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ABSTRACT

This work reviews the theory and limits of first order diffraction tomogra
phy and studies iterative techniques that can be used to improve the quality of 
tomographic imaging with diffracting sources. Conventional (straight-ray) 
tomographic algorithms are not valid when used with acoustic or microwave 
energy. Thus more sophisticated algorithms are needed;

First order diffraction tomography uses a linearized version of the wave 
equation and gives an especially simple reconstruction algorithm. This work 
reviews first order approximations to the scattered field and studies the quality 
of the reconstructions when the assumptions behind these approximations are 
violated. It will be shown that the Born approximation is valid when the phase 
change across the object is less than it and the Rytov approximation is valid 
when the refractive index changes by less than two or three percent.

Better reconstructions will be based on higher order approximations to the 
scattered field. This work describes two fixed point algorithms (the Born and 
the Rytov approximations) and an algebraic approach to more accurately cal
culate the scattered fields. The limits of each of these approaches is discussed 
and simulated results are shown.

Finally a review of higher order inversion techniques is presented. Each of 
these techniques is reviewed and some of their limitations are discussed.
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CHAPTER!
INTRODUCTION

The word tomography comes from the Greek words tomp, meaning 
sectional, and graphy, meaning representation. Thus a tomographic image is a 
cross sectional image of an object. As the term is used today tomography 
refers to a procedure to collect data about the internal structure of an object 
and then mathematically generate an image of some otherwise hidden property 
of the object.

Diffraction, on the other hand, describes the spreading of acoustic and 
electromagnetic waves as they propagate through space and around objects. 
While conventional tomography rjuses x-rays to generate an image of the 
object’s x-ray attenuation other sources of energy can also be used. Thus 
diffraction tomography uses diffracting energy sources to illuminate the object 
and then generates a cross sectional image of the object. Since ultrasound and 
microwaves diffract and refract as they pass through most objects they require 
more sophisticated algorithms then the ones used for x-ray tomography. These 
new algorithms for diffraction tomography are the subject of this work.

Tomography first became practical only a few years ago with the invention 
of the CAT (Computer Assisted Tomography) scanner [Hou72]. Hounsfield 
implemented a machine that illuminated an object with x-rays and measured 
the proportion of energy that passed through the object. Then by inverting a 
large system of equations he was able to generate an accurate estimate of the 
spatial variation of x-ray attenuation in the object.

The ability to generate a tomographic image of an object has 
revolutionized the medical field. For the first time it was possible to get a dear 
image of the internal morphology of a patient without the use of surgery. 
Now, x-ray CAT scanners are routinely built with resolutions of less than a 
millimeter and images with more than 512x512 pixels [Kak85, Her80, Mac83, 
Bar8lj.

While medical CAT scanners often generate an image of an object’s x-ray 
attenuation there are limitations to this procedure. Foremost is the fact that
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not all types of soft tissue are differentiated by their x-ray attenuation. Thus 
x-ray CAT scans have wide use for orthopedic medicine but are of limited use, 
for example, in diagnosing malignant vs. benign tumors. In addition x-rays are 
an ionizing radiation and thus there is a small chance of cancer with each use. 
This prevents, for example, the use of x-ray CAT scanners for mass screening 
of female patients for breast cancer.

X-ray tomography is based on the Fourier Slice Theorem. Consider the 
experiment shown on the left side of Figure 1.1. Here a projection is shown 
that represents the attenuation of the object along each of the indicated lines. 
The Fourier Slice Theorem states that the Fourier transform of the projection 
is equal to the values of the two dimensional Fourier transform of the object 
along a radial line. An estimate of the object can then be formed by measuring 
projections at a number of angles and then simply inverting the Fourier data.

Conventional tomography is based on the idea that x-rays travel in 
straight lines through the object and a projection measures the total x-ray 
attenuation of the object along straight lines. When the object is relatively 
large and has a small refractive index it is possible to use other types of energy, 
for example microwaves, seismic and ultrasound, to image the object. With a 
small refractive in ex the energy doesn’t bend as it goes through the object and 
thus it is possible to measure the attenuation of the object along straight lines. 
This is the only requirement needed to use the Fourier Slice Theorem and form 
an image of the object’s acoustic or microwave attenuation [Gre74, Gre75, 
Qar76, Jak76, Glo77 and bra82].

Since microwaves and acoustic waves are easier to generate and measure 
than x-rays it is also possible to generate images of the object’s refractive 
index. As was mentioned earlier it is necessary to assume that the refractive 
index change is small so that the energy doesn’t bend as it travels through the 
object. If a projection' is- measured representing the delay encountered by the 
energy as it travels through different parts of the object then an image is 
formed of the object’s acoustic or electromagnetic refractive index. This extra 
information can often make it easier to characterize the object.

Two methods have been used to form images when the energy no longer 
travels through the object in a straight line. Perhaps the most straightforward 
approach is to simply model the flow of energy through the object as a ray and 
calculate its location based on the refractive index of the object [And82, Her76, 
Her73]. Unfortunately these algorithms can only be used when the refractive 
index change is less than 10 or 20 percent and most of the energy is refracted 
instead of diffracted. Thus this approach is only valid when the wavelength of



space domain frequency domain

Figure 1.1 The Fourier transform of a projection is equal to the two
dimensional Fourier transform of the object along a radial
line.



4

the energy is much smaller than any details of the object [And84].

A second approach is to model the flow of energy through the object with 
the wave equation. While this approach is more accurate then other approaches 
it is not always possible to invert the resulting system of equations and find a 
closed form solution. This is the core of the problem for successful diffraction 
tomographic images.

A simple approach to solve the wave equation is to linearize it [Ish78, 
Che60, Sla84, Mue79, Wol69j. This is usually done by assuming that the 
object represents a very small perturbation to the field. Only the linear terms 
are retained and all higher order terms are simply ignored. Unfortunately this 
approach is also limited to those object that satisfy the constraints of the 
approximations. As will be shown later in this work linearizing the wave 
equation greatly limits the objects that can be imaged.

Finally in the past years work has been done on iterative techniques to 
solve the wave equation. Most of the work was originally applied to the 
inverse scattering problem of high energy physics [Bal78, New66, Tay83] and 
only recently applied to the diffraction tomography problem.

This work is in three parts: the derivation of the wave equation and first 
order reconstruction algorithms, limitations of first order algorithms and finally 
a summary of iterative techniques that can be applied to the diffraction 
tomography problem.

First in Chapter 2 the wave equation is defined for both acoustic and 
electromagnetic experiments. This scalar equation is valid for both types of 
energy and forms the basis of all work to be described here. In addition the 
Born and Rytov approximations are introduced and a linearized model for the 
scattered field as a function of the object is derived.

In Chapter 3 the linearized wave equation is inverted to find an expression 
for the object given the scattered field. This leads to the Fourier Diffraction 
Theorem which is fundamental to diffraction tomography. Finally several 
experimental procedures are described that generate enough data to uniquely 
determine the object.

Chapter 4 is a discussion of the numerical algorithms to invert the 
scattered data. Both of these algorithms are computationally very expensive 
and the algorithm used will depend on the architecture of the available 
computer resources. In addition some of the signal processing issues will be 
discussed and simulation results presented.
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The limitation's of the first order algorithms are presented in Chapter 5. 
Both the mathematical approximations and the experimental limitations 
contribute to the error in the final image but in different ways. The 
mathematical approximations are only valid for a small range of object and if 
these limits are exceeded then no amount of data will improve the 
reconstruction. The experimental limitations, on the other hand, are entirely 
caused by the ability to dnly collect a finite amount of data. The experimental 
errors can always be reduced by using more data or more accurate signal 
processing algorithms.

The severe limitations of first order diffraction algorithms is addressed in 
Chapters 6 and 7. The major problem in diffraction tomography is to find a 
method to invert the wave equation. In Chapters 2, 3 and 4 of this work this 
is done by linearizing the wave equation but as seen this severly limits the 
objects that can be imaged.

Chapter 6, therefore, discusses two approaches to model the scattered field 
given the (complex) refractive index of the object. This is the forward problem 
and both approaches are iterative. The simpler of the two approaches includes 
more than just the linear terms in the perturbation approach described in 
Chapter 2. This gives a series solution for the scattered field and simulations 
studying the type of objects for which these series converge will be presented. 
The second approach to solve the forward problem exploits the simple 
structure of the problem to compute a brute force solution. Objects with large 
refractive indices eventually cause this algorithm to converge too slowly for the 
method to be practical.

Finally Chapter 7 presents a survey of several approaches that have been 
proposed as better solutions for the inverse problem. Each of these algorithms 
has limitations and some of these limitations and computational aspects will be 
discussed.
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CHAPTER 2
DIFFRACTED PROJECTIONS

2.1 Introduction
Tomography with diffracting energy can not be modeled with the same 

equations used to model projections in conventional, straight ray, tomography. 
Acoustic and electromagnetic waves do not travel along straight rays and the 
projections are not line integrals. Instead the flow of energy will be described 
with the wave equation and in the limit of very short wavelengths or objects 
where the effects of refraction are small it will be shown that the diffracted 
projections can be approximated by a non diffracting projection

First consider the propagation of waves in homogeneous media. The wave 
equation is a second order linear differential equation and under certain 
conditions it can be shown that an expression for the field at every other point
in space can be written.

The problem is not to image a homogeneous media but one that is 
inhomogeneous. To solve the inhomogeneous wave equation, one of two 
approximations, the Born or the Bytov, must be used. With these two 
approximations expressions for the field scattered by the inhomogeneities of the 
media can be written.

The theory to be discussed will be applicable to both two and three 
dimensional structures. Even in a three dimensional world a two dimensional 
model can often be used if the object varies slowly in one direction. This 
assumption, for example, is often made in conventional computerized 
tomography where images are made of a single slice of the object. The theory 
of diffraction tomography will be presented almost entirely in two dimensions 
for two reasons. More importantly, the ideas behind the theory are often easier 
to visualize (and certainly to draw) in two dimensions. In addition technology 
has yet to make it practical to implement large three dimensional transforms 
and then to display the results. This limitation will certainly be eliminated in 
the near future and where the differences are significant both the two and three 
dimensional solutions will be indicated.
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2.2 Homogeneous Wave Equation
In a constant or homogeneous media the propagation of acoustic or 

electromagnetic waves can be modeled with the scalar Helmholtz equation. For 
a temporal frequency of w radians per second (rps) a field, u^, satisfies the 
equation

(V2+k02)u(?) = 0. (2.1)

For homogeneous media the wavenumber, k0, is a constant related to the 
wavelength, X, of the wave by

ko = Y' <2-2)

The wavelength, X, is related to the temporal frequency of the wave by the 
propagation speed in the media, c, or

X ■,= —c (2.3)

Since the theory of diffraction tomography is normally derived based on 
coherent fields the time dependence of most fields will be suppressed in this 
work. Thus all fields should be multiplied by e^wt to find the measured field as 
a function of time. The extension of this theory to broadband fields is 
discussed in Section 3.4.3

For acoustic (or ultrasonic) tomography, u(r) can be the pressure field at 
position T. For the electromagnetic case, assuming the applicability of a scalar 
propagation equation, u(f) may be set equal to the complex amplitude of the 
electric field along its polarization. In both cases the time dependence of the 
fields are suppressed and u(f) represents the complex amplitude of the field. As 
a function of time and space the field is given by

ufr^t) = Real Part u(7)e -jwt (2.4)

The vector gradient operator, V, can be expanded into its two 
dimensional representation and the wave equation becomes

+ 1rf+^=»- (2-s)
;y ax- . ay^ ■

As a trial solution let
u(?) = e*r (2.6)

where the vector 1c = (kx,ky) is the two dimensional propagation vector and
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11(7) represents a two dimensional plane wave of spatial frequency | k| . This 
form of u(f) represents the basis function for the two dimensional Fourier 
transform; using it, any two dimensional function can be represented as as a 
weighted sum of plane waves. Calculating the derivatives as indicated in 
equation (2.5) it can be seen that all plane waves that satisfy the condition

11c | 2 = kx2+ky2 = k02 (2.7)

are valid solutions to the wave equation. This condition is consistent with an 
intuitive picture of a wave and description of the wave equation above, since 
for any frequency wave only a single wavelength can exist no matter which 
direction it propagates.

The homogeneous wave equation is a linear differential equation so the 
general Solution can be written as a weighted sum of each possible plane wave 
solution. In two dimensions, at a temporal frequency of w, the field, u(f) is 
given by .

u(?)
OO

jr. f a(ky)ci(k*x+k’y)dky +

and by equation (2.7)

k, = x/kf-k" (2.9)

The form of this equation might be surprising to the reader for two reasons. 
First, the integral has been split into two parts. The coefficients of waves 
traveling to the right are represented by a(ky) and those traveling to the left 
by /?(ky). In addition the limits of the integrals have been set to go from —oo 
to oo. For k 2 greater than k^ the radical in equation (2.9) becomes imaginary 
and the plane wave becomes an evanescent wave. These are valid solutions to 
the wave equation but because ky is imaginary the exponential has a real or 
attenuating component. This real component causes the amplitude of the wave 
to either grow or decay exponentially. In practice, these evanescent waves only 
occur to satisfy boundary conditions, always decay rapidly far from the 
boundary, and can often be ignored at distance greater than 10X from the 
inhomogeneity.

The limited range of valid solutions to the wave equation allows (under 
certain condition) an expression to be written for the field in all of two-space 
given the amplitude of the field along a line. The three dimensional version of 
this idea gives the field in three-space if the field is known at all points on a 
plane.
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Consider a source of plane waves to the left of a vertical line as shown in 
Figure 2.1. By calculating the one-dimensional Fourier transform of the field 
along the line the field can be decomposed into a number of one-dimensional 
components. Each of these one dimensional components can then be attributed 
to one of the valid plane wave solutions to the homogeneous wave equation 
because for any one frequency component, ky, there can exist only two plane 
waves that satisfy the wave equation. Since the incident field has already been 
constrained to propagate toward the right (all sources are to the left of the 
measurement line) then a one-dimensional Fourier component at a frequency of 
ky can be attributed to a two dimensional wave with a propagation vector of

(\/E
This can be put on a more mathematical basis if the one-dimensional 

Fourier transform of the field is compared to the general form of the wave 
equation. If waves that are traveling to the left are ignored then the general 
solution to the wave equation becomes

■ ■ OO

(2.10)

Now if the coordinate system is moved so that the measurement line is at 
x = 0 then the expression for the field becomes equal to the one-dimensional 
Fourier transform of the field or

OO
= f a(ky)elkyydky (2.H)

■ ** • —rv*i '

This equation establishes the link between the one-dimensional Fourier 
transform of the field along the line to the two-dimensional field. The 
coefficients o(ky) are given from the one dimensional Fourier transform of the 
field by ' '\V: > ..

a(ky) F ourier Transform u(0,y) (2.12)

The simple form of a plane wave allows an expression to be written 
relating the field bn two parallel lines; If a priori it is known that all the 
sources for the field are positioned, for example, left of the line at x^ then 
the field u(x —l0,y) can be decomposed into its plane wave components. Given 
a plane wave upiane wave(x =l0,y) ~ oe^kx,°+k,y^the field undergoes a phase shift 
as it propagates to the line x=l^ and the field can be written



Frequency of k

Figure 2.1 A plane wave with direction cosines (\/k<)—ky ,ky) is shown 
propagating between the lines x—1q and x—lj.
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Upl*,, =li.y) =aei(kA+k’,yul'^ =ap,„ew^x=l(,,y)eik>(ll“W(2.13)

Thus the complex amplitude of the plane wave at x—lj is related to its 
complex amplitude at x =lo by a factor of ejk^lr’lol

The complete process of finding the field at a line x =Ij follows in three
steps! \

1) Take the Fourier transform of u(x=l0,y) to find the Fourier 
decomposition of u as a function of ky.

2) Propagate each plane wave to the line x—lj by multiplying its 
complex amplitude by the phase factor e^*1 where as before 
kx = x/ko"ky-

3) Find the inverse Fourier transform of the plane wave decomposition 
to find the field at u(x =lj,y).

2.3 Inhomogeneous Wave Equation
For imaging in an inhomogeneous media a more general form of the wave 

equation is written as
[v2+k(f)2]u(f) = 0. (2.14)

For the electromagnetic case it is necessary to ignore the effects of polarization 
so that k(‘F) is a scalar function representing the refractive index of the 
medium. Now write

k(T) = ko^r1) ;= k0[l+n^] (2.15)

where k0 represents the average wavenumber of the media and n^(f) represents 
the refractive index deviations. In general it will be assumed that the object 
has a finite size and therefore n5(?) is zero outside the object. Rewriting the 
wave equation

! " (2-16)

where n(?) is the electromagnetic refractive index of the media and is given by
n(r) = /Wa (2.17)

V A*0«0
Here ji and c have been used to represent the magnetic permeability and 
dielectric constant and the subscript zero to indicate their average values. This 
new term, on the right hand side of equation (2.16), is known as a forcing 
function for the differential equation (V^koJuff).
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Note that equation (2.16) is a scalar wave propagation equation. Its use 
implies that there is no depolarization as the electromagnetic wave propagates 
through the medium. It is known [Ish78] that the depolarization effects can be 
ignored only if the wavelength is much smaller than the correlation size of the 
inhomogeneities in the object. If this condition is not satisfied, then strictly 
speaking the following vector wave propagation equation must be used

V2g(f) + k02n I-2V Vn g
n

= 0 (2.18)

where B is the electric field vector. A vector theory for diffraction tomography 
based on this equation has yet to be developed.

For the acoustic case, first order approximations give the following wave 
equation [Kak84]

(V2+k02)u(?) = -ko[n2(r)-l]u(f) (2.19)

where n is the complex refractive index at position 7, and is equal to

_Co_
m'

where c0 is the propagation velocity in the medium in which the object is 
immersed, and c(?) is the propagation velocity at location 7 in the object. For 
the acoustic case where only the eompressional waves in a viscous compressible 
fluid are involved, the speed of sound is given by

c(T) X (2.21)
vpn

where p and k are the focal density and the complex compressibility at location 
7.

The forcing function in equation (2.19) is only valid provided the first and 
higher order derivatives of the medium parameters can be ignored. If the 
inhomogeneity can be modeled as a viscous compressible fluid, an exact form 
for the wave equation - is given by

(V2+k0J)u(F) = ko27«D — V-I^Vu) (2.22)

where

(2.20)

K~Kq
(2.23)
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%
P~Pa

P
(2.24)

k0'.and Pq are either the compressibility and density of the medium in which 
the object is immersed, or the average compressibility and the density of the 
object, depending upon how the process of imaging is modeled. On the other 
hand, if the object is a solid and can be modeled as a linear isotropic 
viscoelastic medium, the forcing function possesses another more complicated 
form. Since this form involves tensor notation, it will not be presented here 
and the interested reader is referred to [Iwa75j.

Due to the similarities of the electromagnetic and acoustic wave equations 
a general form of the wave equation can be written as

(V2+kg)u(F) =-o(f)u(?) (2.25)

where

oW = ko[n2(rHl (2.26)

To hide some of the mathematical details the term of?) will be used to 
represent all inhomogeneities of the object. Later the object will be 
reconstructed in terms of the object function, off), and the reader is referred to 
equation (2.26) to put the reconstruction in terms of the refractive index.

Consider the field, u(?), to be the sum of two components. The incident 
field, Uo(T), is the field present without any inhomogeneities or a solution to the 
equation

^ 7 ; (2.27)

That leaves the scattered field, us(f), as that part of the field due to the object 
inhomogeneities or

us(f) = u(f)-u0(r). (2.28)

The Wave equation becomes

(VN-KIKW — —upfjofp), (2.29)

The scalar Helmholtz equation (2.29) cannot be solved for us(f) directly 
but a solution can be written in terms of the Green’s function [Mor53]. The 
Green’s function, which is a sohition of the differential equation

(V2 I k05)g(r-| r-1 -tffT'l. (2.30)

is written in three-space as



, it . ■

K|TiT'> = l5f : (2-31)

with

R = |t^F'|. (2.32)

In two dimensions the solution of (2.30) is written in terms of a zero-order 
Hankel function of the first kind, and can be expressed as

g(r|r') =-i-H^'VkoR). (2.33)

In both cases, the Green’s function, g(7|7'), is only a function of the difference 
7—7' so the function will often be represented as simply g(7—?'). Because the 
object function in equation (2.30) represents a point inhomogeneity, the Green’s 
function can be considered to represent the field resulting from a single point 
scatterer.

It is possible to represent the forcing function of the wave equation as an 
array of impulses or

o(f)u(r) = Jo(f' )u(f' ^(F-T')dF'. (2.34)

In this equation the forcing function of the inhomogeneous wave equation is 
represented as as a summation of impulses weighted by o(r)u(7) and shifted by 
7, The Green’s function represents the solution of the wave equation for a 
single delta function; because the left hand side of the wave equation is linear, 
a solution can be written by summing the scattered field due to each individual 
point scatterer.

Using this idea, the total field due to the impulse o(7')u(7; )6(7-7') is 
written as a summation of scaled and shifted versions of the impulse response, 
g(7). This is a simple convolution and the total radiation from all sources on 
the right hand side of (2.29) must be given by the following superposition:

us(f) = fg(^Tr )o(7' )u(7' )d7f. (2.35)

At first glance it might appear that this is the solution needed for the scattered 
field, but it is not that simple. An integral equation for the scattered field, Us, 
has been written in terms of the total field, u — U0 + us. This equation needs to 
be solved for the scattered field and two approximations that allow this to be 
done will now be discussed.
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2.4 Approximations to the Wave Equation
In the last section an inhomogeneous integral equation was derived to 

represent the scattered field, us(f), as a function of the object,, off). This 
equation cannot be solved directly, but a solution can be written using either of 
the two approximations described here. These approximations, the Born and 
the Rytov, are valid under different conditions but the form of the resulting 
solutions are quite similar. These approximations are the basis of the Fourier 
Diffraction Theorem.

Mathematically speaking equation (2.35) is a Fredholm equation of the 
second kind. A number of mathematicians have presented works describing the 
solution of scattering integrals [Hoe73, Col83] and they should be consulted for 
the theory behind the approximations to be presented here.

