
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

12-1-1985

A Comparison of E/D-MESFET Gallium Arsenide
and CMOS Silicon for VLSI Processor Design
Mark K. Bettinger
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Bettinger, Mark K., "A Comparison of E/D-MESFET Gallium Arsenide and CMOS Silicon for VLSI Processor Design" (1985).
Department of Electrical and Computer Engineering Technical Reports. Paper 551.
https://docs.lib.purdue.edu/ecetr/551

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F551&utm_medium=PDF&utm_campaign=PDFCoverPages

A Comparison of
E/D-MESFET
Gallium Arsenide
and CMOS Silicon for
VLSI Processor Design

Mark K. Bettinger

TR-EE 85-18
December 1985

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

A COMPARISON OF E/D-MESFET GALLIUM ARSENIDE AND CMOS

SILICON FOR VLSI PROCESSOR DESIGN

Mark K. Bettinger

TR-EE 85-18

December 1985

ACKNOWLEDGMENTS

I acknowledge the guidance and assistance of my major professor, Veljko
Milutinovic. He has provided opportunities to learn that I appreciate. I am
also indebted to RCA-ATL for their support and guidance as well as their
funding. I would also like to thank those at RCA-ATL who have provided
assistance: Tom Geigel, Bill Heagerty, Walt Helbig, Wayne Moyers, Jeff Prid-
more, and Rich Zeigert.

Little of this work would have been completed without the support of my
officemates. I also thank my good friend Lee Bissonette for all of her cheerful
assistance. Finally, I am grateful to my family and especially my wife,
Tammy, for their encouragement and support throughout all the last minute
late nights. Without Tammy’s help and encouragement this work would not
have been possible.

11

TABLE OF CONTENTS

Page

LIST OF TABLES.................................... ,.................iv

LIST OF FIGURES.........................vi

ABSTRACT...............xii

CHAPTER 1 INTRODUCTION..............................1

1.1 GaAs Advantages and Disadvantages........2
1.2 Design Methodology Changes..............................4
1.3 Overview of Thesis..4

CHAPTER 2 TECHNOLOGY AND IC DESIGN.........6

2.1 GaAs MESFET Logic Families■.....6
2.2 Characteristics of GaAs MESFET Designs.....................8
2.3 GaAs/Silicon Comparison..10

CHAPTER 3 EVALUATION TOOLS AND METHODOLOGY.....13

3.1 Circuit L evel Simulation 12
3.1.1 Area Estimation ;....................12
3.1.2 Delay Estimation............... |.........13

3.2 Instruction Level Simulation....................13
3.2.1 Workload model...........13
3.2.2 Architecture Simulator and Analysis...............14
3.2.3 SU-MIPS Compiler and Translation Software..........---- -----..........15

CHAPTER 4 CHOICE OF ADDER DESIGNS.........................16

iii

Page

4.1 Introduction...........,......................................16
4.1.1 Pipeline Depth.............s..,....,.,,!?
4.1.2 Adder Type.............17

4.2 Evaluation Methodology..18
4.3 Experiment Procedure.............................18

4.3.1 Adder Delays...............................„s,s,„ii,„i8
4.3.2 Adder Area...................................25

4.4 Presentation of Results.......................26
4.4.1 Adder Delays...26
4.4.2 Adder Area.............................33

CHAPTER 5 MULTIPLIER PLACEMENT...............41

5.1 Introduction.........41
5.1.1 Shifter Choice......... 41
5.1.2 Multiplier Choice.................................43

5.2 Multiplier Placement Evaluation Methodology.................... 44
5.3 Multiplier Experimental Procedure..V.......44
5.4 Presentation of Results.......................46

CHAPTER 6 CACHE DESIGN............83

6.1 Introduction..........................83
6.1.1 Parameter Selection....................84

6.2 Caehe Evaluation Methodology........84
6.3 Cache Experiment Procedure..85
6.4 Presentation of Results.................86

CHAPTER 7 SUMMARY.

7.1 Adders...........127
7.2 Multiplication....................127
7.3 Cache...128
7.4 Conclusion.. ,,.....128

LIST OF REFERENCES129

IV

LISTOFTABLES

Table Page

1. Performance Characteristics of GaAs Designs..............................9

2. Performance Comparison of E/D-MESFET GaAs,
CMOS/SOS, and Bulk Silicon...11

3. Execution Time for GaAs On chip Multiplier with Optimized Code
(in terms of instruction fetches)........................... 49

4. Execution Time for GaAs Onchip Multiplier with Unoptimized Code
(in terms of instruction fetches)...49

5. Execution Time for GaAs Offchip Multiplier with Optimized Code
(in terms of instruction fetches) with Offchip Delay of 2...................... ..50

6. Execution Time for GaAs Offchip Multiplier with Unoptimized Code
(in terms of instruction fetches) with Offchip Delay of 2.....51

7. Execution Time for GaAs Offchip Multiplier with Optimized Code
(in terms of instruction fetches) with Offchip Delay of 4.................52

8. Execution Time for GaAs Offchip Multiplier with Unoptimized Code
(in terms of instruction fetches) with Offchip Delay of 4..................... ...53

9. Execution Time for Silicon Onchip Multiplier with Optimized Code
(in terms of instruction fetches)........54

10. Execution Time for Silicon Onchip Multiplier with Unoptimized Code
(in terms of instruction fetches)..54

11. Execution Time for Silicon Offchip Multiplier with Optimized Code
(in terms of instruction fetches) with Offchip Delay of 1........................55

Table Page

12. Execution Time for Silicon Offchip Multiplier with Unoptimized Code
(in terms of instruction fetches) with Offchip Delay of 1.......................56

13. Execution Time for Silicon Offchip Multiplier with Optimized Code
(in terms of instruction fetches) with Offchip Delay of 2........ ..57

14. Execution Time for Silicon Offchip Multiplier with Unoptimized Code
(in terms of instruction fetches) with Offchip Delay of 2...................... . 58

VI

LIST OF FIGURES

Figure Page

4.1 Block Diagram of Ripple Carry Adder............................ 21

4.2 Block Diagram of Carry Select Adder.............................. 22

4.3 Block Diagram of Full Carry Look-Ahead Adder.............. 24

4.4 Adder Delays with GaAs E/D-MESFET Parameters
with maximum fanin=2, maximum fanout—2 27

4.5 Adder Delays with GaAs E/D-MESFET Parameters
with maximum fanin=2, maximum fanout=5....................28

4.6 Adder Delays with GaAs E/D-MESFET Parameters
with maximum fanin=5, maximum fanout=5.........29

4.7 Adder Delays with Si CMOS/SOS Parameters
with maximum fanin=2, maximum fanout=2..........................30

4.8 Adder Delays with Si CMOS/SOS Parameters
with maximum fanin=2, maximum fanout=5.........31

4.9 Adder Delays with Si CMOS/SOS Parameters
with maximum fanin=5, maximum fanout—5.......................................32

4.10 GaAs Adder Delays with Decreased Rise Time
with maximum fanin=2, maximum fanout=2..........35

4.11 GaAs Adder Delays with Decreased Rise Time
with maximum fanin=2, maximum fanout=5..................36

4.12 GaAs Adder Delays with Decreased Rise Time
with maximum fanin^S, maximum fanout=5.........................37

' VII. ,

4.13 GaAs Adder Area with maximum fanin=2, maximum fanout =2.38

4.14 GaAs Adder Area with maximum fanin—2, maximum fanout =5.........39

4.15 GaAs Adder Area with maximum fanin=5, maximum fanout =5.40

5.1 Instruction Mix of Application Benchmarks42

5.2 Execution Time of Intmm with an On-chip
Bit-serial Multiplier with GaAs Parameters.................59

5.3 Execution Time of Puzzle with an On-chip
Bit-serial Multiplier with GaAs Parameters..................60

5.4 Execution Time of with an On-chip
Bit-serial Multiplier with GaAs Parameters..........61

5.5 Execution Time of Towers with an On-chip
Bit-serial Multiplier with GaAs Parameters..62

5.6 Execution Time of Intmm with an On-chip
Bit-serial Multiplier with Silicon Parameters63

5.7 Execution Time of Puzzle with an On-chip
Bit-serial Multiplier with Silicon Parameters................................64

5.8 Execution Time of Quick with an On-chip
Bit-serial Multiplier with Silicon Parameters65

5.9 Execution Time of Towers with an On-chip
Bit-serial Multiplier with Silicon Parameters66

5.10 Execution Time of Intmm with an Off-chip Bit-serial
Multiplier with 30% Register Overflow and GaAs Parameters...........67

5.11 Execution Time of Puzzle with an Off-chip Bit-serial
Multiplier with 30% Register Overflow and GaAs Parameters..68

5.12 Execution Time of Quick with an Off-chip Bit-serial
Multiplier with 30% Register Overflow and GaAs Parameters........ ..69

Figure Page

Vlll

5.13 Execution Time of Towers with an Off-chip Bit-serial
Multiplier with 30% Register Overflow and GaAs Parameters........ ..70

5.14 Execution Time of Intmm with an Off-chip Bit-serial
Multiplier with 30% Register Overflow and Silicon Parameters71

5.15 Execution Time of Puzzle with an Off-chip Bit-serial
Multiplier with 30% Register Overflow and Silicon Parameters.........72

5.16 Execution Time of Quick with an Off-chip Bit-serial
Multiplier with 30% Register Overflow and Silicon Parameters.........73

5.17 Execution Time of Towers with an Off-chip Bit-serial
Multiplier with 30% Register Overflow and Silicon Parameters.........74

5.18 Execution Time of Intmm with an Off-chip Bit-serial
Multiplier with 90% Register Overflow and GaAs Parameters.......... 75

5.19 Execution Time of Puzzle with an Off-chip Bit-serial
Multiplier with 90% Register Overflow and GaAs Parameters...........76

5.20 Execution Time of Quick with an Off-chip Bit-serial
Multiplier with 90% Register Overflow and GaAs Parameters........... 77

5.21 Execution Time of Towers with an Off-chip Bit-serial
Multiplier with 90% Register Overflow and GaAs Parameters........... 78

5.22 Execution Time of Intmm with an Off-chip Bit-serial
Multiplier with 90% Register Overflow and Silicon Parameters.........79

5.23 Execution Time of Puzzle with an Off-chip Bit-serial
Multiplier with 90% Register Overflow and Silicon Parameters......... 80

5.24 Execution Time of Quick with an Off-chip Bit-serial
Multiplier with 90% Register Overflow and Silicon Parameters.81

5.25 Execution Time of Towers with an Off-chip Bit-serial
Multiplier with 90% Register Overflow and Silicon Parameters.........82

6.1 Block Diagram of “Cache Filter” Data Flow..88

6.2 Explanation of Non-cache Fetch Time.........89

Figure Page

IX

6.3 Execution Time of Intmm with an Instruction Cache
with GaAs Parameters......... -

6.4 Execution Time of Intmm with a Data Cache
with GaAs Parameters........91

6.5 Execution Time of Intmm with a Combined
Instruction/Data Cache with GaAs Parameters.........92

6.6 Execution Time of Queen with an Instruction Cache
with GaAs Parameters93

6.7 Execution Time of Queen with a Data Cache
with GaAs Parameters94

6.8 Execution Time of Queen with a Combined
Instruction /Data Cache with GaAs Parameters........95

6.9 Execution Time of Intmm with an Instruction Cache
with Si Parameters...96

6.10 Execution Time of Intmm with a Data Cache
with Si Parameters........97

6.11 Execution Time of/nfmrn with a Combined
Instruction/Data Cache with Si Parameters.........................98

6.12 Execution Time of Queen with an Instruction Cache
with Si Parameters... ;..........99

6.13 Execution Time of Queen with a Data Cache
with Si Parameters jQO

6.14 Execution Time of Queen with a Combined
Instruction/Data Cache with Si Parameters.......................................101

6.15 Execution Time of Intmm for GaAs Fetch Delays
with a Slow Cache 102

6.16 Execution Time of/nfmm for GaAs Fetch Delays
with a Fast Cache.... 103

Figure Page

X

6.17 Execution Time of Queen for GaAs Fetch Delays
with a Slow Cache................104

6.18 Execution Time of Queen for GaAs Fetch Delays
with a Fast Cache......................105

6.19 Execution Time of Intmm for Si Fetch Delays
with a Slow Cache.......................106

6.20 Execution Time of Intmm for Si Fetch Delays
with a Fast Cache.....................................107

6.21 Execution Time of Queen for Si Fetch Delays
with a Slow Cache...108

6.22 Execution Time of Queen for Si Fetch Delays
with a Fast Cache....109

6.23 Execution Time of Intmm with Small Base Delays
and Small Transfer Delays for GaAs Parameters..................................110

6.24 Execution Time of Intmm with Small Base Delays
and Large Transfer Delays for GaAs Parameters..................,.......,...lll

6.25 Execution Time of Intmm with Large Base Delays
and Small Transfer Delays for GaAs Parameters.................112

6.26 Execution Time of Intmm with Large Base Delays
and Large Transfer Delays for GaAs Parameters.................113

6.27 Execution Time of Queen with Small Base Delays
and Small Transfer Delays for GaAs Parameters...............................114

6.28 Execution Time of Queen with Small Base Delays
and Large Transfer Delays for GaAs Parameters.........115

6.29 Execution Time of Queen with Large Base Delays
and Small Transfer Delays for GaAs Parameters.............

6.30 Execution Time of Queen with Large Base Delays
and Large Transfer Delays for GaAs Parameters............................117

Figure Page

xi

6.31 Execution Time of Intmm with Small Base Delays
and Small Transfer Delays for Si Parameters.................118

6.32 Execution Time of Intmm with Small Base Delays
and Large Transfer Delays for Si Parameters......119

Figure Page

6.33 Execution Time of Intmm with Large Base Delays
and Small Transfer Delays for Si Parameters....................120

6.34 Execution Time of Intmm with Large Base Delays
and Large Transfer Delays for Si Parameters..............121

6.35 Execution Time of Queen with Small Base Delays
and Small Transfer Delays for Si Parameters....................................122

6.36 Execution Time of Queen with Small Base Delays
and Large Transfer Delays for Si Parameters.............................123

6.37 Execution Time of Queen with Large Base Delays
and Small Transfer Delays for Si Parameters...................124

6.38 Execution Time of Queen with Large Base Delays
and Large Transfer Delays for Si Parameters................................125

XU

ABSTRACT

Bettinger, Mark K. MSEE, Purdue University. December 1985. A Com
parison of E/D-MESFET Gallium Arsenide and CMOS Silicon for VLSI Pro
cessor Design Major Professor: Veljko Milutinovic.

Gallium Arsenide (GaAs) circuits have long been known for their speed.

They are now being considered for single chip processors since GaAs chips are

reaching VLSI complexities. Design constraints that affect both system and

processor design accompany the new technology. The goal of this work is to

compare and contrast designs in GaAs-E/D MESFET and Si-CMOS technolo

gies as they apply to ALU design. These differences are emphasized by exa

mining the design of several structures in GaAs for implementation of Stanford

University’s MIPS processor in GaAs. The three topics discussed are adder

design, multiplier placement and design, and cache effects on multiplier design.

The comparisons were made to help optimize the design of 32-bit GaAs

microprocessor for RCA. The results show that the high speed of GaAs devices

allows serial rather than parallel implementation of structures in GaAs; these

serial structures use less area than their parallel counterparts without any

degradation of performance. The total reduction in area is necessary to com

pensate for the area used by large fanin and fanout structures. In addition,

any solutions proposed for each structure must also take into account the long

off-chip delays.

1

CHAPTER 1
INTRODUCTION

Device physicists and circuit designers have long been interested in gallium
arsenide (GaAs) technology. As GaAs technology matured, it caught the
attention of digital circuit designers. Recently, the speed of GaAs devices has
captured the serious interest of system designers; they see the potential for
order of magnitude increases in computer system performance over silicon
systems becoming a reality.

Although speed is a major advantage, it is not the sole reason that
computer architects are taking a closer look at designing systems in GaAs.
GaAs fabrication techniques have made significant advances in recent years and
have allowed GaAs chips to reach VLSI levels of complexity. As designers
become more aware of the advantages and disadvantages of the new
technology; they are realizing that their old design methodologies are based on
the properties of silicon. Therefore, they are searching for new design
methodologies that take advantage of the different design parameters of GaAs.
Lack of design experience and unfamiliarity with the advantages and
disadvantages of GaAs technology and how they relate to silicon technology are
obstacles preventing full exploitation of the characteristics of GaAs.

To help overcome these obstacles, knowledge of the advantages and
disadvantages of GaAs and how they relate to the design methodology must be
increased. To accomplish this goal, work is being conducted to study issues
relevant to the design of a 32-bit GaAs processor. As an early participant in
the design of GaAs processors [HeScZ85], RCA corporation selected Purdue
University as a partner to study several of these issues. The goal of the study
is to experimentally determine the effect of the silicon/GaAs differences on
possible d®§igns- The results can then be used as guidelines for a set of design
solutions which use the advantages of GaAs while minimizing the
disadvantages of GaAs. These results were also used by RCA to help optimize
the design of a 32-bit GaAs microprocessor.

This portion of the study presents three sets of experiments covering three
different aspects of the design issues as they relate to ALU design in a wide

2

The remainder of this introductory chapter will provide a brief perspective
on the differences between GaAs and silicon, the logic families used in GaAs
and their characteristics, and a comparison between the GaAs and silicon
design parameters.

1*1» GaAs Advantages and Disadvantages
The advantages and disadvantages of using GaAs technology in computer

systems are the result of inherent differences between current silicon and GaAs
technologies. The differences are attributed to two major advantages and
disadvantages of GaAs compared with silicon. The advantages of GaAs
technology are a higher resistance to adverse environmental conditions arid
faster switching speeds than silicon. The disadvantages of GaAs technology are
higher cost and lower transistor count per chip than silicon.

The advantages are the result of the physics of the materials. Because of
the short minority carrier lifetime, GaAs devices have a high resistance to
radiation and can withstand dosages of 10-100 million RADS compared to 5-6
thousand RADS for silicon devices [Heage85]. The large bandgap allows a
range of operating temperatures from -200 and +200 degrees centigrade
[EdLiW83] as opposed to silicon CMOS operating temperatures of -55 to +125
degrees centigrade. These two facts alone make GaAs very promising for both
military and aerospace applications where extreme operating conditions are the
rule rather than the exception.

GaAs also performs better than silicon devices when comparing switching
speeds [EdLiW83], The larger mobility and peak velocity of carriers allows
GaAs gates to switch faster than silicon Transistor-Transistor Logic (TTL)
gates by up to an order of magnitude. In addition to the switching speed
advantage, GaAs gates also consume less power than the fastest silicon gates.
The power consumed is an order of magnitude lower than that of the fastest
silicon logic, Emitter-Coupled Logic (ECL), yet the gates remain faster than
silicon ECL gates. This power speed product makes GaAs even more
attractive for high performance computers.

GaAs technologies unfortunately have tremendous manufacturing costs:
two orders of magnitude more expensive than their silicon counterparts. There
are several reasons for the high cost and only five of these will be mentioned

sense. Arithmetic and logic unit design, and multiplier design and related
issues are the issues discussed in this thesis. Other processor issues such as
pipelining, instruction format, and register file design are covered in another
thesis [Fura85].

3

here. One of the basic reasons is the scarcity of gallium. Silicon makes up a.
large percentage of the earth’s crust while gallium is a rare metal. Second,
since GaAs is a composite material, the additional processing needed to create
the compound and verify its composition [Namor84] increases the cost. Third,
because of its structure, GaAs is also characterized by a higher dislocation
density than silicon [Walle84]. This results in a poorer yield for GaAs
fabrication processes. The fourth factor that raises the cost of GaAs is the
sophisticated processing techniques required to produce working GaAs
transistors. One example is the uniformity of threshold voltages that must be
maintained. Voltage swings for some GaAs devices are as low as 0.5 volts and
require that threshold voltages be uniform to within a very narrow range. This
narrow range also adds to the fifth factor: design costs. Digital designers are
discouraged from using NAND logic because they cannot use multiple input (>
2) NAND gates because each additional input requires a significant amount of
additional voltage swing and the total voltage required quickly passes the 0.5
volt limit. Designers are also limited by the low fanin and fanout maximums
of the GaAs E/D-MESFET technology. . Although these problems exist, the
solutions are currently being pursued. By the end of the decade, solutions will
be found which should reduce the cost difference to only one order of
magnitude [Namor84].

The second disadvantage of GaAs processes, their low transistor count, is
limited by two factors. Initially, the high defect density required that chips be
manufactured with a small area and corresponding low transistor count to
achieve adequate yields. As the quality of GaAs materials and processing
improved, larger and more complex chips became possible. An increase in
power that strained the limits of available heat dissipation techniques followed
the increase in complexity. Although new techniques were developed to
improve the heat dissipation, the added power increased the number of
potential reliability problems. Currently, the restrictions on transistor count
are power dissipation and defect density.

Although the problems present in the GaAs environment may he resolved,
it is believed that none of these four GaAs-Si advantages and disadvantages are
temporary in nature; they result from inherent differences between GaAs and
silicon materials [Coope84b]. Therefore, conclusions that are based on these
four fundamental characteristics will remain valid as GaAs technology matures.

1.2. Design Methodology Changes
Because the differences between the GaAs and the silicon environment are

not trivial in nature and affect some of the fundamental design decisions,
merely copying existing silicon designs into the GaAs environment will not
obtain the most robust GaAs performance. The new environment sets up a
new set of rules and challenges. Although the hurdles that must be leaped to
meet these challenges are higher, the rewards for successfully exploiting this
technology are also greater. With the proven high speeds of GaAs circuits and
the VLSI integration levels that are now appearing, we are on the verge of
achieving single chip processors capable of speeds for scalar operations
approaching that of present-day supercomputers [Hwang84].

To achieve the performance expected from GaAs, the design must be
considered from more than one viewpoint. The differences can be looked at
from a processor standpoint. How the GaAs technology affects the internal
processor logic becomes important. The transistor count limits how many and
what functions can be placed on the chip. The device limitations determine
how structures such as the ALU can be designed and which structures are
possible in the GaAs environment.

The design can also be considered from a system standpoint. How device
delays affect offchip communication delays becomes important. The device
delays determine what structures can be placed offchip without adversely
degrading system performance and the communication of these structures with
the system. The transistor count limits the complexity of the support chips
and the number of support functions that can be efficiently used by the system.

