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ABSTRACT

This work reviews the theory and limits of first order diffraction tomogra-
phy and studies iterative techniques that can be used to improve the quality of
tomographic imaging with diffracting sources. Conventional (straight-ray)
tomographic algorithms are not valid when used with acoustic or microwave
energy. Thus more sophisticated algorithms are needed. ’

First order diffraction tomography uses a linearized version of the wave
equation and gives an especially simple reconstruction algorithm. This work
reviews first order approximations to the scattered field and studies the quality
of the reconstructions when the assumptions behind these approximations are
violated. It will be shown that the Born approximation is valid when the phase
change across the object is less than 7 and the Rytov approximation is valid
- when the refractive index changes by less than two or three percent.

, Better reconstructions will be based on higher order approximations to the
scattered field. This work describes two fixed point algorithms (the Born and
the Rytov approximations) and an algebraic approach to more accurately cal-
culate the scattered fields. The limits of each of these approaches is discussed
and simulated results are shown.

Finally a review of higher order inversion techniques is presented. Each of
these techniques is reviewed and some of their limitations are discussed.



CHAPTER 1
INTRODUCTION

, The ‘word tomography comes from the Greek words tomo meanrng
sectlonal and graphy, meaning representation. Thus a tomographlc image is a
cross ‘sectional image of an object. As the term is used today tomography k
refers to a procedure to collect data about the internal structure of an obJect '
and then mathematrcally generate an image of some otherwise hldden property '
. of the ob_]ect

Drﬁ’ractlon on the other hand, describes the spreadlng of acoustrc and
electromagnetrc waves as they propagate through space and around objects. “
While conventlonal tomography :uses x-rays to generate an image of the
ob_]ects x-ray attenuation other sources of energy can also be used. Thus
~diffraction tomography uses diffracting energy sources to illuminate the obJect ‘
and then" generates a cross sectional image of the object. Since ultrasound and |
’mrcrowaves diffract and refract as they pass through most objects they require
more sophrstlcated algorithms then the ones used for x-ray tomography. These
new algorrthms for diffraction tomography are the subject of this work

“Tomography first became practical only a few years ago with the invention
of the CAT (Computer Assisted Tomography) scanner [Hou72]. Hounsfield
implemented a machine that illuminated an object with x-rays and measured
~ the proportion of energy that passed through the object. Then by inverting a
large system of equations he was able to generate an accurate estimate of the
spatial variation of x-ray attenuation in the object.

The ability to generate a tomographic image of an object has
revolutionized the medical field. For the first time it was possible to get a clear
‘image of the internal morphologyv of a patient without the use of surgery.
_'Now x-ray CAT scanners are routinely built with resolutions of less than a

millimeter and 1mages with more than 512x512 plxels [Kak85, Her80, Ma083
Bar81] | ’ :

| While medical CAT scanners often generate an image of an object’s x-ray
~ attenuation there are limitations to this procedure. Foremost is the fact that



“not all types of soft tissue are differentiated by their x-ray attenuation. Thus

x-ray CAT scans have wide use for orthopedic medicine but are of limited use,
for example, in diagnosing malignant vs. benign tumors. In addition x-rays are
-an ionizing radiation and thus there is a small chance of cancer with each use.
This prevents, for example the use of x-ray CAT scanners for mass screening
of female patients for breast cancer. ' ' ‘

X-ray tomography is based on the Fourier Slice Theorem.. Cons1der the
experiment shown on the left side of Figure 1.1. Here a projection is shown
that répresents the attenuation of the object along each of the indicated lines.
The Fourier Slice Theorem states that the Fourier transform of the projection
is equal to the values of the two dimensional Fourier transform of the object.
along a radial line. An estimate of the object can then be formed by measuring
projections at a number of angles and then simply inverting the Fourier data.

Conventional tomography is based on the idea that x-rays travel in
stralght lines through the object and a projection measures the total X-ray
‘attenuation of the object along straight lines. When the obJect is relatlvely
',large and has a small refractive index it is possible to use other types of energy,

. for example microwaves, seismic and ultrasound, to image the ob_]ect With a

small refractive inex the energy doesn’t bend as it goes through the object and
thus it is possible to measure the attenuation of the object along straight lines.

| - This is the only requirement needed to use the Fourier Slice Theorem and form

an image of the object’s acoustic or microwave attenuation [Gre74 Gre75
Car76 Jak76, Glo77 and Cr382]

Since microwaves and acoustic waves are easier to generate and measure
~ than x-rays it is also possible to generate images of the object’s refractive
lndex As was mentioned earlier it is necessary to assume that the refractive
1ndex change is small so that the energy doesn’t bend as it travels through the
‘ obJect If a projection is' measured representing the delay encountered by the

“energy ‘as it travels through different parts of the object then an image is
formed of the object’s acoustic or electromagnetic refractive 1ndex ThlS extra
’ ’1nformat10n can often make it easier to characterize the object. |

Two methods have been used to form images when the energy no longer
travels through the object in a straight line. Perhaps the most stralghtforward
approach is to simply model the flow of energy through the object as a ray and
calculate its location based on the refractive index of the object [And82 Her76,
Her73] Unfortunately these algorithms can only be used when the refractive

ilidex ‘change is less than 10 or 20 percent and most of the energy is refracted

instead of diffracted. Thus this approach is only valid when the wavelength of
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~ the energy is much smaller than any details of the object [And84].

A second approach is to model the flow of energy through the object with
the wave equation. While this approach is more accurate then other approaches
it is not always possible to invert the resulting system of equations and find a
closed form solution. This is the core of the problem for successful diffraction
tomographic images.

A simple approach to solve the wave equation is to linearize it [ISh78,
CheBO, Sla84, Mue79, Wol69]. This is usually done by assuming that the
object represents a very small perturbation to the field. Only the linear terms
are retained and all higher order terms are simply ignored. Unfortunately this
approach is also limited to those object that satisfy the constraints of the
approximations. As will be shown later in this work hnearlzmg the wave
equation greatly limits the objects that can be imaged.

. Finally in the past years work has been done on iterative techniques to_
solve the wave equation. Most of the work was originally applied to the
“inverse scattering problem of high energy physics [Bal78, New66, Tay83] and

only recently applied to the diffraction tomography problem. '

- This work is in three parts: the derivation of the wave equatlon and first
order reconstruction algorithms, limitations of first order algorithms and finally
a summary of iterative techniques that can be applied to the dlﬁ'ractlon
tomography problem. S

First in Chapter 2 the wave equation is defined for both acoustlc and
electromagnetlc experiments. This scalar equation is valid for both types of
~energy and forms the basis of all work to be described here. In addition the
‘Born and Rytov approximations are introduced and a linearized model for the
scattered field as a function of the object is derived. '

In Chapter 3 the linearized wave equation is inverted to find an expression

for the object given the scattered field. This leads to the Fourier Diffraction

Theorem which is fundamental to diffraction tomography. Flnally several
experimental procedures are described that generate enough data to unlquely
- determine the object :

- Chapter 4 is a discussion of the numerical algorithms Ato.‘ invert the
scattered data. Both of these algorithms are computationally very. expensive
and the algorithm used will depend on the architecture of the available
computer resources. In addition some of the signal processing 1ssues will be
dlscussed and simulation results presented. - '



The limitations of the first order algorithms are presented in Chapter 5.
Both the mathematical approx1matlons and the experimental limitations
contribute to the error in the final image but in different ways. The
mathematical approximations are only valid for a small range of object and if
these limits are exceeded then no amount of data will improve the
reconstruction. The experimental limitations, on the other hand, are entirely
caused by the ability to only collect a finite amount of data. The experimental
errors can always be reduced by using more data or more accurate signal
processing algorithms.

The severe limitations of first order diffraction algorlthms is addressed in
Chapters 6 and 7. The major problem in diffraction tomography is to find a
method to invert the wave equation. In Chapters 2, 3 and 4 of this work this
is done by linearizing the wave equatlon but as seen thls severly hmlts the _
objects that can be imaged. '

Chapter 6, therefore, discusses two approaches to model the scattered field R
given the (complex) refractive index of the object. This is the forward problem
and both approaches are iterative. The simpler of the two approaches includes
more than just the linear terms in the perturbation approach described in
Chapter 2. This gives a series solution for the scattered field and simulations
studying the type of objects for which these series converge will be presented.
The second approach to solve the forward problem exploits the simple
structure of the problem to compute a brute force solution. Objects with large
refractive indices eventually cause this algorithm to converge too slowly for the
method to be practical.

