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ABSTRACT

Schwartz, Stephen Sylvester. Ph.D., Purdue University, May 1985. Zinc Oxide- 
on-Silicon Surface Acoustic Wave Devices. Major Professor: Robert L.
Gunshor.

A monolithic ZnO-on-silicon surface acoustic wave (SAW) memory correla­

tor has been fabricated which utilizes induced junctions separated by ion 

implanted regions to store a reference signal. The performance characteristics 

of this device have been investigated including storage time, dynamic range, 

and degenerate convolution efficiency. Verification of the existence of charge 

storage regions is possible prior to completed device fabrication.

A theory explaining the charge storage process is developed and applied to 

the implant-isolated storage correlator. The implant-isolated correlator theory 

is applied to related structures which employ slightly different storage mechan­

isms. The ion implanted correlator is used to determine the wave potential 

associated with a propagating SAW.

Characteristics of ZnO-on-Si SAW resonators with sputtered ZnO films 

limited to the interdigital transducer (IDT) regions are investigated. Upper 

limits on propagation loss for surface waves on silicon substrates are deter­

mined by employing externally coupled limited ZnO SAW resonators. Resona­

tor Q-values are enhanced by restricting the lossy ZnO area and predictions are 

made as to achievable Q-values for resonators fabricated in the externally cou­

pled configuration. Experimental results for limited ZnO, internally coupled 

ZnO-on-Si resonators are also given.



XVI

A complete theory for the mode conversion resonator is presented which 

predicts the array separation for proper device operation. The theory also 

gives way to a special condition for spatial independence of resonator output 

with respect to IDT placement. Mode conversion resonators are fabricated 

which experimentally verify these predictions.
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CHAPTER 1 

INTRODUCTION

The introduction of surface acoustic wave (SAW) devices has permitted 

the performance of many signal processing functions on the surface of crystals 

which previously required unwieldy waveguides and microwave structures. 

Because surface acoustic waves propagate at velocities of the order of 105 times 

slower than electromagnetic waves at the same frequencies, signal processing 

functions in the UHF-VHF range involving many rf cycles can take place on a 

very small area of the substrate. Single crystal piezoelectric materials such as 

quartz, LiNb03, and GaAs permit the transduction between electrical and 

acoustic microwave signals. The excitation of surface acoustic waves has also 

been demonstrated on non-piezoelectric substrates through the use of 

piezoelectric thin films deposited on their surfaces. Boundary conditions 

imposed by the surfaces of these material configurations support surface 

acoustic wave modes (Rayleigh waves) which propagate with wave energy 

confined to within roughly one wavelength of the surface. In the layered 

medium case, where the piezoelectric film thickness is much less than a 

wavelength, most of the wave energy is in the silicon substrate.

Signal processing capabilities afforded by SAW devices include delay 

functions1’2, filtering3’4’5, and SAW resonators6’7’8’9’10. Furthermore, when 

used in conjunction with semiconductors, these devices can be Used to perform
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such functions as convolution11,12,18, correlation14,15,16, parametric 

amplification17, and optical imaging18. Although some of these operations are 

possible using bulk waves, it is the ability to alter,, reflect, and sample waves at 

the surface of the material which allows most of the functions to exist.
• ; ' '■ ' i

In this report we are concerned with a variety of SAW devices which use a 

thin rf sputtered piezoelectric ZnO film atop thermally oxidized silicon 

substrates for wave excitation. It is important to note that despite the need 

for only very thin ZriO layers for SAW excitation, the piezoelectric has a 

significant effect upon the wave velocity, dispersion, and coupling level. An 

exhaustive study of these properties of wave propagation in the layered 

medium has been undertaken by several authors19,26,21. In this work we 

utilize the results of their investigations in the fabrication of several devices.

The layered configuration, shown in Fig. 1.1, consists of a silicon substrate 

which has been thermally oxidized. The oxide layer, which is an excellent 

surface on which to grow well oriented ZnO films (necessary for high 

electromechanical coupling), serves to passivate the substrate and to isolate the 

silicon from the semiconductive ZnO film. In addition, it has been shown that 

by controlling the Si02 thickness, one can make SAW resonators which are 

temperature stable over a wide temperature range22. The piezoelectric ZnO 

film permits not only the excitation of surface acoustic waves, but it allows one 

to capitalize on SAW-semiconductor interactions. Because of the ZnO layer, an 

acoustic wave has a propagating electric field associated with it which 

penetrates into the underlying silicon substrate through the thin Si02 layer, 

thereby enabling one to take advantage of the nonlinear effects of the 

semiconductor. More about this later.
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Figure 1.1

The layered MZOS configuration.
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The layered Zn0/Si02/Si configuration has been a starting point for many 

signal processing devices. The attractiveness of the composite structure is that 

it allows one to fabricate rugged monolithic devices capable of being integrated 

as on-chip components as part of an existing silicon technology. In this report 

we present results associated with a new monolithic SAW storage correlator 

and several resonator configurations, all fabricated in some form of the ZnO- 

on-Si composite structure.

1.1 Research Summary

Common to all devices in the layered ZnO/Si02/Si structure, are the use 

of interdigitated metallization patterns placed either on the top or lower 

surface of the ZnO layer, for SAW excitation. Interdigital transducers (IDT’s), 

as they are known, are the most efficient means for exciting surface acoustic 

waves and an understanding of IDT operation is essential in the design of SAW 

devices. We discuss transduction in the layered medium in the next chapter.

As mentioned above, surface acoustic wave devices, when fabricated in 

conjunction with a semiconductor, enable , one; to exploit the nonlinear 

interactions between semiconductor charge carriers and the electric fields 

associated with acoustic waves to perform many signal processing tasks. These 

devices are useful in that the real time multiplication of signals can take place 

to yield both the convolution and correlation of two signals. A storage 

correlator is a device which is capable of storing the replica of a reference signal 

as a spatially varying charge pattern. At some later time, while the reference 

signal still exists in the device, a ”reading” signal is introduced which excites a 

surface acoustic wave whose envelope is the correlation of the stored reference 

signal and the applied reading signal.
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In Chapter 3 we describe both the convolution and correlation processes 

which can be performed in SAW devices. Additionally, we review briefly the 

history of correlators and present results of a new surface acoustic wave storage 

correlator. Although signal storage in correlators has been demonstrated 

effectively through the use of surface states and diodes at the silicon surface, 

the implant-isolated storage correlator, presented in Chapter 3, is a device 

which utilizes induced junction storage regions which are isolated from one 

another by ion implanted regions. We present a theory for charge storage in 

the implant-isolated storage correlator which is based upon MOS fundamentals 

and we obtain excellent agreement with experiment. Our theory is used to 

predict accurately the behavior of a closely related pn diode correlator 

structure.

The new correlator is seen to exhibit long storage times, bias stability, and 

the promise for high dynamic range. Furthermore, the simple structure of the 

implant-isolated device enables one to determine, experimentally and 

analytically, the electrical potential associated with a propagating surface 

acoustic wave.

In addition to nonlinear acoustoelectric interactions available in SAW- 

semiconductor configurations, acoustic reflections alone are employed for many 

SAW device applications. Scattering of surface acoustic waves from short- 

circuited metal strips, isolated metal strips, and grooves etched into 

piezoelectric surfaces have been employed in the fabrication of SAW resonators, 

reflective array compression devices and, recently, a mode conversion resonator 

which exploits the conversion between propagating surface wave modes for its 

operation. The reflection mechanisms from the various reflector configurations 

on numerous piezoelectric materials have been studied in some detail. Our
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interest lies in the reflections of surface acoustic waves from reflectors on the 

ZnO surface in the ZnO-on-silicon composite structure.

To date, SAW resonant cavities have been formed by placing reflector 

arrays opposite one another on the surface of the ZnO. Surface acoustic waves 

excited between the reflectors by an IDT are confined to the two dimensional 

area between reflectors. The resonant standing wave is then detected via 

another IDT. ZnO-on-silicon SAW resonators have been fabricated which 

utilize reflectors of metal strips, as shown in Fig. 1.2, but the most efficient 

reflectors are those made by ion milling grooves into the ZnO surface. 

Resonators fabricated with such reflectors have yielded Q values in excess of 

12,000. Device Q’s are limited by propagation loss associated with the lossy 

ZnO layer. Furthermore, attenuation due to the piezoelectric film is thought to 

increase as f2. The frequency squared loss dependence would severely limit any 

practical applications for these devices at frequencies above a few hundred 

megahertz. As such, one focus of our research has been the design of SAW 

resonators on silicon with reduced propagation loss.

Results of our resonator studies, included in Chapter 4 of this work, deal 

with ZnO-on-silicon devices constructed in a variety of configurations to 

maximize efficiency for high frequency applications. We have fabricated 

externally coupled and internally coupled resonators with ZnO limited to 

transducer regions only. In addition to enhanced Q values achieved by 

restricting the ZnO area, we have minimized previous problems related to 

velocity dispersion and unnecessary radiation damage caused by sputtering. 

Furthermore, the limited ZnO devices allow one to predict the SAW 

attenuation for waves propagating in the Si02/Si configuration and on 

unoxidized silicon.
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The implant-isolated correlator of Chapter 3 and the resonators described 

in Chapter 4 are devices which utilize the first order Rayleigh mode of the 

ZnO-on-silicon layered configuration. When the ZnO layer is of sufficient 

thickness, one can excite not only the Rayleigh mode, but also the second order 

Rayleigh mode, also known as the Sezawa mode. The Sezawa mode has been 

employed in convolvers and correlators because of the large bandwidth 

capability afforded by its high electromechanical coupling. Recently, Melloch 

et. al23. observed the conversion between Rayleigh and Sezawa modes when 

propagating a surface wave through an array of strips or grooves with 

periodicity corresponding to neither the Rayleigh or Sezawa wave periodicity at 

the conversion frequency. In the experiment, a forward propagating Sezawa 

wave was scattered as a backward propagating Rayleigh wave with very high 

conversion efficiency.

The mode conversion process was studied and then applied to a resonator 

configuration where, rather than Bragg reflection of a single longitudinal mode, 

the conversion back and forth between Rayleigh and Sezawa modes was 

utilized for confinement of SAW energy. The principle behind the mode 

conversion resonator is that by placing an IDT of' Rayleigh or Sezawa 

periodicity between properly spaced mode converting reflectors, one can 

simultaneously create standing Rayleigh and Sezawa waves by excitation from 

a single IDT. The two standing wave patterns are a result of contra- 

propagating traveling waves and will be explained in more detail in Chapter 5.

The advantages of the mode conversion resonator are that by coupling 

into the resonant cavity through one mode and coupling out of the cavity 

through another, one can reduce the direct acoustic coupling level below that 

found in conventional resonators which employ IDT’s of the same periodicity.
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In SAW resonators fabricated to date, the separation distance between the 

iDf’s and the properly spaced reflector arrays is critical for proper operation. 

In Chapter 5 we present a revised version of the theory for the mode 

conversion resonator. We use the theory to predict and experimentally verify 

the positional independence of IDT placement between properly spaced mode 

Conversion reflectors for both one-port and two-port resonator structures.

Finally, Chapter 6 consists of a summary of the research effort and 

recommendations for further research.



TRANSDUCTION IN THE LAYERED MEDIUM

To date, the most efficient means of exciting and detecting surface 

acoustic waves (SAW) on piezoelectric substrates as well as layered 

piezoelectric/semiconductor systems is through the use of interdigital 

transducers (IDT’s). A typical IDT, shown in Fig. 2.1, consists of a periodic 

pattern of metal electrodes Which are alternately connected to different busbars 

and separated from ohe another such that fingers and spaces have the same 

widths. When an rf signal is applied between the two busbars of the IDT, the 

adjacent fingers of alternating polarity induce periodic stresses in the 

piezoelectric layer which in turn excite acoustic waves which propagate along 

the surface of the device. The center of the transducer frequency response 

Occurs When the IDT finger width and spacing are one-quarter wavelength of 

the excited wave. It should be noted that, in addition to the IDT structure 

shown in Fig. 2.1, other IDT configurations are routinely employed to provide 

apodization, special weighting, and even unidirectionality. One variation on 

the surface acoustic wave transducer, the separate comb transducer24, will be 

described for use in the implant-isolated storage correlator.
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Figure 2.1

Interdigital transducer (IDT) configuration and accompanying crossed-field
pattern.
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2.1 tiplf G&iipiiiif

Xo perform an analysis of IDT operation, it is imperative that one know 

the phase Velocity, v, and the degree of perturbation in phase velocity, Av, 

which occurs when a massless conductor is placed Upon the previously

Unperturbed surface. The parameter -y- is related to the electromechanical

coupling coefficient k2, by ~ = y . In both single crystal substrates and

/\ y
layered piezoelectric-on-semiconductdf configurations, y is the most 

important parameter used for calculating electromechanical coupling.

In the ZnO/Si02/Si layered structure there are four possible boundary 

conditions Which are used itt the calculation of —- for different IDT

configurations. These. configurations are shown in Fig. 2.2 where the shorting 

plane(s) (if any) are placed at different positions in the ZnO/Si02/Si structure.

We refer tb the IDT coupling —for a particular configuration as"tr ’

Aij

V;A — VA

(1.1)

where the superscript, A, refers to a particular propagating mode such that 

A=R and A=S denote the Rayleigh and Sezawa modes respectively. The 

value yA refers to the unperturbed Wave velocity, that is, the wave velocity for 

a wave propagating ih a structure made Up entirely of the configuration which 

exists between IDT fingers. Similarly, the perturbed wave velocity, VjA, refers 

to the velocity of the wave propagating in a structure of the same configuration 

that exists at ah iDt finger. As an example, the Rayleigh wave coupling 

strength for the transducer configuration of Fig. 2.1, is denoted Aj|.



SHORTING PLANES

0 1 2 3

Figure 2.2

The electrical boundary conditions available when employing shorting 
planes above and/or below the ZnO layer.
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Phase velocity versus normalized film thickness as well as coupling 

coefficients for various boundary conditions are shown in Figs. 2.3 and 2.4 and 

Figs. 2.5 and 2.6 for two different orientations of silicon. The normalized film 

thickness, hk, consists of h, the film thickness and k, the wavenumber of the 

propagating SAW. In Figs. 2.3-2 6, all values were computed for a ZnO film 

thickness 49 times greater than the Si02 layer thickness. The surface wave 

velocity plots were computer generated from a program written by K. L. Davis 

of the Naval Research Laboratory, while the electromechanical coupling curves 

are from Elliott25.

In the plots of electromechanical coupling there are peaks of Rayleigh 

coupling for Aj| and A^ for hk < 0.5 on both (100)-cut arid (lll)-cut silicon 

substrates. To maximize the coupling level in devices such as convolvers and 

memory correlators, ZnO films are grown whose thicknesses correspond to 

riiaximum coupling rit the synchronous frequency. For example, when 

fabricatirig a Rayleigh wave SAW convolver on (lQO)-cut [Oi0]-propagating 

silicon with IDT’s at the top surface of the ZnO (Fig. 2.1), one would grow a 

ZnO film of thickness h such that hk=0.30 (corresponding to the first 

maximum) at the IDT center frequency. At 125 MHz, this corresponds to a 

ZnO film thickness of 1.7 iim. It should be noted that higher electromechanical 

coupling for the Rayleigh mode is possible using very thick ZnO films but such 

films increase propagation loss and decrease operating frequency.

Because of the significant differences in achievable coupling levels between 

the two silicon orientations shown in Figs. 2.4 and 2.6, different substrates are 

used for different applications. Since available coupling levels on (100)-cut 

silicon are higher than on (ill)-cut silicon for the same ZnO thicknesses, (100) 

substrates are most common for convolvers and correlators where high coupling
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SAW velocity dispersion for (lll)-cut, <21 l>-propagating silicon.
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is desired. In SAW resonator configurations, however, maximum coupling is 

not necessary or desired because large peak-to-background levels are sought. 

Additionally, thinner ZnO films give lower propagation loss and higher Q 

values. As a result, SAW resonators are usually fabricated with ZnO films 

which are thinner than those corresponding to the first coupling peak. 

Typically, ZnO-on-(lll)-cut silicon resonators are fabricated with hk =0.15. 

It should be noted, however, that the mode conversion resonators, which will 

be discussed in Chapter 5, are fabricated on (100)-cut silicon substrates because 

one can couple to the Sezawa mode on (100)-cut [010]-propagating silicon with 

a ZnO film less than half as thick as would be necessary on (lll)-cut silicon 

and at the same time, achieve greater maximum coupling.

2.2 Electrical Characteristics

In the devices discussed in this work, the interdigital transducer 

configuration of Fig. 2.1 is employed most often and a knowledge of its 

electrical properties are essential. Characterization of IDT’s has been 

performed for interdigital transducers on semi-infinite piezoelectrics26’27 as well 

as IDT’s on piezoelectric thin films deposited on non-piezoelectric substrates20. 

The treatment of IDT analysis varies with assumptions made concerning the 

field patterns emanating from the transducer electrodes. In the ZnO-on-Si 

composite structure we assume, because of the proximity of the IDT fingers to 

the shorting plane, that the electric displacement lies beneath each finger and is 

perpendicular to the substrate surface. This field configuration, depicted in 

Fig. 2.1, is known as the ”crossed-field” model and has been dealt with in 

detail by Smith et. al27.
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In the analysis of an IDT which has a crossed-field configuration, the IDT 

can be modeled as a shunt circuit similar to the one shown in Fig. 2.7. The 

IDT model consists of a capacitor (Cx) representing the static capacitance of

the transducer, and Ga(w) and Ba(w) which are the acoustic radiation 

conductance and radiation susceptance of the IDT respectively. The radiation 

conductance, Ga(w), is real and varies with the amount of electrical energy 

which is transduced into acoustic energy. The admittance terms near the 

synchronous frequency are given by

Ga(w) - Ga
sin(x) (1.2)

and

BaM = Ga
sin(2x) - 2x

2xi
(1.3)

(w - w0) - _
where x = Njt-----------  and G„ — k2(w0Cs)N2. Here, Cs is the capacitance

per IDT period, and N is the number of IDT periods (finger-pairs).

The synchronous frequency, u0, occurs when the excited wave has 

wavelength equal to the IDT periodicity. It should be noted that at to oj0, 

Ba(u>) becomes zero and the radiation conductance is maximized. Furthermore, 

the radiation conductance (more often referred to by its reciprocal, radiation

resistance) is a function of N2. Additionally, the zeros of the IDT response 

(and hence the bandwidth) are also dependent upon the number of IDT periods 

because of the sinc(x) dependence of the radiation conductance.

It is interesting to note that the radiation conductance at oj = w0 is the 

same as that calculated by Martin28 in his approach which also uses a crossed-
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Figure 2.7

Electrical model for an IDT.
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field approximation. The difference of a factor of eight between the expressions 

is that the technique of Smith considers N to be the number of periods (finger 

pairs) and Cs to be the capacitance per period whereas Martin’s N represents 

the number of IDT fingers and Cf is the capacitance per finger.

We make reference to the approach used by Martin because it will be used 

In a discussion of the mode conversion resonator in Chapter 5. Whereas the 

model of Smith predicts accurately the operation of an isolated IDT on an 

infinite substrate, Martin’s technique allows one to compute IDT characteristics 

in the presence of propagating acoustic waves.
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CHAPTERS

IMPLANT-ISOLATED SAW STORAGE CORRELATOR

8.1 Introduction

The original acoustic wave convolvers were fabricated as bulk wave 

devices which employed the nonlinearities associated with a stressed crystal to 

produce the convolution of two signals. The bulk crystal nonlinearity relating 

the electric displacement, D, to the strain, S, is given by29’30

D = KS2 (3.1)

where K is a constant. It was determined, however, that significant 

enhancement in the nonlinear effects of piezoelectric substrates could be 

achieved via interactions of surface wave induced electric fields with charge 

carriers in semiconductors.

The first SAW devices which exploited the nonlinear characteristics of the 

semiconductor were fabricated in a separated medium configuration as shown 

in Fig. 3.1, where a piezoelectric material and a semiconductor are mounted in 

close proximity (typically < 2000 A). In a separated medium device, 

transverse electric fields accompanying propagating acoustic waves extend 

outside the piezoelectric crystal and penetrate into the semiconductor creating 

a depletion condition inside the semiconductor. The depletion region width, 

W, is related to Es, the electric field at the surface of the semiconductor, by



Inter digital Transducer

A1 
<".Si

to

SiO,

__ A1

Figure 3.1

Schematic for a separated medium SAW convolver.
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ES

qNdW
(3.2)

where Nd is the donor density inside the semiconductor and cs is the 

permittivity of the semiconductor. The corresponding semiconductor surface 

potential 4>s due to the propagating SAW field is given by

$S

qNdW2
2e

s -p 2
2qNd '

(3.3)

The squared dependence of potential upon electric field is the nonlinearity 

which is exploited in SAW convolvers and correlators. Because of the 

enhanced nonlinear effects available in the SAW/semiconductor system, surface 

acoustic wave devices rapidly overtook their bulk wave counterparts.

