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 CHAPTER 1

EDGE DETECTION IN IMAGES

i -

- 1.1, In_troduction

. The detection of edges, lines, and other linear features in two-dimensiona'l, discrete
images is a low level processing step of fundamental importance in the automatic pro-
cessxng of such data Many subsequent tasks in computer VISlon, pattern recognltlon,‘

and i lmage processnng depend on the successful execution of thls step

In this thesns, we vrlll address one class of technlclues for performlng"thlstask :
sequentlal detectlon Our alms‘ are fourfold Flrst we would hke to dlscuss the use of
sequentlal technlques as an attractwe aIternatlve to the somewhat better known
methods of approachlng thls problem. Although several researchers have obtalned Slglll- »
ficant results w1th sequentlal type algorlthms,v the lnherent benefits of a sequentlal ,
approach would ‘appear to have gone largely. unappreclated Secondly, the sequentlal'
techniques reported to date appear somewhat lacking wnth respect to a theoretical .foun-_
dation. Furthermore, the theory that is advanced mcorporates rather severe. restrlctlons‘
‘on the types of i images to which it applies, thus imposing a slgnlﬁcant l|m|tatlon to the
generality of the method(s). We seek to advance a more general theory rvlth minimal
assumptions regarding the input image. A third goal is to utilize this newly developed
theory to obtain quantit'ativc assessments of the performanceb of the method. This
important step, which depends on a computational theory, can answer such vital ques-

tions as: Are assumptions about the qualitative behavior of the method justified? How
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does signal-to-noise ratio impact its behavlor? ‘How fast is it? How accurate? The state
‘ of theoretical development ol'present techniques does not allow for this type of analysis.

: Finally, s fourth aim is to extend the earlier results to include correlated image data.
Present sequential methods as well as many non-sequential methods assume that the
image datavis uncorrelated and Vcannot therefore malce.use of the mutual information
‘betsveen pir(els in mal-svorld images. We would like to extend the theory to incorporate
correlated images and demonstrate the adv‘antages incurred by the use of the exlsting

_ mutual information.

The topics'to be discussed are organized in the following manner. We will first pro-
| -.v1de a rather general dlscusslon of the problem of detectlng lntenslty edges in images.
The edge detectlon problem wnll serve as the prototyplcal problem of Imear feature
extractlon for much of thls thesns. It w1|l later be shown that the detectlon of llnes,
ramp edges, texture edges etc. can be handled in s1m|lar fashlon to |ntens|ty edges the
only dlfference be|ng the nature of the preprocessmg operator used The class of sequen-
, tlaI technlques w1ll then be. nntroduced w1th a vnew to emphaslze the partlcular advan-
tages and dlsadvantages exhlblted by the class. This Chapter will conclude with a more
detalled treatment of the various sequential algorlthms proposed in the literature.
Chapter 2 then develops the a|gor|thm proposed by the author, Sequentlal Edge Llnklng
or SEL It begms w1th some deﬁnltlons, follows with a derlvatlon of the critical path
branch metrlc and some of lts propertles, and concludes with a dlscusslon of algorlthms
The ’tl.'lll‘d Chapter is devoted exclusively to an analy;sls of the dynamical behavior and
perlormance of -the | method. ;Chap'te‘r tl:then deals wiith the case of correlated random
: flelds: ln that C‘hapter, a model is proposed for which paths searched by the SEL algo-

rithm are shown to posses a well-known autocorrelation function. This allows the use of
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a simple linear filter to decorrelate the raw image data. Finally, Chapter 5 presents'a

number of experimental results and corroboration of the theoretical conclusions of earlier

Chapters. Some concluding remarks are also included in Chapter 5.

1.2. Edge Dete_ction.

Edge detectlon represents one of the first processing vsteps in a great many com- |
puter vision and image processnng tasks Reflectlng thls lmportance, the llterature .
devoted to the problem is enormous. One need only consult a 'recent bibllography such
as Rosenfeld [Ros84] to gai'n an appreciation of this fact. For this reason, we will xnake
no attempt to summarize. the work in this area to date. Instead we will confine our-,'
selves to a general discussion of the edge detectlon problem and motlvate the method to »
which thisthesisis addr'essed, namely that of sequential detection.

- We wﬂl conslder only two—dlmenslonal dlgital unages By d:gztal we mean that the
1mage is discrete in the spatial domam, e.g. the i image lntensity function is not contlnu-‘
ous over the two ‘dimensions but defined only on an array of pomts and the intensity
levels at these points are furthermore quantized into a fixed, finite number of levels.

' The underlying assumption in this and many other treatments of edge detection is :
that edgea of interest in real scenes such as object boundaries, etc. are Rp&sented in an
image as a discontinuity in intensity. »Therefore the task of edge dctcction becomes one
of identifying intensity'discontinuities.i We note thatthe human visual systems and per;_‘
ception are such that discontinuities are not’the only 'intensity functions that are per-
ceived as "edges.” Other possibilities include discontinuities in the first derivative of the

intensity function (ramp edges), texture edges, and color changes [Cor70]. While these
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features are important in some contexts and are in fact ;sufﬁciently‘ similar to the original
, problem‘ of intenslty discontinuities to perform their detection by sequential techniques,
'in’vthis Sec‘tionvwe will confine ourselves solely to the first problem. ‘Bear in mind, how-
ever, that sequential algorithms attempt to exploit only the conncctivity of edges and are
largely independent of the‘ speciﬁc edge operator used. We will return to this point
, later A , _ : - _ ,

Given that the goal is to identify intensity discontinuities, two general classes of
techniques have emerged to address this problem: gradient-type operators and
,parametrlc models Gradlent-type operators, whlch for the purposes of this dlscusslon
wnll |nclude ﬁrst and second order spatlal derlvatlve operators, are dlscrete spatial ﬁlters

| whose mag‘mtudelresponses have varlous hlgh pass characterlstlcs In partlcular they
attempt to perform the dlscrete equlvalent of a two-dlmenslonal gradlent a dlrectlonal
derivative operator, or a second order derlvatlve operator | The idea is to emphaslze
‘ those reglons of an |mage where the 1ntens1ty functlon changes rapldly wnth dlstance and
'supprcss the areas wnth little change in mtenslty These operators may also provide
mformatlon regardlng the darectcon of the gradlent or in the case of directional opera-
tors, the component of the gradient in a glven dlrectlon. |

Generally speaklng, gradlent-type operators are lmplemented wnth one of a variety
of wmdow functlons [Ham83] Thls is due to the fact that real edges are of ﬁmte er(tent
and therlefore the operator-must have ﬁmte support i.e. be wmdowed If the wmdow
functlon is rectangular, thespectra.l response of the.operator will exhlblt the familiar
'Glbbs phenomenon of Fourler theory The lalge gain at high spatial frequencies exacer-

'bates the effects of noxse on the output As in other signal . processing appllcatlons, the
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answer to this problem is to employ smoother wmdow functlons such as Hammlng, Han-_

,mng, or Gausslan wnndows [Can83]

Examples of gradlent-type edge operators are the Roberts [Rob65], the Sobelcr

[Pra78] the Laplaman-based operators of Modestlno and Frles [Mod77] and Marr and

Hlldreth [Mar80], and correlatlon template technlques such as , Kirsch [K1r71]

Parametrlc models view the image lntenslty functlon as a surface and thls surf ace is

pro;ected onto a set of basls functlons From thls modclcd surface, edge parameters such.j

as slope posltnon and dlrectlon are estlmated A questnon of lmportance is the complete-v

ness of the basns functlon set as the parameters can be estlmated only from the prOJec-

tlon of the actual |mage onto the space spanned by that set. Examples of thls approach

are the Hueckel [Hue73] and facet model of Haralick [Har84] For the purposes of thls '

dlscusslon we wnll 1nclude in thls class the moment-type operators such as the plxel mass

: operator of Sucnu and Reeves [Suc82] These methods attempt o detect lntenslty'

dxscontnnultles from the moments of the dlstrlbutnon of mtenslty values |n a w:ndow

| As ponnted out by Canny [Can83], practlcally all edge detectlon schemes proposed

to date in the above classes involve a classlficatlon step that ‘vutlhzes one or more thres-- .
holds. Having obtalned eStimates of the gradient magnitude of direction or edge param- ‘ |

' eters from a fitted model, some.mechanism must be emploved to declde,whether or not-‘ L .
those quantities indicate the presence of an mtenslty edge at the locatlon in quest‘lon

This classification step is performed via a decision threshold Even the second order'

derlvatlve approachs, such as Marr and Hildreth [Mar80), cannot avond thls step

Although zero crossnngs of the two-dimensional Laplacnan nommally 1nd|cate mtenslty :

edges, even small amounts of _noise contribute to a very hlgh denslty of ‘noise ln_duced
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zero"crossing contonrs. :Therefore, practical implementations ‘mu‘st aoply a thresholdito

‘v t,he- slope of Vthe?v second derivative perpendicular to the zero crossing.

g This thresholding process 'rniayb'be accomolished inv'arious ways. Earlier techniques
established a global threshold on the basis of ,thehistogram of operator outputs or’.the

‘Rveceiirer_ Operating‘Characteristic (ROC) of the 0perator [Abd79]. ‘More recent methods

.. select the threshold in an’ adaptive mannerbased Ion Iocal image content or on entropy ‘

”idea_s,n L .

The question, of threshold selection raises two fundamental and related problerns '
'w1th all of these edge detectlon technlques The first of these is l:nown as streaking
Thls phenomenon results from the fact that real images are hlghly non-homogeneous and
edge parameters may change substantlally even along the same edge contour Regard-
less of the sophlst|catlon of the thresholdselectlon process it |s posslble and in fact com-
- mon that due to nonse, the operator‘outout is at tlmes above and other times below the B
‘ declslon threshold along the length of a glven edge contour Thls results in an edge map
: ln whlch edges that are ln reahty a slngle connected contour are only partlally detected
The broken segments or atrcaka are a major concern‘slnce Inany processlng tasks that

: follow edge detectlon reoulre well connected or even closed edge contours On the other
| ‘hand 1f the thresholds are set so hberally that the edges of lnterest are detected w1th
o good connectmty, then many falac dctcctaona and multtplc rcaponuc on strong edges
»occur Thls is the classlcal detectlon theory trade-ofl’ between probablllty of detectlon
and probabllltyvof false alarm Not only is it dlfficult to declde on a threshold it is fnn-_
- damentally lmposslble to snmultaneously achleve a hlgh detectlon probablllty and low

‘ false alarm rate as the slgnal-to-nmse ratlo decreases
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A second and related pfoblem is the performance at, low mgﬁal-to—nmse ratio. Slnce.
opera.tors attempt to ma.ke a decmon ba.sed only on local lnforma.tlen, as the nonse-power
mcreases, thls decnsnon becomes increasingly more difficult to make The solutlon gee-
erally a.dopted lsv to increase the number of observa.tlons fhat contrlbute to the decmo.n‘,
le. make the operator larger. As Canny shows [Can83], this improves the ‘output
signal-to-noise ratie of the operator but only 2t the expense ef spatial resolut.loln. The.‘ '
wey to cireuinvent vtlnmt pfoblein is to employ a set of directionel operators: long sk_iﬁﬂj
oberator_s that' pick up their additional observations along an edge :ratkh:er thah out in
every direction [Nav80]. This may only be ta.kenv‘ so far, however, be‘cause.tl‘le_lin"el"e
directional the operator, the larger the reciuisite;set of vsuc_'h operators. A-dd»itional‘.c‘o‘m-_ .
plications arise from the fect that edges in real images tend. to not run .vstraight -fer_‘_v;er_y

long. This mandates the inclusion of curved operators which further compounds the- job

of choosing an operator set.

1.3. Sequential Edge Detection

Classical deteetion' theory states that the way to improve perfermﬂance at low
" signal-to-noise ratio is to increase the number of observat,ions eontributing te fhe decvi-
sion. As we have just seen, simply increasing the size of the edge eperat’or is nlotviv'era.teljr
euccessful iﬁ this regard but at the expense of Spatial resolution. In addition; the'desirr- '
able "edge information” generally lies in the vicinity of the edge itself, s0 pickingvup
observations far from the edge contributes little to the decision process. Using direc-
tional operators improves the output signal-to-noise ratio while maiﬁtaining goed spatial

resolution, but this approach soon becomes unwieldy as the number of such operators



in'Creases geometrically withtheir length.

One ipossible way . out of this dilemma is to assemble observations along the edge
v cohtour. Observations are made in a very long and narrow palh that is defornied to lie
along the edge, including curves; corners_,‘ and straight segments. Since the set of all pos-
ublc such paths is enormous, the paths are ‘lnstead "grown” in an iterative fashion
beginning at a point that i is known to lie on the edge. This is the basic philosophy
behind aeqaential edge detection. A searching algorithm attempts to hypothesize possi-
blel edge topologies or paths. These paths are extended iteratively, with the current
moat probable path extended by one obser}'ration at each iteratio'n. |

"F‘or this technique to succeed in ﬁnding edges, a means of comparing all paths
hypothesized so far has to be provnded This companson is accomplished by associatmg
wnth each path a statlstic called a path mcmc whlch reflects the glven path‘s probablhty
of comcndmgwnth the edge contour. Therefore, only the most likely paths are extended
by the searchihg algorithm‘.‘ ln this way an e)ihaiistive search is avoided.

‘ Sequeiitial : edge detectioh has several potential advantages oirer the_\techniques dis-
cussed earlier. _.First, it ol'fers. the possibility of better performance (_higher detection pro-
bability, lower false alarm probability) at low imag‘e signal-to-noise ratio than the local
operators, since it obtalns many more observations along the edge For the same reason,
the problem of choosmg a detection threshold is allevnated it is much easier to decide

edge or "no edge based on many observations than on a few Secondly, by the very
nature of the searching process, the detected edge paths exhibit complete connectivity.
Therefore, streaklng can be ellmlnated Although it is not obvious from this discussion,

two subtle advantages' to a sequential approach also arise. One is that it allows an
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analytical treatment of the probabxhty that acpmenta of detected edge contours arev.m.
error rather than merely points. The second is that it provxdes a framework in whxch‘..
the correlation between observations in an xmage can be exploxted to aid in the detect:on
process The pnnclple dlsadvantage.of a sequential approach is one of computational'
speed. Actually, on a sequentlal processor, such algorithms tend to be more efficient'

than parallel algorithms. But the latter has the potentlal of dramatxcally xmproved.

speed on special purpose parallel architectures.

We w1ll return to discuss all of the foregomg 1deas in more detall later, but first we .
shall review precedmg efforts in the l1terature related to the detectlon of edges in lmages

by sequential methods. '

1.4. Previous Sequential Detection Methods_

Early work by Fishler and Elschlager [F1s73], whlle not preclsely a sequential edge :
detection technique, nevertheless represents one of the earliest efforts to recognize the
fact that 1mproved performance at low signal-to-noise ratio can be accomplished by con-
sidering edge contours as a whole rather than local points. In their method, hypotheses
consist of ”embedded” edge contours. For each such embedded contour, an associated
cost is calculated. A dynamic programming technique is used to search the (enor‘mous)
space representlng all possible contours in an effort to find that with the lowest associ-
ated cost. In a similar fashion, Griffith [Gr173] has also used a dynamic prog‘rammxng
technique. Specifically, he -uses the Viterbi algorithm, a forward dynamlc programmmg

Y

method [For73].
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Both of these methods have two common problems. Dynamic Programming tech-
niques attempt to find the best hypothesis in a search. Although they are more efficient
than an exhaustive search, | the amount of computation for even modest image sizes is
stnll‘very large Secondly, the associated cost of an embedded contour is an ad-hoc quan-

tlty requmng a consnderable amount of tailoring to specific images.

rIn an effort to reduce the amount of computation involved with dynamic program-
ming methods, Chien and Fu [Chi74] have proposed the use of what is known as depth-
'}flrst tree searching ‘[Nil7i]. They explicitly formulate the edge detection problem as a
search‘ through a rooted tree. Their branch "costs,” however, are highly spccialiied to
the type of lmage under consideration and employ a great deal of a-priori information. I.n
a slmllar fashlon, Martelll [Mar76] formulates the problem as a graph search and uses
-the A algonthm lN1l7l] to perform the search This algonthm is qmte similar to the
Z-J or stack algonthm descrlbed in the next Chapter Agaln, Martelh s cost functlon is

ad-hoc and pecuhar to the type of i lmage under consideration.

‘ Extendlng the work of Martelll, Cooper [Coo79] has also used the A* search algo-
rithm. He has attempted to take some of the arbltranness out of the cost functlon by
baslné that function on a Ilkehhood statlstlc He models hypotheslzed edge contours as
a Markov process The i lmage is modeled as consnstlng of two reglon types, background”
and obJect " separated by the edge contour The two types are assumed to be of dif-
- ferent but constant mtensuty The cost statlstlc is then the jomt likelihood of the partic-
ular hypothesnzed edge contour and the image plxel values, glven the assumptlon that all
‘ pnxels mslde the contour belong to the object at one gray level value and all outaude

belong to the background at the other gray level value. Note that for each hypothesued
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edge contour, the statistic must be calculated over the entireimage. o
Thls method represents one lmprovement over |ts forerunners but exhlblts several

serious drawbacks On the plus snde, the cost functlon is at least statlstlcal in nature and

so has a better theoretlcal basls than the heurlstlc functlons dlscussed above Thls i

allows forv some performance analysls Also, the Markov edge contour model captures an_‘ :
lmportant characterlstlc of real edges as we shall dlscover in the next Chapter On the“

other hand the assumptlon of only two lmage plxel types, object” and "background ”. '

mdependent and of constant gray level values, is hnghly unreahstlc In practlcally any
real |mage of lnterest plxel gray level values wlthln and outslde of objects may va(ryucon-
slderably due to hghtlng 1nhomogene1t1es, shadows, object 1nhomogenelt1es, etc Pulcelsb
are almost never stochastlcally lndependent a subject to whlch Chapter 4 ls entlrely
devoted Furthermore, such a problem statement ls' only useful for ﬁndlng boundmg' »
contoura of objects and is useléss for ﬁndlng internal edges, lntersectmg edges etc., all of
which may be lmportant to subsequent processlng Slnce attemptlng to find the\
optlmum contour in terms of thls hkellhood statistic is exceedlngly tlme consumlng even
‘ under the‘ very conservatlve assumptions mentloned the 1nvest1gator has- also employed
Va sub-optlmum search usmg the A algonthm All of the prevxous assumptxons are Stl“:
requlred but the llkellhood statlstnc is calculated only over. the plxels 1n a swath” near 7
the hypotheslzed contour Thls results in a search procedure that |s very close to what

we call sequentlal searchmg Unfortunately, the hlghly restrlctlve assumptlons stlll lmut
its appllcablllty

Ashkar and Modestmo [Ash78], slmnlar to Chlen and Fu, start by formulatlng the

edge detection problem as a tree search. They make the important step of applying the' ,
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searCh .,toth‘e outp‘ut lmage of an edge operator rather than to the »orlginal image. This
helps overcome ‘some of the shortcommgs of Coopers approach This will be dlscussed

in Sectlon 2 1. The Z-J or stack algornthm (Sectlon 2.3.2) is used to perform the search.
.Thls method represents a fully mature example of sequentlal detectlon with additive
branch costs or metrlcs and a truly sequentlal search in the sense of Forney s definltlon

, ",‘(Sectlon 2.3.»1).1 However, plts metrlc suffers from two probIems: it ls agaln very ad-hoc
“ 'in nature, with components that depend on -ercperimentally determined parameters and
- nlook-up tables and it reqmres a prototype contour This latter is a contour provnded by |

‘ »l some a-pl‘lOl'l knowledge base that helps to gmde the search toward some preconcelved

o ‘estlmate of the final edge map Thls represents rather hlgh quallty a-pnorl 1nformatnon

' lfand whlle posslbly approprlate to certam narrow classes of problems, is a severe limita-

L txon to t_he' m‘ethod’s generahty.

'Il‘hls metrlc formulatlon furthermore lllmlts any analﬁlcal treatment of the method
2 "'In”partlcular it 1s 1mpl|cltly ouumed that 1. ) the metrlc is 1ndlcat1ve of the hkehhood
that the correspondmg path conncldes w1th the true edge contour, 2.) the metrnc
'possessesthc correct condltlonal drnft 3) the correct path is not ever purged from the
search stack due to conslderable searchlng of mcorrect paths, and 4 ) the correct path v
eventually arrlves at the top of the stack (The same objectlons mlght be made of the -
3 .“other techmques dlscussed in thls Sectlon) Begmmng in Chapter 2 these 1deas w1ll be
':carefully defined and addressed It w|ll be shown that it is possxble, through a more
e ,l ‘rlgorous dernvatlon of a stochastlc path metrlc, to glve quantltatlve answers to these

‘.questlons’«. » S
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A rather dlfferent method proposed by Suk and Hong [Suk84] whlle not truly“.
‘ sequentlal in nature, also emphaslzes the 1mportance of detectlng edge segments over
edge kpomts in low s1gnal-to-n01se ratlo images. The cost functlon is. composed -of a
varlety of statlstlcal tests, but the method does not make use of the computatlonally.:'
efficlent searchmg algorlthms descrlbed above. As in the other cases no analytlcal treat- »

ment of the search dynamlcs is undertaken.

Flnally, there. are a number of techmques whlch are also loosely termed sequentlal‘
edge detectors that perform their sequentlal search strxctly along scan llnes of a raster
scanned lmage That is, rather than attemptlng to flnd a path through a tree represent- .‘
lng a two-dlmenslonal edge contour in an image, they merely try to locate the posltlon of _
an mtenslty transltlon along horlzontal (or vertlcal) scan lmes Although thls is useful for
findlng boundlng contours for slmple, homogeneous objects, we wnll restnct our use ol'*
the term acqucntml acarclx to the two-dlmenslonal problem rather than 1nclude thxs
essentlally one-dlmenslonal search Two examples of th|s approach are those by Basse-'

ville et al. [Bas81] and Hansen and Elllot [Han82]

\Nith thls lntroductlon to edge detection and prevnous work in sequentlal tech-
niques, we now turn to a new approach. This method, to he called Sequentlal Edge '
Llnklng (SEL), is an attempt to formahze the use of sequentlal searchlng as an alterna-
tive to the use of local thresholds as a classlficatlon crlterla on the output of edge opera-;
tors. Since it is a processing step Jollowsing the appllcatlon of an edge»»‘operator, it is
largely lndependent of whlch specnﬁc operator is used. The lntent is to allow the
integration of many observatlons along an edge ‘contour to enter lnto the classlﬁcatlon

process in order ‘to improve the performance at low slgnal-to-nmse ratlo, ease the dlffl-
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culty in choosmvg a thrashold and eliminate the incidence of .streakmg in the resulting
edge map lt furthermore has the advantage that an analytncal theory may be brought
to. bea.r on fundamental questlons of its performance and operational dynamlcs This
thaoryalso ,i)a'_ves _»the :‘way for the technique to make use of correlation in the image

data. All of these ideas will be developed in the following Chapters.



'CHAPTER 2

' SEQUENTIAL EDGE LINKING

2.1. Introduction

‘ In this Chapter, we wnll introduce the concept of Sequentlal EdgeLlnkmg,vcontrast
its behavior with that of the other sequential techmques dlscussed earher, and descrlbe
in some detail the operation of the algonthm We w1ll begln wnth a fairly general discus-‘
sion of the philosophy behind this approach. The various definltlons required for the,
discussions to follow will then be developed A path branch metric for sequentlal search-
ing in images wnll be derived that maximizes a jonnt probability cntenon This metric
Will be shown to possess several important'charactenstlcs for its use in a sequential tree
‘searchin‘g algorithin This development is followed hy an examinationof a numher of
algorithms for performmg such a search. Although the treatment of these toplcs will be
in depth, it w1ll stop short of any performance analysis which is reserved for the next
Chapter. In addition, the simplifying assumption of independent observations will be
used here with the generalization to correlated observations to be developed in Chapter
4. |

Let us return to the problem of finding linear features. We will view this as a
»post-processing task to follow the application of an emphasis operator. We consider
such an operator to jbe any mathernatical operator that, when applied to a digital image,
produces an estimate of the magnitude and direction of the desired linear ifeature at

every point in the image.
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Some pre-processing (i.e. using an operator) is prudent. Although it might be possi-
ble to‘ perforrn a sequenti.alhsearch directly on the raw image, this results in the need to
introduce additional parameters. Use of a preprocessing operator decomposes the feature
extraction task into two partszr enlphasis and detection. The operator serves to
emphasize the _feature_ in which‘ vve are interested. The sequential searching algorithm
‘then attempts to perform the detection process based on this emphasized information.
This allows the detection algorithm to be independent of the feature. For example, to
k - perform intensity edge detection, the preproeessing operator is designed to emphasize
intensity‘ discontinuities in the image. Likewise, the operator may be .desi.gned to
emphasnze hnes, roof edges, texture edges, or color edges. In any case, its output is
expected to be a functlon of the magmtude and/or the dlrectlon of that partlcular

feature at every ponnt in the lmage

In the case ol’ lntenslty edges, the preprocessnng operator generally attempts to estn-
mate the magmtude and dlrectlon of the local lntenslty gradlent However it usually
also employs spatlal low-pass filterlng to avond unacceptably hngh probablllty of false
detectnon in sxtuatlons wnth poor algnal-to-nmse ratio. By mcorporatlng such ﬁlterlng in
the edge operator, vvhlch is apphed over the entxre image, one may take advantage of
certann computatlonal efﬁclencles [Can83]

: we‘ will assume for now ‘that gradient magnitude 'and direction information
represents ‘the»input_to our system. Our goal is to determine connected lines represent-
lng intensitv edges in the original irnage while not responding to spurious efl'ects of noise,
etc. l}lfe» would like toachieve as much. positiOnal accuracy as possible, vbut ‘due to the

searching technique, subpszel accuracy ¢annot be obtained.
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A crucial observation is that it is not desirable to ‘quanti'ze this gradient information
any more coarsely than necessary We certainly do not want to threshold thls data
(quantize to omne bit) globally, locally, adaptlvely, with hysteresls, or whatever Nor do
we w1sh to non—maxxmum suppress it [Can83] The experlence of detection theory, cod-
ing theory, and related disciphnes states that coarse quantizatlon of nonsy, correlated
observations independently of one another may be expedlent or acceptable where the
signal-to-noise ratlo is high, but leads to poor performance when the signal quahty
deteriorates (cf. [Sch80],[Mel78]). |

Instead of malcing such hardvdecisions .(thresholding) right away, ‘experience' dictates
one "integrate” the soft information over many observations before conc‘luding on a deci-
sion. This "integration” takes a vanety of forms dependlng on the appllcation For |
example, radar problems utillze sequentlal detectlon theory [Pet541, all decoding algo-v
rithms in codlng theory base declslons on blocks or long sequences of received data
[Vit79]; examples of correlational detection abound. Sequential Edge Linklng is one
manner in which such integration may be performed in the conteict of image edge detec-
tion.