- Finally Chapter 7 presents a survey of several approaches that have been
proposed as better solutions for the inverse problem. Each of these algorithms
has limitations and some of these limitations and comput'ational aspects will be
discussed.
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g CHAPTER 2
.~ DIFFRACTED PROJECTIONS

2 1 Introduction

Tomography w1th dlﬂ'ractlng energy can not be modeled w1th the same -
equations used to model projections in conventional, stralght ray, tomogra,phy
Acoustic and electromagnetic waves do not travel along straight rays and the
projections are not line integrals. Instead the flow of energy will be described
with the wave equation and in the limit of very short wavelengths or objects -

where the effects of refraction are small it will be shown that the dlﬂ'racted; FEE

projections can be approxrmated by a non diffracting projection’

'First consider the propagatlon of waves in homogeneous media. The wave

equation is a second order linear differential ‘equation - and under certain

conditions it can be shown that an expresswn for the field at every other pomt_
in space can be wrltten

The problem is .not to image a homogeneous media but one that is
inhomogeneous. To solve the inhomogeneous wave equation, one of two
approximations, the Born .or the Rytov, must be used. With these two
- approximations expressions for the field scattered by the mhomogeneltles of the
media can be written. , -

The theory to be discussed will be - apphcable to both two and three
dimensional structures. Even in a three dimensional world a two dimensional

model can often be used if the object varies slowly in one direction. This
assumption, for example, is often made in conventional computerized

- tomography where images are made of a single slice of the object. The theory - :

of diffraction tomography will be presented almost entirely in two dimension_s'
for two reasons. More importantly, the ideas behind the theory are often easier
to visualize (and certainly to draw):in two dimensions. In addition technology
‘has yet to make it practical to 1mplement large three dimensional transforms
“and then to display the results. This limitation will certainly be ehmmated in
the near future and where the differences are significant both the two and three
dimens‘ionel solutions will be indicated. ' '
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" 2 2 Homogeneous Wave Equation
In a constant or homogeneous media the propagation of acoustlc or

 electromagnetic waves can be modeled with the scalar Helmholtz equation. For

. a temporal frequency of w radlans per second (rps) a field, u("), satisfies the

. equatlon SR
(V2+kG)u(®) =0. (e
For homogeneous media the wavenumber, k;, is a constant related to the
wavelength, X, of the wave by _ ' '
: y e 9
kg = —.
| , LY
The wavelength A, is related to the temporal frequency of the wave by the
_ propagatlon speed in the media, ¢, or _

(22)

271' . | o
A= 2.
AEGE | (2.3)
Sinee the theoryv of diffraction tomography is normally derived based on
- coherent fields the time dependence of most fields will be suppressed in this
work. Thus all fields should be multiplied by e 1% to find the measured field as -
a function of time.. The extensmn of this theory to broadband fields is

discussed in Sectlon 343

~ For acoustic (or ultrasonic) tomography, u(f) can be th'e'pressui-e'ﬁeld at
pbsnlon T. For the electromagnetic case, assuming the applicability of a scalar
- propagation equation, u(f) may be set equal to the complex amplitude of the )
electric field along its polarization. In both cases the time dependence of the
fields are suppressed and u(F) represents the complex amphtude of the ﬁeld As
a function of time and space the field is given by

_U(T‘:t) = Real Part {u(?)e_j“"}. S (2.4)

The vector gradlent operator V, can be expanded mto 1ts two
dlmensmnal representatlon and the wave equatlon becomes o

2 2 . _
5 a,“Q+~k02u(?) =0. (2.5)
_ - ox? ayr -
As a trial solution let ,‘ = _ .

) where the vector k (kx,k ) is the two dlmen51onal propagatlon vector and
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u(T) represents a two dimensional plane wave of spatial frequency IEI . This
form of u(T) represents the basis function for the two dimensional Fourier

- transform; ‘u‘sin'g it, any two dimensional function can be represented as as a-
~weighted sum of plane waves. Calculating the derivatives as indicated in
equatlon (2.5) it can be seen that all plane waves that satisfy the condition

|k|2 = k2+k? =k§ (29

are valid solutions to the wave equation. This condition is consistent with an
1ntu1t1ve picture of a wave and description of the wave equatlon above, since
for any frequency wave only a single wavelength can exist no matter which
direction it propagates

The homogeneous wave: equatlon is a hnear dlﬂ'erentlal equation so the
general solution can be written as a weighted sum of each possible plane wave
solution. In two dlmensmns ‘at a temporal frequency of w, the ﬁeld u(T) is
given by

.00 R v 0 - . . L s

u(") - .517_;. ‘qtky)ej(kxx+kyY)dky + i f ﬂ(ky)ej(fk’{'j-k’Y)‘dky' '. (2.8) '
. -0 oo
and b‘yr,_‘equation (2.7) ‘ -
ke = VREKE o (2.9)
The form of this equation 'might be vsurprising'to the readervfof two reasons.
First, the mtegral has been spht into two parts. The coefficients of waifeé
travehng to the tight are represented by a(k ) and those traveling to the left
by Blky). In addition the limits of the integrals have been set to go from —oo
to co. For k2 greater than k¢ the radical in equation (2.9) becomes imaginary
- and the plane wave becomes an evanescent wave. These are valid solutions to
" the wave equation but b‘ecause ky is imaginary the exponential has a real or
attenuating component. This real component causes the amplitude of the wave
to ‘either grow or decay exponentially. In practlce these evanescent waves only

occur to satisfy boundary conditions, always decay rapidly far from the -

boundary, and can often be ignored at distance greater than 10\ from the
1nhomogene1ty ' '

The limited range of vahd solutions to the wave equation allows (under
certain condition) an expression to be written for the field in all of two-space
given the amplitude of the field along a line. The three dimensional version of
this idea gives the field in three—space if the field is known at all pomts on a

plane.
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Consider a source of plane waves to the left of a vertical line as shown in
Figure 2.1.. By calculating the one-dimensional Fourier transform of the field
along the line the field can be decomposed into 2 number of one-dimensional
components. Each of these one dimensional components can then be attributed
 to one of the valid plane wave solutions to the homogeneous wave equation
| because for any one fi'equency component, k,, there can exist only two plane
waves that satisfy the wave equation. Since the incident field has already been
~constrained to propagate toward the right (all sources are to the left of the
measurement line) then a one-dimensional Fourier component at a frequency of
’ ky can be attributed to a two dimensional wave with a propagatlon vector of

_ ThlS can be put on a more mathematical basis if the one-dimensional
,Fourler transform of the field is compared to the general form of the wave

: _equatlon If waves that are travehng to the left are ignored then the general'

, solutlon to the wave equatlon becomes ‘
u(“) - '_f k"x+k’y)dk - : ' | (210)

_Nov& if ‘the coordinate system is moved so that the meaSufement line is at
=0 then the expression for the ﬁeld becomes equal to the one—dlmenswnal '
. ,Founer transform of the field or

-‘)—lfa Jkyydk (21

' Thls equatlon establishes the link between the one-dimensional Fourier

"transform of the field along the hne to the two-dimensional field. The
~ coefficients a(ky) are given from- the one dimensional Fourier transform of the
field by . “ : o | | '-

aky) = Foﬁrier ..Transform{u((),y)}. (2.12.).

T he simple form of a plane wave allows an expressioh to be written
relating the field on two parallel lines. If a priori it is known that all the
sources for the field are positioned, for example, left of the line at x=I; then
the field u(x=ly,y) can- be decomposed into its plane wave components. Given
a plane wave Upjune wave(X =lo,y) = el (ot kyy)

‘the field undergoes a phase shlft
as it propagates to the line x =1, and the field can be written '
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Frequency of ky |

Flgure21 A _ﬁlbané. wave w1thd1rectlon cosines (v/ kg-kZk,) is shown - -
' propagating between the lines x=l; and x=1;. ‘
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- = qelllo Than) ikl o 1 ik |
plane wave(x II’Y) ae( ° yy)] (s lO) - plane wave( lO)Y)eJ T (2 13)

Thus the complex amphtude of the plane wave at x= ll is related to lts

: complex amplltude at x=ly by a factor of oikdlilo)

The complete process of finding the ﬁeld at a line x"ll follows in three
steps R ' v _
) Take ‘the Fourier ‘transform of u(x =lo,,'y) tov find the Fourier .
R decompos1tlon of u as a function of k. » ‘ : o
e2) - Propagate each plane wave to the llne x=l; by multiplying its

o complex amphtude by the phase factor ek (I‘ Lo

k= ykgkE o
3) »Flnd the inverse Fourier transform of the plane wave decomposrtron

