Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
12-1-1985

Architectural Approaches For Gallium Arsenide
Exploitation In High-Speed Computer Design

David Allen Fura
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Fura, David Allen, "Architectural Approaches For Gallium Arsenide Exploitation In High-Speed Computer Design" (1985).
Department of Electrical and Computer Engineering Technical Reports. Paper 550.
https://docs.lib.purdue.edu/ecetr/550

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F550&utm_medium=PDF&utm_campaign=PDFCoverPages

Architectural Approaches For
Gallium Arsenide Exploitation
In High-Speed Computer Design

D. Fura
. TR-EE 85-17
. December 1985

School of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907

This research was supported by RCA Advanced Technology
Laboratories, Morrestown, New Jersey, in years 1984 and 1985.

~ ARCHITECTURAL APPROACHES FOR GALLIUM ARSENIDE

_ EXPLOITATION IN HIGH-SPEED COMPUTER DESIGN

A Thesis
S‘ubmitted, to the Faculty

f
Pu:dbue‘vl{n‘i‘versit).r' B |
 David Allen Fura

" In Partial Fu‘lﬁllmentvof the

Requirements for the Degree
of
~ Master of Sciehcé in Electriéal Engineering -

" December 1985

dedicated
~to my mother

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my major professor, Profes-
sor Veljko Milutinovi¢, for his guidance and encouragement throughout the
course of this research.

I am equally indebted to RCA Corporatlon for their generous support of
this research, and especmlly wish to thank Walt Helbig, Bill Heagerty, and
Wayne Moyers for their technical contributions to this research.

I also offer my sincere thanks to Professor Jose Fortes and Professor James
Cooper for serving on my committee and for their thoughtful review of this
thesis.

_ I am hkew1se greatly appreciative of the outstandmg support prov1ded by
Tim Gllbert Sharon Katz, and especlally Mickey Krebs in the preparation of
~this thesis.

iv

~ TABLE OF CONTENTS

LIST OF TABLES .. viii
LIST OF‘FIGURES ... X
ABSTRACT .. Xv
CHAPTER I INTR ODUCTION ... 1
CHAPTER II GaAs TECHNOLOGY ... 3
2.1 Ga.As Dev1ce Families......... R S eieees '3
2.2 GaAs Logic Families verererresnitabesiss sonsaes oo et
2.3 GaAs SlllCOD Comparlson...'..»..l.._............;.._ PSRRI IROOn | B
CHAPTER I[[DESIGN CONSIDERATIONS FOR o R
GaAs COMPUTER SYSTEMS....ooviiniiiiciiisieinan, ceeene 16
3.1 The Effect of GaAs Characterlstlcs on Computer Desxgn Strategy 16
3.2 Hardware Design ISSUESo.eoeeeeueeeneeeneesesessrenns i, seiTonnesnsansans 18
3.2.1 Processor Configuration.............cceeuunueen...... e s 19 -
~-3.2.2 Single-Chip GaAs Processor Designs PATSUCUU e 19
~3.2.3 Instruction Pipeline Design.............. ettt te e aeee et et e e nnnaen e .21
1 3.2.4 Register File Design...........ccueiine. e s 21
. 3.2.4.1 Register Cell Designc.............. ceeerereenreeirniene i aieeni 25
- 3.2.4.2 Register File Partitioning..............cccevinunnnie. i 28
32,5 Execution Unit Design...................... et et SRTRNPIE. 1 |
3.2.5.1 Adder Design..................... S U PO SRUOTOIOTRr-.) S
3.2.5.2 Multiplier/Divider De51gn....s....-.’.....;...............i;.......'..;....33
3.2.6 Instruction Format Design............. SO SOOI 1
3.2.6.1 Frequency-based Instructions SO OPOR PN |
3.2.6.2 Context-based Instructions........................ e 38

- 3.2.7 Memory System Design,...............,.., e e 39

. 3 2.7.1 The Role of Vlrtual Memory..............., URRAORRRORRRRY: || |
~ 3.2.7.2 Memory Hierarchy.......ccooo.coevenrrrunnccs el enine veenid0
. 8.2.7.3 Run-time Control of Hlerarchlcal Memory Systems.......41
3274 Complle-tlme Control of Hierarchical Memory Systems 44
v 3.2.7.5 Pipelined Memory Systems.........ccceueereivnrarannnn. ceiresnass 44
3.3 Compller Design Issues.....ccccceeeenvenrennnnns S RRUUOOUROUUSUPRTROY” |; S
3.3.1 Compiler Optimizations in Controlc...coeun........ eereeienne 48
3.3.1.1 ‘Sequencing Hazard Interlocks....................... ceree eereees 48
_ 3.3.1.2 Timing Hazard Interlocks........................ vessreeianibeseennnene 52
 3.3.2 Compiler Optimizations in Memory reveenereens cerreerennin.d3
~ 3.3.2.1 Register File Compiler Optlmlzatlons ceereneees e cereerreens:DB
' 3.3.2.1.1 Reusablhty.....................................-..-........;....;...56.» :
3.3.2.1.2 Prefetching.................. e e reerreenern B8
3.3.2.2 Cache / Main Memory Compiler Optlmlzatlons vereieensenD8
~ 3.3.2.2.1 Reusability........ccoeecvvrrviiininiininee, JRUUN .3
33222 Prefetchmg............;‘....;.,.- et eenens 62
CHAPTER IV P[PELINE AND INSTRUCTION FORMAT R
EXPERIMENTS ettt e sesietanneseaees frredieenese B8
4 1 Evaluatlon Methodology.............‘. et e ae e et nes 63,
"4.1.1 Workload Model......... aeceasensrnensesissannnsinneenes SRURTOTORUOUURUURTOOTORY. : » B
4.1.2 Architecture Model .:.......o.oooesovmremrerrerresiesoern. eetneanesereenenses 65
4.1.3 Workload to Archltecture Translatlon reeeresdres 66
4.2 Pipeline Experimentooveevreeresrrenn., revrrereeeraren: ceereenesiennennin 06
- 4.2.1 Rationale......cccceeuvveven.... et aeotaeenes FRTRUOROONRISRURCIERN v (&
. 4.2.2 Candidate Pipeline Descrlptlons ST crereereeees Seireeees 67
4.2.3 Evaluation Criterion..........cccocveviiimevieeieiestiseeeeivieeesnesieeiiennn 68
© 4.2.4 Causes of Non-ideal Performance...............c..ooccovvevivno.. vereiersB8
'4.2.5 Modeling Memory and Compiler Eﬂ'ects SNSRI (| I
. 4.2.5.1 Memory Parameters........................... et Y (1)
4.2.5.2 Combpiler Parameters............... et s el T2
4 2 6 Modeling the Workload Effects...........c....:iivveeiinionss iirerennnn, 72
- 4.2.6.1 Workload Parameter Definitions R 72
4.2.6.2 Workload Parameter Values..................... cerivenrens SR 7§
4.2.7 Analytical Pipeline Performance Model........... S St : B
© . 4.2.7.1 Normal Silicon (3,3)......ccccueimemeeeeerereersioeeiosooei 78
' 4.2.7.2 Normal Silicon (3,6)................ eveesrerereresene TRURCRONURPIN (I
~4:2.7.3 Normal Silicon (6,3).........cocoorsuim...... SO OOSURERERRNY (i
. ©4.2.7.4 Packed (3,3).....c..0ceriennn SR SN TSROR ST (: S
. 4.2.7.5 Packed (3,6):....c.u......... e et sansne s ssrennenesenn s 82

427 6 Packed (8:3) it 82

vi

4,2.7.7 Plpehned Memory (3 3) v, reeenee evrerreensetenneiesesn 82
14.2.7.8 Pipelined Memory (3,6)c.cccuuvvvunnivuicsinisiiveninrennnin82
 4.2.7.9 Pipelined Memory (6,3) 82 |
428 'Experimental Results ereerreeiessenresseesreesbeessaeeesesiaieeiennenerenriieren 88
42 9 DiSCUSSION ..vcvciiiinicinieniiiniine i eeiere e st ereses sveenensene s 96
' 4.2.9.1 Candidate Plpehne Companson verhiuiepanens 96 '
4.2.9.2 Memory Configuration Comparison............... SOSRCUNRRURIR. ¢
~ 4.2.9.3 Compiler and Memory Parameter Comparison SRR * ¥ §
- 4.2.9.4 Workload Comparlson..'._..........'....v.......- evieenpuinaesion oo 97
G 4.2.9.5 SUMMArY ...cccovvververrreninnnen, veabeeans eeeree e riereereenrennen 98
43 Instructlon Format Experlment ceeereeeeeteeerreenrenabenares SOTUEIRE IR '+ I
4.3.1 RAtIONAlEcoovrerrriireieriierernee et e eeieens.99
4.3.2 Candidate Instruction Format Descriptionsccvecienncinennss 99
4.3.3 Evaluation Criteria.....coocoeveeveeeeeeresreeresseressnns STUSOURIR 1100
4.3.4 Evaluation Theory and Implementation....... eeienrrraiaatanensan 102
4.3.5 Static Instruction Count Subexperiment crirprenenn 103
’ 4.3.5.1 Procedure...........ccociiveerunniniineneseisereree e ceivieennn 108
. 4.3.5.2 ReSUMS.....civmunriuuicimienmniniecsensseenisciusseinnsssinnesnsrennsnsenn 103
. 4.3.6 Dynamic Instruction Count Subexperlment.....,...' veeeenn 105
| 4.3.6.1 Procedure...'........‘..’.;;_............................’..».._........,Q.....,.;....’105
» 4.3.6.2 ResultS.....covvvvnivniereneneie e oo errereereesnn 105
437 Execution Time Subexperiment........................... rveresesesensneness 105
: 4.3.7.1 Workload Model - Cache Model Dlscussmn..' seeenee.. 108
- 4.3.7.2 Cache Simulator Descriptionc.ccue...... vesirerenenis.. 109
o 4.3.7.3 MIPS Simulator Modlﬁcatlons.;..;..........;..7.....L...;.....,...'1;09 :
7" 4.3.7.4 Procedure and Results..........ccoovveeveereiitovnriennnnn. 110
' - 4.3.7.4.1 Procedure.........ccccun....... bevreussaneeniesnine eereeennen. 110
43742 ResultS i 110
 4.3.7.5 DISCUSSION «...couceurricireccereennrienneneeseisessssesinsase insennssiensn 111
4.3.7.5.1 The Effect of Instruction Format on R
o Instruction Counts............ccovieevnnene.. verieeienen. 111

4.3.7.5.2 The Effect of Cache Size on Executlon Time. 115

4.3.7.5.3 The Effect of Fewer Register Fields............. ..115 | |

4.3,7._5.4 The Effect of Smaller Immedlate Fleld '

4.3.7.5.5 The Effect of Varlable Immedlate Fleld Slzes 116
4.3.7.5.6 The Use of Compact Formats for SE
o Instruction Packing FERURTRORURTIRRRORORPRIOSS § |
',4 3.7.5.7 SUMMATY ...ocvevuuurcirnriinnnnnens SRTRRRTRRRORINe § .

CHAPTER V- SUMMARY AND RECOMMENDATIONS.... ..,....,-:;.'.;:.:‘...-..‘..12(_‘)}

Vil

Page

. 5 1 Summar)r,..‘.v-."-..,_.';.;...120 ‘
5.2 Recommendatlons :';-"""'.'7',"""" e 120
LIST OF REFERENCES SRR 3
] }.APPENDICES | | AR
| Appendlx A: Analytlcal Plpehne Performance Model Derlvatlon...v..,'...;.128 E

- Appendix B: Deterrmnatlon of Candidate Instructlon Format Costs.....138 .

viii

LIST OF TABLES

~ Table

Tab'l"e:"'}}» - S | - B : Page
21 Ferforma-nce Characteristics of GaAs Desi‘gns..........._:.;............L..’..;.»..'..v...‘..'lé '
2 2 Performance Comparlson of GaAs and Silicon [BasNu84] 13
4 l Workload Characterlstlcs Relevant for Pipeline Study 75
4 2 Instructlon Fields for Candldate Instructlon Formats........ccccovveeenniie 101
4 3 Breakdown of Dynamlc Costs for the Candldate Formats. 107
'Appendlx » - . o
" B.1 Costs for Candldate Format 28(3). | 142
B2 Costs for-Candldate Format 28(3210) ceeerepeirenenaas 143
B.3 Costs for Candldate Format 24(32). .o, vosanries 144
B4 Costs for Candidate Format 24(3210)...; 145 H
B5 {Costs' for.Caadidate' Format 24(2). .oivirrnn. 146
‘B.6 Costs for Candldate Format 24(210) 147 .
v.7 Costs for Candidate Format 20(32) SRR ,;148‘ _

| B8 Costs for Candldate Format 20(3210) O 149

Table | Page
B.9 Costs for Candidate Format 16(21).cc.ccuvnenee.. e et 150
B.10 Costs for Candidate Format 16(210)...............ovvv.oooooooroooooorso T

LIST OF FIGURES

| Figu‘re? .
21 BFL D MESFET Inverter [EdWeZ79]....,-..,.....,; e st aeaes ‘.L.b 6 ‘
2. 2 SDFL D- MESFET Inverter [EdWeZ79] eeressieeienasen T
2.3 DCFL Inverter [EdWeZ79] SR R 8.

2.4 ECL/CML HBT Logic Gate [AsMiA84]. s 10
2.5 STL like HBT Inverter [YuMc884] o 11
3 1 Example Slhcon Instructlon Plpehne [FurM185] 22 .
3.2 Example Slhcon Plpellne Implemented in GaAs [FurM185] 22
3.3 Ex ample GaAs Instruction Plpehne w1th a Plpehned Memory o
{FurM185] .. S 23
3.4 Example GaAs Instructlon Plpehne w1th Instruct1on Packmg , N
[FurM185] bressetesistises st tensiuses e sseasessassaistas senseens v 24
3.5 Example GaAs Instruction Plpelme w1th Long—latency Datapath o '_
Elements [FurM185] e eesereseeseibestsasons el 24
| 36 Mlcrocode Plpehne of the HP- FOCUS Processor [BeDoF81]...’..........»....-.b..26‘v
3 7 Reglster Cell Desrgn of the HP-FOCUS Processor [BeDoF81] ,,, 27

‘ 3 8 Reg1$ter Cell Desrgn of the Berkeley RISC-]I S ,
Processor [Sherb84] D NS et st e erien 29

3. 9 Reglster Cell Design Employing a Smgle Read Bus - | o . -
‘ [MIFUHSG] reeviesaeseserenearssseseteasetasssstrrssrenenes 30

~

s I

Flgure R S o o Page

3. 10 Example Plpelmed Memory System cevbeereeseneees 46 '
3.11 Example Program Sequence on a Silicon Processor Before Branch Flll 50 B
. 3. 12 Example Program Sequence on a Srhcon Processor After Branch Flll

| : 3 13 Example Program Sequence on a GaAs Processor Before Branch Fll]

’ 3 14 Example Program Sequence on a GaAs Processor After Branch Flll

‘ 3 15 Example Program Sequence Showrng a Destmatron—Source Conﬂlct;.‘...-,5.4b :

3. 16 Example Program Sequence Showing Default Compller Actlon for - ,
o Destlnatlon-Source Conflict......ccovrveriierinrniinnnns RRPURESSRRUORIRREEN Y S

3 17 Example Program Sequence Showrng a Successful Reorganlzatlon

- of Destlnatron-Source Conﬂlct Sssasessssanessssnnnanasssiinsssnnnn e 55
R 3.18 Example Program Sequence Showing Poor Reglster Allocatlon.v.."'."!..'2'..':.“.'.;57 .
3. 19 Example Program Sequence Showmg Good Regrster Allocation. . 57 -

“_3 20 Example Program Sequence on a Slhcon Processor Before Load Fllhn 59 o
'_3 21 Example Program Sequence on a Srhcon Processor After Load Flllln 59_

-3 22 Example Program Sequence on a Ga.As Processor Before Load Fllhn 60"

- :3.23.Examp‘1e PrOgram Sequence on’ a GaAs Processor After Load Fillin.60 30
4.1 Normal Silicon (3,3) PIpEine. vttt a1
42 Normal Silicon (3,6) Plpehne ot
.4.3' Normal S:ilico’n’(6,3) Pipeline.............. R 78
N ‘4 4 Pac‘ked '(3 3) P'ipelin’e.v.'.v 8
4 5 Packed (3, 6) Plpellne 79

486 Pac’ke‘d'(_6‘,3).P1pehne..».......a..'.......,;..._ e e 79

xii

Fignre o . - * Page
47 Pipelined Memory (3,3) PADEline..............oooeorsssrerrsos e 80
4;8 Pipelined-Memory (3,6) Pipeiine...,;.‘80
49 anelined Memory (6,3) Pipeline.........ooccooremmn...... Seeesrenseiraennes. e 81

1. 10 Plpehne Performance vs. plh” in (3,3) Conﬁguratlon for - .
Al Benchmarks. TR veereernrerestesseonrenssersas e enteveerens e84

4.11 Pipeline Performance vs. “pih” in '(3,6) Configuration for -
All Benchmarks. eteereressiatnae s shonshenetsentatt etetessstatasers saneine e84

4. 12 Plpehne Performance vs. ‘‘pih” in (6,3) Conﬁguration for
All Benchmarks.................. edveresrsianeerises sesssastaesernaene beieanetensetasin sensosiennssaen 85 .

' 4.13’Pi:pkel"i‘ne :Performance vs. “pdh” in (3 3) Conﬁguratlon for S
- All Benchmarks............... ctbreeeeesiantesas teaseaaseessstes nasiein st 85

4.14, Pipeline Performance vs. “‘pdh” in _(3,6) Conﬁguration for - ST
- All Benchmarks.................. e e seersmensaeissansesssisate son teenieene 86

415 Plp'elrne Performance vs. “pdh” in,'(6,3) Configuration for ,
AIl Benchmarks et st e e 80

4. 16 Plpehne Performance vs. “pbf” in (3,3) Configuration for e
All Benchmarks. b 87

v 4.17»Pipeline Performance vs. “pbf” in (3 6) Conﬁguratlon for TR
N All Benchmarks.ccooveeieiiriiiiiiniiie e evee e S RN . 1

4.18 Pipeline Performance vs. “pbf” in (6 3) Conﬁguratlon for . k
~ All Benchmarks.ccococvieeivveineeeeneeeneeseeeneannn, fstetguetnenansransads vonaensd e 88

4.19 Pipeline Performance Vvs. “plf” in (3 3) Conﬁguratlon for ST
~All Benchmarks.........coooovevvvvcieniensionnnninnnen. derrmenin 0 88

4.20 Pipeline Performance vs. *“plf” in (3,6) Configuration for - o '
AllBenchmarks 89

4.21-Pipeline_Performance vs. “plf” in (6 3) Conﬁguratlon for .
Al Benchmarks. ... e s 89

o oxiil

~ Figure I I R RIS e Page
4.22 Pipeline Performance vs. “pbf” in (3,3) Configuration for o
, Arithmetic-heavy Benchmark. tesreusdrenaten e tsanase st stenranesins crererienninnnn 90
4. 23 Plpehne Performance vs. “pbf” in (3,6) Conﬁguratlon for o
' Ar1thmet1c~heavy Benchmark. ..., 90
4.24 Plpehne Performance vs.- “pbf” in (6,3) Conﬁguratlon for e
Arlthmetlc heavy Benchmark seesresmiasssstesaeesasteive siennesaisiassnenan SRS) |
4. 25 Pipeline Performance vs. “plf” in (3,3) Conﬁguratlon for 7
' Anthmetlc-heavy Benchmark. ...c..ccoccevienrinnnncniinnniannn, eirebiensi sinasasndaiies 91 -
4.26 Plpehne Performance Vs, “plf” in (3, 6) Conﬁguratlon for o
Arrthmetlc -heavy Benchmark PR FO R !
- 4.27 Pipeline Performance vs. “plf” in (6 3) Conﬁguratlon for -
Arlthmetlc-heavy Benchmark .. 92
4 28 Plpehne Performance Vs, “pbf” in (3 3) Conﬁguratlon for _
- Branch- heavy Benchmark. e stseenershenenates berenesessenenses snisnseseansssiie asens .93
4 29 Pipeline Performance VvS. “pbf” in (3, 6) Configuration for , .
Branch heavy Benchmark breteteessavesssasisaseisenessasarsnasies ararerisnrersasennnis 93
4. 30 Pipeline Performance Vvs. “pbf” in (6,3) Conﬁguratlon for ‘ ,
Branch -heavy Benchmark. teeeitesrereenerieeteesesseessrensenraensessinsenenns 94
4. 31 Plpehne Performance vs. “plf” in (3,3) Configuration for » :
' Load heavy Benchmark seeriiebeieesssnnneiesiine S RS DO SR e 04
4.32 Plpehne Performance vs. “plf” in (3, 6) Conﬁgnratlon for :
Load heavy Benchmark.oooooviniiiinii i cerenenaes 95
4. 33 Plpehne Performance vs. “plf” in (8, 3) Conﬁguratlon for S
Load heavy Benchmark. ..., ereaieei bbb ssae s ssenne 95
4.34 Instr_uctlon Format Statlc Instru‘ctlon Counts. ..ccccovcverririrereinreeireen e, 104
- 4.35 Instrucﬁion Format Dynamic InstructionCounts..............)...........,’...,.;.106 |

4.36 Instructron Format 28(3) Executlon Time vs. Cache Size.;;......‘;.....‘.’112 ‘

Figure

xiv

v

ABSTRACT

Fura, Dav1d A, M. S E.E., Purdue Un1vers1ty December 1985. Archltectural
' Approaches for Galhum Arsenlde Exploitation in H1gh-Speed Computer Desrgn
‘Major | Professor Vel]ko M. Milutinovic. L

Contmued advances in the capablllty of Galhum Arsenlde (GaAs) technol— -

:ogy have ﬁnally drawn serlous 1nterest from computer system des1gners The o

recent demonstratlon of very large scale lntegratlon (VLSI) laboratory de51gns‘
1ncorporat1ng very fast GaAs logic gates herald a srgnlﬁcant role for GaAs: tech-'
nology in hlgh-speed computer deSIgn In this thes1s we lnvestlgate deSIgn
: approaches to best exploit this promlsmg technology in hlgh-performance com-

puter systems

We ﬁnd s1gmﬁcant differences between GaAs and Slhcon technologles
‘whlch are of relevance for. computer design. The advantage that GaAs enjoys
- over Slhcon in faster trans1stor swrtchmg speed is countered by a lower transis-
tor count capablhty for GaAs lntegrated circuits.- In addition, 1nter-ch1p signal
‘propagatlon speeds in GaAs systems do not experlence the same speedup exhi- -

.’ bited by GaAs transistors; thus GaAs designs are penahzed more severely by‘ -

v 1nter-ch1p commumcatlon

The relatlvely low dens1ty of GaAs chlps and the hlgh cost of commumca— S

tion between them are significant obstacles to the full explortatlon of the fast
‘-tran51stors of GaAs technology A fast GaAs processor may be excessrvely
’underutllrzed unless speclal cons1derat10n is glven to its mformatron (mstruc-'

_tlons and data) requirements. Desrrable GaAs. system desrgn approaches

xvi

encourage low hardware resource requlrements and elther mlnlmlze | the»
| processor’ s need for oﬁ'-chlp lnformatlon maximize the rate of oﬁ‘-chrp 1nforma-
; tron transf er, or. overlap oﬁ'-chlp lnformatlon transfer wrth useful computatlon

We show the 1mpact that these consrderatrons have on the desrgn of the
| _’mstructlon format arlthmetrc unlt memory system and compller for a GaAs

computer system

Through a s1mulatlon study utlhzlng a set of wrdely-used benchmark pro-
: :grams we. 1nvestrgate several candldate 1nstructlon plpehnes and candldate
1nstruct10n formats in"a GaAs env1ronment We demonstrate the clear perfor-. :

' 'mance advantage of an 1nstructlon plpelrne based upon a plpehned memory"

:) system over a. typlcal Slhcon-hke plpehne We also show the performance‘,

“advantage of packed 1nstructlon formats over- typlcal Slhcon 1nstructron for- -
mats -and present a packed format whlch performs better than the experlmen-.

1 tal packed Stanford MIPS format

CHAPTERI
- INTRODUCTION

Dlgrtal 1ntegrated c1rcu1ts employlng Galllum Arsenide (GaAs) technology,;
thave been regularly presented since the mid 1870s. The faster sw1tch1ng speed
of. GaAs and its higher resistance to adverse environmental conditions have
‘created sporadlc bursts of enthusiasm throughout the last ten years. However,
not until recent significant advances in GaAs material quallty and fabrication
technology has GaAs begun to attract serious. interest from computer system
de51gners ' ‘ ' :

A coherent computer system de51gn strategy requlres a thorough»
understandlng of the underlying implémentation technology. The advances
made in Slllcon technology have drastically improved the capablhty of Slllcon-
based computer systems. ‘Apart from the performance 1mprovements due :
strrctly to rmproved technology, technology-driven architectural advances have,
also; played an important role. The effect that the characteristics of Slhcon
very large scale integration (VLSI) have had on computer design strategles is
’ observable in the recent enthusiasm for designs such as dataflow computers
[Denn180], systolic arrays [Kung82], and reduced instruction set computers
(RISCS) [Patte85). : : :

As GaAs technology is only expected to begin achrevmg 1ntegratlon levels
approachmg 10,000 gates by the late 1980s [Leopo85], it is not surprising that
- design strategies appropriate for GaAs should differ from those encountered in
 VLSI Silicon. In fact, Silicon-GaAs differences are more pronounced than as
" indicated by level of integration alone. Two addltlonal key differences are the
already mentioned higher speed of GaAs gates; as well as a correspondlng’
hlgher penalty for inter-chip communication for GaAs chips. Clearly, it is vital -
to understand the characteristics of GaAs which influence computer system
design. before attempting to build GaAs-based computer systems, and it should h
not be assumed that Slllcon-based -techniques are desuable for . GaAs‘
: 1mplementatlons :

The purpose of this thesis is to explore the use of GaAs technology in
computer system des1gn We are interested in archztectural approaches for fully

_exp101t1ng the fast tran51stors of low-denslty ‘GaAs chips by mlmmrzmg the 3
deleterlous effects of a slow off-chip ‘environment. System packaging approaches.
for i improving this slow inter-chip communication are also 1mportant 1ssues but‘

- are not w1thm the scope of this work.

‘ We adopt a three step approach to GaAs’ computer system deslgn We :

first examine GaAs technology and determine its characteristics which are

relevaﬁt for computer design. We then study the suitability of popiildi- gllléoﬁ. .

designs for satlsfymg the requlrements of GaAs, and explore the use of llttle- :

.. used or. novel -approaches as well. Flnally, we determine through ‘
) _exper1mentat1on whether the approaches which seem appropriate for Ga.As :
: 1mplementat10n are indeed the most desirable. :

Because the implementation technology plays such a cr1t1cal role in the :

des1gn of - computer systems, Chapter I provides a description of GaAs
, technology relevant for a clear- understanding of the archltectural ‘design

~ - tradeoffs requlred by GaAs. Chapter Il discusses the archltectural de51gn .
. issues which are affected by the characteristics of GaAs technology, ’and

'suggests poss1ble design approaches. Chapter v presents the discussion and
results of two experlments which were undertaken in order to examine some
approaches presented in Chapter III. We finish in Chapter V by summarlzmg
- our results and recommendlng a dlrectlon for future work in thls area.. ..

'CHAPTER II
 ‘GaAs TECHNOLOGY

L To prov1de a sound basis for subsequent GaAs computer system d951gn

dlscuss1ons, this chapter presents an overview of digital GaAs technology We
~discuss the relative merits of candidate device families and their logic gate
| 1mplementatlons and we also present somie of the advanced GaAs digital
designs which have appeared in the last few years. In order to permit a
rational - GaAs-Silicon comparison, we select the GaAs technology which
appears to have the first 'shot at VLSI levels of integration in production
quantities. 'In comparing this GaAs technology with Silicon NMOS we
illuminate several differing characteristics. These GaAs-Silicon differences w1ll_
then prov1de much of the motivation for the dlscuss1on of the next chapter

2. 1 Ga.As Devxce Families

Just as Silicon technology has undergone major change GaAs technology
has seen rapid advancements in its relatively short history. The first published
digital GaAs circuits were introduced in the mid 1970s. The earliest devices to
be: utlhzed‘ in these circuits were depletion-mode metal-semiconductor field
effect transistors (D-MESFETs). Some widely used devices which followed
include enhancement-mode MESFETs (E-MESFETs), modulation- doped FETs
(MODFETs), and heterojunction bipolar transistors (HBTs)

D- MESFETS were the first devices to be used in d1g1tal circuit des1gns.'
and the ease with which they are fabricated is one of their primary advantages

over other device technologies. Some addltlonal strengths include high

insensitivity to fanout and large noise marglns for D-MESFET loglc gates

[YaHiA83]. Unfortunately, D-MESFET logic designs must utilize complex

circuits resulting in large power and area requirements [EdWeL83] They
require two power supplies and voltage level shifting logic to allow loglc gates
to be cascaded.