The image processing literature has not entirely ignored this fact. Non;isotropic,
highly directional edge operators make explicit use of this 'ideai Canny, in [Can83] has
calculated the actual ‘performance improvement to be derived’ from long operators
stretched in the direction of an edge. These.suffer from two related disadvantages: they
are typically limited to sliort, straight segments or a small number of curved segme}nts,.
and they are computationally prohibitive as their size increases (sin_ce they must be con-

volved in all orientations over all points of an image). As we shall see, even with certain
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restrictions imposed, the number of possible configurations grows exponentially with the
number of pixels in the operator (see Section 2.2.2). Certainly, decisions based on hun-

dreds of pixels, routine for SEL, are unthinkable by these methods.

RelaXation-based methods do make use of soft edge magnitude and direction infor-
mation as well as the interaction between neighboring pixels [Zuc78]. This reportably
accounts for their hi’gh performance in certain ,situations [Zuc78b]. The trouble with
relaxation lies with its convergence properties. In particular, in many situations conver- -
‘gence of the algorithm is: not even guaranteed or the solution is not known to be unique
[Zuc78a] No performanc'e bounds can be determined or estimated. In short, one must
resort to a ”try and see” approach Furthermore, the nature of the pixel inter-
dependence specnﬁed in the algorlthm cannot take advantage of any knowledge of the

true correlation statistics.

‘ Fy“xnally there are the sequentlai sea.rchlng technrques Vanous lnvestlgators have
attempted to employ sequentlal tree or graph searchlng algorlthms in this context Ash-
kar and Modestlno [Ash78] and Cooper [Coo79] seem to have come the closest to SEL.
With the former, the metric used to gulde the search is purely ad hoc and so cannot
benefit from ‘any analysns almed at determining its behavnor or probablhty of success.
More senousiy, however, thelr technrque ‘makes expllc1t use of a ”tralnmg contour” to
gulde the search Thls represents very hlgh quahty a-pnorl |nformat|on It is noted that
in certain specafic clrcumstances such mformatlon may indeed be avallable, but |t greatly‘
reduces the generahty of the method. The second technlque is qulte dnfferent from SEL
and, as noted earher, suffers from qulte restrlctlng :assumptgnons concernmg the mean

gray level - of pixels and their independence. While the results are generally good on



artnﬁcnal lmages where these assumptlons are explncntly met thelr performance on rcal
images is. yet to be demonstrated It can be sand however, that the path searchlng tech- B
mque of both of these approaches is very slmllar to that of SEL as is the phllosophy for"_,
.domg o , L o e

" Havnng obtalned the gradlent magmtude and dlrectlonllnformatlon from an edge.
operator (plus spatlal ﬁlter, see Sectlon 2 2 4), |t seems temptlng to suggest a maxlmum‘
llkehhood search such as [Coo78] To do thls, one m|ght hypotheslze all posslble edge
paths of say n plxels 1n length calculate thelr respectwe a-prlorl hkellhoods, assumlng'
some dlstrlbutlon on the gradlent levels, and plck the largest However, the exponentlal'
growth of the candldate configuratlons w1th n dooms thls approach regardless of the
maxnmum llkellhood algorlthm used. The sltuatlon is analagous to the problem of
decodlng convolutlonal codes in codlng theory ‘One may use ML technlques such as
dynamic programming (Viterbi decoding) as long as the const.ralnt length is small ( <9
or 10) [Lin83}. Beyond this, the exponentlal growth of computatlon and memory requlre-
ments W1th constralnt length make the algorlthm t00 unwneldy

The solution to the decoding problem with large constraint,' 'lengths, seduential
decodlng, is the 1nspxrat|on behind SEL. ln both situations one does not attempt to
explore all posslble paths in the tree, plcklng the ML path but rather one explores onlyv
a small subset of them wlth a hlgh probablllty of lncludlng the correct one [VVozﬁl]
Thls exploratlon is accomphshed sequentlally, extendmg only those paths whxch hold

' hlgh promise of b‘elng the correct one.

This approach has several promising virtues. First, it can explore trees with large

"constraint lengths” or memory very efficiently and at high speed. Sequential deCodlng,
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iof codes with constramt lengths of up ‘to 50 and at speeds in excess of 10 Mb/s is not
uncommon [Lm83] Secondly, dlsregarding the problem noted in the next paragraph the
error perfor_mance -_ls generall_y very good Thlrdly and perhaps most importantly the
‘ analytical machlnery developed for lthe analysis of sequential decoding may be brought
‘ to bear, mth a number of lmportant modifications, on the edge detectlon problem This
: allows 1mportant mferences to be drawn regardmg performance bounds, probability of |
‘ error events,_ etc. : o | |

' On" the ‘neg‘ative side, such sequential a'lgorithms suffer a variety of problems result-

o 1ng from thenr va.nable computation time [Sav66] As sngnal-to-nmse ratio degenerates,

' ,the number of poss:ble paths explored increases. ln data transmission systems, thls can
»‘ lea.d to buffer overflow and burst errors. With image edge detection, this means only
that processlng tlme is delayed Looked at another way, SEL can take advantage of
: good sng:nal-to-nonse ratio by explormg fewer paths In any case, processlng tlme is varl-
:»able, dependlng on the quahty of the edge mformatlon present

" : One final note'. By virtue'of its ‘.path metric, SEL can provide'subsequent process-
- ing tasks wnth quanmatwc informatlon concermng the confidence in segments or whole

edges Other attrlbutes such as length curvature, dlrectlon, and an orderlng of the con-,

| stltuent pixels are expllcitly determmed and nmmedlately available to higher level tasks
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2.2. Definitions

2.2.1. Images, Random Flelds‘ .

For our purposes, the terms |mage or dlgltal |mage wnll refer to a sample functlon -
of a two-dlmenslonal dnscrete parameter random field See [Ros76] for a general dlscus-

sion of dlgltal |mages or [VVon7l] for a more rigorous treatment of random fields

Sample functlons of thns random field consnst of a.v rectangular array of numbers '
These numbers can represent various quantltles dependnng on the nature of the field Il :
the array is an lmage of a natural scene, the numbers may represent the gray level. or
intens‘ity of light at that point of the scene. Alternatively, _they may _represent an esti- |
mate of the magnltude of the gradient of such gray levels or the dlrectlon of the gra-
dlent Whatever their mterpretatnon, ‘these numbers, henceforth to be called plxel
values, pixels, or observatlons are del'ined at ponnts of a rectangular lattnce The ponnts
of the lattice are called nodes, their spacing is ‘uniform and equal in both d_lrectlons, and :
: they_ are indexed -'by,I'-‘ X I where [ is the set of integers. o
l“or a given.random field, we assume the existence of a probability space‘(Q,A Py

and a measurable function, f + (w); we, FEI? defined on this space:

J: W) aX ?-FCR . | 7(‘2-1l
Here, T = (r!, r2) is the pair of coordinates of a node in the array,vand / -; (w) is the

pixel value at that node, and F is some countable subset of the set of real numbers.

Due to the rectangular nature. of the lattice, each node has a unlque set of elght

nccghbors [Ros70] The node at coordinates (r , 2 has the nelghbor set:
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(r'4+1,r%, (rl-'.f'z-'i-l), (r'—’l 5-2) (rtr2-1), (r'—l r2-1), (r'-1,r2+1),
(r1+1 r -—l) (r‘-l-l r2+1) ~Any ordered set of nodes for which all adjacent palrs are
;nenghbors WI“ be called connectcd An ordered pair of nelghbors also unlquely defines a

: darectnon. Eight such dnrectlons are therefore possible.

| 2232 Pathe
A poth will be defined as a connected set of nodes with the following property: for
: any' snbset of three nodes in the ordered set, the directions defined by the first two
’ nodes and by the second two nodes dlffer by 1r/ 4 or less. Thus, lf one were to draw line
_segments between nodes of a path the resultlng curve would contain no changes of
dlrectnon greater than or equal to 1r/ 2 (see Flgure 2. 1) o .

| Paths may be denoted bln one of two ways The first is slmply the ordered set. of

nodes compnslng the path:

‘m = .[(’_'ll i), (rs tr22 ), - -+ (radirad) (2:2)
vThe second method is by specifying a start no:dc and ds'rcction, and an ordered set of

letters:

m = "(rol ré )‘- X Ii;,' x’ “V[a'l",“ai,,a;,, e (23)
where (ro ,ro ) is the start node, do is the start dlrectlon, and the a; are taken from
an alphabet A = [ L S, R ] The letters of the alphabet stand for Ieft stra|ght and rlght
' respectlvely The coordlnates of the nodes of the ‘path may be obtained in a recursive - |

fashlon from the letters a; The ﬁrst node is. obtamed from the start node by movnng in

. 'the array in the dlrectlon d o The direction to the second node is then obtained from
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Impossible paths

e ey

" Posgible path . . . . . __l

Figure 2.1: The path topology on the left is permissible since all changes of direction are
of /4 or less. The path topologies on the right contain changes of direction
greater than x/4.
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do and a (and so on) by the obvious rule:

| e+ S e =1)
d = {dy,  ita=38 (2.4)
d-5 if ;=R

This process can likewise be reversed to obtain the list - of - letters description of a path
from the list of node coordinates. Thus, either description uniquely specifies a given

path and they are equivaleht.

The second "pa’th description has been introduced in order to clarify the following
model for paths. We will assume that paths may be modeled as a k** order Markov
Chain [Ros83]. In the following discussi_oh, we will focus on the letters a; of paths and

take up the question of the start node and direction later.

Let us consider a discrete time stochastic process Sﬂ ,i=0123,...:

S;(w: 0 —-% (2.5)

The underlying space (1 is just the space of all possible state sequences:
Q = .(8073 1,82,_ ‘. . .) v - (2.6)
and E is the state space. When the process enters the state at ' +l from that at t, 1t

,outputs a letter a, +1 €A = [ L S,R ] The state of the system is defined to be the

ordered sequence of the last k letters put out by the system:

8 = (aiyax'-—l)v' . ""alf-(k-—‘l)) : : - (2'?) |
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o that £ = A XA X...XA = A*. We will assume 8¢ is fixed and
known. The Markov assumption is then: | |
P"( +1—'3-+l|3u3.1:'g 30)—P"( +1—3o+1|3) | ,(2'8)
or: ) o
 Pr(e;4y | &, .. ..80) = Pr (8; 41 |’ &) - (2.9)

 trom which it follows by the chain rule:

Pr(ai;az, . ,'.V,e} )'
P"(Bu | 25-1) P"(’ ] 8a0) - Prisy| sg)

Pr(m) - (2.10)

Thls is oue stochastlc model for the ﬁath process. It bears astrong‘resemblance te that
used in [Coo79] By mampulatlon of the transition probabilities, Pr (3; +1 | 8;), certain
types of paths achleve higher probablhty of occurrence than do others. For example, the
model may favor paths exhlbltlng long segments of stranght transltlons over those that
meander lncessantly with hlghly probable L to R and R to L transitions. Such a nentlnl-
form distribution of transition probabilities may be experlmentally verlfied for lmages
The Appendix describes a program that traces edge llnes in images of representatwe
objects end calculates estimates of state transition probabilities based on t_heir frequency
of occurrence.  The estima‘tes given in the examples there clearly show‘ that ~all.the tran-

sitions are not of equal probability.

2. 2.3. Path Metric

The cruclal concept in any sequentlal tree searchxng algonthm is that of a path

metric. The al_g_orlthm s efficiency and chance of success lle in |ts ability at any point of
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execution to rank all the paths explored so far by a measure of their "quality”. This
measure is the path metric. The path branch metric of Ashkar and Modestino [Ash78] is
an example, but it suffers from a lack} of generality and is largely ad hoc. In this Sec-

_tiom, we -wlll derive a path branch metric that optimizes a joint probability criterion.

~ The. concept of a branch metnc for sequential tree searching was first introduced in

“the problem of sequential decodlng of convolutional codes by R. M. Fano [Fan63] That
~ metric is probabilistic, reflecting the statnstncal nature of the underlying coding theory.
The metric we introduce is also probabilistic. This -is in part due to the models we are
. assuming for images and paths, but also. because it allows a statistical.treatment of the

operation and perforlnance -ofv the algorithm.

" ~ Path 'metrics should exhibit certain desirable qualities. First, they should not be

. b_iaf"ed by path length.» That. is, the metric shonld not favor a long pat}h over a short one
just b_ecause of ‘its.length }or“vice: yersa{[McEl77]. All‘paths peed to be compared on the
.basis of | their probal)ilitjr of fbeing:a_n edge pathvregardless of length._‘ Second, they need
to be -efflcient to compute This is best served by a metric that isl recursively computed'
the metrlc of a path to a certam node is obtalned from that to the precedlng node by
addmg a correctlon value that depends only on the new node. This ellmlnates the
7 -necessnty lfor calculatlng the metric anew over the nodes of a long path every time it is
extended by a node Thls is very important from the standpomt of efﬁclency and
becomes an even more VCNCIal requirement when the observatnons are correlated (see

Chapter 4) Flnally, the metric should exlnbnt the all - lmportant "drnft" characteristics.
That |s, |t should tend to increase along true edge paths and decrease elsewhere Thls is

_cntlcal to ensure that a sequentlal searching algonthm proceeds correctly.

[
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Our path metnc wnll be defined for paths |n a random ﬁeld as deﬁned in the

) precedlng Sectlons -We wnll assume the follownng two measures on the random ﬁeld

The first, pl ( [z = y) is the probablhty the field value or. observatlon at node r is’ y o

: condltloned on the hypothesns, H, 1, that that node is on an lntensnty edge in the orlglnaI:

|mage:_' ‘ |
rlfz=y) = PFr (fz =1 I H:)

o Pr (f—?—yl r is on an edgc )

(211)

The second is the probablllty of the observation condltloned on the null hypothesns, H,,

that the node is randomly posntloned in the field with respect to mtensnty edges

Po(f;' =$") ;‘Pf (f"‘—!l | Ho)

Pr (f-o --y| risa random node )

(é.i2i

‘ Note that at thls ponnt ‘we -are not even speclfylng what the random ﬁeld [,
'represents but merely assuming the existence of these two condltlonal measures on that '.
field. . It w:ll later turn out that the field is a gradlent magmtude or gradlent dlrectlon_

field or a functlon of both.
‘For a given bath, ﬁl, '

m = "Fli?zr S 1;;] .
-—

- S (2.13)
To X »do X [al,az, . .'.‘.,(vl“‘] v :

we now define the likelihood ratio, 1(f), of the ‘path in the conventional manner. as

[Vané8}:
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il S2)
?O(f}'l’ s r[’;)

= (2.14)

- This i,svsimpvly the joint probability of the }obser’vations along the path conditioned on
) ,the_ H 1 hy'pdth_esis divided Bj the joint probability of those values conditioned on the
, 'Ho hypothesns o .

’ From Equatlon (2 10), we have the probability of the path m is:

Pr .(x_n).v= 1 Pr (los) - (1)

.'We are now in a posmon to deﬁne our path metrlc Foi' the given path m, the path |
metnc, , I'(m ,f) will be deﬁned as the loga.rlthm of the. product of the path probabnhty ‘

: and its hkehhood ratno

Mmf) = h[Pr(m)-I(®) = (218)
" If we make the ‘very important assumption ‘that the random variables of the field are

stOchastice!ly independent, then the likelihood ratio becomes:

pf)eldz) - efz)

10 = -
' ( ) : .._}'_.Po('/;jl)__Po(.f;')- -polfz) (2.'_17)
and E_qn";titsﬁ (2.16) simplifies to: - B
T I | |
Mmf) = ) |h + In Pr(s;] 8;_;) ' (2.18)

= | polf3)
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The a.bove assumptlon, known as the statrstlcal lndeoendehce of the observatl'ons,i_"
is an lmportant one. It allows the factorization of the joint probablhtles of the hkell-
hood ratlo whlch in turn glves the oath metric its recursive computatlonal efﬁclencyr
Note" that pat.h m may be extended by a node and the new met,rlc obtamed from t.he old '
by merelyvadding’“av term: S

R FPrioals) | (19
Ih Chopier 4 we will treat the situation of vcorrelated obserrations where this aseumption'
is no longer true. | e |

The path metric of Equatlon (2.18) is a sum of branch terms each of whlch has two
components. These components play dlfferent roles.  The first isa hkellhood ratio of the
probability of observing the random variable / 7 under the hypothesis /, to the proba-
bility under the null 'hypotheeis.'- This component therefore is a function of the .deta in
the image. The second component is the branch transition proba.bility and.is a measure
of the a-priors prohability that ‘the edge path proceeds in that direcf;ion; given the last k
branch directions. : -

The stochastic nature and recursiveness of our path metric are clear. The fact that -

it possesses the correct "drift” characteristics will now be demonstrated. For this pur-

. .. ... I . ‘ .,
pose, we will find the conditional mean of the statistic, —Lm—’f) , i.e. the path metric

normalized by its length: -
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{_(_)|H1} = E{ 3 [m”‘(’ )+1nPr(,|a_,)]|H,}(z.zo)'

"J_] pO(fJ)

Now since the path process is stochastically independent of the random field under the

H , hypothesis, the ﬁght hand side becomes:

AL [ ) ¢ s Bretea]) e

=1 j =]
Considering the first tem above, since the observations, f j» are equidistributed, the

‘expectation of the sum is equal to the sum of n identical expectations, so that:

(45 [ ﬁiif’i] ) = 5 (w2l

- g wal
| pif)
Zf}m(f)l ol )

(2.22)

by the definition of the p; measure. This last quantity is seen to be'the Kullback’s
Informatioﬂ][K\.x‘l59] betiw_een'the Pl and p o measures, denoted I(p, | "po).

The second term of Equation (2.21) can be rewritten using the é_h_bin rule as:

E{ m it [‘n Pv’(":r?J 1)} } ‘ i,E{!ln P"(svma‘,.‘lp ‘- '-”1)}
| | | = _E{} lnv”Pr(a,, ,0 .:.ll,v- ,:al)' } .

which is defined to be the entropy per letter of the Markov source [Gal68] In the limit

as n_— 00, this quantity can be shown [Gai68] to be equal to:
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g

H o (S) = -5 q(i) 3 Prigle=4) In — (234)
) .z-:1 l§1 ’I ) Pr(a,|s =1) ( v )_
~ where q () is the time averaged state probability of state i:
g(¢) = lim - E}-Pf(s =1) o (2.25)
y oo 0 =1 o ,

Since all the states in ilie Markov Chain we have been considering are recurrent and ivn,'
the same equiva}le_nce" glass, i.e. each state can be reached from anj‘ other in one or more. '
trénéition; and thefe are no states outside tvhis set, g(s)is in-;iépende.nt Ao.f the initial
state, 8o [Ros83]. Combining Equations (2.21-2.23), we therefore have \,the final result

that:

s —00

im £ {220 1 — 111 p0) - HalS) (2.20)
Likewise, under the H ¢ hypothesis, the observations term »becomesf

R 40

_ Pl(f)

| (2.27)
= —I(Po’| Pl)

so that: -

i —00

im £ {M2D 5} = 1100 - HulS) 29
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We see then that since both /{*| *) and H _(S) are strictly non-negative, the expected
value of the normalized metric conditioned on the hypothesis that the path is not an
~ edge path is negative. When conditioned on the H 1 hypothesis, the normalized metric .

will be positive if:

I(p] po) > H o(5) )

‘Therefore, as long as Equatlon (2.29) is satisfied, the metric tends to grow with length if
the path is truly an edge path and tends to decrease with length otherwise. This is the
deslred ”drlft” tendency that allows the searchlng algorithm to ﬁnd the edges in the
|n1age It is |nterest|ng to note that the difference between the statistics conditioned on

the two hypotheses grows wnth n as:

{—-)IH} {—1-—'3’!11} = Ie4l 70) - Iiool 22
, | ' (2.30)
= J(pop )

where J (' ') s Kullback’s Divergence This says that on average, the difference

between the rate at whlch the metnc grows along a true edge path and the rate at whlch

it decreases along a random path is equal to the Kullback’ Dlvergence between the two
measures P lv-and. po. - | |

The fact that this path metric is not biased by path length is more difﬁcult to jus-
tlfy We will do so by redermng Equatnon (2 18) in such a way as to brmg out this
characternstic The approach is similar to that used by Massey in the convolutlonal cod-

ing sntuatlon [Mas72].. Thns furthermore gives addltnonal lnsnght into and justification of



aa
the proposed metric.

 Let us suppose we are given a set, M, of pOSsib_le'pathsof 'Yarﬁng lenéths,_-'f PR

Mot e

m' = 7, X dy X [a},...,a5]

where the Iength of. the t path m', is n As before, the ks path has probablllty

Pr_(m‘) = .lllvPr('a}'ll‘af_'l ) “ : e (232)

of course, each node of every path in M has an assoclated pnxel value To sxmphfy-:
notatlon, we : will denote the observatlon correspondlng to the ] th node of the it path "

The set of f -values assocrated with the gt path Wlll be denoted |

ti = [/} ,f.é R (7))
Novv,‘ just as in [Mas72‘], we will append a string of a-letters and associated f ;values'to o
~ the end of the shorter paths to make them all the same length “The tall of a~letters, '
m},; = [au.' 1 . ,af;] where N is the length of the longest path in M are chosen |

at random Since this path extenslon is random through the ﬁeld the assoclated f

values are chosen mdcpcndcntly and at random accordlng to a measure, po( f), known o

as the random-path f measure (It is the same as the p o measure deﬁned prevnously)

We assume the values of the random tails are chosen lndependently of everythlng else, 80
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_’th::;t:.'

. Pr(fa v ] mmi ) = Pr(fivsare o)
| Pr(fia)

N .
polf})

(2.35)

Fesa’ 41
_If_-ive now assume tlié'pfobabilities of the f -values of any path that coincides with
an inténgity'gdgq- are given by the measure, p,,
CPr(fY | Hy) = pytY) (2.38)
’ phen due to the conditional independence of the obsérvations, we have:

Y . “I.V-.s"" S '
Pr®* | H) = J.El i) ,El polfaiy;)  (237)

Thus the joint "proib'ability df tracing path § 'obsenihg'the- values £¥ along it, and
addnng a random tail, m,,,,, under the hypothesls that path i is indeed an edge path

may be. wrltten

| . . .- v.,‘ ‘ '”i e .‘ ‘ ”‘ . A
‘Pr(m‘ & ’mt.aiiyft.aa) = .I_I.IP?'("}!"}-x) J.I.LP ;)

et N o  (239)
. v JlllPr(s n+3'3u'+1_1) EIPO(,:’-FJ) . '

,.

Summing over a_l‘l p‘ossible choices of a rangioni tail, we have:
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Pr (m‘. ,f'. 1rt.:u'l) = E Pr (m f mtad lrtad)
o ’ mml

| \ - ‘ (239)
= H Pr(a'ls, 1) jlll‘m(_f}) H Po(fu +J)

Now an optimum rule for deciding among the paths in'M is to choose that path # such

that § maximizes Pr(m’ f* ;) or equivalently, such that § maximizes:

Pr(m f rtasl)

H Po(f )

o S (240)

since the denominator is independent of ¢ and the logarithm is é‘.;‘noh‘otonic" function.

We thus have as the statistic to be maximized:

M) = § |1 P/ ;) + lnPr(a'ls, l) (241)
) RO e pol)) DTl

This is o'bfri‘ousljv Vtheean.xe metric that 'was ‘presenjted ie a constructive manner ear-
lier. This derivation lends support to tixe contention that the metric orders the proepec-
tive paths according to a rule that maximizes the joint probabilitiof the path letters
and the observed random field values along the path. It also demonstrates that the
metric has no bmlt in length bias: that path which maximizes the jomt probabllleyexhl- -
blts the highest metric. Just as in [Mas72], the use of the random tall is a convenient
device for equalmng the length of the observed paths for the purposesvof comparing
thelr probablhtles In a sense, the a-priori path probablhty, which decreases with length

is balanced by the likelihood ratxo, which increases with length.
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2.2.4. Gradient Operators

As discussed in Section 2.1, the SEL algorithm is usually preceded by the applica-
~ tion of a spatial gradient operator. The algorithm operates on the output of this opera-

tor rather than on the raw image itself.

The hterature devoted to spataal gradient operators for images and other multn-
dxmensnonal slgnals ns(qunte extensive.” The interested reader is referred to several survey
artlcles for more complete bibliographies on the subject (Kun82],[Ros84].

bThe function of the gradient _operator is twofold. First, as its name implies, it
forms an estimate ‘of the (discrete) spatial intensity'gradient at everynode of the field.
This includes direction as well as magnitude estimates. The rationale for this is that
intensity ved‘ges inima_ges g'enerallp coincide with large _gradient valnes. Gradient,magni-v
tude is a local measure of ‘,”Te:dg‘iness”' at a node that is independent of the average or
baseline i‘ntenslty‘ in thelocal :regiion. This ‘hi_'gh pass (in spatial l'requency response)
nature is characteristic of all gradient—type signal processors._

| Due to the predolnbinance of bigh (spatial) frequency noise ln many images, this
high pass response of a gradient operator does little to reduce the average noise power in
the operator output Partly to mcrease the output sxgnal-to-nonse ratio and partly to
provnde a measure of control over the overall spatlal frequency response of the operator,
gradlent operators. often.lnclude some low pass spatxal ﬁltenng as their second function.

Agam, the cholce of ﬁlter functlons is large, wnth many optlmum filters havmg been

. denved for speclﬁc sxtuatlons and criteria. Most of the results glven later were obtained

: uslng a 2-D Gaussxan ﬁlter Tlus choxce was’ made for two reasons. The kernel of a 2-D

' Gaussxan l‘ilter is separable, ie. the 2-D convolutxon can be decomposed into two con-
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caténated i-D con'volutionsv “This has a dramatic effect on increasing computationai effi-
ciency, especnally for ﬁlters with la.rge support Secondly, the Gaussnan ha.s the unlque“
property among the myrlad posslble filter functions of having a minimum pfoduct of
bandwidth and spati‘al vresolution [MarSO]. Thus it offers an excellent compro;nisei
between néise- rejectioﬁ (nirrow lo‘w-pass‘ band‘width)‘and edge positio.n blurring (spatial
resolution). In fact, Canny [Can83] has shown through a variational Calculus argument
that the Gaussian is very nea.rlj equal tc; the optimum filter shape for intensity step
edges in images where th§ criteria of optvimavl’it)" ére édge povsit.ioh'zbﬂ accurécy vand ;u.tp‘-ht
sigiial-t@xioise ratio. o | A

Edge directioil infom;atﬁon is ﬁlgo useful in detéction algorithms. Gradient opefa-
tors are vectc;r opérat?o;s ar;;i pfoﬁde estlmat.es of vtv,'hé idc'hl gré.dient; dxrectlon ‘?a.s,well as |
v.the magnitude. These two quantities can be combined to provide ‘a‘ directional gradient

operator. If T is a unit vector in a certain direction, then:

gl -7 R O (242)
is the gradient of thé field I in the direction of 7. ‘It has been argued by'varioixs inves-
tigators [Har84],[Can83],[Mar76a), that directional operators provide better bérformance

in the presence of noise than do isotropic operators.

When Gaussian filtering is inéluded, a directional gradient operator takes the form:

(vG*I)+ 7 SR - (243)
where I is the original field (image), G is a 2-D Gaussian kernel, * denotes 2-D convolu-
tion, and 7 is a unit vector in the desired direction. In other wor»ds’, this operator only

considers the component of the gradient in the direction n; the component of the
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grédient par_allel‘ to ;{ is diéregarded.

