4985102 7290 1582726 166690 14175970

1= 0,8=2 3180845 1239097 584330 2385049 337605 4985102 7290 1572726 166690 14175970

|= 8,8=0 3180845 1240097 584330 2532249 337605 4985102 7290 1582726 166690 14176970

i= 8,8=1 3180845 1239097 584330 2385049 337605 4985102 7290 1572726 166690 14176970

i= 8,8=2 3180845 1238097 584330 2237849 337605 4985102 7290 1562726 166690 14176970

1= lfs=0,R=0.S 2018438 1130075 472780 4473988 271642 4398145 6462 1630527 142754 11706637

i= l,s=l,R=0.S 2018438 1135075 472780 4326788 271642 4398145 6462 1620527 142754 11706637

i= lj«=2,R=0.S 2018438 1134075 472780 4179588 271642 4398145 6462 1610527 142754 11706637

1= 2,8=0,R=0.S 2018438 1128075 472780 3296388 271642 4398145 6462 1550527 142754 11706637

1= 2,8=1,Ft=0.3 2018438 1127075 472780 3149188 271642 4398145 6462 1540527 142754 11705637
i= 2,8=^R=0.S 2018438 1120075 472780 3001988 271642 4398145 6462 1530527 142754 11706637

1= 4,8=0, R=0.3 2018438 1124075 472780 2707588 271642 4398145 6462 1510527 142754 11706637

1= 4,8=1,R=0.8 2018438 1123075 472780 2560388 271642 4398145 6462 1500527 142754 11706637

i= 4,s=2,R=0.3 2018438 1122076 472780 2413188 271642 4398145 6462 1490527 142764 11706637

1= 0,8=0,R=0.S 2018438 1123075 472780 2560388 271642 4396145 6462 1500527 142764 11706637

1= 0,8=1, R=0.3 2018438 1122076 472780 2413188 271642 4396145 6462 1490527 142754 11706637

i= 6,s=2,R=0.S 2018438 1121076 472780 2265988 271642 4398145 6462 1480527 142764 11706637
1= 8,8=0,R=0.S 2018438 1122075 472780 2413188 271642 4398145 6462 1490527 142754 11706637

i= 8,8=1,R=0.8 2018438 1121075 472780 2265988 271642 4398145 6462 1480527 142754 11706637
1= 8,8=2,11=0.3 2018438 1120076 472780 2118788 271642 4S98145 6462 1470627 142754 11706637
i= 1,8=0,R=0.9 1481025 901831 249681 4235866 139716 3224231 4807 1446129 94883 6764972
1= I,8=1,R=0.9 1481025 900831 249681 4088666 139716 3224231 4807 1436129 94883 6764972

i= l,s=2,R=0.9 1481025 899831 249681 3941466 139716 3224231 4807 1426129 94883 6764972

i= 2,8=0,R=0.9 1481025 893831 249681 3058266 139716 3224231 4807 1366129 94883 6764972
i= 2,8=1, R=0.9 1481025 892831 249681 2911066 139716 3224231 4807 1356129 94883 6764972

i= 2,8=2,R=0.9 1481025 891831 249681 2763866 139716 3224231 4807 1346129 94883 6764972

i= 4,8=0,R=0.9 1481025 889831 249681 2469466 189716 3224231 4807 1326129 94883 6764972
i= 4,8=1,R=0.9 1481025 888831 249681 2322266 139716 3224231 4807 1316129 94883 6764972

1= 4,e=2,R=0.9 1481025 887831 249681 2175066 139716 3224231 4807 1306129 94883 6764972

i= ■ 0, 8^Qj 0,9 1481025 888831 249681 2322266 139716 3224231 4807 1316129 ^4883 f764971
i= 0,8=i,R=0.9 1481025 887831 249681 2175066 139716 3224231 4807 1306129 94883 6764972

i= 0,e=2,R=0.9 1481025 880831 249681 2027866 139716 3224231 4807 1296129 94883 6764972

i= 8,s=0,R=0.9 1481025 887831 249681 2175066 139716 3224231 4807 1306129 94883 6764972
1= 8,8=1,R=0.9 1481025 880831 249681 2027866 139716 3224231 4807 1296129 94883 6764972

i= 8,s=2,R=0.9 1481025 885831 249681 1880666 139716 3224231 4807 1286129 94883 6764972
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Table 12
Execution Time for Silicon Offchip Multiplier with Unoptimized Code 

