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ABSTRACT

Fura, David A,, M.S.E.E., Purdue University. December 1985. Architectural 
Approaches for Gallium Arsenide Exploitation in High-Speed Computer Design. 
Major Professor: Veljko M. Milutinovic.

Continued advances in the capability of Gallium Arsenide (GaAs)technol 

ogy have finally drawn serious interest from computer system designers. The 

recent demonstration of very large scale integration (VLSI) laboratory designs 

incorporating very fast GaAs logic gates herald a significant role for GaAs tech

nology in high-speed computer design:1 In this thesis we investigate design 

approaches to best exploit this promising technology in high-performance com

puter systems.

We find significant differences between GaAs and Silicon technologies 

which are of relevance for computer design. The advantage that GaAs enjoys 

over Silicon in faster transistor switching speed is countered by a lower transis

tor count capability for GaAs integrated circuits. In addition, inter-chip signal 

propagation speeds in GaAs systems do not experience the same speedup exhi

bited by GaAs transistors; thus, GaAs designs are penalized more severely by 

inter-chip communication.

The relatively low density of GaAs chips and the high cost of communica

tion between them are significant obstacles to the full exploitation of the fast 

transistors of GaAs technology. A fast GaAs processor may be excessively 

underutilized unless special consideration is given to its information (instruc

tions and data) requirements. Desirable GaAs system design approaches



XVI

encourage low hardware resource requirements, and either minimize the 

processor’s need for off-chip information, maximize the rate of off-chip informa

tion transfer, or overlap off-chip information transfer with useful computation. 

We show the impact that these considerations have on the design of the 

instruction format, arithmetic unit, memory system, and compiler for a GaAs 

computer system.

Through a simulation study utilizing a set of widely-used benchmark pro

grams, we investigate several candidate instruction pipelines and candidate 

instruction formats in a GaAs environment. We demonstrate the clear perfor

mance advantage of an instruction pipeline based upon a pipelined memory 

system over a typical Silicon-like pipeline. We also show the performance 

advantage of packed instruction formats over typical Silicon instruction for

mats, and present a packed format which performs better than the experimen

tal packed Stanford MIPS format.



■■ CHAPTER I 
INTRODUCTION

Digital integrated circuits employing Gallium Arsenide (GaAs) technology 
have been regularly presented since the mid 1970s. The faster switching speed 
of GaAs and its higher resistance to adverse environmental conditions have 
created sporadic bursts of enthusiasm throughout the last ten years. However, 
not until recent significant advances in GaAs material quality and fabrication 
technology has GaAs begun to attract serious interest from computer System 
designers.

A coherent computer system design strategy requires a thorough 
understanding of the underlying implementation technology. The advances 
made in Silicon technology have drastically improved the capability of Silicon- 
based computer systems. Apart from the performance improvements due 
strictly"to unproved technology, technology-driven architectural advances have 
also played an important role. The effect that the characteristics of Silicon 
very large scale integration (VLSI) have had on computer design strategies is 
observable in the recent enthusiasm for designs such as dataflow computers 
[DenniSO], systolic arrays [Kung82], and reduced instruction set computers 
(RISCs) [Patte85|.

As GaAs technology is only expected to begin achieving integration levels 
approaching 10,000 gates by the late 1980s [Leopo85], it is not surprising that 
design strategies appropriate for GaAs should differ from those encountered in 
VLSI Silicon. In fact, Silicon-GaAs differences are more pronounced than as 
indicated by level of integration alone. Two additional key differences are the 
already mentioned higher speed of GaAs gates, as well as a corresponding 
higher penalty for inter-chip communication for GaAs chips. Clearly, it is vital 
to understand the characteristics of GaAs which influence computer system 
design before attempting to build GaAs-based computer systems, and it should 
not be assumed that Silicon-based techniques are desirable for GaAs 
implementations.

The purpose of this thesis is to explore the use of GaAs technology in 
computer system design. We are interested in architectural approaches for fully



exploiting the fast transistors of low-density GaAs chips by minimizing the 
deleterious effects of a slow off-chip environment. System packaging approaches 
for improving this slow inter-chip communication are also important issues but 
are not within the scope of this work.

We adopt a three step approach to GaAs computer system design. We 
first examine GaAs technology and determine its characteristics which are 
relevant for computer design. We then study the suitability of poptiil! Biltedl 
designs for satisfying the requirements of GaAs, and explore the use of little- 
used or novel approaches as well. Finally, we determine through 
experimentation whether the approaches Which seem appropriate for GaAs 
implementation are indeed the most desirable.

Because the implementation technology plays such a critical role in the 
design of computer systems, Chapter II provides a description of GaAs 
technology relevant for a clear understanding of the architectural design 
tradeoffs required by GaAs. Chapter III discusses the architectural design 
issues which are affected by the characteristics of GaAs technology, and 
suggests possible design approaches. Chapter IV presents the discussion and 
results of two experiments which were undertaken in order to examine some
approaches presented in Chapter IE. We finish in Chapter V by summarizing 
our results and recommending a direction for future work in this area.



CHAPTERn 
GaAs TECHNOLOGY

To provide a sound basis for subsequent GaAs computer system design 
discussions, this chapter presents an overview of digital GaAs technology We 
discuss the relative merits of candidate device families and their logic gate 
implementations, and we also present some of the advanced GaAs digital 
designs which have appeared in the last few years. In order to permit a 
rational GaAs-Silicon comparison, we select the GaAs technology which 
appears to have the first shot at VLSI levels of integration in production 
quantities. In comparing this GaAs technology with SiliconNMOS we 
illuminate Several differing characteristics. These GaAs-Silicon differences will 
then provide much of the motivation for the discussion of the next chapter.

2.1 G&As Device Families
■::;;::-v.‘Justv.’as'Silicon technology has undergone major change, GaAs technology 
has seen rapid advancements in its relatively short history. The first published 
digital GaAs circuits were introduced in the mid 1970s. The earliest devices to 
be utilized in these circuits were depletion-mode metal-semiconductor field 
effect transistors (D-MESFETs). Some widely used devices which followed 
include enhancement-mode MESFETs (E-MESFETs), modulation-doped FETs 
(MODFETs), and heterojunction bipolar transistors (HBTs).

D-MESFETs were the first devices to be used in digital circuit designs, 
and the ease with which they are fabricated is one of their primary advantages 
over other device technologies. Some additional strengths include high 
insensitivity to fanout and large noise margins for D-MESFET logic gates 
[YaHiA83]. Unfortunately, D-MESFET logic designs must utilize complex 
circuits resulting in large power and area requirements [EdWeL83|. They 
require two power supplies and voltage level shifting logic to allow logic gates 
tp be cascaded.

E-MESFET circuits require but a single power supply and no voltage level 
shifting logic, thus requiring less power and area than D-MESFET designs



[EdWeL83j. For this reason E-MESFETs are considered more appropriate for 
VLSI implementations. E-MESFET logic circuits can also be faster than D- 
MESFET circuits; however, they are more sensitive to fanout loading and 
perform poorly in high load environments [EdWeL83]. E-MESFETs also 
require higher material quality and more complex processing to achieve the 
high threshold voltage uniformity necessary for working devices [MaOhH84] 
[EdWeL83].

MODFETs, also commonly known as high electron mobility transistors 
(HEMTs), achieve much faster switching speeds than either D-MESFETs or E- 
MESFETs; consequently, they have generated much interest for high-speed 
computer design. MODFETs utilize a layer of AlGaAs material to supply 
electrons into an undoped GaAs channel. Because the room temperature 
mobility of electrons in undoped GaAs is almost twice as high as in n-channel 
GaAs MESFETs, MODFETs are able to more quickly change their output 
state with low power consumption [SolMo84]. At liquid nitrogen temperature 
(77 ° K), electron mobilities in MODFETs are improved even further - 
approximately six times higher than at room temperature [SolMo84], Ionized 
impurity scattering in n-channel GaAs MESFETs deny this higher mobility to 
MESFET devices [SolMo84]. The major disadvantages of MODFETs are a 
more complex processing requirement than MESFETs and the need for a very 
high-quality AlGaAs layer [SolMo84].

HBTs do not suffer from the threshold voltage problems that plague the 
FETs which we just described, and this is an important advantage for VLSI 
implementations [Eden82]. In addition to their built-in threshold'^voltage 
control, HBTs are very fast and have higher output drive capability than 
FETs, resulting in lower sensitivity to fanout and loading [AsMiA83], HBTs 
may also be employed in circuit designs with differential inputs and outputs 
which result in decreased switching noise [AsMiA83]. The disadvantages of 
HBTs are higher processing complexity than FETs, as well as relatively high 
power and chip area requirements [AsMiA83].

2.2 GaAs Logic Families
Several logic families exist which utilize the above devices. Some widely- 

used families which utilize FETs include buffered FET logic (BFL), Schottky 
diode FET logic (SDFL), and direct coupled FET logic (DCFL). Other logic 
families utilizing bipolar transistors include emitter-coupled logic (ECL) and 
Schottky transistor logic (STL);



Early BFL logic circuits utilizing D-MESFETs exhibited fast switching 
speeds at high power levels. One reported design had gate delays of 34 ps at 
41.0 mW per gate [NuPeB82[. Efforts to reduce the power consumption of 
BFL gates resulted in low power BFL (LPBFL) designs with a relatively small 
penalty in switching speed. Advanced LPBFL designs include a 32-bit adder 
containing 420 gates with gate delays of 230 ps and a power of 2.8 mW per 
gate [YaHiA83]. To our knowledge, the highest level of integration achieved 
with a BFL design is an LPBFL 12x 12-bit multiplier which, including its non- 
BFL input and output buffers, incorporated 1083 gates [FuTal84], The 
LPBFL gates had switching speeds of 170 ps and a power dissipation of 1.7 
mW. Figure 2.1 is an example of a BFL inverter which demonstrates the 
coniplexity inherent in D-MESFET-based circuits. However, LPBFL versions 
require only one or two diodes for voltage level shifting instead of the three 
shown.

SDFL logic circuits also use D-MESFETs and have a relatively complex 
logic circuit implementation as shown in Figure 2.2. However, because of their 
lower power and area requirements, they have achieved higher integration 
levels than BFL designs [EdWeZ79], Ih fact, the first reported GaAs LSI (> 
1000 transistors) design utilized SDFL gates [LeKaW82]. This 1008-gate 8x8- 
bit multiplier had gate delays of 150 ps and a power dissipation of 0.6-2 0 mW 
per gate. The highest reported level of integration achieved with SDFL logic 
gates appears to be a combination gate array/SRAM chip [YuRoN84]. This 
design incorporated 432 programmable cells, 32 interface I/O buffer cells, and 
four 4x4-bit SRAMs for a total of approximately 8000 devices. The average 
gate propagation delay and power dissipation were 150-300 ps and 1.5 mW, 
respectively.

DCFL logic circuits utilizing E-MESFET drivers and D-MESFET loads 
(DCFL E/D-MESFETs) have achieved by far the highest level of integration of 
any GaAs technology. The use of the simple circuit configuration of Figure 2.3 
gives DCFL designs a decided advantage in power dissipation and area 
requirements, both extremely important for VLSI implementations. Several 
significant DCFL E/D-MESFET designs have been reported. A 2000-gate gate 
array exhibiting gate delays of 215 ps and power requirements of 0.5 mW per 
gate was reported [ToUcK85]. A 3168-gate 16x 16-bit multiplier with gate 
delays of 150 ps and a power dissipation of 0.3 mW per gate has been 
presented [NaSuS83]. However, the highest reported level of integration 
achieved to date is a 16K-bit SRAM containing 102,300 devices [IsInI84]. The 
access time was 4.1 ns and the total chip power consumption was 2.5 W. Ring 
oscillator measurements showed gate delays of 115 ps at 0.1 mW per gate.
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Thu DCFL logic circuit design of Figure 2.3 is also utilized for MODFET 
devices. Because of the early state of MODFET development, this promising 
technology has not achieved the levels of integration experienced by E/D- 
MESFETs. The highest level of integration achieved thus far is a 4K-bit 
SRAM [KuMiS84]. This chip had an access time of 4.4 ns and power 
dissipation of 860 mW at room temperature. At 77 ° K, access times and power 
requirements of 2.0 ns and 1.6 W, respectively, were achieved However, 
MODFET designs have the distinction of holding the fastest gate propagation 
times. The current record at room temperature is 11.6 ps, while at 77 b K it is 
only 8.5 ps [Rose85].

HBTs have only recently been used in digital logic circuits and have 
achieved the lowest level of integration of the devices we’ve discussed. Ring 
oscillator measurements were performed using common mode logic (CML) ECL 
gates [AsMiA84]. Propagation delays of 60 ps were achieved with a gate power 
dissipation of 3.0 mW. Ain example ECL/CML logic gate is shown in Figure 
2.4. Thus far, the highest reported level of integration for HBTs is a lK-gate 
gate array utilizing an STL-like logic implementation [YuMcS84j. Using a 
circuit design represented by the inverter of Figure 2.5, a propagation delay 
and power dissipation of 400 ps and 1.0 mW, respectively, were achieved.

Tsible 2.1 summarizes the current relative performance levels of these five 
logic circuit families. The DCFL E/D-MESFET family shows the highest 
capability in these published designs. Because DCFL E/D-MESFETs were first 
to achieve VLSI (> 10,000 transistors) densities in laboratory environments, 
they were among the first to be seriously considered for processor 
implementation. In fact, the description of an 8-bit GaAs processor using 
E/D-MESFET technology has already been published [HeScZ85].

2.3 GaAs-Silicon Comparison
Because of their early attainment of VLSI densities in laboratory 

environments^ DCFL E/D-MESFETs will bd used to represent GaAs 
technology throughout the rest of this thesis. The performance characteristics 
of Silicon are based primarily on NMOS, which has the same logic gate circuit 
design as DCFL designs.

Table 2.2 shows performance characteristics of both DCFL E/D-MESFET 
GaAs and NMOS Silicon [BasNu84] which are relevant for computer system 
design. From this table, three fundamental differences between GaAs and 
Silicon are evident.
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Figure 2.4 ECL/CML HBT Logic Gate [AsMiA84].
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Table 2.1 Performance Characteristics of GaAs Designs.

Unit Speed (ns) Total Device Reference
Power (W) Count (K)

ARITHMETIC

32-bit adder 
(BFL D-MESFET)

16x 16-bit multiplier
2.9 total 1.2 2.5 [YaHiA83]

(DCFL E/D-MESFET) 10.5 total 1.0 10.0 [NaSuS83]

CONTROL

gate array/SRAM 
(SDFL D-MESFET) 

lK-gate gate array
.15/gate 3.0 ~8.0 [VuRoN84]

(STL HBT)
2K-gate gate array

. 40/gate 1.0 ~6.0 [YuMcS84]

(DCFL E/D-MESFET) .08/gate 0.4 8.2 [ToUcK85]

MEMORY

4K-bit SRAM 2.0 total
(DCFL MODFET) 

16K-bit SRAM
at 77 ° K 1.6 26.9 [KuMiS84J

(DCFL E/D-MESFET) 4.1 total 2.5 102.3 [Islnl84]



GaAs
(DCFL E/D-MESFET)

Silicon
(NMOS)

COMPLEXITY

transistor count/chip 20 - 30 K 200 - 300 K
chip area yield & power yield & power

dependent dependent
SPEED

gate delay 50 - 150 ps 1 - 3 ns
on-chip memory access 0.5 - 2.0 ns 10 - 20 ns
off-chip/on- package

memory access
nff-r n irv/riff-nar Ir acrp

4 - 10 ns 40 - 80 ns
Ull vlllu/ Ull UdV/iVagv

memory access 20 - 80 ns 100 - 200 ns
IC DESIGN

transistors/gate 1 + fanin 1 + fanin
transistors/memory cell 

static 6 6
dynamic 1 1

fanin (typical 
transistor size) 2-3 5 ;■

fanout (typical
transistor size) 3-4

i gate delay increase 
for each additional
fanout (relative to
gate delay with 
fanout = 1) 25- 40% 25- 40%



14

(1) GaAs logic gates switch considerably faster than Silicon logic gates This 
is the most significant advantage that GaAs enjoys over Silicon in the 
context of this thesis. The principal reason for this GaAs advantage is the 
higher mobility of GaAs electrons. The electron mobility of 4000-5000 
cm2/Vs in n-channel MESFETs is approximately six times higher than the 
electron mobility of 800 cm2/Vs for Silicon [NuPeB82], A secondary GaAs 
speed advantage is the ability of GaAs to be fabricated as a semi- 
insulating material, which reduces parasitic capacitances [NuPeB82j.

(2) The transistor count capability of GaAs is much lower than that of 
Silicon. The limitations of GaAs are due to problems with both power 
dissipation and yield.

Power dissipation is a concern of chip designers regardless of the 
technology. If total chip power consumption significantly exceeds two 
watts, then the associated heat may cause reliability problems. Special 
packaging techniques must then be used to remove heat more quickly from 
the chip. Although GaAs transistors require less power than-Silicdh 
transistors at similar switching speeds, fast GaAs transistors require more
power than slow MOS transistors. GaAs designs requiring 0.2 milliwatts 
per gate will be limited to approximately 30,000 transistors if a two watt 
maximum power dissipation limit is imposed. An example two watt 
Siliqon design, the Motorola MC68020, uses nearly 200,000 transistors 
[MaMoM84].

Because yield is inversely proportional to chip area, while transistor count 
is directly proportional to chip area, transistor count may be traded off for 
higher yields and, hence, lower costs. GaAs material is also currently of 
lower quality, i.e., it has higher defect densities, than Silicon ['VValle84]. 
Therefore, GaAs wafers experience poorer yields than Silicon wafers with 
similar areas. This problem is compounded by the fact that the GaAs 
material is more expensive than Silicon, since Gallium is a rare material, 
and as a compound material, GaAs requires additional processing to create 
it and to verify its composition [Namor84]. In order to satisfy cost 
constraints, some GaAs designs may experience severe area liniitatiohs, 
and, hence, be limited to lower transistor counts.

(3) As indicated by the on-chip and off-chip memory access times, the speed 
advantage that GaAs enjoys over Silicon for the on-chip environment is 
not matched by an equal off-chip speedup. Inter-chip signal propagation 
speed is not significantly different for GaAs and Silicon chips since it is 
primarily dependent upon packaging considerations rather than integrated



circuit technology. Inter-chip signals are first limited to the speed of light;
however, the media dielectric constant and capacitive loading on the signal 
lines can reduce signal propagation speeds to one third the speed of light 
or lower [MiSiF86]. Because of this, the penalty for inter-chip 
communication is higher, in terms of gate delays, for a GaAs design than
it is for Silicon designs.



chapter in
DESIGN CONSIDERATIONS FOR G&As COMPUTER SYSTEMS

In Chapter II we presented an overview of GaAs device and logic families; 
The characteristics of GaAs were then compared with those of Silicon in order 
to illuminate the relevant differences between the two technologies.

In this chapter most of our discussion is based at least indirectly on the 
results of Chapter II. We first extend these results by defining more clearly 
those GaAs characteristics that influence computer design, and describe in 
general terms the appropriate strategies for dealing with some problems posed 
by GaAs technology. We then discuss the design approaches which appear to 
be suitable for computer system hardware and the compiler for a GaAs 
processor, concentrating on those approaches which are more valuable in GaAs 
system designs than in Silicon designs.

The discussions throughout the rest of this thesis are Oriented to GaAs 
processor systems which execute compiled high level language (HLL) programs. 
No specific application area is targeted, as these discussions are ihtendhff fbr 
GaAs processor system design in general.

3.1 The Effect of GaAs Characteristics on Computer Design Strategy
The design of a GaAs computer system is intimately dependent upon the 

GaAs characteristics presented in the previous chapter; therefore, these 
characteristics deserve closer scrutiny.

As previously stated, GaAs transistors are significantly faster than Silicon 
transistors. The purpose of this thesis then is to determine the best approaches 
to maximize the exploitation of this GaAs advantage.

Unfortunately, GaAs chips generally have fewer transistors than Silicon 
chips. This obviously has an enormous impact on computer design. Minimizing 
chip count is desirable for performance, reliability, and cost reasons. Designs 
which minimize hardware complexity reduce chip count and are therefore very 
desirable.



A significant problem by itself, low transistor count severely compounds 
the problem caused by large inter-chip propagation delays. Together, these 
two problems may potentially limit the exploitation of the great strength of 
GaAs technology - its fast transistors.

A GaAs processor is able to execute instructions faster than a Silicon 
processor only if it has a corresponding increase in its supply of instructions 
and data. A fast GaAs processor should not be forced to spend its time 
waiting for information from its external environment. Three methods of 
resolving this information problem are to reduce the processor’s need for off- 
chip information, increase the effective information transfer rate, or overlap the 
information transfers with processor execution.

Obviously, if the entire system could be built within one GaAs chip, the 
need to access off-chip information would be minimized- However, because 
GaAs chips are expected to contain fewer transistors than Silicon chips, the 
need for off-chip information will be even greater. Silicon processors are able to 
alleviate this problem by incorporating large amounts of on-chip memory in the 
form of a register file, cache, or microprogram store. Silicon’s abundant 
transistors may also be used in the design of complex arithmetic units which, 
while performing complex functions, utilize each data element longer than 
simple arithmetic units do in performing simple operations. Because of the 
lower transistor count of GaAs chips, many of these Silicon solutions will not 
be available to a GaAs processor.

Increasing the effective rate of information transfer can be accomplished in 
two ways. The information content of each transfer can be increased or the 
rate of transfer can be increased.

Increasing the information content of transfers can be accomplished either 
by transmitting more bits per transfer or by eliminating redundancy within the 
transferred information. Upper limits on the number of bits per transfer a,re 
imposed by pin limitations of integrated circuits. However, Silicon 
supercomputers using SSI/MSI components, such as the Cray-1, are able to 
utilize this technique for data transfers [Russe78], but this technique is limited 
to operations on very regular data structures such as arrays. This thesis is not 
limited to the applications with well-structured data which are necessary for 
maximum performance on Silicon vector supercomputers. Redundancy 
removal, on the otherhand, generally requires an encoding and decoding 
capability. A compiler can effectively provide the encoding function on 
instructions; however, the decoding function must be performed by hardware 
resources within the processor. Many Silicon processors incorporate large on-



chip microprograms in order to provide instruction decoding. GaAs processors 
will likely not have the transistors available to provide such a thorough 
decoding capability.