The quz‘mtity‘il‘l Equatioﬁ (2.43) can be determined at the nodes of hypothesized
paths in the :‘fiéllbbv’;ving ‘manner. The gradient operator is first ;pplied to the entire
im#ge,' with the maghitude 'andhdifeﬂibn information stored separatelj in two output

fields. The magnitude field is given by:

M = |vG * I ) (2.44)
and thg direction field by:
o G * I
D = X
T |vG *I] (._2'45)

When a given nbdc, T, is visited by the algorithm, the directional gradient at 7 can be

found by: -

f: = (D:-d )M | (2.46)
kwhere Z';' is orthogonal to the péth direction at ¥ and ° is a vector dot product. Since
v thé path.to ¥ .defines a cel;tajn direcﬁon, a;,vthe normal to this direction, -tli‘-;"', is dotted
into f,he gradient direction at ? and this is multiplied by the gradient magnitude. Thus,
[; is precisely thé difectionéi gré.diént of Equation (243) at the node T. Nof{e that f-
is a»fuinct,it-)vn bof yﬁjfe.pgth direction at T as vygll as the gradient magnitude and direction.
con It should be pointed out that (243) gives only one possible / -field input to SEL.
Manf others cquld be used. For e&ample, the input ﬁéld could bgﬂ just the gradient mag-

~ nitude,
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S =M (247
or it could be the output of the Sobel operator [Dud73), the 72 G operator of Marr and
Hildreth [Mar80] compass gradlent masks [Kir71], or any of a large varlety of
mathematlcal operators Equatxon (2. 43) merely represents one posslble lnput ﬁeld that
has been used The path metric used by the SEL algorlthm reqmres scalar values, f =

however. Where vector lnformatnon is present the path du'ectlon is used to reduce it in

an appropnate fashlon to scalar quantltles.
2.3. Sequential Search Algorithrm

2.}3.ll Sequential Searching

We come now to the important' (juestion‘of seduential searching. So far, we hare ‘
defined what we mean hy 'paths and can associate with ’each path a quantitative measure
of quality or metric. This metric is a function of the joint probability of the path transi-
tion letters and the f -ralues of the random field along thepath.‘

What is now needed is a systeniatic way of hypothesizing paths so that they may
be compared :w.'ia their corresponding metrics. As was discussed in Section 2.1, ev_ery‘
path in the field cannot be hypothesized hecause the number of possibilities is enormous..
Thus, maximum likelihood detection is lmpossible. What we do instead is make
hypotheses in such a way that only a small subset of posslble paths is actually explored ’

- but this subset contains an actual edge path with high probablhty

The procedure used is called sequentxal tree searchmg and is borrowed fmm codlng

theory [Lin83]. It presumes that a atart or root node is glven Thls start node must be
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on an intenslty edge but is otherwise :ar‘bitrary, The selection. of start nodes will be
examlned in Section 2.4. The root node defines a tree of semi-infinite paths in the ran-
dom field. Because of the special structure of paths, there are preclsely 3" paths of
length n (or to deptll n in the tree) beglnnmg at the root node The sequentlal search-
mg algorlthm begms at the root node and sequentlally examines paths in the tree The
~ exact procedure by whlch this is done depends on the algonthm used; these will be dls-
cussed in detail shortly The sequential behavnor, however, is common to them all. At
each iteration of the algonthm, one of the paths explored S0 far is extended by one node
and the metric for this new path is calculated Declslons are made based on these,
‘metrlcs as to whlch path should be extended on the next lteratlon Thns is in accord
wnth the definltlon of sequentlal tree searchlng as del‘ined by Forney [For74b] a search
is sequentlal only if each new path hypotheslzed is an extenslon of a prevnously exammed
‘one and the declslon as to whlch path to extend is based only on the set of paths vlslted

thus far

Because long paths are bullt up node by node, |t is entlrely posslble that the algo-

rithm can mlstakenly follow a non-edge path for some depth into the tree. ln Sectlon
é? 3, however we saw that the average tendency of the metrlc under these cir-
cumstances is ‘to decrease with lncreasmg length Our hope, therefore, is that these
forays along lncorrect paths wlll eventually be halted by the resultlng decreases in
metnc T he algonthm at some pomt settles back onto the correct (edge) path for wluch
the average tendency is for the metrlc to increase wnth length Ol’ course, thls average
behavxor of the metric does not guarantee that all |ncorrect paths wnll eventually be
abandoned Such questlons can be formulated and' answered in a quantntatlve manner,

but thlS analysls shall be addressed in Chapter 3. For now, it is sufficlent to conslder
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oﬁiy _tfhis'génveral, éxpec:ted behavior in order to obtain some nnsgght into the ivorkin»g"s' of
the algorith_m;.
We now turn to the searching algorithms themselves. In this Section we will only'

describe their opefation. Analysis will be deferred to Chapter 3.

2.3.2. The Stack V'Al‘gorifh'l‘n' |

Origihall& proposed indepeﬁdéhtly ‘b.y Zigﬁngirov [Zlgﬁﬁ] aﬁa' Jehnek [JelﬁQ],theZ-J .
or stack algorithm is a very éf_ﬁcie_nt method of performing se.quentia'.l>searching in  a tree,“
especially when the rimﬁlementa'tion is in softwé;ré.. It is also the ea}si’est’fdfb th_e‘ sequential
algorithms to understand and so provides the most accéﬁsible roﬁte' to gaining insight
into how se"qu‘ential seérching works. This is tixe reason it is treated first ‘in‘it';hvis" Section
despite the fact »t’hat' it w;s' historically prédatled"v by the Fano Aﬁtlgorit,ht‘li.‘1 :

At the heart of the Z-J algorithin is a ;taék or priority queue [Ah674]. 'anh Veﬁtry
in the stack é&nﬁists of a path and its corresponding metrié. These entries are ordefed
by their xﬁetric; with the ”tdp” of the stacki occilpied by the path yvith the l;rgest
metﬁc. | | | |

Whep'the ,alg‘orithm is first invoked, the stack is initialized by piaciﬁg the r;)ot
node at the top of the stack and assigning it a metric of 0. At this point a s'i‘ight deyia—
tion from the classical Z-J algorithm must be accommodated due to the random field
mobdel én which paths are based. This modification is to specifj a root direction as well.
This ciirection information may be ’obtained directly from Qhe gradient difecﬁbn map or

from a local computation on the f -field values.
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- Having specified a root node and direction, exactly three paths to depth 1 in the
tree are defined. These are the three descendents of tlre root node. The first iteration of
tbe ‘,vstack algoﬁthm prooeeds as foilows..'vThe root _node is deleted from the stack, the
three deseendenbs to depth 1 are vpl‘avced onto the stack and ordered by their correspond-
ing metrics. Subsequent iterations are perforx'ned by deleting tbe top - most path from
the stack; 'ﬁnding_ its three descend‘ent pst,hs, _‘c‘al'culsting their metrics, and inserting.
them onto the stack according to their metrics. Thus at each iteration, the current best
path is extended by one node. The current best path can be any path examined thus far
sinc_e the l‘argest vmet‘ric always percolates tov the top of the st;ack regardless of when it
was last extended. | . B |

‘This algorithm brinks oﬁt .seve;ra‘l important. cheracteristics of all. sequential search-‘

mg algorlthms Perhaps most 1mporta.nt.ly from an operatlonal standpomt the amount_
of computat|on is not ﬁxed ora srmple functlon of path length When the noise becomes
more and more severe, the algonthm lnvestlgates more false paths and to larger depths
ln t.he tree before abandonlng them When the srgna.l-to-nonse ratio is high, the true
edge path oonslstently has the best metnc apd so very little computatlonal effort is
soexrt, on 'ibncorrect patbs.‘ Thisvrariabie vcomputfa‘t‘,ional efforf, is‘typicalv- of sequential‘
'searehirlgv algorit.hmsl elrd /bas received much st.tention rn the coding literature
[Ssvﬁﬁ],[Gei73]. This is;becguse data buffer overflows resulting from highly variable
compotabioosi Joad unrler conditrolrs of poor"SN'R are a .major cause of output errors for
sequeritial .d'ecodirlvgy.- It is irlteresting to ‘note ehat its spplicabion to image edge iirlking :
does not suffer from thls partlcular problem In effect the data in |ts entlrety 1s always
’avallable to the algorlthm as the input ﬁeld or ﬁelds (e g gradlent magnitude and dlrec-

tlon ﬁelds) are assumed to be given. The algonthm cannot therefore "fall behmd"
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relative. to constantly arriving data as in the coding:/decoding situajtion. .Of 'course,‘ it is
still true that additional delay’must be accepted in these situations.f». ‘:\ |

Thls algorlthm clearly lllustrates the charactenstic that very long paths can he
Aexplored at the expense of not performmg maximum llkehhood declslons Paths to
| -depths, n of hundreds of nodes in the tree can be readlly examlned by the algonthm
but obviously not all to the 3" posslhle paths are examined for such large n. The vast
majority are. never even taken up hy the algonthm hecause they exhlblt such poor
metrics in the ﬁrst few nodes compared to the relatlvely few paths that are taken to
great depths It is conceivable that the correct path is among those that are dlscarded
early, but it will be shown (Chapter 3) that followmg an incorrect path to large n-has a
probability that decreases exponentially in n Thus, sequential searching cannot
guarantee selectlon of the most probahle path among all possible paths (ML). It does,
' however, allow the most promising paths to be explored ‘without expendlng computa—
tional effort on large numbers of unpromlsmg paths. |

One characteristic of the stack algorithm that is not shared by all s_equential valgo-,
rithms is its large memory requirement. Maintenance of the stack whenexploring long
paths requires the use of a significant amount of memory. The algorithm is thus suited

to applications where the implementation is on software.

2.3.3. Variations on the Stack Algorithmv

Three variations on the original Z-J algorithm have arisen in the codmg literature.
The first is the stack-bucket algorithm of Jelinek [Jel89]. This is an attempt to partnally

alleviate a time consuming aspect of the stack algorithm. As the number of entries in
. N ' ’



-44-

the stack' becomes large, it takes increasingly longer to insert successor paths into their
v appropnate place on the stack. With the stack-bucket algorlthm, no ordering of the
stack is performed at all. Instead, the stack is divided into a number of segments called
buckets, with each bucket corresponding to an interval of posslble metric values. With
each iteration of the algorithm, paths are placed ln the bucket appropriate to their
“metrics. No lordering in the 'buckets takes place. The path to be extended is simply
taken from the top of the highest non-empty bucket. Note that this is not necessarily
- the best current path, but only a.'velv'y good one, unless the highest non-empty bucket
contains only this one path On the other hand, the placement of paths onto the stack :
llnvolves a computatlon that depends only on the number of buckets there are and does
not grow as the stack increases in length Thus, tlns algonthm trades away some perfor-
mance for a substantlal lmprovement in speed

; A second uariation, introduced- by Haccoun and Fcrguson [Hac'l’S], i,'called‘ the gen-
eralizied stack algoﬁthm. “In this case, paths are organized and extended just as in the
ZoJ algorithm but morevthan one path can be extended at the same time This algo-
nthm also can detect remergnng paths When two paths remerge, the path wnth lower
metnc xs dlscarded from the stack thus elumnatmg unwanted baggage This modlfica-
tlon seems to lnﬂuence the buffer overl’low problem of decoding. In view of its added

i

complexnty, |ts value in |mage edge llnklng is quatlonable

The third variation is the multiple stack algorithm (Chevillat and Costello [Che77])).
“This algonthm completely ellmlnates the buffer overflow problem by forcing the decoder
ahead along reasonably good” paths in times of much nolse, rather than contlnulng the

search for the best path. YThe manner in which this is done involves the Jjudicious use of
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additional smaller stacks to which the algonthm turns when the main stack fills up
The smaller stacks hmlt the search space of the algorlthm and thus speeds up lts pene-
tration of the tree. This techmque may very well have application to the image prob- ’

lem.

2. 3.4. TheA Algonthm

The A algorithm is a heunstic tree-searchlng algorithm originating‘ in the artxficnal
mtelligence llterature [Nll7l] ln operation lt dlffers little from the stack algorithm The |
search is once agaln sequentlal wnth the best path extended at each 1teratlon by a node
In thns case, best is taken to mean that path wnth the lowest assoclated cost (an lnverted
metric) This cost is computed recursively by summing branch costs associated with
each path transitlon from. the start node to the current node The algorithm |ncludes a
provision for eliminating inferior paths when remergings occur. The primary difference
between A and the Z-J algorithm is that the former also provndes for the inclusion of a
cost assocnated with complctmg the path from the cnrrent node to some specified goai
node. This completion cost as well as the specification of the goal node.must be pro-
vided by some a-priori or heuristic information source. It has been shown [Har68] that if
this completion cost is a lower bound on the minimal cost path from the current node to
the goa_l, then the algorithm will find an optimal, minimum cost path to the goal.: If no

such heuristic information is available, A * reduces essentially to the Z-J algorithm.

2.3.5. The Fano Algorithm

The Fano Algorithm, named after its originator, R.M. Fano, was actually the first‘

algorithm to be developed for sequential searching [Fan63]. This algorithm is
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particularly well suited for hardware implementations of sequential decoders as it
requires yery little memory. It is, however, more difficult to understand than the algo-
v rithms discussed above. The interested reader is referred to [Lin83] or [McE77] for more
complete expositions of this algorithm.

The Fano algonthm never makes large jumps about the tree as do the various
stack algorlthms Instead, its mo_vements are confined to three types: forward moves,
from a given node to one of its successor‘nodes; backward moves from a successor to a
;predecessor nodei and sideways from a successor node to another successor node of the

‘same predecessor Declsnons as to whlch move to make at any particular time are based
on compansons between the path metrlc associated w1th the node under conslderatlon

and a runnlng threshold T This runmng threshold is practically the only quantity that

'must be stored and’ always changes by multiples of some constant, A

When the algorithm is constantly moving forward deeper into the tree, the thres-
‘ hold is lncrea.sed by multiples of A such that I‘ A < T < I‘ Such forward moves are
only allowed 30 Iong as T > T for the Dew node If none of the successor nodes satisﬁes
thls reqmrement the algorlthm executes a senes of backward and sndeways moves in an
‘effort to find a new node such that r > T lf Done can be found, the threshold is decre-
ment’ed‘ by ‘A and the search contnnues. : The decnsnon structure of t‘he algorlthm is so
'constructed that it is impossible‘ for the algorithm to lodge itself in an inﬁnite» loop |
[McE??] Furthermore, the Fano algorlthm practlcally always chooses the same path as

does the stack algonthm [Ge173]
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4. Root Node Selection -

The operation of the various algorithms described in the Section. above is critically'
dependent on the ldentlﬁcatlon of a root node on each 1ntens1ty edge of lnterest Tne
only requnrement 1mposed on these root nodes is that they actually he on the edge. This

Sectlon addresses the selectlon of these nodes.

'2.4.1. ROC Curves for Gradient Operators o

It seems reasonable to conslder the output of the spatxal gradnent operator (Sectlon
| 2.2. 4) which precedes the SEL searchlng algorxthm The magnitude of the gradxent isa
measure of edgmess at that point in the i lmage Therefore, nodes that exhlbxt a large
gradlent magmtude ought to be good candndates for root nodes Qumtlons to be asked
are: 1) With what conﬁdence do such nodes actually lie on an edge? 2) What is the pro-
bability that 1o root nodes for a glven edge are generated in this way' and 3) How is a

classlﬁcatlon threshold on gradient magmtude values to be chosen’

These questions may be addressed using the Recewer Operating Characteristic
(ROC) curves for gradient operators. ROC curves, common in the,detection theory' ‘
literature_, are .parametric plots of the probability of detection (PD) versus ‘the probabil- -
ity of false alarm (PF) [Vant38]. Their use with linear edge operators for images has been
discussed by Abdou and Pratt [Abd79). An example of such a curve isillustrated in Fig-
ure 2.2. This curve is for a simple 3 x 3 Sobel gradientftype edge operator and asignal-
to-noise ratio of 10 dB The precise definitions for these terms are given in [Abd 79).
The curve: is parameterized by the decision threshold; as the threshold is raised, the |

locus of the operating point moves along the curve from the upper right hand corner to
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the lower left. The fact that the curve does not reach the upper left hand corner (PD =

1, PF = 0) is a manifestation of the imperfect performance of such operators: it is

imbossible tovchoose a threshold such that all the edge points are found and no non-edge
points are'misclassified as belonging‘to an edge. R |

The closeness with which an operator’s ROC curve comes to the (ideal) upper left

~ corner is an ihdication‘of that operator’s performance. Large support gradient operators

niay beeXpected to do considerably better than the Sobel operator of Figore 2.2. Con-

verselv, 'poorer SNR ratios tend to push the curve for any operator away from the upper

‘ left corner. It isa fundamental characterlstlc of all such curves, however, ‘that they are'

convex and he above the dlagonal PD = PF known as the chance diagonal [Van88].

Returning to the problem,of ,findlng root nodes, we make the followingy important

observation.

Observation: In contrast to the classical detection problem for which operation at a
- high probability of detection is desired, the problem of selecting root nodes

“demands operation very near the lower left corner of the ROC curve.

This observation is crucial to the starting node problem ' If a high threshold on the gra-
| dient magmtude is employed (operation near the lower left corner of the ROC curve),

then both the probabihty of detectlon and the probabihty of false alarm are small.

At any polnt along the ROC curve, the slope of the curve is equal to the llkehhood

ratio:

Pr(f | [ is .onk an edge )
Pr(f | f is not on an edge )

- siope l(f) "~ (2.48)

?
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Flgure 2. 2 Receiver Operatlng Charactenstlc (ROC) curve for 3x3 Sobel edge opcrator
on- Pratt test image at SNR = 10 dB. , ,
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| An i“.‘Pm;tani iprqperty of such curves is that this slope genera“y is quite large for large
f. ,~‘ i.e. near the lower left corner. For example, if the condition'al densities of Equation
(2. 48) are Gausslan, the likelihood ratio asymptotically approaches mﬁmty Thus, under
quite general condltlons it is reasonable to assume that the slope of the ROC curve is
very hlgh in the nmmednate vnclmty of the orlgln Imposlng a hlgh threshold on the gra-
| _ Idxent magmtude therefore unphm that any magmtude value exceedmg this threshold has
“a much hlgher probablhty of Iymg on an edge than not. The price paid for this high
‘hkehhood ratio is that the PD is small in the vicinity of the origin. That is, only asmall
. 'fractlon of the actual edge pomts will be ldentlﬁed by a hlgh threshold However,
sequentlal searchmg techmques requlre only one sta.rtlng node on an edge A low PDis
: therefore not a drawback for SEL | - |

) | i Auexumll)le may serve to ﬁx these ldeas Conslder a gradlent operator whose out-
'put in the presence of hngh noise power i 1s charactenzed by the ROC curve of Flgure 2.3.

Thls ROC curve results from the condltlonal probablhtles

P ’r H) = N(©51)

PrUH) = NGosy (249)

ie. the condltlonal probabllmes at the outpu@ of the operator are normal wnth a slgnal- :
' to-nonse ratlo of 1 0 Thls corresponds to exceedlngly poor quallty in the original i image.

_?.At a threshold value of

=32 sy

the fikelihood ratio is:
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Figure 2.3: Receiver Operating~Charac£eristic' (ROC) curve where ébnditioﬂal 'd‘ensityr
functions are both Normal. , :



-53- .

CPr(f | HY '
T > P | (2.51)
: and the PD is: |
PD = erf (32-05) = 0.0035 (2.52)

Thus, on average, only 1 in every 300 true edge points are identified by such a high
threshold but any point so ldentlﬁed is 25 times as likely to lle on an edge as not. The

probability of false alarm is: |

PF = erf (32+05) < 0.0001 (2.53)
This e)tanr'ple may be rather extreme; the output of large support Gaussian filtered gra-
dieht operators exhibit much. higher SNR than this on many images of interest. How-

ever it serves to 1llustrate that even under severe condltlons, highly reliable start nodes

may be generated by thresholdmg gradlent magmtude values.

2.4.3. iUsi‘ng A-Priori Knowledge
. b'vl‘he | previods ‘Sectiohf described a ‘technjque for ,ﬁ’hding candidate start nodes in
very general settings. For certein eppli‘cations, where a-priori knowledge coneerning the
lmage under conslderatlon is avaxiable, thls techmque can be augmented or even replaced
by scene-specxfic methods that make use of that mformatlon One such method is
descrlbed in [Mod76] for the case of anglocardlograms Smce the image is known to con-
,tam the boundary of a heart for whlch a prototype outlme has been supplied, that tech-
| ’mque searches a restrlcted portlon of the i nmage for randldate start nodes that best fit

!

the prototype model
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' Depending on how much a~nriori information is avaiiahle, such ‘scene-specific .
methods may emnloy any -nu_mber of pattern mognition or template vcorrelation tech-
nlques to search for areas in the image that have a hlgh probablllty of Eymg on an edge
of lnterest These techniques may in - fact provide even better rejectlon of false edge
ponnts than that of 2.5.1. However, they are applscatlon specific. »Their effectiveness is
only as good as the scene model which they exploit.- Where the 1mage does not closely
match the assumed model their performance may degra.de seriously. These techmqnes "

will not be treated i in any depth here.

2.5. Search Termination :

Strategxes for termlnatnng a sequentnal searelung algonthm tend to be somewhat
heuristic. Four such condntnons suggest themselves for practlcal mplementatlons Oth-

- ers may perform well, especlally where a-prlon lnformatlon is available.

The first three are obvnons enough. Practlcal dlgltlzed unages are of finlte extent
Thus, nntenslty edges contaxned thereln are of finite length. Several sntuatlons are nossx-
ble. One, an edge may close on itself (e.g. a circle or the boundlng contour of an object
wholly contained in the image). In this case, the search may 4bev_terminated when the
current -best path closes on itself. Second, an edge may intersect another. Here again,

search is terminated When the best path intersects another, previously found, edge path.

Third, an edge may be continued off the support of the image. For this case, termxna— o

tion occurs when the search reaches the image boundary.

Another case is possible. Here an edge either stops abruptly without intersecting

another or gradually fades in contrast to zero. These are the ‘only‘,really difficult
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eituotio‘ns for a sequential a'lgorithm to handle. The approach suggested here is based on
the running oath metric. Since the algorithm will continue to search beyond the end of
an_abrupt edge, ali such paths will exhibit"a sharp fall off in metric beyond the end of
the edge. Likewise, a strong intensity edge »tljiat begins to fade in contrast will be
tracked for awhile bjr the‘»lalgorithxln, but the resuiting path metric wi'll‘ fall frot_o its pre-
vious high‘\‘ra‘luje before the fade. It is therefore reasonable to suggest a]t,ermioat.ion con-
 dition based on running meoric. When the metric of the best patli_ falls below some
speciﬁed meﬁbn of the -bigheet metric: along that path, the search is terminated. Of
course, one runs the ﬂsk of termlnatlng search juat before the metric picks up again
unlm the fractlon is fau'ly small Abrupt edge ends are llkely to be handled well by tlus
techmque, but slowly fadmg edges mnst always present a compromlse to a sequenhal

‘ algonthm (and indeed to any other algonthm for that matter)



CHAPTER 3

BOUNDS ON SEQUENTIAL SEARCHING IN 2-D FIELDS

3.1. Introduction

A ver)r 1mportant attrlbute of Sequentlal Edge Lmkmg as a result of |ts log-
likelihood metrlc is the fact that some attrlbutes of lts operatlon and perforniance may
be quantiﬁed a'nalytically. That is, inferences can be 'made and‘bounds ixripesed on
operational para‘meterssuch as search'time or dynarixie ‘staek beha#ior as a' funetibyn of
image Quality. Alse; ;i'erformance qilestions such as p’robai)ilit‘y:‘of error can iie .i'OI'I.n:ll-
lated and addressed by analytical means. | AR |

This is in sharp contrast wnth the sequential techniques of Ashkar et. al [Ash78]
and Cooper [Coo79] or the various relaxation approaches such as [Zuc76] With none of
‘ these techniques is |t possible to predict the behavnor of the algorithm or the probability
of error on the detected edges a-prlorl from knowledge of parameters of the random
field. Indeed, in the case of reiaxation, convergence in the output is. not even guaranteed
“except underi,,eertain sets ‘of conditions [Zuc78a]. With these techniques, irlvestigators
have been i'orced to benchmark their performance with standardized 'peri'ormance meas- v
ures such as the _Pratt figure of merit [Pra78] or the Kitchen and Rosenfeld figure ef
merit [Kit81] as a means of comparison. On the other hand, the analysis developed in
this Chapter describes a relationship between the workings of the SEL algorithm and the

image random field model.

-65-
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‘This Chapter is divided into two principle topics, 3.2: Distribution of Computa-
tion, and 3.3: Bound on the Probability of Error. A third Section, 3.4: Comparisons
with the vCoding Problem, is added to ernphasize and clarify the similarities and differ-
ences .between the edge linking and coding problems. The Distribution of Computation
and Probablllty of Error questlons are very much lnterrelated from an analytical stand-
point, but are dlrected toward dnfferent phenomena The first deals wlth the dynamic
' search behayior of the SEL algorithm-whereas the second deals with the resulting edge

paths.
3.2. Distribution of Computation

321 Ivut,roducti‘on e

ln Section 2. 2 3, ‘we showed that‘the vaverage behawor of the path metric is to
mcrease along true edge paths (assumlng Equatlon (2. 29) is satlsﬁed) and tov de.crease
otherw_iseT This alone does not gua.rantee that _the algorithm always follows a true edge
| since noise in the image can combine to fool the algorithvm“into. making some wrong
choices Various questions therefore suggest themselves: How much time does the algo-
nthm spend mvestngatmg wrong paths’ Does it always return to the correct path?
What is the‘ relat|onsh1p between image noise and the searching behavior of the algo-

rithm? These and other-'questions will be formulated and answered in this.Section.

Let us use the stack algornthm to lllustrate the problem before us and the nature of
the solutlon we seek. Suppose the algorithm has successfully followed an edge path up
to node n. Beyond node n, however, the metric values along the true edge path

decrease for xseveral ,nodes befo’re resuming its upward trend. Because of this dip in
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» metrlc, the algorlthm is forced to explore some of the lncorrect paths emanatmg froml
node n, slnce thelr metrics place them hlgher in the stack than the correct path in the
mldst of the d1p When followed far enough, however, all of these mcorrect paths even-

tually exhlblt metrlcs below that of the correct path at the dxp Smce the correct path is

then at the top of the stack the algorithm resumes its tracing of that path

From thls ‘sun\ple scenarlo, ‘we see that because of the noxse-lnduced dlp lnthe
- correct path metrlc, the algonthm is forced to waste computatlon tlme on the explor‘a-‘
tlon of incorrect paths whlch are eventually discarded. The amountrof computatxon
requnred to extend the correct path by a node is therefore not fixed but varlable We -
presume that as the nolse in the. |mage mcreases, thls computatxonal burden becomesv
more severe. What we seek is an analytlcal relatlonshlp between the lmage " noise” and |
~ the amount of computatlon required to properly follow the correct path. We would like
to be able to determine the distribution of computation of the algorlthm, i.e. the distri-
‘bution of the random variable C, , where C, is the number of algorlthm xteratlons (or
computations) required to successfully extend the correct path from node n to its suc-
cessor. Such w.ould be a complete description of the dynamical behavlor of the algo-

rithm from a statistical point of view.