(in terms of instruction fetches)

bench ackp bnbbfep

Offchip Delay

fibp Irtmmp pexm

of 1

puzzlep queanp qnidcp aievep towexvp
bflL&lihe 3101439 3171079 602121 3852427 431167 19313270 39286 1984792 897121 8585189
i=: 1,8=0 3101480 3228602 602121 11108450 431190 46168273 40047 2694365 397162 7592712
i= 1,8=1 3101480 3227602 602121 10706450 431190 44634097 40047 2684365 397162 7863712
i= 1,8=2 3101480 3226602 602121 10306450 431190 43099921 40047 2674365 397162 7184712
i= 2,8=0 3101480 3220602 602121 7906450 431190 33894865 40047 2614365 397162 5760712
i= 2,8=1 3101480 3219602 602121 7506450 431190 32360689 40047 2604365 397162 5531712
i= 2,8=2 3101480 8218602 602121 7106450 431190 30626513 40047 2594365 397162 5302712
1= 4,8=0 3101480 3216602 602121 6306450 431190 27758161 40047 2574365 397162 4844712
i= 4,8=1 3101480 3215602 602121 5906450 431190 26223985 40047 2564365 397162 4615712
1= 4,8=2 3101480 3214602 602121 5508450 431190 24689809 40047 2554365 397162 4386712
1= 0,8=0 3101480 3215602 602121 5906450 431190 26223985 40047 2564365 397162 4615712
1= 6,8=1 3101480 3214602 602121 5506450 431190 24689809 40047 2554865 397162 4386712
1= 0,8=2 3101480 3213602 602121 5106450 431190 23155633 40047 2544365 397162 4157712
i= 8,8=0 3101480 3214602 602121 5506450 431190 24689809 40047 2554365 397162 4386712
|= 8,8=1 3101480 3213602 602121 5108450 431190 23155633 40047 2544365 397162 4157712
1= 8,s=2 3101480 3212602 602121 4706450 431190 21621457 40047 2534365 397162 3928712
1= 1,8=041=0.3 2429734 2918117 479951 10741229 348160 43346283 32516 2368219 368312 7086685
i= 1,8=1 JR =0.3 2429734 2917117 479951 10341229 348160 41812107 32516 2358219 368312 6857685
i= 1,8=241=0.3 2429734 2916117 479951 9941229 348160 40277931 32516 2348219 368312 6628685
i= 2,8=0,R =0.3 2429734 2910117 479951 7541229 348160 31072875 32516 2288219 368312 5254685
i= 2,8=1,R =0.3 2429734 2909117 479951 7141229 348160 29538699 32516 2278219 368312 5025685
i= 2,8=241=0.3 2429734 2908117 479951 6741229 348160 28004523 32616 2268219 868312 4796685
i= 4,8=041=0.3 2429734 2906117 479951 5941229 348160 24936171 32516 2248219 368312 4338685
i= 4,8=141=0.3 2429734 2905117 479951 5541229 348160 23401995 32516 2238219 368312 4109685
1= 4,8=241=0.3 2429734 2904117 479951 5141229 348160 21867819 32516 2228219 368312 3880685
i= 8,8=641=0.3 2429734 2905117 479951 5541229 348160 23401995 32516 2238219 368312 4109685
i= 0,8=141=0.3 2429734 2904117 479951 5141229 348160 21867819 32516 2228219 368312 3880685
1=8,8=241=0.3 2429734 2903117 479951 4741229 348160 20333643 32516 2218219 368312 3651685
1= 8,8=0,R =0.3 2429734 2904117 479951 5141229 348160 21867819 32516 2228219 368312 3880685
1= 8,8=141=0.3 2429734 2908117 479951 4741229 348160 20333643 32516 2218219 368312 3651685
i= 8,8=2,R=0.3 2429734 2902117 479951 4341229 348160 18799467 32516 2208219 368312 3422685
1= 1,8=0,R =0.0 1086242 2297146 235612 10006787 182099 37702304 17454 1715927 310614 6074632
1= 1,8=1,R =0.9 1086242 2296146 235612 9606787 182099 36168128 17454 1705927 310614 5845632
1= 1,8=241=0.9 1086242 2295146 235612 9206787 182099 34633952 17454 1695927 310614 5616632
1= 2,8=041=0.9 1086242 2289146 235612 6806787 182099 25428896 17454 1635927 310614 4242632
1= 2,8=141=0.9 1086242 2288146 235612 6406787 182099 28894720 17454 1625927 310614 4013632
1= 2,8=2,R =0.9 1086242 2287146 235612 6006787 182099 22360544 17454 1615927 310614 3784632
1= 4,s=0,R =0.9 1086242 2285146 235612 5206787 182099 19292192 17454 1595927 310614 3326632
1= 4,8=1,R =0.9 1086242 2284146 235612 4806787 182099 17758016 17454 1585927 310614 3097632
1= 4,8=2,R=0.9 1086242 2283146 235612 4406787 182099 16228840 17454 1675927 310614 2868632
1= 6,8=041=0.9 1086242 2284146 235612 4806787 182099 17758016 17454 1586927 310614 3097632
1= 0,8=141=0.9 1086242 2283146 235612 4406787 182099 16223840 17454 1676927 310614 2868832
i= 6,8=241=6.9 1086242 2282146 235612 4006787 182099 14689664 17454 1565927 310614 2639632
1= 8,8=0,R =0.9 1086242 2283146 235612 4406787 182099 16223840 17454 1575927 310614 2868632
1= 8,s=14tL=0.9 1086242 2282146 235612 4006787 182099 14689664 17454 1565927 310614 2639632
1= 8,8=941=6.9 1086242 2281146 235612 3606787 182099 13155488 17454 1555927 810614 2410632
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Table 13
Execution Time for Silicon Offchip Multiplier with Optimized Code 