A second technique for increasing the information transfer rate is to 
increase the effective rate of transfer. Silicon computer systems rely 
increasingly on cache memories, and multiple level memory hierarchies in 
general, to provide effective processor-memory transfer rates near the rate 
required by the processor. These traditional Silicon solutions may not be 
adequate for GaAs processors; however, because inter-chip signal propagation 
delays will take larger percentages of GaAs instruction cycle times.

Overlapping information transfers with processor execution is the final 
technique that we consider for reducing the GaAs processor information 
problem. Parallel execution and information transfer implies that information 
transfers are initiated before the processor has a need for this information. For 
a completely autonomous information transfer mechanism, separate datapaths 
and memory are required. This is more easily affordable in Silicon 
implementations than in GaAs. .

Clearly, the low transistor count of GaAs chips and the large penalty for 
communication between them are real obstacles to the successful exploitation 
of the fast gates of GaAs technology. Silicon computer systems are designed 
within an implementation environment that has matched increased on-chip 
switching speeds with enormous levels of integration; therefore, the computer 
design techniques used in Silicon are not entirely compatible with the 
requirements imposed by GaAs technology. GaAs computer systems require 
approaches in both hardware and compiler design which differ from those 
traditionally used in Silicon computer design.

3.2 Hardware Design Issues
Given the general GaAs-driven design considerations of the previous 

section, we are now in a position to discuss design approaches for the hardware 
of GaAs processor systems.

Wf feifin our hardware discussion by describing design approach wittun 
the processor before moving to the off-chip memory environment. We first 
discuss our choice of processor configuration, followed by a presentation of 
suitable design approaches for the instruction pipeline, register file, execution 
unit, and instruction format. Our memory design discussions include virtual 
memory, memory hierarchies, both run-time and compile-time memory
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management, and pipelined memory systems.

3 *2.1 Processor Configuration
A number of different processor configurations are available as candidates 

for a GaAs implementation. Two representative Silicon processor designs are 
the Cray-1 [Russe78] and the Motorola MC68020 [MaMoM84].

The Cray-1 is a supercomputer implemented in Silicon emitter-coupled 
logic (ECL), and optimized to perform floating point operations on regular data 
structures such as arrays. Although the use of ECL allowed the Cray-1 to 
achieve a low 12.5 ns cycle time, a large number of these SSI and MSI parts 
were required to implement the processor. Because of the severe performance 
penalty for inter-chip communication in the GaAs environment, multiple-chip 
configurations such as these are not especially desirable. In fact, it has been 
reported that even if gate delays could be reduced to zero, the performance of a 
well-known supercomputer would only be increased by about 20 percent due to 
the dominance of off-chip delays [Gilbe84]. In contrast with the lower 
transistor count capability of GaAs compared to Silicon NMOS, GaAs has a 
higher transistor count potential than Silicon ECL. Therefore, the use of 
higher-density GaAs parts would improve the performance of vector processors 
such as the Cray; however, we are not concerned with such special-purpose 
environments in this thesis.

Processors such as the Motorola MC68020 take the opposite approach of 
the Cray, as they are implemented on a single chip. With this approach, the 
datapath (execution unit, register file, etc.) is on-chip, and the datapath 
execution time is not influenced by inter-chip signal propagation delays This 
configuration has obvious advantages in a GaAs implementation environment. 
In fact, a single-chip processor configuration will achieve a higher relative 
performance increase through the use of GaAs technology than either Silicon 
mainframes or Silicon supercomputers [Gheew84], It is because of this large 
potential increase in performance, in addition to a broader application market, 
that this thesis is oriented to the study of computer systems utilizing single- 
chip VLSI GaAs processors.

3.2.2 Single-Chip GaAs Processor Designs
The decoding and control logic (microcode) of the Motorola 68000 requires 

68% of that chip’s area [Katev83], Although some may argue that this is



acceptable lor a Silicon processor, it is clearly not tolerable for transistor-scarce 
GaAs processors. In contrast to the 68000, the Berkeley RISC-II processor uses 
only 10% of its area for decoding and control [Katev83], The characteristics of 
processors such as the Berkeley RISC-II are worthy of further study for possible 
incorporation into GaAs processors.

The Berkeley RISC-II [Katev83] is an example of a reduced instruction Set 
computer (RISC). Other well known RISC processors include the CBM 801 
[Radin83] and the Stanford MIPS [HeJoG82j. RISCs are designed utilizing a 
philosophy which espouses the fast execution of the most frequently used 
instructions of an application environment, while avoiding the negative aspects 
of complexity associated with a Silicon implementation. One of the Berkeley 
RISC-II designers presented his view of instruction set design. “First, the most 
necessary and frequent operations (instructions) in programs were identified. 
Then, the data-path and timing required for their execution was identified. 
And last,other frequent operations (instructions), which could also fit into that 
data-path and timing, were included into the instruction set” [Katev83]. The 
result of this strategy is a processor with low decoding and control 
requirements, and consequently, low transistor count requirements. The 32-bit 
Berkeley RISC-II processor required Only 41K transistors, while the 32-bit 
Stanford MIPS required but 25K transistors. These numbers are in contrast to 
the Motorola 68020, a complex instruction set computer (CISC), using 
approximately 190K transistors [MaMoM84]. In fact, the low transistor count 
requirements of the Stanford MIPS led to its being selected by the U.S. 
government as the architecture for its first 32-bit GaAs processor program 
[Barne85].

There are several processor features which result from the RISC design 
philosophy, and which will likely be inherited by GaAs processors as well. 
RISC processors generally implement only a few simple instructions, execute 
every instruction in one cycle, use a register-to-register execution model, and 
access off-chip data through explicit data load or data store instructiohs 
[Patte85|. RISC processors also rely more heavily on the capabilities of 
optimizing compilers. In fact, functions are implemented in hardware Only if 
they cannot be performed at compile time [Radin83]. This constant evaluation 
of hardware-software tradeoffs, implicit in the RISC philosophy, which leads to 
both reduced hardware resource requirements, as well as demonstrated superior 
performance [PatPi82][HeJoG82], makes the RISC design philosophy very 
appropriate for GaAs processor implementations.
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3.2.3 Instruction Pipeline Design
Instruction pipelining is frequently used in Silicon processors to increase 

execution speed. An example instruction pipeline for a Silicon processor might 
resemble Figure 3.1. In this example the instruction fetch time is equal to the 
instruction execution (datapath) time. This pipelined implementation results 
in approximately twice the execution speed of a non-pip elined implementation. 
This speedup is due to the overlapping of instruction fetching with execution, 
which allows the instruction memory system to completely satisfy the 
processor’s instruction requirements.

A GaAs processor will require instructions at a faster rate than a Silicon 
processor, and it is very likely that conventional Silicon-like instruction 
pipelines will not satisfy a GaAs processor’s instruction requirements for two 
reasons. First, the ratio of off-chip memory access delay to both on-chip 
memory access delay and arithmetic logic unit (ALU) delay is much higher for 
a GaAs processor than for a Silicon processor. Second, the lower transistor 
count of GaAs chips precludes the use of an on-chip cache for memory access 
speedup |MiFuH86]. In fact, if a GaAs processor utilizes a typical Silicon-like 
datapath (i.e. ALU, shifter, register file) design with an on-package instruction 
cache, the ratio of instruction fetch delay to datapath delay will be 
approximately three [Heage85]. For an off-package cache, the ratio may easily 
reach six. The Silicon instruction pipeline of Figure 3.1 does not fare very well 
under these conditions, as observed in Figure 3.2.

An instruction pipeline should not have a processor datapath 
underutilization built into it. Ideally, the effective instruction fetch time 
exactly matches the instruction execution time. The techniques for achieving 
good pipeline design in a GaAs processor are part of the discussions of the next 
few sections. Pipelines which result from careful GaAs computer system design 
approach those shown in Figures 3.3, 3.4, and 3.5. Figure 3.3 is the result of 
increasing the effective rate of instruction fetches. Figure 3.4 is the result of 
increasing the content of instruction fetches. Figure 3.5 is the result of 
decreasing the required rate of instruction fetches.

3.2.4 Register File Design
As already indicated, the RISC design philosophy typically results in 

processors which use a register-to-register execution model. In addition to its 
contribution to complexity reduction, the register-to-register execution model 
has other desirable features for a GaAs implementation.
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Figure 3.3 Example GaAs Instruction Pipeline with a Pipelined 
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Figure 3.4 Example GaAs Instruction Pipeline with Instruction 
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Figure 3.5 Example GaAs Instruction Pipeline with Long-latency 
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First, registers are fast on-chip memory. The access time of a register is 
much shorter than that of off-chip memory, and this difference is more 
pronounced for a GaAs processor. As stated earlier, maximizing on-chip 
memory is of great importance for a GaAs processor.

Register files are generally more effective than caches at the small 
capacities available in a GaAs processor. For example, an instruction cache 
fcotitaihiftg 16 32-bit words can be expected to achieve a hit ratio of billy 70%, 
while an equivalent data cache would hit only 55% of the time [Smith85]. 
Since register file data placement is performed by the compiler instead of a 
run-time caching mechanism, register file accesses never miss. In addition, 
register files aren’t burdened by the hardware overhead which is required by 
caches.

A register address is directly specified within the instruction. Therefore, 
an address calculation is not required and no virtual to physical translation 
need be performed.

The short length of register addresses leads to compact code which can be 
expected to increase the hit ratios of program memory accesses at the higher 
levels of the memory hierarchy.

The importance of register files thus established, this section presents the 
design issues involved with register memory cells and register file partitioning.

3.2.4.1 Register Cell Design
In Silicon processors, performance depends heavily on the speed of 

datapath elements such as the register file. For this reason, register cell designs 
emphasizing access speed and multiple read and/or write ports are common. 
As an example, the microcode pipeline of the HP-FOCUS processor [BeDoFSl] 
is shown in Figure 3.6. Because of the fast access time of its on-chip microcode 
memory, fast register file access was also needed. Figure 3.7 shows the register 
cell design used in the HP-FOCUS, which allows two simultaneous data reads 
Or writes and supports the 55 ns cycle time.

In GaAs processors, fewer transistors will be available for register file 
implementation; therefore, simple register cells are very advantageous. Even if 
simple register cells reduce the datapath speed, performance may not be 
negatively impacted. One approach to reducing a high ratio of instruction 
fetch delay to datapath delay is to increase the datapath delay. This may 
seem very undesirable; however, reducing the effective instruction fetch delay, 
which is intuitively the best approach, introduces new problems which are
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Figure 3.6 Microcode Pipeline of the HP-FOCUS Processor [BeDoF81j.
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Figure 3.7 Register Cell Design of the HP-FOCUS Processor [BeDoF81j.
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discussed later. Using slow register cells at least has the advantage of a low 
resource requirement. The selection of an appropriate register cell design must 
be considered in the context of the entire system. There is certainly a greater 
disparity in access time between off-chip memory and a slow register cell than 
between a fast and a slow register cell. It is conceivable that a larger number of 
slow registers may provide better system performance than a smaller number of 
fast registers.

Simple register cells which make good candidates for GaAs processors are 
shown in Figures 3.8 [Sherb84] and 3.9 [MiFuH86]. Figure 3.8 shows the 
register cell design of the Berkeley RISC-II. Its transistor and area 
requirements are much lower than those of the HP-FOCUS. Although this 
register cell allows parallel reads, its read time is slower than the cell of the 
HP-FOCUS [Sherb84]. Figure 3.9 shows a register cell with a single read bus. 
This cell uses less area than the other cells, but requires sequential reading and 
writing.

3.2.4.2 Register File Partitioning
Register files generally succeed at reducing the processor’s need to access 

off-chip data during the execution of HLL procedures. However, at procedure 
boundaries (calls, returns) the register file values must be stored to memory 
and new values loaded in. This massive off-chip communication is bad enough 
in Silicon implementations, but is even more damaging to a GaAs processor.

To alleviate this procedure boundary problem, multiple window register 
file schemes have been introduced by Silicon designers, and used in processors 
such as the Berkeley RISC-II [Katev83]. In a multiple window register file, 
each procedure is allocated one window for its data. Whenever a procedure call 
or return is encountered, instead of emptying and refilling the register file, a 
new window is allocated, perhaps by simply changing a pointer value as in the 
Berkeley RISC-II. The only time that emptying and refilling is required is on 
an “Overflow” or “underflow.” An overflow occurs when a procedure call is 
encountered and no unused windows exist. An underflow occurs when a 
procedure return is encountered and the values of the returned-to procedure 
were saved to memory because of a previous overflow. The eight window 
scheme of the Berkeley RISC-II was responsible for an approximate 50 percent 
reduction in the number of data loads and stores [Patte85j; consequently, this 
technique shows potential applicability for a GaAs processor implementation.
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Figure 3.9 Register Cell Design Employing a Single Read Bus.
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A major problem which prevents the implementation of the Berkeley 
RISC-II register window scheme in GaAs is the large number of registers 
required for its implementation - 138, In fact, the Berkeley implementation 
would consume nearly all the transistors available to a 30K transistor GaAs 
processor. For this reason two variations of the Berkeley method are potential 
candidates for a GaAs implementation. They are multiple window schemes 
with a) variable-size windows and b) background loading and storing.

Multiple window register files with variable-size windows have been 
discussed in the context of Silicon implementations [Katev83]. The real 
advantage of this approach is that more windows can be formed from fewer 
registers, as compared to a fixed-size approach. The reason for this is that 
most procedures use very few local variables and formal parameters in well 
structured programs [Tanen78j. A fixed-size window scheme will encounter 
very poor register file utilization, and this is quite undesirable in a GaAs 
implementation where off-chip delays are large. When only enough registers 
are allocated to minimally satisfy each procedure’s needs, additional registers 
are made available to implement more windows and reduce overflows and 
underflows. The drawbacks to this approach are additional hardware 
requirements and added delay for register address calculation, and additional 
overhead for procedure calls/returns and overflow/underflow handling. A 
compromise approach is to provide multiple windows but limit the number of 
sizes Which may be used, and choose sizes to reduce complexity [Furht85],

Multiple window register files with fixed-size windows and background 
mode loading and storing have also been discussed [Katev83j. The advantage 
of this approach is that intelligent preloading and prestoring may reduce the 
frequency of overflows and underflows. The primary drawbacks to this 
approach are the additional processor-memory bandwidth required, and the 
need for an independent input-output controller capability.

3.2.5 Execution Unit Design
The effect that the low transistor count and large off-chip delays have on 

register cell design for a GaAs processor is felt in the execution unit design as 
well. Once again, scarce hardware resources should not be used to create or 
exacerbate a mismatch between execution unit information needs and Off-chip 
memory system capabilities. The execution unit design for a GaAs processor 
should instead be part of a system-level effort to achieve a match between these 
two.;
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If the .effective off-chip memory access time cannot be cheaply reduced to 
match the datapath delay, then another method of matching the off-chip 
memory and datapath delays may be appropriate. A useful approach for GaAs 
processor execution unit design is to approach the ideal “instruction fetch delay 
- datapath delay” equality from the direction indicated in Figure 3.5. This 
approach is summarized as “reducing the execution unit’s need for off-chip 
data in some useful way.” Two methods for accomplishing this are to 1) 
Remove resources from the execution unit in order to slow down the execution 
of primitive operations, and reallocate the resources elsewhere, perhaps to the 
register file. 2) Maintain or add resources to the execution unit only to support 
complex Operations which require large amounts of time. These two 
approaches will be in evidence throughout this section.

3.2.5vl Adder Design
Silicon processors typically require high-speed adders to maximize their 

performance. Again, this is because of the relatively fast access times of Silicon 
memories in comparison to datapath times, especially when the memory is on- 
chip. For example, the HP-FOCUS utilized a full carry lookahead adder to 
satisfy its 55 ns cycle time in a Silicon implementation.

The adder designs available for a GaAs implementation range from the 
high-speed, high-resource-requirement full-carry-lookahead adder to the low- 
speed, low-resource-requirement ripple-carry adder. Others which have speeds 
and resource requirements between these two extremes include conditional-sum 
and carry-select adders [Hwang79].

As in register cell design, simple designs are advantageous for GaAs 
adders. In addition to transistor count differences, the above adder designs 
exhibit differences in regularity, which introduce chip area differences as well.

VLSI implementation environments introduce complexity into adder 
performance evaluation [Sherb84]. In a Silicon SSI/MSI TTL (transistor- 
transistor logic) implementation, adder speed is determined by the number of 
gate delays required to obtain the final result. In a VLSI implementation, 
designers have potential opportunities for performance enhancement, such as in 
varying transistor sizes to improve speed in critical paths. Additional variables 
are also introduced, such as large signal propagation delays because of long 
wire lengths, large fanins, and large fanouts.

In a Silicon VLSI environment, it has been shown that the regular layouts 
and low fanin/fanout requirements of adders such as the ripple-carry and



carry-select, reduce the performance advantage of the traditional carry- 
lookahead approaches, which are very irregular [Sherb84].

From both a performance and implementation cost standpoint* ripple- 
carry and carry-select adders are more suitable than traditional carry- 
lookahead adders for implementation into a GaAs processor.

3.2.5.2 Multiplier/Divider Design
The frequency of use of multiplication and division operations varies from 

application to application. In a distribution of instructions from a computer 
aided design (GAD) application environment, multiplies were only 3 percent of 
all instructions executed [McDan82]. However, the high frequency of multiplies 
in signal processing applications prompted the designers of the Texas 
Instruments TMS320 [MaCaM82] to include a 200 ns on-chip hardware 
multiplier. In this section we present multiplication and division techniques 
which are advantageous for GaAs processor implementations. Designs for both 
high frequency and low frequency usage will be given.

Silicon processors which are targeted to general purpose applications 
typically utilize the datapath adder to perform multiplication and division. 
Silicon CISCs implement multiplication and division with microcode routines, 
while Silicon RISCs use special multiply-step or divide-step instructions which 
are stored within the program. In special purpose application environments 
where multiply and/or divide operations are more frequent, Silicon processors 
incorporate additional hardware. Example hardware multipliers include an 
implementation of the modified Booth algorithm in the TMS320 and an array 
multiplier in the NEC IPP [NuKuM84|. An example division technique is the 
“division by repeated multiplication” method used in the IBM 360/91 
[AnEaG67j which requires a fast multiplier.

Multiplication and division operations require relatively large amounts of 
time; therefore, if justified by frequency of use, additional hardware support is 
desirable for GaAs processors as well. In addition to faster speed, an advantage 
in using a hardware implementation of a multiplication/division algorithm is 
that less off-chip information (fewer instructions) is required than in traditional 
software approaches. However, candidate approaches must satisfy the limited 
transistor count typical of GaAs.

The standard add-and-shift multiplication technique and subtract-and- 
shift division technique require the fewest hardware resources and are quite 
desirable from this standpoint, especially in general purpose environments



Minor hardware additions, such as those incorporated in the Stanford MIPS 
[HeJoG82], improve these two techniques; achieving multiplication in n/2 steps 
and division in n steps, where n is the word length.

Silicon CISC implementations of these multiplication and division 
techniques have an advantage over Silicon RISC implementations in one 
respect. A Silicon CISC must only fetch one instruction from off-chip memory 
in order to execute either a multiply or divide, while a RISC must fetch several 
instructions. A microcoded CISC, therefore, does a better job of reducing off- 
chip communication needs, and in principle, this is very desirable for GaAs 
processors. This does not imply that microcoded CISCs are appropriate for 
GaAs; however, achieving the higher information content of CISC-like 
instructions is desirable. Modifying RISC principles to allow a single 
instruction to represent a sequence of add-shift Operations (or subtract-shift 
operations) is worthy of consideration. This idea is presented in greater detail 
in the next section.

The hardware multipliers used on the TMS320 and NEC IPP require too 
many hardware resources to be incorporated into a GaAs processor. If the need 
for fast multiplication is very strong, two hardware approaches may be used.

A serial multiplier with moderate hardware resource requirements may be 
constructed. A serial multiplier presented in [Ghana83] requires 64 cycles to 
perform a 32-bit by 32-bit multiplication. Since each cycle period need only be 
long enough to allow signal propagation through a flip-flop and minimal logic, a 
faster clock may be used to achieve a serial multiplication time much lower 
than that achieved by the datapath adder. This solution makes very good use 
of the architectural strength of GaAs - its fast gates. This type of iterative 
approach has also been cited by an early GaAs architecture researcher [Gilbe84] 
as being desirable for GaAs. An off-datapath serial multiplier also allows 
concurrent multiplication and datapath execution.

An alternative approach is to incorporate a hardware multiplier into a 
coprocessor. The multiplier design in such an implementation is not as 
constrained as in the processor; therefore, designs with greater hardware 
requirements are more appropriate here. Of course, this technique may be 
extended to allow two or more such coprocessors if the application environment 
demands it. This approach also allows the concurrent operation of the 
coprocessor and the processor’s datapath.
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3.2.6 Instruction Format Design
The use of the RISC design philosophy in GaAs processor design might 

appear to reduce instruction format design to a trivial problem. This is of 
course not so. A legitimate concern for GaAs processor design is the effect of 
the instruction format on the timely transfer of instructions to the processor. 
The instruction bandwidth requirement of a processor is strongly dependent on 
the instruction format. Although the basing of design decisions on instruction 
bandwith alone is not to be encouraged, this architectural metric acquires 
added significance in the GaAs environment, but should be used within the 
context of the system design.

Compact programs require a lower memory-processor bandwidth and are 
more beneficial in GaAs processor systems than in Silicon processor systems for 
at least two reasons.