‘to find the ﬁeld at u(x ll,y) :

, where as before

2.3 Inhomogeneous Wave Equatnon v o _
For 1mag1ng in an 1nhomogeneous medla a more general form of the wave . -
equatlon is written as ' - '

[V2+k('r*)2]u(?) —0 SRS S (2.14)
For the electromagnetlc case it is necessary to lgnore the eﬂects of polarlzatlon ’
so that k(F) is a scalar- functlon representlng the refractlve index - of the

| K =k = klbng®] (2.15)
fjwhere ko represents the average wavenumber of the media and ng7) represents

* the refractive index deviations. In general it will be assumed that the object
has a finite size: and therefore n5('r"‘) 1s zero outs1de the object. Rewriting the

o (v2+ko W = KhEe (2
| where n(T') is the electromagnetlc refractlve 1ndex of the medra and is glven by

n) = (2.17)'

: Here I and € have been used to represent the magnetlc permeablllty and -

dlelectrlc constant and the subscript zero to indicate their average values. This
" new term, on the right hand side of equation (2. 16), is known as a forcing
function for the differential equation (V2+kE)u(r). '
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Note that equation (2.16) is a scaler wave propagation equation. Its use
implies that there is no depolarization as the electromagnetic wave propagates
through the medium. It is known [Ish78] that the depolarization effects can be
ignored only if the wavelength is much smaller than the correlation size of the
inhomogeneities in the object.- If this condition is not satisfied, then strictly
speakmg the following vector wave propagation equation must be used '

' VZE(T‘)+k3n2E(?)—2VE-E‘] =0 (2'.18) '

where E is the electric field vector. A vector theory for diffraction tomography
based on this equation has yet to be developed.

For the acoustlc case, ﬁrst order approximations give the followmg wave
equatlon [Kak84]

(VKU = k-1 (219)
where n is the comple:c refractive mdez at p051t10n? and is equal to | "

- where ¢, is the propagatlon velomty in the medlum in whlch the object is
1mmersed and c(F) is the propagatlon velocity at location T in the object. For
the acoustic case where only the compressmnal waves in a viscous compreSSIble '

fluid are 1nvolved the speed of sound is given by |

off) = (221
where p and « are the local density and the complex compressibility at location

The forcing function in equation (2.1_9)" is only valid provided the first and
higher order derivatives of the medium parameters can be ignored. If the
ihhomogeneity can be modeled as a viscous compressible fluid, an exact form
for the wave equation is given by _

(V2K = koPru — V+(7,V0) (2:22)

where
. K—Kq ,
Te = , (2.23)
Kq . v




4= o (2.29)

el v ‘ p :. o

v ,,,ko and pg are either the compressibility and density of the medium in which
‘the object is immersed, or the average compressibility and the density of the

object, depending upon how the process of imaging is modeled. On the other

hand, if the object is a solid and can be modeled as a linear isotropic |

" viscoelastic medium, the forcing function possesses another more complicated

form. Since this form involves tensor notation, it will not be ‘presented here

~ and the interested. reader is referred to [Iwa75).

 Due to the simiilarities of the electromagnetic and acoustic wave equatlons ,
Ca general form of the wave equation can be written as - '

(V2 +kufr) = -—o('*)u(?) o (2.25)
where | | " | ~ - '
oM =K1 (@)
_ To hide some of the mathematical details the term o(F) will be used to
represent all inhomogeneities of the object. Later the object will be

reconstructed in terms of the object function, ofF), and the reader is referred to ,
equation (2.26) to put the reconstruction in terms of the refractlve index.

Con51der ‘the field, u(“) to be the sum of two components “The mcndent o

ﬁeld uo(“), is the ﬁeld present w1thout any lnhomogeneltles or a solution to the
. equatlon '

(V2 +kJu®) =0. S (2.27)

B That leaves the scattered ﬁeld us(?) as that part of the ﬁeld due to the ob]ect
, lnhomogeneltles or

0 =, B

- Thiexw:we‘eqnation becomes EREEE ' co
B (R = o). T
The scalar Helmholtz equation (2.29) cannot be solved for us(") directly

* but a solution can be written in terms of the Green’s function [Mor53] The
~ Green's function, which is a solutlon of the differential equation -

(V2 +k2)g("|‘*’ ) = —§ET"), B (2.30)

is wrltten 1n three—space as
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K " R
gm')_, SR
e

with : e ,

| ==l (3

In two dimensions the solutlon of (2.30) is written in terms of a zero-order
Hankel functlon of the ﬁrst klnd and can be expressed as -

gﬂ?’ J_H(;l) k,R). (2 33) |

In both cases, the Green s function, g(T’l?' ) is only a functlon of the dlﬂerence
7 so the function will often bé represented as. simply g(r=T"). Because the
object functlon in equatlon (2 30) represents a pomt 1nhomogene1ty, the Green's: |
functlon can be cons1dered to represent the ﬁeld resultlng from a s1ngle pornt
- scatterer. ' '

Itis p0331ble to represent the forcmg functlon of the wave equatlon as an
array of 1mpulses or ‘ , , L
Coffu® = for N ET ). (234
In thrs equatlon the forcing functlon of the lnhomogeneous wave equatlon is-
represented as as a summatlon of 1m_pulses weighted by o(_")uv('r') and shifted by -
T. The Green’s function r'epresents the solution of the wave equation for a
single delta function; because the left hand side of the wave equation is linear,
a solution can be written by summing the scattered field due to each individual
point scatterer.

Using this idea, the total field due to the lmpulse oft’ )u(‘" )6(? ?’) is
- written as a summation of scaled and shifted versions of the impulse response

g(T). This is a simple convolution and the total radiation from all sources on
the rlght hand side of (2 29) must be given by the following superposmon

= [g(t=T")o(¥' Ju @), . 35)
At first glance 1t mlght appear that this is the solution needed for the scattered

field; but it is not that simple. An integral equatlon for the scattered field, u,,
has been written in terms of the total field, u = u0+u This equation needs to

be solved for the scattered field and two approxrmatlons that allow this to be. ,

done w1ll now. be discussed.
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2.4 Approxlmatlons to the Wave Equatron

‘In the last. section an inhomogeneous 1ntegral equation was derived to =

. represent ‘the scattered field, u/f), as a functlon of the object, off). This

. i equation cannot be’ solved directly, but a solutlon can be written using either of
- the two ‘approximations described here. - These approximations, the Born and

the Rytov, are valid under different conditions but the form of the resulting.

solutions are quite similar. These approx1matlons are the ba31s of the Fourler‘ '
" Diffraction Theorem B . -
Mathematlcally speaklng equatlon (2. 35) is a Fredholm equatlon of the _' |
second kind. A number of mathematicians have presented works describing’ the';
solutlon of scattering integrals” [Hoc73, Colg3] and they should be consulted for;
'V.the theory behlnd the approx1matlons to be presented here. -

.4.1 The Flrst Born Approxlma.tion

R "The first Born approximation is the simpler of the two approaches. Recall'
. that the total field, u(¥), is expressed as the sum of the incident field, ufF), and

: a small perturbatlon, 1 s(’"), or..

S o ut’)—uot')+usr j_’ o ,v.(2.'3s)'
":-:The 1ntegral of equatlon (2 35) is now wrltten as _ o G | .
) = [eET Jole! ol F! + [T o e (ean)

: but 1f the. scattered ﬁeld lls(_l'), ‘lS small compared to uy(F) the eﬁects of the
second lntegral can be 1gnored to arrive at the approx1matlon ' '

uf®) ~ uglr) = fgﬁ?" (gl )ar . "'(238)1

B The first Born approxrmatlon is vahd only when the magnitude of the . |
Tscattered field, - L ,

’llsl‘-—lll‘ u0(7 (239)‘.""

is smaller than the magmtude of ‘the 1nc1dent ﬁeld uo If the object is a
: homogeneous cyhnder it is p0551ble to express this condition as a function of -
the size of the object and the refractive index. Let the 1nc1dent wave, ug(F), be -
a plane wave propagatlng in the direction of the vector, ko For a large object,
._the ﬁeld 1ns1de the object w1ll not be well approx1mated by the incident field

iKoT .
ll(_l") object(?) # Ael o e C (2 40)

o but 1nstead w1ll be a functlon of the change in refractlve 1ndex 115 Along a ray '
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through the center of the cylinder and parallel to the direction of propagation
of the incident plane wave the field inside the object becomes a slow (or fast)
version of the incident wave or ' '