(in terms of instruction fetches)
Offchip Delay of 2

besich ackp babblep fibp intrrwnp perm ptuzlep qaeenp quickp slevep tawerep

baseline 0180804 1190574 584330 1701020 337582 5040988 6529 1132960 100649 13266771

1= 1,«=0 8180845 1254597 584330 4006649 337605 4985102 7290 1727720 100690 14176970
i= 1,8=1 8180845 1263597 584330 4519449 337005 4985102 7290 1717720 106090 14176970

1= 1,8=2 8180845 1252597 584330 4372249 387005 4985102 7290 1707720 160090 14176970

i= 2,8=0 3180845 1240597 584330 3489049 337605 4985102 7290 1647720 166690 14176970

1= 2,8=1 8180845 1245597 584330 3341849 337605 4985102 7290 1637726 166090 14175970

1= 2,8=2 3180845 1244597 584330 3194049 337005 4985102 7290 1027726 160690 14175970

1= 4,8=0 8180845 1242597 584330 2900249 337605 4985102 7290 1007720 100090 14176970

1= 4,8=1 3180845 1241597 584330 2753049 337005 4985102 7290 1697720 160690 14176970

1= 4,s=2 3180845 1240597 584330 2605849 337605 4985102 7290 1587720 106090 14176970

i= 0,8=0 3180845 1241597 584330 2753049 337605 4985102 7290 1597726 166090 14176970

1= 0,8=1 3180845 1240597 584330 2605849 337605 4985102 7290 1587720 160090 14176970

i= 6,8=2 ^ 8180845 1239597 584830 2458649 337005 4985102 7290 1577720 100090 14176970

i= 8,8=0 3180845 1240597 584330 2605849 337605 4985102 7290 1687726 166090 14176970

1= 8,8=1 8180845 1239597 584330 2458649 387005 4985102 7290 1677720 100090 14176970

1= 8,8=2 3180845 1238597 584330 2311449 337005 4985102 7290 1507726 166090 14176970

1= l,s=0,R=0.3 2018438 1137175 472780 4547588 271642 4398145 0462 1635527 142754 11705637

1= 1,8=1,R=0.S 2018438 1130175 472780 4400388 271642 4398145 0462 1625527 142764 11705637

1= l,s=2,R=0.3 2018438 1135175 472780 4253188 271042 4398145 0402 1015527 142754 11765087

1= 2,8=0, R=0.3 2018438 1129176 472780 3309988 271642 4398145 0402 1555527 142754 11706037

1= 2,8=1,R=0.3 2018438 1128175 472780 3222788 271642 4898145 0402 1545527 142754 11705637

1= 2,s=2,R=Q.3 2618438 1127175 472780 3075588 271642 4398145 6462 1535527 142764 11705037

1= 4,8=0,R=0.S 2018438 1125176 472780 2781188 271642 4398145 0402 1515627 142754 11706637

1= 4,8=1, R=0.3 2018438 1124176 472780 2633988 271642 4398145 0402 1505527 142764 11706637

i= 4,s=2,R=0.S 2018438 1123176 472780 2480788 271642 4398146 6402 1495527 142754 11705637

1= C,8=0,R=0.S 2018438 1124175 472780 2633988 271642 4398145 0402 1505527 142754 11705637

i= 0,8=1,R=0.S 2018438 1123175 472780 2480788 271642 4398145 0462 1495527 142754 11705637

i= 0,s=2,R=0.3 2018438 1122175 472780 2339588 271642 4398145 0402 1485527 142754 11705637

i = 8,s=0,R=0.S 2018438 1123175 472780 2486788 271642 4398145 0462 1495527 142754 11705637
i= 8,8=1,R=0.3 2018438 1122175 472780 2339588 271642 4398145 0462 1485527 142754 11706637

