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CHAPTER 1

EDGE DETECTION IN IMAGES

1.1. Introduction

The detection of edges, lines, and other linear features in two-dimensional discrete 

images is a low level processing step of fundamental importance in the automatic pro

cessing of such data. Many subsequent tasks in computer vision, pattern recognition, 

and image processing depend on the successful execution of this step.

In this thesis, we will address one class of techniques for performing this task: 

sequential detection. Our aims are fourfold. First, we would like to discuss the use of 

sequential techniques as an attractive alternative to the somewhat better known 

methods of approaching this problem. Although several researchers have obtained signi

ficant results with sequential type algorithms, the inherent benefits of a sequential 

approach would appear to have gone largely unappreciated. Secondly, the sequential 

techniques reported to date appear somewhat lacking with respect to a theoretical foun

dation. Furthermore, the theory that is advanced incorporates rather severe restrictions 

on the types of images to which it applies, thus imposing a significant limitation to the 

generality of the method(s). We seek to advance a more general theory with minimal 

assumptions regarding the input image. A third goal is to utilize this newly developed 

theory to obtain quantitative assessments of the performance of the method. This 

important step, which depends on a computational theory, can answer such vital ques

tions as: Are assumptions about the qualitative behavior of the method justified? How

-1-
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does signal-to-noise ratio impact its behavior? How fast is it? How accurate? The state 

of theoretical development of present techniques does not allow for this type of analysis. 

Finally, a fourth aim is to' extend the earlier results to include correlated image data. 

Present sequential methods as well as many non-sequential methods assume that the 

image data is uncorrelated and cannot therefore make use of the mutual information 

between pixels in real-world images. We would like to extend the theory to incorporate 

correlated images and demonstrate the advantages incurred by the use of the existing 

mutual information.

The topics to be discussed are organized in the following manner. We will first pro

vide a rather general discussion of the problem of detecting intensity edges in images. 

The edge detection problem will serve as the prototypical problem of linear feature 

extraction for much of this thesis. It will later be shown that the detection of lines, 

ramp edges, texture edges, etc. can be handled in similar fashion to intensity edges, the 

only difference being the nature of the preprocessing operator used. The class of sequen

tial techniques will then be introduced, with a view to emphasize the particular advan

tages and disadvantages exhibited by the class. This Chapter will conclude with a more 

detailed treatment of the various sequential algorithms proposed in the literature. 

Chapter 2 then develops the algorithm proposed by the author, Sequential Edge Linking 

or SEL. It begins with some definitions, follows with a derivation of the critical path 

branch metric and some of its properties, and concludes with a discussion of algorithms. 

The third Chapter is devoted exclusively to an analysis of the dynamical behavior and 

performance of the method. ' Chapter 4 then deals with the case of correlated random 

fields. In that Chapter, a model is proposed for which paths searched by the SEL algo

rithm are shown to posses a well-known autocorrelation function. This allows the use of
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a simple linear filter to decorrelate the raw image data. Finally, Chapter 5 presents a 

number of experimental results and corroboration of the theoretical conclusions of earlier 

Chapters. Some concluding remarks are also included in Chapter 5.

1.2. Edge Detection

Edge detection represents one of the first processing steps in a great many com

puter vision and image processing tasks. Reflecting this importance, the literature 

devoted to the problem is enormous. One need only consult a recent bibliography such 

as Rosenfeld [Ros84] to gain an appreciation of this fact. For this reason, we will make 

no attempt to summarize the work in this area to date. Instead, we will confine our

selves to a general discussion of the edge detection problem and motivate the method to 

which this thesis is addressed, namely that of sequential detection.

We will consider only two-dimensional digital images. By digital we mean that the 

image is discrete in the spatial domain, e.g. the image intensity function is not continu

ous over the two dimensions but defined only on an array of points, and the intensity 

levels at these points are furthermore quantized into a fixed, finite number of levels.

The underlying assumption in this and many other treatments of edge detection is 

that edges of interest in real scenes such as object boundaries, etc. are represented in an 

image as a discontinuity in intensity. Therefore the task of edge detection becomes one 

of identifying intensity discontinuities. We note that the human visual systems and per

ception are such that discontinuities are not the only intensity functions that are per

ceived as "edges.” Other possibilities include discontinuities in the first derivative of the 

intensity function (ramp edges), texture edges, and color changes [Cor70]. While these



features are important in some contexts and are in fact sufficiently similar to the original 

problem of intensity discontinuities to perform their detection by sequential techniques, 

ih this Section we will confine ourselves solely to the first problem. Bear in mind, how

ever, that sequential algorithms attempt to exploit only the connectivity of edges and are 

largely independent of the specific edge operator used. We will return to this point 

later.

Given that the goal is to identify intensity discontinuities, two general classes of 

techniques have emerged to address this problem: gradient-type operators and 

parametric models. Gradient-type operators, which for the purposes of this discussion 

will include first and second order spatial derivative operators, are discrete spatial filters 

whose magnitude responses have various high pass characteristics. In particular, they 

attempt to perform the discrete equivalent of a two-dimensional gradient, a directional 

derivative operator, or a second order derivative operator. The idea is to emphasize 

those regions of an image where the intensity function changes rapidly with distance and 

suppress the areas with little change in intensity. These operators may also provide 

information regarding the direction of the gradient, or in the case of directional opera

tors, the component of the gradient in a given direction.

Generally speaking, gradient-type operators are implemented with one of a variety 

of window functions [Ham83]. This is due to the fact that real edges are of finite extent 

and therefore the operator must have finite support, i.e. be windowed. If the window 

function is rectangular, the spectral response of the operator will exhibit the familiar 

Gibbs phenomenon of Fourier theory. The large gain at high spatial frequencies exacer

bates the effects of noise on the output. As in other signal processing applications, the



answer to this problem is to employ smoother window functions such as Hamming, Han

ning, or Gaussian windows [Can83].

Examples of gradient-type edge operators are the Roberts [Rob65], the Sobel 

[Pra78], the Laplacian-based operators of Modestino and Fries [Mod77] and Marr and 

Hildreth [Mar80], and correlation template techniques such as Kirsch [Kir71].

Parametric models view the image intensity function as a surface and this surface is 

projected onto a set of basis functions. From this modeled surface, edge parameters such 

as slope position and direction are estimated. A question of importance is the complete

ness of the basis function set, as the parameters can be estimated only from the projec

tion of the actual image onto the space spanned by that set. Examples of this approach 

are the Hueckel [Hue73] and facet model of Haralick [Har84]. For the purposes of this 

discussion we will include in this class the moment-type operators such as the pixel mass 

operator of Suciu and Reeves [Suc82]. These methods attempt to detect intensity 

discontinuities from the moments of the distribution of intensity values in a window.

As pointed out by Canny [Can83], practically all edge detection schemes proposed 

to date in the above classes involve a classification step that utilizes one or more thres

holds. Having obtained estimates of the gradient magnitude of direction or edge param

eters from a fitted model, some mechanism must be employed to decide whether or not 

those quantities indicate the presence of an intensity edge at the location in question. 

This classification step is performed via a decision threshold. Even the second order 

derivative approachs, such as Marr and Hildreth [Mar80], cannot avoid this step. 

Although zero crossings of the two-dimensional Laplacian nominally indicate intensity 

edges, even small amounts of noise contribute to a very high density of noise induced
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zero crossing contours. Therefore, practical implementations must apply a threshold to 

the slope of the second derivative perpendicular to the zero crossing.

This thresholding process may be accomplished in various ways. Earlier techniques 

established a global threshold on the basis of the histogram of operator outputs or the 

Receiver Operating Characteristic (ROC) of the operator (Abd79|. More recent methods 

select the threshold in an adaptive manner based on local image content or on entropy 

/ideas.:

The question of threshold selection raises two fundamental and related problems 

with all of these edge detection techniques. The first of these is known as streaking. 

This phenomenon results from the fact that real images are highly non-homogeneous and 

edge parameters may change substantially even along the same edge contour. Regard

less of the sophistication of the threshold selection process, it is possible and in fact com

mon that due to noise, the operator output is at times above and other times below the 

decision threshold along the length of a given edge contour. This results in an edge map 

in which edges that are in reality a single connected contour are only partially detected. 

The broken segments or streaks are a major concern since many processing tasks that 

follow edge detection require well connected or even closed edge contours. On the other 

hand, if the thresholds are set so liberally that the edges of interest are detected with 

good connectivity, then many false detections and multiple responses on strong edges 

occur. This is the classical'detection theory trade-off between probability of detection 

and probability of false alarm. Not only is it difficult to decide on a threshold, it is fun- 

damentally impossible to simultaneously achieve a high detection probability and low 

false alarm rate as the signal-to-noise ratio decreases.



A second and related problem is the performance at low signal-to-noise ratio. Since 

operators attempt to make a decision based only on local information, as the noise power 

increases, this decision becomes increasingly more difficult to make. The solution gen

erally adopted is to increase the number of observations that contribute to the decision, 

i.e. make the operator larger. As Canny shows [Can83], this improves the output 

signal-to-noise ratio of the operator but only at the expense of spatial resolution. The 

way to circumvent that problem is to employ a set of directional operators: long skinny 

operators that pick up their additional observations along an edge rather than out in 

every direction [Nav80], This may only be taken so far, however, because the more 

directional the operator, the larger the requisite set of such operators. Additional com

plications arise from the fact that edges in real images tend to not run straight for very 

long. This mandates the inclusion of curved operators which further compounds the job 

of choosing an operator set.

1.3. Sequential Edge Detection

Classical detection theory states that the way to improve performance at low 

signal-to-noise ratio is to increase the number of observations contributing to the deci

sion. As we have just seen, simply increasing the size of the edge operator is moderately 

successful in this regard but at the expense of spatial resolution. In addition, the desir

able "edge information” generally lies in the vicinity of the edge itself, so picking up 

observations far from the edge contributes little to the decision process. Using direc

tional operators improves the output signal-to-noise ratio while maintaining good spatial 

resolution, but this approach soon becomes unwieldy as the number of such operators
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increases geometrically with their length.

One possible way out of this dilemma is to assemble observations along the edge 

contour. Observations are made in a very long and narrow path that is deformed to lie 

along the edge, including curves, corners, and straight segments. Since the set of all pos

sible such paths is enormous, the paths are instead "grown” in an iterative fashion 

beginning at a point that is known to lie on the edge. This is the basic philosophy 

behind sequential edge detection. A searching algorithm attempts to hypothesize possi

ble edge topologies or paths. These paths are extended iteratively, with the current 

most probable path extended by one observation at each iteration.

For this technique to succeed in finding edges, a means of comparing all paths 

hypothesized so far has to be provided. This comparison is accomplished by associating 

with each path a statistic called a path metric which reflects the given path’s probability 

of coinciding with the edge contour. Therefore, only the most likely paths are extended 

by the searching algorithm. In this way an exhaustive search is avoided.

Sequential edge detection has several potential advantages over the techniques dis

cussed earlier. First, it offers the possibility of better performance (higher detection pro

bability, lower false alarm probability) at low image signal-to-noise ratio than the local 

operators, since it obtains many more observations along the edge. For the same reason, 

the problem of choosing a detection threshold is alleviated: it is much easier to decide 

"edge” or "no edge” based on many observations than on a few. Secondly, by the very 

nature of the searching process, the detected edge paths exhibit complete connectivity. 

Therefore, streaking can be eliminated. Although it is not obvious from this discussion, 

two subtle advantages to a sequential approach also arise. One is that it allows an



analytical treatment of the probability that segments of detected edge contours are in 

error rather than merely points. The second is that it provides a framework in which
• ■ ' ■ J . / i i .

the correlation between observations in an image can be exploited to aid in the detection 

process. The principle disadvantage of a sequential approach is one of computational 

speed. Actually, on a sequential processor, such algorithms tend to be more efficient 

than parallel algorithms. But the latter has the potential of dramatically improved 

speed on special purpose parallel architectures.

We will return to discuss all of the foregoing ideas in more detail later, but first we 

shall review preceding efforts in the literature related to the detection of edges in image9 

by sequential methods.

1.4. Previous Sequential Detection Methods

Early work by Fishier and Elschlager [Fis73], while not precisely a sequential edge 

detection technique, nevertheless represents one of the earliest efforts to recognize the 

fact that improved performance at low signal-to-noise ratio can be accomplished by con- 

sidering edge contours as a whole rather than local points. In their method, hypotheses 

consist of "embedded” edge contours. For each such embedded contour, an associated 

cost is calculated. A dynamic programming technique is used to search the (enormous) 

space representing all possible contours in an effort to find that with the lowest associ

ated cost. In a similar fashion, Griffith [Gri73] has also used a dynamic programming

technique. Specifically, he uses the Viterbi algorithm, a forward dynamic programming
. • ' • • ■ - •

method [For73].
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Both of these methods have two common problems. Dynamic Programming tech

niques attempt to find the best hypothesis in a search. Although they are more efficient 

than an exhaustive search, the amount of computation for even modest image sizes is 

still very large. Secondly, the associated cost of an embedded contour is an ad-hoc quan

tity requiring a considerable amount of tailoring to specific images.

In an effort to reduce the amount of computation involved with dynamic program

ming methods, Chien and Fu [Chi74] have proposed the use of what is known as depth- 

first tree searching [Nil71]. They explicitly formulate the edge detection problem as a 

search through a rooted tree. Their branch "costs,” however, are highly specialized to 

the type of image under consideration and employ a great deal of a-priori information. In 

a similar fashion, Martelli [Mar78] formulates the problem as a graph search and uses 

the A* algorithm [Nil71] to perform the search. This algorithm is quite similar to the 

Z-J or stack algorithm described in the next Chapter. Again, Martelli’s cost function is 

ad-hoc and peculiar to the type of image under consideration.

Extending the work of Martelli, Cooper [Coo79] has also used the A* search algo

rithm. He has attempted to take some of the arbitrariness out of the cost function by 

basing that function on a likelihood statistic. He models hypothesized edge contours as 

a Markov process. The image is modeled as consisting of two region types, "background” 

and "object,” separated by the edge contour. The two types are assumed to be of dif

ferent but constant intensity. The cost statistic is then the joint likelihood of the partic

ular hypothesized edge contour and the image pixel values, given the assumption that all 

pixels inside the contour belong to the object at one gray level value and all outside 

belong to the background at the other gray level value. Note that for each hypothesized
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edge contour, the statistic must be calculated oyer the entire image.

This method represents one improvement over its forerunners but exhibits several 

serious drawbacks. On the plus side, the cost function is at least statistical in nature and 

so has a better theoretical basis than the heuristic functions discussed above. This 

allows for some performance analysis. Also, the Markov edge contour model captures an 

important characteristic of real edges as we shall discover in the next Chapter. On the 

other hand, the assumption of only two image pixel types, "object” and "background," 

independent and of constant gray level values, is highly unrealistic. In practically any 

real image of interest, pixel gray level values within and outside of objects may vary con

siderably due to lighting inhomogeneities, shadows, object inhomogeneities, etc. Pixels 

are almost never stochastically independent, a subject to which Chapter 4 is entirely 

devoted. Furthermore, such a problem statement is only useful for finding bounding 

contourt of objects and is useless for finding internal edges, intersecting edges, etc., all of 

which may be important to subsequent processing. Since attempting to find the 

optimum contour in terms of this likelihood statistic is exceedingly time consuming even 

under the very conservative assumptions mentioned, the investigator has also employed 

a sub-optimum search using the A* algorithm. All of the previous assumptions are still 

required, but the likelihood statistic is calculated only over the pixels in a "swath” near 

the hypothesized contour. This results in a search procedure that is very close to what 

we call sequential searching. Unfortunately, the highly restrictive assumptions Still limit 

its applicability.

Ashkar and Modestino [Ash78], similar to Chien and Fu, start by formulating the 

edge detection problem as a tree search. They make the important step of applying the
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search to the output image of an edge operator rather than to the original image. This 

helps overcome some of the shortcomings of Cooper’s approach. This will be discussed 

in Section 2.1. The Z-J or stack algorithm (Section 2.3.2) is used to perform the search. 

This method represents a fully mature example of sequential detection with additive 

branch costs or metrics and a truly sequential search in the sense of Forney’s definition 

(Section 2.3.1). However, its metric suffers from two problems: it is again very ad-hoc 

in nature, with components that depend on experimentally determined parameters and 

look-up tables and it requires a prototype contour. This latter is a contour provided by 

some a-priori knowledge base that helps to guide the search toward some preconceived 

estimate of the final edge map. This represents rather high quality a-priori information 

and, while possibly appropriate to certain narrow classes of problems, is a severe limita

tion to the method’s generality.

This metric formulation furthermore limits any analytical treatment of the method. 

In particular it is implicitly dttumed that: 1.) the metric is indicative of the likelihood 

that the corresponding path coincides with the true edge contour, 2.) the metric 

possesses the correct conditional drift, 3.) the correct path is not ever purged from the 

search stack due to considerable searching of incorrect paths, and 4.) the correct path 

eventually arrives at the top of the stack. (The same objections might be made of the 

other techniques discussed in this Section.) Beginning in Chapter 2, these ideas will be 

carefully defined and addressed. It will be shown that it is possible, through a more 

rigorous derivation of a stochastic path metric, to give quantitative answers to these 

questions. . . - .

I

J'
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A rather different method proposed by Suk and Hong [Suk84], while not truly 

sequential in nature, also emphasizes the importance of detecting edge segments over 

edge points in low signal-to-noise ratio images. The cost function is composed of a 

variety of statistical tests, but the method does not make use of the computationally 

efficient searching algorithms described above. As in the other cases, no analytical treat

ment of the search dynamics is undertaken.

Finally, there are a number of techniques which are also loosely termed sequential 

edge detectors that perform their sequential search strictly along scan lines of a raster 

scanned image. That is, rather than attempting to find a path through a tree represent

ing a two-dimensional edge contour in an image, they merely try to locate the position of 

an intensity transition along horizontal (or vertical) scan lines. Although this is useful for 

finding bounding contours for simple, homogeneous objects, we will restrict our use of 

the term sequential search to the two-dimensional problem rather than include this 

essentially one-dimensional search. Two examples of this approach are those by Basse- 

ville et al. [Bas81] and Hansen and Elliot [Han82].

With this introduction to edge detection and previous work in sequential tech

niques, we now turn to a new approach. This method, to be called Sequential Edge 

Linking (SEL), is an attempt to formalize the use of sequential searching as an alterna

tive to the use of local thresholds as a classification criteria on the output of edg;e opera

tors. Since it is a processing step following the application of an edge operator, it is 

largely independent of which specific operator is used. The intent is to allow the 

integration of many observations along an edge contour to enter into the classification 

process in order to improve the performance at low signal-to-noise ratio, ease the diffi-
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culty in choosing a threshold, and eliminate the incidence of streaking in the resulting 

edge map. It furthermore has the advantage that an analytical theory may be brought 

to bear on fundamental questions of its performance and operational dynamics. This 

theory also paves the way for the technique to make use of correlation in the image 

data. All of these ideas will be developed in the following Chapters.



CHAPTER 2

SEQUENTIAL EDGE LINKING

2.1. introduction

In this Chapter, we will introduce the concept of Sequential Edge Linking, contrast 

its behavior with that of the other sequential techniques discussed earlier, and describe 

in some detail the operation of the algorithm. We will begin with a fairly general discus

sion of the philosophy behind this approach. The various definitions required for the 

discussions to follow will then be developed. A path branch metric for sequential search

ing in images will be derived that maximizes a joint probability criterion. This metric 

will be shown to possess several important characteristics for its use in a sequential tree 

searching algorithm. This development is followed by an examination of a number of 

algorithms for performing such a search. Although the treatment of these topics will be 

in depth, it will stop short of any performance analysis which is reserved for the next 

Chapter. In addition, the simplifying assumption of independent observations will be 

used here with the generalization to correlated observations to be developed in Chapter 

4.

Let us return to the problem of finding linear features. We will view this as a 

post-processing task to follow the application of an emphasis operator. We consider 

such an operator to be any mathematical operator that, when applied to a digital image, 

produces an estimate of the magnitude and direction of the desired linear feature at 

every point in the image.

-15-
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Some pre-processing (i.e. using an operator) is prudent. Although it might be possi

ble to perform a sequential search directly on the raw image, this results in the need to 

introduce additional parameters. Use of a preprocessing operator decomposes the feature 

extraction task into two parts: emphasis and detection. The operator serves to 

emphasize the feature in which we are interested. The sequential searching algorithm 

then attempts to perform the detection process based on this emphasized information. 

This allows the detection algorithm to be independent of the feature. For example, to 

perform intensity edge detection, the preprocessing operator is designed to emphasize 

intensity discontinuities in the image. Likewise, the operator may be designed to 

emphasize lines, roof edges, texture edges, or color edges. In any case, its output is 

expected to be a function of the magnitude and/or the direction of that particular 

feature at every point in the image.

In the case of intensity edges, the preprocessing operator generally attempts to esti

mate the magnitude and direction of the local intensity gradient. However it usually 

also employs spatial low-pass filtering to avoid unacceptably high probability of false 

detection in situations with poor signal-to-noise ratio. By incorporating such filtering in 

the edge operator, which is applied over the entire image, one may take advantage of 

certain computational efficiencies [Can83].

We will assume for now that gradient magnitude and direction information 

represents the input to our system. Our goal is to determine connected lines represent

ing intensity edges in the original image while not responding to spurious effects of noise, 

etc. We would like to achieve as much positional accuracy as possible, but due to the 

searching technique, tubptxel accuracy cannot be obtained.
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A crucial observation is that it is not desirable to quantize this gradient information 

any more coarsely than necessary. We certainly do not want to threshold this data 

(quantize to one bit) globally, locally, adaptively, with hysteresis, or whatever. Nor do 

we wish to non-maximum suppress it [Can83]. The experience of detection theory, cod

ing theory, and related disciplines states that coarse quantization of noisy, correlated 

observations independently of one another may be expedient or acceptable where the 

signal-to-noise ratio is high, but leads to poor performance when the signal quality 

deteriorates (cf. [Sch80],[Mel78]).

Instead of making such hard decisions (thresholding) right away, experience dictates 

one "integrate” the soft information over many observations before concluding on a deci

sion. This "integration” takes a variety of forms depending on the application. For 

example, radar problems utilize sequential detection theory [Pet54]; all decoding algo

rithms in coding theory base decisions on blocks or long sequences of received data 

[Vit79]; examples of correlational detection abound. Sequential Edge Linking is one 

manner in which such integration may be performed in the context of image edge detec

tion.