First, the technology used to implement the memory at the highest levels 
of the memory hierarchy will likely be GaAs. Since GaAs memory chips will 
likely remain less dense than Silicon memory chips, GaAs caches, etc., will be 
relatively small. It has been shown that memory size is the single most 
important factor in cache hit ratios [SmiGo83], and that hit ratios increase 
rapidly at small cache sizes before leveling off at high cache capacities 
[Smith85]. Since a decrease in program size is equivalent to an increase in 
memory size, compact programs are indeed very desirable in a GaAs processor 
system. ,

Second, because of the extremely fast instruction cycle times possible in a 
GaAs processor, a memory access miss in a GaAs processor system will likely 
entail a longer delay, in terms of instruction cycles, than a memory access miss 
in a Silicon processor system. It is, therefore, more important to minimize 
these misses in a GaAs processor system.

The major disadvantage of the RISC design philosophy in a GaAs 
implementation is the generally low information content of RISC instructions 
Of course, it is the very simplicity of RISC instructions which lead to their low 
decoding logic requirements. Therefore, any attempt to reduce program size 
through increased encoding of instructions must be done so as to minimize its 
impact on decoding complexity.

We discuss two methods for increasing program compactness which can 
have little impact on a GaAs processor’s decoding requirements. The first 
approach relies on the high dynamic frequency of short immediate fields and 
few operand addresses; while the second approach makes use of the repetitive 
nature of some complex operations such as multiply and divide.



36

3.2.6.1 Frequency-based Instructions
Techniques based on Huffman codes [Huffm52] are frequently considered in 

instruction set design. Huffman coding is a technique for assigning the most 
frequent instructions the smallest encodings. A pure Huffman implementation 
would require sequential decoding and much hardware, and is not a serious 
candidate for a GaAs processor. However* the concept of providing small 
encodings to frequent occurrences is very applicable for GaAs processor 
instruction sets.

Compact instruction formats may be designed to incorporate small 
immediate fields and few address fields. The resulting reduction in program 
size is not due to an explicit encoding function operating on these fields, but 
results from the high dynamic frequency of small immediate data values and 
both one-address and two-address instructions in real programs. In one study 
of XPL programs [AleWo75], it was shown that 61 percent of the branch 
distances required eight bits or less, while 81 percent could be represented with 
12 bits. They also found that 47 percent of the numeric constants Could be 
represented by only four bits, and that 87 percent required eight bits or less. It 
is also estimated that 87 percent of all assignment statements require only two 
operand addresses [Myers82].

Compact instruction formats which result from using short immediate 
fields and few operand addresses have three beneficial aspects for a GaAs 
implementation.

First, as just mentioned, the proper design of immediate and operand 
fields can be expected to reduce total program size and provide the benefits for 
a GaAs implementation described above.

Second, this approach takes advantage of the dynamic characteristics of 
program behavior. Small immediate values and few operand addresses are not 
the output of an encoding algorithm, but occur naturally and frequently in real 
programs; therefore, there is no need for a significant decoding function within 
the processor to “undo” any additional encoding.

Third, compact operations may be packed into a single instruction. 
Because pin limitations of a GaAs processor will limit the size of instruction 
fetplj tftuifers, multiple operation fetching, as shown in Figure 3,4, jg only 
possible for short operations. A well-designed packed instruction format can 
improve the performance of a processor in a long-latency off-chip environment.

Many Silicon instruction sets display varying levels of program 
compactness, and some even employ operation packing. The longest immediate
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data values for many Silicon processors require 32 bits of information. In order 
to include immediate fields in single-word instructions to represent 32-bit 
values, extremely long instructions would be required.

Even relatively sparse instruction formats, such as the Berkeley RISC-II, 
take advantage of the low frequency of use of such long immediate values by 
only supporting short immediate values within a single instruction. The use of 
tify tog# immediate values requires two RISC-II instructions.

The Stanford MIPS limits its maximum immediate field size to 24 bits to 
allow all immediate values to be used within single instructions. However, the 
MIPS instruction set takes advantage of small immediate data values by 
packing a second operation into instructions which require short immediate 
fields. This operation packing also makes use of the high frequency of one- and 
two-address operations because the instruction fields for the packed operations 
are only large enough for two-address operations.

The ability of the Stanford MIPS to execute two operations per 
instruction fetch is limited by the occurrence of long immediate values and also 
by the ability of its compiler to find suitable useful (non-NOOP) packing 
candidates. A more complex instruction format also results from the MIPS 
style of packing. This results in a 10 percent increase in the MIPS instruction 
cycle time [Patte85], in addition to increased decoding hardware requirements.

The Transputer [Whitb85] relies very heavily on the high frequency of 
small immediate values as it only provides four bits of immediate field in every 
8-bit instruction. Larger immediate values must be built from multiple 
instructions four bits at a time. The small size of its instruction format allows 
the Transputer to pack four such instructions (from now on we call these 
operations) into a single packed instruction.

The Transputer is better able to meet its maximum rate of four operation 
executions per instruction fetch because of a somewhat different definition of 
“operation.” The Transputer uses even more primitive operations than the 
MIPS or RISC-II. The use of a large immediate data value is implemented by 
a sequence of “build immediate field” operations. However, these operations 
have a 50 percent overhead as only four of the eight bits contain actual data. 
However, the rigid field boundaries of the Transputer’s instruction format can 
be expected to result in a simpler decoding function than required by the MIPS 
instruction format.

Compact instruction formats must be designed with a good understanding 
of the instruction requirements of the intended application environment. 
However, the exploitation of the high frequency of usage of small immediate



values and few operand addresses may provide significant benefits for a GaAs 
processor implementation.

3*2.6.2 Context-based Instructions
Huffman Codes are based on the frequency of usage of data items without 

considering the environment surrounding the data items. Because instruction 
executions are not independent of each other, additional compaction 
opportunities are available.

A Compaction technique which uses context information, in addition to the 
instruction frequency information used by Huffman-based techniques, is 
conditional coding [Hehne76]. In this technique the encoding of the next 
instruction to be executed is dependent upon the probability of its occurrence, 
in the context of the execution of the current instruction. Therefore, if there 
are n instructions in the instruction set, then each instruction has n different 
encodings - one associated with each of the n possible preceding instructions. 
A strict implementation of this scheme is not practical for a GaAs processor; 
however, the concept of using context information to reduce program size is 
applicable.

A less rigorous, but simpler, technique is to replace frequent instruction 
sequences with a single instruction [Hehne76|. In fact, this technique is 
typically used on microcoded CISCs. A program consisting of CISC 
macroinstructions is generally more compact than a program containing RISC 
instructions; because each macroinstruction Corresponds to a sequence of 
microinstructions, while each RISC instruction corresponds to a single 
microinstruction-like instruction. It is possible that this CISC mechanism can 
be utilized to good advantage in some GaAs processor environments.

If justified by frequency of use, complex instructions such as multiply, 
divide, and perhaps even multiply-accumulate, may be added to the instruction 
set of a GaAs processor. Even if a transistor-scarce GaAs processor cannot 
support the hardware to directly execute these operations, and must instead 
use the main datapath, there are advantages to using complex instructions.

I'or example, the implementation of multiply on a RISC can be performed 
in a number of ways.

A linear sequence of multiply-step instructions can be used for each 
multiply in the program. For a processor such as the Stanford MIPS, this may 
require nearly 20 instructions per multiply. If multiplies are 10 percent of all 
instructions executed, then this technique nearly triples the program size.
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Alternatively, a loop containing as few as one multiply-step instruction 
can be used. However, introducing loops into programs is not generally 
desirable both because of the time wasted on looping overhead, and because of 
the large number of instructions required to perform branch fillin if the GaAs 
processor is highly pipelined.

A third technique is to include a linear sequence of multiply-step 
instructions into a system procedure which is callable from anywhere tvithih 
the program. This technique, therefore, requires that a procedure call and 
return be executed for each multiply instruction. Beyond the normal overhead 
associated with procedure calls, this method degrades the execution locality, 
possibly decreasing memory hit ratios.

The implementation of a single multiply instruction entails none of the 
above disadvantages; however, complexity is introduced into the pipeline 
control mechanism. Single-cycle instruction execution is a feature of ‘‘true” 
RISCs because it leads to simple pipeline control. When a CISC-like multiply 
instruction is encountered, the processor will likely spend a long time executing 
it. Therefore, the instruction pipeline must be halted. If the instruction 
memory is also pipelined, then a time delay will probably exist before the 
entire memory pipeline can be halted, and buffering may be needed. Clearly, 
the benefits of CISC-like instructions must be weighed against this 
implementation complexity, and the decision to use CISC-like instructions 
should be considered in the context of the entire system.

3.2.7 Memory System Design
Memory system design is an extremely important issue in a computer 

system containing a GaAs processor. The capabilities of a fast GaAs processor 
cannot be fully exploited unless the memory system is able to satisfy the 
processor’s increased information needs. The low transistor count of GaAs 
memory chips and the long inter-chip delays, with respect to the cycle time of 
a GaAs processor, both limit a memory system’s ability to provide the capacity 
and transfer bandwidth required by a GaAs processor.
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3.2.7.1 The Role of Virtual Memory
The application environment also has a large influence on the design of a 

memory system for a GaAs processor system, particularly with regard to the 
issue of virtual memory. A virtual memory system is one which provides a 
mapping from logical addresses to physical addresses [Denni70]. Logical 
addresses are produced by the compiler, while physical addresses are used for 
accessing physical memory.

There are several advantages attributable to virtual memory systems. 
Since virtual memory systems normally contain a large capacity backing store 
such as a magnetic disk, both the programmer and compiler are able to 
generate code without regard to the actual size of main memory. The burden 
of memory allocation is transferred from the programmer to the operating 
system; and multi-tasking and protection mechanisms are easier to incorporate. 
Virtual memory is used extensively in computer systems in universities and 
industry.

The disadvantage of virtual memory is that the logical to physical address 
translation is necessary. Virtual memory systems, therefore, have longer 
memory access latencies than non-virtual memory systems. In applications 
which require the speed of a GaAs processor, the performance loss due to a 
virtual memory implementation is quite expensive. Many Silicon 
supercomputers do not use virtual memory; they instead rely on large main 
memories. Applications such as these, as well as many embedded applications 
with special-purpose programs and relatively small memory requirements, will
not require virtual memory in GaAs processor systems.

3.2.T.2 Memory Hierarchy
Large memory systems generally utilize several different types of memory 

components to achieve a favorable cost-performance balance. The fastest 
memory parts are also generally of the lowest capacity, as well as being the 
most expensive; while slower, higher capacity memory is generally the cheapest. 
Memory system designers try to provide memory speeds approaching the speed 
of the fastest technology, while achieving a cost per bit approaching the cost of 
the cheapest technology. This is achieved through the exploitation of the 
locality of references which exist within most computer programs.

Two types of program locality exist [Denni72}. Temporal locality mcaps
that once information is used it will likely be used again within a short time
span. Programming constructs which cause this include loops, recursive
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procedures, and activation record accesses. Spatial locality means that when a 
unit of information is used, its neighboring information will likely be used 
within a short time span. Programming constructs which cause this inclutie 
sequential program execution, activation record accesses, and structured data 
accesses.

These two localities of reference are responsible for the success of 
hierarchical memory systems. By keeping the information which is within the 
current referencing locality in the fastest memory, fast information access will 
be available to the processor a large percentage of the time. This clearly would 
not be the case if accesses were uniformly distributed throughout the entire 
memory system.

The memory technology best able to meet the speed requirements of a 
GaAs processor is GaAs. Therefore, GaAs memories will likely be used to 
implement the highest level of the memory hierarchy. The lower levels of a 
memory hierarchy usually incorporate cheaper, larger, and, hence, slower 
memories. As the capacities increase at each successive level, fast, less-dense 
technologies (i.e. GaAs) lose their speed advantage over slow; dense 
technologies (i.e. Silicon). This is because off-chip signal propagation delays are 
larger for low density chips, which require large amounts of board area. This is 
especially true when low-density memory chips cause board area capacities to 
be exceeded, requiring additional inter-board communication.

3.2.7.3 Run-time Control of Hierarchical Memory Systems
Most Silicon hierarchical memory systems make extensive use of run-time 

information control mechanisms. For example, caches, which are often used as 
the fastest element of the memory hierarchy, use hardware to decide at run
time what information is to be located within the cache. Similar run-time 
approaches are commonly used for main memory as well.

Two techniques are frequently used in Silicon systems to decide what 
information should be moved into a higher level of the memory hierarchy. The 
simplest method is to move the information into the higher level when it is 
needed by the processor and not already at the higher level. The processor is 
required to wait until the requested information is moved and this may result 
in a considerable delay. Another common method, known as prefetching 
[Smith78], relies on a form of spatial locality known as sequential locality. 
Sequential locality is caused by the sequential execution of most programs and 
the sequential access of structured data. In prefetching techniques, information



which is located at addresses slightly higher than the currently accessed 
addresses is moved into a higher level of the memory hierarchy. This run-time-
initiated information movement is potentially very advantageous in a GaAs 
processor system.

In addition to deciding what information should be moved into a higher 
level of the memory hierarchy, run-time mechanisms must decide where the 
information is to be located within the higher level.

Existing Silicon memory systems vary in the amount of power they give to 
the run-time hardware in deciding where in the higher level to locate the 
moved information. Three placement policies are commonly used in Silicon 
caches: fully associative, set associative, and direct mapped [Smith82]. In a 
fully associative memory level, the run-time hardware is free to locate the 
infbnnatibn in any location. In a set associative memory level, the run-time 
hardware is constrained to locate the information within a subset of the 
memory level called the “set.” In a direct mapped memory level, the run-time 
hardware has only one valid location in which to locate the information.

In Silicon caches, the fully associative technique generally achieves the 
highest hit ratios among these three methods, followed by the set associative 
and direct mapped techniques [Smith82]. However, at small cache sizes, the 
difference in hit ratios between the three techniques becomes insignificant 
[SmiGo83].

In the fully associative and set associative techniques, the run-time 
hardware decides where in the higher level to locate the moved information. 
The movement of information into the higher level implies an equal-volume 
movement of information out of the higher level. Therefore, the location in the 
higher level is chosen so as to hopefully displace information which is no longer 
needed by the processor. Of the information candidates for displacement, the 
information which will not be needed by the processor for the longest period of 
time cannot be predicted by a run-time mechanism.

Three common replacement algorithms are the least recently used (LRU), 
first in first out (FIFO), and random (RAND) methods [Smith82].

The LRU technique exploits temporal locality by replacing the 
information which saw last recent use. A strict implementation of this 
technique requires excessive overhead if a fully associative policy or set 
associative policy with large set size is used. A strict implementation is, 
therefore, generally restricted to small set sizes; however, LRU approximations 
may be used for larger sets.
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The FIFO method does a poorer job of temporal locality exploitation but 
also requires less overhead for its implementation.

The RAND method makes no attempt to exploit temporal locality but is 
easily implemented.

If the information which is being displaced was modified while in the 
higher hierarchical level, then this information must be stored back into 
memory at the lower levels. There are two common techniques used to aLchieye 
this storing.

The copy-back method [Smith82] waits Until the information is displaced 
before storing to the lower levels. In order to avoid storing information which 
has not been modified, a “dirty bit” is commonly associated with a block of 
information. If this bit is set, then the information has seen recent 
modification while in the higher level and should, therefore, be written to the 
lower level. If the dirty bit is not set, then no storage to the lower levels is 
necessary.

In the write-through technique [Smith82], the information is written to the 
lower levels as soon as the processor modifies it. If the processor must wait for 
its data stores to complete before continuing execution, then this technique will 
introduce long delays into program execution. However, if buffering is used, 
such as in pipelined memory systems discussed later in this chapter, then no 
additional delays are introduced. The write-through method also does not 
require the overhead associated with the copy-back approach.

As already mentioned, memories consisting of GaAs chips will generally be 
smaller than Silicon versions. Because of the minimal run-time overhead 
associated with the direct mapped implementation just discussed, as well as its 
relatively good performance at small memory capacities, this approach is 
desirable for the memory at the highest level of the memory hierarchy.

At the lower memory levels, the set associative and fully associative 
techniques become advantageous because of the larger capacity of the lower 
levels. The LRU, FIFO and RAND replacement policies are all viable methods 
at these lower memory levels as well,.

If pipelining is employed in the memory system design, then the write- 
through method is preferable to the copy-back approach for the cache and 
main memory levels of the memory hierarchy. Write-through eliminates both 
the need for long-latency copy-back operations and reduces coherency problems 
by ensuring that the lower memory levels are continuously updated.
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3.2.7.4 Compile-time Control of Hierarchical Memory Systems
The compiler has three advantages over run-time hardware in the 

implementation of memory hierarchy information control mechanisms. First, it 
has a larger base of knowledge from which to make decisions since it has a view 
of the entire program. Second, it presumably has more time to implement a 
more optimal strategy. Finally, compiler algorithms don’t require additional 
hardware.

Although the temporal and spatial localities of reference allow run-time 
information control mechanisms to work well, there are times when the 
required locality is missing. LRU-based run-time mechanisms, which exploit 
the referencing localities, are responsible for bringing information into the 
higher levels of the memory hierarchy, and for deciding which information at 
the higher levels should be replaced. Two instances where LRU-based 
mechanisms fail are the following.
(1) Information is accessed for the first time after a long period of non-use.
(2) Information is accessed once but will not be accessed again for a long

period of time. ?

The compiler has the potential to detect this nonlocalized behavior and 
the power to help the run-time mechanism to perform more effectively. Since 
the delays caused by nonlocalized accessing patterns are more costly, in terms 
of instruction cycles, for a CaAs processor, the effort expended on compiler 
design and the increased time for compilation are offset by greater gains in 
performance. A more thorough discussion of this issue is presented in Section
3.3.2.2.

3.2.7.S Pipelined Memory Systems
Pipelining is a common technique for speeding the execution of long- 

latency operations. Pipelining is frequently used within the processor to 
overlap instruction fetching, decoding, and execution, etc. It is also used for 
implementing complex arithmetic operations as in the IBM 360/91 [AnEaG67].

Because of the longer relative delays associated with memory accesses in a 
QaAs processor system, memory pipelining is a very attractive approach. In 
fact, memory pipelining has already been used in Silicon systems, on the 
Amdahl 470V/6 [Smith78]. Memory pipelining is even more feasible in a GaAs 
processor system because the long access delay of off-chip memory is not 
necessarily due to slow memories, but instead due to long inter-chip delays.
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These delays are easily pipelined. An example of a pipelined memory system is 
shown in Figure 3.10. This pipeline consists of three stages. In the first stage 
the address (and data if write) is propagated from the processor to a latch 
physically near the memory. In the second stage the memory is accessed, and, 
for a memory read, the data is stored into another latch physically near the 
memory. The third stage is used, for a memory read, to propagate the data to 
the processor.

In a, three stage pipeline such as this, three memory accesses may be 
concurrently serviced. Assuming a GaAs processor system in which the ratio of 
instruction fetch delay to datapath delay equals three, this memory system will 
produce a pipeline such as in Figure 3.3. Clearly, pipelined memory systems 
decrease the “effective” memory access delay, even though the total memory 
access latency is unchanged. Pipelined memory systems are extremely valuable 
in GaAs processor systems, because they are so successful at increasing the 
information transfer bandwidth between processor and memory. However, as 
discussed in the next chapter, the increased pipeline depth resulting from 
pipelined memory implementations introduces performance problems associated 
with program branches. Overall, though, pipelined memory systems should 
have a positive effect on the performance of GaAs processor systems.

3.3 Compiler Design Issues
The high penalty for inter-chip communication and low levels of 

integration of GaAs chips combine to increase the importance of the compiler 
in GaAs processor systems. Without the support of a powerful compiler 
technology, GaAs processor systems will struggle to fully exploit the speed 
advantage of GaAs technology, except possibly for selected special-purpose 
applications.

As discussed earlier, GaAs processor system design utilizes the concepts 
central to the RISC design philosophy. It is not surprising then, that the 
increased reliance on compiler solutions, utilized by Silicon RISC designers, is 
transferred to GaAs processor systems as well. In fact, the characteristics of 
GaAs dictate that an even increased reliance on compiler solutions be utilized.

Silicon RISC designers have demonstrated the superior performance of 
RISC computers over Silicon CISCs [PatPi82][HeJoG82]. Much of the credit for 
the improved performance of RISCs is given to simplified instruction sets which 
allow the rapid execution of the most frequently used instructions. However, 
the increased role of compiler technology also plays a large part in the success 
of RISC processors.
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Figure 3.10 Example Pipelined Memory System.
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In order to minimize the instruction cycle time, RISC designers attempt to 
eliminate hardware complexity. One technique used to achieve this is the 
transfer of functionality from hardware to the compiler. There are several 
examples of this in Silicon RISCs. Interlock hardware for sequencing hazards 
[Gross83] was eliminated on the IBM 801 [Radin83], Berkeley RISC-II 
[Katev83], and Stanford MIPS [HeJoG82]. This introduced a compiler 
optimization called “branch delay fillin,” a technique commonly used by 
microcode programmers. Interlock hardware for timing hazards [Gross83] was 
also eliminated on the Stanford MIPS in order to reduce hardware complexity, 
with timing hazard detection and avoidance instead performed by the MIPS 
compiler. Because transistor count limitations will be greater for GaAs 
processors than for Silicon processors, the transfer of even more functionality to 
the compiler may be desirable for GaAs processors.

RISC instructions are comparable to the microinstructions of a CISC 
processor. However, a CISC compiler only has access to predefined (by the 
processor architect) microinstruction sequences in the form of 
macroinstructions. A RISC compiler, on the otherhand, has access to 
microinstruction-like RISC instructions and, therefore, has a much greater 
quantity of instructions to use for both hardware-independent and hardware- 
dependent optimizations. An increased number of hardware-independent 
optimizations such as code motions and common subexpression eliminations, 
therefore, present themselves to a RISC compiler [Radin83]. A hardware- 
dependent optimization called “load delay fillin,” which is not available on 
most CISCs, presents itself to RISC compilers as well [Radin83]. In a 
memory-to-memory or memory-to-register CISC instruction, a data memory 
read must precede the operation execution. If the read requires a large amount 
of time, then so will the complete execution of the entire instruction. Because 
RISCs generally use register-to-register and explicit data load instructions, the 
compiler can schedule the data load instruction in advance, and then “fill in” 
the data load latency with other useful instructions. Because GaAs processors 
can be expected to have longer data load latencies (in terms of instruction 
cycles), the burden on the compiler to find candidate instructions for the fillin 
gap is increased.