1= 8,s=2,R=0.3 2018438 1121176 472780 2192388 271642 4398145 0462 1475527 142764 11705637

i= 1,8=0,R=0.0 1481025 902331 249081 4309400 139716 3224231 4807 1451129 94883 6704972
i= 1,8=1,R=0.9 1481025 901331 249081 4102200 139710 3224231 4807 1441129 94883 0704972

1= l,s=2,R=0.9 1481025 900331 249081 4015060 139716 3224231 4807 1431129 94883 0764972

i= 2,s=0,R=0.9 1481025 894331 249081 3131860 139716 3224231 4807 1371129 94883 6764972
1= 2,8=1, R=0.9 1481025 893331 249081 2984000 139716 3224231 4807 1361129 94883 0764972

i= 2,8=2, R=0.9 1481026 892331 249081 2837400 139716 8224231 4807 1851129 94883 0764972
1= 4,s=0,R=0.9 1481025 890331 249081 2543000 139716 3224231 4807 1331129 94883 0764972

i= 4,8=1,R=0.9 1481025 889331 249081 2395800 189716 3224231 4807 1821129 94883 6704972

i= 4,8=2,R=0.9 1481025 888331 249081 2248660 139716 3224231 4807 1311129 94883 6704972

1= 6,s=0!R=a9 1481025 889331 249081 2395860 189716 8224231 4807 1821129 94883

is? P,8=1,R=?0,9 1481025 888331 249081 2248660 189716 3224231 4807 1311129 94883 6704972

1= 0,8=2,R=0.9 1481025 887331 249081 2101460 139716 3224231 4807 1301129 94883 0764972

1= 8,8=0,R=0.9 1481025 888331 249081 2248600 189710 3224231 4807 1311129 94883 6704972
1= 8,8=1, R=0.9 1481025 887331 249081 2101400 139710 8224231 4807 1301129 94883 6704972

1= 8,s=2,R=0.9 1481025 880331 249081 1954200 139716 8224231 4807 1291129 94883 0764972
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Table 14
Execution Time for Silicon Offchip Multiplier with Unoptimized Code