The image processing literature has not entirely ignored this fact. Non-isotropic, 

highly directional edge operators make explicit use of this idea. Canny, in [Can83] has 

calculated the actual performance improvement to be derived from long operators 

stretched in the direction of an edge. These suffer from two related disadvantages: they 

are typically limited to short, straight segments or a small number of curved segments, 

and they are computationally prohibitive as their size increases (since they must he con

volved in all orientations over all points of an image). As we shall see, even with certain
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restrictions imposed, the number of possible configurations grows exponentially with the 

number of pixels in the operator (see Section 2.2.2). Certainly, decisions based on hun

dreds of pixels, routine for SEL, are unthinkable by these methods.

Relaxation-based methods do make use of soft edge magnitude and direction infor

mation as well as the interaction between neighboring pixels [Zuc78|. This reportably 

accounts for their high performance in certain situations [Zuc78b]. The trouble with 

relaxation lies with its convergence properties. In particular, in many situations conver

gence of the algorithm is not even guaranteed or the solution is not known to be unique 

[Zuc78a]. No performance bounds can be determined or estimated. In short, one must 

resort to a ”try and see” approach. Furthermore, the nature of the pixel inter

dependence specified in the algorithm cannot take advantage of any knowledge of the 

true correlation statistics.

Finally there are the sequential searching techniques. Various investigators have 

attempted to employ sequential tree or graph searching algorithms in this context. Ash- 

kar and Modestino [Ash78] and Cooper [Coo79] seem to have come the closest to SEL. 

With the former, the metric used to guide the search is purely ad hoc and so cannot 

benefit from any analysis aimed at determining its behavior or probability of success. 

More Seriously, however, their technique makes explicit use of a "training contour" to 

guide the search. This represents very high quality a-priori information. It is noted that 

in certain specific circumstances such information may indeed be available, but it greatly 

reduces the generality of the method. The second technique is quite different from SEL 

and, as noted earlier, suffers from quite restricting assumptions concerning the mean 

gray level of pixels and their independence. While the results are generally good on
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artificial images where these assumptions are explicitly met, their performance on real 

images is yet to be demonstrated. It can be said, however, that the path searching tech

nique of both of these approaches is very similar to that of SEL, as is the philosophy, for 

doing so.

Having obtained the gradient magnitude and direction information from an edge 

operator (plus spatial filter; see Section 2.2.4), it seems tempting to suggest a maximum 

likelihood search such as (Coo78). To do this, one might hypothesize all possible edge 

paths of say n pixels in length, calculate their respective a-priori likelihoods, assuming 

some distribution on the gradient levels, and pick the largest. However, the exponential 

growth of the candidate configurations with n dooms this approach, regardless of the 

maximum likelihood algorithm used. The situation is analagous to the problem of 

decoding convolutional codes in coding theory. One may use ML techniques such as 

dynamic programming (Viterbi decoding) as long as the constraint length is small ( < 9 

or 10) [Lin83]. Beyond this, the exponential growth of computation and memory require

ments with constraint length make the algorithm too unwieldy.

The solution to the decoding problem with large constraint lengths, sequential 

decodings is the inspiration behind SEL. In both situations one does not attempt to 

explore all possible paths in the tree, picking the ML path, but rather one explores only 

a small subset of them with a high probability of including the correct one [Wozdl]. 

This exploration is accomplished sequentially, extending only those paths which hold 

high promise of being the correct one.

This approach has several promising virtues. First, it can explore trees with large 

"constraint lengths” or memory very efficiently and at high speed. Sequential decoding
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of codes with constraint lengths of up to 50 and at speeds in excess of 10 Mb/s is not 

uncommon [Lin83]. Secondly, disregarding the problem noted in the next paragraph, the 

error performance is generally very good. Thirdly and perhaps most importantly the 

analytical machinery developed for the analysis of sequential decoding may he brought 

to bear, with a number of important modifications, on the edge detection problem. This 

allows important inferences to be drawn regarding performance bounds, probability of 

error events, etc.

On the negative side, such sequential algorithms suffer a variety of problems result

ing from their variable computation time [Sav60]. As signal-to-noise ratio degenerates, 

the number of possible paths explored increases. In data transmission systems, this can 

lead to buffer overflow and burst errors. With image edge detection, this means only 

that processing time is delayed. Looked at another way, SGL can take advantage of 

good signal-to-noise ratio by exploring fewer paths. In any case, processing time is vari

able, depending on the quality of the edge information present.,

One final note. By virtue of its path metric, SEL can provide subsequent process

ing tasks with quantitative information concerning the confidence in segments or whole 

edges. Other attributes such as length, curvature, direction, and an ordering of the con

stituent pixels are explicitly determined and immediately available to higher level tasks.
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2.2. Definitions

2.2.1. Images, Random Fields*

For our purposes, the terms image or digital image will refer to a sample function 

of a two-dimensional discrete parameter random field. See [Ros76] for a general discus

sion of digital images or [Won71] for a more rigorous treatment of random fields.

Sample functions of this random field consist of a rectangular array of numbers. 

These numbers can represent various quantities depending on the nature of the field. If 

the array is an image of a natural scene, the numbers may represent the gray level or 

intensity of light at that point of the scene. Alternatively, they may represent an esti

mate of the magnitude of the gradient of such gray levels or the direction of the gra

dient. Whatever their interpretation, these numbers, henceforth to be called pixel 

values, pixels, or observations are defined at points of a rectangular lattice, The points 

of the lattice are called nodes, their spacing is uniform and equal in both directions, and 

they are indexed by / X / where I is the set of integers.

For a given random field, we assume the existence of a probability space (0,A ,P) 

and a measurable function, /- (w); r£/2 defined on this space:

f7 {oj) : Q X I2 - F C R (2.1)

Here, ~r = (r1, r2) is the pair of coordinates of a node in the array, and f 7 (w) is the
#

pixel value at that node, and F is some countable subset of the set of real numbers.

Due to the rectangular nature of the lattice, each node has a unique set of eight 

neighbort [Ros70|. The node at coordinates (r1, r2) has the neighbor set:



(r'+l.r2), (r‘r2+l), (r'-l,r2), (r' r2-l), (r'-l,r2-l), (r‘-l,r2+l),

(r 1+l,r2-l), (r*+l,r2+f). Any ordered set of nodes for which all adjacent pairs are 

neighbors will be called connected. An ordered pair of neighbors also uniquely defines a 

direction. Eight such directions are therefore possible.
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2.2*2. Paths

A path will be defined as a connected set of nodes with the following property: for 

any subset of three nodes ih the ordered set, the directions defined by the first two 

nodes and by the second two nodes differ by Jr/ 4 or less. Thus, if one were to draw line 

segments between nodes of a path, the resulting curve would contain no changes of 

direction greater than or equal to 7/2 (see Figure 2.1).

Paths may be denoted in one of two ways. The first is simply the ordered set of 

nodes comprising the path:

m [{Ti1 »rl2 )» (r21 S*), K\r*2)] (2.2)

The second method is by specifying a start node and direction, and an ordered set of 

letters:

m “ (’‘d.rir) X X <*»] (2.3)

where (tq ,r02 ) is the start node, d0 is the start direction, and the a,- are taken from 

an alphabet A = ( L,S,R ]. The letters of the alphabet stand for left, straight, and right 

respectively. The coordinates of the nodes of the path may be obtained in a recursive 

fashion from the letters <*,■ • The first node is obtained from the start node by moving in 

the array in the direction dg. The direction to the second node is then obtained from
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Impqssible paths

Figure 2.1: The path topology on the left is permissible since all changes of direction are 
of jt/4 or less. The path topologies on the right contain changes of direction 
greater than jt/4.
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</0 and a j (and so on) by the obvious rule:

d

if a i = L 

if a i = S 

if a i = R

(2.4)

This process can likewise be reversed to obtain the list - of - letters description of a path 

from the list of node coordinates. Thus, either description uniquely specifies a given 

path and they are equivalent.

The second path description has been introduced in order to clarify the following 

model for paths. We will assume that paths may be modeled as a ktk order Markov 

Chain [Ros83]. In the following discussion, we will focus on the letters a,- of paths and 

take up the question of the start node and direction later.

Let us consider a discrete time stochastic process S;, i = 0,1,2,3, . . . :

S; (oj) : fi —E (2.5)

The underlying space Q is just the space of all possible state sequences:

fl ~ (®o>a 1>®2> ■ * •, ) (2*0)

and E is the state space. When the process enters the state at t +1 from that at t, it 

outputs a letter *+i -l L,S,R ]. The state of the system is defined to be the 

ordered sequence of the last k letters put out by the system:

A- = K -(*-!)) (2.7)
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so that £ = A X A X • • - X A = Ak We will assume a0 is fixed and 

known. The Markov assumption is then:

Pt = ^,’+| | • • ■ ,«o) = ^ (*-V +1 gi +1 I ®i ) (2-8)

or:

Pr («,-+1| • ,«o) = Pr K+i l *i ) (2’9)

from which it follows by the chain rule:

Pr(m) = Pr(a1,a2, . . . ,an) (2 10)
= ^r(gH I *»-l) ^r(gn-l I ^»~2) * * • P* (a 1 I *0)

This is our stochastic model for the path proeett. It bears a strong resemblance to that 

used in [Coo79]. By manipulation of the transition probabilities, Pr(at+1 | ■*,•■), certain 

types of paths achieve higher probability of occurrence than do others. For example, the 

model may favor paths exhibiting long segments of straight transitions over those that 

meander incessantly with highly probable L to R and R to L transitions. Such a nonuni

form distribution of transition probabilities may be experimentally verified for images. 

The Appendix describes a program that traces edge lines in images of representative 

objects and calculates estimates of state transition probabilities based on their frequency 

of occurrence. The estimates given in the examples there clearly show that all the tran

sitions are not of equal probability.

2.2.3. Path Metric

The crucial concept in any sequential tree searching algorithm is that of a path 

metric. The algorithm’s efficiency and chance of success lie in its ability at any point of
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execution to rank all the paths explored so far by a measure of their "quality”. This 

measure is the path metric. The path branch metric of Ashkar and Modestino [Ash78] is 

an example, but it suffers from a lack of generality and is largely ad hoc. In this Sec

tion, we will derive a path branch metric that optimizes a joint probability criterion.

The concept of a branch metric for sequential tree searching was first introduced in 

the problem of sequential decoding of convolutional codes by R. M. Fano [Fan63]. That 

metric is probabilistic, reflecting the statistical nature of the underlying coding theory. 

The metric we introduce is also probabilistic. This is in part due to the models we are 

assuming for images and paths, but also because it allows a statistical treatment of the 

operation and performance of the algorithm.

Path metrics should exhibit certain desirable qualities. First, they should not be 

biased by path length. That is, the metric should not favor a long path over a short one 

just because of its length or vice versa [McE77j. All paths need to be compared on the 

basis of their probability of being an edge path regardless of length. Second, they need 

to be efficient to compute. This is best served by a metric that is recursively computed: 

the metric of a path to a certain node is obtained from that to the preceding node by 

adding a "correction value” that depends only on the new node. This eliminates the 

necessity for calculating the metric anew over the nodes of a long path every time it is 

extended by a node. This is very important from the standpoint of efficiency and 

becomes an even more crucial requirement when the observations are correlated (see 

Chapter 4). Finally, the metric should exhibit the all - important "drift" characteristics. 

That is, it should tend to increase along true edge paths and decrease elsewhere. This is 

critical to ensure that a sequential searching algorithm proceeds correctly.
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Our path metric will be defined for paths in a random field as defined in the 

preceding Sections. We will assume the following two measures on the random field. 

The first, p j (/- = y), is the probability the field value or observation at node r is y 

conditioned on the hypothesis, H j, that that node is on an intensity edge in the original 

image: '

Pi (/? = ») = Pr {f7 = y \ //,) (2 U)

= Pr (/- = y | 7 ia on an edge )

The second is the probability of the observation conditioned on the null hypothesis, Hq, 

that the node is randomly positioned in the field with respect to intensity edges:

Po(/; = ») = P' (/; = » I «o) (212)
= Pr (f ~ — y \ ? i» a random node )

Note that, at this point, we are not even specifying what the random field, / ,

represents but merely assuming the existence of these two conditional measures on that

field. It will later turn out that the field is a gradient magnitude or gradient direction 

field or a function of both.

For a given path, m,

we now define the 

[Van68]:

m = [r i,t„ . . ; ,ry)

= fj X d(j X [®i>®2> ■ • ■ t®#|
(2.13)

likelihood ratio, /(f), of the path in the conventional manner as



'!

-28-

/(f) =
Piihs • • • >/?,) 

Po(/^ • • • >/?.)
(2.14)

This is simply the joint probability of the observations along the path conditioned on 

the H | hypothesis divided by the joint probability of those values conditioned on the

Hq hypothesis.

From Equation (2.10), we have the probability of the path m is:

Pr (m) = H Pr ■ («<: (*._,) (2.15)
1 —1

We are now in a position to define our path metric. For the given path m, the path 

metric, r(m,f), will be defined as the logarithm of the. product of the path probability 

aid its likelihood ratio:

r(m,f) = In [Pr{m) • /(f)] (2.16)

If we make the very important assumption that the random variables of the field are 

stochastically independent, then the likelihood ratio becomes:

m =

and Equation (2.16) simplifies to

Po(/?1)Po(/?2)

Pi(/7.)

P o(/r,)
(2.17)

r(m,f) E
i-l

p,Ut)
ln 7^77) + 'nPr('i|,-l) (2.18)



The above assumption, known as the statistical independence of the observations, 

is an important one. It allows the factorization of the joint probabilities of the likeli

hood ratio which in turn gives the path metric its recursive computational efficiency. 

Note that path m may be extended by a node and the new metric obtained from the old 

by merely adding a term:

ry+i =

In Chapter 4 we will treat the situation of correlated observations where this assumption 

is no longer true.

The path metric of Equation (2.18) is a sum of branch terms each of which has two 

components. These components play different roles. The first is a likelihood ratio of the 

probability of observing the random variable /- under the hypothesis H j to the proba

bility under the null hypothesis. This component therefore is a function of the data in 

the image. The second component is the branch transition probability and is a measure 

of the a-priori probability that the edge path proceeds in that direction, given the last k 

branch directions.

The stochastic nature and recursiveness of our path metric are clear. The fact that 

it possesses the correct "drift” characteristics will now be demonstrated. For this pur

pose, we will find the conditional mean of the statistic, , i.e. the path metric
ft

normalized by its length:
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Plif.'r, +1)
In —77^\ + In Pr(*„+1| sn) 

Po(/r.J
(2.19)



-30-

fiiiteD'fl,} = E{y±
Hx ] (2.20)

Now since the path process is stochastically independent of the random field under the 

H i hypothesis, the right hand side becomes:

l«i} + ^{-‘E [to Pr} (2.21)

Considering the first term above, since the observations, / y, are equidistributed, the 

expectation of the sum is equal to the sum of n identical expectations, so that:

E In
Pi(/y)

(2.22)

by the definition of the pj measure. This last quantity is seen to be the Kullback’s 

Information [Kul59] between the pj and p0 measures, denoted /(pj | pq).

The second term of Equation (2.21) can be rewritten using the chain rule as:

1. 1- In ----------- ------

IV 1
» Pr(an,an_x,

(2.23)

which is defined to be the entropy per letter of the Markov source [Gal68]. In the limit 

as n oo, this quantity can be shown [Gal68] to be equal to:



. -31- ■

-H oo{S) = - _S«<0 S[Pr(.,|. =i)= -j (2.24) 

where q (t) is the time averaged state probability of state i:

q(i) — lim - £ Pr(«y=i) (2.25)
n —+00 tl y—|

Since all the states in the Markov Chain we have been considering are recurrent and in 

the same equivalence class, i.e. each state can be reached from any other in one or more 

transitions and there are no states outside this set, q{i) is independent of the initial 

state, 5q [Ros83]. Combining Equations (2.21-2.23), we therefore have the final result 

that:

lim K = /(l>il Po) " HJS) (2.26)
»-*oo l n l

Likewise, under the Hq hypothesis, the observations term becomes:

E In
Pi(/y)

Po(/y)
\H0

(227)

-I(pol Pi)

so that:

lim K }iM|//0} = -/((..I Po) - H JS) (2.28)
»—00 )
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We see then that since both /(• | •) and H ^(S) are strictly non-negative, the expected 

value of the normalized metric conditioned on the hypothesis that the path is not an 

edge path is negative. When conditioned on the H* hypothesis, the normalized metric 

will be positive if:

/(Pll Po) > H JS) [ (2.29)

Therefore, as long as Equation (2.29) is satisfied, the metric tends to grow with length if 

the path is truly an edge path and tends to decrease with length otherwise. This is the 

desired "drift” tendency that allows the searching algorithm to find the edges in the 

image. It is interesting to note that the difference between the statistics conditioned on 

the two hypotheses grows with n as:

= HPiIPo)

— J (Po.Pi)

/(Pol Pi)

(2.30)

where J (*,*) is Kullback’s Divergence. This says that, on average, the difference 

between the rate at which the metric grows along a true edge path and the rate at which 

it decreases along a random path is equal to the Kullback’s Divergence between the two 

measures p j and Po-

The fact that this path metric is not biased by path length is more difficult to jus

tify. We will do so by rederiving Equation (2.18) in such a way as to bring out this 

characteristic. The approach is similar to that used by Massey in the convolutional cod

ing situation [Mas72]. This furthermore gives additional insight into and justification of



the proposed metric.

Let us suppose we are given a set, M, of possible paths of varying lengths,

M — [ra^m2, . . . ,m*] (2.31)

m’ = rj X d{0 X (a1

where the length of the »-* path, m’, is n'. As before, the i-k path has probability:

Pr(m‘) = (s/|«/_,) (2.32)

Of course, each node of every path in M has an associated pixel value- To simplify 

notation, we will denote the observation corresponding to the jtk node of the itk path 

as: ........

Jrj •• J j ...

The set of' / -values associated with the itk path will be denoted:

f* = [f\,fh -,/M (2-34)

Now, just as in [Mas72], we will append a string of a-letters and associated / -values to 

the end of the shorter paths to make them all the same length. The tail of a-letters, 

mtail = (fl»' +i > • • • where N is the length of the longest path in M, are chosen 

at random. Since this path extension is random through the field, the associated / - 

values are chosen independently and at random according to a measure, Po(/ ), known 

as the random-path / measure. (It is the same as the p o measure defined previously). 

We assume the values of the random tails are chosen independently of everything else, so



’34~

that:

P’Ui•+I ’ V ,/A I ™ ) = P'Ui‘4i...... ,/A)
P'VL)

. “ ,!>•(//)
j—»‘+I

(2.35)

If we now assume the probabilities of the / -values of any path that coincides with 

an intensity edge are given by the measure, p j,

Pr(V | .//,) = p,(f) (2.36)

then due to the conditional independence of the observations, we have:

Pr(r,r^, | ff,» = p,(/;> Co(/A+y) (237)

Thus the joint probability of tracing path *, observing the values f * along it, and 

adding a random tail, , under the hypothesis that path » is indeed an edge path

may be written:

Fr(mi,fi.m^,fAfl) = .n Pr (»>| ) n (>,(//)

• biPr(»;,+Ji«A+/-i) yff j>«(/A+/)

■ , •' • . . " .

Summing over all possible choices of a random tail, we have:

(2.38)

i
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Pr(m',f\,f^) ^ Prim* X* ^toa^ua)

n ft(«/|»/:,') h (.,(//)
J “1 1 *■* '

N-»‘ (2.39)
£ Po(/n‘+y)

Now an optimum rule for deciding among the paths in M is to choose that path t such 

that i maximizes Pr (m’ ,f' ,f(*w7) or equivalently, such that t maximizes:

In
Prjm' ,f1 )

yS, Pot/y)

since the denominator is independent of t and the logarithm is a monotonic function. 

We thus have as the statistic to be maximized:

»'
E

y-1

This is obviously the same metric that was presented in a constructive manner ear

lier. This derivation lends support to the contention that the metric orders the prospec

tive paths according to a rule that maximizes the joint probability of the path letters 

and the observed random field values along the path. It also demonstrates that the 

metric has no built in length bias: that path which maximizes the joint probability exhi

bits the highest metric. Just as in [Mas72], the use of the random tail is a convenient 

device for equalizing the length of the observed paths for the purposes of comparing 

their probabilities. In a sense, the a-priori path probability, which decreases with length, 

is balanced by the likelihood ratio, which increases with length.

r(mV,f) = In
Piifj)

P o(/)
+ In Pr(sj\ «/_!) (2.41)
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2.2.4. Gradient Operators

As discussed in Section 2.1, the SEL algorithm is usually preceded by the applica

tion of a spatial gradient operator. The algorithm operates on the output of this opera

tor rather than on the raw image itself.

The literature devoted to spatial gradient operators for images and other multi

dimensional signals is quite extensive. The interested reader is referred to several survey 

articles for more complete bibliographies on the subject [Kun82],[Ros84].

The function of the gradient operator is twofold. First, as its name implies, it 

forms ah estimate of the (discrete) spatial intensity gradient at every node of the Held. 

This includes direction as well as magnitude estimates. The rationale for this is that 

intensity edges in images generally coincide with large gradient values. Gradient magni

tude is a local measure of "edginess” at a node that is independent of the average or 

baseline intensity in the local region. This high pass (in spatial frequency response) 

nature is characteristic of all gradient-type signal processors.

Due to the predominance of high (spatial) frequency noise in many images, this 

high pass response of a gradient operator does little to reduce the average noise power in 

the operator output. Partly to increase the output signal-to-noise ratio and partly to 

provide a measure of control over the overall spatial frequency response of the operator, 

gradient operators often include some low pass Spatial filtering as their second function. 

Again, the choice of filter functions is large, with many ’’optimum” filters having been 

derived for specific situations and criteria. Most of the results given later were obtained 

using a 2-D Gaussian filter. This choice was made for two reasons. The kernel of a 2-D 

Gaussian filter is separable, i.e. the 2-D convolution can be decomposed into two con



catenated 1-D convolutions. This has a dramatic effect on increasing computational effi

ciency^ especially for filters with large support. Secondly, the Gaussian has the unique 

property among the myriad possible filter functions of having a minimum product of 

bandwidth and spatial resolution [Mar80]. Thus it offers an excellent compromise 

between noise rejection (narrow low-pass bandwidth) and edge position blurring (spatial 

resolution). In fact, Canny [Can83] has shown through a variational Calculus argument 

that the Gaussian is very nearly equal to the optimum filter shape for intensity step 

edges in images where the criteria of optimality are edge positional accuracy and output 

signal-to-noise ratio.

Edge direction information is also useful in detection algorithms. Gradient opera

tors are vector operators and provide estimates of the local gradient direction as well as 

the magnitude. These two quantities can be combined to provide a directional gradient 

operator. If n is a unit vector in a certain direction, then:

V / * » (2.42)

is the gradient of the field I in the direction of n . It has been argued by various inves

tigators [Har84],[Can83],(Mar76a], that directional operators provide better performance 

in the presence of noise than do isotropic operators.