Uppjers(F) = Al 9T,  (241)

Since the wave is propagating through the object the phase difference
between the incident field and the field inside the object is approximately equal
to the integral through the object of the change in refractive index. For a
homogeneous cylinder of radius ‘a’ wavelengths the total phase shift through
the object becomes

Phase Change = 47rn5% (2.42)

where X is the wavelength of the incident wave. For the Born approximation
to be valid, a necessary condition is that the change in phase between the
incident field and the wave propagating through the object be less than .
This condition can be expressed mathematically as [Néw66] o

an5<~2~. S - (2.43)

2.4.2 The First Rytov Approximation

The Rytov approximation is another approximation to the scattered field
and is valid under slightly different restrictions. It is derived by considering
the total field to be represented as a complex phase or [Ish78]

u() = &0 . (2.44)
and rewriting the wave equation (2.14)
(V2+KkHu = 0 - (2.14)
as _ ‘ |
VZef+k%? =0 . . (2.45)
V[Vge?]+k%e? =0 _, (2.46)
Vige?+(Vp)2e? +k%? = 0 , (2.47)
and finally » |
(V)2 +V2p+kE = —off). - (2.48)

(Although ali the fields (¢ and ¢) are a function of T, to simplify the notation



20

the argument'of these functions will be dropped.) EXpressing the total complex

e phase, ¢, can be expressed as the sum of the 1nc1dent phase functlon &, and |
. the scattered complex phase é,, or

e f'wrrtten

m ¢om+¢s(?) a9
where : o . | i R, a
_ o '_,uo(?) :e¢_°® 3 (2.50)

btoﬁndthat | | S '_ |
| (v¢0)2 +2v¢0 v¢s+(v¢s)2+v2¢o+v2¢s+k3+o(-) = 0. (2.51)

As in the Born approx1mat10n 1t is possible to set the zero perturbation
_equatlon equal to zero. Domg this, the homogeneous wave equatlon can be

o k3+(V¢o)2+V2¢o =0. (252
“Substltutlng thls 1nto equatlon (2 51) the wave equatlon becomes . o
| VR VE AV = (Ve o (259
n ThlS equatlon is stlll mhomogeneous but can be llnearlzed by con51der1ngv-'
s the fol]owmg relation: , o . e .
T V2(“o¢s) V(Vug ¢s+“ov¢s) - | (254)
N or by expandlng the ﬁrst derlvatlve on the rlght hand 51de of thls equatlon |
| VHu) = Vugd, +29ug V¢s+uov2¢s | (255)
’Usmg a plane wave for the lncxdent ﬁeld : - | ‘ ‘ v_ ,‘
e wEAKT (2
. . the second gradlent of the 1nc1dent ﬁeld is o o
| | e v2uo = —kouo o | R (2.57)
" so that equatlon (2 55) may_ be rewrltten as. B ‘ '
- 2u0V¢0 V¢S+uo‘72¢s = V2(Uo¢s)+kouo¢s - (258) .
ThlS result can be substituted 1nto equatron (2 53) to find | |
| (v2+k0 )u0¢s = —u(,[(v¢s 2+o(“)] (2.59)

."The solutlon to thls dlﬂerentlal equatlon can agaln be expressed as an 1ntegral, -

S | .vequatlon ThlS becomes
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o o, = fg(? ')uo[w 2+or*)]dr O @e0)

Using the Rytov Approx1matlon it is necessary to assume that the term in
brackets in the above equation can be approximated by

(Vofoff) ~—o®). (261)

When  this is done, the first order Rytov approximatioh to the function uyd,

becomes
U, = fchr" (?')o(“”) 289

- Thus ¢s, the complex phase of the scattered ﬁeld is glven by

7‘¢;S'm* [T o). (269

“o(?)

Substltutlng the expresswn for ug given in equation (2.38) the first Rytov
approx1mat10n can be written :

uB(ff‘)
llo(-l_") ;
The Rytov approx1matlon is vahd under a less restrictive set of conditions

than the Born approx1mat10n [Che60, Ke169] In deriving the Rytov
approxxmatlog it was necessary to assume that

(M) = (2.64)

T Dol ofe! ' > [ Yl J(V)2dr . (2.65)

If the object is smaller then a wavelength then both the field and the object
can be assumed to be constant compared to the obJect function and the above
relation can be written ‘

0)(0) [ofr i >> eF0)u(0 )Vf1(V¢s)2dr'. (2.66)

When the term (V¢5) is small outside the object this relation can be further
simplified to find - |
off) >> (V4,)% | -~ (267)

If o(F) is written in terms of the change in refractive index
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o= = KA HagR)-l] (2.26)

and the square of the refractive index is expanded to find '
off) = k(1 +2nF) +nE)-1) (2.68)
off) = k&2u?) +n 7). | (2.69)

To a first approximation the object function is lineariy related to the refractive
index or

off) ~ 2kfnfr). (2.70’)

The condition needed for the Rytov approximation (see equation (2.67) can be
rewritten as

(Vo)
kg

n; >> (2.71)

_ This can be justified by observing that to a first approximation the
scattered phase, @, is linearly dependent on the refractive index change, ng,
and therefore the first term in equation (2.65) above can be safely ignored for
small ny.. '

The term V¢, is the change in the complex scattered phase per unit
distance and by dividing by the wavenumber | ‘

ko = 2% (2.72)
A
a necessary condition for the validity of the Rytov approximation is
Vg | |
s >> 27? }2 ) (2.73)

Unlike the Born approximation, it is the change in scattered phase, ¢, over one
wavelength that is important and not the total phase. Thus, because of the V
operator, the Rytov approximation is valid when the phase change over a
single wavelength is small. ‘

Estimating ug(r) for the Rytov case is slightly more difficult. In an
experiment the total field, u(7), is measured. An expression for ug(¥) is found
by recalling the expression for the Rytov solution to the total wave

u(f) = yptu r) = et (2.74)

and then rearranging the exponentials to find
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u, = efoT Seto , (2.75)
u, =u [e¢‘—1} | (2.77)
v 0 o -
Invertlng this to find an estimate for the scattered phase @5, the scattered
phase is
¢,(t) = — +1}. (2.78)
Uy

Then expand ¢, in terms of equation (2.64) to obtain the following estlmate for
the Rytov estimate of uB(‘°)

: u
ug(t) = up(P)in|—+1 (2.79)
. ]]0

Since the natural logarithm is a multiple valued function, one must be careful
at each position to choose the correct value. For continuous functions this is
not difficult because only one value will satisfy the continuity requirement. On
the other hand for discrete (or sampled) signals the choice is not nearly as
simple and one must resort to a phase wrapping algorithm to choose the proper
phase. Phase unwrapping has been described in a number of works [Tri77,
OCo78, Kav84, McG82, Kav84]. Due to the “+1" factor inside the
logarithmic term, this is only a problem if u, is on the order of or larger than
uy. Thus both the Born and the Rytov techniques can be used to estimate
u(T). |

While the Rytov approximation is valid over ‘a larger class of objects, it is
possible to show that the Born and the Rytov approximations produce the
same result for objects that are small and deviate only slightly from the
average refractive index of the medium. Consider first the Rytov expression to
the total field. This is given by

uff) = ¢o+¢, | (@ 80)

Substituting an expressmn for the scattered phase, (2.64) and the 1nc1dent field,
(2.56) into this expression

u(f) = e KETexpCikETuen) (2.81)

or
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(?) u(_t.,)eexp(.lko's'?)ufﬁ) o o (2 82) "

' ,For small ug, the first exponential can be expanded i in terms of its power series.
, Throwmg out all but the first two terms the total ﬁeld is approx1mately equa] '
- to _ . | .
u('i") = (?)[l-i-e—’k‘g' (f’)] o o (2.83)
.;"v01';,.-: S o : " '
. qm:.%(f)JruB(?). e
o Thus When_ the megnitude of the scattered field is small the Rytov solution is .
" approximately equal to the Born solution given in equation (2.38). '

. The similarity between the expressions for the first order Born and Rytov _
_’.fsolutlons will form the basis of the reconstructlon algorithms to be derived

“here. In the Born approx1mat10n the complex ‘amplitude of the scattered field

is measured and this is used as an estimate of the function’ up while in the
‘ Rytov case up is estimated - from the complex phase of the scattered field.
N 'Smce the Rytov approx1matlon is considered more accurate than ‘the Born

~approximation it ‘should provide a better estimate of ug. In Chapter 5 of this

~work, after deriving reconstruction algorithms based on the Fourier Diffraction

,Theorem mmulatnons comparmg the Born and the Rytov approxnmatlons will
be dlscussed SR : :
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| ~ CHAPTER3 o
' THE FOURIER DIFFRACTION THEOREM

3.1 Introduction

Fundamental = to dlﬁractlon tomography is the Fourier Diffraction
Projection Theorem, which relates the Fourier transform of the measured
forward scattered data with the Fourier transform of the object. The theorem
is valid when the mhomogenettzes in the ob]ect are only weakly scattermg and
can be stated 4s [Kak84]

When an object f( ,y) is 1llum1nated W1th a plane wave as shown
in Figure 3.1, the Four1er transform of the forward scattered

fields measured on line TT’ glves the values of the 2-D transform,
F(wl,wz) of the object along a circular arc in the frequency
dor'nain; as shown in the right half of the ﬁg_ure

The 1mportance of the theorem is made obvious by noting that if an ob]ect is
illuminated by plane waves from many dlrectlons over 360 °, the resulting
circular arcs in the {wy,w3)- plane will fill the frequency domaln The funct1on
f(x,y) may then be recovered by Fourier inversion.