Another attractive feature of the separated medium configuration is that 

both semiconductor and piezoelectric can be interchanged to exploit the 

different characteristics of each. For example, LiNbOs is a popular 

piezoelectric material because its high electromechanical coupling yields high 

efficiency and wide bandwidth capability. Silicon is a common semiconductor 

material because its properties are well known. It should be emphasized, 

however, that it is the characteristics of the piezoelectric crystal and properties 

of the semiconductor, including resistivity and surface state density, which 

determine the strength of the interaction between the SAW and the 

semiconductor.

Although a great deal of work has been performed on the separated 

medium devices31,13>32>33, several drawbacks to this configuration have been 

noted. A mechanically complex structure to fabricate because of the critical 

spacing requirement of the air gap, quantity production of these devices is
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impractical. These devices also suffer from a large background spurious bulk 

wave signal level due to modes launched in the gate region by rf signals. 

Furthermore, to control the surface bias condition of the silicon (essential for 

optimizing device performance) large bias voltages of the order of 1000 V are 

required, making the necessary accompanying electronics rather inconvenient. 

To alleviate problems associated with the separated medium configuration, 

monolithic piezoelectric-on-semiconductor devices have been fabricated as an 

attractive alternative.

The schematic of a typical monolithic ZnO/Si02/Si SAW device is shown 

in Fig. 3.2, consisting of a piezoelectric thin film sputter deposited atop a 

thermally oxidized silicon substrate. The top surface metallization pattern is 

defined by standard photolithographic techniques in a single masking step. 

Shorting planes located at the piezoelectric/oxide interface serve to enhance the 

electromechanical coupling of the IDT’s (Chapter 2). The layered configuration 

affords several advantages over separated medium devices related to rugged 

construction, ease and repeatability of fabrication, and enhanced interaction 

uniformity. Because of the proximity of the metal gate electrode to the 

semiconductor, the surface condition of the substrate is readily controlled with 

the application of modest bias voltages of the order of a few volts. 

Furthermore, because of the thin ZnO film, the plate mode resonant frequency 

of the gate for a device fabricated to operate at 125 MHz is greater than 1 

GHz. Thus, the monolithic configuration is without the inherent spurious bulk 

wave interference present in its separated medium counterpart, allowing for an 

increase in available dynamic range.

Once a limitation to the usefulness of layered medium SAW devices, the 

bandwidth of these devices has been increased dramatically through the use of
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Figure 3.2

Schematic of a typical monolithic SAW correlator.
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higher order surface wave modes. It has been shown that the second order or 

Sezawa mode of the layered ZnO/Si02/Si configuration can be efficiently 

excited in high quality films34. The electromechanical coupling coefficient 

available from this mode exceeds that for Rayleigh waves in bulk ZnO, and is 

close to the value for LiNb03. Thus, the wide bandwidth capability of the 

separated medium is challenged by employing the high electromechanical 

coupling of a higher order Rayleigh mode. Several convolvers and diode 

storage correlators which exploit the bandwidth advantage of the Sezawa mode 

have been reported35,36,12,37. ,

The family of monolithic SAW devices includes structures fabricated on 

GaAs substrates which have demonstrated outstanding time bandwidth 

products38. Because of the relatively weak piezoelectric nature of the GaAs, 

however, these devices, when implemented without a piezoelectric film 

overlayer, have lower correlation efficiencies at wide bandwidth compared with 

other configurations, although substantial progress has been made toward 

improving these efficiencies39. The development of layered medium monolithic 

SAW devices has emphasized the use of ZnO and AIN as piezoelectric films. 

Although ZnO was the first thin film having high performance in the SAW 

Context40, and hence has received the most attention41,42, AIN43,44,45 has 

some attractive features related to ruggedness and the potential for low 

dispersion. Both materials can be utilized to achieve a temperature stable 

configuration.
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3.2 Convolution

It is useful to examine the convolution of two rf signals using a SAW 

convolver because of the similarity between the convolution and correlation 

processes. We refer to Figs. 3.1 and 3.2 in our discussion of convolution.

The simultaneous application of modulated rf signals to each of the two 

transducers of a convolver causes surface acoustic waves to be launched which 

propagate toward one another in the gate region of the device. Because the 

piezoelectric ZnO exists everywhere between the two IDT’s, the propagating 

acoustic waves have electric fields associated with them. More specifically, if 

the input signals V1(t)e'_j‘1't and V2(t)e_jwt are introduced at IDT 1 and IDT 2 

respectively, the associated contra-propagating acoustic wave potentials present

in the gate region will be of the form* Vj(t
_Z

V and

z -jw(t + —) _ . .
V2(t + —)e v . The electric fields associated with these propagating

waves extend beyond the ZnO layer (or piezoelectric substrate) and penetrate 

into the semiconductor through the oxide layer (or air gap). Due to the 

nonlinear effects of the semiconductor, the resultant combined signal is 

proportional to the product of the two signals, such that at any point

V = A V,(t - ~)e V2(t + -^-)e i-j2u;fc (3.4)

where v, the acoustic wave velocity and uy the radian frequency, are taken to

* Because bi-directional transducers are used, waves are launched in both directions 
from each IDT. We assume, however, that waves launched out the ends of the device 
(which are potential sources of spurious signals) are acoustically absorbed and do not con­
tribute to the processed signal.
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be the same for both inputs. The coupling factor, A, relates the strength of the 

nonlinear interaction to the output voltage.

The function of the metal plate electrode (also known as the gate) between 

IDT’s at the surface of ZnO shown in Fig. 3.2 (or the metal contact on the 

back of the semiconductor in the separated medium device of Fig. 3.1) is to 

sum the total signal over the entire interaction region giving as an output 

signal

L_
2

Vout. = e-i2"1 / AV,(t - ^-)V2(t + ±)dZ ,
L 
~2

(35)

where L is the gate length. Assuming that the coupling, A, is uniform over the

zinteraction region, and making a change of variables such that r = t----- , one
v

obtains

v„„t = Ae-i2”1 / V,(r)V2(2t - r)dr . (3.6)

In Eq. 3.6 the limits of integration have been changed assuming both input 

signals have time duration less than or equal to —. The resultant output

waveform is, therefore, the convolution of the two functions Vj and V2 with 

time scale reduced by a factor of two because the signals are propagating 

toward one another with relative velocity 2v.

It can be noted from Eq. 3.6 above that if either Vj or V2 had been time 

inverted before application to the IDT, the resultant output would be the 

correlation of the two signals (again, compressed in time). An electronic time 

reversal technique46 has been demonstrated in a convolver system47, but at a
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sacrifice of high insertion loss which leads to a degraded dynamic range. 

Furthermore, to be most useful as a practical device, the SAW convolver must 

be able to convolve between a reference signal and a signal which may appear 

at a convolver input at some unknown time. An incoming signal arriving at an 

unknown time necessitates repeated application of the reference signal to 

counter the uncertainty of the arrival time which in turn leads to a smaller 

effective time-bandwidth product.

The storage correlator is a device which can perform both convolution and 

correlation without the need for time reversal and without concern for the 

uncertainty of the arrival time of the signal to be interrogated. Hence, two of 

the major drawbacks of performing correlation with the convolver system are 

eliminated by utilizing a memory correlator.

3.3 Storage Correlation

A simplified description of the storage correlation process can be given 

with the aid of Fig. 3.3 which depicts a typical memory correlator. Under 

normal operation, one introduces a signal at one of the transducers such that a 

sampled version of this reference signal, S(t), is stored beneath the gate of the 

device by one of several possible writing procedures. At some later instant, but 

still within the storage time of the reference signal, a second signal, R(t), 

known as the reading signal, is applied to the gate of the correlator. The 

introduction of R(t) at the gate electrode excites two contra-propagating 

signals representing the product of R(t) and S(t), which subsequently appear at 

the two output transducers; it can be shown that the correlation appears at one 

transducer, while the convolution output is available at the other.
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Figure 3.3

Correlation and convolution using a storage correlator.
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By applying a particular ’’writing” process to the correlator, one 

introduces a reference signal to be stored as a spatially varying charge pattern 

by one of several storage mechanisms. Schemes for signal storage by means of 

surface states14’48, pn diodes49’50’36’51’16, and Schottky diodes15’52’53 have 

been examined. More recently, a new type of junction storage correlator has 

been introduced54 in which the spatial variation of inversion layer charge at the 

Si02/Si interface of the layered monolithic configuration has been utilized for 

signal storage. With the exception of this ’’induced junction” storage 

correlator, the various storage schemes have been employed in both monolithic 

and separated medium configurations.

3.3.1 Storage Mechanisms

The first memory devices utilized semiconductor surface states for signal 

storage14,48. In a surface state memory correlator, the electric field pattern 

associated with an applied signal causes a bunching (periodic spatial 

concentration) of free electrons at the Si/Si02 interface. Subsequently, a 

portion of the electrons are trapped at the interface thereby producing a 

spatially varying charge pattern. The storage time of these devices corresponds 

to the detrapping time which is a function of the properties of the interface.

Surface state storage was subsequently replaced by more easily controlled 

and repeatable diode storage arrays. Figure 3.4 is a schematic of a monolithic 

pn diode storage correlator. In a pn-diode or Schottky diode array, the 

application of a writing sequence imposes a time varying standing wave signal 

proportional to the reference signal at the top surface of the diodes. When the 

applied writing signal is positive, the diodes become forward biased and 

minority carrier holes are injected into the n-type semiconductor where some
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Monolithic ZnO/Si02/Si pn diode memory correlator configuration.
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recombine. When the signal goes to zero or becomes negative, however, most 

of the injected holes are swept back into the p + region, less an amount which 

recombined, leaving the diode depletion widths altered by an amount 

proportional to the number of recombined holes. The recombined holes 

increase the depletion widths of the diodes and create a reverse bias condition 

in the diodes. A replica of the reference signal is stored in the spatially varying 

depletion widths of the diodes.

Recently, reference signal storage in induced junctions was reported54. In 

both diode and induced junction array processes, the principle of charge storage 

is essentially the same. Recombination of minority carriers injected out of a 

p region (or inversion layer in the case of the induced junction device) by an 

applied signal causes an alteration of the diode (induced junction) depletion 

width. More will be mentioned about the induced junction storage process in a 

later section.

3.3.2 Writing Techniques

There are many modes of operation which are used in the SAW memory 

correlator structure, all of which are very similar. We limit ourselves to a 

discussion of the ”gate-acoustic” writing technique and the ”gate-to-acoustic” 

reading technique in the implant-isolated storage correlator. We use Fig. 3.5 to 

illustrate these writing and reading methods19. Descriptions of other writing 

techniques can be found in the literature55,55.

Consider the application of an rf signal S(t)e-jwt to one of the device 

transducers. As in the convolver structure, an acoustic wave is excited which is

of the form S(t - — )cos(wt - kz). In the case of the memory correlator
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operating in the gate-acoustic writing mode, we apply an rf ’’writing” signal, 

G(t) = Wcos(wt) (of short duration compared to the inverse bandwidth of S), 

to the gate in the presence of the propagating reference signal (Fig. 3.5a). 

Summing the components present in the gate region, one obtains a net 

potential given by

V °c %/(S2 + 2SWcoskz + W2)cos(wt - <f>(z)) . (3.7)

Under normal operation jWj >> |S| which implies the net potential during the 

writing process is of the form

V oc (W + Scos(kz))cos(wt - . (3.8)

Thus, what exists in the gate region during the writing process is a standing 

wave pattern which consists of a uniform writing component, W, as well as the 

spatially varying acoustic portion, S. During the positive cycles of this writing 

process, the storage regions (surface states, diodes, etc...) will be charged as 

described above. This technique involving a propagating SAW and an rf gate 

signal is known as the rf gate-acoustic (or parametric) writing mode.

If instead of an rf writing signal, one applied a very narrow pulse, Vp to 

the gate at time tQ in the presence of the propagating wave

S(t----- )cos(wt - kz), the resultant gate potential would be given by (assuming

Vp >> |S|)

V « Vp + S(t0 - ~)cos(wt0 - kz) . (3.9)

Thus, a signal is applied across the diodes which is an imprint of the reference 

signal superimposed on a uniform writing pulse. The electric field components 

associated with this signal cause a signal to be stored which consists of a 

uniform writing pulse component, Vp, and a spatially varying acoustic portion
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S(z). This writing technique is known as the flash mode of operation.

If the rf gate-acoustic writing mode is utilized, the injection of holes takes 

place many times (each positive cycle of the signal) during a writing sequence 

depending upon the length of the writing signal. Each rf writing cycle 

contributes to the change in depletion width but with each subsequent cycle 

contributing less than the previous one (assuming uniform signals). The 

parametric writing technique has been used for signal storage when employing 

pn diodes, Schottky diodes, and surface state memory arrays. When operating 

in the flash mode, however, there is a net forward bias of the diodes only once 

per writing sequence and only for a very short time.

To effectively write a reference signal into the gate region using the flash 

mode, the response time of the diodes or surface states must be very fast. It 

was originally demonstrated56 that the flash mode was an efficient writing 

technique in the separated medium configuration for pn diodes in a mesa V- 

groove array but the accompanying theory did not apply well to ZnO-on-silicon 

planar diode array configurations57,58. The flash mode has been discussed at 

great length in the literature and the consensus is that only Schottky diode and 

surface state storage are practical when using the flash writing mode in the 

monolithic configuration. This is by no means a limitation because pn diode 

memory arrays have been shown to be very efficient when utilizing the 

parametric writing mode.

Irrespective of the writing technique used, the subsequent correlation 

output is obtained by introducing a ’’reading” signal to the gate electrode. 

This gate-to-acoustic reading mode is shown in Fig. 3.5b. Application of the rf 

reading signal launches contra-propagating acoustic waves whose envelopes
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represent the convolution and correlation of the stored reference signal and the 

applied reading signal.

3.3.3 The Induced Junction Memory Correlator

Recently, a new type of monolithic ZnO-on-Si memory correlator was 

fabricated54,59 which utilized induced junctions to store a replica of a reference 

signal. The induced junction storage correlator developed by Weng et al54 

stores a reference signal by successfully exploiting the otherwise undesirable 

charge injection phenomena associated with sputtered ZnO films, Because 

some similarities exist between the implant-isolated storage correlator and the 

induced junction device, it is worthwhile to review operating characteristics of 

the induced junction storage correlator.

The induced junction device, a schematic of which is shown in Fig. 3.6, is 

no more than a typical metal/Zn0/Si02/Si (MZOS)60’61 convolver with a 

metal grating at the ZnO/Si02 interface. It is the metal grating, however, and 

a phenomenon known as charge injection which define the storage regions of 

the induced junction storage correlator.

Charge injection is an imperfection which occurs in devices fabricated in 

the MZOS layered medium configuration. The charge injection phenomenon, 

which has been examined by several authors62,14, is a process whereby 

electrons are injected into the conductive ZnO at the gate electrode and 

migrate into traps at the ZnO/Si02 interface. The rapid trapping and 

relatively slow detrapping of these states leads to what is known as bias 

instability. An example of bias instability is illustrated by the large hysteresis 

in the capacitance-voltage (C-V) characteristics of the MZOS capacitor shown 

in Fig. 3.7. The magnitude of the swing in the C-V curve is determined by the
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Schematic for the induced junction storage correlator showing (a) cross- 
sectional view of the device, (b) top-view of the aluminum grating pattern, 
and (c) top-view of the gate region.
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amount of charge which has been injected into the ZnO and, therefore, changes 

depending upon the reverse bias voltage applied prior to sweeping back toward 

accumulation voltages. The induced junction storage correlator was designed 

to utilize this otherwise undesirable condition in a constructive manner.

Application of a negative dc bias to the gate of the induced junction 

device begins the injection of electrons into the semiconducting ZnO layer. 

Eventually there is zero electric field present in the ZnO layer; the entire 

voltage drop is across the Si02 and the silicon. Under steady state conditions, 

electronic charges are collected on the metal grating or located between metal 

regions in deep level traps at the ZnO/Si02 interface. If the gate bias is 

sufficiently negative, an inversion condition exists at the silicon surface and a 

minority carrier inversion layer exists at the Si02/Si interface as shown in Fig. 

3.8. At this point,* by making the gate voltage more positive, electronic 

charges located on the metal grating are readily withdrawn from the ZnO but 

the electrons trapped in the regions between the metal grating are stored for 

long periods of time, typically days. The result of the positive voltage shift 

leaves the silicon surface ready as a storage medium with an array of induced 

junctions as shown in Fig. 3.9.

The induced junctions are inversion regions located beneath the trapped 

electrons. The minority carrier inversion layers are separated from one another 

by depletion regions directly beneath the aluminum grating. Charge storage in 

the induced junction device is similar to that which occurs in a pn diode 

correlator whereby the application of a positive pulse causes the injection of

* Typically, a negative bias of -35 V was used to invert the silicon and fill the traps at 
the zinc oxide-silicon dioxide interface. The device was usually operated with a gate bias 
of approximately -2 V.
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Creation of an induced junction array by total inversion of the 
semiconductor.
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Figure 3.9

Array of induced junctions formed after inverting the entire gate region.



inversion layer minority carriers into the depletion region where some 

recombine before the pulse is turned off. The recombination of injected 

inversion layer holes changes both the equilibrium surface charge density and 

depletion width of the storage regions, thereby altering the equilibrium 

depletion capacitance of the storage regions. The depletion widths associated 

with signal storage are greater than the maximum equilibrium inversion layer 

depletion widths; a condition known as deep depletion. Thus, just as in a pn 

diode array, a signal can be stored in a spatially varying pattern of depletion 

widths.

Similar to the induced junction device, the monolithic implant-isolated 

memory correlator, discussed next in this chapter, utilizes depletion regions in 

the silicon to store a reference signal in an MOS region of n-type silicon only; 

that is, no diodes or surface states are employed for storage. Furthermore, the 

uncontrollable and often undesirable charge injection process62’18’53’63 which 

was used constructively by the induced junction storage correlator is 

successfully ignored in the implant isolated storage device.

In the following section we present a detailed description of the implant- 

isolated storage correlator fabrication and operation as well as experimental 

verification of the existence of induced junction storage regions. Section 3.5 

contains an in-depth discussion of charge storage in the implant-isolated device. 

An approximation for the effective recombination lifetime of minority carriers 

is also presented. Experimental results for the implant-isolated storage 

correlator are given in Section 3.6 followed by a discussion of unique device 

applications in Sections 3.7 and 3.8.

45
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3*4 The Implant-Isolated Structure

The implant-isolated storage correlator presented' in this chapter is a

unique monolithic SAW device which uses alternating regions of highly doped
. ' ' !

and lightly doped silicon to store a reference signal for correlation or 

convolution at some later time. The implant-isolated device will be shown to 

be a bias stable device capable of signal storage more than ten times longer 

than any other monolithic storage correlator reported /to date. Additionally, 

the implant isolated structure provides a means by which the electrical 

potential of a surface wave can be determined.

3.4.1 Device Structure

The implant isolated storage correlator, pictured in Fig. 3.10, consists of 

an n-dype 10 cm (100)-cut silicon substrate which is ion implanted with 

phosphorus in a grating pattern at the sample surface. Charge storage, it 

should be noted, occurs in the non-implanted regions. Subsequent to the 

grating region implantation, a wet oxidation is performed at 900 °C for 40 

minutes. This oxidation, yielding a 1000 A thick insulating layer, 

simultaneously passivates the silicon surface and activates the implant. Prior 

to depositing the 1.7 /im ZnO layer by rf sputtering, 1000 A thick aluminum 

shorting planes are evaporated on the substrate in the regions below the 

transducers to enhance the electromechanical coupling. The top aluminum 

metallization pattern consists of two pairs of single comb transducers24 and a 

split gate electrode arranged so as to form a dual track structure64. The 

transducers, used to excite Rayleigh waves, have equal 17.75 //m finger widths 

and gaps; the center frequency of the transducer response is 128 MHz. The 

separate comb dual track structure is employed because this technique has been
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(a)

Figure 3.10

Schematic of an implant-isolated storage correlator, (a) Top view of dual 
gate structure and single comb transducers, (b) Ion implantation pattern, 
(c) Side view of completed device.
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shown to suppress the self convolution caused by reflections from the 

transducers64. By slanting the gate metallization pattern adjacent to the 

transducers one minimizes the undesirable output observed at the transducers 

caused by waves launched at the ends of the gate. In Table 1 we summarize 

the important device parameters for the implant-isolated storage correlator.

3.4.2 Implant Isolation Concept

Insight into operation of the implant isolated storage correlator can best 

be achieved by understanding the method in which charge is stored in the 

device. We present a qualitative explanation based on typical n-type MOS 

capacitance versus voltage characteristics. To first order the ZnO layer can be 

modeled as a constant capacitance in series with the constant Si02 layer 

capacitance; the combination can in turn be modeled as a single effective 

insulating layer. C-V curves for two structurally identical but differently doped 

MIS-capacitors are displayed in Fig. 3.11. Note that for both devices, 

accumulation occurs over the same bias range. However, the onset of inversion 

occurs for different values of capacitor bias. Suppose the two differently doped 

devices were side-by-side as part of the same substrate and covered by the 

same insulator and metal gate. Under this condition a range of gate bias 

voltages would exist where the higher doped device would be depleted and the 

lower doped device would be inverted. In the implementation of the implant- 

isolated storage correlator, higher doped depletion regions are used to isolate 

the lower doped storage or inversion regions.