E-MESFET circuits require but a single power supply and no voltage level-
.shlftlng loglc thus requmng less power and area than D- MESFET desxgns

[EdWeL83] For this reason E—MESFETS are considered more approprlate for o |

VLSI implementations. E-MESFET logic circuits can also be faster than D-
MESFET circuits; however, they are more sensitive to fanout loading - and
- perform poorly in high load environments [EdWeL83]. E-MESFETs also
require, higher’material quality and more complex processing to achie’ve"t’he-'
- high threshold voltage umformlty necessary for working devices [MaOhH84] -
[EdWeL83] : -

- MODFETs, also commonly known as high electron moblllty transmtors' '
(HEMTs) achieve much faster switching speeds than either D-MESFETs or E-

- MESFETS; consequently, they have generated much interest for high-speed _'

computer design. MODFETs utilize a layer of AlGaAs material to supply

electrons into an undoped GaAs channel. Because the room temperature

mobility of electrons in undoped GaAs is almost twice as high as in n-channel
- GaAs MESFETs, MODFETs are able to more qulckly change their output
state with low power consumptlon [SolMo84]. At liquid nitrogen temperature

(77 K)," “electron mobilities in MODFETSs are improved even further - . .

app'rox1mately.‘ six times higher than at room temperature [SolMo84]. _Ionlzed
impurity scattering in n-channel GaAs MESFETSs deny this higher mobility to
MESFET devices [SolMo84]. -The major disadvantages of MODFETs are a
- more complex processing requirement than MESFETSs and the need for avery
| hlgh-quahty AlGaAs layer [SolMo84). : : '

I-IBTs do not suffer from the threshold voltage problems that plague the'
_ FETs whlch we just described, and this is an important advantage for VLSI _
1mplementatlons [Eden82]. In addition to their built-in threshold voltage
control, HBTs are very fast and have higher output drive capablhty than
FETs, resultlng in lower sensitivity to fanout and loading [AsMiA83]. HBTs
may also be employed in circuit designs with differential inputs and outputs.
* which result in decreased switching noise [AsMiA83]. The disadvantages of
HBTSs are higher processing complexity than FETs, as well as relatlvely hlgh'-
'power and chlp area requlrements [AsM1A83] ' :

| 2 2 GaAs Logic Families

: Several logic families ex1st whlch utlhze the above devices. Some wxdely—

used families which utilize FETs include buffered FET logic (BFL) Schottky
diode FET logic (SDFL), and direct coupled FET logic (DCFL). Other logic
_ famlhes utilizing. bipolar transistors include emitter-coupled logic (ECL) and"

' Schottky transistor logic (STL). : -

‘ Early BFL loglc circuits utlllzmg D-MESFETs exhlblted fast sw1tch1ng

speeds at hlgh power. levels. One reported design had gate delays of 34 ps at
41.0 mW per gate [NuPeB82] Efforts to reduce the power consumptlon of
BFL gates resulted in low power BFL (LPBFL) de51gns with a: relatlvely small
penalty in sw1tch1ng speed Advanced LPBFL designs 1nclude a 32-bit adder

contalnlng ‘420 gates with gate delays" of 230 ps and a power of 2. 8 mW per- -

-gate [YaH1A83] To our knowledge, the highest level of mtegratlon achleved
with a BFL design is an LPBFL 12x12-bit multlpher which, mcludlng its non-,
’BFL 1nput and output buffers, lncorporated 1083 gates [FuTaI84] The
, 'LPBFL gates had switching speeds of 170 ps and a power. dissipation® of 1.7
' f’mW Frgure 2.1 is an example of a BFL inverter which demonstrates the
’complexrty inherent in D-MESFET-based circuits. However, LPBFL versions -
require only one or two dlodes for voltage level shlftmg 1nstead of the three*
shown : - ‘ o

SDFL log1c 01rcu1ts also use D-MESFETS and have a relatlvely complex S
'loglc CII'Clllt implementation as shown in Figure 2.2. However, because of thelr
lower power and area requirements, they have achieved hlgher 1ntegrat10n
levels than BFL designs [EdWeZ79]. In fact, the first. reported GaAs LST (> |
1000 transmtors) design utilized SDFL gates [LeKaW82] This 1008-gate 8x8-
bit multlpher had gate delays of 150 ps and a power dissipation of 0. 6—2 0 mW’-
per gate The h1ghest reported level of mtegratlon achieved with SDFL loglc'f
gates’ appears to be a combination gate array/SRAM chip [VuRoN84] Thls :
de31gn 1ncorporated 432 programmable cells, 32 interface I/0 buffer cells, and
four 4x4ob1t SRAMs for a total of approximately 8000 devices. The : average
gate propagatlon delay and power dissipation were 150-300 ps. and 15 mW,
respectlvely

. DCFL loglc circuits utlhzmg E-MESFET drlvers and D-MESFET loads’
- (DCFL E/D MESFETs) have achieved by far the hlghest level of integration of
any. GaAs technology. The use of the simple circuit configuration of Figure 2. 3
- gives' DCFL " designs a decided advantage in power dissipation and area

requlrements "both extremely important for VLSI implementations. Several
signiﬁcant DCFL E/D-MESFET designs have been reported. A 2000-gate gate

array exhlbltlng gate delays of 215 ps and power requirements of 0.5 mW per

gate was reported [ToUcK85] A 3168-gate 16x16-bit multlpller with gate" B
delays of 150 ps and a power dissipation of 0.3 mW per gate ‘has been
presented [NaSuS83]. However, the highest reported level of 1ntegratlon7>
achieved to date is a 16K-bit SRAM containing 102,300 devices [IsInl84). The
: 'access tlme was 4.1 ns and the total chip power consumptlon was 2.5 W.- Rlng‘-_
- osclllator measurements showed gate delays of 115 ps at 0.1 mW per gate ‘

i 5

Oixtput [

L

-Vgs

" Figure 2.1 BFL D-MESFET Inverter [EdWeZ70].

“ 4) Output -

Ves

Figure 2.2 SDFL D-MESFET Inverter [EdWeZ79].

r O Output

I.nputAo——-»

i}

Figure 2.3 DCFL Inverter [EdWeZ79).

The DCFL loglc circuit deSIgn of Figure 2.3 is also utlllzed for MODFET’

’ dev1ces ‘Because of the early state of MODFET development thls promlsmg
e :technology has not achieved the- levels of integration experlenced by E/D-

"MESFETs. The highest level of . mtegratlon ‘achieved thus. far is a 4K-b1t
SRAM [KuM1884] This chip- had an access time of 44 ns. and power,

dlSSlpatlon of 860 mW at room temperature At 77 °K, access tlmes and power‘ -

_requlrements of 2.0 ns and 1.6 W, respectlvely, were ‘achieved. However,,

| v MODFET designs have the distinction of holding the fastest gate propagatlon

,:tlmes The current record at room temperature is 11.6 ps, whlle at 77 K 1t is
' ’only 85 ps [Rose85]. R ' g iR
‘ I-IBTs have only recently been ‘used in d1g1tal loglc crrcuxts and have
’achleved the lowest level of integration of the dev1ces we've discussed. Rlng
‘osclllator measurements were performed using common mode loglc (CML) ECL
gates [AsM1A84] Propagatlon delays of 60 ps were achleved w1th a gate power
dissipation of 3.0 mW. An example ECL/CML loglc gate is shown in Figure -
2.4. Thus far, the highest reported level of integration for HBTs is a 1K-gate

gate array’ utilizing an STL-like logic implementation [YuMcS84] Usmg a

- circuit desrgn represented by the mverter of Figure 2.5, a propagatlon delay
and power dlSSlpa.thll of 400 ps and 1. 0mW, respectlvely, ‘were achleved '

: Table 2 1 summarlzes the current relative performance levels of these five
loglc 01rcu1t famllles The DCFL E/D-MESFET family shows the highest
capablhty in these published de31gns Because DCFL E/D- MESFETSs were first
to: achleve VLSI (>10,000 transistors) densities in laboratory env1ronments,’
they were among the first to be seriously considered for processor
'lmplementatlon In fact, the description of an 8-bit GaAs processor usxng '
E/D-MESFET technology has already been pubhshed [HeScZ85]

2. 3 GaAs—Slllcon Comparlson

-~ Because of their early : attamment of VLSI dens1t1es in laboratory
env1ronments DCFL ‘E/D-MESFETs will bé used to represent GaAs
" technology throughout the rest of this thesis. The performance characterlstlcs
of Silicon are based primarily on NMOS, which has the same loglc gate circuit -
desrgn as DCFL deslgns : .
| Table 2.2 shows performance characterlstlcs of both DCFL E/D MESFET '

GaAs and 'NMOS Silicon [BasNu84] which are relevant for computer system
des1gn From this table, three fundamental differences between GaAs and

Slhcon are evndont

10

Vee

- Output —o Qutput

input Vrer

Figure 2.4 ECL/ CML HBT Logic Gate [AsMiA84].

-~ Output | |
Output 2

bFigur,e 2.5 STL-liké; HBT Inverter [YuMcS84].

12

Table 2.1 Performance 'Chall'a,ct‘eristics of Ga.As Designs.

©Unit

Speed (ns) -

Total |

Device
Count (K)

Reference

ARITHMETIC

32-bit adder

(BFL D-MESFET) |

| 16x16-bit multiplier
(DCFL E/D-MESFET)

| CONTROL

gate array/SRAM
| (SDFL D-MESFET)
1K-gate gate array
| (STL HBT)-

‘ _2K-g'a,te gate array
(DCFL E/D-MESFET)

MEMORY

£K-bit SRAM
(DCFL MODFET)
16K-bit SRAM

|| at 77° K

2.9 total

‘10.‘5 total

.15/gate
40/gate

‘.08/ gate

2.0 total

Power (W)

1.2

1.0

3.0
1.0

0.4

16

25

25

100

26.9

[YaHiAS3)

| [NaSuss3]

[VuRoN8d] |
| [YuMessq |

| [ToUcKss] |

[KuMiss4]

' (DCFL E/D-MESFET)

. 4.'1itota,l |

1023

- [IsInI4] |

Nt

Table 2.2 Performance Comparison of GaAs and Silibdn [BasNu84] R

“Silicon |

| compLExITY

| ,=':trah‘$is't6f‘ count/chip ‘
| chip area - '

__(DCFL E/D-MESFET)

- 20-30K
yield & power

yield & power

mmos) |

1200 - 300 K

SPEED

gate delay
~ on-chip memory access
off::-.’él'ilip‘/g)n-p.ackage :
.me_ﬁiory access.

| of-chip/ofi-package

dependent
~ 50 - 150 ps
- 0.5-20ns
4-10ns

20 - 80 ns

o 4 hs;.

dependent

10 '-_120 ns

40-80ns

| . memory access -

- IC DESIGN -

~ transistors/gate

~ transistors/memory cell

static

dynamic

fanin (typical
transistor size) .-

fanout (typical

_ transistor size)

- gate delay increase

" for each additional
~ fanout (relative to

v - gate delay with
- fanout = 1)

1+ fanin

25 - 40%

| 100-200ns

1 + fanin

()

L

GaAs loglc gates sw1tch con51derably faster than Slhcon loglc gates ThlS

~is the most significant advantage that GaAs enjoys over Silicon in the
“context of this thesis. The principal reason for this GaAs advantage is the

higher- mobility of GaAs electrons. The electron mobility of 4000-5000

: cmz/Vs in n-channel MESFETS is approximately six times hlgher than the
“electron mobility of 800 cm2/V3 for Silicon [NuPeB82]. A secondary ‘GaAs

speed advantage is the ability of GaAs to be fabricated &8 k7 seml-?

: "msulatlng materral which reduces parasitic capacrtances [NuPeB82].

The transmtor count capablhty of GaAs is much lower than that of

Srhcon The llmrtatlons of Ga.As are due to problems w1th both power b’

. dlsSIpatlon and yleld

'Power dlsmpatlon is a concern of chlp desrgners regardless of the
“technology. If total chlp power consumption significantly exceeds two'»

vwatts then the associated heat may cause rehablhty problems Speclal," ‘

packaglng techniques must then be used to remove heat more qulckly from

" the chip. - Although GaAs transrstors require less power ‘than Slhconj_‘

G

'_ trans1stors at similar switching speeds, fast GaAs transistors requlre more.

power than slow MOS transistors. GaAs designs requiring 0.2 mllhwattsi_

: per gate will be limited to approximately 30,000 transistors if a two watt
“maximum power dissipation limit is imposed. - An example two watt
_'Srhcon design, the Motorola M068020 uses nearly 200 000 transrstors'
-.[MaMoM84] | : . :

Because yleld is inversely proportronal to chip area, while tran51stor count '

- is dzrcctly proportlonal to chip area, transistor count may be traded off for
, hrgher ylelds and hence, lower costs. GaAs material is also currently of -

lower quahty, i.e., it has higher defect densities, than Silicon [Walle84]

' Therefore, GaAs wafers experience poorer yields than Silicon wafers ‘with

similar areas. This problem is compounded by the fact that the GaAs '

: materlal is more expensive than Silicon, since Gallium i 1s a rare materlal :
, and as'a compound material, GaAs requires additional processmg to create

it and to verify its composrtlon [Namor84] In order to satlsfy cost‘
constralnts some GaAs designs may experience severe area hmltatlons .
and, hence, be hmlted to lower transistor counts. ’ :

*As mdlcated by the on-chip and oﬂ’—chrp memory access tlmes, the speed'

advantage that GaAs enjoys over Silicon for the on-chip environment is

. not matched by an equal off-chip speedup. Inter-chlp srgnal propagation

speed is not srgmﬁcantly different for GaAs and Silicon ClllpS since it is
prlmarlly dependent upon packaglng consrderatlons rather than mtegrated

15

. circuit technology Inter—chip 51gnals are first limited to the speed of hght '
'however the media dlelectnc constant and capac1t1ve loadlng on the signal

lines can reduce s1gnal propagation speeds to one third the speed of light

or lower [MlSlFSB] Because of this, the penalty for mter-chlp‘ '
commumcatlon is higher, in terms of gate delays for a GaAs de51gn tha,n
, 1t is for Silicon de31gns

: »i ffl‘6'-' ,

o _ CHAPTERIII . ' LT
DESIGN CONSIDERATIONS FOR Ga.As COMPUTER SYSTEMS

v In Chapter Il we presented an overview of GaAs dev1ce and loglc famllles
_ 'The characterlstlcs of GaAs were then compared with those of Silicon in order g
to illuminate the relevant differences between the two technologies.

o In this chapter most of our discussion is based at least 1nd1rectly on the
,results ‘of Chapter II. We first extend these results by deﬁnlng ‘more clearly
those Ga.As characteristics that influence computer design, and descrlbe in
'general terms .the approprlate strategies for dealing with some probleis posed
‘]by ‘GaAs technology We then discuss the design approaches which appear to
be “suitable for computer system hardware and the compller for "a GaAs .
- processor, concentrating on those approaches which are more valuable in- GaAs
system designs than in Silicon designs. ' '

The ‘discussions throughout the rest of this thesis are orlented $o° GaAs
processor systems which execute complled high level language (HLL) ¢ programs
No speclﬁc apphcatlon area is targeted, as these dlscusswns are- 1ntended for‘
GaAs processor system design in general Trel

3.1 The Eﬁ'ect of GaAs Characterlstlcs on Computer Desngn Strategy
| The des1gn of a GaAs computer system is intimately dependent upon the

GaAs - characterlstlcs presented in the previous chapter therefore “these
'characterlstlcs deserve closer scrutlny ' '

As previously stated, GaAs transistors are. s1gn1ﬁcantly faster than Slhcon i
transrstors The purpose of this thesis then is to determine the best approaches
to maxumze the exploitation of this GaAs advantage. : A

Unfortunately, GaAs chips generally have fewer transistors than Slllconv
chips. This obv10usly has an enormous impact on computer design. Mlmmlzmg
chip count is desirable for performance, reliability, and cost reasons. Designs
which mlnlmlze hardware complexrty reduce chip count and are therefore very
desrrable ’ SR

17

A s1gn1ﬁcant problem by itself, low transistor count severely compounds
the problem caused by large inter-chip propagation delays. ‘Together, these
_ two problems may potentially limit the exp101tat10n of the great strength of
-vGaAs technology - its fast transistors. -

A GaAs processor is able to execute 1nstruct10ns faster than a Slhcon'
processor only if it has a correspondmg increase in its supply of lnstructlons :
and data: A fast GaAs processor should not be forced to spend its tlmev
waiting for information from its external emvironment. Three methods of -
' ,resolvmg this information problem are to reduce the processor’s need for off-
~chip 1nformat1on increase the effective information transfer rate, or overlap thev -
mformatlon transfers wrth processor execution.

Obvrously, if the entire- system could be bullt w1th1n one GaAs ch1p, the
need to access off-chip lnformatron would be minimized. However, because
- GaAs chips are expected to contain fewer transistors than Silicon ‘chips, ‘the

~ need for oﬁ‘-ch1p information will be even greater. Silicon processors are able to

. alleviate thls problem by 1ncorporat1ng large amounts of on-chip memory in the
_form of a regrster file, cache or microprogram store. Silicon’s ‘abundant -
trans1stors may also be used in the design of complex arithmetic: ‘units which,
‘while performlng complex functions, utilize each data element longer than*
srmple ar1thmet1c units do in performing simple operations. Because: of the
: lower transrstor count of GaAs chips, ‘many of ‘these Silicon solutlons wrll not
be avallable to a GaAs processor. | ‘

Increasmg the effective rate of information transfer can be accomphshed in
two ways. The information content of each transfer can be increased or. the
rate of transfer can be increased.

Increasrng the lnformatlon content of transfers can be accomphshed erther'; o
by transmlttlng more bits per transfer or by ehmmatlng redundancy w1th1n the,
transferred information. Upper limits on the number of bits per transfer are»'
1mposed by pin limitations of integrated circuits. HoweVer, 3 Slllcon' '
) supercomputers using SSI/MSI components such as the Cray-1, are able to
‘utlhze this. technlque for data transfers [Russe78], but this technique is hmlted
- to operatlons on very regular'data structures such as arrays. This thesrs 1s not
;hmlted to. the applications with well—structured ‘data which are- necessary for
maxrmum ‘performance. on Silicon: vector supercomputers Redundancy
removal on -the otherhand generally requires an encoding and’ decoding
capablhty A compiler can’ effectively provide the encoding function on
;1nstructlons ‘however, the decodlng function must be performed by hardware
: .resources w1th1n the processor Many Slhcon processors mcorporate large on-

T

chip :rnicroprograms in order to provide instruction decoding Ga.As processors‘_
will” lrkely not have -the trans1stors available to prov1de such a thorough”
decodlng capability.

A second technlque for 1ncreasmg the lnformatlon transfer rate is to
increase the effective’ rate of transfer. Silicon computer systems rely
. 1ncreas1ngly on cache ‘memories, and multlple level memory. hlerarchles in
general to prov1de effective processor-memory transfer rates near the rate
_requlred by ‘the processor. ‘These traditional Srhcon solutions may not be
adequate_ for GaAs processors; however, because mter—chlp s1gnal propagatlon‘
_ delays w1ll take larger percentages of GaAs instruction cycle times. o

Overlappmg information transfers with processor executlon is the ﬁnal ‘
,technlque ‘that we consider for reducing the GaAs processor 1nformatron
problem Parallel execution and 1nformat10n transfer implies that information
transfers are initiated before the processor has a need for this information. For
a completely autonomous information transfer mechanism, separate datapaths .
- and memory are required. Thls is ~more easrly aﬁ'ordable in Slhcon
1mplementat10ns than in GaAs ’ (o '

Clearly, the low transistor count of ‘GaAs ch1ps and the large penalty for
communlcatlon between them are real obstacles to the successful explortatlon
vof the fast gates of GaAs technology ‘Silicon computer systems are: deslgned
fwrthln an 1mplementat10n environment that has matched increased on—chlp :
swrtchmg speeds with enormous levels of 1ntegrat10n therefore, the computer
'deSIgn technlques used in Silicon are not entirely compatible ‘with “the
requlrements 1mposed by GaAs technology. GaAs computer systems require
approaches in both hardware and compller design which differ from those
‘tradltlonally used in Silicon computer des1gn '

3.2 Hardware Design Issues _
Given the general GaAs-driven des1gn cons1derat10ns of the prev1ous'

section, we are now in a. position to d1scuss des1gn approaches for the hardware’;

of GaAs processor systems : ‘ o

We begin our hardware discussion by descrlblng design approaches w1thln)
the processor before moving to the off-chip memory environment. - We first
discuss our choice of processor conﬁguratlon, followed by a presentatlon of -
suitable de31gn approaches for the 1nstructlon pipeline, register file, execution
unit, and instruction format. Our memory design discussions include virtual
memory, ‘memory hierarchies, both run-time and ‘compile'-time._ _memory

19
management, and pipelined memory systems.

3.2.1 l’rocesmr Conﬁ'gurati‘on _ »
A number of different processor configurations are avallable as candldates |

for a GaAs implementation. Two representative Silicon processor desrgns are
the Cray-l [Russe78] and the Motorola MC68020 [MaMoMg4]. '

‘ The Cray-l is a supercomputer .implemented in Slhcon emltter-coupled‘.*
logic (ECL), and optimized to perform floating point operations on regular data
structures such as arrays. Although the use of ECL allowed the Cray-1 to
achleve a low 12.5 ns cycle time, a large number of these SSI and MSI parts"'

~were required to lmplement the processor. Because of the severe performance -

' penalty for inter-chip communication in the GaAs environment, multiple-chip
configurations such as these are not especially desirable. In fact, it has been
reported that even if gate delays could be reduced to zero, the performance of a :
‘well-known supercomputer would only be increased by about 20 percent. due to
the “dominance of off-chip delays [Gilbe84]. In contrast with the lower
transistor ‘count capability of GaAs compared to Silicon NMOS, GaAs ‘has a.
hrgher trans1stor count potential than Silicon ECL. Therefore, the' use of
| hlgher-densrty GaAs parts would improve the performance of vector processors
such as the Cray, however we are not concerned with such speclal-purpose
_env1ronments 1n this thesis. ' :

Processors such as the Motorola M068020 take the oppos1te approach of
the Cray, as they are 1mplemented on a s1ngle chip. With this approach the'.'
datapath (executron unit, register file, etc.) is on-chip, and the datapath
executlon time is not influenced by 1nter-ch1p srgnal propagation delays This
conﬁguratron has obvious advantages in a GaAs implémentation environment.
In fact, a single-chip processor conﬁguratlon will achieve a hlgher relative.
performance increase through the use of GaAs technology than either Slhcon_
~ mainframes or Silicon supercomputers [Gheew84]. It is because of this large
potentral lncrease in performance in addition to a broader apphcatlon market,

- that this theSIS is oriented to the study of computer systems utlhzlng s1ngle-
chlp VLSI GaAs processors : : - :

- 3. 2 2 Smgle—Chlp GaAs Processor Desrgns

... The decoding and control logic (mlcrocode) of the Motorola 68000 requlres‘
68% of that chlp s area [Katev83] Although some may argue that_ this is

acceptable for a Silicon processor 1t is clearly not tolerable for transrstor—scarce
GaAs processors. ‘In contrast to the 68000, the Berkeley RISC-II Processor -uses
- only. 10% of its area for decoding and control [Katev83]. The characterlstws of
processors such as the Berkeley RISC-H are worthy of further study for possrble
1ncorporat10n 1nto GaAs processors. , : TR
- The Berkeley RISC-II IT [Katev83] is an example of a reduced instrUctlon set
computer ’(RISC)\ Other well known RISC processors include the [BM 801
[Radin83] and the Stanford MIPS [HeJoG82]. RISCs are de51gned utilizing a
philosophy which espouses the fast execution of the most frequently used -
'lnstructlons of an application environment, while avoiding the negative aspects
of. complex1ty associated with a Silicon implementation. One of the Berkeley
- RISC-II de51gners presented his view of instruction set design. “First, the most
necessary and frequent operations (instructions) in programs were identified.
Then, the data-path and timing required for their execution was identified.
And last other frequent operations (instructions), which could also fit i into that
data—path and timing, were included into the instruction set” [Katev83] The
result of this strategy is a processor with low decoding and control
requirements, and consequently, low transistor count requirements. The 32-bit
Berkeley RISC-II processor requlred only 41K transistors, while the 32- blt
Stanford MIPS required but 25K transistors. These numbers are in contrast to
the Motorola 68020, a complex instruction set computer (CISC) ‘using
approx1mately 190K transistors [MaMoM84]. In fact, the low transrstor ‘count
requlrements of the Stanford MIPS led to its being selected by the U.S.
government as the architecture for its first 32-bit GaAs processor program
[Barne85].

There are several processor features which result from the RISC de51gn
phllosophy, and which will likely be inherited by GaAs processors as well.
RISC processors generally implement only a few simple instructions, execute
every instruction in one cycle, use a register-to-register execution model and
access off-chip data through explicit data load or data store instructions
[Patte85] RISC processors ‘also rely more heavily on the capabilities of
optimizing compilers. In fact, functions are implemented in hardware only if
they cannot be performed at compile time [Radin83]. This constant evaluation -
of hardware-software tradeoffs, implicit in the RISC philosophy, which leads to
both reduced hardware resource requirements, as well as demonstrated superior |
performance [PatPi82][HeJoG82], makes the RISC desrgn phllosophy very
approprlate for GaAs processor 1mplementatlons

21

3. 2 3 Instructlon Pipeline Desngn

Instructlon pipelining is frequently used in Silicon processors to lncrease
execution speed. An example instruction pipeline for a Silicon processor might
resemble Figure 3.1. In this example the instruction fetch time is equal to the
instruction execution (datapath) time. This pipelined implementation results
in approximately twice the execution speed of a non-pipelined lmplementatlon
This speedup is due to the overlapping of instruction fetching with execation,
which allows the instruction memory system to completely satlsfy the
processor s instruction requirements. -

A GaAs processor will require 1nstructions at a faster rate than a Silicon
processor, -and it is very likely that conventional Silicon-like instruction
pipelines will not satisfy a GaAs processor’s instruction requirements for two
‘reasons. First, the ratio of off-chip memory access delay to both on-chip
memory ' access delay and arithmetic logic unit (ALU) delay is much higher for
a GaAs processor than for a Silicon processor.: Second, the lower transistor
count of GaAs chips precludes the use of an on-chip cache for memory access
speedup [MiFuH86]. In fact, if a GaAs processor utilizes a typical Silicon-like
da"t'apa'thf (i.e. ALU, shifter, register file) design with an on-package instruction
cache, the ratio of instruction fetch delay to datapath delay -will -be
approxrmately three [Heage85]. For an off-package cache, the ratio may ea,srly'
~reach six. The Silicon instruction pipeline of Figure 3.1 does not fare very well

under these conditions, as observed in Figure 3.2. :

An 1nstructlon pipeline should not have a proCessor ~datapath
underutrhzatron built into it. Ideally, the effective instruction fet¢h time
exactly matches the instruction execution time. The techniques for ‘achieving
good pipeline design in a GaAs processor are part of the discussions of the next
few sections. Pipelines which result from careful GaAs computer system design
a’p'prohch those shown in Figures 3.3, 3.4, and 3.5. Figure 3.3 is the result of
increasing the effective rate of instruction fetches. Figure 3.4 is the result of
‘increasing the content of instruction fetches. Figure 3.5 is the result of
_ decreasmg the reqmred rate of instruction fetches.

3 2 4 Reglster File Desrgn

As already 1nd1cated the RISC design phllosophy typlcally results ‘in
processors whlch use a register-to-register execution model. In addltlon to its
" contribution to complexity reduction, the reglster-to-reglster executlon model
has other des1rable features for a GaAs implementation. ‘

22

instructioni- - |IF| [DP

' instruction i+1 - |IF| |DP

instruction i+2 | IF :DP-

| | I [
time —» ’

. Figure 3.1 Example Silicon InstructionvPipeline [FurMi85].

instruétion i IF | DP

instruction i+1 | IF {pp|

L ! I B
time —

| ;.Fi_gulfe 3.2 Example Silicon Pipeline Implemented in GaAs [FurM185] '

instruction i
instruction i+1

instruction i+2

Figure 3.3,

23

IF

DP

DP

Memory [FurMis85).

DP

Example GaAs Instruction Pipeline with a. Plpehned

“instruction i

' instruction i+1 v

- Figure 3.4

instructioni

instruction i+1

Figure 3.5 -

T

_[pp]

DP

DP

time —s

DP|

DP

'Dp>'f'

“DP

Example GaAs Instructlon Plpehne with Instructlon -
Packing [FurM185]

“DP

Example GaAs Instruction Plpelme with. Long-latency
Datapath Elements [FurMig5]. :

25

First, registers are fast on-chip memory. The access time of a reg‘ister is
much shorter than that of off-chip memory, and this difference is more
pronounced for a GaAs processor. As stated earlier, maxrmlzlng on-chlp
memory is of great importance for a GaAs processor. SR

k Reglster files are generally more effective than caches at the small
~ capacities available in a GaAs processor. For example, an lnstructlon cache
’ contalnmg 16 32-bit words can be expected to achieve a hit ratio of only 70%,
while an equivalent data cache would hit only 55% of the time [Smith85).
Since register file data placement is performed by the compiler instead of a
' run-time caching' mechanism, . register file accesses never miss. In addition,
~ register files aren’t burdened by the hardware overhead whlch is required by
caches. '

A register address is dlrectly specified w1th1n the instruction. Therefore,»
an address calculatlon is not required and no v1rtual to physrcal translatlon
need be performed : :

The short length of reglster addresses leads to compact code whlch can bev
: expected to increase the hit ratios of program memory accesses at the hlgher |
levels of the memory hierarchy.

The lmportance of register files thus established, this sectlon presents the
‘ de51gn 1ssues 1nvolved with register memory cells and reglster ﬁle partltlonlng

- 3. 2 4 1 Reglster Cell Desrgn

“In- Slhcon processors performance - depends heavrly on . the speed of
datapath elements such as the register file. For this reason, reglster cell designs
emphasmng access speed and multlple read and/or write ports are common-
As an-example; the microcode pipeline of the HP-FOCUS processor [BeDoFSl]‘
‘is shown in Figure 3.6. Because of the fast access time of its on-chip microcode -
memory, fast. reglster file access was also needed. Flgure 3.7 shows the reglster._
cell desrgn used in the HP- FOCUS which allows two s1multaneous data reads,
'or wrltes and supports the 55 ns cycle time.

‘ In GaAs processors, fewer transistors will be available for reglster ﬁle "
vlmplementatlon, therefore, s1mple register ‘cells are very advantageous Even if
simple register cells reduce the datapath- speed performance may not be

negatively impacted. One approach to reducing a high ratio of instruction =

fetch delay to _datapath delay is ‘to increase the datapath delay. This may
seem very undesuable however, reducing the effective instruction - fetch delay,
,_ whlch 1s 1ntu1t1vely the best approach, 1ntroduces new problems wh1ch are

26

microinstruction i [F][o][oA
microinstructioni+1
microinstruction i +2

N T T TR N B B
time —p

IF - Insiruction Fetch Cycle

DP-Datapath Cycle
ID-Instruction Decode

Figure 3.6 Microcode Pipeline of the HP-FOCUS Processor [BeDoF81].

27

ABi>— DD
T T T T
Set A CK1 CK2 DUMP A
B Bus >—__— LI aem Bl e
T T T
Set B REFRESH DUMP B

Figure 3.7.Register' Cell Design of the HP-FOCUS Processor [BeDéFSl].

28

discussed later. Using slow register cells at least has the advantage of a low
resource requirement. The selection of an appropriate register cell design must
be considered in the context of the entire system. There is certainly a greater
dlsparlty in access time between off-chip memory and a slow register cell than
between a fast and a slow register cell. It is conceivable that a larger number of
slow. reglsters may provide better system performance than a smaller number of
fast reglsters ‘

v S1mple register cells which make good candidates for GaAs processors are
shown in Figures 3.8 [Sherb84] and 3.9 [MiFuH86]. Figure 3.8 shows the.
regisﬁer cell design of the Berkeley RISC-II. Its transistor and area
requlrements are much lower than those of the HP-FOCUS. Although this
register cell allows parallel reads, its read time is slower than the cell of the
HP-FOCUS [Sherb84]. Figure 3.9 shows a register cell with a s1ngle read bus.
This cell uses less area than the other cells, but requires sequentlal readlng and
wrltlng

- 3.2.4.2 Register File Partitioning

Reglster files generally succeed at reducing the processor’s need to access
oﬁ'—chlp data during the execution of HLL procedures. However, at procedure
boundarles (calls, returns) the register file values must be stored to memory
and new values loaded in. This massive off-chip communication is bad enough
in SlllCOD lmplementatlons but is even more damaging to a GaAs processor.