Before g1v1ng a short proof of the theorem, first a few words about the
dlmensmnallty of the obJect compared to that of the scattered fields. Although
the theorem talks about a two—drmensronal ob]ect what is actually meant is an
object that does not vary in the z direction. In other words, the theorem is
about any cyhndrlcal obJect whose cross-sectlonal distribution is given by the
function f( y). The forward scattered fields are measured on a line of

detectors along TT' in F1gure 3.1.

If a truly three-dimensional object is illuminated by a plane wave, the
forward scattered fields would now have to be measured by a planar array of
detectors. The Fourier transform of the fields measured by such an array
would give the values of the 3-D transform of the object over a spherical
surface. This was first shown by Wolf [Wol69]. A more recent exposition is in
"[Nah84 and Devg4], where the authors have also presented a new synthetic
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aperture procedure for a full three dimensional reconstruction. using only two
rotational positions of the object. This chapter, however, will continue to work
with two :dimensional objects in the sense described here. A recent work
describing some of the errors in this approach is [LuZ84)].

3. 2 Decomposmg the Green’s Function

~ Earlier in this work, the scattered field due to a weakly scattermg object
was expressed as the convolution ‘
| up(®) = folf Jug(T Jg(r-=7')ar’ (3.1
where ug(t). represents the complex amplitude of the field as in the Born
approximation or the 1n01dent ﬁeld “uy(T), times the complex scattered phase
#4(7), in the Rytov approx1matlon. From this integral there are two
approaches to the derixation of the Fourier Diffraction Theorem. Many
researchers [Mue79, Gre78, Dev82] have expanded the Green's function into its
plane wave decomposrtron and then noticed the similarity of the resulting
expression and the Fourrer transform of the object. Alternatrvely, if the
Fourier transform of each component of this equation (3.1) is taken then the
Fourier Diffraction Theorem can be derived in a manner that can be easily
visualized and points ‘towards efﬁment computer implementations. This work
w1ll present both- approaches to the derivation of the Fourier Diffraction
Theorem: the first because the math is more straightforward, the second
because it provides more msrght into the difference between transmission and
reflection tomography.

First the Green’s function w1ll be decomposed into its plane wave
components

3.2,1 Plane Wave Approach

The integral equatron for the scattered field (3.1) can be considered as a
convolution of the Green's F unc_tlon g(™T'), and the product of the object
function, o(f'), and the incident field, u(t’). Consider. the effect of a single
plane wave illuminating an object. The forward scattered field will be
measured at the receiver line as is shown in Figure 3.2. ’

A single plane wave in two dimensions can be represented as
ug(F) = elk™ - (3.2)

where K = (ky,k,) satisfies the following relationshi_p



30 .

- object

Figure 3.2 . A ‘tAyvpvi_ycal diffraction toiﬁography.expérimént |
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k¢ =kI+KZ (39

From earlier in this work, the two dimensional Green's function is given

by | - | .,
J—H ko|P-T'|) (34
(| ') = LHqko| 7)) 3
and Hy is the zero-order Hankel functlon of the ﬁrst klnd The functlon Hy has
the plane wave decomposition [Mor53]

kl—&-—ﬂl) —_ __f ][O{ “X’)"',Bl)' y I]da R | (35) '

where ¥ = (x,y), ' = (x',y') and ' o s : ,
| \/ko-a ST (3.6)
Basically, equation (3.5) eXpresses a cylindrical wave, Hy, as a superposition of

=

plane waves At all points, the wave centered at T’ is traveling outward,; for
points such that y>y ! the plane waves propagate upward while for y<y ' the
plane waves propagate downward. In addition, for la| <kg, the plane waves
are of the ordinary type, propagating along the direction given by tan~ ( B/a).
However, for |a] >ky, A becomes 1mag1nary, the waves decay exponentlally
and they are called evanescent waves. Evanescent waves are usually of no

significance beyond about 10 wavelengths from the source.

Substituting this expresswn, (3.5), into the expressmn for the scattered
field; (3.1), the scattered field can now be written

ug(f) = j;fo(_lﬂ Jug(®') | _;_ej[a(x—x")+ﬂ| vy “dad?’ N X} '

In order to show the first steps in the proof of this theorem, assume for
notational convenience that the direction of the incident plane wave is along
the positive y-axis. Thus the incident field is given by

| u(f) = &%F (3.8)
where ¥, = (0,ky). Since in transmission imaging the scattered fields are
measured by a linear array located at y = l,, where l; is greater than any y-
coordinate within the object (see Figure 3.2), the term'ly—y ! | in the above
expression may simply be replaced by l;—y ' and the resulting form may be
rewritten '
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. . o "":’r‘.:-, :
uB(x,y:lo) :‘i—'fdafﬂ%).eﬂq(x—x )+ﬂ(lo—¥ )lejkny et (3.9)

Recognizing part .of the_ inner integral as the two-dimensional Fourier
© transform of the object function evaluated at a frequency: of (a,0-ky) the
scattered field can be written ’

up(x,y =lg) = ;f,i;f o (a ,ﬂ~—ko)da (310

" where O has been used to designate the two dimensional Fourier transform of
- the object function. : ‘
- Let Ug(w,ly) denote the Fourier transform of the one dimensional scattered
field, ug(x,ly), with respect to x, that is
o0

' | U (w,lo) = [ ug(x,lp)e*dx | _ (3.11)

. . : —00
As mentioned before the physrcs of wave propagation dictate that the highest
angular spatial frequency in- ‘the measured scattered field on the line y= lo is
unlikely to exceed ko Therefore in almost all practical situations, Uw,l,) = 0
for lwl > ko Thrs 18" consrstent with neglecting the evanescent modes as
~described earlier. .
If the Fourier transform of the scattered ﬁeld is found by substltutmg
, e‘quatlon (3 10) into equation (3.11) then using the following property of Fourier

integrals . , '

| fej(‘f’_")"dx = 2r6(w—a) o o (3.12) '

- where 6( ) is the Dlrac delta functlon dlscussed in Chapter 2 the scattered field
can be written

) = — vk "2‘°o ,/k2- k) 3.13
(a 0) | 2\/1?0? a 0) | ( )
for Ial < k(i. ’

This expression relates the two dimensional Fourier transform of the object to
the one dimensional Fourier transform of the field at the receiver line. The
- factor ‘ '
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i g )
2\/k2—a ' : .

is a s‘imple': ‘constant for ‘a fixed receiver line. As a varies from —k, to kg, the -
coordinates (a,y/ké—a’~kg) in the Fourier transform of the object function
trace out a semicircular arc in the (u,v)-plane as shown in Figure 3.1. This
proves the Fourier lefractlon Theorem. _ -

To summarize, if the Fourier transform of the forward scattered data is
found when the incident illumination is propagatlng along the positive y-axis,
the resulting transform will be zero for angular spatlal frequenc1es Ial >k
For Ial <kg, the transform of the data gives values of the Fourier transform
of the object on the semicircular arc are shown in Figure 3.1 in the (u,v)-plane.
The endpomts A and B of the sem1c1rcular arc are at a distance of vk, from

the orlgm m_th_e frequency domain.

3.2.2 Fourler Transform Approach

; Another approach to the derivation of the F ourier. Dlﬁ‘ractlon Theorem 1s
possible if the scattered field

- w() = J 0(" 'JuglF! (=T )dF o (315
is considered entirely in the Fourler domaln The plots of Figure 3.3 will be
used to illustrate the various transformatlons that take place.

