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Abstract

This paper presents a mathematical model of the kinematic nonlinear drive train 
errors which reduce absolute static positioning accuracy of robot arms. This kinematic 
inaccuracy renders robot manipulators ineffective when programmed off-line, though 
they might be programmed to successfully perform the same task by “Teach Play 
back” schemes. The kinematic drive train inaccuracy model, presented in this paper 
can be used to predict and compensate for these second order effects on-line, without 
resorting to sensor based programming techniques, which are often expensive and 
difficult to implement in an industrial environment.

The drive train error model presented in this paper is based on gear backlash, eccentri
city and drive shaft compliance.

Introduction

Robot arms have been traditionally used in pick and place type assembly opera
tions, where the arms repeatability and resolution have been two key issues. Modern 
robots are often programmed by “Teach Playback Schemes”, where the human opera
tor ensures the end effector reaches the work point by closing the sensing loop, see Fig.
1. However, as the ‘teach playback* schemes require the robot and other plant equip
ment to be set up, prior to program development, new programming techniques are 
being adopted by the industry. These include off-line programming via high level 
languages such as VAL-II [Shimano et al. 84], AML [Taylor et al. 83], etc, also via 
simulated teach by doing on CAD (Computer Aided Design) work stations. Although 
these programming techniques are not new and have been in used research environment 
in the past, they have focused on a new problem involving the absolute positioning 
accuracy of the robot arm.



This paper presents a mathematical model of the nonlinear kinematic drive train 
effects which limits the absolute steady state positioning capability of the robot arm. 
The absolute positioning capability is limited by the following sources (effects due to 
control system design are not discussed in this paper):

(i) Link parameter errors,
(ii) Backlash, or lost motion,
(iii) Nonlinearity in the drive train transmission,
(iv) Compliance of each link joint,
(v) Feedback quantisation.

The first part of this paper deals with the link parameter errors* and its effects on the 
end effector position. The second part of the paper models the effect of backlash in the
joint drive and illustrates how it may be compensated. The gear eccentricity effects are 
discussed in section three. Section four outlines how joint compliance effect can also 
influence end effector positioning accuracy; The final section outlines the positioning 
accuracy limitations of the manipulator as imposed by quantisation of the position 
feedback signal.

1. Link Parameter Error

The kinematic model of the manipulator is obtained by modeling each linkage by 
a (4 x 4) transformation, the homogeneous transform [Paul 81]. The Fig. 2 shows the 
link parameters which make up the homogeneous transform. It consists of the twist 
angle ‘o’, link length ‘a’, link offset length ‘d’ and the joint angle ‘0’. The homogeneous 
link transform is thus given as:

Tj2 = Rot (Z,0) trans (0,0,d) trans (0,0,a) Rot (X,o) (1)

The motion of the end effector with respect to the manipulator base frame is given 
by T®, which is obtained by the product of the individual link transforms:

T« = n t;+> ^ : (2)
i=0

However, if any of the link parameters are inexact, such as the link lengths:

a —► a + da (3)

Then, the end effector is displaced by dT®, such that:
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d-r« + t0* = n t/+i (I + ax,j (4)
i=0

The end effector transform error, dT06, can be physically measured, as the link length 
error causes the end effector to be displaced from the demanded position. Altering link 
length does not result in an orientation error.

As most industrial robot arms are made of cast linkages with machined link 
joints, manufacturing tolerances introduce errors in link parameters i.e:

a —► a + da 

d — d + £ /

or—* a + da (5)

Castings typically shrink when they are cooled; in addition, thermal effects can also 
lead to variation in joint lengths e.g:

/ a(T) = a0 (1 + (T - TJ) (6)

where p is the thermal expansion coefficient, T0 and T are nominal and actual tempera- 
tures, given the nominal length is a0. Similar expansions is also valid for other link 
parameters.

Problem is to improve manipulator accuracy by obtaining an estimate of the 
(n x 1) vector of link length error, da, (n x 1) vector of 6 and (n x 1) vector of twist

angle errors do. Hayati and Wu [Hayati 83] [Wu 83] have shown that a linear error

model can be found between observed cartesian error dx and the link parameter errors

. . lla>£ . do]1.

dx = Ja da + Jada + J* <5 + J, d0. (7)

where Ja is (6 x n) matrix relating cartesian errors with twist angle error. Similar rela- 
ti°ns between (Ja, da), (J and £) exists. Note that an error in d 0 is transformed to the

cartesian frame by the usual manipulator Jacobian Jt.