To achieve lateral variations in doping density one can employ either ion 

implantation or diffusion; ion implantation was chosen because it offered 

advantages in ease of fabrication. Phosphorus was implanted into the
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Table 1

Device parameters for the implant-isolated storage correlator

Silicon type 

Resistivity 

Silicon cut

SAW Propagation direction 

ZnO thickness 

Si02 thickness 

Wavelength 

Center frequency 

Fingers per comb 

Storage region width 

Grating periodicity 

Gate length 

Gate width

n

10 O-cm 

(100) 

<ioo> 

1.7 fim

1000 A

35.5 /mi 

128 MHz 

20

5 /i m

10 fim

1.4 cm 

0.1 cm
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Figure 3.11

Normalized C-V curves for typical MOS capacitors
(A) highly doped (1.25X1017 /cm3) n-type Si
(B) moderately doped (5.0X1014 /cm3) n-type Si.
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unoxidized silicon wafer through a photoresist mask at a concentration level of 

8.0Xl012/cm2 using an implant energy of 25 KeV. The implant concentration 

varies of course as a function of depth into the semiconductor. An estimate of 

the doping profile derived from the C-V profiling technique*, however, indicates 

that the semiconductor may be approximately modeled as uniformly doped 

(~1017 /cm3) in the bias ranges of interest. As a result of the ion implantation, 

a periodic grating pattern of alternating highly doped and lowly doped 

semiconductor is established beneath the gate of the correlator. The 

periodicity of the grating corresponds to 5 /xm wide storage regions separated 

by 5 fim wide implanted regions. A simple electrical model for the correlator 

gate appears in Fig. 3.12, while Fig. 3.13 shows experimental C-V curves 

derived from an unimplanted wafer, a wafer implanted over its entire surface 

area, and a grating structure wafer. (The rise in the,capacitance of the grating 

structure capacitance near -8.0 volts is caused by lateral effects.) It is apparent 

from the curves in Fig. 3.13, that one can select a bias voltage between -1.0 

volts and -10.0 volts such that the inverted storage (non-implanted) regions will 

be electrically isolated from one-another by depletion regions in the implanted 

areas. This is the desired result as illustrated schematically in Fig. 3.14. The 

implant-isolated storage regions, however, in contrast to those formed by 

charge injection and trapping at the ZnO/Si02 interface54, are established by a 

repeatable, well-controlled fabrication process and simple selection of the 

proper operating gate bias.

* Performed by Dr. It. F. Pierret
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Figure 3.12

Electrical model for the gate of the implant-isolated storage correlator. The 
implanted and non-implanted regions are denoted by Cjm and CN 
respectively. RSi is the bulk silicon resistance and Cj is the combined oxide 
capacitance.
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Figure 3.13

Experimentally determined C-V characteristics derived from a (A) totally 
implanted (B) combined (grating) (C) non-implanted wafer. (VA, VB, etc. 
refer to the curves in Figure 8)
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Figure 3.14

Schematic of charge storage regions (induced junctions). Plus signs denote 
inversion layer charge.
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3.4.3 Verification of Storage Region Isolation

Subsequent to ion implantation, implant activation during thermal 

oxidation, and deposition of the shorting pad metallization, special gate-pattern 

test structures were formed directly on the oxidized silicon surface. The test 

structures were subjected to a post-metallization anneal* at 480 °C for five 

minutes to minimize the Si02/Si interface state concentration. Capacitance- 

versus-time (C-t) transient measurements were then performed on the Si02/Si 

system in order to determine the storage capability of the grating, and to 

examine the effectiveness of the implant in isolating the storage regions.

The C-t transient results can be readily explained with the aid of Figs. 

3.13 and 3.15. Figure 3.15 shows a series of capacitance-versus-time 

characteristics of the grating region when pulsed from an equilibrium state at 

VG = V0 (accumulation) to various voltages (VA, VB, etc.) labeled in Fig. 3.13. 

Trace A shows the result of pulsing the capacitor from the accumulation 

reference bias VQ, to an applied bias which is still in accumulation. As 

expected, there is no change in capacitance with time. Similarly for Curve B, 

when both the storage and isolation regions are depleted the t>0 capacitance 

is time independent, but is lower because of the increased depletion widths of 

the two regions. Once the device is pulsed such that the non-implanted region 

beneath the gate is inversion biased (curve C), the sudden pulse causes a deep 

depletion condition in the non-implanted region with an accompanying finite 

relaxation time back to equilibrium. The difference in the C-t transient of 

curves C and D is that a larger negative pulse causes a greater degree of 

depletion in the implanted region and also a greater deep depletion width in

* Developed by Dr. R. D. Cherne and Dr. R. F. Pierret
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Figure 3.15

Capacitance versus time (C-t transient) results for applied pulses described 
in the text.
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the non-implanted regions. After relaxation, the non-implanted depletion 

widths remain at their maximum values. However, the total equilibrium 

capacitance is lower due to the larger depletion width in the implanted region. 

Once the gate is pulsed from accumulation to a bias tending to invert both the 

implanted and non-implanted regions, the total capacitance always relaxes to 

the same minimum value as exemplified by Curves E and F. This is true even 

though a larger negative pulse deep depletes the capacitors farther and for a 

longer time. The existence of a biasing range where the device relaxes to a 

decreasing final capacitance, followed by a biasing range where the final 

capacitance is always the same independent of bias, is direct verification of the 

underlying device concept -- implant isolation of the storage regions. The 

biasing range over which the device relaxes to a decreasing final capacitance 

corresponds, of course, to the set of biases used in the normal operation of the 

storage correlator.

It should be noted that ion implantation is a well defined process with 

excellent repeatability. Even slight variations in dose or energy level, however, 

would not affect the implant-isolated storage correlator because signal storage 

occurs in the non-implanted regions. Variations in implant parameters, 

however, would have a noticeable effect upon the operation of a pn diode 

correlator. '

3.5 The Writing Process

Several methods for writing a reference signal into the storage regions of a 

device have been demonstrated including the flash mode15 and various rf 

writing techniques55; we limit ourselves to the rf gate-acoustic writing mode for 

the implant-isolated storage correlator. As mentioned in Section 3.3.2, the rf
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gate-acoustic writing method involves the application of an rf signal of short 

duration to the gate of the correlator while the reference signal to be stored is 

propagating beneath the gate. The resultant electrical potential in the gate 

region during the writing process has components of potential due to the 

acoustic reference signal, Va(t)cos(a!t - kz), (launched by a transducer) and the 

writing signal, Vg(t)coswt, applied to the gate. Both signals contribute to the 

total gate potential associated with the writing process which is given by

Vs(z,t) = >/va2 + 2vavgcoskz + vg2 cos(wt - <j>) (3.10)

where

<f> — tan 1
vasinkz

vg + vacoskz
(3.11)

Here v and v„ are the acoustic signal and gate signal potentials referenced to
a 6

the gate65. As will be described below, Vs(z,t) determines the surface charge 

density during a write sequence for any (z,t).

In this section a simple model is presented to describe the information 

storage process. At any point in the gate region during the writing process, the 

applied signal appears as a constant amplitude time varying sinusoid. To gain 

physical insight into the operation of a storage array, we first examine the 

response of the inversion layer charge and depletion capacitance of a single 

element of the storage region (located at z = z0) to a narrow (much shorter 

than one rf period) pulse applied to the gate. After analyzing the effect of a 

narrow pulse, each period of the rf signal of Eq. 3.10 is treated as a discretized 

sequence of narrow pulses as shown in Fig. 3.16. Using this discretized 

representation, the charge storage in response to any time varying writing 

signal can be estimated.
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Us<z0,t>

Figure 3.16

Applied writing signal at a single storage region (a) actual signal and (b) 
discretized signal approximation.
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3.5.1 Charge Storage

Consider the effect upon a single storage region resulting from the 

application of a narrow positive pulse at the gate of a device which is biased 

for normal operation. Under equilibrium inversion conditions there is a 

maximum depletion width in the silicon. Application of a short duration 

positive pulse to the gate while it is under equilibrium inversion bias will cause 

the storage region depletion width to narrow by some amount dependent upon 

the pulse amplitude and duration; at the same time, minority carrier holes in 

the inversion layer will be injected into the semiconductor depletion region 

where some will recombine. Termination of this pulse causes the depletion 

width to instantaneously assume a new value equal to its equilibrium width 

plus an increment dependent upon the amount of minority carriers which 

recombined during the pulse. The change in depletion width changes the 

capacitance of the storage region, thereby contributing to signal storage in 

much the same way as in a pn diode memory correlator.

In a quantitative description of the charge storage process, some 

assumptions have been made regarding the recombination and generation of 

minority carriers in the silicon. Herein it is assumed that the recombination 

rate of injected holes, crucial to information storage, can be modeled by an 

effective recombination lifetime, rR. Moreover, the generation of carriers during 

a narrow negative pulse (part of the negative going portion of the writing cycle) 

can be. neglected because, as is obvious from the lengthy storage times, the 

return to equilibrium is very slow compared to the writing recombination rate. 

Surface states, traps in the semiconductor and ZnO, and charges in the oxides 

will also be neglected because they complicate the analysis without offering any 

insight into the writing process. With the stated assumptions, a quantitative
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description of the charge storage process has been performed (outlined below) 

for a single storage region.

As discussed in Section 3.4, proper operation of this device is dependent 

upon the selection of an appropriate operating point gate bias. Assuming that 

a bias of VG has been applied to the gate, one can, using the ^-depletion 

approximation66, calculate the inversion layer charge at the silicon surface. 

Because the ZnO layer is only semi-insulating, the d.c. charge applied to the 

gate is readily injected into the ZnO film and is subsequently stored in traps 

adjacent to the ZnO/Si02 interface; i.e., under steady-state conditions a virtual 

gate is formed at the ZnO/Si02 interface63. The ZnO layer, therefore, can be 

neglected when calculating the equilibrium minority carrier inversion layer 

charge density whose magnitude is given by

Qseq a v,G
^uF-

q

qNp j 4/cs€0 kT
Co V qNp q (3.12)

where C0 is the capacitance (per unit area) of the Si02 layer, ND is the 

background doping level of the n-type silicon substrate, and Up is the substrate 

doping parameter. The dielectric constant of the silicon is represented by ks, 

the temperature by T, e0 is the permittivity of free space, and k is Boltzmann’s 

constant. The constant Up is given by

Up = - In
Nd (3.13)

where n; is the intrinsic carrier concentration.

Due to the localization of injected charge at the ZnO/Si02 interface, the

equilibrium inversion layer charge under dc bias is independent of the ZnO 

layer capacitance. However, this is not true of the inversion layer charge
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density when there are rapid changes in the gate bias. For rf signals in the 

frequency range of interest, voltage changes are. too fast for the gate-injected 

electrons to follow the applied signal. Hence the capacitance of the ZnO layer 

must be included in any calculation of the redistributed surface charge. The 

condition just described can be visualized more easily with the aid of Fig. 3.17. 

In this figure, the solid curve represents a normal C-V characteristic for an n- 

type semiconductor; VG is the bias point. In a normal MOS capacitor one 

would have to pulse the gate to some bias greater than VT to move out of 

inversion and into depletion. In the case of a correlator with an injecting ZnO 

film, however, the gate must be pulsed to (on the dashed curve) to be at

the edge of inversion. For comparison to the redistributed charge it is 

therefore more convenient to rewrite the equilibrium inversion layer charge 

density (Eq. 3.12) for a given gate bias VG in terms of VT<fl and Cj (the series 

combination of the ZnO and Si02 capacitances). The resulting equivalent 

expression for Qseq is given by

Qseq = Cl VG + VTd
2kT _ q^D / 4ks€0 kT

q F Cj qND q UF (3.14)

where

Cj
CSi02CZn0 

Csio2 + CZno
(3.15)

The analysis of the charge storage process deals with the redistribution of this 

surface charge in response to an applied signal.

The application to the gate of a narrow positive pulse of amplitude VA will 

cause a portion of the equilibrium surface charge to be injected into the 

semiconductor where some of it will recombine. The amount of charge which
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Figure 3.17

C-V characteristics of a typical MIS capacitor (solid curve) and an MZOS 
capacitor exhibiting charge injection into the ZnO.
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recombines per pulse is dependent upon the pulse amplitude, pulse duration, 

the minority carrier recombination rate, and the inversion layer charge 

available prior to each pulse. Repeated applications of such a pulse within an 

interval that is short compared to the device storage time (~ 1 sec) eventually 

leads to a ”steady-state” deep depletion condition beneath the gate where the 

new inversion layer surface charge density, QA, saturates at

Qa _ ci vG-vA +V - 2kTTT <1nD 
—UF- —

W-
4^0 kT

Ur (3.16)
q - V °lND q

For a given VA, the maximum charge storage by one storage region in the 

implant-isolated correlator is therefore

AQ = Q«eq - QA = C,VA . (3.17)

Assuming an effective recombination lifetime, the application of a dc pulse 

of amplitude VA and arbitrary duration tp changes the inversion layer charge 

by an amount

AQ, = C,VA(1 - e'^) . (3.18)

The expression for the inversion layer surface charge as a function of gate bias, 

applied pulse magnitude, and applied pulse duration is given by

Q,(VG,VA,tr) = Q„, - C,VA(1 - e-‘^) . (3.19)

If one were to pulse the device again immediately after the application of the 

first pulse, the starting inversion layer minority carrier density would be 

Qs(VG,VA,tp) instead of Qseq. The subsequent surface charge after additional 

pulses would be dependent upon the pulse durations as well as the pulse 

amplitudes.
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As mentioned above, the change in surface charge caused by 

recombination during a positive pulse of duration tp results in an increase in 

the depletion width of the storage regions; the new depletion width is given by

W(VG,VA,tp) =
V'/0

-1 +
VG-

1 +

Qs(VG,vA,tp)
a

1/2

where

VA = 2C02
(3.21)

The modified depletion width corresponds to a decreased capacitance given by

Cj
C(VG,VA,tp) =

1 + co
-1 +

V,G
1 +

Qs(VG>vA)tp)
. Go ■■■ :

VA

!/2 {3.22)

Thus far we have described a method for determining the change in the 

depletion capacitance of a single storage region in response to a narrow pulse 

applied to the device gate. To elaborate on the writing process, it is necessary 

to determine the effect of a time varying signal on the several hundred storage 

regions. That is, for a complete description of the writing function, one must 

define the depletion capacitance (stored charge) as a function of time and 

position. The treatment of a time varying signal is dealt with in Appendix A 

for a signal represented by a sequence of pulses of finite duration.

It is important to note that as a storage region becomes deep depleted it 

will eventually reach a steady-state saturation value. That is, as a storage 

region nears saturation, only the maximum portion of each rf cycle contributes
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to the stored reference signal and the effective writing time of each signal 

decreases. We illustrate this with the aid of Fig. 3.18 which shows the deep 

depletion C-V characteristics for a single storage region during various stages of 

the writing process. Also shown in Fig. 3.18 are select rf writing cycles during 

the writing process showing which portions of the rf cycle actually contribute 

to signal storage.

3.6 Experimental Results

In the remainder of this chapter we present experimental results associated 

with our implant-isolated storage correlator. The writing sequence described 

for the gate-acoustic writing technique is shown in Fig. 3.19a along with the 

corresponding correlation output voltage after the application of a read signal 

to the gate. The correlation output shown in the photograph of Fig. 3.19b was 

obtained using identical writing and reading signals (128 MHz bursts of 

duration 1.0 /is). The time delay between read and write sequences was 10 ms. 

The duration of the output signal is 2.0 /is which, as expected, is twice the 

duration of the reading signal. Furthermore, the frequency of the output signal 

is 128 MHz, the same as the reading signal frequency.

To obtain the results shown in Fig. 3.19, an rf writing signal of 200 ns 

duration was used because it produced a maximum correlation output. It is 

important to note that simply increasing the duration of the writing signal does 

not necessarily increase the correlation output. Rather, the lengthy writing 

signal can upset the phase information previously preserved by the writing 

process. In Fig. 3.20 we show the variation of correlation output versus writing 

time for a single writing sequence. The maximum correlation output occurs for 

a short writing time and then decreases as the writing signal increases. The
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Figure 3.18

(a) C-V characteristics at different times during the writing process, (b)-(c) 
Portion of each writing cycle which contributes to signal storage is shown 
by the cross-hatching.
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Figure 3.19

Memory correlation experiment (a) Write-in sequence consisting of an 
acoustic pulse (upper trace) and reference signal (lower trace), (b) 
Correlation output.
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Figure 3.20

Correlation output vs. writing pulse duration for a reference signal power 
level of 30 dBm applied to the IDT and write pulse power, Pw, and read 
signal power, Pr, of (A) P\y — 37.1 dBm, Pr = 34.5 dBm and (B) P\y — 
32.5 dBm, Pr = 29.5 dBm.
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unexpected decrease in correlation output versus writing time for a single write 

sequence is due to phase slippage which is caused by the difference in the 

acoustic wave velocity between the implanted and non-implanted regions. To 

increase the effective writing time without the phase slippage problem, one 

must perform more than one writing sequence per readout. That is, to avoid 

phase slippage, one must write the same reference signal twice with write signal 

duration 0.2 fis to have an effective writing time of 0.4 fis.

In the photograph of correlation output shown in Fig. 3.19b, one can see 

not only the correlation output but also rectangular pulses 1.0 fis wide on both 

sides of the correlation output. The first rectangular signal is a direct rf pickup 

of the gate-applied reading signal at the output IDT. The rectangular signal 

which appears after the correlation output (3.0 fis after the first signal) 

corresponds to an acoustic signal launched by the input IDT caused by direct rf 

pickup of the read signal by the input IDT. Both of these spurious signals 

cause problems in the fabrication of SAW correlators and great amounts of 

effort have been taken to reduce these spurious levels. It should be noted that 

in a degenerate convolver, the spurious rf signals can be filtered out because 

the convolution output occurs at the sum frequency of the two inputs. In the

memory correlator, however, the correlation output is at the same frequency as
■ • • / .

both the input signal and the reading signal which makes simple filtering 

impractical.

3.6.1 Effective Recombination Lifetime

As described in the previous section, the amount of charge stored in the 

gate region of the device is dependent upon the amplitude and duration of the 

write signal, the effective recombination lifetime, and many parameters which
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are determined by the materials used. In this section an experimental method 

is presented for determining the effective recombination lifetime for the 

correlator.

To obtain the desired correlation output after a reference signal is stored 

beneath the gate, one applies the rf signal to be correlated at the gate electrode 

(gate-to-acoustic reading mode). This process is analogous to the reading 

process in a pn diode memory Correlator55. Due to the spatially varying 

depletion capacitance, electric fields are established in the ZnO film which 

excite contra-propagating acoustic signals representing the convolution and 

correlation of the stored reference signal with the applied reading signal. 

Furthermore, it can be shown that the correlation output voltage is directly 

proportional to the amount of stored charge in the device. Therefore one can 

determine the effective recombination lifetime by fitting the predicted stored 

charge dependence of Eq. A.3 to the actual correlation output versus writing 

time.

To observe the variation of correlation output with write time, an 

experiment was performed using the gate-acoustic writing mode and the gate- 

to-acoustic reading mode. The reference and reading signals were of 1.0 /is 

duration and the writing signal duration was 0.2 /is. To vary the writing time, 

multiple writing sequences were performed in rapid succession prior to each 

reading sequence. The number of successive writes determined the effective 

writing time (200 ns writing pulse times the number of writes prior to each 

read). In this manner, the effective writing time is increased without 

degradation of the output due to phase slippage.

The writes were performed 20 /is apart so any storage region relaxation 

between write pulses can be ignored. The experimental variation of correlation
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output versus write time is seen in Fig. 3.21. All values are normalized to the 

maximum value of correlation output. (It should be noted that in this 

experiment the time between readouts was several seconds to ensure sufficient 

decay of the stored signal before initiating a new write sequence.) The solid 

curve represents the predicted dependence of the correlation output voltage for 

an effective recombination lifetime of rR =■ 0.67 /is as computed for the 

discretized sinusoidal approximation.

It should be noted that each of the inverted storage regions is very similar 

to a pn diode in that minority carrier injection governs the charge storage 

procedure. As such, the model for charge storage in the implant-isolated 

storage correlator can be applied directly to the pn diode correlator structure. 

A similar correlation output versus effective writing time experiment was 

performed by Tuan and Kino65 for their pn diode storage correlator, enabling 

us to use their data to test our theory. We plot one minus the normalized 

correlation output versus effective write time for the pn diode memory 

correlator in Fig. 3.22. The data is plotted on a semi-logarithmic plot to 

demonstrate that the information charge storage process is not purely 

exponential. The non-exponential behavior is due to the time variation of the 

writing signal.