Agaln c0n31der the effect of a single plane wave lllumlnatmg an object.
The forward scattered field will be measured at the receiver line as is shown in
Figure 3.2. ‘ _

The integral equation  for the scattered field can be considered as a
convolution of the Green’s Function, g(™T' ), and the product of the object
function, off '), and the incident field, ub(?’ ). First define the following Fourier
transform pairs. ‘ :

off) < O(K)
g(®T') « G(K) L (3.16)
u(?) HU(K)

The integral solution to the wave equation can now be written in terms of
- these Fourier transforms or
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Object Incident Field
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Figure 3.3 Two dimensional Fourier representation of the Helmholtz
equation. (a) The object, (b) the incident field, (c¢) the
‘Green's function, (d) the (space domain) product of the
object and the incident field and (? the two dimensional
Fourier transform of the scattered field.
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U‘s (&) = (A){ O(A )*UO(A)] | ' 7(3;;.1'_7)_ _ _

where ‘*’ has been used to represent -convolution and A= (a,7). In equation
(3.2) an expression for uy was presented. It’s Fourier transform is given by

UO(K) = 278(A—K) (3.18)
and thus the convolution of equatlon (3.17) becomes a shlft in the frequency
domaln or | _
| O(R)+Uy(T) = 27r0(K—‘K)' o (3 19) '-

This convolutlon is illustrated in Figures 3.3a-c for a plane wave propagatmg

with direction vector, K (0,kp)- Figure 3.3a shows. the Fourier transform of a

single cyhnder of radius 1\ and Figure 3.3b is the Fourier transform of the

incident field. The resulting multlpllcatlon in the space domaijn or convolution

. in the frequency domain is shown in Figure 3.3c. , '
To find the Fourier transform of the Green’s function the Fourler

transform of the equa,tlon for a pomt scatterer

(V2+k§) Je(r|T') = —5(‘ ) - (3.20)
is-taken to find , , o _
” (~A%+k§)G Al"' = — AT, Lol (3.:21)
Rearra,uging terrrls the following expression forithe Fourier transform of the
Green's function is found

(3.22)
This has a ‘siugularity for all A such that -
|A]Z=a?+2=k2 . (323)

An approximation to G(A) is shown in Flgure 3.3d.

- The Fourler transform representation is misleading because it represents a
point scatterer as both a sink and a source of waves. A single plane wave '
propagatlng from left to right can be considered in two different ways
depending on the pomt of view. From' the left side of the scatter, the point
scatterer represents a sink to the wave while to the right of the scatterer the
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wave is spreading from a source point. Clearly, it is not possible for a scatterer

to be both a point source and sink, and later when our expression for the
scattered field is inverted, it will be necessary to choose a solution that leads to
outgoing waves only. -

The effect of the convolution shown in equation (3.15) is a Iﬁultiplication
in the frequency domain of the shifted object function, (3.19), and the Green’s
function, (3 22) evaluated at ¥/ = 0. The scattered field is written as o

= _ . O@FK | |
U(®) =222l (329

This result is shown in Figure 3.3e for a plane wave propagating along the y-
axis. Since the largest frequency domain components of the Green’s function
satisfy equation (3.23), the Fourier transform of the scattered field is dominated
by a shifted and sampled version of the object’s Fourier transform.

" An expression for the field at the receiver line will now be derived. For.
simplicity it will continue to be assumed that the incident field is propagating -
along the positive y axis or K = (0ky). The scattered field along the receiver
“line (x,y=ly) is simply the inverse Fourier transform of the field in equation
- (3.24). This is written as

: ‘ ‘ 1 oo oo ) _ e )
( ,y—lo = Z,Tzf Ju@ K)ot "dadq ST (3.25)
. —00—0 .
‘, which, using (3.24) can be expressed as
oy =l) = f f a2+:2_—1:)2 T Mdady.  (3.26)
—oo 00 o ' o

Flrst ﬁnd the mtegral w1th respect to 7. For a given a, the integral has a

e = 2GE - (3.27)

Usmg contour 1ntegratlon the 1ntegral can be evaluated with respect to '1 along

SInguIanty for

, the p'xth shown m Flgure 3. 4. By addlng E;r_ of the residue at each pole the

scattered field is expressed \
) = —fF ,y e’“xda+—fF2 ay)ei*da (3.28):

where
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Figure 3.4 Integration path in the complex plane for inverting the two
dimensional Fourier transform of the scattered field.
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(3.29)

Fl
o . 2\/1(0-&
and k | ]
| - Ho ,/k—a—k T .
rzk ___ J ( 0 0) jv ké—a®lg . (330)

2, k2—a

Examining the above pair of equations it can be seen that I'; represents the -
_ solution in terms of plane waves traveling along the posrtlve y axis while T’y
~ represents plane waves traveling in the —y dlrectlon , '

- As was dlscu_ssed earlier, the Fourier transform of the Green'’s function
(3.22) represents the field due to both a point source and a point sink but the
two solutions are distinct for receiver lines that are outside the extant of the
- object. First consider the scattered field along the line y =l where ; is
‘greater than the y-coordinate of all points in the object. Since all scattered
fields originatz in the object, plane waves propagating along the positive y axis
‘represent outgoing waves while waves propagating along the negative y axis
‘represent waves due to a point sink. Thus for y >object (i.e. the receiver line is
" above the object) the ]outgoing scattered Wavves are represented by T, or

( ,y ) = __.fpl(a7y esaxda y>oij_ect"' (331 |

Conversely for a recelver along a hne y =l where lj is less than the y-..
coordmate of any. pomt in the object the scattered field is represented by I'; or

uS(X,}’) b'—fl‘z(a,}’ e’“"da "y<objectb . - (3.32)

In general the scattered field w1ll be written as as
( ,y _—ff'(a,y e1°”‘da . (333)

and it w1]l be understood that values of the square root in the express1on for T'
v shou]d be chosen that lead only to outgorng waves.

Takmg the Fourler transform of both s1des of equatron (3 33) the Fourler
_ 'transform of the scattered ﬁeld at the recelver line is written -

fucaeiTac=Tew). @3

But since by equatlons (3. 29) and (3. 30) P(a lp) is equal to a phase shifted
~ version of the ob]ect function then the Fourler transform of the scattered field
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dlong the line yi lp is related to the Fourier ti'ansform of the object valong a
circular arc. The use of the contour integration is further Justlﬁed by notmg -
that only those waves that satisfy the relatlonshlp :

o+ = k¢ L - - (3.35)
- will be propagated and thus it is safe to ignore all waves nbf on the ko—éircle. '

This result is diagramed in Figure 3.5. The circular arc represents the
locus of all points (a,7) such that 4 = *4/k§—a® The solid line shows the
o’utgoing wavés for a receiver line at y=l, above the object. This can be
considered transmission tomography" Conversely the dashed line indicates the
locus of solutlons for the reﬂectlon tomography ‘case, or y= =ly is below the
ob]ect ' S ‘

3 3 Limit of the Fourier Diffraction Theorem

While at first the derivations of _the Fourier Shce Theorem and the Fourier
‘Diffraction Theorem seem qilife diﬂ"erént it is interesting to note that in the
limit of very high energy ‘waves Of, equwalently, very short wavelengths' the
Fourier Dlﬂ'ractlon Theorem is closely approx1mated by the Fourier Slice -
Theorem. Recall that the Fourier tramsform of a diffracted ~projection
corresponds to samples of the two dimensional Fourier transform of an object
along a circular are. As shown in Flgure 3.1 the radlus of the arc is equal to kg

wh1ch is given by
2n
ko = =—
O |
and X\ is the wavelength of the energy. 'As the wavelength is decreased, the
wavenumber, kg, and the radius of the arc in the object’s Fourier domain
grows. This process is illustrated in Figure 3.6 where the semicircular arc
resulting from a diffraction experiment is shown at six different frequencies.

| (3.36)

An example might make this idea clearer. Compare an ultrasonic
diffraction apparatus and a typical x-ray scanner. The ultrasonic experiment .
might be carried out at a frequency of 5 MHz and a wavelength in water of .3
mm. This corresponds to a kg of 333 radians/meter. On the other hand, an
x-ray source with a 100 keV beam has a wavelength of .012 gM. The result is
that a diffraction experiment gives samples along an arc of radius 5x108
radians/meter. Certainly for all physiological features (i.e. resolutions of <
1000 radians/meter) the arc can be considered a straight line and the Fourier -
Slice Theorem is an excellent model of the propagation of x-rays.
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-

' Objects
Ject:

.Figure 3.5 - Estimate of the two dimensional Fourier transform of the
E ‘object are available along the solid arc for transmission
tomography and the dashed arc for reflection tomography.
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Figure 3.6 As the illuminating frequency is increased the Fourier
Diffraction Theorem becomes equivalent to the Fourier Slice
Theorem.
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3.4 The Data Collection Process

Th_ev‘best that can be hoped for in any tomographic experiment is to
estimate the Fourier transform of the object for all frequencies within a disk
centered at the origin. For objects that do not have any frequency content
outside the disc then the reconstruction procedure is perfect.