Details of how to evaluate (Ja, Ja, J^) can be found in previous analysis on link 
parameters errors (Hayati 83] (Wu 83],

By calibrating the manipulator to a number of positions and recording its error, an 
estimate of parameter error, <& - [da , S \ da]k, may be obtained by least square error

techniques. Whitney [Whitney et al. 84] has carried out positioning (without orienta- 
tion) calibration of the first three degrees of freedom of the PUMA 560 (Fig. 3) arm. 
Whitney shows that such calibration can increase the positioning accuracy by a factor
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of.10, from 3mm to 0.3mm.
Equally important as the parameter errors, $, is the error in the relative angle 

between the joints, d0. The next section outlines their sources and error models.

2. Errors In Joint Angle d6 Due to Backlash

Backlash effects are mainly observed due to the fact that joint sensors are located 
on the actuator rather than on the joint see, Fig. 4. As a result, gear train backlash and 
nonlinear effects are not sensed, thus causing an error, d6. In this section the backlash 
error, d0, that propagates through the drive train is modeled.

The Fig. 5 illustrates a backlash gap, which causes the output motion not to 
directly follow the input motion. The relationship between the input and output 
motion for one set of gears may be represented by the graph in Fig. 6. The output 
begins to follow the input once the parts are in contact (see Fig. 5), hence output 
motion of (i+l)th gear can be modeled in terms of motion of ith gear as:

*1+i = («i - Ci* d«>) ip- (8)

where 0i + i = Angular displacement of (i + l)th gear 

= Angular displacement of (ith) gear 

d0jb = Backlash in i, (i + l)th gear contact

ngi + 1 = Number of gear teeth on (i + l)tb gear

ngi — Number of gear teeth on ith gear

The gear contact is modeled by the coefficient C±, which assumes a value of 1 or 0, 
hence:

C
+ 1 

0
not in contact.

A reduction ratio, Kgj+i, is given as:

■^gi + l
nr;

Ugi + i
(10)

Usually, Kgi + i <1, as the actuator is required to drive a larger load. If the gear, 
corresponding to i=0, is the motor shaft rotation 0m, then output motion of the



gearbox which causes joint motion, 0„m, is given as:

i=l »=1 r=l

This corresponds to the joint motion due to an V gear train. If all the gear pair back
lash gaps are almost equal and a reduction ratio (Kgj < 1) exists for all gear pairs, 
then:

iff {dfljh - dflb : i = 1 . . .n]

and iff [Kp < 1: i = . . . n] (12)

Then, only the last term in equation (11) is most significant. Assuming ngnom (>1) is 
the nominal reduction ratio in the joint gear train, then:

»«m■- *„ - C* Ks„ d*b (13)
ugnom

If there is an external load on the arm, such as the gravitational force due to the arm's 
weight, the backlash is taken up when upward motions are executed ( e.g. the backlash 
of PUMA's link 2 and 3 ) ,then C + — 0. In downward motion the backlash has to be 
overcome, i.e. C — 1. The PUMA base joint is not preloaded by gravity, and C* has 
to be constantly updated if forward motion is executed without any reversal of the 
motor shaft. Then ,the gear's are in contact, i.e. C+ =0 .

Backlash Compensation

The backlash may now be compensated on-line by altering the demand signal to 
the motor as:

— ®gnom i^arm Kgn d^b] (14)

3. Errors in Joint Angle Due to Variation 
In Reduction Ratio

One other problem which effects the positioning accuracy of the joint is the gear 
eccentricity. Machined gears tend to be elliptical, and a very small variation in the 
dimensions between the axes exist, see Fig. 7. The input gear will usually have a much 
smaller variation in dimensions than the output gear, if a reduction ratio exists. As a 
result the smaller drive gear can be assumed to be near perfectly round, of radius r0 
(see Fig. 7). The larger gear has a radius which varies from rgnom to r^^. As the gear 
turns through an angle 0g, the radius of the contact point is given as :



where cg = rgmax rgnom
‘gnom

usually the eccentricity is small, £g < 10 3. The reduction ratio is then given as:

rM BgnomU + <g Si

where n

JgnoniV‘ '•g

r„

(16)