1.3. Overview of Thesis
The purpose of this thesis is to relate these new design parameters to

specific applications. The parameters will be examined to see how they affect
design both from the system standpoint and from the processor standpoint in
relation to CMOS and GaAs designs. Tradeoffs which must be made when
going from CMOS designs to GaAs designs, and the impact of technology on
the designs will be examined. There have already been papers on the general
problems of GaAs from both standpoints [MiSiF86][MiFull86]. This thesis will
cover details of the differences as they apply to specific problems. The effect of
the technology on the design of the processor’s adder will be covered to
acquaint the reader with processor design problems. ALU design is covered in
a broad sense by examining possible multiplier choices and tradeoffs between
multipliers and barrel shifters. These choices cover placement as well as

5

complexity and structure. Both adder and multiplier performance can be
affected by system issues such as cache design. Therefore the impacts of the
technology change on cache design and how this affects adder and multiplier
design will also be examined. GaAs designs in each of these three areas will be
contrasted with similar CMOS designs to provide the basis for comparison of
the technology generated differences.

Chapter two begins the comparison by examining the differences between
GaAs and silicon relevant to these structures (adders, multipliers, cache)
regardless of application. Chapter three describes the tools used for the
evaluation and the evaluation methodology. Chapters four through six
describe in detail the experiments done to evaluate the GaAs/silicon differences
in designs. Chapter seven summarizes the results of the experiments in the
previous three chapters.

6

CHAPTER 2
TECHNOLOGY AND IC DESIGN

As Si technology matured, it went through major changes. Similarly,
GaAs technology is still developing and maturing. This growth is accompanied
by the development of new logic families such as High Electron Mobility
Transistors (IIEMT), Hetero-Junction Bipolar Transistors (HJBTj, and
Enhancement mode MEtal Semiconductor FETs (E-MESFET). These families
are an addition to existing families such as IGFETs and JFETs, and the
earliest family, Depletion mode MESFETs.

As GaAs IC development matured, the level of integration of each family
also increased. The family chosen for implementation of single chip processors
and their support chips such as those discussed here must be able to support
VLSI levels of integration. The MESFET families have reached a level of
integratibn higher than any other logic family. Other families have achieved
better performance than MESFETs but no others have achieved VLSI levels of
integration. Therefore, we have confined our work to the GaAs MESFET
family.

Some of this information is also presented in [MiFuH86]. This chapter
contains an update of this information and additional material dealing with
E/D-MESFET technology is presented here. The material is presented here as
an aid to the reader.

2.1. GaAs MESFET Logic Families
Both depletion-mode MESFETs (D-MESFETs) and enhancement mode

MESFETs (E-MESFETs) have been used to build MESFET logic circuits in
GaAs. The depletion mode devices are generally considered better than the
enhancement mode devices because of several important differences, D-
MESFETs have better noise immunity, have fewer fabrication problems, are
less sensitive to increases in fanin and fanout, and are generally faster than E-
MESFETs. Their disadvantages are that D-MESFETs require a second power
supply and extra logic to provide level shifting. E-MESFET designs with their
low area requirements are often used because they require less power and less

7

complex circuit design than D-MESFETs [EdWeZ79]. In addition, E-MESFET
designs are not saddled with the disadvantages of D-MESFET designs.

Three principal GaAs MESFET logic families are in use today. They are
Buffered FET Logic (BFL) and Schottky Diode FET Logic (SDFL) of the D-
MESFET family, and Direct Coupled FET Logic (DCFL) of the E-MESFET
family [NuPeB82].

The earliest work in GaAs digital circuits was done with BFL D-
MESFETs [VanLi74]. The disadvantages of these gates are their requirement
for much power and area, and their need for two power supplies and voltage
shifting logic. These disadvantages are compensated for by the large fanout
capabilities and large noise margin of BFL gates. In an effort to reduce power
requirements, low-power BFL (LPBFL) circuits were introduced.

Early BFL gates were characterized by propagation delays of 34 ps with
power dissipation of 41.0 mw/gate [NuPe82]. The LPBFL gates reduced power
dissipation to 6.0 mw/gate with delays of 250 ps as part of a 40 gate 4-bit
ripple carry adder [PeDaN83]. A more recent LPBFL design used 420 gates to
implement a 32-bit adder with gate delays of 230 ps dissipating only 2.8
mw/gate [YaIIiA83]. The most advanced BFL design is a 12x12 bit multiplier
implemented with only 1083 gates [FuTal84]. The gate delays were only 170
ps and each gate dissipated 1.7mw.

SDFL D-MESFET gates are a low power alternative to BFL logic gates
since SDFL gates generally require less power and area than BFL gates.
Because of the reduction in area, this family has received considerable interest
for LSI circuit applications [EdWeZ79][NuPeB82] and was the first to reach LSI
levels of integration. Despite the improvements, SDFL gates still need two
power supplies and level shifting logic.

One of the first LSI GaAs applications was an 8x8 bit multiplier
containing 1008 gates using SDFL logic [LeKaW82]. Gate delays Were 150 ps
and power dissipation was only 1.5 mw/gate. More recently, an SDFL
RAM/gate array chip with 8000 devices has been built [VuRoN84].
Approximately 3000 FETs and 5000 diodes were used to create a chip with 432
programmable SDFL cells, 64 bits of RAM, and 32 interface cells. Although
the complexity had increased over previous designs, the speed and power
remained the same. Low-power predictions for the same design suggest that
gate delays of 300 ps and power levels of 0.2 mw/gate are possible.

Although E-MESFETs lack some of the advantages of D-MESFETs, they
are considered suitable for VLSI implementations because of their low power
requirements and simpler circuit designs. They have long been considered

8

suitable for VLSI implementation [NuPeB82]. Their suitability is enhanced
because they require no logic level shifting logic and only a single power supply.
The most common E-MESFET logic gate is the Enhancement mode driver/
Depletion mode load MESFET (E/D-MESFET). Since E/D-MESFETs are
more difficult to fabricate than the previous two logic families, it was not until
recent advances in GaAs fabrication technology were made that this family was
able to reach VLSI levels of integration and began to dominate GaAs digital
designs.

A number of designs have been introduced using DCFL E/D MESFET
logic gates. A 1000 gate gate array has been designed with loadless gate delays
of TOO ps and power dissipation of 0.2 mw/gate [IkToM84]. This was proof
that DCFL circuits could switch faster while using less power than SDFL
circuits. A slightly larger 16x16 bit parallel multiplier containing 3168 gates
with gate delays of 150 ps at 0.3 mw/gate has also been reported [NaSuS83].
The highest level of integration reported so far for any GaAs process is a 16kxl
SRAM containing 102,300 devices with an access time of 4.1 ns and power
dissipation of 2.5 w [IsInI84].

2.2. Characteristics of GaAs MESFET Designs
Table 1. is presented here to compare the performance characteristics of

some GaAs MESFET designs. Based on the power and complexity of the chips
presented in the table, GaAs technology is clearly becoming a suitable vehicle
for microprocessor implementations. Based on its low power requirements, the
most promising MESFET solution is provided by the DCFL E/D-MESFET
approach. The merits of DCFL are demonstrated by the SRAM which
provides a high level of integration, 102,300 FETs, with low power, 2.5 watts
[IsInI84]. The current major drawback to this approach is its fabrication
complexity and resulting low yield and high cost. Based on the present rate of
fabrication technology improvement, however, the introduction of GaAs
microprocessors should occur within the next two or three years. We must,
therefore, begin to understand the GaAs environment now and determine how
the characteristics of GaAs will influence processor and system architecture
design in the new environment. We will then be ready as it steps to the
forefront of high-speed, environmentally adverse applications.

Table 1. Performance Characteristics of GaAs Designs [Fura85|.

Unit

ARITHMETIC
32-bit adder(BFL)
8x8 multiplier (SDFL)
16x16 multiplier
(DCFL)

Speed
M

2.9 total
5.2 total

10.5 total

Power
(W)

1.2W
2.2W
LOW

Device
Count

2.5K
6.0K

10. OK

Reference

[YaIIiA83]
[LeKaW82]
[NaSuS83]

CONTROL
gate array/SRAM 0.15/gate 3.0W 8 OK [VuRoN84]
(SDFL)
1000-gate gate (DCFL) 0.10/gate 0.4W 3.0K [IkToM84]
MEMORY
IK bit SRAM (DCFL) 2.0 total 0.5W 7 IK [AsIvuH83]
4Kbit SRAM (DCFL) 2.8 total 1.2W 26.6K [HiInM84]
16K bit SRAM (DCFL) 4.1 total 2.5W 102.3K [Islnl84]

10

2.3. GaAs/Silicon Comparison
Since DCFL has been shown to have a sufficient level of integration with

acceptable speed and power, all discussion of GaAs circuits will be based on the
DCFL E/D MESFET logic family. All of our Si discussion will be based on
CMOS/SOS (silicon on sapphire).

Table 2 [BasNe84] compares several characteristics of GaAs and Si
technologies that are important for processor and system design and
optimization. Significant GaAs/Si differences can be observed in four areas: (1)
transistor count per chip, (2) on-chip gate delay, (3) the ratio of off-chip to on-
chip memory access time, and (4) gate fanin and fanout. The rest of this
section will concentrate on the GaAs/Si differences from Table 2. The
implications of these differences on processor and system design will be
presented in the following sections.

The differences between GaAs and Si are substantial and will affect
processor and system designs. The next section will discuss the implications of
GaAs characteristics on aspects of specific design issues.

Table 2. Performance Comparison of E/D-MESFET GaAs,
CMOS/SOS, and Bulk Silicon.

GaAs CMOS/SOS CMOS/BULK

COMPLEXITY
Transistor Count/Chip 20-30K 150 K plus 150 R plus

Chip Area yield & power yield & power yield fc power
dependent dependent dependent

SPEED
Gate Delay 50-150 ps .8-1.5 ns 1-3 ns

On-chip Memory Access 0.5-2.0 ns 10-20 ns 20-40 ns
Off-chip/On- package

Memory Access

4-8 ns 30-40 ns 40-80 ns

Off-chip/Off- package 10-60 ns 60-100 ns 100-200 ns

Memory Access •

IC DESIGN

Transistors/Gate

Transistqrs/Memory Cell
1 + fanin 2*fanin 2*fanin

Static 6 5-6 5-6
Dynamic 1 n/a n/a

Fanin (typical transistor 2-3 5 5

■ size)'
Fanout (typical transis 3-5 5 5
tor size)
Gate Delay Increase for
each Additional Fanout
(relative to gate delay

25-45% 25-40% 20-30%

with fanout =0)

12

CHAPTER 3
EVALUATION TOOLS AND METHODOLOGY

For each of the three areas of interest (ALU, multiplier, and cache effects
on multiplier design). Experiments were run to determine optimal
implementations. The circuit level and instruction level simulators used
required two sets of support tools for the evaluation. The circuit level
simulator was used for the adder experiments and the instruction level
simulator was used for the multiplier and cache experiments.

3.1. Circuit Level Simulation
The goal of the circuit level simulation was to obtain a realistic measure of

circuit complexity and delay and to determine if the resulting VLSI adder
implementation was fast enough and small enough to meet the limits imposed
by RCA. Delay estimates for the circuits were included. The relevant aspects
of this methodology, the delay estimation and the area estimation, are now
discussed.

3.1.1. Area Estimation
The circuit level simulation is based on the Hardware Description

Language (HDL) [T.I84] design tool made available to us by RCA. A digital
design could be entered into HDL using the description language. Once the
circuit was properly described, usually on a gate by gate basis, the input file
was compiled into a database and a simulation could be run on the compiled
database. This database was also used as an input to RCA’s Multi-Port 2-
Dimensional (MP2D) placement and routing program that could provide
layouts of the circuits described. The goal of this was to obtain a realistic
measure of complexity and to determine if the area of the VLSI
implementation was small enough. Rather than estimating gate counts and
wiring space for an adder, these programs allowed us to obtain layout statistics
for structures without having to go through fabrication.

Each design was entered into the database using HDL. Once the circuit
was described on a gate by gate basis, the input file was compiled into the

13

database. A list of devices and connections was then extracted from the
compiled data base for the layout program, MP2D. MP2D then took the lists
and created a layout that could be used for fabrication of the devices. Five
different word lengths were used for the layouts. The areas for the layouts
Were used to derive the equations used to approximate the area occupied by
each adder. The equations were then entered into a C-language program which

used to approximate the area for individual adders. This program was
used to calculate the area required for the 35 adders that were not described on
a gate by gate basis using HDL.

3.1.2. Delay Estimation
The design delays were implemented in C-language because access to the

circuit simulation software was not granted. Optimization was done in a
manner analogous to hand optimization in all but the most complex design
choices. Many of the choices were also fixed before optimization began. The
use of the C-language programs allowed the flexibility to change any of the
delay parameters at any time and see the results in the period of a few minutes
rather than a few days. Accuracy compared to HDL was not lost from lack of
wiring information since the circuit simulation program did not include wire
delays in any delay calculations. The section on adder design shows that this
was not a severe problem.

3.2. Instruction Level Simulation
The instruction level simulator was used to obtain program execution time

to determine the performance of the architectures. The relevant aspects of this
methodology are the workload model, the baseline architecture, and the
method of translation between them.

3.2.1. Workload model

The workload model was a set of ten small benchmark programs obtained
from Stanford University written in the high level language PASCAL. The
following list gives their names and their functions:

(A) ack a highly recursive program to compute Acker maim’s
function,

(2) bubble a program to perform a bubble sort of 500 integers,
(3) fib a highly recursive program to compute a Fibonacci number,

14

(4) intmm a computation heavy program to multiply two 40x10
element integer matrices,

(5) perm a highly recursive program to calculate all permutations of
the numbers one through seven,

(6) puzzle an iteration heavy, computation heavy program to solve a
three dimensional cube packing problem,

(7) queen a program to solve the eight queens problem,
(8) quick a program to perform a quick sort of 5000 integers,
m sieve a program which implements Erathosthenes sieve to compute

the number of primes between 0 and 8190,
(10) towers a highly recursive program to solve the towers of hanoi

problem with 18 discs.

This set of benchmarks represents a broad range of program classification,
from highly recursive programs such as towers and ack to computationally in
tensive programs such as puzzle and intmm.

3.2.2. Architecture Simulator and Analysis
The architecture simulation tools are based on an instruction level

simulator [Gross84] written by Stanford University for the SU-MIPS processor.
SU-MIPS is an example of a Reduced Instruction Set Computer (RISC)
architecture, and was one of the first “RISCs”, preceded only by the IBM 801
[Radin83] and Berkeley RISC [Katev83]. The SU-MIPS architecture was
selected by Darpa [Barne85] because its low transistor count is compatible with
GaAs E/D MESFET capabilities of the near future.

To better understand the experiments, several SU-MIPS features must be
explained. First, SU-MIPS uses a “delayed branching” scheme with a branch
delay of one. This means that the first instruction after every branch operation
is always executed. This places a burden on the compiler to find a useful
instruction for the fillin slot or to insert a NOOP into the slot if no instruction
can be found. Second, the data from a data load operation is not valid until
after the instruction following the data load instruction. The compiler must
therefore find useful instructions for the fillin slots after load instructions.
Third, “instruction packing” is employed by the SU-MIPS processor. Certain
SU-MIPS instructions contain two operations, one of which is always an ALU
operation. The operations are executed sequentially in the time necessary for a
single instruction fetch. Since not all instruction combinations may be packed,
instructions may contain either one or two operations. In addition, the system

15

clock runs at twice the frequency of instruction fetches to subdivide each
instruction cycle.

These features of SU-MIPS result from implementing the pipeline interlock
mechanism in software rather than hardware. This eliminates hardware that
suspends the pipeline waiting for data loads and branches. In addition to a
reduced transistor count, performance increases since some instructions
following a branch or load will be executed. In a conventional architecture, the
processor is suspended during that time and does nothing.

I designed and helped implement the cache simulator that was used as
part of the SU-MIPS simulator. The cache simulator receives both an address
and data and returns the number of instruction cycles required for the access
while updating the data and tag information. The cache simulator was
designed to allow run-time modifications to the cache size, block size, prefetch
strategy, cache miss delay, and memory access delay.

The different architectural features were studied by making appropriate
modifications to the SU-MIPS simulator and cache simulation programs and
then recording the benchmark execution time. These changes were necessary
due to the differences between the SU-MIPS architecture and the architecture
being studied. The changes were also generated by the GaAs processor
implementation.

3.2.3. SU-MIPS Compiler and Translation Software
This study used a compiler, reorganizer, optimizer, and linker/loader

written by Stanford. This translation software was not modified by us, and
hence, was limited to translation of PASCAL source code into the instruction
set of the Si based SU-MIPS instruction set. Modifications were not done
because they involved understanding and rewriting the topic of a PhD thesis
[Gross83], Much of the difficulty in performing the experiments resulted from
our inability to generate optimized code targeted to each of the candidate
architectures. The implications of this are described in the following sections.

16

CHAPTER 4
CHOICE OF ADDER DESIGNS

4.1. Introduction
As previously mentioned, the differences between Si and GaAs technologies

require different solutions to the same problem. Silicon technologies typically
require high-speed adders to achieve high performance. This is because of the
relatively small ratio of the memory access time to the data-path times. For
example, the NMOS-silicon HP-FOCUS utilized a full carry look-ahead adder
to satisfy its 55ns cycle time [BeDoF81].

Several adder designs for GaAs technologies are available ranging from the
high-speed, large area full-carry-look-ahead adder to the low-speed, small area
ripple-carry adder. Others having speeds and resource requirements between
these two extremes include conditional-sum and carry-select adders [Hwang79].

When the switch from Si to GaAs technologies is made, the design changes
are the direct result of three of the major Si/GaAs differences and the indirect
result of the fourth. The differences as they apply to adder design are
examined because the adder is an integral part of the cpu and directly affects
the data-path time and performance.

The transistor count limits the complexity of any adder that is
implemented. If the chip is limited to 30K transistors, then any adder that
requires 10K transistors is unacceptable. Even lower limits may be established
if some chip area is reserved for a large register file. The low on-chip gate
delays can enhance performance by simply replacing their Si counterparts and
reducing total delay. Often, implementation of high-speed adders requires high
gate count designs.

The limited gate fanin and fanout affect both the area needed and the
delay incurred. Single gates with high fanin and fanout must be implemented
as a series of gates with low fanin and fanout which increases transistor count.
Because delay is highly dependent on load capacitance, high fanout devices
have a relatively large delay. If a tree is built in a random fashion, this
dependence may cause the delay through N levels of high fanout gates to

17

exceed the delay through N + l levels of low fanout gates.
The ratio of off-chip memory access time to on-chip memory access time

indirectly creates additional GaAs/Si differences. When this ratio is large, a
memory pipeline is often used and is several levels deep. When this depth
exceeds the average distance between branch instructions or the branch delay,
NOOPs must be found to fill the pipeline until execution of the branch
instruction is completed.

4.1.1. Pipeline Depth

The memory pipeline depth is determined by ratio of the memory fetch
time to the data path time. If the data path time is lengthened by allowing
the adder to take longer, then the pipeline depth decreases and fewer NOOPs
must be inserted into the instruction stream. This decreases both idle time of
each processor stage and memory usage. The lengthening of the adder time
can be done by replacing a full carry look-ahead adder with a ripple carry
adder. This will probably occur only in a GaAs environment since most Si
systems do not have deep memory pipelines. Without a deep pipeline,
increasing the data path time would increase execution time. In addition, the
delay of the ripple carry adder is of the same order of magnitude as the delay
of the full carry look-ahead adder with GaAs technology. The narrow
separation of the delays is different from Si technology where the delays are
vastly different.

4.1.2. Adder Type
As mentioned, this set of changes (transistor count per chip, on-chip gate

delay, the ratio of off-chip to on-chip memory access time, and gate fan in arid
fanout) affects the choice of adders in many ways. Traditionally, the full carry
look-ahead has been preferred for high speed applications and ripple carry
adders have been discounted for all but the shortest wordlength. Reevaluation
of the adders may show that the fastest adder in Si is not the best or fastest in
GaAs technology. The new technology will also improve the performance of
the slower adders. Therefore, this section is devoted to the change in adder
performance from the Si environment to the GaAs environment arid how it
affects the choice of adder designs.

18

4.2. Evaluation Methodology

The choice of adder structures was influenced by previous research
[FurMi85], [Sherb84]. To cover the range of possibilities for our analysis, an
adder with a low number of stages but with high fanin and fanout
requirements and another adder with low fanin and fanout requirements were
chosen: the full carry look-ahead adder and the ripple carry adder. To make
the list complete, an adder that was a compromise between the two extremes
was chosen. This choice was the carry select adder presented in [Katev83]
which ran stages in parallel rather than serially while still keeping the fanin
and fanout requirements low.

To complete the list of adder parameters for various applications, each
adder type was examined for bit lengths from four to thirty-two bits. To
determine the effect of technology changes, designs with the following fanin and
fanout limitations were examined: fanin = two and fanout = two, fanin = two
and fanout = five, and fanin = five and fanout = five. To show the effects of
different technologies when determining gate delays, the delay per fanin and
fanout and the base delay for each gate was varied. These parameters were
then used to generate delay information for each adder for the first test. Adder
delays give no information about implementation difficulties. Therefore, for
the second test, we generated a hardware description for a subset of adder
lengths for each adder type. The descriptions were input to the automatic
layout tool, MP2D, which then calculated areas for each adder type.

4.3. Experiment Procedure
The first of the two tests was to determine the delay for each adder type

by deriving the delay formulas for speed comparisons based on fanin, fanout
and bit length. In addition, the delay per additional fanin and fanout and the
base delay for gates could be controlled. These formulas could then be used to
compare the adders. When the formulas were developed the circuit simulation
software was not available. Therefore, the formulas were implemented in C
language for each of the three adder types.

4.3.1. Adder Delays
The first step was to derive equations for a simple NOR gate which

include the delays for the different inputs. Each NOR gate has five
parameters:

19

the rise and fall delay of the fast input,
the rise and fall delay of the slow input,
the fast input load capacitance,
the fanout capacitance,
the delay per additional fanout,
the maximum fanin,
and the maximum fanout.

The delay formula is
delay ~ (f logmaxfanin(Fanin)

+ (2 * * | ([logmaxfanout(Fanout) |+l)/2 J| - 1)

* (basefast(l) + Fast*Cfast) + basefast(l)+Fast*C0Ut.

where

f- l)*(baseslow(maxfanin) + Slow * Cfast

F ast
Slow
Gfast
C0ut

F ast*C0Ut
max fanin
max fanout

and
basesiow(fanin) — delaybase+fanin*delay per fanin

— delaybase+fanin*delay per fanin

Another question is whether the delay caused by the conductors is
significant compared to the delay of each gate. Given information on the
Tektronix E/D MESFET process and information from their GaAs standard
cell library, I was able to determine that the capacitance of the longest
expected conductor was less than 1/4 of the lowest input capacitance of any
device in the Tektronix GaAs standard cell library *.

The delay for each adder depends on several parameters:

D - the delay of the critical path,
N - the number of bits in the adder,
B - the value of the base time,
Cfi - the capacitance per additional fanin,
Cfo- the capacitance per additional fanout,
Nfi - the number of fanins,

t XI, the ceiling function, picks the smallest integer greater than X
t IXJ, the floor function, picks the largest integer smaller than X.
* This information is not specified because it is Tektronix Confidential.