In addition to the data points presented in Fig. 3.22 for the pn diode 

device, Tuan’s theoretical prediction for correlation output dependence is 

shown by the dashed curve in Fig. 3.22. The disparity between theory and 

experiment stems from the fact that, in Tuan’s theory, each writing signal is 

treated identically with every other. We argue, however, that consecutive 

identical rf cycles of a writing signal will have different contributions to the 

writing of a reference signal because a smaller portion of later cycles contribute
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Figure 3.21

Normalized correlation output voltage versus effective writing time. Solid 
curve corresponds to an effective minority carrier lifetime of rR = 0.67 fis.
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Figure 3.22

Normalized correlation output for a pn diode storage correlator employing 
multiple writes.
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to signal storage as discussed in Section 3.5. In the implant-isolated storage 

correlator theory, each rf signal is treated independently and the charge storage 

prior to any writing cycle is taken into account in the computation of 

additional charge storage.

In Fig. 3.22 we plot the predicted normalized correlation output versUs 

effective write time (solid curve) using an effective recombination lifetime of 

7^ = 0.044 (is. Our prediction for the pn diode device is within 3% of the 

experimental value at every point It is interesting to note that ih a fast 

charging system like the pn diode array correlator, fewer rf signals are 

necessary to saturate the diode storage regions. Careful inspection of our 

predicted curve for the pn diode correlator shows it to consist of many steps. 

Each of these steps represents the contribution from a separate rf cycle. There 

are 128 cycles depicted in Fig. 3.22. For the slower charging implant-isolated 

storage correlator, shown in Fig. 3.21, however, approximately 5O0O rf cycles 

are necessary to saturate the device so the effect of individual cycles is not 

evident.

Thus, we have demonstrated the application of our theory for the 

implant-isolated storage correlator and obtained excellent agreement with 

experiment. Furthermore, our theory, when applied to the pn diode storage 

correlator, gives good agreement even for a much faster charging system.

3.6.2 Operational Characteristics

In this section we present experimental results for the correlation of two 

1.0 (is rf bursts in order to examine correlator storage time, dynamic range and 

efficiency. All correlation measurements were performed using the rf gate- 

acoustic writing mode and the gate-to-aeoustic reading mode. It should be
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pointed out that the implant-isolated storage correlator presented in this report 

is bias stable; results of all correlation measurements are totally repeatable at 

any time without any special precautions, irrespective of the previous gate bias.

A key feature of the implant isolated correlator device is the time the 

device is capable of storing a reference signal. Figure 3.23 displays the 

correlation output versus storage time; the data points fall along the dashed 

curve which corresponds to a 3 dB storage time of 0.56 seconds. Although this 

is certainly a long storage time compared to other previous MZOS correlator 

configurations, with advanced fabrication procedures it is not unreasonable to 

expect storage times of at least several seconds.

A plot of normalized correlation output versus gate bias is shown in Fig. 

3.24 for three different values of read-write power level combinations. It is seen 

that for gate biases less than a certain value, the correlation output always 

remains within 85% of its maximum. This indicates a very wide bias range 

over which one may operate the device without significant degradation of the 

output signal. Based on theoretical considerations, one might expect that once 

the d.c. gate bias was sufficiently large to invert not only the storage regions, 

but also the ion implanted separation (and lateral) regions, then the lateral flow 

of inversion layer minority carriers from implanted regions surrounding the 

storage areas would eliminate the stored signal. The experimental result 

presented, however, indicates that the implanted region is of insufficient area to 

supply the signal eliminating flow of minority carriers. The top surface of the 

device after sawing and mounting extends approximately one millimeter to 

either side of the one millimeter wide gate. This area is subject to lateral 

effects and should contribute to the overall relaxation, but it is apparently too 

small to degrade the output significantly.
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Figure 3.23

Correlation output versus storage time.
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Figure 3.24

Correlation output versus gate bias for different read-write power level 
combinations
(A) Pw = 40.1 dBm, PR = 36.7 dBm
(B) Pw = 37.1 dBm, PH = 33.7 dBm
(C) Pw = 34.1 dBm, PR = 30.7 dBm.
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An rf writing signal of 140 nanoseconds (18 cycles) was found to produce 

the highest correlation output, and this writing pulse duration was used when 

performing the correlation measurements shown in Fig. 3.25. Figure 3.25 

shows the correlation output versus the reference signal amplitude and the 

result is linear over a 25 dB range in correlator output power. The dynamic 

range is limited on the low power end due to noise and spurious signal levels 

and on the high pov/er end measurements were halted before exceeding the 

power limitation of the IDT. The correlation output versus read pulse power 

can be seen in Figure 3.26, here again the dynamic range of the device is 

approximately 25 dB. It is the dynamic range of the output power with 

respect to the read signal power which is important in signal processing 

applications. In all measurements the correlation efficiency is between -100 and 

-110 dBm. The efficiency and dynamic range of this device are lower than 

expected. ZnO film quality during this particular sputter produced a delay line 

insertion loss some 14 dB more than in previous devices with the same 

dimensions. (The same was true for non-implanted test structures.) A better 

piezoelectric film should upgrade both figures of merit into the range of 

previously reported monolithic memory correlators.

3.7 The Implant-Isolated Device as a Degenerate Convolver

In addition to storage correlation and storage convolution, the implant- 

isolated device affords the possibility to perform degenerate convolution. The 

implant-isolated correlator is, afterail, identical to the standard monolithic 

ZnO/Si02/Si convolver pictured in Fig. 3.3 with the addition of the ion 

implanted grating pattern in the interaction region. We wish to determine the
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Figure 3.25

Correlation output versus reference signal amplitude.
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Figure 3.26

Correlation output vs. read signal amplitude.
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effect of the ion implanted region on the degenerate convolution of the 

implant-isolated structure.

If again one considers the gate region to be made up of alternating regions 

of highly doped (1017/cm3) and lightly doped (5Xl014/cm3) n-type silicon, one 

can view the implant-isolated degenerate convolver as two uniformly doped 

independent convolvers connected in parallel. The power levels in each of the 

two convolvers would be half that found in the composite structure and each 

convolver would have different doping levels as mentioned above. Analyzing 

the implant-isolated degenerate convolution in this manner greatly simplifies 

the process since detailed convolver analyses have already been performed for 

uniformly doped monolithic convolvers. Using an existing convolver model, we 

determine the relative convolution efficiencies for these two differently doped 

convolvers.

3.7.1 Convolution Efficiency

The terminal convolution efficiency, FT, is a figure of merit defined by

FT = Pc —(Pi + P2) V (3.23)

where Pc is the convolution output power and Px and P2 are the terminal input 

power levels applied to IDT 1 and IDT 2 respectively. Also known as the 

external convolution efficiency, FT takes into account transduction loss, 

mismatch loss at the terminals, and propagation loss in the device. The 

internal convolution efficiency, however, does not include these additional losses 

and is a measure of open-circuit output voltage as a function of the acoustic 

power levels of the propagating surface waves. Since we assume identical 

convolver structures (same physical dimensions, electrical connections, coupling



levels, IDT configurations, etc..,), the difference between the terminal 

convolution efficiency between a highly doped device and a lightly doped device 

will be due only to a difference in their internal efficiencies.

The literature is full of reports of different types of SAW convolvers and 

almost an equal number Of theories explaining the operations of the devices. 

We take our results from Lb19 as his structure is nearly identical to our device. 

Since a complete analysis has already been performed, we repeat only the result 

here for internal convolution efficiency, &!, of a ZnO/Si02/Si convolver which is 

given by

x/2 1 + — Mp
fox J

2
Mk

Av ■ i dC
A2 v c dVG

where M and Mi. are constants associated with a device of particular 
P K

dimensions19 and is the electromechanical coupling constant. The
v

quantity A is given by

1 +
£. M-
eo k

-G(^o)

1 + ec
6yy

G(bJ

(3.25)

where G(<^g0) is a function of the applied gate bias, es, e0, and <yy are the 

..^erinitfdvitie^‘ of the silicon, Si02, and ZnO respectively. The thickness of the 

ZnO layer is given by yp, and the Si02 layer thickness is y0. The last two 

terms on the right side of Eq. 3.24 involve 0, the gate capacitance of the 

composite structure, and VG is the applied gate bias. A detailed explanation of 

all of the above parameters can be found in Lo19.
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At this point we use the expression of Eq. 3.24 to compute the relative 

internal convolution efficiencies of the highly doped and lightly doped regions. 

If the relative efficiencies are comparable in certain bias ranges, one would 

expect to observe contributions to the convolution from both type regions in 

the structure. If the relative efficiencies are very much different, then one 

would expect a significant contribution in only one-half of the area beneath the 

gate and hence a decrease in convolution efficiency of approximately 6 dB from 

what could be achieved if the entire silicon surface had been a single doping.

Since the calculation of convolution efficiency for a particular configuration 

depends upon knowledge of the capacitance versus voltage characteristics (Eq. 

3.24), the C-V characteristics of devices with and without ion implantation 

were determined by digitizing actual C-V curves. From the C-V data we have 

determined the relative convolution efficiencies of the differently doped regions 

and normalized them to the maximum efficiency calculated. The results of this 

computation which are shown in Fig. 3.27 are informative yet not surprising. 

The maximum convolution efficiency was achieved for the lightly doped 

substrate configuration (curve D) and the maximum occurred when the silicon 

is in depletion. The heavily doped sample convolution efficiency (curve C) can 

be seen to dominate over a much wider range of operation than does the lightly 

doped device, yet the maximum efficiency for the highly doped region is two 

orders of magnitude lower than for the lightly doped silicon. The results of 

this computation indicate a contribution to the degenerate convolution in 

essentially just half of the interaction region so one would conclude that the 

maximum convolution efficiency attainable in the implant-isolated correlator 

structure is 6 dB less than the maximum for a uniformly doped device.
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Figure 3.27

Internal convolution efficiency fpr (Q\ uniformly doped (10'?? /cm3) silicon 
substrate convolver and (D) uniformly doped (5X1014 /cm3) silicon substrate
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3.7.2 Experimental Results

To verify this result experimentally, convolution measurements were 

performed for both the implant-isolated structure as well as a non-implanted 

uniformly doped (5X1014/cm3) convolver with the same dimensions and a ZnO 

film sputtered in the same run. Results of this experiment are shown in Fig. 

3.28 with the efficiency of the non-implanted device ~4 dB greater than for the 

implant-isolated device. An explanation for the discrepancy between 

experimental results and our prediction stems from the fact that the implant- 

isolated device used in this experiment had non-implanted regions comprising 

approximately 60% of the interaction region. Thus, a greater portion of the 

gate area would contribute to the maximum convolution resulting in an 

expected difference of only 4.4 dB from the maximum possible convolution 

output.

A plot of FT versus gate bias is shown in Fig. 3.29. for an implant-isolated 

correlator. As expected, the maximum convolution output occurs for gate 

biases which deplete the non-implanted regions. For biases more negative, the 

implanted region dominates, as predicted from the calculation of internal 

convolution efficiency plotted in Fig. 3.27. It should be noted that although 

one doping region dominates the overall convolution efficiency in any particular 

bias range, the efficiencies are comparable for gate biases between -IV and -3V. 

This is indicated in Fig. 3.29 by the gradual transition from the maximum 

efficiency toward the region where the heavily doped device dominates.
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Figure 3.28

Convolution efficiency for (A) a uniformly doped (5X1014 /cm3) convolver 
with no implants and (B) an implant-isolated storage correlator operated as 
a degenerate convolver.
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Figure 3.29

Terminal convolution efficiency for an implant-isolated storage correlator 
operated as a degenerate convolver.
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3.8 Measurement of SAW Potential

In the design of nearly all devices fabricated in the layered Zn0/Si02/Si 

configuration which utilize the interaction of the silicon carriers and the electric 

fields of the SAW, a knowledge of the silicon surface potential associated with 

the acoustic wave is essential. Information about the wave potential is 

invaluable in the design of convolvers and correlators as well as SAW charge 

transfer devices67,68 and SAW CCD’s69. We have designed an experiment in 

which the implant isolated storage Correlator is utilized to determine this 

potential relative to transducer input power.

Beginning in an equilibrium state with the correlator gate biased at some 

value for normal operation, one has a condition in the gate region similar to 

that shown in Fig. 3.14. Application of any short duration positive signal will 

cause the injection of some minority carrier inversion layer charge into the 

semiconductor bulk where some will recombine. When the applied signal is no 

longer positive, the depletion regions will be changed by some amount 

dependent upon the amount of recombined holes resulting from the positive 

portion of the signal. As mentioned in Section 3.5, when the applied signal is a 

spatially varying standing wave pattern, information will be stored in the gate 

region. As described above, application of an rf gate-acoustic writing sequence 

introduces a gate potential Vg given by

Vg(z,t) = Vwcos(wt - <f>) (3.26)

where Vw, the writing signal is given by

Vw = y/\~ + 2vavgcos(kz) + vg2 . (3.27)

The value va is the unknown magnitude of the acoustic wave potential 

referenced to the gate electrode and vg is the magnitude of the gate-applied rf
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writing signal. Whenever Vg > 0, there is information storage and a 

subsequent readout signal, R(t), gives the correlation between the stored 

reference signal and R(t), the readout signal.

It was noted that during negative going cycles of the applied writing 

signal, there is no contribution to the stored signal. Furthermore, after the 

presence of a negative signal comp on on t, the gate region will remain in exactly 

the same condition as it was before the negative signal was applied. If one 

were to apply a negative, dc pulse of amplitude AVG to the gate immediately 

prior to writing the reference signal and leave it on for the duration of the 

writing sequence, the total gate signal during the writing process would be

Vg(z,t) = Vwcos(a;t - <f>) - AVG . (3.29)

Clearly, if the applied pulse AVG is greater than Vw, then no signal will be 

stored because Vg(z,t) will always be negative. If, however, AVG is less than 

Vw, it is possible to store a reference signal.

By actually applying a dc pulse AVG during the writing process, a great 

deal of information about SAW signal levels can be determined. The effect of 

AVg upon the writing process can be observed by monitoring the correlation 

output as a function of AVG. As long as some signal is being written into the

gate region (i.e. AVg < va + vg), then the correlation output Vc is nonzero.

While varying AVG, the correlation output voltage disappears when 

AVg = AVGt = va + vg where AVGt represents the threshold value at which 

the writing process will no longer store a reference signal.

The interesting feature about this observation is that, experimentally, 

AVr and v., can be measured directly at the gate, allowing va, the acousticv*T o

wave potential referenced to the gate, to be easily determined. The
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experimental setup is diagramed in Appendix B. The experiment consists of 

the standard correlation experiment described in Section 3.6 (consisting of the 

gate-acoustic writing mode and the gate-to-acoustic reading mode) with the 

addition of a pulse AVG applied to the gate just prior to the introduction of 

the writing signal. In the experiment, AVG, the applied gate pulse, is varied 

during the writing process and the correlation output is monitored for each of 

the AVg values. When the correlation output become? zero, this implies that 

no signal is being written into the device and AVG = AVGt.

3.8.1 Experimental Results

Experimental results of Vc versus AVG are shown in Fig, 3.30. The shape 

of the curve can be explained with the aid of Fig- 3.31 which shows the gate 

signal during the writing process including the dc pulse, AVG. Since only 

positive portions of the total signal contribute to the stored signal, the 

correlation output is extremely sensitive to the, applied pulse magnitude. 

Furthermore, the stored writing signal (and hence the correlation output) is 

dependent upon not only the magnitude of the positive swing during writing 

but also the time duration of the positive signal because the amount of charge

storage varies as V(1 - e r). Clearly, as AVG becomes more negative, not only 

does the magnitude of the positive signal decrease but the effective writing time 

decreases as illustrated in Fig. 3.31. Thus, the change in correlation output 

with AVg is dependent not only upon the change in writing signal magnitude 

but also writing signal time duration.

It is difficult to obtain an analytical expression for the effective writing 

time when the negative dc pulse is applied in addition to the writing sequence,
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Figure 3.30

Correlation output versus negative pulse magnitude.
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Figure 3.31

Total gate writing signal including pulse. The effective writing signal is 
shown in the shaded areas.
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but it is easily calculated with the aid of a computer. Results of a predicted Vc 

versus AVG (using the method of Section 3.5) are shown in Fig. 3.30 along with 

the experimental results. The nonlinear behavior of the plots is due to the fact 

that the effective writing time changes in response to AVG as explained above. 

Furthermore, once AVG > | va - vg | as can be seen in Fig. 3.30, the 

reference signal becomes distorted because the lower portion of the writing

signal is essentially cutoff. That is, for j va vg | ^ ^ | va vg | >

stored reference signal will change drastically with changes in AVG. The

predicted points where AV,G = 1 v — vT I are shown on each of the curvesI a SI

in Fig. 3.30.

In the experiment, vg and AVG were measured at the gate of the device 

using an rf voltmeter. From these values we compute va for many, different 

acoustic signal power levels. In Fig. 3.32 we show the gate-referenced acoustic 

wave potential as a function of IDT terminal voltage for an operating point 

gate bias of -10V. Because of the dependence of the acoustic wave attenuation 

on the silicon surface potential, one would expect the acoustic potential versus 

transducer potential to be dependent upon gate bias.

3.9 Electronic Erasure

To be useful as a signal processing device in practical applications, the 

storage correlator must be able to process signal comparisons at a very high 

rate ( > KHz ). Since signals can be stored for more than seconds and the 

reading process is non-destructive, the memory correlator must have a 

mechanism by which the no-longer-needed reference signal can be erased prior 

to the occurrence of an ensuing writing sequence. In other correlator structures
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Figure 3.32
Gate-referenced acoustic wave potential versus terminal-applied transducer 
voltage.



erasure has been achieved by a number of means, the most common being 

illumination of the device using light emitting diodes (LED’s) mounted inside 

the device package58. The rapid photogeneration of carriers, inside the silicon is 

sufficient to relax the depletion widths to their equilibrium values within a few

microseconds and erasure is accomplished.

An electronic erasure scheme for the induced junction storage correlator 

has been demonstrated by Weng54’59. The electronic erasure method relies 

upon a narrow negative pulse applied to the gate which is sufficiently large to 

deep deplete the semiconductor in the entire region below the gate. This deep 

depletion condition creates shunting paths between what once were isolated 

storage regions. The erasure is completed when minority carrier holes from the 

regions surrounding the gate are swept into the gate region and a uniform 

inversion layer exists at the silicon surface. At this point in the erasure process 

the semiconductor is in the same condition as when setting up the induced 

junctions so that relaxation of the erasure pulse leaves the device immediately 

ready for storage of another signal.

In the construction of the implant isolated storage correlator it was 

initially thought that a type of electronic erasure similar to that of the induced 

junction device might be used. Experimentally, however, we observe that 

negative pulses applied to the device gate up to several tens of volts in 

magnitude do little to reduce the amount of stored signal. This is consistent 

with our predictions of Section 3.5 that the application of a negative pulse to 

the gate has little effect upon the stored charge. Additionally, the plot of 

correlation output versus gate bias shown in Fig. 3.24 indicates that the 

electronic erasure scheme will not work because increasing negative bias has 

little effect upon the correlation output. It is presently thought that the lateral



area surrounding the gate supplies an amount of holes which is insufficient to 

wash-out the reference signal in a short period of time. The simplest form of 

erasure, time relaxation, and the electronic scheme are eliminated as 

possibilities for reasons mentioned above so an alternative method is sought.

One of the reasons for utilizing a monolithic configuration is the ease of 

fabrication and rugged construction and although this implant isolated 

correlator has proven to be extremely sensitive to even the slightest 

illumination, it seems self-defeating to incorporate another discrete component 

(an LED) into the device package. The device erasure scheme we propose 

involves using a voltage controlled diode for injection of the destructive 

minority carriers necessary for erasure; The gate controlled diode erasure 

scheme is identical to the electronic erasure shown by Weng except that the 

signal erasing carriers are injected from an external source rather than 

generated internally.

A schematic diagram of the proposed erasable correlator structure is 

shown in Fig. 3.33. It consists of the same components and dimensions as the 

implant isolated correlators fabricated to date with the addition of a diode 

surrounded by a metal ring adjacent to the gate region on one side of the 

device. The diode serves as the source of the injected holes and the metal strip 

is biased during the correlation process to form a potential barrier between the 

diode and the gate region. The diode is constructed via a p+ (Boron) ion 

implantation following the initial phosphorus grating implant and oxidation to 

avoid contamination of the boron drive furnace tube during the anneal. The 

alutninum contact is made directly to the p+ implanted silicon.