(in terms of instruction fetches)
Offchip Delay of 2

bench ackp bubbfep Cbp intxnmp peim puzzle? qtteenp quickp sievep towerip
bainlhtii 0101400 8171079 002121 3862427 431107 19313270 39280 1984792 397121 1686139
i= l,s=iO 0101480 8229102 002121 11808460 431190 40936301 40047 2399336 397132 7707212
1= 1,8=1 0101480 3228102 002121 10908460 431190 46401186 40047 2889306 397162 7478212
i= 1,8=2 0101480 8227102 002121 10608460 431190 43807009 40047 2879336 397162 7249212
1= 2,8=0 0101480 3221102 002121 8108460 431190 34001963 40047 2819336 397162 6876212
i= 2,8=1 0101480 3220102 002121 7708460 431190 33127777 40047 2309336 397162 6343212
1=2,8=2 0101480 3219102 002121 7308460 431190 81693001 40047 2699336 397132 6417212
1= 4,8=0 0101480 3217102 002121 0608460 431190 28626249 40047 2679336 397162 4969212
1= 4,8=1 0101480 3210102 002121 0108460 431190 20991073 40047 2630336 397162 4730212
1= 4,8=2 0101480 3216102 002121 6708460 431190 26460897 40047 2669336 397162 4601212
1= 0,8=0 0101480 3210102 002121 0108460 431190 20991073 40047 2609336 397162 4730212
1= 0,8=1 0101480 3216102 002121 6708460 431190 26460897 40047 2669336 397162 4601212
1= 0,8=2 0101480 3214102 002121 6308460 431190 23922721 40047 2649336 397162 4272212
1= 8,8=0 0101480 3216102 002121 6708460 431190 26460897 40047 2669336 897162 4601212
1= 8,8=1 8101480 3214102 002121 6308460 431190 23922721 40047 2649336 897162 4272212
1= 8,8=2 0101480 3213102 002121 4908460 431190 22388646 40047 2639366 397162 4043212
1= 1,8=0,R=0.3 2420704 2918017 479961 10941229 348100 44113371 82613 2373219 338312 7201186
1=1,8=141=0.0 2420704 2917017 479961 10641229 348100 42679196 32613 2363219 368312 8972186
1= i,8=2iR=0.8 2429704 2910017 479961 10141229 348100 41046019 82613 2363219 338312 8743186
1= 2,6=0,R =0.3 2429704 2910017 479961 7741229 348100 31839903 32513 229S219 368312 6369186
1=2,8=141=0.0 2429704 2909017 479961 7341229 348100 30306787 32613 2283219 368312 6140186
1= 2,8=241=0.0 2429704 2908017 479961 0941229 348100 28771011 32613 2273219 368312 4911186
1= 4,8=0,R =0.0 2429704 2900017 479961 0141229 348100 26703269 32613 2263219 368312 4463186
1= 4,8=1,R =0.0 2429704 2906017 479961 6741229 348100 24109083 32613 2243219 368312 4224186
1= 4,8=241=0.0 2429704 2904017 479961 6341229 348100 22034907 32613 2233219 368812 3996186
1= 0,8=0,R =0.8 2429704 2906017 479951 6741229 348100 24109083 32613 2243219 368312 4224186
1= 0,8=141=0.0 2429704 2904017 479961 6341229 348100 22034907 32613 2288219 368812 3996186
1= 0,8=241=0.0 ; 2429704 2903017 479961 4941229 348100 21100731 32613 2223219 368312 3763186
1= 8,8=041=0.0 2429704 2904017 479961 6341229 348100 22034907 32613 2233219 368312 3996186
1= 8,8=1, R =0.0 2429704 2903017 479961 4941229 348100 21100731 32613 2223219 368312 3733186
1= 8,8=2,R =0.0 2429704 2902017 479961 4641229 348100 19600666 32613 2213219 368312 3637186
1= 1,8=0,R =0.0 1080242 2297040 236012 10200787 182099 38409392 17464 1720927 310614 8189132
1= l,s==l,R=0.9 1080242 2290640 236012 9800787 182099 30936210 17464 1710927 810614 6960132
1= 1,8=2,R=0.0 1080242 2296040 236012 9400787 182099 36401040 17464 1700927 310614 6731132
1= 2,s=0,R =0.0 1080242 2289040 236012 7000787 182099 20196984 17464 1340927 310614 4367132
i= 2,8=1,R =0.0 1080242 2288040 236012 0000787 182099 24001808 17464 1680927 310314 4128132
1= 2,8=2,R =0.9 1080242 2287040 236012 0200787 182099 23127032 17464 1820927 310314 3899132
i= 4,8=0,R =0.0 1080242 2286040 236012 6400787 182099 20069280 17464 1800927 310314 3441132
1= 4,8=1,R =0.9 1080242 2284040 236012 6000787 182099 18626104 17464 1690927 81.0614 3212132
i= 4,b=2,R=0.9 1080242 2283040 236012 4000787 182099 10990928 17464 1680927 310614 2983132
1= 0,8=041=0.0 1080242 2284040 236012 6000787 182099 18626104 17464 1690927 310314 3212132
i=e, 8=141=0.0 1080242 2283040 236012 4000787 182099 10990928 17464 1680927 310314 2983132
1= 0,s==24l=0.0 1080242 2282040 236012 4200787 182099 16460762 17464 1570927 310314 2754132
1= 8,6=041=0.0 1080242 2283040 236012 4000787 182099 10990928 17464 1680927 310314 2983132
1=8,8=141=0.0 1080242 2282040 236012 4200787 182099 16460762 17464 1670927 310014 2764132
1=8,8=241=0.9 1080242 2281040 236012 3800787 182099 13922670 17464 1660927 310314 2626132
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CHAPTER 6 
CACHE DESIGN

6.1. Introduction
Processor performance in any technology is greatly dependent on memory 

access time. This makes cache memory an important consideration in 
processor design. However, in the case of a problem, cache design is still of 
secondary importance behind the design of adder and multiplier units. The 
information is important when considering multiplication units since the 
Booth-algorithm and delay fillin use memory more frequently than many other 
operations. Therefore, this chapter is presented to give information on how 
cache affects performance in order to better choose the optimal multiplier for 
each application. There are papers which do cover cache in much greater 
detail [Kabak86], [Smith82].

Since system performance in any technology is still dependent on memory 
access time, cache memory is still a consideration in system design. Gache 
memory is placed between the CPU and the main memory to reduce memory 
fetch delays. Although cache memories are smaller than the main memory, 
they are also faster. Therefore, frequently accessed data can be kept in the 
cache to decrease total execution time. The penalty for fetching an item which 
is not in the cache is greater than that for fetching a data item directly from 
memory. The tradeoff of the penalty versus the increased speed must be 
examined closely to determine how the cache must be designed. When the 
memory access ratio exceeds 40, the penalty may be large enough to warrant a 
two level cache [SilMi85].