2.4.1 The First Bom Approximation
The first Born approximation is the simpler of the two approaches. Recall 

that the total field, u(T), is expressed as the sum of the incident field, u0(F), and 
a small perturbation, us(r), or

U(f) = u0(?)+us(?), (2.36)

The integral of equation (2.35) is now written as

us(F) = / g(f-T' )o(f r)u0(F' )df' + Jg(F-T' )o(F' )us(f' )df' (2.37)

but if the scattered field, Ug(^, is small compared to u0(f) the effects of the 
second integral can be ignored to arrive at the approximation

«s(r) =* uB(?) - /gO^T' )o(^ )u0(F' )dF'. (2.38)

The first Born approximation is valid only when the magnitude of the 
Scattered field,

us(iO - u(^-u0(f), (2.39)

is smaller than the magnitude of the incident field, u0. If the object is a 
homogeneous cylinder it is possible to express this condition as a function of 
the size of the object and the refractive index. Let the incident wave, u0(f), be 
a plane wave propagating in the direction of the vector, ]c0. For a large object, 
the field inside the object will not be well approximated by the incident field

= Uobject^ ^ (2'4®)

but instead will be a function of the change in refractive index, n$. Along a ray
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through the center of the cylinder and parallel to the direction of propagation 
of the incident plane wave the field inside the object becomes a slow (or fast) 
version of the incident wave or

Uobjeutf) =Aei(1+"‘)i;"''. (2.41)

Since the wave is propagating through the object the phase difference 
between the incident field and the field inside the object is approximately equal 
to the integral through the object of the change in refractive index. For a 
homogeneous cylinder of radius ‘a’ wavelengths the total phase shift through 
the object becomes

Phase Change = 47m5-^ (2.42)

where X is the wavelength of the incident wave. For the Born approximation 
to be valid, a necessary condition is that the change in phase between the 
incident field and the wave propagating through the object be less than it.

t '■

This condition can be expressed mathematically as [New66]

anjj<“. (2.43)

2.4.2 The First Rytov Approximation
The Rytov approximation is another approximation to the scattered field 

and is valid under slightly different restrictions. It is derived by considering 
the total field to be represented as a complex phase or [Ish78]

u (?) = (2.44)

and rewriting the wave equation (2.14)

(V2 + k2)u = 0 (2.14)

as

VV + kV = 0 (2.45)

V[V0e*J+kV = 0 (2.46)

vV+(v^)V+kV = 0 (2.47)

and finally

(V^)2+V2^ + k02 = o(F). (2.48)

(Although all the fields (ip and <f>) are a function off, to simplify the notation
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the argument of these functions will be dropped.) Expressing the total complex 
phase, <j>, can be expressed as the sum of the incident phase function, <f>0, and 
the scattered complex phase, $s, or

. f (2.49)

■■"where '

u0(?) -e^oW (2.50)

to find that

(V.>0|'- + 2V<y V<>,4 (+v^„+V2*,+ k2 + Ojr) = 0. (2.51)

As in the Born approximation it is possible to set the zero perturbation 
equation equal to zero. Doing this, the homogeneous wave equation can be 

■written .
kj + lVOofl-VVo-O. (2.52)

Substituting this into equation (2.51) the wave equation becomes

2V«i0V4i,+VV, =-(V«2-o«. (2.53)

This equation is still inhomogeneous but can be linearized by considering 
the following relation:

= V|V,i„«t, + a„V<»..) (2.54)

or by expanding the first derivative on the right hand side of this equation

V2(uo0s) = V2u0^s + 2Vu0-V^+u0VVs (2.55)

Using a plane wave for the incident field,

u0=AejCtff, (2.56)

the second gradient of the incident field is

V2u0 =-*|u0 (2.57)

so that equation (2.55) may be rewritten as

2u0V^0y^s + u0V2^s = V2(uo^s)+ko2uo0s. (2.58)

This result can be substituted into equation (2.53) to find
(V2+kf)u<^s = -u0[(V^)2+o(f)J (2.59)

The solution to this differential equation can again be expressed as an integral 
equation. This becomes



21

U<A ~ /?(?“■?'KjcWsf+o^jdr' - (2.60)

Using the Rytov Approximation it is necessary to assume that the term in 
brackets in the above equation can be approximated by

(V<M*-o(F) * -o(r). (2.61)
r

When this is done, the first order Rytov approximation to the function u0$>a 
becomes

uo^s = (2-62)
V .

Thus <f>s, the complex phase of the scattered field, is given by

^ >uoC?' , (2.63)
UoOflv

Substituting the expression for Ub given in equation (2.38) the first Rytov 
approximation can be written

uB(r1
m = (2-64)

UoOf)

The Rytov approximation is valid under a less restrictive set of conditions 
than the Born approximation [Che60, Kel69]. In deriving the Rytov 
approximation it was necessary to assume that

/ g(F-T' )u0(7' )o(F' )dr' » / gfr^?' )u0(7f)(V<^s)2dr'. (2.65)
V V

If the object is smaller then a wavelength then both the field and the object 
can be assumed to be constant compared to the object function and the above 
relation can be written

g(rN>)u0(0)/o(F')dr' » g(fH))u0(0)/(V^s)2dr'. (2.66)
V V

When the term (V^s)2 is small outside the object this relation can be further 
simplified to find

otf)»m)2. (2.67)

If o(r) is written in terms of the change in refractive index
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o(?)=k03[n2(rhll=k02[(l+D^l] (2.26)

and the square of the refractive index is expanded to find

op) =k02[(l+2ns(r')+nf(f))-l] (2.68)

off) = klpnjpj+nfp)]. (2.69)

To a first approximation the object function is linearly related to the refractive 
index or

o(f) « 2k02na(y). (2.70)

The condition needed for the Rytov approximation (see equation (2.67) can be 
rewritten as

^ (v«2
“J » • (2-71)

K0

This can be justified by observing that to a first approximation the 
scattered phase, ^s, is linearly dependent on the refractive index change, n5, 
and therefore the first term in equation (2.65) above can be safely ignored for 
small n5.

The term V^s is the change in the complex scattered phase per unit 
distance and by dividing by the wavenumber

k0 = Y (2.72)

a necessary condition for the validity of the Rytov approximation is

» (2.73)

Unlike the Born approximation, it is the change in scattered phase, <f>s, over one 
wavelength that is important and not the total phase. Thus, because of the V 
operator, the Rytov approximation is valid when the phase change over a 
single wavelength is small.

Estimating uB(?) for the Rytov case is slightly more difficult. In an 
experiment the total field, u(?), is measured. An expression for uB(f) is found 
by recalling the expression for the Rytov solution to the total wave

u(f) = u0+us(f) = e'

and then rearranging the exponentials to find

(2.74)
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Us = (2.75)

US =r e^°(e^-l)
(2.76)

US ='uje^l).
(2.77)

Inverting this to find an estimate for the scattered phase, <f>3, the scattered 
phase is

^s(f) - In us
—+ 1 
uo

(2.78)

Then expand <j>s in terms of equation (2.64) to obtain the following estimate for 
the Rytov estimate of uB(r)

«b(*1 = (2.79)

Since the natural logarithm is a multiple valued function, one must be careful 
at each position to choose the correct value. For continuous functions this is 
not difficult because only one value will satisfy the continuity requirement. On 
the other hand for discrete (or sampled) signals the choice is not nearly as 
simple and one must resort to a phase wrapping algorithm to choose the proper 
phase. Phase unwrapping has been described in a number of works [Tri77, 
OCo78, Kav84, McG82, Kav84|. Due to the “ + 1” factor inside the 
logarithmic term, this is only a problem if us is on the order of or larger than 
u0. Thus both the Born and the Rytov techniques can be used to estimate 
ub(^)-

While the Rytov approximation is valid over a larger class of objects, it is 
possible to show that the Born and the Rytov approximations produce the 
same result for objects that are small and deviate only slightly from the 
average refractive index of the medium. Consider first the Rytov expression to 
the total field. This is given by

u(f) = e^0+ \ (2.80)

Substituting an expression for the scattered phase, (2.64) and the incident field, 
(2.56) into this expression

U(f) = e-ik<^7 + expHko^UBtF) (2.81)

or
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u(T) = y^POWifcW (2.88)

For small Ug, the first exponential can be expanded in terms of its power series. 
Throwing out all but the first two terms the total field is approximately equal 
to

u(7) = Uo(f)[l+e (2.83)

or

- u0(f)+uB(f). (2.84)

Thus when the magnitude of the scattered field is small the Rytov solution is 
approximately equal to the Born solution given in equation (2.38).

The similarity between the expressions for the first order Born and Rytov 
solutions will form the basis of the reconstruction algorithms to be derived 
here. In the Born approximation the complex amplitude of the scattered field 
is measured and this is used as an estimate of the function uB while in the 
Rytov case uB is estimated from the complex phase of the scattered field. 
Since the Rytov approximation is considered more accurate than the Born 
approximation it should provide a better estimate of uB. In Chapter 5 of this 
work, after deriving reconstruction algorithms based on the Fourier Diffraction 
Theorem, simulations comparing the Bom and the Rytov approximations will 
be discussed.
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CHAPTER 3 
THE FOURIER DIFFRACTION THEOREM

3.1 Introduction
Fundamental to diffractidii tomography is the Fourier Diffraction 

Projection Theorem, which relates the Fourier transform of the measured 
forward scattered data with the Fourier transform of the object. The theorem 
is valid when the inhorm>0netlie$ in the object are only weakly scattering and 
caii be stated as [Kak84]:

When ah object, is iiluminated with a plane wave as shown
in Figure 3.1, the Fburiet tlahsform of the forward scattered 
fields measured on line TT’ gives the values of the 2-D transform, 
F(w1,o;2), of the object along a circular arc in the frequency 
domain, as shown in the right half of the figure.

The importance of the theorem is made obvious by noting that if an object is 
illuminated by plane waves from many directions over 360 °, the resulting 
circular arcs in the (chjjW^plahe will fill the frequency domain. The function 
f(x,y) may then be recovered by Fourier inversion.

Before giving a short proof of the theorem, first a few words about the 
dimensionality of the object coittpared to that of the scattered fields. Although 
the theorem talks about a two-diiiiehsional object, what is actually meant is an 
object that does hot vary in the z direction, in other words, the theorem is 
about any cylindrical object whose cross-sectional distribution is given by the 
function f(x,y). The forward scattered fields are measured on a line of 
detectors along TT’ in Figure 3.1.

If a truly three-dimensional object is illuminated by a plane wave, the 
forward scattered fields would now have to be measured by a planar array of 
detectors. The Fourier transform of the fields measured by such an array 
would give the values of the 3-D transform of the object over a spherical 
surface. This was first shown by Wolf [Wol69|. A more recent exposition is in 
[Nah84 and Dev84], where the authors have also presented a new synthetic



Measured forward 
.scattered field

Fourier transform

object

Frequency Domain
Space domain
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aperture procedure for a full three dimensional reconstruction using only two 
rotational positions of the object. This chapter, however, will continue to work 
with two dimensional objects in the sense described here. A recent work 
describing some of the errors in this approach is [LuZ84|.

3.2 Decomposing the Green’s Function
Earlier in this work, the scattered field due to a weakly scattering object 

was expressed as the convolution
= /o(f#')u0(r,.)g(it-f,)<irr-' (3.1)

where ug(r) represents the complex amplitude of the field as in the Born 
approximation or the incident field, u0(r), times the complex scattered phase, 

in the Rytov approximation. From this integral there are two 
approaches to the derivation of the Fourier Diffraction Theorem. Many 
researchers [Mue79, Gre78, Dev82] have expanded the Green’s function into its 
plane wave decomposition and then noticed the similarity of the resulting 
expression and the Fourier transform of the object. Alternatively, if the 
Fourier transform of each component of this equation (3.1) is taken then the 
Fourier Diffraction Theorem can be derived in a manner that can be easily 
visualized and points towards efficient computer implementations. This work 
will present both approaches to the derivation of the Fourier Diffraction 
Theorem: the first because the math is more straightforward, the second 
because it provides more insight into the difference between transmission and 
reflection tomography.

First the Green’s function will be decomposed into its plane wave 
components.

3.2,1 Plane Wave Approach
The integral equation for the scattered field (3.1) can be considered as a 

convolution of the Green’s Function, gf?-?'), and the product of the object 
function, o(r'), and the incident field, %(?')• Consider the effect of a single 
plane wave illuminating an object. The forward scattered field will be 
measured at the receiver line as is shown in Figure 3.2.

A single plane wave in two dimensions can be represented as

%(?) = e>Kr (3.2)

where K = (kx,ky) satisfies the following relationship
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Figure 3.2
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k02 = kx2 + ky2.

From earlier in this work, the two dimensional Green’s function is given
by

g(?|f"') =-^H0(k0|l^f'|) (3.4)

and Hq is the zero-order Hankel function of the first kind. The function H0 has 
the plane wave decomposition [Mor53]

00 ; . . \

' ■ Ho(k[-F-fM-)- = - / ^-ejN^'^^l^ ndd (3.5)
*ooP

whereT = (x,y), T' - (x',yr) arid

^ - \Ao2-<*2- (3-6)

Basically, equation (3.5) expresses a cylindrical wave, H0, as a superposition of 
plane waves. At all points, the wave centered at T' is traveling outward; for 
points such that y>y ' the plane waves propagate upward while for y<y ' the 
plane waves propagate downward. In addition, for |a| <k0, the plane waves 
are of the ordinary type, propagating along the direction given by tan-l(/?/a). 
However, for | a| >k0, (5 becomes imaginary, the waves decay exponentially 
and they are' called' - evanescent waves, Evanescent waves are usually of no 
significance beyond about 1() wavelerigths from the source.

Substituting this expression, (3.5), into the expression for the scattered 
field, (3.1), the scattered field can now be written

. OO

j. -i-ei Wx_x' )'+^l yy7.1 Jdadf* (3.7)
4tt - co P

In order to show the first steps in the proof of this theorem, assume for 
notational convenience that the direction of the incident plane wave is along 
the positive y-axis. Thus the incident field is given by

«o(7) = (3.8)

where ^ = (O,k0). Since in transmission imaging the scattered fields are 
measured by a linear array located at y = 1^, where 10 is greater than any y- 
coordinate within the object (see Figure 3.2), the term | y-y ' | in the above 
expression may simply be replaced by l0-y ' and the resulting form may be 
rewritten
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• 00 /-*i\
uB(x,y=lo) = (3.9)

4 -00 P

Recognizing part of the inner integral as the two-dimensional Fourier 
transform of the object function evaluated at a frequency of k0) the 
scattered field can be written

«B(=‘,y=W> ■-£ / ■i-ei(“+A>0(<it/»-gda (3.10)
47r-oo P

where O has been used to designate the two dimensional Fourier transform of 
the object function.

Let UB(w,l0) denote the Fourier transform of the one dimensional scattered 
field, Ub(x,10), with respect to x, that is

00

UbKW “ / uB(x,l0Kjwxdx (3.11)

As mentioned before, the physics of wave propagation dictate that the highest 
angular spatial frequency in the measured scattered field on the line y =10 is 
unlikely to exceed k0. Therefore, in almost ,all practical situations, U^o;,^) = 0 
for [ w| > k0. This is consistent with neglecting the evanescent modes as 
described earlier.

If the Fourier transform of the scattered field is found by substituting 
equation (3.10) into equation (3.11) then using the following property of Fourier 
integrals

0°
j eJV'^dx = 2t6(uf-a) (3.12)

where 6( ) is the Dirac delta function discussed in Chapter 2 the scattered field 
can be written

UB(a,l„) = —J=eiV®=?l«O(a,v/k02-a2-k0) (3.13)
V 2y/k$-a2

for | o| < kp.

This expression relates the two dimensional Fourier transform of the object to 
the one dimensional Fourier transform of, the field at the receiver line. The 
factor



---- J------ Js/kfa*lo (3.14)
2y/k$ a2

is a simple constant for a fixed receiver line. As a varies from -k0 to k0, the 
coordinates (a,^/k02-a2-k0) in the Fourier transform of the object function 
trace out a semicircular arc in the (u,v)-plane as shown in Figure 3.1. This 
proves the Fourier Diffraction Theorem.

To summarize, if the Fourier transform of the forward scattered data is 
found when the incident illumination is propagating along the positive y-axis, 
the resulting transform will be zero for angular spatial frequencies | a| >k0. 
For j a| <k0, the transform of the data gives values of the Fourier transform 
of the object on the semicircular arc are shown in Figure 3.1 in the (u,v)-plane. 
The endpoints A and B of the semicircular arc are at a distance of V2k0 from 
the origin in the frequency domain.

3.2.2 Fourier Transform Approach
Another approach to the derivation of the Fourier Diffraction Theorem is 

possible if the scattered field

UbC?) = /o(?')u0(f')g(?-T')d?' (3.15)

is considered entirely in the Fourier domain. The plots of Figure 3.3 will be 
used to illustrate the various transformations that take place.

Again consider the effect of a single plane wave illuminating an object. 
The forward scattered field will be measured at the receiver line as is shown in 
Figure 3.2.

The integral equation for the scattered field can be considered as a 
convolution of the Green’s Function, g(P~Tf), and the product of the object 
function, o(r'), and the incident field, u^'). First define the following Fourier 
transform pairs,

o(f) ~ O(R)

KO'T'i-qi'i (3.16)

u(r)«U(K)

The integral solution to the wave equation can now be written in terms of 
these Fourier transforms or
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Object Incident Field

16384 0 -i

10982 7

\

Figure 3.3 Two dimensional Fourier representation of the Helmholtz
equation, (a) The object, (b) the incident field, (c) the 
Green’s function, (d) the (space domain) product of the 
object and the incident field and (e) the two dimensional 
Fourier transform of the scattered field.
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U8(I) = G® O®*U0® (3.17)

where '*’ has been used to represent convolution and A — (0,7). In equation 
(3.2) an expression for u0 was presented. It’s Fourier transform is given by

U0(l) = 2tt5(M) (3.18)

and thus the convolution of equation (3.17) becomes a shift in the frequency 
domain or

O(l)*U0(r) = 27rO(M). (3.19)

This convolution is illustrated in Figures 3.3a-c for a plane wave propagating 
with direction vector, ft. = (Q,kq). Figure 3.3a shows the Fourier transform of a 
single cylinder of radius IX and Figure 3.3b is the Fourier transform of the 
incident field. The resulting multiplication in the space domain or convolution 
in the frequency domain is shown in Figure 3.3c.

To find the Fourier transform of the Green’s function the Fourier 
transform of the equation, for a point scatterer

|V-Uo-|f0-'i r-'| = W r'1. (3.20)

is taken to find
irA?+k^)G(I|r,) =-e^'. (3.21)

Rearranging terms the following expression for the Fourier transform of the 
Green’s function is found

<3-22>

This has a singularity for all A such that

I A| 2 = a2 d-q2 = kq (3.23)

An approximation to G(A) is shown in Figure 3.3d.
The Fourier transform representation is misleading because it represents a 

point scatterer as both a sink and a source of waves. A single plane wave 
propagating from left tp right can bn considered in two different ways 
depending on the point of view. From the left side of the scatter, the point 
scatterer represents a sink to the wave while to the right of the scatterer the
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wave is spreading from a source point. Clearly, it is not possible for a scatterer 
to be both a point source and sink, and later when our expression for the 
scattered field is inverted, it will be necessary to choose a solution that leads to 
outgoing waves only.

The effect of the convolution shown in equation (3.15) is a multiplication 
in the frequency domain of the shifted object function, (3.19), and the Green’s 
function, (3.22), evaluated at TV = 0. The scattered field is written as

U,® = 2*^. (3.24)

This result is shown in Figure 3.3e for a plane wave propagating along the y- 
axis. Since the largest frequency domain components of the Green’s function 
satisfy equation (3.23), the Fourier transform of the scattered field is dominated 
by a shifted and sampled version of the object’s Fourier transform.

An expression for the field at the receiver line will now be derived. For 
simplicity it will continue to be assumed that the incident field is propagating 
along the positive y axis or ft = (Q,k0). The scattered field along the receiver 
line (x,y ~lo) is simply the inverse Fourier transform of the field in equation 
(3.24). This is written as

oo oo
u(x,y=l0) = TT J I Us(l)ejArfdod7 (3.25)

-oo-oo

which, using (3.24), can be expressed as

, _M _ 1 r f O(a,7-k0) ifQX+^u
U8(x»y*-W-■- TT / / • 2 . 2 , 2e 70Jdord7.

47^ -00-00 a* + nr-ki
(3.26)

First find the integral with respect to 7. For a given a, the integral has a 
singularity for

(3.27)

Using contour integration the integral can be evaluated with respect to 7 along 

the path shown in Figure 3.4. By adding — of the residue at each pole the 

scattered field is expressed

us(x,y) - ^:/ri(a;y)ejaxdo + -^/r^QfjyJej^do; (3.28)

where



Figure 3.4 Integration path in the complex plane for inverting the two
dimensional Fourier transform of the scattered field.
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_jO(a,\Af-Qf2-k0) 
1_ 2y/kf^ (3.29)

and

}°(a’ \Ao q2 ko)
2>/ko-a2

(3.30)

Examining the above pair of equations it can be seen that Tj represents the 
solution in terms of plane waves traveling along the positive y axis while F2 
represents plane waves traveling in the -y direction.

As was discussed earlier, the Fourier transform of the Green’s function 
(3,22) represents the field due to both a point source and a point sink but the 
two solutions are distinct for receiver lines that are outside the extant of the 
object. First consider the scattered field along the line y = 1q where Iq is 
greater than the y-coordinate of all points in the object. Since all scattered 
fields originate in the object, plane waves propagating along the positive y axis 
represent outgoing waves while waves propagating along the negative y axis 
represent waves due to a point sink. Thus for y>object (i.e. the receiver line is 
above the object) the outgoing scattered waves are represented by or

us(x>y) = /F1(Qr;y)eiafXdQf y>object (3,31)

Conversely for a receiver along a line y = lo where Iq is less than the y- 
coordinate of any point in the object the scattered field is represented by F2 or

us(x,y) “ ^~/r2(Q;;y)ejo,xdo( y<object (3.32)

In general the scattered field will be written as as

u^x,y^ = ■^~/r(a’y)ejooc<iQ! (3-33)

and it will be understood that values of the square root in the expression for T 
should be chosen that lead only to outgoing waves.

Taking the Fourier transform of both sides of equation (3.33) the Fourier 
transform of the scattered field at the receiver line is written

/u(x.v l,,)- i-Ms = P(n,l0). (3.34)

But since by equations (3.29) and (3.30), F(a,l0) is equal to a phase shifted 
version of the object function then the Fourier transform of the scattered field
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along the line y=l0 is related to the Fourier transform of the object along a 
circular arc. The use of the contour integration is further justified by noting 
that only those waves that satisfy the relationship

a2+f =k| (3.35)

will be propagated and thus it is safe to ignore all waves not on the ko-circle.
This result is diagramed in Figure 3.5. The circular arc represents the 

locus of all points (a,7) such that 7 — i-^/kg— a2. The solid line shows the 
outgoing waves for a receiver line at y=10 above the object. This can be 
considered transmission tomography. Conversely the dashed line indicates the 
locus of solutions for the reflection tomography case, or y=lo is below the 
object.

3.3 Limit of the Fourier Diffraction Theorem
While at first the derivations of the Fourier Slice Theorem and the Fourier 

Diffraction Theorem seem quite different, it is interesting to note that in the 
limit of very high energy waves or, equivalently, very short wavelengths the 
Fourier Diffraction Theorem is closely approximated by the Fourier Slice 
Theorem. Recall that the Fourier transform of a diffracted projection 
corresponds to samples of the two dimensional Fourier transform of an object 
along a circular arc. As shown in Figure 3.1 the radius of the arc is equal to k0 
which is given by

k„ = (3.36)

and X is the wavelength of the energy. As the wavelength is decreased, the 
wavenumber, k^, and the radius of the arc in the object’s Fourier domain 
grows. This process is illustrated in Figure 3.6 where the semicircular arc 
resulting from a diffraction experiment is shown at six different frequencies.

An example might make this idea clearer. Compare an ultrasonic 
diffraction apparatus and a typical x-ray scanner. The ultrasonic experiment 
might be carried out at a frequency of 5 MHz and a wavelength in water of .3 
mm. This corresponds to a k0 of 333 radians/meter. On the other hand, an 
x-ray source with a 100 keV beam has a wavelength of .012 pM. The result is 
that a diffraction experiment gives samples along an arc of radius 5xl08 
radians/meter. Certainly for all physiological features (i.e. resolutions of < 
1000 radians/meter) the arc can be considered a straight line and the Fourier 
Slice Theorem is an excellent model of the propagation of x-rays.
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Objects

Reflection Transmission
Objects

Figure 3.5 Estimate of the two dimensional Fourier transform of the
object are available along the solid arc for transmission 
tomography and the dashed arc for reflection tomography.
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k=4k,

k=6k,

Figure 3.6 As the illuminating frequency is increased the Fourier
Diffraction Theorem becomes equivalent to the Fourier Slice 
Theorem.



42

3.4 The Data Collection Process
The best that can be hoped for in any tomographic experiment is to 

estimate the Fourier transform of the object for all frequencies within a disk 
centered at the origin. For objects that do not have any frequency content 
outside the disc then the reconstruction procedure is perfect.

There are several different procedures that can be used to estimate the 
object function from the scattered field. A single plane wave provides exact 
information (up to a frequency of \/2k0) about the Fourier transform of the 
object along a circular arc. Two of the simplest procedures involve changing 
the orientation and frequency of the incident plane waves to move the 
frequency domain arcs to a new position. By appropriately choosing an 
orientation and a frequency it is possible to estimate the Fourier transform of 
the object at any given frequency. In, addition it is possible to change the 
radius of the semicircular arc by varying the frequency of the incident field and 
thus generating an estimate of the entire Fourier transform of the object.