The electronic erasure process with this structure can best be explained 

with the aid of Fig. 3.34 which shows a side view of the diode, barrier, and

97
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Figure 3.33

Implant-isolated storage correlator wun erasure, (a) Top metallization 
pattern (b) ion implantation pattern at silicon surface.
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Figure 3.34

(a) Cross sectional view of diode, guard ring, and storage region, (b) 
Energy band diagram at equilibrium, Vd — Vb — VG — 0. (c) Energy band 
diagram for VG < Vb < Vd = 0 showing the barrier between regions, (d) 
Energy band diagram during erasure for Vq = Vb < Vd.
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grating regions and energy band diagrams for various biasing schemes. The 

energy band diagrams are sketched with reference alopg the plane shown by 

the dashed curve of Fig. 3.34a. Figure 3.34b shows the equilibrium condition 

of the semiconductor with no bias voltages applied to the device. Under 

normal operating conditions, however, the gate bias is negative (VG = -8V) and 

the diode voltage is zero (Vd^O). To prevent premature erasure of the 

reference signal stored beneath the gate, the barrier voltage, VB, will be held at 

-2V. This reverse biases the diode and prevents communication between holes 

in the diode and those in the inverted gate region by increasing the potential 

barrier between regions. The condition just described can be visualized in Fig. 

3.34c. With this biasing in effect, the correlator should operate exactly as it 

did without the diode. Erasure is accomplished by removing the barrier 

between the gate and diode regions by pulsing the guard ring voltage to VG 

(Fig. 3.34d) thereby flooding the deep depleted storage regions with minority 

carrier holes. This rapid diffusion of holes should cause complete erasure of the 

stored signal within a few microseconds.

This erasure mechanism involves a few extra fabrication steps but no more 

electronics than any other erasure technique. Furthermore, erasure will be 

accomplished without complicating the device package with LED’s but in the

same time period.



101

CHAPTER 4

SAW RESONATORS

In marked contrast to the monolithic SAW memory correlator which 

utilizes the nonlinear electrical properties of the silicon for its operation, the 

SAW resonator relies upon the scattering properties of surface acoustic waves 

from surface discontinuities for proper operation. As a matter of fact, electrical 

interaction of propagating acoustic waves with metal features or semiconductor 

charge carriers gives rise to undesirable acoustoelectric losses which can 

severely limit device performance. In the SAW resonator, one relies upon 

efficient reflectors to confine acoustic wave energy to a resonant cavity. The 

reflections can be both mechanical and electrical in nature but reflections which 

are dependent upon electrical loading effects are less efficient than purely 

mechanical reflections.

Long before the introduction of SAW resonators, acoustic bulk wave 

resonators were demonstrated to be high Q, low loss elements. Because very 

thin piezoelectric membranes are needed for high frequency bulk wave 

resonators, however, their practicality extends into the frequency range only as 

high as thin film machining will allow. Kline and Lakin70 have fabricated bulk 

wave resonators on GaAs with operating frequencies higher than 1 GHz. In 

their devices, sputtered AIN films are effectively removed from the GaAs 

substrate by chemically etching pouches in the, underlying substrate. Using
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this technique, the ability to achieve resonance at a particular frequency 

depends upon ones ability to control the sputtered film thickness.

Alternatively, the utilization of surface acoustic wave structures has 

resulted in resonator operation as high as 2600 MHz71 with excellent frequency 

control which is determined by the accuracy of the pattern definition on the 

substrate surface. As such, surface acoustic wave resonators have proven to be 

effective high frequency, narrowband filters72’73’74’75’76 and are used as 

frequency control elements in oscillators in the UHF-VHF range77’78. These 

devices have also been used as pressure sensors79, accelerometers80 and gas 

detectors81.

Fabricated on single crystal piezoelectrics such as quartz and lithium 

niobate82,6’83,8,84,85 as well as in the Zn0/Si02/Si layered medium 

configuration7, SAW resonators are rugged high Q devices86,10,9 capable of 

operating at frequencies above 1 GHz87,88. Single crystal substrate SAW 

resonators fabricated on LiNb03 are attractive because of the possibility for 

low insertion loss by virtue of its high electromechanical coupling coefficient 

while the advantages offered by resonators on quartz are temperature stability 

and low propagation loss.

Recently, the single crystal SAW resonators have been challenged by 

devices fabricated in the ZnO/Si02/Si layered configuration7. Martin et al.22, 

have demonstrated high Q resonators which can be made temperature stable 

by exploiting the compensating nature of the temperature coefficient of phase 

delay from a thick Si02 layer. Additionally, by varying the dimensions of the 

Si02 film, one can make these devices temperature stable over a temperature 

range selected by the designer. One further advantage of the layered medium 

resonator, not possible with single crystal resonators fabricated to date, is the
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possibility of incorporation of the resonator as an on-chip element which can be 

fabricated alongside other components in monolithic circuits. Moreover, in 

addition to their rugged construction, ZnO-on-silicon SAW resonators have 

displayed potentially favorable aging characteristics89.

In this chapter we discuss further contributions to the study of on-silicon 

SAW resonators in an effort to increase their attractiveness for high frequency 

applications. We present a brief discussion of the Operation of a typical SAW 

resonator followed by experimental results dealing with new on-silicon 

resonator configurations.

t ••

4.1 Introduction

The operation of any SAW resonator involves the confinement of the 

acoustic wave inside a resonant cavity. The resonant cavity is formed by 

placing SAW reflectors some distance L apart such that at a particular 

frequency, a standing wave pattern will exist inside the cavity. The surface 

acoustic wave which is to be confined is introduced by way of interdigital 

transducers and the resonant condition standing wave is detected using either 

the same (one-port), or another (two-port), IDT. The operation of IDT’s for 

wave excitation 'Was outlined iri Ch. 2 and we now turn our attention to the 

reflector array properties.

In a SAW resonator, ideally one would utilize abrupt discontinuities 

(either parallel cleaved substrate edges or two very deep grooves) to achieve 

total reflection of the surface acoustic wave. Such a structure, however, would 

lead to Severe conversion to bulk modes and hence a power loss which Would 

greatly decrease the resonator performance. Instead of large reflections from a 

single reflector, reflection consisting of contributions from a series of distributed
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reflectors has been successfully employed.

The fundamental principle behind the operation of a SAW resonator is 

that near total reflection of a surface acoustic wave can be achieved by using 

an array of distributed reflectors consisting of a large number of periodic 

discontinuities placed normal to the propagation path99’^. It is because the 

SAW resonator utilizes waves propagating on the surface of a substrate, that 

enables one to employ surface perturbations for the reflection process. 

Furthermore, if the periodicity of the perturbing features is one-half 

wavelength, only a small fraction of the incoming wave energy need be 

reflected by each of a large number of reflectors to form an efficient Bragg 

reflector capable of large coherent reflection over a narrow bandwidth. A 

resonant cavity is formed when two such reflectors of the same periodicity are 

placed opposite one another thereby confining SAW energy between the 

reflectors. Resonance occurs whenever the surface acoustic wave lies within the 

bandwidth of the reflectors and the total round trip phase shift of the confined 

wave is a multiple of 2tt. When the resonant condition is satisfied one has a 

standing acoustic wave in the cavity. Furthermore, the use of a sufficient 

number of distributed reflectors per grating has been shown to make the bulk 

mode conversion loss in SAW resonators negligible compared to other energy 

loss mechanisms present in the system91,92.

A conventional SAW resonator consists of one (single-port) or two (two- 

port) interdigital transducers placed between symmetric reflector arrays on a 

piezoelectric surface. The schematic of a typical two-port ZnO/Si02/Si SAW 

resonator with etched groove reflector arrays is shown in Fig. 4.1. The etched 

groove reflector arrays actually consist of ridges rather than grooves. From 

Figs. 2.3 and 2.5 one can determine that the wave velocity in the ridges (where
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Schematic for a two-port 
reflectors.

Figure 4.1

resonator employing ion milled groove
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the ZnO is thicker) is slower than in the region surrounding the reflector array. 

That is, the effective SAW velocity in the grating region is slower than in the 

surrounding region. Thus, a wayeguiding effect occurs which tends to confine 

the SAW laterally within the grating region. Placement of transducers between 

reflector arrays allows one to couple energy into and out of the cavity. The 

two-port internally coupled configuration, as well as an externally coupled 

structure, (transducers outside the resonant cavity) will be discussed later.

4.2 Reflector Array Properties

In SAW resonators fabricated to date, it has been demonstrated that the 

surface reflector arrays can consist of metal strips either shorted or isolated22 as 

well as grooves etched either chemically or by ion milling7. Although 

metallized reflector resonators are easiest to fabricate, and ZnO is etched 

readily with a dilute nitric acid solution, the most efficient reflectors have 

proven to be gratings of ion beam etched grooves in the substrate surface. As 

such, the majority of our work deals with devices fabricated in the ion beam 

etched groove configuration. Since the operation of the SAW resonator is 

critically dependent upon the confinement of eneTgy, we will examine the 

grooved reflector array in some detail as a means of establishing an efficient 

resonant cavity.

Traditionally, the reflective grating has been modeled as a periodically 

mismatched transmission line as shown in Fig. 4.2; this report is no exception. 

The transmission line model, first applied to tlie SAW reflector array by Sittig 

and Coquin93, has proven very accurate for long reflector arrays utilizing small 

perturbations. In our device configurations, the ridges are modeled as having a 

characteristic impedance of Z2 while the impedance of the grooves is given by
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Zj. By assuming a particular impedance mismatch between regions 1 and 2, 

one can determine the reflection (and transmission) magnitude and phase for a 

reflector array of N periodic sections. Figure 4.3 shows a plot of reflection 

magnitude versus number of reflectors for different values of impedance 

mismatch per section. One can see that as the number of reflectors increases 

(for a fixed impedance mismatch), the reflection magnitude of the array 

becomes nearly total. Figures 4.4 and 4.5 show plots of calculated reflection 

magnitude and phase versus frequency, assuming a lossless reflector. From Fig.

4.4 one can see that as the number of reflectors increases, not only does the 

reflection magnitude increase, but the reflector bandwidth decreases. 

Furthermore, as shown in Fig. 4.5, the reflection phase variation is nearly 

linear at the reflector center frequency. This enables one to model the grating 

as a single reflector located a distance Lp away from the grating edge with 

reflection coefficient equal to that of the entire array. The distance Lp is given 

by90

= JL A±
p 4jt df

where f0 is the reflector center frequency and <j> is the reflection phase. The 

reflection phase is dependent upon the number of reflectors per array as well as 

the impedance mismatch per periodic section. A plot of Lp versus impedance 

mismatch, c, is shown in Fig. 4.6 for three different values of N, the number of 

reflectors per array. In general, for a constant Ne, Lp will be greatest for large 

N and small c. Additionally, if the wave excited by the IDT is within the 

reflector bandwidth, and the separation between reflectors, L0, is an integer 

number of half-wavelengths7, a resonant cavity will be formed with an effective 

cavity length Leff given by

f = f„
(4.1)
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Figure 4.3

Reflection magnitude for a reflector array with impedance mismatch per 
section of 1% for (A) 400 .(B) 200 and (C) 100 reflectors per array.
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Reflection magnitude for a reflector array with impedance mismatch per 
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Leff = 2Lp +L0 . (4.2)

4.3 Resonator Q

The effectiveness of a resonant cavity for confinement of energy can be 

determined by means of a figure of merit known as the device Q, or quality 

factor. The Q of a resonant cavity is a measure of the ability of the cavity to 

store energy and is given by

Q
2ttU
Pl

(4.3)

where U is the peak energy stored in the cavity, and PL is the power lost per 

cycle. An alternative expression for the device Q assuming no losses except for 

radiation out the ends of the reflector arrays caused by insufficient reflection, is 

given by

Q =
27rLeff

X(1 - I RI 2)
(4.4)

where X is the wavelength at the synchronous frequency and R is the 

magnitude of the reflection coefficient. Clearly, to obtain a high Q resonator, 

one desires to increase the effective cavity length, and at the same time, 

maximize R. At this point the problem appears to be a simple one as both 

conditions for enhanced Q can be met by increasing the number of reflectors 

per grating and decreasing the reflectivity per groove (shallower grooves). The 

actual solution, however, is not so simple because one must take into account 

practical considerations by dealing with the various loss mechanisms in the

resonator.
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4.3.1 Loss Mechanisms

Any losses which increase the power lost per cycle, increase PL, thereby 

lowering the device Q (Eq. 4.3). The main sources of loss are due to 

propagation loss (viscous damping and air loading), diffraction loss and other 

leakage out the sides of the device, losses due to conversion of the Rayleigh 

wave to bulk waves, and radiation loss from the ends of the reflecting arrays. 

The overall Q one can attain is limited by each of these mechanisms. That is, 

as one takes into account the Q’s associated with various loss mechanisms, one 

can determine the overall device Q as follows

— = Ej— = — + — + — + — + .
Q Qi Qr Qd Qb Qp

(4.5)

where the Q’s on the right side of Eq. 4.5 are the radiation, diffraction, bulk 

wave loss, and propagation loss Q’s respectively plus any other loss mechanism 

Q’s. We assume the four loss mechanisms mentioned here to be the dominant 

Q-limiting factors associated with our resonator structures. Several efforts have 

been made at reducing each of the losses94; two which can be minimized by 

changing the grating dihiensions are diffraction loss and bulk wave conversion 

loss.

Diffraction loss is caused by incomplete confinement of the wave energy at 

the edges of a reflector array. Li, et. al95,9. have shown that diffraction loss Q 

varies as the square of the beamwidth and that a sufficiently wide grating 

aperture ( 50 X) will make diffraction losses negligible with respect to the other 

losses. Losses associated with generation of bulk waves from grooved reflector 

arrays has been examined96 and it has been shown that bulk wave generation 

can be made negligible by utilizing a large number of reflectors with very small 

perturbations (shallow grooves)91. A thorough analysis has yet to be performed
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for bulk mode conversion in the layered ZrtO/Si02/Si configuration and as will 

be seen later, this will be a maj6r concern in the design of low loss, high Q 

resonators.

The radiation Q for a SAW resonator is dependent upon the reflection 

magnitude of each reflector array. As discussed earlier, the reflection 

magnitude is a function of the number of reflectors per array as well as the 

impedance mismatch per periodic section (groove depth). Also entering into 

the computation of the reflection magnitude, however, is the propagation loss 

per unit length associated with a given structure. The propagation loss will be 

shown to have a profound affect upon the device Q.

To maximize device Q one requires a large effective cavity length and near 

total reflection from each of the reflector arrays. One assumes that this can be 

achieved by using a large number of very shallow grooves. As the effective 

cavity length Leff is increased, so is the effective propagation path of the 

confined SAW, so in the expression for radiation Q, the increased Leff from 

shallower grooves may be more than offset by the decrease in R. That is, 

depending upon the propagation loss in a particular resonator configuration, 

increasing Lefj while holding Ne constant may or may not increase the device

Q-

The rather complex goal of the SAW resonator designer is to maximize the 

device Q while keeping the device dimensions to a reasonable size. In the 

ZnO/Si02/Si layered medium configuration, the main source of loss (and hence 

the limiting Q factor) is propagation loss due to the viscous nature of the ZnO 

layer. That is, it is assumed that the device is limited by Qp and that 

diffraction loss, bulk wave loss, and radiation loss are comparatively small. 

These assumptions will be verified in following sections.
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4.3.2 Propagation Loss,

It should be noted that the SAW resonator has long been a valuable 

diagnostic tool in the determination of wave attenuation because the Q 

provides a very sensitive measure of propagation loss within a structure95,9. 

By minimizing all other loss mechanisms (by methods described above), one can 

assume all remaining loss to be due to propagation loss thereby allowing an 

attenuation factor, a, tp be determined from the.well known relation

„ Q = ^ ; ' , ,Ut' 

where X is the wavelength of the SAW at the synchronous frequency and a is 

the propagation loss per unit length. The value of a computed from Eq. 4.6 is 

an upper bound on propagation loss.

Propagation loss in the ZnO layered medium is much greater than for 

Rayleigh waves propagating in silicon or on bulk ZnO. Hickernell97 reports 

losses for sputtered ZnO films typically eight to 30 times greater than 

predictions made based on bulk ZnO samples. The higher propagation loss is 

believed to be caused by physical discontinuities at the grain boundaries of the 

polycrystalline ZnO films as well as surface roughness which is an unavoidable 

result of any sputtering process. It has been shown that as surface roughness 

and defect density increases, so does propagation loss97. An added 

complication associated with the propagation loss in the thin film ZnO layer is 

that the propagation loss increases with the square of the frequency97; a 

potential limiting factor in the operation of high frequency SAW resonators.

To observe the effect of propagation loss upon the device Q we have 

simulated the response of a SAW resonator using the cascaded transmission 

line model while incorporating propagation loss. We have assumed a
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propagation loss of Q.45 dB/cm and have let the separation between arrays (L0) 

be 30X. Q is then calculated from Eq. 4.4 where the computed reflection 

coefficient'includes the effect of propagation loss. Figure 4.7 is a plot of 

resonator Q versus Ne, the number of reflectors times the impedance mismatch 

per reflector, where the number of reflectors per grating was held constant and 

e was varied. For this particular array separation and propagation loss, the 

maximum Q is achieved for small impedance discontinuities and actually 

decreases slightly as the impedance mismatch per periodic section (groove 

depth) increases. That is, as groove depth increases, the reflection magnitude 

increases but the effective cavity length decreases and the overall Q decreases. 

The degradation of Q is attributed to the fact that the slow increase in the 

reflection coefficient from deeper grooves is not sufficient to counteract the 

decrease in effective cavity length because the propagation loss in the cavity

region between reflectors dominates the device Q.

Understanding the relationship between these effects is especially 

important in the design of high frequency resonators where it is thought the 

propagation loss will increase dramatically because of the f2 loss mechanism. 

One should also keep in mind the fact that once propagation loss becomes 

large, one no longer gains a great deal in the way of maximum Q by increasing 

the number of reflectors, in the gratings. Rather, by sacrificing a small 

percentage of the maximum Q one can reduce the size of the device by great 

amounts; a very important consideration if these devices are to be incorporated 

into monolithic circuits. Note in Fig. 4.7 that a device represented by the data 

of curve A corresponds to a device of approximately one-half the area of the 

device of curve B which is half the area of the device represented by curve C. 

Thus, one has significant savings in valuable substrate real estate without
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sacrificing an appreciable amount of the resonator quality factor. From the 

curves of Fig. 4.7 one can see that it is unreasonable to expect higher Q values 

from different combinations of groove depth and grating length after a point 

because the device performance is limited by propagation loss.

4.4 Limited ZnO SAW Resonators

To improve the ZnO film quality and to reduce the propagation loss 

associated with the ZnO/Si02/Si composite structure, various annealing 

techniques have been employed. Results of a laser annealing experiment have 

been reported by Martin et. al28. whereby the grating regions of a SAW 

resonator were laser annealed in an attempt to reduce the number of defects 

located at the ZnO/Si02 interface. These interface defects are highly 

concentrated in sputtered films and are thought to contribute significantly to 

surface wave attenuation. The results of the C02 laser experiment by Martin 

are shown in Fig. 4.8. Clearly the slight increase in device Q is not enough to 

warrant significant interest in the laser annealing technique as a method of 

reducing propagation loss. It was not noted in this experiment whether there 

was a change in the optical propagation loss which is what had been of interest 

to those laser annealing ZnO up to this point".

In addition to laser annealing, thermal annealing in furnaces has been 

attempted" but with no improvements noted in either optical or acoustic 

propagation loss.
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4.4.1 Device Configuration

Rather than resign ourselves to the fact that nothing can be done to 

reduce the surface wave attenuation caused by the ZnO film, we have 

attempted to circumvent the problem through the use of alternate 

configurations which are variations of the devices fabricated to date. The 

function of the piezoelectric ZnO layer is that it provides a means by which 

electrical energy can be transduced into acoustic energy and vice-versa thereby 

allowing a means for coupling into and out of the resonant cavity. Efficient 

reflection of surface waves can be achieved without the ZnO film. By reflecting 

the waves using grooves etched into the Si02 layer (ZnO removed), the lossy 

ZnO layer can be limited to the transducer regions. To examine the effect of 

elimination of the ZnO on device Q, resonators similar to those depicted in Fig.

4.9 have been fabricated. One will note the transducer regions are the only 

places where ZnO is to be found. These ZnO regions can be defined either by 

chemically etching the ZnO layer or by using a shield during the sputtering 

process. An advantage of the latter technique is that sputtering damage can be 

restricted to a minimum area of the wafer.

A feature associated with the growth of thin films is the possibility of 

some nonuniformity in thickness over a sample. In fabricating resonators using 

etched grooves in the ZnO layer, it is important to maintain good control of 

the film thickness in the grating region; this is especially important due to the

velocity gradient associated with a change in film thickness of the dispersive
\

ZnO layer. The velocity gradient can both degrade the reflection magnitude 

and increase the bandwidth of a reflective array. The nonuniformity problem 

is alleviated in devices constructed using grooves in silicon or grooves in Si02 

where the dispersion is considered negligible.
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Figure 4.9

Limited ZnO resonator configurations (a) externally coupled and (b) 
internally coupled.
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A series of experiments involving the measurement of the transmission 

through reflector arrays of 400 ion-milled grooves were performed to determine 

the reflectivity per groove for various values of groove depth. A plot of 

reflectivity per periodic section versus normalized groove depth, hk, is shown in 

Figure 4.10. Experimental points together with a theoretical curve for grooves 

both in silicon and Si02 indicate that experimental results appear to be in close 

agreement with theory101’l02. Also included in the figure is a line showing 

experimental reflectivity data for grooves etched into the surface of a 0.7 //m 

ZnO film on 3.05 /im Si02 as previously reported7. All measurements and 

predictions are for (111) cut {211] propagation direction silicon substrates. 