A third area where Silicon RISCs place increased reliance on compiler 
technology is the result of their decreased instruction cycle times. Because 
Silicon RISCs have such short cycle times, they are more negatively affected by 
off-chip delays than Silicon CISCs. As a result, the compiler for the IBM 801
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incorporated a sophisticated register coloring scheme in order to reduce that 
processor’s need for off-chip information [AusHo82]. Also, the IBM 801 
instruction set included instructions to allow the compiler to override the 
hardware caching mechanism in some instances when the compiler detected a 
better strategy for reducing the cache miss ratio [Radin83]. The Stanford 
MIPS incorporated an instruction packing scheme, and required the compiler to 
perform the packing [HeJoG82]. This approach allows two operations to be 
executed during the time required for one fetch, and also reduced the program 
size, both very beneficial characteristics for a processor in an environment with 
high penalties for off-chip communication. Because GaAs processors will have 
even shorter instruction cycle times than Silicon RISCs, GaAs processors Will 
benefit even more from these types of compiler optimizations.

3.3.1 Compiler Optimizations in Control
The two techniques for reducing hardware complexity, which were just 

briefly listed, are examples of the migration of control hardware into the 
compiler. These are both described more fully here.

3v3.1*l Sequencing Hazard Interlocks
Sequencing hazards are caused by branch instructions on a pipelined 

processor. The problem arises because before the execution of a branch 
instruction is complete, and hence, before the decision to jump can be 
established, successive instructions have already been fetched. In general, the 
execution of these successive instructions may lead to incorrect results. Silicon 
CISCs and Silicon RISCs usually handle this problem in two different ways.

Silicon CISCs usually employ hardware which halts the execution of the 
instructions immediately following the branch instruction in the event that the 
branch is to be taken. This results in a delay in execution until the pipeline 
can be refilled with the instructions at the destination of the branch. Some 
CISCs rely on the compiler or run-time algorithms to predict the outcome of 
the branch condition and fetch the instructions down the appropriate path. 
However, a wrong guess again requires the emptying of the pipeline. An even 
more ambitious, and hardware-consuming, CISC solution involves fetching and 
decoding instructions down both paths. This can then be expanded to three 
paths, etc.
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Silicon RISCs use a technique called “delayed branching” to solve the 
sequencing hazard problem. Most RISCs always execute the instruction 
following the branch instruction, thus, there is no need for special hardware to 
halt instruction execution. However, in order to ensure correct program 
execution, only a subset of all possible instructions are eligible for placement in 
the “fillin slots” after branch instructions. If eligible instructions cannot be 
found, then the compiler must insert NOOPs into the fillin slots.

Since branches are typically 25 percent of all instructions in compiled HLL 
programs [Katev83], their negative effect on performance can be costly. The 
delayed branching method for sequencing hazard resolution, in addition to 
promising simpler hardware, offers potentially higher performance as well. 
Whenever the RISC compiler is able to successfully move a useful instruction 
into the fillin slot, the delayed branching method exhibits no branching 
overhead. However, when the RISC compiler is not able to fill the slot, an 
instruction cycle is lost whether the branch is taken or not. The CISC 
approach, with sequencing hazard resolution hardware, loses an instruction 
cycle whenever branches are taken, but loses nothing when sequential operation 
is maintained. \

The performance of the delayed branching scheme, then depends solely on 
the RISC compiler. The Stanford MIPS compiler was able to fill 
approximately 90 percent of the branch fillin slots [HeJoP83], so an instruction 
cycle was lost on only 10 percent of the branch instruction executions. The 
CISC approach, with its dependency on dynamic branching probability, doesn’t 
do so well. Since approximately 75 percent of all branch instructions change 
the program flow [Smith81], an instruction cycle is lost on 75 percent of all 
branch executions.

However, branch instructions are potentially more costly for the delayed 
branching scheme in GaAs processor systems than in Silicon systems. As 
discussed earlier, pipelined memory systems are very advantageous in GaAs 
processor systems because of their ability to decrease effective memory access 
delays. However, as evident in Figure 3.3, pipelined memory systems increase 
the total pipeline length and, consequently, increase the number of fillin slots 
following branches. For the pipeline in Figure 3.3, the branch delay contains 
three slots instead of one. Figures 3.11-3.14 show an example program 
sequence tb demonstrate the branch delay fillin optimization on both a Silicon 
and a GaAs processor. In Figure 3.11, an unoptimized program sequence is 
shown for a Silicon processor with a branch delay of one. In Figure 3.12, the 
sequence is shown after the successful fillin of the single fillin slot. Figure 3.13
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add a, 10 ‘a takes a plus 10’
add b,a ‘b takes b plus a’
add c,l ‘c takes c plus 1’
bgt c,0 ‘if c greater than 0 jump
NOOP

Figure 3.11 Example Program Sequence on a Silicon Processor Before 
Branch Fill.

add a, 10 ‘a takes a plus 10’

add C,1 ‘c takes c plus 1’
bgt c,0 ‘if c greater than 0 jump
add b,a ‘b takes b plus a’

Figure 3.12 Example Program Sequence on a Silicon Processor After 
Branch Fill.
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Figure 3.13

add a, 10 
add b,a 
add c,l 
bgt c,0 
NOOP 
NOOP 
NOOP

Example Program Sequence on a GaAs Processor Before 
Branch Fill.

‘c takes c plus 1’
‘if c greater than 0 jump’ 
‘a takes a plus 10’
‘b takes b plus a’

add c,l 
bgt c,0 
add a, 10 
add b,a 
NOOP

‘a takes a plus 10’
‘b takes b plus a’
'c takes c plus 1’
‘if c greater than 0 jump’

Figure 3.14 Example Program Sequence on a GaAs Processor After 
Branch Fill.



shows the same program sequence in unoptimized form with a branch delay of 
three. Figure 3.14 shows the sequence after optimization in which two of the 
slots were successfully filled. The third instruction cannot be moved because 
its completion is required before the execution of the branch instruction. 
Therefore, the compiler must search outside this code sequence in order to find 
a third fillin candidate. This example demonstrates both the instruction 
interdependencies which limit instruction reorganization and the need for more 
sophisticated branch fillin algorithms for GaAs processors. A significant 
increase in compiler capability is required in order to successfully fill the larger 
number of slots. Although the Stanford MIPS compiler was able to fill one 
branch fillin slot 90 percent of the time, its fill success on the second and third 
slots was 43 percent and 39 percent, respectively [HeJoP83]. Advances in 
compiler technology resulting in high fillin probabilities for larger branch delays, 
will result in much higher performance for GaAs processor systems.

3.3.1.2 Timing Hazard Interlocks
Timing hazards generally arise ih pipelined processors when multiple 

pipeline stages have potential access to datapath resources at the Same time. 
Three types of timing hazards have been identified [Gross83]. These are called 
destination-source conflicts, source-destination conflicts, and destination- 
destination conflicts. ;

An example of a destination-source conflict is when a pipestage attempts 
to read from a hardware resource (i.e. register) before a previous pipestage has 
finished Writing to the resource. Destination-source conflicts occur naturally in 
register-to-register architectures whenever an instruction writes to a register 
which is a source register for the succeeding instruction.

An example of a source-destination conflict is when a pipestage attempts 
to write to a hardware resource at the same time that a previous pipestage is 
reading from the resource. Another source-destination, conflict occurs when a 
pipestage writes to a hardware resource before a pipestage of a preceding 
instruction is to read it. The second type of source-destination conflict occurs 
when a pipestage reads a resource which is previously written by a pipestage in 
a succeeding instruction. If an exception of some kind occurs, the succeeding 
instruction may not be executed before the pipestage of the preceding 
instruction reads the resource.

An example of a destination-destination conflict is when two pipestages 
attempt to write to a resource concurrently. This may result when the value of
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a data load is to be written to a register at the same time that the result of an 
ALU operation is to be written to the same register.

CISC processors typically utilize hardware to prevent incorrect execution 
due to timing hazards. An example technique is the “scoreboard” used in the 
CDC 6600 [Thort64]. Some RISC processors such as the Berkeley RISC-II use 
a hardware technique called “internal forwarding” to resolve destination-source 
conflicts.

The Stanford MIPS, on the otherhand, relies entirely on software to 
resolve timing hazards. The MIPS compiler is tasked with reorganizing 
instructions so that all conflicts are removed. If the compiler cannot find a 
suitable candidate instruction to prevent a conflict, it must insert a NOOP. In 
Figure 3.15 is shown an example code sequence with a destination-source 
conflict, since register a is both the destination of the first instruction and the 
source of the second instruction. In Figure 3.16 is the default action of a 
compiler to resolve the conflict, and Figure 3.17 shows a successful 
reorganization to eliminate the NOOP. It has been reported that the MIPS 
instruction cycle would have been lengthened by 10 percent if hardware 
interlocks were used [Patte85].

Because of its reduction in hardware requirements, software interlocking 
may be desirable for a GaAs processor. However, this approach again places a 
great burden on the compiler in order to minimize the number of NOOPs 
inserted into the program.

3.3.2 Compiler Optimizations in Memory
The low transistor count of GaAs memory chips and the high performance 

penalty of inter-chip communication severely hinder the memory system in its 
attempt to maintain an adequate supply of instructions and data for a GaAs 
processor. Fortunately, the compiler for such a processor has the potential to 
greatly increase the efficiency of the hardware resources which implement the 
memory system.

A compiler can provide memory system support in two ways. First, it can 
increase the reusability of information, i.e., it can increase the length of time 
that useful information is kept in the higher levels of the memory hierarchy. 
Second, it can overlap the transfer of information into the higher hierarchical 
levels with the execution of useful instructions through information prefetching. 
These two techniques are each discussed here for two types of memory.



Figure 3.15

Figure 3.16

add a,10 ‘a takes a plus 10’
add b,a ‘b takes b plus a’
add c,d ‘c takes c plus d’

Example Program Sequence Showing a Destination-Source 
Conflict.

add a,10 ‘a takes a plus 10’
NOOP
add b,a ‘b takes b plus a’
add c,d ‘c takes c plus d’

for Destination-Source Conflict. 
Branch Fill.
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add a, 10 ‘a takes a plus 10’
add c,d ‘c takes c plus d’
add b,a ‘b takes b plus a’

Figure 3.17 Example Program Sequence Showing a Successful 
Reorganization of Destination-Source Conflict.



(1) Memory ■which is normally controlled by the compiler, .Lev, the register file.
(2) Memory which is normally controlled by run-time mechanisms, i.e., the 

cache and main memory.

3.3.2.i Register File Compiler Optimizations
Register file usage is normally directly controlled by the compiler, and, in 

fact, registers have absorbed considerable abuse for the very fact that they 
require this compiler control. Because of the long history of register usage, 
compiler designers have developed fairly advanced techniques for utilizing 
registers efficiently. The RISC designers were instrumental in advancing 
compiler technology in this area in order to exploit their faster execution cycle 
times. GaAs processors, because of even faster instruction execution, will 
experience a corresponding benefit from improved register file compiler 
optimizations. °

3.3.2.1.1 Reusability
In a GaAs processor which executes register-to-register instructions, and 

only accesses off-chip data via explicit data load and data store instructions, 
data loads and stores are extremely costly. The primary reason for this is the 
much longer access delay for off-chip memory. A secondary cost is the increase 
in total program size caused by the presence of data loads and stores. Larger 
program sizes can be expected to decrease hit ratios at all levels of the 
instruction memory system.

In typical compiled HLL programs on RISC machines, data loads and 
stores are approximately 30 percent of all executed instructions [Patte85]. In 
the Silicon environment, larger register files may be incorporated in order to 
keep more useful data on-chip. As indicated earlier, the designers of the 
Berkeley RISC-II used 138 registers, divided into eight windows, to reduce their 
frequency of data loads and stores to approximately 15 percent [Patte85]. 
Clearly, this solution is not applicable for a transistor-scarce GaAs processor. 
Th© nffiltlpj© whffiow schemes for GaAs disussed earlier, although potentially 
good approaches, do add hardware complexity to a GaAs processor.

The designers of the IBM 801 relied very heavily on the capabilities of 
compiler technology. Their PL .8 compiler incorporated a highly sophisticated 
register allocation scheme to reduce the frequency of loads and stores 
[AusHo82]. '



57

Figures 3.18 and 3.19 show the improvement that can be gained from an 
intelligent compiler. Figure 3.18 shows an example unoptimized code sequence. 
Figure 3.19 shows the same sequence, but produced by a compiler with a good 
register allocation scheme. Clearly, a compiler-based approach to reduce the 
frequency of data loads and stores has an inherent advantage over hardware 
approaches in the GaAs environment if it can achieve adequate results

3.3.2.1.2 Prefetching
As indicated previously, RISC processor designs allow a compiler 

optimization not allowed on typical CISCs. This optimization, “data load 
fillin,” reduces the negative effect of data load latencies on performance. 
Because GaAs processors can be expected to have longer off-chip data load 
latencies than Silicon processors, this optimization can have a greater positive 
impact on performance for a GaAs processor.

In a GaAs processor system, the data memory may execute data loads and 
stores in parallel with processor execution. In principle, for all data memory 
accesses, the processor need only initiate the access, and also receive the data 
value resulting from a load. If the compiler is able to schedule enough useful 
instructions after the data load initiation, the data load latency is effectively 
eliminated.

The compiler then is tasked with scheduling each data load instruction so 
that the data load result is in the processor before or at the time the processor 
requires it. This optimization is similar to the branch fillin problem described 
earlier in that only a subset of the possible instructions can be used to perform 
the load fillin.

This optimization is shown in Figures 3.20-3.23 for a Silicon pipeline 
represented by Figure 3.1 and a GaAs pipeline represented by Figure 3.3. In 
Figure 3.20 is shown an unoptimized program sequence for the Silicon pipeline, 
while Figure 3.21 shows the optimized version. Figure 3.22 shows the same 
unoptimized program sequence for the GaAs pipeline, and Figure 3.23 shows its 
optimized form. As in the case of branch filling, data load filling success is 
limited by data dependencies, and more sophisticated optimization strategies 
are required to approach 100 percent fillin on a GaAs processor. Because data 
loads are so frequent, the implementation of improved compiler technologies 
can improve GaAs processor system performance significantly.
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store a,TEMP ‘store a into TEMP’
add b;c ‘b takes b plus c’
load a,TEMP ‘load from TEMP to a’
add b,d ‘b takes b plus d’
add d,a ‘d takes d plus a’

Figure 3.18 Example Program Sequence Showing Poor Register 
Allocation.

add b,c ‘b takes b plus c’

add b,d ‘b takes b plus d’
add d,a ‘d takes d plus a’

Figure 3.19 Example Program Sequence Showing Good Register 
Allocation.



Figure 3.20

Figure 3.21
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add a,b ‘a takes a plus b’
add a,l ‘a takes a plus 1’
add c,b ‘c takes c plus b’
load d,A[c] ‘load A[c] into d’
NOOP
add e,d ‘e takes e plus d’

Example Program Sequence on a Silicon Processor Before 
Load Fillin.

add a,b ‘a takes a plus b’

add c,b ‘c takes c plus b’
load d,A[c] ‘load A[c] into d’
add a,l ‘a takes a plus 1’
add e,d ‘e takes e plus d’

Example Program Sequence on a Silicon Processor After 
Load Fillin.
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add a,b ‘a takes a plus
add a,l ‘a takes a plus
add c,b ‘c takes c plus
load d,A[c] ‘load A[c] into
NOOP
NOOP
NOOP
add e,d ‘e takes e plus

Figure 3.22 Example Program Sequence on a GaAs Processor Before 
Load Fillin.

add c,b ‘c takes c plus
load d,A[c] ‘load A[c] into
add a,b ‘a takes a plus
add a,l ‘a takes a plus
NOOP
add e,d ‘e takes e plus

Figure 3.23 Example Program Sequence on a GaAs Processor After 
Load Fillin.
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3.S.2.2 Cache j Mam Memory Compiler Optimizations
The contents of the LRU-based memory levels of the memory hierarchy 

(i.e. cache, main memory, etc.), are normally determined by run-time 
hardware. However, as already indicated, in many instances in Which the 
temporal and spatial localities of reference, upon which LRU mechanisms are 
based, fails, the compiler is able to provide assistance. Because a similar delay 
due to memory misses results in greater wasted instruction cycles for GaAs 
processors than for Silicon processors, compiler optimizations to improve hit 
ratios gain added importance in the GaAs environment.

3.3.2.2.1 Reusability
This section describes two ways in which the compiler is able to increase 

the useful time of cache blocks, main memory pages, etc. The first technique is 
to increase the temporal and spatial localities of reference, and the second 
technique involves providing support which is used at run-time to reduce the 
negative consequences of poor locality.

Increasing referencing locality is more effective for large memory units 
such as main memory pages or segments, but also may be used with cache 
blocks as well. What is desired is an increased correlation between high 
temporal locality and high spatial locality for particular information units. In 
other words, the information which is used within nearby time periods should 
also be stored in nearby memory locations. If the compiler (and linker) knows 
the page size, etc., then information which exhibits high temporal locality, as 
determined by the compiler, can be allocated memory locations within the 
same page, etc. Even without page size information, more spatial locality by 
itself will decrease miss ratios. A study was performed on a compiler algorithm 
to increase the spatial locality of data having large temporal locality 
[AbKuL81]. In this study, miss ratios for the unmodified programs were as 
much as 20 times higher than the miss ratios for the modified programs. 
Clearly, this type of compiler optimization will have an enormous imp&ct on 
the performance of a GaAs processor system.

As mentioned earlier, one instance where temporal locality is not present is 
the Use of some particular information followed by a large period of non-use. 
Bringing this type of information into a higher level of the memory hierarchy 
will decrease that levels hit ratio, because it results in more useful information 
being replaced. If the compiler detects that an information access will displace 
information of higher future usefulness, then it may override the run-time



information control mechanism. One possible method for accomplishing this is 
the use of special data load and store instructions which inhibit the memory 
system’s run-time mechanism. This technique is used oh the IBM 801 
[Radin83], A special data store instruction is provided which signals the cache 
to not perform block replacement. As with many compiler optimizations 
designed for Silicon RISOs, this technique is potentially even more profitable 
for a GaAs processor.

3.3«2.2.2 Prefetching
As mentioned earlier, temporal locality is not present in instances where 

information is accessed for the first time after a long period of non-use. These 
instances occur when the present referencing locality is exited and a new 
locality established. These inter-locality gaps are disastrous for LRU-based 
run-time mechanisms. It is possible for the compiler to detect these inter- 
locality gaps and to assist the run-time mechanism in preparing for them. This 
technique is more useful for the cache than for the main memory in systems 
with magnetic disks. Since disk accesses normally require milliseconds, page 
faults are usually handled by switching to another waiting task. Unless the 
prefetching scheme can detect the prefetch candidate milliseconds before need, 
nothing is gained by beginning the disk transfer early.

When the compiler detects a prefetching candidate, it requires a method to 
initiate the prefetch. One technique is to use special memory prefetch 
instructions, which are executed by the processor as special memory 
instructions. These special instructions may be handled by the memory 
hardware in much the same way as any memory access. When such an 
instruction is executed, the processor calculates the memory address and does 
nothing more. Many of the NOOPs normally executed by the processor 
because the compiler was unable to successfully perform branch or load fillin 
may be replaced by these special memory instructions. Once again, this 
compiler support can increase the performance of a GaAs processor 
significantly.
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CHAPTER IV
PIPELINE AND INSTRUCTION FORMAT EXPERIMENTS

In Chapter II we presented an overview of GaAs technology. We studied 
the GaAs device families and logic families commonly used in digital designs. 
We selected the most capable and mature GaAs technology, the DCFL E/D- 
MESFET family, compared it with Silicon NMOS, and found a number of 
significant differences. We then enumerated those characteristics of the GaAs 
DCFL E/D-MESFET family which we believe will significantly influence the 
design of computer systems using this technology.

In Chapter HI we presented approaches to computer system design that we 
consider to be appropriate for GaAs technology. We first described the riianner 
in which the characteristics of GaAs influence computer system design. We 
then discussed design approaches for the hardware and compiler of GaAs 
computer systems.

In this chapter we describe two experiments which extend some of the 
work presented in Chapter HI. We first discuss our evaluation methodology, 
including our evaluation tools. We then present our first experiment which 
compares candidate GaAs instruction pipelines, and follow that with an 
experiment to compare candidate GaAs instruction formats.

4*1 Evaluation Methodology
We utilize simulation as our primary evaluation technique. We choose this 

approach because of its advantages over other evaluation methodologies, and 
because the appropriate tools are readily available to us. Analytical models are 
also sometimes used, but these are generally not as representative as 
simulations. We don’t like hardware prototyping for many reasons including 
cost, lack of flexibility for design modifications, and, of course, the fact that no 
GaAs systems of the type we wish to model have ever been built before.

Our primary evaluation criterion is the time required to execute compiled 
HLL programs. In order to obtain HLL program execution times, a simulation
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system requires three principal components. First, an application environment 
in the form.of HLL programs is necessary. Second, a simulation program 
which implements the architecture description is needed. Finally, a method of 
translating the HLL programs to the architecture description is required, and 
this translation should be optimized to exploit any execution speedup 
opportunities presented by the architecture.