3.4.1 Plane Wave Illumination
The most straightforward data collection procedure consists of rotating the 

object and measuring the scattered field for different orientations. Each 
orientation will produce an estimate of the object’s Fourier transform along a 
circular arc and these arcs will rotate as the object is rotated. When the object 
is rotated through a full 360 degrees an estimate of the object will be available 
for the entire Fourier disk.

The coverage for this method is shown in Figure 3.7 for a simple 
experiment with 8 projections of 9 samples each. Notice that there are two 
arcs that pass through each point of Fourier space. Generally it will be 
necessary to choose one estimate as better.

On the other hand if the reflected data is collected by measuring the field 
on the same side of the object as the source then estimates of the object are 
available for frequencies greater than \/2k0. This follows from Figure 3.5.

The first experimental results for diffraction tomography were presented 
by Carter and Ho [Car70, Car74, Car76 and Ho76j. They used an optical plane 
wave to illuminate a small glass object and Were able to measure the scattered 
fields using a hologram. Later a group of researchers at the University of 
Minnesota carried out the same experiments using ultrasound and gelatine 
phantoms. Their results are discussed in (Kav82j.
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ky■u

kX

Figure 3.7 Estimates of the object’s two dimensional Fourier transform
are available along the circular arcs for plane wave 
illumination.



44

3.4.2 Synthetic Aperture
Nahamoo and Kak [Nah82, Nah84] and Devaney [Dev84] have proposed a 

method that requires only two rotational views of an object. Consider an 
arbitrary source of waves in the transmitter plane as shown in Figure 3.8. The 
transmitted field, ut, can be represented as a weighted set of plane waves by 
taking the Fourier transform of the transmitter aperture function [G0068]. 
Doing this the transmitted field can be expressed as

00
"«<x* = ~TJ / (3-37)

4lr —oo .

Moving the source to a new position, rj, the plane wave decomposition of the 
transmitted field becomes

00 s \

nt{x;ri) = / [At(kx)ejkx7|e,kxXdkx.
47r -qo

(3.38)

Given the plane wave decomposition, the incident field in the plane follows
as

00

Ui(j;;x,y) = / ^■At(kI)eik’‘'> ei(krf+Mdk _ (3.39)

In equation (3.34) an equation for the scattered field from a single plane 
wave was presented. Because of the linearity of the Fourier transform, the 
effect of each plane wave, e^kxX+kyy^, can be weighted by the expression in 
brackets above and superimposed to find the Fourier transform of the total 
scattered field due to the incident field ut(x;>?) as [Nah82]

Ul(,;a, = 7 dk„. (3.40)

Taking the Fourier transform of both sides with respect to the transmitter 
position, rj, the Fourier transform of the scattered field with respect to both the 
transmitter and the receiver position is given by

Us(kj,;a) = A,(k„)
Olor-k^-rk,)
—---- —-----—k„.

J27
(3.41)

This approach gets the name synthetic aperture because a phase is added 
to the field measured for each transmitter position to synthesize a transmitted 
plane wave. Thus this method has a lot in common with the theory of phased 
arrays. Figure 3.9 shows that by properly phasing the wave transmitted at 
each transmitter location a plane wave can be generated that travels in an
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Figure 3.8 A typical synthetic aperture tomography experiment.
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By adding a phase to the field transmitted from each 
transmitter any desired plane wave can be synthesized.

Figure 3.9
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arbitrary direction. Since the system is linear it doesn’t matter whether the 
phase is added to the transmitted signal or as part of the reconstruction 
procedure. Thus multiplying the received field for each transmitter position by 
the pure phase term e^, where rf represents the location of the transmitter, is 
equivalent to an experiment with an incident plane wave with the direction 
vector (kx,^/k<)~kx).

By collecting the scattered field along the receiver line as a function of 
transmitter position, ij, an expression can be written for the scattered field. 
Like the simpler case with plane wave incidence, the scattered field is related to 
the Fourier transform of the object along an arc. Unlike the previous case, 
though, the coverage due to a single view of the object is a pair of circular 
disks as shown in Figure 3.10. Here a single view consists of transmitting from 
all positions in a line and measuring the scattered field at all positions along 
the receiver line. By rotating the object by 90 degrees it is possible to generate 
the complimentary disk and to fill the Fourier domain.

The coverage shown in Figure 3.10 is constructed by calculating (R-A) for 
all vectors (R) and (X) that satisfy the experimental constraints. Not only 
must each vector satisfy the wave equation but it is also necessary that only 
forward traveling plane waves be used. The dashed line in Figure 3.10 shows 
the valid propagation vectors (-A) for the transmitted waves. To each possible 
vector (-A) a semicircular set of vectors representing each possible received 
wave can be added. The locus of received plane waves is shown as a solid 
semi-circle centered at each of the transmitted waves indicated by an ‘x’. The 
ehtire coverage for the synthetic aperture approach is shown as the shaded 
areas.

In addition to the diffraction tomography configurations proposed by 
Mueller and Nahamoo other approaches have been proposed. In Vertical 
Seismic Profiling (VSP) [Dev84] the scattering between the surface of the Earth 
and a borehole is measured. Alternately a broadband incident field can be used 
to illuminate the object. In both cases, the goal is to estimate the Fourier 
transform of the object.

In geophysical imaging it is not possible to generate or receive waves from 
all positions around the object. If it is possible to drill a borehole then it is 
possible to perform VSP and obtain information about most of the object. A 
typical experiment is shown in Figure 3.11. So as to not damage the borehole, 
acoustic waves are generated at the surface using acoustic detonators or other 
methods and the scattered field is measured in the borehole.
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Figure 3.10 Estimates of the Fourier transform of ah object in a 
synthetic aperture experiment are available in the shaded 
region.
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A typical Vertial Seismic Profiling (VSP) experiment.Figure 3.11
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The coverage in the frequency domain is similar to the synthetic aperture 
approach. Plane waves at an arbitrary downward direction are synthesized by 
appropriately phasing the transmitting transducers. The receivers will receive 
any waves traveling to the right. The resulting coverage for this method is 
shown in Figure 3.12a. If can be assumed that the object function is real 
valued then the symmetry of Fourier transform for real valued functions can be 
Used to obtain the coverage in Figure 3.12b.

3.4»3 Broadband Illumination
It is also possible to perform an experiment for broadband illumination 

[Ken82j. Up until this point only narrow band illumination has been 
considered; wherein the field at each point can be completely described by its 
complex amplitude.

Now consider a transducer that illuminates an object with a wave of the 
form at(kk,t). Taking the Fourier transform in the time domain this wave can 
be decomposed into a number of experiments. Let

'■ • OO
At(kx,w) = / at(kx,t)e_ja,tdt (3.42)

-oo

where w is related to kw by

K = (3-43)u
c is the speed of propagation in the media and the wavevector (kx,ky) satisfies 
the wave equation

V k*+k* = k* • ; (3.44)

If a plane wave illumination of spatial frequency kx and a temporal 
frequency a; leads to the scattered field us(kx,w;y) then the total scattered field 
is given by a weighted superposition of the scattered fields or

OO
. /V/' y ..u8(kx;y): = ^:/-At(kf,w)u8(kxlw;y)dw. (3.45)

-oo

For plane wave incidence the coverage for this method is shown in Figure 
3.13a. Figure 3.13b shows that by doing four experiments at 0, 90, 180 and 
270 degrees it is possible to gather information about the entire object.
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Objects 
k.

Transmitted 
Plane Wave

Figure 3.12 Estimate of the Fourier transform of an object are available
in the shaded region for a VSP experiment (a). If, in 
addition, the object is real valued then the symmetry of the 
Fiourier transform can be used to get the coverage shown in
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Objects

Objects

k=2k,
k=3k,

k=4k,
k=5k

Figure 3.13 One view of a broadband diffraction tomography experiment
will generate estimates Of the object along the arcs in (a). 
With four views of the object complete coverage can be 
obtained as shown in {b).
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CHAPTER 4
RECONSTRUCTION PROCEDURES

4.1 Introduction
The Fourier Diffraction Theorem as derived in Chapter 3 shows that when 

an object is illuminated with a plane wave traveling in the positive y-direction, 
the Fourier transform of the forward scattered fields gives values of the object’s 
Fourier transform on an arc. Therefore, if an object is illuminated from many 
different directions it is possible, in principle, to fill up a disc of diameter \/2k 
in the frequency domain with samples of the Fourier transform of the object 
and then reconstruct the object by direct Fourier inversion. Therefore, 
diffraction tomography, using forward scattered data only, determines the 
object up to a makimnm Wgular spatial frequency of \/2k, To this extent, the 
reconstructed object is a'low Pass version of the original. In practice, the loss of 
resolution caused by this bandlimiting is negligible, being more influenced by 
considerations such the aperture sizes of the transmitting and receiving 
elements, etc.

The fact that the frequency domain samples are available over circular 
arcs, whereas for convenient display it is desired to have samples over a 
rectangular lattice, is a source of computational difficulty in reconstruction 
algorithm? for diffracting tomography. It should also be clear that by 
illuminating the object over 360 °, a double coverage of the frequency domain is 
generated; note, however, that this double coverage is uniform. If the 
illumination is restricted to a portion of 360° there still will be a complete 
coverage of the frequency domain, however in that case there w'ould be patches 
in the (uq^bplane where there would be a double coverage. In reconstructing 
from circular arc grids to rectangular grids, it is often easier to contend with a 
uniform double coverage, as opposed to a coverage that is single in most areas 
and double in patches.

However, for some applications not given to data collection from all 
possible directions, it is useful to bear in mind that it is not necessary to go 
completely around an object to get complete coverage of the frequency domain. 
In principle, it should be possible to get an equal quality reconstruction when
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illumination angles are restricted to a 180° plus interval, the angles in excess 
of 180 ° being required to complete the coverage of the frequency domain.

There are two computational strategies for reconstructing the object given 
measurements of the scattered field. As pointed out by [Sou84a] the two 
algorithms can be considered as interpolation in the frequency domain and in 
the Space domain and are analogous to the direct Fourier inversion and 
backprojection algorithms of conventional tomography. Unlike conventional 
tomography, where backprojection is the preferred approach, the 
computational expense of space domain interpolation of diffracted projections 
makes frequency domain interpolation the preferred approach.

The remainder of this section will consist of derivations of the frequency 
domain and space domain interpolation algorithms. In both cases plane wave 
illumination will be assumed and the reader is referred to [Dev82, Pan83] for 
reconstruction algorithms for the synthetic aperture approach and to [Sou84b] 
for the general case.

4.2 Frequency Domain Interpolation
In order to discuss the frequency domain interpolation between a circular 

grid on which the data is generated by diffraction tomography, and a 
rectangular grid suitable for image reconstruction, parameters for representing 
each grid must be selected and then the relationship between the two sets of 
parameters written.

In Chapter 3, UB(w) was used to denote the Fourier transform of the 
transmitted data when an object is illuminated with a plane wave traveling 
along the positive y direction. Now Ug^(of) is used to denote this Fourier 
transform, where the subscript <j> indicates the angle of illumination. This angle 
is measured as shown in Figure 4.1. Similarly, Q(oj,<f>) will be used to indicate 
the values of ofuq,^) along a semi-circular arc oriented at an angle <f> as shown 
in Figure 4.2 or

Q{u,y/k$-u)2-k0) \ oj\ <k0. (4.1)

Therefore, when an illuminating plane wave is incident at angle <j), the equality

UB(a,g =(4.2) 
2y%2-a2

can be rewritten as



frequency domain

Figure 4.1 Each projection is measured using the phi-omega coordinate
system shown here.



frequency domain

A second change of variables is used to relate the projection 
data to the object’s Fourier transform.

Figure 4.2
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UB for | wj < k.

In most cases the transmitted data will be uniformly sampled in Spacfe, 
and a discrete Fourier transform of this data will generate uniformly spaced 
samples of Ug '^w) in the Q domain. Since Q(w) is the Fourier transform of the 
object along the circular arc AOB in Figure 4.1 and since k is the projection of 
a point on the circular arc on the tangent line GD, the uniform samples of Q in 
k translate into non-uniform samples along the arc AOB as shown in Figure 
4.3. For this reason designate each point on the arc AOB by its (u,d>) 
parameters. [Note that (u>,0j are not the polar coordinates of a point on arc 
AOB in Figure 4.2. Therefore, w is not the radial distance in the (uq,^) plane. 
For point E shown, the parameter u is obtained by projecting E onto line CD.] 
The rectangular coordinates in the frequency domain will remain

Before the relationships between (w,^) and (aj|,0L>2)j 'is presented it must be 
mentioned that the points generated by the AO and OB portions of the arc 
AOB must be considered separately as $ is varied from 0 to 2tt. This is done 
because as mentioned before, the arc A0B generates a double coverage of the 
frequency domain, as <j> is varied from 0 to 2tt, which is undesirable for 
discussing a, ohe-to-ohe transformation between the (w,^) parameters and the 
(wj,^) coordinates.

Now reserve (w,^) parameters to denote the arc grid generated by one 
projection. It is important to note that for this arc grid, u varies from 0 to k 
and <j> from 0 to 2ir.

The transformation equations between and (uq,^) will now be
presented. This is accomplished in a slightly round-about manner by first 
defining polar coordinates (0,0) in the (w^a^-plane as shown in Figure 4.2. In 
order to go from (aq,^) to first transform from the former coordinates to
(0,0) and then from (0,0) to (aThe rectangular coordinates (aq,^) are 
related to the polar coordinates (0,0) by (Figure 4.2)

0 = y/uf + w| (4.4)

0 — tan 1 k>2
OJl

(4.5)

In order to relate (0,0) to (w,0), a netv angle which is the angular position of 
a point (aq,w2) on arc OB in Figure 4.2, is introduced. Note from the figure 
that the point characterized by angle f) is also characterized by parameter u.
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V

sampling along the arc 
is non-uniform

frequency domain

Figure 4.3 Uniformly sampling the projection in the space domain leads
to uneven spacing of the samples of the Fourier transform of 
the object along the semi-circular arc.



relationship between w and 0 is given by

u = k sin/?.

following relationship exists between the polar coordinates (0,0) on the one 
hand and the parameters 0 and <j> on the other:

0 = 2sin-1 -^7- 
■ 2k

4 - 0 + — +
2 2

By substituting Equation (4.6) in (4.4) and then using (4.4), u can be expressed 
in terms of wl and w2. This result is shown below. Similarly, by substituting 
Equation (4.5) in (4.7), the following expression is obtained for u and <f>

.. k ,0 n i *r\' ;1 + ■<4'\
Sm $ Mm

, 2k ^ (48)

<f> = tan 1
W^\

■ 1 • —1T S i ll 1
Ai

y/uf +
2k

These are the transformation equations for interpolating from the (w,<j>) 
parameters used for data representation to the (a>|,u>2) parameters needed for 
inverse transformation.

To convert a particular rectangular point into (w4) domain, substitute its 
oq and u>2 values in Equations. (4.8) and (4.9). The resulting values for w and <f> 
may not correspond to any for which Q(w,0) is known. By virtue of equation 
(4.3), Q(oj,<I>) will only be known over a uniformly sampled set of values for u 
and <j>. In order to determine Q at the calculated u and <p, the following 
procedure is used. Given Nw x uniformly located samples, Q(w;,^j), 
calculate a bilinearly interpolated value of this function at the desired u and <f> 
by using

Q(w» ^ E fi<^(Wi,^j[)hI(w-a;i)h2(^-^j), (4.10)
i=i j=i

where

=

i I;1
Aw

w| <Aw otherwise. MU)
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A</>
!<>|<^

0

otherwise; (4.12)

and Aui are the sampling intervals for <j> and w, respectively. When 
expressed in the manner shown above, bilinear interpolation may be 
interpreted as the output of a filter whose impulse response is hjh^

The results obtained with bilinear interpolation can be considerably 
improved if the sampling density in the (w,^)-plane is increased by using the 
computationally efficient method of zero-extending the inverse two-dimensional 
inverse Fast Fourier Transform (FFT) of the matrix. The technique
consists of first taking a two-dimensional inverse FFT of the Nw x matrix 
consisting of the Q(a>i^j) values, zero-extending the resulting Nw x array of 
numbers to, perhaps, mNw x nM^ and then taking the FFT of this new array. 
The result is an mn-fold increase in the density of samples in the (o;,^)-plane. 
After computing Q(w,^) at each point of a rectangular grid by the procedure 
outlined above, the object f(x,y) is Obtained by a simple 2-D inverse FFT.

The use of bilinear interpolation and zero padding are both good 
techniques for resampling a function but they are used here in a non standard 
way. Typically interpolation algorithms are derived assuming that the sampled 
data can be described as nearly linear (when using bilinear interpolation) and 
frequency limited (when using Fourier domain zero padding) [Con8Q, Sto80, 
Act70j. In this application, when resampling the data from a circular grid to a 
rectangular grid, the function is assumed to be smooth in the Fourier domain. 
This assumption is reasonable since the data is assumed to be well behaved.

The interpolation described above, however, is carried out in a rectilinear 
version of the (w,0) coordinate system. Thus four points in the space, 
where data is available, are first assumed to be at the four corners of a 
rectangle and then the interpolation is calculated for a point in the middle. 
This is an, approximation because the four data points actually define a smooth 
function that is defined along four points on two of the circular arcs. As will 
be seen in the reconstructions the effect of this approximation is small but it 
should be remembered when comparing interpolation schemes.
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4.3 Backpropagation Algorithms
It has recently been shown by Devaney [Dev82] and Kaveh [Kav82] that 

there is an alternative method for reconstructing images from the diffracted 
projection data. This procedure, called the fdtered-backpropagation method, is 
similar in spirit to the filtered-backprojection techniques which (due to their 
superior numerical accuracy) have been one factor in the enormous success of 
x-ray tomography. Unfortunately, whereas the filtered-backprojection 
algorithms also possess efficient implementations, the same cannot be said for 
the filtered-backpropagation algorithms. The latter class of algorithms is 
computationally intensive, much more so than the interpolation procedure 
discussed above. With regard to accuracy, they do not seem to possess any 
advantage especially if interpolation is carried out after increasing the sampling 
density by appropriate zero-padding as discussed above.

The derivation of the backpropagation algorithm will follow as presented 
by Devaney [Dev82|. First Consider the inverse Fourier transform of the object 
function,

‘ 00 . 00 /'
"(rv> = J--J / OlK).^ ".IK, (413)

v?7r) -oo-oo

This integral represents the object function in terms of the Fourier transform 
of the object along a rectangular grid. As already discussed, a diffraction 
tomography experiment measures the Fourier transform of the object along 
circular arcs; thus it will be easier to perform the integration if it is modified to 
use the projection data more naturally. This will be done using two coordinate 
transformations: the first one will exchange the rectangular grid for a set of 
semicircular arcs and the second will map the arcs into their plane wave 
decomposition. '

First exchange the rectangular grid for semi-circular arcs. To do this 
represent R=(kx,ky) in equation (4.13) by the vector sum

R=l„(?-sy (414)

where ’s0:=(cos^0,sin^0) and 1f=(cosX,sinX) are unit vectors representing the 
direction of the wavevector for the transmitted and the received plane waves 
respectively. This coordinate transformation is illustrated in figure 4.4.

To find the Jacobian of this transformation write

kx = k0(cosX-cos^0) (4.15)
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frequency domain

The k0f0 and kT0 used in the backpropagation algorithm are 
shown here.

Figure 4.4
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ky = k0(sinX-sin^0) (4.16)

and .

dkxdky = | k^sin(X-0o)| dXd^0 (4.17)

= k0N/l-cos2(X-^0)dXd</>0 (4.18)

= kox/l-(^o)2dXd^0 (4.19)

and then equation (4.13) becomes
27t27T r 1

■ o(rv) = k«P-^)r^,| n'dXd'>»- I' 201
(27Tf ^ 0 0 1 J

The factor of — is necessary because as discussed in section 4.2 the (X,^0)

coordinate system gives a double coverage of the (kx,ky) space.
This integral gives an expression for the scattered field as a function of the 

(X,^0) coordinate system. While the data that is collected will actually be a 
function of </>o, the projection angle, and k, the one dimensional frequency of 
the scattered field along the receiver line. To make the final coordinate 
transformation take the angle X to be relative to the. (Ky7) coordinate system 
diagramed in Figure 4.4. This is a more natural representation since the data 
available in a diffraction tomography experiment lies on a semicircle and 
therefore the data is available only for 0<X<tt. The X integral in equation 
(4.20) above can be rewritten by noting

cosX = rc/k0 (4.21)

sinX = 7/k0 (4.22)

and therefore

dX = 7^-dfC. (4.23)
' ko7

The X integral becomes

^/i5-|K|G{k0(M-0)]eit'H'"l'vdK. (4.24)
k0 -ko ^ 1 .

Using the Fourier Diffraction Theorem as represented by equation (4.2) the 
Fourier transform of the object function, O, can be approximated by a simple 
function of the first order Born field, uB, at the receiver line. Thus the object
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(4.25)

(4.26)

function in equation (4.24) can be written

O [k0(f“r0)J = -2qjUB(K ,'rk0)e-w''.

In addition if a rotated coordinate system is used for r = (£,»/) where

£ ~ xsm<f> — ycos^

and ■

t) = xcos^ + ysin^ (4-27)

then the dot product k0(?-lf0) can be written

Ke+(r-k0)^ (4.28)

The coordinates (£,»?) are illustrated in Figure 4.5. Using the results above the 
X integral is now written as

k0
f- / <!*}*] UBlK.r-koje-'V5+llrki’>'’ (4.29)

■0-ko
and the equation for the object function in equation (4.20) becomes

2w k0
o(rv) = - /d^o / d«| /c| UB(K,7-k0)e nl°e-hloJ«'f+j(r-ko)»? (430)

(2tt)2 o w-k0 '

To bring out the filtered-backpropagation implementation, the inner 
integration is Written here separately:

'' ' 00
= / r^MH(ai)Gn(w)exp(ja;0 dw (4.31)

-OO

where
H(w) = |c^l,

G,,(w) - ex P [i (\/ ko~oj2—k0) ],

v. = o,;-;

(A < k0
w| > k0

w| < k0

o>| > k0

(4-32)

and
= Ug(K,'rk0)e-^0. (4.33)

Without the extra filter function G^(w), the rest of Equation (4.31) would 
correspond to the filtering operation of the projection data in x-ray 
tomography. The filtering as called for by the transfer function G^(w) is depth
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image
frame

Figure 4.5 In baekpropagation the project is backprojected with a depth
dependent filter function. At each depth, 17, the filter 
corresponds to propagating the field at a distance of
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dependent due to the parameter rj, which is equal to xcos^ + ysin^.
In terms of the filtered projections II^(f,j?) in Equation (4.31), the 

reconstruction integral of Equation (4.30) may be expressed as

f(x,y) - — / d<f> II^(xsin^ - ycos^ , xcos^ + ysin0) (4.34)
0

The computational procedure for reconstructing an image on the basis of 
Equations (4.31) and (4.34) may be presented in the form of the following steps:
STEP 1; In accordance with Equation (4.31), filter each projection with a 

separate filter for each depth in the image frame. For example, if 
only 9 depths are used as shown in Figure 4.5, 9 different filters 
would need to be applied to the diffracted projection shown there. 
[In most cases for 128 x 128 reconstructive, the number of discrete 
depths chosen for filtering the projection will also be around 128. If 
there are much less than 128, spatial resolution will be lost ] [Cra79]

STEP 2: To each pixel (x,y) in the image frame, in accordance with Equation 
(4.34) allocate a value of the filtered projection that corresponds to 
the nearest depth line.

STEP 3: Repeat the preceding 2 steps for all projections. As a new projection 
is taken up, add its contribution to the current sum at pixel (x,y).

The depth dependent filtering in Step 1 makes this algorithm 
computationally very demanding. For example, if depth values are used, 
the processing of each projection will take (N^ + l) Fast Fourier Transforms 
(FFT’s). If the total number of projections is N^, this translates into 
(N^ + 1)N^ FFT’s. For most ISf x N reconstructions, both and will be 
approximately equal to N. Therefore, the filtered-backpropagation algorithm 
will require approximately N2 FFT’s compared to 4N FFT’s for bilinear 
interpolation. [For precise comparisons, it must be mentioned that the FFT’s 
for the case of bilinear interpolation are longer due to zero-padding.]