" To alleviate this procedure boundary problem, multiple window regrster
file schemes have been introduced by Silicon designers, and used in processors
such as the Berkeley RISC-II [Katev83]. In a multiple window register file,
each procedure is allocated one window for its data. Whenever a procedure call
or return is encountered, instead of emptying and refilling the register file, a
new window is allocated, perhaps by simply changing a pointer value as in the
Berkeley'RIS'CfII The only time that emptying and refilling is required‘ is on
an overﬂow or “underflow.” An overflow occurs when a procedure call is
encountered and no unused windows exist. An underﬂow occurs when a
procedure return is encountered and the values of the returned-to procedure
were saved to memory because of a previous overflow. The eight window
scheme of the Berkeley RISC-II was responsible for an approximate 50 percent
reduction in the number of data loads and stores [Patte85]; consequently, this
‘technique shows potential applicability for a GaAs processor implementation.

20

Wordlihe A

b

 Bitline A o V A | | Bitline B

L

:Wordlin_e B

Figure 3.8 Register Cell Désign of the Berkeley RISC-II Processor [Sherb84].

Bitline

Figlire 3‘.9'Register Cell Design Employing a Single Read Bus. -

31

A major problem which prevents the implementation of the Berkeley
RISC-II register window scheme in GaAs is the large number of registers
required for its implementation - 138. In fact, the Berkeley implementation
wolld consume nearly all the transistors available to a 30K transistor GaAs
~processor. For this reason two variations of the Berkeley method are potential -
candidates for a GaAs implementation. They are multiple window schemes
with a) variable-size windows and b) background loading and storing.

Multiple - window reglster files with variable-size windows have been
discussed in the context of Silicon implementations [Katev83]. The Treal
advantage of this approach is that more windows can be formed from fewer
-registers, as compared to a fixed-size approach. The reason for this is that
most procedures use very few local variables and formal parameters in well
structured programs [Tanen78]. A fixed-size window scheme will encounter.
very poor register file utilization, and this is quite undesirable in a GaAs
implementation where off-chip delays are large. When only enough registers
are allocated to minimally satisfy each procedure’s needs, additional registers
are made avallable to implement more windows and reduce overflows and
underflows. The drawbacks to this approach are additional hardware
requirements and added delay for register address calculation, and additional
overhead for procedure calls/returns and overﬁow/underﬂow handling. A
c’or‘npromise approach is to provide multiple windows but limit the number of
sizes which may be used, and choose sizes to reduce complexity [Furht85]

Multiple window register files with fixed-size windows and background
mode loadlng and storing have also been discussed [Katev83]. The advantage_
of this" approach is that intelligent preloading and Pprestoring may reduce the‘
frequency of overflows and underflows. The primary drawbacks to this
- approach are the additional processor-memory bandwidth required, and the
: need for an 1ndependent input-output controller capability. :

3. 2 5 Executlon Umt Desngn

"The effect that the low transxstor count and large off-chip delays have on
reglster cell design for a GaAs processor is felt in the execution unit design as
well. Once again, scarce hardware resources should not be used to create or
exacerbate a mismatch between execution unit information needs and off-chip
memory system capabilities. The execution unit design for a GaAs processor
should lnstead be part of a system-level eﬁ'ort to achieve a match between these‘
two. ' B

32

If the eﬁ'ectlve oﬂ'—chlp memory access t1me cannot be cheaply reduced to B

match -the datapath delay, then another method of matching the oﬂ'-chlp | '

memory and datapath delays may be appropriate. A useful approach for GaAs
processor execution unit design is to approach the ideal “instruction fetch delay.
- datapath delay” equality from the direction indicated in Flgure 3.5. - This
_approach is summarized as ‘“‘reducing the execution unit's need for oﬂ'—chlp’:t

' ‘data in some useful way.” Two methods for accomphshlng this are to 1)

-Remove resources from the execution unit in order to slow down the execution
of prlmltlve operations, and reallocate the resources elsewhere, perhaps to the .
register file. 2) Maintain or add resources to the execution unit only to support |
.complex operations . which require large amounts of t1me ~ These two
-‘approaches will be in evidence throughout this sectlon RO

3.2.5.1 Adder Design , o .

v ‘Sili"con' _processors typically require high-speed adders to maximize- their
, performance Again, this is because of the relatively fast access tlmes of Silicon
" memories in comparison to datapath tlmes, especially when the memory is on-
chip. For example, the HP-FOCUS utilized a full carry lookahead adder to
:satlsfy 1ts 55 ns cycle time in a Silicon implementation. S

The adder designs available for a GaAs implementation range from the v
hlgh-speed high-resource-requirement full-carry-lookahead adder to the low-‘
speed, low-resource-requirement ripple-carry adder. Others which have speeds
and resource requlrements between these two extremes include condltlonal-sum
and carry-select adders [Hwang79] ’ o '

As in register cell design, SImple de31gns are advantageous for GaAs
~ adders. ‘In addition to transistor count differences, the above adder designs
exhibit differences in regularity, which introduce chip area differences as well.

“VLSI lmplementatlon environments introduce complexity into adder
performance evaluation [Sherb84]. In a Silicon SSI/MSI TTL (transistor-
transistor logic) implementation, adder speed is determined by the number of |
gate ‘delays required to obtain the final result. In a VLSI lmplementatlon
deslgners have potential opportunltles for performance enhancement, such as in
~ varying transistor sizes to improve speed in critical paths Additional variables

are also introduced, such as large signal propagatlon delays because of long_
| wire lengths large fanins, and large fanouts. S ‘

In a Slllcon VLSI environment, it has been shown that the regular layouts'
and low fanln/fanout requirements of adders such as the rlpple-carry ‘and

33

carry—select "reduce the performance advantage of the tradltlonal carry- :
lookahead approaches, which are very irregular [Sherb84]. ’

From both a performance and implementation cost standpoint; npple-
carry and carry-select adders are more suitable. than tradltlonal carry-
lookahead adders for 1mplementat10n into a GaAs processor '

”3,2'.5.:2 Multiplier/Divid‘er.Design- - v
The frequency of use of rnultiplication and division operations varies from
“application to application. In a distribution of instructions from a computer

- aided design (CAD) application environment, multiplies were only 3 percent of

all instructions executed [McDan82]. However, the high frequency of multlphes
~ in signal - ‘processing applications prompted the designers of the Texas
- Instruments TMS320 [MaCaM82] to include a 200 ns on-chip hardware
multlpller In this section we present multlpllcatlon and division techmques‘
‘which are advantageous for GaAs processor implementations. Desrgns for both
»hlgh frequency and low frequency usage will be given. : ‘

. Silicon processors which are targeted to general purpose apphcatlons ‘
_ typlcally utilize the datapath adder to perform multiplication and division.
- Silicon CISCs implement multiplication and division with microcode routines,
'whlle Slhcon RISCs use special multiply-step or divide-step instructions. which
are stored wrthln the program. In special purpose application environments
where multlply and/or divide operations are more frequent, Silicon processors'
: 1ncorporate additional hardware. Example hardware multipliers 1nclude an
1mplementatlon of the modified Booth algorithm in the TMS320 and an array
- multrpher in the NEC IPP [NuKuM84]. An example division technique is the

“division by repeated multiplication” method used in the IBM 360/91:
[AnEaG67] ‘Which requires a fast multiplier. :

Multlphcatlon and division operatlons require relatrvely large amounts of
'tlme, therefore, if justified by frequency of use, additional hardware support is
desrrable for GaAs processors as well. In addition to faster speed, an advantage
in usrng a hardware implementation of a multiplication/division algorlthm is
that less off-chip information (fewer lnstructlons) 1s required than in traditional
software approaches. However, candidate approaches must satisfy the hrmted |
transrstor count typical of GaAs. ’ : R

o The standard add-and-shlft multlphcatron technlque and subtract-and-_‘
shift division technlque require the fewest hardware resources and are quite
desrrable from this standpomt especially in general purpose env1ronments

34

Manl' hardware addltlons ‘such as those- mcorporated in the Stanford M]PS '
[HeJoG82], lmprove ‘these two techmques, achieving multlphcatlon in n/2 steps'
' vand division in n steps, where n is the word length. :

Slhcon CISC 1mplementat10ns of these” multlphcatlon and d1v1sron"
‘ technlques have an advantage over. Slhcon RISC 1mplementatlons 1n one
v respect A Silicon CISC must only fetch one instruction from oﬁ'—chlp memory ;
‘in order to execute either a multiply or divide, while a RISC must fetch several
: 1nstruct10ns " A microcoded CISC, therefore, does a better job of reducmg off-
chlp commumcatlon needs, and in prmclple ‘this is very desirable for’ GaAs
- processors.. This does not imply that microcoded CISCs are approprlate for
GaAs‘ ”however, achieving the higher information content of CISC-hke
instructions is desirable. ‘Modifying RISC principles to allow a’ smgle ,
instruction to represent a sequence of add-shift, operations (or subtract—shlft
operatlons) is worthy of consrderatlon This ldea is presented in greater detall
in the next section. ‘

The hardware multipliers used on the TMS320 and NEC IPP requlre too

‘many hardware resources to be incorporated into a GaAs processor. If the need
for fast multlpllcatlon is very strong, two hardware approaches may be used

A serlal multlpher with moderate: hardware resource requlrements may be
constructed. A serial multiplier presented in [Ghana83] requires 64 cycles’ to
perform a 32-bit by 32-bit multiplication. Since each cycle period need only be
long enough to allow slgnal propagation through a flip-flop and minimal logic, a
faster clock may be used to achieve a serial multiplication time much lower
‘than that achieved by the datapath adder. This solution makes very good use
of the architectural strength of GaAs - its fast gates. This type of iterative
approachhas also been cited by an early GaAs architecture researcher [Gilbe84]
as belng ‘desirable for GaAs. An off-datapath serial multiplier also allows

concurrent multlphcatlon and datapath execution. :

An alternatlve approach is to incorporate a hardware mult1pher into a
coprocessor - The multlpher design in such an implementation is not as .
constrained as in the processor; therefore, des1gns with greater hardware,
requlrements are more. appropriate here. Of course,. this techmque may be
extended to allow two or more such coprocessors if the application environment
demandsv it. This approach also allows the concurrent operation of the
coprocessor and the processor’s datapath.)

35

- 3.2. 6 Instruction Format Design

v The use of the RISC design philosophy in GaAs processor desrgn mlght
appear to reduce instruction format design to a trivial problem. .This 1s of
course not so. A legitimate concern for GaAs processor design is the eﬂ'ect of
~ the instruction format on the timely transfer of instructions to the processor.
The instruction bandwidth requirement of a processor is strongly dependent on
the 1nstructlon format. Although the basing of design decisions on instruction
bandwith alone is not to be encouraged, this architectural metric acquires
added srgnlﬁcance in the GaAs envrronment but should be used w1th1n the
context of the system des1gn : ~

~ Compact programs requxre a lower memory-processor bandwidth and are
" more beneficial in GaAs processor systems than in Slllcon processor systems for
' at least two reasons. ‘

First, ‘the technology used to 1mplement the memory at the hlghest levels
of the memory hierarchy will likely be GaAs. Since GaAs memory chlps will
likely remain less dense than Silicon memory chrps GaAs caches, ete., will be -
: relatrvely small. It has been shown that memory size is the s1ngle most
1mportant factor in cache hit ratios [SmiGo83], and that hit ratios mcrease
rapldly at small cache sizes before leveling off at high cache capacltles
'[Smlth85] “Since a decrease in program size is equivalent to an mcrease in
memory size, compact programs are lndeed very desirable in a GaAs processor
system ' : '

Second ‘because of the extremely fast instruction cycle tlmes possrble in a
GaAs Processor, a memory access miss in a GaAs processor system w1ll hkely
- entarl a longer delay, in terms of instruction cycles than a memory access miss
in a Sll1con processor system. It is, therefore, more 1mportant to minimize

v these mlsses in a GaAs processor system. '

The major disadvantage of the RISC desrgn phllosophy in a GaAs‘

- 1mplementatlon is the generally low information content of RISC 1nstruct10ns "

Of eourse, it is the very simplicity of RISC instructions which lead to thelr low
decodlng logic requirements. Therefore, any attempt to reduce program size
through increased encoding of instructions must be done so as to minimize its
~ impact on ‘decoding complexity. ’

‘We discuss two methods for increasing program compactness whlch can - N
'»have little impact on a GaAs processor’s decoding requirements. The ﬁrst '
- approach relies on the high dynamiec frequency of short immediate fields and
 few operand addresses; while the second approach makes use of the repetrtlve.
'nature of some complex operatlons such as multlply and divide.

36

3.2.6.1 Frequency-based Instructions

Techmques based on Huﬂ’man codes [Huﬂ'm52] are frequently con31dered in
instruction set desrgn Huffman coding is a technique for aSSIgnlng ‘the -most
frequent mstructlons the smallest encodlngs A pure Huffman 1mplementatron
would require sequential decodlng and much hardware, and is not a serious
candldate for a GaAs processor. However; the concept of providing small
encodings ‘to frequent occurrences is very applicable for GaAs processor
,'1nstructlon sets. -

Compact instruction formats may be designed to 1ncorporate small
immediate fields and few address fields. The resulting reduction in program
size is not due to an explicit encoding function operating on these fields, but
results from the high dynamic frequency of small immediate data values and
both one-address and two-address instructions in real programs. In one study
of XPL programs [AleWo75], it was shown that 61 percent of the branch
distances required eight bits or less, while 81 percent could be represented with
12 -bits. *They also found that 47 percent of the numeric constants could be
represented by only four bits, and that 87 percent required eight bits or less. It
is also estimated that 87 percent of all aSSIgnment statements require only two
-operand addresses [Myers82]. ' '

Compact instruction formats which result from using short immediate
fields and few operand addresses have three beneficial aspects for a GaAs
| 1mplementat10n '

Flrst as just mentioned, the proper design of immediate and operand
fields can be expected to reduce total program size and provide the beneﬁts for
a GaAs 1mplementat10n described above.

Second, this approach takes advantage of the dynamic characteristics of
program behavior. Small immediate values and few operand addresses are not -
the output of an encoding algorithm, but occur naturally and frequently in real
programs; therefore, there is no meed for a significant decodmg function within
the processor to “undo” any addltlonal encoding. -

Third, compact operations may be packed i'nt_o a single instruction.
Because pin limitations of a GaAs processor will limit the size of instruction ‘
fetch transfers, multiple operation fetching, as shown in Figure 3.4, is only
possible for short operations. A well-designed packed instruction format can
improve the performance of a processor in a long-latency off-chip envrronment .

Many Silicon instruction sets dlsplay varying levels of program‘
compactness, and some even employ operation packing. The longest immediate

37

data values' for many Silicon processors require 32 bits of information. In order
to include immediate fields in single-word instructions to represent 32-b1t
values, extremely long 1nstruct10ns would be required.

Even relatively sparse instruction formats, such as the Berkeley RISC-II,
take advantage of the low frequency of use of such long immediate values by
only supportlng short immediate values within a single instruction. The use of
very large lmmedlate values requires two RISC-HI instructions.

The Stanford MIPS limits its maximum immediate field 51ze to 24 blts to
-allow all immediate values to be used within single instructions. However, the
MIPS instruction set takes advantage of small immediate data values by
packing a second operation into instructions which require short immediate
fields. This operation packing also makes use of the high frequency of one- and
- two-address operations because the instruction fields for the packed operatlons ,

are only large enough for two-address operations. L

~The ability of the Stanford MIPS to execute two operatlons per
instruction fetch is limited by the occurrence of long immediate values and also
by the ability of its compiler to find suitable useful (non-NOOP) packing
candldates A more complex instruction format also results from the MIPS
style of packlng This results in a 10 percent increase in the MIPS lnstructlon,
bcycle time [Patte85] in addition to increased decoding hardware requirements.

The Transputer [Whitb85] relies very heavily on the high frequency of
small immediate values as it only provides four bits of immediate field in every
8-bit 1nstruct10n Larger immediate values must be built from multlple
instructions four bits at a time. The small size of its instruction format allows
the Transputer to pack four such instructions (from now on we call these
operatzons) into a single packed instruction.

- The Transputer is better able to-meet its maximum rate of four operatlon
- executions per instruction fetch because of a somewhat different deﬁmtlon of

“operation.” The Transputer uses even more primitive operatlons than ‘the
MIPS or RISC-II. The use of a large immediate data value is 1mplemented by
a sequence of “build immediate field” operations. However, these op_erat;o_nsﬁ
have a 50 percent overhead as only four of the eight bits contain actual data.:
However, the rigid field boundaries of the Transputer’s instruction format can’
be expected to result in a srmpler decodlng functlon than required by the MIPS
instruction format.

Compact instruction formats must be designed with a good understandlng
of the 1nstruct10n requirements of the intended application environment.
However the explmtatlon of the hlgh frequency of usage of small 1mmedlate

38

values and few: operand addresses may prov1de s1gmﬁcant beneﬁts for a GaAs
processor nnplementatlon : -

j3 2 6.2 Context—based Instructlons :

Huﬂ'rnan codes are based on the frequency of. usage of: data 1tems w1thout' :
consrdermg the environment surrounding the data. items. Because 1nstructlon
executions are not independent of each . other, addltlonal compactlon |
opportunltles are available. L : S

- A compactlon techmque whlch uses context lnformatlon in addltlon to the '
' 1nstruct10n frequency 1nforrnat10n used by Huﬁman—based technlques is
condltlonal coding [Hehne76]. In this technique the encodlng of the next
mstructlon to be executed is dependent upon the probability of its occurrence,
in the context of the execution of the current instruction. Therefore, if there
are nllnstructlons in-the instruction set, then each 1nstruc_t10n has n different
encodings - one associated with each of the n possible preceding'instructiOns '
A strict implementation of this scheme is not practical for a GaAs processor,
however, the concept of usmg context information to reduce prograrn s1ze is
apphcable ' - ’

A less rigorous, but s1mpler technlque is to replace frequent 1nstruct10n ‘
'sequences with “a - single instruction [Hehne76]. In fact, this technique .is
typlcally used on microcoded CISCs. A program consisting' of CISC
macromstructlons is generally more compact than a program containing’ RISC
' 1nstruct_1__ons because each macroinstruction corresponds to a sequence of
microinstructions, while each RISC instruction corresponds to a single
microinstruction-like instruction. It is possible that this CISC mechanism can
be utilized to good advantage in some GaAs processor environments. - | '

N i justified by frequency of use, complex instructions such as multiply,
~ divide, and perhaps even multiply-accumulate, may be added to the instruction
~ set of a GaAs processor. Even if a transistor-scarce GaAs processor cannot:
support the hardware to dlrectly execute these operatlons and must instead -
,use the main datapath, there are advantages to using complex 1nstructlons o

For example the unplementatron of multrply on a RISC can be performed

. in a nurnber of ways.

A hnear sequence of multiply-step instructions can be used for each
multlply in the program. For a processor such as the Stanford MIPS, this may
require nearly 20 instructions per multiply. If multiplies are 10 percent of all
1nstructrons executed, then this technique nearly trlples the program srze -

.39

Alternatlvely, a loop contammg as few as one multlply-step mstructlonv
~can be used. However, introducing loops into programs is not generally
desrrable both because of the time wasted on looping overhead, and because of
the large number of instructions required to perform branch fillin if the GaAs
- processor is hlghly pipelined.

v ‘A th1rd technique is to include a linear sequence of multlply-step

mstructrons into a system procedure which is callable from anywhere wrthm .
_ the program This technique, therefore, requires that a procedure call and
~-return be executed for each multiply instruction. Beyond the normal overhead
associated with procedure calls, this method degrades the execution locahty,
possrbly decreasmg memory hit ratios. |

The .implementation of a single multiply 1nstruct10n entalls none of the_
above disadvantages; however, complexity is 1ntroduced into the- plpellne
control .mechanism. Single-cycle instruction execution is a feature of ‘‘true”
RISCs because it leads to simple pipeline control. When a CISC-like multlply
- instruction is encountered, the processor will likely spend a long time executmg
it, Thereforey the instruction - pipeline must be halted. If the mstructron
memory is_also pipelined, then a time delay will probably exist before the
~entire memory pipeline can be halted, and buffering may be needed. Clearly,
the benefits of CISC-like instructions must be weighed agamst -this
‘ lmplementatlon complexrty, and the decision to use CISC-like lnstructlons"

should be conSIdered in the context of the entire system. -

3.2.7 Memory System Desrgn

Memory system design is an- extremely important issue in- a computer

o system contammg a GaAs processor. The capabilities of a fast GaAs processor
- cannot be fully exploited unless the memory system is able to satisfy the

processors ‘increased information needs. The low transistor count of GaAs
memory chlps and the long 1nter-ch1p delays, with respect to the cycle trme of
a GaAs processor, both limit a memory system’s ablhty to provide the capaclty_
_ and transfer bandwrdth requlred by a GaAs processor :

40

3.2.7.1 The Role of Vlrtual Memory

The application environment also has a large influence on the deSIgn of a
memory system for a GaAs processor system, particularly. with regard to the
issue of virtual memory. A virtual memory system is one which prov1des a
mapplng from logical addresses to physical addresses [Denn170] Loglcal
addresses are produced by the compiler, while physmal addresses are used for
accessmg physwal memory.

There are several advantages attributable to virtual memory systems
v'Since virtual memory systems normally contain a large capacity backing store
such as a magnetic disk, both the programmer and compiler are able to
generate code without regard to the actual size of main memory. The burden
of memory allocation is transferred from the programmer to the operating
system; and multi-tasking and protection mechanisms are easier to incorporate.
Virtual memory is used extenswely in computer systems in universities and
lndustry ‘

The d1sadvantage of virtual memory is that the logical to physncal address
translatlon is necessary. Virtual memory systems, therefore, have. longer
memory access latencies than non-virtual memory systems. In applications
which require the speed of a GaAs processor, the performance loss due to a
virtual ‘memory implementation is quite expensive. ~Many Silicon

supercomputers do not use virtual memory; they instead rely on large main

- memories. Applications such as these, as well as many embedded applications
with speclal-purpose programs and relatively small memory requlrements w1ll
not require v1rtual memory in GaAs processor systems. :

. 3.2.7.2 Memory Hierarchy

Large memory systems generally utilize several different types of memory
components to achieve a favorable cost-performance balance. The fastest
memory parts are also generally of the lowest capacity, as well as being the
most expensive; while slower, higher capaclty memory is generally the cheapest.
Memory system designers try to provide memory speeds approachlng the speed
of the fastest technology, while achieving a cost per bit approaching the cost of
the cheapest technology. This is achieved through the exp101tat10n of the
 locality of references which exist within most computer programs. -

- Two types of program locality exist [Denni72]. Temporal locallty means

that once. information is used it will likely be used again within a short tlme
span. Programmlng constructs which cause this include loops, recurswe

41

procedures, and activation record accesses. Spatial locality means that when a
unit of information is used, its neighboring information will likely be used
within a short time span. Programming constructs which cause this lnclude
sequential program execution, activation record accesses, and structured data
accesses

These two localities of reference are responsible for the success of
hlerarchlcal memory systems. By keeping the information which is within the
current referencing locality in the fastest memory, fast information access will
be available to the processor a large percentage of the time. This clearly would
not be the case if accesses were uniformly distributed throughout the entire
memory system. '

The memory technology best able to meet the speed requirements of a
- GaAs processor is GaAs. Therefore, GaAs memories will likely be used to
implement the highest level of the memory hierarchy. The lower levels of a
memory hlerarchy usually incorporate cheaper, larger, and, hence, slower
memories. As the capacities increase at each successive level, fast less-dense
technologles _(1e GaAs) lose their speed: advantage over slow, dense
technologies (i.e. Silicon). This is because off-chip signal propagation delays are
larger for low density chips, which require large amounts of board area. This is
especlally true when low-density memory chips cause board area capacltles to
be exceeded -requiring additional inter-board communication. '

3.2.7.3 Run-time Control of Hierarchical Memory Systems

Most Silicon hierarchical memory systems make extensive use of run-time
information control mechanisms. For example, caches, which are often used as
~ the fastest element of the memory hierarchy, use hardware to decide at run-
time what information is to be located within the cache. Similar run-tlme-
approaches are commonly used for main memory as well.

 Two techmques are frequently used in Silicon systems to decrde what.

' mformatlon should be moved into a higher level of the memory hlerarchy The
‘ s1mplest method is to move the information into the higher level when it is
needed by the processor and not already at the higher level. The processor is

' _requxred to wait until the requested information is moved and this may result
in a considerable delay. ‘Another common method, known as prefetching
_[Smith78], relies on a form of spatral locality known as sequential locality.
‘Sequentlal locality is caused by the sequential execution of most programs and
' the sequentlal access of structured data In prefetchlng techniques, lnformatlon

42

whlch is located at addresses _slightly hlgher than the- currently accessed
addresses is moved into a higher level of the memory hierarchy. This run-tlme-
lnltlated information movement is potentlally very advantageous in a GaAs
processor system. - ' ‘ ’

In addition to deciding what information should be moved mto a hlgher
level of the memory hierarchy, run-time mechanisms must decrde where the
-1nformatlon is to be located within the higher level. ' ’

Exrstmg Silicon memory systems vary in the amount of power they glve to
the run-time hardware in deciding where in the higher level to locate the
moved "information. Three placement policies are commonly used in Silicon
'caches'”fu“lly associative, set associative, and direct mapped [Smith82]. In a
fully ‘associative memory level, the run-time hardware is free to locate the
information in any location. In a set associative memory level, the run-tlme
hardware is constrained to locate the information within a subset of the
memory lével called the “set.” In a direct mapped memory level, the run-time |
hardware has only one valid location in which to locate the lnformatlon | |

In Silicon caches, the fully associative technlque generally achieves the
hlghest hit ratios among these three methods, followed by the set associative -
and direct mapped techniques [Smith82]. However, at small cache sizes, the .
difference -in hit ratios between the three techniques becomes 1nsrgmﬁcant
[Sm1Go83] : &

In the fully associative and set associative techniques, the run-time
har’dw’are ‘decides where in the higher level to locate the moved information.
The movement of information into the higher level implies an equal-volume
movement of information out of the higher level. Therefore, the location in the
higher‘level is chosen so as to hopefully displace information which is no longer
ne'eded by the processor. Of the information candidates for displacement, the
mformatlon which will not be needed by the processor for the longest period of
time cannot be predicted by a run-time mechanism. C

~ Three common replacement algorithms are the least recently used (LRU),
first in first out (FIFO), and random (RAND) methods [Sm1th82] :

The LRU technique exploits temporal locality by replacing the
infermation which saw last recent use. A strict implementation of this
technlque requires excessive overhead if a fully associative policy or set;
assoclatlve policy with large set size is used. A strict implementation is,
therefore, generally restricted to small set sizes; however, LRU approxlmatlons.
may be used for larger sets. coe

43

The FIFO method does a poorer job of temporal locality exp101tat10n but
also requires less overhead for its implementation.

The RAND method makes no attempt to exploit temporal locahty but is
| easﬂy implemented.

If the information which is being displaced was modified while in - the
higher ' hierarchical level, then this information must be stored back into
memory at the lower levels There are two common techniques used to achleve’
this storlng '

The copy-back method [Smith82] waits until the information is displaced
before storing to the lower levels. In order to avoid storing information which
has not been modified, a “dirty bit” is commonly associated with a block of
informatlon If this bit is set, then the information has seen recent
‘modification while in the higher level and should, therefore, be written to the
lower level. If the dirty bit is not set, then no storage to the lower levels is
necessary.. . '

In the write-through technique [Smith82], the information is written to the
lower levels as soon as the processor modifies it. If the processor must wait for
its data stores to complete before continuing execution, then this technique will
,1ntroduce long delays into program execution. However, if buffering is used
such as in pipelined memory systems discussed later in this chapter, then no
add1t1onal delays are introduced. The write-through method also does not
require the overhead associated with the copy-back approach. '

- As already mentioned, memories consisting of GaAs chips will generally be
smaller’ than Silicon versions. Because of the minimal run-time overhead
associated with the direct mapped implementation just discussed, as well as its
relatlvely good performance at small memory capacities, this approach is
desirable for the memory at the highest level of the memory hierarchy.

‘At the lower memory levels, the set associative and fully associative
techniques become advantageous because of the larger capacity of the lower
levels. The LRU, FIFO and RAND replacement policies are all v1able methods

at these lower memory levels as ‘well,

. If ‘pipelining is employed in the memory system design, then t,he"--w‘rit'ei‘
through method is preferable to the copy-back approach for the cache and
main memory levels of the memory hierarchy. Write-through eliminates both
the need for long-latency copy-back operations and reduces coherency problems,‘
' by ensurlng that the lower memory levels are contlnuously updated

4

3 2. 7 4 ‘Compile-time Control of Hierarchical Memory Systems

The compiler has three advantages over run-time hardware in the
‘implementatlon of memory hierarchy information control mechanisms. First, it
has a larger base of knowledge from which to make decisions since it has a view
of the entire program. Second, it presumably has more time to implement a
more optrmal strategy. Flnally, compiler algorithms don’t requrre addltlonal ‘
“hardware. - :

“Although the temporal and spatial localities of reference allow run-tlme'
1nformatlon control mechanisms to work well, there are times when the
required locality is missing. LRU-based run-time mechanisms, whrch exploit
.the‘referencing localities, are responsible for bringing information into the
higher levels of the memory hierarchy, and for deciding which information at
 the higher levels' should be replaced. " Two instances. where LRU-based
“mechanisms fail are the following. |
(ll) Information is accessed for the first time after a long period of non-use.