In the silicon environment, cache memory plays an important role in the 
performance of a system because the access ratio is significantly greater than 
one, In the GaAs environment, however, the ratio of off-chip to on-chip delays 
is much larger than in the Si environment and the increased memory fetch 
delay makes cache memory still more promising as an alternative. GaAs E/D 
MESFET technology has a ratio of five to ten which makes cache design more 
critical than in silicon technologies but not critical enough to justify a two level 
cache.
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Standard assumptions in Si cache design need to be reevaluated for a 
GaAs environment. For example, set or fully associative placement policies are 
promoted as the best cache organizations for Si; yet a direct mapped cache was 
shown to be a better cache organization for GaAs [SilMi85]. After the issue of 
available area, the time for communication with the rest of the system is most 
affected by the technology switch. Therefore, in addition to considering 
parameters closely associated with the inner cache organization, some system 
parameters were considered to determine if their effect was changed by 
switching from Si to GaAs technology. Consideration was also given to 
choosing parameters to help improve cache efficiency.

6.1.1. Parameter Selection
The selection of parameters was guided by work already done in 

[Smith82]. Obviously, some choices of parameters, such as placement and 
replacement policy, are forced upon us by the choice of direct mapped cache. 
We did not look at the advantages of using split system/user caches because 
we did not have multi-user or multi-tasking programs that could provide Us 
with a sufficient base of system code. Since previous experiments were run 
with the SU-MIPS simulation package, we continued to use it to be consistent. 
In addition, being bound by the MIPS-like architecture precluded experiments 
on architectures other than load-store architectures.

The cache size limitations were affected by transistor count limitations. 
Since the largest memory so far is a 16K bit SRAM with 102,300 gates 
[Islnl84], we could not realistically work with caches any larger than 4K by 32 
bits, Even a 4K SRAM may not be implementable with the space limitations 
around the processor chip. This limit may be reduced further as the control 
logic is implemented. Typical silicon caches lose 25% of their area to control 
and the fanin fanout limitations of GaAs increase this loss to as much as 40% 
[S|lMi85]. The maximum size of the silicon cache was kept to the ttiaximum of 
the GaAs cache to provide a correlation for the same benchmarks and for other 
reasons explained later in this chapter.

6.2. Cache Evaluation Methodology

The cache design parameters examined included cache size, block size, and 
use/nonuse of one block look ahead prefetch for a direct mapped cache. The 
more important system parameters which we felt were modifiable included the 
fetch time for non-cache fetch times and cache miss times. The miss time 
included a constant delay plus an additional delay based on the block size. We
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considered only off-chip on-package and off-chip off-package solutions because 
transistor count limitations would not allow any cache on the CPU chip,

6.3. Cache Experiment Procedure
Each test required running the SU-MIPS simulator for each benchmark for 

a set of parameters. Each benchmark was relatively small and generated under 
4000 instructions. The original simulator was left unchanged except for 
memory references. Each memory reference goes through a ’’cache filter” 
which does an accurate simulation of the memory with cache. The cache filter 
is called in place of all memory references. For each memory reference, the 
cache filter updates the tags associated with each block of cache memory and 
then fetches the appropriate data or writes the data given to it. A block 
diagram of the data flow in the cache filter is shown in figure 6.1. If a cache 
miss occurs, the filter also adds on the appropriate miss delays. This allows us 
to add delays for any function of the cache for memory fetches. We added 
delays at two points: (1) whenever non-cache fetches are done, and (2) 
whenever the data must be fetched from main memory. All data fetches are 
considered non-cache fetches if only an instruction cache is being used. This 
also means that all instruction fetches are non-cache fetches if only a data 
cache is being used. This is shown graphically in figure 6.2. The execution 
times were calculated by summing the execution time of the benchmarks with 
the delays added by the "cache filter”. The delay parameters used by the 
"cache filter” are set by the user during initialization of each simulator run.

The experiment was composed of three tests. The first test was to 
determine the impacts of instruction cache, data cache, or a combined 
instruction/data cache. GaAs area limitations do not permit the efficient 
placement of both instruction and data cache and therefore, we did not 
consider that option for GaAs or CMOS/SOS. The second test was to check 
the effect of varying the fetch time on the overall execution time. The last one 
was to determine the relative importance of the overhead delay and the delay 
per word transferred for a cache miss. The effect of the total miss time was 
also measured.