4.1.1 Workload Model
Because computer system performance depends heavily on the 

characteristics of the programs it executes, the selection of an appropriate 
application environment is of considerable importance. We can observe the 
effect of different application environments in the design of commercial Silicon 
systems such as the Cray-1 [Russe78] for highly arithmetic environments with 
regular data structures, the TMS320 [MaCaM82] for signal processing 
applications, and the MC68020 [MaMoM84] for general purpose applications;

Our application environment consists of a broad mixture of programs 
written in the high level language PASCAL, These programs vary considerably 
in their use of iteration, recursion, arithmetic, and data structures. Considered 
collectively, they represent a general purpose programming environment; while 
the characteristics of selected individual programs may be used to enhance the 
responsiveness of execution time to particular architectural variations.

The ten PASCAL programs which represent our workload model were 
obtained from Stanford University through RCA Corporation Many of these 
programs are widely used for benchmarking purposes and appear frequently in 
the literature.
(1) Ack - a highly recursive program to compute Ackermann’s function.
(2) Bubble - a program to perform a bubble sort of 500 integers.
(3) Fib - a highly recursive program to compute a Fibonacci number
(4) Intmm - a computation-heavy program to multiply two 40x40-element 

integer arrays.
(5) Perm - a highly recursive program to calculate all permutations of the 

numbers 1 through 7.
(6) Puzzle - an iteration-heavy, computation-heavy program to solve a 3 

dimensional cube packing problem.
(7) Queen - a program to solve the Eight Queens problem.
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(8) Quick- a program to perform a quick sort of 5000 integers.
(9) Sieve - a program which calculates the number of primes between 0 and

8190.
(10) Towers - a highly recursive program to solve the Towers of Hanoi problem

with 18 discs.

4.1;2 Architecture Model
Our architecture model is a simulation program written in the high level 

language 0 for the Stanford MIPS processor. The MIPS simulator was made 
available to us by RCA. It performs simulation at the instruction level; 
therefore, it requires MIPS instructions for its input. Its output is the program 
execution time, in terms of the number of instructions executed.

The MIPS architecture is very appropriate for this study because its 
transistor count is compatible with GaAs E/D-MESFET capabilities of the 
near future. It is helpful to revisit several MIPS characteristics in order to 
provide a better understanding of the following two experiments.

First, MIPS employs delayed branching with a branch delay of one*. 
Again, this means that the first instruction after every branch operation is 
always executed, and the compiler is responsible for finding instructions for the 
fillin slots such that correct program execution is maintained* If the compiler 
cannot find a useful instruction for a fillin slot, it must then insert a NOOP 
into the slot.

Second, the MIPS compiler must perform an analogous function for the 
first instruction after data load operations.

Finally, the MIPS processor employs instruction packing. A MBPS 
instruction may contain two operations which are executed sequentially in the 
time necessary to perform one instruction fetch. Not all operation 
combinations may be packed, however, and instructions may therefore contain 
either ohe or two operations.

* The Stanford MIPS literature states that the “indirect branch instruction” (see Appen
dix B) has a branch delay of two. However, we consider this instruction to be a pair of 
operations - a data load followed by a branch. We are carefully using instruction to refer 
to those atomic entities which are fetched into the processor, and we use operation when
ever an instruction contains multiple executable pieces. This distinction is important 
when di&PP§inS Packed instructions containing multiple operations, in addition to the is
sue of indirect branch instructions.
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In addition to the Stanford software, we will use a cache simulator which 
was designed and implemented at Purdue University. The cache simulator is 
implemented as a procedure which is callable from within the MIPS simulator. 
It receives addresses and possibly data and returns the number of instruction 
cycles required for access, while updating the data and tag information 
Modifications to the cache size, block size, prefetch strategy, cache hit delay, 
and cache miss delay allow for a flexible cache implementation.

4.1.3 Workload to Architecture Translation
There must be some way to translate the PASCAL benchmark programs 

into a.'form acceptable to the architecture simulator. The software package 
that we use for this translation was written by Stanford and again provided to 
us by RCA. The package consists of a PASCAL compiler, optimizer, code 
generator, assembler and reorganizer, linker, and loader.

The compiler transforms PASCAL programs into an intermediate 
language, which then receives hardware-independent optimizations before being 
converted into MIPS-like instructions. The assembler and reorganizer perform 
the branch delay fillin, load delay fillin, instruction packing, etc., and convert 
the MIPS assembler instructions into machine code. The linker combines this 
code with the run-time library containing multiplication routines, input-output 
routines, etc., and the loader logically stores the linked program into memory 
locations between 0 and 31,999. This loaded program is then written to a file 
where it is kept until required by the architecture simulation program.

4.2 Pipeline Experiment
We now describe an experiment undertaken in order to evaluate three 

instruction pipelines in a GaAs processor environment. We begin by explaining 
our motivation for performing this experiment, and then we present our choice 
of pipelines for examination. We describe our evaluation criterion and present 
some background to illustrate why optimal pipeline performance is usually not 
achieved. We then discuss our methods for quantifying these causes of 
subop timal performance, and we incorporate them into our analytical pipeline 
performance model description. We present Our experimental results and finish 
with a discussion of these results.
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4.2.1 Rationale
Section 3.2.3 presented the problems associated with the use of Silicon 

pipelines in a GaAs processor. Again, the disadvantage of such an approach is 
that the datapath of a GaAs processor will have a severe underutilization 
permanently built into it. Three approaches to alleviate this problem were 
advocated, and they are represented by Figures 3.3 - 3.5. Figure 3.3 shows an 
instruction pipeline which results from the use of a pipelined instruction 
memory; Figure 3.4 shows an instruction pipeline which incorporates 
instruction packing; while Figure 3.5 shows an instruction pipeline resulting 
from the use of slow datapath elements. We believe that it is very desirable to 
determine the relative performance capabilities of these candidate instruction 
pipelines in a GaAs processor environment.

4.2.2 Candidate Pipeline Descriptions
Because of the nature of our simulation tools, we find it relatively 

straightforward to study two of the above three candidate instruction pipelines.
Through modifications to the MIPS simulator and analytical techniques 

described later, it is relatively easy to model the performance of the instruction 
pipeline with a pipelined instruction memory. This instruction pipeline will be 
called the “pipelined memory” pipeline from now on.

The second instruction pipeline that we model is the pipeline with 
instruction packing. We use the packed MIPS format to represent this 
pipeline; which we will call the “packed” pipeline.

The pipeline with slower datapath elements is considerably harder to 
model because a large number of variables are involved. This pipeline 
advocates the removal of hardware resources from datapath elements used to 
perform simple operations, and the reallocation of them elsewhere. The freed 
hardware resources may be used to implement an on-chip serial multiplier, 
larger number of registers, etc. However, there are several difficulties in the 
analysis of this pipeline. First, datapath elements require redesign and relayout 
in order to determine both the additional transistors and area available for 
otijyr ilill, The two hardware candidates which we’ve identified to receive 
these freed resources are a serial multiplier or larger number of registers. The 
serial multiplier requires considerable effort for its design and incorporation into 
the processor. This is in addition to the effort needed to model its presence in 
such a processor. An increase in register file size cannot be effectively modeled 
because the MIPS compiler which we are using does not produce correct code
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when register values must be spilled [Linn85]. A set of benchmarks necessary 
to test the performance benefit of the additional registers must contain 
procedures with many variables; however, these benchmarks cannot be 
compiled by our compiler. Because of these difficulties, we will not study the 
instruction pipeline with slow datapath elements.

We do include a third pipeline in this study however. In order to discover 
the performance advantage, if any, of the two candidate GaAs pipdiiies oter a 
Silicon pipeline, we choose an example Silicon pipeline for evaluation. The 
pipeline that we use is for an unpacked version of the MIPS instruction set. 
We call this pipeline the “normal Silicon” pipeline.

4.2.3 Evaluation Criterion
For this study we choose as our evaluation criterion the number of useful 

(i.e. non-NOOP) operations executed per datapath cycle. We are not 
concerned with speeding execution by minimizing the datapath time, nor are 
we allowed to arbitrarily lengthen the datapath time in order to inflate our 
performance metric. As we will soon observe, the important constraint which 
we will obey is the ratio of instruction fetch delay to datapath delay.

We define an “ideal” instruction pipeline to be one which yields a useful 
operation execution on every datapath cycle. In order to achieve this ideal 
operation execution rate, the pipeline must exploit the parallelism typically 
present in modern single-processor computer systems. Example parallel 
resources include the instruction memory, instruction fetch logic, instruction 
decode logic, instruction execution logic (datapath), and data memory.

4.2.4 Causes of Non-ideal Performance
In reality one-operation-per-eycle execution is not achieved Memory 

system deficiencies and. disruptive- programming constructs both reduce the 
performance of a computer system. We can observe three types of disruptions 
which degrade the performance of our pipelines. In all three cases, the 
magnitude of performance degradation is highly dependent upon the 
capabilities of both the memory system and compiler.
(1) Branches. The form of parallelism exploitation utilized by pipelining is 

severely undermined by program branches, as described in Section 3.31.1. 
We find it helpful to present again the manner in which program branches 
degrade the performance of pipelined processors which utilize delayed



69

branching. In the simple example Silicon pipeline of Figure 3.1, we 
observe the concurrent usage of the instruction fetch logic /instruction 
memory and the instruction execution logic. Note, however, that while 
the execution logic executes an instruction, instruction i for example, the 
instruction fetch logic is fetching instruction i + 1. This is the essence of 
the pipelined method of parallelism exploitation. However, if the 
execution of instruction i causes a program branch, the work (fetch of 
id-1) performed by the instruction fetch logic is for naught unless the 
compiler can guarantee that instruction i + 1 is useful. In the GaAs 
pipelined memory pipeline of Figure 3.3, the compiler must ensure that 
three Useful instructions follow branch Operations in order to prevent a 
variation from ideal operation execution.

(2) Instruction Fetches. An instruction memory which exhibits a longer fetch 
delay than, the instruction execution logic (datapath) delay must have 
parallelism introduced into it, and this parallelism must be fully exploited 
or else performance degradation will result. An example pipeline for an 
instruction memory exhibiting no parallelism and a long fetch delay is 
shown in Figure 3.2. This pipeline is unacceptable if high performance is a 
design goal. Pipelines resulting from parallel instruction memory systems 
are shown in Figures 3.3 and 3.4. The pipeline of Figure 3.3 results from a 
pipelined instruction memory consisting of three stages. These “parallel” 
stages require compiler assistance to be fully exploited in the presence of 
branch operations as discussed above. The pipeline of Figure 3.4 results 
from an instruction memory which provides three operations in parallel. 
In general, the restricted number of pins on the processor chip will limit 
the size of instruction transfers, while the large size (number of bits) 
required by some operations will limit the number of operations which 
may be concurrently fetched. Again, compiler assistance may be needed 
to maximize the packing of operations into instructions. One final cause 
of non-ideal operation execution is the variation in fetch times between 
the levels of the memory hierarchy, Generally, the parallelism just 
discussed is only introduced into the highest level of the memory 
hierarchy. If the instruction requested by the processor is not in the 
highest memory level, then a delay is introduced. Therefore, the “hit 
ratio” of the highest level of the instruction memory hierarchy is also 
important.

(3) Data Loads. A data memory which has a longer access delay than the 
datapath delay must depend on parallelism exploitation in order to avoid 
degrading the processor’s performance. Typical memory hardware
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methods for introducing parallelism include interleaved memory and 
pipelined memory. Interleaved memories allow multiple words to be 
concurrently accessed much as multiple operations are accessed in packed 
instruction fetches. However, because of the lack of redundancy in most 
data, the pin count limitations of a single-chip processor reduce the 
applicability of this approach. Pipelined memories are useful and easily 
exploitable for data stores; and also useful for sequences of data loads. In 
general, though, the compiler is most capable of exploiting the parallel 
datapath and data memory units by successfully performing load fillin. 
Again, the effect of cache misses may also cause performance degradation.

4.2.5 Modeling Memory and Compiler Effects
As demonstrated in the last section, both the off-chip memory system and 

the compiler have large influences on the performance of our GaAs pipelines. 
Because there is a lack of experimental data for the memory system parameters 
which we require, we will use a range of values which we consider to be 
representative of future memory system designs. Also, since we presently know 
of no compilers which have been designed to exploit the optimization 
opportunities presented by our candidate pipelines, we use a range of values for 
ouf compiler-based parameters.

4.2.5.1 Memory Parameters
As mentioned in Section 3.2.3, a reasonable number for the ratio of 

instruction fetch delay to datapath delay is three when an off-chip/on-package 
instruction memory is used. We will, therefore, use this ratio for all on- 
package accesses throughout the rest of this experiment. For off-chip/off- 
package accesses we will use six as the ratio of memory access delay to 
datapath delay. Also, we will assume that the capacity of this off-package 
memory is infinite, therefore limiting this analysis to a two-level memory 
hierarchy.

We will use three memory configurations of the four which are possible 
with our two-level memory hierarchy and separate instruction and data 
memory. The first configuration, which we will call the “(3,3)” configuration, 
consists of a two-level instruction memory and a two-level data memory. The 
ratio of the memory access delay to datapath delay for the fastest level of the 
hierarchy in both cases is then three. The second configuration, denoted
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“(3,6),” contains a two-level instruction memory and a single-level data 
memory. The ratio for the data memory is always six. The third 
configuration, the “(6,3)” configuration, contains a single-level instruction 
memory and two-level data memory. The ratio for the instruction memory is 
always six in this configuration.

We require six memory parameters, four of which are directly derivable 
from the pipeline and memory configuration. However, since we will require all 
six parameters in our analytical performance model, we will define all six here.
(1) “nih” - Number of effective datapath cycles for an instruction cache hit. 

This parameter is one or three if an on-package instruction cache is used; 
it is one or six otherwise. Note that the “effective” access delay of a 
pipelined memory is one.

(2) “nim” - Number of effective datapath cycles for an instruction cache miss. 
This parameter is four or six if an on-package instruction cache is used; it 
is six otherwise. Note that an instruction cache miss always results in a 
delay of three cycles, unless a single-level instruction memory is used.

(3) “pih” - Probability of instruction cache hit. This parameter is not directly 
derivable from the pipeline and memory configuration. We instead will 
use a range of values for this parameter. For the default value we observe 
the empirical cache hit ratios presented in [Smith85] for small cache sizes. 
Based on these results we select a. value of 0.8 as our default value.

(4) “ndh” - Number of datapath cycles for a data cache read hit. This 
parameter is three if an on-package data cache is used; it is six otherwise.

(5) “ndm” - Number of datapath cycles for a data cache read miss. This 
parameter is always six.

(6) “pdh” - Probability of data cache read hit. As with pih, this parameter is 
not derivable from our pipeline and memory configurations, so we will use 
a range of values. From the results in [Smith85] we select a default value 
of 0.8 for this parameter as well.
There is an assumption implied here for data memory accesses. The 

parameters ndh, ndm, and pdh are valid for data memory reads only. We 
assume that the data memory is pipelined such that data memory writes only 
cost the processor one datapath cycle. A similar assumption for data memory 
reads Would add considerable complexity into this analysis.
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4.2.5.2 Compiler Parameters
There are two compiler parameters required for our analysis.

(1) “pbf” - Probability of branch fill. This is the probability that the branch 
fillin slots immediately following branch operations contain useful 
instructions. As in the case of both pih and pdh above, we will use a 
range of values for this parameter, as there is no empirical data, to our 
khbWiedge, available for a compiler targeted to an architecture Mth OUr 
large branch delays. We will use 0.6 as our default value because this is 
the value obtained by the MIPS compiler for a branch delay of three 
[HeJoP83]. However, because the MIPS compiler was actually targeted to 
a machine with a branch delay of one, we don’t believe their motivation 
for successfully filling three slots was especially strong; thus, perhaps our 
default value is low for a branch delay of three. However, since we also 
utilize branch delays of six in this experiment, we consider our default to 
be a suitable compromise.

Note that the value for pbf is the probability that all of the possible slots 
are filled. Thus, for a branch delay of three and pbf of 0.6 there are an 
average of 1.8 useful instructions and 1.2 NOOPs following each branch 
operation.

(2) “plf” - Probability of load fill. This is the probability that the load fillin 
slots immediately following load operations contain useful instructions. 
We will use a range of values for this parameter, and since even less 
empirical data is available for this parameter than for pbf, we will use the 
same default value - 0.6.

4.2.6 Modeling the Workload Effects
We now discuss the characteristics of our benchmarks which we require in 

our analytical performance model. We first define the workload parameters 
and then we then present them in Table 4.1.

4.2.6.1 Workload Parameter Definitions
Section 4.2.4 discussed three causes of non-ideal instruction pipeline 

perforniance. Again, these are derived from branches, instruction fetches, and 
data loads. In order to determine their total negative effect on program 
execution time, we need to know the number of branches, instruction fetches,



and data loads present in our benchmark programs. We will use three 
abbreviations for these three parameters.
(1) “ni” - Number of instructions in the benchmark program under study, or 

the average number of instructions if the workload contains multiple 
benchmark programs.

(2) “nl” - Number of load operations in the benchmark program under study, 
or the average number of load operations if the workload contains multiple 
benchmark programs.

(3) “nb” - Number of branch operations in the benchmark program under 
study, or the average number of branch operations if-‘^Kje;;'wprkl(>ad 
contains multiple benchmark programs.
In addition to these three parameters, the analytical performance model 

described in the next section requires three additional parameters which 
describe the effect of the Stanford MIPS compiler oh the benchmark programs.

Because two of our candidate instruction pipelines do not use packed 
instructions, and because our analysis is based upon the MIPS instruction 
format, which does use packed instructions, we must know the number of 
packed instructions in the benchmark programs. Again we shall abbreviate this 
parameter.
(4) “np” - Number of packed instructions in the benchmark program under 

study, or the average number of packed instructions if the workload 
contains multiple benchmark programs. Appendix B describes the 
Stanford MIPS instruction set, and the instructions which are eligible to 
be packed are evident there. However, just because a MIPS instruction 
contains space for two operations does not imply that every instance of 
this instruction is packed. The ALU operation piece of any MIPS may 
contain a NOOP, which is actually a “MOV Rx,Rx” operation. Also, we 
consider both the conditional branch instruction and the conditional trap 
instruction to be packed since two MIPS operations are clearly required for 
both of these instructions.
In order to model the effect of a compiler for a GaAs processor, the 

analytical model of the next section must know some additional effects of the 
MIPS compiler on the benchmark programs.
(5) “pbfO” - Probability of branch fill that the Stanford MIPS compiler 

achieved on the given benchmark programs. Determining this value is 
complicated by the instruction packing of the MIPS instruction set. The 
approach we’ve taken is to ignore packing in determining pbfO. If a
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branch instruction is not packed and could be, this does not affect pbfO. 
Also, if a fillin slot after a branch contains at least one operation, then
that slot is considered to be filled, otherwise it is unfilled.

(6) plfO - Probability of load fill that the Stanford MIPS compiler achieved 
on the given benchmark programs. The above statements concerning 
packing apply here as well.

4.2.6.2 Workload Parameter Values
Through minor modifications to the Stanford MIPS simulation program we 

can obtain the above six workload parameter values. The simulator 
modifications involve the insertion of appropriate counters into the simulation 
program. Because these modifications are minor in contrast to the large size of 
the simulation program, we don’t list them. Table 4.1 contains the results 
which we obtained for the ten benchmark programs. The benchmark average at 
the bottom of the table weights the contribution of each benchmark program 
equally.

4.2.7 Analytical Pipeline Performance Model
We use our pipeline performance model to evaluate each of our candidate 

pipelines. As discussed in Section 4.2.3 the ideal pipeline execution rate is one 
useful operation per datapath cycle. Equivalently, this ideal rate is one 
datapath cycle per useful operation.

Our performance equations calculate the total number of datapath cycles 
required to execute the benchmark programs. These values will then be used 
to help create the plots shown in the next section.

; Altogether, we have nine candidate GaAs pipelines. They are the formal 
Silicon pipeline in the (3,3), (3,6), and (6,3) memory configurations; the packed 
pipeline in the (3,3), (3,6), and (6,3) memory configurations; and the pipelined 
memory pipeline in the (3,3), (3,6), and (6,3) memory configurations.

The normal Silicon pipelines are shown in Figures 4.1 - 4.3 and their 
performance equations are given in Equations 4.1 - 4.3. The packed pipelines 
are shown in Figures 4.4 - 4.6 and their performance equations are given in 
Equations 4.4 - 4.6. Finally, the pipelined memory pipelines are shown in



Benchmark ni* nb* nl* np* pbfO plfO
ack 1000 216 270 189 0.62 0.90
bubble 1000 217 211 350 0.51 1.00
fib 1000 212 303 212 0.71 1.00
intmm 1000 63 134 637 1.00 1.00
perm 1000 143 304 230 0.75 0.88
puzzle 1000 316 263 489 0.95 0.92
queen 1000 151 299 252 0.63 0.65
quick 1000 208 156 633 0.56 0.97
sieve 1000 249 50 449 1.00 1.00
towers 1000 129 362 203 0.44 0.74
average 1000 190 235 364 0.72 0.91

* Measured per 1000 MIPS instructions.
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Figure 4.7 - 4.9 and their performance equations are given in Equations 4.7 - 
4.9.

The derivation of the performance equations is rather bulky; therefore we 
include it in Appendix A instead of here.