20

Nfo - the number of fanouts,
T - adder type.

The overall formulas for delay generated always consider the varying
delays between inputs. The formulas also take into account varying fanin and
fanbut limitations. The general formula varies as D(N) = f(N, B, Cfi, Gfo, T,
Nfi, Nfo).

For D(N) given T=ripple carry as shown in figure 4.1,

D(N) =■ xor(Cfifast + Cfislow) + carry(2*Cfifast)*N + xorfast(Cfifast)

where

xor(Cout) = max(basefast(2)+Fast*Cfifast*2 +

basefast(2) + Fast*Cfislow + baseslow(2) + Slow*Cout,

baseslow(2) + Slow*Cfifast*2 +

basefast(2) +Fast*Cfifast + basefast(2) +Fast*Cout),

xorfa8t(Gout) = min(basefast(2)+Fast*Cfifast*2 +

basefast(2) +Fast*Cfislow + baseslow(2) +Slow*Cout ,

basesk)W(2) + Slow*Cfifast*2 +

basefast(2) +Fast*Cfifast + basefast(2) +Fast*C0Ut), : ;

carry(C0Ut) = basefagt(2)+Fast*Cfifast + basefagt(2)+Fast*C0Ut ,

and once again

basesiow(fanin) = delaybase+fanin*delay per fanin

and

basefast(fanin) = delaybase + fanin*delay per fanin.

For D(N) given T=carry select as shown in figure 4.2, when m ^ |VnJ

D(N) = xor(Cfifast + Cfislow) + carry(2*Cfifart)*m + xorfast(Cfifast) +

mux(m, 2*Ofifast)*'l.N/m J + mux(N%m,2*Cfifast)

where

Ripple Carry

Propogate
Generate

Carry
Generation

Figure 4.1 Block Diagram of Ripple Carry Adder

Adder

Figure 4.2 Block Diagram of Carry Select Adder

U)to

23

mux(m, Cout) = outtree(m, Cfifast) + basefast(l)+Fast*Cfifast +

basefast(2)+Fast*Cfifast + basefast(2)+Fast*c0Ut)

and - v.
outtree(m, Cout) = (| logmaj{fanout(m) |-1)

* (basefast(l)+Fast*Cfifast*maxfanout)

+ basefast+Fast*Cout*maxfanout,

but if | loSixiaxfaiiou^ni) | is odd then

delay = delay +basefast(l)+Fast*Cfifast.

For D(N) given T=full carry look ahead as shown in figure 4.3,

D(N) = xor(Cfifast + Cfislow) + carrytree(N, 2*Cfifas(.) + xorfast(Cfifast).

where

carry tree(m,Cout) = outtree(^—+l,Cfifast)

+ intree(m,Cfifast) + intree(m,Cout) ,

and

intree(m, ^out) = (f logmaxfanin(m) |-1)

* ((baseslow(maxfanin)+Slow*Cfifast)

+ basefast(l) +Fast + Cfislow)

+ baseslow(maxfanin) + Slow*Cout.

These equations were then implemented in C for each adder. The base
gate delays and delays per additional fanin and fanout were implemented as
variables set at compile time. This information was then plotted to show the
difference between the adders as the technology parameters were varied.

Full Carry Look-ahead

Propogate

Carry
Generation

Generation

to

Figure 4.3 Block Diagram of Full Carry Look*Ahead Adder

25

4.3.2. Adder Area

So far only the delay of the individual adders has been discussed. The
delays can then be used in conjunction with the area consumed to evaluate
each adder Determining the area consumed was done as part of the second
test where each adder was created with HDL. Gate level descriptions of each
adder complete with timing information could be entered using the description
language. The resulting description was run through a translation program
that extracted and formatted the data for MP2D, the automatic layout
program. MP2D, multi-port 2-dimensional placement and routing program,
took the translated HDL information and generated layouts for portions of the
adders and for complete adders. Included with this information was the actual
layout and area that each design required, as well as the approximate area per
transistor including wiring areas. The data was then used to build general
curves and equations to approximate any of our adders. These curves allowed
us to compare the adders on this second criterion to better estimate their
viability in a GaAs environment.

The area of ripple carry adders was calculated by interpolation along a
straight line between known points. This was relatively accurate since the data
were very linear. The area for a carry select adder of bit length N, when
m= \/N , is approximated by the following formulas.

A(N)=areapg(m) + areapg(N%m)

+(m-l)*2*(areacg(m) +areacg(N%m)) +areacg(m)

V + (m—1)*(areamux(m)+areamux(N%m))

m*(areaSum(m) +areaSum(N%m))

where

Pg(m) = area of an m-bit propagate generate box,
cg(m) = area of an m-bit carry generation box,
mux(m) = '■ area of an m-bit mux, and
siim(m) = area of an m-bit summation box.

The area for a full carry look-ahead adder of bit length N is approximated by
the following formulas.

A{N)=areapg(N) + areasum(N) + fanoutcarry_in(N)

26

i=n-l
+ E (markfanOUtsenerate(N-i)

i=0

+fanoutpropagate((i + l)*(n-i) +1) + areacarry(i +1))

whiere

area of an m-bit fanout tree and
area of the mth carry bit.

4.4. Presentation of Results
Using all the delays and the areas for each adder type, the difference in

adder design for Si and GaAs technologies can be described.

4.4.1. Adder Delays
The delay programs used the given formulas to generate the delay data

presented in figures 4.4 through 4.9. The first set of three figures displays the
delay of each adder in a GaAs technology for the three fanin and fanout
configurations. The second set of three figures displays the delay of the adders
in a Si technology for the fanin and fanout configurations. Each figure shows
delay in picoseconds versus word length in bits. Simplifying the adder
equations shows that the delay of the ripple carry adder increases by O(N)
(Order N), the carry select adder increases by 0(log(N)N1/2), and the full carry
look-ahead adder increases by 0(log(N)), where N is the bit length of each
adder. For large N, the comparison shows that the full carry look-ahead adder
will always be faster than the carry select adder, and both will be faster than
the ripple carry adder. The technology determines the key parameters that
determine the magnitude of the difference in delay time and the fastest adder
for short bit length adders.

Although the ripple carry adder has delays increasing linearly to values
greater than either of the other two adders, the delays of the carry select adder
and the full carry look-ahead adder are increasing at almost the same rate. For
the bit length of interest (32 bits), the propagation delay through the full carry
look-ahead adder is two-thirds that of the carry select adder. Figure 4.6, where
the maximum fanin and fanout are five, shows this much more clearly than
figure 4.4 where the maximum fanin and fanout are only two. The differences
in the delays are due to the slow rise time of the E/D-MESFET gates and the
long base delays of the CMOS/SOS gates.

fanout(m) —
carry(m) —

ts
CX
1Q

27

7.00000 -i

6.I8750 -

5.37500 -

H.56850 -

£.93750 *

8.18500

1.31850 -

Fanin £* Fanout £
RC

—/ ./ cs

y^<-
¥

r/._4/
/“ / ^ - / - ^ ~

FL

.500000 ■
11 16 21 25' 30 35 HO

#b its
Fast Base, Slow Rise

Figure 4.4 Adder Delays with GaAs E/D-MESFET Parameters with max
imum fanin—2, maximum fanout —2

fs
 <

X1
0‘

28

16 21 £5 30 35 *+0

#b its
Fast- Base.- Slow Rise

Figure 4.5 Adder Delays with GaAs E/D-MESFET Parameters with max
imum fanin=2, maximum fanout =5

CX
10

29

7.OQ0OO i

6.18750 -

5.37500 -

4.56250 -

3.75000

2.93750

Fanin 5; Fanout 5

yy

.1.31250 -

•500000

/.y-I J

y

RC
y

yyyy

y

y

/

CS

FL

~i----——r-
11 16 21 £5 30 35 40

#bits
Fast .Base, Slow Rise

Figure 4.6 Adder Delays with GaAs E/D-MESFET Parameters with max
imum fanin—5, maximum fanout =5

is c
xi

o

30

Fanin 2, Fanout 2

6.90000

H.80GQQ -

1.65000 -

.600000

/ RC

/

j'f-7--

\y

/. / / "V

V
-J

//
/s _/ C£

FL

11 16 21 E-5 30 35 HO

#bits
Slow Ease.- Fast Rise

Figure 4.7 Adder Delays with Si CMOS/SOS Parameters with maximum fa-
nin=2, maximum fanout—2

31

Fan in £.■ Fanout 5

6.90000 -

5.85000 -

p-
X 4-.80000 -

Ift'H-
3.75000

£.70000

■1.65000

✓ RC

/

/T-V"

/?
/

/
/ yS /4----- f-A'

cs

FL

1^ y
1 y

y

11 L6 SI £5

ttbits
Slow Ease.* Fast Rise

30 35 HO

Figure 4.8 Adder Delays with Si CMOS/SOS Parameters with maximum fa-
nin^, maximum fanout=5

fs
 C

X1
0

32

9.00000 i

7.95000 -

6.90000 -

5.85000 -

rv .
H-.80000 -

3.75000 -

£.70000 *

i.65000- /
/

.600000 ¥~

1

Figure 4.9

Fan in 5,- Fanout 5

✓ R C

/

cs
/// y

jLS

/

/
//
/

FL
/-

11 £5 30 35 *+0
#bi ts

Slow Base, Fast- Rise

Adder Delays with Si CMOS/SOS Parameters with maximum fa-
nin=5, maximum fanout=5

33

The slow rise time severely degrades performance as fanin and fanout
increases as shown by the large difference in execution times for figures 4.4 and
4.6, and 4.7 and 4.9. When only the rise time is changed, the speed of the
individual adders increases dramatically as shown in figures 4.10 through 4.12.
Unfortunately, the GaAs E/D-MESFET process is not characterized by such
fast rise times and fast total delays.

If the designer wants to avoid an excessively deep memory pipeline, then
he should also consider the ripple carry adder. Since the design is characterized
by low fanout, the change in maximum fanout from Si has almost no effect. In
addition, the delay is only twice that of the full carry look-ahead adder and
could increase the total data path time of a processor such as SU-MIPS
[Gross82] by 30 percent. This would allow the designer to reduce the memory
pipeline depth by the same amount.

4.4.2. Adder Area

As mentioned before, comparisons solely on the basis of adder delays are
deficient. Therefore, the area consumed by each of the adders was plotted and
is presented in figures 4.13 through 4.15. The area of each adder is shown in
terms of mils squared and is plotted against the bit length of each adder The
area required by the ripple carry adder increases linearly with bit length and
rises at the slowest rate of the three adders. The area of the carry select adder
is growing a little faster: O(N) plus an N1/2 component. The fastest adder, the
full carry look-ahead adder, consumes area at a much higher rate, 0(N3).
Although this is not surprising, the cubic growth rate quickly uses up the
available area on a chip. This may not be obvious where fanout limitations are
large and the fanout trees will not occupy a large area. A quick glance at the
graphs quickly shows that even for large maximum fanin and fanout, the area
consumed by the full carry look-ahead adder is unreasonable for large bit
length adders. Only the ripple carry adder and the carry select adder conserve
enough area to allow other structures to be placed onchip.

In summary, the GaAs environment quickly challenges long-standing
conventions. Ripple carry adders are capable of performing the job without
severe degradation of performance and can help reduce memory pipeline depths
and improve performance. This supports using serial operations in GaAs,
particularly when such, operations have low fanin and fanout requirements.
For adders such as full carry look-ahead adders, the parallel nature uses area in
such large quantities that they are not useful in a GaAs environment. Those
adders that serialize operations with high fanin and fanout requirements while

34

parallelizing operations with low fanin and fanout requirements make a good
compromise. Carry select adders, which follow this principle, are shown as one
of the fastest adders available as well as one of the more area efficient
structures.

fs
 <

X1
0

35

£■£2625

2.25250

1.37875

i.50500 -

.757500 -

.383750

.010000

Fanin £, Fanout 2

RC

/
//

/

// _// / ^' /

^------ ^ cs
FL

'
/

!7Sir

? /
y

s

11 16 21 £5 30

#b its

Fast Base.- Fast Rise

35 ho

Figure 4.10 GaAs Adder Delays with Decreased Rise Time with maximum
fanin—2, maximum fanout=2

OTXV
sj.'

36

3.00000 -i
Fanin Ej Fanout 5

£.£5250

i.87875 -

.757500 -

.383750

.010000

/
RC

/
/

/
/

i___ / Eb
-/

O'

r> ^
lf y '/ /
/V*v

11 16 21 £5 30 35 HO

#bi ts
Fast- Base, Fast Rise

Figure 4.11 GaAs Adder Delays with Decreased Rise Time with maximum
fanin=2, maximum fanout=5

0
1X

 >

37

Fanin 5> Fanout 5

2.68625 -

2.£5250 -

1.87375

1.50500 -

.757500 -

.383750

RC

/

//

/
/

//
____y

/

py
t/

cs

FL

—,--------1--------- 1---------1-------- 1---------I-------- 1
11 16 £1 25 30 35 40

#bi ts
Fast- Base.- Fast Rise

Figure 4.12 GaAs Adder Delays with Decreased Rise Time with maximum
fanin=5, maximum fanout=5

Ad
de
r,
 a

re
a

Or
al
s)
 CX

10

38

1.35000 -]
Fanin 2, Fanout P

, FC

i.18125 -

^ 1.01250 -
in

CD
T-1
X

.8H3750 -
/-%
U)

■ r-1
5 .675000 -

I'D
Oi

(l>: .506250 -

t
i

/
/

/
/

/
/

/
/

l
/

/
/

/
l

<L>

T3
<L . 337500 -

f

J
s

s
S

y

.168750 - y

.oooaoo -
][5 9 13 17 SO" 2H- 28 32

#bits

Adder Areas

Figure 4.13 GaAs Adder Area with maximum fanin=2, maximum fanout —2

Ad
de

r
ar

ea
 (

mi
ls
)

39

80000.0 -J

70000.0 -

60000.0 -

50000.0 -

40000.0 -

30QOO.O -

£0000.O -

10000.0 -

n.OOOOO -■ 1

Figure 4.14

Fanin Fanout 5

~i------------- 1----------------r
13 17 SO

#b i t S
Adder Ar eas

GaAs Adder Area with maximum fanin=2, maximum fanout =5

Ad
de
r

ar
ea

 (
mi
ls
)

40

£8000.0 -]

£4500.0 -

£1000.0 -

17500.0 -

14000.0 -

10500.0 -

7000.00 -

3500.00 -

0.00000 -f 1

Figure 4.15

Fan in Fanout 5
/ FC

CS
RC

#bi ts
Adder Areas

GaAs Adder Area with maximum fanin=5, maximum fanout—5

41

CHAPTER 5
MULTIPLIER PLACEMENT

5.1. Introduction
Current RISC processors such as UCB-RISC [Patte85] have shown the

usefulness of large register files and of windowed register sets. The area
limitations of the GaAs environment do not allow such large structures.
Possible GaAs architectures include as many as 32 registers, but this may not
be the best use of space. The proposals discussed here use the area of 16 of
those 32 registers for other structures such as barrel shifters and multipliers.

The choice of the proposed multiplier and barrel shifter was heavily
influenced by previous work in this area. One influence was from the
instruction mixes presented in [Knuth71]. Although these mixes are
predominantly simple arithmetic and branching operations, multiplication was
still significantly more frequent than operations such as division and shifting.
By themselves, these mixes do not show the most important operations to
investigate. However, the instruction mix of the benchmarks presented in
figure 5.1 is used to describe the possible applications of the processor and help
highlight promising operations to investigate. The instruction mix distribution
shows that after the common operations such as loads, branches and simple
arithmetic operations, multiplication was the most frequent operation and shift
or rotate instructions occurred relatively infrequently. Since area is often
sacrificed for performance and vice-versa, shifting speed can he reduced and
area can be freed while multiplication speed can be increased by using the freed
area. Since multiplication occurs so frequently and shifting occurs so
infrequently, performance should improve when these changes are made.

5.1.1. Shifter Choice
The type of multiplier and barrel shifter still must be decided since there

is a wide variety in their speed and complexity. The choice of shifters is
relatively simple: use a full barrel shifter or a barrel shifter with a small shift
capability. The implementation of any shifter for SU-MIPS allows a maximum
shift of 2n—1. Since the shifter was chosen to minimize area and still be able to

2.5 OOpOO

AVERAGE INSTRUCTION MIX

(UNOPTIMIZED)

ipooooo -

50QQ00 -

NO-OP MULT. LOAD AR/TH. STORE BRANCH SPECIAL DIV. ROT.IM. XC/lC LOGICAL RLC ROTATE

Figure 5.1 Instruction Mix of Application Benchmarks

43

shift one and two bit positions, the maximum shift was chosen to be three.
Choosing a shifter which shifts by one, two, or three bit positions requires that
all large shift counts be synthesized with a series of smaller shifts. This does
not incur a large penalty when there are very few shift instructions or most
shift instructions have a small displacement.

5.1.2. Multiplier Choice
The choice of multipliers is a little more complex, ranging from parallel

multipliers to synthesis of multiplication from shift and add instructions. After
the initial evaluation, parallel multipliers were discarded because their
complexity violates the transistor count limitations of the chip. Synthesis is
discarded because of the excessive time necessary for a multiplication. Two of
the remaining options are booth-step algorithms built into the hardware or
bit-serial multipliers.

The booth algorithm can be built to multiply two bits of the multiplicand
during each instruction cycle so that a 32x32 multiply takes 16 instructions
plus the overhead instructions (loading and storing the operands and results).
Although the booth-step algorithm can be built into the ALU and will be part
of the data path, the bit-serial multiplier must be off the data path because it
takes many system clock cycles to complete the multiplication. The bit-serial
multiplier works serially and can take only one bit at a time which results in 32
clock cycles to do a multiplication. Only 16 instruction cycles are needed to
complete a multiply since the system clock runs at twice the instructions fetch
rate. The performance can be improved by increasing the frequency of the
bit-serial multiplier clock. The range of clock frequencies examined and the
execution time are discussed later in this chapter. Another possibility
investigated is to put the bit-serial multiplier off-chip and access it as a
coprocessor.

Either of the bit-serial multiplier solutions create a delay fillin problem.
Since the multiplier takes n cycles to complete, n-1 slots must be filled with
other instructions waiting for the product to become valid. This is aggravated
in the case of the off-chip multiplier since the delay to send operands off-chip
and receive the results increases the delay fillin time. If the frequency of the
bit-serial multiplier clock were increased, multiplication would take less time.
This would require less delay fillin which consequently conserves memory.

Temporal conflicts between multiplication operations in multiplication
intensive applications are also reduced. In multiplication intensive
applications, the number of instructions (distance) between multiplication

44

instructions is small. If the delay fillin is always smaller than this distance
then the reorganizer may be able to fillin with useful instructions rather than
NOOPs. Large delay fillins, however, may exceed the distance between
multiplication instructions and require the reorganizer to insert NOOPs into
the code. These unproductive instructions then reduce performance and
increase memory usage.

The Addition of instructions also affects how the processor performs with
cache. If the instructions are part of a loop, an instruction or data cache may
improve performance.

5.2. Multiplier Placement Evaluation Methodology
With the above facts in mind, three implementations were examined. The

first implementation is the original SU-MIPS [HeJoP83]. This implementation
supports the booth-step multiplication algorithm which is built into the ALU
and includes a full 32-bit barrel shifter. The SU-MIPS also has 16 32-bit
general purpose registers. The second implementation, RCA-MIPS#Ml,
retains the 16 registers but the barrel shifter is replaced by a simple shifter
capable of shifting a 32-bit word one, two, or three bit positions. The space
freed by the smaller shifter is used by a 32x32 bit-serial multiplier running on
its own clock and faster than the system clock. The third implementation,
RCA-MIPS#M2, uses the same one-two-three shifter as RCA-MIPS#Ml, but
the bit-serial multiplier is moved to an off-chip on-package location. The space
no longer used by the multiplier and shifter is used to increase the register file
size from 16 to 32 registers.

5.3. Multiplier Experimental Procedure
The analysis of the various implementations was done in four parts. First,

the SU-MIPS simulator [Gross83] was run to determine the performance of the
baseline architecture for each benchmark. Second, the RCA-MII\S#Ml version
of the simulator was run with the bit-serial multiplier clock rate set'to two;
four, sue, eight, and ten times the system clock in the GaAs tests and one; two!
four, six, and eight times the system clock in the Si tests. The difference
between GaAs and Si parameters was due to the smaller ratio of instruction
cycle time to device delay time in the Si technology compared to the GaAs
technology. The number of NOOPs replaced by useful instructions during the
multiply delay was set to zero, one, or two.

Third, the RCA-MIPS#M2 version of the simulator was run with the
same fillin and system clock parameters. In addition, the time to get

45

information from the cpu to the ofif-ehip on-package multiplier was set equal to
two and four instruction cycles in the GaAs tests and one and two in the Si
tests. The difference in parameters was due to the larger ratio of off-chip
memory access time to on-chip memory access time in GaAs compared to Si.
Each set of tests was run for the case of an optimized program and an
unoptimized program. This optimization was an assembly level optimizer and
is described in [GroHe82].

Before conducting each test, the changes in executable code for each of the
simulator versions was determined. The simulator was then modified to
interpret the execution of the instructions being examined. Each shift, by a
constant was transformed to a series of smaller shifts demonstrated by sll #11,
Rsrc which is transformed into

sll #3, Rsrc
sll #3, Rsrc
sll #3, Rsrc
sll #2, Rsrc.

register for a variable count shifts use a jump table as

srl> $2, RCnt,^tmp
subr #8, Rtmp
bra #1, LI [Rtmp]
nop

sll #2, Rsrc sll #2, Rsrc
sll #2, Rsrc sll #2, Rsrc
sll #2, Rsrc sll #2, Rsrc
sll #2, Rsrc sll #2, Rsrc
sll #2, Rsrc sll #2, Rsrc
sll #2, Rsrc sll #2, Rsrc
sll $2, Rsrc sll #2, Esrc
sll #2, Rsrc sll #2, Rsrc
and #3, Rcnt,Rtmp
beq #0, Rtmp, LEND
nop
beq #1, Rtmp, LEND
sll #1, RSrc
beq #2, Rtmp, LEND

Shifts using the Lo
shown below.

46

sll $1, Rsrc
sll Rsrc

LEND:

Shifting by a count was not done with a loop because the SU-MIPS instructions
allowed a shorter assembly code implementation for a jump table. When a
multiply or shift instruction was interpreted, the original instruction was
executed. The benchmark statistics were then modified to reflect the execution
of the sequence of instructions for the modified architecture.

Since the original code was always executed, the statistics were modified
by the simulator to reflect the instruction mix and execution time of the
modified code. This meant that the reorganizer could not do compile time fillin
after multiplication instructions and forced us to assume the compiler would do
delay fillin with a certain efficiency. We assume that the compiler will only
fillin zero, one, or two instructions since the SU-MIPS reorganization algorithm
was efficient for a fillin of one, was marginally effective for a fillin of two, and
produced no noticeable improvement for fillin greater than two.