Devaney [Dev82] has also proposed a modified filtered-backpropagation 
algorithm, in which G^(o;) is simply replaced by a single G%(w) where 
Vo — xocos0 + yosin0, (x0,y0) being the coordinates of the point where local 
accuracy in reconstruction is desired. [Elimination of depth dependent filtering 
reduces the number of FFT’s to 2ISL.]
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4.4 Signal Processing Concerns
The reconstruction algorithms described above and in [Pan83] involve a 

number of signal processing steps. The following work describes the quality of 
the final reconstruction when small changes are made to the signal processing 
procedure. These changes are valid for reconstruction algorithms using either 
space (backpropagation) or frequency domain interpolation.

Assuming first order approximations are valid, the algorithm for 
reconstructing an object from diffracted projections is briefly as follows:

1) Collect the data
2) Fourier Transform each projection
3) Estimate the 2-dimensional Fourier transform of the object from the 

transformed projections
4) Perform a 2-dimensiohal inverse Fourier transform to get an estimate of 

the object.
At each step of this procedure signal processing theory suggests a number 

of procedures to improve the reconstruction. These include
a) Zero padding the projection data to reduce the effects of interperiod 

interference. This also increases the resolution in the frequency domain 
and should make interpolation easier.

b) Applying a Hamming window to the projection data to smooth out the 
data at the ends of the receiver.

e) Multiplying the two dimensional Fourier Transform of the object by a 
Low Pass Filter (LPF) (a Hamming window in this case) to reduce the 
effects of high frequency noise.

These new steps are illustrated in Figure 4.6 where optional steps have been 
indicated with dashed boxes, we have indicated the optional steps with dashed 
boxes.

To evaluate the effects of each of these changes Figure 4.7 and Figure 4.8 
shows the center line Of reconstructions using all eight possible combinations of 
options. The data was generated for a cylinder of radius IX and a refractive 
index change of .5%.

An important part of the reconstruction process is filtering the projection 
data. For efficiency reasons the filter is implemented with an FFT algorithm 
but these algorithms do not perform an aperiodic convolution like that used in 
linear systems theory. Instead a filter implemented with FFT’s performs 
circular convolution.
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Figure 4.6 The signal processing steps in a typical diffraction
tomography algorithm are shown here. The steps that are 
needed are shown with a solid box while the optional steps 
are shown with dashed lines.
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Figure 4.7 The center line of reconstructions are shown here with the
size of the projection doubled and the Hamming window 
added. All reconstruction shown here are without low pass 
filtering.
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Single Sized Projection Double Projection

am. : fJOH 81J2

Figure 4.8 The center line of reconstructions are shown here with the
size of the projection doubled and the Hamming window 
added. All reconstruction shown here are with low pass 
filtering.
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If the data is first padded with zeros so that the new data sequence is 
twice as long as the original then the results produced by circular and aperiodic 
convolution are the same. In addition, zero padding the Original projection 
increases the resolution of the data in the frequency domain and thus makes a 
simple interpolation scheme more accurate. Unfortunately the extra data more 
than doubles the computational time. (For example an FFT takes NlogN 
operations so when N is doubled the computational expense goes up by a factor 
of ■

(2N)log2(2N)
■' Nlog2N

Based on the reconstructions shown ifi Figure 4.7 it is possible to conclude that 
doubling the size of the projection data only makes a small improvement in the 
quality of the reconstructions. Since the extra zeros more than double the 
computational expense involved in filtering the data it is probably best not to 
zero pad.

log2N
(4.35)

A second signal processing concern is due to data truncation. In a real 
world experiment it is only possible to collect and process a finite amount of 
data. Generally this isn’t a problem since the data eventually goes to zero 
outside of some range and the data can be truncated without loss of 
information. This is certainly true, for example, in x-ray CT projections but is 
not true with diffracted projections. With fields the amplitude decays

proportional to — and consequently the projection data never goes to zero.
R

Mathematically the data truncation error can be modeled as a 
multiplication in the space domain by a rectangular window [Opp75j. In the 
frequency domain this is equivalent to convolving the data with a sine function 
and thus smoothes the frequency domain signal. A number of windows like the 
Hamming window have been designed to reduce the effects of data truncation.

Figure 4.7 shows that a Hamming window does not have the same positive 
effect with diffracted projections. In this case most of the high frequency 
information is at either end of the projection and thus the window only serves 
to attenuate the high frequency components. This is shown in Figure 4.9 
where the Fourier transform of the diffracted projection is shown before (top 
graph) and after (bottom graph) applying a Hamming window to the projection 
data. The loss of high frequency data caused by the Hamming window leads to 
the rounded edges shown in the reconstructions shown in Figure 4.7.



Figure 4.9
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The spectrum of the field before (top graph) and after 
(bottom graph) multiplying by a Hamming window in the 
space domain are shown here.
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Finally a very large improvement is observed by adding a Low Pass Filter 
before inverse Fourier transforming the data. The filtering done before 
interpolation includes a 1/k term which also serves to enhance the high 
frequency noise. By adding a LPF this effect is counteracted.

The best results would be obtained if it would be possible to characterize 
the spectral density of the signal and the noise and then design a Wiener filter. 
This is a difficult problem and adequate results were obtained by using a Low 
Pass Filter of the form

w(w) = 0.54 + 0.46cos(-^-) (4.36)
A

Based on the results shown in Figure 4.7 and 4.8 the best reconstructions 
are obtained if a low pass filter is used to smooth the final reconstruction but 
that zero padding the projection data and applying a Hamming window to the 
projection data do not improve the results.

Finally a small improvement was made to the backpropagation algorithm 
by using bilinear interpolation instead of nearest neighbor. The 
backpropagation algorithm consists of both a depth dependent filter and then 
the addition to each pixel of a portion of the backpropagated field. In the 
original formulation each pixel is assigned the nearest neighbor in the field, but 
as shown in Figure 4-10 even better results are obtained if the valued added to 
each pixel is calculated using bilinear interpolation. Compared to the expense 
of doing the backpropagation filter the bilinear interpolation cost is 
inconsequential and thus worth the effort.

This is also shown when the Mean Squared Error in the reconstructions is 
computed. The table below compares the error for bilinear interpolation versus 
nearest neighbor and bilinear backpropagation. As can be seen from Table 4.1, 
bilinear interpolation significantly improves the reconstruction.
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Figure 4.10

Bilinear Frequency Domain Interpolation

019846 q

009923

000000

Nearest Neighbor Backpropag&tioii
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Bilinear Backpropag&tion

Reconstructions of a cylinder are shown comparing nearest 
neighbor and bilinear interpolation for frequency domain and 
space domain reconstruction algorithms.



Table 4.1. Mean Squared Error in a reconstruction 
of a cylinder using three interpolation schemes.

Mean Squared Error

Bilinear, Interpolation 4.8%
Nearest Neighbor Backpropagation e.8%
Bilinear Backpropagation 4.8%
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CHAPTER 5 
LIMITATIONS

5.1 Introduction
The quality of a first order diffraction tomographic reconstruction is 

limited by both mathematical approximations and experimental limitations. In 
the derivation of a model for the scattered fields either the Born or the Rytov 
approximation is used to solve the integral equations for the scattered field. 
These approximations are a source of error and limit the types of objects that 
can be imaged with diffraction tomography. The only way to reduce this type 
of error is to use a better model or a higher order approximation. Better 
models for the scattered field will be discussed in Chapter 6.

The experimental limitations, on the other hand, are caused by a shortage 
of data. It is only possible to collect a finite amount of data about the 
scattered field and the experimental errors can be attributed to interpolation 
errors, aliasing and the finite aperture. Up to the limit in resolution caused by 
evanescent waves a,ndrthe Unfit In quality ^ue to the Born and the Rytov 
approximations it is possible to improve a reconstruction by collecting 
additional data.

Computer simulations are presented in this chapter illustrating the errors 
in first order diffraction tomography. To study the effects of the Born and the 
Rytov approximations it is necessary to calculate (or even measure) the exact 
scattered fields and then use the most accurate reconstruction algorithms 
available. The experimental errors can be minimized by calculating a large 
number of data points and using a circularly symmetric object to reduce the 
errors due to angular sampling. If experimental errors are minimized then the 
only remaining source of errors are caused by the approximations made in the 
reconstruction algorithm. As already mentioned the mathematical limitations 
on the reconstructions are a fnpetion of the object’s size and refractive index.

The experimental errors are highlighted by minimizing the algorithmic 
errors. This can be done in two ways. The more straightforward method is to 
choose a small object with a smah change in refractive index. As the size of 
the object and its refractive index are reduced both the Born and the Rytov
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approximations more accurately model the exact scattered field. A second 
approach is to assume the Born or Rytov approximations are valid then use the 
Fourier Diffraction Theorem to generate the scattered fields from the Fourier 
transform of the object. In both cases the amount of data calculated is varied 
to highlight the different experimental errors.

5.2 Mathematical Limitations
In diffraction tomography there are different approximations involved in 

the forward and inverse directions. In the forward process it is necessary to 
assume that the object is weakly scattering so that either the Born or the 
Rytov approximations can be used. Once an expression for the scattered field 
is derived it is necessary to not only to measure the scattered fields but then 
numerically implement the inversion process.

To study the limits of the mathematical approximations the exact field for 
the scattered field from a cylinder as shown by Weeks [Wee64] and by Morse 
and Ingard [Mor68] is calculated for cylinders of various sizes and refractive 
index. In the simulations that follow a single plane wave of unit wavelength is 
incident on the cylinder and the scattered field is measured along a line at a 
distance of 100 wavelengths from the origin. In addition all refractive index 
changes are modeled as monopple (omnidirectional) scatterers. By doing this

and this will be shown, first qualitatively and then quantitatively. From 
Chapter 2 the phase change is given by

At the receiver line the received wave is measured at 512 points spaced at 
1/2 wavelength intervals. In all cases the rotational symmetry of a single 
cylinder at the origii reduce the computation time of the
simulations. Since all projections are identical this eliminates any angular

(5.1)
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The results shown in Figure 5.1 are for cylinders of four different refractive 
indices. In addition Figure 5.2 shows plots of each reconstruction along a line 
through the center of the cylinder. Notice that the y coordinate (refractive 
index) of the center line is plotted in terms of change from unity.

Simulations are shown for refractive indices that range from .1% change 
(refractive index of l.OOl) to a 40% change (refractive index of 1.4). For each 
refractive index, cylinders of size 1, 2, 4 and 10 wavelengths are shown. This 
gives a range of phase changes across the cylinder (see equation (5.1) above) 
from .004jt to 16;r.

Clearly, all the cylinders of refractive index 1.001 in Figure 5.1 are 
perfectly reconstructed. As equation (5.1) predicts the results get worse as the 
product of refractive index and radius gets larger. The largest refractive index 
that is successfully reconstructed is for the cylinder in Figure 5.1 of radius 1 
wavelength and a refractive index that differed by 20% from the surrounding 
medium.

While it is difficult to evaluate quantitatively the three dimensional plots 
it is certainly reasonable to conclude that only Cylinders where the phase 
change across the object is less than or equal to ,8r are adequately 
reconstructed. In general the reconstruction for each cylinder where the phase 
change across the cylinder is greater than z shows severe artifacts near the 
center. This limitation in the phase change across the cylinder is consistent 
with the condition described in Chapter 2.

5.2.2 Evaluation of the RytovApproximation
Figure 5.3 shows the simulated results for 16 reconstructions using the 

Rytov approximation. To emphasize the insensitivity of the Rytov 
approximation to large objects the largest object simulated has a diameter of 
100X.

It should be pointed out that the rounded edges of the IX reconstructions 
are not due to any limitation of the Rytov approximation but instead are the 
result of a two dimensional low pass filtering of the reconstructions. Recall 
that for a transmission experiment an estimate of the object’s Fourier 
transform is only available up to frequencies less than V2k0. Thus the 
reconstructions shown in Figure 5.3 show the limitations of both the Rytov 
approximation and the Fourier Diffraction Theorem.



Figure 5.1 Simulated reconstructions using the Born approximation for 
16 objects with four refractive indices between 1.001 and 1.20 
and four radii between 1 and 10X.
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Figure 5.2 The center line for the reconstructions shown in Figure 5.1
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1.001 1.61 1.06 1-10

100X

Figure 5.3 Simulated reconstructions using the Born approximation for
16 objects with four refractive indices between 1.001 and 1.10 
and four radii between 1 and 100X.
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5.2.3 Comparison of the Born and Rytov Approximation
Reconstructions using exact scattered data show the similarity of the Born 

and the Rytov approximation. Within the limits of the Fourier Diffraction 
Theorem the reconstructions in Figure 5.1 and 5.3 of a IX object with a small 
refractive index are similar. In both cases the reconstructed change in 
refractive index is close to that of the simulated object.

The two approximations differ for objects that have a large refractive 
index change or have a large radius. The Born reconstructions are good at a 
large refractive index as long as the phase shift- of the incident field as 
predicted by equation (5.1) is less than ir.

On the other hand the Rytov approximation is very sensitive to the 
refractive index but produce excellent reconstructions for objects as large as 
lOOX. Unfortunately for object with a refractive index larger than 1% the 
Rytov approximation quickly deteriorates.

In addition to the qualitative studies a quantitative study of the error in 
the Born and Rytov reconstructions is also possible. As a measure of error the 
relative mean squared error in the reconstruction of the object function is 
integrated over the entire plane. If the actual object function is o(r) and the 
reconstructed object function is o' (r) then the relative Mean Squared Error 
(MSE) is given by

J/[o(r)-o' (r))2dr

i/Nr)l2
(5.2)

This study presents the Mean Squared Error for 120 reconstructions based 
on the exact scattered fields from a cylinder. In each case a 512 point receiver 
line is at a distance of 10 X from the center of the cylinder. Both the receiver 
line and the object reconstruction are sampled at 1/4 X intervals.

The plots of Figure 5.4 present a summary of the mean squared error for 
cylinders of 1, 2 and 3 X in radius and for twenty refractive indices between
1.01 and 1.20. In each case the error for the Born approximation is shown as a 
solid line while the Rytov reconstruction is shown as a dashed line. The data 
used for these simulations was the exact scattered fields from a cylinder 
measured at 512 receiver points along a receiver line 10X from the center of the 
cylinder.

Many researchers [Kav82, Kel69, Sou83] have postulated that the Rytov 
approximation is clearly superior to the Born but as the actual reconstructions 
represented by Figure 5.4 show for a IX cylinder this is not necessarily true. It
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The relative mean squared error for reconstructions using the 
Born (solid line) and Rytov (dashed line) approximations. 
The error for a total of 60 objects with a radius of 1, 2 and 3 
wavelengths are shown.
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is interesting to note that, while the Bytov approximation shows a steadily 
increasing error with higher refractive indices, the error in the Born 
reconstruction is relatively constant until a threshold is reached. For the 2X 
and 3X cylinders, this breakpoint occurs at a phase shift across the cylinder of 
0.6 and 0.7tt. Thus, a criteria for the validity of the Born approximation is 
that the product of the radius of the cylinder in wavelengths and the change in 
refractive index must be less than .175.

Figure 5.5 presents a summary of the relative mean squared errors for 
cylinders with refractive indices of 1.01, 1.02 and 1.03 for forty radii between 1 
and 40X. Because the size of the cylinders varied by a factor of forty, the 
simulations parameters were adjusted accordingly. For a cylinder of radius R, 
the scattered field was calculated for 512 receivers along a line 2R from the 
center of the cylinder and spaced at 1/16R intervals.

In each of the simulations, the Born approximation is only slightly better 
than the Rytov approximation until the Born approximation crosses its 
threshold with a phase shift of 0.7x. Because the error in the Rytov 
approximation is relatively fiat, it is clearly superior for large objects with 
small refractive indices. Using simulated data and the Rytov approximation 
objects as large as 2000X in radius have been reconstructed.

5.3 Evaluation of Reconstruction Algorithms
To study the approximations involved in the reconstruction process it is 

necessary to calculate scattered data assuming the forward approximations are 
valid. This can be done in one of two different ways. As already discussed the 
Born and Rytov approximations are valid for small objects and small changes 
in refractive index. Thus, if the exact scattered field for a small and weakly 
scattering object is calculated then it can be assumed that either the Born or 
the Rytov approximations is exact.

A better approach is to recall the Fourier Diffraction Theorem, which says 
that the Fourier transform of the scattered field is proportional to the Fourier 
transform of the object along a circular arc. Since this theorem is the basis for 
the first order inversion algorithms if it is assumed correct the approximations 
involved in the reconstruction process can be studied.

If the Fourier Diffraction Theorem holds, the exact scattered field can be 
calculated exactly for objects that can be modeled as ellipses. The analytic 
expression for the Fourier transform of the object along an arc is then 
proportional to the scattered fields. This procedure is fast and allows the
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The relative mean squared error for reconstructions using the 
Born (solid line) and Rytov (dashed line) approximations. 
The error for a total of 120 objects with a refractive index of
1.01, 1.02 and 1.03 are shown.
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scattered fields to be calculated for testing reconstruction algorithms and 
experimental parameters.

To illustrate the accuracy of the interpolation based algorithms, the image 
in Figure 5.6a will be used as a test “object” for showing computer simulation 
results. Figure 5.6a, with its gray levels as shown in Figure 5.6b, is a 
modification of the Shepp and Logan “phantom” described in [She74] to the 
case of diffraction imaging [Dev83, Pan83]. The gray levels shown in Figure 5.6 
represent the refractive index values. This test image is a superposition of 
ellipses, with each ellipse being assigned a refractive index value as shown in 
Table 5 1. "

Table 5.1. Summary of parameters for diffraction 
tomography simulations

Center
Coordinate

Major
Axis

Minor
Axis

Rotation
Angle

Refractive
Index

(0,0) 0.92 0.69 90 1.0
(0,-0.0184) 0.874 0.6624 90 -0.5

(0.22,0) 0.31 0.11 72 -0.2
(-0.22,0) 0.41 0.16 108 -0.2
(0,0.35) 0.25 0.21 90 0.1
(0,0.1) 0.046 0.046 0 0.15
(0,-01) 0.046 0.046 o 0.15

(-0.08,-0.605) 0.046 0.023 0 0.15
(0,-0.605) 0.023 0.023 0 0.15

(0.06,-0.605) 0.046 0.023 90 0.15

A major advantage of using an image like Figure 5.6a for computer 
simulation is that the analytical expressions for the transforms of the diffracted 
projections can be written. The Fourier transform of an ellipse of semi-major 
and semi-minor axes A and B, respectively, is given by



Figure 5.6 A modified version of the Shepp and Logan head phantom is
used to test reconstruction algorithms. The numbers 
represent the relative change in refractive index from the 
background value of 1.0.
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*) =
2ttAJi + V

\/(uA/B)2 + v2
(5.3)

where u and v are spatial angular frequencies in the x- and y-directions, 
respectively; and Jj is a Bessel function of the first kind and order 1. When the 
center of this ellipse is shifted to the point (x^y^, and the angle of the major 
axis tilted by a, as shown in Figure 5.7b, its Fourier transform becomes

e-j(uxj+vyi)

[ „ J1/2
2ttAJi' B[((u' >A/B)2 + (v-)2]

|((u')A/B)2 + (v')2|1/2 (5.4)

where

u* = u cos or + v sin a (5.5)

'and

v* — — u sin a + v cos at. (5.6)

Now consider the situation where the ellipse is illuminated by a plane. By 
the Fourier Diffraction Theorem the Fourier transform of the transmitted wave 
fields measured on the receiver line is given by the values of the above function 
on a circular arc. For the test object of Figure 5.7b, if weak scattering is 
assumed and therefore there is no interaction among the ellipses, the Fourier 
transform of the total forward scattered field measured on a line, is the sum of 
the values of functions like (5.4) over the circular arc. This procedure is used 
to generate the diffracted projection data for the test image.

It should be mentioned that by using this procedure to calculate the 
diffracted projection data only the accuracy of the reconstruction algorithm is 
tested, without checking whether or not the “test object” satisfies the underlying 
assumption of weak scattering. In order to test this crucial assumption, it is 
necessary to generate the forward scattered data of the object. For multi- 
component objects, such as the one shown in Figure 5.6a, it is very difficult to 
do so due to the interactions between the components.

Pan and Kak [Pan83] presented the simulations shown in Figure 5.8. 
Using a combination of increasing the sampling density by zero padding the 
signal and bilinear interpolation, results are obtained in 2 minutes of CPU time 
on a VAX 11/780 minicomputer with a floating point accelerator (FPA). The 
reconstruction is shown over a 128 by 128 grid using 64 views and 128 receiver 
positions. The number of operations required to carry out the interpolation
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space domainspace domain

Figure 5.7 Assuming the Fourier Slice Theorem is valid the scattered
field can easily be computed as the values of the Fourier 
transform of the rotated and translated ellipse.
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Figure 5.8 The above images show the results of using the (a)
interpolation, (b) backpropagation and (c) modified 
backpropagation algorithms on reconstruction quality. The 
solid lines in the graphs represent the reconstructed value 
along a line through the center of the three ellipses at the 
bottom of the phantom.
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and invert the object function is on the order of N2logN. The resulting 
reconstruction is shown in Figure 5.8a.

Figure 5.8b represents the result of back propagating the data to 128 
depths for each view while Figure 5.8c is the result of back propagation to only 
a single depth centered near the three small ellipses at the bottom of the 
picture. The results were calculated on a VAX 11/780 minicomputer with a 
Floating Point Accelerator (FPA) and the resulting reconstructions were done 
over a 128 by 128 grid. Like the previous image the input data consists of 64 
projections of 128 points each.

There is a significant difference in not only the reconstruction time but 
also the resulting quality. While the modified back propagation only took 1.25 
minutes the resulting reconstruction is much poorer than the full back 
propagation which took 30 minutes of CPU time. A comparison of the various 
algorithms is shown in Table 5.2.

Table 5.2. Comparison of Algorithms

Algorithm Complexity CPU Time

Interpolation . N2logN 2 Minutes
Back Propagation NdN^NlogN 30 Minutes

Modified Back Prop agation N^NlogN 1.25 Minutes

5.4 Experimental Limitations
In addition to the limits on the reconstructions imposed by the Born and 

the Rytov approximations there are also experimental limitations. These 
additional factors are caused by

• Wave propagation in free space
• Sampling the data along the receiver iine

• Finite receiver length
• Limited views of the object
In inverse scattering theory the measured complex amplitude of a received 

wave is sampled, filtered and then interpolated to estimate the Fourier 
transform of the object function. The reconstruction process is linear because
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it consists only of filtering the data and then calculating its inverse Fourier 
transform.

The first three factors each can be modeled as a simple constant low-pass 
filtering of the scattered field. Because the entire process is linear the net effect 
is a single low filter at the lowest of the three frequencies. The experiment can 
be optimized by adjusting the parameters of the experiment so that each low 
pass filter cuts off at the same frequency.

A limited number of views also can be modeled as a low pass filter. In this 
case, though, the cutoff frequency varies with the radial direction.

5.4.1 Evanescent Waves
The most fundamental limitation is that evanescent waves are ignored. 

Since these waves have a complex wavenumber they are severely attenuated 
over a distance as sma.ll as several wavelengths. This limits the highest 
received wavenumber to

■ V k»« =X- (5-7)

This is a fundamental limit of the propagation, process and the resolution of the 
reconstruction can only be improved by moving the experiment to a higher 
frequency (or shorter wavelength.)

5.4.2 Sampling the Received Wave
After the wave has been scattered by the object and propagated to the 

receiver line it must be measured. This is usually done with the a point 
receiver. Unfortunately it is not possible to sample at every point, so a non 
zero sampling interval must be chosen. This introduces a measurement error 
into the process. By the Nyquist theorem this can be modeled as a low pass 
filtering operation, where the highest measured frequency is given by

(W, = Y (5.8)

and T is the sampling interval. Of course this analysis has ignored the non
linear effects of aliasing and the resulting frequency shifts that occur.