4.2.7.1 Normal Silicon (3,3)

Execution time = ni * (6 - 3 * pih)
+ nl * (6 - 3 * pih) * (plfO - plf)
+ nb * (6 - 3 * pih) * (pbfO - pbf)
+ np * (6 - 3 * pih) (4.1)

4.2. T.2 Normal Silicon (3,6)

Execution time = ni * (6 - 3 * pih)
+ nl * (6 - 3 * pih) * (plfO ^ plf)
+ nb * (6 - 3 * pih) * (pbfO - pbf)
+ np * (6 - 3 * pih) (4.2)

4.2;7;3 Normal Silicon (6,3)

Execution time = ni * 6
+ nl * 6 * (plfO - 1)
+ nb * 6 * (pbfO - pbf)
+ np * 6 (4.3)

4.2. T.4 Packed (3,3)

Execution time . = ni * (6 - 3 * pih)
+ nl * (6 » 3 * pih) * (plfO - plf)
+ nb * (6 - 3 * pih) * (pbfO - pbf) (4.4)
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instruction i +2 I if ||dp1| of 1
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till I I III I I I I I I I I 
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DP'Datapath Cycle
OF'Operand Fetch Cycle

Figure 4.2 Normal Silicon (3,6) Pipeline.
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IF-Instruction Fetch Cycle 
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Figure 4.3 Normal Silicon (6,3) Pipeline.
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Figure 4.4 Packed (3,3) Pipeline.
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Figure 4.5 Packed (3,6) Pipeline.
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Figure 4.6 Packed (6,3) Pipeline.
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Figure 4.7 Pipelined Memory (3,3) Pipeline.
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Figure 4.8 Pipelined Memory (3,6) Pipeline.
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Figure 4.9 Pipelined Memory (6,3) Pipeline.
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4.2.7.S Packed (3,6)

Execution time = ni * (6 - 3 * pih)
+ nl * (6 - 3 * pih) * (plfO - plf)
+ nb * (6 - 3 * pih) * (pbfO - pbf) (4.5)

4.Z.7.6 Packed (6,3)

Execution time = ni * 6
+'nl * 6 * (plfO- 1)
+ nb * 6 * (pbfO - pbf) (4.6)

4.2.7.7 Pipelined Memory (3,3)

Execution time = ni * (4 - 3 * pih)
+ nl * [3 * (1 - pdh)

+ (4 - 3 * pih) * (2 + plfO - 3 * plf)]
+ nb * (4 - 3 * pih) * (2 + pbfO - 3 * pbf)
+ np * (4-3..* pih) (4.7)

4.2.7.S Pipelined Memory (3,6)

Execution time = ni * (4 - 3 * pih)
+ nl * (4 - 3 * pih) * (5 + plfO - 6 * plf)
+ nb * (4 - 3 * pih) * (2 + pbfO - 3 * pbf)
+ np * (4 - 3 * pih) (4.8)

4.2.7.9 Pipelined Memory (6,3)

Execution time — ni * 1
+ nl * (5 + plfO - 3 * plf - 3 * pdh)
+ nb * (5 + pbfO - 6 * pbf)
+ np * 1 (4.9)
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4.2.8 Experimental Results
It is advantageous to study the candidate pipelines in four workload 

environments. First, we evaluate each pipeline in the workload environment 
represented by the entire set of benchmark programs. Then we evaluate each 
pipeline in arithmetic-heavy, branch-heavy, and load-heavy environments 
represented by the benchmark programs intmm, puzzle, and towers, 
respectively.

As indicated in the last section, the ideal pipeline performance standard is 
one datapath cycle per useful instruction. We instead plot on the vertical axis 
the number of datapath cycles per 1000 packed MIPS instructions. Although 
not every MIPS instruction contains exactly one useful operation, we do have 
an easily obtainable basis for pipeline comparison. On the horizontal axis we 
have a range of values for either a compiler parameter - pbf or plf, or a 
memory parameter - pih or pdh. Thus, we are in a position to determine the 
effect of both compiler and memory system capability on the performance of 
our candidate pipelines.

In the workload consisting of the ten benchmarks, we show the pipeline 
performances as a function of each of our four parameters: pih, pdh, pbf, and 
plf. These results are shown in Figures 4.10 - 4.21.

The arithmetic-heavy benchmark, intmm, is interesting because of its low 
number of branches and loads, and because of the high packing rate achieved 
by the MIPS compiler. For this benchmark we show the effect that pbf and plf 
have on pipeline performance. These results are shown in Figures 4.22 - 4.27.

The branch-heavy benchmark, puzzle allows us to observe the performance 
of our pipelines in an environment with a large amount of iteration. For this 
benchmark we amplify the effect that branches have on pipeline performance 
by showing the performance as a function of pbf in Figures 4.28 - 4.30.

The load-heavy benchmark, towers, allows us to observe the great number 
of data loads associated with procedure call/return! overhead in a highly- 
reeursive environment. We show the effect of plf on;performance in Figures 
4.31 - 4.33.
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Figure 4.10 Pipeline Performance vs. “pill” in (3,3) Configuration for All 
Benchmarks.
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Figure 4.11 Pipeline Performance vs. “pih”in (3,6) Configuration for All
Benchmarks.
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Figure 4.12 Pipeline Performance vs. “pih” in (6,3) Configuration for All 
Benchmarks.
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Figure 4.13 Pipeline Performance vs. “pdh”in (3,3) Configuration for All
Benchmarks.
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Figure 4.14 Pipeline Performance vs. “pdh” in (3,6) Configuration for All 
Benchmarks.
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Figure 4.15 Pipeline Performance vs. “pdh”in (6,3) Configuration for All
Benchmarks.
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Pipeline Performance vs. “pbf” in (3,3) Configuration for All 
Benchmarks.
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Figure 4.18 Pipeline Performance vs. “pbf” in (6,3) Configuration for All 
Benchmarks.
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Figure 4.19 Pipeline Performance vs. “plf’in (3,3) Configuration for All
Benchmarks.
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Figure 4.20 Pipeline Performance vs. “plP in (3,6) Configuration for All 
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4.2.9 Discussion

4.2.9.1 Candidate Pipeline Comparison
Clearly, the pipelined memory pipeline is generally superior to both the 

normal Silicon and packed pipelines. This is not surprising, because the 
pipelined memory pipeline is the only pipeline of the three potentially able to 
execute one useful operation per datapath cycle. The packed pipeline can 
sometimes execute two useful operations per three datapath cycles, while the 
normal Silicon pipeline is limited to one useful operation per three datapath 
cycles. In only a very few pathological cases is the Silicon pipeline performance 
equal to the performance of either of the other two pipelines. Clearly, a 
Silicon-like pipeline performs very poorly in our model of a GaAs processor 
environment.

It is apparent that the pipelined memory pipeline is the most sensitive to 
variations in all four parameters. This results from the “leanness” of the 
pipelined memory pipeline. Although it has the highest potential performance, 
it also experiences the most degradation from unfilled branch fillin slots, 
unfilled load fillin slots, and cache misses.

An interesting result is the lower sensitivity to pih demonstrated by the 
packed pipeline. This results because fewer instructions must be fetched when 
instruction packing is used; therefore, the number of instruction cache misses 
decreases as well. In fact, the packed pipeline outperforms the pipelined 
memory pipeline at low values of pih.

4.2.9.2 Memory Configuration Comparison
In most cases, the (3,3) memory configuration provides the highest 

performance, followed by the (3,6) configuration, and finally the (6,3) 
configuration. This is intuitively pleasing because we should expect faster off- 
chip memories to provide better performance. The (3,6) configuration generally 
Outperforms the (6,3) configuration because, as seen in Table 4.1, instructions 
are fetched approximately four times as often as data.

A significant deviation from the general discussion just concluded is the 
much superior performance of the (6,3) memory configuration when the 
pipelined memory pipeline is used. In fact, this combination provides the best 
performance to be observed in this experiment. The reasons for this are the 
memory pipelining which reduces the “effective” instruction delay to one



datapath cycle, and the (6,3) configuration, which eliminates the penalty of 
instruction cache misses (the off-package memory is assumed to have infinite 
capacity).
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4.2.9.3 Compiler and Memory Parameter Comparison
Of all the parameters pih, pdh, pbf, and plf, the one which most heavily 

influences pipeline performance is pih. This is very reasonable because 
instruction fetches are more frequent than either data loads or branches.

In the (3,6) memory configuration, the parameter pdh has no effect on 
performance. This is because in this configuration, the data memory hierarchy 
has only one level of infinite capacity. Therefore, data cache misses are not 
defined.

In the (6,3) memory configuration, the parameter pih has no effect on
performance because of the same reasoning just presented.

For both the normal Silicon and packed pipelines, pdh has no effect on 
performance in any memory configuration. These two pipelines have such long 
effective instruction fetch times that they can absorb long data load times 
associated with data cache misses. In fact, the delays caused by instruction 
fetches negate any performance improvement that a data cache might provide.

For both the normal Silicon and packed pipelines in the (6,3) memory 
configuration, plf has no effect on performance. The effective instruction fetch 
delay for these two pipelines is so long that any semblance of instruction 
pipelining is lost.

4.2.0.4 Workload Comparison
One of the most visible differences between the workloads is the radical 

difference in execution time between them. This is caused by our use of the 
number of datapath cycles per packed MIPS instruction. Because of differences 
in the packing rates of MIPS instructions from workload to workload, there is a 
large difference in number of datapath cycles required by the pipelined memory 
apd normal Silicon pipelines, both of which use unpacked instruction formats, 
A higher packing rate for MIPS instructions implies more unpacked 
instructions must be executed. From Table 4.1, the MIPS packing rate is 37 
percent for the ten-benchmark workload, 64 percent for the arithmetic-heavy 
workload, 49 percent for the branch-heavy workload, and 20 percent for the 
load-heavy workload. Therefore, we expect the execution time in “number of
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datapath cycles per MIPS instruction” to be highest in the arithmetic-heavy 
workload for both the pipelined memory and normal Silicon pipelines.

In the arithmetic-heavy workload environment, we observe almost no 
performance dependency on either pbf or plf. This is due to the extremely low 
number of branches (6 percent) and loads (13 percent) in this benchmark.

For the branch-heavy workload environment we do observe a higher 
performance dependency on pbf as we expect. This is due to the high 
frequency of branches (32 percent) in this benchmark.

For the load-heavy workload environment we see an increased 
performance dependency on plf as also expected. This is again due to the high 
percentage of loads (36 percent) in this benchmark.

4.2.9.5 Summary
The most significant result of this experiment is the superb performance of 

the pipelined memory pipeline in all environments, even though its performance 
was hurt by the branch-heavy and load-heavy benchmarks. In the branch- 
heavy environment, even at a pbf of zero, the pipelined memory pipeline still 
performs best. The load-heavy benchmark is more punishing when the (3,6) 
memory configuration is used, but the pipelined memory pipeline is still best at 
values of plf above 0.4. In the arithmetic-heavy benchmark, the low frequency 
of branches and data loads allows the pipelined memory pipeline to excel even 
at very low values of pbf and plf.

Another important result concerns the tradeoff between the (3,6) and (6,3) 
memory configurations in implementations which cannot have both a fast 
instruction cache and a fast data cache. Allocating the slower memory to the 
instructions can be beneficial from a performance standpoint as long as the 
memory is pipelined or, perhaps, if multiple consecutive instructions are 
fetched. Because data memory accesses are generally not as regular as 
instruction memory accesses, the opportunity for exploiting pipelined ind 
interleaved data memory is limit ed. There are ex ceptions, of course, such as at 
procedure boundaries, and for applications with large amounts of regular data 
structures such as arrays. In general though, the same high degree of spatial 
locality which yields high instruction cache hit ratios can be exploited by 
pipelined or parallel access methods as well. If the less-regular data can be 
managed sufficiently well to provide good hit ratios at the faster, smaller data 
memory, then improved performance should result. This is the technique 
adopted by the designers of the Transputer, as they fetch four instructions into
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their single-chip processor concurrently, while advocating that the large on-chip 
memory be used for data storage [Whitb85|.

One final comment concerns the issue of instruction packing. As 
demonstrated by every pipeline performance graph which measured the effect 
of pih, the packed pipeline reduces the negative effect of low instruction cache 
hit ratios in multiple-level instruction memories. If a small instruction cache is 
to be used in a GaAs processor system, then instruction packing eertainly 
deserves strong consideration.

4.3 Instruction Format Experiment
We now describe an experiment undertaken in order to evaluate ten 

instruction formats in a GaAs processor environment. We begin by explaining 
our motivation for performing the experiment, and then we present our choice 
of formats for examination. We describe our evaluation criteria and discuss the 
general theory and implementation of our instruction format evaluation 
methodology. We then discuss the procedure and results of our experiment, 
presented as three sub-experiments. We finish with a discussion of our results.

4.3.1 Rationale
In the Silicon environment, the RISC philosophy has demonstrated the 

greater importance of good pipeline design over instruction compactness. 
However, as pointed out in Section 3.2.6, instruction formats which result in 
small program sizes can be more advantageous in GaAs implementations than 
in Silicon implementations. Again, the reasons for this include the smaller 
capacity of GaAs memory chips, as Well as the higher ratio of off-chip to on- 
chip delays for GaAs. We believe that it is desirable to determine what effect 
compact instruction formats can have in a GaAs processor environment.

4.3.2 Candidate Instruction Format Descriptions
Section 3.2.6 indicated that considerable redundancy usually exists jn the 

immediate field and address fields of Silicon instruction formats. The constants 
located in immediate fields are usually small, and the higher order bits in such 
cases convey no essential information to the processor. Most computations 
don’t require three addresses; therefore, three-address instruction formats often 
have address fields with no information content. We find redundancy
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elimination in these two particular areas to be deserving of further exploration 
in the context of a GaAs environment.

We choose to study ten instruction format candidates for incorporation 
into a GaAs processor. In addition to these, we will also include the MBPS 
format. The instruction fields for the ten candidate formats are shown in 
Table 4.2, while the relevant instruction fields for the MIPS format are 
described in Appendix B.

Each of our candidate instruction formats has its structure encoded into 
its name. For example, the format “28(3210)” contains 28 bits and may use 
either 3, 2, 1, or 0 registers. In general, when a lower number of registers are 
used, the immediate field may be increased accordingly. Since each format 
requires eight bits for its opcode, and register specifications require four bits, 
the immediate field lengths for the 28(3210) format are 8, 12, 16, and 20 bits, 
corresponding to 3, 2, 1, and 0 registers, respectively.

The candidate instruction formats are chosen on their ability to be directly 
compared, so that a variety of sub-experiments are possible.

Formats 28(3) and 24(2) allow a direct tradeoff study between the higher 
number of register fields of 28(3) versus the reduced total number of bits in 
21(2). :

Formats 28(3) and 24(32) allow a direct tradeoff study between the higher 
immediate field length of 28(3) versus the reduced total number of bits in 
24(32).

Comparing the performance of the formats in each of the pairs: 28(3) 
versus 28(3210), 24(2) versus 24(210), 24(32) versus 24(3210), 20(32) versus 
20(3210), and 16(21) versus 16(210), we can examine the result of shifting 
instruction bits from register fields to the immediate field, when a full set of 
register addresses is not required.

With formats 16(21) and 16(210), two instructions can be fetched 
concurrently using the same processor-memory bandwidth as a single 32-bit 
instruction. Therefore, packed versions of formats 16(21) and 16(210) can be 
compared to the packed MIPS format.

4.3.3 Evaluation Criteria
In this study of compact instruction formats there are three types of 

information which are of interest to us, and which will form our basis for 
Comparison



Format Opcode Regl Reg2 Reg3 Imml Imm2 Total
(# bits) (# bits) (# bits) (# bits) (# bits) (# bits) (# bits)

28(3) 8 4 4 4 8 28

28(3210) 8 4 4 4 8 2$
8 4 4 12 28
8 4 16 28
8 20 28

24(32) 8 4 4 4 4 24
8 4 4 4 4 24

24(3210) 8 4 4 4 4 24
8 4 4 4 4 24
8 ; 4 4 " ■ 8 24
8 4 12 24
8 16 24

24(2) 8 4 4 8 24

24(210) 8 4 4 8 24
8 4 12 24
8 16 24

20(32) 8 4 4 4 20
8 4 4 4 20

20(3210) 8 4 4 4 20
8 4 4 4 20
8 4 8 20
8 12 20

16(21) 8 4 4 16
8 4 4 16

16(210) 8 4 4 16
8 4 4 16
8 8 16
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First, we would like to know the magnitude of the effect of short 
instruction formats on the overall program size.

Second, we would also like to see how the use of short instructions affects 
the number of instructions which must be executed.

Finally, we are most interested in determining the effect of short 
instructions on execution time.

4.3.4 Evaluation Theory and Implementation
We are again using the simulation tools which were described in Section 

4.1. Our approach in this experiment is to utilize all the simulation tools in 
their normal way, except for the MIPS simulation program. We instead 
modify this program to account for instruction set differences between the 
MIPS format and our candidate formats. In this way we obtain a performance 
measure for each of our candidate instruction formats.

We have identified three areas where our candidate instruction formats 
differ from the MIPS instruction format, and these provide the basis for our 
simulation program changes.

First, the MIPS instruction format is packed; therefore, some MIPS 
instructions contain two operations. Since none of the candidate formats use 
packing, a packed MIPS instruction requires two candidate instructions

Second, some of the candidate formats only have two register address 
fields, while the MIPS operations within MIPS instructions can have two or 
three register addresses. Therefore, in some cases a single MIPS operation will 
require two candidate instructions.

Third, the candidate formats all have shorter immediate fields than the 
MIPS format. Because of this, in some cases two candidate instructions may 
be required in order to execute a single MIPS operation.

Because of these differences between the MIPS and candidate formats, 
there will be differences in their static instruction counts and dynamic 
instruction counts. The static instruction count is the number of instructions 
which are contained within a program; it is a measure of program size. The 
dynamic count is the number of instructions which are executed when a 
program is run; it is a measure of program execution time.

Because we know the instruction field sizes for the MBPS format and for 
all the candidate formats, it is relatively straightforward to determine, for each 
of the candidate formats, which MIPS instructions require multiple candidate
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instructions. We show in Appendix B the ten candidate instruction formats 
and the number of instructions which they require in order to execute MIPS 
instructions of given characteristics. Actually, Appendix B shows the 
“additional” number of candidate instructions which are needed.

A straightforward modification to the MIPS simulator is necessary in order 
to implement the mapping from each “MIPS instruction” to the “number of 
candidate instructions” shown in Appendix B. We do not change the normal 
execution of the MIPS program with our additions; we merely add code to 
implement our data gathering. Again, our changes to the simulator in this 
experiment are minor in comparison to the size of the simulation program, and 
the large total program size prohibits us from listing these changes here.

4.3.5 Static Instruction Count Subexperiment

4.3.5 J. Procedure
Obtaining the static instruction count is relatively straightforward. We 

add code to the section of the MIPS simulator which loads the MIPS 
instructions into memory. For each of the candidate formats, we examine each 
MIPS instruction as it is loaded and perform the analysis of Appendix B. After 
the loading is complete, the total number of candidate instructions is then 
output to a file.

4.3.5.2 Results
We show the results of this subexperiment in Figure 4.34. We show the 

program size in terms of instruction words and bytes. In this figure, the 
candidate instruction counts are normalized to 1000 MIPS instructions. These 
results are for the entire set* of benchmark programs described in Section 4.1, 
and each benchmark receives equal weight.

* The benchmark “towers” is not included in this experiment because of its excessive 
computational requirements, as it is currently written.
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4.3.8 Dynamic Instruction Count Subexperiment

4.3.6.1 Procedure
We can obtain the dynamic instruction count in much the same manner as 

we obtain the static instruction count. However, instead of adding code to 
examine MIPS instructions as they are loaded by the simulator, we add code to 
examine them as they are executed. The modified simulation program then 
outputs the total number of candidate instruction executions into a file.

4.3.5.2 Results
These results are shown in Figure 4.35. Again, the dynamic instruction 

count for each candidate format is normalized to 1000 MIPS instruction 
executions. These results are for the same set of benchmarks that were used in 
the previous subexperiment, where each benchmark again receives equal 
weight.

In Table 4.3 we show the breakdown of costs which cause the candidate 
pipelines to have higher dynamic instruction counts. The values in this table 
are the percentage increase in dynamic execution count, measured as a 
percentage of one MIPS instruction, caused by the associated cost. Most of the 
candidate formats show immediate costs of approximately ten percent; only the 
16-bit formats are significantly affected by address costs; and all the formats 
show a relatively high packing cost.

4.3.7 Execution Time Subexperiment
Determining the execution time for each of our candidate instruction 

formats is more difficult than calculating the above static and dynamic 
instruction counts. Once again, the benefits derived from compact instructions 
are attributable to higher cache hit rates, main memory hit rates, etc. 
Therefore, we must incorporate into our architectural model a cache simulator; 
however, the small size of our benchmark programs prohibits them from being 
used as a suitable workload model for any cache of reasonable size.
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G: format 20(32)

H: format 20(3210) 

I: format 16(21)

J: format 16(210) 

K: KBPS format



Format Immediate Address Packing
Cost* Cost* Cost*

28(3) 10 0 37

28(3210) 0 ■, 0 37

24(32) 11 0 37

24(3210) 7 0 . . 37

24(2) 10 .3 37

24(210) ... 7 . . 3 37

20(32) 11 0 37

20(3210) 8 0 37

16(21) 11 39 37

16(210) 11 39 37

* Measured as a percentage of one MIPS instruction.



4.3.7.1 Workload Model - Cache Model Discussion
To solve the mismatch between our workload model and the desired size 

of our cache model, we can either modify our workload model or modify our 
cache model. Our first choice is to modify our workload model; however, we 
are thwarted by the inability of our MIPS compiler, which is not of production 
quality [Linn85], to produce reliable code for large benchmarks. Therefore, we 
hitist ihbdify our cache model in order to match it with our workload ftibdek

We first determine the size of both an application workload that we wish 
to model and a cache that we wish to model. For our application workload we 
choose a size of 256K bytes. For our cache size we select a range of values: 4K, 
8K, 16K, and 32K bytes. We then observe that our benchmark programs 
typically require approximately 4K bytes of storage for the instructions that 
are actually used; many of the system procedures which are loaded are not 
actually used. We use this ratio of “real world” program size to “simulation 
world” program size of 64 to 1, and apply it to our “real world” cache sizes to 
determine our “simulation world” cache sizes of 64, 128, 256, and 512 bytes.

However, there is an undetermined degree of inaccuracy in this approach, 
as there are at least two problems with it.

First, a single instruction in our “simulation world” corresponds to 64 
instructions in the “real world.” However, the only way the execution of a 
single instruction in our “simulation world” cache can accurately model the 
execution of 64 instructions in a “real world” cache, is when the 64 “real 
world” instructions are stored in sequential memory locations. Since sequential 
execution leads to high hit ratios, and since the sequential execution of 64 
instructions is extremely rare, we can expect our “simulation world” cache to 
experience higher hit ratios than a “real world” cache.