In addition, we tried to reduce the workload by limiting the performance
analysis to the five benchmarks which have multiplication in them: bubble,
mtmtn, puzzle, quick, and towers. The information gathered for the
multiplication tests is shown in tables 3 through 8 for GaAs data and tables 9
through 14 for Si data.

5.4. Presentation of Results
All the figures presented show the results with unoptimized code. The

figures with optimized code are similar. However, the curves are all shifted
down and the curves in each family have less separation between them.
Figures 5.2 through 5.5 display the execution time of a benchmark against the
ratio of the multiplier clock to the system clock for the on-chip bit-serial
multiplier of RCA-MIPS#M1 for the GaAs parameters. The execution time
for the Si parameters is shown in figures 5.6 through 5.9. Each curve
represents a different delay fillin constant: zero, one, or two. Although the
curves show the execution time decreasing as the multiplier clock ratio
increases, the execution time is never better than in the case of the baseline
architecture. This is true for any values of the delay fillin parameter used and
for both GaAs and Si technologies. This could be due to many shift
instructions with a large shift count. An example is the sra #31,Rsrc
instruction which is frequently used for sign extension.

47.

The benchmarks available to run on the simulator never fully utilize the
16 registers available on SU-MIPS. Therefore, they could not possibly use all
32 registers on RCA-MIPS#M2. For this reason, changing the simulator to use
32 registers would not change the results and, hence, was not done. As an
alternative, a certain percentage of all loads and stores are assumed to occur
because the register file has overflowed and memory had to be used for
information storage. The load and store operations are tallied during
execution. A percentage of the load and store operations corresponding to the
amount of register file overflow are then subtracted from the total execution
time. This percentage could then be varied for each run of the simulator. The
effect of this is indicated in figures 5.10 through 5.13 for GaAs parameters and
figures 5.14 through 5.17 for Si parameters. When the offehip delay parameters
are increased, the plots shift up to show the increased execution time. Since
the addition is linear, the shape of the graphs is unchanged as the delay is
increased.

The next sets of curve families include register utilization percentages.
Figures 5.18 through 5.21 again map the execution time of a typical benchmark
against the clock ratio for GaAs parameters while figures 5.22 through 5 25
map the execution time for Si parameters. Notice that as the percentage of
load and store operations for register overflow increases from 30 to 90 percent,
the execution time decreases. This would be an ideal situation, especially
considering that the execution time of the baseline architecture was surpassed
at around 20 percent. Even during parameter passing, the biggest user of the
register file, none of our benchmarks came even close to complete utilization of
16 registers. This low utilization gives a percentage of loads and stores used for
overflow close to zero. An architecture with a larger register file would perform
better with a compiler that utilizes registers more fully. Such compilers would
have to do more register lifetime maximization, do more parameter passing in
registers, save more data or pointers in registers, and otherwise utilize the
register file more fully. Until such software is written, and benchmarks which
will make use of such software are available, the point on the curve remains in
question. The software was not modified because of time limitations and the
large amount of software which would have to be modified. The details of this
software are part a PhD dissertation [Gross84|.

The cache experiments could not be done by putting a cache simulator
into the MIPS simulator because of our method of expanding and interpreting
shift and multiply instructions at runtime. Inserting the expanded instructions
into memory at runtime would change the model of memory during execution
and would make the cache model inaccurate. In addition, the complexity of

48

modifying branch addresses on the fly is a larger task than could be
accomplished in the available time. Alternatively, the compiler could be
rewritten to do multiply fillin, but once again, the amount of work required is
massive. Cache and multiplier simulation in the SU-MIPS simulator is of
questionable value because of the implementation of the multiplier simulator.
Therefore, the following chapter presents an experiment to determine the effect
5f (Sahhd issues on multiplier design.

49

Table 3
Execution Time for GaAs Onchip Multiplier with Optimized Code

bench ackp

(in terms of instruction fetches)

bubblep flbp iiimnop perm puzzfep queen quick sievep towerap

baseline 8180804 1190874 884880 1701020 887882 8040988 0829 1132900 100049 8888189

1=2, s=0 8180848 1240697 884880 2006849 887006 4988102 7290 1887720 100090 4601212

i= 2,8=1 8180848 1240097 884830 2882249 887008 4988102 7290 1882720 100090 4880712

i= 2,8=2 8180848 1289697 884880 2488049 887008 4988102 7290 1877720 100090 4272212

i= 4,8=0 8180848 1288897 884880 2311449 887008 4988102 7290 1807720 100090 4048212

i= 4,8=1 8180848 1288097 884330 2287849 887008 4988102 7290 1802720 100090 8928712

II«il 8180848 1237697 884880 2104249 887006 4988102 7290 1867720 100090 8814212

i= 6,8=0 8180848 1288097 884380 2287849 887008 4988102 7290 1802720 100090 8928712

i= 8,8=1 3180848 1287697 884880 2104249 887008 4988102 7290 1867720 100090 8814212

1= 6,8=2 3180848 1287097 884880 2090049 887008 4988102 7290 1662720 100090 8099712

i= 8,8=0 8180848 1287697 884880 2104249 887008 4988102 7290 1667720 100090 8928712

i= 8,8=1 8180848 1287097 884830 2090049 887006 4988102 7290 1882720 100090 8099712

i= 8,8=2 3180848 1280697 884880 2017049 887008 4988102 7290 1847720 100090 3886212

1=10,8=0 3180848 1237097 884880 2090049 887008 4988102 7290 1662720 100090 8888212

1=10,8=1 3180848 1280897 884880 2017049 887008 4988102 7290 1847720 100090 8888212

1=10,8=2 3180848 1280697 884380 2017049 337606

Table 4

4988102 7290 1647720 100090 8888212

Execution Time for GaAs Onchip Multiplier with Unoptimized Code

bench ackp

(

bubblep

in terms of instruction fetches)

flbp intmmp perm puzzlep queen quick sievep towerep

baseline 3101489 8171079 602121 8882427 481167 19313270 39280 1984792 397121 3888189

1=2,s=0 3101480 8216102 002121 8708480 431190 28486897 40047 2889308 397162 4801212

i= 2,8=1 3101480 3214002 002121 8808480 431190 24689809 40047 2884368 397162 4386712

i= 2,8=2 3101480 3214102 602121 8808480 431190 28922721 40047 2849368 397162 4272212

i= 4,8=0 3101480 3213102 602121 4908480 431190 22888846 40047 2839368 397162 4043212

i= 4,8=1 3101480 3212602 602121 4708480 431190 21621487 40047 2834368 397162 3928712

i= 4,8=2 3101480 8212102 002121 4808480 431190 20884809 40047 2829308 397162 3814212

i= 0,8=0 3101480 8212602 002121 4708480 431190 21021487 40047 2834308 397102 3928712

i= 0,8=1 3101480 8212102 602121 4808480 431190 20884309 40047 2829368 397162 3814212
|= 0,8=2 3101480 3211002 602121 4808480 431190 20087281 40047 2824308 397162 3699712

1= 8,8=0 3101480 3212102 002121 4808480 431190 20884869 40047 2829308 397162 3814212

i= 8,8=1 3101480 8211002 602121 4308480 431190 20087281 40047 2824368 397162 3699712

|=8,8=2 3101480 8211102 602121 4108480 431190 19320193 40047 2819368 397102 3888212

1=10,8=0 8101480 3211002 002121 4808480 431190 20087281 40047 2824368 397162 3099712

1=10,8=1 8101480 3211102 602121 4108480 481190 19320193 40047 2819368 397162 3888212

1=10,8=2 3101480 3211102 002121 4108480 431190 19320193 40047 2819368 397102 3888212

50

Table 5
Execution Time for GaAs Offchip Multiplier with Optimized Code

(in terms of instruction fetches)
Offchip Delay of 2

bench ackp bubblep fibp intmmp perm puzzlep queen quick sfevep towersp
baseline 3180804 1190374 384330 1701026 337382 3040988 0329 1132900 16004# i&tem
i= 2,8=0 3180843 1240397 384330 3489049 337603 4983102 7290 1647720 166090 14175970
1= 2,s=l 3180843 1243397 384330 3341849 337603 4983102 7290 1037720 166090 14175970
i= 2,8=2 3180843 1244597 384330 3194049 337003 4983102 7290 1027720 106690 14176970
i= 4^=0 3180843 1242397 384330 2900249 337003 4983102 7290 1007720 100090 14173970
!= 4,8=1 3180843 1241597 384330 2733049 337603 4983102 7290 1597726 160690 14173970
i= 4,8=2 3180843 1240397 384330 2603849 337603 4983102 7290 1387726 166090 14176970
i=C^=0 3180843 1241597 384330 2733049 337603 4983102 7290 1397720 160090 14175970
i=e^=i 3180843 1240397 384330 2603849 837603 4983102 7290 1387720 166690 14176970
1= 6^=2 3180843 1239397 384330 2438649 337603 4983102 7290 1577726 160690 14175970
1= 8,8=0 3180843 1240397 384330 2603849 337003 4983102 7290 1387720 160690 14176970
i= 8,s=l 3180843 1239397 384330 2438049 337003 4983102 7290 1377720 160690 14176970
1= 8,s=2 3180843 1238397 384330 2311449 337003 4983102 7290 1307720 100090 14173970
1=10,8=0 3180843 1239397 384330 2438649 337603 4983102 7280 1577720 100090 14176970
1=10,8=1 3180843 1238397 384330 2311449 337603 4983102 7290 1567720 166090 14175970
1=10,8=2 3180843 1238397 384330 2311449 337603 4983102 7290 1567726 100090 14176970
1= 2,8=0,R=0.3 2018438 1129173 472780 3309988 271642 4398145 6462 1333327 142734 11703637
1= 2,8=1,R=0.8 2018438 1128175 472780 3222788 271042 4398145 6402 1343327 142734 11706037
i= 2,8=2,R=0.3 2018438 1127175 472780 3073388 271642 4398143 6462 1333327 142764 11703637
i= 4js=0,R=0.3 2018438 1123175 472780 2781188 271642 4398143 0402 1513327 142764 11706637
1= 4,8=1,R=0.S 2018438 1124175 472780 2033988 271042 4398143 6462 1303327 142764 11706637
1= 4,8=2,R=0.3 2018438 1123175 472780 2480788 271642 4898143 0402 1493327 142734 11706637
i= 6,8=0,R=0.3 2618438 1124175 472780 2633988 271642 4398145 6402 1303327 142734 11703637
i= 0,8=1,R=0.S 2618438 1123175 472780 2480788 271642 4398143 6402 1493327 142734 11703637
i= 6,s=2,R=0.3 2618438 1122175 472780 2339388 271042 4398143 0402 1483327 142734 11706637
1= 8,8=0,R=0.S 2618438 1128175 472780 2486788 271042 4398143 0462 1493327 142764 11703037
i= 8,8=1,R=0.3 2618438 1122175 472780 2339388 271642 4398143 6462 1483327 142734 11706037
i= 8,s=2,R=0.S 2618438 1121175 472780 2192388 271642 4398145 6402 1475327 142734 11706637
1=10,8=0, R=0.3 2618438 1122175 472780 2339388 271642 4398143 6402 1483327 142734 11703637
1=10,8=1,R=0.S 2618438 1121175 472780 2192388 271042 4398145 6402 1476327 142734 11706637
l=10,s=2,R=0.3 2618438 1121175 472780 2192388 271642 4398143 0462 1473327 142764 11703637
i= 2,8=0,R=0.9 1481623 894331 249681 3131806 139716 3224231 4807 1371129 94883 6704972
1= 2,8=1,R=0.9 1481623 893331 249681 2984660 139710 3224231 4807 1301129 94883 0764972
i= 2,s=2,R=0.9 1481623 892331 249681 2837400 139710 3224231 4807 1331129 94883 0704972
1= 4^=0;R=0.9 1481023 890331 249681 2343000 139716 3224231 4807 1331129 94883 0764972
1= 4,8=1,R=0.9 1481623 889331 249681 2393806 139710 3224231 4807 1321129 94883 0764972
1= 4,s=2,R=0.9 1481623 888331 249681 2248606 139710 3224231 4807 1311129 94883 0764972
i= 6,8=0,R=0.9 1481023 889331 249681 2393806 139716 3224231 4807 1321129 94883 6704972
1= 6,8=1,R=0.9 1481023 888331 249081 2248600 139716 3224231 4807 1311129 94883 0704972
i= 6,8=2,R=0.9 1481625 887881 249681 2101460 139710 3224231 4807 1801129 94888 0764972
1= 8,8=0,R=0.9 1481623 888331 249081 2248660 139710 3224231 4807 1311129 94883 6704972
i = 8 jS=l, R=0.9 1481623 887331 249081 2101400 139716 3224231 4807 1301129 94883 0764972
1= 8^=2,R=0.9 1481023 880331 249681 1934206 139716 3224231 4807 1291129 94883 6704972
i=10^=0jR=0.9 1481623 887331 249081 2101466 139716 3224231 4807 1301129 94883 0704972
i=10ys=l^R=0.9 1481623 886331 249081 1934260 139716 3224231 4807 1291129 94883 0764972
i =10,8=2, R=0.9 1481023 880331 249081 1934200 139716 3224231 4807 1291129 94883 0704972

51

Table 6
Execution Time for GaAs Offchip Multiplier with Unoptimized Code

(in terms of instruction fetches)
Offchip Delay of 2

bench ackp babble? flbp intmmp perm puzzle? queen quick sievep towerep

baseline 3101439 3171079 302121 1781023 431137 19313270 39286 1984792 397121 3585189

1= 2,8=0 3101480 3221102 302121 8108450 431190 34331953 40047 2619335 397162 5876212

1= 2^=1 '.:v 3101480 3220102 302121 3489049 431190 33127777 40047 2609335 397162 5343212

1—2,8=2 3101480 8219102 302121 3341849 431190 31593801 40047 2599335 397162 5417212

1= 4^t=0 3101480 3217102 302121 3508450 431190 28525249 40047 2579335 397132 4959212

i= 4,8=1 3101480 3213102 302121 2900249 431190 23991073 40047 2539365 897182 4730212

1= 4,8=2 3101480 3215102 302121 2753049 431190 25453897 40047 2559335 397132 4501212

i=^=o 3101480 3218102 302121 3108450 431190 23991073 40047 2539335 397132 4730212

l=6^=l 3101480 3215102 302121 2753049 431190 25453897 40047 2559365 397132 4501212

1=«.*=2 3101480 8214102 302121 2305849 431190 23922721 40047 2549365 397132 4272212

«=8^=0 3101480 3215102 302121 5708450 431190 25453897 40047 2559335 897162 4501212

1= 8,8=1 3101480 3214102 602121 2805849 431190 23922721 40047 2549335 397132 4272212

1= 8,8=2 3101480 3213102 302121 2458349 431190 22388545 40047 2539335 397132 4043212

i=10,s=0 3101480 3214102 302121 5308450 431190 23922721 40047 2549335 397132 4272212

1=10,8=1 3101480 3213102 302121 2458349 431190 22388545 40047 2539335 397162 4043212

1=10,8=2 3101480 3213102 302121 2458349 431190 22388545 40047 2539365 397132 4043212

1=2,8=0,11=0.3 2429734 2910317 479951 7741229 348160 31839933 32513 2293219 338312 5339185

i= 2,8=1,R=0.S 2429784 2909317 479951 3339988 348130 30305787 32513 2283219 338312 6140185

i= 2^=2,R=0.3 2429734 2908317 479951 3222788 348130 28771311 32516 2273219 338312 4911185

1= 4,8=0,R=0.3 2429734 2903317 479951 3141229 348130 25703259 32516 2253219 338312 4453185

1= 4>=1,R=0.3 2429734 2905317 479951 2781188 348160 24169083 32518 2243219 338312 4224185

1= 4j8=2,R=0.3 2429734 2904317 479951 2333988 348130 22334907 32516 2233219 338312 3995185

i= o^=o,R=as 2429734 2905317 479951 5741229 348130 24139083 32516 2243219 338312 4224185

1= 0,8=1,R=0.S 2429734 2904817 479951 2633988 348160 22334907 32518 2233219 338312 3995185

i= 6,s=2,R=0.3 2429734 2903317 479951 2483788 348130 21100731 32518 2223219 338312 3760185

i= 8,8=0,R=0.S 2429734 2904817 479951 5341229 348160 22334907 32516 2233219 338312 3995185

1= 8,8=1,R=0.3 2429734 2903317 479951 2483788 348130 21100731 32516 2223219 338312 8763185

i= 8,s=2,R=0.S 2429734 2902317 479951 2839588 348130 19533555 32516 2213219 338312 3537185

1=10,8=0,R=0.3 2429734 2903317 479951 4941229 348160 21100731 32516 2223219 368312 3700185

1=10,8=1,R=0.S 2429734 2902317 479951 2839588 348130 19533555 32518 2213219 368312 3537185

i=10,8=2,R=0.3 2429734 2902317 479951 2339588 348160 19563555 32516 2213219 338312 3537185

1= 2,8=0,R=0.9 1083242 2289343 235312 7003787 182099 26195984 17454 1640927 310614 4357132

1= 2,8=1,R=0.9 1083242 2288343 235312 3131883 182099 24331808 17454 1630927 310614 4128132

1= 2,s=2,R=0.9 1083242 2287343 235312 2984333 182099 23127632 17454 1620927 310314 3899132

1= 4,8=0,R=0.9 1083242 2285348 235312 5406787 182099 20059280 17454 1600927 310614 3441132

1= 4,8=1,R=0.9 1083242 2284343 235312 2543063 182099 18525104 17454 1590927 310314 8212132

i= 4,8=2,R=b.9 1088242 2283343 235312 2395833 182099 16990928 17454 1580927 810314 2983132

1= 0,8=0,R=0.9 1083242 2284343 235612 5003787 182099 18525104 17454 1590927 310614 3212132

1= 0,8=1,R=0.9 1083242 2288343 235312 2395863 182099 16990928 17454 1580927 310614 2983132

i=0,s=2,R=0.9 1083242 2282343 235312 2248333 182099 15453752 17454 1670927 310314 2754132

i=8^=0?R=0?9 1088242 2283343 235312 4303787 182099 16990928 17454 1580927 310614

Is? 8,8=1, R=Q,9 1088242 2282843 235312 2248333 182099 15456752 17454 1670927 310614 2754182

1= 8,s=2,R=0.9 1083242 2281343 235312 2101433 182099 13922576 17454 1560927 310614 2525132

i=10,s=0,R=0.9 1083242 2282343 235312 4203787 182099 15456752 17454 1570927 310314 2764132

1=10,8=1,R=0.9 1083242 2281843 235312 2101438 182099 13922576 17454 1560927 310614 2525132

i=10,s=2,R=0.9 1083242 2281343 235312 2101433 182099 13922576 17454 1560927 310314 2525182

52

Table 7
Execution Time for GaAs Offchip Multiplier with Optimized Code

(in terms of instruction fetches)
Offchip Delay of 4

bench ackp bubblep fibp

ttie 0 1190574 584330
i= 2,8=0 0 1247597 584330
i= 2,8=1 0 1240597 584880
i= 2,8=2 0 1245597 584880
i= 4,s=0 0 1243597 584830
i= 4,8=1 0 1242597 584380
i= 4,8=2 0 1241597 584880
1= 0,8=0 0 1242597 584880
1= 6,s=l 0 1241597 584330
i= 0,8=2 0 1240597 584880
i= 8,8=0 0 1241597 584880
i= 8,8=1 0 1240597 584830
i= 8,8=2 0 1289597 584880
1=10,8=0 0 1240597 584380
1=10,8=1 0 1239597 584830
1=10,8=2 0 1289597 584830
i= 2,8=0,R=0.S 0 1180175 472780
i= 2,8=1,R=0.S 0 1129175 472780
1= 2,s=2,R=0.S 0 1128175 472780
i= 4,8=0,R=0.8 0 1120175 472780
1= 4,8=;,R=0.S 0 1125175 472780
i= 4*s=2,R=0.3 o 1124175 472780
i= 0,8=0,R=0.S 0 1125175 472780
i= 0,8=1, R=0.S 0 1124175 472780
i= 0,s=2,R=0.S 0 1128176 472780
i= 8,8=0,R=0.3 0 1124176 472780
1= 8,8=1,R=0.0 0 1128176 472780
i= 8,8=2, R=0.8 0 1122176 472780
i=10,8=0, R=0. 8 0 1128176 472780
i=10,s=l,R=0.3 0 1122176 472780
i=lO,s=2,R=0.8 0 1122176 472780
i= 2,8=0,R=0.0 0 895881 249681
i= 2,8=1,R=0.9 0 894831 249681
1= 2,s=2,R=0.9 0 898831 249681
i= 4,8=0,R=0.9 0 891831 249681
1= 4,8=1,R=0.9 0 890331 249681
i= 4,8=2,R=0.9 0 889881 249681
1= 0,8=0,R=0.9 0 890381 249681
1= 6,s=l,R=0.9 0 889881 249681
i= 0,8=2,R=0.9 0 888831 249681
i= 8,8=0, R=0.9 0 889381 249681
i= 8,8=1,R=0.9 0 888881 249681
i= 8,8=2, R=0.9 0 887831 249681
i=i6,s==0,R=0.9 0 888881 249681
1=10,8=1,R=0.9 0 887831 249681
i= 10,8=2, R=0.9 o 887881 249681

intmmp perm puzzlcp queen quick

1761026 387582 5040988 6529 1132966
8686249 337605 4985102 7290 1657726
8489049 337605 4985102 7290 1647726
8841849 337605 4985102 7290 1637726
8047449 337605 4985102 7290 1617726
2900249 887605 4985102 7290 1607726
2758049 337605 4985102 7290 1597726
2900249 387605 4985102 7290 1607726
2758049 387605 4985102 7290 1597726
2605849 387605 4985102 7290 1587726
2758049 337605 4985102 7290 1697726
2605849 337605 4985102 7290 1687726
2458649 387605 4985102 7290 1677726
2605849 887605 4985102 7290 1587726
2458649 387605 4985102 7290 1577726
2458649 337605 4985102 7290 1677726
8517188 271642 4398145 6462 1565527
8869988 271642 4898145 6462 1555527
3222788 271642 4898145 6462 1545527
2928888 271642 4398145 6462 1625527
2781188 271642 4398145 6462 1615527
2688988 271642 4398145 6462 1506527
2781188 271642 4398146 6462 1615527
2688988 271642 4398145 6462 1505527
2486788 271642 4398145 6462 1495527
2688988 271642 4398145 6462 1505527
2486788 271642 4398145 6462 1495527
2389588 271642 4898145 6462 1485527
2486788 271642 4398145 6462 1495527
2889588 271642 4398145 6462 1485527
2339588 271642 4398145 6462 1485527
3279066 139716 3224231 4807 1381129
3131866 139716 3224231 4807 1371129
2984666 139716 3224231 4807 1861129
2690266 139716 3224231 4807 1841129
2548066 189716 3224231 4807 1881129
2895866 139716 3224231 4807 1821129
2548066 139716 3224231 4807 1331129
2895866 139716 3224231 4807 1321129
2248666 139716 3224231 4807 1311129
2395866 189716 3224231 4807 1321129
2248666 189716 3224231 4807 1811129
2101466 139716 3224231 4807 1301129
2248666 139716 3224231 4807 1311129
2101466 139716 3224231 4807 1301129
2101466 139716 3224231 4807 1301129

sievep towersp

166649 132265771
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14175970
166690 14176970
166690 14175970
166690 14175970
166690 14175970
142754 11705637
142754 11706687
142754 11705637
142754 11705637
142754 11*05637
142754 11705637
142754 11706637
142754 11705687
142754 11705687
142754 11705637
142754 11705637
142754 11705687
142754 11705687
142754 11706637
142754 11705637
94883 6764972
94883 6764972
94883 6764972
94888 6764972
94883 6764972
94883 6764972
94883 6764972
94883 6764972;
94888 6764672
94883 6764972
94888 6764972
94883 6764972
94883 6764972
94883 6764972
94883 6764972