5.4.3 The Effects of a Finite ItecCiv^p Length
Not only are there physical limitations on the finest sampling interval but 

usually there is a limitation on the amount of data that can be collected. This 
generally means that samples of the received waveform will be collected at only 
a finite number of points along the receiver line. This is usually justified by 
taking data along a line long enough so that the unmeasured data can be safely 
ignored. Because of the wave propagation process this also introduces a low 
pass filtering of the received data.

Consider for a moment a single scatterer at some distance^ 1q, from the 
receiver line. The wave propagating from this single scatterer is a cylindrical 
wave in two dimensions or a spherical wave in three dimensions. This effect is 
diagramed in Figure 5.9. It is easy to see that the spatial frequencies vary with 
the position along the receiver line.

An optician studying this problem would be interested in knowing the 
resolving power of thb system sis a function of the size of the aperture [Goo68[. 
The analysis would normally be carried out assuming that the object is far 
enough from the aperture so that it can be assumed it is in the aperture’s far 
field. But in this work the frequency content of the measured field is a limiting 
factor in the reconstruction quality so the effect of a limited aperture will be 
analyzed with ah emphasis on the spatial frequency content of the received 
field. The two approaches to be considered here use a point source and analyze 
the frequency content at the aperture. Since all points in space are in the far 
field of a point source this analysis gives identical results to classical optics 
theory.

It is easier to analyze the effect by Considering the expanding wave to be 
locally planar at any point distant from the scatterer. At the point on the 
receiver line closest to the scatterer there is no spatial variation [G0068]. This 
corresponds to receiving a plane wave or a received spatial frequency of zero.

Higher spatial frequencies are received at points along the receiver line 
that are farther from the origin. The received frequency is a function of the 
sine of the angle between the direction of propagation and a perpendicular to 
the receiver line. This function is given by

k(y) = kmaxsin0 (5.9)

where 6 is the angle and kmax is the wavenumber of the incident wave. Thus 
at the origin, the angle, 6, is zero and the received frequency is zero. Only at 
infinity does the angle become equal to ninety degrees and the received spatial 
frequency approach the theoretical maximum.
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Incident
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The field scattered by an object is measured along a receiver 
line with finite length.

Figure 5.9
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This reasoning can be justified on a more theoretical basis by considering 
the phase of the propagating wave. The received wave at a point (x —l0)y) due 
to a scatterer at the origin is given by

u(x =I0,y)
jk0\/x2 +y2 i

(5.10)
Vx2 +y2

The instantaneous Spatial frequency along the receiver line (y varies) of this 
wave can be found by taking the partial derivative of the phase with respect to 
y [Gag78]

phase — k0\/y2+x2 (5.11)

k»>' :

"" Vx2+y2
(5.12)

where kre<.v is the spatial frequency received at the point (x—lo,y)- From Figure 
5.9 it is easy to see that

Xsin0 (5.13)
Vx2+y2

and therefore equation (5.9) and (5.12) are equivalent.
This relation, (5.12), can be inverted to give the length of the receiver line

for a given maximum received frequency, kmax.
k„

This becomes

y = ±
vmax"

\/kFk2
max

(5.14)

Since the highest received frequency is a monotonically increasing function 
of the length of the receiver line it is easy to see that by limiting the sampling 
of the received wave to a finite portion of the entire line that a low passed 
version of the entire scattered wave is measured. The highest measured 
frequency is a simple function of the distance of the receiver line from the 
scatterer and the length of measured data. This limitation can be better 
understood if the maximum received frequency is written as a function of the 
angle of view of the receiver line. Thus substituting

tan(0) = i
x

(5.15)

it is easy to see that
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and

recv

krecv
k0 tan 5

Vtan^+T

(5.16)

(5.17)

Thus krecV is a monotbnically increasing function of the angle of view, 6. It is 
easy to see that the maximum received spatial frequency can be increased by 
either moving the receiver line closer to the object or by increasing the length 
of the receiver line.

5.4.4 Evaluation of the Experimental Effects
Exact scattered data is used to verify the optimum experimental values 

and the effect of a finite receiver length is shown in Figure 5.10. The spatial 
frequency content of a wave is found by taking the FFT of the sampled points 
along the receiver line and is compared to the theoretical result as predicted by 
the Fourier Transform of the object. The theory predicts that more of the 
high frequency components will be present as the length of the receiver line 
increases and this is confirmed by simulation. ,

While the above derivation only considered a single scatterer it is also 
approximately true for many scatterers collected at the origin. This is possible 
because the inverse reconstruction process is linear and each point in the object 
scatterers an independent cylindrical wave.

5.4.5 Optimization
Since each of these three factors is independent, their effect in the 

frequency domain can be found by simply multiplying each of their frequency 
responses together. As has been described above each of these effects can be 
modeled as a simple low-pass filter of the theoretical data so the combined 
effect is also a low pass filter but at the lowest frequency of the cut-off of the 
three effects.

First consider the effect of ignoring the evanescent waves. Since the 
maximum frequency of the received wave is limited by the propagation filter to
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T = 2.0 X

Reconstructions of an object using a detector spacing of (a) 
.5X, (b) 1.0X, (c) 1.5X and (d) 2.0X are shown here.

Figure 5.10
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= :f <5-18)

it is easy to combine this expression with the expression for the Nyquist 
frequency into a single expression for the smallest “interesting” sampling 
interval. This is given by

kmax = kmeas (519)

or
2jt _ JT
X ^ T

(5.20)

and rearranging
T>1/2X. (5.21)

Thus if the received waveform is sampled with a sampling interval of more 
than 1/2 wavelength the measured data might not be a good estimate of the 
received waveform because of aliasing. On the other hand it is not necessary to 
sample the received waveform any finer than 1/2 wavelength since this 
provides no additional information. Doing this it is possible to conclude that 
the sampling interval should be greater than 1/2 wavelength.

In general the experiment will also be constrained by the number of data 
points (M) that can be measured along the receiver line. The distance from the 
object to the receiver line will be considered a constant in the derivation that 
follows. If the received waveform is sampled uniformly, the range of the 
receiver line is given uniquely by

(5-22)

This is also shown in Figure 5.9.
For a receiver line at a fixed distance from the object and a fixed number 

of receiver points this is a classical optimization problem. As the sampling 
interval is increased the length of the receiver line increases and more of the 
received wave’s high frequencies are measured. On the other hand increasing 
the sampling interval lowers the maximum frequency that can be measured 
before aliasing occurs.

The optimum value of T can be found by setting the cutoff frequencies for 
the Nyquist frequency equal to the highest received frequency due to the finite 
receiver length and then solving for the sampling interval. If this constraint is 
not met then some of the information that is passed by one process will be 
attenuated by the others. This results in
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3T k0y

evaluated at

and

T \/y2+x2

k — k°= X

MT

Solving for T2 the optimum value for T is given by

Making the substitution

a — XM

the optimum sampling interval is given by

_ %/64o2 + 1 + 1
8

(5.23)

(5.24)

(5.25)

(5.26)

(5.28)

This substitution is similar to the tan0 substitution that is made in the 
heuristic approach above. Also notice that the smallest positive value that the 
sampling interval can become is 1/2 wavelength. This corresponds to the 
Nyquist frequency for a propagating wave.

The optimum sampling interval is confirmed by simulations. Again, using 
the method described above for calculating the exact scattered fields, four 
simulations are shown of an object of radius 10 wavelengths using a receiver 
that is 100 wavelengths from the object. In each case the number of receiver 
positions is fixed at 64. The resulting reconstructions for a sampling interval of 
.5, 1, 1.5 and 2 wavelengths are shown in Figure 5.10. Equation (5.28) predicts 
an optimum sampling interval of 1.3 wavelengths and this is confirmed by the 
simulations. The best reconstruction occurs with a sampling interval between 1 
and 1.5 wavelengths.
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5.4.6 Limited Views
In many applications it is not possible to generate or receive plane waves 

from all directions. The effect of this it to leave holes where there is no
estimate of the Fourier transform of the object.

Since the ideal reconstruction algorithm produces an estimate of the 
Fourier transform of the object for all frequencies within a disk a limited 
number of views introduces a selective filter for areas where there is no data. 
As shown by Devaney [Dev84] for the VSP case a limited number of views 
degrades the reconstruction by low pass filtering the image in certain 
directions. Devaney’s results are reproduced in Figures 5.11 and 5.12.



Figure 5.11 These figures show the coverage in the frequency domain for 
six different receiver limitations (from [Dev84]).
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Figure 5.12 Images due to the limited field of views as shown in Figure
5.11 from [Dev84].
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CHAPTER 6
HIGHER ORDER APPROXIMATIONS 

TO THE SCATTERED FIELD

6.1 Introduction
Reconstruction algorithms based on the theory presented in Chapter 2 

generate severe artifacts for objects larger than a few wavelengths or a change 
in refractive index greater than a few percent. These reconstruction algorithms 
are limited by the first Born or the first Rytov approximations and thus any 
improvement in the reconstructions will be accomplished by modeling the 
scattered fields more accurately. With this more accurate model it will again 
be necessary to invert the equation to arrive at an estimate of the object.
•••'••.-.This section will describe iterative techniques that more accurately model 
the scattered fields. In addition to the theoretical derivations a number of 
simulations will be presented and the convergence of each series will be 
discussed.

Two approaches to more accurately compute the scattered field will be 
discussed here. Both approaches are iterative but they differ widely in their 
philosophy. The first approach, known as a fixed point method, assumes an 
initial guess that is a small perturbation from the correct solution. If the 
scattering integral is a ‘‘contracting” operator then this procedure converges to 
the correct answer. The second approach, based on a matrix formulation of 
the discrete Wave equation, refines an initial guess by projecting it onto 
hyperplanes. Since each projection reduces the error this method always 
converges. Unfortunately the matrix formulation is more expensive (requires 
more calculations) than the fixed point method by a factor of several hundred.
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6.2 The Singularity of the Green’s Function
In each of the procedures to be discussed in this chapter it is necessary to 

evaluate an integral of the form
/ f(F' JgO^-r' )d?' (6.1)

where gfr^f') is the Green’s function described in Chapter 2 or

_____ -N0(R)+jJ0(R)
g(M")=----------1---------- (8-2)

and R = j T-?' |. This integral in equation (6.1) would be straightforward 
except for the fact that N0(R) tends to oo as R goes to zero.

The effect of this singularity is further complicated since for computer 
simulation it is necessary to sample the function at discrete positions. If 
straightforward sampling is performed on such a function any small change in 
the location of the sampling grid would cause a large change in the sampled 
value at the origin.

Fortunately it is possible to derive an approximate value for the sample at 
the origin. The actual value at the origin is not so important but when the 
Green’s function is multiplied by the sampled kernel and integrated the result 
should be identical to a sampled version of the continuous integral.

Since all functions have been sampled they can be assumed to be 
reasonably smooth and the integral approximated

(6.3)
n

When t- is equal to Tj the area around the singularity is evaluated and the 
contribution of the Tj term of the summation should be equal to the original 
integral in a square region around the origin.

All functions are sampled with interval T, in both the x and the y 
directions, so the following equality is necessary

T. T
2 2

f(Tj)g(Tj^i) - / J f(F')g(]^#)dr'. (6.4)
_X_X

2 2

If ftf) is smooth enough then it can be considered a constant within the small 
region of the integral and brought out of the integral. The sample of the 
Green’s function is now written
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. T T ■
2 2

s(fj,Ti) = / / gtr-r" )<tr- (8.5)
T T 
2 2

While it is possible to evaluate this integral using approximations to the 
Bessel functions, a better solution is to evaluate the integral numerically. The 
approximate expansions for the Bessel functions are only valid for small values 
of R and are no longer accurate as the sampling interval, T, approaches a 
quarter of a wavelength.

A better solution is to numerically integrate this function by dividing the 
original TxT region into a NxN grid of points and summing up each of the 
samples. The samples of the real part of gfr^r*7) are shown in Figure 6.1 for a 
grid size of 4x4 and 16x16. As shown in this figure the point exactly at the 
origin can be ignored by offsetting the grid so that the singularity at the origin 
is never sampled. The effect of ignoring this undefined location can then be 
seen by examining the progression of average values as the number of samples 
in the T2 region near the origin is increased. These values are shown in Table

6.1 for a sampling interval of -j wavelengths. Notice that this is a Cauchy

sequence and converges to an average value for the Green’s function over the 
TxT region. It is this value that will be used as the value of the Green’s 
function at the origin in each of the computational procedures to be discussed 
in the remainder of this chapter.

6.3 Fixed Point Methods
The fixed point method is the most straightforward computational 

approach to solve an equation. In the remainder of this section it will be used 
to find a solution of both the Born integral and the Ricatti equation.

Consider a fixed point solution to the equation x - f(xj defined over the 
region x£[a,b]v Given an initial guess, x0 a better estimate of the solution, f, 
can be found by [StoSOj



Figure 6.1 The real part of the function ) is shown here sampled
on a 4x4 grid (top) and a 16x16 grid (bottom).



Table 6.1. Average value of the Green’s 

function over a -jX region sampled on an NxN grid

N G(°)
4 0.0925259 + jO 226659
8 0.0927197 + jO.225568
16 0.0927666 + j0.225296
32 0.0927782 + j0.225228
64 0.0927811 + jO.225211
128 0.0927818 + j0.225207
256 0.092782 + j0.225206
512 0.092782 + jO.225206
1024 0.092782 + jO 225206

or more generally
xi = f(xo) (B.8I

This is illustrated in Figure 6.2.

xi+i = f(xi)- ^ (6.7)

While this method doesn’t always converge, it is possible to show that it 
will converge to a unique solution if the absolute value of the function’s first 
derivative is always less than one. Mathematically this condition can be 
written

[f'fx)| <1 xe[a,b]. (6.8)
If this condition is true then it is also possible to show that f() is a contraction 
operator or

| f(xiH(x2)| <K| xrx2| x£[a,b] (6.9)

where K<1.

That these two conditions are equivalent is easy to show by considering 
two cases. First, assume that f() is a contracting operator. From the definition 
of the derivative



Figure 6.2
refined using the iteration x
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| r (x)| = lim
h—►()

f(x +h)—f(x)
l-x (6.10)

But from equation (6.9) this ratio and the derivative are less than K.
To show the converse or that

)f(x)|<l xel^bj (6.11)

implies a contracting operator first assume the opposite case 
| f(x2)-f(xi)| > | x2~Xjj. Without Ibss of generality assume x2 is greater than
Xj and write the following integral

*2 ■
I f(x2)-f(xi)| = Jf' (x)dx. K (6.12)

X1
There are two cases to consider. First assume that f(x2)-f(x1)>0 and write

x2
0<flx2) *f(x,) •“ JY(x)(l\. (6.13)

X1
But if f' (x)<K then this integral can be bounded from above by

*2
© < 1 = fp (x)dx < (x2-Xl)K. (6.14)

This contradicts the original assumption.

opposite case, f(x2)-f(x1) < 0,
*2

• f(xi)| — f(xi)—f(x2) - ~/P (x)dx. (615)

But if f(x)>-K then
*2

a > f(x2)-f(sci) =/('(xHx >-(x2-x,)k.
X1 '

For both cases, f(x i)>f(x2) and f(x2)>f(x j), the original assumption is 
contradicted therefore proving that if | P (x)| <K then the function is a 
contracting operator.

To study the convergence of the fixed point method to the correct 
solution, £, assume a value for x;. Then the error after the i +1 iteration is 
given by ■ ■



; ■ -1X7

Error = |xi + 1-£| = | . (6.17)

But since £ is a fixed point solution of the function f this expression for the 
error can be written

Error = | H+rt\ = | f(x|)-f(e)| • (6-18)

By the contraction property of Equation (6.9) this last term is bounded from 
above by .

|xi+i~f| - | f(xi)—f(C) | < K| xy—C| - (6.19)

Thus the error after the i + lth iteration will always be less than the error after 
i iterations. In addition since K is less than one the sequence j x-£j is 
bounded from above by the converging geometric series x0K* therefore the fixed 
point method converges to a correct answer.

That this solution is unique can be seen by assuming two solutions, ^ and 
£2, to the equation x=f(x). But these two solutions violate the contraction 
property since

U,-s>| =|fie.K(f2)| >k|f,-e2|. (8.20)

Thus if f() is a contracting operator then the fixed point solution will converge 
to the correct answer. /

6.3.1 The Born Series

Recall from (Chapter 2 the scattered field can be written

■ UgfF) = Jgff-r'HT'Juoff')df' + /g(^-7' )o(F' )us(F' )d?r. (6.21)

The first Born approximation, as already described, simply represents the first 
iteration of the fixed point method with the initial guess uJ°)—0. Thus the first 
iteration is written

hs01 ^ ub(?) = )o(?' )<*?'• (6-22)

If the kernel, g(T77')of?'), is a contractihg operator an even better estimate 
can be found by substituting u0(r)+ uB(f) for u0(f) in equation (6.22) to find

u^(f) - /gC^T'Jo^^Uo^'J+UB^^d?' . (6.23)

In general the i-th order Born field can be written

= fg(M")o(i")[Botr,)+»^(r')l<n"- (6-24)



An alternate representation is possible if the total field is written 

where !

u(i+i)C^) = (6.26)

By expanding equation (6.24) it is possible to see that the fixed point 
approximation for the scattered field, u^), is

^(7) = Euj(?) (6.27)
... . . ?■ i=o : -;V ■■■"

and in the limit

= uo(?)+ui(r) + u2(?)+u3(f) + • • - . (6.28)

This representation (6.28) has a more intuitive interpretation analogous to 
the Huygens principle. The Green’s function gives the scattered field due to a 
point scatterer and thus the integral of equation (6.24) can be interpreted as 
calculating the first order scattered field due to the field u;. For this reason the 
first order Born approximation represents the first order scattered field and uj 
represents the i’th order scattered field

A variation of the integral Born series presented here was first described 
and implemented by Azimi and Kak [Azi83]. In [Azi83] the scattered fields are 
calculated for an object that consists of multiple cylinders by considering the 
interactions of the scattered field with the other objects. Using the equations 
presented in Chapter 5 and [Wee64j and [Mor68] it is possible to calculate the 
exact scattered field from a cylindrical object illuminated with a plane wave. 
Unfortunately it is not possible to calculate the exact fields scattered by a pair
of cylinders using this approach because the field from one object interferes 
with the other.

Instead Azimi and Kak propose a multiple scattering approach where the 
incident field is first scattered against each cylinder and then the scattered 
fields from each cylinder are propagated to the other cylinder(s) where they are 
scattered again. This is illustrated in Figure 6.3 where the incident field is 
denoted by u0 and the field uijk denotes the field that has scattered off of object 
i, then object j and finally object k.

Since the field scattered by a cylinder is not a plane wave the key to this 
procedure is to calpulate the scattered fields along lines between the cylinders. 
The field along this line can then be decomposed into plane waves [G0068] and
each plane wave scattered separately by the cylinder.
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Figure 6.3 The incident field is scattered against each cylinder and the
resulting fields are propagated to other cylinder for 
additional scattering.
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While nothing is known about the convergence of this series its use in 
diffraction tomography is limited because it is only practical when the field 
scattered from each object can be computed exactly. Thus it has been used as 
a method to generate data for testing diffraction tomography algorithms.

Under both the Born and Rytov approximations an integral of the form

«i+i(f)' = (6.25)

is to be evaluated. A naive approach to this integral would be to evaluate it 
numerically but doing this requires on the order of N4 operations. Performing 
the integration over a 128 x 128 grid, for example, would require over 270 
million operations per iteration. This is clearly unreasonable.

The computational requirements can be greatly reduced by noting that the 
Green’s function, gf?-’?'), is only a function of the difference between the two 
points and that the integral can also be interpreted as a convolution. Thus 
representing the convolution in the frequency domain allows for an efficient 
implementation requiring only 6N2logN operations to do the integration. For a 
128 x 128 grid this is only 700 thousand operations or a reduction in the 
computational complexity by almost 400. This approach is efficient using an 
array processor and for an object sampled over a 64 x 64 grid this integral can 
be computed in under 2 seconds using a Floating Point Systems API20B array 
processor.

To evaluate the Born integral on a digital computer it is necessary to use a 
truncated and sampled version of the object function and the field. Truncating 
the two functions is error free because the object function is assumed to have 
finite support. In addition since only a finite number of receivers are present 
this further limits the number of data points that need to be calculated. On 
the other hand, since any function with finite support has infinite bandwidth it 
is not possible to sample the data without introducing errors. For smoothly 
varying data it is possible to approximate the data with discrete samples. In 
the work to follow the samples are taken over a rectangular grid using different 
sampling intervals, all less than a wavelength.

If the series u; decays to zero then the total field is given by a summation 
of each scattered field, or

OO
UsOO = X) «i(f) (6.29)

i = 1
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Two different studies were performed to verify this approach to solving the 
wave equation. Most importantly it was necessary to verify that the total 
scattered field converged to the same answer as predicted by an exact solution 
to the wave equation. In addition it was necessary to determine the region of 
convergence of the Born series. These issues will be discussed later in this 
chapter.

As mentioned before, the integral equation in (6.25) is efficiently evaluated 
by implementing the convolution in frequency domain. Recapitulating this 
discussion, the frequency domain implementation can be summarized as 

/follows,
First for all Xj and yk, the scattering potential, S, is calculated from the 

product of the “incident” field and the object,

S(xj,yk) ~ U^xpykJOtxpyk). . .. . (6.30)

Then by using two-dimensional FFT’s, determine the following two transforms

S(uj,wk) = T2 FFT (s(xj,yk)) (6.31)

Gi(uj,wk) = T2 FFT (G(xj,yk)) (6.32)

To find the Fourier transform of the scattered field form the following product 
in the frequency domain for all Uj and wk

Gi+i(uj,wk) — S(uj,wk) G(Uj,wk). (6.33)

The i + l’th scattered field is then found by inverting the above expression to 
find /'"■ ■ '

Ui+i(xj,yk) J- IFFT
^p2 •Vi+l(uj>wk) (6.34)

To properly calculate the integral using the FFT approach it is necessary 
to remember that the discrete multiplication implements a circular convolution. 
A circular convolution can be turned into an aperiodic convolution by zero 
padding the data [0pp75]. For example a Floating Point Systems (FPS) 
AP120B Array Processor with 65,536 words of main data memory can only deal 
with arrays up to 428 x 128 elements. This memory limitation and the need to 
implement an aperiodic convolution limits the evaluation of the field to a 64 x 
64 grid.
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The exact scattered field from a dielectric cylinder with : plane wave 
illumination is well known in the literature. This exact solution to the wave 
equation can be used to check the results of the Born iteration Figure 6.4 
shows a simulated experiment. In this experiment a plane wave is incident on 
a cylinder of radius 2\ and a refractive index of 1.1. The scattered field was 
calculated at 64 receiver positions along a line 7.75X from the center of the 
object.

Figure 6.5 show the exact scattered field along the receiver line In each 
of the plots that follow the real components of the field will be shown with a 
solid line, while the dotted lines represent the imaginary part of the field.

Figure 6.6 shows the result of iterating the Born integral. The first Born 
approximation (Figure 6.6a) gives a very poor estimate of the exact field since 
this estimate is based only on first order scattering.

In order to accurately calculate the scattered fields it is necessary to 
include the higher order scattered fields. This is shown in figure 6.6. Clearly in 
this case even the 30’th to lOO’th order scattered fields are significant to the 
total field.

By comparing figures 6.6 and 6.5 it can be seen that in this case the Born 
series converges to the exact scattered fields, This simple example shows the 
correctness of the Born iteration code.

The Born integral defines an infinite series of partial scattered fields that 
are summed to find the total scattered field. An important measure of any 
infinite series is its region of convergence. The region of Convergence defines a 
class of objects where the Born iteration converges to the exact scattered field. 
For an arbitrarily complex object the region of convergence is defined over an 
infinite dimensional space since an infinite number of parameters are needed to 
describe the object.