In fact ‘We are not able to analytlcally determine the dlstrlbutxon of the vanable
- C,, but we are able to bound thls dlstnbutxon This. bound whlle not partlcularly tight

_ (especi»ally for small'values of C,), is nevertheless extremely useful.v
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3.2.2. Definitions

In this Section. we introduce some definitions ‘and ‘notation to be used in the follow-
ing Sections. In Section 2.2, ue have already defined what we mean by paths, path
metr‘ics,‘ nodes, successor and predecessor nodes, and random field observations or f -
. vaiues. Suppose weare givenfa_random ﬁeldk. with an edge path in it as defined by Equa-
.tions (23) and (2.11), and further that we are given an arbitrary root node and direction
on that path. We will denote by f, a sequence of f -values along the correct edge path
of length n. We will denote by f, a sequence of [ -values associated with any
fbbincorrect path of length m.. |

t"‘ node along the correct path Emanatnng from this node is of

: Now consider the
course the rest of the correct path as well as an entire sub-tree of incorrect paths. If we
consxder the random ﬁeld to be of lnflmte extent in the plane, then thxs sub-tree con-
tams an mﬁnnte number of |ncﬂorrect paths Thls sub-tree of incorrect paths emanating
from node t of the correct path will be denoted S,. S, contams paths that remerge
w1th the correct path beyond node t Because remergmg paths are a nuisance in various
boundlng arguments, let us consxder a hypothetlcal lncorrect path subtree, denoted S,,
in whlch remergmgs do -not occur. That is, every node in St has three unique successor
nodes Ever& umque node in the physlcal subtree S, has a correspondlng node in S, ,
but |n addltnon, S, contams cztra nodes where paths remerge in S, . Note that such a

hypothetlcal tree cannot be defined on a rectangular array of nodes The situation of

paths that remerge Wlth the correct path w1ll be treated in Section 3.3.

We wn!l deﬁne a computatlon as the effort required by the algorlthm to extend any

‘ path by a node C’, denotes the number of paths (and therefore the number of compu-

!
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tatlons) ever extended by the- algorlthm in .the xncorrect subtree S Lik‘ew.ise',' C-r_t‘ ’
'denotes ‘the number of paths extended in- S, Slnce every unique node in- S, has a

correspondlng ‘node in S, but not vice versa, we have the lnequahty C’, > Ct

Fina‘lly, we' define A, to be the value of the largest dlp in path metrlc along the :

correct path after ,node _t:
A= TE)-maRe) 20 @

Thls quantlty A, vls fundamentalto all sequentnal tree searchlng problems smee it
,largely determlnes how much searching of mcorrect paths is necessary at’ node t In
Equatlon (3 l), we have shortened the notation for the’ path metrlc I‘ (m f) to P (f) for
the sake of clarlty in what follows Bear in mlnd that I' isa functlon of the path letters,v :

m, as well as the random field values,::f s

3. 2.3. Boundmg C

We requlre some prehmlnary results before estabhshlng our bound on. C, Follow- -
ing the example of sequentlal tree searchlng in codlng theory, we. begln wnth a lemma.

from Forney [For74b]

| 'Lemma 3 1: Let f o and f" be any two paths emanatlng from a common node, and Iet ‘
the mlnlmum metrlc on the path f ¢ after the common node exceed I‘ (fl’ ) .

Then the Z-J algorlthm cannot extend f" before extendlng f ‘.

The proof is in [For74b] allowmg for the fact that the Z-J algorlthm does not delete the

lnferlor path when two paths merge This lemma is used to 1mmedlately prove Theoreml'_'
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' 8.‘1, also »from [‘For74b].“’ o . o

: Theorem 3.1. The number of computatlons, Ct , i overbounded by ‘the number of

aths r! m the lncorrect subtree, S,, wnth metrics not less than the
P t

: mlnlmum metrlc on the correct path at node t or later v

L o es,
where

if r(r')>r(f,) A,

" ¢(fl ) = {0 otherw:se v } (3.3)

vProof If f, , s > t is not on the stack then C’, = 0 snnce node t has not been
| vvfi";: reached Otherwnse, by Lemma 1, 1f F (f’ ) < I‘ (ft) A, , then f’ can-

' not be extended

Slnce |t is easier to not have to worry about remergmg paths and since C, < C', ,
- we. wnll actually work with’ C' and S Also, it Wlll later be shown that taking t = 0 '

- results ln no. Ioss of generahty whlle facllltatmg certaln llmlt arguments

o 'We'are n'ow ,ivl_l a_,pos_ition._ to 'state _'and prove the.main theoren of this Section.
: Theorem 3.2 For any o > 0 and any 0<p < l 1f the dlstrlbutlons p l( ) and po( )
| are such that : - o C "
Z Po(f )“"’ pl(/ )"" < 3 |
(3.4)
E Po(f )ap o(f )H"' < 3o R

3 brt!hen,- :
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CPr(Ty=N) £ KN* K aconstant. C@Es)

Proof:

As in [For7d], we consider the following quantity: .

e L T e S e
},?(Q.’_e}) - [ Z_ et )] S 0<p<1  (38)

. f"‘GSo'

The reason for deﬁnlng T (a,p) as above is rooted in the Chernol’f bound dlscussed bf-
- Gallager [G3168] Brlefly, we wnsh to obtaln a bound lnvolvmg the quantlty T ).

The metric was seen in Equatlon (2. 18) to be the sum of lndependent random va.nables ‘
A common and useful bound on the probablhty that a sum of 1ndependent random varl- :
ables exceeds a given. number may be obtamed from varlous forms of generahzed Che-:
byshev Inequalltles Smce the sum in F (f ' ) is of natural logs of random va.rlables, the'
‘ generallzed Chebyshev Inequallty that lS most useful usually called the Chernoff bound :

mvolves the substltutlon w = er (f’ ),

,R_eturninygv- to “EQuation (3.6), using Theorem 3.l-rlw-e" have:

€§o

T(ap) = [ 9 .eqf‘(f')]
B Y B R )+aA-o]P

vV
i
Q
B
P
by
 —— ——
. Al
=)
e
~

where the last step results from Theorem 3.1; This is because:
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L) < T rea g

- which can easily be seen from the fact that: ‘

o) T el iy r(r')>r(ro) By = -8y

=1<
) =0 < eoT ) +al, ,otherw:se
Therefore:
e ~ Y0 > .
T (ap) Pl > _[Co] 0%;21 o (39)

v '_Noiv, from"t‘,he Cheby_shgv Iﬁéquality webo'bt.a,in: N |

| Pr(T (ap)e™ > N (310)
£ N*T (ap) e |

CPriG 2 N)

CIA

‘ Aw}her‘e‘.;‘th_e :'ovferbbz"srv ié thelast expression denbte;. exfeéted value. This expéctation is
overfour dis,btribut_ioxbl‘szb fal‘l‘;c‘hoicés of §tat.e.sequ‘e‘uces of the correct path, m, étaté
Ksequéﬁ»cles ,of inédriﬁecf, paths, m ! 1,'_"obseﬁ,rat‘ions alpﬁg the cofrect path, f, and obs,enfa—
t;iq*ns va'lon‘gv the incoirrecytr pﬁfﬂs, f ' | . | Tll;is- isj‘ in counterdistinction to the decoding prob-
Ie‘m' %h'ere thé équthleﬁt expectation ié over ai el;semble of éodes, the c'orréct. path and
' the ?haunel transmons, and so the two problems dlverge from this pomt This funda-‘
ﬁlental dnfferencell‘s explored more fully in Sectlon 34. We may loosely bound the term:
ore i 4;) ‘[,;ng;.o_r,(r,)].
: (311)

Ei/\f. I

2 e-—apl‘

o 8ax)
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Combining Equations (3.10) and (3.11), we bbﬁa,in our bound:

Pr(Cy4=>N) < N~ i s ) | 3 el () 7  3'1,2._" .

In the above Equatlon, the inner sum is over the set of incorrect paths f)! in the

(mfimte) lncorrect subtree S 0 Thls set can be partltloned in the follownng manner ‘ :_"' :_

_ o o
S = U F/ N (3.13)
r =0 ) ) S - ’ :
- where:
F! = {f,:, €5, m=r } » (3.14) _'

Thus, Equation (3.12) becomes: .

-
i
(=]
-
L

" Pr(Cy 2 N) < N* ¥ g ol (1) lz ) e»a[‘(’f,«) |

Jensen's Inequality holds that for a; > 0,

@)

so that:

, o S S
Pr (Co > N) < N E Z l S Tt )- ,1‘((,) ey
o e=0r=0 |t/ €F . S

We will denote the summand as P, , (a,p), so
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P (3.718)

re=0 =0

‘ >
Pr (Co_>N) <N g 2P 0S3.

_l/\_o

: ~Up to this ‘poin.t' theivonl)’»' ma.jor difference between our problem and the approech
m“ the coding hterature is the nature of dlstnbutlons over which the expectatlon of Equa-
txon (3 10) has been taken. The next steﬁ in the analysns of convolutlonal decodmg is to
bound (the equlvalent to) P,.’ . (a,p) -usmg”a random coding argument of Gallager
[Gales5). Thi_s method is not applieable in the_preblem under e.onsideretion, but we qi_ay

proceed in a more direct fashion. Consider the quantity,

. » . E ‘. - : av' e o -
P, () = [ e ”"."J 319
o t' €F R :

We rexterate that the mdxcated expectatlon is with respect to all possnble m, , m I P
and f - Exphcitly performmg the expectatlon with respect to the last twO random vec-

tors, ﬁ '

o L ey
' Pr,a (a,p) = Z paf,) polf, ) [ Y, e re) l.‘(f’) j - (3.20)
) L S f, rr’ ‘ : L o f,’ € F:' .

where the? indicates an expectatlon wnth respect to m and m’ . Again from Jensen’s'

Inequahty, for e; > 0 we have:

Ypief < ’[ZP.’“: ]p | 0<rp<1 o (321)

or

ol [T
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S0:

P, ,(a,p) S EE ») po(f;' V[TE o T=ar )
LT t, ST N o

Lo er

-

| 1 € F/!

Y ¥ ):p‘(f') [ ) e"‘(f"l-al(r.l]" o
f'la»er‘v ’”»(3;23\)

— 1P Rt prs) [T

- f, f}"

where | F,’ |- is the modulus of the set F,' . Considering the ,bracketed, term in (3.23),

from Equation (2.18), a path metric consists of a sum of terms:

. [l Pl(f ) + In P(s,|8. 1)]

) = % :
o . vl"'-:O 0(! ) . (324)
. igo[a' ¥ ]
L Po(f.'), Lo e | (3.25)

b.' = I P(s,-l 8",-’_1)‘

| 'Using this notation, Equation (3.23) béckomes;v

1
‘ [aZ(a, +b')-02(¢,+6)} :
P, ,(ap)y < |F, lpzzpl(f )Po(f ) e e
o | o S (3.26)
r — 7 '
[ a¥ b,'—az b; ] ap}] o' —OPE e,
e IF'IPZEM(f)Po(f' )e R

We first concentrate on the exponential term of the doublg sum. At this point we use

~ the crucial assumption that the f -values, conditioned on either the H, or Hy
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hypothesis, are stochastically indepelidentvand that f -values from different paths are
independent. It is well known that the ‘averagé of a product of independent, identically

dlstrnbuted random variakles is equal to the product of the average of any one of them.

We t,hus have the |dent1ty

- . } ' OPZ’: G'I _&pi: s

2 Px(f )Po(f' Je = 0=

f, £ ‘
. . apg s’ ‘ api) a,
= El’o £, )e R EPl(f Je =

7

(3.27)

S 5 g8 :
I polf ) e T palf ) e

| [!2 ?o(f"-‘) ela"."' }r [.;»Pl(f )'e“-”"}‘_

,where the first equahty is due to the mdependence of the paths, the second is due to the
conditional lndependence of f -values along each path, and the last is due to the fact

that the condltnonal I -values have identical distributions.  Substituting

. = la’ pilf) :
oplf)
apé a, ‘—. apij a,

" _ , p n(], ) ap ~ ' I' pl(f ) | .
= |5 Pq(f, )[m.—)] - ] - ; pi(f) { 0(“] } - (3.28)
[

s 0] ] I [5,; o] [oots )]"] ‘

g

., !,

Becaus,e-'of the importance of this quantity, we shall define:
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Therefore:
apé a’' —api) a, »
Y pif,) polf ) e = % = D~ ap) [D(ap)* (330)
8 4 R

Returning to Equation (3.26), the bracketed term on the right hand side is:

[ — : 4
aY) b’ -al) b
Le 1 =0 ] =0 —_
’- Ta 7° o 1e (3.31)
5 ) [p(m)] ] [zp(m.),[p(m.)] ]
™ o S
The first term of (3.31) satisfies the inequality (for & > 0):
[ > p(m, ) [p(m/ )]“'}" < [ > p(m, )[11“]”
! , |
= [m, p(m, )] . (3.32)
= 1°¢ = 1 |

For the second term, since the function f (z) = 29 ;0<a<l ;z >0iscon-

vex N, we may use Jensen’s Inequality:
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a ' - 1 ap

[E'p(m.) [ (m.)} } < [%3 p(m,) p(m‘)]‘
L — [§ 1 ]ep : ' e33)

3¢ ]ap

where the last line results from the fact that there are 3' paths of length 8 in S (Sec-

tion 2.2.2). This same path structure overbounds | F,! |:
|F | < 37 o (334)

‘ Pilttingi t'ogeth.er Equations ('3.30), ‘(3.31-3.33),‘ and (3.34), E’duation (3.26) has the

final form:

Pralap) < 13°%-37¢[D(1-ap)’ [D(ap))*

- - o (335
32+ D(1 - ap)]” [3% - D(ap)]’ o % %S
Finally, substituting ﬁhis _into Equation (3.18), our bound is:
= » ‘— D r | >0
Pr(Cy 2 N) s N7 Eo .3_30 B By _2.35 (3.36)
where:
By = 3-D(1-ap)

ﬂo‘ = 3%+ D(ap) o (?.37)

We see from this that if the two condltlons, By < 1.and fy < 1, are satisfied (whnch

are the hypotheses of the theorem) then:
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Pr(Ce2N) < KN* 2 (3.38)

=V

0
<1
1 1

K = .
1-5 1-5,

and Theorem 2 is proved.
Using the fact that Cy < C o, We have iﬁlmédiﬁtelyﬁ
Corollary 3.1: For any 012 0 and anSr 0<p S 1, if D(1-ap) < 3°* ‘and
D (ap) <~3-°"’, then: \

Pr(Co>N) < KN* K asin(338). (339

Sequential Edge Linking, in common with all other sequential tree Searching algo-
rithms, uses a path metric that is additive (Equation (2.19)). All metriésr of paths

emanating from a'«node, t, along the correct path can thus be decomposed as:

rf,) = () + Tf,.) (3.40)

Since the component I'(f, ) is common to all paths emanating from node ¢, the searching
dynamics depend only on those metric components beyond ¢, I'(f, _, ). Thus, the distri-
bution of computation is identical at any node ¢ along the correct path to that at

t = 0, which leads us directly to the following Corollary. -

Corollary 3.2: For any @« >0 and any 0 < p <1, if D(1-ap) < 37 and

D (ap) < 3P, then:
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Pr (G, >2N) £ KN~ ;K as in (3.38). (3.41)

We have made a great deal of progress so far. While we cannot find an analytical
expression for the precise distribution of computation, we have obtained a bound on the
distribution in Equation (3.41). This Equation provides an important qualitative link
between the random field ﬁodel of the image and the amount of incorrect path search-
ing 'performed by the algori’thm. As the signal-to-noise ratio degrades or improves, it is
reflected in the conditional densities p, and p, which overlap more or less, respectively.
This bas a directﬁ bearing on ‘the constant K in Equation (3.41) via Equations (3.37).
The higher the signal-tonnoise ratio, the bsmaller the.constant K and the. lower the
kbound on the amount of searchlng per node. In the next Section, we extend these results

v by examlnlng a bound on the first moment of the dlstrlbutlon

324 The.E)epeetafion of/C & .a'.nd the ‘I."o.x"eto Exponent |

| In tne pre‘eioue Section,‘ we ehowed that _under suit;able.oonditione, the number of
comoutatlons performed at a.ny node along the correct path is bounded.by Equation
(3. 41) for 0 < p < L The nght ha.nd snde is known as a Pa.reto dlst.nbutlon [Lin83],
_ ‘a.nd 3 the Pareto exponent Let us 1ntroduce a contlnuous random varla.ble Y with thls

.dnstnbutlon Then the cumulatlve dlstnbutlon functlon of C, is lower bounded by that

ofY:
 Fgln) = Pr(G, <n) 2 1-Pr(G 2 n)
= Fy(n) |

: From this it can be concluded that
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The mean of the variable Y is easily computed.: The ‘probability denbsiitvy function of Y- E
s | |

el

= [pKyrdy - . o (B#)

Therefore:

{ y py(y)dy

— im ﬂ{'(yi-?._ i ,

g l—p
From this we have the following theorein.
Tlieorem 3.3: If the distribution of computation is_ boiuid'ed by‘aPa.rveto distriblitidn :
' _with exponé‘nt p> 1, | | |
Pr(C,>N) < KN*  p>1 . - (348
_then _t_lie mean"numbef_ot computations per ;yno‘cll"e' féléhg the corréct'path is
finite.

" Proof: The proof follows directly fllr'om‘the diséussion aqufe'. I p>1/then



E {Ct} < E {Y} = lm 28 (y‘°" 1)
. ‘ . y=oo 1-p

' ‘ . ' - (3.47)
2K ¢ w
o In fact, a3 is shown by [Lin83], |f ph.‘> 1, then the ** moment of Y is bounded.
Although strafghtforwar'd thi‘s”'theorem- is very . fmportant’. It .guarantees that the
‘expected value of decodlng effort is finlte along. the correct path |f the bound on C; has
an exponent P > 1 What is mlsslng here is a- condition that wnll ensure P > 1. The :

) next theorem WI" supply that condltlon

The followmg theorem bounds the dlstrlbutlon of C’, for a Pareto exponent-

1 < p < 2 It is clear from the proof how thls bound may be extended for p>2. |

b h The proof ltself is. somewhat abbrevnated since 1t closely follows that of Theorem 3.2.

v 'Theorem 3.4. For any a > 0 and any 1 < » < 2’ 'f Dfap) <3 o

,,,,,,, e Ll
D(l-ap)<3 2 and D(l— )<3 2 then
 Pr(Co2N) < KN*  Kaconstant.  (3.48)

. Preof:

o We .',consider: pairs of incorree_t paths in S, (r _",_f' -2), and define T (a,p) as:



T3

.

T‘(a,p) = E_ E_eap(f ),ear(f 3 | '1%7{52
: fIIESof’RGSo
= e—af)Ag' ' i eaI‘ (' Y+ ad, eal" (t'? +‘a‘Ao 2(3.49)
i r! 16 orrl‘ze—o S :
' £
. - A =212
> o [3]
where the last step is again a i-'gsul,t‘of:' o K
‘ E . E eaI‘(f’ ‘)+0A;,eal"(f’ é)+,'aAo
t'1e35,t' %€ 3,
> %% ey  (350)
rllesorl2eso .
2> C'o
Therefore:
A = 2 : .
T (a»p) 75, Z [002] : 1 %;S 9 (3 51)
So, as before, we employ the Chebyshev Inequality to obtain our boqnd: .
Pr{Cy > N) < Pr (T (a,p) e™ > N¥)
< N*T (a p) ea”A°
) _ (352)
< N-* ie-apl“(f,)[ ) E eolT ('Y gl (') 2
. . i

om0 ' 1e5, ' %S,

where, in the last equation we have used (3.31). Thls tlme, it is somewhat more difficult

to partition the set of all pairs of paths (f' L,f' ?) E So. This is because it is possnble '
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'for r! l and £ 2 to be merged for awhile before separating. Fortunately, most of the
large number of path topologies or configurations possible in tree structures in the gen-
eral eas'se are not 'poesibie in S o Where re-merging does ot take place [For76a]. Thus
' pa'th topologies such as Figiu‘e 3.1 or 3.2 do not exist. In fact, Figure 3.3 represents the

only topology for pairs of paths in S 04' Therefore, if we denote:

(F) xFY), = |
" Yy | &T g1 3 o : . (3.53)
{(f £) 1 1) €50, 1) €50, p>r, q>r, 1, = j,,, 0<i<r }

|e this i is the set of all palrs of paths in S o such that the two paths are merged up to

: node r and are dlstmct from there to nodes p and ¢ . With this notatlon, all pairs of

'paths in S o may be partltloned as:

"‘{<rr‘,r72):|»fv'.eé’o,r"e?o»}v“ - [U v (F'xF')r]“w:sn
A b r=0 [pmr = :

* . and Equation (3.52) becomes:

Pr(C 2 N) <

' | | - ' _; (3.55)
--pzeﬂrm [E 2R n T e )J

L e=0 - —Op-rq—rf,',f'E(F'xF’)

Jensen’s Inequality is. then employed to put this _in’the _form:

Pi' (00>N) < Nﬂ 2 E 2 2 p,g,ra ,P) 1 2(356)

S 950 Pz pomr gu=r A

® IV

IAR
INe

where:
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Figure 3.1: A topology of pairs of incorrect paths that cannot exist in thé incori'éct sub-
tree Sg. :
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Figure 3.2: Another topology of pairs of incorrect paths that cannot
correct subtree 5. : _

exist in the in-
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Figure 3.3: The only_topology of pairs of incorrect paths that can exist in the incorrect
subtree 5.
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P

£
P.q,r.e (a,p) = ear ") eal‘ ") e-2a[‘ () |2 (3.57)

{fr' £ €(F’ XF'),
| Here, the_expectatioh is with respect to all choices of m,, mp' , M, ,f,, fp' , and
i P To save space, f,) | ,fq' .“will be understood to mean f, £ )e (F,' XF/), in

- the Equations to follow. 'Now;

pog.re (@)

P
‘ ’ ' 7 Wf
= zz: zp,(r ) polfy ) ooty ) | B €T ) 2o r) ]2
B N A T o o ' .
B AT Al B oriarcicarc ik
o fy rp, f,' - o ' O A ' : | J(3'58)
= EE D) et )ty ) | X T T |2
N X f,"_,_ . R O ]
= |(F, xF'), 2R T pulf,) poff, ) ool )

r,t f

4

[‘eax 7T g of (r,'_)‘efmr,')‘] 2.

where the inequality in the second step results from Equation (3.21), and the third step
is due to the fact that the averages of a sum of terms is equal to the sum of the aver-

ages Using the defimtlons of a; and b; given earller, we have:
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‘ . l: aé 5’ -+aé l?,’—2arévbgf —; s
Ppgrelep) < e = = HF) XFS )Y
’ ' ' ' AR R , {(3.569)
S Tt T a—pza.’l-é-d—pg s, —ap} &
E pl(fl) pO(fp' ) pO(fq' ) ¢ 2z 2i= e

Lt
We now use the mdependence of f -values from different paths and the conditional
mdependence of [ -values along the same path What is dlfferent here from Equatlon
(3.27) is that f ! and f ! are mcrgcd (same f values) up to node r. We have the
correct. path to 8, one incorrect path to 7, and two mcen_'ect paths_ from r to p_ and r

to ¢q.

‘ . a—g é «' +a_§z’: o' ~apd & -
E‘ 4 L pl(rn_) Po(fp' )Po(fq' ) e “1=0 T e
t' ’ ‘ o
. . . o , v B ,
Y m a8’ ol ¥’ a—; S e

=Ypif)e = Toolf! e rz polf,_! Je 2= ¥ polf,) e *1~
f, ‘rr’ - p—v’ . v r'—l" .

S r ) P | T S ag e,
= kLIoP1(f_k‘)¢'-apq'lgopo(fz' Je °0% ‘,Er?o(f."’ Je 2 J.I}_rpo(fj' je
| B COT | (p-r)+(g-r)
: Con ) , 1r , atf d’
— [zpl(f)e-”“] [zpo(f' ) ears } Spolf') e
! NV K -

, | | | i (.3.60) 
= {2 [Pl(f )]lap Po(f)]ap} L;‘ pf"' )]"‘”} [po(f;')]l-“!’} :

(p-r)+(g-r)
1-a ,

pils )] g [potr]

I’

: +q-2r
[D (ep))* le(l - ap)l’ [D(l - d—g )]p q |



-80-

Likewise, the bracketed term of (3.59) is bounded in the same way as in Theorem
3.2 allowing for the fact that the path state sequences of the incorrect paths are identical -

up to node r.

(4

14 v b -
: [ el b +a)) b’ 223 b }2
e =0 j =0 =0

wils

Y ” ¥ T T
[ 202 b’ +GE'6.' +02 bi’ —202 b ]
e ] | oy ] — b =0

| = ‘{mz;p(m}' )[p'(mir' )]20' ) U _”_(mp-f' )]m

m, ,
| - , (381)
. v ' . o B . —2 .é '
© 5 plme ) [plmy)] " Do) [p@) )
m,. m, 3
e 1 3 |
< ,1-1-1-[_pm -—} }
{ o _ E ( .) le.)
) 2a—2 o .
< [ ] = o
Finally, wé have:
o 2 ’
E xF, 1P < [ar s s |
5 o | (3.62)
_ 3(p7+1-r)'2’ ‘

so Equation {3.59) becomes:
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Py g5, (0:0)

. Y : T . o p+q-2r
< 393"t Dl D(1- )y [D(w-g)}

-g’ (3.63)

" ,_) p+g-2r
= [8%-D(ap)}" |3%D(1-ap) [3%1)(1_(,—‘;)} |

>0
p< 2

IANe

N A

Thus, if §;<1, B,<1, and F3<1 (the hypothesis of the theorem), Equation (3.58) is

bounded by:

PrCy > N) < N+ S ¥ Y BrBI8F7 83

8 =0 r =0 p =y qumy

= K N

- {3.64)

where:

1 1 1

K =08 T 0

QED (3:65)

We offer the following Corollary without proof. It may be justified in similar

fashion as Corollaries 3.1 and 3.2.