When Gaussian filtering is included, a directional gradient operator takes the form:

(V G * I) * n (2.43)

where / is the original field (image), G is a 2-D Gaussian kernel, * denotes 2-D convolu

tion, and n is a unit vector in the desired direction. In other words, this operator only 

considers the component of the gradient in the direction n; the component of the
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gradient parallel to n is disregarded.

The quantity in Equation (2.43) can be determined at the nodes of hypothesized 

paths in the following manner. The gradient operator is first applied to the entire 

image, with the magnitude and direction information stored separately in two output 

fields. The magnitude field is given by:

M = | v G * I | (2.44)

and the direction field by:

V G * I
I V * /| (2.45)

When a given node, r, is visited by the algorithm, the directional gradient at 7 can be 

found by:v

= {D7*d7X)M7 (2.46)

where is orthogonal to the path direction at r and * is a vector dot product. Since 

the path to t defines a certain direction, d7, the normal to this direction, d**, is dotted 

into the gradient direction at r and this is multiplied by the gradient magnitude. Thus, 

f7 is precisely the directional gradient of Equation (2.43) at the node 7. Note that f7

is a function of the path direction at r as well as the gradient magnitude and direction.

It should be pointed out that (2.43) gives only one possible / -field input to SEL. 

Many others could be used. For example, the input field could be just the gradient mag

nitude,



f7 = M7 1 ■ (2.47)

or it could be the output of the Sobel operator [Dud73], the y2 ^ operator of Marr and 

Hildreth [MarSO], compass gradient masks [Kir71], or any of a large variety of 

mathematical operators. Equation (2.43) merely represents one possible input field that 

has been used. The path metric used by the SEL algorithm requires scalar values, 

however. Where vector information is present, the path direction is used to reduce it in 

an appropriate fashion to scalar quantities.

2.3. Sequential Search Algorithms

/ ■

2.3.1. Sequential Searching

We come now to the important question of sequential searching. So far, we have 

defined what we mean by paths and can associate with each path a quantitative measure 

of quality or metric. This metric is a function of the joint probability of the path transi

tion letters and the / -values of the random field along the path.

What is now needed is a systematic way of hypothesizing paths so that they may 

be compared via their corresponding metrics. As was discussed in Section 2.1, every 

path in the field cannot be hypothesized because the number of possibilities is enormous. 

Thus, maximum likelihood detection is impossible. What we do instead is make 

hypotheses in such a way that only a small subset of possible paths is actually explored, 

but this subset contains an actual edge path with high probability.

The procedure used is called sequential tree searching and is borrowed from coding 

theory [Lin83]. It presumes that a atari or root node is given. This start node must be



on an intensity edge but is otherwise arbitrary. The selection of start nodes will be 

examined in Section 2.4. The root node defines a tree of semi-infinite paths in the ran

dom field. Because of the special structure of paths, there are precisely 3* paths of 

length n (or to depth n in the tree) beginning at the root node. The sequential search

ing algorithm begins at the root node and sequentially examines paths in the tree. The 

exact procedure by which this is done depends on the algorithm used; these will be dis

cussed in detail shortly. The sequential behavior, however, is common to them all. At 

each iteration of the algorithm, one of the paths explored so far is extended by one node 

and the metric for this new path is calculated. Decisions are made based on these 

metrics as to which path should be extended on the next iteration. This is in accord 

with the definition of sequential tree searching as defined by Forney [For74b]: a search 

is sequential only if each new path hypothesised is an extension of a previously examined 

one and the decision as to which path to extend is based only on the set of paths visited 

thus far.

Because long paths are built up node by node, it is entirely possible that the algo

rithm can mistakenly follow a non-edge path for some depth into the tree. In Section

2.2.3, however, we saw that the average tendency of the metric under these cir

cumstances is to decrease with increasing length. Our hope, therefore, is that these 

forays along incorrect paths will eventually be halted by the resulting decreases in 

metric. The algorithm at some point settles back onto the correct (edge) path for which 

the average tendency is for the metric to increase with length. Of course, this average 

behavior of the metric does not guarantee that all incorrect paths will eventually be 

abandoned. Such questions can be formulated and answered in a quantitative manner, 

but this analysis shall be addressed in Chapter 3. For now, it is sufficient to consider
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only this general, expected behavior in order to obtain some insight into the workings of 

the algorithms.

We now turn to the searching algorithms themselves. In this Section we will only 

describe their operation. Analysis will be deferred to Chapter 3.

2.3.2. The Stack Algorithm

Originally proposed independently by Zigangirov [Zig66] and Jelinek [Jel69], the Z-J 

or stack algorithm is a very efficient method of performing Sequential searching in a tree, 

especially when the implementation is in software. It is also the easiest of the sequential 

algorithms to understand and so provides the most accessible route to gaining insight 

into how sequential searching works. This is the reason it is treated first in this Section 

despite the fact that it was historically predated by the Fano Algorithm.

At the heart of the Z-J algorithm is a stack or priority queue [Aho74j. Each entry 

in the stack consists of a path and its corresponding metric. These entries are ordered 

by their metric, with the "top” of the stack occupied by the path with the largest 

metric.

When the algorithm is first invoked, the stack is initialized by placing the root 

node at the top of the stack and assigning it a metric of 0. At this point a slight devia

tion from the classical Z-J algorithm must be accommodated due to the random field 

model on which paths are based. This modification is to specify a root direction as well. 

This direction information may be obtained directly from the gradient direction map or 

from a local computation on the /-field values.
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Having specified a root node and direction, exactly three paths to depth 1 in the 

tree are defined. These are the three descendents of the root node. The first iteration of 

the stack algorithm proceeds as follows. The root node is deleted from the stack, the 

three descendents to depth 1 are placed onto the stack and ordered by their correspond

ing metrics. Subsequent iterations are performed by deleting the top - most path from 

the stack, finding its three deseendent paths, calculating their metrics, and inserting 

them onto the stack according to their metrics. Thus at each iteration, the current best 

path is extended by one node. The current best path can be any path examined thus far 

since the largest metric always percolates to the top of the stack regardless of when it 

was last extended.

This algorithm brings out several important characteristics of all sequential search

ing algorithms. Perhaps most importantly from an operational standpoint, the amount 

of computation is not fixed or a simple function of path length. When the noise becomes 

more and more severe, the algorithm investigates more false paths and to larger depths 

in the tree before abandoning them. When the signal-to-noise ratio is high, the true 

edge path consistently has the best metric and so very little computational effort is 

spent on incorrect paths. * This variable computational effort is typical of sequential 

searching algorithms and has received much attention in the coding literature 

[Sav08],[Gei73]. This is because data buffer overflows resulting from highly variable 

computational load under conditions of poor SNR are a major cause of output errors for 

sequential decoding. It is interesting to note that its application to image edge linking 

does not suffer from, this particular problem. In effect, the data in its entirety is always 

available to the algorithm as the input field or fields (e.g. gradient magnitude and direc

tion fields) are assumed to be given. The algorithm cannot therefore "fall behind”
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relative to constantly arriving data as in the eoding/deeoding situation. Of course, it is 

still true that additional delay must be accepted in these situations.

This algorithm clearly illustrates the characteristic that very long paths can be 

explored at the expense of not performing maximum likelihood decisions. Paths to 

depths, n, of hundreds of nodes in the tree can be readily examined by the algorithm 

but obviously not all to the 3* possible paths are examined for such large n. The vast 

majority are never even taken up by the algorithm because they exhibit such poor 

metrics in the first few nodes compared to the relatively few paths that are taken to 

great depths. It is conceivable that the correct path is among those that are discarded 

early, but it will be shown (Chapter 3) that following an incorrect path to large n has a 

probability that decreases exponentially in n . Thus, sequential searching cannot 

guarantee selection of the most probable path among all possible paths (ML). It does, 

however, allow the most promising paths to be explored without expending computa

tional effort on large numbers of unpromising paths.

One characteristic of the stack algorithm that is not shared by all sequential algo

rithms is its large memory requirement. Maintenance of the stack when exploring long 

paths requires the use of a significant amount of memory. The algorithm is thus suited 

to applications where the implementation is on software.

2.3.3. Variations on the Stack Algorithm

Three variations on the original Z-J algorithm have arisen in the coding literature. 

The first is the stack-bucket algorithm of Jelinek (Jel69). This is an attempt to partially 

alleviate a time consuming aspect of the stack algorithm. As the number of entries in
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the stack becomes large, it takes increasingly longer to insert successor paths into their 

appropriate place on the stack. With the stack-bucket algorithm, no ordering of the 

stack is performed at all. Instead, the stack is divided into a number of segments called 

buckets, with each bucket corresponding to an interval of possible metric values. With 

each iteration of the algorithm, paths are placed in the bucket appropriate to their 

metrics. No ordering in the buckets takes place. The path to he extended is simply 

taken from the top of the highest non-empty bucket. Note that this is not necessarily 

the best current path, but only a very good one, unless the highest non-empty bucket 

contains only this one path. On the other hand, the placement of paths onto the stack 

involves a computation that depends only on the number of buckets there are and does 

not grow as the stack increases in length. Thus, this algorithm trades away some perfor

mance for a substantial improvement in speed.

A second variation, introduced by Haccoun and Ferguson [Hac75], is called the gen

eralized stack algorithm. In this case, paths are organized and extended just as in the 

Z-J algorithm but more than one path can be extended at the same time. This algo* 

rithm also can detect remerging paths. When two paths remerge, the path with lower 

metric is discarded from the stack, thus eliminating unwanted baggage. This modifica

tion seems to influence the buffer overflow problem of decoding. In view of its added 

complexity, its value in image edge linking is questionable.

The third variation is the multiple stack algorithm (Chevillat and Costello [Che77]). 

This algorithm completely eliminates the buffer overflow problem by forcing the decoder 

ahead along "reasonably good” paths in times of much noise, rather than continuing the 

search for the best path. The manner in which this is done involves the judicious use of



additional smaller stacks to which the algorithm torus when the mam stack fills up. 

The smaller stacks limit the search spaee of the algorithm and thus speeds up its pene

tration of the tree. This technique may very well have application to the image prob

lem.
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2.3.4. The A * Algorithm

The A * algorithm is a heuristic tree-searching algorithm originating in the artificial 

intelligence literature (Nil71). In operation it differs little from the stack algorithm. The 

search is once again sequential with the best path extended at each iteration by a node. 

In this case, best is taken to mean that path with the lowest associated cost (an inverted 

metric). This cost is computed recursively by summing branch costs associated with 

each path transition from the start node to the current node. The algorithm includes a 

provision for eliminating inferior paths when remergings occur. The primary difference 

between A * and the Z-J algorithm is that the former also provides for the inclusion of a 

cost associated with completing the path from the current node to some specified goal 

node. This completion cost as well as the specification of the goal node must be pro

vided by some a-priori or heuristic information source. It has been shown [Har68] that if 

this completion cost is a lower bound on the minimal cost path from the current node to 

the goal, then the algorithm will find an optimal, minimum cost path to the goal. If no 

such heuristic information is available, A * reduces essentially to the Z-J algorithm.

2.3.5. The Fano Algorithm

The Fano Algorithm, named after its originator, R.M. Fano, was actually the first 

algorithm to be developed for sequential searching [Fan63]. This algorithm is
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particularly well suited for hardware implementations of sequential decoders as it 

requires very little memory. It is, however, more difficult to understand than the algo

rithms discussed above. The interested reader is referred to [Lin83] or [McE77] for more 

complete expositions of this algorithm.

The Fano algorithm never makes large jumps about the tree as do the various 

stack algorithms. Instead, its movements are confined to three types: forward moves, 

from a given node to one of its successor nodes; backward moves from a successor to a 

predecessor node; and sideways from a successor node to another successor node of the 

same predecessor. Decisions as to which move to make at any particular time are based 

on comparisons between the path metric associated with the node under consideration 

and a running threshold, T. This running threshold is practically the only quantity that 

must be stored and always changes by multiples of some constant, A.

When the algorithm is constantly moving forward, deeper into the tree, the thres

hold is increased by multiples of A such that T - A < T < T. Such forward moves are 

only allowed so long as T > T for the new node. If none of the successor nodes satisfies 

this requirement, the algorithm executes a series of backward and sideways moves in an 

effort to find a new node such that F > T. If none can be found, the threshold is decre

mented by A and the search continues. The decision structure of the algorithm is so 

constructed that it is impossible for the algorithm to lodge itself in an infinite loop 

[McE77]. Furthermore, the Fano algorithm practically always chooses the same path as 

does the stack algorithm [Gei73].
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2.4. Root Node Selection

The operation of the various algorithms described in the Section above is critically 

dependent on the identification of a root node on each intensity edge of interest. The 

only requirement imposed on these root nodes is that they actually lie on the edge. This 

Section addresses the selection of these nodes.

2.4.1. ROC Curve* for Gradient Operators

It seems reasonable to consider the output of the spatial gradient operator (Section 

2.2.4) which precedes the SEL searching algorithm. The magnitude of the gradient is a 

measure of "edginess” at that point in the image. Therefore, nodes that exhibit a large 

gradient magnitude ought to be good candidates for root nodes. Questions to be asked 

are: 1) With what confidence do such nodes actually lie on an edge? 2) What is the pro

bability that no root nodes for a given edge are generated in this way? and 3) How is a 

classification threshold on gradient magnitude values to be chosen?

These questions may be addressed using the Receiver Operating Characteristic 

(ROC) curves for gradient operators. ROC curves, common in the detection theory 

literature, are parametric plots of the probability of detection (PD) versus the probabil

ity of false alarm (PF) [Van68j. Their use with linear edge operators for images has been 

discussed by Abdou and Pratt (Abd79j. An example of such a curve is illustrated in Fig

ure 2.2. This curve is for a simple 3x3 Sobel gradient-type edge operator and a signal- 

to-noise ratio of 10 dB. The precise definitions for these terms are given in [Abd 79]. 

The curve is parameterized by the decision threshold; as the threshold is raised, the 

locus of the operating point moves along the curve from the upper right hand corner to



the lower left. The fact that the curve does not reach the upper left hand corner (PD = 

1, PF = 0) is a manifestation of the imperfect performance of such operators: it is 

impossible to choose a threshold such that all the edge points are found and no non-edge 

points are misclassified as belonging to an edge.

The closeness with which an operator’s ROC curve comes to the (ideal) upper left 

corner is an indication of that operator’s performance. Large support gradient operators 

may be expected to do considerably better than the Sobel operator of Figure 2.2. Con

versely, poorer SNR ratios tend to push the curve for any operator away from the upper 

left corner. It is a fundamental characteristic of all such curves, however, that they are 

convex D and lie above the diagonal, PD ~ PF, known as the chance diagonal [Van08].

Returning to the problem of finding root nodes, we make the following important 

observation.

Observation: In contrast to the classical detection problem for which operation at a 

high probability of detection is desired, the problem of selecting root nodes 

demands operation very near the lower left corner of the ROC curve.

■ ' ■ i ' ■ ' ’ . ' ’ .
This observation is crucial to the starting node problem. If a high threshold on the gra

dient magnitude is employed (operation near the lower left corner of the ROC curve), 

then both the probability of detection and the probability of false alarm are small.

At any point along the ROC curve, the slope of the curve is equal to the likelihood

ratio:
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Pr (/ | / is. on an edge )
Pr (f | f is not oh an edge ) (2.48)
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Figure 2.2: Receiver Operating Characteristic (ROC) curve for 3x3 Sobel edge operator 
on Pratt test image at SNR = 10 dB.
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An important property of such curves is that this slope generally is quite large for large 

/ , i.e. near the lower left corner. For example, if the conditional densities of Equation 

(2.48) are Gaussian, the likelihood ratio asymptotically approaches infinity. Thus, under 

quite general conditions it is reasonable to assume that the slope of the ROC curve is 

very high in the immediate vicinity of the origin. Imposing a high threshold on the gra

dient magnitude therefore implies that any magnitude value exceeding this threshold has 

a much higher probability of lying on an edge than not. The price paid for this high

likelihood ratio is that the PD is small in the vicinity of the origin. That is, only a small

sequential searching techniques require only one starting node on an edge. A low PD is 

therefore not a drawback for SEL.

An example may serve to fix these ideas. Consider a gradient operator whose out

put in the presence of high noise power is characterized by the ROC curve of Figure 2.3. 

This ROC curve results from the conditional probabilities:

fraction of the actual edge points will be identified by a high threshold. However,

Pr (f | ■ W N (0.5,1)

Pr (/ | H0) = N (-0.5,1)
(2.49)

i.e. the conditional probabilities at the output of the operator are normal with a signal- 

 

to-noise ratio of 1.0. This corresponds to exceedingly poor quality in the original image.

At a threshold value of:

It = 3.2 (2.50)

the likelihood ratio is:
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Prob. of False Detection

Figure 2.3: Receiver Operating Characteristic (ROC) curve where conditional density 
functions are both Normal.
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Pf if \ Hi)
Pr (f | H0)

> 25 (2.51)

and the PD is:

PD = erf (3.2 - 0.5) = 0.0035 (2.52)

Thus, on average, only 1 in every 300 true edge points are identified by such a high 

threshold, but any point so identified is 25 times as likely to lie on an edge as not. The 

probability of false alarm is:

PF = erf (3.2 4- 0.5) < 0.0001 (2.53)

This example may be rather extreme; the output of large support Gaussian filtered gra

dient operators exhibit much higher SNR than this on many images of interest. How

ever it serves to illustrate that, even under severe conditions, highly reliable start nodes 

may be generated by thresholding gradient magnitude values.

2.4.2. Using A-Priori Knowledge

The previous Section described a technique for finding candidate start nodes in 

very general settings. For certain applications, where a-priori knowledge concerning the 

image under consideration is available, this technique can be augmented or even replaced 

by scene-specific methods that make use of that information. One such method is 

described in [Mod76] for the case of angiocardiograms. Since the image is known to con

tain the boundary of a heart for which a prototype outline has been supplied, that tech

nique searches a restricted portion of the image for candidate start nodes that best fit 

the prototype model. '

' ' ■ .... ; . I . ■ ■ ' '
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Depending on how much a-priori information is available, such scene-specific 

methods may employ any number of pattern recognition or template correlation tech

niques to search for areas in the image that have a high probability of lying on an edge 

of interest. These techniques may in fact provide even better rejection of false edge 

points than that of 2.5.1. However, they are application specific. Their effectiveness is 

only as good as the scene model which they exploit. Where the image does not closely 

match the assumed model, their performance may degrade seriously. These techniques 

will not be treated in any depth here.

2.5. Search Termination

Strategies for terminating a sequential searching algorithm tend to be somewhat 

heuristic. Four such conditions suggest themselves for practical implementations. Oth

ers may perform well, especially where a-priori information is available.

The first three are obvious enough. Practical digitized images are of finite extent. 

Thus, intensity edges contained therein are of finite length. Several situations are possi

ble. One, an edge may close on itself (e.g. a circle or the bounding contour of an object 

wholly contained in the image). In this case, the search may be terminated when the 

current best path closes on itself. Second, an edge may intersect another. Here again, 

search is terminated when the best path intersects another, previously found, edge path. 

Third, an edge may be continued off the support of the image. For this case, termina

tion occurs when the search reaches the image boundary.

Another case is possible. Here an edge either stops abruptly without intersecting 

another or gradually fades in contrast to zero. These are the only really difficult
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situations for a sequential algorithm to handle. The approach suggested here is based on 

the running path metric. Since the algorithm will continue to search beyond the end of 

an abrupt edge, all such paths will exhibit a sharp fall off in metric beyond the end of 

the edge. Likewise, a strong intensity edge that begins to fade in contrast will be 

tracked for awhile by the algorithm, but the resulting path metric will fall from its pre

vious high value before the fade. It is therefore reasonable to suggest a termination con

dition based on running metric. When the metric of the best path falls below some 

specified fraction of the highest metric along that path, the search is terminated. Of 

course, one runs the risk of terminating search just before the metric picks up again 

unless the fraction is fairly small. Abrupt edge ends are likely to be handled well by this 

technique, but slowly fading edges must always present a compromise to a sequential 

algorithm (and indeed to any other algorithm for that matter).



CHAPTER 8

BOUNDS ON SEQUENTIAL SEARCHING IN 2-D FIELDS

3.1. Introduction

A very important attribute of Sequential Edge Linking as a result of its log- 

likelihood metric is the fact that some attributes of its operation and performance may 

be quantified analytically. That is, inferences can be made and bounds imposed on 

operational parameters such as search time or dynamic stack behavior as a function of 

image quality. Also, performance questions such as probability of error can be formu

lated and addressed by analytical means.

This is in sharp contrast •with the sequential techniques of Ashkar et. al. [Ash78] 

and Cooper [Coo79] or the various relaxation approaches such as [Zuc76]. With none of 

these techniques is it possible to predict the behavior of the algorithm or the probability 

of error on the detected edges a-priori from knowledge of parameters of the random 

field. Indeed, in the case of relaxation, convergence in the output is not even guaranteed 

except under certain sets of conditions [Zuc78a]. With these techniques^ investigators 

have been forced to benchmark their performance with standardized performance meas

ures such as the Pratt figure of merit [Pra78] or the Kitchen and Rosenfeld figure of 

merit [Kit81] as a means of comparison. On the other hand, the analysis developed in 

this Chapter describes a relationship between the workings of the SEL algorithm and the 

image random field model.

-55-
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This Chapter is divided into two principle topics, 3-2: Distribution of Computa

tion, and 3.3: Bound on the Probability of Error. A third Section, 3.4: Comparisons 

with the Coding Problem, is added to emphasize and clarify the similarities and differ

ences between the edge linking and coding problems. The Distribution of Computation 

and Probability of Error questions are very much interrelated from an analytical stand

point, but are directed toward different phenomena. The first deals with the dynamic 

search behavior of the SEL algorithm whereas the second deals with the resulting edge 

paths..

3.2. Distribution of Computation

3.2.1. Introduction

In Section 2.2.3, we showed that the average behavior of the path metric is to 

increase along true edge paths (assuming Equation (2.29) is satisfied) and to decrease 

otherwise. This alone does not guarantee that the algorithm always follows a true edge 

since noise in the image can combine to fool the algorithm into making some wrong 

choices. Various questions therefore suggest themselves: How much time does the algo

rithm spend investigating wrong paths? Does it always return to the correct path? 

What is the relationship between image noise and the searching behavior of the algo

rithm? These and other questions will be formulated and answered in this Section.

Let us use the stack algorithm to illustrate the problem before us and the nature of 

the solution we seek. Suppose the algorithm has successfully followed an edge path up 

to node n. Beyond node n , however, the metric values along the true edge path 

decrease for several nodes before resuming its upward trend. Because of this dip in



metric, the algorithm is forced to explore some of the incorrect paths emanating from 

node n, since their metrics place them higher in the stack than the correct path in the 

midst of the dip. When followed far enough, however, all of these incorrect paths even

tually exhibit metrics below that of the correct path at the dip. Since the correct path is 

then at the top of the stack, the algorithm resumes its tracing of that path.