Clearly, by elimination of the ZnO layer in the grating region, one must use 

deeper grooves, more reflectors, or a combination of these two to obtain the 

same amount of reflection from a grating etched into silicon or Si02. An 

increase in the groove depth will eventually decrease Q due to scattering into 

bulk modes, whereas an increase in the number of reflectors per grating will 

increase the effective cavity length and hence, raise the Q at the expense of an 

increased device size.

With this reflectivity information as a starting point, resonators similar to 

those shown in Fig. 4.9a were constructed with 400 grooves per reflector array

and a periodicity of 20 /<m The separation between reflector arrays was 30

wavelengths. The motivation behind using an externally coupled resonator was 

to leave the transducers outside of the resonant cavity to try to maximize the

device Q by not loading the cavity with the output port. The resonators were 

constructed w'ith grooves etched into a 3.05 /im Si02 layer and also grooves in 

unoxidized silicon. The Qs for these devices were 25,900 and 31,400 

respectively; a significant improvement over the previous high of 14,400 for an
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Figure 4.10

Reflectivity per groove vs. normalized groove depth for the following 
configurations:
(A) Grooves in 0.7 /im ZnO on 3.05 fini Si02,
(B) Grooves in 3.05 fim Si02
(C) Grooves in unoxidized silicon. All substrates are (lll)-cut, <211 > 

propagating silicon.
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externally coupled SAW resonator with grooves etched into the ZnO layer. 

Experimental results of Q versus impedance mismatch per periodic section for 

the just described configurations are shown in Figs. 4.11 and 4.12. The 

experimental data obtained ih these measurements was used in the resonator 

simulation program to determine values for propagation loss for each 

configuration. In the Si02 reflector configuration a value of a =0.24 dB/cm 

best fits the data and similarly a = 0.19 dB/cm for the unoxidized array in 

silicon. The computed values of resonator Q using these factors are 

represented by the solid curves of Figs. 4.11 and 4.12. These factors are far 

below the value of a — 0.45 dB/cm computed from the best resonator with 

grooves in ZnO. Using these values, an extension of the resonator model leads 

us to believe Q’s of at least 27,600 and 36,100 are attainable at 115 MHz for 

the silicon dioxide and silicon groove arrays respectively. This information 

enables us to examine not only the degree of surface wave attenuation which 

can be attributed to the ZnO layer, but we can also begin to draw conclusions 

about the effect of the Si02 layer on propagation loss.

The two-port transmission magnitude response of an externally coupled 

resonator is shown in Fig. 4.13. The sharp resonant peak centered within the 

reflector array stopband is characteristic of these devices. The peak-to- 

background level is approximately 25 dB but only in a narrow frequency band 

near resonance and the insertion loss at resonance is nearly 50 dB. Externally 

coupled resonator filters are useful for narrowband applications where gain is 

not ah important factor.

The two-port internally coupled resonator, however, has a large peak-to- 

background level over a wide frequency range, and has exhibited insertion 

losses in the layered medium configuration of less than 5 dB. A two-port
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Figure 4.11

Resonator Q versus reflectivity per periodic section for limited ZnO
externally coupled resonators with grooves etched into Si02.
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Figure 4.12

Resonator Q versus reflectivity per periodic section for limited ZnO
externally coupled resonators with grooves etched into unoxidized silicon.
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Two-port frequency response for an externally coupled ZnO/Si02/Si SAW 
resonator.
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transmission response plot for a typical internally coupled resonator is shown in 

Fig. 4.14. For obvious reasons, the internally coupled two-port resonator 

configuration is of much greater interest for practical signal processing 

applications and as such, we have applied the above-mentioned changes to the 

internally coupled structure.

SAW resonators in the configuration shown in Fig. 4.9b have been 

fabricated for both grooves in Si02 and grooves in unoxidized silicon. In both 

structures the ZnO was chemically etched away from the grating region to 

form an abrupt step at the edges of the transducer regions; no tapering of the 

ZnO was attempted. Each reflector array consisted of 400 ion mill grooved 

sections. Experimental results of Q versus reflectivity per section for limited 

ZnO internally coupled resonators are shown in Figs. 4.15 and 4.16. In both 

cases of grooves in Si02 and grooves in unoxidized silicon, the maximum Q 

achieved was below 5000. One would first conclude that perhaps the deeper 

grooves needed because the lower reflectivity per groove (Fig. 4.10) of both trial 

configurations caused a severe bulk mode conversion and hence greater power 

loss. However, the high Q’s of the externally coupled resonator configurations 

quickly discount that as a possibility. The severe degradation of Q is blamed 

on the abrupt step discontinuity at the edge of the ZnO region which leads to 

severe bulk wave generation. Several analyses have been performed on the 

conversion of Rayleigh waves to bulk waves in reflector arrays and at a single 

shallow groove of finite width. Our interest, however, pertains to a single 

vertical step and the various reflections which occur at this discontinuity.



IN
SE

RT
IO

N
 LOS

S (dB
)

130

—i

130

FREQUENCY (MHZ)

Figure 4.14

Two-port frequency response for an internally coupled Zn0/Si02/Si SAW 
resonator employing ion milled groove reflectors.
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Figure 4.15

Resonator Q vs. reflectivity per strip for limited ZnO internally coupled
resonators with grooves etched into Si02.
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Figure 4.16

Resonator Q vs. reflectivity per strip for limited ZnO internally coupled
resonators with grooves etched into unoxidized silicon.
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4.5 Recessed? ZnC> SAW Resonator

Still wanting an internally coupled SAW resonator which exhibits higher 

Q-values because of the limited ZnO area, we designed an experiment to 

minimize the mechanical reflection at the edge of the ZnO region. The 

proposed structure, shown in Fig. 4.17, consists of the same features and 

dimensions as the internally coupled limited ZnO resonator shown in Fig. 4.9b, 

but with the ZnO layer recessed into the silicon substrate. The device is 

fabricated by placing a two mil thick metal mask* atop a silicon substrate on a 

special aluminum pallet. The mask/substrate/pallet assembly is fastened 

together by affixing an aluminum shield to the pallet as shown in Fig. 4.18. 

While all of the layers are in intimate contact, the entire assembly is placed 

into the ion mill and the silicon is etched to a depth of 8000 A. After the 

groove is etched, and without breaking vacuum, a 1000 A layer of A1 is 

deposited as a shorting plane. The pallet and masks are then placed into the 

sputtering system and a 7000 A ZnO film is sputtered, thereby making the ZnO 

film flush with the silicon surface. At this point, the mask is removed from the 

substrate and resonators are fabricated as described in Appendix D to yield the

devices of Fig. 4.17.

4.5.1 Experimental Results

A series of resonators were fabricated with varying groove depths and Q- 

values were determined. Results of this experiment are shown in Fig. 4.19 for 

the recessed ZnO SAW resonators on silicon. The rather disappointing results 

are shown to behave the same as those of devices fabricated with limited ZnO

* Moly permalloy (76% Ni, 20% Fe, 4% Mo)



Figure 4.17

Schematic for a recessed ZnO SAW resonator.
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Figure 4.18

Recessed ZnO fabrication assembly.
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but no recessing of the ZnO. The highest Q-value obtained was 4000 and was 

achieved for only a modest reflectivity per strip of 0.5%. Increasing groove 

depth again resulted in a degradation of Q-value. The recessed ZnO structure 

behaved as if a step existed at the edge of the ZnO.

To examine the edge of the transducer region, we have examined a device 

with a Dektak step measuring apparatus by dragging a stylus across the 

vertical ZnO/Si interface. A replica of the step region is shown in Fig. 4.20 for 

the internally coupled structure. It is apparent that the metal mask approach 

to recessing the ZnO layer to form a planar structure was unsuccessful. The 

edge of the ZnO region is seen to taper off over a few wavelengths and become 

very thin at the edge of the very large silicon barrier. The change in film 

thickness near the ZnO region edge is most likely due to the altered electric 

field pattern at the edge of the mask during both ion milling and rf sputtering. 

The reason for the large ridge at the edge of the silicon is still unexplained. 

Irrespective of its origin, the step has a severe effect upon the device Q (as 

shown in Fig. 4.19). Furthermore, because of the very wide gap between the 

ZnO and silicon regions, the metal mask recessed structure is not a reasonable 

technique for achievement of the structure of Fig. 4.17.

One possibility for reducing the bulk wave conversion at the step 

discontinuity is to taper the ZnO layer in a non-recessed Structure. In addition 

to the increased fabrication complexity, however, the design of such a resonator 

becomes very complicated. Because of the dispersive nature of the layered 

ZnO/Si02/Si system, reflectors in the tapered region would have to be spaced 

aperiodically to achieve maximum coherent reflection from each array. 

Additionally, the tapered ZnO layer would comprise a greater surface area of

the substrate thereby increasing the propagation loss in the structure.
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1000 A

<----------------------- ----------------------->

Figure 4.20

Profile of recessed ZnO edge determined by dragging a stylus over the 
surface.
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4.6 Conclusions

We have demonstrated a means by which the Q-values of on-silicon SAW 

resonators can be enhanced through a minimization of the ZnO film area. 

Significant improvements were noted in externally coupled configurations but a 

degradation occurred for internally coupled devices.

The rationale behind fabricating these limited ZnO devices was to improve 

Q-values so that high frequency SAW resonators could be constructed with 

reasonable Q-values. At high frequencies, propagation loss in the ZnO film is 

the major Q-degrading factor and by reducing the area of the device containing 

ZnO, the device characteristics can be optimized.

We note here that the upper limit for device Q in the internally coupled 

resonator configuration is 5000 for an abrupt step at the edge of the ZnO. This 

maximum Q is frequency independent for the same ratio of step height to 

wavelength. The upper limit on device Q imposed by this step will always be 

5000 because all dimensions scale proportionally at different frequencies. At 

frequencies in the GHz range, then, the Q limit imposed by the step will be far 

above the achievable Q due to other loss mechanisms in the structure 

(including propagation loss in the ZnO-less structure). Therefore, one can still 

benefit from the limited ZnO structure at high frequencies and take advantage 

of the reduced propagation loss in the regions without ZnO and without 

concern for the effect of the step discontinuity.
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CHAPTER 5

MODE CONVERSION RESONATOR

5.1 Introduction

Most SAW resonators to date have employed Bragg reflection of a single 

longitudinal mode from periodic gratings of distributed reflectors to form 

resonant cavities. In addition to single mode Bragg reflection, the layered 

ZnO/Si02/Si configuration permits a different means by which wave energy 

can be confined to form an efficient resonant cavity via mode conversion 

between different propagating SAW modes. It has been demonstrated34 that 

when the ZnO film is of sufficient thickness, the layered structure will support 

not only the first order Rayleigh mode but also higher order Rayleigh modes. 

Moreover, in the layered structure, it has been shown**3 that one can efficiently 

convert between these propagating modes by employing surface perturbations 

of a particular periodicity. ' '

Recently, Martin et. al103. have demonstrated a ZnO-on-Si mode 

conversion resonator which employs conversion between the Rayleigh mode and 

the second order Rayleigh mode (or Sezawa mode) for the confinement of 

energy. In addition to the possibility for enhanced out-of-band rejection offered 

by this new configuration8-, the positional independence of transducers within 

the cavity has been demonstrated104 which has greatly relaxed the previously 

critical spacing requirements necessary in all SAW resonators.
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In this chapter we present a theoretical development of the mode 

conversion resonator. We first describe the basic, device structure and principle 

of operation, followed by an analysis of the device theory. Prior to drawing 

conclusions we present experimental results of the mode conversion device to 

demonstrate the validity of our predictions.

5.2 Structure and Operation

A schematic of a two-port mode conversion resonator is shown in Fig. 5.1. 

The device consists of two interface105 transducers, one of Rayleigh type with 

periodicity XR and the other of Sezawa type with periodicity Xs. The rf diode 

sputtered ZnO film is 6.5 fim thick, which is of sufficient thickness to support 

both Rayleigh and Sezawa modes. The reflector array consists of grooves 

etched into the 1.0 ^m Si02 layer. The periodicity of the grooves (with equal 

groove and space widths) is d, where d is given by23’106

*R + ts=/y, •' I5-1)

at a fixed frequency where kR and ks are the Rayleigh and Sezawa 

wavenumbers, respectively.

A complete qualitative description of the operation of this device has been 

described elsewhere89,103 so only a brief outline will be given here with the aid 

of Fig. 5.2.

Consider the excitation of a Rayleigh wave by the application of a 

sinusoidal signal to the Rayleigh IDT. The Rayleigh wave will propagate into 

the mode conversion grating where it will be back-scattered as a Sezawa wave. 

After traversing the cavity as a Sezawa wave, the wave will be re-reflected by 

the opposite grating as a Rayleigh wave. Since bi-directional transducers are
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Sezawa 
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Figure 5.1

Schematic for a two-port mode conversion resonator utilizing interface 
Rayleigh and Sezawa type transducers.
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MODE CONVERTING REFLECTORS

RAYLEIGH IDT SEZAWA IDT

RAYLEIGH MODE

SEZAWA MODE

Figure 5.2

Schematic for a mode conversion resonator showing a resonant mode of the 
cavity.
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used, this occurs in both directions such that waves of both types propagate 

simultaneously in each direction as a result of the excitation by only one 

transducer. It: is the presence of the transducer that gives a definite phase 

relationship between the two propagating cavity modes. Each of these loops, 

as a Rayleigh wave in one direction and a Sezawa wave in the other direction is 

an eigenmode of the cavity. Furthermore, when the total round-trip phase 

shift of these modes, as a Rayleigh wave in one direction and a Sezawa wave in 

the other direction, is a multiple of 2tt, then each of these modes is a resonant 

mode of the cavity. As long as no coupling exists between these cavity modes, 

they will be independent and degenerate. It should be noted that the same 

conditions could be realized had the Sezawa transducer been used to excite the

waves.

It will be shown in this chapter that when the spacing between reflector 

arrays and the spacing between the transducers of different periodicities is 

equal to some critical value, a resonant condition is established whereby each 

transducer couples optimally to a standing wave of the same periodicity. 

Furthermore, it will be shown that under certain circumstances, the spacing 

between the transducer and the reflector arrays is non-critical for optimum 

device performance.

5.3 Analysis

To analyze the SAW mode conversion resonator, first consider a single 

IDT placed between mode converting arrays as shown in the schematic of Fig. 

5.3. By examining the lone transducer one can formulate a method for 

determining the current in the IDT in the presence of propagating surface 

acoustic waves. This information, which leads to an expression for IDT
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Figure 5.3

A one-port mode conversion resonator formed by two mode converting 
arrays.
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conductance, is readily transferred to the case of the two-port mode conversion 

resonator (described in the next section).

The transducer can be examined as a linear 3-port device (having two 

acoustic ports and one electrical'port). One can relate the input and output 

wave potentials to the voltage and current at the electrical port. For simplicity 

it is assumed that the transducer is symmetric about its center, yc, so that 

there is no difference between coupling to propagating waves in the +y or -y 

directions. Referring to Fig. 5.2, one can write the acoustic wave amplitudes in

the cavity as

S2+(yc) = Si+(yc) + /'s^T (5.2a)

Ri(yc) = fMyc) + heYt (3.2b)

si(yc) - So(yc) + a*svt (5-2c)

R2+(yc) - ^i+(yc) + prYt • (5.2d)

Here R and S represent the Rayleigh and Sezawa wave amplitudes respectively 

and the numerical subscripts reference a particular side of the transducer. The 

superscript + or - indicates the direction of propagation.

We are using the traveling electrostatic potential associated with an 

acoustic wave to denote its amplitude. Thus, in Eq. 5.2, jjr and fts are 

dimensionless quantities representing the outgoing Rayleigh and Sezawa 

potentials per volt applied (VT) to the transducers. The values //s and/iR can 

be determined by examining the case of an isolated IDT in the absence of a 

grating such that Ri+(yc) = Si+(yc) - R2(yc) - S^yJ - 0. Following 

Matin'28, ns and //R are given by
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jkw
2

Avc

vs

sin
ksW

2

ksw n

2

_
ikw Av-R

VR

sin
kRw

N
E ejksyneJ>n (5.3a)

kRw

N
E*

n = l
jlWngj^n (5.3b)

where yn and <f>n are the location and phase of the nth finger relative to the IDT 

center, w is the finger width, and N is the number of fingers in the IDT. The 

electromechanical coupling to the Sezawa and Rayleigh modes is represented

by
Avg

vs
and

AvR

VR
respectively, and w is the width per IDT finger.

For an IDT placed in the presence of propagating waves one has 

components of IDT current due to both the potential applied to the IDT and 

induced by the potentials of the propagating surface acoustic waves. The total 

current in the IDT is given by

i = gsvt + grvt + gs+Si+(yc) + gs-S2(yc) + gR+Ri+(yc) + gR-JMyc) (5-4)

The terms GR and Gs represent the radiation conductance of the transducer 

for Rayleigh and Sezawa waves respectively and VT is the applied transducer 

voltage. Here we have not included the purely capacitive current which is 

independent of the acoustic interaction (assuming weak coupling). The terms 

gR and gs are conductance-type terms which relate the potentials of incoming 

surface waves to the current induced in the IDT. Due to symmetry, 

Ss+ - Ss. = Ss- and gR+ = gR_ = gR where28
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Y> jksy"e j*. (5.5a)
1=1

^e_jkRyne_j^" . (5.5b)
n = 1

where Cf is the capacitance per finger and w is the finger width. Here again, yn 

is the position of the nth finger with respect to the IDT center and N is the 

number of fingers in the IDT. ,

We are now in a position to relate the wave potentials outgoing from the 

IDT to the potentials incident upon the IDT via the reflection coefficients of 

the reflector arrays, r1RS, r2RS, rW, ahd r2SR. The reflection coefficient FjRS 

represents the scattering from the Rayleigh mode to the Sezawa mode by 

reflector array 1 (Fig. 5.3) and similarly for r2RS, rISR, and r2SR. The 

relationships between the wave potentials incident upon an array, and back- 

scattered from ah array (referenced to the IDT center), are given by

s,+(yJ =r,*sRr(y«)«'i(l" +18)1,1 + ' (5.6a)

K2(y..) = rjsRS/lyJe-i'1" + ks),'“ ‘ (5.6b)

Ri+(y.) = r,SRsl-(ye)e_i(k*+ ks)(,‘+ rJ (5.6c)

s2“(yt) =r2RSR2+(yt)e“i,k" + ks)&_I'J , (5.6d)

where -lx and 12 are the edges of the reflector array as shown in Fig. 5.3. In

gs
jwCf sin

ksw

ksw

gR

sin
kRw

kRw
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Eq. 5.6 the array reflection coefficients are referenced to the edge of the 

reflector array such that

Firs - IRS (5.7a)

Fisr - 1SR (5.7b)

rw - 2SR (5.7c)

r 2RS - 2RS (5.7d)

where <f> is the array reflection phase referenced to the edge of the array.

The expression for incident IDT potentials in terms of array scattering 

coefficients (Eq. 5.6) enables one to rewrite the steady-state Rayleigh and 

Sezawa potentials inside the mode conversion cavity in terms of the array 

reflection coefficients, the voltage applied to the IDT used for excitation, and 

the coupling terms and fis. Solving Eq. 5.2 subject(to Eq. 5.6 one obtains 

expressions for surface wave potentials incoming to the IDT in terms of the 

applied IDT voltage, giving

Ri+(yJ =
_ r1SR (/fge ^tR *ts|y- + r2RS«Re-i(t"++^-v,

i - ^,sR^2Rse"i(k,,+ks)(l, + w
(5.8a)

^2 (yc)

si+(yc)

r2SR ^ I rius/.,;.' i!l"'f tsl'-)e-i(t- * 

^,Rs[<-Re^i|k', + ks)j,‘ + r2SRfe'e'i(k|’* ks)lje*» * k*VT

(5.8b)

(5.8c)
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r2RS Lei,k» + ts,y-+ rlsR^se-j<k» + k*)e-i«k» +
S^> ----------------- ,_r r, ^i(k»>k!)0,T« : (5'8d)

1 1 2RS1 lSRe

Substituting the expressions for wave potentials in terms of applied 

voltage from Eq. 5.8 into Eq. 5.4, one can obtain the IDT current in terms of 

the IDT voltage and the various parameters fixed by the device dimensions. 

The process just described allows one to calculate the input admittance of an 

IDT in the presence of propagating surface waves. In the next section we will 

use this method to analyze the two-port mode conversion resonator.