(2) Information - is accessed once but will not be accessed aga1n for a long
perrod of time. 4

The compller has the potential to detect this nonlocalized behavror and
the power to help the run-time mechanism to perform more eﬂ'ectlvely Since
the delays caused by nonlocalized accessing patterns are more costly, in ‘terms
of mstructlon cycles, for a GaAs processor, the effort expended on compller
~design and the increased time for compilation are offset by greater gains -in
performance A more thorough discussion of this issue is presented 1n Sectron
3 3. 2.2, ‘

3.‘2.7.5- Pipelined Memory Systems

Pipelining is a common technique for speeding the eXecntion of long-
latency operations. Pipelining is frequently used within the processor to
overlap instruction fetching, decoding, and execution, ete. It is also used for
implementing complex arithmetic operations as in the IBM 360/91 [AnEaG67]

, Because of the longer relative delays associated with memory accesses in a
GaAs processor system, memory pipelining is a very attractive approach In
fact, memory pipelining has already been used in Silicon systems on. the
Amdahl 470V /6 [Smith78]. Memory pipelining is even more feasrble in a GaAs
processor system because the long access delay of off-chip memory is not
necessarily due to slow memories, but ‘instead due to long 1nter-ch1p delays

45

These delays are easily plpelmed An example of a pipelined memory system 1s
shown in Figure 3.10. This pipeline consists of three stages. In the first stage
the address (and data if write) is propagated from the processor to a latch
physwally near the memory. In the second stage the memory is accessed, and,
for a memory read, the data is stored into another latch physically near the
memory The third stage is used for a memory read, to propagate the data to
the processor. :

-In a three stage plpehne such as thls three memory accesses may be
concurrently serviced. Assuming a GaAs processor system in which the ratio of
instruction fetch delay to datapath delay equals three, this memory system will
~produce a pipeline such as in Figure 3.3. Clearly, pipelined memory systems
decrease the “effective” memory access delay, even though the total memory '
access latency is unchanged. Pipelined memory systems are extremely valuable
in GaAs- processor systems, because they are so successful at increasing the
information transfer bandwidth between processor and memory. However, as
,dlscussed in" the next chapter, the increased pipeline depth resulting from
plpelmed memory implementations introduces performance problems assocrated
with program branches. Overall, though, pipelined memory systems should
| have a positive effect on the performance of GaAs processor systems '

3.3 Compiler Design Issues ,
The hlgh penalty for inter-chip communlcatlon and low levels of
mtegratron of GaAs chips combine to increase the importance of the compller
in GaAs processor systems. Without the support of a powerful comprler
~ technology, GaAs processor systems will struggle to fully exploit the speed
advantage of GaAs technology, except possibly for selected spec1al-purpose
applications. ‘

" As dlscussed earlier, GaAs processor system design utilizes the concepts
central to the RISC design ‘philosophy. It is not surprising then, that the
lncreased reliance on compiler solutions, utilized by Silicon RISC designers, is
transferred to GaAs processor systems as well. In fact, the characteristics of
GaAs dictate that an even increased reliance on compiler solutions be utilized.

Silicon RISC des1gners have demonstrated the superior performance of
RISC computers over Silicon CISCs [PatPi82][HeJoG82]. Much of the credit for
the improved performance of RISCs is given to simplified instruction sets which
- allow the rapid execution of the most frequently used instructions. However,
the increased role of compller technology also plays a large part in the success
of RISC processors

Processor

46

Memory

Figure 3.10 Example Pipelined Memory System.

47

In order to minimize the instruction cycle time, RISC designers attempt to
eliminate hardware complexity. One technique used to achieve this is the
transfer of functionality from hardware to the compiler.. There are several
examples of this in Silicon RISCs. Interlock hardware for sequencing hazards
[Gross83] was eliminated on the IBM 801 [Radin83], Berkeley RISC-II
[Katev83], and Stanford MIPS [HeJoG82]. This introduced a ‘compiler
optimization called “branch delay fillin,” a technique commonly used by
microcode programmers. Interlock hardware for timing hazards [Gross83] was
also. eliminated on the Stanford MIPS in order to reduce hardware complexity,
with timing hazard detection and avoidance instead performed by the MIPS
compiler. Because transistor count limitations will be greater for GaAs
processors than for Silicon processors, the transfer of even more functionality to
the compiler may be desirable for GaAs processors.

RISC instructions are ‘comparable to the microinstructions of. a CISC
| processor. However, a CISC compiler only has access to predefined (by the
processor architect) microinstruction sequences in the form of
macroinstfuctions A RISC compiler, on the otherhand, has access to
‘microinstruction-like RISC instructions and, therefore, has a much greater
quantity of instructions to use for both hardware-lndependent and hardware-
dependent optimizations. An increased number of hardware-lndependent’
optlmlzatlons such as code motions and common subexpression eliminations,
therefore, present themselves to a RISC compiler [Radin83]. A hardware-
dependent optimization called ‘“load delay fillin,” which is not avallable on
most CISCs, presents itself to RISC compilers as well [Rading3]. In'a
memory-to-memory or memory-to—reglster CISC instruction, a data memory
read must precede the operation execution. If the read requires a large amount
of time, then so will the complete execution of the entire instruction. Because
RISCs generally use reglster-to-reglster and explicit data load mstructlons the
compller can schedule the data load instruction in advance, and then “fll in”

the data load latency with other useful instructions. Because GaAs processors
~can be expected to have longer data load latencies (in terms of instruction
cycles), the burden on the compller to find candidate 1nstruct10ns for the ﬁlhn
gap is 1ncreased o

A thlrd area where Silicon RISCs place increased reliance on compller
, technology is the result of thelr decreased instruction cycle times. Because
Silicon RISCs have such short cycle times, they are more negatively aﬂ'ected by
oﬁ'—chlp delays than Silicon CISCs As a result the compller for the IBM 801

B
\

48

incorporated a sophisticated register coloring scheme in order to reduce that

processor's need for off-chip information [AusHo82]. Also, the IBM 801 3

1nstructlon set included instructions to allow the compller to override the
hardware caching mechanism in some instances when the compller detected a
better strategy for reducing the cache miss ratio [Radin83]. The Stanford
MIPS incorporated an instruction packing scheme, and required the compiler}to‘
perform the packing [HeJoG82]. This approach allows two operations to be
"executed dunng the time required for one fetch, and also reduced the program -
size, both very beneficial characteristics for a processor in an environment w1th
high penalties for off-chip communication. Because GaAs processors will have
‘even shorter instruction cycle times than Silicon RISCs, GaAs processors w1ll'
beneﬁt even more from these types of compiler optlmlzatlons L

3‘3 1 Compiler Optimizations in Control

" The two techniques for reducing hardware complexity, which were Just
briefly hsted are examples of the mlgratlon of control hardware lnto the
compller These are both described more fully here. ~

_ 3 3 l 1 Sequencmg Hazard Interlocks

Sequenclng hazards are caused by branch 1nstructlons on a plpehned
processor The problem arises because before the execution of a branch
instruction is complete, and hence, before the decision to jump can be
established, successive instructions have already been fetched. In general, the
execution of these successive instructions may lead to incorrect results. Silicon
CISCs and Silicon RISCs usually handle this problem in two different ways.

Silicon CISCs usually employ hardware which halts the execution of the
instructions immediately following the branch instruction in the event that the
branch is to be taken. This results in a delay in execution until the pipeline
can be refilled with the blnStl“IICtIOIlS at ‘the destination of the branch. Some
CISCs rely on the compiler or run-time algorithms to predict the outcome of
the branch condition and fetch the instructions: down the appropriate path.
However, a wrong guess again requires the emptying of the pipeline. An even
more ambitious, and hardware-consuming, CISC solution involves fetching and
' decodlng instructions down both paths. This can then be expanded to three
_ paths etc

49

. Silicon RISCs use a technique called ‘“‘delayed branching” to solve the
sequencing hazard problem. Most RISCs always execute the instruction
following the branch instruction, thus, there is no need for special hardware to
halt instruction execution.. However, in order to ensure correct program
execution, only a subset of all possible instructions are eligible for placement in
the “fillin slots” after branch instructions. If eligible instructions cannot be
found then the compiler must insert NOOPs into the fillin slots.

Since branches are typically 25 percent of all instructions in complled HLL
programs [Katev83], their negative effect' on performance can be costly. The
delayed branching method for sequencing hazard resolution, in addition to
promising simpler hardware, offers potentially higher performance as well.
Whenever the RISC compiler is able to successfully move a useful instruction
into the fillin slot, the delayed branching method exhibits no branching
overhead. However, when the RISC compiler is not able to fill the slot, an
instruction cycle is lost whether the branch is taken or not. The CISC
approach, with sequencing hazard resolution hardware, loses an instruction
cycle whenever branches are taken, but loses nothing when sequential operatlon'
is maintained. e

The performance of the delayed branchmg scheme, then depends solely on
the RISC compiler. The Stanford MIPS compiler was able to fill
approxrmately 90 percent of the branch fillin slots [HeJoP83], so an mstructlon_
cycle was lost on only 10 percent of the branch instruction executions. The
CISC approach, with its dependency on dynamic branchmg probability, doesn’t
do so well ‘Since approximately 75 percent of all branch instructions change
the program flow [Smlth81] an instruction cycle is lost on 75 percent of all
branch executions.

However branch instructions are potent1ally more costly for the delayed
branchlng scheme in GaAs processor systems than in Silicon systems. As
discussed earlier, pipelined memory systems are very advantageous in GaAs
processor systems because of their ability to decrease effective memory access
delays ‘However, as evident in Figure 3.3, pipelined memory systems mcrease'
the total plpehne length and, consequently, increase the number of ﬁlhn slots ‘
following branches. For the plpehne in Figure 3.3, the branch delay contalns
three slots instead of ome. Figures 3.11-3.14 show an example program
sequence to demonstrate the branch delay fillin optlmlzatlon on both a Silicon
‘_and a GaAs processor. In Figure 3.11, an unoptimized program sequence is
~ shown for a Silicon processor with a branch delay of one. In Figure 3.12, the
' sequence is shown after the successful fillin of the single fillin slot. Flgure 3.13

- 50

- add a,l10 "~ ‘a takes a plus 10"
‘add b,a ‘b takesvb plus a’
add ¢l ‘c takes ¢ plus 1’
. bgt 0 B ‘if ¢ greater than 0 jump’ .
- NOOP - S

Figure 3.11 Example Program Sequence on a Silicon Processor Before

Branch Fill. ‘
add a,10 " ‘a takes a plus 10

add e¢,1 : ‘c takes ¢ plus 1"

bgt ¢0 ' ‘if ¢ greater than 0 jump’
add b,a _ ‘b takes b plus a’

Figure 3.12 Example Progralh Sequence on a Silicon Processor After
: Branch Fill. ' B

Figure 3.13

Figure 3.14

51

add a,10 ‘a takes a plus 10’

add b,a ‘b takes b plus a’

add e¢,1 ‘c takes ¢ plus 1’

bgt ¢,0 ‘if ¢ greater than 0 jump’
NOOP
NOOP

NOOP

Example Program Sequence on a GaAs Processor Before
Branch Fill. '

add e¢,1 | ‘c takes ¢ plus 1’

bgt ¢,0 “f ¢ greater than 0 jump’
add a,l10 ‘a takes a plus 10’

add b,a ‘b takes b plus a’

NOOP

Example Program Sequence on 3 GaAs Processor After
Branch Fill. '

52

shows the same program sequence in unoptimized form with a branch delay of
three. Figure 3.14 shows the sequence after optimization in which two of the
slots Werkevsuc,'cessfully' filled. The third instruction‘cannot' be moved because
its complet,ion‘ is required ‘before the execution of the br_anch _instruction.
Therefdre the compiler must search outside this code sequence in order »to_'ﬁnd
a thlrd fillin candidate. This example demonstrates both the "instruct‘ionj,
lnterdependencles which hmlt instraction reorganlzatlon and the need for more
sophisticated branch fillin algorithms for GaAs processors. A significant
increase in compiler capability is required in order to successfully fill the larger
number of slots. Although the Stanford MIPS compiler was able"to'ﬁll one
branch fillin slot 90 percent of the time, its fill success on the second and third
slots ‘was 43 percent and 39 percent, respectively [HelJoP83]. Advanc_es in
compiler technology resulting in high fillin probabilities for larger branch delays
will result in much higher performance for GaAs processor systems.

3 3.1.2 Tlmmg Hazard Interlocks ‘

Tlmlng hazards generally arise in plpehned processors when multlple
plpehne stages have potential access to datapath resources at the same time.
Three types of timing hazards have been identified [Gross83]. These are called
destination-source conflicts, source-destination conflicts, -and destination-
destmatlon conflicts. d SNt

| An example of a destination-source conflict is when a plpestage attempts
to read from a hardware resource (i.e. register) before a previous plpestage has
finished wrltmg to the resource. Destination-source conflicts occur naturally in
register-to-register architectures whenever an instruction writes to a register
which is a source register for the succeeding instruction. |

An example of a source-destination conflict is when a pipestage attempts
‘to write to a hardware resource at the same time that a previous pipestage is
reading from the resource. Another source-destination: conflict occurs when a
pipeStage writes to a hardwf;mre resource before a pipestage of a preceding
instruction is to read it. The second type of source-destination conflict occurs
when a pipestage reads a resource which 'is previously written by a plpestage in
a succeeding instruction. If an exception of some kind occurs, the succeeding .
instruction may not be executed before the pipestage of the preceding
instruction reads the resource. ,

An example of a destination-destination conflict is when two pipestages
‘attempt to write to a resource concurrently. This may result when the value of

53

a data load is to be wrltten to a reglster at the same time that the result of an
ALU operation is to be written to the same register. ’

CISC: processors typically utilize hardware to prevent incorrect execution
due to timing hazards. An example technique is the “scoreboard” used in the
CDC 6600 [Thort64]. Some RISC processors such as the Berkeley RISC-II use
a hardware technique called “internal forwarding” to resolve destinat'ion-source
conﬁlcts

The Stanford M]PS on the otherhand, rehes entlrely on software to
resolve timing hazards. The MIPS compiler is tasked with reorganizing
instructions so that all conflicts are removed. If the compiler cannot find a
suitable candidate instruction to prevent a conflict, it must insert a NOOP. In
Figure 3.15 is shown an example code sequence with a destination-source
- conflict, since register a is both the destination of the first instruction and the
“source of the second instruction. In Figure 3.16 is the default action of a
compiler - to resolve the conflict, and Figure 3.17 shows a successful
reorganization to eliminate the NOOP. It has been reported that the MIPS
instruction - cycle would have been lengthened by 10 percent if hardware
lnterlocks were used [Patte85] ' ’

Because of its reduction in hardware requlrements software 1nterlock1ng
‘ may be desirable for a GaAs processor. However, this approach again places a
» great burden on the compiler in order to minimize the number of NOOPs
lnserted into the program. ‘

3.3.2 Compiler Optimizations in Memory
~ The low transistor count of GaAs imemory chips and the high performance
penalty of inter-chip communication severely hinder the memory systemin its
attempt to maintain an adequate supply of instructions and data for a GaAs
processor. Fortunately, the compiler for such a processor has the potentlal to
" greatly increase the efficiency of the hardware resources which 1mplement the
- memory system '

, A compller can provide memory system support in two ways. Flrst it can

increase the reusablhty of information, i.e., it can increase the length of time
that useful information is kept in the higher levels of the memory hlerarchy,
Second it can overlap the transfer of information into the higher hierarchical
levels with the executlon of useful instructions through information prefetchlng
These two technlques are each dlscussed here for two types of memory

Figure 3.15

54

add 2,10 - ‘a takes 'a;plus 10’

‘add ba _ ‘b takes b plus a’

add c¢,d ’ ‘c takes ¢ plus d’

Example Program Sequence Showing a Destination-Source

- Confliet.
add }1,10 ' : _‘a takes a plus 10’
NOOP. f ' '
add b,a ‘b takes b plus a’
- add c¢d ‘c takes ¢ plus d’

Figure 3‘.1 6 2

Example Program Sequence Showing Default Compiler Action
for Destination-Source Conflict. '

~ Branch Fill.

Figure 3.17

35

add a,10 ‘a takes a plus 10’
add e,d ‘c takes ¢ plus &’
add b,a ‘ ‘b takes b plus a’

Example Program Sequence Showing a Successful
Reorganization of Destination-Source Conflict.

56..

(1) ‘Memory which is normally controlled by the coinpiler, i.e., the register file.
(2) Memory which is normally controlled by run-time mechanisms, i.e., the
- cache and main memory.

3.3.2.1 Reglster File Compller Optlmlzatlons

Reglster file usage is normally du'ectly controlled by the compller and in
fact registers have absorbed considerable abuse for the very fact that they -
require this compiler control.. Because of the long history of register usage,
B compller designers have developed fairly advanced- techniques for utilizing
reglsters efficiently. The RISC designers were instrumental in advanclng
compller technology in this area in order to exploit their faster execution cycle
times. GaAs processors, because of even faster instruction executlon will
experlence a corresponding beneﬁt from improved reglster ﬁle compller
optlmlzatlons -

3 3. 2.1.1 Reusabxlxty

. In a GaAs processor which executes register-to-register 1nstruct10ns and
only accesses off-chip data via explicit data load and data store 1nstruct10ns
data loads and stores are extremely costly. The primary reason for this is the
much longer access delay for off-chip memory. A secondary cost is the increase
in total program size caused by the presence of data loads and stores. Larger
program sizes can be expected to decrease hit ratios at all levels of the
mstructlon memory system.

In typical compiled HLL programs on RISC machlnes data loads and -
stores are approximately 30 percent of all executed instructions [Patte85]. In
the Silicon environment, larger register files may be incorporated in order to
keep more useful data on-chip. As indicated earlier, the designers of the
Berkeley RISC-II used 138 registers, divided into eight windows, to reduce their
frequency of data loads and stores to approxxmately 15 percent [Patte85).
Clearly, this solution is not apphcable for a transistor-scarce GaAs processor.
The multlple window schemes for GaAs disussed earher, although pot;entlally
good approaches do add hardware complexity to a GaAs Processor.

The designers of the IBM 801 relied very heavily on the capablhtles of
' ‘compller technology. Their PL.8 compiler incorporated a highly sophisticated
register allocation scheme to reduce the frequency of loads and stores
[AusH082] ‘

57

~ Figures 3.18 and 3.19 show the improvement that can be gained from an
intelligent compiler. Figure 3.18 shows an example unoptimized code sequence,
- Figure 3.19 shows the same sequence, but produced by a compiler with a good
register allocation scheme. Clearly, a compiler-based approach to reduce the
- frequency of data loads and stores has an inherent advantage over hardware
approaches in the GaAs environment if it can achieve adequate results '

| 3.3.2. 1 2 Prefetchlng

As indicated prev10usly, RISC processor deSIgns allow a compiler
optimization not allowed on typical CISCs. This optimization, “data load
fillin,” reduces the negative effect of data load latencies on performance.
Because GaAs processors can be expected to have longer off-chip data load
' latencies than Silicon processors, this optimization can have a greater posrtlve
1mpact on performance for a GaAs processor.

In a GaAs processor system, the data memory may execute data loads and
stores in parallel with processor execution. In principle, for all data memory
vaccesses the processor need only initiate the access, and also receive the data
value resultlng from a load. If the compiler is able to schedule enough useful
instructions after the data load initiation, the data load latency is eﬁ'ectlvely
eliminated. '

- The compiler then is tasked with scheduling each: data load instruction so
that the data load result is in the processor before or at the time the processor
requires it. This optimization is similar to the branch fillin problem described

earlier in that only a subset of the possrble instructions can be used to perform ’
rthe load fillin.

- This optlmlzatlon is shown in Flgures 3.20-3.23 for a Slhcon plpehne
represented by Figure 3.1 and a GaAs pipeline represented by Figure 3.3. In
Frgure 3.20 is shown an unoptimized program sequence for the Silicon Ppipeline,
while Figure 3.21 shows the optimized version. Figure 3.22 shows. the same
unoptlmlzed program sequence for the GaAs pipeline, and Figure 3. 23 shows its
~optimized form. As in the case of branch filling, data load filling success is
limited by data dependencies, and more sophisticated optimization strategres
are required to approach 100 percent fillin on a GaAs processor. Because data
loads are so frequent, the implementation of improved compiler technolognes
can lmprove GaAs processor system performance significantly.

58

store a,TEMP = ‘store a into TEMP’

add b,c - ‘b takes b plus ¢’
load a,TEMP -~ ‘load from TEMP to a’ -
add b,d S ‘b takes b plus d’

add d,a ’ ‘d takes d plus a’

F igure 3.18 Example Program Sequence Showing Poor Register

Allocation. ’

add b,c ‘b takes b plus ¢’
add b,d- - ‘b takes b plus d’
add d,a ‘d takes d plus a’

Figure_‘3.1‘9 Example Program Sequence Showing Good Register
' ' Allocation. . _

50

add» a,b , ” ‘a takes a plus b’

add a1 ~ ‘atakes a plus 1’
~add eb S ‘c takes ¢ plus b’
~load d,Ale] ‘load Af¢] into '
NOOP o S
add ed = ‘etakeseplusd

Figure 3.20 Example Program Sequence on a Silicon Processor Before

Load Fillin.

add ab o ‘v‘a takes a plus b’
add ¢b - o ‘c takes 'c plus b’
load dAle] = ‘load Alc] into d’
add a,l : ‘ ‘a takes a plus 1

add ed o ‘e takes e plus d’

g Flgure 3.21 Example Program Sequence on a Slhcon Processor After
Load Fllhn ‘ '

60

add ab ‘a takes a plus b’

add a,l ‘a takes a plus 1’ -
add ¢,b ‘c takes ¢ plus b’
load d,Afc] ‘load Alc] into d’
NOOP

NOOP

NOOP

add ed ‘e takes e plus d’

Figure 3.22 Example Program Sequence on a GaAs Processor Before
Load Fillin.

add e¢,b ~‘c takes ¢ plus b’
load d,Alc] ‘load Alc] into d’
add ab ‘a takes a plus b’
add a,l ‘a takes a plus 1’
NOOP

add ed ‘e takes e plus d’

Figure 3.23 Example Program Sequence on a GaAs Processor After
Load Fillin.

61

3.3.2.2 Cache / Main Memory Compiler Optimizations

The contents of the LRU-based memory levels of the memory hierarchy
(ie cache, main memory, etc.), are normally determined by run-time
hardware. However, as already indicated, in many instances in which the
temporal and spatial localities of reference, upon which LRU mechanisms are
based, fails, the compiler is able to prov1de assistance. Because a similar delay
" due to memory misses results in greater wasted instruction cycles for GaAs
processors than for Silicon processors, compiler optimizations to improve hit |

ratios gain added 1mportance in the GaAs environment.

3.3.2.2.1 Reusability

This section describes two ways in which the compiler is able to increase
“the useful time of cache blocks main memory pages, etc. The first technique is

. to increase the temporal and spatial localities of reference, and the second

technique involves providing support which is used at run-time to reduce. the
negatlve consequences of poor locality. ‘

Increasrng referencing locality is more effective for large memory unlts
such as main memory pages or segments, but also may be used with: cache
‘blocks a,s well. What is desired is an increased correlation between hlgh
temporal locality and high spatial locality for particular information units. In
other words, the information which is used within nearby time perlods should
- also be stored in nearby memory locations. If the compiler (and linker) knows
- the page size, etc., then information which exhibits high temporal locality, as
determined by the compiler, can be allocated memory locations within the
same page, etc. Even without page size information, more spatial locality by
1tself will decrease miss ratios. A study was performed on a compiler algorithm
'to ‘increase the spatial locallty of data having large temporal locahty
'[AbKuL81] In this study, miss ratios for the unmodified programs were as
much as 20 times higher than the miss ratios for the modified programs.
Clearly, ‘this type of compiler optimization will have an enormous 1mpact on
the performance of a GaAs processor system. : ’

As mentloned earller one instance where temporal locahty is not present lS

the use of some partlcular information followed by a large period of non-use.
Brmglng this type of information into a higher level of the memory hlerarchy’
Swill decrease that level’s hit ratio, because it results in more useful information
belng replaced If the compller detects that an information access will displace
mformatlon of hlgher future usefulness, then it may overrlde the run—tlme :

62

. 1nformatron control mechamsm ‘One pos31ble method for accomphshlng thls is
the use of speclal data load and store. instructions which 1nh1b1t the memory
system’s run-time mechanism. This technique is used on the IBM 801
[Radin83]. A special data store instruction is provided which signals the cache
to not perform block replacement. As with many compiler optlmlzatlons
v desrgned for Silicon RISCs, this technlque is potentrally even more profitable
} :for a GaAs processor '

3 3 2.2 2 Prefetchmg

As mentloned earlier, temporal locality is not present in instances where
’mformatlon is accessed for the first time after a long period of non-use. These '
mstances occur when the present referencing locality is exited and a new
locahty ‘established. These inter-locality gaps are disastrous for LRU-based
run-itllme mechanisms. It is possible for the compiler to detect these. inter-
locality gaps and to assist the run-time mechanism in preparing for them This
technlque is more useful for the cache than for the main memory in systems
_w1th magnetic disks. Since disk accesses normally require milliseconds, page
faults are usually handled by switching to another waiting task. Unless the
prefetchmg scheme can detect the prefetch candidate mllhseconds before need,
nothlng is gained by beginning the disk transfer early.

When the compiler detects a prefetching candidate, it requires a method to
initiate the prefetch. One technique is to use special memory prefetch
instructions, which are executed by the processor as special memory
instructions. These special instructions may be handled by the memory
hardware in much the same way as any memory access. When such an
“instruction is executed, the processor calculates the memory address and does
nothing more. Many of the NOOPs normally executed by the processor
because the compiler was unable to successfully perform branch or load fillin
may be replaced by these special memory instructions. Once again, this
compiler support can increase the performance of a GaAs processor
significantly. | : | AR

63

' . CHAPTER IV Sl
PIPELINE AND INSTRUCTION FORMAT EXPERIMENTS

In Chapter II we presented an overview of GaAs technology We studled
the GaAs device families andlogic families commonly used in digital desrgns
‘We' selected the most capable and mature GaAs technolog'y, the DCFL E/D- |
'MESFET" famlly, compared it with Silicon NMOS, and found a number of
significant differences. We then enumerated those characteristics of the GaAs
DCFL E/D-MESFET family which we believe will significantly 1nﬂuence the
design of ‘computer systems usmg ‘this technology. '

In Chapter I we presented approaches to computer system desig'n’that we
consider to be appropriate for GaAs technology. We first described the manner
in which' the characteristics of GaAs influence computer system de51gn We
then dlscussed design approaches for the hardware and . compller of GaAs‘
computer systems : D

" In this chapter we describe two experiments which extend _some of the

work presented in Chapter II. We first discuss our evaluation methodology, -

lncludlng our evaluation tools. We then present our first experlment whlch
compares: candidate. GaAs instruction pipelines, and follow that with an
experiment to compare candrdate GaAs instruction formats.

4.1 Evaluation Methodology |

We utiliz'e_‘ simulation as our primary evaluation technique. We c,hoos'ethis'
approach because of its advantages over other evaluation methodologies, and
- because the appropriate tools are readily available to us. Analytical models are’
also sometimes used, but these are generally not as 'representative as,
simulations. We don’t like hardware prototyping for many reasons lncludmg
cost, lack of flexibility for design modifications, and, of course, the fact that no
GaAs systems of the type we wish to model have ever been bullt before.

Our prlmary evaluation criterion is the time required to execute’ complled
HLL programs. In order to obtain HLL program execution times, a simulation

64

system requlres three prlnclpal components First, an apphcatlon env1ronment

“in the form of HLL programs is necessary. Second, a s1mulatlon program

~ which’ implements the architecture description is needed. Finally, a ‘method of

-translatlng the HLL programs to the archltecture description is requlred and

I thls ‘translation should “be optlmlzed to exploit any executlon speedup
_ opportunltles presented by the archltecture ‘ v

411 Workload Model .

~ 'Because computer _system . performance depends heavily on the
characteristics of the programs it executes, the selection of an approprlate
application environment is of considerable importance. We can observe the

o effect of different application environments in the design of commerclal Silicon

' ,systems such as the Cray-1 [Russe78] for highly arithmetic env1ronments with
regular “data structures, the TMS320 [MaCaM82] for signal processing.
apphcatlons and the MC6802O [MaMoM84] for general purpose apphcatlons |

Our: apphcatlon environment consists of a broad mlxture of . programs |
wrltten 1n the high level language PASCAL, ‘These programs vary cons1derably
in thelr use of iteration, recursion, arlthmetlc and data structures. ‘Considered
‘collectlvely, they represent a general purpose programmlng env1ronment while
the characteristics of selected individual programs may be used to enhance the
responsxveness of execution time to partlcular architectural variations.

The ten PASCAL programs which represent our workload model were'
' obtalned from Stanford University through RCA Corporation. Many of these

programs are widely used for benchmarkrng purposes and appear . frequently in
the hterature : - -

(1) Ack a h1ghly recursive program to compute Ackermann’s- functlon

). 'Bubble a program to perform a bubble sort of 500 1ntegers ' :

(3) ‘.;'Flb a hrghly recursive program to compute a Flbonaccl number o
)

_-Intmm <a computatron heavy program to multlply two 40x40-element- _
o _lnteger arrays ' v o » A

(5) Perm - a hlghly recursive program to calculate all permutatlons of the‘
. numbers 1 through 7. ,

(6) Puzzle - an iteration-heavy, computatlon-heavy program to solve a3
.dlmens1onal cube packmg problem. '

(7). Queen ‘a program to’ solve the Elght Queens problem

65

(8) Qulck a program to perform a qulck sort of 5000 integers.

(9) Sieve - a program which calculates the number of primes between 0 and
8190. ’ '

(10) Towers - a highly recurswe program to solve the Towers of Hanoi problem
w1th 18 discs. ‘

4.1. 2 Architecture Model

Our architecture model is a simulation program written in the hlgh level
language C for the Stanford MIPS processor. The MIPS simulator was made
available to us by RCA. It performs simulation at the instruction level;
therefore, it requires MIPS instructions for its input. Its output is the program
execution time, in terms of the number of instructions executed '

The MIPS architecture is very appropriate for this study because its
transistor count is compatible with GaAs E/D-MESFET capablhtles of the
near- future. It is helpful to revisit several MIPS characteristics in order to
prov1de a better understandmg of the followmg two experiments.

First,” MIPS employs delayed branching with a branch delay of onex.
Agam,_. ,th_ls.means that the first instruction after every branch operation is
always executed, and the compiler is responsible for finding instructions for the
fillin-slots such that correct program execution is maintained. If the COmpiler
cannot find ‘a useful instruction for a ﬁlhn slot, it must then insert a NOOP
into the slot. '

Second, the MIPS compiler must perform an analogous function for the
first instruction after data load operations.

Finally, the MIPS processor employs instruction ~ packing. - A MIPS
instruction may contain two operations which are executed sequentially in the
time necessary to perform one instruction fetch. Not all operatlon
combinations may be packed, however, and mstructlons may therefore contaln
elther one or two operations. '

* The Stanford MIPS literature states that the “indirect branch mstructlon (see Appen-
dix B) has a branch delay of two. However, we consider this instruction to be a pair of
operations - a data load followed by a branch. We are carefully using instruction to refer
to those atomic entities which are fetched into the processor, and we use operation when-
ever an instruction contains multiple executable pieces. This distinction is important
when discussing packed instructions containing multiple operations, in addition to the is~
sue of indirect branch instructions.