There are two trivial objects that can be analyzed analytically. First 
consider a pair of point scatterers separated by a distance of R located at 7j 
and ?2. If each scatter has an area (or volume) of a and the object function for 
each of these scatterers is equal to O then an approximation to the first order 
Born field at T2 due to the scatterer at Tj is

u/fo) as (tG(R)O (6.35)

Clearly there exists a value of O such that Uj1 will have a magnitude greater 
than the incident field. This field, Uj1,'.can then be scattered with the point 
scatterer at?2 and measure the field at?! to find
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Figure 6.4 An experiment used to illustrate the higher order Born series.
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Figure 6.5 Exact scattered field for the object shown in Figure 6.4. The
real component of the field is shown as a solid line while the 
imaginary component is dashed.
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2 iterations1 iteration

4 iterations3 iterations

The scattered field as calculated from the Born series using 
terms numbered from 1 to 100.

Figure 6.6
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20 iterations10 iterations

100 iterations30 iterations

.661631

Figure 6.6 Continued.
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U22fo) “ ^(R)01«i(52>] (6-36)

If the term crG(R)0 is greater than one then each succeeding term of the series 
U; will diverge. This analysis has ignored the effect of the other scatterer and 
the field at Tj caused by the scatterer at but this doesn’t change the basic 
conclusion, that the Born series can converge or diverge depending on the 
object.

This effect can also be analyzed in the frequency domain. By taking the 
Fourier transform of equation (6.25) the convolution with the Green’s function 
can be expressed as a multiplication in the spatial frequency domain. Equation 
(6.25) becomes [Sla83, Sla84]

ui+1(K) = g(R) 0(g)*-tJi(K) (6.37)

whererepresents convolution in the frequency domain.
If the object function is assumed to be constant for all space then 0(f£) 

becomes an impulse and equation (6.37) above becomes

■ Ui.+ 1(R) = OG(R)Ui(K). (6.38)

This is a simple result and it is easy to see that the series, U;, will diverge 
if there is any frequency where

G(K)0 >1. (6.39)

In this simulation study the region of convergence for a single 
homogeneous cylindrical object was examined. Since any cylinder can be 
completely described by its size and refractive index the region of convergence 
is defined over a two dimensional space. More complicated objects could be 
studied but the results would not be as graphical.

It has already been shown that for either small cylinders or small changes 
in the refractive index the first Born approximation provides a good estimate 
to the exact scattered field. This is equivalent to saying that the higher order 
scattered fields decay quickly towards zero. If is easy to see that under these 
two conditions the Born integral series will quickly converge to the exact 
solution. ■

The total energy in the two dimensional field is used as a simple measure 
of convergence. Obviously if the total energy in the i’th scattered field is 
decaying towards zero as the Born integral is iterated then the series is



converging. On the other hand if the total energy is increasing then the Born 
integral can not possibly converge.

For a given object radius the region of convergence is determined by 
conducting a binary search for the largest refractive index where the Born 
series converges. For each combination of object size and refractive index it is 
necessary to make a decision of convergence or divergence and adjust the 
refractive index accordingly.

The decision of convergence or divergence is made by studying the total 
energy in the partial scattered field as the iterations are performed. For this 
purpose a series is defined to be convergent if during each of four iterations the 
total energy in the partial scattered fields is monotonically decreasing. While if 
the energy is monotonically increasing then it is decided that the series 
diverges. As long as the last four terms are not monotonic than the iterations 
continue. The energy versus iteration number for the experiment of figure 6.4 
is shown in figure 6.7.

Figure 6.8 displays the region of convergence for sampling intervals of 
0.125X, 0.25X and 0.5X. Each plot shows the maximum refractive index as a 
function of cylinder radius. For all experiments with a refractive index below 
the line the Born series converges, while for all experiments above the line the 
series diverges.

In each case the shape of the curve agrees with the original observation; 
the Born series converges for either small objects or small changes in the 
refractive index. The dependence of the region of convergence on the sampling 
interval is still under study. One possible explanation is that the numerical 
errors are larger for the larger sampling intervals.

While more complicated objects can be simulated it is more difficult to 
present the region of convergence in a simple fashion. In general the region of 
convergence will be described over a multidimensional space but can be 
reduced to two dimensions be keeping some of the parameters fixed. Two 
simple families of object that can be reduced to a two dimensional space will be 
described next. In each case the results will be compared to the results for a 
cylindrical object.

A simple extension of the previous work for a single cylinder is to consider 
two cylinders separated by a small distance. Figure 6.9 shows the region of 
convergence for two orientations of the cylinders with respect to the incident 
field. In both cases two identical cylinders are separated by a distance of 1 X. 
Thus the region of convergence is reduced to two dimensions, the radius of the
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Figure 6.8 Region of convergence for the Born series using sampling
intervals of .125X, .25X and .5X.
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Figure 6.9 Born series region of convergence for two cylinders of radius
r separated by IX. The solid lines show the convergence for 
two orientations. The dashed line shows the convergence for 
a single cylinder of radius r.
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two cylinders and their refractive index. The solid lines in Figure 6.9 show the 
region of convergence for the two cylinders compared to that for a single 
cylinder (shown as a dashed line).

As would be expected the region of convergence for two cylinders is always 
smaller than that for a single cylinder. This is true since the convergence is 
plotted as a function of the radius of one of the cylinders and adding another 
cylinder increases the scattered field. As already described increasing the 
scattered field can only cause the Born series to converge more slowly.

Figures 6.10 and 6.11 show the region of convergence for a single ellipse 
with an eccentricity of 2 (length of major axis over minor axis is 2.) Since an 
ellipse can not be described by its radius the region of convergence is plotted as 
a function of the length of both the major and minor axis of the ellipse. The 
two figures differ only in the orientation of the ellipse with the incident field
arid in both cases the convergence for a single cylinder as a function of its
radius is plotted as'a dashed line.

The convergence of the Born series for an ellipse (solid lines) compared to 
a cylinder (dashed lines) is consistent with the idea that more scattering leads 
to the divergence of the Born series. The upper solid lines show the
convergence plotted as a function of the ellipse’s major axis and is above the
dashed lines for all lengths. This is because an ellipse with major axis of length 
2r has less area than a circle of radius r. Conversely the lowest line (solid) 
plots the convergence as a function of the ellipse’s minor axis and is always 
below the dashed lines. (Note that the two solid lines represent the same 
ellipse. The only difference is that region of convergence is plotted with respect 
to different parameters.)

Figure 6.12 shows the same data as the previous two figures but now the 
two orientations are superimposed. From this figure it is easy to see that the 
convergence of the Born series is sensitive to the orientation of the ellipse. 
When the major axis of the ellipse is parallel to the direction of the incident 
field the region of convergence is reduced. This is consistent with the 
limitation described in Chapter 2 that the phase change in the field as it travels 
through the object is a good indication of the validity of the Born 
approximation. When the major axis is aligned with the incident field the 
phase change is larger than when it is perpendicular to the field and thus the 
Born series is more likely to diverge.
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6.3.2 Born Series with Attenuation
While to this point only fields in non-attenuating media have been 

discussed it is easy to also talk about the Born series when attenuation is 
present. Now the refractive index and the wavenumber are no longer just real 
valued and include an imaginary component to represent the attenuation.

The relationship between the real and imaginary components of the 
wavenumber are easily seen by examining one solution to the homogeneous 
wave-equation

u0(?) = ejkoX (6.40)

where T = (x,y). If k0 is complex and equal to

kp = kr+jkt y (0.41)

then the real component will continue to represent the periodic component of 
the field. The imaginary component, k;, contributes a multiplicative term, 
e k**, that causes attenuation of the plane wave with increasing distance.

There are two approaches that can be used to deal with attenuation. In 
the simpler approach the average wavenumber, k0, is real and all of the 
attenuation is a perturbation from the average wavenumber. Thus the object 
function is complex and as will be shown shortly the region of convergence is 
reduced for large attenuations. In the second approach the attenuation is 
included in the average wavenumber thus reducing the magnitude of the object 
function. The only difference in the formulation is that the Green’s function 
changes but now increasing attenuation leads to a larger region of convergence,

When the attenuation of the object is treated as just a perturbation of the 
object function from the real valued wavenumber then the effect is to reduce 
the region of convergence. This is shown in Figure 6.13 where it can be seen 
that the magnitude of the object function, not just the refractive index, 
determines the convergence of the Born.

The work first done with the Born approximation assumed that the 
average refractive index was real valued only. Since the real part of the 
wavenumber represents the speed of the wave and the imaginary part its 
attenuation, any attenuation in the object is included in the unknown 
perturbation. The magnitude of the perturbation determines the applicability 
of the Born and Rytov series therefore a more accurate estimate of the average 
refractive index will lead to smaller perturbations and better results with first 
order diffraction tomography algorithms.
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Consider an experiment where an object and the surrounding media are 
both highly attenuating. This might be typical of a microwave tomography 
experiment where the attenuation of microwaves is predominately due to the 
water molecule.

In this case a small perturbation , model would be more accurate if' the 
average value of the wavenumber, k0, is assumed to include an imaginary 
component. Thus the real part continues to represent the spatial frequency of 
the wave while the imaginary part indicates the bulk attenuation of the wave 
as it travels through the media. ■ ■■'

An important part of this derivation is to remember that a field can be 
described in 'two ■ different manners; if you like, there are two sets of basis 
functions that can be used. A field that satisfies the Helmholtz equation is 
usually described in terms of plane waves. A plane wave is an exponential 
solution to the Helmholtz equation and for a plane field described by

u(?) = e^7 (6.42)

where

(kx,ky) (6.43)
then valid plane waves satisfy

kx2+ky2 - k02. (6.44)

k© in this equation represents the wavenumber of the media.
A problem with this approach is that both' kx and ky can be complex.- The 

complex valued wavevectors lead to evanescent waves which attenuate with 
distance. While for most applications the evanescent fields can be ignored 
(they tend to be small compared to the non attenuating components) the same ■ 
assumption can not. be made when calculating the field inside the object or 
when the object is in an attenuating media.

Consider an attenuating plane wave propagating in the x direction
u(f) = e^'r = e*kx = e^Q,+J/?)x q?>0 (6.45)

In this case a represents the phase term, while p represents the attenuation. 
For positive x this is an attenuating plane wave, but for negative x the wave 
grows exponentially. Thus it is normally necessary to specify that the wave is 
zero for x<0.

Due to the non symmetry of attenuating plane waves and the efficiency of 
Fast Fourier Transform algorithm, a much more natural set of basis functions is 
provided by the Fourier domain. In this approach the field is'represented as a
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sum of Fourier components. If the field does not have any evanescent 
components the Fourier and the plane wave representations are identical.

The distinction becomes important when attenuating fields are considered. 
Mathematically the two approaches are equally valid but while an attenuating 
plane wave has a single component in the plane wave representation it has an 
infinite number of Fourier components. The difference is further illuminated if 
an attenuating plane wave is propagating through a homogeneous media. This 
field is represented as a single plane wave that satisfies the wave equation but 
its Fourier representation has an infinite number of components. While each of 
its Fourier components do not satisfy the wave equation they do represent a set 
of basis functions for describing linear operators. For this reason the Fourier 
approach is optimum for propagation problems [G0068] and convolution 
integrals..

Again, like was done for the non attenuating Born, Figure 0.14 shows the 
components of the Born integral for a complex wavenumber. The major 
differences are that the incident field becomes an attenuating plane wave and 
the attenuating Green’s function is more straightforward to calculate since it 
no longer has a singularity in the frequency domain.

The incident field

11(f)- x>0 (6.46)

is a, complex (2 dimensional) function and its Fourier transform can be found 
by considering it as a multiplication of a complex sinusoid by a one sided 
exponential. The following one dimensional Fourier pairs are used:

ejwot ■** 2 w8(ur-uQ) (6.47)

and ■

‘-0 ~ <»•«>

Multiplication in the space domain corresponds to convolution in the frequency
domain so the Fourier transform of an attenuating sinusoid is written

V , 2 7T
j(af-a;0)+& ’ (6.49)

In two dimensions the Fourier transform of the incident field is written

u»(K)
#(ky)2?r

j(kx-a)-f c* (6.50)
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Object Incident Field

Green’s Function

Scattered Field

Figure 6.14 The Fourier transform of several steps in the derivation of 
the scattered field in an attenuating media.



where the wavevector of the incident field is given by H ~ (a,ft). This is shown 
in Figure 6'14(Incident Field).

The Green’s function for complex values of k0 is even simpler than the 
non-attenuating case. By taking the Fourier transform of the wave equation 
with a delta forcing function it is easy to see that

141

G(l) (6.51)

Since | A| 2 is real and ko is complex there are no singularities in this function. 
The Fourier transform of the Green’s function is still circularly symmetric and 
is shown in Figure 6.14(Green’s Function).

The Fourier transform of the two dimensional scattered field can be 
written now as

U,(K) - G(K) [ U0(R) * 0(E) ]. (6.52)

The convolution of the incident field and the object is a shifted and a 
smeared version of the Fourier transform of the object. The convolution can 
be considered in two parts. The smearing caused by the width of the incident 
field in the spatial frequency domain Can be ignored since it just redistributes 
some of the energy of the object function’s Fourier transform. The remaining 
component, the shift in the frequency domain, is identical to the non 
attenuating Born case.

As derived above, the Green’s function for an attenuating media does not 
have a ring of Singularities and therefore samples a semi-circular region of the 
modified object function. This is shown in Figure 6.14(Scattered Field).

This procedure naturally leads to the Born series for objects with bulk 
attenuation. Figure 6.15 shows a composite graph of the region of convergence 
for a number of different attenuating media between 0 and 1 nepers per 
wavelength. It is interesting to note that the region of convergence gets larger 
as the attenuation increases. This is due to the reduction in multiple scattering 
because to the attenuating term in each wave. Thus for an average 
attenuation of 1 neper per wavelength (the amplitude of the field drops by 3dB 
per wavelength) the Born series converges for all objects with a refractive 
index less than 20%. In addition the convergence of the Born is less sensitive 
to the size of the object since the waves are attenuated before they travel the 
complete distance of the object.





143

6.3.3 Rytov Series
The implementation of the Rytov series is much like that of the Born. 

Thus from Chapter 2 the Rytov integral for the scattering phase is written

-tt/'tXH') [Vii'1tr')-v^1tr')+ofr')J «„(■") dr. 
UoOTv

(6.53)

A fixed point solution to this equation is possible if a guess for ^{°1 is used in 
the right side of this equation and a new value for the scattered phase, is 
computed. If the kernel of equation (6.53) is a contracting operator then 
will be a better estimate of the scattered phase. This iteration step can be 
carried out as often as desired until the change in the scattered phase is small.

The computer implementation of the Rytov series is more difficult than 
the Born due to the derivatives inside the integral. In the Born approximation 
it is possible to decompose the series and think of the entire iteration as 
rhodeling higher order scattering. On the other hand in the Rytov integral the 

) )] term is a non-linear function of the scattered phase and thus
it is not possible to consider each term separately.

The computer implementation of the Rytov series is made especially 
difficult since the scattered potential does not have finite support as it does in 
the Born series. Recall, in the Born series the scattering potential is a function 
of the product of the scattered field and the object function and the 
convolution integral need be evaluated only where the object function is non
zero Thus carrying out the Born integration over a finite region does not 
introduce any errors.

This is not the case with the Rytov integral since the scattering potential 
is now given by the expression

)]u0(?). (6.54)

In general, the scattered phase, is not equal to zero so limiting the 
integration to a finite region will always introduce errors.

Since the derivative is a linear operator it can be implemented as a 
convolution integral. Unfortunately, as will be shown shortly, the structure of 
the problem is such that the most accurate method, based on FFT’s, is not 
workable.

When using an FFT to implement a convolution integral it is necessary to 
zero pad the Original data so that the FFT represents an aperiodic convolution. 
While this technique works very well for most signals it has disastrous 
consequences when calculating the derivative of the field. Since the field never
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goes completely to zero there is always a sharp transition between the field and 
the start of the zero padding. This transition leads to a large value of the 
derivative at this point and eventually to large errors in the scattered field,

The standard procedure for dealing with this problem is to use a window 
to smooth out the transition. This solution is not viable here since the problem 
is to calculate the scattered phase at the outer edge of the grid, exactly where 
the effect of the window is greatest. Thus even though the kernel for the 
derivative operator is very compact the long tails lead to errors with an FFT 
based implementation.

A better solution is to approximate the derivative operator with a two 
point kernel and make appropriate adjustments at the edges of the grid. A 
third order polynomial is fit to the three points (—tjy—j), (0,y0) and (t,ys) with 
the function [Sto80]

f(x)
y-ix(x-t) | y0(x~t)(x + t) ■ yt(x+t)x

2t2 -t2 at2.
(6.55)

The first derivative of this polynomial is found to be

x=0

yry-i
2t

(6.56)

At the edge of the grid all three values of the field are not available and so a 
second order polynomial is fit to the two points and the derivative becomes

f'(x)
y<ry-i (6.57)

x=0
or

m
x=0

_ yryo
t

(6.58)

These operators are straightforward and allow the V2 operator to be computed 
quickly in the time domain.

The convergence of the Rytov series is much like that of the Born. That 
the Rytov series converges to the correct answer is shown in Figures 6.16 and 
6.17. Figure 6.16 shows the exact scattered field from a 2X cylinder with a 
refractive index of 1.13. The field was measured at a receiver line 7.75X from 
the center of the cylinder and sampled every 1/4X. Finally Figure 6.17 shows
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The exact scattered field from a 2X cylinder with a refractive 
index of 1.13 is shown here. The real part of the field is 
shown as a solid line while the imaginary component is 
represented as a dashed line.

Figure 6.16
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1 iteration 2 iterations

1.072212.88709
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4 iterations3 iterations
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Twenty iterations of the Rytov series are shown 
demonstrating the convergence of the Rytov series to the 
field shown in Figure 6.16.

Figure 6.17
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Figure 6.17 Continued.
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that the Rytov series does converge to the exact solution for the scattered field.
The region of convergence of the Rytov series is compared to that of the 

Born in Figure 6.18. A number of works [Kel69,, San70, Man70 and Wes84] 
have discussed this issue but it is not clear from the theoretical work which 
series is superior. These numerical implementations of the Born and Rytov 
series show the Rytov to converge for a large range of objects than the Born 
does. This is especially surprising considering the different domains of validity 
of the Born and Rytov approximations.

The difference between the Born and Rytov series is highlighted in Figures 
6.19 and 6.20. These two figures show the convergence of the Rytov series for 
an object made up of two cylinders and an elliptical object. While in the Bom 
approximation the orientation of the object changed the convergence of the 
series the same is not true for the Rytov series. The convergence results for 
the Rytov series are identical for either orientation (G and 90 degrees).

The behayior of the Rytov series with an attenuating object is shown in 
Figure 6.21. Like the Born series the Rytov series is relatively insensitive to 
attenuation in the object until the attenuation becomes large enough. The 
attenuation at which the convergence of the Rytov series falls to zero is 
dependent on the radius of the cylinder.

If the object and the media have an average attenuation then the Rytov 
series will converge more easily. This is shown in Figure 6.22. Using an 
attenuating Green’s function reduces the field at distances far from the object 
and thus makes it easier for the Rytov series to converge.

6.4 Matrix Formulation
An alternative to the fixed point methods like the Born and the Rytov 

was shown by Kaczmarz [Kac37], applied to the forward scattering problem by 
Richmond [Ric65] and extended to inverse scattering by Johnson [Joh83, Tra83 
and Joh84]. The Kaczmarz algorithm has found widespread use in 
tomographic imaging based on ray tracing. Its use for this type of problem and 
a discussion of several possible optimizations and tricks is discussed in [Her73, 
IIer76 and Her80]. While the Born and the Rytov series use discrete math to 
implement a continuous solution to the Helmholtz equation, a different 
approach is possible if the field and the object are first discretized. The 
Helmholtz equation now becomes a matrix equation and with appropriate 
manipulations can be put in the form
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Figure 6.18 The convergence of the Born ahd the Rytov series are 
compared. The upper line represents the Rytov series.
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Figure 6.19 The region of convergence of the Rytov series for two 
cylinders. The experiment here is identical to that shown in 
Figure 6,9 but the results are independent of orientation.
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Figure 6.20 The region of convergence of the Rytov series for an ellipse.
The upper solid line is plotted as a function of the major axis 
while the lower solid line is a function of the minor axis. 
The solid line represents the convergence for a single 
cylinder. -
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Rytou Conuergence

Figure 6.21 The convergence of the Rytov series is shown as a function
of the cylinders radius and attenuation. The attenuation of 
the object is shown in nepers.



Figure 6.22
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The convergenceof the Rytov series is shown as a function 
of the cylinder radius and the average attenuation of the 
media. The attenuation is shown innepers.



’ .(8.59)

where x is the continuous field, A is a function of the object and the Green’s 
function and b represents the effects of the incident field.

The Kaczmarz algorithm is used to solve this matrix equation because it 
operates on only one row of the matrix at a time. This property is important 
due to the large size of the matrix involved (as many as 4000 equations and 
unknowns.) The Kaczmarz algorithm belongs to a class of operators known as 
Row Action Methods and is described by Tanabe [Tan7l] and by Censor 
[CenSlJ.

Most work with large matrices assumes that a significant fraction of the 
matrbc is zero. Thus it is only necessary to store the location and the value of 
the non zero elements and then it is possible to use sparse matrix techniques to 
solve the equation (see, for example, Chapter 3 of [Hey85].) Since every element 
of the Green’s matrix is non zero it is not possible to use these techniques and 
instead .the Kaczmarz approach allows the calculation of a solution using 
modest amounts of computer memory.

As will be shown later the Kaczmarz algorithm always converges to a 
proper solution of the discrete equation Ax = b. If the discrete representation 
of thp field, the object and the Creep's function accurately model the true 
functions then the Kaczmarz solution will satisfy the Helmholtz equation.

An exact solution to the wave equation is given by the integral equation

=f ' )I ; (660)

By sampling faster than the Myquist rate, each of the terms in the above 
equation can be discretized without errors as

us’J = us(iT,jT) (6.61)

u^=u0(iT,jT) (6.62)

o!-j = o(iT,jT) (6.63)

y/. (6.64)

The discrete version of the Helmholtz equation can now be written
. f QO 00 '

«S,J = E E °k’' [ uok,! + usk’1 ] g,“k’j_1 (6.65)
k = ~oo 1 — ~oo

Again, as in the implementation of the Born and Rytov series, assume that the 
object has finite support. Since the object multiplies each term in the



summation the summation need be carried out only for those values of k and 1 
where ok>1 is non-zero. Thus without loss of generality the object will be 
assumed to exist oUly for l<i<N and l<j<N and all summations will be 
assumed to go from 1 to N.

The forward process will be described first. To do this rearrange the 
discrete version of the wave equation to find

^ u‘-i - J3E °kl ^ (6.66)
■ k I . ■ ■ k 1 . ' ■

EE = EE I - °W 1 »S J (6.67)
k 1 k 1

where the Kroenker delta, is defined as

3>,J

1 for i=k and j=i
0 elsewhere (6.68)

To put this in standard matrix form represent each field as a one- 
dimensidhal vector as follows

Y - vo,o Y0,i ... Yo,N-i „ 1,0 Yi,i . . . V1,N-1 
^0 “ |x0 v?0 > >x0 ) x0 ) x0 ) >xo > •••) (6.69)

kl
0,0 Yo,i y0,N-1 v1,0 v1,1

, A. , A. ,
. 1,N-1 (6.70)

. yn-i,o . ;■yn-i,n-i

where []T represents vector transpose. An N2xN2 matrix, A, can now be 
defined that represents the effects of all summations. Since the object and the 
Green’s function are both known they can be combined into a single matrix 
and the discrete version of the wave equation can be written

. M = b -V (6.7X)

where the terms of the A matrix are given by
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A

J—o0,0g0,0 -o^g0’"1
_o0,0g0,l 1—O0,1g0’0
-o0-°g0-2 -o^g0’1
—O0,0g0>3 -oO-y-2

_0N-l,N-lg-N + 1,-N +1 

_0N-l,N-lg-N + 1,-N + 2 

_0N-l,N-lg-N + l,-N+3 

_0N-l,N-lg-N + l,-N + 4 (6.72)

o0,0gN- l,N-2 —o0,lgN-l,N-3 , . . _oN-l,N-lg0,-l

.o0,0gN-l,N-l _o0,lgN-l,N-2 . . . i-QN-l.N-l-OiO

The field, x, is a one dimensional matrix with N2 elements and the constant 
vector b is given by

b = Ax0 (6.73)

At first glance this equation (6.71) represents an especially simple form for 
the scattered field; that is until the size of the vectors are considered. For a 
small 64x64 reconstruction the b and x vectors have 4096 complex elements 
and the A matrix is a square 4096x4096 matrix with more than 16 million 
complex elements. Inverting a matrix of this size would require over 32 Mega- 
words of memory or more than that which exists on all but a handful of 
processors today.