53

Table 8
Execution Time for GaAs Offchip Multiplier with Unoptimized Code

(in terms of instruction fetches)
Offchip Delay of 4

bench ackp bubblep flbp intmmp perm puzzlep queen quick sievep towerep

bsweline 8101439 3171079 002121 3862427 431107 19313270 39286 1984792 897121 3586189

1= 2,8=0 3101480 3222102 002121 8608460 431190 30190129 40047 2629306 397102 0104212
8101480 3221102 002121 8108460 431190 34601963 40047 2619306 397102 6876212

1= 2,8=2 8101480 3220102 002121 7708460 431190 33127777 40047 2009306 397162 6046212

l— 4f8=0 . 3101480 3218102 002121 0908460 431190 30069426 40047 2689306 397102 6188212

i=4,s=I 3101480 3217102 002121 0608460 431190 28625249 40047 2679306 897162 4959212

l=4^=2 8101480 3210102 002121 0108450 431190 26991073 40047 2609365 897102 4730212

i= 6^=0 8101480 3217102 002121 0608450 481190 28626249 40047 2679306 397102 4959212

1= 6*8=1 8101480 3210102 002121 0108460 431190 26991073 40047 2609366 397102 4730212

1= 6,8=2 3101480 3216102 002121 5708460 431190 25460897 40047 2669306 397102 4601212

1= 8,8=0 3101480 3210102 002121 0108450 431190 26991073 40047 2609306 897162 4730212

1= 8,8=1 3101480 3216102 002121 6708460 431190 26460897 40047 2669306 897162 4501212

i=8,s=2 8101480 3214102 002121 6308460 431190 23922721 40047 2649306 397102 4272212

1=10,8=0 3101480 3216102 002121 6708460 431190 26460897 40047 2669305 397162 4601212

i=io^=i 3101480 3214102 002121 6308460 431190 23922721 40047 2649306 397102 4272212

1=10,8=2 3101480 3214102 002121 6308460 431190 23922721 40047 2649306 397162 4272212

1= 2*8=0,R=0.3 2429734 2911017 479961 8141229 348100 33374139 32610 2303219 368312 6598186

1= 2,8=1,R=0.8 2429784 2910017 479961 7741229 348100 31839903 32616 2293219 868312 6309186

i= 2,8=2,R=0.S 2429784 2909017 479961 7841229 348100 30306787 82610 2283219 808312 6140186

i= 4*8=0,R=0.3 2429734 2907017 479961 0641229 348100 27237436 32510 2263219 308312 4682185

1= 4,8=1, R=o.s 2429734 2908017 479961 0141229 348100 26703269 32610 2263219 368312 4463186

1= 4,s=2,R=0.3 2429784 2906017 479961 6741229 348100 24109083 32610 2243219 308312 4224186

1= e^=o,R=o.s 2429734 2900017 479961 0141229 348100 26703269 82610 2263219 308312 4453186

i= o,s=i,r=o.3 2429734 2906017 479961 6741229 348100 24169083 32510 2243219 368312 4224185

i= 0,8—2,R—0.3 2429734 2904017 479961 6341229 348100 22034907 32510 2233219 868812 3995185

i= 8,8=0,R=0.S 2429734 2906017 479961 5741229 348100 24109083 32510 2243219 308312 4224186

i= 8,8=1,R=0.3 2429734 2904017 479961 6341229 348100 22034907 32510 2233219 308312 3996185

i= 8,8=2,R=0.S 2429734 2903017 479961 4941229 348100 21100731 32516 2223219 368312 3766186

1=10,8=0,R=0.3 2429734 2904017 479961 6341229 348100 22034907 32610 2233219 308312 3996186

1=10,8=1,R=0.3 2429734 2903017 479961 4941229 348100 21100731 32610 2223219 308312 8760186

i=10^=2,R=0.S 2429734 2903017 479961 4941229 348160 21100731 32616 2223219 368312 3700186

i= 2*8=0,R=0.9 1083242 2290040 236012 7400787 182099 27730100 17464 1060927 310014 4586132

i= 2,8=1,R=0.9 1080242 2289040 236012 7000787 182099 26196984 17464 1640927 310014 4367132

1= 2,s=2,R=0.9 1080242 2288040 236012 0000787 182099 24001808 17464 1030927 310614 4128132

i= 4,8=0,R=0.9 1080242 2280040 236012 6800787 182099 21593466 17464 1610927 810614 3670182
1= 4,8=1,R=0.9 1080242 2286040 236012 6400787 182099 20069280 17464 1600927 310014 3441132

i= 4,s=2,R=0.9 1080242 2284040 236012 6000787 182099 18626104 17464 1690927 310014 3212132

1= 0,8=0,R=0.9 1088242 2285040 236012 6400787 182099 20069280 17464 1600927 310014 3441132

i= 6,s=l,R=0.9 1088242 2284040 236012 6000787 182099 18626104 17464 1690927 310014 3212132

l=8^=2,R=a» 1080242 2283040 236012 4000787 182099 10990928 17464 1680927 310014 2983132

1= 8,8=0,R=Q.9 1088242 2284040 236012 6000787 182099 18626104 17454 1590927 310614 3212132

1= 8,9=1,R=0.9 1080242 2283040 236012 4000787 182099 16990928 17464 1680927 810014 2983132

1= 8,s=2,R=0.0 1080242 2282040 236012 4200787 182099 16460762 17464 1670927 810614 2764132

1=10,8=0,R=0.9 1088242 2283040 286012 4000787 182099 10990928 17464 1680927 310014 2983132

i=10,8=l;R=Q.9 1080242 2282040 286012 4200787 182099 16460762 17464 1670927 310014 2764132

1=10,8=2,R=0.9 1080242 2282040 236012 4200787 182099 16460762 17454 1670927 310014 2764132

54

Table 9
Execution Time for Silicon Onchip Multiplier with Optimized Code

(in terms of instruction fetches)

bench ackp bubblep flbp intinmp perm puzzfep queenp quickp sievep towerap

baseline 3186804 1196574 384330 1761028 337582 3040988 6329 1132963 166649 13265771
1= 1,8^0 3186843 1244697 384330 3194649 337605 4983102 7290 1627726 166690 14173976
i= 1,8=1 3186843 1244097 384330 3121049 337605 4985102 7290 1622726 166690 14176970
1= 1,8=2 3186843 1243397 384330 3047449 337605 4983102 7290 1617726 166690 14175970
1= 2,8=0 3186843 1240697 384330 2603849 337605 4983102 7290 1687726 166690 14175970
1 = 2,8=1 3186843 1240097 384330 2332249 337606 4983102 7290 1382726 166690 14175970
1= 2,8=2 3186843 1239597 384330 2438649 337605 4983102 7290 1677726 166690 14176970
1= 4,8=0 3186843 1238597 384330 2311449 337605 4983102 7290 1667726 166690 14175970
1= 4,8=1 8186843 1238097 384330 2237849 337605 4983102 7290 1362726 166690 14176970
|= 4f8=2 3186843 1237597 384330 2164249 337606 4983102 7290 1657726 166690 14175970
i= 6,8=0 3186843 1238097 384330 2237849 337605 4983102 7290 1362726 166690 14176970
i= 6,8=1 3186843 1237597 384330 2164249 337605 4983102 7290 1367726 166690 14175970
i= 6,8=2 3186843 1237097 384330 2090649 337606 4983102 7290 1332726 166690 14175970
1= 8,8=0 3186843 1237697 384330 2164249 337605 4983102 7280 1657728 166690 14176970
1 = 8,8=1 3186843 1237097 384330 2090649 337605 4983102 7290 1352726 166690 14176970
1= 8,8=2 8186843 1236397 384330 2017049 337606 4983102 7290 1647726 166690 14175970

Table 10
Execution Time for Silicon Onchip Multiplier with Unoptimized Code

(in terms of instruction fetches)

bench ackp bubblep flbp intmmp perm puzzlep queenp quickp sievep towerep

baseline 3101439 3171079 602121 3852427 431167 19313270. 39286 1984792 397121 3385189
i= 1,8=0 3101480 3219102 602121 7306430 431190 31593601 40047 2599363 397162 3417212
1=1,8=1' 3101480 3218602 602121 7106430 431190 30826313 40047 2594363 397162 3302712
1= 1,8=2 8101480 3218102 602121 6906450 431190 30039423 40047 2589363 397162 3188212
i= 2,8=0 3101480 3215102 602121 6706450 431190 23456897 40047 2539363 397162 4301212
i=2,s=l 3101480 3214602 602121 3306450 431190 24689809 40047 2534363 397162 4388712
i= 2,8=2 3101480 3214102 602121 3306450 431190 23922721 40047 2549363 397162 4272212
1=4,8=0 3101480 3213102 602121 4906450 431190 22388545 40047 2539363 397162 4043212
i= 4,8=1 3101480 3212602 602121 4708450 431190 21621457 40047 2534363 397162 3928712
i= 4,8=2 3101480 3212102 602121 4306450 431190 20634369 40047 2529363 397162 3814212
i= 6*8=0 3101480 3212602 602121 4706450 431190 21621437 40047 2534363 397162 3928712
i= 6,8=1 3101480 3212102 602121 4308430 431190 20834369 40047 2529363 397162 3814212
!= 6,8=2 3101480 3211602 602121 4306450 431190 20087281 40047 2524363 397102 3699712
1= 8,8=0 3101480 3212102 602121 4506450 431190 20634369 40047 2529363 397162 3814212
i= 8,8=1 3101480 3211602 602121 4306450 431190 20087281 40047 2524363 397162 3699712
1= 8,8=2 3101480 3211102 602121 4106450 431190 19320193 40047 2519363 397162 3385212

55

Table 11
Execution Time for Silicon Offchip Multiplier with Optimized Code

(in terms of instruction fetches)
Offchip Delay of 1

bench ickp bnbbfep flbp ininnnp perm ptuzlep; qneenp quickp sievep toweisp

baseline ? 8180804 1190574 584330 1761026 337582 5040988 6529 1132966 166649 13285771
i= y=6 3180845 1254097 584330 4593049 337605 4985102 7290 1722726 166690 14176970

i= 1,8=1 3180845 1253097 584330 4445849 337605 4985102 7290 1712726 166690 14176970

1= 1,8=2 3180845 1252097 584330 4298649 337605 4985102 7290 1702726 166690 14176970

i= 2,8=0 3180845 1240097 584330 3415449 337605 4985102 7290 1642726 166690 14175970

i= 2,8=1 8180845 1245097 584330 3268249 337605 4985102 7290 1632726 166690 14176970

i= 2,8=2 3180845 1244097 584330 3121049 337605 4986102 7290 1622726 166690 14176970

1= 4,8=0 3180845 1242097 584330 2826649 337605 4985102 7290 1602726 166690 14176970

i= 4,8=1 3180845 1241097 584330 2679449 337605 4985102 7290 1592726 166690 14175970

l=4,s=2 3180845 1240097 584330 2532249 337605 4985102 7290 1582726 166690 14175970

i= 0,8=0 3180845 1241097 584330 2679449 337605 4985102 7290 1592726 166690 14175970

i=e,s=i 3180845 1240097 584330 2532249 337605 4985102 7290 1582726 166690 14175970

1= 0,8=2 3180845 1239097 584330 2385049 337605 4985102 7290 1572726 166690 14175970

|= 8,8=0 3180845 1240097 584330 2532249 337605 4985102 7290 1582726 166690 14176970

i= 8,8=1 3180845 1239097 584330 2385049 337605 4985102 7290 1572726 166690 14176970

i= 8,8=2 3180845 1238097 584330 2237849 337605 4985102 7290 1562726 166690 14176970

1= lfs=0,R=0.S 2018438 1130075 472780 4473988 271642 4398145 6462 1630527 142754 11706637

i= l,s=l,R=0.S 2018438 1135075 472780 4326788 271642 4398145 6462 1620527 142754 11706637

i= lj«=2,R=0.S 2018438 1134075 472780 4179588 271642 4398145 6462 1610527 142754 11706637

1= 2,8=0,R=0.S 2018438 1128075 472780 3296388 271642 4398145 6462 1550527 142754 11706637

1= 2,8=1,Ft=0.3 2018438 1127075 472780 3149188 271642 4398145 6462 1540527 142754 11705637
i= 2,8=^R=0.S 2018438 1120075 472780 3001988 271642 4398145 6462 1530527 142754 11706637

1= 4,8=0, R=0.3 2018438 1124075 472780 2707588 271642 4398145 6462 1510527 142754 11706637

1= 4,8=1,R=0.8 2018438 1123075 472780 2560388 271642 4398145 6462 1500527 142754 11706637

i= 4,s=2,R=0.3 2018438 1122076 472780 2413188 271642 4398145 6462 1490527 142764 11706637

1= 0,8=0,R=0.S 2018438 1123075 472780 2560388 271642 4396145 6462 1500527 142764 11706637

1= 0,8=1, R=0.3 2018438 1122076 472780 2413188 271642 4396145 6462 1490527 142754 11706637

i= 6,s=2,R=0.S 2018438 1121076 472780 2265988 271642 4398145 6462 1480527 142764 11706637
1= 8,8=0,R=0.S 2018438 1122075 472780 2413188 271642 4398145 6462 1490527 142754 11706637

i= 8,8=1,R=0.8 2018438 1121075 472780 2265988 271642 4398145 6462 1480527 142754 11706637
1= 8,8=2,11=0.3 2018438 1120076 472780 2118788 271642 4S98145 6462 1470627 142754 11706637
i= 1,8=0,R=0.9 1481025 901831 249681 4235866 139716 3224231 4807 1446129 94883 6764972
1= I,8=1,R=0.9 1481025 900831 249681 4088666 139716 3224231 4807 1436129 94883 6764972

i= l,s=2,R=0.9 1481025 899831 249681 3941466 139716 3224231 4807 1426129 94883 6764972

i= 2,8=0,R=0.9 1481025 893831 249681 3058266 139716 3224231 4807 1366129 94883 6764972
i= 2,8=1, R=0.9 1481025 892831 249681 2911066 139716 3224231 4807 1356129 94883 6764972

i= 2,8=2,R=0.9 1481025 891831 249681 2763866 139716 3224231 4807 1346129 94883 6764972

i= 4,8=0,R=0.9 1481025 889831 249681 2469466 189716 3224231 4807 1326129 94883 6764972
i= 4,8=1,R=0.9 1481025 888831 249681 2322266 139716 3224231 4807 1316129 94883 6764972

1= 4,e=2,R=0.9 1481025 887831 249681 2175066 139716 3224231 4807 1306129 94883 6764972

i= ■ 0, 8^Qj 0,9 1481025 888831 249681 2322266 139716 3224231 4807 1316129 ^4883 f764971
i= 0,8=i,R=0.9 1481025 887831 249681 2175066 139716 3224231 4807 1306129 94883 6764972

i= 0,e=2,R=0.9 1481025 880831 249681 2027866 139716 3224231 4807 1296129 94883 6764972

i= 8,s=0,R=0.9 1481025 887831 249681 2175066 139716 3224231 4807 1306129 94883 6764972
1= 8,8=1,R=0.9 1481025 880831 249681 2027866 139716 3224231 4807 1296129 94883 6764972

i= 8,s=2,R=0.9 1481025 885831 249681 1880666 139716 3224231 4807 1286129 94883 6764972

56

Table 12
Execution Time for Silicon Offchip Multiplier with Unoptimized Code

(in terms of instruction fetches)

bench ackp bnbbfep

Offchip Delay

fibp Irtmmp pexm

of 1

puzzlep queanp qnidcp aievep towexvp
bflL&lihe 3101439 3171079 602121 3852427 431167 19313270 39286 1984792 897121 8585189
i=: 1,8=0 3101480 3228602 602121 11108450 431190 46168273 40047 2694365 397162 7592712
i= 1,8=1 3101480 3227602 602121 10706450 431190 44634097 40047 2684365 397162 7863712
i= 1,8=2 3101480 3226602 602121 10306450 431190 43099921 40047 2674365 397162 7184712
i= 2,8=0 3101480 3220602 602121 7906450 431190 33894865 40047 2614365 397162 5760712
i= 2,8=1 3101480 3219602 602121 7506450 431190 32360689 40047 2604365 397162 5531712
i= 2,8=2 3101480 8218602 602121 7106450 431190 30626513 40047 2594365 397162 5302712
1= 4,8=0 3101480 3216602 602121 6306450 431190 27758161 40047 2574365 397162 4844712
i= 4,8=1 3101480 3215602 602121 5906450 431190 26223985 40047 2564365 397162 4615712
1= 4,8=2 3101480 3214602 602121 5508450 431190 24689809 40047 2554365 397162 4386712
1= 0,8=0 3101480 3215602 602121 5906450 431190 26223985 40047 2564365 397162 4615712
1= 6,8=1 3101480 3214602 602121 5506450 431190 24689809 40047 2554865 397162 4386712
1= 0,8=2 3101480 3213602 602121 5106450 431190 23155633 40047 2544365 397162 4157712
i= 8,8=0 3101480 3214602 602121 5506450 431190 24689809 40047 2554365 397162 4386712
|= 8,8=1 3101480 3213602 602121 5108450 431190 23155633 40047 2544365 397162 4157712
1= 8,s=2 3101480 3212602 602121 4706450 431190 21621457 40047 2534365 397162 3928712
1= 1,8=041=0.3 2429734 2918117 479951 10741229 348160 43346283 32516 2368219 368312 7086685
i= 1,8=1 JR =0.3 2429734 2917117 479951 10341229 348160 41812107 32516 2358219 368312 6857685
i= 1,8=241=0.3 2429734 2916117 479951 9941229 348160 40277931 32516 2348219 368312 6628685
i= 2,8=0,R =0.3 2429734 2910117 479951 7541229 348160 31072875 32516 2288219 368312 5254685
i= 2,8=1,R =0.3 2429734 2909117 479951 7141229 348160 29538699 32516 2278219 368312 5025685
i= 2,8=241=0.3 2429734 2908117 479951 6741229 348160 28004523 32616 2268219 868312 4796685
i= 4,8=041=0.3 2429734 2906117 479951 5941229 348160 24936171 32516 2248219 368312 4338685
i= 4,8=141=0.3 2429734 2905117 479951 5541229 348160 23401995 32516 2238219 368312 4109685
1= 4,8=241=0.3 2429734 2904117 479951 5141229 348160 21867819 32516 2228219 368312 3880685
i= 8,8=641=0.3 2429734 2905117 479951 5541229 348160 23401995 32516 2238219 368312 4109685
i= 0,8=141=0.3 2429734 2904117 479951 5141229 348160 21867819 32516 2228219 368312 3880685
1=8,8=241=0.3 2429734 2903117 479951 4741229 348160 20333643 32516 2218219 368312 3651685
1= 8,8=0,R =0.3 2429734 2904117 479951 5141229 348160 21867819 32516 2228219 368312 3880685
1= 8,8=141=0.3 2429734 2908117 479951 4741229 348160 20333643 32516 2218219 368312 3651685
i= 8,8=2,R=0.3 2429734 2902117 479951 4341229 348160 18799467 32516 2208219 368312 3422685
1= 1,8=0,R =0.0 1086242 2297146 235612 10006787 182099 37702304 17454 1715927 310614 6074632
1= 1,8=1,R =0.9 1086242 2296146 235612 9606787 182099 36168128 17454 1705927 310614 5845632
1= 1,8=241=0.9 1086242 2295146 235612 9206787 182099 34633952 17454 1695927 310614 5616632
1= 2,8=041=0.9 1086242 2289146 235612 6806787 182099 25428896 17454 1635927 310614 4242632
1= 2,8=141=0.9 1086242 2288146 235612 6406787 182099 28894720 17454 1625927 310614 4013632
1= 2,8=2,R =0.9 1086242 2287146 235612 6006787 182099 22360544 17454 1615927 310614 3784632
1= 4,s=0,R =0.9 1086242 2285146 235612 5206787 182099 19292192 17454 1595927 310614 3326632
1= 4,8=1,R =0.9 1086242 2284146 235612 4806787 182099 17758016 17454 1585927 310614 3097632
1= 4,8=2,R=0.9 1086242 2283146 235612 4406787 182099 16228840 17454 1675927 310614 2868632
1= 6,8=041=0.9 1086242 2284146 235612 4806787 182099 17758016 17454 1586927 310614 3097632
1= 0,8=141=0.9 1086242 2283146 235612 4406787 182099 16223840 17454 1676927 310614 2868832
i= 6,8=241=6.9 1086242 2282146 235612 4006787 182099 14689664 17454 1565927 310614 2639632
1= 8,8=0,R =0.9 1086242 2283146 235612 4406787 182099 16223840 17454 1575927 310614 2868632
1= 8,s=14tL=0.9 1086242 2282146 235612 4006787 182099 14689664 17454 1565927 310614 2639632
1= 8,8=941=6.9 1086242 2281146 235612 3606787 182099 13155488 17454 1555927 810614 2410632

57

Table 13
Execution Time for Silicon Offchip Multiplier with Optimized Code

(in terms of instruction fetches)
Offchip Delay of 2

besich ackp babblep fibp intrrwnp perm ptuzlep qaeenp quickp slevep tawerep

baseline 0180804 1190574 584330 1701020 337582 5040988 6529 1132960 100649 13266771

1= 1,«=0 8180845 1254597 584330 4006649 337605 4985102 7290 1727720 100690 14176970
i= 1,8=1 8180845 1263597 584330 4519449 337005 4985102 7290 1717720 106090 14176970