66

“In addition to the Stanford software, we will use a cache simulator which
was designed and implemented at Purdue University. The cache simulator is
implemented as a procedure which is callable from within the MIPS simulator.
It receives addresses and possibly data and returns the number of instruction
cycles required for access, while updating the data and tag information.
Modifications to the cache size, block size, prefetch strategy, cache hit delay,
- and cache miss delay allow for a flexible cache implementation.

4.1.3 Workload to Arclntecture Translation

There must be some way to translate the PASCAL benchmark programs
into a form acceptable to the architecture simulator. The software package
that we use for this translation was written by Stanford and again provided to
~us by RCA.. The package consists of a PASCAL compiler, optlmlzer, code
generator, a,ssembler and reorganizer, linker, and loader.

~ The compiler transforms PASCAL programs into an 1ntermed1ate
language, which then receives hardware-independent optlmlzatlons before being
converted into MIPS-like instructions. The assembler and reorganizer perform
~ the branch delay fillin, load delay fillin, instruction packing, etc., and- convert
the. MIPS assembler instructions into machine code. The linker comblnes this
code w1th the run-time library containing multiplication routines, 1nput-output'
routines, etc and the loader logically stores the linked program into memory‘ |
locations between 0 and 31,999. This loaded program is then written to a file
where 1t is kept until required by the architecture simulation program.

4.2 Pipeline Experiment ‘ o ,

_ We now describe an experiment undertaken in order to evaluate three-
instruction pipelines in a GaAs processor environment. We begin by explalnlng
our motivation for performlng this experiment, and then we present our ch01ce
of pipelines for examination. ‘We describe our evaluation criterion and present

- some background to illustrate why optimal pipeline performance is usually not

achleved ‘We then discuss our methods for quantifying these causes of
suboptlmal performance, and we incorporate them into our analytical pipeline
* performance model description. We present our experlmental results and ﬁnlsh
: w1th a dlscussmn of these results. ' ’

67

4.2, 1 Ratlonale '

Sectlon 3.2.3 presented the problems associated with the use of Slhconvk
plpellnes in a GaAs processor. Again, the disadvantage of such an approach is
that the datapath of a GaAs processor will have a severe underutilization
permanently built into it. Three approaches to: alleviate this p'roblem_‘- were
advocated, and they are represented by Figures 3.3 - 3.5. Figure 3.3 shows an
"1nstructlon pipeline. which results from the use of a plpehned instruction -
' »memory, ‘Figure 3.4 shows an instruction pipeline. which 1ncorporates‘
‘instruction packing; while Figure 3.5 shows an instruction. pipeline resulting
from the use of slow datapath elements. We believe that it is very desirable to
determine ‘the relative performance capabllltles of these candidate instruction
plpehnes in a GaAs processor environment. :

4.2.2 Candidate Pipeline Descriptions o _
“Because of the nature of our simulation tools, we find it relatively
stralghtforward to study two of the above three candidate instruction plpehnes

Through modifications to the MIPS simulator and analytlcal technlques
descrlbed later, it is relatively easy to model the performance of the instruction
rplpehne ‘with a pipelined instruction memory. This instruction pipeline w111 be
called the “plpellned memory” pipeline from now on. :

‘ The second instruction pipeline -that we model is- the plpelme with
1nstructlon packing. We use the packed MIPS format to represent thls
plpelme, which we will call the * ‘packed” plpelme : :

The “pipeline with slower datapath elements is con51derably harder to
model because a large number of variables are involved. This pipeline
advoeat,es_"the removal of hardware resources from datapath elements used to
- perform simple operations, and the reallocation of them elsewhere. The freed
hardware resources may be used to implement an on-chip serial multiplier,
larger number of registers, etc. However, there are several difficulties in the -
analysis of this pipeline. First, datapath elements requlre redesign and relayout
in order to determine both the additional transistors and area available for
other gg;tg, The two hardware candidates which we've identified to receive
‘these freed resources are a serial multiplier or larger number of registers. The
serial multiplier requires considerable effort for its design and incorporation into
the processor. This is in addition to the effort needed to model its presence in
such a processor. An increase in register file size cannot be effectively modeled
because the MIPS compiler which we are using does not produce correct ».'c_o‘de

68

when register values must be spilled [L1nn85] A set of benchmarks necessary
to test the performance benefit of the additional registers must contain
procedures with many variables; however, these benchmarks cannot be
cbmplled by our compiler. Because of these difficulties, we w1ll not. study the
1nstruct10n pipeline with slow datapath elements.

~ We do include a third pipeline in this study however. In order to discover
the performance advantage, if any, of the two candidate GaAs plpelihes over a
Silicon - ‘pipeline, we choose an example Silicon pipeline for evaluation. The
pipeline that we use is for an unpacked version of the MIPS instruction set.
We call this pipeline the “normal Silicon” pipeline.

4.2.3 Evaluation Criterion |

For this study we choose as our evaluation criterion the number of useful
(i.e. non-NOOP) operations * executed per datapath cycle. We are -not’
concerned with speeding execution by minimizing the datapath time, nor are
we allowed to arbitrarily lengthen the datapath time in order to: 1nﬁate our.
performance metric. As we will soon observe, the important constraint which
we will obey is the ratio of instruction fetch delay to datapath delay.

" We deﬁne an ‘“‘ideal” instruction p1pehne to be one which ylelds a useful
operatlon executlon on every datapath cycle. In order to achieve this ideal
operation executron rate, the pipeline must exploit the parallellsm.‘typlcally
present. i'n modern single-processor computer systems. Example parallel
resources include the instruction memory, instruction fetch logic, instruction
decode logic, instruction execution logic (datapath), and data memory.

4.2.4 Causes of Non-ideal Performance '

In. reality one-operation-per-cycle execution is not achleved Memory-
system deficiencies and disruptive programming constructs both reduce the
performance of a computer system. We can observe three types of dlSl'llpthIlS
which degrade the performance of our pipelines. In all three cases, the
magnitude of performance degradation is highly dependent upon ‘the
: .capablhtles of both the memory system and compiler. :

" (1) Branches. The form of parallelism exploitation utilized by plpehnlng is

o severely undermined by program branches, as described in Section 3. 3.1.1.
We find it helpful to present again the manner in which program branches

‘ _degrade the performance of pipelined processors which utilize delayed

(2)

69

branching. In the simple example Silicon pipeline of Figure 31 .we' ‘

observe the concurrent usage of the instruction fetch logic / instruction

memory and the instruction execution log'lc Note, however, that ‘while

| the execution logic executes an instruction, instruction i for example the
“instruction fetch logic is fetching instruction i+1. This is the essence of
v the pipelined method of parallelism exploitation. However, it the
-execution of instruction i causes a program branch, the work. (fetch of
‘ “1+1) performed by the instruction fetch logic is for naught unless the

compller can guarantee that instruction i+1 is useful. In the GaAs

'plpellned memory pipeline of Figure 3.3, the compller must ensure that
‘three useful instructions follow branch operations in order to prevent a
variation from ideal operation execution. ’

Instructlon Fetches. An instruction memory which exhibits a longer fetch

“delay than the instruction execution logic (datapath) delay must have
;parallehsm introduced into it, and this parallelism must be fully exploited
or else performance degradatlon will result. An example plpehne for an
. vlnstructlon memory exhibiting no parallelism and a long fetch delay 1s
: shown in Figure 3.2. This p1pe11ne is unacceptable if high performance is a
‘design goal. Pipelines resulting from parallel instruction memory systems
are shown in Figures 3.3 and 3.4. The pipeline of Figure 3.3 results from a
'-plpehned instruction memory consisting of three stages. These parallel”

stages require compiler assistance to be fully exploited in the presence of
branch operatlons as discussed above. The pipeline of Figure 3.4 results
from an instruction memory which provides three operations in parallel.
In general, the restricted number of pins on the processor chip will limit
the size of instruction transfers, while the large size (number of bits)
required by some operations will limit the number of operations which
may be concurrently fetched. Again, compiler assistance may be needed

" to maximize the packing of operations into instructions. One final cause

of non-ideal operation execution is the variation in fetch times between
the levels of the memory hierarchy. Generally, the parallelism just

“ discussed is only introduced into the highest level of the memory
_“hlerarchy If the instruction requested by the processor is not in the

highest memory level, then a delay is introduced. Therefore the “hit

ratio” of the highest level of the instruction memory hlerarchy is also

important.
(3) De , . v
_datapath delay must depend on parallelism exploitation in order to avoid
_degrad_ing_v ‘the processor’s performance. Typical memory hardware

Data Loads. A data memory whichhhasa longer access delaythan the

70

methods for introducing parallelism include interleaved memory” and
_pipelined memory. Interleaved memories allow multiple words to be
concurrently accessed much as multiple operations are accessed in packed
~ instruction fetches. However, because of the lack of redundancy in most
data the pin count limitations of a single-chip processor reduce the
- apphcablhty of this approach. Pipelined memories are useful and easily
~ exploitable for data stores; and also useful for sequences of data loads. In
~ general, though, the compiler is most capable of exploiting the parallel
datapath and data memory units by successfully performing load fillin.
Again, the effect of cache misses ‘may also cause performance degradation.

4.2.5 Modeling Memory and Compiler Effects

As demonstrated in the last section, both the off-chip memory system and
the compiler have large influences on the performance of our GaAs pipelines.
Because there is a lack of experimental data for the memory system parameters
* which we require, we will use a range of values which we consider to be
representative of future memory system designs. Also, since we presently know
of no compilers which have been designed to exploit the optimization
opportunltles presented by our candldate plpehnes we use a range of values for
our compller-based parameters.

4.2.5.1 Memory Parameters

- As mentioned in Section 3.2.3, a reasonable number for the ratio of
instruction‘fetch delay to datapath delay is three when an off-chip/on-package
instruction memory is used. We will, therefore, use this ratio for all on-
package accesses throughout the rest of this experiment. For oﬂ'—chlp/oﬂ'-
package accesses we will use six as the ratio of memory access delay to
datapath delay. Also, we will assume that the capacity of this oﬂ'-package'
memory is mﬁmte therefore hmltmg this analysis to a two—level memory
hlerarchy

-We will use three memory conﬁguratlons of the four whlch are possrble
-w1th our ‘two-level memory hierarchy and separate instruction and data
“memory. The first configuration, which we will call the “(3, 3)” conﬁguratlon
- consists of a two—level instruction memory and a two-level data memory. The
~ ratio, of the memory access delay to datapath delay for the fastest level of the

o hrerarchy in both cases is then three. The second configuration, denoted

7

“(3,6),- contams a two-level instruction memory and a single-level data
‘memory. - The ratio for the data memory -is always six. The third |
conﬁguratlon, the *(6,3)” configuration, contains - a single-level instruction
‘memory. and two-level data memory. The ratio for the mstructlon memory is

always six in this. conﬁguratlon : |

We Tequire six memory parameters, four of which are d1rectly derlvable
from the pipeline and memory configuration. However, since we will require all
sxx parameters in our analytical performance model, we ‘will deﬁne all six here '

(1) “nih” - Number of effective datapath cycles for an instruction cache hit.
This parameter is one or three if an on-package instruction cache is used;
it is one or six otherwise. Note that the ‘“effective” access delay of a
pipelined memory is one. ‘ ' | Do
(2) “nim” - Number of effective datapath cycles for an instruction cache miss.
This parameter is four or six if an on-package instruction cache is used; it |
s six otherwise. Note that an instruction cache miss always results in a
delay of three cycles, unless a single-level instruction memory is used.
(3) ‘‘pih” - Probability of ins_tructien cache hit. This parameter is not directly -
- derivable from the pipeline and memory configuration. We instead will
. .:use a range of values for this parameter. For the default value we observe
_ the empirical cache hit ratios. presented in [Smith85] for small cache sizes.
' Based on these results we select a value of 0.8 as our default value.

(4) “‘ndh-‘” - Number of datapath cycles for a data cache read hit. This
parameter is three if an on-package data cache is used; it is six otherwise.

(5) “ndm” - Number of datapath cycles for a data cache read miss. This
parameter is always six.

(6) “pdh” - Probability of data cache read hit. As with prh thls parameter is
not derivable from our pipeline and memory configurations, so we will use
a range of values. From the results in [Smith85] we select a default value
of 0.8 for this parameter as well. ‘

There is an assumptlon implied here for data memory accesses, . The
parameters ndh, ndm, and pdh are valid for data memory reads only. We
assume that the data memory is pipelined such that data memory wrltes only
cost the processor one datapath cycle. A similar assumption for data memory v
reads would add con51derable complexxty into this analysm

72

4.2.56.2 Compiler Parameters

)

“There are two compiler parameters required for our analysis.

“pbf” - Probability of branch fill. This is the probability that the branch

- fillin slots immediately followmg branch operations contain useful

; instructions. - As in the case of both pih and pdh above, we will use a
- range of values for this parameter as there is no empirical data, to our

: _knoWledge available for a compiler targeted to an architectufs w1th our

large branch delays. We will use 0.6 as our default value because this is

‘the value obtained by the MIPS compiler for a branch delay of three
- [HeJoP83]. However, because the MIPS compiler was- actually targeted to

a machine with a branch delay of one, we don’t believe their motivation

~ for successfully filling three slots was especlally strong; thus, perhaps our

- default value is low for a branch delay of three. However, since we also

utlhze branch delays of six in this experiment, we consider our default to
be a sultable compromise. ' '

“Note that the value for pbf is the probability that all of the possible slots

are filled. Thus, for a branch delay of three and pbf of 0.6 there are an

.. average of 1.8 useful instructions and 1.2 NOOPs followmg each branch

operatlon

“plf” - Probablllty of load fill. This is the probability that the load ﬁlhn '
slots immediately following load operat1ons contain useful 1nstruct10ns
We will use a range of values for this parameter, and since even less

: 'emplrlcal data is available for this parameter than for pbf, we w111 use the

same default value 0.6.

- 4.2.6 Modeling the Workload Effects

We now discuss the characterlstlcs of our benchmarks whlch we require in

our analytical performance model.. We ﬁrst define the workload parameters

and then we then present them in Table 4 1.

4.2A.6.>1 Workload Parameter Definitions

‘Section 4.2.4 discussed three causes of non-ideal instruction plpehnev

performance. Again, these are derived from branches, instruction fetches, and
data loads In order to determine their total negative effect on program
executlon t1me we need to know the number of branches, mstructlon fetches,

and data loads present in our benchmark programs We, ;wi_ll_ ,uSe-,:three “
abbrevratlons for these three parameters : SRR PR
(1) “ni” - Number of 1nstructlons in- the benchmark program’ under study, or
- ‘the average number of 1nstructlons 1f the workload contalns multlple :
~.benchmark programs S R
(2) “*n I Number of load operatlons in. the benchmark program under study, _
- or the average number- of load operat1ons if the workload contalns multlple -
,fbenchmark programs. ‘ j e
(3) “gb” - Number of branch operatlons in- the benchmark program under '
'.study, or the average number of branch operat1ons 1f the workload
.contalns multiple benchmark programs. ' C

" In¢ addltlon to these three parameters, the analytical performance model'
described “in- ‘the next section requires three additional parameters whlch_
descrlbe the effect of the Stanford MIPS compller on the benchmark programs

© Because two of our candidate instruction plpelmes do not use packed
1nstructlons and because our analysis is based upon the MIPS lnstructlon ‘

. format, which does use packed 1nstructlons, we must know the number of

~ packed 1nstructlons in the benchmark programs. Agaln we shall abbrev1ate thls |
;parameter ‘ : o

(") “np” Number of packed lnstructlons in the benchmark program under'

:_;:study, or the average number of packed lnstructlons if the workload

':contalns multlple benchmark programs. Appendix B descrlbes ‘the -

~ Stanford MIPS instruction set, and the instructions which are eligible to

"be.-packed are evident there. However, just because a MIPS instruction

‘contains space for two operations does not imply that every instance of

-~ this: 1nstruct10n is packed The ALU operation piece of any MIPS may

~ contain a NOOP, which is actually a “MOV Rx,Rx” operation. Also we

- consider both the conditional branch 1nstructlon and the condltlonal trap

“instruction to be packed since two MIPS operations are clearly requlred for
‘both of these instructions. :

In order to model the effect of a compiler for a GaAs processor “the
analytlcal ‘model of the next section must know some addltlonal eﬁ'ects of the-
MIPS: compller on the benchmark programs. S

(5)’ “pbe” - Probablhty of branch fill that the Stanford M]PS compller'v :
- achieved on the given benchmark programs. Determining this value is
comphcated by the instruction packing of the MIPS instruction set. “The

‘ approach we've taken is to ignore packing in . determlnmg pbe If a

74

»_branch instruction is not packed and could be thls does not aﬂ‘ect pbe
" Also, if a fillin slot after a branch contains at least one operatlon, then '
- that slot is considered to be ﬁlled otherwise it is unfilled. B

| l(6). 1:'j “plf0” - Probablhty of load fill that the Stanford MIPS compller achleved
~~ on the given benchmark programs. The above statements: concernmg
{_PaCklng apply here as well ' S

4.2.6.2 'WOrkload Parameter Values -

| Through minor modifications to the Stanford MIPS simulation prog'ram we
can obtain the above six workload parameter values. The simulator
» modlﬁcatlons involve the insertion of appropriate counters into the simulation
program. . Because these modifications are minor in contrast to the large size of
~ the simulation program, we don’t list them. Table 4.1 contains the results,

- which we obtained for the ten benchmark programs The benchmark average at

the bottom of the table welghts the contrlbutlon of each benchmark program- k
equally ’ ‘ : '

427 Analyti’cal Plpeline Perforrnance Model

We use our pipeline performance mode] to evaluate each of our candldate
p1pelmes - As discussed in Section 4.2.3 the ideal plpehne execution rate is one
useful operatlon per datapath cycle. Equlvalently, this 1deal rate_yl_sl one
datapath cycle per useful operation. - '

.-Our’ performance equatlons calculate the total number of datapath cycles
,requlred to execute the benchmark programs. “These values will then be used'
to help create the plots shown in the next section. P i

» Altogether we have nine candldate GaAs p1pehnes They are the normal:
‘ Slhcon plpehne in the (3,3), (3,8), and (s, ,3) memory ‘configurations; the- packed:

p1pe11ne in the (3 3),-(3,8), and (6,3) memory configurations; and the prpehned

memory p1pehne in the (3,3), (3,6), and (6,3) memory configurations.

" The normal Silicon p1pel1nes are shown m Flgures 41 - 43 and thelr f
performance equations are given in Equations 4.1 - 4.3, The packed pxpelmes :
are shown-in Figures 4.4 - 4.6 and their performance equations are given in
Equatlons 4 4 - 4, 6 Flnally, the plpehned memory plpehnes are . shown in

7%

~ Table 4.1 Workload Characteristics Relevant for Pipeline Study. .

i

.nbx*

nh; B

Bpk

_pbfo

plfo. |

| Benchmark

“ack

1000

216

270

189.

062

- 0.90

1| 1000

217

SL21r

- 350

0.51

1.00

bubble
. .ﬁb, _

1000.

212

303

212

071

©1.00

intmm

1000

- 63

134

637

100

100

perm .

1000

143

304

230

0.75

0.88

puzzle |

1000

316

263

489

0.95

0.92

‘queen.

151

. 299

252

063

065 |

‘quick .

1000
1000

208

- 633

0.56

0.97

sieve

1000

249

156
50

449

1.00

1.00 |

towers . -

1000

129

362

203

044

0.74

average

1000

190

235

- 364

- 0.72

091

% Measured per 1000 MIPS instructions.

76

f Flgure 4. 7 4 9 and their performa,nce equatrons are glven m Equa,tlons 4 7 -,‘
4.9. o : ‘ o

The derlvatlon of the performance equatlons is rather bulky, therefore we

1nclude it 1n Appendlx A mstead of here L

.2 7 1 Normal Srhcon (3 3)

Executlon‘tlme- =ni*(6-3 % plh) R
RO ~ +anl * (6 - 3+ pih) * (plf0 - plf)
+ nb * (6 - 3 * pih) * (pbf0 - pbf) |
. +mnp*(6-3xpih) . (41)

4'}.2.7.’2N0rma1 Silicon (3,6)

Execution time = ni * (6 - 3 * pih)

0 4+l (6- 3+ pih) * (plfo - plf)
4 nb * (6 - 3 * pih) * (pbf0 - pbf) o o
-~ +np * (6- 3 * pih) R L (42)

4.2.7.3 Normal Silicon (8,3)

Execution time = = ni * 6 ‘ =

o 4 nl*6*(plio- 1)
+ nb * 6 % (pbf0 - pbf) : o
+op*x6 . (43)

4. 2.7.4 Packed (3 3)
,Executxon tlme =i * (6 3 * prh)

 +ul % (6- 3 % pih) (plfo - plf) SRR
bubx(6-3+pib)*(b0-ph) (44

Cinstructioni [CTE_ BRI oF]
“instructioni +1 - CF Pl oF]

_instructioni+2 | | IF ‘":“ OF }
E IR
tlme—> ' ’ -.

.lF lnstrucnon Fetch Cycle
‘DP-Datapath Cycle. -
OF-Operand Fetch Cycle

. Figure 4.1 Normal Silicon (3,3) Pipeline.

instruction i CF ol oF 1]

instruction i+ 1 - [P JpbP”oF”] ‘-
iinstructioni+2 CF Joell - oF

time —»
‘ IF Instruchon Fetch Cycle

DP-Datapath Cycle
OF - Operand Fetch Cycle

Figure 4.2 Normal Silicdh' (3,6) Pipeline.

78

instructioni [F __|pA[_oF]

instructioni+1 IF JoPI_oF

N I N N T S T R e T R I I T
time—» ' S

| IF- Instrucnon Fetch Cyc!e
DP-Datapath Cycle »
OF - Operund Fetch Cycle ,

Figure 4.3 Normal Silicon (6,3) Pipeline.

DP/OF

~instructioni _.Dm
mstructlon i+l m-l:lm
instructioni+2 m.n:n—
N T B R R R R R R
tlme—» o IR ' :

IF- lnstruchon Fetch Cycle
DP-Datapath Cycle -
- - OF -Operand Fetch Cycle

 Figure 4.4 Packed (3,3) Pipeline. -

70

R I T A O O R R
time —» ‘
IF -Instruction Fetch Cycle

DP-Datapath Cycle
OF-Operand Fetch Cycle

" Figure 4.6 Packed (6,3) Pipeline.

R - - DP/OF o
instructioni ~ [_IF__ PR — oF |
instruction i+ 1 O PRl df____oF]
‘instructioni +2 . - [CF Al OF
| RSN T T T T O T T T T T O A O
time —» o o
IF - Instruction Fetch Cycle
DP-Datapath Cycle ,
OF - Operand Fetch Cycle
Figure 4.5 Packed (3,6) Pipeline.
S T DP/OF
instruction i C IF P oF] .
instruction i + 1 L IF JpPICIC_oF

instruction i
“instruction i+ |

instruction i+2
_instruction i+3

80

|

IF

JoAl”_oF

i

* instructioni+4

instructioni +5
instructioni+6
instruction i+7

L

F oAl oF]

|

IF__JpA|

9]

F

L_IF

lioPl]

OF]

- [COF

OF

]

JoPI

—

1F__ 1A

OF

]

F

eIl

oOF |-

tlme-->

IF -Instruction Fetch Cycle
DP-Datapath Cycle .
OF- Operond Fetch Cycle

L

IF__)paC_oF

Figure 47 »P"ipelihed Memory (3,‘3).’ Pipeline.

. instruction i
instruction i+ |
instruction i+ 2
instructioni+3
instructioni+ 4
instructioni+5
‘instruction i+6

IF Instructlon Fetch Cycle
DP-Datapath Cycle

L

ozl

iF OF _]
[F_JpAC OF]
[1F oA OF]
C I F I8 C OF _]
CIFpAc OF
O pAcC OF
[CTFeac OF
I I 0 T T O IO O B
nme—> SR

OF -Operand Fetch Cycle

 Figure 4.8 Pipelined Memory (3,6) Pipeline.

81

instructioni [IF —1[oA OF'J:
instruction i+ C_F —JoAoF]

instructioni+2 - | IF JiA_oF]
instructioni+3 - . I IF____ |oRj[oF |
instruction i+4 L IF oA _oF 1
instruction i+5 = \F Jieell_oF]
instruction i+6 § 1 IF —oel_oF]
| T T T T T O G I A A
time —» a SRR

IF ~Instruction Fetch Cycle
DP-Datapath Cycle
OF-Operand Fetch Cycle

. Figure 4.9 Pipélined Memory (6,3) Pipeline.-

82

4.2.7.5 Packed (3,8)

Execution time = ni * (6 - 3 * pih)
o + nl * (6 - 3 * pih) * (plfo - plf)
+ nb * (6 - 3 * pih) * (pbfO - pbf)

4.2.7.6 Packed (6,3)
Execution time =ni*x6
+ nl * 6 * (plfo - 1)
+ nb * 6 * (pbf0 - pbf)
4.~2'.7;7".Pipelinéd Memory (3,3)
Execution time = ni * (4 - 3 # pih)

+ nl * [3 * (1 - pdh)
+ (4- 3 pih) x (2 + plfO 3 * plf)]

'+ nb * (4- 3 % pih) * (2 + pbf0 - 3 « pbf)

+ np * (4 - 3 * pih)

4.2.7.8 Pipelined Memory (3,6)

Execution time = ni * (4 3 * pih)
“+nl * (4 - 3 % pih) * (5 + plO - 6*plf)
+ nb * (4 - 3 * pih) * (2 + pbf0 - 3*pbf)
+ ‘np *(4- 3% plh)

- 4.2.7.9 Pipelined Memory (6,3)

Execution time = ni * 1
»+nl*(5+plf0 3*plf 3 * pdh)
- +nb * (5 + pbf0 - 6 * pbf)
4 npx1 | |

(45)

(4.6)

@)

(4.8)

(4.9)

83

4.2.8 Expernmental Results

It is advantageous to study -the candldate pipelines in four workload
env1ronments First, we evaluate each pipeline in the workload environment
represented by the entire set of benchmark programs. Then we evaluate each
pipeline in “arithmetic-heavy, branch-heavy, and load-heavy - envrronments
represented by the benchmark programs 1ntmm, puzzle and = towers,
vrespectlvely A

As indicated in the last section, the ideal p1pehne performance standard is
one datapath cycle per useful instruction. We instead plot on the vertical axis
the number of datapath cycles per 1000 packed MIPS instructions. Although
not every MIPS instruction contains exactly one useful operation, we do have
an easily obtainable basis for pipeline comparison. On the horizontal axis we
have a range of values for either a compiler parameter - pbf or plf, or a
memory parameter - pih or pdh. Thus, we are in a position to determine the
effect of both compiler and memory system capability on the performance of
our candidate pipelines. |

In the workload consisting of the-ten benchmarks, we show the pipeline
performances as a function of each of our four parameters pih, pdh pbf, and
plf. These results are shown in Figures 4.10 - 4.21.

_The arithmetic-heavy benchmark, intmm, is interesting because of its low
number of branches and loads, and because of the high packihg rate achieved
by the MIPS compiler. For this benchmark we show the effect that pbf and plf
have on pipeline performance. These results are shown in Figures 4.22 - 4.27.

The branch-heavy benchmark, puzzle allows us to observe the performance
of our pipelines in an environment with a large amount of iteration. For this
benchmark we amplify the effect that branches have on pipeline performance
by showing the performance as a function of pbf in Figures 4.28 - 4.30.

The load-heavy benchmark, toweré allows us to observe the great number
of data loads associated with procedure call/return| overhead in a highly-
recurswe environment. We show the effect of plf on: performance in Figures
4.31- 4.33.

84

instr cache=3 data cache=3

execution time (cycles) (%10'h

: pih
Copbf=0 & plf=0.6 pdh=0 £

Figure 4.10 Pipeline Performance vs. “‘pih” in (3,3) Conﬁguration for All
Benchmarks.

instr cache=3 data cache=6

o~ 1.6
-
©
=
x
o
~~
n
i
u
o
8]
e
z
=
-
[
5
3
>
ha
b a6 Y T
] 20 up .80 80 1.0
mih
phf=2.6 olf=0.6 adh=0 82

Figure 4.11 ' Pipeline Performance vs. “pih”in (3,8) Configuration for All
Benchmarks. '

85

instr cache=6 data cache=3

.~
b of
o
i
x) K
Z .

80 A : = i rnormal
A~
1"
[T
U’ :
o = packed
2
E RVE
-
c . .
3 : :
: .20~ Dll:\ed
o)) .
¥]
u
X
i 09 - T r T 1

e .20 40 50 .80 £.8

ik

Figuré 4.12 Pipeline Performance vs. “pih” in (8,3) Oonﬁgﬁration for All
- Benchmarks. ' : '

instr cache=3 data cache=3

~
by
o
=
x
~ .80 4
~ .
n
N
-
Sy p
> .80
U
~ nor mal
v >
= .40
- packed
- \
5 : ciped
- 20 ;
= ;
o]
[
o
¥ :
L a0 T T - T —
Lo -] =] .80 1.0

. pdh
pbf=0 .6 plf=0.6 pih=0.8

Figure 4.13 Pipeline Performance vs. “‘pdh”in (3,3) Oonﬁgui‘atioh for All
Benchmarks. ’ '

86

S

oo iNstr cache=3 data cache=6

~
+

o

-~

xv

~ 0

~

W

L)

—

9 .60

(8]

~ nor mal
Cw o

= .un

i packed

_ ciped

[

s !

- 25 4

- !

3

o

[

<

i .20 7 T T T J

Ly B 1] &g .60 1.0

oh
phf=0 & pli=0.6 pih=0.9

Figure 4.14 Pipe'line Performance vs. ‘“pdh” in (3,6) Configuration for All
Benchmarks.

instr cache=6 data cache=3

80 1 B . nor mal
-80 packed
g

execution time (cycles) xtoth

.09 T T T Y —

.o COEN ~40 &0 80 1.8

Figure 4.15 Pipeline Performance vs. “pdh”in (6,3) Configuration for All |
Benchmarks. - ‘

&

instr cache=3 data cache=3

-~ 1.0
T
[er)
=
x
. .80 4
-~ :
n
U
et .
]]) .
> 0 .
u \
v -
b i - .normal
= 4o _\
=
= \\ packed
5 piped
: .
~ .20 4 pipe
-
>
0
o
X
iy 29 T T T Y 1
) G0 29 PR]] -] t.¢

pbf
pl¥=0.%5 oih=0.38 pdh=0.8

Figure 4.16 Pipeline Performance vs. “pbf” in (3,3) Configuration for All
Benchmarks.

ingtr cache=3 data cache=6

~
’.D
=
x
~ .80 4
-~
0n
L
-
o, 50
U e ——————
) normal
b L .
s w4 T ;
- \\\ packed
c . : piped .
5
N 26 - :
>
]
L
v
X
N 00 T T T 1
: et}] ug 80 80 1.9
i f

Figure 4,17 Pipeline Performance vs. “pbf”in (3,6) Configuration for All
: Benchmarks.