From this simple scenario, we see that because of the noise-induced dip in the 

correct path metric, the algorithm is forced to waste computation time on the explora

tion of incorrect paths which are eventually discarded. The amount of computation 

required to extend the correct path by a node is therefore not fixed but variable. We 

presume that as the noise in the image increases, this computational burden becomes 

more severe. What we seek is an analytical relationship between the image "noise” and 

the amount of computation required to properly follow the correct path. We would like 

to be able to determine the distribution of computation of the algorithm; i.e. the distri

bution of the random variable Cn , where Cn is the number of algorithm iterations (or 

computations) required to successfully extend the correct path from node n to its suc

cessor. Such would be a complete description of the dynamical behavior of the algo

rithm from a statistical point of view.

In fact, we are not able to analytically determine the distribution of the variable 

C . but we are able to bound this distribution. This bound, while not particularly tight 

(especially for small values of Cn ), is nevertheless extremely useful.
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3.2.2. Definitions

In this Section we introduce some definitions and notation to be used in the follow

ing Sections. In Section 2.2, we have already defined what we mean by paths, path 

metrics, nodes, successor and predecessor nodes, and random field observations or / - 

values. Suppose we are given a random field with an edge path in it as defined by Equa

tions (2.3) and (2.11), and further that we are given an arbitrary root node and direction 

on that path. We will denote by Tn a sequence of / -values along the correct edge path 

of length n. We will denote by a sequence of / -values associated with any 

incorrect path of length m.

Now consider the t£* node along the correct path. Emanating from this node is of 

course the rest of the correct path as well as an entire sub-tree of incorrect paths. If we 

consider the random field to be of infinite extent in the plane, then this sub-tree con* 

tains an infinite number of incorrect paths. This sub-tree of incorrect paths emanating 

from node t of the correct path will be denoted St. St contains paths that remerge 

with the correct path beyond node t. Because remerging paths are a nuisance in various 

bounding arguments, let us consider a hypothetical incorrect path subtree, denoted St, 

in which remergings do not occur. That is, every node in St has three unique successor 

nodes. Every unique node in the physical subtree St has a corresponding node in St, 

but in addition, St contains extra nodes where paths remerge in St. Note that such a 

hypothetical tree cannot be defined on a rectangular array of nodes. The situation of 

paths that remerge with the correct path will be treated in Section 3.3.

We will define a computation as the effort required by the algorithm to extend any 

path by a node. Ct denotes the number of paths (and therefore the number of compu



tations) ever extended by the algorithm in the incorrect subtree St. Likewise, Gt 

denotes the number of paths extended in . Since every unique node in has a 

corresponding node in St but not vice versa, we have the inequality: Ct >. Ct.

Finally, we define At to be the value of the largest dip in path metric along the 

correct path after node t:

A< r(ft ) - min F(f,) > 0 1^^ (3.1)
$ >t

This quantity At is fundamental to all sequential tree seeching problems since it 

largely determines how much searching of incorrect paths is necessary at node t. In 

Equation (3.1), we have shortened the nota,tion for the path metric F (m,f) to r (f) for 

the sake of clarity in what follows. Bear in mind that T is a function of the path letters, 

m, as well as the random field values, f.

3.2.3. Bounding C t

We require some preliminary results before establishing our bound on Ct. Follow

ing the example of sequential tree searching in coding theory, we begin with a lemma 

from Forney [For74b]:

Lemma 3.1: Let fa and f6 be any two paths emanating from a common node, and let

the minimum metric on the path fa after the common node exceed F (f* ). 

Then the Z-J algorithm cannot extend f* before extending fa .

The proof is in [For74b] allowing for the fact that the Z-J algorithm does not delete the 

inferior path when two paths merge. This lemma is used to immediately prove Theorem
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3.1, also from [For74b|.

'Theorem 3.1: The number of computations, Ct, is overbounded by the number of 

paths t1 in the incorrect subtree, St, with metrics not less than the 

minimum metric on the correct path at node t or later:

Ct < E >(f')
v e st (3-2)

where

Ht' ) = { ’'« ,

i .<7 r <f' ) > r (f,) - a,

otherwise
(3.3)

Proof: If ft, s > t is not on the stack, then Ct = 0 since node t has not been 

:'-reached.' Otherwise, by Lemma 1, if F(f' ) < T (ft) - At, then f' can

not be extended.

Since it is easier to not have to worry about remerging paths and since Ct < Ct, 

we will actually work with Ct and St. Also, it will later be shown that taking t = 0 

results in no loss of generality while facilitating certain limit arguments.

We are now in a position to state and prove the main theorem of this Section.

Theorem 3.2: For any a > 0 and any 0 <p< 1, if the distributions p j(') and Po(*) 

are such that:

E Pot/)l_°' fit/)“' < 
i

E Po(/
; 1 :

then:'---'

(3.4)
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Proof:

As in [For74], we consider the following quantity:

T M = e«r(r ) p

V e s0
a> 0

0 < p < 1 (3.6)

The reason for defining T (or,p) as above is rooted in the Cherpoff bound, discussed by 

Gallager [Gal68j. Briefly, we wish to obtain a bound involving the quantity F (f* )• 

The metric was seen in Equation (2.18) to be the sum of independent random variables. 

A common and useful bound on the probability that a sum of independent random yari- 

ables exceeds a given number may be obtained from various forms of generalized Che- 

byshev Inequalities. Since the sum in T (f' ) is of natural logs of random variables, the 

generalized Chebyshev Inequality that is most useful, usually called the CherPoff bound, 

involves the substitution w = t v K

Returning to Equation (3.6), using Theorem 3.1 we have:

T (a,p) =
t' 6 So

_ -o/A o

Ao [c?p]

£ *
f' € So
— IP

oT(f' ) + aio
(3.7)

where the last step results from Theorem 3.1. This is because:



<6(f' ) < eaT{{' ) + a,Ao (J

which can easily be seen from the fact that:

1 < ,-rnt.i. r(f )>r(f„)- A0 = -A0
0 < e.r(f ) + ,otherwise.

Therefore:
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) = 

W) =

•'Vv' ^(M**'* > [cv]' o<|<i <3»)

Now, from the Chebyshev Inequality we obtain:

Pr{CQ> N) = Pr (C$ >Nfi)
< Pr (T (c,p) > N') (3.X0)

< N~r T (a

where the overbar in the last expression denotes expected value. This expectation is 

over four distributions: all choices of state sequences of the correct path, m, state 

sequences of incorrect paths, m' , observations along the correct path, f, and observa

tions along the incorrect paths, f1 . This is in counterdistinction to the decoding prob

lem where the equivalent expectation is over an ensemble of codes, the correct path, and 

the channel transitions, and so the two problems diverge from this point. This funda

mental difference is explored more fully in Section 3.4. We may loosely bound the term:

(311)
= e

~<*P [«mnr(f,)]

<x>
< E e

■■■■*•— 0
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Combining Equations (3.10) and (3,11), we obtain our bound:

00

0«O

e -opT (f,) V e°r(f' > T

f' €50

In the above Equation, the inner sum is over the set of incorrect paths in the 

(infinite) incorrect subtree S0. This set can be partitioned in the following manner:

S0 = U FJ
r =0

where:

f; = [c e s01 »>

Thus, Equation (3.12) becomes:

(3.14)

Pr (C0 > N) < N~p £ «
■ ««o

Jensen’s Inequality holds that for a,* > 0,

-oPr(f,) E E
r-0 f,' g F,'

, «r (f/ ) (3.15)

E ([?,]') < .|sv| 0 < p < 1 (3.16)

so that:

OO 00
Pr (Co > N) < N-o 2 S

»»=0 r=0
£

f/ 6F/

. or (f/ ) - or (f,)
(3.17)

We will denote the summand as Pr . (a,p), so:



— ' 00 00 . /\
Pr(c„ > N) < N-' E E Pr,A°,e) o < « < i (318)

Up to this point, the only major difference between our problem and the approach 

in the coding literature is the nature of distributions over which the expectation of Equa

tion (3.10) has keen taken. The next step in the analysis of convolutional decoding is to 

bound (the equivalent to) Prt(a,p) using a random coding argument of Gallager 

[Gal65]. This method is not applicable in the problem under consideration, but we may 

proceed in a more direct fashion. Consider the quantity,
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?r,e , (f/ ) - or (f,)

f/ e F,'
(3.19)

We reiterate that the indicated expectation is with respect to all possible m,, m? r , f , 

and f/ . Explicitly performing the expectation with respect to the last two random vec

tors,'.:'.

Pr^p) = )
. r, v '

£ gar (f/ )-ar (f.)

V £ F,'
(3.20)

where the • indicates an expectation with respect to m and m* . Again from Jensen’s 

Inequality, for flf- > 0 we have:

or

E Pi ai ' < [ s »i ] 

^ { «> } <

P

E

0 <p< 1

p

(3.21)

(3.22)
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so:

< EEPl(f») Po(fr )
V t,tr'

= EEPi(n)Po(f/)
t, r/

at'-tf,’ ) - «rpn

ol' ir,' J-al'lTJ

E . ‘
V eF,'

E <
f/ eF/

== |i7 r EEPi(^) Po(f
■■ f, r/

where | F/ | is the modulus of the set F/ . Considering the bracketed term in (3.23), 

from Equation (2.18), a path metric consists of a sum of terms:

E
1-0

In + In P («,• | *,-_,)

t U + *. 1
»=o L J

In
Po(/,) 

b{ = In F(sl | «, _1)

Using this notation, Equation (3.23) becomes:

(«./>) < \K I" EE? .If.) Polt')
r. r;

«E (V + V )^«E (*> + bj)

(3.26)

«E b>' -«E V; -*)
«<>E «/

J 1*7 r EEPi(f.) Po(f/ )>
f, f,'

We first concentrate on the exponential term of the double sum. At this point we use 

the crucial assumption that the / -values, conditioned on either the H j or H0



hypothesis, are stochastically independent and that / -values from different paths are 

independent. It is well known that the average of a product of independent, identically 

distributed random variables is equal to the product of the average of any one of them. 

We thus have the identity:
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«/'-<vE «/
EEPi(f.) Po(fr ) « 
t, V '■

* •’ \ .j
. «/»E V -«<»E

= Epo«V Ep i(f. i « —
. ■■ >.

= n, p0(/i' :)«*"’■ n p,(/.,-)«I ; of) ^
apa,

E p»(/') <"'■*'
f "

E p i(/
/' /

(3.27)

where the first equality is due to the independence of the paths, the second is due to the 

conditional independence of / -values along each path, and the last is due to the fact 

that the conditional /-values have identical distributions. Substituting

' PiU) ■ ■
a — In

PiUY

»#»E «/ - «pE '•*>
E£Pi(t.)Po(f; ) e
f, v

£ Pol f )
Pl(f I] ap m T

Pl(f ) -Gtp m
)

Po(f ' )J
Epi (/)
/ . PoU ) , ¥

(3.28)

e [p»(/* [p .(/ ' ' |e[p.(/)]‘ [p.(/ )]“'

Because of the importance of this quantity, we shall define:
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P(6) = EPiUV
/

(3.29)

Therefore:

EEp.(f.)Po(f/ )< - ■— = [i)(i-«/>)|r [CMI' <33°)
f,f/

Returning to Equation (3.26), the bracketed term on the right hand side is:

«£ -<»E b)
e !~°

E ) [?« )]*]' IE ?(“».) [?(■“.)] ”
m/ m,

The first term of (3.31) satisfies the inequality (for a > 0):

(3.31)

E P(mr' ) [p(™/ )]°

m/

V
I E P(mr I 1 1 1°

m/

= E P(mr' )
m/

P

= i P = 1

(3,32)

For the second term, since the function / (z) = xa ; 0 < a < 1 ; x > 0 is con

vex D, we may use Jensen’s Inequality:
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E p(m#)
m. P(m.)

< SpK)
m. P(m.)

op

Ei
m.

ap
(3.33)

3*

where the last line results from the fact that there are 3* paths of length s in S (Sec

tion 2.2.2). This same path structure overbounds | F* | :

\-.Fr' | < 3r (3.34)

Putting together Equations (3.30), (3.31-3.33), and (3.34), Equation (3.26) has the 

final form:

Pf(M < 1 • 3 • 3 r t • [D (1 - ap)\r [D Ml*
(3.35)

Finally, substituting this into Equation (3.18), our bound is:

where:

OO 00
Pr (C0 > AT) < N-" £ E Kfli

r=0 »-0
a > 0

0 < p < 1 (3.36)

Pi ~ ' D(l -ap)

Po = 3 a'--D[ap)
(3.37)

We see from this that if the two conditions, < 1 and < 1, are satisfied (which

are the hypotheses of the theorem),, then:



Pr (CQ > N) < K N-' o <|< i (3-38)

K = —— •——
; ! 1'-A 1-^'

and Theorem 2 is proved.

Using the fact that Cq < (?o, we have immediately:

Corollary 3.1: For any or > 0 and any 0 < /? < 1, if D (1 - Grp) < 3_ #> and 

D (ap) < 3“ Qp, then:

^r((70>JV) < KN-t ;K as in (3.38). (3.39)

Sequential Edge Linking, in common with all other sequential tree searching algo

rithms, uses a path metric that is additive (Equation (2.19)). All metrics of paths 

emanating from a node, t, along the correct path can thus be decomposed as:

r(f.) = r(ft) + f(f,_t') (3 40)

Since the component T(f() is common to all paths emanating from node t, the searching 

dynamics depend only on those metric components beyond t, T(fn_(). Thus, the distri

bution of computation is identical at any node t along the correct path to that at 

t = 0, which leads us directly to the following Corollary.

Corollary 3.2: For any or > 0 and any 0 < p < 1, if D(\ - orp) <3and 

D (ap) < 3" afi, then:

-89-
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Pr (Ct > N) < K N~fi \K as in (3.38). (3.41)

We have made a great deal of progress so far. While we cannot find an analytical 

expression for the precise distribution of computation, we have obtained a bound on the 

distribution in Equation (3.41), This Equation provides an important qualitative link 

between the random field model of the image and the amount of incorrect path search

ing performed by the algorithm. As the signal-to-noise ratio degrades or improves, it is 

reflected in the conditional densities p t and p0 which overlap more or less, respectively. 

This has a direct bearing on the constant K in Equation (3.41) via Equations (3.37). 

The higher the signal-to-noise ratio, the smaller the constant K and the lower the 

bound on the amount of searching per node. In the next Section, we extend these results 

by examining a bound on the first moment of the distribution.

3.2.4. The Expectation of C t and the Pareto Exponent

In the previous Section, we showed that under suitable conditions, the number of 

computations performed at any node along the correct path is bounded by Equation 

(3.41) for 0 < p < 1. The right hand side is known as a Pareto distribution [Lin83], 

and p the Pareto exponent. Let us introduce a continuous random variable Y with this 

distribution. Then the cumulative distribution function of Ct is lower bounded by that 

■of Y:

Fc,(n) = Pr{Ct < n) > 1 - Pr(Ct >n)

== t-Kn-t'' (3.42)

= Fr{n)

From this it can be concluded that



. /

E H ■:< E { Y

The mean of the variable Y is easily computed. The probability density function of Y

Therefore:

d
dy

E 7 =
00

/ y Pr(y)dy
1

J fK r’h
1

lim {yl p
^—►00 1 —fi

1)

From this we have the following theorem.

Theorem 3.3: If the distribution of computation is bounded by a Pareto distribution 

with exponent p > 1,

Pr {Ct > N) < K N~p p >l (3.48)

then the mean number of coniputations per node along the correct path is

finite.

Proof: The proof follows directly from the discussion above. If p > 1, then
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E {<?,] < E {>'} =
lim (J/l p — 1)

1 -0 J>00

p-i

(3.47)
oo

In fact, as is shown by [Lin83], if p > t, then the ith moment of Y is bounded. 

Although straightforward, this theorem is very important. It guarantees that the 

expected value of decoding effort is finite along the correct path if the bound on Ct has 

an exponent p > 1. What is missing here is a condition that will ensure p > 1. The 

next theorem will supply that condition.

The following theorem bounds the distribution of Ct for a Pareto exponent 

1 ^ p ^ 2. It is clear from the proof how this bound inay be extended for p > 2. 

The proof itself is somewhat abbreviated since it closely follows that of Theorem 3.2.

Theorens 3i4s For any <* > 0 and any 1 < p < 2, if D(ap) <Z~a*

/? (1 - orp) < 3 2 and £> (1 --^ ) < 3 2, then:

Wo > 'N') < K N~p ;K a constant. (3.48)

■■■Proof:

We consider pairs of incorrect paths in 50, (f !, f 2), and define T (a,p) as:
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T(a,p) E E
t' yes0 tf *es0

ear;(r.'%«r(f'*):
p
2 a >0 

1 < /> < 2

g -«*>Ao

> e~ap*°

«r (f' l) + a&o . oT (f' *) + aAo
f
2 (3.48)

where the last step is again a result of:

•E £
f' 1eSo t'3 6 So

or (f' l) +a Ao ■ «r (f' *) + b Ao c c

> E E tff'1)#*'2)
t'^esot' 3es0

>

Therefore:

. P
> [ci] ■ a>0 

1 < P < 2

So, as before, we employ the Chebyshev Inequality to obtain our bound

Pr (Cq > N) < Pr {T (a,p) eap*° > Np) 

< N~p T (a,p) eQp*°

(3.52)
00

< N-p 2 e 
o

-opr(f,) E E efl,r(f'1>ear(f'li)
r les0 r 3es0

% '

where, in the last equation we have used (3.31). This time, it is somewhat more difficult 

to partition the set of all pairs of paths (f' 1,F' 2) E S0. This is because it is possible
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for f' 1 and f 2 to be merged for awhile before separating. Fortunately, most of the 

large number of path topologies or configurations possible in tree structures in the gen

eral case are not possible in S0 where re-merging does not take place [For76a]. Thus 

path topologies such as Figure 3.1 or 3.2 do not exist. In fact, Figure 3.3 represents the 

only topology for pairs of paths in S0. Therefore, if we denote:

(*v xf; )r -

{v;-/,') I r; 6S0,rf' 6So.P>r,«>r,0<.<r J <3-53) 

i.e. this is the set of all pairs of paths in S0 such that the two paths are merged up to 

node r and are distinct from there to nodes p and q. With this notation, all pairs of 

paths in Sq may be partitioned as:

|(r *,r 2) | r 'eso, r 2es0}

and Equation (3.52) becomes:

00

u
r—0

U iF.'XFJ)
r qmmr

Fr (Cq > N) <

N~»
E^r(f') fg E E E e“r(V)c«r(r/)

* “° Lf “° P^r * -r V.*/ €(F/ XF,’ )r

T (3.55)

Jensen’s Inequality is then employed to put this in the form:

00 CO 00 00
iV (C„ > JV) < m E E £_ P,^M : ^ X < J< 2(3.56)

* *0 r»0 p*r f»r

where:
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f

Figure 3.1: A topology of pairs of incorrect paths that cannot exist in the incorrect sub
tree Sq.
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Figure 3.2: Another topology of pairs of incorrect paths that cannot exist in the in
correct subtree Sq.
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Figure 3.3: The onlj[_topology of pairs of incorrect paths that can exist in the incorrect
subtree Sq.
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Ppl1,r,,M =
V ,f/ e(F,' xf/ )r

€«r(f/ ) e-2ar(f1) (3.57)

Here, the expectation is with respect to all choices of m,, mp' , m?’ , ft, fp' , and 

f/ . To save space, fp' ,f?' will be understood to mean (fp' ,ffr ) £ (Fp' XFJ )r in 

the Equations to follow. Now,

p,.,

- EE E Pi(f.) Po(V )?o(f/ ) ■ £ e°r(V ) e«r(f/ ) e -2aT (f, ) ' 2

p
< E£ E Pi(f.) Po(V ) p<W ) 5] T”a'lV ) e-‘^l (r,) 2

t. t/ r,’ .V .v (3.58)

W: ) g ■«1' iV J c 01 Iff' ) e tr> J . 2 .

V .v

= Ilf,' xF,')r|* vv 5] i>,(f,) p0(r' ) p0(f/ )
r. f/ f/

.••'IV ) .«! tlTT^-aorl'lf,) 2

where the inequality in the second step results from Equation (3.21), and the third step 

is due to the fact that the averages of a sum of terms is equal to the sum of the aver

ages. Using the definitions of a,- and given earlier, we have:



-79“

<*£V.+ o£ V -2oe
, i -HO j “O i *9 l(f,' xJy ),|2

(3.53)

EE E pi(Mpo(V )p«(f,')«
f f • t t *» V

«-£E V, + «-£EV-«/>E ■ *
2; 1; -o * —G

We now use the independence of / -values from different paths and the conditional 

independence of / -values along the same path. What is different here from Equation 

(3.27) is that Tp' and f?* are merged (same / values) up to node r. We have the 

correct path to 8, one incorrect path to r, and two incorrect paths from r to p and r 

to q.

«•?£*.'+“|S V*

ee e ^ 2— 1-1
t t 9 f 9*3 lP *•

=Ep i<f. )e — EpoW
f. f,’

... <*£ EV -
)e - E P<ifp-r )« 2- EPo(f,-r'f t f th-f li-*

°{i<
)e 2,~

= n ?,(/■*)« ""*tn p0</,' fe”'*' n Po(/.')«
• I—1o 1-f

«{V
n Po(/y' )«

0or- a.

EpiUU
/

- 8 r Of- * 7
apa Ei>o(/ Epo(/' )« 2

, /' /'

(p-»•)+( *-•■).

E [p,(/ )J‘"' [po(/ )]“' ' E [p.(/ ')]“' [p«i/ ')]""

= |Z){op)l* [/>(! - aP)]r

(p-P) + (?-f)
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Like wise, the bracketed term of (3.59) is bounded in the same way as in Theorem

3.2 allowing for the fact that the path state sequences of the incorrect paths are identical 

up to node r.

a£ +«X) V -2a£ bt
I —o j —o k

/>
2

2a £ + a£V +«E V
/-«> ■-» j-»

- 2a £ bt
k =0

P
2

<

<

E. f

J )f-EpK) [pK)]'20
J m, L J

T^r.rr

a

. (301)

Finally, we have:

I (V xf; )r I *

(p+»-«•)£
3 2

(3.62)

so Equation (3.59) becomes:
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Pp,q,r,t (a)P)

< Ztafi • 3<P+,_r|2 - {£> (ap)J* [£>(!-«,,))' £>(l-a|)
p+q-2r

£
r

£ n
[3ap ' D {atp)\' 32<* D(l - ap) 32 * D(l - a— ) v 2'

(3.63)

= fith'IV"'-*' a > 0
1 < p < 2

Thus, if /?2< 1) and /?3<1 (the hypothesis of the theorem), Equation (3.56) is

bounded by:

OO 00 00 00

Pr (Co > iV) < N~p SEES) P{PiM~TPi~r
9 «=0 r *=0 p»r $ — r (3.64)

= K N't

where:

K =
(l-0i) (1-A) (1-&)2

QED (3.85)

We offer the following Corollary without proof. It may be justified in similar 

fashion as Corollaries 3.1 and 3.2.