There are two tricks to solving this problem. The first of which is to 
realize that it is not necessary to find the inverse of the A matrix but only to 
find a vector field, x, which satisfies the discrete wave equation. Secondly by 
using a row action method such as that proposed by Kaczmarz and Johnson et 
ail, it is no longer necessary to store the entire A matrix in memory. Thus it is 
possible to solve the system of equations storing only 4N2 equations at a time. 
For a 64x64 field this represents only 16000 elements so the storage 
requirements are reduced by a factor of lOOO.

As described in [Ros82], the Kaczmarz method finds a vector x that 
satisfies the equation Ax=b by considering each row of the matrix A to 
represent a separate equation. Thus the matrix

A
all a12 a13

&2l &23 (6.74)

a31 a32 a33

can be considered to be three equations of the form



bi = + a12x2 + a13x3
b2 = a^Xj + &22x2 + M&z (6-75)
t>3 = a31xl + a32x2 + a33x3
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In terms of an n-dimensional space each of these equations represents a single 
hyperplane and the intersection of all V planes describes a single solution 
point x.

The Kaczmarz algorithm iteratively refines an initial guess by projecting 
the point onto each hyper-plane in sequence. The process of computing the 
projection onto the hyperplane also represents finding the point on the 
hyperplane closest to the original guess. As will be shown later this new x will 
always lie closer to the new solution vector than the original guess.

If the i’th row of the A-matrix is denoted as aj and < , > represents the 
dot product then a better solution to the equation Ax1-b is given by

xj + i = jj <ai,xJ> - b;
^ aj, aj ^

a; (6.76)

This operation is illustrated in Figure 6.23.
Simple geometrical arguments should convince the reader that this 

equation, (6 75) will always produce a better estimate of the solution vector x. 
For a two dimensional case this situation is illustrated in Figure 6.24. In this 
example a point, Xi, on the line CD will first be projected onto the line AB or a 
solution of the equation

; an^i "b ai2x2 ~ bi-' (6.77)

For any point on the line CD, the point x2 On the line AB is always a better 
estimate of the solution then the original point. Thus the Kaczmarz algorithm 
always converges. The distance between two points Xj and Xj + 1 will be defined 
in the normal Euclidean sense or

Distance2 = <xJ-xi+1,xj-xj+1>. (6.78)

Since the solution vector, x, lies along the line AB an initial estimate xJ can 
always be improved by projecting the point onto the line. The point xJ + 1 is 
closer to the solution than all other points on the line CD so this always 
represents a better estimate. Since all points on the line CD project to the 
point xi + 1 this procedure always reduces the error. Thus it is easy to see that 
the error is monotonicly decreasing and in addition will always converge to 
zero. (For now the cases where the system is either over determined or 
underdetermmed are ignored. Both of these cases represent systems of



j + 1 /

Figure 6.23 An initial estimate for the solution, xJ, is refined by finding 
the closest point on the line, +
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Figure 6.24 The point x2 is a better estimate of the solution point then 
any other point on the line DC.
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equations that don’t necessarily have a unique solution )
The speed of convergence is proportional to the independence of the rows 

of the A matrix. Figure 6.25 shows the convergence for two widely separated 
cases. In Figure 6.25a the two hyperplanes are perpendicular and the 
Kaczmarz algorithm converges to the solution in one iteration, no matter what 
the starting point is. (One iteration is defined as projecting the x vector onto 
each of the hyperplanes.) On the other hand in Figure 6.25b the hyperplanes 
are nearly parallel and it will take Kaczmarz algorithm many iterations to 
converge to the correct solution.

Since the Kaczmarz method only works with a single row of the A matrix 
at a time it is possible to make a space-time tradeoff. The form of the A 
matrix is simple enough that it is relatively inexpensive to recompute each row 
of the matrix as it is needed. While on many computer systems it is possible 
to precompute the A matrix and store it on disk, getting the data back off can 
be time consuming. For the computers accessible at Purdue (Floating Point 
Systems AP120B and Control Data Corporation Cyber 205) it is more cost 
effective to recompute the A matrix as needed. This approach has made the 
problem solvable for more than trivial sized matrices.

For an implementation of the forward scattering problem on a CDC Cyber 
205 super computer calculating one row of the A matrix requires 98,000 
floating point operations (64x64 grid). Since calculating the projection requires 
57,000 floating point operations this implementation takes 2.7 times longer 
than the ideal (all values of the A matrix available immediately.) On the other 
hand retrieving the data off disk, either explicitly or using virtual memory, 
could take 100 times longer than the ideal situation*. Thus for this system of 
equations the tradeoff is easy to make. With a Cyber 205 one iteration of the 
Kaczmarz algorithm takes 233 million floating point operations and can be 
computed in 1 second of CPU time. This represents a real cost of 21$ per 
iteration as charged at the standard rate by the Purdue University Computer 
Center.

To make the implementation of the Kaczmarz algorithm as fast as possible 
several quantities are precomputed and stored for quick access. The x and y 
coordinates of each grid point do not change during the course of the problem

Theoretically it should be possible to organize the data on the disk in a sequential 
fashion and overlap execution time with IO time. With high enough bandwidth the total 
execution time should be nearly equal to the ideal situation. Unfortunately, most operat- 
ing systems are not this cooperative.
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The orthogonality of the hyperplanes determines the rate of 
convergence. If the hyperplanes are perpendicular then the 
solution will be reached in only one iteration (a) while it will 
take much longer if the hyperplanes are nearly parallel (b).

Figure 6,25
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and thus it is possible to store these in main memory and not recalculate them. 
In addition the Green’s function is circularly symmetric and thus a function of 
only the radial distance. By precomputing the values of the Green’s function 
along a single radial it is possible to use bilinear interpolation to quickly 
compute the Green’s function for each grid point given the radial distance and 
the values along the radial.

The algorithm for one iteration of the Kaczmarz algorithm can be written 
'as'

For each equation (representing the scattered field at a single 
point)

Compute the Green’s Function
• Subtract a vector representing the x position of each 

grid point from the current equation.
• Subtract a vector representing the y position of each 

grid point from the current equation.
• Square each distance and add
• Find square root and multiply by scaling factor to find 

the argument of the Green’s function

> Use bilinear interpolation to find the Green’s function 
at every point.

Find the A matrix
• Multiply the Green’s function and the object
• Subtract from the identity matrix (<5;j)
Project x3 onto the hyperplane.

An additional complication in this approach is caused by the use of 
complex numbers. While the dot product operation is defined for complex 
vectors better results are obtained if each complex equation is considered to be 
two real valued equations. This simple change reduces the error by a factor of 
100 or more but does increase the number of equations for a 64x64 image from 
4096 to 8192. While the number of unknowns remains the same (4096 complex 
values or 8192 real values) there are now two projections that are needed for 
each row. Fortunately the number of operations remains the same.

The implementation of this algorithm was tested by comparing the results 
of the exact solution for a small cylinder. Using the incident field as the first 
“guess” for the solution several iterations were calculated and the real part of 
the solution is shown in Figure 6.26. This compares favorably with the exact
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computed by the Kaczmarz approach (solid line) and the

Figure 6.26
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solution shown as a dashed line. In this example and the work to follow one 
iteration is defined as projecting a vector, x°, onto each of the N2 hyperplanes.'

The speed at which this algorithm converges to the correct answer is 
shown in Figure 6.27. Here the real part of the field for a section of space near 
the origin is shown before iterating (the incident field is the initial guess) and 
then after one, two and three iterations. This result is especially encouraging 
because the first iteration has changed so rapidly towards the correct answer.

Ramakrishnam [Ram79] proposed that faster convergence of a projection 
algorithm could be obtained by using pair wise orthogonalization. As already 
described, the Kaczmarz approach will converge in one step when all the 
equations are orthogonal and as the hyperplanes become more parallel it will 
take longer for the method to converge.

Certainly the best way to speed up convergence is to first orthogonalize 
the system of equations. Then it would be possible to solve the system of 
equations in a single iteration. Unfortunately the work required to 
orthogonalize the system is identical to that needed to find the inverse of the 
matrix. In addition it then would be necessary to compute and store all the 
elements of the matrix. I)ue to the large size of the matrix this is not practical.

Ramakrishnam proposed that pair wise or thogon aliz at ion be used to make 
each hyperplane perpendicular to the previous hyperplane. With this approach 
the equation for the field at each point is made orthogonal to the preceding one 
using the relation

and

Ai = Ar ■A:_
<Ai,Ai-1>

<Ai-1,Ai_1>
(6.79)

brbi-l
<Ai,Ai_1>

<Ai_1,A;_j>
(6.80)

Here the new orthogonalized system of equations are denoted with the matrix 
A and the vector b, A; is one row of the A matrix and b; is the corresponding 
element of the b vector.

While this approach is not optimum it does have the advantage that at 
each step storage for only one extra row of the A matrix is needed. 
Ramakrishnam showed for a simple restoration problem that pair wise 
orthogonalization reduced the number of iteration needed to obtain a given
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Real Part of Scattered Field 
Radius = 3X, Refractive Index = 1.01

Incident Field 1 Iteration

1,00000

.333333

-.333333

-1.00000

a lterations 3 Iterations

Figure 6.27 Three iterations of the Kaczmarz algorithm are shown to 
demonstrate the convergence of the approach to a single 
answer.
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mean squared error by a factor of two. Since the orthogonalization is done 
with several dot products the reduction in iterations more than balances the 
extra work.

An alternative approach is rearrange the order of the equations to reduce 
their interdependency. This idea was first published by Hounsfield in the 
original patent for CT imaging [Hou72]. It seems reasonable that the 
hyperplanes describing the field at adjacent points (less than a quarter 
wavelength apart) would be nearly parallel. When the solution vector is first 
projected onto one plane then projecting onto a second parallel hyperplane will 
not significantly improve the answer. Thus convergence will be faster if the 
parallel hyperplane is saved till later in the iteration sequence.

This idea is illustrated in Figure 6.28 for a two dimensional case with four 
hyperplanes. In each case the order projections are considered is indicated as 
the hyperplane number at the end of the line. First in Figure 6.28a the two 
sets of parallel planes are considered separately while in Figure 6.28b the two 
sets are interleaved. It is easy to see that the first ordering will take twice as 
many iterations as the second.

To calculate the scattered field using the Kaczmarz algorithm a system of 
equations is set up that represents the field at each point as a function of the 
refractive index distribution. For ease of programming the x Vector, the field 
at each point in the grid, is organized so that adjacent elements in the vector 
represent the field at adjacent points in the grid. Thus if the hyperplanes are 
considered in order there will be a high degree of correlation between the 
equations and convergence will be slow.

The degree of independence of two equations can be found by finding the 
angle between the two hyperplanes. If two equations contain nearly the same 
information then the angle between their respective hyperplanes will be zero 
while if the two equations are independent there will be an angle of 90 degrees. 
From standard vector theory the angle between two hyperplanes is defined as

cos0 =
<Aj,Aj>

\Z(<Aj,Aj> <Aj,Aj»

where A; and Aj represent the rows of the A matrix or the normal vector to the 
two hyperplanes.

The order equations are considered is a function of a parameter called 8% 
that represents the change in equation number. For each iteration of a N x N 
grid the parameter i steps from 0 to N2-l and is mapped into an equation 
number, j, by the relation



The order equations are considered can affect the rate of 
convergence. If the two sets of parallel lines are considered 
separately (a) then the convergence is twice as slow as it 
would be if they are interleaved '(b).

Figure 6.28
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j ~ (i*^F,) mod N2. (6.82)

With the proper choice of the equation number j will step through all N2 
equations.

The table below 6.2 shows the average and maximum cosine of the angle 
for a range of refractive indices between 1.01 and 1.5. A system of 1024 
equations is used to define the scattered field over a 32 x 32 grid. Thus when 
the parameter % is 1 adjacent equations are compared while the equations are 
as far apart as possible when is set to 513.

Table 6.2. The average and maximum 
cosine of the angle between hyperplanes is shown as a function 

of the refractive index and the number of equations skipped.

Refractive
Index

% Average
COS0

Maximum
COS0

1.01 1 .000592 .010902
513 .000125 .001338

1.1 1 .019414 .1682
513 .001981 .013842

1.2 1 .064287 .377699
513 .005448 .025288

1.5 1 .238268 .623253 -
513 .022828 .06990

From the information in this table two points are apparent. First, as the 
refractive index is increased both the average and the maximum cosine of the 
angle increases. For small refractive indices the A matrix is dominated by the 
diagonal terms and thus each equation is nearly independent of the others. 
This also explains why the Kaczmarz algorithm converges much faster for 
small refractive indices.

Secondly, equations describing the field at widely spaced points have a 
large angle between their respective hyperplanes. As can be seen from the 
above table by comparing equations that are widely separated the average and 
the maximum cosine of the angle are reduced by a factor of 10. Thus even
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with a refractive index as great as 1.5 the minimum angle between hyperplanes 
is increased to 86 degrees by skipping a large number of equations.

The advantages gained by considering non adjacent equations is confirmed 
by considering the convergence of the algorithm. For the system of equations 
defined by Ax = b the residue is given by

Residue = <Ai,x>-b. (6.83)

The residue measures the distance between the solution vector x and the 
■'hyperplane described by A; and the total residue is defined as the sum of the 
squares of the residues from each row of A. This figure can then be used as a 
measure of quality of the solution.

The total residue when calculating the scattered field from a cylinder of 
radius IX and refractive index 1.1 is shown in Figure 6.29. The study was done 
for 16 iterations and compares the total residue when the equations are 
considered in order (<SE is 1) and when the equations are widely separated (&E is 
513). To reach any given total residue, iterating the solution by considering 
adjacent equations takes twice as long to converge as when the equations are 
widely separated.

Considering widely separated points gives the same benefits as pair wise 
orthogonalization (convergence is twice as fast) but without the extra work. In 
addition when the equations are widely separated the planes are nearly 
perpendicular and thus there is little to be gained by pair wise 
orthogonalization.

It is also possible to study the effect of projecting the field in a non 
sequential fashion by considering the field after one iteration. Figure 6.30 
shows the exact (dashed line) and the Kaczmarz field (solid line) from a 
cylinder of radius IX. The cylinder has a refractive index of 1.01 and the 
Kaczmarz iteration is carried out over a. 32 x 32 grid. In addition, to 
emphasize the difference made by changes in 8E, the initial guess, x0, for the 
field was the incident field.

While at first glance all of the Kaczmar^z fields are very poor 
approximations to the exact field it is important to note that after one more 
iteration all of them have converged to the correct answer. Thus the only 
effect of altering the order of the equations is to change the rate of 
convergence.

The reason for the difference in one iteration of the Kaczmarz is best seen 
by comparing the field when 8E is one and 1023. Recall that skipping 1023 
equations in a system of 1024 equations projects adjacent equations, like the
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11.9656

5.98280 -

4.98710 -

1.49570 - Se = 513

0.00000 -

Iteration Number

Figure 6.29 The residue remaining after the first 16 iterations of the
Kaczmarz algorithm are shown as a function of the number 
of equations skipped (<5e).
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Figure 6 30 The field after one iteration is shown as a function of the
number of equations skipped.
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Figure 6.30 Continued.
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original case with %=1, but instead the equations are treated in reverse order.
Since the diagonal elements of the A matrix dominate the matrix with a 

refractive index of 1.01 each projection only modifies the field at one point in 
the grid. Thus with = 1 the field is calculated in the same direction as the 
incident field travels, from negative to positive y. This means that the field 
inside the cylinder has been calculated before the field is calculated at the 
receiver line. On the other hand when the equations are projected with 

= 1023 the field at the receiver line is calculated before the field has been 
adjusted for the scattering inside the cylinder.

Unlike the fixed point algorithms (Born and Rytov series) the Kaczmarz 
algorithm should always converge to the correct scattered field. The speed the 
series converges is related to the average orthogonality of the defining equations 
and as shown in Table 6.2 the equations become more dependent as the 
object’s refractive index increases. Thus the Kaczmarz algorithm converges 
more slowly for objects with large refractive index.

Two other factors determine the rate of convergence of the Kaczmarz 
series. As shown in Figure 6.29 the order the equations are considered changes 
the rate of convergence of the series. For this reason most of the simulations 
shown in this work were done using a equal to N2/2 + 1 where the size of the 
grid is NxN. While it hasn’t been investigated, even better performance could 
possibly be obtained by alternating different values for

Finally quantization and sampling errors slow the rate of convergence. 
This is shown in Figure 6.31 for a sampling interval of .IX and .25X. In both 
cases the radius of the cylinder is equal to eight times the sampling interval 
and the calculations were performed over a 32x32 grid. The plots show the 
real (solid line) and imaginary (dashed line) components of the scattered field as 
calculated by the Kaczmarz algorithm and an exact algorithm based on the 
Bessel function expansions described in [Wee64 and Mor68].

Each of the plots in Fig;ure 6.31 shows the scattered field after 32 
iterations. While the exact limits of the Kaczmarz algorithm are difficult to 
define it is possible to say that the Kaczmarz algorithm has converged for 
refractive indices up to 1.4 with a sampling interval of .IX and up to 1.2 with a 
sampling interval of .25X. Calculating the scattered field from objects with 
larger refractive indices might be possible but will need more accurate 
implementations.

All the results shown here were sampled using rectangular basis functions. 
While according to the sampling theorem a rectangular set of basis functions
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The exact scattered field and the result of 32 iterations of 
the Kaczmarz algorithm are compared here. In each case the 
real component of the field is shown as a solid line while the
imaginary component is shown as a dashed line.

Figure 6.31
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Refractive Index = 1.20

Figure 6.31 Continued.
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can represent the original continuous function without errors more accurate 
integrations might be possible using sine functions [Joh83, Ste81], This idea 
has not been explored here.
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CHAPTER 7
HIGHER ORDER RECONSTRUCTION ALGORITHMS

7.1 Introduction
Reconstructions based on the theory in the first five chapters of this work 

are based on first order approximations to the scattered field. In other words 
for both the Born and the Rytov approximations it is necessary to assume that 
the field inside the object is equal to the incident field and then it is possible to 
derive a simple (linear) expression for the scattered field as a function of the 
object. Finding a better estimate for the field inside the object is the central 
problem in improving diffraction reconstructions

The reconstruction problem is more difficult than the forward problem 
discussed in Chapter 6 because now both the object and the field inside the 
object are,unknown. This means that is is necessary to design a procedure that 
simultaneously estimates both the object and the field inside the object. This 
procedure is made more difficult because the reconstruction is formed by 
illuminating the object by a number of different fields and the exact field inside 
the object must be calculated for each view.

Three approaches to the inverse problem will be described here. Most 
general and therefore computationally most expensive is to write a system of 
equations that describes both the field and the object and then find the 
solution vector that gives the smallest error. Unfortunately the system of 
equations is non-linear and some sort of search procedure must be used to find 
the best solution. This approach to the problem was first discussed by Johnson 
et al[ioh83].

Computationally less demanding solutions to the problem are based on 
iterative algorithms. A perturbutional approach much like that used to 
generate the Born or the Rytov series was first proposed by Jost and Kahn 
[Jos52] and later extended by Moses [Mos56] and Prosser [Pro69, Pro76], This 
approach was first developed for quantum scattering problems but is equally 
valid for the electromagnetic and acoustic wave equations.
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A hybrid approach to the problem was first proposed by Johnson [Joh83] 
and is a two step iteration procedure. It is based on the idea that is is only 
necessary to calculate the object since for any given object and incident field it 
is possible to calculate the exact field inside the object. Thus the 
reconstruction procedure first estimates the object’s refractive index 
distribution and then an estimate of the field inside the object can be 
calculated using any one of the procedures described in Chapter 6. The key to 
this procedure is then to calculate a better estimate of the object given a better 
estimate of the actual field inside the object. This approach will be described 
in section 7.4 as an example of a fixed point iteration.

7.2 Non Linear Approach
The most general approach to estimate the object given the scattered field 

is to define a solution space that includes both the refractive index of the 
object and the exact field inside the object for each of the views. Both the 
non-linear equations and the number of unknowns combine to make this a 
difficult problem. The non-linear nature of the problem means that a search 
procedure must be used to find the best solution and unlike fixed point or 
perturbation methods it is not possible to say a priori how fast the search will 
reduce the error dr whether it will ever converge.

The unknowns in this problem are defined over an NxN grid and consist 
of the object and the exact scattered field from views. If the number of 
views, is on the satne order as N then there are a total of N3 unknowns and 
thus at least N3 defining equations are needed for a well behaved solution 
[Sar81].

For each view NM measurements of the scattered field are taken and this 
defines equations of the form

, = )0(^> (7.1)

where uM^ is the measured scattered field for a view at angle <J> and position7. 
Both ut^(r), the total field inside the object for the view at angle <f>, and o(f), 
the object’s refractive index, are unknown. Since the unknowns are calculated 
over a discrete Nx N grid the integral above becomes a summation or

T2Eu,,*(!"i)o(F'i)gtM"i), (7.2)

Unfortunately the measured points only contribute N^NM equations 
therefore there are moi*e unknowns than equations by a factor of approximately 
N (again assuming that and NM are on the same order as N). The
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additional equations are defined by noting that the field inside the object must 
also satisfy the Helmholtz equation. There are N^N2 equations of the form

(73)

or in discrete form

•• •••. <?.*)

Thus the combination of equations (7.2) and (7.4) define a total of 
N*Nm+N^N2 equations which must be solved for both ut ^f?) and o(f).

The difficulty caused by the large number of unknowns is compounded by 
the non linearity in the equations. In both equations (7.2) and (7.4) the 
product of the two unknowns, the field and the object, is convolved with the 
Green’s function and this product means that the Kaczmarz algorithm as used 
in Chapter 6 is no longer applicable.

The usual approach to solve a system of non-linear equations is to define 
the error as a function of the difference between the left and right side of the 
equations. An optimum solution is then formed by a search procedure that 
looks for a minimum in the error function. One implementation of this 
algorithm reported by Tracy et al [Tra83] took 7 hours of computer time on a 
small minicomputer to find the object over an 11x11 grid. Calculating the 
object over a larger grid (at least 128x128 is probably needed for medical 
imaging) would be prohibitively expensive.

7.3 Perturbation Algorithms
As already described in Chapter 6 perturbation algorithms are an 

important technique for solving the scattering problem. This technique was 
first used to solve the inverse scattering equation by lost and Kahn and the 
general techniques are described in more detail in the books by Nayfeh [Nay73, 
Nay81]. A discrete version of the work by Jost and Kahn was first reported by 
Devaney in [Dev82].

A perturbational expansion of the forward scattering problem is found by 
letting the object function be written in terms of a small perturbation 
parameter c or

o(f) = 6X(t) ^ (7.5)

and the total field written as a polynomial in terms of the same perturbation 
parameter or
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Now both the object and the field are expressed as a function of the free 
variable e. At first glance the problem is made more difficult by the addition of 
the extra perturbation parameter but by gathering together the powers of e the 
problem can be easily solved.