88

instr cache=6 data cache=3

~ 1.0 4
T .
=
- .
= ~__~____~__~_~___~_~_~___;_—
~ 20 - -
~ normal
Al
7
s
d 60_~_‘._‘_._____~____~_._~_______
u packed
L
N .
B 4o <
-
5 T
~ 80 - TTTTT——
= | . pipad
¥ |
; i
¥ H
o9 4 - T - - 1
6 20 4 50 50 1.0

: pf
plf=0.& pbh=0.8 pdh=0 .8

Figure 4.18 = Pipeline Performance vs. “pbf” in (6,3} Configuration for All
Benchmarks.

instr cache=3 data cache=3

80 4

s> (x10

executlon tine S(cycle
3 .
3 ///

=

nor mal

o0] pipsd

an

obf=0 & pih=0.3 pdh=0 &

~ Figure 4.19 Pipeline Performance vs. “plf”in (3,3) Configuration for All
' - Benchmarks.

o ;O_AinStr cache=3 data cache=6

normal

‘execution time C(cycles) (XIO?)

becked-
" piped.
.0 — v 1 r T 1 p
.00 a0 40 .60 80 1.8
’pif

pbf = 4 plh D 2 pdh=0.8.

Flgure 4. 20 Plpehne Performance Vs. plf” in (3 6) Conﬁguratlon for All
~ Benchmarks.

instr caché=6 data cache=3 -

~ 1.0 4

T
o

" -~
x
s

.89 4 rior mal
~
N
u
=
[T
.60 :

o packed:
~ . .

Y -

& e :
- . . |

o .
5 "‘K\

Eadl =06 4 H . - R
s - piped
tJ .
<
RO i

o .30 4— r T ymomr T v

.60 =0 40 50 S0 1.0

- olf
phf= ﬂ a8 D1h 0.3. pdh =0.8

Flgure 4, 21 Pipeline Performance vs. “plf”in (6 3) Conﬁguratlon for All
' Benchmarks.

- 90

on instr cache=3 data cache=3

N
x
f=)
- .
X .
~ -
S
S
i
et : .
¥ 50 - o
> -8 normal
2
Q .
=] . .
= packed
c o iped
5 piped
o 20 4 .
G i
3 ;
iJ
b
v
v 29 T T v 7 —
) 68 .29 .40 .60 .80 1.0

S eopbf
L ple=0. € Dlh 0.3 pdh=0.8

Flgure 4.22 Pipeline Performance Vvs. “pbf” in (3 3) Conﬁguratlon for -

Arlthmetlc-hea,vy Benchmark

_ insty cache=3 data cache=6

i~ 1.0
T
K=
-t
x
i .80 1
-~
[} B .
i
o =
2 -60.4 nor mal
o .
ly'
= .40
2z :)
- -~ packed
T piped
=
- 26 4 .
B
3 -
J -
@
X . . .)
2. 0 + re 7 m— —.
RS I - N .80 1.9

- pbf : ,
plf;u.m pr u pdh=0- 8

Flgure 4. 23 Plpelme Performance Vs, “pbf” in (3, 6) Conﬁguratrol for
' Anthmetlc-heavy Benchmark

91

instr cache=6 data cache=3

~
T nor mal
o e
—
x
~ .60
A
" .
L -
-
8] an .
Z h packed
~ .
v
= .40 1
-
[
5]
- 20 4 .
= oiped
U
u
X
A KL T — r T)
) .8 0 4B =) .80 1.0
pbf
plf=0.6 pih=0.3 Fah =0

Flgure 4.24 Pipeline Performance vs. “‘pbf” in (6, 3) Conﬁguratlon for
Arlthmetlc-heavy Benchmark.

instr cache=3 data cache=3

~
Fag
o
-~
x
~ .82 4
~
0
b
—
u o
> & nar mal
v}
TN -
L
3 .40
- \ packed
= piped
- .25 .
-
3 .
=3
@
¥ : ‘
7] a0 4= T L T ™ v
0 20 .40 .60 .80 1.0

plf .
pbf= =04 ,_Lh 0 2 pdh=0.8

:Figu_i_fe,4.'25' Pipeline Performance ifs plf” in (3 3) Conﬁguratlon for
- Anthmetlc-heavy Benchmark

92

10 instr cache=3 data cache=6

99

50 T

A time Coycles) (X103

nor mal
40 _\\\
\\ packed
iDe
2 .20 ’ piped
2
o
by
] 50 v T T y —
.60 .en 40 .80 80 1.0

olf

phi=0 .6 pih=0.3 pdh=0.8

Figure 4.26 Pipeline Performance vs. “plf” in (3,6) Configuration for
Arithmetic-heavy Benchmark. ’

instr cache=6 data cache=3

. 1.
ay i nor mal
=}
=
x
& 40 4
~
0
u
—
1 A
> .69 packed
U .
-
D
= 4O A
A
-
[y
35 . .
e 20 .M—*——_‘__,__ .
3 piped
(=)
v
P
B 09 T Y -
4} 23 40 .60 80 1.0

Figure 4.27‘5-_ Pipeline Perfdrmance vs. “plf”in (6,3) Configuration for E
. Arithmetic-heavy Benchmark.

93

Cyo. iMstr cache=3 data cache=3

rnor mal

~
T . .

=} .) .
= . . .

x . .

& . ‘

~ .)

n 1. . ‘

U 1 - i :
EX 50 -h““‘““~‘_"“‘“*‘*~—-—-_
Y]) .

>) .

L B e o
=) —
c . .

5] : - :

- . . .)

I . ;

3 -

G

g . .

X . : - o
U +

‘phbf
pl4=0 6 Eih=0.8 pch=0.8

Figure 4.28 Pipeline Performance vs. “pbf” in (3,3) Configuration for
Branch-heavy Benchmark. '

instr cache=3 data caché=6

~ 1.6 9

T

o

-t

bd .

< 20 -

~ R

n
- N . .

st

u 20 -)

o) normal
u —~—-——_________.;_~______.*_____

£ :

- C pgckgd

: ipe

c Pipe
3

- -20

-

=]

L

v .

S

by .20 v T T 1 1

it} bl 40 .60 80 1.0

phf
plf=N .6 pir=n.8 pdh=0 2

Figure ;4.‘2‘9 'Pirpe'lin‘eb Performance vs. “pbf”in (3,6) Configuration for
Branch-heavy Benchmark.

94

instr cache=6 data cache=3

rorinal

packed

execution time (cucles)v(3103)

R I 40 50 80 1.8
pbf
plf=0.6.nih=0.8 pdh=0 .2

Figure 4.30 Pipeline Performance vs. “‘pbf” in (6,3) Configuration for
Branch-heavy Benchmark. ' '

ingtr cache=3 data cache=3

-~ 1.9
T
(=]
-~
x
e .80 4
—~
"
by
8 59 4
EN 89
Y
~
W
=
pv
[
S
=2
o
=]
[
@
- X o
2 .20 o - —y T -

- 60 .50 1.0

. plf .
obf=0.6 pih=0.2 pdhs &

- Figure 4.31 Pipeliné‘Perforﬂiahce vs. “plf”in (3,3) Conﬁgufation for .
’ Load-heavy Benchmark. o '

95

instr cache=3 data cache=6

.80 4

executlon time {cycles) (%10

Figure 4.32 Pipeline Performance vs. “plf” in (3,6) Configuration for
Load-heavy Benchmark.

instr cache=6& data cache=3

~ 1.6
T
fo]
-
x
<

.80 4
~
0"
&
o] narmal
= .50
w
~ packad
iy
& HO
+7 H
5 T——
pus -
- l . ‘—_\
¥ I
i a9 = T r r]

.60 20 4p .80] i
plf
pof=0 6 pih=0.8 pdh=0.8

Figure 4.33 Pipeline Performance vs. “‘plf”in (6,3) Configuration for
Load-heavy Benchmark.

96
4.2.9 Diseuss'ion "

’4.2.9.}1 Candidate Pipeline Comparison

Clearly, the pipelined memory pipeline is generally superior to both the
normal Silicon and packed pipelines. This is not surprising, because the
plpehned memory pipeline is the only pipeline of the three potentlally able to
execute one useful operation per datapath cycle. The packed plpelme can
sometimes execute two useful operations per three datapath cycles, while the
normal Silicon pipeline is limited to one useful operation per three datapath
cycles. In only a very few pathological cases is the Silicon pipeline performance
equal to the performance of either of the other two pipelines. Clearly, a
Silicon-like pipeline performs very poorly in our model of a GaAs processor
env1ronment

It is apparent that the pipelined memory pipeline is the most sensitive to
‘variations in all four parameters. This results from the ‘leanness” of the
pipelined memory pipeline. Although it has the highest potential performance,
it also experiences the most degradation from unfilled branch ﬁllln slots
unﬁlled load ﬁllln slots, and cache misses. ' ‘

An 1nterest1ng result is the lower sensitivity to.pih demonstrated by the
packed pipeline. This results because fewer instructions must be fetched when
instruction packing is used; therefore, the number of instruction cache misses
decreases as well. In fact, the packed pipeline outperforms the plpehned'

memory plpehne at low values of pih.

4. 2 9 2 Memory Conﬁguratron Comparison

"In most ‘cases, the (3,3) memory configuration provides the hlghest
performance, followed by the (3,6) configuration, and finally the (6,3)
configuration. . This is intuitively pleasing because we should expect faster off-
c,hip memories to provide better performance. The (3,6) configuration generally
~ outperforms the (6,3) configuration because, as seen in Table 4. 1 instructions
are fetched approximately four times as often as data.

A s1gn1ﬁcant deviation from the general discussion. just concluded is the
much superior performance of the (6;3) memory configuration when the
pipelined memory pipeline is used. In fac¢t, this combination provrdes the best.
performance to be observed in this experiment. The reasons for this are the
) memory"pipelining which reduces the ‘‘effective” instruction delay to one

o7

datapath cycle, and the (6,3) configuration, which _eliminates - the per_i_alty of
instruction cache misses: (the off-package memory is assumed to have infinite
capacity). ' ' ' e

4. 2 9.3 Compller and Memory Parameter Comparison

Of all the parameters p1h pdh, pbf, and plf, the one which most heav1ly
influences pipeline performance is pih.. This is very reasonable because
lnstructlon fetches are more frequent than either data loads or branches

In the’ (3,6) memory configuration, the parameter pdh has no eﬁ'ect on
' ,performa.nce ‘This is because in this configuration, the data memory hlerarchy
~ has only one level of infinite ca.pamty Therefore, data cache misses are not
defined.

In the (6 3) memory configuration, the para.meter p1h has no eﬁ‘ect on
performance because of the same reasoning just presented. :

‘For both the normal Silicon and packed pipelines, pdh has no_effect on
performance in any memory configuration. These two pipelines have such long
effective instruction fetch times that they can absorb long data load times
associated with data cache misses. In fact, the delays caused by instruction
fetches negate any performance improvement that a data cache might prov1de

~For both the normal Silicon and packed pipelines in the (6 3) memory
conﬁguratlon plf has no effect on performance. The effective lnstructlon fetch
delay for these two pipelines is so long that any semblance of lnstructlon
plpellmng is lost. '

4294 Workload Comparison

‘One of the most visible differences between the workloads is the radlcal _
difference in execution time between them. This is caused by our use of the
number of datapath cycles per packed MIPS instruction. Because of differences
in the packing rates of MIPS instructions from workload to workload, there is a
large difference in number of datapath cycles required by the pipelined memory
and normal Silicon pipelines, both of which use unpacked instruction formats.,
A hlgher packing rate for MIPS instructions implies more ~unpacked
instructions must be executed. From Table 4.1, the MIPS packing rate is 37
percent for the ten-benchmark workload, 64 percent for the arlthmetlc-heavy
workload, 49 percent for the branch-heavy workload, and 20 percent for the
load-heavy workload. Therefore, we expect the execution time in “‘number of

98

datapath cycles per MIPS instruction” to be highest in the arlthmetlc-heavy
workload for both the pipelined memory and normal Silicon pipelines.

In the arithmetic-heavy workload environment, we observe almost no
performance dependency on either pbf or plf. This is due to the extremely low
number of branches (6 percent) and loads (13 percent) in this benchmark.

' For the branch-heavy workload environment we do observe a hlgher
performance dependency on pbf as we expect. This is' due to the hrgh_
frequency of branches (32 percent) in this benchmark.

For the load-heavy workload environment we see an increased
performance dependency on plf as also expected. This is again due to the hlgh‘ :
: percentage of loads (36 percent) in this benchmark. ‘

4.2.9.56 Summary

The most significant result of this experrment is the superb performance of
the pipelined memory pipeline in all env1ronments, even though its performance
was hurt by the branch-heavy and load-heavy benchmarks. In the branch-
heavy environment, even at a pbf of zero, the pipelined memory pipeline still
performs best. The load-heavy benchmark is more punishing when the (3,6)
memory configuration is used, but the pipelined memory pipeline is stlll best at
values of plf above 0.4. In the arithmetic-heavy benchmark, the low frequency
of branches and data loads allows the plpehned memory pipeline to excel even
at very low values of pbf and plf.

_ Another important result concerns the tradeoff between the (3 6) and (6 3)
memory conﬁguratlons in’ implementations which cannot have both a fast
instruction cache and a fast data cache. Allocating the slower memory to the
1nstructlons can be beneficial from a performance standpoint as long as the
memory " is pipelined or, perhaps, if multiple consecutive instructions are
fetched.” Because data memory accesses are generally not as regular as
1nstructlon memory accesses, the opportunity for exploiting plpellned and'
1nterleaved data memory is limited. There are exceptions, of course, such as at’
procedure boundarles and for applications with large amounts of regular data
structures such as arrays. In general though, the same high degree of spatlal'
‘locahty which yields high instruction ‘cache hit ratios can be exp101ted by
pipelined or parallel access methods as well. If the less-regular data can be
~managed sufﬁclently well to provide good hit ratios at the faster, smaller data
memory, then improved performance should result. This is the technique
adopted by the des1gners of the Transputer, as they fetch four 1nstruct10ns mto

99

thelr s1ngle-ch1p processor concurrently, while advocatlng that the large on—chlp
memory be used for data storage [Whitb85]. ‘

One final comment concerns the issue of lnstructlon packrng As
demonstrated by every pipeline performance graph which measured the effect
of pih, the packed pipeline reduces the negative effect of low instruction cache
hit ratios in multiple-level instruction memories. If a small 1nstruct10n cache is
to. be.used in a GaAs processor system, then mstructlon packlng certainly
deserves strong consideration.

4. 3 Instructlon Format Experiment

"We now describe an experiment undertaken in order to evaluate ten_
instruction formats in a GaAs processor environment. We begin by explalnlng :
our motivation for performing the experiment, and then we present our choice
of formats for examination. We describe our evaluation criteria and discuss the
general . theory and implementation of our instruction format evaluation
methodology. We then discuss the procedure and results of our experiment,
presented as three sub-experiments. We finish with a discussion of our results.

4.3.1 Ratronale

In the Silicon environment, the RISC philosophy has demonstrated the
_greater importance of good pipeline design over instruction compactness
However, as pointed out in Section 3.2.6, instruction formats which result in
small program sizes can be more advantageous in GaAs 1mp1ementatlons than
in Silicon implementations. Again, the reasons for this include the smaller
capacity -of GaAs memory chips, as well as the higher ratio of off-chip. to on-
chip delays for GaAs. We believe that it is desirable to determine what effect
compact instruction formats can have in a GaAs processor environment.

4.3. 2 Candlda.te Instruction Format Descrlptions

Section 3.2.6 indicated that considerable redundancy usually exists in the
* immediate field and address fields of Silicon instruction formats. The constants
located in immediate fields are usually small, and the higher order bits in such
cases convey no essential information to the processor. Most computations
don’t require three addresses; therefore, three-address instruction formats often
have address fields with no information content. We find redundancy

100

elimination in these two particular areas to be deserving of further exploratron :
in the context of a GaAs environment. S

- We choose to study ten instruction format candidates for incorporation
into a GaAs processor. In addition to these, we will also include the MIPS
format. The instruction fields for the ten candidate formats are shown in
Table 42 while the relevant instruction fields for the MIPS format are
| descrlbed in Appendix B.

- Each of our candidate instruction formats has its structure encoded 1nto
its name. For example, the format “28(3210) contains 28 bits and may use
either 3, 2, 1, or O registers. In general, when a lower number of registers are
used, the immediate field may be increased accordingly. Since each format
requires eight bits for its opcode, and register specrﬁcatrons require four bits,
the immediate field lengths for the 28(3210) format are 8, 12, 16, and 20 blts-
corresponding to 3, 2, 1, and O registers, respectively. A

The candidate instruction formats are chosen on their ability to be dlrectly _
compared SO that a varrety of sub-experlments are possible. -

- Formats 28(3) and 24(2) allow a direct tradeoff study between the hlgher'_
number of register fields of 28(3) versus the reduced total number of bits in
24(2). . o e
* Formats 28() and 24(32) allow a direct tradeoff study between the higher
ylmmedlate field length of 28() versus the reduced total number of bits in
24(32). o |
Comparlng the performance of the formats in each of the pairs: 28(3)
versus 28(3210), 24(2) versus 24(210), 24(32) versus 24(3210), 20(32) versus
120(3210), and 16(21) versus 16(210), we can examine the result of shifting
instruction bits from register fields to the immediate field, when a full set of
register addresses is not requlred ‘ : e
~ With - formats 16(21) and 16(210), two instructions can be fetched
" concurrently using the same processor-memory bandwidth as a single 32-bit
instruction. Therefore, packed versions of formats 16(21) and 16(210) can be
compared to the packed MIPS format S

- 4.3.3 Evaluation Criteri.a
:In this study - of compact instruction formats there are three types of

1nformat10n which are of lnterest to us, and which will form our basis for
'comparrson ' '

. Table 4.2 Iﬁsﬁruction_-Fields for Candidate_-InstrﬁctiOn Formats.

- 101

.F,ormat_;?::_()pcode i RevglrﬁA Reg2 :Reg3 _ Imm1 Imm2 :

| (# bits) (#‘bits.)" (# bits). (# bits) (# bits) - ('#'bi_ts)'v (’#"i.;l_)i'ts)'

8

4

4

Total |

[|
- |28(3210) |

NN

4
4

4
4

8
8
12
‘16
90

28 |
28 -
8
o

|2a2) |

24 |

| 24(3210) |

- NG TN

'O OO F

12
16

0 o | B

24
24

e

16

o
24

24

20(32)' |

20

20

20(3210)

OO PO

O N

2 |
20
20

[1e@n) |

BT
16

| 16(2”1'(;)_‘)'; I

0 00 00|00 00 |00 00 00 00 |00 00 [00 00 00 |00 |00 00 00 0 00 |00 00 |00 00 00 00

16 |

102

Frrst we would hke to know the magnltude of the effect of short}
»lnStI‘IICthD formats on the overall program size.

‘ Second, we would also like to see how the use of short mstructlons aﬂ'ects
the number of instructions which must be executed. '

v Fmally, "we are most mterested in determlnlng the effect of short
1nstructlons on executlon tlme

:4 3.4 Evaluatron Theory and Implementatron

- We are again using the simulation tools which were described in Section
4.1. Our. approach in this experiment is to utilize all the simulation tools in
~ their normal way, except for the MIPS simulation program. We instead
modify this program to account for instruction set. differences between the
MIPS format and our candidate formats. Tn this way we obtaln a performance
' measure for each of our candidate 1nstructlon formats '

_ We have identified three areas where our candidate instruction formats
dlffer from the MIPS 1nstructlon format and these provrde the basis for our
srmulatlon program changes :

F1rst ‘the MIPS 1nstruct10n format is packed therefore, some MIPS
‘ vrmstructwns contain two operations. Since none of the candidate formats use
packrng, a packed MIPS instruction requrres two candidate instructions.

* Second, some of the candidate formats only have two register address
'ﬁelds ~while the MIPS operations within MIPS instructions can have two or
‘three register addresses. Therefore, in some cases a single M]PS operatlon will
_requlre two candidate 1nstruct10ns ’

- Third; the ‘candidate formats all have shorter immediate ﬁelds than the
M]PS format. Because of this, in some cases two candldate 1nstructrons may .
 be requlred in order to.execute a single MIPS operation. -

Because of these differences between the MIPS and candidate. formats,
~ there will" be differences in their “static instruction counts and. -dynamic
" instruction counts. The static instruction -count is the number of 1nstructlons

which are contained within a program, it is a measure of program size. The |
dynamrc ‘count is the number of instructions which are executed when a
program is run; it is a measure of program e:recutaon time.

. Because we know the instruction field sizes for the MIPS format and for :
all the candidate formats it is relatlvely straightforward to determine, for each
of the candldate formats, whlch M[PS 1nstructlons require multlple candldate

103

instructions. We show in Appendix B the ten candidate instruction formats
and the number of instructions which they require in order to execute MIPS
_instructions of given characteristics. Actually, Appendix B shows the
“addltlonal” number of candidate instructions which are needed.

A straightforward modification to the MIPS simulator is necessary in order
to 1mplement the mapping from each “MIPS. instruction” to the ‘“‘number of
candldate instructions” shown in Appendix B. We do not change the normal
executlon of the MIPS program with our additions; we merely add code to
1mplement our data gathering. Again, our changes to the simulator in this
experiment are minor in comparison to the size of the simulation program, and
‘the large total program size prohibits us from listing these changes here.

4.3.5 Static Instruction Count Subexperiment

4.3.5.1 Procedure :

v Obtaining the static instruction count is relatively straightforward. We
~add code to the section of the MIPS simulator which loads the MIPS
instructions into memory. For each of the candidate formats, we examine each
MIPS instruction as it is loaded and perform the analysis of Appendix B. After
the loadlng is complete, the total number of candidate lnstructlons 1s then
output to a file,

4.3.5.2 Results ‘

We show the results of this subexperlment in Figure 4.34. We show the_
program size in terms of instruction words and bytes. In this figure, the
candidate instruction counts are normalized to 1000 MIPS instructions. These
results are for the entire set* of benchmark programs descrlbed in Section 4.1,
and each benchmark receives equal welght '

+ The benchmark “towers” is not included in this experiment because of its- excessive
computational requirements, as it is currently written. ' »

program size (%103

5.0 7

L)

104

bytes .

words

A: format 28(3)
B: format 28(3210)

. C: format 24(32)

D: format 24(3210)

E: format 24(2)

F: format 24(210)

G: format 20(32)
H: format 20(3210)
I: format 16(21)

J: format 16(210)

K: MIPS format

Figure 4.34 Instruction Format Static Instruction Counts.

105
436 Dinamic Instruction Count Subexperiment

'4.3.6.1 Procedure | |

We can obtain the dynamic instruction count in much the same manner as
we obtain the static instruction count. However, instead of adding code to
examine MIPS instructions as they are loaded by the simulator, we add code to
'examlne them as they are ezecuted. The modified simulation program then
outputs ‘the total number of candidate instruction executlons mto a ﬁle

4.3.8.2 Results v

‘These results are shown in Figure 4.35. Agam the dynamic instruction
count for each candidate format is normalized to 1000 MIPS instruction
executlons These results are for the same set of benchmarks that were used in
the previous subexperiment, where each benchmark agaln receives equal
welght '

In ‘Table 4.3 we show the breakdown of costs which cause the candldate ‘
pipelines to have higher dynamic instruction counts. The values in thls table
are the percentage increase in dynamlc execution count, measured as a
percentage -of one MIPS instruction, caused by the associated cost. Most of the
-candidate formats show immediate costs of approximately ten percent; only the
16-bit formats are significantly affected by address costs; and all the formats
show a relatively high packing cost.

4.3.7 Execution Time Subexperimeht

Determining the execution time for each of our candidate instruction
~formats is more difficult than calculating the above static and dynamic
instruction counts. Once again, the benefits derived from compact instructions .
are attributable to higher cache hit rates, main memory hit rates, ete.
_ Therefore, we must incorporate into our architectural model a cache simulator;
~ however, the small size of our benchmark programs prohibits them from being
used as a suitable workload model for any cache of reasonable size.

of instructions executed (X103

muaaber

1.8 4

.80 A

50 -

40 -

.20 =

Figure 4.35 Instruction Format Dynamic Instruction Counts.

106

B € D

A: format 28(3)

B: format 28(3210})
C: format 24(32)
D: format 24(3210)
E: format 24(2)

F: format 24(210)

G: format 20(32)
H: format 20(3210)
I: format 18(21)

J: format 18(210)

K: MIPS format

107

. Table 4.3 Breakdown of ‘Dynamic Costs for ’thle Candidate Formats.

Format Immediate Address Packing

_ Costx . Costx - Costx
28(3) 10 0 | 37
28(3210) 0 0 B
24(32) oon 0 37
24(3210) R 0 37
242) || 10 3 37
- 24(210) « 7 3 37
20(32) | 11 0 3T
20(3210) 8 o 3
16(21) 11 | 30 8T
16(210) | 11 39 R

* Measured as a‘p‘ercentage of one MIPS instruction.

108

4.3.7.1 Workload Model - Cache Model Discussion

To solve the mismatch between our workload model and the desired size
of our cache model, we can either modify our workload model or modify our
~ cache model. Our first choice is to modify our workload model; however, we
are thwarted by the inability of our MIPS compiler, which is not of production
quahty [Llnn85] to produce reliable code for large benchmarks. Therefore, we
must modify our cache model in order to match it with our workload model

~ We first determine the size of both an application workload that we wish
to model and a cache that we wish to model. For our application workload we
choose a size of 256K bytes. For our cache size we select a range of values: 4K,
8K, 16K, and 32K bytes. We then observe that our benchmark programs
typically require approximately 4K bytes of storage for the instructions that.
are actually used; many of the system procedures which are loaded are not
actually used. We use this ratio of * ‘real world” program size to ‘“simulation
world” program size of 64 to 1, and apply it to our ‘“‘real world” cache sizes to
~ determine our “‘simulation world” cache sizes of 64, 128, 256, and 512 bytes.

. However there is an undetermined degree of inaccuracy in thls approach
as there are at least two problems with it.

First,- a single instruction in our “simulation world” corresponds to 64
mstructlons in the “real world.” However, the only way the execution of a
single instruction in our “simulation world” cache can accurately model the
execution'”of 64 instructions in a ‘“real world” cache, is when the- 64 “real
world” mstructrons are stored in sequential memory locations. Since sequentiaiv
executron ‘leads to high hit ratios, and since the sequential execution of 64
lnstructlons is extremely rare, we can expect our “simulation world”. cache, to
experlence higher hit ratios than a “real world” cache. o

Fortunately, the second cause of inaccuracy tends to balance the eﬁect of
“the first problem. The locality of reference which leads to large cache hit ratios
is \largely the result of HLL programming constructs such as loops - and
recursive. procedure calls. It's observed that the sizes of these loops and
recursive procedures are the same whether they re in ‘“‘real world” programs or
our s1mu1atlon world” programs. Because our “simulation world” -cache is
only 1/64th as large as the ‘real world” cache it’s trying to model, the
“simulation world” cache will be less successful at capturing entire loops and
recursive procedures than the ‘“real world” cache. Therefore, we can also
expect our “simulation world” cache to experience poorer hit ratios than a
real world” cache. '

109

4, 3.7 2 Cache Simulator Descrlptnon

~ Our cache simulation program was designed at Purdue. It is a srmple yet
flexible simulation tool. Among the cache parameters which may be changed
are the cache size, the block size, the access time for a hit, the access time for a
mlss and the cache conﬁguratlon instruction only, data only, or combined.

- The cache simulator implements a direct. mapped placement pohcy As ,
drscussed in Section 3.2.7.3, direct mapping is desirable for GaAs caches
» because of its low overhead and relatlvely ‘good performance at small cache

sizes. o

The cache simulator uses a write-through policy, and a data wrrte
resultmg in a cache miss causes replacement to occur; however, there is no time
'penalty ‘associated with data cache write misses. As discussed in Section
3.2.7.5, pipelined memory systems are advantageous in a GaAs processor‘
system. A write-through policy and data cache write misses may cause no
additional delay in a pipelined memory system.

We choose a block size of two words for our cache simulator. - An early
1mplementatlon of the simulation program did not allow a block srze of one to
be used as we would have liked. ’

| 4. 3.7 3 MIPS Slmulator Modlﬁcatlons

We lnterface the MIPS instruction simulator to the cache 31mulator by
' replaclng the existing memory access operations with calls to the cache
simulation procedure. Data memory accesses .are implemented in a
straightforward manner; however, because a single MIPS instruction may
correspond to multiple candidate ihstructions we require a mechanism to allow
us to perform multiple calls to the cache simulator for a single MIPS
instruction. :

‘Our solution is to use an array of records. Each element (record) of the
array corresponds to a single MIPS instruction, and the array is indexed by the
MIPS instruction address. Each record contains a count and an address. The
count represents the number of candidate instructions required by this MIPS
instruction, - The address represents the candidate instruction’s address and is
the beginning address of the set of candidate instructions representing this
MIPS instruction. The candidate instruction address at MIPS 1nstruct10n i
equalb the sum of the counts of the previous i-1 MIPS instructions.

110

‘The above array is mltlahzed ‘when the MIPS program is loaded agam |
usmg the analysis of Appendlx B.. During simulation, when a MIPS instruction
fetch is executed, the address from the appropriate record of the array is used
to exerc‘ise the cache simulator. If the count from the record is greater than
one, then the address is repeatedly incremented and sent to the cache simulator
until “count” accesses have been simulated. A separate variable is used in -
otder to maintain the number of instruction cycles lost due to both instruction
and data memory accesses. Upon completion of the simulation, this variable is
written to a file. Also, the MIPS instruction fetch operation, which was
replaced by the call to the cache simulator, is implemented inside the cache
simulation procedure independent of the just described activity.