Corollary 3.3: For any at > 0 and any 1 < p < 2, if D(ap) <.3~ap ,

Z)(l - Otp) < 3 2 , and Z)(l--^)<3 2,then:

Pr (Ct > N) < K N~p ;K as in (3.65). (3.66)
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It seems reasonable to assume that the arguments developed in Theorems 3.2 and 

3.4 can be extended to Pareto exponents greater than two. The hypothesis would con

tinue to be more restricting on the / -value distributions p 0 and p j for increasing p. 

Furthermore, the number of possible incorrect path topologies involved in the partition

ing of Sq increases rapidly with p. The notational burden would therefore become 

extreme.

Nevertheless, the above extension to 1 < p < 2 is important in light of Theorem

3.3. The condition necessary to insure that the mean number of computations per node 

be finite is simply the hypothesis of Theorem 3.4. This result is more important from a 

qualitative standpoint than it is from a quantitative one. The problem with Chernoff 

bounds, as with most generalized Chebychev bounds is that they are not particularly 

tight. It has been found by simulation techniques that the analogous bound to Equation 

(3.41) in the context of coding theory is approximately two orders of magnitude higher 

than the true numbers of computations required in practical situations (Woz65j. There

fore, these bounds are not directly useful in a numerical sense. Theorems 3.3 and 3.4 

have important qualitative implications, however. They indicate that sequential tree 

searching in two-dimensional random fields has a threshold behavior similar to such 

searching in code trees. That is, if the signal-to-noise ratio is high, the searching algo

rithm may be expected to explore a small number of incorrect paths at each correct path 

node, on the average. As the noise becomes more severe, a point is reached where the 

average number of computations per correct node becomes very large. (In an image of 

Finite support, it can never really reach infinity). Thus there exists a threshold above 

which the algorithm is expected to be well behaved and below which the number of com

putations is expected to increase dramatically. In the case of code tree searching, this



threshold can be shown to take the form of a code rate, known as the computational 

cutoff rate. In the image searching problem under consideration here, we see from these 

two theorems that this threshold is expressed in terms of the conditional densities p t 

and P o from the random field model.

3.3. Bound on the Probability of Error

3.3.1. Introduction: Edge Error Events

The question of quantifying edge errors has not received much attention in the 

literature. This is perhaps a result of the fact that many edge detection techniques deal 

only with points of an image and do not treat edge segments as entities. In this Section 

we shall develop a bound on the probability of certain edge segment error events.

We must first define the concept of an error event. The traditional edge detector 

performance measures consider only point-wise events. That is, they examine all the 

pixels labeled by an edge detector as edge points and flag as an error event any point 

that does not coincide with an edge. In the case of the Pratt figure of merit [Pra78], 

these error points are assigned a distortion measure: the mean square distance from the 

point to the edge. However, individual pixels are considered without regard to the sur

rounding edge pixels. Indeed, the Pratt figure of merit is useful even where the edge 

map is ambiguous. For example, in Figure 3.4, an edge map contains a smeared edge of 

multiple pixel width. It is not clear just where the detected edge is. The Pratt figure of 

merit can nevertheless calculate the distortion for every pixel in the map.



Figure 3.4: A smeared edge of multiple pixel width. The exact location of the edge is 
ambiguous.



Using the concept of paths as developed in Section 2.2.2, we can introduce the idea 

of an edge segment error event to supercede the edge point error event. The definition is 

straightforward. An error segment of length n, denoted e(rt ), is a path of length n 

nodes such that none of the nodes of e(n ) coincides with any node of a true edge path. 

This situation is depicted in Figure 3.5 A true edge path, m, is shown along with two 

error segments, e^n ) and e2{k). Note that an error segment can, but need not, ter

minate at a true edge We would argue that since the goal of edge detection is usually 

to find connected points that represent an intensity edge in an image, the concept of 

error segments is a more natural choice for an error event than is that of point errors. 

(Actually, error segments are a generalization of point errors since a point error is an 

error segment of length one.) Furthermore, error segments are particularly useful when 

investigating sequential algorithms as they are a complete description of all possible error 

events that can be generated by such algorithms.

3.3.2. Bound on Long Error Segment Probability

In this Section we examine long error segments. We will show that the probability 

of occurrence of these events depends on the image "quality” (via the tnie-edge and 

random-path probability measures pt and p 0), and is bounded by an exponentially 

decreasing function of length.

Error segments can, but need not, be connected at one end or both to a true edge 

path. We shall begin our investigation with segments connected at both ends (Figure 

3.5). These events arise in the following manner. At some node, t, along a true edge a 

path, the searching algorithm begins exploring paths in the incorrect subtree, St.
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Figure 3.5: A correct edge path m and two error segments e^n ) and e2(Ar)



Because in a two-dimensional lattice (and therefore in St) remergings dp occur, it may 

turn out that, due to noise in the observations, the algorithm eventually chooses a path 

P instead of the correct path, f, where P coincides with f up to node t, branches off 

at t, and remerges with f some n nodes later. Thus the chosen path P contains an 

error segment of length n , e(n )."

Let us denote the event the chosen path contains an error segmeht of length n or 

longer by E(n). We will denote by St t +B the set of all paths in the incorrect subtree 

St that do not remerge with the correct path oyer the interval [f ,t d-n j. That is, all 

paths in St t+n contain an error segment at least n nodes long. Now from Lemma 3.1,

Lemma 3,2; A path P m G St that remerges with the correct path f at node m, 

m > t, will be chosen over f only if:

r(P „) > nr,) - a, (3.67)

This lemma follows directly from Lemma 3.1 since, unless Equation (3.67) is true, P ^ 

will never be extended by the searching algorithm and hence cannot be chosen. Note 

that this establishes only necessity not sufficiency.

As in Section 3.2.3, we suffer no loss of generality by assuming t — 0. Lemma 3.2

then implies (similarly to Theorem 3.1):

Theorem 3.5: The probability of the event E(n ) is upper bounded by:

Pr |£(n)| < Pr ^ 4>{P ) > 1 j (3.68)
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where:

«(r )
i ,ar(P ) > -a,
0 , otherwise

(3.69)

This theorem follows directly from Lemma 3.2. For the event E(n ) to occur, some path 

in S0n must be chosen over the correct path. This can occur only if Equation (3.67) is 

satisfied ( t — 0; V (ft) = 0 ), from which Equation (3.68) follows.

We now state and prove the following important theorem.

Theorem 3.8s For any a > 0 and 0 < p < I, if: D(l- ap) < 3 p and 

D{ap) < arQp,ihen:

Fr (£(n )) < K ^* ; -y <1 ; K a constant. (3.70)

We now define the quantity T (ot,/>) as:

t (ot,p) - E
t’ 6 So,.

,«r(f') a > 0
0 < p < 1 (3.71)

Since:

W) < eQT{r) + Q*0 (3.72)

(which is Equation (3.8)), Equations (3.71) and (3.72) give us:



T (a,p) — e
■a p A0
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E er es0.

> e - a p Ae

at r (ff ) + or A0

E W')
f; es o.

(3.73)

and so, by the Chebyshev Inequality:

Pt ( £ ) > 1) < T (a,p) <
f €«.,

ap&Q
(3.74)

Upper bounding eQ f A° with Equation (3.11) and using Theorem 3.5, we have:

JMflCO) < E
9-0

£ e°r(r' > 
v esa_.

a>0
0 <p < 1(3.75)

where the expectation is over all choices for m, m 1 , f, and f * . Equation (3.75) is 

very similar to Equation (3.12) except that the term TV-'' is not present and the inner 

sum is over the set Sq „ instead of Sq. We partition this set as:

where:

‘S’o,# U G'r
r-= 0

= I f ' e s0,* m
= r 1

(3.76)

(3.77)

So:

00

Pr (E(n)) < E «
• »o

00

E E
r-» fr' e Gr'

, «r (f/ ) (3.78)

The remaining steps of the proof follow exactly those of Theorem 3.2, Equations (3.15) -



r(3.36), the difference being: no N~p term, sets G 'T instead of FJ , and the index 

running from n to infinity instead of 0 to infinity. Since remergings occur in the sets 

G1 r but not in the sets F* , we have, using Equation (3.34):
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I G', I < I f; I < 3' (3.79)

We therefore obtain, corresponding to Equation (3.36) of Theorem 3.2:

00 00 _ V A
*<«»» < s EW o<7< 1 (3.80)

r-»» * — 0 “ " —

where:

v:.,V - D (l - ap) < 1' .
h = 3 vrB(ip) < l (3-81>

and the inequalities are satisfied by hypothesis. We have finally:

Pr (£(«)) < Ki* o<|< 1 (3.82)

K = —— • ——
1-^1 l-h :■

< 1 Q.E.D.

Theorem 3.6 says that the probability of long error segments in the edges found by 

SEL is bounded by an exponentially decreasing function of length. The important 

parameter 7 —3fi • D (1 - ap) depends on the measures p 0 and p j. As we will see in 

Section 3.4, a high image signal to noise ratio results in a low value for D (1 --ap) and 

7. This provides a link between the theory and the intuitive belief that higher SNR 

results in fewer (and shorter) error events.



More importantly, however, this theorem provides us with an upper bound on the 

probability that the real edge path does not fall in the stack of paths searched by the 

algorithm As pointed out in Chapter 2, this searching technique does not guarantee 

that the chosen path is the maximum likelihood path. The path with the highest metric 

is the path among those searched that maximizes the joint probability of Equation 

(2.39). It is not necessarily the path that maximizes that statistic over the entire set of 

paths in the field. The root node is assumed to lie on the correct edge. Therefore, at 

least the first node of the correct path will always be on the search stack. But there is 

some nonzero probability that the correct path is only partially searched and then dis

carded. This implies that the path on the top of the stack is an incorrect path. There

fore, the probability that the correct edge path is not on the search stack is also upper 

bounded by Theorem 3.6. As the best path on the stack grows longer and longer, this 

bounding probability becomes exponentially smaller.

The theorem above appears to address only the error event situation of Figure 3.5 

where the incorrect path diverges from a correct path and later remerges again. In fact, 

it also applies to the situation of Figure 3.5 where no remerging takes place. This non

physical case results in an infinite length error segment which, according to the theorem, 

has a probability of occurrence that approaches zero in the limit.

The situations of Figure 3.6 (an isolated error segment) or of Figure 3.7 (an error 

segment that begins at a random node and merges with a true edge path) are not 

governed by the theorem because there is no correct path on the stack of the searching 

algorithm with metric dip, A, to compete with the incorrect paths. The sets St or St n 

are not even defined where a correct path does not go through node t. These two situa-
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tions are more properly treated as a root node problem (Section 2.4) since they arise on 

account of improper root node selection.

3.3.3. Short Error Segment Events

The approach taken in Section 3.3.2 for long segments can tell us nothing about 

short segments. This is a consequence of Chemoff bounding techniques in general, since 

such bounds become tight only when sums are taken over many random variables 

[Gal68j.

Short error segment events are fundamentally more difficult to handle in detection 

of edges in two-dimensional random fields than in coding applications. This is because 

there is nothing in images corresponding to the concept of the minimum free distance of 

a code [McE77]. In sequential decoding of convolutional codes, when the searching algo

rithm branches off from the correct path, the structure of the code tree is such that rem

ergings within some minimum number of nodes, say V, is not possible. Thus, short error 

events cannot occur. The philosophy regarding error probability is to design codes with 

distance v large enough that the probability of a long error event, E(v), is small enough 

to meet design requirements [For74bj.

That this is not the case for images is quite easy to see. Figure 3.8 depicts a 

hypothetical edge, m, through nodes t j and 1%, and an incorrect path, m, , with an 

error segment of length 2 through nodes f ' i and t1 2. is clearly a valid path as

defined earlier. Thus, with some non-zero probability, the noise in the / -values at 

nodes t j, 12, f' j, and l1 2 may be such that the path metric along m' is higher than 

that along m.
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Figure 3.6: An error segment e that merges with the correct path m.
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Figure 3.7: A correct edge path m and an isolated error segment e.
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Figure 3,8: A correct path m through nodes t j and /2 an(^ an incorrect path m' with 
an error segment through nodes t1 j and 12.



Short error segments are difficult to prevent. In the example above, using the only 

data available (the corrupted image data), the path m' is more likely than m to be a 

true edge path. Thus, no matter what edge detection strategy is used, in the absence of 

more a-priori information, m* ought to be chosen over m.

An important source of a-priori information is available in even very general situa

tions, however. This is that certain edge paths (such as those containing straight seg

ments) are more probable than others (Appendix). The path branch metric of SEL takes 

advantage of this information by modeling real edge paths by the Markov process of 

Section 2.2.2. Returning again to the example above, path to! has a lower a-priori pro

bability than path m, so m' will be chosen only if the f-values at 1f2> f i> and 

t! 2 are so noisy that the likelihood ratio of the / -values dominates the probability of 

the path transitions. In other words, the incorporation of a-priori path probabilities into 

the branch metric helps to offset the tendency to commit short segment errors.

. In general, further a-priori information on the true edge paths in an image is not 

available. In specific situations more may be known. In temporal sequences of images, 

for example, one may use the edges found in one frame of the sequence as a guide to 

those in the subsequent frame. Or, in medical angiocardiograms, where the desired edge 

is the contour of the heart, one may employ a training set of prototype contours to aid 

in the process. These types of very specific a-priori information can be incorporated into 

a sequential searching algorithm in a heuristic fashion. The reader is referred to Modes- 

tino [Mod70] for a discussion of this technique.
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3.4. Comparisons with the Coding Problem

As noted in previous Sections, SEL is similar in many respects to the method of 

decoding convolutional codes by sequential tree searching. In this Section, ye will clarify 

some of the major differences and similarities between these two problems.

3.4.1. The Path Branch Metric

The branch metric for sequential decoding of convolutional codes was first proposed 

by Fano [Fan63] using a heuristic argument and was later derived by Massey [Mas72], 

That metric is:

r(y)
PiViAji)

Po(yi)

where y=(jfi- > • ,yn) are the received symbols, x ==(x f . . . ,xtt) are the

transmitted symbols corresponding to a particular path through the tree, R is the code

rate, P (* | *) are the channel transition probabilities, and 

PQ(y{) = P (y{ | x{) Pr (x, ) is the a-priori probability of receiving jf,- . The

derivation of Equation (3.83) assumes that the x{’s are i.i.d. and the channel is memory

less, i.e. y,- depends only on x,-.

Although the metrics of Equations (2.18) and (3.83) appear to be quite different, 

they are closer than it might seem at first glance. The bracketed term of (3.83) is a 

likelihood ratio of the probability of observing under the hypothesis that x is the 

correct path, to the probability of y{ under the null hypothesis that it is a random path. 

The primary difference between this and Equation (2.17) is in the observations. In SEL,



when the searching algorithm hypothesizes two different paths, m1 and m2, it obtains 

two sets of observations, f1 and f2, to incorporate into their corresponding metrics. In 

decoding, however, the decoder may hypothesize two paths, x1 and x2, but the observa- 

tions, y, are simply the received symbols and do not change. Thus, two metrics 

corresponding to two paths in sequential decoding are a function of three vectors, y, x1, 

and X2, whereas in image searching they are a function of four vectors, f1, f2, m1, and 

m2. This important difference surfaces again in performance analysis where the expec

tation of Equation (3.10) must be taken oyer m, m' , f, and f* . The corresponding 

expectation in the coding problem is taken over x, xf , and y.

The rate term, R in Equation (3.83) is closely related to the Markov transition pro

bability term in Equation (2.18). To see this, we note that the a-priori probability of 

any transmitted vector X of length n is:

Fr(xtt) = e~Rn (3.84)

assuming the source is independent and identically distributed. Substituting this into 

(3.83) for R we have:
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r(y)
His 1 *.)

PoiVi)

P(Vi \ *i)

pm

+ -* In [Pr (x)] | 

j + In [Pr (x)]
(3.85)

But Equation (2.18) for SEE is:



r(m,f) = E { In

= t {in

.1—1 1

so the second term of both metrics is present to take into account the a-priori probabil

ity of the hypothesized path. The difference between them is that the path letters in 

sequential decoding are assumed to be independent and identically distributed (iid). In 

SEL they are correlated and modeled as a Markov chain. If they were assumed to be iid, 

then the SEL metric would have a constant term in its metric. Conversely, this analysis 

indicates that if the information source of a sequential encoder was Markov instead of 

iid, then the, correct path metric would be of the form:

;[ (s,j j

j -f In £ Pr (m) j
(3

T(y):
E {in P[Vi I xi)

PfkVi)
+ In [Pr («,-K_|)]

3.4.2. D(S) and the Random Coding Exponent

As we have seen in Sections 3.2 and 3.3, the quantity D(5) plays a decisive role in 

the amount of incorrect path searching the algorithm suffers and the probability of 

error. It is in some sense a measure of the "quality” of edges in an image; the lower the 

value of P(5), the smaller the probability of error and number of incorrect paths 

searched.

From the Holder Inequality we see that:
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m = E [p0(/ )]‘ [pill )]M o < e < 1

< E Poi f)
6

E Pi(f)
. / . 7

= 1

with equality if and only if pQ(f ) == pt(f ) for all / . Therefore, the "quality” meas

ure P(5) is worst when P q = p j; that is, when edge paths and random paths are 

indistinguishable. It becomes better (lower) as pQ and p j have less overlap. Figures 

3.9a and 3.9b illustrate this point.

In the coding problem, the quantity Eg{p),

EM -ln£
/

E p (**)?(*/1
k

(3.89)

plays approximately the same role as D(tf) does for SEL. E0(p)> called the random cod- 

ing exponent, is a function of the channel transition probabilities. When the cross-over 

probability of the channel is small, i.e. Pr .'■(&-=«,•) is very nearly equal to 1, the ran

dom coding exponent is large and sequential decoding proceeds with few incorrect path 

hypotheses.

As in the case of the branch metrics, D(<5) and E0(p) are also similar in form. To 

see this, Eg is rewritten as:



Figure 3.9a:

Figure 3.9b

High signal-to-noise ratio; little overlap of the conditional measures
pv D{6) « 1.

Pr<fIH >Pr <f ! H. )

: Low signal-to-noise ratio; much overlap of the conditional measures p0 and
p v D (6) ~ 1.
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Ep(**)p(p/I**),+'
k

\+(>

= EEH^)p(yyl^)l+A
: / *

E E p (^jfe )p (l^y I )1_0,A
j * ,■■■■■

E p(**)p(p/I**)1+'
k

E p(xk)p(yj\ hT

(3.90)

where a —----- • . Contrast this with D(6):

D(a,p) = EPl(/)1_^Po(/r
■ . /

(3.91)

Furthermore, it can be shown [For74b] that sequential decoding possesses finite

satisfies:

R < Rcomp (3.92)

The rate is given by: R = / where M is the alphabet size of code symbols and

L is the number of code symbols per source symbol. Equation (3.92) is therefore:

In (M) < Vt» In 52
V. i

E p(**)p(P/!**)
k

(3.93)

Corollary 3.3 specifies similar conditions for SEL to have a finite mean number of com

putations, one of which is:
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In (3) < - In E Pi(/)2 Po(/): 
/

(3.94)

1where a p is set to - . Equations (3.93) and (3.94) point out the very similar roles that 
2

D(6) and E0(p) play in the analysis of SEL and sequential decoding respectively.



CHAPTER 4

THE DISCRETE-STEP ISOTROPIC MARKOV FIELD

4.1. Introduction

In Chapter 2, we derived our branch metric under the simplifying assumption that 

the observations or random field values {/-} along paths are conditionally independent.

This allowed the joint probability to be written as the product shown in Equation (2.17). 

A direct result of this assumption is the recursive computability of the path metric. 

Various aspects of the analysis of the distribution of computation and probability of 

error presented in Chapter 3 also required this assumption of independence. In this 

Chapter, we will introduce a new model for correlated random fields for which it is pos

sible to generate a sequence of path innovations that are independent. With the path 

metric defined in terms of this innovations process, the previous results of Chapter 2 and 

3 are preserved.

It is important to note that none of the previous investigators of sequential search

ing techniques for images have generalized their methods to include correlated data. The 

early work of Martelli [Mar76b] and Chien and Fu [Chi74] are not explicit on this point, 

but their running path metrics implicitly assume that the data along the paths are 

independent. The random field model of Cooper [Coo79] explicitly assumes the field is 

composed of a deterministic two-valued component ("background” and "object”) and an 

additive i.i.i. Gaussian random noise field. Two investigators did consider Markov ran

dom field models [Han82], but in the context of a raster scan search rather than a
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sequential search. Finally, the ad hoe metric of Ashkar and Modestino [Ash78] is the 

sum of independent branch terms that do not depend on any correlation with neighbor

ing branches.

This is in spite of the fact that it has been demonstrated by many investigators 

that the pixel values in many real world images are highly correlated. (See, for example, 

[WH71], or (Nis65j.) In fact, the rather large discipline of compression coding of images is 

based precisely on this fact [Dav72]. The observation that compression ratios of 8:1 or 

higher have been achieved with little subjective distortion of real images attests to the 

large measure of correlatedness present in those images.

The organization for this Chapter is as follows. In Section 4,2. we review the more 

conunpntwo-dimensional random field models. Section 4.3. details the advantages 

obtained by the imposition of path Structures. This is followed by a development of the 

'Discrete-Step Isotropic Markov Random Field (D-SIM) model together with its impact 

on SEL in Section 4.4." .

4.2. Two-Dimensional Random Field Models

4.2.1. Notation and Assumptions

An image will be considered as a Sample function of a two-dimensional discrete 

parameter random field. The real-valued function /- (cj), defined on the product space

of H and the nodes of the lattice I X I is the value of the sample function at the node 

whose coordinates are r.- = ( r.-1,r.-2) iE /2.
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We will denote the autocorrelation function of / as 

Rf (»,i,m,n) = E | /,y fmn j> Throughout this Chapter, we will only be con-

cerned with homogeneous random fields so that:

Rf (»■ ,n) = Rf {i-m,j-n) — Rf (k,l) (41)

The spectrum of a field / is defined in the usual manner as the two-dimensional 

Fourier Transform of the autocorrelation function (assuming Rf is absolutely sum m- 

able): '''

Sf (u ,v ) =

00 00 \S E /*/■■(*,/) e2*;(** ■+*•■) -0.5<tf
ib a*—00 00
0 |«| >0.5 or jt;| > 0.5

(4.2)

4.2.2. The Markov Mesh Model

In their 1965 paper [Abe65], Abend, et. al. generalized the idea of a Markov Chain 

to two dimensions in an effort to remove the restricting assumption of statistical 

independence among the random variables of a field. A fundamental question is how to 

extend the notions of "past”, "present”, and "future” from one-demensional Markov 

theory to two dimensions. To summarize their results, we shall need the following defin

itions:

(1) The field is of finite extent, restricted to an array of size M rows and N columns.

f rir21 r1 < m and r2 < n j; an m x n array of random vari

ables comprising the upper left hand quadrant with respect to the node (m,n).