(17)

gnom
lgnom

and ngnom is the ideal gear ratio. As ngnom > 1, for any joint, the final gear pair will 
have the most significant effect in terms of the variation of the reduction ratio with 
respect gear angle :

nJ0) =
n •n i

gnom i=i [1 + *i Sin
(19)

Variation of reduction ratio with respect to two gears in the drive train is given in Fig.
8.' ; ;'■■■'-V". :: V - : : v. ■ ■;

Drive Train Gear Eccentricity Error 
Compensation

The motor demand may now be altered to overcome t|iis transmission error due to 
drive train eccentricity:

= IW + c‘ K*» d#"b| (20)

4=ic+c* Ksn o eft (i+tjSin y
i=i : ; :

If second order terms involving £j€j < 10”4 * 6 are ignored, then:

n (l + cj Sin y = 1 + - 2 (fiSin y (21)
■ j=i V';'"

4 - ".non. [4m + C * Kg„ d»‘) [1 + £ ft Sin (22)
i=l

This will effectively compensate for the variation in the reduction ratio. The phase 
angle of the ith gear is given in term of its original position 0gi and the gear ratio Kgi:



.V=Kti (d<Wi - <:i+i <!<»>,) + (g;

where 0gi is the new angular position of the ith gear if (i—l)th shaft is turned through an 
angle d^j. The position of the ith shaft is related to the motor shaft motion d0m as:

= 01 Kg.} d 0m-± C-* dd> II Kgp + M (24)
f =0 r=l ' p=l

The angle is the initial phase angle prior to any motion. Thus, it is possible td track 
the value of the summation term in equation (22), in which the most significant term is 
likely to be due to the last reduction pair, as V is usually the largest for the final 
joint. The PUMA, for example, has a ‘Bull gear’ of significantly large diameter on the 
final drive of the elbow, shoulder and the base joint (see Fig. 9). In such a cir
cumstance, a simplification may be made, i.e:

iff cn » £j ; j — 1 .. (n - 1), then:

(23)

= tn Sin
ngnom

D €j Sin 6si = cn Sin £>gn
j = l

- C*. K,„ dS» + * - €n Sin 1
+ <j>'

■gnom
(25)

where and 4> are the phase advances in the drive with and without backlash respec
tively. 4

4. Positioning Errors Due to Joint Compliance

Currently, most industrial robots have compliant joints. This is apparent when a 
large load is handled, the arm is then seen to deflect, resulting in end effector position
ing error. The joint compliance results from the torsional stiffness of the gearbox and 
the output drive shaft actuating the joint. If the joint deflection due to the mass of the 
arm and the carried workpiece can be estimated, then compensation can be made to 
correct the static positioning error. The problem is then to estimate what is the steady 
state positioning error, when a constant load, equivalent to the workpiece mass is 
applied at the end effector. If the carried workpiece has mass ‘mg’ Newtons, then the 
force seen with respect to the base frame of the manipulator is ®F:



Bp

The load torque seen at the joints in the steady state due to the workpiece is 
r = (TV • • • JnY'

Bp (28)

EB
where, ^ J is the Jacobian relating differential motion of the end effector frame E, 
aligned to the base frame B, and the joint frame q (See Fig, 10).

During static positioning, when this additional load r is applied, the resulting 
motion has velocities and acceleration terms close to zero. As a result, the motions may 
be independently studied for each joint (dynamic effects can be ignored). The 
simplified model of each joint and its equivalent compliant members is illustrated in 
Fig. 11 (A more realistic drive train model and its analysis is given in the Appendix), 
The equation of motion of the joint motor shaft 0m is given by:

T„ = J„ *„■+ Bm em + ftln< + T, (29)

where Tm is the motor torque, Jm is the effective motor inertia, and Bm is the effective 
motor viscous friction. The coulomb - static friction term, fcmg, is given as:

+ | ^static | ; if

sgn (O I fcoulomb | ; if I L I ^'0 (30)

The torque Tj in equation (29) is the reaction torque exerted at the motor shaft due to 
the external load and the drive train. If the effective compliance of the gearbox is 
reflected to the joint drive shaft, then the motion of the final gear is given as:

T2 = J* «„ + Bs ls + fcmt» + K, (», -<u) (31)

where Ks is the effective drive train joint compliance. The motion of the arm 0arm is 
given as:

Td = + K. («„„ - «,) (32)

where Tj is the load torque applied to the arm. The motion of the gear train and the 
motor shaft are related by:



T2 = naT, (34)

where ‘na’ is the amplification ratio between the motor and gear torques, i.e. (na > 1).
is further simplified as:

T = .m

+

J + ~
»a

*m +
bk

b™ + -7 0 4* fum ~ ^cmgs

K.
n,

m
n,

-9.arm I

and

^cmgs

|C*| + ^-|fJU| ;if«„=o

s8n (^m) ( | ^Coulomb | "** ( ^ ) | Coulomb | } I | ^ 0

(35)

The motor shaft position, 0m(s), is obtained as:

K8naTd(s)

*»(*) =
na2(JarmS2+Ks)

+ Tm(s)-fcmgs(s)

JK
I H----—

n:
>2 +

Bk
Bm + -i

n
s +

K. K2

*a2 na2(Jarms2 + K8)& 4

(36)

(37)
The steady state value of the motor shaft position, 6™, is given by the final value 
theorem as:

C -Xim8-*o {s <US)}

In the static situation, the friction and external loads are constant:

-.■Td
sj - — 

s

(38)

(39)
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^cmgs(^)
*cmg3 (40)

Figure 11 depicts the control problem in which the robot controller demands a torque 
Tm(s) to overcome the load (motor dynamics are ignored, and a torque servo is 
assumed):

Tm(s) = Gc(s)
n,

C, " U») (41)

where 0arrn is the joint goal position, and the controller transfer function is given by 
Gc(s). The torque Tm(s) will obviously vary with the controller structure Gc(s); hence, 
the steady state motor position. Table 1 below lists the Steady state motor position, 
0^, and the steady state arm position, 0“m, which is given by:

na Td(s) + Ks 0m(s)
^arm s

", (■>„„ s2 + Ks)

The steady state motor position error, d0^,s, is given by:

dO” = n. 0.<L - dl'm
Similarly, the steady state arm position error, d0a®m, is:

d0,s! ' = 0*arm arm
QS8^arm

(42)

(43)

(44)

It is seen from table 1 that the proportional (P), proportional and derivation (PD), type 
zero controller have the same performance. The PID (proportional integral and deriva
tive) controller has the best performance d0^f = 0 (as expected). However, the arm 
position error is given as:

_ Td
d0.arm. PID K,

(45)

This is equivalent to a load Td applied to one end of a torsional spring which has the 
other end permanently fixed (equivalent to Tm = oo). Indeed, one intuitively expects 
the arm to act as, ’nothing but a torsional spring’, in the steady state.

Joint Deflection Error Compensation

The actual arm set point, 0arm, must be altered by d0“m in order to compensate 
for the joint deflection:

CT'" = " dCn (46)

If a load of -mg’ is applied, the arm will be displaced by ‘ + d0^m’ and the new set



point will correct the end effector position: The compensated motor demand position, 
0m, is then given as:

A Cif
■m ““ **gnom Krm-dffSL + C> arm arm n

*].(
Kg„ dC I I + ea Sin (

Dgnom
(47)

GOO
Controller
Structure

•S

-gd -JL/e _ liv
^apann \r A1cmn K JKp n» v**

-d +T<*+ 1 rTd r \ 
K, + nJCp1 uM fca*" ‘ K. M

kp+skd •Ji

Kp ^ B»
X(f -li)
Kpl,an*»

ad , Td , 1 ,Td . y
*‘m+ K, + naKp fa^

•• K, .
kp+skd+y- 0 (§+Cn) -A

{K.>

V' Table 1
Steady State Positioning Error Due to Controller 

Performance and Joint Compliance.

5. Limitation on the Absolute 
Positioning Accuracy

The discrete nature of joint feedback signals impose a limitation on the absolute 
positioning accuracy of the manipulator. This limitation is easily determined if the 
effective joint angular resolution armin is first determined. If Kei is the ith joint feed
back resolution per revolution, then ot*min is:

i _ 2 w
armin (nai Kei] (48)

where nai (= ngnom) is the ith joint gear ratio. The overall angular resolution of the n- 
jointed robot is then:

®rmin — {armin ‘ * t r • • ® }

-v ,..._____ 2ir
[min { Kj Kei) : i = 1 . . . n } ]

An (n x n) diagonal matrix [esJ can then be defined, 
into a* units:

(49)

It converts a unit feedback signal



OL'
armm

l* / rimu vdiag (—)
armm

^rmin (®sc)

If the (n x 1) joint position demand vector, in feedback units, is edmd — (ej, . /. . , eJ4, 
then a unit demand in position change (in feedback units) edmd = [1, . . . ,1l, 
corresponds to the minimum angular displacement d0m;n:

rain ^rmin l®scl ®dmd (^)

The corresponding change in the end effector in base coordinates is given as:

*P£q — ®rmin q^ !®sc] ®dmd '(52)

where dXq corresponds to the minimum displacement the end effector is capable of
making about any arm posture 0 =■ \dx . . . , 0n]t. Theoretically, it should be possible to
position the manipulator tool at the vertices of the quantisation cube dXq (see Figure
12). The quantisation cube is dependent on the manipulator Jacobian, hence the arm 
posture <9.

0. Conclusion

A model of the non-linear drive train errors has been presented in this paper. The 
errors have included effects due to gear, backlash, eccentricity and gear-drive shaft com
pliance. The static joint positioning errors due to these effects, also their compensation 
have been proposed in this paper. Absolute accuracy limitation of the manipulator, 
based on kinematics and feedback quantisation has also been outlined. It would, how
ever, be necessary to look at the manipulator dynamical effects [Yoshikawa 85] and the 
controller structure, in order to predict realistic positioning accuracy limitation of a 
robot arm. Dynamical positioning accuracy of the manipulator due to the drive train 
non-linear effects and their compensation is being currently investigated.
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APPENDIX ■
Effective Drive Train Parameters 

for n-Pair Gear Train:
Computation of Effective Compliance Ks.

An n-pair gear drive train may be reduced to fit the drive model used in the previ
ous sections. Consider the gear train model as shown in figure 1 A.

The gear ratio between gear #i and gear #i’ is defined as:
= -■ ft ■■■

nj -
4

If the effective inertia seen at gear, g # i, due to gear, g # i and gear, g # i’, is:

J; = J.i + j;
n:

Also the effective damping at gear, g # i, shaft is:
:'Bi = «„ + i:BV ■

Then for any gear pair, as labelled in figure 1. A, the following equations of motion 
apply:

Ke:si ■+1
ni + | ft + l'-ft = J; ft +■ Bj ^ +

Ksi n: ft - ft-,

This may be generalized to form the following matrix equation:
D(s) £(s) = r(s)

where D(s) G Rixi (9 = n + 2) and D(s) is a tri-diagonal matrix; 0s) C Rfxl is the
the vector of angular position of the arm 0a(s), the n-gear-pairs, and that of the motor 
shaft 0m(s); t(s) C R*x1 is the torque vector, such that r(s) = (~rd(s), 0 ... 0, r^s))4. 
The torque rd(s) is the loading torque on the arm and rm(s) is the input motor driving 
torque. The form of the matrix equation is:



m
A(s)

*noo
0m(s)

-Td(s)

0

0
*m(®)

k*=-¥

ni
The actuator parameters are given by

<W*I = Jm S2 + Bm s + Km

■«,'+,= Kn
and the drive train parameters are given by:

KK;1 = “ —
n SJ j = 1 n

j = 1 ... (n - 1)

-V K-i + K.J + ,

■■
- J

Gj(s) =: JjV + BjS + K,j + K6j + ij : j = 1 ... n

; ' nn + l =' 1 

•^sn +1 ~

The effective stiffness Kg of the drive train as seen at the joint output is given as:
[i-I j

n-Th=i nf

where, m .= n + 1, to include the motor shaft stiffness. Notice that the drive shafts at 
the motor end Can be rather compliant in comparison to that of the joint output, if a 
suitably large gear reduction exists. The analysis, presented here is equivalent to 
selecting the effective joint stiffness to be that of the most compliant member when 
scaled appropriately by the gear ratio.

K, = l/
m 1
E]7-
j=l ^si



Figure 1. Robot Programming by “Teach Play Back Schemes”
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Figure 3. PUMA Robot Arm.
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Figure 7. Gear Eccentricity.
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Figure 9.



Figure 10. Applied Load, The End Effector, and Base Frames.



Figure 11. Joint Controller Schematics
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Figure 12. The Quantisation Cube.



Figure A.l. Realistic Drive Train Model.
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