5.4 The Two-Port Mode Conversion Resonator

In the mode conversion resonator two independent resonant modes are 

simultaneously present. Each of these independent modes consists of a 

Rayleigh wave in one direction and a Sezawa wave in the opposite direction. 

In a two-port mode conversion resonator we couple into the cavity through 

either the Rayleigh or Sezawa mode and we couple out of the cavity through 

the other mode.

To analyze the two-port mode conversion resonator we utilize a two-port 

admittance matrix as follows

Il Y„ y12 V,'
I2 Y21 y22 V2;

where the values for Ij, I2, V1; and V2 are referenced as shown in Fig. 5.4. 

When computing the matrix elements, the coordinate system shown in Fig. 5.4 

will be used with the center of IDT 1 at yCi = 0 and the center of IDT 2 at 

yC2 = 1. At this point, no restrictions have been placed on the IDT periodicity 

although we show later the benefit of using IDT’s ” tuned” to different modes.
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Figure 5.4

A two-port mode conversion resonator with electrical variables indicated.
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The admittance matrix components can be evaluated similar to the 

manner described in the previous section by first obtaining an expression for 

IDT current in terms of the applied voltage and incoming wave potentials. 

One can thus evaluate Yn and Y22 where

Y„ Vi v2

i
v2 v, = 0

(5.10)

The transconductance terms Y12 and Y21 can be calculated by computing the 

short-circuit current induced on transducer 1 due to an applied voltage on IDT

2 and vice versa, giving

Y -i
Yl2 V,

V, = 0
Y» = v7 (5.11)

V2= 0

although only one term need be calculated since reciprocity guarantees that

Y12 = y21.

To evaluate the admittance matrix elements, one must have expressions 

for the current in each transducer. In terms of the incident wave potentials 

and the applied IDT voltage one has, similar to Eq. 5.4,

I, = ternl-m + g.s?.s)V, + Sm[Ri» + R2(°)] + s>s[S>+(0) + s^\ (612a>

I2=(?2El"2R +g2sl‘2s)V2 + S2r[R1+(') + R2W] + ?2s[Sl+0) + S2 (')] (5.12b)

where the subscripts 1 and 2 on fi and g make reference to IDT 1 and IDT 2 

respectively. When computing Yn and Y22, the Sezawa and Rayleigh wave 

potentials are due to Vt and V2 respectively. When computing Y12, however, 

the wave potentials that induce current in IDT 1 are due to a voltage V2 

. applied to IDT 2 and similarly for Y2j.
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In the two-port mode conversion resonator the admittance elements 

Yn and Y22 are determined by replacing the wave potentials in the current 

equations of Eq. 5.12 with wave potentials defined in Eq. 5.8 in terms of the 

proper applied IDT voltage. We follow through this example by calculating 

Y22 which gives,

Y22 = (^2Rg2R + ^2sS2s) (5.13)

+ S2R

+ S2R

+ S2S

r,SR (^2se~^kB*ts>l + * ks)l*)e-i(t**ts|1-
j _ p2e“j(kR + ks)L„

j _ p2e j(kR + ks)L„

i'>“ ’ + r2SRtee-«t»H't*]e-i<ltBtts)1-

j _ p2e-j(kR + ks)L0

+ g2S
+ rISR/i2Se^i,k" + ks),1le_j(k" + ks)'!

I — p2e j(kR +ks)L0

Calculation of Yn gives the same result as Y22 but with 1=0 and 

g2R, g2S> /*2R> and /<2S replaced by g1R, g1S) /<ir, and pis respectively. In Eq. 

5.13 the subscripts 1 and 2 refer to IDT 1 and IDT 2 respectively as shown in 

Fig. 5.3. For example ^ refers to how IDT 1 transmits a Sezawa wave and 

g2R refers to how IDT 2 receives a Rayleigh wave.

In a similar way the transconductance terms Y12 and Y21 can be calculated 

by solving
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Y12 = V, = 0 y — _—*2X - v
v2 = .o

(5.14)

We first write the equation for Ix, the short circuit current induced on IDT 

1 due to a voltage V2 applied to IDT 2. The current equation for IDT 1 in 

terms of the SAW potentials incident on IDT 2 (described by Eq. 5-12) is given 

by

I, = gm(Rl+(0) + I!..(0|) -I g,s(sr(0) + S2(Ol) , (5.15)

Furthermore, we can rewrite the wave potentials incident on IDT 1 in terms of 

the potentials incoming into IDT 2 to give the short-circuit IDT current

I. = eiRk+fl)pW + 8,r[r2‘(1| + CmVjJe-i* 1"11 (5.16)

+K,s[<iti4iW+gish‘(i)+jM'

Replacing the SAW cavity potentials as before with those given in Eq. 5.6, one 

can determine the short-circuit transconductance Yj2 between IDT s yielding:

Yi2 -giR

r fu o"KkB + ks)! 4. r .. p_j(kR + ks)*2le i(k.R + ks)h
I 1SR (//2Se ^ 1 2RS/i2Re _________ Je

1 _ p2e~j(kR + ks)(li + h)
JW (5.17)

+ Sir

r2SE kse^+ b>' + r,RSi,2Re-i<k»+^)].]e-i(k» .+ M,

! _ p2e-j(kR + ks)(li + h)

+ 1*2R rikR1

+ Sis
IRS

+ ks)l + r2SRl‘2se~i(kB + kH'i(kR + Ml1

l _ p2e-j(kR + ks)(h + h)
jksl
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+ 5is
r2RS(feRei(t« + ts)1 + r.sRfee-il1* + ^

p_ r2e-j(kR + ksKU + 12) + /*2S
Jksl

In the same manner one can calculate Y21 and the result is the same as for Y12 

with glR, gis> (i2R, and /i2S replaced by g2R, g2S, /*1R, and fiis respectively, and 

with 1=0.

In this device we have //1Rg2R - ^2RgiR and Pisgzs “ f*2S5iS resulting

from the fact that for a particular mode, the ratio is independent of IDT
' 5

design if the finger lengths are identical107. Because of the reciprocal nature of 

this device, a separate calculation of Y21 is unnecessary since reciprocity 

guarantees Yj2 = Y21.

An interesting aside to the calculation of the transconductance terms 

Y12 and Y21 occurs when one determines the transconductance between IDT 1 

and IDT 2 outside the mode conversion bandwidth (P's are zero) giving

^12 = Y21 = SlR/*2R« jkR' + glS/^2S^jksl • (5-18)

This result is particularly interesting because it allows one to compute the

delay line response between IDT’s in a medium which supports two

propagating modes. Furthermore, outside the mode conversion bandwidth, Y2i

is limited by the cross-coupling terms ^2S and g1R which represent the coupling 

between the Sezawa IDT (1) and the Rayleigh mode, and the Rayleigh IDT (2) 

and the Sezawa mode.

Having determined the admittance matrix elements we now may assume 

(this is done experimentally) that transducer 1 is tuned to the Sezawa mode 

and transducer 2 is tuned to the Rayleigh mode. This implies //1S » //1R, 

gis» SlR) /{2R» g2R » 52S) G1S» GiR, and G2R » G2S.
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In the vicinity of resonance, Eq. 5.13 and Eq. 5.17 give way to 

Yu MlS§lS ^IsSlS ^ ^ ,, —jK(li + I2) 1 r> r jK(li + I2

Y12 - Sis/*2R

i-r1RSr2sRe ^ 1 r2RSr 1SRe

r1RSe-iK(l‘ + "e« + r2Rse-'Kfc-,»e'ikf

i-r,ESr2sRe-iK"' + y i-r2RSr,sRe'iK,l, + u

Y2i — g2R^lS
r1SRe J ejKU -jkRl

+
r „"jK|2jkR> 
12SRe e

1 - r,sRr2RSe"iK(l‘+ ll) 1 - r2SRr iRSeHK(l‘+ '

Y22 — /{2RS2R + A*2R§2R
, r2SRrmse^K(li+1J 

i-r1SRr2Rse-iK(l‘+y i-r2SRrIRse-w- + 1=

where K = kR + ks. Additionally, due to symmetry

rms - r2Rs = rRS

r1SR = r 2sr — rSR
and we define

r2 - rRSrSR
We further simplify Eq. 5.19 by letting (lj + 12), the separation 

arrays, be L0 yielding

Yn A*isSis
l _|_ p2e-j(kR + ks)L„ 

j _ p2e-j(kR + ks)L0

(5.19a)

(5.19b)

(5.19c)

- (5 19d)
)

(5.20a)

(5.20b)

(5.21)

between

(5.22a)
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Yi2 “ glS^2R
rRse_i(tR + '‘s)(1, + 1)eiks' + rRse -j(kR + ks)(l2 - !)e“jksl

l _ p2e-j(kR + ks)L0 l _ p2e-j(kR + ks)L„ (5.22b)

^21 — g2R^lS
rSRe j(kK + ks)lle“JkRl t rSRe“i(kR + ks)'2ejkRl

1 _ p2e-j(kR + ks)L„ j _ p2e“j(kR + ks)L0 (5.22c)

^22 ~ ^2Rg2R
l + p2e-j(kR + ks)L„

j _ p2e-j(kR + ks)L0 (5.22d)

To further simplify the expression of Eq. 5.22 we require that the 

radiation conductances of the two IDT’s are equal outside the mode conversion 

bandwidth such that

l^isgis ~ P2Rg2R - G0 (5.23)

Additionally, if we consider two IDT’s of different periodicity placed side-by- 

side next to a mode conversion reflector, reciprocity guarantees

A<lSrSRg2R “ ^R^RSglS • (5.24)

That is, the transconductance between IDT’s when a Sezawa wave (of power 

pc) is excited by IDT 1, reflected by the array as a Rayleigh wave, and 

detected by IDT 2 would be the same as if a Rayleigh wave (also of power pc) 

had been launched by IDT 2, reflected by the array as a Sezawa wave, and 

detected using IDT 1.

The combined result of Eq.’s 5.23 and 5.24 yields

/Tsr"
A*2R -^1S\/ T- (5-25)

ars

which gives the admittance matrix elements in the vicinity of resonance
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Yn = YW = G22
2 + r2e”j(kR+ ks)L»
j _ p2e" j(kR + ks)L0

(5.26)

y12 = y21 = <;.
jp |e_^kR + ks^'1 + ’l(Jksl + e^kR + ks^'2 ‘ *V jkslj

j _ p2^ j(kR + ks)L0
(5.27)

It should be noted that Y12 = Y2l even Without the condition imposed by Eq. 

5.23 which was merely introduced for convenience.

5.4.1 Equivalent Circuit Representation

We now construct an equivalent circuit for the SAW mode conversion 

resonator as shown in Fig. 5.5a. To optimize device performance at resonance, 

we desire the shunt elements (Yn + Yj2, and Y22 + Y21) vanish, and that 

Yl2 and Y2i are maximized (Fig. 5.5b). Yl2 hnd Y2l are given in Eq. 5.27 and, 

with a slight amount of manipulation, it can be shown that

Yn + Y19 = Y<>i +YW = G,12 21 ■22

I +Fe jK(ll+1)eiksl)(l +T jK('2 l)e jksl)

l-r2e jKLo
. (5.28)

where K = kR + ks. From Eq.’s 5.27 and 5.28 above, the desired resonant 

conditions are realized (i.e., Y12 is maximized While Yn + Y12 is minimized) 

When the following equations are satisfied:

re“j[(kB + ks)(li + 1) -ksl] _ (5.29a)

Pe-jKlcH + ksKb-l) +M - .j (5.29b)

The above equation requires
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Y2i + Y

(b)

Figure 5.5

(a) Equivalent circuit configuration for a two-port mode conversion 
resonator, (b) Simplified circuit near resonance.



(kR f kg).(li + 1) - ksi + <j> - (2n + 1)jt (5.30a)

(kR + ks)(l2 -1) + ksl +> = (2m + 1)tt . (5.30b)

Adding Eq.’s 5.30a and 5.30b together and using the mode conversion 

condition of Eq. 5.1 yields the result

L0 = lj + 12 - nd . (5.31)

That is, for resonance to occur, the separation between reflectors must be an 

integer number of array periods. Furthermore, solving Eq. 5.30 for 1, the 

separation between transducers, gives

160

Thus, we have determined the required reflector array spacing conditions for 

resonance to occur and also the allowed locations for the IDT’s of different 

periodicity to satisfy the maximum coupling condition.

We note here that the two-port mode conversion resonator employing 

transducers of different periodicities requires a critical spacing between IDT’s 

dependent upon the placement of the first IDT, However, the first IDT may be 

placed anywhere between reflector arrays.

5.5 Experimental Results

Mode conversion resonators satisfying the proper spacing requirements 

have been fabricated in the configuration shown in Fig. 5.1. Interface 

transducers were used because the structure with an aluminum shorting plane 

atop the ZnO provides comparable values for Rayleigh and Sezawa 

electromechanical coupling factors. The (100)-cut, [01Q]-propagating silicon

VR (5.32)
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substrate was thermally oxidized to a thickness of 1.0 fim. The grooves in the 

Si02 layer were ion beam etched to a depth of approximately 1000 A deep 

which corresponds to a reflectivity per groove of approximately 1%. At a 

frequency of 147 MHz, the Rayleigh wave with XR = 19.6 nm and a Sezawa 

wave with Xs = 34.9 /an were coupled by the array of periodicity d = 12.9 fim.

The two-port transmission response of a mode conversion resonator is 

shown in Fig. 5.6. The Q value for this particular device is approximately 

3000, indicating that the mode conversion process is very efficient.

An additional comment about the two-port mode conversion resonator is 

in order concerning the off-resonant coupling level between the IDT’s of 

different periodicity. It is shown above that the cross-coupling level is of the 

form '

= Y2i = giRf<2Re jkRl + &isA*2Se jks* • (5.18)

where the terms g1R and//2S are cross-coupling terms. The mode conversion 

resonator offers the possibility of enhanced out-of-band rejection by increasing 

the number of fingers per IDT to reduce the cross-coupling terms. It can be 

seen from Eq.’s 5.3 and 5.5 that //1R and g2S will decrease as Nxand N2 

increase due to the non-coherent addition of phasors arising from coupling to a 

mode with wavelength XR by an IDT having periodicity Xs, and vice versa.

5.5.1 Spatial Independence

Although the required spacings for proper implementation of the mode 

conversion resonator have already been derived, it is worthwhile to go back and 

briefly examine the results. In particular, it is interesting to consider a one-
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Figure 5 6

Two-port transmission response for a mode conversion resonator employing 
transducers of different periodicity.
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port mode conversion resonator with an IDT of Rayleigh or Sezawa type.

When computing the input admittance for the one-port device, one would 

obtain the same result as for Yn or Y22 in Eq. 5.26 assuming that /ig = G0 for 

the single transducer. In a one-port mode conversion resonator then, resonance 

is satisfied whenever p2e~^kR + ks^L° is real and positive, and is demonstrated by 

a significant enhancement in the radiation conductance at the resonant 

frequency. Thus, resonance will occur whenever, ■

(kR + ks)Lo + = mjr • (5-33)

Here again, using the mode conversion condition of Eq. 5.1, and the fact that 

(f> = 0 or 7r, one has L0 = nd where d is the array periodicity; this is the same 

result for reflector array separation derived for the two-port mode conversion 

resonator.

For the single-port device considered earlier, the placement of the first 

(and only) IDT was arbitrary. As a result, as long as the spacing between 

reflector arrays is an integer number of array periods, the IDT (of either 

Rayleigh or Sezawa type) can be placed anywhere between reflectors and it will 

automatically satisfy the maximum coupling condition.

Since placement of an IDT anywhere inside the resonant cavity fixes the 

location of the standing wave of the same periodicity, one can place another 

IDT of the same periodicity an integer number of half-wavelengths from the 

first IDT, thereby coupling optimally to the same standing wave in a two-port 

configuration. Therefore, as long as the IDT’s are of the same periodicity and 

separated by an integer number of half-wavelengths, the IDT pair can be 

placed anywhere between the two reflectors and maximum coupling is



guaranteed. Additionally, either a Rayleigh IDT pair or a Sezawa IDT pair 

may be used for this resonator.
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5.5.2 Experimental Results

To demonstrate the positional independence of the resonator response on 

IDT position, Aye fabricated both one-port and two-port mode conversion 

devices with different spacings between transducers and reflector arrays. Both 

types of devices were fabricated on (100) cut ([100] propagating) silicon 

substrates. The only changes between devices were the positions of the 

transducers between reflector arrays. All transducers used were of Sezawa type 

and had a periodicity of 35.5/«n. The transducers for the one-port devices had 

nine finger-pairs while the transducers used in the two-port devices had five 

finger-pairs each. For both structures, the reflector arrays consisted of 400 ion 

beam etched grooves 1300 A deep with a periodicity of 12.7 /im and a 

beamwidth of 1.5 mm. For the devices used in this experiment, the 

transducers and reflector arrays were defined on the top surface of the ZnO 

rather than at the ZnO/Si02 interface (Fig. 5.6) because equivalent coupling to 

both wave types was no longer necessary103. The array separation used in all

devices was 0.762 mm which corresponds to 60 grating periods.

In the one-port mode conversion resonator we fabricated a series of devices

with the transducer position varied by fractions of a Sezawa wavelength from
nXs

the center of the cavity. The devices fabricated had transducers placed ——16

from the center of the reflectors with n = 0,1,2,...,7. Results of this experiment 

can be seen in Fig. 5.7 which shows the measured radiation conductance, Ga,



Figure 5.7

Radiation conductance vs. frequency determined experimentally for one- 
port mode conversion resonators (right) and computed for conventional
one-port resonators (left). In both results the transducer was displaced from

n\8
the cavity center an amount for (a) n=0 (b) n=l (c) n=2 (d) n=3 

(e) n=4 (f) n=6 (g) n=7.
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for a number of transducer positions for the mode conversion resonator 

together with computed Ga values for conventional one-port resonators with 

the same spacings.

As is expected, in a conventional one-port structure with the same 

spacing, the resonant coupling condition greatly depends on the transducer 

placement between reflectors. In the mode conversion resonator structure, 

however, resonance as demonstrated by the enhanced radiation conductance, 

can be observed for any location of the IDT.

A similar experiment was performed for two-port mode conversion 

resonators with a fixed spacing of 10XS between centers of identical Sezawa 

transducers The midpoint of the pair of transducers was varied from the 

cavity center by the same fraction as in the one-port experiment; the results 

are shown in Fig. 5.8. Here again, the calculated response for a conventional 

device with the same dimensions was computed and plotted alongside the 

experimental results. It is evident that as the location of the transducer pair is 

moved within the cavity, there are drastic changes in the response of a 

conventional device (i.e. resonance and antiresonance) but the results for a 

two-port mode conversion resonator are almost invariant.

For both one-port and two-port device structures the resonant Q values 

were in the range 900-1500 but it should be noted that no attempt was made 

to optimize these resonators but rather to demonstrate the positional 

independence of the transducer placement. It should also be pointed out that 

in both one-port and two-port devices, slight variations in the device responses 

for different spacings are due to the fact that the standing Rayleigh wave 

pattern is not invisible to the Sezawa IDT’s and some coupling will exist which 

will be different for each spacing chosen. This variation can be minimized by



Figure 5.8

Two-port transmission response vs. frequency determined experimentally for 
mode conversion resonators (right) and computed for conventional »two-pott 
resonators (left). In both devices, the transducer pair was displaced from

the cavity center by an amount for (a) n=l (b) n=2 (c) n-3 (d) n—5

(e) n=6 (f) n=7.
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increasing the number of fingers per transducer.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER RESEARCH

0. 1.Conclusions

The results presented in this report deal with a wide number of devices for

use in signal processing applications in the UHF-VHF range. The most

significant contributions are the following:

1. Description and implementation of a monolithic SAW memory correlator 

which utilizes ion implantation for the confinement of signal storage 

regions. The implant-isolated storage correlator has exhibited a 3 dB 

storage time more than 10 times longer than any previously reported 

monolithic memory correlator with the promise of longer storage times if 

proper precautions are taken.

2. We have predicted and demonstrated a method for determining the 

potential at the silicon surface associated with a propagating acoustic 

wave.

3. A simple model has been presented which accurately predicts the charging 

process occurring in a storage correlator which employs rf writing 

techniques for its operation. From this model we have demonstrated a 

means for determining the effective recombination lifetime of inversion 

layer minority, carrier holes behave when injected into a depletion region



172

of an n-type silicon substrate. Furthermore, our charge storage theory 

also predicts the charge storage operation for pn diode memory arrays.

In addition to the implant-isolated storage correlator which relies on the 

acoustoelectric interactions of the propagating SAW potential inside the 

semiconductor, we have also fabricated improved SAW resonators in a variety 

of configurations. SAW resonator results are as follows:

4. SAW resonators have been fabricated with ZnO limited to the IDT regions 

for an externally coupled configuration. Q values in excess of 30,000 have 

been reported in the externally coupled configuration. Using these devices, 

estimates of propagation loss have been made for surface acoustic waves 

on oxidized and unoxidized silicon substrates.