Fortunately, the second cause of inaccuracy tends to balance the effect of 
the first problem. The locality of reference which leads to large cache hit ratios 
is largely the result of HLL programming constructs such as loops and 
recursive procedure calls. It’s observed that the sizes of these loops and 
recursive procedures are the same whether they’re in “real world” programs or 
our “simulation world” programs. Because our “simulation world” cache is 
only 1 /64th as large as the “real World” cache it’s trying to model, the 
“simulation world” cache will be less successful at capturing entire loops and 
recursive procedures than the “real world” cache. Therefore, we can also 
expect oUr “simulation world” cache to experience poorer hit ratios than a 
“real world” cache.
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4.3.7.2 Cache Simulator Description
Our cache simulation program was designed at Purdue. It is a simple yet 

flexible simulation tool. Among the cache parameters which ma,y be changed 
are the cache size, the block size, the access time for a hit, the access time for a 
miss, and the cache configuration: instruction only, data only, or combined.

The cache simulator implements a direct mapped placement policy. As 
discussed in Section 3.2.7.3, direct mapping is desirable for GaAs caches 
because of its low overhead and relatively good performance at small cache 
sizes.

The cache simulator uses a write-through policy, and a data write 
resulting in a cache miss causes replacement to occur; however, there is no time 
penalty associated with data cache write misses. As discussed in Section 
3 2.7.5, pipelined memory systems are advantageous in a GaAs processor 
system. A write-through policy and data cache write misses may cause no 
additional delay in a pipelined memory system.

We choose a block size of two words for our cache simulator. An early 
implementation of the simulation program did not allow a block size of one to 
be used, as we would have liked.

4.3.7.3 MIPS Simulator Modifications
We thterface the MIPS instruction simulator to the cache simulator by 

replacing the existing memory access operations with calls to the cache 
simulation procedure. Data memory accesses are implemented in a 
straightforward manner; however, because a single MIPS instruction may 
correspond to multiple candidate instructions, we require a mechanism to allow 
us to perform multiple calls to the cache simulator for a single MIPS 
instruction.

: Our solution is to use an array of records. Each element (record) of the 
array corresponds to a single MIPS instruction, and the array is indexed by the 
MIPS instruction address. Each record contains a count and an address. The 
count represents the number of candidate instructions required by this MIPS 
instruction. The address represents the candidate instruction’s address and is 
the beginning address of the set of candidate instructions representing this 
MIPS instruction. The candidate instruction address at MIPS instruction i 
equals the sum of the counts of the previous i-1 MIPS instructions.
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The above array is initialized when the MIPS program is loaded, again 
using the analysis of Appendix B. During simulation, when a MIPS instruction 
fetch is executed, the address from the appropriate record of the array is used 
to exercise the cache simulator. If the count from the record is greater than 
one, then the address is repeatedly incremented and sent to the cache simulator 
until "count” accesses have been simulated. A separate variable is used in 
bMeir to maintain the number of instruction cycles lost due to both instruction 
and data memory accesses. Upon completion of the simulation, this variable is 
written to a file. Also, the MIPS instruction fetch operation, which Was 
replaced by the call to the cache simulator, is implemented inside the cache 
simulation procedure independent of the just described activity.

4.3.7.4 Procedure and Results

4.3.7.4.1 Procedure
We observed in the pipeline experiment the effect that instruction pipeline 

differences can have on performance. Therefore, for a fair instruction format 
comparison, we must select an instruction pipeline to be used by all the 
candidate formats. We find it most useful for this experiment to use the 
pipeline indicated by Figure 3.2. Therefore, one instruction is fetched for every 
three datapath cycles. For this subexperiment then, a cache hit results in a 
delay of three cycles and a miss results in a six cycle delay.

There are two parts to this subexperiment. First, we run the MIPS 
simulator and cache simulator to obtain the execution time for each instruction 
format as a function of cache size. Then we use this information in order to 
obtain the execution time for each cache size as a function of instruction 
format.

4.S.7.4.2 Results
In Figure 4.36 we show the results of the first subexperiment. This figure 

plots execution time versus cache size for three cache configurations: 
instruction cache only, data cache only, and combined instruction and data 
cache. In this figure, the execution time has been normalized to the number of 
instruction cycles necessary to execute 1000 MIPS instructions in its Silicon 
environment and with no cache miss penalties.
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We only present one plot because the results for the other candidate 
formats are nearly identical to this one.

In Figures 4.37 and 4.38 we show the second set of plots. These figures 
show execution time versus instruction format for a particular cache size (64 
and 512 bytes) and cache configuration (instruction-only and data-only). 
Again, the execution times have been normalized to the number of instruction 
cycles necessary to execute 1000 MIPS instructions in its Silicon environment 
and with no cache miss penalties.

4.3.7.5 Discussion

4.3.7.5.1 The Effect of Instruction Format on Instruction Counts
From Figure 4.34, the number of words required to implement the 

benchmark programs is seen to increase as the format lengths are decreased, as 
expected. All of the formats have static instruction counts within 50 percent of 
the instruction count of the MIPS format except for the two 16-bit formats: 
16(21) and 16(210). These 16-bit formats have instruction counts almost 100 
percent greater than the MIPS instruction count. Clearly, the transition from 
a 20-bit format to a 16-bit format can be damaging.

The number of bytes required to implement the benchmark programs, or 
equivalently, the program size, generally shows a decline as the format length is 
decreased, until the 16-bit formats are reached. The 20-bit formats generate 
the most compact programs, but the 16-bit formats achieve code sizes smaller 
than the MIPS format as well.

From Figure 4.35, the dynamic instruction count is seen to follow the 
same trend as the static instruction count. The 16-bit formats are again 
severely penalized. Tables 4.2 and 4.3 can help explain this phenomena. From 
Table 4.2 we observe that the 8-bit opcode requirement only leaves eight bits 
for addressing, enough for two addresses. The extremely large address cost for 
these two formats, indicated in Table 4.3, allows us to conclude that two 
addresses are very frequently not enough. From Table 4.3 we see that three 
addresses are required 28 percent of the time (39/137). This is much higher 
than we anticipated, in light of the 13 percent figure for 3-address assignment 
statements presented in [Myers82].
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4.3.7.5.2 The Effect of Cache Size on Execution Time
From Figures 4.36 and 4.37 we can observe some general trends. For 

these formats, execution time generally decreases as cache size is increased. We 
obviously expect this; however, the small memory capacity at which the 
execution time decrease levels off clearly demonstrates the smallness of our 
benchmarks.

We also observe that a data cache alone does a much poorer job than 
either an instruction cache alone or a combined cache. The reason for this is 
the much higher frequency of instruction fetches than data loads in an 
environment which penalizes a non-cache access three cycles. We see a small 
advantage for the combined cache at increasing cache sizes but no significant 
difference between the performance of the instruction cache and the combined 

■ cache.

4.3.7.5.S The Effect of Fewer Register Fields
Looking back at Table 4.2 we observe that the only difference between 

instructions formats 28(3) and 24(2) is the lower total number of bits in format 
24(2) due to the removal of one register field. We now discuss the relative 
performance of these two instruction formats.

Figure 4.34 shows that the total program size for format 24(2) is 
approximately ten percent lower than the program size for format 28(3). From 
Figure 4.35, we see that the number of format 24(2) instructions executed is 
only a few percent higher than the number of format 28(3) instructions 
executed.

The execution times for these two instruction formats shown in Figures 
4.36 and 4.37 indicate a generally slight inferior performance by the 24(2) 
instruction format. In memory configurations consisting of an instruction 
cache, the 24(2) format execution time is generally a few percent higher 
(approaching five percent) than the 28(3) execution time. In the data-cache- 
only configurations where we expect the relative format performances to match 
their relative number of instruction executions, the performance of both 
formats is nearly the same.

This experiment then indicates a slight degradation in performance in 
reducing instruction format size by eliminating one register field.



4.3.7.5.4 The Effect of Smaller Immediate Field Lengths
Again looking at Table 4.2, we observe that the only difference between 

instruction formats 28(3) and 24(32) is the lower total number of bits in format 
24(32) due to its smaller immediate field. We now discuss the relative 
performance of these two instruction formats.

Figure 4.34 shows that the program size for format 24(32) is nearly ten 
percent lower than the program size for format 28(3). Again, Figure 4.35 
shows the relative number of instructions executed, where it is seen that format 
24(32) requires slightly more instruction executions than format 28(3).

The execution times shown in Figures 4.36 and 4.37 show little difference 
in performance between these two instruction formats, although the slight 
differences that do appear favor format 28(3). In general, the relative 
performance of these two instruction formats follows their relative number of 
instructions executed.

In this experiment then, we observe that reducing instruction format size 
by reducing immediate field size has very little impact on performance.

4.3.7.5.5 The Effect of Variable Immediate Field Sizes
From Table 4.2, the difference between instruction formats 28(3)- 24(32), 

24(2), 20(32), 16(21) and 28(3210), 24(3210), 24(210), 20(3210), 16(210), 
respectively, is the greater flexibility in immediate field size allowed in the 
second set of formats. The formats in the first set maintain a rigid immediate 
field, while formats in the second set increase their immediate field size to 
consume all the bits which are not needed by register addresses We now 
discuss the relative performance of these two methods of implementing 
immediate fields.

From Figure 4.34 we observe that the program sizes of the variable- 
immediate-field formats are smaller, with the differences ranging from 
approximately ten percent in formats 28(3210) and 24(3210) to almost no 
change in format 16(210). The same trend is evident in the number of 
instruction executions shown in Figure 4.35. We can explain the lower 
improvement of the shorter instruction formats by viewing again Table 4.2, 
where we observe that the shorter formats just don’t have enough bits to 
substantially lengthen their immediate fields.

The execution times shown in Figures 4.36 and 4.37 consistently show that 
the formats with variable length immediate fields perform better than the



formats' with, fixed length immediate fields by a small margin.
In this experiment we have observed that varying immediate field lengths 

to use the instruction bits not needed by register addresses does indeed lead to 
smaller program size, fewer instruction executions, and lower execution time.

4.3.7.S.6 The Use of Compact Formats for Instruction Paekiiig
Instruction formats 16(21) and 16(210) are both only one half as long as a 

single MIPS instruction; therefore, two such instructions may be fetched in 
parallel and require no more processor-memory bandwidth than required by the 
MIPS format. We find it interesting to examine the performance of such a 
form of instruction packing.

■ Froitt Figure 4.34 we observe that the program size of both 16-bit formats 
is nearly ten percent lower than the MIPS format. However, Figure 4.35 shows 
that the number of 16-bit instructions executed is nearly 90 percent higher.

If two instructions of the 16(21) format are concatenated to form a single 
32-bit packed instruction, then this compact, packed instruction format would 
actually require five percent fewer instruction executions than the MIPS 
format. This is also true for the 16(210) format. It is apparent that this type 
of packed format is more successful at eliminating redundancy than is the 
MIPS format.

From Table 4.2 we see that much of the performance degradation in the 
16(21) and 16(210) formats is due to addressing cost. Again, this cost results 
from the 2-address limit imposed by the short instruction length and 8-bit 
opcode. If 4-bit opcodes were to be used for some frequent operations then the 
number of instruction executions could be significantly reduced at the cost of 
additional decoding and control logic. Alternatively, 18-bit or 20-bit operations 
may instead be packed to provide much better performance with reasonable 
instruction sizes. If two 20(3210)-format instructions were packed, Figure 4.34 
indicates that approximately 30 percent fewer of these 40-bit instructions 
would be required than the 32-bit MIPS instructions.

It’s quite apparent that the successful elimination of redundancy from 
instructions makes instruction packing increasingly attractive. In an 
environment with long effective off-chip memory latency, the use of compact 
formats for instruction packing is an attractive approach.



4.3.7.5.7 Summary
In general, this experiment has shown that reducing redundancy in 

immediate fields and address fields of instructions leads to programs which are 
more compact; programs which don’t necessarily execute faster, and may, in 
fact, run slower; and instruction formats which may be concatenated to form 
packed formats which can be expected to perform better than the packed 
MIPS format, using our definition of performance - useful operations per 
datapath cycle.

The above conclusions require qualification, of course. All of our system 
implementation assumptions directly affect our results. These include our 
particular choice of pipeline, our choice of a two-level memory hierarchy, our 
memory access to datapath delay ratio choices, etc. In addition to these, the
characteristics of our simulation system also affect our results.

The availability of the Stanford software, which was provided to us by 
RCA, enabled us to conduct this experiment. However, this simulation system 
has limitations which influenced the results we just presented.

One problem which is somewhat significant is the use of the MIPS 
compiler on non-MIPS architectures. Any architecture designed to execute 
high level languages will only perform to its potential if the HLL compiler 
knows the characteristics of the architecture. One example illustrates this 
problem. The MIPS system routines (for multiply, etc.), consisting of both 
instructions and data, are stored in lower memory, and the MIPS compiler 
makes liberal use of the long immediate field available in MIPS load and store 
instructions to directly access data at these lower addresses. The frequent use 
of these long immediates penalizes our candidate instruction formats which 
have short immediate fields. However, a compiler for our candidate formats 
would know the immediate field limitations and utilize other addressing modes, 
such as “base + displacement.” Therefore, the immediate cost for the shorter 
formats is likely overstated. However, the immediate cost values shown in 
Table 4.3 are not excessively large, so we suspect that only a minor variation 
from reality exists here.

A more serious problem, and one which introduces an error of unknown 
magnitude, is the use of small benchmarks as the workload for our cache 
simulator; Since our small benchmarks do not represent a workload that can 
drive a realistically-sized cache simulator, we were forced to rely on a technique 
for circumventing this problem, described in Section 4.3.7.1, which is an 
unproven one. Since any execution time improvement attributed to compact 
instruction formats is due to increased memory hit ratios, our unproven cache



simulation technique directly affects our execution time results.
Therefore, we can more comfortably state that our redundancy reduction 

has produced compact programs, and provided the basis for a packed 
instruction format which is expected to perform better than the MIPS format 
(by our definition of performance). Whether or not these compact instruction 
formats lead to faster or slower execution time than less compact formats is 
still undetermined, although it appears that there is no significant difference.
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CHAPTER V
SUMMARY AND RECOMMENDATIONS

8.1 Summary
We have presented a computer system design methodology which we 

believe is advantageous for GaAs technology. We advocate a three-stage 
approach: (1) Study GaAs technology and packaging technology in order to 
determine their characteristics relevant for computer design, (2) Clearly define 
the effect that GaAs has on computer design, determine appropriate general 
design strategies, and suggest promising design solutions. (3) Perform 
experiments to establish the validity of earlier assumptions, and to provide an 
empirical foundation for further research.

5.2 Recommendations
Advances in both GaAs circuit technology and packaging technology will 

require a constant reevaluation of their impact on computer design. New 
design approaches may deserve consideration when new developments occur in 
GaAs and packaging technology to significantly alter their capabilities.

The most reliable techniques for evaluating the performance of GaAs 
computer systems are those based upon empirical data. A rational computer 
system design strategy demands that GaAs computer design decisions be based 
upon empirical data obtained either from simulation, or more preferably from 
actual GaAs implementations.
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Appendix A: Analytical Pipeline Performance Model Derivation

We can derive an equation to determine the execution time for each of our 
candidate pipelines for a given set of benchmarks. Again, we have selected 
three instruction pipelines and three memory configurations for this study, 
yielding nine candidate pipeline configurations. These aye the normal Silicon 
pipeline in the (3,3), (3,6), and (6,3) memory configurations, the packed pipeline 
in the (3,3), (3,6), and (6,3) memory configurations, and the pipelined memory 
pipeline in the (3,3), (3,6), and (6,3) memory configurations.

Before we begin the derivation of the pipeline performance equations, it is 
helpful to better understand the need for removing some MIPS compiler effects 
from our benchmark programs.

A.l Undoing the Effects of the Stanford MIPS Compiler
In our upcoming analysis we vary the parameters pbf and plf to determine 

their effect on performance. Whenever our value for pbf (plf) is not one, we are 
in effect simulating the effect of NOOPs following branch (load) instructions. 
However, the MIPS compiler also performed branch and load fillin, and when 
unsuccessful, inserted NOOPs behind branch and load instructions. Clearly, 
before we can accurately simulate the effects of particular values of pbf and plf, 
we must determine the number of NOOPs already introduced by the MIPS 
compiler, and remove this effect from our calculations.

There are two approaches for removing the compiler’s branch fillin and 
load fillin effects. We now discuss these techniques in the context of branches, 
but this discussion is equally applicable to data loads.

The first approach that we can take is to effectively remove all the 
NOOPs introduced by the MIPS compiler from the benchmark programs by 
subtracting a value from our calculated execution time. This value which we 
subtract will be proportional to “nb * (1 - pbfO),” which is the total number of 
NOOPs due to unfilled branch fillin slots. After eliminating these NOOPs, we 
can then add the effect of our simulated NOOPs to the calculated execution 
time. The value that we add is proportional to “nb * (1 - pbf).”



The second way to approach this problem is to first unfill all the branch 
delay fillin slots by adding a value to our calculated execution time. This 
action can be thought of as inserting a NOOP between a branch operation and 
its filled slot, for all the successfully filled slots. The execution time to be 
added is proportional to “nb * pbfO,” which is the total number of successfully 
filled branch fillin slots. This approach is attractive because for our GaAs 
processor, we will have branch delays greater than one. This creation of 
unfilled slots is easily extended to any branch delay. For example, if we want 
to create two more slots (for a total branch delay of three), we then add an 
additional time to our calculated execution time proportional to “nb * 2.” 
After unfilling all the fillin slots, we can then perform our simulated fillin on 
these slots by subtracting from the calculated time a value proportional to “nb 
* bd * pbf,” where bd is the branch delay of our candidate GaAs pipeline. It is 
this second approach which we use in our analysis to follow.

A.2 Execution Time Calculations
Once again, the parameters which are obtained from the benchmark 

programs:

ni: Total number of instructions.
nl: Total number of loads.
nb: Total number of branches.
np: Total number of packed instructions.
pbfO; Probability of branch fill achieved by the MIPS compiler,
plfO:, Probability of load fill achieved by the MIPS compiler.

The parameters derivable from the memory configuration: 

nih: Number of cycles required for an instruction cache hit
nim: Number of cycles required for an instruction cache miss,
ndh: Number of cycles required for a data cache hit. 
ndm: Number of cycles required for a data cache miss

The parameters which are to be varied in the pipeline experiment, 
pih: Probability of instruction cache hit.
pdh: Probability of data cache hit. 
pbf: Probability of branch fill,
plf: Probability of load fill.
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A.2.1 Assumptions
(1) In cases where there are only one or two operations to be executed and 

three or more datapath cycles available to execute them, the operations 
can be moved around among the Slots. This will improve performance/for 
example when a prior data load doesn’t finish before the first cycle of an 
instruction but does finish before the second, etc. An operation requiring 
the loaded value can be executed in the second slot instead of the first.

(2) For load fills we only perform load fillin on the assumption of a data cache 
hit. This means that on a data cache miss the processor must halt, and 
the load latency introduced by the cache miss must be absorbed.