1= 1,8=2 8180845 1252597 584330 4372249 387005 4985102 7290 1707720 160090 14176970

i= 2,8=0 3180845 1240597 584330 3489049 337605 4985102 7290 1647720 166690 14176970

1= 2,8=1 8180845 1245597 584330 3341849 337605 4985102 7290 1637726 166090 14175970

1= 2,8=2 3180845 1244597 584330 3194049 337005 4985102 7290 1027726 160690 14175970

1= 4,8=0 8180845 1242597 584330 2900249 337605 4985102 7290 1007720 100090 14176970

1= 4,8=1 3180845 1241597 584330 2753049 337005 4985102 7290 1697720 160690 14176970

1= 4,s=2 3180845 1240597 584330 2605849 337605 4985102 7290 1587720 106090 14176970

i= 0,8=0 3180845 1241597 584330 2753049 337605 4985102 7290 1597726 166090 14176970

1= 0,8=1 3180845 1240597 584330 2605849 337605 4985102 7290 1587720 160090 14176970

i= 6,8=2 ^ 8180845 1239597 584830 2458649 337005 4985102 7290 1577720 100090 14176970

i= 8,8=0 3180845 1240597 584330 2605849 337605 4985102 7290 1687726 166090 14176970

1= 8,8=1 8180845 1239597 584330 2458649 387005 4985102 7290 1677720 100090 14176970

1= 8,8=2 3180845 1238597 584330 2311449 337005 4985102 7290 1507726 166090 14176970

1= l,s=0,R=0.3 2018438 1137175 472780 4547588 271642 4398145 0462 1635527 142754 11705637

1= 1,8=1,R=0.S 2018438 1130175 472780 4400388 271642 4398145 0462 1625527 142764 11705637

1= l,s=2,R=0.3 2018438 1135175 472780 4253188 271042 4398145 0402 1015527 142754 11765087

1= 2,8=0, R=0.3 2018438 1129176 472780 3309988 271642 4398145 0402 1555527 142754 11706037

1= 2,8=1,R=0.3 2018438 1128175 472780 3222788 271642 4898145 0402 1545527 142754 11705637

1= 2,s=2,R=Q.3 2618438 1127175 472780 3075588 271642 4398145 6462 1535527 142764 11705037

1= 4,8=0,R=0.S 2018438 1125176 472780 2781188 271642 4398145 0402 1515627 142754 11706637

1= 4,8=1, R=0.3 2018438 1124176 472780 2633988 271642 4398145 0402 1505527 142764 11706637

i= 4,s=2,R=0.S 2018438 1123176 472780 2480788 271642 4398146 6402 1495527 142754 11705637

1= C,8=0,R=0.S 2018438 1124175 472780 2633988 271642 4398145 0402 1505527 142754 11705637

i= 0,8=1,R=0.S 2018438 1123175 472780 2480788 271642 4398145 0462 1495527 142754 11705637

i= 0,s=2,R=0.3 2018438 1122175 472780 2339588 271642 4398145 0402 1485527 142754 11705637

i = 8,s=0,R=0.S 2018438 1123175 472780 2486788 271642 4398145 0462 1495527 142754 11705637
i= 8,8=1,R=0.3 2018438 1122175 472780 2339588 271642 4398145 0462 1485527 142754 11706637

1= 8,s=2,R=0.3 2018438 1121176 472780 2192388 271642 4398145 0462 1475527 142764 11705637

i= 1,8=0,R=0.0 1481025 902331 249081 4309400 139716 3224231 4807 1451129 94883 6704972
i= 1,8=1,R=0.9 1481025 901331 249081 4102200 139710 3224231 4807 1441129 94883 0704972

1= l,s=2,R=0.9 1481025 900331 249081 4015060 139716 3224231 4807 1431129 94883 0764972

i= 2,s=0,R=0.9 1481025 894331 249081 3131860 139716 3224231 4807 1371129 94883 6764972
1= 2,8=1, R=0.9 1481025 893331 249081 2984000 139716 3224231 4807 1361129 94883 0764972

i= 2,8=2, R=0.9 1481026 892331 249081 2837400 139716 8224231 4807 1851129 94883 0764972
1= 4,s=0,R=0.9 1481025 890331 249081 2543000 139716 3224231 4807 1331129 94883 0764972

i= 4,8=1,R=0.9 1481025 889331 249081 2395800 189716 3224231 4807 1821129 94883 6704972

i= 4,8=2,R=0.9 1481025 888331 249081 2248660 139716 3224231 4807 1311129 94883 6704972

1= 6,s=0!R=a9 1481025 889331 249081 2395860 189716 8224231 4807 1821129 94883

is? P,8=1,R=?0,9 1481025 888331 249081 2248660 189716 3224231 4807 1311129 94883 6704972

1= 0,8=2,R=0.9 1481025 887331 249081 2101460 139716 3224231 4807 1301129 94883 0764972

1= 8,8=0,R=0.9 1481025 888331 249081 2248600 189710 3224231 4807 1311129 94883 6704972
1= 8,8=1, R=0.9 1481025 887331 249081 2101400 139710 8224231 4807 1301129 94883 6704972

1= 8,s=2,R=0.9 1481025 880331 249081 1954200 139716 8224231 4807 1291129 94883 0764972

58

Table 14
Execution Time for Silicon Offchip Multiplier with Unoptimized Code

(in terms of instruction fetches)
Offchip Delay of 2

bench ackp bubbfep Cbp intxnmp peim puzzle? qtteenp quickp sievep towerip
bainlhtii 0101400 8171079 002121 3862427 431107 19313270 39280 1984792 397121 1686139
i= l,s=iO 0101480 8229102 002121 11808460 431190 40936301 40047 2399336 397132 7707212
1= 1,8=1 0101480 3228102 002121 10908460 431190 46401186 40047 2889306 397162 7478212
i= 1,8=2 0101480 8227102 002121 10608460 431190 43807009 40047 2879336 397162 7249212
1= 2,8=0 0101480 3221102 002121 8108460 431190 34001963 40047 2819336 397162 6876212
i= 2,8=1 0101480 3220102 002121 7708460 431190 33127777 40047 2309336 397162 6343212
1=2,8=2 0101480 3219102 002121 7308460 431190 81693001 40047 2699336 397132 6417212
1= 4,8=0 0101480 3217102 002121 0608460 431190 28626249 40047 2679336 397162 4969212
1= 4,8=1 0101480 3210102 002121 0108460 431190 20991073 40047 2630336 397162 4730212
1= 4,8=2 0101480 3216102 002121 6708460 431190 26460897 40047 2669336 397162 4601212
1= 0,8=0 0101480 3210102 002121 0108460 431190 20991073 40047 2609336 397162 4730212
1= 0,8=1 0101480 3216102 002121 6708460 431190 26460897 40047 2669336 397162 4601212
1= 0,8=2 0101480 3214102 002121 6308460 431190 23922721 40047 2649336 397162 4272212
1= 8,8=0 0101480 3216102 002121 6708460 431190 26460897 40047 2669336 897162 4601212
1= 8,8=1 8101480 3214102 002121 6308460 431190 23922721 40047 2649336 897162 4272212
1= 8,8=2 0101480 3213102 002121 4908460 431190 22388646 40047 2639366 397162 4043212
1= 1,8=0,R=0.3 2420704 2918017 479961 10941229 348100 44113371 82613 2373219 338312 7201186
1=1,8=141=0.0 2420704 2917017 479961 10641229 348100 42679196 32613 2363219 368312 8972186
1= i,8=2iR=0.8 2429704 2910017 479961 10141229 348100 41046019 82613 2363219 338312 8743186
1= 2,6=0,R =0.3 2429704 2910017 479961 7741229 348100 31839903 32513 229S219 368312 6369186
1=2,8=141=0.0 2429704 2909017 479961 7341229 348100 30306787 32613 2283219 368312 6140186
1= 2,8=241=0.0 2429704 2908017 479961 0941229 348100 28771011 32613 2273219 368312 4911186
1= 4,8=0,R =0.0 2429704 2900017 479961 0141229 348100 26703269 32613 2263219 368312 4463186
1= 4,8=1,R =0.0 2429704 2906017 479961 6741229 348100 24109083 32613 2243219 368312 4224186
1= 4,8=241=0.0 2429704 2904017 479961 6341229 348100 22034907 32613 2233219 368812 3996186
1= 0,8=0,R =0.8 2429704 2906017 479951 6741229 348100 24109083 32613 2243219 368312 4224186
1= 0,8=141=0.0 2429704 2904017 479961 6341229 348100 22034907 32613 2288219 368812 3996186
1= 0,8=241=0.0 ; 2429704 2903017 479961 4941229 348100 21100731 32613 2223219 368312 3763186
1= 8,8=041=0.0 2429704 2904017 479961 6341229 348100 22034907 32613 2233219 368312 3996186
1= 8,8=1, R =0.0 2429704 2903017 479961 4941229 348100 21100731 32613 2223219 368312 3733186
1= 8,8=2,R =0.0 2429704 2902017 479961 4641229 348100 19600666 32613 2213219 368312 3637186
1= 1,8=0,R =0.0 1080242 2297040 236012 10200787 182099 38409392 17464 1720927 310614 8189132
1= l,s==l,R=0.9 1080242 2290640 236012 9800787 182099 30936210 17464 1710927 810614 6960132
1= 1,8=2,R=0.0 1080242 2296040 236012 9400787 182099 36401040 17464 1700927 310614 6731132
1= 2,s=0,R =0.0 1080242 2289040 236012 7000787 182099 20196984 17464 1340927 310614 4367132
i= 2,8=1,R =0.0 1080242 2288040 236012 0000787 182099 24001808 17464 1680927 310314 4128132
1= 2,8=2,R =0.9 1080242 2287040 236012 0200787 182099 23127032 17464 1820927 310314 3899132
i= 4,8=0,R =0.0 1080242 2286040 236012 6400787 182099 20069280 17464 1800927 310314 3441132
1= 4,8=1,R =0.9 1080242 2284040 236012 6000787 182099 18626104 17464 1690927 81.0614 3212132
i= 4,b=2,R=0.9 1080242 2283040 236012 4000787 182099 10990928 17464 1680927 310614 2983132
1= 0,8=041=0.0 1080242 2284040 236012 6000787 182099 18626104 17464 1690927 310314 3212132
i=e, 8=141=0.0 1080242 2283040 236012 4000787 182099 10990928 17464 1680927 310314 2983132
1= 0,s==24l=0.0 1080242 2282040 236012 4200787 182099 16460762 17464 1570927 310314 2754132
1= 8,6=041=0.0 1080242 2283040 236012 4000787 182099 10990928 17464 1680927 310314 2983132
1=8,8=141=0.0 1080242 2282040 236012 4200787 182099 16460762 17464 1670927 310014 2764132
1=8,8=241=0.9 1080242 2281040 236012 3800787 182099 13922670 17464 1660927 310314 2626132

In
st
ru
ct
io
n

Fe
tc
he
s

CX
'1
0

59

5.47645 - X \

sX) 5.24444

5.01244

\ \
N x \ \ ' '

4.76044 -

4.31643 -

4.08443 -

\\ X '\ \ '
\ N \
\ \ x
\ \ V
\ \

X \\ \ \ '
\\

intmmp

S=0

S=2

3.85243 H---------------- 1---------------- 1---------------- 1---------------- 1-------------- ~T~.------------ 1---------------- 1 1
H.00000 3.00000 4.00000 5.00000 6.00000 7.00000 S.00000 9.00000 10.0000

Multiplier Clock Ratio
Onchip Multiplier/ Unoptimized

Figure 5.2 Execution Time of Intmm with an On-chip Bit-serial Multiplier
with GaAs Parameters

In
st
r u

ct
1
on
 F

et
ch

es
 (

X1
0

60

l. S45G9 -k

rv £.39210

2.31530

“V

e. lein

B.00S12 -

1.93133

puzzlep

^ \
\ \
\ '

\ \ \
\ \ \A \ \

\ \ \
\ \ V,\ \
\\

s=o

i- - - - - - - - - - rr-2.00000 3.00000 4.00080 5.00000 6.00000 7.00000 8.00000 9.00000 10.OO^T^

Mu1tip1ier Clock Ratio
Onchip Multiplier/ Unoptimized

Figure 5.3 Execution Time of Puzzle with an On-chip Bit-serial Multiplier
with GaAs Parameters

In
st

ru
ct

 io
n-

Fe
tc

he
s

CX
1Q

61

£.55937

£. 4S754

»vD £.41572

£.34390

£.£7208 -

quick

------------ ■ §=§

£.80026 -

£.18344 -

£.05661 -

1.98479 -I---------------1---------------1---------------,---------------,--------------- ,---------------,---------------,---------------,
2.00000 3.00000 4.00000 5.00000 6.00000 7.00000 8.00000 3.00000 10.0000

Multiplier Clock Ratio
Onchip Multiplier^ Unoptimized

Figure 5.4 Execution Time of Quick with an On-chip Bit-serial Multiplier
with GaAs Parameters

■I
ns
tr
uc
ti
on

 F
et

ch
es

 <
X1
0

62

4.50121 i

4.38671\

\ \ \ v \
sD 4,27221

4.15770 -

3.31419

3.69969

•3.58519

touersp

v V
\ \ \
X ' \\ A V

\ \ '
\ \ \

: W
Y \
\

s=o

E.00000 3.00000 4.00000 5.00000 6.00000 7.00000 8.00000 9.00000 10.00

Multiplier Clock Ratio
Onchip. Multiplier, Unopt imized

Sr*

Figure 5.5 Execution Time of Towers with an On-chip Bit-serial Multiplier
with GaAs Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

CX
10

63

7.30345

\ V
6.87645 -\X\

intmmp

so' 6.44444

5.53044 -

4.£8443 -

\\\
Vv

\\\
\\'
\\i
W 'x
K

X
X \X ^X ^

X
X"-x . \X S=0

S=1
S=2

3.85243 -4—------:------ 1---------------- 1----------------r—------------1--------- =------ 1---------------- 1---------------- 1----------------»
1.00000 1.37500 2.75000 3.6£50Q 4.50000 5.37500 6.25000 7.1250Q 8.00000

Multiplier Clock Ratio
Onchip Multiplier/ Unoptimized

Figure 5.6 Execution Time of Intmm with an On-chip Bit-serial Multiplier
with Silicon Parameters

In
st

ru
ct
 io

n
Fe

tc
he

s
CX
1Q

64

3.15936 -i

3.005B6 -

f\- £.85235 -

2.69385

£.54-534

2.39184 -

2.23334

i \\\
\\v

\\\■\'n
\\'

8.08483 -

1.93133

\ \'\\\
\U
\\ N

\
'0\>
\\

puzzlep

\ \ N
■N N - \ \\ V \ \

S=0
S=1

1.00000 1.87500 2.75000 3.62500 4.50000 5.37500 6.25000 7.12500

Multiplier Clock Ratio
Onchip Multiplier. Unoptimized

e.ooo&b ^

Figure 5.7 Execution Time of Puzzle with an On-chip Bit-serial Multiplier
with Silicon Parameters

In
st

ru
ct
 io

n
Fe

tc
he

s
<X
1Q

65

2.5993?
quickp

sjj £.44572 -

S.36890 -

s.aeeoB -

2.21526 -

£.33844 -

£.06161 -

1.98479 -I-------1--------1------- 1------- 1------- 1------- 1------- 1------- 1
1.00000 1.87500 £.75000 3.62500 4.50000 5.37500 6.25000 7.12500 8.00000

Multiplier Clock Ratio
Onchip Multiplier^ Unoptimized

Figure 5.8 Execution Time of Quick with an On-chip Bit-serial Multiplier
with Silicon Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

CX
1Q

66

5.41721

5.16821

kd 4.95921

't\\
\V
\u

X\\\\\

4.50120

4.27220

4.04319 -

3.81419 -

3.58519

touerSp

\\'\ \'

\\\\w
\VnVs'

N

\ N\ N \ N
W v

\ N\ V \
\

S=0

S=1
1.00000 1.87500 2.75000 3.82500 4.50000 5.37500 8.25000 7.12500

Multiplier Clock Ratio
Onchip Multiplier, Unoptimized

i00§T2

Figure 5.9 Execution Time of Towers with an On-chip Bit-serial Multiplier
with Silicon Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

(X
I0

67

7.7H123 ts \

6.99370 -

sd" 6.24618 -

5.49865 -

4.75113 -

4.00360 -

lntmmp

S=0, 1=2.. R=0.3

3.25608

2.50855 -

S=2,1=2,R=0.3
1.76103 H------

2.00000 3.00000 4.00000 5.00000
------- 1-------- :--------1---------------- 1----------- :---- 1------
6.00000 7.00000 8.00000 9.00000 10.0000

Multiplier Clock Ratio
Offchip Multiplier. Optimized

Figure 5.10 Execution Time of Intmm with an Off-chip Bit-serial Multiplier
with 30% Register Overflow and GaAs Parameters

In
st
ru
ct
, i

on
 F

et
ch

es
 C

XI
 O'
7

68

3.18400

3.02741 \
\ \

£.87083

:71425

£.55766

£.40108 -

£.£4449 -

£.08791 -

puzzlep

\ v

\ A V\ \ A
\ X V\ v \
\ \ VN \ v

\ v
\ \
\\

S=0,1=2.. R=0.3

1.93133 ‘
2.00000 3.00000 4.00000 5.00000 6.00000 7.00000 3.00000 9.00000 10.0000

Multiplier Clock Ratio
Offchip Multiplier/ Optimized

; S=$,1=2/R=0.3

5.11 Execution Time of Puzzle with an Off-chip Bit-serial Multiplier
with 30% Register Overflow and GaAs Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

<X
10

69

2.23322 -tv

8.2546?H

vO S.S1611-

quick

8.17756 -

8=0,1=2,R=0.3 5=2, I=2..R=0.3

8.13901 -

2.10045 -

£.06190 -

2.08335 -

1.984? 9 4--------------- 1----------------- 1---------------- 1----------------1----------—i---------------- .----------------- »----------------.
8.0000.0 3.00000 H.00000 5.00000 6.00000 7.00000 8.00000 3.00000 10.0000

Multiplier Clock Ratio
Offchip Multiplier# Optimized

Figure 5.12 Execution Time of Quick with an Off-chip Bit-serial Multiplier
with 30% Register Overflow and GaAs Parameters

In
st
ru
ct
.!
on
 F

et
ch

es
 (

X1
Q

70

5. JH-019

ND *+.91119

3.99519

3.76619 -

3.53719

towersp

\
v,\V \\ \\ '
v \\ X '\ \ V
\ x \\ x V

\ x '
\ \ x'
\ '\ \\ Vw

\

S=0,1=2,R=0.3

—■"' |---- ■■ ■ ■|.... ...| --—-T- ■ -V- __ — - —
2.00000 3.00000 H.00000 5.00000 6.00000 7.00000 8.00000 9.00000 10. OO^T^* ^ ^ ̂= ^ - 3

Mu1tip1ier C1ock Ratio
Offchip Multiplier, Optimized

Figure 5.13 Execution Time of Towers with an Off-chip Bit-serial Multiplier
with 30% Register Overflow and GaAs Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

CX
10

71

i ntffimp

V\
.988013 -\\\

.901903

.789683

.557463 -

.471353

%

v\'VV\\\ v
W N \\ N
' N N

\ N
\ ‘\
\\

\

S=0,1=2,R=0.3
S=l,1=2 -R=0.3
S=2,1=2,R=0.3

^OOOOO 1.87500 £.75000 3.68500 4.50000 5.37500 6.£5000 7.12500 8.00000

Multiplier Clock Ratio
Offchip Multiplier, Unoptimized

Figure 5.14 Execution Time of Intmm with an Off-chip Bit-serial Multiplier
with 30% Register Overflow and Silicon Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

<X
1.
0

72

>vfV

4.02779 -

d. 7'dQ 96

3.4-1H i 2 -

3. 10729 -

2.80045

.18678

puzzlep
\\‘ \
\ \

\\\
V'
\\\
\\'\
\\\W'
\\\\\ Nl \ ■*»
'A\
\V\V N N

\ X "
\ N \ V \\

S=G,1=2,R=0.3
S=l,1=2,R=0.3

1.87995
1.00000 1.87500 2.75000 3.62500 4-.50000 5.37500 6.25000 7.32500 8. OOeSr1-^ ^ F-0.3

Multiplier Clock Ratio
Off chip Multiplier.- Unopt i mi zed

Figure 5.15 Execution Time of Puzzle with an Off-chip Bit-serial Multiplier
with 30% Register Overflow and Silicon Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

(X
I0

73

2.36922 T\

2.22029 -

sD Si 27236

W\

%W\\v

quickp

£.££443 -

2.17651 -

-.T ——S=Q,1=2,R=0.—---— S=1,1=2,R=0.S=2,1=2jR=0.

2.12858 -

£.03065 -

2.03272 -

1.93479 4:--------------- i---------------- 1---------------- ,---------------- 1---------------- r--------------- 1---------------- 1---------------- 1

1.00000 1.87500 £.75000 3.62500 4.50000 5.37500 6.25000 7.12500 8.00000

Multiplier Clock Ratio
Offchip Multiplier, Unoptimized

Figure 5.16 Execution Time of Quick with an Off-chip Bit-serial Multiplier
with 30% Register Overflow and Silicon Parameters

O
X
O
W

In
st
 ru

et
 i
 on

 F
et
 c’h

es
 C

X1
0

74

7.08669

6.62869 -

vD 6.17069 -

.71269

H.79669 -

3.88069

3.H2269

touersp

\\

V'\\\
\\\
\u
\V

W'

$X \
'On

X
\ X

X X
\ X

X N
X

X
X

S=0 j1=2j R=0.3
S=l, 1=2.. R=0.3

1.00000 1.87500 2.75000 3.6^500 4-.50000 5.37500 6.25000 7.12500 8. OOOCftT^' ^ *' • 3

Multiplier Clock Ratio
(jK.fchip Multiplier, Unoptimized

Figure 5.17 Execution Time of Towers with an Off-chip Bit-serial Multiplier
with 30% Register Overflow and Silicon Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

CX
10

.7.00679

6.3510?

sO 5.69535

intro mp

4.33391 -

3.72819-

8=0vI=2y R=0.9

3.0724?