5. Internally coupled limited ZnO SAW resonators have been fabricated in a 

number of configurations. These prototype devices, along with their 

externally coupled counterparts will be important in the fabrication of 

high frequency SAW resonators on silicon where the propagation loss due 

to the ZnO film is assumed to be the limiting Q factor.

6. A revised theory has been presented for the SAW mode conversion 

resonator. This theory accurately predicts the positional independence of 

IDT’s in a one-port SAW resonator and has led to the experimental 

verification of this property. Furthermore, two-port mode conversion 

resonators were fabricated which demonstrated positional independence of 

properly separated IDT’s. The theory also predicts the separation between 

IDT’s necessary When coupling to the resonator with IDT’s of different 

periodicity.



6.2 ReconuneEdations for Further Research

R ecommendations for further research include.

1. The fabrication of an implant-isolated storage correlator with a high

quality ZnO film to determine the maximum possible dynamic range.

2. Fabrication of an implant-isolated storage correlator in an attempt to 

maximize the storage time of the device.

3. Utilization of a gate controlled diode to demonstrate electronic erasure for 

the implant-isolated correlator.

4. The pursuit of ZnO/Si02/Si device characteristics for high frequency 

applications- With electron beam lithography capability, GHz SAW 

resonators with ZnO limited to IDT regions can be fabricated and tested.

5. High frequency ZnO-on-silicon research must include a thorough study of 

the microstructure of ZnO films and a method must be developed for 

depositing well oriented piezoelectric films which are < 1000 A thick. 

ZnO deposition by laser evaporation has been demonstrated elsewhere103 

indicating the possible growth by means of molecular beam epitaxy.
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Appendix A

Writing Signal Approximation

For a single pulse applied to a storage region one has, after a rectangular 

pulse of amplitude Vj and duration Atj, a modified surface charge density of 

Qi given by

• (Al)

If one applies another pulse of amplitude V2 and duration At^ at some instant 

immediately after turning off pulse V*, then the surface charge density is given 

by

Q2 = Q,«„ - C,V2 + | Q, - (Q», - C,v2)l (A.2)

= <},,, C,v2(i - c ^"1 - < 'i' ,- - •• •

Similarly, with the application of numerous narrow pulses of amplitudes V;, one 

can replicate any time varying signal. If one discretizes the desired signal into 

uniform increments of duration At, one can determine the surface charge

density for the. application of a signal NAt long by

Qn
N

) E Ve
i=l

, V; >0 . (A.3)

Furthermore, in addition to the constraint that Vj must be positive, as the 

storage depletion width expands, only pulses sufficiently large to contribute to
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further charge storage are used in the computation of QN. That is, pulses 

incapable of depleting the semiconductor more than its existing deep depletion 

value do not contribute to signal storage. Referring to Eq. A.2, this requires 

that we impose the additional constraint that

W > Qseq Qi- i (A.4)

for the ith pulse, Vj, to contribute to charge storage. If the inequality of Eq. 

A.4 is not satisfied, then Q; = Q;_! because the pulse V; will have no net effect 

upon the inversion layer charge. So as a storage region nears saturation, only 

the maximum portions of each rf cycle will contribute to the stored reference 

signal and the effective writing time of each cycle decreases.

For completeness we rewrite Eq. A.3 with the proper constraints

Qn • 'il' ~
N
EVe'
i=l

(n - i)At/rR . QV; > Qseq - Qi_, . (A.5)
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Appendix B

Electronic Measurement Setups

In measurements performed on the implant-isolated storage correlator, all 

connections were made with double shielded coaxial cable to reduce spurious rf 

pickup. Solid-state switches* ** were used in place of the previously preferred 

double mixer arrangement because of simplicity as well as better isolation. The 

solid-state switches require a slightly negative (' -0.5 V) baseline from the pulse 

generator (switching signal) for optimum turn-off.

In Fig. B.l we show the electronic setup for performing degenerate 

convolution measurements on the implant-isolated storage correlator. In all 

convolution and correlation measurements, IDT input power levels were kept 

below 31 dBm to avoid burning out the devices.

The slightly more complex electronic setup for storage correlation is shown 

in Fig. B.2. Three pulse generators (acoustic, reading, writing) control the 

correlation function. The reference signal pulse generator is used to control the 

reference signal duration as well as the correlation periodicity. The reading 

signal pulse generator has a variable delay function built into it which is 

important in making storage time measurements. The oscilloscope is triggered

* Alpha Wire Co., Type RG-55 R/U
** Watkins-Johnson model SI
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Electronic setup for the storage correlation experiment.
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with the negative output of the read pulse generator.

For the correlation versus number of writes experiment and the storage 

time experiment, we use the electronic setup shown in Fig. B.3. The Wavetek 

function generator serves only to govern the periodicity of each cycle. In both 

correlation output versus number of writes and storage time experiments, it is 

necessary for the stored signal to go away before taking another measurement 

(multiple cycles are necessary to obtain a photograph from the oscilloscope). 

As such, the Wavetek is used because it has a period adjustable to ~10 seconds.

The Datapulse 114A pulse generator sends a constant stream of trigger 

pulses to a solid-state switch. The Tektronix PG-501 pulse generator, however, 

allows only a select number of trigger pulses through the switch per cycle. The 

number of writes is controlled by the rate of the 114A and the pulse width of 

the PG-501. Each of these trigger pulses activates a write sequence. In this 

manner, the number of writes per cycle can be controlled very accurately.

To obtain a single readout, one "differentiates” the output of the PG-501 

signal using a simple RG network, to detect the trailing edge of the pulse train. 

The trailing edge pulse then triggers the reading signal generator. In this 

setup, one can saturate the storage region with numerous writes and then, 

using the variable delay function of the read pulse generator, observe the 

correlation output with storage time.
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Appendix C

Pulsed Semiconductor Potential Computation

Under equilibrium inversion bias YG, one can determine the silicon surface 

potential from simple MOS device theory. The equilibrium surface potential is 

given by Vs where

Vs, "'ll

UF is the doping parameter given in Eq. 3.13.

For an applied gate bias VG one has a condition similar to that shown in 

Fig. C.l. The silicon is inverted and has a surface inversion layer charge 

density ps given by Eq. 3.12 and, due to the injecting nature of the ZnO film, 

an equilibrium charge layer, pw at the ZnO/Si02 interface is given by

= • (C.2)

From the equilibrium inversion condition as a starting point, consider the 

application of a negative pulse of amplitude AVG. A negative AVG will 

instantaneously force the depletion region width to increase thereby deep 

depleting the semiconductor. We assume that the pulse duration is short 

compared to the generation lifetime in the depletion region and that no 

appreciable amount of electrons will be injected into the ZnO film. Thus, 

application of AVG will not change ps or p0; only the charge on the gate and
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the silicon depletion width will change.

To evaluate the effect of AVG on silicon surface potential, one proceeds 

exactly as one yvould for the equilibrium condition by solving Poissons equation 

in the silicon.

<1E'S qNp
dx es

(C.3)

w
dV
dx

V Si = -^W'2 = + AVsi , (C.4)

giving

■'-y .v'^
where W’ is the depletion region width.

We now solve the boundary equations to determine V' Si in terms of 

Vq + AVg /

!>,, - I>', = ft (C.5)

similarly,

= A, + D’, (C.6)
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E\ =
Ps €mE0 A + Ps + Cjffg s

The expression for the total gate voltage is given by

V'G = VG + AVg = E>, + E'oA, + Vsi (C.7)

Substituting Eq. C.4 and C.5 into Eq. C.6 one obtains

V',
x,

'Pc +
XZ , XOX (ft + ftEft) + V*

Si (€.8)

We note C. — — and Cox — -----
x xAz .ox

the ZnO layer and Si02 layer respectively. Similarly, -r- + ^

represent the per unit area capacitance of

1

cz C0X Cj where

Cj is the combined insulator capacitance. To obtain V' G in terms of Vsi we 

substitute the result of Eq. C.4 to give

y> = — + A +
u p n pv7 -

2qND
V'si + V' Si (C.9)

Solving for V'g; in terms of VG one can write AV'Si due to V' G as

2

AV'si=V'Si-Vs^=Vd

where

1 + 1

Po

;c,

0
 '

><110 
>

1

<v| O
 

+ 1/2

1
Vd

2kT uF(q.io)

v; = - qND€s

2Ct2

It should be noted that the same procedure outlined above is what is used 

in the computation of the surface charge density ps. The calculation of ps is 

somewhat simpler, however, because the injecting ZnO layer makes Dz = 0.
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Furthermore, as expected, AV'Si becomes zero when C, .—+150 and AVg — 0.
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Appendix D 

Fabrication Procedures

D,1 Solvent Clean

1. Rinse in acetone (ACE)

2. Heat in ACE until boiling

3. Ultrasonic cleaner in ACE for 3 min.

4. Rinse in trichloroethane (TCA)

5. Heat in TCA until boiling

6. Ultrasonic cleaner iri TCE for 3 min.

7. Rinse in ACE

8. Heat in ACE

9. Ultrasonic in ACE for 1 min.

10. Rinse in DI 15 times.

11. Blow dry with zero grade N2.
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D.2 Wafer Clean

For previously unoxidized silicon the cleanup procedure is as follows:

1. Solvent clean (step B.l)

2. Rinse 15 times in DI

3. Leave immersed in ~ 100 ml DI

4. Add HF acid so ratio of DI:HF is 10:1, agitate for 60 seconds Do Not Pour 

Off!

5. Flood with DI for 60 seconds

6. Rinse 15 times in DI

7. Pour offDI

8. 10 min.-in 1:1, I^C^HgSC^

9. Rinse 15 times in DI
• • ' ?

10. Repeat steps 3 through 6

11. Pour off excess DI, DO NOT BLOW DRY!

D.3 Oxidation ...

1. 1000A oxidation for correlator.

900 °C H2 burn oxidation, 42 min. for (lOO)-cut Si. TUBE #4.

2. 1.0 fim oxidation

1100 °C H2 burn oxidation, 21/2hours for (lll)-cut Si. TUBE #4.

3. 3.0 fim Si02*

* Performed at Fairchild Corp., Palo Alto, CA.



197

Pyrogenic steam oxidation under 20 atm pressure, 900 °C.

D.4 Cleanup for Recently Oxidized Silicon

1. Solvent Clean (step B.l)

2. Submerge in 1:1, H2S04:H202 for 10 min.

3. Rinse 15 times in DI

4. Heat 5 min. in DI

5. Rinse in DI 15 times

6. Submerge in 1:1, H2S04:HN03 for 10 min.

7. Rinse in DI 15 times

8. Heat 5 min. in DI

9. Rinse in DI 15 times

10. Blow dry using purified nitrogen.

D.5 Ion Beam Metal Deposition

1. Affix clean sample to stage of ion mill* using clips.

2. Rotate stage so samples are parallel to the target** (99.999% Al).

3. Pump chamber (rough to 100 mT, then cryopump) to low 10 

pressure range.

4. Fire plasma.

* Millatron model, Commonwealth Scientific, Alexandria, VA.
** Cerac Inc., Milwaukee, WI.

torr
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Typical Run Parameters:

magnet current: 7.5 A

glow current: 1.5 A

extractor voltage: 300 V

extractor current: 2 mA

cathode current: 15 A

ion source current: 40 mA

ion source (accelerator) voltage: 1500 V

beam current: 15 mA

neutralizer current: 0

chamber pressure: 7.0 x 1Q~5 Torr

gun pressure: 5.0 x 10~4 Torr

6. Deposit 5 min. with samples covered by shutter.

7 Deposit A1 to desired thickness (deposition rate ~ 5A/mA min of beam 

current). *

8. Stage is rotated throughout deposition for best uniformity.

D.6 Son Beam Etching

The grooves etched in all resonator configurations are etched using an ion

beam. Aluminum, photoresist, and stainless steel shields have all been used for

etch masks.

1. Affix clean sample to the water-cooled stage using MUNG IIs a heat sink

compound.

* Commonwealth Scientific, Alexandria, VA.
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2. Rotate stage so the argon beam impinges 5 0 from the surface normal.

3. Typical Run Parameters:

magnet current: 5.0 A

glow current: 1.5 A

extractor voltage: 300 V

cathode current: 15 A

extractor current: 1 rnA

ion source current: 25 mA

ion source (accelerator) voltage: 450 V

beam current: 10 mA

neutralizer current: 0

chamber pressure: 9.5 x 10 5 Torr

gun pressure: 5.0 x 10~4 Torr

4. Note that the accelerating voltage is kept below 500 V to avoid baking the 

photoresist onto the substrate.

D.7 Internally Coupled Limited ZnO Resonator Fabrication

1. Fabricate metal mask for ZnO deposition in IDT regions only.

2. Mount mask and wafer to special pallet using clips.

3. Etch grooves for ZnO using ion mill. Without breaking vacuum, deposit 

lOOoA Al. Place entire fixture into ZnO sputtering system*.

4. Sputter 0.7/tm ZnO. Remove sample from pallet, proceed with resonator 

fabrication beginning with step #4.

* Perkin Elmer model 2400
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D.8 Mounting

1. Affix sample to a glass plate using melted black wax. Spin photoresist on 

the sample and glass slide to protect the samples during dicing. Cut 

samples apart using a dicing saw* **.

2. Remove photoresist by flooding with ACE.

3. Rinse thoroughly in DI.

4. Blow dry using purified nitrogen.

5. Heat glass plate containing samples on a hotplate to loosen individual 

devices. Place each device into its own teflon beaker.

6. Rinse in TCE.

7. Heat in TCE.

8. Ultrasonic in TCE for 1 min.

9. Solvent Clean (step B.l) (use only 1 min. for each ultrasonic cleaner step).

10. Mount in a flatpack^ on an aluminum shiv to raise the device surface to 

the same level as the connecting leads.

11. Affix shiv to flatpack and device to shiv using silver epoxy

12. Bake flatpack and device 1 hour at 120 °C.

13. Ultrasonically bond** the device to the flatpack leads using 1 mil diameter 

aluminum wire.

** Model 602, Tempress,-Los Gatos, CA.
# Model IP-1065, Isotronics lac., New Bedford, MD.

Ablebond 36-2,, Ablestik Laboratories, Gardena, CA.
** Model EMB 1100, Tempress,. Los Gatos, CA.
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D.0 ZnO Deposition

1. The sample is placed upon a 1/4 inch thick aluminum pallet which has 

been cleaned by etching in dilute HNG3 (50:1, DI:HN03) and rinsed 20 

times in DI. The pallet is sputtered upon for 10 minutes before placing 

the sample upon the pallet. The sample to be sputtered upon is placed 

such that the device propagation direction is along the growth rings to 

ensure constant ZnO thickness along a device. A twenty hour bakeout 

consists of 14 hours at 150 °C and 6 hours at 300 °C. Two 30 minute 

presputters are performed with 30 minutes between each before the 

shutter is opened and the actual sputter is performed. The deposition rate 

for rf diode sputtered films is typically lOOA/min.

Typical sputtering parameters are as follows:

Substrate temperature: 180 °C

Target: 6” diameter compressed ZnO powder, 6 - 9’s purity.

Target-substrate spacing: 30 mm

Gas mixture: 80% Ar : 20% 02 UHP

Chamber pressure: 10 mTorr

Bias voltage: 900 V

RF power: 100 W

D.10 Pattern Definition

1. Spin AZ 145QJ photoresist* 3000 rpm (5000 rpm for correlator grating) for

30 sec.

* Shipley Co., Newton, MA.
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2. Prebake 25 min. at 90 °C.

3. Expose photoresist in mask aligner**.

4. Develop photoresist 3:1, AZ developer:DI until pattern develops (~20 sec.). 

(Develop 1:1, AZ developer:DI for 60 seconds for correlator grating).

5. Rinse 20 times in DI.

D.ll HMDS Treatment

1. Under a fume hood, pour 50 mi hex amethyldisilazane (HMDS) into a 100 

ml beaker and place uncovered into a dessicator. Be Careful! HMDS is 

very hazardous.

2. Place oxidized sample into dessicator on filter paper and shield sample 

with a petri dish top, HMDS may boil when the dessicator is evacuated. 

Pump exhaust should not be inhaled.

3. Rough dessicator to ~150 mTorr, leave for 5 minutes.

4. Open dessicator under fume hood, remove sample, pump down dessicator.

D.12 SAW Resonator Fabrication

1. Wafer Oxidation

2. Aluminum Deposition

3. ZnO Sputter

4. A! Deposition

** Kasper Inst. Inc., Mountainview, CA.
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5. Pattern Definition

6. Aluminum Etch

Sample should remain wet after rinsing developer. Hold sample in 

tweezers and submerge into alkaline etch solution of:

750 ml H20 

75gK3Fe(CN)6

7.5 g KOH

For very thin aluminum (< 500A), dilute etch 1:1 with DI.

7. Rinse in DI 20 times as soon as A1 has been etched.

8. Remove photoresist by rinsing in ACE, heating in ACE, ultrasonic in ACE 

for 1 min. Repeat.

9. Rinse 15 times in DI.

10. Blow dry using zero grade N2.

11. Define pattern for mask to cover IDT’s during grating etch.

12. Etch grooves in ion mill.

13. Remove photoresist and MUNG II

a. Rinse in ACE

b. Boil in ACE ~ 10 min.

c. Ultrasonic in ACE 5 min.

Repeat step 13 as necessary to completely remove photoresist and

MUNG*. ■■ -

* It may be necessary to change beakers due to MUNG II contamination.
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14. Mask top surface again to cover IDT’s only and repeat steps 6 through 10 

to remove any remaining metallization.

15. Cut, clean, mount, bond, and test.
. ... ‘ ■ • - \

D.13 Externally Coupled Limited ZnO Resonator Fabrication

1. Replace Step #4 of resonator fabrication with

a. Cover with photoresist and expose a pattern which leaves photoresist 

in transducer regions only.

b. Etch away the exposed ZnO using a dilute (100:1, DI:HN03) nitric 

acid solution.

c. Solvent Clean (step B.l).

d. Evaporate 2000A aluminum. Return to step #5 of resonator

fabrication.,

2. After step #11 insert the following:

Boil in DI water for 10 minutes to form an A1203 layer on the grating 

aluminum. The purpose for the aluminum layer is that alumina 

etches at a rate approximately four times slower than aluminum,, 

silicon, and Si02 which all have comparable etch rates. This is 

important because deep grooves are necessary to obtain the same 

reflectivity for grooves etched in ZnO.

D.14 Implant-Isolated Storage Correlator Fabrication

1. Clean bare (lOO)-cut silicon for oxidation.

2. Grow 1000A oxide.
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3. Spin AZ 1450J photoresist onto top surface of silicon.

4. Strip back oxide using dilute HF acid and a cotton tip swab.

5. Rinse thoroughly in DI.

6. Solvent Clean (step B.l)

7. Perform phosphorus pdep. for back contact.

8. Cover back of sample with black wax and etch top Si02 as in step 4.

9. Rinse 15 times in DI.

10. Solvent clean (step B.l)

11. Define pattern from mask align! (for alignment marks).

12. Etch alignment marks through photoresist in ion mill for 60 minutes.

13. Perform HMDS treatment prior to step 14.

14. Define photoresist pattern for correlator grating.

15. Ion implant phosphorus through photoresist pattern using

dose = 8.QXl012/cm2 

energy — 25 KeV

Total implant should take longer than 60 seconds for proper results.

16. Solvent clean (step B.l)

17. Perform wafer cleanup for unoxidized silicon. Use only 15 seconds for HF 

steps and 5 min for ^(VHgSCbj step.

18. Grow 1000A SiOj.

19 From furnace tube, load the sputtering system immediately. Sputter 1.7 

^m ZnO.



20. Deposit 15Q0A A1 using ion beam deposition.

21. Post metallization anneal, 5 min., 480 °C, N2 with a 3 minute pull and 

push in the Marshall Furnace. This anneal is to reduce surface states 

present at the Si02/Si interface.

22. Fabricate test capacitors at this point if desired.

23. Strip Aluminum using phosphoric acid etch.

24. Rinse 20 times in DI.

25. Solvent Clean (step B.l)

26. 1:1, H2S04:H202 for 10 minutes.

27. Rinse 15 times in DI.

28. Blow dry using purified nitrogen.

29. Ion beam deposit 1200A aluminum.

30. Define shorting plane metallization in photoresist.

31. Etch aluminum using phosphoric acid etch.

32. Rinse 20 times in DI.

33. Solvent Clean (step B.l).

34. Sputter 1.7 fim ZnO in diode sputtering system.

35. Deposit 1500A aluminum on ZnO in ion mill. .

36. Cover top metallization using photoresist.

37. Strip any back oxide using dilute HF and a cotton tip swab.

38. Rinse 15 times in DI.

Blow dry using purified nitrogen.

206



207

Deposit 20Q0A aluminum onto back side of wafer.

39. Solvent clean (step B.l)

40. Define top metallization pattern in photoresist.

41. Cover back aluminum with black wax.

42. Etch top aluminum with alkaline etch for use with ZnO (see resonator 

fabrication step 6).

43. Clean, cut, bond, test.
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