The equation for the total field

u(f) = uinc(r^ + .Juj?1 jo^jgCfHr'Jdf' (7.7)

is now written as a function of e or
GO " OO . '

P-8>
, ■ ' I — o 1=0

Rearranging this equation as a polynomial function of e both the scattered field 
and the object satisfy an equation of the form

o = K(f)-“inJ + (7-®)

In order for this equation to be valid each coefficient of e in the series 
expahsion must be identically equal to zero. This requirement is all that is 
necessary to solve the more general problem for Uj as a function of the 
perturbation parameter s, but in the scattering problem only the solution for 
€ = 1 is interesting. Therefore by setting the coefficient of each power of c equal 
to zero and then setting the value of e equal to one the following equations 
result

«0 - »int ’ ; P-10)

u,m - /uu<r' )\tr* (7.11)

and in general

Uilr) = /«, ^r-IXIT'IstrT'Mr- i>l. (7.12)

This is the same system of equations defined as the Born series in Chapter 6 
therefore the same conditions define the region of convergence for this
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perturbation solution. This method of analysis was also applied to the 
scattering problem by Keller [Kel69] and by Oristaglio [Ori85].

The forward scattering problem represents a relatively simple example of 
the perturbation method. The inverse problem is solved by assuming that the 
Born series converges and writing the total scattered field as

=/uot?'M?' )g(7-7')^' + (713)

Jf u0(f' )o(F' )g(f'' -7' )df' o(7'1 )g(f—f'' )d?'1 +

J//u0(f' )o(?' )g(f''-T' )df'o(f'' )g(f'"-7" )df''

o(?'")g(?-T'")dF"' + •••.

Now replace the scattered field by

U8(?) = ei/>(f) (7.14)

and express the object as a polynomial in e or
CO

o(?) = E
i = 0

(7.15)

The scattered field is now written

ei/> = f u0(7' )X)eloi(?' )df' + (7.16)

/ / »o(i" IE<ioit>” W' -t' W ' IgpM”' W' +
1 j

///uo(i” W' ~T' W ')«?'W'
i j

5]€kok(F",)g(^-T,,,)df,M + ••• 
k

where S; is used to denote scattering by object Uj.
This expression can be simplified by defining an integral operator S that 

maps an incident field into the field scattered by the object. If an incident 
field, u0(r), is scattered by an object, o(f), then the scattering operator is 
defined by the following integral

us(f) = S(u0) <-► fu0(7l' )o(7’ )g(f-7' )df‘'. (7.17)

Now the Born series in equation (7.13) can be written



njf) = S(u0) + S2(u0) + S3(u0) + * • * (7.18)

where .
SK) = sfsi-'luo)). (7.19)

Using this notation (7,16) can be written

'V = + (7.20)
i

VV.i.iSjISiluo!) I
i j

, EEEAVSktSjlSiW)) + • • • •
■ i t

This expression can be simplified even further by denoting the iterated kernel 
Sj(Sj(u0)) by the expression S:;(u0). Now the Born series is written

# =. E^i(u0) + (7.21)
i

EE<i<isji(“ol) +

• EEE^^SkjiW)* + • • • •
> j k

Notice that the first summation above represents first order scattering from a 
number of different objects while the second set of summations represents all 
possible second order scatterings from the same ensemble of objects.

A series solution for the object function is found by gathering together the 
coefficients of like powers of e. This gives the following polynomial in €

<VfT) = '^i(uo) + ,21s:(i1o)+sii("o)) + (7.22)
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£’(S3(Uo)+S21(u0)+S12(u0)+S11,(u0)]+• -

Just as was done in deriving the Born series each power of c is 
independent and therefore the following equalities can be written

= S,(u0) (7.23)

^2(uo) = ~sn(uo) (7.24)
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S3(uo) — S21(u0) S12(u0) Sm(u0) (7.25)

and in general

Si(u0) = - E Sili2...in(u0) n>2. (7.26)
ii + i2+ • • • +i„ = i

Consider first the equation for The solution for the object functions is 
only interesting when 6=1 therefore ^=us and the first equality above can be 
written

us(?) = /uofr'jo^r'jgO^-r'jdf'. (7.27)

This equation represents the measured scattered field as the first order 
scattered field from the object cq and by the Fourier Diffraction Theorem this 
equation can be solved exactly for Oj. Because the object is illuminated with 
the incident field this is true for all experiments, regardless of the size of the 
object and its refractive index. This contrasts with first order diffraction 
tomography where the object is modulated by the total field and thus the 
Fourier Diffraction Tomography is only valid when the total field can be 
approximated by the incident field.

While equation (7.23) only expresses the scattered field from one view of 
the object it is possible to combine the scattered field from a number of 
different views and then use the first order reconstruction algorithm described 
in Chapter 4. Thus the result of the first order reconstruction algorithms 
described in Chapter 4 and 5 is exactly equal to Oj.

The second order object is slightly more difficult to compute. From 
equation (7.23) the first order scattering from the second order object is given 
by

S2(u0) =-S„(u0). (7.28)

The expression Sn(u0) represents the second order scattering from the first 
order object and is easily calculated because Oi has already been computed. 
The higher order terms follow in a similar fashion except a number of partial 
scattered fields are summed to find the first order scattered field from Oj.

The procedure used to calculate the higher order object is slightly different 
from that of the first order object because of the location of the receiver line. 
The first order object is a function of the scattered field and the placement of 
the receiver line is limited by experimental constraints. On the other hand the 
higher order fields are defined on a rectangular grid since an FFT based 
implementation of the Born integral is the most efficient procedure. Thus for
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the higher order terms the field are calculated over the entire grid and then 
only the field along one side of the grid is used as input to the reconstruction 
procedure.

In summary the algorithm for reconstructing the object using the higher 
order Born series is

• Use the measured fields and the first order Born reconstruction 
algorithm to compute Oj.

• For each i>l do the following.

• Calculate the higher order scattered field from each of the 
already computed objects (See equation (7.26)).

• Use the first order inversion algorithm to invert S; and find Oj.

• Sum up each of the Oj to get the object reconstruction.

Notice that this algorithm is “exact.” Except fqr the numerical approximations 
needed for the reconstruction procedure there are no mathematical 
approximations to limit the quality of the reconstruction.

The most expensive part of this algorithm is not doing the reconstructions 
but instead in computing the higher order scattered field, Siv While it is easy 
to implement a fast algorithm to compute each partial field in Sj the total 
number of integrals increases rapidly with each Succeeding iteration. Table 71 
shows the number of partial fields and the total number of integrals needed for 
each of the first twenty iterations. Since each integral takes a constant amount 
of CPU time, no matter how it is implemented, the practical limit of this 
algorithm with today’s computers is certainly under ten iterations.

The convergence of this series is dependent on the convergence of both the 
forward Born series shown in equation (7.13) and the object series shown in 
equation (7.15). Thus ifi either series is divergent then this reconstruction 
procedure will also diverge and produce an undefined answer.

The convergence of the forward series was discussed in Chapter 6. This, 
for example, showed that for an object of radius 2\ the scattered fields could 
be calculated using the Born series only for objects with a refractive index of 
less than about 11%. This puts a severe limitation on the type of objects that 
can be reconstructed with the higher order Born series. For objects that do fall 
within the allowable range the reconstruction with the higher order Born series 
should be quantitatively more accurate than that done with a first order 
algorithm.



Table 7.1. The number of. partial field 
terms and integrals needed to calculate each 

iteration of the inverse higher order Born series.

Iteration Terms Integrals
i 0 0
2 1 2
3 3 . : 7
4 7 19
5 15 47
6 31 in
7 63 255
8 127 575
9 255 1279

10 511 2815
11 1023 6143
12 2047 13311
13 4095 28671
14 8191 61439
15 16383 131071
16 32767 278527
17 65535 589823
18 131071 1245183
19 262143 2621439
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The seriousness of this limitation is further seen by recalling that the 
higher order Born series only converges when the first order field closely 
approximates the total scattered field. This is the same condition that 
determines the accuracy of the first order reconstruction algorithms so the 
ultimate improvement is; limited by the quality of first order reconstructions. 
Thus it will not be possible to image any object with a larger refractive index 
or radius than those in Figure 7.1 using an algorithm based on the Born series.

The convergence of ithe object series has yet to be determined. Jost and 
Kahn in [Jos52] report the convergence of the higher order Born inversion 
procedure for two quantum mechanical scattering experiments.

While the above derivation of the perturbation approach has expanded the 
object as a perturbation about zero it is also possible to consider the object to 
be a small perturbation of a known object. This generalization is known as the 
Distorted Wave Born Approximation (DWBA) and is described in [Tay83, 
New6S, Dev83and Bey85]. This procedure is made more difficult because the 
Green’s function used in the integral now represents the scattered field from a 
point source with the effect of the known object included. The convergence of 
this procedure is not known.

7.4 Fixed Point Algorithms
A third untested approach to solve the inverse diffraction problem is to use 

a fixed point algorithm. While the overall algorithm is relatively 
straightforward it is necessary to perform a first order reconstruction of the 
object when illuminated by an arbitrary field. This is much more difficult than 
the first order reconstruction algorithms based on plane wave illumination 
described in Chapter 4. (The synthetic aperture approach does use point 
sources, but since a different phase is added to the scattered field for each 
transmitter position a plane wave is synthesized.)

A fixed point algorithm for calculating the object that scattered a 
measured field is based on the equation

o = f(o) (7.29)

where o is the desired object function. Within the limits of convergence of the 
series^ ah initial guess o^ can be improved upon by iterating the equation

Oj ~ f(Oj_i). (7.30)

The exact form of the iteration function, f, can take a number of different 
forms, Given only the scattered fields then either the Born or the Rytov
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Born Convergence (t=0.25)
1.27594 -I
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1.03449
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Figure 7.1 First order reconstructions of four objects at the limit of the
Born series are shown here. Objects with a reconstruction 
worse then these can not be improved by an inversion 
procedure based on the Born series because the Born series 
will not converge.
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Figure 7.1 Continued
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approximation can be used to make an initial guess for the object. Both of 
these approximations assume that the field inside the object can be 
approximated by the incident field and this is the major source of error in the 
first order reconstruction procedures.

It seems reasonable that a better estimate of the object function could be 
found if the field inside the object is known. While it is not possible to know 
this without knowing the object first, a good estimate of the field should be 
possible given an estimate of the object. If the initial estimate of the object is 
“good enough” then a calculation of the scattered field given this estimate of 
the object should be more accurate then just using the incident field.

Using this new estimate for the field inside the object a better estimate of 
the object function should be possible. The general iteration formula can now 
be written

oj = Reconstruct(Estimate Fieldfoj^)) (7.31)

Here the function labeled “Estimate Field” consists of estimating the total 
fields inside the object Oj_j and the function labeled “Reconstruct consists of 
estimating the object given the total field in the object. The first iteration is 
the simplest since the estimate of the total field in the object is simply the 
incident field. Higher order iterations are made even more difficult since it is 
necessary to estimate the fields inside the object for each of the views.

Any number of means can be used to implement the two different steps in 
the algorithm. Estimating the field inside the object can be done with any of 
(he procedures described in Chapter 6, including the Born and Rytov series or 
the algebraic approach. The procedure to use would depend on whether the 
object falls in the algorithm’s region of convergence and on the efficiency of the 
algorithm with the available hardware.

Inverting the total fields to get an estimate for the object is the most 
difficult part of the algorithm. The Fourier Diffraction Theorem only applies to 
objects illuminated with a plane wave so a more general approach is needed. 
One solution to this problem was proposed by Vezzetti and Ales [Vez79]. Their 
work still assumes plane waves inside the object but now the field inside the 
object is modified by the average refractive index. With this approach they do 
show an improvement in the quality of the reconstruction but it is doubtful 
whether this approach would be accurate enough for a fixed point algorithm.

A complete solution for the object given an arbitrary set of illuminating 
fields would undoubtably be based on a least squared approach. While there 
are enough equations, given the field everywhere, to determine the object the
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system of equations would be very unstable because the Green’s function only 
samples one arc of the Scattering potential’s Fourier transform. This means 
that if the field is known over an NxN grid and it is desired to calculate the 
object over the same grid then there would be a total of N2N^ equations 
defining the N2 unknowns. Thus the system of equations to determine the 
object is overdetermined and any error in the field estimates will lead to an 
inconsistent set of equations. A least squared approach could then be used to 
find the solution vector that best satisfies the defining equations.

The convergence of this method is unknown. Like the fixed point 
methods discussed in Chapter 6 it is necessary for the “derivative” of the 
function be less than one in some region for the algorithm to converge. It 
probably isn’t unreasonable to assume that this method will only converge 
when the first order estimate of the object is “good.”/
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CHAPTERS
CONCLUSIONS

A number of ideas are new to this work. While they have served to answer 
a number of questions about diffraction tomography there remains much work 
to be done. This chapter, therefore, reviews the state of the art of diffraction 
tomography as presented by this work and indicates directions for future 
research.

Chapter 2 reviewed the wave equation and its integral solution. While 
this material is well known among people doing research in diffraction 
tomography and inverse scattering its presentation here emphasized the 
common mathematical problems in acoustic and electromagnetic scattering. 
For this reason all distances were expressed in wavelengths and the object 
function represented the (complex) refractive index variation of an 
inhomogeneity for either acoustic or electromagnetic waves. Researchers more 
concerned with experimental work will want to use the relationships presented 
in Chapter 2 to convert the results presented in the remainder of this work to 
more physical quantities.

Finally Chapter 2 also presented two approximations, the Born and the 
Bytov, which allow linearized versions of the wave equation to be written. 
These two first order perturbational approximations are important because 
they allow simple inversion algorithms to be derived. Since these 
approximations are so critical to first order diffraction tomography the
mathematical limitations of each approximation are also discussed

The Fourier Diffraction Theorem relates the scattered field measured on a 
line to the Fourier transform of the object and is presented in Chapter 3. This 
theorem is only true when either the Born or the Rytov approximation is valid 
but it has generated much excitement in the research community.

The Fourier Diffraction Theorem was derived by two different methods in 
this work. Both approaches to the Fourier Diffraction Theorem lead to the 
same relationship between the scattered field and the object’s Fourier 
transform. The conventional approach is to decompose the Green’s function,
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the field scattered by a point scatterer, into plane waves and simply substitute 
this result into the integral solution to the wave equation. A second, new 
approach, is to consider the Fourier Diffraction Theorem entirely in the Fourier 
domain. This method points toward a more natural computer implementation 
and was exploited in Chapter 6 for computing better approximations to the 
scattered field.

The remainder of Chapter 3 discussed experimental methods for collecting 
enough scattered data so that a unique estimate for the object can be formed. 
The potential methods described include using a plane wave to illuminate the 
object, synthesizing plane waves much like what is done in phase array antenna 
design and broadband (in time) incident fields.

Chapter 4 discussed two mathematical algorithms for inverting the 
scattered data to estimate the object’s (complex) refractive index. Much like 
conventional (straight ray) tomography there are two approaches that can be 
used to invert the scattered data. These two algorithms, often described as 
.interpolation, in the space domain and frequency domain, were presented here 
and their algorithmic complexity was discussed.

In addition several signal processing concerns were examined in Chapter 4. 
By calculating the Mean Squared Error between the object and the 
reconstruction it was concluded that zero padding each projection is a good 
Way to reduce the interpolation error in the frequency domain. On the other 
hand, using; a Hamming window to shape the projection and reduce the effect 
of the finite aperture severely attenuates the high frequency information in the 
projection and increases the error.

The limitations of first order diffraction tomography were discussed in 
Chapter 5. Two types of errors limit the quality of the reconstruction: 
mathematical limitations caused by the approximations used to derive the 
Fourier Diffraction Theorem and experimental limitations caused by the ability 
to only collect a finite amount of data. The mathematical limitations are the 
most severe. In deriving the Born and the Rytov approximations it was 
necessary to assume that the scattered fields were small compared to incident 
fields. This is equivalent to Saying that the object must be weakly scattering 
for the first order diffraction tomography algorithms to hold and if this 
condition isn’t met then the reconstruction will have serious artifacts.

The limits of first order diffraction tomography are easily described in 
terms of the magnitudes of the scattered fields but a more meaningful measure 
is to study the range of objects where the approximations are valid. This was 
done in Chapter 5 by calculating the exact scattered fields from a large number
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of cylinders and then making an estimate of the object assuming that the first 
order diffraction tomography algorithms are valid. Thus it was concluded that 
the Born approximation is valid when the product of the diameter of the 
cylinder (in wavelengths) and the absolute value of the refractive index change 
is less than 0.5. On the other hand the size of the object is not as critical to 
the Rytov approximation. Instead the refractive index change is the limiting 
factor and reconstructions based on the Rytov approximation are good as long 
as the refractive index of the object is less than a few percent.

The experimental limitations, on the other hand, can always be minimized 
by collecting more data. Thus it is clear that interpolation error can always be 
reduced by increasing the number of projections or the number of samples per 
projection. Another, less obvious, limitation is the finite aperture of the 
projection. Unlike conventional (straight ray) tomography where the projection 
of a finite sized object has a finite length, the same is not true for scattered 
fields. With diffraction tomography the scattered field never goes to zero and 
the sampling interval for the projection must be carefully balanced to prevent 
aliasing but yet large enough to measure the high frequency information far 
from the center of the projection. An expression for this relationship was 
derived in Chapter 5 and several reconstructions were presented with different 
sampling intervals to confirm the optimum sampling interval.

The limitations of first order reconstruction algorithms were addressed in 
Chapters 6 and 7. The most severe limitation is caused by the first order 
perturbation models assumed iri deriving the Fourier Diffraction Theorem. 
Thus Chapter 6 discussed several approaches to more accurately model the 
scattered fields. With one of these more accurate models it should then be 
possible to invert the relationship and derive a better reconstruction algorithm. 
A survey of several possible approaches to inverting the scattered data is 
presented in Chapter 7.

Since better reconstructions will be based on more accurate models of the 
field inside the object two approaches to more accurately model the, scattered 
field were presented in Chapter 6. The most severe limitation of first order 
algorithms is the assumption that the field inside the object is approximately 
equal to the incident field. Thus when this condition is not valid the Born and 
the Rytov approximations are no longer valid.

The simplest technique is to assume that the perturbational model used to 
derive the Fourier Diffraction Theorem is approximately correct and simply 
include more of the higher order terms. The result is a series of terms much
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like a Taylor series. This is an iterative procedure and was applied to both the 
Born and the Rytov approximations.

An important measure of any series is a description of its region of 
convergence. In this case the region of convergence is a function of the entire 
object and the results presented in Chapter 6 were simplified by considering the 
convergence as a function of size and refractive index of simple objects. Thus 
the region of convergence can be described by two parameters and all objects 
outside this region (because they are larger or have a greater refractive index 
change) will cause the series to diverge.

The series described in Chapter 6 were calculated by sampling the object 
and the fields and then using an efficient algorithm based on Fourier 
transforms. In each case the scattered field was calculated by multiplying a 
function of the object by a field and then convolving this “scattering potential” 
with the Green’s function; The convolution represents the most expensive part 
of the algorithm and can be efficiently calculated using FFT’s.

The convergence properties of the Born and the Rytov series were 
determined by a binary search procedure. Thus for a given size the refractive 
index of the object was varied till a point was found were the series converged 
for all refractive indices that were smaller and diverged if the refractive index 
was larger than this point. Ely varying the size of the object it was possible to 
show a region of convergence as a function of both object size and refractive 
index.

The simulations of the Born series showed it to converge only when the 
first iteration is an accurate estimate of the field inside the object. Thus the 
phase change of the field as it travels through the object is a good indication of 
not only the quality of a first order Born reconstruction but also describes the 
region of convergence of the Born series.

The convergence of the Rytpv series is more surprising. For all cases 
studied the Rytov series’ region of convergence includes the region of 
convergence for the Born. This is especially surprising since the first order 
Born and Rytov approximations have different regions of validity

In addition Chapter 6 also presented a study of the effects of attenuation 
on both the Born and the Rytov series. A key part of this work is the idea 
that attenuating plane waves can be described either in terms of a solution to 
the wave equation or in the Fourier domain. In a non-attenuating media the 
two approaches are identical since plane wave solutions to the wave equation 
are also Fourier waves.
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Considering an attenuating plane wave in the Fourier domain makes it 
possible to calculate the higher order Born and Rytov series for attenuating 
media. While the algorithms remain the same there is a significant difference 
in its convergence properties. Since the energy in the field is attenuated as it 
travels away from the scattering site the region of convergence for-both the 
Born and the Rytov series is increased as the attenuation of the media is 
increased. Thus the attenuation of the media balances the extra field caused 
by a larger scattering potential.

A second approach to calculating the scattered fields from a known object 
was also discussed in Chapter 6. By sampling the object and the fields a set of 
discrete equations can be written that relate the field and the object. Without 
using any approximations it is then possible to express the field as the solution 
of a linear matrix equation.

While the form of the matrix equation is simple, the large amount of data 
makes this problem difficult to compute directly with today’s computers. 
Instead it was necessary to use an iterative technique known as the Kaczmarz 
approach to solve the matrix. While the iterative technique used can be shown 
theoretically to always converge, numerical errors limit the range of objects to 
those that have a refractive index change of less than 20-40%.

The rate of convergence of this method is only a function of the 
orthogonality of the defining equations. Thus when the object has a small 
refractive index the defining equations are nearly orthogonal and the Kaczmarz 
approach quickly converges to the correct field. On the other hand as the 
refractive index is increased the hyperplanes defined by the equations become 
nearly parallel and convergence is much slower. Since the Kaczmarz approach 
treats each equation for the field separately faster convergence is often possible 
by sequencing the equations so that each equation is nearly parallel to the one 
before it.

Finally Chapter 7 presented a survey of several techniques for 
reconstructing an object without using first order approximations. The most 
difficult part of this problem is that it now necessary to actually compute the 
field inside the object. In first order diffraction tomography the field inside the 
object is assumed to be a plane wave but this can’t be true with higher order 
approximations. Since it is necessary to illuminate the object from a number 
of different directions to perform the reconstruction a calculation of the field is 
necessary for each view. The large number of equations makes this a difficult 
and expensive process.
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A straightforward approach is to write a system of equations that 
describes both the field inside the object and the refractive index of the object. 
It should then be possible to solve this system of equations for both the field 
and the object. Unfortunately it is a non-linear system of equations because 
the defining equations are a function of the product of the two unknowns. For 
this reason it is necessary to use some type of search procedure to solve for 
both the fields and the object.

A second approach, first used in high energy physics and described in 
Chapter 7, is to do a perturbation expansion for the object. This is similar to 
the Born and the Rytov series described in Chapter 6 but now the object is 
assumed to consist of a series of components.

The convergence of this approach es a function of two series. Since this 
approach is based on a Born series expansion for the scattered field it is only 
valid when the field inside the object can be described as a converging Born 
series. As seen in Chapter 6 this is a rather severe limitation. In addition the 
object is expressed as a separate series expansion and for this approach to 
converge it is necessary for both the Born series and the object series to 
converge.

Finally a third approach, described in Chapter 7, is to make a first order 
estimate for the object and then use this object to calculate a better estimate 
for the field inside the object. Like the Born and the Rytov series described in 
Chapter 6 this is a fixed point algorithm. This approach is made even more 
difficult than first order reconstruction algorithms since it is necessary to 
Calculate an estimate of the object given an arbitrary illuminating field. Since 
each projection is no longer independent the Fourier Diffraction Theorem is not 
valid and a reconstruction procedure will need to look at all the scattered data 
simultaneously. This can be easily done using a matrix formulation but there 
is a severe performance penalty.

The convergence properties of this particular series is not known although 
it is probably reasonable to assume that the region of convergence will be a 
function of the quality of the first order estimate of the field. If using the first 
order estimate of the field is not better than the original assumption to use the 
incident field then certainly the series will diverge. This condition represents a 
severe limitation for the technique.

Future work on this problem could continue in several areas. The 
perturbational approach has a limited range of convergence but for objects that 
fall within this range a better quantitative estimate of the object should be 
possible than that which is possible using first order algorithms. The same is
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also true for the fixed point approach but more work is needed to determine 
the range of convergence.

Certainly the only guaranteed approach to solve the inverse scattering 
problem is to find a solution to a non-linear set of equations. There are a 
number of algorithms that can be used but the large number of equations (a 
128x128 reconstruction has over 2 million unknowns and equations) makes this 
a very difficult problem.
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