(2) -



Note that ^ is the entire field.

(3) Xm'X — Xm,n ~ { /a,6 J) »e- Xm,« with the variable f a b deleted.

(4) = j/fif2| r1 < a or r2 < b J; a nonrectahgular array of variables 

lying to the left of, or above the node (a,b).
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The assumption employed as a starting point in the work of Abend, et. al. is that 

for any (a ,b ), there exists a subset Ui h C such that the conditional probability 

of a random variable f 6 j given the variables Za b is equal to the conditional probabil

ity of ft,b given Uai , i.e.:

. ft (/.,»I » = ft (/.,» I V.+) c x;J (4.3)
For example, what they call a third-order Markov Mesh has the property:

Pr (/aft! Z*,b) = Pr (fa ,b I / a -1,6 . , fa,b-l) (4.4)

Such a model has also been called a striet-sense Markov random field [Ros76]. With this 

formulation, the "past” in the two-dimensional sense is composed of the variables Za b , 

the "present" is /8j and the "future” is everything else.

The paper also shows that a key property for one-dimensional Markov Chains may 

be extended to the two-dimensional case defined above. This property is that the one

sided Markov dependence implies a two-sided dependence. For first-order chains, this 

means:
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Pr ■(**■■ 1 Xk-i ^ Pr {x* | z*_i)

implies:

(4-5)

Pt (xk j ... , Xk-l > xk+l • • ) = Pr (xk I *Jfe-i> ^Jfc+l) (4-6)

and similarly for higher-order chains. The converse is not necessarily true. In direct 

analogy to this, Abend shows that, for example, the third-order Markov mesh assump

tion implies:

f a-1,6 -1 / a -1,6 fa -1,6 + 1
Pr (/..» 1 — Pr I <*, 6 / a ,6-1 / * ,6 +1

/ a -1-1,6 -1 / a+1,6 /a+1,6+1

(4.7)

This result demonstrates that "the Markov mesh assumption leads to the reasonable con

clusion that the conditional probability of fab given the entire array is the same as 

that given only its eight nearest neighbors.

As discussed in Kanal [Kan80], this model has not proven particularly useful for 

parameter estimation or classification in real images but is more suited to image genera

tion or texture synthesis.

4.2.3. Wide-Sense Markov Random Fields

Wide-sense Markov random fields are a direct generalization of wide-serise Markov 

Chains. They are also known as Autoregressive Models (ARM) [New77]. In these 

models, the field is defined in terms of a linear minimum mean squared-error (MMSE) 

estimator. Using the definition for Xa b given in the Section above, we may form a 

linear estimate of fab as:
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/«,* C Cij fi,j (4.8)

If we denote the mean squared-error to be:

ea,b = E {[/<.,6 " fa,h? | (4.9)

then it can be shown [Hab72] that the following set of constraint equations must be 

satisfied by the coefficients, :

E ([/,,J = 0 all fij ex.it (4.10)

This is the same as viewing the estimate as the orthogonal projection of /a j onto the 

Hilbert Space of the ” past” observations, Xa j .

Denoting the subset,

/a-1,6 » fa-1,b-l> /«,6-lj C Xaj (4.11)

a random field is defined to be wide-sense Markov if:

fa,b C cij f•',/ (4.12)

i.e. the MMSE estimator of /aj given all of Xa f, is the same as that given only the 

three immediate neighbors of / a j to the left and above. A generalization of this to 

higher orders is given by Newman [New77]:
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i.,i = ; 2 I <% fi.i «->3)
• j m*0 ■-■

It can be shown that Equation (4.12) is equivalent to a difference equation in fij-

Theorem [Ros76]. A discrete random field / is wide-senae Markov iff it satisfies the 

difference equation:

fm,n - E Cij fi,j = im,n (4.14)

where the ft are uncorrelated,

K ) =° or njiq

It may be noted that fields with a separable autocorrelation function of the form 

/? (k ,1) = a2 e_0!4*l _0,)4,l are wide-?ense Markov (Hab72).

This model therefore allows for the generation of a sample function recursively. 

Furthermore, the model can be fitted to a given image by solving Equation (4.10) for the 

ci; ’s. This involves the inversion of a block Toeplitz autocorrelation matrix as in the

one-dimensional autoregressive (AR) model [New77],

The spectrum of a general wide-sense Markov random field given by Equation 

(4.13) is:

S, («,»)■= | £ E 7*,, e-^(‘*+h>r2 -0.5<«,»<0.5 (4.15)

k ==0 1-0



4.2.4. Discrete Gauss-Markov Fields

Using an altogether different interpretation of "past”, "present”, and "future” in 

two-dimensions, Woods [Woo72] has proposed the following model. We think of a field 

as being divided into two regions G + (the future) and G~ (the past) by a band of 

minimum width p called dG (the present). Figure 4.1 is one example of such a division. 

The field is said to be Gauss-Markov-p if:

Pr (/(?+ | / 8G > f G~) — {f G+ I / do ) (4.10)

If one now defines the set of indices:

= {(*,/) |>2+(2<>2 ; (t,/)^(o,o)} (4.17)

Woods shows that the definition given above is equivalent (for the case of Gaussian, 

homogeneous, zero mean random fields) to the field generated by the following interpola- 

tive difference equation:

where:

X) + «»;
D>

(4.18)

(1) *■'

(2) «,y is

uk ,1 | ~ c $ik > c > 0.

a homogeneous, zero mean, Gaussian

chk,i ,SSeDp:

RMS :,%,,/0:^.(O,O) 
, elsewhere

random field with
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Figure 4.1: An example of a Gauss-Markov-p random field.
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(3) hy ’s are the coefficients of the linear MMSE estimator:

E — S ku f <t-k,b-l 
D>

(4.19)

It is easy to see from Equation (4.18) and property (1) above that the autocorrelation of 

the field / satisfies:

Rf(k,l) — A” i?y () + C 8jy
D> ■

(4.20)

so that the spectrum *s:

:***•’**°*: i4M)

■ V, ■

4.2.5. Maximum Entropy Fields

A fourth method of modeling a two-dimensional random field is by a maximum 

entropy spectrum. This model has its roots in the problem of two-dimensional spectral 

estimation [New77].

The method of estimating power spectra in one dimension by maximizing entropy 

was first introduced by Burg [Bar69] and made rigorous by Edwards and Fitelson 

[Edw73]. This has been expanded to the two-dimensional case by Barnard and Burg 

[Bar69], Newmann [New77], and Woods [\Voo76], The idea is to determine the spectrum 

Sj ( tt , v ) of a field; / from a small setof known (or estimated) autocorrelation values 

Ef {k ,1) , | k | < Q 111 </? . The method is to maximize the entropy of the field,



(for Gaussian fields) consistent with the known autocorrelation values:

R. (*,/) = 7 fsf(i,v)e-w+")J*dv («

■■-0.5 -0.5. 1 ■

Upon solving the resulting variational problem for Sj (ti ,v), the following form is 

obtained, where the coefficients emn depend on the values for Rj (k ,f ).

Sf («> ) g -2nj (ku +lv )
-1

-0.5<« ,» <0.5 (4.24)

It turns out that, just as the maximum entropy method and autoregressive models are 

related ia one dimension, there is a similar connection in two-dimensions [New77]. 

Furthermore, the ME spectrum is also the spectrum of a Gauss-Markov random field

[Woo76j.

4.3. Paths in Two-Dimensional Fields

4.3.1. Ordering

One of the key difficulties shown in the previous Section is that of generalizing the 

one-dimensional notions of "past”, "present”, and "future” to two-dimensions. Different 

assumptions on this point have led to rather different random field models. It is a 

matter of argument as to which is the more "natural" generalization [Has80].



The imposition of path structures on a two-dimensional random field removes this 

ambiguity, however, at least as far as the random variables along such paths are con

cerned. Recall that a path was defined in Section 2.2.2 as an ordered sequence of ran

dom field nodes satisfying certain connectivity requirements. Let us denote the random 

field variables corresponding to a given path, m '== [r^r^, • • • ,r"B ] as: 

f = \ffAi • — • iff ] = (/ l> • ••>/»]• We then have the following obvious but 

important observation regarding the random field variables associated with this path.

Observation: The path m imposes an ordering bn the variables {/~}:
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(4.25)

It is again natural to think of a time series in the observations with the terms "past”, 

"present", and "future” possessing some meaning.

It will later become necessary to restrict our attention to a class of paths among all 

possible paths defined earlier. For this class, the nature of the ordering imposed by the 

path can be made more concrete. Consider pairs of nodes of the lattice /2,

PS , ?,) € l2 XI2 (4.26)

and some undefined root node r0. We denote by ” <” the binary relation "distance 

from Tq”. Thus, ry < ry if the Euclidean distance, j r\- - 7q| < | ry - r"0|. The

relation < is a partial order [Bob74] on the set of lattice nodes {f\ }, since < is reflexive, 

antisymmetric, and transitive. If we now restrict the set of all paths with root node Vq

to the set Qp given by:
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== jm | Ty < ry-for all i < jfj"-' (4-27)

then the set of nodes fry } comprising a path m G Q;q is totally ordered or linearly

ordered. Finally, since there is an isomorphism between nodes of a path and the random 

field observations along that path, we see that the path m imposes a linear ordering on 

the set f:

/, < /s< ... < /. fe<? H-2S>

where f G Q is understood to mean the corresponding m G 0^or some fq. To illus

trate, Figure 4.2 shows that the set Q is merely those paths that do not ’’double back 

on themselves”.

4.3.2. Dynamic Modeling of Path Observations

The random field observations along a given path in Q form a linearly ordered set. 

This fact suggests the use of a dynamic model for the variables, A well known class of 

such models is known variously in the literature as Linear Predictive, Autoregressive 

Moving Average (ARMA), or Predictive Discrete Wiener Filter models (see [Mak75] or 

[Kai74] for a general description). All of these models exhibit the wide-sense Markov 

property (in the classical one-dimensional sense) that the best prediction of the next 

observation in a time series is a linear function of the past p observations. Here ’’ best” 

is in terms of minimizing the mean squared error. The orthogonality principle states 

that this error between the actual value of the next observation and the predicted value 

is orthogonal to the past observations.



f € Q f € Q

Figure 4.2: The path topology oa the left is a member of the set Q but the one on the 
right is not. The right path loops back on itself so that, for example, the 
ninth node is closer to the root node than is the fifth node.



Adopting the ARMA model, the above assumpfcionsmay be stated in the form:

f i - £ h f i-k = £ h e;-/ (4.29)

' *—1 i“l ■■

where the are the p autoregression coefficients and the Of are the q moving average

coefficients. The process {£,•}, known as the input process or the innovation* process is

a sequence of orthogonal random variables:

K !«, «, } = <„• (4 30)

Thus, the sequence of observations {/,•} may be viewed as the output of a linear filter 

with transfer function

i +£*,.•1

H(z) = -- (4.31)
i - i h -- *

i

and with input {£,• }.

4.3.3. Application to SEL

We discuss the important question of when the observations really do fit the model 

given above in the next Section, but here we are interested in how such a model may be 

exploited.

Let us assume the process {/,•} is Gaussian and wide sense stationary with mean 

f . We will denote by:
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{ /. } : tj = f, -f H-32)

i.e. the zero mean process obtained from {/,•} by subtracting J. We further assume 

that {£,• } is a zero mean, Gaussian, wide-sense stationary, orthogonal process such that:

(4.33)

(4.34)

(4.35)

Vi Zi + f '■ (4.30)

Assume that at time i the previous q values of | y - J are known. Then, since
V . y-y-i .

the present observation, , is known, the p previous observations are known (and

therefore the {/ } ), and the q previous values are known (£,_f = { - J

the value of p,- is known. This is then used to find 4,•. In this way, the sequence {y{} 

may be recursively generated from the observations {/ ,•}.

Now, the random variables £• are orthogonal and zero mean. Thus:

/ « $k f i -^k — l» ~ &i |,-_j
k-i l—l

Thus:

u - s -1 h u >, = e, - ±>, it.,

Or:

/ «' ~ ^ <t>k f i-k ~ ]l) $i Zi-l = If

*—1 /-I
+ /

Denoting the left hand side of (4.35) by y-, we have:



-120-

E
£■{?,•?,■} + /2^/2>=

so the t/i are uncorrelated. Since they are linear combinations of Gaussian random vari

ables, they are also Gaussian and therefore independent. If we then define the p 0 and 

P j measures of Section 2.2.3 on these virtual observations instead of tlie actual observa

tions /,• :

p0(p,) = Pr (p, | H0) = Pr (y{ \ y{ is on a random path)
Pi(y, ) = Pr (& | Ht) — Pr (y{ | y{ is on an edge path)

then we may define the path branch metric in terms of the p,- also. Since the y,- are

independent the important assumption of Equation (2.17) is true. The results obtained 

in Chapter 2 and 3 are therefore also valid, even though the original field / is corre

lated.

In short, imposing an ARMA model on the sequence of correlated observations 

comprising a path allows one to generate a sequence of independent virtual observations 

from the original sequence with a linear, causal, finite memory filter. This new sequence 

is used to calculate the metric for the path. Of course to do so, the searching algorithm 

must now keep a record of not only every path and its metric visited, but also the state 

of the observation process for each path. For an ARMA(p ,q) model, this state is com-

posed of the last p variables {/,•_* } and the last q variables {&_/}• This may add 

considerably to the memory requirements of the searching algorithm.
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4.4. The D-SIM Random Field

It should be clear from the Section above that it is desirable to be able to model 

the sequence of observations along a path in a correlated random field as an ARMA pro

cess. It is not clear if or when such a model is appropriate or realistic. In this Section, 

we will propose a random field for which the model can be shown to explicitly hold. 

That is, we are able to specify a two-dimensional autocorrelation function such that the 

one-dimensional sequence of observations along any path in the class Q obeys a differ

ence equation of the form shown in Equation (4.29).

4.4.1. Difficulties with Previous Models

We return to the various two-dimensional random Held models summarized in Sec

tion 4.2. It is easy to construct counter-examples or arguments to show that, in general, 

these fields fail in the sense discussed above.

4.4.1.1. Wide-Sense Markov Fields

Recall that wide-sense Markov random fields satisfy:

alt f*,j £ (410)

Let us consider the specific case of a zero mean, unit variance random field with auto

correlation, function: ■.

Rf0,l)\ .= / g” *il*| - «4f| (4.39)



It can easily be shown |Ros76] that the Equation (4.10) is satisfied with the MMSE esti

mator given by:

m | ft = e"‘> f m-l,n / TO ,* -1 - e m -!,» -i

so this field is wide-sense Markov. Now consider the path f £ Q depicted in Figure 4.3 

which is horizontal up to observation /, and diagonal beyond. Before node a, the

- e-*1 R (fc-1) = 0

Therefore:

E {[/. - «"'/i-ll//} = 0 j << < S

which implies the { /,• } satisfy the difference equation:

h - «•'/,• i = (i • <«

f. {{. €y} =o ;

After node 8, however, we have:

R(k) + e~*1~ - R(k-l) = 0

which leads to:

fi + e *2f i-i — £» .,V ••>,*'



f e Q

Figure 4.3: A path in the sfet Q that is horizontal up to node s and diagonal beyond
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E {f, f, } = 0 « ^ 1

We see, therefore, that the second order statistics of the sequence {/,•} are different 

before and after the term i =8. Even in this simple case, we see that the sequence of 

observations is not wide-sense stationary, although the random field from which they 

were drawn is homogeneous. Furthermore, we cannot even employ a locally atattonary 

model [Sil57], as one can quickly see by considering paths in Q with many changes in 

direction (Figure 4.4).

4.4.1.2. Markov Mesh Models

Markov mesh random fields are those for which:

■Pr if a,b \ Z«,h) — Pr (f*,b I U*,b) U.

The counter example given in the Section above serves for these models as well if we 

make the additional assumption that the field is Gaussian. This is because for Gaussian 

random fields, the wide-sense and strict-sense Markov definitions are equivalent |Ros76]. 

Thus, for the same reasons as before, the random field with autocorrelation function 

given by Equation (4.39) is an example of a Markov mesh for which a sequence of obser

vations along an arbitrary path in Q does not satisfy Equation (4.29).

4.4.I.3. Maximum Entropy Fields

A maximum entropy (ME) field is defined in terms of its spectrum (Equation 

(4.24)), where the coefficients, emn, are Hermitian and determined by the values (or esti

mates) of the autocorrelation function Rj (k ,1) for j k\ K. Q |:/| ^ R • Newman
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Figure 4.4: A path in the set Q that has many changes in direction.



. -12®^".

[New77j has shown, however, that despite the difference in the way ME and ARM 

models are formulated, their power spectra' have the same form . The correspondence 

between Equations (4.21) and (4.24) can be seen by> setting:

inin(0--f» ,0) min(J?-n ,R)
cmn = £ E 7(446)

) j *=*ma2 (0,-n)

Now, since we have assumed Rj is integratable, Sj is necessarily bounded and continu

ous. Also, Rj is bounded. Therefore, Rj is square integrable and so by the Planchcrel 

Theorem, any two fields with the same spectrum necessarily have an identical autocorre

lation function J?y . This along with Equation (4.46) implies that there exists an ME 

field with Rj given by Equation (4.39). So once again, this same Rj serves as a 

counter example to the claim that ME fields give rise to paths whose observations satisfy 

Equation (4.29).

4.4.I.4. Gauss-Markov Fields

For a counter example for Gauss-Markov fields, we turn to the original example of 

Woods [Woo72]. In this case the field is generated by the difference equation:

fij = a(/.,/+l + -fi+lj + fi,/-I + fi-lj) + ui,j (4-47)

where {«,• y } is a zero mean Gaussian field and

R,{k,l)
c (*,/)= (0,0)
—c Of k == 1,-1 , l — 1, -1 

0 elsewhere

autocorrelation function for this field is:

N<i Woods shows that the
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«/(*.<)
0.5 0.5

«/ /
g /2ir(ttJt + vl)

1 - 2or(cos27T« + COS,27Tt; )
du dv (4.48)

Woods evaluated this integral numerically for a — 0.225. Values out to k = / = 4 

are listed in his Table I. It is clear from these values that, just as in the example of the 

Sections above, observations along diagonal paths have different second order statistics 

than do those along horizontal paths. Furthermore, in this example even straight paths 

do not have a sequence of observations whose autocorrelation values decay exponentially. 

This is a necessary condition for them to obey a difference equation.

4.4.2. The D-SIM Field

We have seen in Section 4.4.1 that the classical random Held models do not give 

rise to paths whose observations satisfy Equation (4.29). We might go ahead and model 

the observations as a one-dimensional Markov Chain anyway, but it is unclear how to 

estimate the ARMA parameters ^ and 0[ from Ftj (k J). A more satisfactory solution 

is to find a random field model for which Equation (4.29) doet hold, fit this model to the 

image and obtain the ^ a®d &i parameters from the model.

In this Section we describe such a random field. It will be called a Discrete-Step 

Isotropic Markov (D-SIM) random field, and is defined directly in terms of its autocorre

lation function. Here we will assume the field / is homogeneous, zero mean, and Gaus

sian. '



.. -128- . ; ; •v';■■■■'■

4.4.2.I. Necessary Conditions ontheAutoeorrel&fcion Function

The counter examples given in Section 4:4.1 provide some insight into i^o condi

tions that Rj must satisfy for the field to be D-SIM. The first is that the field must be 

isotropic. Roughly speaking, this means that Rj (k ,1) should be independent of direc

tion and depend only on the separation of the variables. In most discussions of random 

fields, this condition is stated:

= R/(i*2 + /2]'2) = */< r) (*49)

i.e. the autocorrelation function is a function of one variable, the Euclidean distance 

between the nodes. This concept of isotropy is furthermore intuitively satisfying. Given 

no other a priori information about an image, why should one expect the Observations to

be correlated any, more or less in one direction than another?

The second necessary condition is that along any straight path (really any path, 

f (z Q h the autocorrelation function of the variables should decay exponentially or as 

the sum of exponentials. Further, this exponential decay must bein discrete steps, i.e. it 

must be geometrical. This is necessary in order that the observation be modeled by a 

difference equation.

The simple and familiar isotropic autocorrelation function of Equation (4.49) does 

not meet this second condition. But Euclidean distance, while being possibly the most 

natural, is not the only way to measure distance on a square lattice. In particular, 

another distance function on /2 which suggests itself in view of condition two is:

r (*,/■) = |*| + |/| (4-50)



knoWn as the city block distance [Ros68]. We note in passing that city block distance, 

like Euclidean distance, its a metric in the topological sense [Nay82].

4.4 2.2. D-SIM Fields

We now define a p ^ -order D-SIM random Reid as a homogeneous field with an 

autocorrelation function of the form:

Rf \k,l) >= o2 + ■},|); + . . . + c, + (4.51)

where cr2 == /fy (0,0) and 2j c,- = T. It is seen from Equation (4.52) that this auto-
.. .i—i:

correlation function is nothing more than the autocorrelation function of a one-
v v'.

dimensional p til -order wide-sense Markov sequence, with city block (two-dimensional) 

distance taking the place of (one-dimensional) integer lags.