We did not run tests specifically to determine cache size because of our 
choice of benchmarks. The benchmarks that were available were not large 
enough to exercise the cache enough to accurately determine the performance 
of the cache for different cache sizes. Therefore these results may be less 
accurate for large benchmarks, The thesis by Kabakibo [Kabak86] does more 
extensive testing of cache designs with large benchmarks. Our choice of cache
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sizes was not made smaller for fear of the block size reaching the same order of 
magnitude as the cache size.

Each set of data taken was for four different cache sizes, (256, 512, 1024, 
and 4996 words), and four block sizes, (two, four, eight, and sixteen), lot each 
cache size. One of the remaining four parameters, cache type, miss time, fetch 
time, and prefetch policy, was varied for each test. Miss times are displayed 
for each curve and include both the transfer time for each wdfd Md the 
overhead incurred for each block transfer.

6.4, Presentation of Results
For each of the tests, only the interesting information has been presented 

as part of the thesis. The benchmarks ack, intmm, queen, and sieve were 
deemed interesting. The curves for the remaining benchmarks have a relatively 
flat profile and, therefore, are included only in the appendix.

Figures 6.3 through 6.8 show how cache organization affects execution 
time for each cache size for E/D-MESFET technologies, while figures 6.9 
through 6.14 show the same information for CMOS/SOS technologies. The 
block size is denoted BS, the miss time is denoted M, and the fetch time is F 
for each of the curves. As expected, the results show decreasing execution time 
with increasing cache size, and due to the small benchmark size, the execution 
time levels off as the cache is filled with the working information. This is true 
for each of the block sizes we dealt with. The longest execution time is for the 
simulation with only data cache; the instruction cache and the combined cache 
both have superior execution times.

The relatively large difference in execution times for the various block 
sizes shows that the combined cache is more sensitive to changes in block size 
than the instruction cache; the smaller the blocks, the better the execution 
time. The asymptotic nature of the curves show that very little information is 
being swapped out due to memory pollution. Therefore, the wide spacing of 
tfie curves may be due to shorter miss times with small blocks rather -than less 
memory pollution. The data also supports using instruction cache or a 
combined instruction/data cache for GaAs.

Figures 6.15 through 6.18 show the execution time against varying cache 
size for GaAs parameters while figures 6.19 through 6.22 show the execution 
time against varying Cache size for silicon parameters. The individual curves 
within each family of curves represent different block sizes. The two families 
are identified by different non-cache fetch times. Data fetches use non-cache 
fetch tinaes if data cache is not being used. Analogously, instruction fetches
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use non-cache fetch times if instruction cache is not being used. The large gap 
in execution times between the two fetch values with very little difference 
between the block sizes shows that changing the fetch time has the greatest 
impact on execution time. As the fetch time is decreased, the execution time 
decreases much more quickly than any change in block size or other parameters 
accounts for. By observing plots for other experiments, the only parameter 
which forces such a large change is the cache organization.

Additional plots of execution time against cache size are displayed in 
figures 6.23 through 6.30 for GaAs parameters and figures 6.31 through 6.38 for 
silicon parameters. Here, however, the differences in execution times are caused 
by changing the miss times. Each family of curves is equated to a different 
miss time where the miss time is the total of the overhead of the transfer time 
added to the time to transfer the block. As expected, the times are not greatly 
dependent on the base miss time. The greatest dependency is the time added 
per word transferred because the total delay per transfer is usually greater than 
the transfer overhead. This dependence on transfer delay emphasizes the need 
to reduce the block transfer time rather than the overhead associated with each 
block transfer.

Reviewing the results, judgments should be influenced by the knowledge 
that the benchmarks did not provide a flawless basis for evaluation of the 
cache parameters. After a certain time, cache misses became rare due to the 
program size being insignificant compared to the cache size. Therefore, one of 
the biggest influences on the execution time was the cold start cache that was 
used. Larger benchmark programs would have increased the reliability of our 
results.
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CHAPTER 7 
SUMMARY

This thesis has described the technology factors affecting the design of 
three VLSI structures: adders, multipliers, and cache memory. After a brief 
discussion of the testing choices, a general description of the work will conclude 
this chapter.

Each of the three structures was examined to determine how it was 
affected by the technology. The three structures were then analyzed to 
determine how each should be implemented. Some of the possible options were 
rejected for one of several reasons. Some options were discarded because they 
were impossible to implement. Other options were chosen because previous 
work with GaAs technologies had shown that these were better for the 
restrictions imposed by GaAs E/D-MESFET technology.

The adders examined are ripple-carry adders, carry-select adders, and full 
carry look-ahead adders. I also chose a full range of bit lengths from 1 to 40 
bits. The fanin and fanout maximums examined are fanin—2 fanout=2, 
fanin=2 fanout=5, and fanin=5 fanout =5.