There are several different procedures that can be used to estlmate the
object function from the scattered field. A single plane wave provides exact
information (up to a frequency of v2k,) about the Fourier transform of the
_object along a circular arc. Two of the simplest prOcedures involve changing
the orientation and frequency of the incident plane waves to move the
frequency domain arcs to a new position. By appropriately choosing an
“orientation and a frequency it is possible to estimate the Fourier transform of
the object at any given frequency. In, addition it is possible to change the
radius of the semicircular arc by varying the frequency of the incident field and
thus generatmg an estimate of the entire Fourier transform of the object.

3. 4 1 Plane Wave Illummatlon

The most stralghtforward data collection procedure consists of rotatmg thev
object and measuring the scattered field for different orientations. Each
“orientation will produce an estimate of the object’s. Fourier transform along a
circular arc and these arcs w1ll rotate as the object is rotated. When the object

is rotated through a full 360 degrees an estimate of the ob]ect w1]l be available

; for the entire Fourier dlsk

The coverage for this method is shown in Flgure 37 for a simple |
“experiment with 8 projections .of 9 samples each. Notice that there are two -
» ercs that pass through each point of Fourier space. Generally it will be
‘ 'necessary to choose one estimate as better. :

- On the other hand if the reflected data is collected by measuring the field
~on the same side of the object as the source then estimates of the object are
vavallable for frequencnes greater than vE) 2ko. This follows from Figure 3.5.

. The first experimental results for diffraction tomography were presented
by Carter and Ho [Car70, Car74, Car76 and Ho76] They used an optical plane
wave to illuminate a small glass obJect and were able to measure the scattered
ﬁelds using a hologram Later a group of researchers at the University of
- Minnesota . carried out the same experiments using ultrasound and gelatme

»phantoms Their results are discussed in [Kav82].
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Figure 3.7 Estimates of the object’s two dimensional Fourier transform
are available along the circular arcs for plane wave
illumination. :
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3.4.2 Synthetlc Aperture

Nahamoo and Kak [Nah82, Nah84] and Devaney [Dev84] have proposed a -
method that requires only two rotational views of an object. Consider an
arbitrary source of waves in the transmitter plane as shown in Figure 3.8. The
transmitted field, u,, can be represented as a weighted set of plane waves by .

taking the Fourier transform of the transmitter aperture function [G0068] o

Doing this the transmitted field can be expressed as

Coux) = 7 7‘2 f At Yol ¥k . o (&37)',

Moving the source to a new position, 7, the plane wave decomposition of the -
transmitted field becomes ' '

) = —= f [At(k ka"} o gl (33

Given the plane wave decomposmon the m01dent field in the plane follows.
' snnply as

4‘”2 At(k ) kaﬂ]ej(kxxfkﬂ)dkx‘ B __ (3.39)

R EEeY
i ,y) f
“In equation (3. 34) an equatlon for the scattered field from a single plane
- wave was presented. Because of the linearity of the Fourier transform, the-
effect of each plane wave, X *t5) can be weighted by the expression in )

brackets above and superimposed to find the Fourier transform of the total

scattered ﬁeld due to the incident field uy(x;n) as [Nah82] '
k., k) : o

f {At(kx) Ik "] (,. sz‘q )dk  (3.40)

Taking the Fourier transform of both 51des with respect to the transmitter
posmon n, the Fourier transform of the scattered field with respect to both the
transmitter and the receiver posmon is given by

O(a_kx)'x_ky)
: 2y | |

| This.approach gets the name synthetic aperture because a phase is added
to the field measured for each transmitter position to synthesize a transmitted
~ plane wave. Thus this method has a lot in common with the theory of phased

arrays.  Figure 3.9 shows ‘that by properly phasing the wave transmitted at
each transmitter location a plane wave can be generated that travels in:an_'___"

k,. (3.41)

‘ ’Us(kx;a) = At(kx)
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Figure 3.8 - A typical synthetic aperture tomography experiment.
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Lo F’igure'g;g e By. ,éd'd‘ing a phase to the field transmitted from each -
S = transmitter any desired plane wave can be synthesized. :
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arbltrary d1rect10n Smce the system is hnear 1t doesn t matter whether the
phase is added to ‘the transmitted 51gnal or ‘as part " of the reconstructlon

procedure Thus multlplylng the received field for each transmitter position by -

the pure phase term ¢’ k"" where 3. represents the location of the transmltter is
equivalent to an experlment w1th an incident plane wave w1th the dlrectlon A

vector (ke /K 2--k 2)

By collectrng the scattered ﬁeld along the recelver hne as a functlon of _
transmitter position, 7, an expressron can be- wrltten for the scattered ﬁeld
~ Like the simpler case with plane wave incidence, the scattered field i is related to

“the Fourier transform of the object along an- arc. Unhke the prevrous case,
though the coverage due to a single view of the object is ‘a pair of circular
disks as shown in Flgure 3.10. Here a smgle view consists of transmlttmg from
all pos1t10ns in a llne and measurlng the scattered ﬁeld at all positions along
the receiver llne By rotatlng the obJect by 90 degrees 1t lS possrble to generate '
the comphmentary disk and to ﬁll the Fourler domaln ‘ ’

The coverage shown in Figure 3. 10 is constructed by calculatlng (K—A) for
all vectors (K) and (A) that satisfy ‘the experimental constraints. Not only .
must each veetor satlsfy the wave equatlon but it is also necessary ‘that only

forward travellng plane waves. be used. The dashed line in Flgure 3.10 shows -

the valid propagatlon vectors (—A) for the transmltted ‘waves. To each possrble
vector (-R) a semlclrcular set of vectors representlng each poss1ble recelved'
wave can be added. The locus of received plane waves is shown as a sohd
- semi=circle centered at each of the transmltted waves 1nd1cated by an ‘x’. The
ehtire coverage. for the synthetlc aperture approach is shown as the_ shaded
areas. S

In addltlon ‘to the diffraction tomography conﬁguratlons proposed by

" Mueller and Nahamoo other approaches have been proposed. In Vertical
Seismic Profiling (VSP) [Dev8_4], the scattering between the surface of the Earth
“and a borehole is measured. Alternately a broadband incident field can be used

‘to illuminate the object. In both cases, the goal is to :estimatethe Fourier
" transform of the object. ’ o R
In geophysrcal imaging it is not possible to generate or receive waves from
all positions around the object. If it is possible to drill ‘a borehole then it is
_possible to perform VSP and obtam information about most of the object. A
typical experiment is shown in Figure 3.11. So as to not damage the borehole,
acoustic waves are generated at the surface using acoustic detonators or other
methods and the scattered field is m-easured in the borehole. -
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Figure 3.10  Estimates of the Fourier transform of an object in a
synthetic aperture experiment are available in the shaded

region.
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Figure 3.11 A typical Vertial Seismic Profiling (VSP) experiment.
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v The coverage in the frequency domain is similar to the synthetic aperture
: approach Plane waves at an arbitrary downward direction are synthesized by

approprlately phasing the transmitting transducers. The receivers will receive -

any waves traveling to the rlght The resulting coverage for this method is
. shown in Figure 3.12a. If can be assumed that the object function is real

valued then the symmetry of Fourier transform for real valued functions can be . -

"used to obtain the coverage- in Figure,3¢.‘12b. 1

3.4.3 Broadband Illummatlon

It is also poss1ble to perform an experlment for broadband illumination

[Ken82]. Up until this point only narrow band illumination has been

" considered; wherein the field at each point can be completely described by its
complex amphtude

Now consider a transducer that lllumlnates an object with a wave of the
form a,(ky,t). Taking the Fourier transform in the time domain this wave can
be decomposed into a n_umber of experiments. Let

At(kx’w) = fa't(ert)e—wtdt S (3-42) .
: where._w isrrelated, to ka’,-by . |
S o | e - - : o
k, R (3.43)

e “the speed of propagatlon 1n the medla and the wavevector (kx,k ) satisfies
- the wave equatron : o :

v If a plane wave lllumlnatlon of spatral frequency k, and a temporal
SRt frequency w. leads to the scattered field u,(k, ,w,y) then the total scattered field
s glven by a we1ghted superp031tlon of the scattered ﬁelds or

_us(kx;}') fAt(kx)w)us(kx)w)Y)dw : o (345)

~00 - ]
v‘ For plane wave mcldence the coverage for this method is shown in Figure =
»3 13a Flgure 3.13b shows that by doing four experiments at 0, 90, 180 and |
'270 degrees it is poss1ble to gather information about the entrre object.
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Transmitted .
Plane Wave \/ 4

)@w . ‘Oblj(ects
. | x
A
Figure 3.12 Estimate of the Fourier transform of an object are available

in the shaded region for a VSP experiment (a).
addition, the object is real valued then the symmetry of the

(b).