Corollary 3.3: For any a >0 and any 1< p <2, if D(qp)<3‘°"’ ,

e 2
D(l-ap)<3 %, and D(l—%”)<3 2 then:

Pr(C, >2N) < KN~ 3K as in (3.65). (3.66)
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It seems reasonable to assume that the arguments developed in Theorems 3.2 and
3. 4 can be extended to Pareto exponents greater than two. The hypothesls would con-
tinue to be more restricting on the f -value distributions po and p, for increasing p.
Furthermore, the number of possible incorrect path topologies involved in the partition-
ing of S 0 increases rapidly with p The notational burden would therefore become
extreme.v

Nevertheless, the above extension to 1 < p < 2 is important in light of Theorem
33 The condition necessary to insure that the mean number of computations per node
_ be ﬁnite is simply the hypothesls of Theorem 3.4. This result ’vis more'important from ‘a
vqualitative standpoint than itl is from a quantitative one. The problem with Chernoff‘
bounds, as- thh most generahzed Chebychev bounds is that they‘are not partlcularly‘
| tlght !t has been found by slmulatlon techmques that the analogous bound to Equatlon
| (3 41) in the context of coding theory is approxlmately two orders of magmtude hlgher
than the true numbers of computations requlred in practical situations {Woz85]. There-
fore, these bounds are not dlrectly useful in a numerical sense. Theorems 3.3 and 3.4
have lmportant lqua‘lctahbve'lmphcatlons, however They mdlcate that sequentlal tree
searchlng |nA two—dnmenslonal random ﬁelds has a thrcahold bchavwr similar to such
searchlng in code trees That lls, if the slgnal-to-nmse ratlo is hlgh the searchlng algo-
rlthm may be expected to explore a small number of mcorrect paths at each correct path
node,on the average. As the 'no|se becomes more severe,- alp‘olnt is reached where the
vaverage number of computatlons.» per correct node becomes_ very large. (In an image of
:ﬁmte support it can neverjreally reach inﬁnlty) Thus there exlsts a threshold above

whlch the algorlthm is expected to be well behaved and below whlch the number of com-

putatlons is expected to increase dramatlcally. In the case of code tree searchlng, this

<
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threshold can be shown to take the form of a code rate, known as the computational
cutoff rate. In the i lmage sea.rchmg problem under consideration here we see from these E
two theorems that thls threshold is expressecl in terms of the conditlonal densltles P

,-

:and p 0 from the random field model.
~3.3. Bound on the 'Probability of Error
3.3.1. Introduction: Edge Error Events

The ouestion of Quantifying edge errors has not received‘ much attention :’in' the

 literature. This'is perhaps a result of the fact that many edge detectlon techmques deal v

only with pomta of an lmage and do not treat edge aeymenta as entltles ln thls Sectlon S

we shall develop a bound on the probabillty of certam edge segment error events ‘

We must first deﬁne the concept of an error event The tradltlonal edge detectori
performance measures consider only pomt-wlse events. That |s, they examme all the'
‘pixels labeled by an edge detector as edge pomta and flag as an error event any pomt
that does not comclde with an edge In the case of the Pratt figure of ‘merit- [Pra78], |
: these error points are assigned a distortion measure: the mean square distance from the
point to the edge. However, indnndual pnxels are consldered wlthout regard to the sur-
roundlng edge plxels. Indeed the Pratt ﬁgure of merit is useful even where the edge 3
map is ambiguous. For example, in Figure 3.4, an edge map contams a'Sm‘eared‘edge'of | E
multiple pixel width. It is'not clear just where the detected edge' is. The Pratt figure of

" merit can nevertheless calculate the distortion for everj pixel in the map. .
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F igﬁl"? 3.4: A smeared edge of multiple pixel width. The exact location of the edge is
: " ambiguous. S S . ,
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Using the concel’t.of paths as developed in. Section 2 2‘2} we can- mtroduce the idea: .
'of an edge aegmcnt error event to supercede the edge pomt error eirent The deﬁnition is |
straightforward An error. segment of length n, denoted e(n) is a path of length n.
| nodes such that none of the nodes of e(n ) conncldes w1th any node of a true edge path |
: This 31tuat10n is depicted in Flgure 3.5 A true edge path m, is. shown along w1th two
error segments, _l(n) and e (k) Note that an error segment can, but need not, ter-
minate at a true edge We ‘would argue that since the goal of edge detection is usually
to fmd connected pomts that represent an intensity edge in an image, the concept of
.error segments is a more natural chonce for an error event than is that of pomt errors -
(Actually, error segments are a generallzatlon of pOint.errors s|nce :a pomt»error.ls an
error segment of |ength one) Furthermore, error segments are partlcularly useful when
investigatin_g sequential algorlthms as they are a 'complete descri»ption, o_f : alll»possible error
eirents that can be generated by such algorithms. | - -

3 3.2. Bound on Long Error Segment Proba.bihty

ln this Sectlon vre examine long error segments We will show that the probablhty”w ’
of occurre_nce of these events depends on the image " quality” (via the_ true-edge'and 7
' random-path' probability ’measures pi and po),v and is bo’unded by an exponentially‘
‘,decreasing function ol’ile'ngth. Co “
Error segments»can, but need not, be connected at 'one end or both to a.true edge ‘
path_. We shall beginv our investigation with segments cOnnected at both ends (Figure
3.5). These events arise in the following manner. At some node, t.,. along a trueiedge .

‘path, the searching algorithm begins‘ exploring paths in the incorrec_t- subtree, 5. '
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. Figure 3.5: A correct cdge‘ path m and two error ggments e!(n) and e¥(k).
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| Becvaus'e i‘n" a rtwo;di.me"nsional lattt_ice (#nd therefore in S; ) reniergi_ngp do ,_o’c‘vc‘ur»- it‘ m :;y
turn éut— that, due_to noise in the observations, the algorithm evvenvtuva,:lly c_ho'osgs a _path
f' instead of the correct path, f, where i coincides with f up to nodé t , vb'r,a.nchgsvoff
at t, ‘and remerges with £ sdme n nodes later. Thus the chosen path‘.f" contains an '
error segment of length n, e(n )
Let us denote the evi:nt the ghoSen path contains an error segment of length n or
longer by E{n). We will denote by .S, t+n the set of all paths in the incorrect subtree
S, that do not remerge with the correct path over the interval [t ¢ +n] That is, all

paths in S, ; ,, contain an error segment at least n nodes long. Now from Lemma 3.1,

Lemmsa 3.2: A path ' , EVS, that remerges with the correct path f at node m,
m > t, will be chosen over f only if:

I, > T(f) - 4 o (3.67)

This lemma follows ‘dil"ectlfy from -‘Levxﬁma 3.1 since, unless Equat.ion-'(3.67) is true, f' ',
will never be extended by the searching algorithm and hence cannot bev .chosén. Note

that this establish‘esi only necessity not sufficiency.

~ As in Section 3.2.3, we suffer no loss of generality by éssumipg t = 0. Lemma 3.2

then implies (similarly to Theorem 3.1):

Theorem 3.5: The probability of .t,hebevent E(n ) is upper bounded by:

f €S,

.Pr i_{g(n)i} < Pr{ Y, of) 2’ 1.»} R (3.68).
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where:

S {l» ,ifI‘(f')Z'—A,}‘
o) = o , otherwise

(3.69)

This theorem follows directly from Lemma 3.2. For the event E{n ) to occur, some path

in S 0,n must be chosen over the correct path Thls can occur only if Equation (3. 67) is

-~ satisfied ( t =0; F (f A ) =0 ), from which Equatlon (3. 68) follows.

We now state and prove the following important theorem.

Theorem 3.8 ;Fof any «a >0 and :0 <p<l, if: D(1-ap) <3’ and

D {(ap) < 32, then:.

PriEn) < K4 ;% <1 ;Ka constant.

: F’roof

We now deﬁne the quantlty T (a,p)

' ' : ’ 4
T (a,p) = »L ,g»s,,,__.,ar(r_)} 02
' €S0s - v >

= |V
INe

Since:

ey < eoTE)ran

(which is Equation (3.8) ), EQuatiens (3.71) and (3.72) give us:

(3.70)

(3.71)

(3.72)



) [ f s
T(ap) = e @ | § oofEIvedin
| ¢ 5 -
: - {3.73
> e -ap AO F ¢(f’ ) [ ( )
’ L fp G SOI -
and so, by the Chebyshev Inéquality:
aplo S
Pr (' go $f) > 1) < Tlap)e™ 374)
Upper bounding e @ p 8o gith Equation (3.11) and using Theorem 3.5, we have:
0 ' - .
-afl (f,) ar(t') |” a>0
Pr(Bn) < 3 {r'é ‘ j 0222 1(515)
: fd ' O.» ’ .

where the expectation is over all choices for m, m' ,f and £’ . Equation (3.75) is
~ very similar to Equation (3.12) except that the term N~? is not present and the inner

sum is over the set Sg , instead of S o- We partition this set as:

SO,n = - UG G:. ) (3.76)
where: o
G = {r,;, €Spp | Mm=r } (3.77)
So:

Pr (E(n)) < i e/ (1) [i v ear(r")Jp (3.78)

¢ =0 r=nf' €G/ '

The remaining steps of the proof follow exactly those of Theorem 3.2, Equations (3.15) -
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(3.36), the difference being: no N~* term, sets G, instead of F,' , and the index r

'ru'nn_i_n,g from n to infinity instead of O to infinity. Since remergings occur in the sets

G' . but not in the sets F,! | we have, using Equation (3.34):

e, < |F| < 3

We therefore obtain, eorresponding to Equation (3.38) of Theorem 3.2:

CoPe@En) < 8 B

re=pn gm0

Ao
(=

AR
A\

where:

By ‘3"'D(1-ap) < ‘1
By = 3% D(al’) < 1

and the mequahtles are satisfied by hypothesls We have ﬁnally

Pr(Bn) < Ko* 02%21
K = .

T 18 1R |
7= B < SR | Q.E.D.

(379)

.(3.80) |

(381)

(3.282)

Theorem 3.8 says that the probablllty of long error segments in the edges found by

SEL is bounded by an exponentlally decrea.smg functlon of length. The lmportanth

v parameter '7 = 3" D (l - ap) depends on the measures pg and P As we will see in-

Sectlon 34,a hlgh nmage s:gnal to noise Fatio results ina low value for D(1 - ap) and

~. Thls provndes a lmk between the theory and the intult.ve behef that higher SNR

results m-fewer (and shorter) error events; ‘
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More lmportantly, however, thls theorem provndes us wnth an upper bound on. the :‘._: .

' probablllty that the real edge path does not fall in the stack of paths searched by the

algonthm As pomted out in Chapter 2, thls searchnng techmque does not guarantee.

that the chosen path is the mazimum: lskclshood path The path w1th the hlghest metrlc .

is the path among thoac acarchcd that maximizes the Jomt probablllty of Equatlon‘j
.(2 39) It is not necessanly the path that maximizes that statlstlc over the entlre set of " '
» paths in the field The root node is assumed to lle on the correct edge Therefore,‘ at
vleast the ﬁrst node of the correct path will always be on the search stack But there is
some NODZEro probablllty that the correct path IS only partlally searched and then dxs-i
| carded Thls 1mpl|es that the path on the top of the stack is an |ncorrect path There- :
fore, the probablllty that the correct edge path is not on the search stack is also upper. e
bounded by Theorem 36. As the best path on the stack grows longer and longer, thls

‘boundmg probablllty becomes exponentlally smaller o

The theorem above appears to address only the error event sltuatlon ol' Flgure 3 5 -

where the mcorrect path dlverges from a correct path and later remerges agaln In fact

1t also apphes to the sltuatlon of Flgure 35 where no remerglng takes place Thls non- o )

,physical case results in anilnfimte length error segment which, =accord|ng to _the theorem,
has a-'probabllitvy; of occurrence that approaches izero in the limit. |

The situations of Flgure 3.6 (an 1solated error segment) or of Flgure 3. 7 (an error
segment that beglns at a random ‘node and merges with a true edge path) are not
~ governed by the theorem because there is no correct path on the stack of the searchlng A.
algorlthm with metric dip, A, to compete w1th the mcorrect paths The sets S or St

are not even defined where a correct path does not go through node ¢ . _These vtwo situa--
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 tions are more properly treated as a root node problem (Section 2.4) since they arise on

account of improper root node selection.

| 3.3.3‘. ‘ _Sh‘ort 'Error .‘Segment Events
The approa,ch taken in. Sectlon 3.3.2 for long segments can tell us nothlng aboutv
short segments Thls is a consequence of Chernoff boundlng technlques in general since
“such bounds become tight only 'when sums are taken over 'many random vanables
| [cales]. - L - | |
. | Short error segment events are fundamentally more dlfﬁcult to handle in detectlon
of edges in two-dlmenslonal random ﬁelds than in codlng appllcatlons This is because .
there |s nothlng in images correspondnng te the concept of the minimum free dutance of

2 code [Mcb??’] In sequentlal decodmg of convolutlonal codes, when the searchmg algo«

o m,hm branches off from the correct path the structure of the code tree is such that rem-

»verglngs WIthln somevmlnnmum number of nodes, say l/ w not po.mble Thus, short error
events cannot occur. The phxlosophy regardlng error probablllty is to deslgn codes w1th
dlstance v large enough that the probablhty of a long error event, ﬂv) is small enough
o to ‘meet d'esngn requ;rements [For74b}-,- a

' That thls ls ’not‘ the case for unages is qulte easy to see Flgure 38 deplcts a
hypothetlcal edge, m, through nodes tl and tz, and an mcorrect path m’ 3 W|th an
error segment of Iength 2 through nodes t ¢ E and t ! 2 m’ | is clearly a valld path as
deﬁned earher "‘hus, wnth some non-zero probablllty, the nonse in the f : -}vﬂalues at
. nodes tl, jt,_zg tv i, and 2 may be such that the path metrlc along m’ 1s highe’r than

' that along m. o
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Figure 3.6: An error segment € that merges with the correct path m.
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Figure 3.7: A correct edge path m and ar isolated error segment e.
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Figure 3.8: A correct path m through nodes tl and ¢, and an incorrect path m’ with
an error segment through nodes ¢’ | and ¢5.
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’ Short error segments are difficult to prevent. In the example above, using the only
data avatlable (the corrupted image data), the path m' is more likely than m to be a
' _true edge path. Thus, no matter what edge detectlon strategy is used |n the absence of

more a-prlorl mformatlon, m’ ought to_be chosen over m.

' An |mportant source of a-prlorl lnformatlon ts available in even very. -general situa- .
tlons, however. This is that certain edge paths (such as those contalnlng stralght seg-
ments) are more probable than others (Appendix). The path branch metric of SEL takes

: advantage‘ of this information by modeling real edge paths by the Markov process of

. Sectlon 2 2 2. Returmng agaln to the example above, path m' has a Iower a-prfori pro-
bablllty than path m, 80 m wnll be chosen only 1f the f-values at tl» t2, t! 1', and

‘ t' 2 are so nonsy that the hkehhood ratio of the f ovalues domlnates the probablllty of

.’the path transntlons In other words, the mcorporatlon of a-prlorl path probabilities into

the branch metmc helps to offset the tendency to commlt short segment €ITOorS.

' ln general further a-pnorl 1nformatron on the true edge paths in an 1mage is not
»avallable In spemfic sntuatlons more may be known In tcmporal acqucnces of |mages,

for example, one may use the edges found |n one frame of the sequence as a gulde to

- those in the subsequent frame Or, m medlcai anglocardlograms, vvhere the deslred edge

|s the contour of the heart one may employ a tralmng set of prototype contours to ald ‘
m, the process. These‘types of very spec|fic a-prlorl mformatloncan be mcorporated mto
Ca sequentlal searchlng algorlthm in a heurlstlc fashlon .The reader is referred to Modes-

t|no [Mod76] for a dlscusswn of thls technlque
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: 3.4, lcornparis'o'ns thh the Coding Problem"

As noted in prevnous Sectlons, SEL is slmllar in many respects to the method of
decodlng convolutlonal codes by sequentlal tree searclnng ln thls Sectlon, we w1ll clarlfy'

some of the major dlfferences and slmllarltles between these two problems
.4 l. The Path Branch Metric
- The branch metrlc for sequentlal decoding of convolutlonal codes was ﬁrst proposed v
by Fano [Fan63] uslng a heuristic argument and was later derlved by Massey [Mas72]
: That metrlc s | | R S

where y —'(yl <,y ) are the recelved symbols, X = (zl .'.;,z:-‘)"are. the
transmltted symbols correspondlng to a partlcular path through the tree, R ls the code'_ -
rate, - P ( | ). are : ,_,the-_ channel y transltlon o probabllltles, - -an‘zd“‘ o

o(y, : E P (y, | = )Pr (z ) is the a-prlon probablhty of recemng y, The

derlvation of 1‘Equation (383) ass_umes that the z;'s .are i.i.d.‘ and the channe'l ls memo_ry.-
less, ie' ¥ 'depends only- on z;. 7

Although the metrics of Equatlons (2. 18) and (3. 83) appear to be qulte dlfferent '
. they are closer than it ‘might seem at first glance The bracketed term of (3 83) is a : ,
~likelihood ratio..of the probablllty of observnng Y; under the hypothesls that X is the
- correct path to the probablllty of y; under the null hypothesls that it is a random path

The primary dlfference between tlns and Equation (2. 17) is in the observatlons ln SEL
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f.‘wl-xen,v th/‘e_ searchilig _olgoritﬁm, hypothesireé two different paths, m‘ and m2, it obtains
' tmo ‘set‘,s‘ of.'obeerrotiom, ! and fQ, to mcorporate into their corresponding metrics. In
: deCOding, hoWeVer,_' the decoder moy hyoot;hesize ‘t‘,wo paths, x! and x2, but fhe obmﬁo-
. tlone, y, are snmply the recelved symbols and do not change -Thos, two metrics
‘correspondlng to two paths in sequentlal decodmg are a functlon of thrcc vectore, y, x1,
. and x2, whereas in nmage searchlng they are a fnnctlon of four veetors, f 2, m and
m?. ;Thls important dlfference surfacee‘ again in performance analysls where the expec-
tation of ’E'quation' (3.10) must be taken ,o{r& m, vm' f and f’ .The correspondmg :

expectatlon in the codmg problem is taken over X, x Y and y

The rate term, R in Equatlon (3 83) is closely related to the Markov transition pro- |
bablhty term in Equatlon (2 18) To see thls, _we note that the a-prlom probablhty of

»-any transmltted vector x of length n ls v

Pre) =B e
‘ vassumlng the source is mdependent and ldentlcally dlstrlbuted Substltutmg thls 1nto

.'i(3 83) for R we have

e S [B] eel)
BRI IR e @]

1

‘ But Equa};i’on ‘(2.18) for SEL s

(@85)
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so the. second term of both metrlcs ls present to take into accou‘n‘t the ‘ar‘pnorll probabll: '
ity of the hypotheslzed path The difference between them is that the path letters in
' sequentlal decodlng are assumed to be 1ndependent and ldentlcally dlstrlbuted (nd) ln
SEL they are correlated and modeled as a Markov chaln If they were assumed to be ud |

then the SEL metnc would have a constant term m its metrnc Conversely, _thls analysls

mdlcates that lf the mformatlon source of a sequentlal encoder was Markov mstead of R

iid, then the correct path metrlc would be of the form; o

Poly;)

BRI = T B

:r(‘?)_‘: _ % {gm_[”’" | % )] + o [p(io]} i'f"‘(s.s?')-;i S

3.4.2. D(6) and the Random Codxng Exponent

As we have seen in Sectlons 3. 2 and 3 3 “the quantlty D(6) plays a declslve role 1n
the amount of mcorrect path searchlng the algorlthm suffers and the probablhty of v
. eITor. It is in some sense a measure of the quahty of edgcs in an 1mage, the lower the‘ g

value of D(6) the smaller the probablhty of error and number of mcorrect paths

searched.

 From the Holder Inequality we see that:



_ . -1’00; .
D@ = z [Po(f)] [Pn(f = <8<

1-5 ‘ |
[ Po(/)] [Xl}p;(f)} S (3.88)

a'/\f

~with equality" if .and 'only if po'("f ) =p,f) for all f . 'Themfore, the ""quality" meas-

; vure D(6) is worst when Po= p l’ that is, when edge paths and random paths are
.mdutmymahable It becomes better (lower) as po and pl have less overlap Figures .

3. 9a and 3 9b lllustrate thls ponnt

- In the co‘dmg problem, the quantity Eyp), -

Yi+p

CEgp) = -3 ka(zk)p(yjin)‘,*f’ L (a9

SRR

- plays ,approximately t_he same role as D(&).does for SEL. E'o('p), called the random cod-

ing‘r eitponent? isa fnnetion,ol' fthe channel tranaition _probabilities. When the cross-over
_ orobabilivty of .t,he ehannel.is small i.e. Pr.(y,- #z-) is very nearly equal to 1, the ran-
dom codmg exponent is large and sequentlal decoding proceeds wnth few lncorrect path
v ‘hypotheses

As in the case of the branch metrlcs, D(6) and E’ o(p) are also slmllar in form To

see this, E 0 is rewritten as:
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S = 3 Sl ™|
L= ? Z;,::P»(l?’?)p_(yj“"‘);lﬂ'vLZ,;'p(z’f)p(ijljzk)“f (3-_90)
g Xkl p (iz;n)tf{,»(w'ltiik,)',*’»”‘ f [ Yo (7 )p (31 % )"]"p

| ‘ve},hel;e»av= -—l= . ‘Contrast this 'wiﬁh-D(ﬁ)i
T 4 T : | ‘

LDl = SaRU ey

Fu'thermore, nt can be shown [For74b] that sequentlal decodmg possesses fimte S

'a,verage decodlng time when the code rate R satzsfles R

i R < Ry = Eoﬂ) a9
The rate is g?vexg by: R = —E—(—-) ,'whéfe M ‘_'iﬁ gixe.alphébet size _of code s‘yml_)ols:vam‘l‘
. L‘, ls tl;e xy’x:umbe'r‘vqf' codé'siy‘xznlj)olvsv I‘J;r"sé;llici_e_v_sym_bc;l.' EQuation 2(3.92)‘ is'btherefore:
R »2,

b(M) < -—ﬁlnz z:p(z,,)p(y,lz,,) Y™

' Clqro‘llva»l"y' 3.3 spe_cifi‘es s_;i'mi’!ar ’condition,sv."fdr SEL to have a finite m’vean number of com-

_putations, one of which is:+
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In(3 < -l %:pl(f)

1
ol

polf ) (3.94)

where a p is set to -% . Equations {3.93) and (3.94) point out the very similar roles that

D(8) and E y(p) play in the analysis of SEL and sequential decoding respectively.



' CHAPTER 4

'THE DISCRETE-STEP ISOTROPIC MARKOV FIELD

41 Introduction,l ‘

In véhapter ‘2',.“;‘? “derived our branch nietricvunder the snnphfying assurnptionthat
the observatioiis or random ﬁeld values { f - } along ,paths are conditionally' indepe'ndent'. '
This allowed the jOInt probability to be wntten as the product shown in Equation (2 17)
A dlrect result of this assumptlon is the recursive computablllty of the path metrlc V.

" Various aspects of the analysis of the distrlbutlon of computationand probability of
erfor presented' in Chapter 3 also required this assumption of lndependence.-*ln thisi
’Chapter, we w111 1ntrodnce a new model for corrclatcd random ﬁelds for which it is pos-’
snble to generate a sequence of path mnovatiom that are mdependent W'ith the path o -
metric defined in terms of this innovations.process, the previous results‘of Chapter 2 and
3 are ,,preserved.i '. | - -

Tt is im.pOrtant to note that none of ‘the previous investigators of sequential search-
ing techniclues.for images have generalized their" methods tovinclude correlated data. ’I;‘he, )
early work of Mar_telli [Mar76b] and Chien and Fus[Chil‘li] are not explicit on thls point,
but their running pat,h” metrics implicitly assume that the data along the paths are -_
independent. The random l'ield inodel of Cooper [CooT79] explicitly assuniesﬂth_e ﬁeld is |
composed ol' a deterministic two-valued component (" background”iand "object”) and an
additive i;c'. d. Gaussian random noise field. Two investigators did consider 'Marlcov ran-_v

dom field models [Han82], but in the context of a raster scan search rather than a

-104-
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seduential,search. _Finally, the ad hoc metric of Ashkar and Modestino [Ash78] is thei
- sum of independent'branch termsthat do not depend on any correlation with neighbor-
- ing branehes; | | |

This':is »in spite of thebfact that it has heen’demonstrated hy many investigators

: that the plxel values in many real world lmages are hlghly eorrelated (See, for example,

- [Wil7l], or [leOS] ) In fact, the rather large dlsclplme of compresslon coding of images is

'based precnsely on thls fact [Dav72] The ohservatlon that compresslon ratios of 8:1 or

- hlgher have 'been achleved with little subjeetlvedlstortlon of real images attests to the
‘ large measure of eorrelatedness present in those' images.

The organlzatlon for thns Chapter ls as follows In Section 4.2. we review the more B

' common two-dlmenslonal random field models Sectlon 4.3. detalls the advantages

o obtamed by the :mposltlon of path structures Thls is followed by a development of the

iDlscrete«-btep Isotroplc Markov Random Fleld (D-SlM) model together wnth lts impact i

on SEL in Sectlon 44.
42 Two-Dimensional Random Field Models

‘4.2.1. Notation and Assumptions' |
An lmage wnll be consldered as a sample functlon of a two-dlmensxonal dlscrete
parameter random ﬁeld The real-valued functlon f (w) defined on the product space

of ﬁ and the nodes of the lattlce l X lis the value of the sample functlon at the node

-whose coordmates are r = (r ' 2) e



twe: will denote the autoco‘rrelation_ffunction';:(',;f, flas
R!, (".’.j.,.mv’vn‘) = E {fu fm”} Tfhrd!lghout:lthis C_hapte;,,, vei_‘wil_l Only be:‘c(l‘m- -

oerned with homogeneous random fields so that:

R, (e Smon) _,R, (i-m,j- n) R, (k, 1) (41)

The spectrum of a ﬁeld f is defmed in the usual manner as the two—dlmensnonal- o
Fourner Transform of the autocorrelatlon functlon (assummg R / is ahsolutely summ- )

: able):

E 2 R, (k 1)32"1("”")' :o;5‘<1;;.j,~;,go.?ssi o
S - Yhkw=eoo le=-00 7 , (42)
,A?Svf(“"”»)'vf: 0 S |u| >05 or |v| >05 '
_‘ 4. 2.2 The Markov Mesh Model

In thelr 1965 paper [Abe65], Abend t. al generahzed the ldea of a Markov Channb
to. two dnmensnons in- an “effort to remove the restrlctmg assumptlon of statlstlcalj-:
mdependence among the random varxables of a field. A fundamental questlon is how to_‘
extend the notions of past” present ) and ”future from onedernensronal Markmvr‘-
theory to two dlmenslons To summarlze thelr results we shall need the followmg deﬁn-: |
Itlons: | | | | ‘

| (1) The field is of finite extent, restricted to an array of size M rows and N columns. :
(2_) Xm . = '{fr‘,,rﬂl r!'<m and r? < n };,‘an mxn array'of ;randoui_ vari-

ables . compnsmg the upper left hand quadrant ‘with - respect to the node (m n)
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* Note that Xy y is the entire field. ©

@ Xeb =X, - lf., b ie X, . with the variable f , deleted.
B m,n 1.4 ) ’b . m,n o G,b v

‘V ) Z,5 = {f;.l’,z |"r“ "<"‘,':_v or r2Zb. }; a nonrectangular array of variables
" lying to the left .of, or above the node (ab).