£.41675 -

I=£,R=0.9
2.00000 3.00000 4.00000 5.00000 6.00000 7.00000 8.00000 9.00000 10.0000

Multiplier Clock Ratio
Offchip Multiplier^ Unoptimized-

Figure 5.18 Execution Time of Intmm with an Off-chip Bit-serial Multiplier
with 90% Register Overflow and GaAs Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

(X
I0

^

76

5.61360 >

.31276 A

5.15935 -

2.00593 -

1.85251

l.69909

1.54568

L.39226

puzzlep

\ \
\ '

\ \
\ \ \
\ \ \
\ \ '

\ \ \
\ N \
\ V v

w
\
\
\

S=0,1=2,R=D.9

:cb “ :------------- 1---------------- 1 > ----------- j---------------- 1 ■ —-^T- - ~ i ^ ^
2.00000 3.00000 4-.00000 5.00000 €-.00000 7.00000 S. 00000 9.00000 10 00Qb=^ * 1 ^ = ^ • 9

Multiplier Clock Ratio
Offchip Multiplier, Unoptimized

Figure 5.19 Execution Time of Puzzle with an Off-chip Bit-serial Multiplier
with 90% Register Overflow and GaAs Parameters

In
st
ru
ct
.i
on
 F

et
ch

es
 (

XI
0

77

/■v
vD

1.98479 “I
quick

1.93181 -

1.87883 -

1.6258H -

1.77286 -

1.71988 -

1.66689 -

1.61391

1.56093
2.00000 3.00000 H.00000 5.00000 6.00000 7.00000 8.00000 9.00000 10.000

Multiplier Clock Ratio
Offchip Multiplier^ Unoptimized

Figure 5.20 Execution Time of Quick with an OfF-chip Bit-serial Multiplier
with 90% Register Overflow and GaAs Parameters

ro
ro

In
st

ru
ct

io
n

Fe
tc

he
s

(X
I0

78

4.12813

vO 3.89913

3.67013

\^ v \ \\ '
\ \

\ \ *
' \ ''
\ \ '
\ X V ' \ '

3.44113 -

£.75413 -

towersp

\
\ ' ^ \ \\ v

\
\

\
\

\
\\

\

S=G, l=2iR=0.9

2.00000 3.00000 4.00000 5.00000 6.00000 7.00000 8.00000 9.00000 10. OOEftT^ ' ^ J R-0.9

Multiplier Clock Ratio
Offchip Multiplierj Unoptimized

Figure 5.21 Execution Time of Towers with an Off-chip Bit-serial Multiplier
with 90% Register Overflow and GaAs Parameters

In
st
ru
ct
,
io
n

Fe
tc

he
s

(X
I0

7

79

1.00068-1

.920679

\

t\\
\\\

.840679 -

• 760679

.660679

.600679

.520679

.440679

.360679

intmmp

V'V'

\'\O'
V
W'
\\v\\ \

\ X N

kV''
\X

X X
x ^ >
\ X

X N X V
X

X
' S=0, l=2iR=0.9

—^ S=l, 1=£.R=Q.9
1.00000 1.37500 £.75000 3.62500 4.50 000 5.37500 6.25000 7.12500 B.OOoSr^" I~2, R = 0 . 9

Multiplier Clock Ratio
Offchip Multiplier, Unoptimized

Figure 5.22 Execution Time of Intmm with an Off-chip Bit-serial Multiplier
with 90% Register Overflow and Silicon Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

(X
I0

80

9.33883 -i

9.88399

i \
*\\\\\

3.TB09.6 *

3.8*912 -

a.$9289

£.989BE -

£.48838

puzzlep

O'
W'
\'\
\\\
\"
u\U'
\\v
'o
'On''

X \X ^
X Nv N
\ X

X \
X V X

X
' S=0,1=2, R=0.9
S=l, 1=2., R=o . 9

l-00000 87500 £.75000 3.68500 9.50000 5:37300 £-.£5000 7.18300 T.fldoSf2' 1=2,R=0.9

Multiplier Clock Ratio
Off chip Multiplier.* Unopt i Mi zed

Figure 5.23 Execution Time of Puzzle with an Off-chip Bit-serial Multiplier
with 90% Register Overflow and Silicon Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

(X
I0

81

1.98479 1 quick.p

1.93118 -

si) 1.87758 -

1.88397

1.77036 -

1.71675 ->

1,66314 -

1.60954

1.55593

N\v

V\>\v\

1.00000 1.87500 £.75000 3.62500 4.50000 5.37500 6.25000 7.12500 8.000

Multiplier Clock Ratio
Offchip Multiplier, Unoptimized

i=s g§:§

Figure 5.24 Execution Time of Quick with an Off-chip Bit-serial Multiplier
with 90% Register Overflow and Silicon Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

CX
10

82

6.63069 "

R.3S868 -

9.38869 -

3.88869 -

touersp

\\
U\
\V

\\\
\\'
x\\
W'
t''

' \ s
\ \ N\ \ ^

\ 'N \
\X NN N > \ X " \ N- V V \

N

1.00000 i.37500 3.75000 3.63500 H.50000 5.37500 6.35000 7.13500 I

Multiplier Clock Ratio
Off chip Multiplier,. Unopt-imized

Figure 5.25 Execution Time of Towers with an Of
with 90% Register Overflow and Silicon

~~ 3=0,1=2,R=0.9
S=l,1=2,R=0.9

^0§f2'1=2'R=°9

f-chip Bit-serial Multiplier
Parameters

CHAPTER 6
CACHE DESIGN

6.1. Introduction
Processor performance in any technology is greatly dependent on memory

access time. This makes cache memory an important consideration in
processor design. However, in the case of a problem, cache design is still of
secondary importance behind the design of adder and multiplier units. The
information is important when considering multiplication units since the
Booth-algorithm and delay fillin use memory more frequently than many other
operations. Therefore, this chapter is presented to give information on how
cache affects performance in order to better choose the optimal multiplier for
each application. There are papers which do cover cache in much greater
detail [Kabak86], [Smith82].

Since system performance in any technology is still dependent on memory
access time, cache memory is still a consideration in system design. Gache
memory is placed between the CPU and the main memory to reduce memory
fetch delays. Although cache memories are smaller than the main memory,
they are also faster. Therefore, frequently accessed data can be kept in the
cache to decrease total execution time. The penalty for fetching an item which
is not in the cache is greater than that for fetching a data item directly from
memory. The tradeoff of the penalty versus the increased speed must be
examined closely to determine how the cache must be designed. When the
memory access ratio exceeds 40, the penalty may be large enough to warrant a
two level cache [SilMi85].

In the silicon environment, cache memory plays an important role in the
performance of a system because the access ratio is significantly greater than
one, In the GaAs environment, however, the ratio of off-chip to on-chip delays
is much larger than in the Si environment and the increased memory fetch
delay makes cache memory still more promising as an alternative. GaAs E/D
MESFET technology has a ratio of five to ten which makes cache design more
critical than in silicon technologies but not critical enough to justify a two level
cache.

84

Standard assumptions in Si cache design need to be reevaluated for a
GaAs environment. For example, set or fully associative placement policies are
promoted as the best cache organizations for Si; yet a direct mapped cache was
shown to be a better cache organization for GaAs [SilMi85]. After the issue of
available area, the time for communication with the rest of the system is most
affected by the technology switch. Therefore, in addition to considering
parameters closely associated with the inner cache organization, some system
parameters were considered to determine if their effect was changed by
switching from Si to GaAs technology. Consideration was also given to
choosing parameters to help improve cache efficiency.

6.1.1. Parameter Selection
The selection of parameters was guided by work already done in

[Smith82]. Obviously, some choices of parameters, such as placement and
replacement policy, are forced upon us by the choice of direct mapped cache.
We did not look at the advantages of using split system/user caches because
we did not have multi-user or multi-tasking programs that could provide Us
with a sufficient base of system code. Since previous experiments were run
with the SU-MIPS simulation package, we continued to use it to be consistent.
In addition, being bound by the MIPS-like architecture precluded experiments
on architectures other than load-store architectures.

The cache size limitations were affected by transistor count limitations.
Since the largest memory so far is a 16K bit SRAM with 102,300 gates
[Islnl84], we could not realistically work with caches any larger than 4K by 32
bits, Even a 4K SRAM may not be implementable with the space limitations
around the processor chip. This limit may be reduced further as the control
logic is implemented. Typical silicon caches lose 25% of their area to control
and the fanin fanout limitations of GaAs increase this loss to as much as 40%
[S|lMi85]. The maximum size of the silicon cache was kept to the ttiaximum of
the GaAs cache to provide a correlation for the same benchmarks and for other
reasons explained later in this chapter.

6.2. Cache Evaluation Methodology

The cache design parameters examined included cache size, block size, and
use/nonuse of one block look ahead prefetch for a direct mapped cache. The
more important system parameters which we felt were modifiable included the
fetch time for non-cache fetch times and cache miss times. The miss time
included a constant delay plus an additional delay based on the block size. We

85

considered only off-chip on-package and off-chip off-package solutions because
transistor count limitations would not allow any cache on the CPU chip,

6.3. Cache Experiment Procedure
Each test required running the SU-MIPS simulator for each benchmark for

a set of parameters. Each benchmark was relatively small and generated under
4000 instructions. The original simulator was left unchanged except for
memory references. Each memory reference goes through a ’’cache filter”
which does an accurate simulation of the memory with cache. The cache filter
is called in place of all memory references. For each memory reference, the
cache filter updates the tags associated with each block of cache memory and
then fetches the appropriate data or writes the data given to it. A block
diagram of the data flow in the cache filter is shown in figure 6.1. If a cache
miss occurs, the filter also adds on the appropriate miss delays. This allows us
to add delays for any function of the cache for memory fetches. We added
delays at two points: (1) whenever non-cache fetches are done, and (2)
whenever the data must be fetched from main memory. All data fetches are
considered non-cache fetches if only an instruction cache is being used. This
also means that all instruction fetches are non-cache fetches if only a data
cache is being used. This is shown graphically in figure 6.2. The execution
times were calculated by summing the execution time of the benchmarks with
the delays added by the "cache filter”. The delay parameters used by the
"cache filter” are set by the user during initialization of each simulator run.

The experiment was composed of three tests. The first test was to
determine the impacts of instruction cache, data cache, or a combined
instruction/data cache. GaAs area limitations do not permit the efficient
placement of both instruction and data cache and therefore, we did not
consider that option for GaAs or CMOS/SOS. The second test was to check
the effect of varying the fetch time on the overall execution time. The last one
was to determine the relative importance of the overhead delay and the delay
per word transferred for a cache miss. The effect of the total miss time was
also measured.

We did not run tests specifically to determine cache size because of our
choice of benchmarks. The benchmarks that were available were not large
enough to exercise the cache enough to accurately determine the performance
of the cache for different cache sizes. Therefore these results may be less
accurate for large benchmarks, The thesis by Kabakibo [Kabak86] does more
extensive testing of cache designs with large benchmarks. Our choice of cache

86

sizes was not made smaller for fear of the block size reaching the same order of
magnitude as the cache size.

Each set of data taken was for four different cache sizes, (256, 512, 1024,
and 4996 words), and four block sizes, (two, four, eight, and sixteen), lot each
cache size. One of the remaining four parameters, cache type, miss time, fetch
time, and prefetch policy, was varied for each test. Miss times are displayed
for each curve and include both the transfer time for each wdfd Md the
overhead incurred for each block transfer.

6.4, Presentation of Results
For each of the tests, only the interesting information has been presented

as part of the thesis. The benchmarks ack, intmm, queen, and sieve were
deemed interesting. The curves for the remaining benchmarks have a relatively
flat profile and, therefore, are included only in the appendix.

Figures 6.3 through 6.8 show how cache organization affects execution
time for each cache size for E/D-MESFET technologies, while figures 6.9
through 6.14 show the same information for CMOS/SOS technologies. The
block size is denoted BS, the miss time is denoted M, and the fetch time is F
for each of the curves. As expected, the results show decreasing execution time
with increasing cache size, and due to the small benchmark size, the execution
time levels off as the cache is filled with the working information. This is true
for each of the block sizes we dealt with. The longest execution time is for the
simulation with only data cache; the instruction cache and the combined cache
both have superior execution times.

The relatively large difference in execution times for the various block
sizes shows that the combined cache is more sensitive to changes in block size
than the instruction cache; the smaller the blocks, the better the execution
time. The asymptotic nature of the curves show that very little information is
being swapped out due to memory pollution. Therefore, the wide spacing of
tfie curves may be due to shorter miss times with small blocks rather -than less
memory pollution. The data also supports using instruction cache or a
combined instruction/data cache for GaAs.

Figures 6.15 through 6.18 show the execution time against varying cache
size for GaAs parameters while figures 6.19 through 6.22 show the execution
time against varying Cache size for silicon parameters. The individual curves
within each family of curves represent different block sizes. The two families
are identified by different non-cache fetch times. Data fetches use non-cache
fetch tinaes if data cache is not being used. Analogously, instruction fetches

87

use non-cache fetch times if instruction cache is not being used. The large gap
in execution times between the two fetch values with very little difference
between the block sizes shows that changing the fetch time has the greatest
impact on execution time. As the fetch time is decreased, the execution time
decreases much more quickly than any change in block size or other parameters
accounts for. By observing plots for other experiments, the only parameter
which forces such a large change is the cache organization.

Additional plots of execution time against cache size are displayed in
figures 6.23 through 6.30 for GaAs parameters and figures 6.31 through 6.38 for
silicon parameters. Here, however, the differences in execution times are caused
by changing the miss times. Each family of curves is equated to a different
miss time where the miss time is the total of the overhead of the transfer time
added to the time to transfer the block. As expected, the times are not greatly
dependent on the base miss time. The greatest dependency is the time added
per word transferred because the total delay per transfer is usually greater than
the transfer overhead. This dependence on transfer delay emphasizes the need
to reduce the block transfer time rather than the overhead associated with each
block transfer.

Reviewing the results, judgments should be influenced by the knowledge
that the benchmarks did not provide a flawless basis for evaluation of the
cache parameters. After a certain time, cache misses became rare due to the
program size being insignificant compared to the cache size. Therefore, one of
the biggest influences on the execution time was the cold start cache that was
used. Larger benchmark programs would have increased the reliability of our
results.

AddressesData

Memory

Benchmark
Program

AddressesData

Delays

Memory

Benchmark
Program

Cache Filter

Figure 6.1 Block Diagram of “Cache Filter” Data Flow

Data Fetch

Inst ruction Fetch (Non-Cache Fetch)
Memory

Data Cache

Data Fetch (Non-Cache Fetch)

Instruction Fetch
Memory

Instruction Cache

Figure 6.2 Explanation of Non-cache Fetch Time

In
st

ru
ct

io
n

Fe
tc

he
s

(X
I0

90

i. 30521 -i
intmmp

l.19088 -

rC" 1.07655 -

. 962226 -

.847899 -

.733572 -

.619244 -

.504917 *

BS=afcBlM§14F=E=2

. 390590 A---------------1------------- -i---------------1------------ -t-----------—r-------------- 1---------------- »---------------1
256.GOG 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 409600

Cache Size
Instruction Cache

Figure 6.3 Execution Time of Intmm with an Instruction Cache with GaAs
Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

<X
I0

91

i.39088

"N
\\

\ \

1.07655 “

intmmp

.962326 -

.847899 -

BSs96P1M814F=E=2

.619244 -

.504917 -

.390590 4---------------1---------------j---------------1---------------1----- ---------- 1-------------- 1---------------1---------------1
256.000 736.000 1S16.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Bat a Cache

Figure 6.4 Execution Time of Intmm with a Data Cache with GaAs
Parameters

In
st
ru
ct
,i
on
 F

et
ch

es
 '
CX
1Q

92

int mmp
1.30521

1.19088

390590
256.000 736.000 1216.OO 1696.00 2176.00 2656.00 3136.00 3616.00 4096.

Cache Size
Instruction and Data Cache

Figure 6.5 Execution Time of Intmm with a Combined Instruction/Data
Cache with GaAs Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

(X
10

1.25516 -i
queenp

1.I486? -

in" 1.0H219-

.829210 -
BS=8fctf!W§14F=e=2

.722723 “

.616235 -

.509748 -

. 403260 H---------------- 1---------------- r---------------1---------------- 1---------------- 1---------------- 1---------------- 1----------------»
256.000 736.000 1216.00 1696.00 2176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.6 Execution Time of Queen with an Instruction Cache with GaAs
Parameters

In
st

ru
ct

 i
on
 F

et
ch

es
 C

XI
Q

94

1.255iS 1\
\

i.14367 -

queenp

BS=BfcBINS14F=E=2

inN 1.04219 -

.935698 -

.929210

.722723

.616235

.509748 -

.403260 4— -- -r------ 1-----r~------- --- ,-- --- ,------,------,------,
256.000 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Bata Cache

Figure 6.7 Execution Time of Queen with a Data Cache with GaAs
Parameters

ns
tr
uc
t-
 io

n

34042.0 -i queen

785*5.0 -

73Q48.0 -

io O'
JZ
u 67551.0 -
t-i& '
u_

62054.0 -

56557.0 -

51060.0

45563.0-

40066.0

K

\>
vS '— -

256.000 736.000 1216.00 1656.00
i------------ 1------------ 1------------ 1----- " i

2176.00 2656.00 3136.00 3616.00 4096

BS=16,M=10, F=1
P=§jH=8j, m ■

Cache Size
Instruction and Data Cache

gure 6.8 Execution Time of Queen with a. Combined Instruction/Data
Cache with GaAs Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

<X
1Q

96

8.77256 -]
intmnp

8.16423 -

kD 7.55590-

6.34756 -

£.33923 -

5.73090 -

5.18257

4.51423

BS=B6D1ft§10F=e:=l

3.90590 +--------------- 1---------------- ,---------------- 1---------------- r---------------1---------------- 1---------------- ,----------------,
256.000 736.000 1216.00 1696.00 £176.00 £656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.9 Execution Time of Intmm with an Instruction Cache with Si
Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

CX
-1
0

intmmp

8.16423

BS»aSWM0jOF=l[-l7.55590 -

6.33923 -

5.73090

3.90590 -I--------—i--------------- ,--------- --—,---------- ------ ,-----------—i—------------1— -------- ,-----------—,
256.000 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.00

Cache Size .
Cache

Figure 6.10 Execution Time of Intmm with a Data Cache with Si Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

(X
I0

98

8.77256 -i

8.16423 -

vD 7.55590 -

6.34756 -

intmmp

5.73090

.12257

4.51423 -K v, X

\
\
\

\s
X

\

256.000 736.0D0 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096

Cache Size
Instruction and Data Cache

BS=16,M=10, F=1
liiijiii m

Figure 6.11 Execution Time of Intmm with a Combined Instruction/Data
Cache with Si Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

99

84042.0 n
queen

78545.0 -

75043.0 -

67551.0

62054.0 -

56557.0 -

51060.0 -

45563.0 -

40066.0 -1---------------- 1---------------- 1---------------- 1---------------- 1---------------- 1---------------i---------------- 1----------------1

256.000 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.12 Execution Time of Queen with an Instruction Cache with Si
Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

100

34042.0 V\
-A

78545.0

queen

BS=86WWB10F=ff=l

73043.0-

67551f0 -

65054.0 -

56557.0 -

51060.0 -

45563.0 -

40066.0 4------:--------r—-----------1---------- ------r-------------- ,------ --------- ,___ !_______,__________ i
256.000 736.000 3516.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.QG

Cache Size
Bata Cache

Figure 6.13 Execution Time of Queen with a Data Cache with Si Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

84042.0 n
queen

78545.0

73048.0 -

67551.0

£2054 , 0

56557.0

■\
\
\

' \
\
\

45563.0

40066.0

\
V V
\

fv\
V

\

v\

256.000 736.000 1S16.00
----- j------------ 1------------ r----------- 1------------1—" i
1696.00 £176.00 2656.00 3136.00 3616.00 4096.

BS=16,M=10, F=1
ptfiNsg* F=i

Cache Size
Instruction and Data Cache

Figure 6.14 Execution Time of Queen with a Combined Instruction/Data
Cache with Si Parameters

In
st
 r
uc
t i

on
 F

et
 ch

.e
s C

 X1
G ̂

102

7.00355

6.87699

6.74547 -

6.61394 -

6.48242

6.35089 -

6.08784 -

5.95631

intmmp
BS=a6MM§7, FP§3

)Jl *n--------------- 1— 1 > (- -j——r—^ ^
256.000 736.000 1216.00 1696.00 £176.00 £656.00 3136.00 3616.00 4096.FF§2

Cache Size
Instruction Cache

Figure 6.15 Execution Time of Intmm for GaAs Fetch Delays with a Slow
. Cache

In
st

ru
ct

io
n

Fe
tc
he
s.
.
(X
10

103

7.00S52 -|------

6.97699 -

kd' 6.74547 -

6.61394 -

6.4924E-

6.35089 -

6.21337 -

6.08784 -

5.95631 --------
256.000

Figure 6.16

intrnmp
: BS=B6BIMS14F=B=3

736.000 3216.00 1696.00 £176.00 2656.00 3136.00 3616.00 "4096.14F=P=e
Cache Size

Instruction Cache

Execution Time of Intmm for GaAs Fetch Delays with
Cache

Fast

In
st

ru
ct

io
n

Fe
tc

he
s

■C
X'
10
5'

Queenp1.16791

l.12959 -
t\v

1.09127

1.05295

1.01463 -

.976304

BS=B6WM«7,FIE83

.937983 -

.899661 -k

J “U ' 1 "T | - 1 [--- - y t
256.000 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.B?=S®.6MM17, FEg2

Cache Size
Instruction Cache

Figure 6.17 Execution Time of Queen for GaAs Fetch Delays with a Slow
Cache

In
st

ru
ct
 io

n
Fe

tc
he

s
(X

10
5

queenp
1.16791

t.12959

is

1.0912? -

1.05295 -

ii=i6MfliiHr=a=3

1.01463 -

.937983 -

.899661 -

.861340

A
\

\CN

256.000 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

‘ 18"86HrIi4Fsi=£

Figure 6.18 Execution Time of Queen for GaAs Fetch Delays with a Fast
Cache

In
st

ru
ct

io
n

Fe
tc

he
s

<X
1Q

6

5.82513

5.69359 -

5.43053 -

5.29900

5.16747

5,03594

4.90441

_i_rnmmp
BS=B6i!1H85,FEge

nj. < r------ -----—i ----------- 1— ------------- ,-----------------r-. .. , ,__________ j___________
256.000 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.B?=a6MM®5"

Cache Size
Instruction Cache

Figure 6.19 Execution Time of Intmm for Si Fetch Delays with a Slow Cache

In
st

ru
ct

io
n

Fe
tc

he
s

<X
1Q

107

intmmp
BS=B6DIMilOE"=E=e

•5.69359 -

5.29900 -

5.16747 -

5.03594 -

256.000 736.000 1216.DO 1696.00 2176.00 2656.00 3136.00 3616.00 4096.10ET-ET-1
Cache Size

Instruction Cache

Figure 6.20 Execution Time of Intmm for Si Fetch Delays with a Fast Cache

In
st
ru
ct
-i
on
 F

et
ch

es

108

queen

89011. H -

BS=86&lWi5,F|5g£

77777.5 -

70£88.3 -

665H3.6 -

' ^ * ------- |-- 1 j- n, - j --- ,, ___ ______^
256.000 736.000 1216.00 1696.00 £176.00 £656.00 3136.00 3616.00 4096.J FP4l

Cache Size
Instruction Cache

Figure 6.21 Execution Time of Queen for Si Fetch Delays with a Slow Cache

ns
.t
ru
ct

io
n

Fe
tc

he
s

109

queen

890 u. 4 -

77777.5 -

256.000 736.000 1316.00 1696.00 £176.00 £656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.22 Execution Time of Queen for Si Fetch Delays with a Fast Cache

In
st

ru
ct

io
n

Fe
tc

he
s

CX
10

^

no

5.95666

5.95661

95653

5.9564?