4.3.7.4 Procedure and Results

4.3.7.4.1 Procedure ot

_ We observed in the plpehne experiment the effect that 1nstruct10n plpehne
: dlﬁerences can have on performance. Therefore, for a fair instruction’ format
comparison, we must select an instruction pipeline to be used by all the
'candldate formats. We find it most useful for this experiment to use the
plpehne indicated by Figure 3.2. Therefore, one instruction is fetched for' every
~ three datapath cycles. For this subexperiment then, a cache hit results in a
delay of three cycles and a miss results in a six cycle delay.

" There are two parts to this subexperiment. First, we run the MIPS
simulator and cache simulator to obtain the execution time for each instruction
format as a function of cache size. Then we use this information in order to
obtain the executlon time for each cache size as a function of lnstructlon
format. ' ’

43.742Results o | | | o

y In Figure 4.36 we show the results of the first subexperiment. Thls ﬁgure
plots execution time versus cache size for three cache conﬁguratlons :
instruction cache only, data cache only, and combined instruction and data
- cache. In this figure, the execution time has been normalized to the number of
1nstruct10n cycles necessary to execute 1000 MIPS instructions in 1ts Silicon
' envrronment and w1th no cache miss penalties.

111

We only present one plot because the results for the other candldate ‘
.formats are nearly identical to thls one. ' o

In Flgures 4.37 and 4.38 we show the second set of plots. These ﬁgures
'show execution time versus instruction format for a particular cache size (64
and 512 bytes) and cache conﬁguratlon (instruction-only. and data-only).
. Agaln the execution times have been normalized to the number of instruction
cycles necessary to execute 1000 MIPS instructions in lts Silicon env1ronment
and w1th no cache miss penaltles ‘ ' '

4.3.7.5 Discussion

4.3.7.5.1‘The Effect of Instruction Format on Instruction Counts

" From Figure 4.34, the number of words required to implement the'
benchmark programs-is seen to increase as the format lengths are decreased, as
expected. All of the formats have static instruction counts within 50 percent of
the instruction count of the MIPS format except for the two 16-bit formats:
16(21) and 16(210). These 16-bit formats have instruction counts almost 100
percent greater than the MIPS instruction count. Clearly, the trans1tlon from-
a'20-bit format to a 16-bit format can be damag1ng i

" The number of bytes required to 1mplement the benchmark programs or
equlvalently, the program size, generally shows a decline as the format length is
decreased, until the 16-bit formats are reached. The 20-bit formats generate
the most compact programs, but the 16-bit formats achieve code sizes smaller
than the MIPS format as well. : '

From Figure 4.35, the dynamic instruction count is seen to - follow the

same trend as the static instruction count. The 16-bit formats are again -

severely penalized. Tables 4.2 and 4.3 can help explain this phenomena. From
Table 4.2 we observe that the 8-bit opcode requirement only leaves eight bits
for addressing, enough for two addresses. The extremely large address cost for -
these two formats, indicated in Table 4.3, allows us to conclude that two
addresses are very frequently not enough. From Table 4.3 we see that three
addresses are required 28 percent of the time (39/137). This is much higher
than we anticipated, in light of the 13 percent figure for 3-address asslgnment
statements presented in [Myers82] :

112

1.200 4

1.000 1

data cache
.8000

5098 1 \ »

4000

execution :ime‘(XIO&)_v

.2000

-9000 T T T T T T
9000 .1280 . 2550 .384% - .S120 6400 . 7680 8960 1.024%

cache size (bytes) %103y

Figure 4.36 Instruction Format 28(3) Execution Time vs. Cache Size.

113

1.200

. data cache
1.0004

80004 u v
: — :

, instr cache
6000] I— L :

4000 1

execution time (Kllﬁ)

A B C¢C D E F G H 1 J K

A: MIPS format + F: format 24(2)
B: format 28(3) G: format 24(210)
C: format 28(3210) H: format 20(32)
D: format 24(32) I: format 20(3210)
E: format 24(3210) J: format 16(21)

K: format 16(210)

Figure 4.37 Execution Time for each Instruction Format with 64-byte Cache.

114

data cache

1.900
. !
j- .
=t R W—
X .9000 4
o
"
€ .
s .
o 6009 instr cache
g .
S 4o -—’—'
(W)
@
X
8
L2000 4
. .0gog T ——
B C D F G H 1

A: MIPS format
B: format 28(3)

C: format 28(3210)
D: format 24(32)

- E: format 24(3210)

F: format 24(2)
G: format 24(210)
H: format 20(32)
I: format 20(3210)
I: format 16(21)
K: format 16(210)

Figure 4.38 Execution Time for each Instruction Format with 512-byte Cache.

115

»4 3.7.5.2 The Eﬁect of Cache Size on Executlon Time

- From Figures 4.36 and 4.37 we ‘can observe some general trends For
these formats execution. tlme generally decreases as cache size is increased. ‘We
obv1ously expect this; however, the small memory capacity at which the
execution time decrease levels off clearly demonstrates the smallness of our
benchmarks L

We also observe that a data cache alone does a much poorer job than
~ either an 1nstruct10n cache alone or a combined cache. The reason for this is
the - much higher frequency of instruction fetches than data loads in an
_ env1ronment which penalizes a non-cache access three cycles. We see a small
advantage for the combined cache at increasing cache sizes but no s1gn1ﬁcant
difference between the performance of the instruction cache and the combined -
- cache. = -

4.3.7.5.3 The Effect of Fe'\v\»rerv Register Fields : ,

, Looking back at Table 4.2 we observe that the only diﬂ'erence‘between
instructions formats 28(3) and 24(2) is the lower total number of bits in format

24(2) due to the removal of one register field. We now discuss the relatlve

performance of these two instruction formats. :

Figure 4.34 shows that the total program size for format 24(2) is
approxrmately ten percent lower than the program size for format 28(3) From
Figure 4.35, we see that the number of format 24(2) instructions executed is
only a few percent higher than the number of format 28(3) instructions
executed.

- The execution times for these two instruction formats shown in Flgures
4.36 and 4.37 indicate a generally slight inferior performance by the 24(2)
instruction format. In memory configurations consisting of an instruction
cache, the 24(2) format execution time is generally a few percent higher
(approaching five percent) than the 28(3) execution time. In the data-cache-
only conﬁgurations where we expect the relative format performances to match
~ their relative number of instruction executions, the performance of both
formats is nearly the same. IR

This experiment then 1nd1cates a shght degradation in performance in-
reducrng instruction format size by eliminating one register field. s

116

4.3.7 5.4 The Effect of Smaller'Mmediate Field Lengths ‘

| Again looking at Table 4.2, we observe that the only dlﬂ'erence between
instruction formats 28(3) and 24(32) is the lower total number of bits i in format'
24(32) due to its smaller immediate field. We now discuss the relative
» performance of these two instruction formats.

Figure 4.34 shows that the program size » for format 24(32) is nearly ten
percent lower than the program size for format 28(3). Again, Flgure 4.35
shows the relative number of instructions executed, where it is seen that format
24(32) requires sllghtly more instruction executions than format 28(3).

The execution times shown in Figures 4. 36 and 4.37 show little difference
- in performance between these two instruction formats, although the slight
differences that do appear favor format 28(3). In general, the relative
performance of these two 1nstructlon formats follows their relative number of
instructions executed. -

- In this experiment then, we observe that reducing instruction format size
by reducing immediate field size has very little impact on performance '

4. 3 7. 5. 5 The Effect of Variable Immedlate Field Sizes

From Table 4.2, the difference between -instruction formats 28(3) 24(32),
. 24(2),» 20(32) 16(21) and 28(3210), 24(3210), 24(210), 20(3210), 16(210),
respectively, is the greater flexibility in immediate field size allowed in the
- second set of formats. The formats in the first set maintain a rigid immediate
field, while formats in the second set increase their immediate field size to
consume all the bits which -are not needed by register addresses. We now
discuss the relative performance of these two methods of lmplementlng
lmmedlate ﬁelds '

From Flgnre 4.34 we observe that the program sizes of the varlable-‘
, 1mmed1ate-ﬁeld formats are smaller, with the differences ranglng from
approx1mately ten percent in formats 28(3210) and 24(3210) to almost no
change in format 16(210). The same trend is evident in the number of
instruction executions shown in Figure 4.35. We can explain the lower
improvement of the shorter instruction formats by viewing again Table 4.2,

where ‘we observe that the shorter formats just don’t have enough blts to"
substantlally lengthen their immediate fields. ' '

The execution times shown in Figures 4.36 and 4.37 consistently show that
'the formats with varlable length 1mmed1ate ﬁelds perform better than the

11_7"

formats with fixed length immediate fields by a small margln

In this experiment we have observed that varying immediate field lengths
to use the instruction bits not needed by register addresses does indeed lead to
smaller program size, fewer instruction executions, and lower execution time.

4 3.7. 5 6 The Use of Compact Formats for Instructlon Packmg :: |

| Instructlon formats 16(21) and 16(210) are both only one half as long as a
single MIPS lnstructlon therefore, two such instructions may be fetched in
parallel and require no more processor-memory bandwidth than required by the
MIPS format. We find it interesting to examine the performance of such a
form of 1nstruct10n packlng Lo

“ From Figure 4.34 we observe that the program size of both 16-bit formats
is nearly ten percent lower than the MIPS format. However, Figure 4.35 show_s
that the number of 16-bit instructions executed is nearly 90 percent hlgher -

" If two instructions of the 16(21) format are concatenated to form a smgle
_ 32-bit packed instruction, then this compact, packed instruction format would
actually require five percent fewer instruction executions than the MIPS
format. This is also true for the 16(210) format. It is ‘apparent that this type
of packed format is more successful at eliminating redundancy than 1s the
MIPS format -

"From Table 4.2 we see that much of the performance degradatlon in the
16(21) and 16(210) formats is due to addressing cost. Again, this cost results
from the 2-address limit imposed by the short instruction length and 8-bit
opcode. If 4-bit opcodes were to be used for some frequent operations then the
’number of instruction executions could be significantly reduced at the cost of
‘additional decoding and control logic. Alternatively, 18-bit or 20-bit operations
may instead be packed to provide much better performance with reasonable
instruction sizes. If two 20(3210)-format instructions were packed, Figure 4.34
indicates that approximately 30 percent fewer of ‘these 40-bit instructions
»wonld be required than the 32-bit MIPS instructions. . ’

' Its ‘quite apparent that the successful elimination of redundancy from
1nstruct10ns makes instruction ~packing increasingly attractive. ' In an
env1ronment with long effective off-chip memory latency, the use of compact
formats for 1nstructlon packing is an attractive approach. |

118

4.3.7.5.7 Summary ' :

In general, this experlment has shown that reducing redundancy in
immediate fields and address fields of instructions leads to programs which are
more compact programs which don’t necessarily execute faster, and" may, in
fact, run slower; and instruction formats which may be concatenated to form
packed formats which can be expected to perform better than the packed
MIPS format, using our definition of performance - useful operatlons per
~ datapath cycle.

The above concluswns require quahﬁcatlon of course. All of our system-
implementation assumptions directly affect our results. These include our
particular choice of pipeline, our -choice of a two-level memory hierarchy, our
memory access to datapath delay ratio choices, etc. In addition to these the
characterlstlcs of our 51mulatlon system also affect our results.

- The avallablhty of the Stanford software ‘which was prov1ded to us by' :
RCA enabled us to conduct this experiment. However, this s1mulatlon system
has hmltatlons whlch influenced the results we just presented. -

- One problem which is somewhat significant is the use of the M]PS
compller on non-MIPS architectures. Any architecture designed to- execute
high level languages will only perform to its potential if the HLL compiler
knows the characteristics of the architecture. One example illustrates this
problem. The MIPS system routines (for multiply, etc.), consisting of both
instructions and data, are stored in lower memory, and the MIPS compiler
makes hberal use of the long immediate field available in MIPS load and store
instructions to'directly access data at these lower addresses. The frequent use
of these long immediates penahzes our candidate instruction formats which
have short immediate fields. However a compiler for our candidate formats
would know the immediate field limitations and utilize other addressing modes,
such as “‘base. + displacement.” Therefore, the immediate cost for the shorter
formats is likely overstated. However the immediate cost values shown in
‘Table 4.3 are not excessively large, so we suspect that only a minor varlatlon
. from reahty exists here. ’ '

‘A ‘more serlous problem, and one which 1ntroduces an error of unknown.
magnltude, is the use of small benchmarks as the workload for our cache_
sxmulator Slnce our small benchmarks do not represent a workload that can
drlve a reahst1cally-s1zed cache simulator, we were forced to rely on a techmque
for clrcumventmg this problem, described in Section 4.3.7. 1, which is an
) ‘unproven one. Smce any execution time 1mprovement attributed to compact -
. 1nstruct10n formats is due to 1ncreased ‘memory -hit ratios, our unproven cache

-sunulatlon techmque d1rectl}r aﬂ'ects our executlon tlme results

A Therefore, we can more comfortably state that our redundancy reductlon a
has produced compact programs, and provided the . basis for a packed .
~ instruction format which is. expected to perform better than the MIPS format

(by our definition of performance) Whether or not these compact instruction .

formats lead to faster or slower execution time than less compact. ‘formats is
still undete_rmlned althovugh it appears that there is no srgmﬁcant,dlﬂ'erence

120

CHAPTER V
SUMMARY AND RECOMMENDATIONS

b. 1 Summary v v . : .

: We have presented a computer system des1gn methodology whlch we
beheve is advantageous for GaAs technology. We advocate a three-stage
approach (1) Study GaAs technology and packaging technology in order to
determine their characteristics relevant for computer design. (2) Clearly define
the effect that GaAs has on computer design, determine appropriate general'
design strategies, and suggest promising design solutions. - (3) Perform
expenments to establish the validity of earlier assumptions, and to provide an
empirical foundation for further research. ‘

- 5.2 Recommendatlons

Advances in both GaAs circuit technology and packagmg technology will
require a constant reevaluation of their impact on computer design. New
design approaches may deserve consideration when new developments occur in
GaAs and packaging technology to significantly alter their capabilities.

The most reliable techniques for evaluating the performance of GaAs
computer systems are those based upon empirical data. A rational computer
system design strategy demands that GaAs computer design decisions be based
upon empirical data obtained either from 51mulat10n or more preferably from
actual GaAs 1mplementat1ons

AbKuL81]

[AleWo75]

[AnEaG67)

AsMiASY

[AsMiA84] ;

[AusHo82]

[Barne85]

[BasNu84]

121

LIST OF REFERENCES

Abu-Sufah, W., Kuck, -D.J., Lawrie, D.H, “On ' the
Performance . Enhancement of Paging Systems - Through
Program Analysis and Transformations,” IEEE Transactions
on Computers, Vol. ¢-30, No. 5, May 1981 pp. 341-356. -

‘Alexander, WG Wortman, D.B., “Static and Dynamlc

Characterlstlcs of XPL Programs,” IEEE C’omputer Vol '8, .
Nol. 11, November 1975, pp. 41-46.

Anderson, S.F., Earle, J.G., Goldschmldt R.E, Powers D.M,,
“The IBM System/360 Model 91: Floatlng-Pomt Execution

Unit”, IBM Journal of Research and Development Vol ll No.

1, January 1967, pp. 34-53.

Asbeck, P.M., Miller, D.L,, Anderson, F.J., Eisen, FH,
“Emitter-Coupled ~ Logic Circuits Implemented w1t_h

'Heterojunction Bipolar Transistors,” Proceedings of the GaAs

IC Symposium, Phoenix, Arizona, October 1983, pp. 170-173.
Asbeck, P.M., Miller, D.L.., Anderson, R.J., Deming, R.N,,
Chen, R.T., Liechti, C.A., Eisen, F.H., ‘“Application of
Heterojunction Bipolar Transistors to High Speed, Small-Scale
Digital Integrated Circuits,” Proceedings of the GaAs IC
Symposium, Boston, Massachusetts, October 1984, ypp, 133-
136. 3

Auslander, M., Hopkins, M., “An Overview of the PL.8
Compiler,” Proceedings of the ACM SIGPLAN Symposium on
Compiler Construction, Boston, Massachusetts June 1982, pp
22-31. '

Barney, C., “DARPA Eyes 100-mips GaAs Chip for Star
Wars,” ElectronicsWeek , Vol. 58, No. 20, May 20, 1985, pp.
22-23.

- Bass, S., Neudeck, G., “VLSI Transistor Count and Basic

Delays,” Internal Report, Purdue University, 1984.

[BeDoF81]

[Denni70] |

[Denni72] |

| [Dennig0)

[Eden82]

[EdWeL83]

[EdWez79]

[Furht85]
[FurMiss]

[FuTal84]

[Ghana83] |

‘Eden, R.C., Welch, BM,, Lee, FS

1984, pp. 344-347.

~Gnanasekaran, R.,
- Output Multiplier,” IEEE Transactions on Computers, Vol. ¢-
32, No 9, September 1983, pp 878—880 : -

122

Beyers, J.W., Dohse, L.J., Fucetola, J.P., Kochis, R.L.,

Taylor, G.L., Zeller ER., “A 32-Bit VLSI CPU Chip,” IEEE
Journal of Sol:d-State C':rcmts Vol. sc-16, No. 10, October
1981, pp. 537-541. |

Denning, P.J., “Virtual Memory,” ACM Computmg .S’urveys,
Vol. 2, No. 3, September 1970, pp. 62-97.

Denning, P.J., “On Modeling Program Behavior,” P?ocaediﬁgs

* of the Spring Joint Computer Conference, 1972, pp. 937-944.

Dennis, J.B., “Data Flow Supercomputers,” IEEE Computer,

Vol. 13, No. 11, November 1980, pp. 48-56.

Eden, R.C., “Comparison of GaAs Device Approaches for
Ultrahlgh-Speed VLSL” Proceedings of the IEEE, Vol. 70, No.
1, January 1982, pp. 5-12.

“Impllcatlons -and
Projections of Gallium Arsemde Technology in High - Speed
Computlng, Proceedings of the IEEE International
Conference on Computer Design: VLSI in C'omputers Port ’

.Chester, New York, October-November 1983, pp. 30-33.

Eden, R.C., Welch, BM., Zucca, R., Long, S.IL, “The
Prospects for Ultra.hlgh-Speed VLSI Ga.As Digital - Loglc
IEEE Journal of Solid- State Circuits, Vol. sc-14 No. 2, April
1979, pp. 221-239.

Furht, B., “RISC Archltectures with Multlple Overlapplng

Windows,” Proceedings of Midcon/85, Chlcago Illinois,
September 1985, pp. 23/2.1-23/2. 10 SRR

Fura, D.A., Milutinovi¢, V.M., “Computer Architecture

'De51gn in Ga.As Proceedings of Mtdcon/85 Chicago, Illmms

September 1985, pp. 24/3.1-24/3.7.

Furutsuka, T., Takahashi, K., Ishikawa, §., 'Yan'o',: ‘S,
Higashisaka, A., “A GaAs 12 x 12 Bit Expandable’ Parallel
Multiplier LSI Using Sidewall-Assisted Closely-Spaced
Electrode Technology,” Proceedings of the International
Electron Devices Meetmg, San Franclsco California, December

“On a Bit-Serial Input and Blt-Sel'la.l;

[Gheew84]

[GiGrH83]

[Gilbe84]

[Gross83] -

[Heage85)

[Hehne76]

[HeScZ85]

[HeJoG82]

[HeJoP83]

[Hufimsg]

[Hwang7]

123

-Gheewala TR “System Level Comparrson of High - Speed’. |

Technologles, Proceedings of the IEEE 1984 International

o Conference on. Computer Design, Port Chester, New York,
‘ 'October 1984, pp. 245-250. ' PO

Gill, J., Gross, T., Hennessy, J Jouppi, N Przybylski, S.,
Rowen, C., “Summary of MIPS Instructlons Technical Note
No. 83-2 37 Stanford University, November 1983.

Gilbert, B.K., “Design and Performance Trade Oﬁ‘s in the Use
of Si VLSI and Gallium Arsenide in High Clockrate ,Signal ;
Processing,” Proceedings of the IEEE 1984 International
Conference on Computer Design, Port Chester, New York,
October 1984, pp. 260-266.

Gross, T, “Code Optimization of Pipeline Constrarnts,.
Technical Report No 83-255, Stanford Umversrty, December
1983.

Heagerty, W., GaAs Semlnar presented at Purdue Un1vers1ty, :
January 1985. .
Hehner, E.C.R., “Computer Design to Minimize Memory
Requirements,” IEEE C’omputer, Vol. 9, No. 8, Augu_st 1976,
pp. 65-70. :

- Helbig, W.A,, Schellack R.H. Zleger, R.M., “The De51gn and

Construction of a Ga.As Technology Demonstration
Microprocessor,” Proceedings of Midecon/85, Chicago, Illinois,
September 1985, pp. 23/1.1-23/1.6. ‘

 Hennessy, J., Jouppi, N., Gill, J., Baskett, F.,vS.trong, A,

Gross, T., Rowen, C., Leonard, J., “The MIPS Machine,”
Digest of Papers, Spring. COMPCON 82, San Francisco,
California, February 1982, pp. 2-7.

Hennessy, J., Jouppi, N., Przybylski, S., Rowen, C., Gross, T.,
“Design of a High Performance VLSI Processor,” Technical
Report No. 236, Stanford University, February 1983.

Huffman, D.A., “A Method for the Construction of Mmunum
Redundancy Codes,” Proceedings of the LR.E., Vol. 40, No.9,
September 1952, pp. 1098-1101.

Hwang, K., Computer Arithmetic: Prmczples Archttecture and.

Design, John Wiley & Sons, 1979.

[slnlg4]

[Katevss] .

[KuMiSg4]

 [Kungs?]

[L eK-aW82]

[Lvi'n‘n-éS] ”

[MaMo’M84‘]V

[MaOhH84]

[McCaM82]

© [McDans?]

124

Ishii, Y., Ino, M., Idda, M., Hirayama, M., Ohmori, M.,
“Processing =~ Technologies for GaAs Memory LSIs,”

- Proceedings of the GaAs IC Symposium, Boston,

Massachusetts, October 1984, pp. 121-124.

Katevenis, M.G.H., “Reduced Instruction Set Computer
Architectures for VLSI,” Report No. UCB/CSD 83‘/141;
University of California at Berkeley, October 1983. o
Kuroda, S, Mimura, T., Suzuki, M., Kobayashi, N., Nishiuchi,

, Shibatomi, A., Abe, M., “New Device Structure for 4Kb
HEMT SRAM,” Proceedmgs of the GaAs IC Symposmm
Boston, Massachusetts, October 1984, pp. 125-128.

Kung, H.T., “Why Systolic Archltectures?,” IEEE Computer,
~Vol. 15, No. 1, January 1982, pp. 37-46.

Lee, F.S., Kaelin, G.R., Welch, BM., Zucca, R.,"Sﬁen, E,

- Asbeck, P., Lee, C.P., Kirkpatrick, C.G., Long, SI, Eden,

R.C., “A high-speed LSI GaAs 8x8-bit pa,ra.llel multiplier,”
IEEE Journal of Solid-State Circuits, Vol. SC-17 No. 4,
August 1982, pp. 638-647.

. Linn, I, Unlver31ty of Southwestern Loulsm,na, Private
»Conversatlon 1985.

»MacGregor D, Mothersole D. bMoyer B., “The Motorola

MC68020,” IEEE Micro, Vol. 17, No 8, August 1984 pp‘

101-118.

Matsuoka, Y., Ohwada K., lea,yama. M, “Uniformity
Evaluation of MESFET’ for GaAs LSI Fabrlcation ~IEEE
Transactions on Electron Devices, Vol. ed-31 No. 8, August

1984, pp: 1062-1067.

McDonough, K., Caudel, E., Magar, S., Lelgh A

- “Microcomputer with 32-b1t arlthmetlc does h1gh-prec1s10n
:5 number crunching,” Electromcs Vol 55, No. 8, February 24,
1982, pp. 105-110.

© McDaniel, G., “An Analys1s of a Mesa. Instructlon Set Using
: 'Dynaml_c_ Instructlon Frequencms Proceedmgs of the
 Symposium on Architectural S’upport for Programmmg'

fLanguages and Operatmg Systcms Palo Alto Cahforma, ‘
: ;'f_'_ March 1982, pp 167-176 L

 [MiF uHss]

[MiSiFg8]

‘ [Myer$82]... o

- [Namorg4] -

 [NaSuss3]

[NuKuM84]
[NuPeBs?]

[PatPig2]

 [Patte8s]

[Radin83]

o [Rosé85]. |

584

~ November 1982, pp. 9-19.

Mllutmovm V Fura D, Helblg, W- “An Introductlon tof .

| - GaAs. Mlcroprocessor Archltecture for VLSI” IEEE Computer, : ‘
- Vol. 19, No. 3, March 1986, to appear -

Milutinovic; V., Silbey; A., Fura, D, Bettmger M Keu‘n K

Helbig, W., Heagerty, W., Zleger, Rf “DeSIgn Issues in Ga.As
. ‘Computer Systems,”
" International Conference on System Sczence Honolulu Hawan

February 1986, to appear. - ' Lo .

'Proceedmgs of the 1986 Hawan

Myers, ‘G.J.,, Advances n C’omputer Archztecture o Second
Editzon, John Wlley & Sons, 1982. S :

- Namordl, MR., GaAs Semmar p'resented'] at f“Purdue
“University, October 1984, : T

Nakayama, Y, Suyama, K Shlmlzu, H Yokoyama, N.
Ohnishi, H., Shlbatoml A., Ishikawa, H., “A GaAs 16 x 16 blt'_

- Parallel Multlpher, IEEE Journal of Sohd-State C’zrcmts Vol.
-+ s¢-18, No. 5, October 1983, pp. 599-603. ‘ :

Nukiyama, T Kusano, T., Matsumoto, K., Kurokawa, H.,

Hoshi, T., Goto, H., Temma, T, “A VLSI Image Plpehne |

Processor,” Proceedings of the 1984 IEEE International Solid-

State Circuits Conference, San Francisco, Cahfornla February g

1984, PP 208-209.

Nuzillat, G., Perea EH,, Bert G, Damay-Kavala F.-,
Gloanec, M., Peltier, M., Ngu, T.P., Arnodo; C., “GaAs
MESFET IC’s for Gigabit Logic Applications,” IEEE Journal
of Solid-State Ctrcmts, Vol. sc-17 No. 3, June 1982, pp. 569-

Patterson, D.A., Piepho, R S., ‘“Assessing RISCé iu Hi‘gh’-Level
Language Support ” IEEE MICRO Vol 15, No. 11,

Patterson, DA “Reduced Instructlon Set Computers
Communications of the ACM, Vol. 28 No 1 January 1985 ’

- PP- 8-21.

Radm, G., “The 801 Mlnlcomputer, IBM Journal of Research' |

- and Development Vol. 27, No. 3, May 1983, pp 237-245.
- Rose, C.D,,

“Speed Record Claimed for GaAs TranSIStor,
ElectronzcsWeelc Vol 58, No 19, May 13, 1985 pp 19~20

. [Russe78]
[Sherbs4]

[SmiGos3]

(Smithts]

. [Smiths1]

[Smith82]

 [Smithss]

[SolMos4]

[Tanen7s]

[ToUcKss]

- Kanazawa, K ‘Terada, T., Ikawa, Y. HOJO, A, “A 42ps 2K-

126

- Russell RM ’ "‘The 'CRAY-.» Computer _ System

Commumcatcons of the ACM Vol. 21 No. 1 January 1978
pp. 63-72. :

’ ‘Sherburne R. W I, “Processor 'Design Tradeoﬂ's in VLSI ”
~ Report No. UCB/ C'SD 84/173, Unlver81ty of Cahforma at
Berkeley, April 1984. :

. Smlth JE, Goodman JR,, A Study of Instructlon Cache

Organlzatlons and Replacement Pohcles, Proceedmgs of the
Tenth Annual Symposium Computer_ » A,rchctecture,
Stockholm, Sweden, June 1983, pp 132-137. "

Smith, A.J., “‘Sequentlal Program Prefetchlng in Memory’
Hierarchies,” IEEE Computer, Vol. ll No. 12, December_

. 1978, pp. 7-21.
 Smith, JE, “A Study of Branch Predlctlon Strategles

- Proceedings of the Fighth Symposmm Computer
- Architecture, May 1981, pp. 135-148. :

. Smith, AlJ., “Cache Memories,” AC’M Computmg Surveys,,_
Vol. 14, No. 3 September 1982, pp. 473-530. - BERNO

: Smith, A. J “Cache Evaluation and the Impact of Workload | |
 Choice,” Proceedmgs of the 12th Annual Symposmm on'

Computer Archctecture Boston, Massachusetts, June 1985 pp :
64-73. ' ’ :

“Solomon, = PM., Morkoc, : H.,, f“Mo'dulation-Doped

GaAs/AlGaAs. Heterojunction = Field-Effect © Transistors

| (MODFET"s), Ultrahlgh-Speed Devices for Supercomputers,”
- IEEE Transactions on Electron Demces Vol. ed-31 No 8, ;

August 1984, pp. 1015-1027.

Tanenbaum, A.S., “Imphcatlons of Structured Programmmg

"~ for Machine Archltecture Commaunications of the ACM Vol
21, No. 3, March 1978, pp. 237-246. . .

Toyoda N.,” Uchitomi, N., Kltaura, Y Mochlzukl, M,

’

e ~ Gate GaAs Gate Array,” Proceedmgs of the 1985 IEEE

Internatconal Solid-State Ccrcmts Conference February 1985

b PP. 206-207..

[VanLi74] |

[VuRoN84]

[Walle84]

[Whitbgs]

[YaHiAs:a]

[YuMcS84]

127

Van Tuyl, R.L., Liechti, C.A., “High-Speed Integrated Logic
with GaAs MESFET's,” IEEE Journal of Soltd-State Carcmts :

" Vol. s¢-8, No. 5, October 1974, pp. 269-276.

Vu, T.T., Roberts, PCT Nelson, RD Lee, GM Hanzal
BR., Lee,KW Zafar, N., Lamb DR, Hehx M.J., Jamlson,

S.A., Hanka, S.A., Brown, J.C. Jf;, Shur, MS., “A Galhum

Arsenide SDFL Gate Array with On-Chip RAM IEEE
Journal of Solid-State Carcmts Vol. sc-19, No. l February
1984, pp. 10-22. | »

Waller, L., “Ga.AS ICs bid for 'commercial’: success,”

- Electronscs, Vol. 57, No. 12, June 14, 1984, pp. 101-102.

Whitby-Stevéns, C., “The Transputer,” Proceedings of the
12th Annual International Symposium on Compuler

 Architecture, Boston, Massachusetts, June 1985, pp. 292-300.