The assumptnon employed as a startmg ponnt in the work of Abend et. al. is that
' for any (a’»b ) there exists a , subset U s C X,‘ such that the condntnonal probability
~of a random vanable fs, 5 glven the variables Z. b 18 equal to the condltlonal probabll- 3

ltyoff.b glven Uab,ne

Pr(m:z”) Pr(fabuvm ,U.bCX:t C(43)

- For example, what they call a thlrd-order Markov Mesh has the property

(fablzab) ? Pr(fablfalbvlalbltfabl) (4l4)
‘Such a model has also been called a strxct-sense Markov random ﬁeld [Ros76] With thls

. formulatlon, the past” in the two-dlmenslonal sense is composed of the vanables Z, b

' the present is j’ s b and the ”future is everythmg else

The _paper also shows that a key property for one-dlmenslonal Markov Chains may
be extended to the two-dlmensmnal case del’ined above Tllls property is that the one-
aSlded Markov dependence unplles a two-slded dependence For ﬁrst-order chalns, this

means.l oo
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| Pr(g | Bt ) =Pr@mlng (4.5)
Priz| - %ias Bgry- o) = Priz | S, Zes) (48)
and éimilarly for liig’hér-brdel; chains. The converse is not neceséarily:tr'ile. In dii-éet
analogyvtogthis,: Abén& shows _that,:-» for éxa“mple,v th¢ tlivirdiéii'.dver' Markov mesh assump-
tion implies:
- Sa181 fa-l,‘b . fq;l‘,$'+l '

| .fa,bi | fa,ib—l 'fva,b+l‘,“ 1 (4f7) .
" : /¢v+l,l"—l_ v-.fa_—!‘--l',,b' f‘:c-‘rl‘,b‘#l' e

.’Pr‘(f‘.,f,,-| Xﬁ'f}v) = Pr

" This result démoxvlgti?;t:éﬁvtﬁa:t' the Ma.i‘-ko.‘v3 meéh’;Séu'mbtiovx'i‘i"l(‘ea‘c‘ls"to; fhétreéséhébié con-
clusion thét‘ the éonaitioﬁa’l ﬁrdbability of j b given the e‘nﬁfé* é;n:-"ayvfjis the s;méfas
that ngen only its elght nearest neighbors. | o A

As dlscussed in- Kanai [Kan80] tlus model has not proven éartncularly usefﬁl for_

‘ parameter estlmatlon or classnﬁcatlon in real images but is more smted to lmage genera;

tion or texture synthe_ms.

4.2.3. Wi_dé-Sehu Markov Rahdofn Fields'
W'lde-sense Markov random fields are a direct. generallzatlon of wnde-sense Markov ,

Chams They are also known as Autoregressnve Models (ARM) [New77] In' these'

models, the field ‘is deﬁned in terms of a llnear mlnlmum mean squared-error (MMSE)

estimator. Using the deﬁnition for X,  given in the Sectlon:. abovej, we may,form'a o

linear estimate of [, j as:
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fes = DI ‘fi,j | (4.8)

fa,] eXl »

If we denote the mean squared-error to be:

e;,b = E {Uc,b -/Aa‘,b]2}‘ | | (49)

then it. can be shown [Hab72) that the following set of comstraint equations must be

satisfied by the coefficients, ¢jt

- E g{fa,,b ~Japl f".i} =0 all f;;€Xsp (4.10)
This is. @hevsame as viewing the estimate as the orthogonal pfojeciion of f a,b onto the
| Hilbert Space of the " past” observations, X, , .

Denoting the subset,

Py = [fa'_’n,b ) ja—l,b—l;f.a'(,;l] C Xep (4.11)

a random field is defined to be wide-sense Markov if:
Sop = 0 e fii :
Il,; GP. K ) o ) - . (4‘12)
i.e. the MMSE estimator of f a,b given all of X, , is the same as that given only the
~ three immediate neighbors of f a,b. Y0 the left and above. A generalization of this to

higher orders is given by Newman {New77]:
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fq,b = 24 4__4 ¢ fs,] S B (4.13)
R =0 j=0" G S

It can be shown that Equa_t\ibn'(4.12) is equivalent toa differénce equation in f Qg '
Theorem. [Ros76]. A discrete random field f is. wide-sense Markov iff bit satisfies the
~ difference equation:

(‘J)EPmu L

where the £, , are un_correlated," :
E'{E;,‘.,,.AE,,,.,} =0 ;mz#p ornyfq

It may be noted that fields with a separable autocorrelation function: ‘OE'V‘the fo‘rmn_‘.
R (k l) — g2 e»—axlkl “’dll are-Wide-sense Markov [Hab72].

This model therefore allows for the generatlon of a samplé functlon recurswely
Furthermore, the model can be fitted to a glven lmage by solvmg Equatlon (4 10) for the
¢i; s This involves the inversion of a block ‘quplltz autocorljelatlon matrlx' as'm'the '
one- diménsiénal autoregressive (AR) model {N¢w77]. | |

The spectrum of a general wide-sense Markov random field given by ,Equﬁtioh-.

(4.13) is:

S! ( kio IZO pxk ! 8-21\’1 (ks + lv) I ) _OSSu,v SO,E) (415) .
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4.24. Di‘scréte Gauss-Markov Fiel&s

Usi_ng an altogethe; different interpxetatidn of "past", ”present"’, and "future” in
tWo-diﬁensions, Woods [Wo072] has proposed the following model. We think of a field
as being aivided into’ two 'régions G* (the future) and G~ (the past) by a band éf 7
minimum wivdt‘h p>called 4G (the present). Figure 4.1 is one exainple of such a di\'r'ision.. |

The field is said to be Gauss-Ma.rkov—p if:

Pr(fg+l facsfa) = Pr(fg+| fag) (4.18)
If ‘61‘1e i‘x-ow' deﬁ‘nes the _set’ of indices: |

 Woods shows that the definition given above isvequivalenvt (for the case of ,G'ailséian',
hoinogehegitis; zero mean r'ahd’om'vfi'elds) to the field generated by the following interpola-
tive diffe:encé equation: /’
iy = Yk fikja + o ‘ (4.18) |
o p, : ‘ 7

where: =
(1) E{/'d uk,g,’} = ¢ 0y 5,‘4 e >0, ‘
() wy; - is a homogeneogs,-‘ ‘zero  mean, Gaussian random field with

o [feemy JkeED, |
, : 10 , elsewhere
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N

Figure 4.1: ‘An example 'of‘va Gauss-Markov-ﬁ random field. -~
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(3) hy's a.re_,the coefficients of the linear MMSE estimator:

E{fﬂ "I_Xi}",'}v}l = %: LT P ‘(4.19) :

It lS easy to see from Equatlon (4. 18) and property ( 1) above that the autocorrelatlon of o

_ the ﬁeld f satlsﬁes

."‘Rf_ (k1) = S h; Bp(k=ijl-j) + coy (0

D,

- so that the spectrum is:

_S“,»(u:,-v.,_.) SRR Y by emilke tle) f0-15Sil v S0-5_ (4.21)

Y 423 ,_ MaxnmumEntropy Fields

: b' A l'ourth nuethod of modehng a two—dunensnonal random ﬁeld is by a maximum
-‘ entropy spectrum Thls model has ‘lts roots ln the problem of two—dunensnonal spectral
estlmatlon [New77]. : | | |
The method of estlmatmg pouer spectra in one dlmenslon by maxnnmng entropy
B __v‘was ﬁrst lntroduced by Burg [Bar69] and made rlgorous by Edwards and Fltelson
[Edw73] Thls has been expanded to the two-dlmenslonal case by Barnard and Burg
' [Bar69] Newmann [New77], and Woods [VVoo76] :The idea i is to determlne the spectrum
S ' (u v) of afi eld [ from a small setof known (or estlmated) autocorrelatlon values |

‘ R, (k 1) , | lc| < Q | 1 <R The method is to maximize the entropy of the ﬁeld
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Nl‘v—_"_ S

S 1 0505 R A R el

=3 f f [S; (14 U)] du dv + In [21re] (422) _
s-_2-osms : R B

(for Gaussnan fields) consnstent wlth the known autocorrelatlon values

. _0505 ’ "»’:pﬁjrp‘at[jmr

, ' k< |
R (k I) = I fsf(“ v) 6‘2”""”") du dv rll||<1? (423)
Sobs-08 | - | )

Upon solving the resultmg vanatlonal problem for Sy (u v) the followmg form 1s‘:

| obtamed where the coefﬁclents Comn . depend on the values for R, 3 (k I )

. ;l.: . S : S
Sf (w, v) = [ § 2 _2”(,“”’)} _ —05<u,v <0 (4 24) -
m=-Q u-—R _ _ . . o . .

It turns out that Just as the maximum entropy method and autoregresswe models are- :

related in’ one dlmenslon, there 1s a snmllar connectlon ln two—dnmensnons [New77]

. Furthermore, the ME spectrum is also the spectmm of a Gauss-Markov random ﬁeld

[W0076]‘. :
4.3, Paths in»Two,-Dim_ensional Fields

4.3.1‘. O_rd'ering‘_ '
One of the key dlfl‘icultles shown in thevprewous Sectlon is that of generalmngthe ,.

one-dlmenslonal notlons of past”, ”present”, and "future to: two-dlmenslons Dll'ferent -

assnmptlons on thns pomt have led to rather dlfferent random: field models It is a

matter of argument as to which is the more " natural” generallzatlon [HasSO]
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The V‘im"position‘ of oath structures on'a two-dimension‘al random ﬁeld removes this
amblgulty, however, at least as far as the random variables’ along such paths are con-
’ cerned Recall that a oath was deﬁned in Section 2 2.2 as an ordered sequence of ran-

B dom ﬁeld nodes satlsfylng certaln connectmty reqnnrements Let us denote the random
ﬁeld varlables"‘ correspondlng " to ’Mab_» glven path - m = r 1"'2’ . . ,r“] as

- f__.[] ,,,,j-]:[[l, ,f ] We then have the follownng obvnous but‘

lmportant observatlon regardlng the random ﬁeld vanables assoclated with thls path.

;Obseﬂ?rntion:: The path m imposes an ofdefing on theyariab_les {f:)
?'13'<1 I3, << Sy o (4.25)

' It ls sgaln natnral to thmk of a time series in the observatlons ‘with the terms past"
psesent” -'and ”future possesstng some meanlng | |

‘ It _vi_'rill Ieter’become»,neoessaty t_o_.r_estric_t v_o-urf sttention to s cla’ss"-of.paths among ,;n
- ;;o_ss'ihle paths deﬁned ea‘lfliierb.r For_this Aq!a‘ss,' ‘t‘he natqre of .the ordering lmposed by the

path can be made more concrete. Consider pairs of nodes of the lattice [ Z

( ,r) € 12x12 L ()
and SOme undeﬁned' rootv node ro We denote by <" the blnary relatlon " distance
'from ro Thus, r < r lf the Euchdean dlstance, |r - r0| < |r - r0| The

v.‘.‘_relatnon < isa partml ordcr [Bob74] on the set of lattlce nodes {r }, since < is reflexnve,

' ‘antlsymmetmc, and transltwe If We now: :estmct he set of al_l paths with root node rov

o the set Q—~ ngen by
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Q.;é = {inl T <r; forall i <7j} : ‘, S (aeT)

then the set of nodes {7;} comprising a path m E Q- is totally ordered or lmcarly
ordered. anally, snnce there is an 1somorphlsm between nedes of a path and the random '
field. observatlons along that path we see that the path m imposes a linear ordering on

the set f:

1< <. .. < [y fcQ . (428)
where fe Q is understood to mean the correspondlng m E Q—~ for some rO: To lllus-

'trate, Figure 4.2 shows that ‘the set Q@ is merely those paths that do not- "double hack

on themselves .

.3.2. Dynatmc Modehng of Path Observatxons

The random ﬁeld bobservatlons along a given nath in Q form a hnearly‘ordered set.
This fact suggests the usebof a dynamlc model for the variables, - A well known class of
.such models is known vanously in the llterature as Linear Predlctn'e, Autoregresslve '
Moving Average-(ARMA), or Predictive Discrete Wiener Filter nmdels (see [Mak75] or
[Ka174] for a general descrlptlon) All of these models exhxblt the wide-sense Ma.rkov‘.
property (in the classlcal one-dnmensnonal sense) that the best predlctlon of the next .
vobservatlon in a time series is a linear function of the past p observations. Here "best”
is in terms of minimizing the mean squared error. The orthogonallty pnncnple states

that this error between the actual value of the next observatlon and the predlcted value

is orthogonal to the past observations.
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Figure 4.2: The path topology én the left is s member of the set Q but the one on the -
right is not. The right path loops back on itself so that, for example, the
._ninth node is closer to the root node than is the fifth node.
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: 4Adopting..jt,lie ARMA model, t_he'alidl'e ae‘snmptionsfv;'nay b'e stated mtheform o S
i (7 f:—k = i 0: f._z c L (429)
where the @, are the p .autoregressiOn eoefﬁ‘cientﬁs"-v and the‘o, are the q 'movillg average
- coefficients. .The'procees {& },-known as the‘c’n”pﬁt process or the 'cfnn_ovati,oha ‘pfee’eés’le’

‘a sequence of orthogonal random variables: -

Thus, the sequence of obsefvations {f:} may be viewed as ‘the eutﬁut of 'a-,lineax" ﬁlt_ex' :

with transfer function

e = 2 s
and wltln inpul {E, }

4.3.3. Appllcatxon to SEL

We dlscuss t,he nmportant questlon of when the observatlons really do ﬁt the model o

given above m'-the next Sectlon, but here we are interested in how such a model may be
exploited.
Let us assume the process { [i}is ‘Gaussian and wide sense stationary with mean

” f We will denote by:
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ie. the zero mean process obtalned from { ] } by subtracting f We further assume -

that { f‘ } is a zero mean, Gaussnan, mde-sense statnona.ry, orthogonal process such that

| ‘ i ¢¢ / ik -#' 'él 6y f._l  (4.33)
i b f.-k é 0, f.-l o (434)
1.-.=1 - ) =] . ' ‘
f: K% f.-k - i 0 f.-l ‘.=,' & + .7 . (4.35)

" Denoting feh’{g"le‘f“’ti*haaai-s;de of (4.35) ‘by" b5, we bave:

%= &+ T 0 (438
= A_ssnme that at time ¢ ,the'previous q values of {yJ } . are known. Then, since
e L o J ey l . o

the present observatlon, ] i s known, the p prevnous observatlons are known (and
. therefore the { f ik } ), and the q prewous E, d values are known &y =94 - j— )
- the value of y, is known Thls is then used to ﬁnd {, In thns way, the sequence {y, }

: vmay be recurswely generated from the observatlons {f: }

,Now, th}'e.‘r‘a‘n_dom variables- E,- are o‘rthogOnal b'and zero mean. Thus:



E {_ﬂ.‘- 'yj} =E {f; _fj_} +fh= L= {E {y,}} (437)
80 the y, are uncorrelated Slnce they are linear comblnatlons of Gaussnan random varl-:
-ables, they are also Gaussnan and therefore lndependent If we then define the po and:__ :
Py measures of Section 2.2.3 on these mrtual obqervahom instead of the ~actual observa-

tions f; :

Pr(y | Ho) = Pr(y | % s on o random path)

Pr(y | H) = Pr (y,- [ y; :'sfon‘s,an‘ﬁedge ]pdth»)

pol¥)
py(w%)

ws)

" then we may deﬁne the path branch metric in terms of the y, also Slnce the y, are.

1ndependent the 1mportant assumption of Equatlon (2.17) is true. The results obtalned_ _ '

in Chapter 2 and 3 are therefore also valid, even though the original fleld f is- corree
lated. |
In short, imposing an ARMA model on the sequence of correlated- observatio'ns | -
compnsnng a path allows one to generate a sequence of independent vnrtual observatlons_
from the orlglnal sequence wnth a lnnear, causal finite memory filter This new sequence. '
is used to calculate the metric for the path. Of course  to do so, the searchlng algorlt‘hm.:
must now keep a record of not only every path and its metrlc v1s:ted but also the atate' '

of the observatlon process for each path. For an ARMA( p q) model thls state is- com-

posed of the last‘ p variables {f ,-_,,} and the last ¢ variables {&;.1}. This may add

considerably to the memory requirements of the searching algorithm.
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4.4. The D-SIM Random Field

‘ ‘ ;It should ‘b’e, clear from the Sectibn above that it is desirablé to be‘ able _t;o _model.
~ the ";eqixence of O‘bsewatid#s #loﬁg a ,patli in ‘a correlated r‘andom‘ﬁéld as an ARMA pro-
ceé:%. »Iﬁ iév nbt cléar if or when such: va} model is appropriate or realist,ic.’ In this Section,
: wei will pro‘p503e a,‘ra‘ndoin,ﬁeld fof iv.hivchvthe ‘mode‘l can be shown to explicitly l_iolii.
That is, ‘we‘ are able to specify a two-dimensional antocorrelation function such that the

one-dimensional sequence of observations along any path in the class @ obeys a differ-

- ence e(iuatiOn of the form shown in Equation (4.29).

' . 4.4.1, Difficulties with Previous Models

. We return to the ~‘various two—di'mensbional‘randbm field models summarized in Sec-
tior 4.2. It is easy to construct codnter-examples or arguments to 'show that, in general, .
&heée fields fail in the sense discussed above.

4411 Wide-Sense Markov Fields

, Recall that wide-sense Ma:koy »rvandoin_ fields satisfy:

B {Uafal) =0 afigex, o)

Let us consider the specific case of a zero mean, unit variance random field with auto-

~correlation function:

R!(k.l) e ‘e,“ﬂliﬂ '-vdii”. ' . » (439)
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It can easily be shown [Ros76] that the Equation.(4.10) is satisfied with the MMSE esti-

P

‘mator given by:

!m a= € e+ e”"‘*'f,,;*,-, = c"’“‘“*'f‘m’.rl‘ i ..(~4”-.4,o?)' -
80 thls field is w1de-sense Markov Now conmder t,he path f € Q deplcted in Flgure a. 3_

which ‘is honzontal up to observatnon f . and diagonal beyond Before node s the '

.autocorr,elatlon .functxon of the ,obs,ervatlons along f satblsfyf.
R(lc) '“‘R(lc 1) —0 (4
Theréfore:'» E
E s e fif i =0 i<i<se  ww
which implies the { f; } satisfy the difference equation:
» f' - ‘e"“»,l»f"._l = 6' | ) ’ ; < s B | (443)
Eleg)=0 i#i
After node 8, »,hgwie‘ver, we have:-
R(k) + e*7R(k-1) = 0 (444)
whiph leads to:

| f‘ »+ c-af#z.,{_l . 6' ,It > 3 (445)
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R

: Figure 4.3: A path“i‘n,thév. set-Q that is hérizdnpal 'np'tq node s and diagonal beyond.
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Cefeg)-0 #

We see, therefore, _that the second order statlstlcsl of the sequence { f } are dlfferent |
~ before and after the term l—s Even in thls slmplc case, “we see that the sequence of‘ :
: observatlons is not wnde-sense statlonary,. Ithough ‘the. random ﬁeld fromb whlch they.

were drawn 1s homogeneous Furthermore, we cannot even.employ a locally atatnonary‘ '
model [Sl|57], as one- can qulckly see by consldermg paths in Q W|th many changes in :

dlrectlon‘ (Flgure 4.4). C

4 4.1.2. Markov Mesh Models , |

Markov mesh random ﬁelds are those for which:

Pr (fcb l Zcb) Pr (fab l Ua b) . 7 flrf'Ua,;'b vaX:,h#» (43)
»The counter example gwen in the Sectlon above serves for these models as’ well lf we,

' make the addltxonal assumptlon that the ﬁeld is Gaussnan Thls is because for Gausslan

random fields the mde—sense and strlct-sense Markov deﬁnltlons are equwalent [Ros76] e

Thus, for the same reasons as before, the random field wnth autocorrelatlon functlon'
gwen by Equatlon (4 39) is an example of a Markov mesh for whlch a sequence of obser-i

’ vatlons along an arbltrary path in @ does not satlsfy Equatlon (4 29)

4.4.1.3. Maxunum Entropy erlds

A maxnmum entropy (ME) field is deﬁned in terms of its’ spectrum (Equatlon_

(4.24)), where the coefﬁcnents, mn » aT€ Hermltlan and determmed by the values (or esti-

mates) of the autocorrelatlon function B ! (lc 1 ) for | k| < Q |l| < R Newman .
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Figure 4.4: A path in the set Q that has many changes in direction.
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[New77] has shown, however, that despite the. differeace: in: the way.ME and ARM
models are formulated, their power spectra:lave. the same form. «The‘:corresponde-nce
between Equations (4.21) and (4.24) can be seen by, setting: -

.min(‘ -m,Q) min(R-n,R)

ma ' YVigm,jon Virj (4.46)

immaz (0,-m) j=maz(0,-n)

]
I

Now, 'sinee we have ae;ul.ned R , is integratable; S‘f is necessarily bounded and contintr-
ous. Also, R , is bounded Therefore, R; [ is squa.re mtegrable and so by the Planchcrel -'
: Theorem any two fields with the same spectrum necessa.rlly have an ldentacal autocorre-
lation function R - This along with Equatlon (4 46) unplles that there exists : an ME
field with R ; 8iven by Equatlon (4. 39) So once agam, this same- R = ‘serves as a
counter'example to the claim that ME fields give rise to paths whose observations satisfy

Equation (4.29).

4.4.1.4. Ga.uss-Markov Fields .

For a counter example for Gauss-Markov fields, we turn to the original example of

Woods [Woo72]. In this case the field is generated I_Sy the difference equation;

fij = elfiju+Sivg+ ijat fiang) + (447) -
where {u; ;} is a zero mean Gaussian field and

(e k)=(00) S -
R, (k)= {-ca k =1,-1, Il =1-1; |of < -i Woods shows that the
0 elsewhere ' ' ' :

autocorrelation function for this field is:
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05 0.5 ¢ 52r(uk + ol)

Ry(kl) = e _{5 _({5 1 - 2a(cos27u + cos2mv) du dv (448)

Woeds evaluated this integral numerically for a == 0.2‘25.' Values out to k = 1| =

are‘listed in his Table I. It is clear from these values that, just as. in the example of t,he
~ Sections above, observationa along diagonal paths have diffe:ent eecond Qrde‘r statistics
-than de thoseaiong horiiontal patlrls.k Furthefmore, in tnis example even straight paths
do not have a sequence of. observations whose autocornelation nalnes'decay exponentially.

~ This is a necessary condition for them to obey a difference equation.

4.4.3. The D-SIM Field

We have seen in Section 4. 4 1 that the classical random field models do not give
ﬁse to paths whose observations satnsfy uquatlon (4. 29) We mlght go ahead and model
v 'the observatlons as‘a one-dlmensnonal Markov Chaln anyway, but lt is unclear how to
estlmate the ARMA pa.rameters ¢,, and 0, from R, (k l). A more satlsfactory solutlon
is to i’ind a random faeld model for whlch Equatlon (4 29) does hold fit this model to the

image and obtaln the Ok and 0, parameters from the model

In this Section we describe such a random field. It will be called a Discrete-Step
Isotropic Markov (D-SIM) random field, and is defined directly in terms of its autocorre-.
lation function. Here we will assume the field [ is homogerieous, zero mean, and Gaus-

sian.
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:4.4.2.1.‘-Neceesa‘ry Conditions on the Autoccorrelation Function
The‘ counter examples given in Section 4:4.1 provide some insight into two condi-
tions that B !' must satlsfy for the field to be D-SIM. The first is  that- the field must be
-ISOtl‘OplC Roughly speakmg, this means that R f (k ,1) should be independent of direc-

tion and depend only on the separation of the variables. 'In most dls‘cussmns of random

fields, this condition is stated:

- ) | .
‘ "Rf:‘(k;,l) = Rf‘(,[kz +~-12]_2) = R/ (r) S (449)
ie. the eutocorrelation function is a fuhction of one variable, the -:Eucliaeani distance -
‘between the ‘nodes‘ This' concept of isotropy is fu‘r'thermere' intuitivelj': setisfying;' "Gifen
no other a prion mformatlon about an image, why should one expect the observatlons to
" be correla,ted any. ‘more or less in one dlrectlon than’ another’ | |
k bThe second neceséavry‘condition is that along any straiéht_pa‘thv(really any path,
fe Q) the autocorrelatlon functlon of the variables should: decay exponentlally or as
the sum of exponentlals Further, this exponentlal decay must be in discrete atcps, ie. 1th _
must be geometrical. This is necessary in order that the obs,eniration'be modeled by a
difference equat‘ien. N
The’_simpvle and ‘familiatr isotropic autocorrelation function of quhlatieni (449) doe‘s‘
‘not meet this sec_end cendition. B:ut Euclidean distance, while be'tng ’pos'sihly the h’;ost
natural, is not the:‘ only way to ‘-me‘asure distance on a squere lattice’.* In partic'uiar,

another distance function on [ 2 which suggests itself in view of c‘ovnditio_n two is:

D = EFIL )
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known as the city block distance [Ros68]. -We note in ba.ssing that city block distance,

. like Euclidean distance, its a metric in the topological sense [Nay82].

. 4‘-4.2.2-v._DfSIM Field'
‘We now define a p** -order D-SIM random field as a homogeneous field with an

autocorrelation function of the form:
Ry (k1) = o [p,e“‘“"”"”»-&- Lt c?e“""‘lf””] (4.51)

§ =l

"where 0'2 R, (0 0) and é ; = 1. It is seen from Equation (4.52) that this auto-

cbrrelatioh fun‘étidn ‘i‘s nothink tﬁofe than ‘thé ‘a-u:to’correlatitv)n' function- of 2 ore-
dimgnsional;.? th order ividgesense Markov seque\née, with city block (twd—dimensid_nal)"
: »;li;i;nce t;kin:gv theplace of (bne-dimensional) integer lags.

A ‘random ﬁeld belng D-SIM is a sufficnent condltlon for paths in the class Q to:
s;tlsfy an equatlon of the form of Equation (4.29). Recall that if f €Q, then there

ex1sts a root node, T, such that:

%%l < T =T i<y (45)

We remark that aithough'this deﬁnitioh'was formulated using Euclidean distancé as the

N dlstance functnon, we obtam precnsely the same set of paths Q using city block distance

in Equatxon (4 27) since both are topologlcai metrlcs. Before we can prove the above

assertlon, we need the foilowmg theorem ‘

4 T.heorem‘ 4.1: A path fEQ ina p:”’-order; D-Sﬂ\@ random field induces a super |
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‘seq‘uence. f ‘.'s_uc”h,that' Eqnat.fion (4.29) holdsforthls f .