The multiplier options examined are the booth-step algorithm with a full 
barrel shifter, on-chip bit-serial multiplier with 3 position barrel shifter, and 
off-chip bit-serial multiplier with 3 position barrel shifter and a larger register 
file.

The cache options were presented to provide more information for the 
multiplier choice. The cache options discussed are a direct-mapped cache with 
block sizes of two, four, eight, and sixteen, for cache sizes of 256, 512, 1024,

; and 4096 blocks. The choices of instruction cache, data cache, or combined 
data/instruction cache were made in conjunction with delays induced by 
various fetch times, various miss times.

Tests were then devised that measured the effect of changing each 
parameter individually. The range of parameters for each test was varied for 
both silicon CMOS/SOS technologies and GaAs E/D-MESFET technologies. 
These results can be used to determine the parameters that will yield the best
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performance for each set of options. A range of options and associated 
parameters can then be used to improve the design of GaAs structures.

7.1. Adders

As expected, each adder ran ran faster in GaAs than in silicon. Although 
the change in adder type changed the performance by up to 50 percent, the 
Ghlihfjje Wa§ less in GaAs than in silicon. A greater distinction between the 
adders was provided by the area computations. The carry select and the ripple 
carry adders both consume about the same chip area, while the full carry 
look-ahead adders consume much more area for adders longer than 20 bits. 
This suggests that the GaAs environment cannot support full carry look-ahead 
adders while the silicon environment can. The ripple carry adder is almost as 
good as the carry select adder when basing the choice solely on minimum area 
and maximum speed. High speed applications with a little free area can use 
carry select adders, while applications with no extra area can use the ripple 
carry adder with little penalty. This is different from the silicon environment 
where the ripple carry adder is much slower than either of the other two adders 
which makes it unusable for all but the slowest applications.

7.2. Multiplication
The proposed modifications to the multiplier to enhance performance did 

not give the expected results. The limits of the simulation tools did not allow 
us to propose architectures which may have improved performance and verify 
that improvement. The conclusion is that the original SU-M1PS architecture 
was the best architecture for the supplied benchmarks. The instruction mix of 
the benchmarks caused a degradation of performance when the full barrel 
shifter was replaced by a limited barrel shifter. Since the bit-serial multiplier 
was unable to compensate for the loss of execution time, the overall 
performance suffered.

Moving the multiplier off-chip and replacing the barrel shifter might still 
be a good alternative, but the possibilities could not be tested without more 
flexible software. The compiler and reorganizer available did not use the 
register file well enough to make a larger register file worthwhile.

The conclusion is that in either the GaAs or silicon environment, the 
original SU-MIPS performs the best. The analysis also showed that the E/D- 
MESFET architecture benefited more from the bit-serial multiplier than the 
CMOS/SOS architecture. Therefore, such strategies should not yet be 
discarded for GaAs designs.
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7.3. Cache
The results of the cache experiments can be used to help determine the 

effect of the choice of multipliers. The multiplier section can be used to help 
determine the increase in the amount of code. This information can then be 
used with the cache performance to determine the resulting execution time. 
This can be used to match the cache to the multiplier based on the cache size, 
block size, and transfer times.

The execution time of the benchmarks based on cache type clearly shows 
that an instruction cache improves performance more than a data cache. 
When common data memory and instruction memory are used, the combined 
instruction/data cache performs better than the instruction cache. The 
performance for each benchmark also improved with reduced block size. The 
change in performance between the cache types was more pronounced for the 
GaAs parameters than for the silicon parameters.

When comparing the effects of the miss parameters, the cache size did not 
affect the performance in a significant manner. The block size produced the 
biggest difference in performance. As the block size varied, the time per word 
transferred (transfer time) had a bigger effect for GaAs parameters than for 
silicon parameters while the base delay had a bigger effect for silicon 
parameters than for GaAs parameters. Overall, the transfer time was the 
dominant factor for GaAs caches while both parameters had similar effects for 
silicon caches. Although this information is useful, its prime importance is in 
determining how to implement multiplication.

7.4. Conclusion
New design methodologies for GaAs E/D-MESFET technologies have been 

presented for a specific architecture and specific problems. The advantages and 
disadvantages of GaAs E/D-MESFET technologies and how they relate to 
silicon technology have also been presented as they relate to actual problems. 
This information has been given as it applies to adder design, multiplier design, 
and cache effects on multiplier design. With this information, a digital designer 
should now have a better insight into the choices for optimal GaAs E/D- 
MESFET designs, both modified silicon designs arid unique GaAs designs.
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