A random field being D-SIM is a sufficient condition for paths in the class Q to 

satisfy an equation of the form of Equation (4.29). Recall that if f E Q, then there 

exists a root node, t<5, such that:

!n < 1*7 -fol (4.52)

We remark that, although this definition was formulated using Euclidean distance as the 

distance function, we obtain precisely the same set of paths Q using city block distance 

in Equation (4.27), since both are topological metrics. Before we can prove the above 

assertion, we need the following theorem:

Theorem 4.1: A path f £ Q in s p-order D-SIN^ random field induces a super
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sequence f such that Equation (4.29) holds (or this f

Proof:

Letf € Q be:

f = = [/>,■■■,/(>■••] H.S-1)

The problem encountered in dealing with f directly is that for some j s, | ry+i ~ gy | 

and for other jps, | fy+1 - fy | =2 depending on whether the path is locally running hor

izontally, vertically, or diagonally. Where the path is locally diagonal, say from / y to

/y + 1, we introduce a dummy variable / y such that:

|r| -r,| = 1 and. |r,-+I - r,-J = 1; H;54>

and':’

Ty < ry < ry+1 (4.55)

(see Figure 4.5). We note that on a square lattice, if f E Q, this can always be done 

while preserving the ordering (4.55). We define the sequence f* to be just f with the

ordered inclusion of the dummy variables / y :

^ [/ i> •••»//> / j > / } +1> • • • 1 (4 56)

= [/',............/;.••]

Because of (4.55), this sequence is also an element of Q. Furthermore, the distance 

between every variable of is, by construction, one. Now, since the field is D-SIM, we 

have:



Figure 4.5:
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rj r.i

Where f is locally diagonal, a dummy observation /y is inserted in the se
quence f such that Equations (4.55) and (4.54) are satisfied.
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E [/ ' , / 'y+K } = : (4 S7)

This autocorrelation function of the sequence f* is well known in time series analysis, 

Weiner Filter theory, etc. Since it is real, even, integrable, and positive definite, its 

Fourier Transform, Sf (tl), is real, even, positive, and integrable. It may be expressed 

in the form:

Sf («) = ; -0.5 < « < 0.5 (4.58)

That is, autocorrelation functions of the form shown in Equation (4.57) correspond to 

power spectra that can be expressed as ratios of polynomials in u2, The polynomial 

B (tt2) is of degree p (from Equation (4.57)) and the degree of A is less than p.. Let 

degree(7l ) — q < p . Because A and B are polynomials in u2, Sf (u ) may be factored 

into two terms:

S,,“) = "§(7) = <0.5(4.59)

where H( tt) and H*(u) are defined implicitly. Furthermore, this factoring may be 

accomplished in such a way that all of the complex poles and zeros of H(u ) lie in the 

upper half of the complex plane. Thus H(u) is analytic in the lower half plane. While 

we have not proven the statements leading to (4.58) and (4.59), they are well known 

results. The interested reader is referred to [Dav58], [Ire], [Wol38], or other discussions 

of Weiner theory.

Using the change of variables, z = e 12ff* , Equation (4.59) becomes:
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SfUl = //(;) • //‘I--) = | //(--)|2 (4-90)

where H(z ) is rational in z and analytic on and outside the unit circle. Therefore, the 

sequence f* can be thought of as the output of a filter H(z) driven by white noise. 

Since all the poles of H(z) are inside the unit circle, and all its zeros are on or inside the 

unit circle, H(z) is causql and minimum phase. H(z ) is of the form:

£ «, -’-1

H{z) = '~° (4.61)

... . E 0k z~k
' k «0

so that f* satisfies:

r ( - t h ! 'i-k = (: £ *1 «.-< (4.62)
*«i -t:—i- ,

£ { & £/ ] = (4 63)

which is what was to be proved.

This theorem tells us that the observations along a path f G Q in a D-SIM field 

are a subsequence of a sequence f G Q which is ARMA. We now show that f itself 

possesses an ARMA-like quality.

In the following, we require some new notation. Let /,• be a variable in the

sequence f G Q • Let the induced super-sequence be f . We will denote by / 1 the

variable / y G f corresponding to /,-. That is, (») — j | / ' y — /,•.

Theorem 4.2: With f as in Theorem 4.1, it is possible to recursively construct a



sequence f from past values of f sucli? that:

fi = t h f (i )-k + £ Ql (4.04)
*=1 i= 1

/, - /. = %)

■E = *1 fy)(>)

Proof:

If there are no diagonal segments in the path f, then f — f* hnd the Theorem fol

lows directly from Equation (4.62).

If there are diagonal segments in f, then f . Since f is a subsequence of f* ,

every element of F has a corresponding element in f* : /,• — / |, j, but hot vice versa.

■ ***

We fill in the dummy variables / in the following manner. We know from Equation 

(4.62) that:

r i - i, h I'i-t + (M = tj .<«s)
' . . ' *.-l : " <-l

Using vector notation, we will denote:
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£fc+l —.■/*+1 ~ ©S* (4.67)

•with:

£* + l **

F*+i = ■/■o

®*+i ?==:'’ / ; 0

■

/' .*+1. 

P*

H*

/ w p X p

/ tV q X q

(4.68)

Note that we have not employed the usual notation for state space equations here in 

order to show explicitly where the ^ come from.

Suppose that up to time s the state vector ) is known. (We will assume that at 

time i ==0,, the state is fixed and known.) ‘If the next step along the path f from 

ft t0 //+i;is of length 1, then === / j. Therefore, the new inno>

vation £(g)+imaybe obtained from- Equation (4.67) with / equal to the new



f(s)+l = £(»’ +1) ^ /•+! “

The state vector ♦(,) may be updated by Equations (4.68) With )+i — /,+i and 

^ above.

On the other hand, if the next step along f is of length 2, then / s (s )+l 5^ f i+r

This is an occasion when a dummy variable / (, )+i = / needs to be inserted in the 

process f . We choose / * so that:

observation

$ (0

/(•Hi = : eT | *(0 + t

where £ is randomly chosen, independently of the £,• ’s, from ^ Gaussian distribution

with mean zero and variance <r|. Having obtained a dummy ’’observation” in this 

manner We find:

^(0+1 /' (0+i

e

(4.71)

and we can update as before.

This procedure generates a sequence {£* } which is uncorrelated. Furthermore, the 

sequences f and f* are identical up to the dummy observations, i.e. / (,■) ■ / { •

Finally, f obeys Equation (4.65). Thus:
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/. — <f>k f [i)-k + £, °l Z(i)-l = £(,•) (4.72)
*—1 f—1

^{fy)%)} = %)(/)

which completes the theorem.

In summary, Theorem 4.2 states the following. If a random Held is D-SIM, then 

paths of the class Q have an ARMA-like structure. That is, it is always possible to 

recursively construct a super sequence f from f such that Equation (4.72) generates a 

sequence of uncorrelated innovations. Where the path branches along f are of lengthT, 

the /;/ * are precisely the path observations / |,-)= Otherwise, the dummy or 

”missing” observations may be filled in using past values by Equation (4.70). in this 

fashion, the projection of the next observation at time ? , (/ ,• ), on all the previous obser

vations, (/^ if <i ), is always a linear function of the past p elements of f , 

i f1 k &<(l))> and the past q elements of k <(t")}.

It is the special nature of the autocorrelation function of a D-SIM field that allows 

us to recursively generate a Sequence of uncorrelated innovations {£(,•)} from the path 

observations { /, }. These in turn may be used in the calculation of branch metrics as 

discussed in Section 4.3.3. Since they are uncorrelated and Gaussian and therefore 

independent, the log-likelihood of a long path metric may be expressed as the sum of the 

log-likelihoods of the individual branches comprising the path, thus allowing recursive 

computation of the metric. We note that we have not shown necessity, only sufficiency. 

That is, it is sufficient that the field be D-SIM to use this procedure, but there may exist 

other fields that are not D-SIM for which paths of the class Q fit an ARM A model.
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EXPERIMENTAL RESULTS

5.1, Implementation Details

In this Chapter, we will discuss some experimental results from one implementation 

of the SEL algorithm. Our purpose is to experimentally verify the major claims made 

for the technique in the previous Chapters. These examples, a result of processing a 

variety of real image data* also provide an indication of the range of applications of the 

method. Before examining the results themselves, we will discuss some of the implemen- 

tation details.

AH the results discussed in this Chapter are obtained using the Z-J stack algorithm. 

The other algorithms discussed in Section 2.3 are either refinements on the stack algo

rithm or have been shown to yield essentially the same results in searching tree strucr 

tures. Consequently, only the simplest, but not necessarily the fastest or most efficient, 

algorithm is tested here. The root nodes in these examples are obtained automatically 

by the algorithm by imposing a high threshold on the gradient magnitude output of the 

preprocessing edge operator in the manner described in Section 2.4. The first root node 

selected is simply that node with the highest magnitude value in the image. After the 

first edge path has been searched by the algorithm, subsequent root nodes are chosen if 

their associated gradient magnitude exceeds the threshold and they do not lie within 

some minimum distance of any previously detected edge path. Search termination is 

effected by one of four conditions: the best path looping on itself, the best path
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intersecting any previously detected path, the best path reaching an image boundary, or 

the internal stack filling up.

The Markov path transition probabilities for all cases, except where noted, are 

those given in the Appendix with the order of the process equal to two (k=2). The

measures p0 and p l used in the branch metrics were assumed to be a linear combination

of Gaussians with parameters estimated from the magnitude map.

The edge operator preceding the SEL algorithm, except where otherwise noted, is a 

combination two-dimensional Gaussian low pass filter and gradient operator. The origi

nal image is convolved with two directional gradient masks to obtain an estimate of the 

gradient in the x and y directions. These gradient masks employ a Gaussian shaped 

window function to reduce the Gibbs effect in their spectral response as discussed in Sec

tion 2.2.4, The x operator has the mathematical function:

. : -x . == y (G * i) •ig."'--'-■" (5.1)

and the y operator has the function:

. ■ Y = s? (G * I) • ip '-(5.2)

where G is the two dimensional Gaussian, I is the original image intensity function and 

ix , Jy are unit vectors in the x and y directions respectively. The X and Y directional 

gradient estimates are then combined to form an estimate of the gradient magnitude, 

M, and direction, D by:
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M

D

*:n-
jx2* ^f]05

V-iQ * I)
i v (<? * m

tan 1
Y
X

(5.3)

The magnitude and direction maps were both quantized to eight bits, which is the 

dynamic range of the original images. This gradient operator is functionally the same as 

the Canny directional derivative operator [Can83]. Of course, non-maximum suppression 

in the direction of the gradient and hysteresis thresholding are not performed here as 

they are in that technique- This operator enjoys a high computational efficiency owing 

to the separability of the daussian kernel.

Only the magnitude values enter into the calculation of the branch metrics in the 

current implementation. The direction map serves two functions. It is used to provide 

the initial search direction, rf0, at the root node and to provide the sign of the search 

direction at subsequent nodes. Since edge contours are searched in a direction orthogo

nal to the gradient direction, two choices are available. This 180° ambiguity is resolved 

during the search by the direction map. Since root nodes generally lie in the middle of 

an edge contour, two search directions are possible from each root node. The algorithm 

searches first in the direction such that the gradient vector points to the right of the 

path and then begins again at the same root node searching in the other direction such 

that the gradient vector points to the left of the path. This second search is obviously 

deleted if the first path closes on itself at the root node. In this way, the entire edge 

contour on which the root node lies is searched by the algorithm- Furthermore, the gra
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dient direction information ensures that the searching proceeds along the edge contour 

and does not double back in the direction from which it came.

6.2. Performance Comparisons

The first thing we are interested in verifying by experiment is whether or not the 

SEL algorithm is more successful at detecting edges from the output of an edge operator 

than are threshold techniques. From the start, our hope has been that sequential detec

tion of edge contours would provide better connected edges, a lower probability of false 

detection at low signal-to-noise ratios, and freedom from the sensitive problem of thres

hold selection as compared to threshold classification techniques. We will examine this 

question from two approaches: using a quantitative performance measure on artificially 

created images and using qualitative comparisons on some real images.

5.2.1. A Quantitative Performance Measure

As a first cut, we will consider an artificial image with a vertical step edge of 

known contrast to which has been added zero mean i.i.d. Gaussian noise of known vari

ance. Thus, the signal-to-noise ratio, defined as:

SNR 20 log10 h
a

dB (5.4)

where h is the edge contrast and ff the noise variance, is a known parameter. An exam

ple of this type of test image is shown in Figure 5.1 at a SNR == 10 dB. Although this 

image is highly unrealistic in that: 1) the edge is a true step, 2) the two halves of the
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image hive a perfectly flat mean, 3) the contrast b constant over the length of the edge, 

and 4) the noise is truly additive i.i.d. Gaussian, it is useful for two reasons. One is that 

the SNR is a known parameter under our control. The second is that it allows the use 

of a simple but effective quantitative performance measure known as the Pratt figure of 

merit [Pra78].

The Pratt figure of merit, denoted here by F, is .a common experimental tool in the 

literature for making objective comparisons among edge detectors. It penalizes a detec

tor for both declaring a pdint that is not on the edge as an edge point and for misSing 

true edge points. Given the test image with a single vertical edge as described above, 

the edge detector is applied and the resultant edge map is used to compute F as follows:

. where:

i b 1
F = — V-----—

4/ f-il + .a/,-3

IM = max(ID,li)

Jj s: number of ideal edge points 

Ij) ~ number of detected edge points 

l- = displacement of the itA detected edge 

point from the ideal edge. 

a = scaling parameter

F ranges in value form 0 to 1.0 (perfect). The merit value for classical edge detectors is 

a strong function of the classification threshold. In practice, the threshold is varied to 

obtain the best F value. This iterative optimization must be repeated for each test 

image (each SNR) desired, as the best threshold for one SNR is generally not optimum
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Figure 5.1: A Pratt figure of merit test image at a signai-to- noise ratio of +10 dB.
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at others. As an example. Figure 5.2 illustrate# the optimum decision thresholds as a 

function of image! SNR for one type of edge detector. Figure 5.3 shows the resulting F 

value as a function of image SNR.

By comparison, there is no pointwise decision threshold for the SEL algorithm. 

The threshold based on complete path metrics is extremely robust. In fact, the SEL 

examples given throughout this Chapter all used the same threshold. This freedom from

sensitive thresholds represents one of the distinct advantages of SEL.

The results of applying SEL to these artificial test images are contrasted with two 

threshold type detectors in Figure 5.4: the 5x5 Sobel [Dud73] is representative of small, 

gradient type detectors that appeared early in the literature; the Canny detector [Can83] 

is one of the latest of the large support detectors, using directional non-maximum 

suppression (equivalent to zero-crossing detection of the second derivative) and hysteresis 

thresholding. In the upper series of iiiages, the edge operator used tor both the thres

hold detector and SEL was the Sobel operator. The original test image at SNR = +7 

dB is in 5.4a. 5.4b is the output of the 5x5 Sobel edge operator. Using the experimen

tally determined optimum threshold on this output, the edge map obtained is shown in 

5.4c. The merit value is F = 0.59. At this SNR, a simple threshold on the Sobel opera

tor output is quite obviously inadequate. Much of the true edge is missed and many 

false edge points are present. A lower threshold might improve connectivity along the 

true edge somewhat, but only by admitting even more false alarms. The SEL output 

uting the tame 5x5 Sobel magnitude map (5.4b) at input is shown in 5.4d. Its figure of 

merit is F — 0.99. This edge map clearly shows the advantage of sequential searching 

over thresholding. Connectivity of the detected edge is complete, the edge almost per-
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0.00

Signal to noise ratio

Figure 5.3: Pratt figure of merit value vs signal-to-noise ratio for one 3x3 operator.
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fectly coincides with the true edge, and there are no false alarms.

At lower signal-to-noise ratios, small 5x5 operators are inadequate. The lower series 

of images in Figure 5.4 consider a much larger and more sophisticated edge operator. 

Here, the test image has SNR = -7 dB (5.4e). The magnitude map of the operator is 

given in 5.4f. This is the magnitude of the gradient of the Gaussian smoothed image, 

M, as described in Section 5.1. For this example, the siandard deviation of the G filter 

was a — 3.5 pixels. The edge map of Figure 5.4g was obtained by the Canny method 

from the magnitude and direction maps (before quantization to eight bits). That is, 

non-maximum suppression in the direction of the gradient is performed, followed by 

thresholding with hysteresis [Can83]. Even with this sophisticated method, it is again 

impossible to choose hysteresis thresholds such that good connectivity and few false 

alarms are achieved. In 5.4g, despite the many false edges, the connectivity along the 

true edge is still not complete. The merit value for 5.4g is F — 0.26. When SEL is 

applied to the tame operator output, the resulting edge map is as in 5.4h with F = 0.52. 

Although there is one false edge segment at this low SNR, the true edge is detected with 

a completely connected contour. Furthermore, there is no trial and error selection of 

thresholds as in 5.4g.

5.2,2. Qualitative Comparisons

Even more striking comparisons then in the foregoing Section may be made with 

real images. This results from the fact that the artificial images are inadequate models 

of reality in many respects. Chief ; among these are the independence of the additive 

noise and the homogeneity of these images. Both of these characteristics tend to make 

threshold-type detectors appear better than they are. In a homogeneous image with
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Figure 5.4: (a) Pratt figure of merit test image at SNR = +7 dB. (b) Gradient magni
tude map obtained from a 5x5 Sobel operator, (c) Sobel detector output 
after application of a decision threshold to (b). (d) SEL output using (b) as 
input, (e) Pratt figure of merit test image at SNR = -7 dB. (f) Gradient 
magnitude map obtained from a Gaussian weighted gradient operator with
<r = 3.5 pixels, (g) Output of Canny directional derivative detector, (h)
Output of SEL algorithm.
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independent noise, the best threshold to use at one location of the image is also optimum 

everywhere else. However, in real images, such coincidences do not occur in general. 

The relative merits of sequential searching over thresholds then becomes even more 

'important. .

To illustrate, we will again compare SEL to the two edge detectors considered in 

Section 5.2.1. For the small support Sobel operator we will consider the fairly high con

trast image of Figure 5.5a. The Sobel operator output for this image is shown in Figure 

5.5b. After application of a threshold, the edge map appears in 5.5c. This simple exam

ple clearly illustrates the classic trade off between connectivity and sensitivity. In 5.5c, 

many of the principal edges have dropout regions where the contour is broken. Note 

especially the lowest contrast part on the right of the image. And yet, despite the dro

pouts, other strong edges have multiple pixel widths and there are many spurious false 

edge points. The SEL edge map, using the same Sobel operator input data, shows com

pletely connected, single pixel width edge contours (Figure 5.5d), The low contrast part 

on the right is detected as well as the higher contrast parts. The good connectivity 

results in object bounding contours that are closed in every case. This characteristic 

may be of great importance to a subsequent processing step such as shape analysis. Exe

cution time for the SEL algorithm on a VAX 11-780 processor was 1.29 CPU seconds to 

obtain 5.5d.

The digital subtraction angiography image of Figure 5.6a is a challenging test for 

the large support Gaussian weighted gradient operator as the edges in that image are of 

low contrast and the signal-to-noise ratio is poor. This image is obtained by making two 

radiographs of the same area of;the body in, succession. Before the second exposure is
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Figure 5.5: (a) Original machine parts image, (b) Gradient magnitude map obtained 
from a 5x5 Sobel operator, (c) Edge map after application of decision thres
hold to (b). (d) Edge map from SEL algorithm using (b) as input.
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made, a contrast dye with a high attenuation to X-rays is introduced into the blood. 

When the two exposures are subtracted, the vessels carrying the contrast dye show up 

more clearly relative to background structures than in either single exposure. Figure 

5.6b shows the magnitude of the gradient for an operator with Gaussian standard devia

tion a — 2.0 pixels. When the Canny detector is applied to this angiogram image, the 

resulting edge map is as shown in 5.6c. Here, the poor connectivity and threshold sensi

tivity is very apparent. We again see the many false edge contours and yet some true 

edge points such as in the right branch of the artery are missed. In this image, the edge 

contrast and SNR change over a wide range which exacerbates the task of threshold 

selection. The SEL results using the same gradient information is given in 5.6d. The 

edge operator is exactly the same in both 5.6c and 5.6d. \The difference is that instead of 

performing non-maximum suppression and thresholding with hysteresis on the operator 

output to get the edge map, the SEL algorithm is used. The edge connectivity and false 

edge rejection characteristics compare favorably with 5.6c. Execution time for the SEL 

algorithm for this example was 6.59 CPU seconds on the VAX 11-780 processor.

A comparison with another edge detector prominent in the literature is made in 

Figure 5.7. Here, the SEL algorithm is compared to the facet model operator of Haralick 

[Har84j. That operator also uses non-maximum suppression in the direction of the gra

dient. A threshold is applied to a measure of the edge contrast taken from a fitted 

parametric model of a local neighborhood. In this Figure, the output of an 11x11 size 

neighborhood operator is shown in b, and the SEL output using a a =1.5 gradient 

operator is shown in c. This size operator was chosen in this comparison because the 

number of coefficients in the operator-window is the same as for the 11x11 facet opera

tor. Again, the SEL output exhibits better connectivity and rejection of false edges, and



Figure 5.6: (a) Original arterial angiogram image, (b) Gradient magnitude map ob
tained from a Gaussian 'weighted gradient operator with & — 2.0 pixels, (c) 
Edge map obtained from Canny directional derivative detector, (d) Edge 
map from SEL algorithm using (b) as input.



does not require the interactive selection of a decision threshold.

These examples illustrate the advantage of using a non-local sequential search pro

cedure over a local threshold-based decision strategy. Quite apart from any considera

tions of the edge operator, at low signal to noise ratios, decisions involving large numbers 

of edge points are more easily made than when only a few edge points are considered. 

Instead of attempting to choose a decision threshold to make the edge / no edge classifi

cation on a pixel by pixel basis, the SEL algorithm makes a decision based on the many 

edge points contained in a long hypothesized path. It is this ability to utilize the soft 

information over many points rather than forcing hard decisions at every point that 

gives the technique its advantage in noisy situations.
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5,3* Short Error Segments and the Markov Path Model

As noted in Sections 3.2.4 and 3.3.2, the Chernoff-based bounds oh the distribution 

of computation and long error segment probability are not sufficiently tight to be 

directly useful for numerical results. Rather, that analytical Work is useful for establish

ing the characteristics of sequential searching in images; to answer qualitative questions 

about the search behavior.

However we can illustrate the effect of the Markov Chain model for paths on the 

occurrence of short error segments. As discussed in Section 3.3.3, the use of the Markov 

model ought to make noise induced, small, erratic deviations from smooth straight edges 

less frequent. This is because the transition probabilities bias the branch metrics in 

favor of smooth edges which have higher a-priori probabilities. This may be experimen

tally verified by using an artificially generated image with straight edge segments at



Figure 5.7: (a) Original arterial angiogram image, (b) Edge map obtained from 11x11 
Haralick facet model directional derivative detector, (c) Edge map from 
SEL algorithm using a a = 1.7 pixel (11x11) Gaussian weighted gradient 
operator as input.
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know n locations.

In Figure 5.8a we show the test image used for this purpose. The central region is 

of higher intensity than the surrounding background, the dividing border being a square 

with sides of length 64 pixels. White Gaussian noise has been added to bring the SNE 

to 10 dB in 5.8a and -3 dB in 5.8d. 5.8b and 5.8c show the results of the SEL algorithm 

on 5.8a with and without the Markov path model respectively. For the latter case, 

instead of the Markov transition probabilities entering the path branch metric, all path 

transitions were made equi-probable. That is, path transitions of left, straight, or right 

were simply set equal to one-third. Thus, all paths of the same length have equal a- 

priori probabilities. As can be seen from 5.8b and 5.8c, the path model has no effect at 

high SNR. The likelihood ratios of observations in the path metric completely dominate 

the path transition probabilities, be they Markov or equi-probable, so the detected edge 

coincides with the correct edge in either case.