Yamamoto, R., Higashisaka, A., Asai, S., Tsuji, T,
Takayama, Y., Yano, S., “Design and Fabrication of
Depletion GaAs LSI High-Speed 32-Bit Adder,” IEEE Journal
of Solid-State Circuits, Vol. sc-18, No. 5, October 1983 pp
592-599. |

Yuan, H., McLevige, W.V,, Shlh H.D., Hearn, A.S., “Ga.As
Hetero]unctlon Bipolar 1K Gate Array, Proceedings of the
1984 IEEE International Solid-State Circuits Conference, San
Francisco, California, February 1984, pp. 42-43.

. ‘1.28> ,

Ap,p:__'en‘Qix»Az Analy’ticai Pipeline Performance Model Derivation :

We can derive an equation to determme the execution time for each of our
| candldate plpehnes for a given set of benchmarks. Again, we have selected
three 1nstructlon pipelines and" three memory configurations for this- study,
'yleldmg nine candidate pipeline conﬁguratlons These are the normal Silicon
pipeline in the (3,3), (3, 6), and (6,3) memory configurations, the packed plpehne
in the (3, ') (3,8), and (6,3) memory configurations, and the plpelmed memory
p1pehne in the (3,3), (3,8), and (6,3) memory configurations.

Before we begin the derivation of the p1pelme performance equatlons it is
helpful to better understand the need for removing some MIPS compller eﬂ'ects
from our benchmark programs.

Al Undoing the Effects of the Stanford MIPS Compiler

“In our upcoming analysis we vary the parameters pbf and plf to determlne
thelr effect on performance. Whenever our value for pbf (plf) is not one, we are
in effect simulating the effect of NOOPs following branch (load) instructions.
However_, the MIPS compiler also performed branch and load fillin, and when
unsuccessful, inserted NOOPs behind branch and load instructions. Clearly, -
before we can accurately simulate the effects of particular values of pbf and plf,
we must determine the number of NOOPs already introduced by the MIPS
compiler, and remove this effect from our calculations.

There are two approaches for removing the compiler’s branch fillin and
load fillin effects. We now discuss these techniques in the context of branches,
but this discussion is equally applicable to data loads.

The first approach that we can take is to effectively remove all the
NOOPs introduced by the MIPS compiler from the benchmark programs by
subtracting a value from our calculated execution time. This value which we
subtract will be proportional to “‘nb * (1 - pbf0),” which is the total number of
NOOPs due to unfilled branch fillin slots. After eliminating these NOOPs, we
can then add the effect of our simulated NOOPs to the calculated execution
time. The value that we add is proportional to “nb * (1 - pbf).”

129

v The second way to approach this: problem 1s to first unfill all the branchv
delay fillin slots by adding a value to our calculated execution time. - This
action can be thought of as inserting a NOOP between a branch operation and
its filled slot, for all the successfully filled slots. The execution time to be
~added is proportional to ‘“nb * pbf0,” which is the total number of successfully
filled branch fillin slots. This approach is attractive because for our GaAs
processor, we will have branch delays greater than ome. This creation of
unfilled slots i is easily extended to any branch delay. For example, if we want
- to create two more slots (for a total branch delay of three), we then add an
additional time to our calculated execution time proportional to “nb * 2.”
After unfilling all the fillin slots, we can then perform our simulated fillin- on
these slots by subtracting from the calculated time a value proportional to “nb
* bd * pbf ” where bd is the branch delay of our candidate GaAs pipeline. It is
this second approach which we use in our analysis to follow. w

' A 2 Execution Time Calculations _
Once agaln the parameters which are obtained from the benchmark‘
»programs ‘ o
iz Total number of mstructlons
_nl': ~.Total number of loads.
nb: Total number of branches. -
| np:‘:’ Total number of packed instructions.
pbe Probablllty of branch ﬁll achieved by the MIPS cornpller
VplfO “Probablllty of load fill ach1eved by the MIPS compller
The parameters derivable from the memory configuration:
nih: Number of cycles required for an instruction cache hit.
nim: Number of cycles requlred for an mstructlon cache miss.
_ndh Number of cycles requlred for a data cache h1t
ndm Number of cycles requlred for a data cache miss.
: The parameters whlch are to be varied in the plpelme experlment.
- pih: _\:kProbablhty of instruction cache hlt
: pdh Probablhty ,of »d}ata cache hit. -

 pbf: Probability of branch I,

plf: Probability of load fill.

130 |

A.2 1 Assumptrons

(1) In cases where there are only one or two operatlons to be executed ‘and

three or more datapath cycles available to execute them, the operatlons'

~ can be moved around among the slots. This will i lmprove performance for

“example when a prior data load ‘doesn’t finish before the first cycle of an

. instruction but does finish before the second, etc. An operatlon requiring
the loaded value can be executed i in the second slot instead of the first.

(2) For load fills we only perform load fillin on the assumption of a data cache -
hit. This means that on a data cache miss the processor must halt, and
_ the load latency introduced by the cache miss must be absorbed. '

A.2.2 Normal Silicon (3,3)
nih = 3, nim = 6, ndh = 3, ndm =6
: A.‘2.2.1 FInstruction fetches:

delay = (number of instr. fetches)
* [(delay for cache hit) * (prob. of cache hlt)
+ (delay for cache miss) * (prob. of cache miss)]
"= ni * [pih * pih + nim * (1 - pih)] | ,
= ni#* (6 -3 ¢ pih) | (A1)

A.2.2.2 Data loads:
For every load, we must first unfill the fillin slot, then fill it back up again
using our simulation plf. The cost of an unfilled slot is rt;h}e‘fetch of one NOOP.

delay = (number of data loads)
* . [(cost of instr. fetch) % (MIPS unfill) _
- (cost of instr. fetch) * (GaAs processor fill)]
- = nl % [(6 - 3 * pih) * plf0 - (6 - 3 * pih) * plf] _
= nl * (6 - 3 * pih) * (plf0 - plf) - - (A.2)

131

A.2.2. 3 Branches

For every branch, we must ﬁrst unfill the fillin slot, then fill it back up
again using our simulation pbf. The cost of an unfilled slot is the fetch of one
NOOP. - ‘

delay = (number of branches)
% [(cost of instr. fetch) * (MIPS unfill)
"~ (cost of instr. fetch) * (GaAs processor fill)]
= nb * [(6 - 3 * pih) * pbf0 - (6 - 3 * pih) * pbf] |
= nb * (6 - 3 » pih) » (pbf0 - pbf) , - (A3)

A.2.2.4 Packed instructions:

For every packed MIPS instruction we must unpack it. The cost of a -
packed MIPS instruction is one instruction fetch. Note that the second
operatlon (the packed piece) of a MIPS instruction is never a data load or
branch - see Appendlx B.
delay v"'= (number of packs) * (cost of instr. fetch)

= np # (6 - 3 + pih) » (A.4)

A.2.3 Normal Silicon (3,8)
nih = 3, nim = 6, ndh = 6, ndm =6
o A.2.3.1 Ihatruction fetchesﬁ [see (A.1)]

‘delay = ni# (6-3 = pih)

- A.2.3.2 Data loads: [see (A2)]

delay = nl' (8- 3 s pih) « (plfo - plf)

- A.2.33 Brahchés:v [see (A3)] \

delay = nb # (6 - 3+ pih) * (pb0 - pb)

182

A.2.3.4 Packed instructions: [see (A4)]

| d;elvayf'b = 'lvlpv + (6-3spih) |

A.2.4 Normal Silicon (6,3)
nih = 6, nim = 6, ndh = 3, ndm =6

A.2.4.1 Instruction fetchés:

We always require nih cycles.

delay = mixnih | o : R

i

A. 2 4.2 Data loads |

We need to first unﬁll the ﬁlhn slot, and then ﬁll it back up w1th
probability one. Because of the long mstructlon fetch time the load delay is 0.
The cost of an unfilled slot is one instruction fetch.

delay = (number of data loads) :

‘ [(cost of instr. fetch) * (MIPS unfill)

(cost of instr. fetch) * (GaAs processor fill)]

= nl * (6 * plf0 - 6 * 1) : Lo
= nl+ 6+ (plfo-1) | - (A8)

¥*

A.2.4.3 Branches:

(number of branches)

[(cost of instr. fetch) * (MIPS unfill)

(cost of instr. fetch) * (GaAs processor ﬁll)] '

~nb * (6 * pbf0 - 6 * pbf) '

“nb + 8 + (pbf0 - pbf) | | (A7)

delay

*

A.2.,4.4 Packed instructions:

delay | = b(n_umber of packs) * (cost of instr. fetch) o
= np*6 : (AS)

133 -

A.z.s Packed (3;3) -

nih =3, nim =6, ndh = 3, ndm =’6
| A.2'.5,1'Ins£ruction fetchése [Seé (A.1)]
~ delay =j* ni * (6 - 3 pih)

A. 2. 5 2 Data loads: [see (A. 2)]
»delay = nl * (6 3 * pih) + (plfO plf)
A.2.56.3 Branches. [see (A.3)]

delsy = mb* (8- 8+ pih) + (pbf0 - pbf)

A.2.8' Packed (3,6)v

nih = 3, ﬁ.ivni =6, ndh = 6, ndm = 6
A.2.6.1 v‘Irlnst'ruction fetches: [see (A.1)]
delay = ni*(6-3= plh)

A 2. 6 2 Data loads. [see (A. 2)]

delay, | nl . (6 3 » pih) = (plfO plf)
A.2.6.3 Branchew [see (A. 3)] '

delay = 'nb 'a‘(s - 3 « pih) « (pbf0 - pbf)

'A 2.7 Packed (6 3)

n1h—6 n1m-6 ndh—3 ndm-6

134 f

’A‘.2‘.;"7.{;1 “»Ihstxy-uctioh fetches: e (A.5)]
_ delay '- ni * 6

A. 2 7.2 Data loads. [see (A 6))
Wvdel_ay = nl+ 8« (plfo- 1)

A.2.7 3 Braltéhesz [see (A.7)]

delay = nb # 6+ (pbf0 - pbf)

: A.2.8Pip_e‘lined Memory (3,3)
n1h-1 n1m—4 ndh 3, ndm—6
A281 IhStru(_:tion fetche's: ’

delay = (number of instr. fetches) »
" % [(delay for cache hit) * (prob. of cache hit)
4+ (delay for cache miss) * (prob. of cache miss))
= ni * [nih * pih + nim * (1 - pih)] | o
= ni*(4-3#pih) v | | - (A9)

A.2.8.2 Data loads:

There are two causes of unpleasantness here: load fillins and data cache
misses, but their effects are 'independent. For a data cache miss we must
B always add an additional three cycles. For the fillin problem we must first
undo the MIPS fillin (which is for one slot only), then create two new unfilled
slots in order to achieve the desired load delay of three Finally, we must
v perform the simulation fillin on all three slots. The cost of an unﬁlled slot is.

one 1nstruct10n fetch. ‘ :

135,

= (number of data loads)

* [(data cache miss delay) * (prob. of data cache miss)

+ (cost of instr. fetch) * (MIPS unfill) »

+ (cost of instr. fetch) * (two new unfilled slots)

- (cost of instr. fetch) * (GaAs processor fill)]

* 3 (1 pdh)

+ (4-3% pih) * plfo

+ (4-3 % pih) *

- (4-3x pih)ék3*p1f]'
- = nl*[3*(1-pdh)
| +(4-3+pih) * (2 +plf0o-3 « plf)] (A.10)

delay

A.2.8.3 Branches.

We need to first undo the MIPS fillin, then create two new unﬁlled slots in
order to achieve the desired branch delay of three. Finally, we perform the

simulation fillin on all three slots. The cost of an unfilled slot is one instruction =

fetch.

delay =.(number of branches) o
% [(cost of instr. fetch) * (MIPS unfill)
4+ (cost of instr. fetch) * (two new unfilled slots)
- (cost of instr. fetch) * (GaAs processor fill)]
= b . .
% [(4- 3 % pih) % pbfo
+ (4-3xpih)*x2
R 3*p1h)*3*pbf] -
= nbe (4-3+ plh) (2 +pbfo-3 pbf) | (A1)

.A.2‘.8v.4 Paeked mstructlons: "
delay = (nurhber of packs) * (cost of insti‘.’fetch) S
= np #(4-3+pih) - S (A

A.2.9 Pipelined Memory (3,6)

nih = 1, nim = 4, ndh = 6, ndm = 6

136

A.2.9.1 Instruction fetches: [see (A.9)]
delay = niv(4-3 . pih)

A.2.9.2 Data loads: , : -
We need to first undo the MIPS fillin and create five new unﬁlled slots.
- Then we perform simulation ﬁllln on all six slots. The cost of an unﬁlled slot is
one mstructlon fetch.

= (number'of loads)
% [(cost of instr. fetch) * (SU-MIPS unfill)
+ (cost of instr. fetch) * (five new unfilled slots)
(cost of instr. fetch) * (GaAs processor fillin))
= nl - '
% [(4- 3= pih) * plf0
+ (4-3xpih) x5 .
(4 - 3 * pih) * 6 * plf]
= nl*(4-3¢pih) = (5 +plf0- 6 » pif) (A.13)

dela

A.2.9._3 Bf'i:"alnc'hes: [see (A.11)]
delay = nb * (4 - 3 # pih) * (2 +pbl‘0- 3=+ pbf)
A.2.9.4 P#cked instructions: [see (A.12)]

delay = np * (4 - 3 = pih)

A.2.10 Pipelined Memory (6,3)
nih = 1, nim = 1, ndh = 3, ndm =6

A.2.10.1 Instruction fetches:

We always require one cycle.

delay = nisl : o - (A14)

137

N A2102 l)ata loads: f - |

delay = (number of data loads)
’ - % [(data cache miss delay).* (prob. of data cache mlss)
4+ (cost of instr.. fetch) x (MIPS unfill)

+ (cost of instr. fetch) * (two new unfilled slots)
= (cost of instr. fetch) * (GaAs processor fill)]
= _ ‘

* [3%(1- pdh)
+ 1% plfo
+ 1%2
- 1% 3% plf S |
:="-n.l s (5 +plfo- 3 +plf- 3+ pdh)

A.2 10 3 Branches.

We need to first undo the MIPS ﬁlhn and create five new unfilled slots -
Then we perform simulation ﬁlhn on all six slots. The cost of and unﬁlled slot
is one 1nstruct10n fetch. ‘ :

= (n umber of branches)
* [(cost of instr. fetch) * (MIPS unﬁll)
-+ (cost of instr. fetch) * (five new unfilled slots)
"~ (cost of instr. fetch) (GaAs processor fillin)]
‘ = nb ' ;
* (1 * pbe
+ 1%5
, 1-: l*6*pbf) o
nb + (5 +pbf0 -6 » pbf)

b.._dela

A 2.10. 4 Packed lnstructlon5° = B
delay = (number of packs) * (cost of 1nstr fetch) '
: np .]_ : : .

138

: _App:endix B: Determinntion of Candidate Instruction Formdt:_'_(_}os‘t_s o

In thls appendlx we present the costs assoclated with each candldate‘
"mstructlon format, and describe our methodology for determmmg these costs

- ,_Once agam the three costs which a candidate format may experlence are:

(1) ,Packlng cost. Some MIPS instructions are successfully packed and hence
- contain two operations. None of the candidate formats can execu_te two
operatlons from a single instruction fetch. ' ' '

(2) ::Address cost. MIPS instructions contain operatlons with as many as three_ o

address specifications. ‘Some of the candidate formats have “only two :
reglster address fields, while some have only two address ﬁelds, one of
which may be an immediate field. o SR

(3) Immediate cost. MIPS instructions have 1mmedlate fields contammg as
many as 24 bits. None. of the candidate formats have immediate- fields
= ,that long, and most immediate ﬁelds are much shorter.- ‘

‘ B 1 Cost Determinatlon

. Packing costs are determined simply by examining MIPS mstructlons
whlch are packable, and determining if the packed operation is a NOOP or
not. The cost penalty is one instruction if the packed operation is not a
NOOP. Because only 12 bits of a MIPS instruction are allocated to the packed
operation, it must be a 2-address ALU operation. For our candidate formats,
the packed operation cannot yield an address or immediate cost.

Address costs are determined by examining the address (register or
immediate) needs of MIPS instructions and determining if the candidate format
has enough of the right kind of address fields. The cost penalty is. one -
instruction if the candidate format lacks the necessary fields. ‘

~Immediate costs are determined by examining the immediate values of
MIPS instructions and determining if the candidate format has enough bits to
represent them The cost penalty is one instruction if the candidate format
lacks the necessary immediate field length. - We assume that the entire second

139

- word may be used for 1mmed1ate if necessary. For some candldate formats '
this yields a maximum immediate field size of 20 bits while some. MIPS'
instructions contain 24-bit immediate fields. However, the MIPS 24-bit
immediate fields are mainly used for addressing, and since the MIPS
instructions and data are all loaded into memory addresses below 32,000, we
should not see immediate fields of over 20 bits for addressing in this study

The only other MIPS instruction which uses over 20 bits of immediate field i is
the “load immediate” instruction; but we found this instruction to represent,
well below one percent of all instruction executions, so we can safely ignore it.

Therefore, a max1mum penalty of one is sufficient.

B.2 Description of the MIPS Instruction Set :
' ‘The MIPS instruction set contains 28 instructions which we now bneﬂy
~ describe. We define the abbreviations that are used in Section B.3 and list the
characterlstlcs of the relevant fields of the MIPS instructions. ~This lnformatlon v
is taken dlrectly from a Stanford Technical Note [GiGrH83]. .
(AA) ALU3 + ALU2. Contains two registers, one reg_iéf_tjér/4-bitl
% immediate field, and one packed operation. ' o -

(BC) . Branch Conditionally. Contains one register, one reglster/4-b1t
. immediate field, one 4-bit condition field, and one 12-bit immediate

e field. v =
~(BU) * * Branch Unconditionally. Contains one 24-bit immediate field.
(JB) * Jump Based. Contains one register and one 20-bit immediate field.

(JBI) Jump Based Indirect. Contains one vregister and one 20-bit
o V1mmed1ate field. ’ :

(JBIA) Jump Based Indirect + ALU?2. Contalns one reglster one 8-b1t '
.lmmedlate field, and one packed operation.

(JD) - Jump Direct. Contalns one 24-bit immediate ﬁeld

(J1)- » Jump Indirect. Contains one 24-bit 1mmedlate ﬁeld S
(JISS) Jump Indirect and Setup Su-reglster Contalns one 24-bit 1mmedxate'
o field. ’ : : : :

| (LB) Loa.d Based. Contams one register and one 20-bit lmmedlate field.

(LBA) Load Based + ALU2. Contams one register, one 8-bit 1mmedla.te
~ " field, and one packed operatlon

(LBIA)
(LBSA)

‘(LD)- :
(wso)
(8PC)

(B)
(SBA)

(SBLA)
(5BSA)
(D)
(SPCB)
(SPCBA)
(sPoD)

(SSUD)

(TC)

140 |

Load Base-Indexed + ALU2 Contains three 'reg‘iste’rs",ax'id_-?-“oae_

packed operatlon v ‘ R \
Load - Base-Shifted + ALU2 Contalns two reglsters oﬁe'-z'.‘4-_.bit- '

f;lmmedlate field, and one packed operation. _
:Load Direct. Contams one reglster and one 24-b1t 1mmed1ate ﬁeld

" Load Immedlate Contalns one reglster and one 24—b1t lmmedlate
o field. ' ’ '

,:;'LoadS Direct. Contains One‘24-.bit immediate ﬁeld';
“SavePC. ‘Contains one 24-bit immediate field. R
Set Conditionally. Contains .one register, one register/4-bit -

immediate field, and one 4-bit condition field.

“Store Based. Contains two registers and one 20-bit 'immediate field.

Store Based + ALU2. Contains two reglsters, one 8-b1t 1mmed1ate,
field, and one packed operatlon TR

Store Base-Indexed + ALU2 Contams three reglsters and one-'

'packed operation.

~Store Base-Shlfted + ALU2. Contains two reglsters, one 4-b1t'
.fﬂlmmedlate field, and one packed operation."

Store Direct. .Contains one register and one 24-bit immediate field.

StorePC Based. Contains one register and one 20—b1t 1mmed1ate

field.

StorePC Based + ALU2. Contains one register, one 8-bit immediate
ﬁeld and one packed operatlon -

StorePC Direct. Contains one 24-bit 1mmed1ate field.

StoreSU Direct.- Contains one 24-bit immediate field.

‘Trap Conditionally. ~Contains one register, one 'registe.r/4-bit'
“immediate field, one 4-bit condition field, and one 11-bit code field.

B 3 Presentation of Costs

"In Table 4.2 we listed the fields for the candidate 1nstructlon formats _‘ _
Based upon this table and Sections B.1 and B.2 above, we can derive the costs '
for each candidate format. We list these costs in Tables B.1 - B.10. We use
several shorthand notations:

141

We sa,y “+1 over x” to indicate a cost of one. 1nstruct10n if a MIPS 1m-:
.. mediate value requiring more than x bits is encountered. '

We say “+1 if packed” to indicate a cost of one mstructlon 1f a pa.cked'
MIPS instruction is encountered. o '

k(We say ‘“+1 if xreg” to indicate a cost of one 1nstruct10n n‘ a MIPS.

lnstructlon requlres X or more distinct reglsters

- We say “+1 if xaddr to indicate a cost of one 1nstruct10n if a M]PSI-

instruction: requires x or more distinct addresses (register or 1mmedlate'

- operands).

(5)

We say “+1” to indicate a cost of one instruction elways.k

142

- Table B.1 Costs for Candidate Format 28(3). o

| - Instr. “Cost Instr. o ~ Cost
AA +1 if packed LI +1 over 8
BC +1 || LsD - +lover8
- +1 over 8 I SPC | ~+1lover8
BU +lover8 - sC +0
JB) +1 over 8 SB- +1 over 8
JBI +1 over 8 , SBA - +1 if packed
JBIA “+1 if packed - SBIA | +1 if packed
i1) B - +1lover8 SBSA +1 if packed
| +1 over 8 - SD -~ +1lover8
JIss - +1over8 SPCB +1over8
LB "~ +lover8 SPCBA - +1if packed
LBA +1 if packed SPCD +1 over 8
LBIA +1 if packed - - SSUD +1 over 8
LBSA. +1 if packed TC 41
LD ' +1 over 8 | ' - +1over 8

143

Table B.2 Costs for Candidate Format 28(3210).

MIPS

TC -

MIPS .
Instr. Cost Instr. ~ Cost
CAA +1 if packed LI +1 over 16
" BC +1 'LSD +1 over 20
- BU +1 over 20 SPC +1 over 20
JB +1 over 16 SC +0
- JBI +1 over 16 SB +1overl12
JBIA +1 if packed SBA +1 if packed
R D +1 over 20 SBIA +1 if packed
) | +1 over 20 SBSA +1 if packed
- JISS +1 over 20 SD ~ +1over16
LB +1 over 12 SPCB ~+lover16
LBA +1 if packed SPCBA - +1if packed
- LBIA +1 if packed SPCD +1 over 20
LBSA - +1if packed ©SSUD +1 over 20
’ - +1 over 16 o411

LD

144

Table B.3 Costs for Candidate Format 24(32). IR |

MIPS

MIPS

' "In:str. ~ Cost Instr. .. Cost
AA +1if packed LI ~+1over 4
BC +1 ' LSD +1overd
e +1 over 4 SPC +1 over 4

"BU +1 over 4 SC 40
JB +1 over 4 SB +1 Qver 4
JBI - +1over4 SBA +1overd4
JBIA - +1 if over 4 A +1 if packed
- ~ +1 if packed SBIA +1 if packed
~JD +1 over 4 SBSA +1 if packed
a- +1 over 4 SD +1 over 4
JISS +1 over 4 SPCB +1over4
LB +1 over 4 SPCBA ~+1 over 4
‘LBA +1 over 4 +1 if packed
+1 if packed SPCD +1 over 4
LBIA +1 if packed . SSUD +1 over 4
LBSA +1if packed' TC +1
LD +1 over 4 +1 over 4

145

. Table B.4 Costs for Céndidate Format 24(3210). o

MIPS

TC

MIPS »
Instr. - Cost -~ Instr. Cost
- AA +1 if packed LI +1 over 12
BC +1 LSD +1 over 16
BU +1over 16 SPC +1 over 16
JB +1 over 12 SC . 40
JBI +1 over 12 SB +1over8
~JBIA +1 if packed SBA +1 if packed
JD +1over16 SBIA +1 if packed
n . +1over 16 SBSA ~+1if packed
JISS ~ +1 over 16 SD - +lover12
LB +1 over 8 - SPCB +1 over 12
LBA' +1 if packed SPCBA +1 if packed
LBIA +1 if packed SPCD +1 over 16
- LBSA +1if packed SSUD +1 over 16
+1

+1 over 12

148

Table B.5 Costs for Candidate Format 24(2).

- MIPS

MIPS

+1 over 8_

Instr. ~ Cost - Instr. " Cost
AA +1 if 3reg LI +1 over 8
o - +1 if packed LSD +1 over 8
BC +1 SPC +1 over 8
o +1 over 8 SC +0
BU - +1over8 SB +1 over 8
JB - +1over8 SBA +1 if packed
JBI +1 over 8 SBIA - +1if 3reg
JBIA +1if packed o +1 if packed -
D +1 over 8 SBSA +1 if packed
JI +1 over 8 - SD +1 over 8 -

- JISS +1 over 8 SPCB +1 over 8
LB . +1over8 - SPCBA +1 if packed
LBA +1 if packed SPCD +1 over 8
LBIA +1 if 3reg SSUD +1 over 8

+1 if packed TC +1
~LBSA +1 if packed

+1over 8

LD

147

‘Table B.6 Costs for Candidate Format 24(210).

MPS - M
~ Instr. - Cost -~ Instr. . Cost

- AA - +1if 3reg I - L . +1 over 12
R +1if packed LSD - +1 over 16
“BC 41 | SPC +1 over 16
"BU ~ +loverls | sc 40

B - +1lover12 . SB +1 over 8
JBI _ +1 over 12 I sBA - +1if packed

| JBIA +1lifpacked || SBIA +1if3reg

D - +loverl8 o +1 if packed .
) ‘+lover16 - || SBSA -~ +1if packed
| Jss +loverl6 || SD +1 over 12
- LB, +lover8 SPCB - +1over 12
LBA +1lifpacked || SPCBA +1 if packed
. LBIA - +1if3reg || SPCD = +1overl$
~ +1if packed - SSUD ~ +lover18
LBSA ~ +lifpacked | TC R ¥ S

LD . S | over'l2

- Table B.7 Costs for Candi:daﬁteslj’qqﬁat- 20(32) R

| nstr.

JBI

| LBA

- LBIA

| LBSA
LD

: | - Cds{t{ -

© +1if packed

e
+1 ovér.- 4
~+1 over 4
+1 over 4
+1 over 4

) " +1overd: |
+1 if packed

+1 over 4
+1 over 4
+1 over 4
+1 over 4
+1over4

~+1 if packed
+1 if packed
+lifpacked |

~+loverd

L

- LSD
SPC
8¢
| sB

SBA

- SBIA

SBSA
SD

SPCB
SPCBA

SPCD

SSUD
TC

+1 over :1,4 -

L - +1 over ‘4

. +o0

- +1 over 4

+1 over 4

 +1if packed -
+1 if packed

+1if packed
+1 over 4
+1overq -

~ +1loverd4
+1 if packed

+1 over 4
+1over4
B 5 SR
+1 over 4

149

Table B.8 Costs for Candidate Format 20(3210).

 MIPS

- Instr.

~ Cost _

MIPS

Ins_tr.

Cost

BC

BU .

B

JBIA

JIss
LB

LBA
" LBSA

Sy

+1if packed

+1 over 12 -

+1 over 8

+lover8

+1 if packed
+1 over 12

+1 over 12
+1 over 12
+1 over 4

- +1if (2reg

and over 4)
+1 if packed

+1if ’packed .
- +1if packed

+1 over 8

LI

" LSD
. SPC
sCc .
SB
- SBA

_ SBIA
" SBSA
' SD

SPCB

SPCBA
'SPCD
SSUD

TC

+1over8
- +1overl2
+1 over 12
+0
+1 over 4
+1 if (2reg
and over 4)

- +1 if packed -

~+1if packed
+1 if packed

" +1over8.

~ +1overs
+1 if packed

41 over 12

+1over 12
4T

Table B.9 Costs for Candidate Format 16(21).

_Instr.

Tnstr.

BC

BU

JBI

| IBIA

- JISS
LB

LBA

LBIA

LBSA

41 if 3addr

+1 if packed

S

+1 if 2addr
+1 over 4
+1 over 4
+1 over 4
+1 over 4

+1overd

+1 if packed
+1over 4
~+1lover4
+1 ‘o"\?er 4
+1 if (3addr
or over 4)

+1if (3addr

or over 4)
+1 4f packed
+1 if 3addr
+1 lf packed
+1'if 3addr
+1 if packed

Li

" LSD

SPC

50

SB

SBA

SBIA

SBSA

sD
SPCB
SPCBA
SPCD
SSUD
TC

+1overd ||

~ Cost

+1 over 4
+1 over 4
+1over4
+1 if 3addr *
+1if (3addr
‘or over 4)
+1 if (3addr
“or-over 4)
+1 if packed
+1 if 3addr
+1 if packed
+1 if 3addr
+1 if packed
- +1 over 4
+1 over 4
+1 over 4
+1if packed
+1 over 4
+1 over 4
+1

+1if 2addr

-Fl over4

LD

151

Table B.10 Coéts'for Candidate Format 16(210).

- MIPS MIPS
Instr. Cost Instr. Cost
AA +1 if 3addr LI +1 over 4
+1 if packed LSD +1 over 8
- BC . . *1 SPC . +1 over 8
+1 if 2addr SC +1
+1 over 8 'SB +1 if (3addr
BU - +1over8 or over 4)
JB +1 over 4 SBA +1 if (3addr
JBI +1 over 4 or over 4)
JBIA 41 over 4 - +1if packed
' +1 if packed SBIA +1 if 3addr
JD +1 over 8 +1 if packed
. +1 over 8 _ SBSA +1 if 3addr
S JISS +1 over 8 +1 if packed
LB +1 if (3addr SD +1 over 4
- or over 4) SPCB +1 over 4
LBA +1 if (3addr SPCBA +1 over 4
S or over 4) +1 if packed
+1 if packed SPCD +1 over 8
LBIA +1 if 3addr SSUD +1 over 8
e +1 if packed TC S +1
LBSA +1 if 3addr +1 if 2addr
g +1 if packed +1 if over 8
LD +1 over 4 R

	Purdue University
	Purdue e-Pubs
	12-1-1985

	Architectural Approaches For Gallium Arsenide Exploitation In High-Speed Computer Design
	David Allen Fura

	tmp.1542052450.pdf.vKM54