A.2.2 Normal Silicon (3,3)

nih = 3, nim = 6, ndh — 3, ndm = 6

A.2.2.1 Instruction fetches:

delay = (number of instr. fetches)
* [(delay for cache hit) * (prob. of cache hit)
+ (delay for cache miss) * (prob. of cache miss)]
= ni * [nih * pih + nim * (1 - pih)]
= mi * (6 - 3 * pih) (A.1)

A.2.2.2 Data loads:
For every load, we must first unfill the fillin slot, then fill it back up again 

using our simulation plf. The cost of an unfilled slot is the fetch of one NOOP.

delay = (number of data loads)
* [(cost of instr. fetch) * (MIPS unfill)
- (cost of instr. fetch) * (GaAs processor fill)]
= nl * [(6 - 3 * pih) * plfO - (6 - 3 * pih) * plf]
== nl * (6 - 3 * pih) * (plfO - plf) (A.2)
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A.2.2.3 Branches:
For every branch, we must first unfill the fillin slot, then fill it back up 

again using our simulation pbf. The cost of an unfilled slot is the fetch of one 
NOOP.

delay = (number of branches)
* [(cost of instr. fetch) * (MIPS unfill)
- (cost of instr. fetch) * (GaAs processor fill)]
= nb * [(6 - 3 * pih) * pbfO - (6 - 3.* pih) * pbf]
= nb * (6 - 3 * pih) * (pbfO - pbf) (A.3)

A.2.2.4 Packed instructions:
For every packed MIPS instruction we must unpack it. The cost of a 

packed MIPS instruction is one instruction fetch. Note that the second 
operation (the packed piece) of a MIPS instruction is never a data load or 
branch - see Appendix B.

delay — (number of packs) * (cost of instr. fetch)
= np * (6 - 3 * pih) (A.4)

A.2.3 Normal Silicon (3,6) 

nih = 3,"nim = 6, ndh = 6, ndm =6 

A.2.3.1 Instruction fetches: [see (A.1)] 

delay == ni * (6 - 3 * pih)

A.2V3.2 Data loads: [see (A.2)]

delay — nl * (6 - 3 * pih) * (plfO - plf)

A.2.3.3 Branches: [see (A.3)]

delay - nb * (6 - 3 * pih) * (pbfO - pbf)



A.2.3.4 Packed instructions: [see (A.4)]

delay = np * (6 - 3 * pih)

A.2.4 Normal Silicon (6,3)

nih — 6, nim — 6, ndh = 3, ndm = 6

A.2.4.1 Instruction fetches:
We always require nih cycles.

delay = ni * nih
= ni * 6 (A.5)

A.2.4.2 Data loads:
We need to first unfill the fillin slot, and then fill it back up with 

probability one. Because of the long instruction fetch time the load delay is 0. 
The cost of an unfilled slot is one instruction fetch.

delay = (number of data loads)
* [(cost of instr. fetch) * (MIPS unfill)
- (cost of instr. fetch) * (GaAs processor fill)]
= nl * (6 * plfO - 6*1)
= nl* 6 * (plfO - 1) (A.6)

A.2.4.3 Branches:

delay = (number of branches)
* [(cost of instr. fetch) * (MIPS unfill)
- (cost of instr. fetch) * (GaAs processor fill)]
= nb * (6 * pbfO - 6 * pbf)
- nb * 6 * (pbfO - pbf) (A.7)

A.2.4.4 Packed instructions:

delay = (number of packs) * (cost of instr. fetch)
= np * 6 (A.8)
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A.2.5 Packed (3,3) 

nih = 3, nim — 6, ndh = 3, ndm = 6 

A.2.5.1 Instruction fetches? [see (A.1)] 

delay == ni * (6 - 3 * pih)

A.2.5.2 Data loads: [see (A.2)]

delay = nl * (6 - 3 * pih) * (plfO - plf)

A.2.5.3 Branches: [see (A.3)J

delay - hb * (6 - 3 * pih) * (pbfO - pbf)

A.2.6 Packed (3,6) 

nih = 3, nim = 6, ndh = 6, ndm - 6 

A.2.6.1 Instruction fetches: [see (A.1)] 

delay - ni * (6 - 3 * pih)

A.2.6.2 Data loads: [see (A.2)]

delay - nl * (6 - 3 * pih) * (plfO - plf)

A.2,6.3 Branches: [see (A.3)]

delay = nb * (6 - 3 * pih) * (pbfO - pbf)

AL2.7 Packed (6,3)

nih = 6, nim = 6, ndh — 3, ndm = 6
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A.2.7.1 Instruction fetches: [see (A.5)] 

delay = ni * 6 

A.2.7.2 Data loads: [see (A.6)] 

delay — nl * 8 * (plfO - 1)

A.2.7.3 Branches: [see (A.7)] 

delay = nb * 6 * (pbfO - pbf)

A.2.8 Pipelined Memory (3,3)

nih = 1, nim = 4, ndh = 3, ndm = 6

A.2.8.1 Instruction fetches:

delay = (number of instr. fetches)
* [(delay for cache hit) * (prob. of cache hit)
+ (delay for cache miss) * (prob. of cache miss)]
= ni * [nih * pih + nim * (1 - pih)]
= ni * (4 - 3 * pih) (A.9)

A.2.8.2 Data loads:
There are two causes of unpleasantness here: load fillins and data cache 

misses, but their effects are independent. For a data cache miss we must 
always add an additional three cycles. For the fillin problem we must first 
undo the MIPS fillin (which is for one slot only), then create two new unfilled 
slots in order to achieve the desired load delay of three. Finally, we must 
perform the simulation fillin on all three slots. The cost of an unfilled slot is 
one instruction fetch.
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delay = (number of data loads)
* [(data cache miss delay) * (prob. of data cache miss)
+ (cost of instr. fetch) * (MIPS unfill)
+ (cost of instr. fetch) * (two new unfilled slots)
- (cost of instr. fetch) * (GaAs processor fill)]

' = nl
* [3 * (1 - pdh)
+ (4 - 3 * pih) * plfO
+ (4 - 3 * pih) * 2
- (4 ~ 3 * pih) * 3 * plf]
- nl * [3 * (1 - pdh)

+ (4 - 3 * pih) * (2 +plfO - 3 * plf)] (A.10)

A.2.8.3 Branches:
We need to first undo the MIPS fillin, then create two new unfilled slots in 

order to achieve the desired branch delay of three. Finally, we perform the 
simulation fillin on all three slots. The cost of an unfilled slot is one instruction 
fetch.

delay = (number of branches)
* [(cost of instr. fetch) * (MIPS unfill)
+ (cost of instr. fetch) * (two new unfilled slots)

- (cost of instr. fetch) * (GaAs processor fill)]
= nb
* [(4 - 3 * pih) * pbfO
+ (4 - 3 * pih) * 2
- (4 - 3 * pih) * 3 * pbf]
= nb * (4 - 3 * pih) * (2 +pbfO - 3 * pbf) (A ll)

A.2.8.4 Packed instructions:

delay =■ (number of packs) * (cost of instr. fetch)
= np * (4 - 3 * pih) (A. 12)

A.2.9 Pipelined Memory (3,8)

nih - 1, him = 4, ndh - 6, ndm = 6
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A.2.6.1 Instruction fetches: [see (A.9)] 

delay = ni * (4 - 3 * pih)

A.2.0.2 Data loads:
We need to first undo the MIPS fillin and create five new unfilled slots. 

Then we perform simulation fillin on all six slots. The cost of an unfilled slot is 
one instruction fetch.

delay p (number of loads)
* [(cost of instr. fetch) * (SU-MIPS unfill)
+ (cost of instr. fetch) * (five new unfilled slots)
- (cost of instr. fetch) * (GaAs processor fillin)]
= nl
* [(4 - 3 * pih) * plfO
+ (4 - 3 * pih) * 5
- (4 - 3 * pih) * 6 * plf]
= nl * (4 - 3 * pih) * (5 -bplfO - 6 * plf) (A.13)

A.2.6.3 Branches: [see (A. 11)]

delay ■= nb * (4 - 3 * pih) * (2 +pbfO - 3 * pbf)

A.2.9.4 Packed instructions: [see (A. 12)] 

delay = np * (4 - 3 * pih)

A.2.10 Pipelined Memory (6,3)

nih = 1, nim = 1, ndh = 3, ndm — 6

A.2.10.1 Instruction fetches:
We always require one cycle.

delay =? ni * 1 (A.14)



A.2.10.2 Data loads:

delay = (number of data loads)
* [(data cache miss delay) * (prob. of data cache miss)
+ (cost of instr. fetch) * (MIPS unfill)
+ (cost of instr. fetch) * (two new unfilled slots)

(cost of instr. fetch) * (GaAs processor fill)]
= nl
* [3 * (1 - pdh)
+ 1 * plfO
+ 1*2
- 1*3* plf]
= nl * (5 + plfO - 3 * plf - 3 * pdh)

A.2.10.3 Branches:
We need to first undo the MIPS fillin and create five new unfilled slots. 

Then we perform simulation fillin on all six slots. The cost of and unfilled slot 
is one instruction fetch.

delay — (number of branches)
* [(cost of instr. fetch) * (MIPS unfill)
+ (cost of instr. fetch) * (five new unfilled slots)
- (cost of instr. fetch) * (GaAs processor fillin)]

; — nb
* (1 * pbfO

. + 1*5
- 1 * 6 * pbf) 

nb * (5 + pbfiO - 6> pbf)

A.2.10.4 Packed instructions:
delay = (number of packs) * (cost of instr. fetch)

= np * 1
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Appendix B: Determination of Candidate Instruction Format Costs

In this appendix we present the costs associated with each candidate
instruction format, and describe our methodology for determining these Costs.

:r--Pnc,elngain, the three costs which a candidate format may experience are;
(1) Packing cost. Some MIPS instructions are Successfully packed and hence, 

contain two operations. None of the candidate formats can execute two 
operations from a single instruction fetch.

(2) Address cost. MIPS instructions contain operations with as many as three 
address specifications. Some of the candidate formats have only two 
register address fields, while some have only two address fields, one of 
which may be an immediate field.

(3) Immediate cost. MIPS instructions have immediate fields containing as 
many as 24 bits. None of the candidate formats have immediate fields 
that long, and most immediate fields are much shorter.

B.l Cost Determination
Packing costs are determined simply by examining MIPS instructions 

which are packable, and determining if the packed operation is a NOOP or 
not. The cost penalty is one instruction if the packed operation is not a 
NOOP. Because only 12 bits of a MIPS instruction are allocated to the packed 
operation, it must be a 2-address ALU operation. For our candidate formats, 
the packed operation cannot yield an address or immediate cost.

Address costs are determined by examining the address (register or 
immediate) needs of MIPS instructions and determining if the candidate format 
has enough of the right kind of address fields. The cost penalty is one 
instruction if the candidate format lacks the necessary fields.

Immediate costs are determined by examining the immediate values of 
MIPS instructions and determining if the candidate format has enough bits to 
represent them. The cost penalty is one instruction if the candidate format 
lacks the necessary immediate field length. We assume that the entire second
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word may be used for immediate if necessary. For some candidate formats, 
this yields a maximum immediate field size of 20 bits while some MIPS 
instructions contain 24-bit immediate fields. However, the MIPS 24-bit 
immediate fields are mainly used for addressing, and since the MIPS 
instructions and data are all loaded into memory addresses below 32,000, we 
should not see immediate fields of over 20 bits for addressing in this study. 
The only other MIPS instruction which uses over 20 bits of immediate field is 
the “load immediate” instruction; but we found this instruction to represent 
well below one percent of all instruction executions, so we can safely ignore it. 
Therefore, a maximum penalty of one is sufficient.

B.2 Description of the MIPS Instruction Set
The MIPS instruction set contains 28 instructions which we now briefly

describe. We define the abbreviations that are used in Section B.3 and list the
characteristics of the relevant fields of the MIPS instructions. This information
is taken directly from a Stanford Technical Note [GiGrH83],
(AA) ALU3 + ALU2. Contains two registers, one register/4-bit

immediate field, and one packed operation.
(BC) Branch Conditionally. Contains one register, one register/4-bit

immediate field, one 4-bit condition field, and one 12-bit immediate
" V-'-V-field,-;

(BU) Branch Unconditionally. Contains one 24-bit immediate field.
(JB) Jump Based. Contains one register and one 20-bit immediate field.
(J®I)„ Jump Based Indirect. Contains one register and one 20-bit

immediate field.
(JBIA) Jump Based Indirect + ALU2. Contains one register, pne 8-bit 

immediate field, and one packed operation.
(JD) Jump Direct. Contains one 24-bit immediate field.
(JI) Jump Indirect. Contains one 24-bit immediate field.
(JISS) Jump Indirect and Setup Su-register. Contains one 24-bit immediate 

field.
(LB) Load Based. Contains one register and one 20-bit immediate field
(LBA) Load Based + ALU2. Contains one register, one 8-bit immediate

field, and one packed operation.



(LBSA)

Load Base-Indexed + ALU2. Contains three registers and one 
packed operation.
Load Base-Shifted + ALU2. Contains two registers, one 4-bit 
immediate field, and one packed operation.
Load Direct. Contains one register and one 24-bit immediate field. 
Load Immediate. Contains one register and one 24-bit immediate

•fLSDl%,v'-';L''6adS Direct. Contains one 244>it immediate fields
(SPC) SavePC. Contains one 24-bit immediate field.
(SC) Set Conditionally. Contains one register, one register/4-bit

immediate field, and one 4-bit condition field.
(SB) Store Based. Contains two registers and one 20-bit immediate field.
(SBA) Store Based + ALU2. Contains two registers, one 8-bit immediate 

field, and one packed operation.
(SBIA) Store Base-Indexed + ALU2. Contains three registers and one 

packed operation.
(SBSA) Store Base-Shifted + ALU2. Contains two registers, one 4-bit

immediate field, and one packed operation.
(SD) Store Direct. Contains one register and one 24-bit immediate field.
(SPCB) StorePC Based. Contains one register and one 20-bit immediate 

field. '■;■■■■
(SPCBA) StorePC Based + ALU2. Contains one register, one 8-bit immediate 

field, and one packed operation.
(SPCD) StorePC Direct. Contains one 24-bit immediate field.
(SSUD) StoreSU Direct. Contains one 24-bit immediate field.
(TC) Trap Conditionally. Contains one register, one register/4-bit 

immediate field, one 4-bit condition field, and one 11-bit code field.

B.3 Presentation of Costs
In Table 4.2 we listed the fields for the candidate instruction formats. 

Based upon this table and Sections B.l and B.2 above, we can derive the costs 
for each candidate format. We list these costs in Tables B.l - B.10. We use 
several shorthand notations:
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(1) We say “ + 1 over x” to indicate a cost of one instruction if a MIPS im
mediate value requiring more than x bits is encountered.

(2) We say “ + 1 if packed” to indicate a cost of one instruction if a packed 
MIPS instruction is encountered.

(3) We say “ +1 if xreg” to indicate a cost of one instruction if a MIPS 
instruction requires x or more distinct registers.

(4) We say “ + 1 if xaddr” to indicate a cost of one instruction if a MPS 
instruction requires x or more distinct addresses (register or immediate 
operands).

(5) We say “+1” to indicate a cost of one instruction always.



MIPS
Instr. Cost

MIPS
Instr. . COSt

AA ' + 1 if packed LI + 1 over 8
BC + 1 LSD + 1 over 8

+1 over 8 SPC + 1 over 8
BU +1 over 8 SC +0
JB + 1 over 8 SB + 1 over 8
JBI + 1 over 8 SBA + 1 if packed
JBIA + 1 if packed SBIA + 1 if packed
JD +1 over 8 SBSA + 1 if packed
JI + 1 over 8 SD + 1 over 8
JISS +1 over 8 SPCB +1 over 8
LB + 1 over 8 SPCBA + 1 if packed
LBA + 1 if packed SPCD + 1 over 8
LBIA + 1 if packed SSUD +1 over 8
LBSA + 1 if packed TC + 1
LD + 1 over 8 + 1 over 8
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Table B.2 Costs for Candidate Format 28(3210).

AA +1 if packed
BC + 1
BU + 1 over 20
JB + 1 over 16
JBI + 1 over 16
JBIA + 1 if packed
JD + 1 over 20
JI + 1 over 20
JISS +1 over 20
LB + 1 over 12
LBA + 1 if packed
LBIA + 1 if packed
LBSA + 1 if packed
LD + 1 over 16

LI + 1 over 16
LSD + 1 over 20
SPC + 1 over 20
SC +0
SB +1 over 12
SBA + 1 if packed
SBIA ■ +1 if packed
SBSA +1 if packed
SD + 1 over 16
SPCB + 1 over 16
SPCBA +1 if packed
SPCD + 1 over 20
SSUD + 1 over 20
TC + 1

MIPS MIPS
Instr. Cost Instr. Cost



AA + 1 if packed
BC + 1

+ 1 over 4
BU + 1 over 4
JB +1 over 4
JBI + 1 over 4
JBIA + 1 if over 4 

+ 1 if packed
JD + 1 over 4
JI + 1 over 4
JISS + 1 over 4
LB + 1 over 4
LBA + 1 over 4 

+ 1 if packed
LBIA + 1 if packed
LBSA + 1 if packed
LD +1 over 4

LI + 1 over 4
LSD + 1 oyer 4
SPC + 1 over 4
SC +0
SB + 1 over 4
SBA +1 over 4 

+ 1 if packed
SBIA +1 if packed
SBSA + 1 if packed
SD + 1 over 4
SPCB 4*1 over 4
SPCBA +1 over 4 

+ 1 if packed
SPCD + 1 over 4
SSUD + 1 over 4
TC + 1

+1 over 4

MIPS MIPS
Instr. Cost Instr. Cost
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Table B.4 Costs for Candidate Format 24(3210).

MIPS
Instr. Cost

MIPS
Instr. Cost

AA + 1 if packed LI + 1 over 12
BC + 1 LSD + 1 over 16
BU +1 over 16 SPC + 1 over 16
JB +1 over 12 SC +0
JBI +1 over 12 SB + 1 over 8
JBIA + 1 if packed SBA + 1 if packed
JD + 1 over 16 SBIA + 1 if packed
JI +1 over 16 SBSA + 1 if packed
JISS + 1 over 16 SD +1 over 12
LB + 1 over 8 SPCB + 1 over 12
LBA + 1 if packed SPCBA + 1 if packed
LBIA + 1 if packed SPCD + 1 over 16
LBSA + 1 if packed SSUD + 1 over 16
LD +1 over 12 TC + 1
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Table B.5 Costs for Candidate Format 24(2).

MIPS
Instr. Cost

MIPS
Instr. Cost

AA +1 if 3reg LI + 1 over 8
+1 if packed LSD + 1 over 8

BC + 1 SPC + 1 over 8
+1 over 8 sc +0

BU + 1 over 8 SB + 1 over 8
JB + 1 over 8 SBA + 1 if packed
JBI +1 over 8 SBIA + 1 if 3reg
JBIA + 1 if packed + 1 if packed
JD + 1 over 8 SBSA +1 if packed
JI + 1 over 8 SD +1 over 8
JISS +1 over 8 SPCB +1 over 8
LB + 1 over 8 SPCBA + 1 if packed
LBA + 1 if packed SPCD +1 over 8
LBIA +1 if 3reg SSUD + 1 over 8

+1 if packed TC + 1
LBSA + 1 if packed + 1 over 8
LD +1 over 8
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Table B.6 Costs for Candidate Format 24(210).

AA + 1 if 3reg 
+ 1 if packed

BC + 1
BU +1 over 16
JB + 1 over 12
JBI +1 over 12
JBIA + 1 if packed
JD + 1 over 16
JI + 1 over 16
JISS + 1 over 16
LB + 1 over 8
LBA + 1 if packed
LBIA + 1 if 3reg 

+ 1 if packed
LBSA + 1 if packed
LD + 1 over 12

LI + 1 over 12
LSD + 1 over 16
SPC + 1 over 16
SC +0
SB + 1 over 8
SBA + 1 if packed
SBIA + 1 if 3reg

+1 if packed
SBSA + 1 if packed
SD + 1 over 12
SPCB + 1 over 12
SPCBA + 1 if packed
SPCD + 1 over 16
SSUD + 1 over 16
TC + 1

MIPS MIPS
Instr, Cost Instr. Cost



MIPS
Instr. Cost

MIPS
Instr. Cost

: AA ■ + 1 if packed i-:' LI ■ + 1 over 4
: BP . +1 ■ LSD + 1 over 4

+1 over 4 SPC + 1 over 4
r BU + 1 over 4 SC +0

JB +1 over 4 SB +1 over 4
JBI + 1 over 4 SBA + 1 over 4
JBIA +1 over 4 + 1 if packed

+ 1 if packed SBIA + 1 if packed
JD +1 over 4 SBSA + 1 if packed
JI +1 over 4 SB + 1 over 4
JISS + 1 over 4 SPCB + 1 over 4
LB + 1 over 4 SPCBA +1 over 4
LjiA + 1 over 4 + 1 if packed

+ 1 if packed SPCB + 1 over 4
LBIA + 1 if packed SSUD + 1 over 4
LBSA + 1 if packed TC + 1
LB + 1 over 4 + 1 over 4
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Table B.8 Costs for Candidate Format 20(3210).

MIPS
Instr. Cost

MIPS
Instr. Cost

AA + 1 if packed LI + 1 over 8
BC ' ■' +1 ■ LSD +1 over 12
BU + 1 over 12 SPC + 1 over 12
JB + l over 8 SC +0
JBI + 1 over 8 SB +1 over 4
JBIA + 1 if packed SBA + 1 if (2reg
JD + 1 over 12 and over 4)
JI + 1 over 12 + 1 if packed
JISS +1 over 12 SBIA + 1 if packed
LB + l over 4 SBSA + 1 if packed
LBA + 1 if (2reg SD +1 over 8

and over 4) SPCB + 1 over 8
+ 1 if packed SPCBA + 1 if packed

LBIA + 1 if packed SPCD +1 over 12
LBSA + 1 if packed SSUD + 1 over 12
LD +1 over 8 TC + 1



JtiPS
Instr. . ... Cost .. ....

MBPS
Instr. Cost

AA +1 if 3addr LI +1 over 4
•4-1 if packed LSD + 1 over 4

BC + 1 SPC -f lover 4
+1 if 2addr SC + 1 if 3addr
+ 1 over 4 SB + 1 if (3addr

BU + 1 over 4 or over 4)
JB + 1 over 4 SBA + 1 if (3addr
JBI + 1 over 4 or over 4)
JBIA + 1 over 4 +1 if packed

+ 1 if packed SBIA +1 if 3addr
JD + 1 over 4 + 1 if packed
JI + 1 over 4 •SBSA +1 if 3addr
JISS + 1 over 4 + 1 if packed
LB +1 if (3addr SD + 1 over 4

or over 4) SPCB + 1 over 4
LBA + 1 if (3addr SPCBA + 1 over 4

or over 4) + 1 if packed
+ 1 if packed SPCD + 1 over 4

LBIA + 1 if 3addr SSUD + 1 over 4
+ 1 if packed ■ TC ■ ■ ■ +1

LBSA +1 if 3addr + lif2addr
+ 1 if packed + 1 over 4

LD + 1 over 4 ' 1



151

Table B.10 Costs for Candidate Format 16(210).

MIPS
Instr. Cost

MIPS
Instr. Cost

AA +1 if 3addr LI + 1 over 4
+ 1 if packed LSD + 1 over 8

BC + 1 SPC + 1 over 8
+1 if 2addr SC + 1 .
+ 1 over 8 SB + 1 if (3addr

BU + 1 over 8 or over 4)
JB + 1 over 4 SBA + 1 if (3addr
JBI +1 over 4 or over 4)
JBIA + 1 over 4 +1 if packed

+ 1 if packed SBIA + 1 if 3addr
JD + 1 over 8 +1 if packed

' JI + 1 over 8 SBSA + 1 if 3addr
JISS + 1 over 8 + 1 if packed
LB + 1 if (3addr SD +1 over 4

or over 4) SPCB +1 over 4
LBA + 1 if (3addr SPCBA +1 over 4

or over 4) + 1 if packed
+ 1 if packed SPCD + 1 over 8

LBIA + 1 if 3addr SSUD + 1 over 8
+ 1 if packed TC + 1

LBSA +1 if 3addr ■. +1 if 2addr
+ 1 if packed + 1 if over 8

LD + 1 over 4


	Purdue University
	Purdue e-Pubs
	12-1-1985

	Architectural Approaches For Gallium Arsenide Exploitation In High-Speed Computer Design
	David Allen Fura

	tmp.1542052450.pdf.vKM54