Prool' 3

Letf € Q be:

t = Uz odso--- ] = Un-afin b (4.83)
The problemb encoilntered ln dealing _‘with‘f directly is that for 's:o.me i's, | rj_,'_l‘v—‘—i ‘ =1 o
.and for other j i s, | Tip1 J- | =2 depending on whether' the path i’s locally running hoi’»

‘ lzontally, vertlcally, or dlagonally Where the path is locally dlagonal say from f i

~‘

f FFeT we iatrodllce a dummy variable f i euch that:

Cand . S o SR
ERTET

. (see: Flgure 4. 5) We note that on a- square lattlce, lf fe Q thls can always be done

whlle preservmg the ordermg (4. 55) We deflne the sequence f* to be just f wnth the ‘

o~

R ordere‘d'inclusio'n of the dummy‘ variables f it '

[!'17’f:’] -

~(4.56)

Because of (4. 55), thls sequence is also an element of Q Furthermore, the distance

between every vanable of f ls, by constructlon, one. Now since the ﬁeld is D-SIM we

have:
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F |gu'-e §5 “Where f is locally dlagonal a dummy observatlon f j is inserted in the se-
: quencc r such that Eqnatlcns (4 55) and (4 §4) are satlsﬁed



,E‘{l’ i f’”‘l = "2[ -““' R ;?_',”‘l (457)

_ This ‘autocorrelation function of _the’ sequence ¥ - is‘w‘el‘l, known iIl time series analysis,
Weiner Filter theory; etc. Since it is real, even, integrable, v,and positive definite, its
Fourier Transfol'm, _S ¢ (v ), is real, even, positive,. and integraole.j It may be ex.pressed
in the form: | |

S,.' (4) = AlY) . g5 <y <05 (4.‘58)-

. By T T
That is, autocorrelation functions of the form shown in Eqﬁat_ion ‘(4.5,7:) correspond to
power spectra. that can be expressed as ratios of polynomials in u The polynomnal
B{ uz)‘ is of degree p .(from Equatlon (4.57)) and the degree of A is less th;_a,g p. Let
degree(Ak.) =gq < p. Because A and B are polynomials in u2, S¢ (u) may be factored

into two terms:

Sp(v) = giz)) . g:lZl = H(u)"* H‘(u) :05<u <05 (§.59)
where H (u) and H "(u) are defined implicitly. Furthermore, this factoring maj be
accomphshed in such a way that all of the complex poles and zeros of H(u) lle in the
upper half of the complex plane. Thus H(u)is analytlc in the lower half plane While
we have not proven the statements leading to (4.58) and (4.59.), they are well known

results. - The interested reader is referred to [Dav58), [Ire], [Wol38], or other discussions

of Weiner theory.

Using the change of variables, z = e 727% Equation (4.59) becomes:
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Se(z) = H(z) * H'(z) = | H(z)|? (4.60)
where H(2) is rational in z and analytic on and outside the unit circle. Therefore, the
sequence f' can be thought of as the output of a filter H(z) driven by white noise.

‘Since all the poles of H(z) are inside the unit circle, and all its zeros are on or inside the

| unit circle, H (z) is causal and minimumﬂphaae. H (z).is of the form:

o H(z) =. _—-l;-so——- ' v, | (4.61)
k =0
. so‘that',‘ r sétisfi‘es':
f' }."-.—.‘ f}',ﬂtﬁk, 1 Lk - & - i‘ 0 & i N (462)
E{&',EJ} =- 0-25’] L : (4;63)"'

' fvh_ich is what ﬁasto be proqu.‘

" This theorem tells us that the observations along a path £ € Q in a D-SIM field
are a §ubsequen"ce of a sequence rf € Q vwhichvis ARMA. We now show that f itself
posseéses an ARMA-like quality.

In the foliowing, v‘v‘ek réquire Qome new nétation. Let f; be a variable in: the
.geque.nce_f € Q Let thé ihduced super-sequence be ' We will denote by f ' (i) the

variable Jer corresponding to f;. Thatis, (i) =j | f' ; = [;.

Theorem 4.2: With f as in ']:hqbr_em 4.1, it is possible to .recursively construct a
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g 'seq'uen'ce f '“f‘r'c)thpé.stvvaltxesv ofif;;stic:& thstt:.__.f SR “
= Iﬁ O S iy Vé[ﬂt iyt e (48d).
=] ' =1 v o ‘

y ~ &

oo
E {ﬁ(e) fu)}_ = 0¢ i)
. Proof:
I there are no dlagonal segments in the path f, then f =f -Snd‘- the {I‘hedr@-fd-" )
. Iows dlrectly from Equatlon (4 62) - |

If there are dlagonal segments in f, then £ # . Since f is 'a‘subseqt__le‘neeofif_ ,
every ‘element of r has a correspondmg 'element infl : f; =/ v{;)',‘vbﬁt ot vice versa.
We fill in .the*dui_nmy' variables ‘f in the following manner. We know from Eqﬁatien

(4.62) that:

Yi o kil S f.fr'%lé + z}fl 0 & = ¢ (435) N

Using vector notation, we will denote:
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. @j p— -fllv ) V e -,[ [} JO-P"’I’&J.".V' . ,ej_q.’_l] .
| AR | |
v Fj = -f_.' j’ e 7.’ —p+l] . ,: o (4.80)
‘ - o T . .
a] = -Ejr .. '7€j—q+l]-
® = |4 ’¢r]

‘ , o T
= [o...0]"

“Equa‘tion (4’.65‘)['cgan then be wr_itten {with k = J1):

| §eer = ”.--n - ®F, - 08, - ()
Coor : S o : ’ ’
[ T = f 2}1"-'}[“1’?' : 97_']‘1’&
f;'wi'_t‘h:f | | ' . _ "
r ) - l’l [} k-l-i, | -
Py = [ 0p | e Tiap Xp
S o s . (468)
SRS P & €k+1 o o
By = |1 :0{ . lisgxg

’ Notc that we have not" employed the usual nota.txon for state space equations here in

‘ order to show expllcltly where ‘the E K come from

Suppose that up to tlme § the state vector \IV( ) is known (We will assume. that at
. tlme 3—0 the state ‘P(o) is- ﬁxed and known) o ; the next step along the path f from
z f, ‘to ],H is of length I; then f (?;"- = f (.+l) == fs+l Therefore, the new inno-

vation f(, 1 may be obtamed from Equation (4 67) with: f (i )+1 equal to the new
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_observation f;,:

fipr = ey = Jini - [‘I’T 9T]“'(a‘)" - (489)

The state vector ¥(;) may be updated by Equations (4.68‘)'?with / {-)+1 =f i+1 and
f(.')+‘1 as above. R _
: ;O:”n'the’other hand, if the next step alongvf is"of lengt,h 2, f»th'eh' i (', )“ 4 f.'+1-

This is an occasion when a dummy varlable f ()41 = f needs to be- mserted in the

process ¥ . We chooac [ (, J4+1 30 that

S = {@T' . .eT] ¥, + & (4.70)
where { is randomly chosen, independently of the ;s from a’ Gaussnan dlstnbutlon

wlth mean zero and varlance,ag. Having obtalned a -dummy »observatlon in thls

manner we find:

‘E(i)+1' = [' () “ [‘I’T ':‘O»T]v ¥ ,
_ , o (4.71)
¢ |

‘and we can update ¥(;) as before.
This procedure generates a sequence {§; } which is uncorrelated. Furthermofe; the
‘ sequences f and f are ‘identical up to the dummy observations, i.e. ! (i) = I

Finally, f' obeys Equation (4.85). Thus:



-137-
- ki S [ liye + zé 0 &)1 = &y (472)
=} ‘ =] . .

E {fm f(:')‘} = ¢ %))

which completes the theorem.

;In su:nmary, ‘Theorem 4.2 states the following. If a random field is D-SIM, then
v, paths- of 'the class @ have an'ARMA-like structure. That is, it is always possible to

recurslvely comstruct a super sequenf‘e f’ from f such that Equatlon (4 72) generates a

o sequence of uncorrelated innovatnons, Where the path branches along f are of length 1,

‘ﬁ,he {1 | are preclsely the path observatlons f (i) = f ;- Otherwise, the dummy or

mnssmg observatlons may be filled in usmg past values by Equation (4.70). In this
'fashnon, the pl'OJCCtlon of the next observation at time i,(f;), on all the prevxons obser-
.ratnons, { f v kE<i }, is always a hnear functlon of the past p elements of ., '_

{f d ® k(( )} and the past ¢ elements of € {f,, k<(t)}

It is the speelal nature of the antocorrelatxon function of a D-SIM field that allows
us to recursiveiy generate a sequence of uncorrelated 1nnovatlons {{(, } from the path _
observatxons { f }- These in turn may be used in the calculatxon of branch metrics as
dxscu'ssed in- Sectxon 4.33. Slnce they are uncorrelated and'Gaussian' and therefore
' mdependent the Iog-hkehhood of a long path metric may be expressed as the sum of the -
Iog»hkehhoods of the lndmdual branches compnslng the path, thus allowing recursive
v computatlon of the metrlc We note that we have not shown necessity, only mj’facaency
That is, it ls sufflclent that the ﬁeld be D SIM to use thxs procedure, but there may exist

other fields that are not D-SIM,.for-whnchipaths of the class Q fit an ARMA model.



| CHAPTER 5

EXPERIMENTAL RESULTS

5.1, Implemen;tation Details

ln this Chapter, we will'discuss some experimental results from one inxplementation .
~of the: SEL algonthm Our purpose is to expernmentally verlfy the major clalms made -

for ‘the technlque in the previous Chapters These examples, a result of processmg a

_yariety of real 1mage data, also provxde an 1nd1cat10n of the range of appllcatlons of the o

‘ ,_J:,method Before examlnlng the results themselves, we wxll dlscuss some of the lmplemen= _

tation detalls

All the results discussed in thls Chapter are obtanned uslng the Z-.l stack algonthm
The other algonthms dlscussed in Sectlon 2.3 are elther reflnements on. the stack algo» o
nthm or have been shown to &leld essentnally the same results 1n searchxng tree struc/'
tures. Consequently, only the simplest, but not necessanly the fastest or most efflcxent
algorlthm is tested here. The root nodes in these examples are obtalned automatncally
by the algonthm by 1mposxng a high threshold or the gradlent magmtude output of the
p_reprocesslng edge operator in the manner described in Section :'2.4. The flrst root_ node
selected is simply that node with‘the highest magnitude value in the image. After. the ‘
first edge path has been searched by the algorxthm, subsequent root. nodes are chosen if
thelr associated gradient magnltude exceeds the threshold and they do not lle wnthm
some minimum distance of any previously detected edge path. »Search terrnxnatlon is

effected by one of four conditions: the best path looping on itself, the best ‘path.
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intersecting any previously detected -bpat‘h, the best path reaching an image boundary, or
the inter_nal stack filling up. E |

The Merkov path ‘transifion probabilities for all cases, except where noted, are
‘ ‘those‘giveﬁ :vin the Appendix with the orderv*of the process equal to two (k=2). The
'nixeasures.poband py used in the branch metries‘were assﬁmed to be e lieear combination
of Gaussians with p‘aramete‘rs estimated from the ma’gﬁitude map. | |

The edge ioperatof preceding the SEL algorithm, exceptl where otherwiee ‘noted, ie a
. combina‘,tioni two-diﬁlensionel Gaussian lew ‘p_ass filter aqd gradient operator. The origi-
nal image isbonvblve’(‘i-bwitvh two directional gradient masks to obtain an estim"a'te. of the
gradient‘- 'ih ﬁhe x and y (iirectiohe. These gradient maeks employ a Gaussian shape&
medow functmn to rec!uce the Glbbs effect in their spectral response as dlscussed in Sec-

: tlon 2 2. 4 The X operator has the mathematlcal functxon

e = v(@s+D-i, (5.

and the y operator has the function:

Y ='-'V(G¢1)-§, JEEEE 62

where G’ is the two d:mensmna! Gaussmn, lis the orlglnal image mtensnty functlon and

e
t, L8

5 1 1y are umt vectors lll the X and ¥ dxrectlons respectrvely The X and Y dlrectlonal

v gra.dlent estnmates are theu combmed to form an estlmate of the gradxent magmtude,

»M and dlrectxon D by



[X2~.'+ .Y2]
b = v (G * 1) o (5.3)
Tl w(G D) AR

The magnltude and dlrectlon maps ‘were both quantlzed to elght blts,‘whlch is the‘ »
dynamnc range of the orlglnal 1mages Thls gradient operator is functlonally the same as
the Canny dlrectlonal derlvatlve operator [Can83] Of course, nonmmaxunum suppressnon
in the dlrectlon of the gradxent and hysteresls thresholdnng are. not performed here as |
ﬂthey are in that technlque Thls operator enjoys a hlgh computatlonal efficlency owrng
to the sepa‘rability of the G»ausslan kernel. | | |

| Only the mag»nitude ralues enter into vthe calculation‘ of the vbranch:xne‘trics. in the
current 1mplementatnon The dlrectron map serves two functions. It is used to. provnde
the initial search dlrectlon, d o, at the root node and to provrde the sngn of the search
‘ dlrectlon at subsequent nodes. Slnce edge contours are searched 1n a. dnrectlon orthogo-
nal to the gradlent direction, two choices are available. This 180 amblgulty is resolved
during the search by the direction map. Slnce root nodes generally lie in the mlddle of
an edge contour, two search directions are possible from each root node. The-y algorithm
searches ﬁrst in the direction such that the gradient vector ponnts to the right of the
- path and then begins again at the same root node.searchlng in ‘the other dlrectlon such
that the gradient.vector points to the left of the path. This second search is obvnously
deleted if the first path closes on itself at the root node In this way, the entire edge

contour on which the root node lies is searched by the algorlthm Furthermore, the gra-
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dient direction information ensures that the searching proceeds along the edge contour

and does not double back in the direction from which it came.

5.2. Performance Comparisons

The first thing we are interested in verifying by experiment is wheﬁher or not the
SEL algorithm is more sucqessful at detecting edges from the output of an edge operator
- than are threshold techniques. From the start, our hope has Seen that sequential detec-
tion of Vedge‘ co‘ntours“would provide better connected edges, 2 lower probability of false
de‘btection at low sigqalutosnoise ratios, and freedom from the sensitive problem of thres-
\hvoid seie;ction a3 "con‘x"_;paried to threshold classification 'vtéchniqqes,, We will examine this
qﬁéétipn »‘fmm 1wWo app%ozy;he,s: using‘ a quantitative performance measure on artificially

created images and using qualitative comparisons on some real images.

5.2.1. A Quantitative Performance Measure

As a first cut, we will consider an artificial image with a vertical step edge of
known contrast to which has been added zero mean i.i.d. Gaussian noise of known vari-

ance. Thus, the signal-to-noise ratio, defined as:

SNR = 20 logy -ﬁ dB (5.4)

where & is the edge contrast and o the noise variance, is a known parameter. An exam-
ple of this type of test image is shown in Figure 5.1 at a SNR == 10 dB. Although this

‘image is highly unrealistic in that: 1) the edge is a true siep, 2) the two halves of the
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1mage have a perfectly l'lat mean,, 3) the contrast is constant over: the length of the edge :

and 4) the noise is truly addltlve iid. Gaussran, it.is: useful for two reasons One is that e

~ the SNR is a known parameter under our control The second is that it allows the use
of a slmple but effectlve quantltatlve performance measure known as the Pratt figure of o

_merit [Pra78]

The Pratt figure of merlt denoted here by F,isa common experlmental tool in the
hterature for maklng objectlve compar|sons among edge detectors It penallzes a detec-
.‘ tor for both declarlng a pomt that is not on the edge as an edge ponnt and for - mlss,mg .
| true edge pomts leen the test lmage w1th a snngle vertlcal edge as descr|bed above, ‘
“the edge detector.ls applled and the resultant edge map is used to compute F as l’ollows '
"1 blyp 1 E v Tl
F= T '§11—:072 o 6
o where:
:1 Iy = max',('ID,I,) o
: I, = number of ideal edge points
| [D number of detected edge points -
» I, = displacement of the it detected edge
_ point from the ideal edge. ) |

a == scaling parameter .

F ranges in value form 0 to 1.0 (perfect) The merlt value for classical edge detectors is
a strong functlon of the classlficatlon threshold In practice, the threshold is varned to
obtaln the best F value Thls iterative optlmlzatlon ‘must be repeated for each test

image. (each SNR) desired, 'as the best threshold for one SNR is generally not optlmum‘
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at others As an example, Flgure 5.2 sllustrates the optﬂmum decxs:on thresholds as a
;functlon of image SNR for one type of edge detector Figure 5.3 shows the resultmg F

value as a functlon of i image SNR.

By comparlson, there is no ponntwnse dccnslon threshold l’or the SEL algonthm
‘The threshold based on complete path metrics is extremely robust. In fact the SEL
examples glven throughout this Chapter all used the same threshold Thls freedom from

sensltive thresholds represents one of the dlstmct advantages of SEL.

The results of applylng SEL to these art1f1c1al test lmages are contrasted w1th two
'threshold type detectors in Flgure 5 4 the 5x5 Sobel [Dud73] is representatlve of small
gradlent type detectors that appeared early in the llterature, the Canny detector [Can83] :
is one of the latest of the large support detectors, using dlrectlonal non-maximum
_ ’suppressnon (equlvalent to zero-crossmg detectlon of the second denvatlve) and hysteresas
‘A thresholdmg ln the upper series of i lmages the edge operator used for botb the thress:
hold detector and SEL was the Sobel operator. The orlglnal test 1mage at SNR +7
dB is'in 5 4a 5 4b is the output of the 5x5 Sobel edge operator Usnng the experlmen-
tally determmed optnmum threshold on this output, the edge map obtalned is shown in |
5.4c. The merit value is F = 0.59. At this SNR, a simple threshold on the Sobel opera-
tor output is quite obriously inadequate. Much of the true edge is m‘issed‘ and many
false edge points are present. A lower threshold might i‘mprove connectivity along the
tru‘e‘edge_ somevrhat,'but only by admitting even more false alarms. The SEL output
using .thc same 525 Sobel magnstude map (5.4b) as input is shown.‘in 5.4d. Its Vfigure of
merit is F = 0.99. This edge map clearly shows the advantageof sequential searching

over thresholding. Connectivity of the detected edge is complete, the edge almost per-

i



-146-

3.009

2304
el
‘:V'l-?'sv.’-“

;1.501' ‘

Optimum Threshold (X102

. 'ooo —— y > —y .  Y . * '
o ‘e ‘s W 20 : £ 100
S1gnal io notse racto

Figure 5.2: Optimum Pratt figure of merit thfesl_idld vs. signal-to-noise ratio for one 3x3
' ‘operator. . . , I : N :



1.00
975 1
7% 4

-b

Pl

} S

o

E
625 4

L” Y

9

- 1)

% 500 <

o

S

"

w3

-

(=)

Q

h .

& 2w
125 4
¢.00

148~

2 3 10 20 1 108

Si1gnal 1o noise racio

Figure 5.3: Pratt figure of merit value vs signal-to-noise ratio for one 3x3 operator.



- -147-

fectly coincides with the true edge, and there are no false alarms.

At lower signal-to—noise ratios, small 5x5 operators are inadequate. The lower series
of images in Flgure 5.4 consider a much larger and more sophisticated edge operator.
Here, the test image has SNR = -7 dB (5.4e). The magnitude map of the operator is
given in 54f 'I.‘his‘ is the magnitude of the gradient ‘of the Gaussian smoothed image,
M, as described in Section"5.l1. For this example, the standard deviation of the G ﬁlter
was o= 3.5 pixel‘s.b The edge map of Figure 5.4g was obtained by the Canny method
from the 'magn‘itude and direction maps (before quantization to eight bits). That is,
non-maximum ;uppresslon in the direction of the g'radlent is performed, followed by
thresholdmg with hysteresls [Can83] Even with thls sophlstlcated method, it is again
Vlmp()SSlble to choose hysteresns thresholds such that good connectmty and few false
alarms are achleved ln 5.4g, desplte the many false edges, the connectmty along the ‘
true edge is stlll not complete The merlt value for 5.4gis F = 0 26 ‘When SEL is
applned to the same operator output the resulting edge map is as in 5.4h with F = 0.52.
Although there is one false edge segment at thls low SNR, the true edge is deteeted wrth
a completely connected contour. Furthermore, there is no trial and error selection of

thresholds as in 5 4g

'5'20,2' Qualltative Comparisous |

Eyeu more,y strikiug eomparisons then in the ‘foregoing Sect.ion‘ may be made with
real images. This results from t‘he fact that theartiﬁcial images are inadequate models
of realityiiu many respects. Chlef among these are the mdependence of the additive
uoise aud the homogeneltj of these am'ages Both of these characteristics teud to make

threshold-type detectors appear better than they are. In a homogeneous image with



- Figure 5.4:

(a) Pratt figure of merit test image at SNR = +7 dB. (b)»Gradi,exip mé.gni-‘,u:,‘;'s'
tude map obtained from a 5x5 Sobel operator. (c) Sobel detector output

after application of a decision threshold to (b). (d) SEL output using (b) as
input. (e) Pratt figure of merit test image at SNR = -7.dB. (f) Gradient
magnitude map obtained from a Gaussian weighted gradient operator with

o = 3.5 pixels. (g) Output of Canny directional derivative detector.. (h)

Output of SEL algorithm.
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i‘ndependent ‘.nolse;‘l_the“:best'threshold to use at one location of the image is also optimum
- everywherev jelsef. ‘Hovwevler, "in real inlages, such_‘coincidences do not aloccur in general.
,_The:reljative:'merlts; o:fv ‘sequentia_l_ searc?hln'g', orer thresholds then bvec_omes -even more
ampmgm. , | | |
To lllustrate, we wnll agaln compare SEL to the two edge detectors considered in

Section 5 2.1. For the small support Sobel operator we will consnder the fairly high con-

trast lm'age of Flgure 5.5‘a. The Sobel-operator output for this i lmage is shown in Figure

5. 5b « After appllcation-of a threshold th‘e edge map appears in 5.5c. This simple‘exam-

o ple clearly lllustrates the classlc trade off between connecthty and sensltmty In 5 Sc,
- -many of the prlnclpal edges have dropout reglons where the contour ls broken Note

. especlally the lowest contrast part on the r|ght of the lmage And yet desplte the dro=- :

s 'pouts, other strong edges have multlple plxel wndths and there are many spurlous false

' »edgepomts The SEL edge map, usxng the same Sobel operator |nput data, shows com-
: pletely connected smgle plxel w1dth edge contours (Flgure 5 5d) The low contrast part

.on the r|ght is detected as well as the hlgher contrast parts The good connectnvnty
results in object boundlng contours that are closed in every case. Thls charactens’tlc
rnay he ol great lmportance to a subsequent processlng stepsuch as shape analysns Exe-
| .cutlon time. for the bEL algonthm on a VAX 11-780 processor was l 29 CPU seconds to

obtaln 5 5d
The dlgltal subtractlon anglography lmage of Flgure 5.6a ls a challenglng test for
v'the large support Gausslan welghted gradlent operator as the edges in that image are of

. low contrast and the sngnal-to-nonse ratlo 13 poor Thls lmage is obtalned by maklng two
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Flgure 5.5: (a) Ongmal machine parts image. (b) Gradient magnitude map bbtaiﬁed
from a 5x5 Sobel operator. (c) Edge map after appllcatlon of decision thres-
‘hold to (b). (d) Edge map from SEL algorithm using (b) as input.



~ -151-

‘made, a ‘c'ontrast.dye withl a high attenuation to X-rays is introduced into the blood.
When the two exposures. are subtracted the vessels carrying the contrast dye show up
' more clearly relatwe to background structures than in elther slngle exposure. Figure.
‘5. 6b shows the .magmtude of the gradlent for an operator with Gausslan standard devna—

tlon o = 2 0 plxels When the Canny detector is applled to this angiogram image, the

resultlng edge map is as shown in 5. Bc Here, the poor connectmty and threshold sensi-
(tnnty is. very apparent We agaln see the many . false edge contours and yet some true -
'edge pomts such as in the rlght branch of the artery are missed. In this image, the edge

: contrast and SNR change over a w1de range which exacerbates the task of threshold
i 'selectlon The SEL results usmg the same gradlent lnformatlon is glven in 5 6d. The
| fdgc operator is exactly the same in both 5 i and 5. Od \The dlfference is that instead of
‘performlng non-maxnmum suppressnon and thresholdlng wnth hysteresls on the operator..:
output to get the edge map, the SEL algorlthm is used The edge connectnvnty and falset
. ‘edge rejectlon characterlstlcs compare favorably w1th 5. 6c Executlon time for the SEL-=

aigornthm for thls example was 6.59 CPU seconds on the VAX 11-780 processor

| A comparlson w:th another edge detector promlnent in the llterature is made in
: Flgure 5 7 Here, the SEL algortthm i compared to the facet. model operator of Harahck
[Har84] That operator also uses non-maxnmum suppresslon in the direction of the gra-
g dlent | threshold is apphed to a. measure of the edge contrast taken from a fitted |
parametrnc model of a local nelghborhood In thls Flgure, the output of an 11x11 size
‘ " nelghborhood operator is shown m b, and the SEL- output usnng ao= 1 5 gradlent
‘. operator is shown in ¢. Thls.swe operator was'.chosen in thls comparlson_ because.the“
number of coefﬁcnents in the operator wandow is the -Same. as for the llxll facet opera-v :

tor. Agam, the SEL output exhlblts better connectwnty and rejectlon of false edges, and,



‘Figure 56: (a) Original arterial angiogram image. (b) Gradient magnitude map ob- .
- ‘tained from a Gaussian weighted gradient operator with o = 2.0 pixels. (c)
Edge map obtained from Canny directional derivative detector. (d) Edge
map from SEL algorithm using (b) as input. S L
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~ does not re_quire t'he interactive selectiOn of a decision threshold.