The situation at low SNR is quite different, however. Figures 5.8e and 5.8f make 

the same comparison as before but now at -3 dB SNR. In this case, the high noise 

power corrupts the likelihood ratios to such a point that the detected edge in 5.8f (equi- 

probable paths) shows many small, erratic curves and bends where the true edge runs 

straight. The incorporation of the Markov model in the path metric (Figure 5.8e) has 

the effect of reducing these deviations. Notice that when the true edge does turn, as at 

the corners of the square, the searching algorithm responds appropriately. Here, the 

likelihood of the observations along a straight but incorrect path into the background is 

so low compared to that of the observations around the corner that the path with the 

highest metric follows the true edge. Thus, we see that the path branch metric derived



Figure 5.8: (a) Test image at SNR = +7 dB. (b) SEL output with Markov edge model 
incorporated in the algorithm, (c) SEL output without Markov edge model 
incorporated in the algorithm, (d) Test image at SNR — -3 dB. (e) SEL 
output with Markov edge model incorporated in the algorithm. The prepro
cessing edge operator is a Gaussian weighted gradient with a — 3.0 pixels, 
(f) SEL output without Markov edge model incorporated in the algorithm.



in Section 2.2.3 strikes a subtle balance between the gradient observations and the a- 

priori probabilities of path topologies.

5.4. Correlated Random Fields

The premise advanced in Chapter 4 is that a particular model of the correlation 

among the random variables of a field implies that observations along paths searched by 

SEL are ARMA. This allows the searching metric to be based on an uncorrelated inno

vations sequence that results from passing the actual observations through a causal 

linear filter. Three questions remain unanswered. First, how appropriate is the D-S1M 

model? After suitable fitting of the model to a real image, how accurately does it reflect 

the actual correlation among pixels in the image? Second, how uncorrelated are the 

innovations obtained along search paths in an actual image? Finally, in what way, if at 

all, does this processing aid in the detection of edges by the SEL algorithm?

We may answer the first two questions by examining the autocorrelation function 

of observations and innovations along search paths. The model we have used is the 

second order D-SIM:
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R, (A-,/) = <? [e, +i'i« + Cje-.a‘i +nn] (5.9)

Therefore* the observations along paths in the field obey (by Theorem 4.2):

/«■ “ $1 f (<)-i ~ ^2 / (0-2 — %) -

{%>%)]■ 0 * 7^ i .

(5.7)



For the sake of computational efficiency and stability we have considered only the 

autoregressive terms. The moving average coefficient is assumed to be zero. To fit 

the model to an image, the parameters'^ and <f>2 must be estimated. This is accom

plished by generating a random path through the image. The observations along the 

path are used to estimate the values of the autocorrelation function by time averages. 

The autoregressive coefficients can then be estimated from the autocorrelation function 

by standard methods [Box70]. The fitted ARMA model is then used to obtain the inno

vations sequence along search paths in the manner of Section 4.3.3.

To judge the effectiveness of the ARMA model in reflecting the actual autocorrela

tion function of path observations as well as its ability to remove correlation in the gen

erated innovations sequence, we find the time averaged estimates of the autocorrelation 

function along actual detected edge paths after the search algorithm is terminated. The 

autocorrelation function of the generated innovations along those paths can also be 

estimated. These two functions are then compared to the theoretical autocorrelation 

function predicted from the ARMA model. These results are shown in Figure 5.9. The 

long- dashed curve in Figure 5.9 is the experimentally determined autocorrelation func

tion of observations along detected edge paths in an image. The solid curve is the auto

correlation function predicted from the ARMA model fitted to the image as above. The 

short-dashed curve is the autocorrelation function of the innovations sequence along the 

same detected edge paths. Two observations may be made. One is that the fitted 

ARMA model does a creditable job of modeling the actual correlation among observa

tions along a path. The second is that the autocorrelation function of the innovations 

process, while not purely impulsive as it would be if it were truly uncorrelated, is 

nevertheless much less correlated than the original observations.
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Figure 5.9: Long dashed line: measured autocorrelation function along paths in a real 
image. Solid line: autocorrelation function along paths in the fitted D-SIM 
random field model. Short dashed line: autocorrelation function of the inno
vations process along the same paths in the real image.



The effect of using this predictive'filter inthe searching algorithm is dramatic. 

Beyond its theoretical importance, the ability to predict the next path observation from 

the previous observations reduces tbe amount1 of incorrect path searching, reducing the 

average computation time. This is easy to see in light of the results obtained in 

Chapters 3 and 4. From Equation (5,7) we see that variance of the innovations process 

must be less than that of the original observations. This means that there is necessarily 

less overlap in the conditional densities p t and p0 (see Figure (3.9) and Equation (3.29)) 

since the two processes have the same mean. Consequently, the quantity D (ap) is 

smaller so the bound on the distribution of computation is lower.

This effect is clearly visible in the processing of real images. We determine the 

effective search rate, i.e. the ratio of detected edge nodes to the total number of nodes 

searched. This can be graphically illustrated by performing the sequential searching 

with a limited stack size. Identical edge contours are searched with and without the 

predictive filter. Because of the limited stack, if the search rate is low, e g. when the 

predictive filter is not used, only a portion of the edge contours are detected before the 

stack fills up. When the filter is used, however, many fewer incorrect paths are searched 

allowing more of the true edge contours to be detected. Figures 5.10 and 5.11 are two 

such examples. The original images are in the upper left of the Figures. In the lower 

right and lower left we see the resulting edge contours as determined by the SEL algo

rithm with and without the predictive filter, respectively. The stack size is limited to 

2000 nodes in each case and, other than the filter, they are processed in identical 

fashion. The first three start nodes as determined by the algorithm are in the vicinity of 

the numbers and are the same for both variations of each image. In Figure 5.10, the 

number of nodes detected by the algorithm for the three paths shown is 81, 41, and 49
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wben the filter is not used. When the predictive filter is used, 393 edge nodes are found 

from the first start node, 319 from the second, and 310 from the third. In fact, as can 

be seen from the Figure, the entire edges associated with those start nodes are detected 

when the filter is in use. To put these numbers in perspective, consider the fraction of 

detected nodes to total nodes searched (4000 nodes per root node). When the filter is 

not in use this fraction is about 1/70, but it jumps to roughly 1/12 with the filter. 

Thus, the use of the predictive filter is seen to increase the effective search rate (number 

of detected nodes / number of nodes searched) by a factor of 0 for this image. In Figure 

5.11, 162, 133, and 68 nodes are detected starting at the root nodes shown without the 

filter. Using the filter, the corresponding numbers are 553, 164, and 550. If we ignore 

the second contour in each case, the filter is seen to increase the search rate from about 

1/40 to 1/8 or by a factor of 5. (The reason we do not consider the second contour is 

because the search is terminated early when the first contour is intersected for the case 

the filter is used, but no such intersection occurs when the filter is not used.)

Before leaving this topic, it is interesting to see a picture of all the nodes searched 

in an image. This gives a visual impression of how the amount of computation varies 

spatially over an image. In Figure 5.12 we again show the angiogram image of Figure 

5.8, but here the overlay consists Of every node ever visited by the search algorithm 

rather than just the final edge paths decided upon. As can be seen in this Figure, in 

those portions of the image where the contrast is high, very little incorrect searching is 

performed. However, where the contrast is low (e.g. at the artery junctions in the lower 

right), many additional nodes have been hypothesized as the algorithm attempts to find 

the best path.



Figure 5.10: (a) Original image, (b) Final edge map from SEL. (c) SEL detected 
edges from the three indicated root nodes without the use of the predic
tion filter, (d) SEL detected edges from the same three indicated root 
nodes with the prediction filter in use.
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Figure 5.11: (a) Original image, (b) Final edge map from SEL. (c) SEL detected 
edges from the three indicated root nodes without the use of the predic
tion filter., (d) SEL detected edges from the same three indicated root 
nodes with the prediction filter in use.

■ XX-



Figure 5.12: Image showing all the nodes searched by the SEL algorithm in the image 
of Figure 5.6a. The edge map of Figure 5.6d generated by the algorithm 
is overlaid in black. The white areas are all the other, incorrect nodes 
visited by the algorithm.
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5.5. Examples

In this Section we present a number of experimental results to demonstrate the effi

cacy of the SEL approach. To demonstrate its usefulness in detecting linear features 

other than intensity edges, we have included an example of ramp edge detection and of 

line detection.

6.5.1. Ramp Edge Detection

Ramp edges in images are characterized by an intensity profile across the edge that 

rises linearly to a point and then decreases linearly thereafter. Because they are gen

erally very wide and because the intensity gradient is nearly the same over this width, 

gradient-type enhancement operators are ineffective on these edges. The location of the 

edge is generally taken to be the top of the ramp. Since the gradient direction changes 

by it at this point, one possible enhancement operator suggested by Machuca and Gil

bert {MacSlj calculates the integral:

T ■— / dQ (t) (5*)
■ • ° -

on a closed curve C around every point in the image. In Equation (5.8), 0 (f ) is called 

an angular function of the gradient direction field D (Equation (5.3)) and is given by:

©(<) = D (t) - D (t0) (5.9)

where f0 is any starting point on the curve C. The integral 7 is therefore just the 

integral of the changes in gradient direction around a closed curve. If C surrounds a 

point lying on an intensity step edge, the gradient direction is constant everywhere
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around the point ad 7 = 0. If, however, the point is on a ramp edge for which the gra

dient direction differs by JT radians on either side of the edge, then 7= 2tt.

For this example, our test image is the artificial range image of Figure 5.13a. Here 

intensity is proportional to range from the viewer. It is of a three dimensional cube in 

which holes perpendicular to the faces have been drilled. The image exhibits step edges 

at the block boundaries due to depth discontinuities. It exhibits purely ramp edges 

where the front face meets the left face, where the front face meets the top face, and 

where the left face meets the top face, There are also more complicated combinations of 

step and ramp edges at the rims of the holes. Because the range (intensity) is continu

ous at the ramp edges, they do not show up at all in the gradient magnitude map of Fig

ure 5.13b. ;;.

Wd implement a simple ramp edge enhancement operator by approximating 7 in 

Equation (5,8) by:

-< - E = E K., D?1 (510)
1 1 L J

Here, rj , » G [1,8] is the, set of eight nodes surrounding a point in a 3x3 neighborhood. 

(Note that ?9 — 71) The 7 is the sum of changes in gradient direction going around 

those eight, neighbors of a point. When this operator is applied to the gradient direction 

map D, the result is shown in Figure 5.13c. Unlike 5.13b, the ramp edges are clearly 

visible here. Figure 5.13c also shows fainter ramp edges on either side of step edges in 

5.13b because of the change in gradient direction caused by low pass filtering the step

edges.



Figure 5.13: (a) Original range image of a 3-D cube. Intensity is proportional to dis
tance from viewer. (b) Step edge magnitude map. (c) Ramp edge magni
tude map. (d) SEL edge map using both step edge and ramp edge magni
tude maps as input.



To obtain the edge map in Figure 5.13d, the SELaigorithmwas firstapplied to the 

gradient magnitude map of 5.13b to obtain the Step edges and then to the 7 map of 

5.13c to obtain the ramp edges. Thus, the same SEL algorithm is seen to detect two dif

ferent types of linear features (step and ramp edges) simply by using different prepro

cessing operators.

5.5.2. Line Detection

Lines are another linear feature of interest in images. Figure 5.14a shows an aerial 

photograph containing roads which have a line like intensity profile. Using simple hor

izontal and vertical line operators suggested by Rosenfeld and Thurston. |Ros71]:

-1—1 -1
2 2 ■■ 2

combined as: L = [/A2 + /„2]0'5, we obtain the "line magnitude map” of Figure 5.1 lb. 

This magnitude map may be searched by the SEL algorithm in the same fashion as for 

other linear features. The resulting detected line map is shown in Figure 5.14c. While 

the line operator used here is not particularly sophisticated, this example and that in the 

previous Section demonstrate that SEL is effective for the detection of linear features in 

two-dimensional arrays independent of the nature of the feature. Only the preprocessing
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. Figure 5,14':^:‘(:a} Original aerial image of landscape, (b) Line magnitude map obtained 
using line operators described in text, (c) SEL output using (b) as input.



operator must be tailored to emphasize tho desired feature.

5.5.3. Other Examples

Finally, in this Section, we present some results from applying the SEL technique 

to a variety of images with intensity step edges. In all of these examples, the preprocess

ing operator is the Gaussian weighted gradient and the SEL particulars are as given in 

Section 5.1. The gradient operator is of width <r <c [1,2].

The Figures are divided into two types. In the first type a number of medical 

images have been examined. Figures 5.15 through 5.17 are arterial angiogram images as 

described in Section 5.2.2. These are followed in Figures 5.18 and 5.19 by heart ventricle 

images generated by a similar procedure. It is important to note in all of these examples 

that no human operator interaction is necessary to obtain the results; the processing is 

completely automatic.

The second type of example, Figures 5.20 and 5.21, is of machine parts. Again the 

processing is totally automatic. The excellent connectivity and completely closed bound

ing contours in the edge maps are desirable attributes since edge detection applied to 

such images is generally part of a much larger computer vision scheme. Subsequent pro

cessing tasks such as shape analysis and object recognition are greatly facilitated by high 

quality edge maps.

5.6. Conclusions

In this thesis, we have advanced an argument for performing the detection of linear 

features in images and two-dimensional random fields in a sequential manner. We have
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Figure 5.15: (a) Original angiogram image, (b) SEL edge map overlaid on (a).
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Figure 5.16: (a) Original angiogram image, (b) SEL edge map overlaid on (a).
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Figure 5.18: (a) Original ventricle image, (b) SEL edge map overlaid on (a).
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Figure 5.19: (a) Original ventricle image, (b) SEL edge map overlaid on (a).
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Figure 5.20: (a) Original parts image, (b) SEL edge map
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Figure 5.21: (a) Origins! parts image, (b) SEL edge map.



formulated the problem as a best path tree search, proposed a Markov model for paths 

in two-dimensional random fields, and derived a p,ath branch metric. This metric was 

shown to possess an important conditional drift characteristic for sequential searching. 

Next, theoretic bounds were found on the algorithm’s distribution of computation and 

probability of error. These bounds are useful in describing the qualitative behavior of 

the searching algorithm as a function of the parameters of the random field model. This 

theory was then generalized to the case of correlated random fields. A Markov random 

field model was proposed for which it was shown that observations along search paths 

obey a finite order difference equation. Therefore, a causal linear filter may be con

structed such that optimum (in the mean squared error sense) predictions of future path

observations may be calculated to aid in the search process.

The sequential detection technique proposed here was implemented in software and 

used for a number of experiments. These experiments were designed to illustrate and 

substantiate the analytical results. The method was compared to several current tech

niques in the literature op the basis of both a quantitative performance measure and 

subjective quality using real images. The effect of the Markov path model and of the 

predictive filter for correlated observations was explored. Finally, examples of the use of 

this technique for ramp edge detection, line detection, and step edge detection were pro

vided.

This method of detecting linear features was shown to produce very well connected 

edge maps, with a low false edge detection probability, and with a minimum of user 

interaction. These characteristics are all extremely important in many computer vision

applications.
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There are numerous possible avenues for future research. On the analytic side, the 

path branch metric is only as good as the model for the conditional measures p0 and p j. 

While these were merely assumed to be Gaussian with parameters estimated from the 

image in the current implementation, future work might be directed toward finding 

more accurate models for these distributions. Also, the whole question of vector obser

vations is open. On the algorithmic side, several possibilities exist. Only the stack algo

rithm was investigated here. In particular, the Fano search algorithm (Section 2.3.5) is 

an attractive alternative as it would allow a very fast hardware implementation. 

Knowledge-based root hode selection and termination strategies might also be examined. 

These are appropriate where some prior knowledge of the image content is available. 

Finally, a knowledge-based component to the path metric in the manner of Ashkar and 

Modestino [Ash78] may prove very useful where much is known about the image.
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APPENDrX

Markov Transition Probabilities for Paths

In Section 2.2.2 we introduced a Markov model for paths in a two-dimensional rec

tangular lattice. According to this model, a path is denoted by a start or root node, a 

starting direction, and a sequence of direction transition letters:

. ' . \ ■ m = r0 X d0 X Ja1, , , «„ J

ai G A — |z» ,S ,R j

The state of the process is denned to be the last k transition letters:

and the a*priori probability of such a path is given by:

Pr (m) = n Pr (s, | s.-.J
I -l

In this appendix we will address the question of how the state transition probabilities! are 

estimated.

The state transition probabilities may be estimated from a collection of images in 

the following manner. Ah edge detector is applied to the images in the collection and 

the resulting edge maps obtained. For the present purposes, complete connectivity is 

not essential, but edge thinness is. Therefore, edges with multiple pixel width are dis

carded from the edge maps. The connected edge segments in these edge maps are then
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traced, recording the sequences of direction changes along their length. If a direction 

change of ?r / 2 or greater is observed, the sequence is terminated at that point and the 

rest of the edge is treated as a new edge segment. It may be noted that this is a very 

rare occurrence. These sequences of direction changes for edges in the images of the col

lection can then be used to find the corresponding state sequences, since, given an initial 

state, $ 0, a state sequence is uniquely determined from the the direction change sequence 

(Equation 2.4). The initial state is assumed to be the "all straight” state:

= [s.,,s]

Finally, the probabilities of the state transitions Pr («,• | .."*•) are estimated as the rela

tive frequency of those transitions in the observed state sequences. Thus, the state tran

sition matrix is estimated from the relative frequencies of state transitions along edge 

segments of the images in the collection.

The collection of images used for this purpose include man-made parts as well as 

natural scenes. Two tables of transition probabilities are shown in Figures A.l and A.2 

for k — 2 and k = 3 order Markov models. Note for example that the state transi

tion from "all straight” to "all straight” has a much higher probability than the transi

tions "all straight” to [S,S,RJ or [S,S,L] (or [S,S,S,R], (S,S,S,LJ). Also, very erratic states 

such as [S,R,L,R,] have a low probability of occurrence.
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State i: State i+ls Transition Probs Prob of State i

L,L L,L 0.1958
L,L L.S 0.2028 0.0712
L,L L,R 0.6014

L.S S,L 0.1399
L,S S,S 0.5267 0.0605
L,S S,R 0.3333

L„R R,L 0.2894
L,R R,S 0.3293 0.1247
L,R R,R 0.3812

S,L L,L 0.2140
S,L L, S 0.0856 0.0640
S,L L,R 0.7004

S,S S,L 0.0942
s,s s,s 0.8116 0.3594
s,s S,R 0.0942

S,R R,L 0.7004
S,R R,S 0.0856 0.0640
S,R R,R 0.2140

R,L L,L 0.3812
R,L L,S 0.3293 0.1247
R,L L,R 0.2894

R,S 3 S,L 0.3333
R,S s,s 0.5267 0.0605
R,S S,R 0.1399

R,R R,L 0.6014
R,R R,S 0.2028 0.0712
R,R R,R 0.1958

Figure A.l State transition probabilities and state probabilities for a k — 2 Markov 
path model.
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State i: State itl: Transition Probs Frob of State

L,L,L L,L,L 0.3922
L,L,L L.L.S 0.1176 0.0134
L.L,L L,L,R 0.4902

L.L,S L,S,h 0.1600
L,L,S L ,S,S 0.3200 0.0131
L,L,S L,S,R 0.5200

L,L,R L,R.L 0.1369
L,L.R L„R.S 0.2500 0.0440
L,L,R L,R,R 0.6131

L,S,L S,L.L 0.3529
L,S,L S,L,S 0.1471 0.0089
L,S,L S,L,R 0.5000

L,S/S S,S.L 0.0960
L,S,S S,S,S 0.6560 0.0327
L,S,S S,S,R 0.2480

L/S.R S,R,L 0.6329
L.S,R S.R.S 0.1139 0.0207
L.S,R S.R,R 0.2532

L,R,L RL,L 0.2302
L.R.L R,L,S 0.2590 0.0364
L,R,I R.L.R 0.5108

L>R,S R,S,L 0.2704
L,R,S R.S,S 0.6164 0.0416
L,R,S R.S,R 0.1132

L,R,R R,R,L 0.7353
L,R,R R.R.S 0.1118 0.0445
L.R.R R.R,R 0.1529

S,L„L L.L/L 0.1500
S,L,L L,L,S 0.5750 0.0105
S,L*L L,L,R 0.2750

S,L„S L,S,L 0.2000
S#L,S L,S,S 0.4500 0.0052
S,L,S L.S„R 0.3500

S,L,R L,R,L 0.2326
S,L,R L,R,S 0.4651 0.0450
S.L.R L.R.R 0.3023

S& S, L S.L.L 0.1484
S/S.L S,L.S 0.0469 0.0335
s,s,l S.L.R 0.8047

s,s,s S,S.L 0.0758
s.s,s S.S.S 0.8484 0.3007

Figure A.2: State transition probabilities and state probabilities for a k = 
path model.

3 Markov



-185-

s,s,s S,S,R 0.0758

S,S,R S,R,L 0.8047;
S,S,R S,R,S 0.0469 0.0335
S,S,R S.RjR 0.1484

S>R;L R,L,L 0.3023
S,R,L R,L,S 0.4651 0.0450
S.R.L R.L.R 0.2326

S,R,S R.S,L 0.3500
S,R,3 r/s,s 0.4500 0.0052
S,R,S R,S,R 0.2000

S,R,R R.R.L 0.2750
S,R.R R,R.S 0.5750 0.0105
S.R,R R,R,R 0.1500

R.L.L L,L.L 0.1529
R,L,L L.L.S 0.1118 0.0445
R,L>L L,L,R 0.7353

R,L,S L,S,L 0.1132
R.L,S L.S.S 0.6164 0.0416
R,L.S l,s,r 0.2704

R,L;R L,R,L 0.5108
r.l,r L,R,S 0.2590 0.0364
R.L,R L,R,R 0.2302

R,S,L S,L.L 0.2532
R# S, L S.L,S 0.1139 0.0207
R,S,L S,L,R 0.6329

R,S,S S, S, L 0.2480
R,S,S S,S,S 0.6560 0.0327
R,S,S S,S,R 0.0960

R,S,R S,R.L 0.5000
R.S.R S,R,S 0.1471 0.0089
R.S,R S.R.R 0.3529

R,R,L R.L.L 0.6131
R.R,L R.L.S 0.2500 0.0440
R,R,L R.L.R 0.1369

R,R,S R.S.L 0.5200
R,R.S R.S.S 0.3200 0.0131
R,R,S R.S.R 0.1600

R,R,R ' RvR.L 0.4902
R,R,R R.R.S 0.1176 0.0134
R,R,R R.R.R 0.3922

Figure A.2 (continued).

f
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