5.95644

5.95640

5.95636

95631
856.000 736 000 1816.00 1696.00 !176:00 2656.00 3136.00 3616.00 4096.

Cache Size
Instruction Cache

Figure 6.23 Execution Time of Intmm with Small Base Delays and Small
Transfer Delays for GaAs Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

(X
10

5.95666 -
intrnmp

5.95661 -

mT 5.95657 -

5.95653 -

5.95649 rv
\

5.95644 -

mm: f=i
BS=3 j n=7 j F=2
BB=16jM=13; F=2

5.95640

5.95636 -

5.95631 H---------------- 1---------------- 1---------------- 1---------------- 1---------------- 1---------------- 1---------------- 1---------------- 1
256.000 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.24 Execution Time of Intmm with Small Base Delays and Large
Transfer Delays for GaAs Parameters

In
st

ru
ct
 1
 on

 F
et

ch
es

 (
X1

06

112

5.35666.' -

5.35661 -

5.95657' -

5.35653 -

5.35649 -

5.95644

5.35640

5.95636 -

5,95631

int mmp

58=2,11=2, F=2

\

" BS=H,M=3, F=2

BS=8,t1=5, F=2
\

BS=16,M=8, F=2
joj. ---- r—— ------r-------------—---------- —i------------- -- f______ t ■ _ __________
25* 000 736.000 1216.00 1696.00 2176.00 2656.00 3136.00 3616.00 4036.00

Cache Size
Inst ruct ion Cache

Figure 6.25 Execution Time of Intmm with Large Base Delays and Small
Transfer Delays for GaAs Parameters

In
st

ru
ct

 i
'o
n F

et
ch

es
 (

X1
Q

KD 5.95657 -

5.95636 -

int mmp
BS=2 j M=3^ F=2

BS=H}M=5^ F=2

BS=8,M=8, F=2

BS=16,M=14, F=2

256.000 736.000 1216.00 1696.00 £176 00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.26 Execution Time of Intmm with Large Base Delays and Large
Transfer Delays for GaAs Parameters

In
st
r u

ct
io

n
Fe

tc
he

s

114

queenp
93519.0 -

9074-9.0 -

87057.0 -

134.0 “I--------- : 1™r t* — ■~rmr T^r'^ ’J-v in -i---- p ~====>y=
856.000 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.

Cache Size
Instruction Cache

^ J£-aSM*87,FSi2

Figure 6.27 Execution Time of Queen with Small Base Delays and Small
Transfer Delays for GaAs Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

queenp
93318.0 n

92595.0

90749.0 -

88903.0

87980.0 -

87057.0 ■

BS-ifcHM&13F«e=2
256.000 736.000 1216.00 1696.00 2176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.28 Execution Time of Queen with Small Base Delays and Large
Transfer Delays for GaAs Parameters

ns
t-
ru
ct
io
n

Fe
t-
ch
e:

116

93513.0 -1 queenp

98595.0 -

91672.0 -

IA

90749.0 -

39826.0

88903.0
\

37980.0. -

87057.0 -

\t
W

88134.0 ■
... £56

%

.. .. J ii=l^nie, Me000 7o6.000 1816.00 1696.00 £17600 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.29 Execution Time of Queen with Large Base Delays and Small
Transfer Delays for GaAs Parameters

I
ns

tr
uc

ti
on

 F
et

ch
es

Figure 6.30 Execution Time of Queen with Large Base Delays and Large
Transfer Delays for GaAs Parameters

iiie
:

In
st

ru
ct

io
n

Fe
tc

he
s

CX
IO
^

118

4.90479 -

4.90475 -

4.90470 *

4.90465 -

4.90460 -

intmmp

4.90455 -

4.90450 -

4.90445

4.90441

S\

------------------:g§sy{H5?i fgj

_______ r____________ ' BS=8, M=3J F=1
256.000 736.000 1216.00 1696.00 £176 00 £656.00 3136.00 3616.00 4096.fiP= ^' M=5, F=1

Cache Size
Instruction Cache

Figure 6.31 Execution Time of Intmm with Small Base Delays and Small
Transfer Delays for Si Parameters

I n
s t
 r
uc
 t
i
on
 F

et
 ch

es
 (

XI
0

intmmp
4.90479 -]

*+. 90475 -

sD 4.90470 -

4.90465

4.90460

BS-2,M=2, F=1

4.90455 --

4.90450 V

4.90445 -

BS=4,n=3, F=1

BS=8Jn=5, F=1
BS=16,M=9, F=1

4.90441
256.000 736.D00 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.32 Execution Time of Intmm with Small Base Delays and Large
Transfer Delays for Si Parameters

In
st
ru
ct

 i
on
 F

et
ch

es
 C

X1
0

120

intmmp

4.90475

KD 4.90470

H.90465 -

4.90455

4.90450

4.90445 -

4.90441

''58=2,11=2, F=1

55=4,11=3, F=1

BS=8,M=4, F=1
\\

BS=16,M=6, F=1
256.000 736.000 2216.90 1696.00 £176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.33 Execution Time of Intmm with Large Base Delays and Small
Transfer Delays for Si Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

(X
10

s£> 4.904?0 -

4.90460

4.90445 -

intmmp -” ~ “ - - BS=S,ri=3, F=1

BS=4,N=H, F=1

• BS=8,n=6/'F=l
\
______________________ _ ~ BS=16,M=10, F-l

256.000 736.000 1616.00 1696.00 6176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.34 Execution Time of Intmm with Large Base Delays and Large
Transfer Delays for Si Parameters

In
 s t

ru
ct

io
n F

et
ch

es

122

queen

63634.5

£56.000 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096

Instruct ion Cache

Figure 6.35 Execution Time of Queen with Small Base Delays and Small
Transfer Delays for Si Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

123

queen

6614-1.0

65305.5

63634.5 -

256.000 736.000 1216.00 1696.00 2176.00 2656:00 3136.00 3616.00 4096.00

Cache Size
Instruct ion Cache

Figure 6.36 Execution Time of Queen with Small Base Delays and Large
Transfer Delays for Si Parameters

In
st

ru
ct

io
n

Fe
tc

he
s

124

queen

66JIH1 o -i 1 \ i

65305.5

256=000 736.000 1216.00 169600 £176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruct ion Cache

Figure 6.37 Execution Time of Queen with Large Base Delays and Small
Transfer Delays for Si Parameters

In
st

ru
ct

io
n

Fe
tc
he
:

69483.'0 n
queen

68647':-5

67812.0

63634.5 -

V’

v.
\

\ \
ES=£,M=3, F=1

.000 736.000 1216.00 1696.00 £176.00 2656.00 3136.00 3616.00 4096.00

Cache Size
Instruction Cache

Figure 6.38 Execution Time of Queen with Large Base Delays and Large
Transfer Delays for Si Parameters

126

CHAPTER 7
SUMMARY

This thesis has described the technology factors affecting the design of
three VLSI structures: adders, multipliers, and cache memory. After a brief
discussion of the testing choices, a general description of the work will conclude
this chapter.

Each of the three structures was examined to determine how it was
affected by the technology. The three structures were then analyzed to
determine how each should be implemented. Some of the possible options were
rejected for one of several reasons. Some options were discarded because they
were impossible to implement. Other options were chosen because previous
work with GaAs technologies had shown that these were better for the
restrictions imposed by GaAs E/D-MESFET technology.

The adders examined are ripple-carry adders, carry-select adders, and full
carry look-ahead adders. I also chose a full range of bit lengths from 1 to 40
bits. The fanin and fanout maximums examined are fanin—2 fanout=2,
fanin=2 fanout=5, and fanin=5 fanout =5.

The multiplier options examined are the booth-step algorithm with a full
barrel shifter, on-chip bit-serial multiplier with 3 position barrel shifter, and
off-chip bit-serial multiplier with 3 position barrel shifter and a larger register
file.

The cache options were presented to provide more information for the
multiplier choice. The cache options discussed are a direct-mapped cache with
block sizes of two, four, eight, and sixteen, for cache sizes of 256, 512, 1024,

; and 4096 blocks. The choices of instruction cache, data cache, or combined
data/instruction cache were made in conjunction with delays induced by
various fetch times, various miss times.

Tests were then devised that measured the effect of changing each
parameter individually. The range of parameters for each test was varied for
both silicon CMOS/SOS technologies and GaAs E/D-MESFET technologies.
These results can be used to determine the parameters that will yield the best

127

performance for each set of options. A range of options and associated
parameters can then be used to improve the design of GaAs structures.

7.1. Adders

As expected, each adder ran ran faster in GaAs than in silicon. Although
the change in adder type changed the performance by up to 50 percent, the
Ghlihfjje Wa§ less in GaAs than in silicon. A greater distinction between the
adders was provided by the area computations. The carry select and the ripple
carry adders both consume about the same chip area, while the full carry
look-ahead adders consume much more area for adders longer than 20 bits.
This suggests that the GaAs environment cannot support full carry look-ahead
adders while the silicon environment can. The ripple carry adder is almost as
good as the carry select adder when basing the choice solely on minimum area
and maximum speed. High speed applications with a little free area can use
carry select adders, while applications with no extra area can use the ripple
carry adder with little penalty. This is different from the silicon environment
where the ripple carry adder is much slower than either of the other two adders
which makes it unusable for all but the slowest applications.

7.2. Multiplication
The proposed modifications to the multiplier to enhance performance did

not give the expected results. The limits of the simulation tools did not allow
us to propose architectures which may have improved performance and verify
that improvement. The conclusion is that the original SU-M1PS architecture
was the best architecture for the supplied benchmarks. The instruction mix of
the benchmarks caused a degradation of performance when the full barrel
shifter was replaced by a limited barrel shifter. Since the bit-serial multiplier
was unable to compensate for the loss of execution time, the overall
performance suffered.

Moving the multiplier off-chip and replacing the barrel shifter might still
be a good alternative, but the possibilities could not be tested without more
flexible software. The compiler and reorganizer available did not use the
register file well enough to make a larger register file worthwhile.

The conclusion is that in either the GaAs or silicon environment, the
original SU-MIPS performs the best. The analysis also showed that the E/D-
MESFET architecture benefited more from the bit-serial multiplier than the
CMOS/SOS architecture. Therefore, such strategies should not yet be
discarded for GaAs designs.

128

7.3. Cache
The results of the cache experiments can be used to help determine the

effect of the choice of multipliers. The multiplier section can be used to help
determine the increase in the amount of code. This information can then be
used with the cache performance to determine the resulting execution time.
This can be used to match the cache to the multiplier based on the cache size,
block size, and transfer times.

The execution time of the benchmarks based on cache type clearly shows
that an instruction cache improves performance more than a data cache.
When common data memory and instruction memory are used, the combined
instruction/data cache performs better than the instruction cache. The
performance for each benchmark also improved with reduced block size. The
change in performance between the cache types was more pronounced for the
GaAs parameters than for the silicon parameters.

When comparing the effects of the miss parameters, the cache size did not
affect the performance in a significant manner. The block size produced the
biggest difference in performance. As the block size varied, the time per word
transferred (transfer time) had a bigger effect for GaAs parameters than for
silicon parameters while the base delay had a bigger effect for silicon
parameters than for GaAs parameters. Overall, the transfer time was the
dominant factor for GaAs caches while both parameters had similar effects for
silicon caches. Although this information is useful, its prime importance is in
determining how to implement multiplication.

7.4. Conclusion
New design methodologies for GaAs E/D-MESFET technologies have been

presented for a specific architecture and specific problems. The advantages and
disadvantages of GaAs E/D-MESFET technologies and how they relate to
silicon technology have also been presented as they relate to actual problems.
This information has been given as it applies to adder design, multiplier design,
and cache effects on multiplier design. With this information, a digital designer
should now have a better insight into the choices for optimal GaAs E/D-
MESFET designs, both modified silicon designs arid unique GaAs designs.

LIST OF REFERENCES

129

LIST OF REFERENCES

[AsKuII83] Asai, K., Kurumada, K., Iliriyama, M., Ohmori, M, 1Kb
Static RAM using Self-Aligned FET Technology, Proceedings
of the 1983 IEEE International Solid-State Circuits
Conference, New York City, New York, February 1983, pp.
46-47.

[Barne85] Barney, C., “DARPA Eyes 100-mips GaAs Chip for Star
Wars,” ElectronicsWeek , Vol. 58, No. 20, May 20, 1985, pp
22-23.

[BasNu84] Bass, S., Neudeck, G., “VLSI Transistor Count and Basic
Delays,” Internal Report, Purdue University, 1984.

[Bctti85a] Bettinger, M. K., “Comparison of System Issues between
CMOS Silicon and GaAs,” Purdue University, Dec. 1985

[Betti85b] Bettinger, M. K., “Adder Design Issues,” Research Report,
Purdue University, March. 1985

[BeDoF81] Beyers, J., Dohse, L., Fucetola, J., Kochis, R., Lob, C.,
Taylor, G., Zeller, E., A 82-Bit VLSI CPU Chip” IEEE
Journal of Solid-State Circuits, Vol. SC-16, pp.537-541 Oct
1981.

[Coope84a] Cooper, J.A. Jr., PEER Lecture, Purdue University, 1984.

[Coope84b] Cooper, J.A. Jr., Private Communication, Purdue University,
1984. •

[EdLiW83] Eden, R.C., Livingston, A.R., Welch, B.M., Integrated
Circuits: the Case for Gallium Arsenide, IEEE Spectrum, Vol.
9, No. 12, December 1983, pp.30-37.

[EdWeZ79] Eden, R.C., Welch, B.M., Zucca, R., Long, S.I.,
The Prospects for Ultrahigh-Speed VLSI GaAs Digital Logic,

IEEE Journal of Solid-State Circuits, Vol. sc-14, No. 2 April
1979, pp. 221-239.

[Fura85]

[FuTal84]

[GiGrH83]

[GroHe82]

[GroGi83]

[Gross83]

[Gross84]

[Heage85]

[HeJoG82]

[IIeJoP83]

[HeScZ85]

[HiInM84]

130

Fura, D., “Architectural Approches for Gallium Arsenide
Exploitation in High-Speed Computer Design,” MSEE Thesis,
December, 1985.

Furutsuka, T., Takahashi, K., Ishikawa, S., Yano, S.,
Higashisaka, A., “A GaAs 12 x 12 Bit Expandable Parallel
Multiplier LSI Using Sidewall-Assisted Closely-Spaced
Electrode Technology,” Proceedings of the International
Electron Devices Meeting, San Francisco, California, December
1984, pp. 344-347.

Gill, J., Gross, T., Hennessy, J., Jouppi, N., Przybylski, S.,
and Rowen, C. Summary of MIPS instructions, Technical
Note 83-237, Stanford University, November, 1983.

Gross, T.R., Hennessy, J.L., Optimizing Delayed Branches,
Proceedings of Micro-15, IEEE, Octover 1982.

Gross, T., Gill, J. A Short Guide to MIPS Assembly
Instructions, Technical Note No. 83-236, Stanford University,
November, 1983.

Gross, T., Code Optimization of Pipeline Constraints, PhD
dissertation, Stanford University, September, 1983.

Gross, T. MIPS-SIM: A MIPS Simulator, Stanford University,
April, 1984.

Heagerty, B., Private Communication, RCA-ATL, 1984.

Hennessy, J., Jouppi, N., Gill, J., Baskett, F., Strong, A.,
Gross, T., Rowen, C., Leonard, J., “The MIPS Machine,”
Digest of Papers, Spring COMPCON 82, San Francisco,
California, February 1982, pp. 2-7.

Hennessy, J.L., Jouppi, N., Przybylski, S., Rowen, C., Gross,
T., “Design of a High Performance VLSI Processor,” Stanford
University Technical Report No. 236, Feb. 1983.

Helbig, W.A., Schellack, R.H., Zieger, R.M., “The Design and
Construction of a GaAs Technology Demonstration
Microprocessor,” Proceedings of Midconf 85, Chicago, Illinois,
September 1985, pp. 23/1.1-23/1.6.

Hiriyama, M., Ino, M., Matsuoka, Y., Suzuki, M., A GaAs 4Kb
SRAM with Direct Coupled FET Logic, Proceeding of the 1984
Ieee International Solid-State Circuits Conference, San
Francisco, CA, February 1984, pp. 46-47.

131

[Hoeff84] Hoefilinger, B., Private Communication, Purdue University,
1984.

[HwaBr84] Hwang, K., Briggs, F.A., Computer Architecture arid Parallel
Processing, McGraw-Hill, 1984.

[Hwang84] Hwang, K., Private Communication, Purdue University, 1984.

[IkToM84] Ikawa, Y., Toyoda, N., Mochisuki, M., Terada, T., Kanazawa,
K., Hirose, M., Mizoguchi, T., Hojo, A., A lK-Gate GaAs Gate
Array, Proceeding of the 1984 Ieee International Solid-State
Circuits Conference, San Francisco, CA, February 1984, pp.
40-41.

[IsInI84] Ishii, Y., Ino, M., Idda, M., Hirayama, M., Ohmori, M.,
“Processing Technologies for GaAs Memory LSIs,”
Proceedings of the GaAs IC Symposium, Boston,
Massachusetts, October 1984, pp. 121-124.

[Kabak86] Kabakibo, A., “A Comparison of E/D-MESFET GaAs and
CMOS Silicon for High-Speed Cache Design,” MSEE Thesis,
December, 1986.

[Katev83] Katevenis, M.G.H., “Reduced Instruction Set Computer
Architectures for VLSI,” Report No. UCB/CSD 88/L
University of California at Berkeley, October 1983.

[Knuth71] Knuth, D. E., “An Empirical Study of FORTRAN
Programs,” Software-Practice and Experience, 1971, pp. 105-
133.

[LeKaW82] Lee, F.S., Kaelin, G.R., Welch, B.M., Zucca, R., Shen, E.,
Asbeck, P., Lee, C.P., Kirkpatrick, C.G., Long, S.I., Eden,
R.C., A High-Speed LSI GaAs 8x8 Bit Parallel Multiplier,
IEEE Journal of Solid-State Circuits, Vol. sc-17, No. 4,
August 1982, pp. 638-647.

[MiFuH86] Milutinovic, V., Fura, D., Helbig, W., “An Introduction to
GaAs Microprocessor Architecture for VLSI,” IEEE Computer,
Vol. 19, No. 3, March 1986.

[MiSiF86] Milutinovic, V., Silbey, A., Fura, D., Bettinger, M., Keirn, K.,
Helbig, W., Heagerty, W., Zieger, R., Schellack, R., Curtice,
W., “Design Issues in GaAs Computer Systems,” IEEE
Computer, Vol. 19, No. 10, October 1986.

[Namor84] Namordi, M.R., GaAs Seminar presented at Purdue
University, October 1984.

[NaSuS83]

[NuBeD81]

[NuPeB82]

[Patte85]

[PeDaN83]

[Radin83]

[Sherb84]

[SilMi85]

[Smith82]

[TI84]

[VanLi74]

132

Nakayama, Y., Suyama, K., Shimizu, H., Yokoyama, N.,
Ohnishi, H., Shibatomi, A., Ishikawa, H., A GaAs 16x16 Bit
Parallel Multiplier, IEEE Journal of Solid-State Circuits, Vol.
sc-18, No. 5, October 1983, pp. 599-603.

Nuzillat, G., Bert, G., Damay-Kavala, F., Arnodo, C., High-
Speed Low-Power IC’s Using Quasi-Normally-Off GaAs
MESFET’s, IEEE Journal of Solid-State Circuits, Vol. sc-16,
No. 3, June 1981, pp. 226-232.

Nuzillat, G., Perea, E.H., Bert, G., Damay-Kavala, F.,
Gloanec, M., Ngu, T.P., Arnodo, C., GaAs MESFET IC’s for
Gigabit Logic Applications, IEEE Journal of Solid-State
Circuits, Vol. sc-17, No. 3, June 1982, pp. 569-584.

Patterson, D.A., “Reduced Instruction Set Computers,”
Communications of the ACM, Vol. 28, No. 1, January 1985,
pp. 8-21.

Perea, E.H., Damay-Kavala, F., Nuzillat, G., Arnodo, C., A
GaAs Low-Power Normally-On 4 Bit Ripple Carry Adder,
IEEE Journal of Solid-State Circuits, Vol. sc-18, No. 3, June
1983, pp. 365-369.

Radin, G., “The 801 Minicomputer,” IBM Journal of Research
and Development, Vol. 27, No. 3, May 1983, pp. 237-245.

Sherburne, R.W. Jr., “Processor Design Tradeoffs in VLSI,”
Report No. UCB/CSD 84/178, University of California at
Berkeley, April 1984.

Silbey, A. A., Milutinovic, V., System Design Considerations
in a GaAs Microprocessor System, Purdue University
Research Report, May, 1985.

Smith, A. J., Cache Memories, Computing Surveys, Vol. 14,
No. 3, Sep. 1982, pp. 473-530.

Texas Instruments, HDL Design/Simulator User’s Manual,
Version 2.0, Dec. 12, 1984.

Van Tuyl, RR.L., Liechti, C.A., High-Speed Integrated Logic
wtth GaAs MESFET’s, IEEE Journal of Solid-State Circuits,
Vol. sc-9, No. 5, October 1974, pp. 269-276.

133

[VuRoN84] Vu, T.T., Roberts, P.C.T., Nelson, R.D., Lee, G.M., Hanzal,
B.R., Lee, K.W., Zafar, N., Lamb, D.R., Helix, M.J., Jamison,
S.A., Hanka, S.A., Brown, J.C. Jr., Shur, M.S., A Gallium
Arsenide SdFl Gate Array with On-Chip RAM, IEEE Journal
of Solid-State Circuits, Vol. sc-19, No. 1, February 1984, pp.
10-22.

[Walle84] Waller, L., GaAs IGs Bid for Commercial Success, Electronics,
Vol. 57, No. 12, June 14, 1984, pp. 101-102.

[YaHiA83] Yamamoto, R., Higashisaka, A., Asai, S., Tsuji, T.,
Takayama, Y., Yano, S., Design and Fabrication of Depletion
GaAs LSI High-Speed 82-Bit Adder, IEEE Journal of Solid-
State Circuits, Vol. sc-18, No. 5, October 1983, pp. 592-599.

	Purdue University
	Purdue e-Pubs
	12-1-1985

	A Comparison of E/D-MESFET Gallium Arsenide and CMOS Silicon for VLSI Processor Design
	Mark K. Bettinger

	tmp.1542052450.pdf.UNq9b