These examples |llustrate the advantage of using a non-local sequentlal search pro-
' 'cedure over a local threshold-based decmon strategy Qulte apart from any consxdera—}
tions of the edge operator, at l.ow sngnal to noise ratios, decisions lnvolvmg la.rge numbers |
: of edge ponnts are more easnly made than when only a few edge polnts areconsndered

Instead of attemptlng to choose a decnslon threshold to make the edge / no edge classifi-
, catlon on a plxel by plxel basls, the SEL algorlthm makes a declslon based on the many
' *edge ponnts contalned n a long hypothesnzed path It is thls ablhty to ut|l|ze the soft

"-nnformatlon over many pomts rather than forclng hard decnsnons at every ponnt that

‘ }glves the techmque its advantage in nonsy sntuatlons
53 Short Error fSegments' nndrt‘h'ie;Markov 'P'ai.thv».Model :

As noted ln Seetlons 3 2 4 and 3 3 2, the Chernoff-based bounds on the distribution
o of computatlon and long error segment probablllty are not sufﬁclently tlght to be

‘dlreétly useful fOr numenc.al results Rather, that analytical Work is useful for establish-

nng the charactcnatsca of sequentlal searchmg in 1mages, to answer quahtatnve questnonsv :

about the search behavnor

However vve can lllustrate the effect of the Markov Cham model for paths on the

- occurrence of short error segments As drscussed in Sectlon 3.3.3, the use of the Markov
vmodel ought to make nolse mduced small erratlc devlatlons from smooth stranght edges ‘_ ,

“ !ess frequent Thls is because the. transltlon probabllltles bias the branch metrlcs in

: favor of smooth edges whlch have hlgher a-brxom probabllltles Thls may be experlmen- B

:: v tally verlfled by usnng an artlficlally generated lmage wnth stralght edge segments at
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Flgure 5 7 _(a) Original arterlal angiogram image. (b) Edge map obtalned from 11x11
Haralick facet model directional derivative detector. (c) Edge map from
SEL “algorithm using a ¢ = 1.7 pixel (11x11) Gaussian weighted gradient

operator as input.
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l(nown loca‘t'ion:s:--. B
'ln' Flgure b.éa 'we show .thetest :image used for this p’urpose :The’central region is
of hlgher mtenslty than the surroundmg background the dmdlng border being a square
w|th sldes of length 64 plxels Whlte Gausslan noise has been added to bring the SNR
to 10 dB in 5. 8a and -3 dB in 5. 8d 5. 8b and 5.8¢ show the results of the SEL algorlthm
on 58a wlth and wlthout the Ma.rkov path model respectlvely F‘or the latter case,
’ mstead of the Ma.rkov transltlon probabllltles entenng the path branch metrnc, all path
' transltlons were rnade equn-probable That is, path transntlons of left stralght or rlght '
were. slmply set equal to one-thlrd Thus, all paths of the same length have equal a-
: :pnon probabllatnes As can be seen from 5.8b and 5 8c, the path model has no effect at
-’ hlgh SNR The hkellhood ratlos of observatlons in the path metrlc completely domlnate-
the path transntlon probablhtles, be they Markov or equn-probable, 80 the detected edge : ‘_

. comcldes wnth the correct edge in enther case

HThe sltuatlon at low SNR ls quite dlfferent however | Flgures 5 ée and 5 8f malce :
- the ‘same comparlson as before but now at -3 dB SNR In thls case, the hlgh nonse_
power corrupts the llkehhood ratlos to such a pomt that the detected edge i in 5.8f (equl-
vprobable paths) shows many slnall erratlc curves and bends where the true edge runs
stranght The lncorporatlon of the Markov model in the path metrlc (Flgure 5 8e) has
the effect of reducnng these devnatlons Notlce that when the true edge doca turn, as at
the Hcorners of the square, the searchlng algorlthm responds approprlately Here, the, |
hkehhood of the.observatlons along a stralght but mcorrect path into the background is
- ‘so low compared to that of the observatlons around the corner that the path with the

-’hlghest metrnc follows the true edge Thus, we see that the path branch metrlc derived



Figure 5.8: (a) Test image at SNR = +7 dB. (b) SEL output wnt,h Markov edge model‘ :
incorporated in the algorithm. (c) SEL output without Markov edge model
incorporated in the algorithm. (d) Test image at SNR = -3 dB. (e) SEL
output with Markov edge model incorporated in the algorithm. The prepro-

cessing eédge operator is a Gaussian weighted gradient with o = 3.0 pixels.. |

(f) SEL output without Markov edge model incorporated in the algorlthm
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in Sectnon 2 2.3 strlkes a subtle balance between the gradient observatlons and the a-

prnorl probablhtles of path topologles
5.4. Correlated Random Fields

- The p'remi‘se ".adv‘anc‘ed i‘n,.Chaot‘eri 4 is that a particular ‘model;ol' "the‘ corr‘elati‘on ,
' axnong’the »nandomi'va‘riablesof a field llnplies,thatob'seryations along paths searched by
SlilL areARMAThls allowfs:the:searching- metrlc to be based on an v.uf,‘ucorrelated inno-
w’iations 'seqnence:that‘l'esults_» from passmg the actual ohsenvations thj‘ough a caulsal‘
‘ 'li.near' ﬁlt'er; ’v '."Three: onestions‘:remain ‘unanswere‘d ' Fifst how :ap'prooni‘ate is the D-SIM

: model’ After sultable flttmg of the model to a real lmage, how accurately does it reflect
‘the actual correlatlon anmng plxels in the 1mage’ Second how uncorrelated are the .

‘ jnnovatlons obtamed along search paths in-an actual lmage’ Fmally, in what way, if at -

all does thls processnng aid'i in the detectlon of edges by the SEL algonthm’

: ,,vv

W° may answer the ﬁrst two questlons by exammmg the autocorrelatlon ‘function
»of observatnons and lnnovatlons along search paths The model we have used is the

’second orderD SIM R
- R’f‘_l"}l) jﬁ=, | "z-:llv"li"“_vd‘.(”l". H ‘,l,’ +ege “_a(l*lflt,l)] (5.8)
 Therefor, lh‘.’:"rb“""'.“i“\"m along Pa;ths'ii,i‘thé,fleld obey (by Theorem 4.2):-
f ‘?l f a) l - ¢2 f (g ,2 5(3)__91 6(‘)_1 “ o (57)
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For the sake of co‘mputatlonal ef‘ﬁclency’ ‘and * stablhty tve have consrdered only the
autoregresswe terms The movmg average coefficnent 6, is assumed to be zero. Tc fitH
the model to -an lmage, the parameters ¢ ‘and ¢2 must be estimated. Thls is accorn-
'plished by generatmg a random path thr ough the 1mage | “The observatlons along the
path are used to estimate the values cf the autocorrelation functi’on by time at'erages.
‘The autoregresswe coefficlents can then be estimated from the autocorrelatlon functloni
by standard methods [Box70] The fitted ARMA model is then used to obtam the inno-

vations sequen‘ce along search paths' in the manner of Sectlon 4.3.3.

To Judge the effectlveness of the ARMA model in reflectmg the actual autecorrela-

“tion function of path observatlons as well as lts abxhty to remove correlatlon in the gen-
erated mnovatlons sequence, we ﬁnd the time averaged estlmates of the autocorrelatlen
function along actual detected edge paths after the search algorlthmlls,termmated‘ iAThe

autocorrelatlon functlon of the generated innovations along those paths can aiso be

estlmated These two functions are tken compared to the theoretlcal autocorrelatlon

function predlcted from the ARMA model These results are shown in F lgure 5. 9 The ,

V long-» dashed curve in Flgure 5.9 is the experlmentally determmed autocorrelatlon func- |
tion of observations along detected edge paths in an image.- The solid curve is the auto-

correlation function predicted from the ARMA model fitted to the image as above. 'The_

short-dashed curve is the autocorrelatioh function of the innovations seduence alchgthe

same detected‘edge paths. Two -observations may be made}.‘ One is that the fitted

ARMA model does a creditable bjob of modeling the actual correlation among observa-

tions along a path.v The seccnd is that the autocorrelation functioh of the innovaticns

process, while not purely. impulsive as it would be if it were truly ilhccrrelated,‘ is

~ nevertheless much less correlated than the original observations.
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Figure 5.9: Long dashed line: measured autocorrelation function along paths in a real
image. Solid line: autocorrelation function along paths in the fitted D-SIM
random field model. Short dashed line: autocorrelation function of the inno-
vations process along the same paths in the real image.



-1B0-

The effect‘ of using thls predlctwe filter in the searchlng algorithm is dramatlc
Beyond lts theoretical importance the abllity to predict the next path observatlon fro‘mv ,
the prevxous observatlons reduces the amount of |ncorrect path sea.rching, reducmg the
average‘computation time: bThis is easy to see in light of the results obtamed lll‘
Chapters 3 and 4 “From Equation (5. 7) we see that variance of the mnovations process
must be less than that of the original observations. Thns means that there is necessarily
less overlap in the conditlonal densmes Py ‘and po (see Figure (3. 9) and Equatlon (3 29))
smce the two - processes have the same mean. Consequently, the quantlty D(ap)

smaller so the bound on the dlstrlbution of computation is lower

This* effect is clearlj v1s|hle in the processlng of real images We determine the ‘,
effective search rate, i.e. the ratio of detected edge nodes to the total number of nodes
searched This éan be graphlcally illustrated by performing the sequential searchmg
wﬁ,h a limited stack size. Identlcal edge contours are searched w1th and wnthout the‘
- predlctive ﬁlter Because of the limited stack, |f the search rate is low e-g- when ther
predictlve ﬁlter is not used, only a portion of the edge contours are detected before the
stack fills up When the ﬁlter is used however, many fewer incorrect i)aths are searched '
' allowing more of the true edge contours to be detected. F.igures 5.10 and 5.11 are two
such examples. The orlginal 1mages are in the upper left of the Figures In the lower
right and lower left we see the resulting edge contours as determined by the SEL algo-
rithm with and without the predictive filter, respectively. The stack size is limit_ed to
‘2000 nodes in each case and, other than the filter, they are pro‘cessed in'identical
fashion; The first three start nodes asdetermined by the algorithm are in the vicinity of
the numbers and are the same for both variationsof each image. In .Figure 5.10, the

number of nodes detected by the algorithm for the three paths shown is 81, 41, and 49
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| when the filter, ‘is 'not used. When the predictive filter is used, 393 edge nodes are found
from‘tlhe first start node,' 319 from the 'second, and 310 from the third. In fact, as can
" be seen froxn the ‘l‘?igure the entire edges associated with those start nodes a.re'detected
when the filter is in use. To put these numbers in perspective, consider the fraction of
detected nodes to total nodes searched (4000 nodes per root node). When the filter is
inot in use this fractlon‘ls about‘ 1/70, but it jumps to roughly 1/12 with the filter.
Thus, the use of the predictive filter is seen to increase the effective search rate (number

ofi detectednodes / number of nodes searched) by a factor of 6 for this image. In Figure

BT, 162 133 and 68 nodes are detected startlng at the root nodes shown without the

: ﬁlter Usmg the ﬁlter, the correspondlng numbers are 553, 164, and 550. If we ignore
the second contour in each case, the ﬁlter is seen to lncrease the search rate from about .
i /40 to 1 /8 or by a factor of 5. (The reason we do not conslder the‘second contour is
because the search is termlnated early when the f' rst contour is lntersected for the case
:the filter 1‘s used, but no such lntersectlon occurs when the fllter is not used )

» Before- leaving this topic, it is interesting to see a picture of all the nodes searched
in an image., Thisi g'l"ves'aq, vi’sual impression of how the amount of computation varies |
‘ .‘spatlavliy over an lmage ln anure 5. 12 we agaln show the anglogram lmage of Flgure
5.8, but here the overlay consnsts of evcry node ever vnsnted by the search algorlthm
rather than Just the ﬁnal edge paths declded upon. As can be seen in thls Flgure, in
_ those portlons of the i lmage where the eontrast is high, very Ilttle incorrect searchlng is
-_performed However,v where the contrast is iow (e g at the artery junctrons in the lower
rlght), many addltlonal nodes have been hypotheslzed as the algorlthm attempts to find

the best path“_
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Figure 5.10: (a) Original image. (b) Final edge map from SEL. (c) SEL detected
edges from the three indicated root nodes without the use of the predic-
“tion filter. (d) SEL detected edges from the same three indicated root
nodes with ‘the prediction filter in use.
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Figure 5.11: (a) Orlgmal image. (b) Final edge map from SEL. (c) SEL detected

edges from the three indicated root nodes without the use of ‘the predic-

tion filter. (d) SEL detected edges from the same three nndlcated root
v nodes w1th the predxctlon ﬁlter in use. : .




Flgure 5. 12 Image showing all the nodes searched by the SEL algorithm in \ the i image
- of Figure. 5.6a. The edge map of Figure 5.86d generated by the algorithm-
is overlaid in black. The white areas are all the. other, incorrect modes
v1snted by the algorithm.
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5.5. Examples
~ In this Sec’tion we rpresent a number of experimental results to demonstrate the effi-

cacy ‘of the SEL approach To demonstrate its usefulness in detectlng Ilnear features

‘other than intensity edges, we have included an example of ramp edge detection and of -

o ] hne detectlon.

551 Rarnp Edge ‘Deteetion‘ ‘

' ‘Ramp edges ‘in'imagesare charaeterized” 'by anvi‘ntensity profile across the'edge that -
irlses llnearly to-a pomt and then decreases llnearly thereafter Because they are gen- . _
,erally very w1de and because the lntenslty gradlent is nearly the same over thas mdth :
gradlent-type enhancement operators are 1neffect|ve on. these edges The locatnon of the -

| edge is generally taken to be the top of the ramp Slnce the gradlent du'cctson changes )

o by 1 at thls pomt one posslble enhancement operator suggested by Machuca and Gil-

: bert [Mac81] calculates the lntegral

=.£de‘(t)_ S | (58)

' l on a closed curve C around every pomt in the image. In Equation (5 8), 9 (t ) is called

an angular functlon of the gradlent dlrectaon field D (Equatlon (5 3)) and is given by

e = D.(t) -D@) (9
| where t 0 IS any startlng ponnt on the curve C The lntegral ~is therefore just the

_ lntegral of the changes in gradlent dzrectlon around a closed curve. If C surrounds a

_point lylng on an ‘intensity step edge, the gradxent direction is constant everywhere
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around the pomt 80 7 0 If however, the pomt is: on a ramp edge for whlch the gra-v_

dlent du'ectlon dlffers by T radlans on elther snde of the edge, then g = 21r

T €

For thls example, our ‘test |mage lsthe artlficlal range lmage of Flgure 5 l3a Here '
mtenslty is proportlonal to rangc from the viewer. It is of a three dlmenslonal cube in
‘which holes perpendlcular to the faces have been drllled The lmage exhnblts atcp cdgca‘ v‘
at the block boundarles due to. depth dlscontmultles It exhlblts purely ramp cdgca
where the front face meets the left face, where. the front face meets the top face, and‘
where the left face ‘meets the top face There are also more compllcated combmatnons of : ’
_ stepvand ramp edges at the- rims of the holes Because the range. (mtensnty) is, contmu- '
oua at the ramp edges they do not show up at. all in the gradnent magmtude map of Flg-

'ur,e,5.13b.; .
We amplement a sxmple ramp edge enhancement operator by approxxmatlnv '7 in

e Equatxon (5.8) by

R N : | .

AR [ 0
Here, ) G [l 8] is the set of eight nodes surroundlng a ponntvln a 3x3 nelghborhood
(Note that rg = rl) The ~ is the sum of changes in gradnent d|rect|on going around
those elght nelghbors of a pomt When thls operator is applled to the gradlent dlrectlon
map D, the result is shown in Flgure 5. 13c. Unllke 5 l3b the ramp edges are clearly
_vnsible here Flgure 5.13¢ .also shows fainter ramp edges on elther side of step edges in.
5.13b because of the change in gradlent dlrectlon caused by low pass fllterlng the step

edges.
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-Figure 5. 13:', (a) Ongma] range lmage of a 3-D cube Intensnty is proportlonal to dis-
R “tance from viewer. ‘(b) Step edge magnitude map. (c) Ramp edge magni-

. tude ‘map.. {d) SEL edge map usmg both step edge and ramp edge magnl-‘
“tude. maps as’ mput L
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To obtaln the edge map in Fagure 5.13d, the SEL aigorlthm was ﬁrst apphed to the » |
gradlent magnltude map of 5. 13b to obtann the step: edges and then to the “ map of
5.13c to obtain the ram'p edges. Thus, the same SEL .algorithm is seen to(’letect‘ two dlff
ferent types of finear features (step and ramp edges) simply.’by’ using diifferent .pre;pro-

- cessing operators.

5.5.2. Lme Detectlon
| Llnes are. another linear. feature of interest in 1mages Flgure 5. l4a shows an aernal
photograph contalmng roads whlch have a hne like mtensnty proﬁie Usmg slmple hor~

nonta! and sertlcal hne operators suggested by Rosenfeld and Thurston [Ros7l]

[z 2 2]
2 2 2
o= |1 1 1
TR o 2 S
7 2 %z IR
R 1)
-1 1] ( 3
2 21
, -1 1
I, = |—= =
: 2 1 2
_ 15 1
1 — .
Lg 2 ]

combined as: L ='[lv,,2 + 1,9]%%, we obtain the "line magnitude mao” of Figure 5.14b.
This magnitude map may be searched by the SEL algorithm in ,th_e same fashion as for
other hnear features ‘The resulting detected line map is shown in F |gure 5.14c. \’Vhlle
the lme operator used here is not particularly sophlstlcated thls example and that in the

prevnous Section demonstrate that SEL is effective for the detectlon of linear features in

two-dlmenslonal arrays independent of the nature of the feature. Only the preprocessmg ‘
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Figure 5.14 "(a) Orlgmal aerml 1mage of landscape (b) L‘ine‘mzagnifude maﬁ obtained
b usmg lme operators descnbed in text. (c) SEL output usmg (b) as input.
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operator must be tailored to emphasize the desired feature.

5.5.3. Oth}el- Examplea <

Finally, in thie Section, we present some cesults‘ from applylng th’e Sli)L technlque
to a. vafiety of images with intensity step edges. In all of thesevex_amples, the preprocess-.
ing operator is th"e‘ Gauési‘an weighted gradien't‘and tlle SEL "partiCula’rs}'Vare‘ as _g'ive_n. ln
Section 5.1. The gradlent operator is of w:dth 4 E (1, 2] o i

The. Flgures are dmded mto two types In the ﬁrst type a numbec of Idedlcal'.
‘lmages have been exammed Flgures 5.15 through 5. 17 are artenal anglogram lmages .asf
descrlbed in Sectlon 5 2.2. These are followed in Flgures 5. 18 and 5.19 by heart ventncle :
- ,amages generated by a snmllar procedure. It is important to note m ali of these examplee'
that no human operator interaction is Decessary to obtain the results, the processlng is

completely automatlc

The second type of example, Flgures 5.20 and 5. 21 is of machme parts Agam the
‘.processmg is totally automatlc The excellent connectivity and completely closed bounde-.
ing contours in the edge maps al'e desnrable attrnbutes since edge detectlon apphed toll. '
" such images is generally part of a much larger computer vision scheme. Subsequent pro- |
cessingtasvks such as shape analysis and object recognition a;e greatly- facllita,t_ed by higl1

quality edge maps. -

5.6. Conclusions - |

In this thesis, we have advanced an argument for performing the vdetectio‘n of linear

features in images and two-dimensional random fields in a sequential manner. We have
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Figure 5.16: (a) Ol;iginal angiogram image. (b) SEL edge map overlaid on (a).
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\(-é')y‘-Origivnal‘;»ah_gi’ogjram im:ige,» (b) SEL édge ‘map,dveﬂéi‘d.:oﬁ {(a)-




Figure 5.18: (a) Original ventricle image. (b) SEL edge map o'i'erlaid on(a). .
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(a),ingin_al ve;x_;triclé 1mage (b)SELédge mva.f)"dverkl:‘iidﬁ on(a) .



Figure 5.20: (a) 'Orig'ina/l parts image. (b) SEL edge map.
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formulated the probleml as a best path ‘tree search proposed a Markov‘ Tmodel for paths :
v|n two-dlmenslonal random ﬁelds and derwed a path branch metrlc Thls metrlc Vwas. .
- shown to possess anlllmportant condltlonal drxft characterlstlc for sequentlal searchmg -
Next, vtheoretlc bounds were found on the algorlthm s dlstrnbutlon of computatlon and L
probablhty‘ of error | These bounds are useful in descublng the qualltatwe behav:or of '
the searchlng algorlthm as a functlon of the parameters of the random field model TlllS ”
theory was: then generahzed to the case lof correlated random fields A Markov random’vv"
field model was proposed for whlch |t was shown that observatlons along search pathsl
‘obey a flnlte order dlfferenf'e equatlon Therefore, a causal lmear ﬁlter may be con-

| structed such that optlmum (ln the mean squared error sense) predlctlons of future path

observatlons may be calculated to ald in the search process

The sequentlal detectlon technlque proposed here was nnplemented in software and :
dsed for a number of expernments These experlments were deslgned to lllustrate and -
substantnate the analytlcal results. The method was compared to several current tecll-

'nlques in the llterature on the basls of both a quantltatlve performance measure and

subjectlve quahty uslng real i lmages The effect of the Markov path model and of the_ :_' .

predlctlve ﬁlter for correlated observatlons was explored Flnally, examples of the use of
this techleuefor ramp edge detection, ‘line detectl_on, 'and 'step’ ;ed'g‘e-:dete}ct:on‘}were pro-
Vided.i_ . S S : S SRS S
T.his.‘method‘of detecti-ng linear features was shown to produee ve‘rj.-well connected '
edge maps, w1th a low false edge. detectlon probablllty, and with a mlnlmum of user
mteractlon These characterlstlcs are all extremely lmportant in many computer v1slon_: ,‘

applications:
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There arevnumerous possxble auenues for future research Oh the analytlc sxde the
path branch metrlc is only as good as the model for the condmonal measures pg and p,.
Whnle these were: merely assumed to be Gausenan W|th parameters estlmated from the :
| lnmage in the current lmplementatnon, future work mlght be directed - toward findlng
more accurate,.models for these dlstrlbutlons- 'Also, the whole questlon of vector obser-
vvatnoner ’lvs open “ On the algorlthmlc snde, several possxblhtles exist. - Only the stack algo-
. irlthm was lnvestlgated here ‘In partlcular, _the Fano search algorlthm (Section 2 3.5) is

| an attractlve alternatlve as. |t‘ would allow a bvery fast hardware lmplementatlon
Knowledge-based root node selectlon and termination strategles mlght also be examlned -
_dThese are approprlate where some prlor knowledge of the lmage content is avan!ab!e
Fmally, a knowledge-based component to the path metrlc in the manner of Ashkar and

- Modestmo [Ash78] may prove very useful where much is known about the image.
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_ APPENDIX -
:'kMorkov "Transition'Prohahilities for;Paths e

R 'Section' 2.2.2 we introduced a Markov model for -‘p_oths ina t'wo#dimensional- rec-
- tangular lattlce Accordlng to thls model a path is denoted by a start ‘or root node, :

startlng dlrectlon, and a sequence of dlrectlon transltlon letters

: m = Tox dox [al )‘)van']'l
‘aeA [LSR]

~ The state of the PI'O.QQSS is definedto be the last k tra_nsition letters: - E

4§ = A.[‘.'?;l re e Gk ]

and the Ya;-priorijprohability;of such a path is given by:

Prm) = HPrislng
) In thisj appendix we will address‘the'ouestion‘ of h,ov_v' the state transition prohahilities!are: :
estimated. | | - : 3

The state transltlon probabllltles may be estlmated from a collectlon of lmages in
the followrng manner. “An edge detector is applled to the i lmages in the collectlon and '
the resulting edge maps obtalned For the present purposes, complete connectmty ls

not essentlal but edge thlnness is. Therefore, edges with multlple plxel w1dth are dls-v

carded from the edge maps. The connected edge segments in these edge maps are then :



s
traced, recordlng the sequences of dlrectlon changes along their- length If a direction
: change of T / 2 or greater ls observed the sequence is termlnated at that pomt and the
rest of the edge is treated as a new edge segment lt may be- noted that thus is a very
: rare occurrence These sequences of dnrectlon changes for edges in the lmages of the col-
lectlon can then be used to find the correspondmg state sequences, snnce, glven an initial |

_ state, P o, a state sequence is unlquely determnned from the the dlrectlon change sequence

: (Equatlon 2 4) The initial state is assumed to be the "all stralght" state

o= s, Sl

bFlnaIIy,the probablhtles of the state transltlons Pr (s [ 3; ) are estlmated as the re!am
f»itrve frequency of those transltlons in the observed state sequences Thus, the state tran»- '
sntlon matnx is estlmated from the relatlve frequencles of state transltlons along edge
segments .of the i lmages ln the collectlon - ~ | | - o

The collectlon of images used for thls purpose lnclude man-made parts as well as
natural scenesv Two tables of transltlon probabllltles are shown in Flgures A.l and A2
,for k =2 and k = 3 order Markov xnodels Note for example that the state transi-
tlon from "all stralght” to all stralght” has a much hlgher probablllty than the transl- "
tlons all stranght to [S S R[ or [S S L] ( or [S S, S R], [S S,S L]) Also, very erratic states

such ‘a8 [S R L R ] have a ]ow probablhty of occurrence
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State 1: State i+l: Transition Prob: ' Prob of State 1:
L.L L.L 0.1958 L
L.L L.S 0.2028 0.0712
L.L L.R 0.6014
L.S s.L 0.1399 . :
L.s S.S 0.5267 0.0605
L.S S.R 0.3333 i
L.R R.L 0.2894
L.R R.S 0.3293 0.1247
L.R R,R 0.3812
S.L L.L 0.2140 .
S.L L.S 0.0856 0.0640
S.L L.R 0.7004
S.,8 S.L 0.0942 .

s.S s.s 0.8116 0.3594

8,8 S.R 0.0942 ‘

S.R R.L 1 0.7004

S.R R,S 0.0856 . 0.0640
S.R R.R 0.2140

R.L L.L 0.3812

R.L L.S 0.3293 0.1247
R.L L.R 0.2894 . :
R.S S.L 0.3333

R.S S.S 0.5267 - 0.060S5 .
R.S S.R 0.1399 .

R.R R.L 0.6014

R.R R.S 0.2028 - . 0.0712
R.R R.R 0.1958

Figure A.l1: State transition probabilities and state probabilities for a k = 2 Markov
path model. ' '
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: State'i:_ State 1+1:  Transitlon Prob: Prob of State i: -
L.L.L - L.L.L 0.3922 _
L.L,L L.L.S . 0.1176 ’ 0.0134
L.L.L L.L.R 0.4902 - .

L.L,S L.S.L 0.1600 '

L.L.S- L.S.S 0.3200 - 0.0131
L.L.S L.S.R 10.5200 . -
L.L.R " L.R.L 0.1369 :

L.L.R L.R.S 0.2500 , . 0.0440 .
LOL‘Dai 'L;R'R 0-6131 : . .
L.S.L 'S.L.L 0.3529 _ ~
L.S.L 's,L.S 0.1471 : 0.0089
L.S.L’ 'S,L.R 0.5000 o

L.S.S S.S.L . ~ 0.0960 o :
L.S.S s.s.S 0.6560 v 0.0327
L.S.S S.S.R. . 0.2480

L.S.R'  S.R.L 0.6329 o
‘L.S.R S.R.S 0.1139 '0.0207
"L.S.R S.R.R 0.2532

‘L.R,L " R.L.L 0.2302 . :
L.R.L R.L.S 0.2590 : 0.0364
L.R.L R.L.R 0.5108 =

" L.R.S R.S.L 0.2704 : o _—

-L.R.,S R,s.S 0.6164 : . 0.0416

" L.R.S R.S.R 0.1132 = - i

_LRR R.R.L 0.7353 S

~L.R.R R.R.S 0.1118 = ~ 0.0445

" L.R.R R.R.R 0.1529 S
S.L.L ‘L.L.L 0.1500 ,

s,L.L L.L.S © 0.5750 . : 0.0105

- S,L.L “L.L.R 10.2750 S
s.L.S 'L.S.,L '0.2000 . ,
'S.L.S -L.S.S . 0.4500 L 0.0052
s.L.S L.S.R 0.3500 - . S

. S,L.R . L.R.L . 0.2326 S
S.L.R L.R.S 0.4651 S 0.0450
S.L.R L.R.R 0.3023 .

. §.S.L S.L.L . 0.1484 . S

. S,S,L- - 's.L.S  0.0469 . 0.0335
'S.S.L S,L.R 0.8047 ST

's.s.S s.s,L 0.07568 : :

-8.8.S s.s.S - 0.848¢ - - 0.3007

Y

Flgure A2: State transition probabnhtnes and state probablhtxes for a k = 3 Markov
path model '
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0.0758

S.S.R

s.S.S

0.8047--
0.0468
0.1484

0.0335

0.3023
0.4651
0.2326

0.0450

i

0.3500
0.4500
0.2000

0.0052

0.2750
0.5750
© 0.1500

'0.0105

0.1529
0.1118
0.7353

' 0.0445

0.1132
. 0.6164
© 0.2704

’

0.0416

SR N

- - -
A

0.5108
0.2590
0.2302

0.0364

0.2532
0.1139
0.6329

0.0207

0.0327

0.2480
0.6560
0.0960

0.0089

0.5000
0.1471
0.3529

0.0440

0.6131
©0.2500
0.1369

- 0.0131

0.5200
0.3200
0.1600

0.0134

0.4902

=172N-1

PSRN

o 0 o

0% 0 2

o o o

0.1176
0.3922

Figure A.2 (contihued).
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