Fourier transform can be used to get the coverage shown in
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Figure 3.13 ' One view of a 'brOadbandkdiﬁ’raction tomography experiment -

will generate estimates of the object along the arcs in (a).
With four views of the object complete coverage can be
- obtained as shown in (b). . ’ : -
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_ CHAPTER 4
RECONSTRUCTION PROCEDURES

4.1 Introd uctlon

" The Fourler lefractmn Theorem as derlved in Chapter 3 shows that when
an obJect is illuminated with a plane wave traveling in the positive y-direction,
the Fourier transform of the forward scattered fields glves values of the object’s
Fourier transform on an are. Therefore if an object is 1llum1nated from many

different directions it is possible, in pr1nc1ple to fill up a disc of diameter Vak o

in the frequency domaln with samples of the Fourier transform of the object
and then reconstruct the object by direct Fourler inversion. Therefore
diffraction tomography, using forward scattered data only, determines the
object up to a maximum angular spatial frequency of \/— k. To this extent the o

reconstructed object is a low pass version of the orlglnal In practice, the loss of
resolutlon ‘caused by th1s bandllmltmg is neghglble being more 1nﬁuenced by

“considerations such as the aperture sizes of the transmlttmg and recervrng
elements, etc. ' ‘ ' ' ’

The fact that the frequency domain samples are: available over circular
arcs, whereas for convenlent dlsplay it is desired to have samples over a
rectangular lattlce is a source of computatlonal difficulty in reconstruction
algorithms for dlﬁ'ractlng tomography It should also be clear that by
lllummatmg the object over 360 °, a doublc coverage of the frequency domain is
generated; note, however, that this double coverage ‘is uniform. If the
illumination is restncted to a portion of 360 ° there still will be a complete
- coverage of the frequency domain, however in that case there would be patches
in the (wl,tu2) plane where there would be a double coverage. In reconstructing
from circular arc grids to rectangular grids, it is often easier to contend with a
uniform double coverage, as opposed to a coverage that is single in most areas
'and double in patches. o | |

However, for some applications not given to data collection from all
possible directions, it is useful to bear in mind that it is not necessary to go
“completely around an object to get complete coverage of the frequency domain.
In principle-,' it should be possible to get an equal quality reconstruction when
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illumination angles are restricted to a 180 ° plus interval, the angles in excess
~ of 180 ° being required to complete the coverage of the frequency domain.

 There are two computational strategies for reconstructing the object given
- measurements of the scattered field. As pointed out by [Sou84a] the two
algorithms can be considered as interpolation in the frequency domain and in
‘the space domain and are analogous to the direct Fourier inversion and -
backprojection - algorithms of conventional tomography. Unlike conventional -
. ‘tomography, where backprojection is the - preferred approach, the
- computational expense of space domain lnterpolatlon of diffracted prOJectlons

makes frequency domain interpolation the preferred approach. '

The remainder of this section will consist of derivations of the f"requency:

- domain and space domain interpolation algorithms. In both cases plane wave =

‘illumination will be assumed and the reader is referred to [Dev82, Pan83] for
reconstruction algorlthms for the synthetlc aperture approach and to [Sou84b]
for the general case.,

4.2 Frequency Domam Interpolatnon

In order to dlSCllSS the frequency domain 1nterpolatlon between a circular
grid on  which the data is: generated by diffraction tomography, and a
rectangular grid suitable for image reconstruction, parameters for representing
each grid must be se}ected and then the relatlonshlp between the two sets of
parameters written. ’ :

~In Chapter 3, Ug(w) was used to denote the Fourier transform of the
transmltted data when an object . is illuminated with a plane wave traveling
along the. posrtlve y . direction. Now Up 4(w) is used to denote this Fourier
transform ‘where the subscript ¢ indicates the angle of illumination. This angle
is measured as- shown in Figure 4.1. Slmllarly, Q(w,p) will be used to indicate
the values of o(wy,ws) along a semi-circular arc oriented at an angle ¢ as shown
in Figure 4.2 or

e Qukiwtkg) | w| <k | (4.1)
' Therefore when an 1llum1nat1ng plane wave is incident at- angle ¢, the equality
. Uplark) = —Jﬁ VR0 a0, /iF-aPky) (42)

R 9 ko-a e ’ . ' '

_can be rewritten as
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frequency domain

Figiire 41  Each projection is measured using the phi—omega coordinate
: system shown here. ’ " ’ ‘
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: ,fr:eq'u’ency‘doma.in )

 Figure42 A second change of variables is used to relate the projection
L ~ data to the object’s Fourier transform.
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In most cases the transmltted data will be unlformly sampled in space
and a discrete Fourier transform of thls data will generate unlformly 'spaced
samples of Ug 4(w) in the w domain. Since Q(w) is the Fourler transform of the
object along the circular arc AOB in Flgure 4.1 and since « is the projection of
a point on the circular arc on the tangent line CD, the uniform samples of Q in
k translate into non-uniform samples along the arc'AOB as shown in Figure
4.3. For this reason de51gnate each point on the arc "AOB by its (w,¢)
parameters [Note that (w,¢) are not the polar coordinates of a point on arc
AOB in Figure 4.2. Therefore w is not the radial distance in the (wl,wz) plane.
For point E shown the parameter w is obtained by projecting E onto- llne CD /]

The- rectangular coordlnates 1n the frequency domain will remain (w,wg).

exp[19\/k2~w Q( ,¢) for |w| < k (4-.3{),

Before the relatlonshlps between (w ¢) and (wl,w2) is presented it must be
mentloned that the pomts generated by the AO and OB portions of the arc
AOB must be consrdered separately as ¢ 1s varled ‘from 0 to 2x. This is done
because as mentloned before the arc "AOB generates a double coverage of the
frequency domaln as ¢ s varled from 0 to 2w, which is undesirable for
dlscussmg a, one—to—one transformatlon between the (w ?) parameters and the
(wy,ws) coordmates

Now reserve ( ,¢) parameters to denote the arc grid generated by one
,prOJectlon It is unportant to note that for thls arc grid, w varies from 0 to k
and¢from0to27r , , : SR S

The transformatlon l‘nz’iatlons between ( ,qb) and (wy,wp) will now be -
‘presented Th1s lS accompllshed 1n a shghtly round-about manner by first
deﬁmng polar coordlnates (Q 0) in, the (wl,wz) plane as shown in Figure 4.2. In
order to go from (wl,wz) to (w,¢) ﬁrst transform from the former coordinates to -
(Q 0) and then from (0, 0) to (w ¢) The rectangular coordlnates (wy,wq) are
related to the polar coordmates (Q 0) by (Flgure 4. 2) SRR

i +w2 . (44)

H—tan[ ] | (4.5)

In order to relate (Q 9) to (w,8), a new angle B, which is the angular position of
a pornt (wl,wz) on arc OB in Flgure 4. 2 is introduced. Note from the figure
that the point charactenzed by angle ﬂ is also charactenzed by parameter w.
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sampling along the arc
is non-uniform

frequency domain

Figure 4.3 Uniforfnly sampling the projection in the space domain leads
: : to uneven spacing of the samples of the Fourier transform of
- the object along the semi-circular arc.
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‘The relatlonshlp between w and ,3 is: grven by . e o .
w—ksrnﬁ R (a4) |

‘The ffollowmg relationship ex1sts between the polar coordlnates (Q 0) on. the one‘ ) L

.;hand and the parameters B.and ¢ on the other

p = 2sin! 2k : _'gf(4;6)‘

6=8 + ; +£.. o (47) "

.By substxtutlng Equatlon (4 ,6) in {4. 4) and then usmg (4 4), w can be expressed
- in terms of wy and w2 This result is shown below Slmllarly, by substltutlng
, 'Equatlon (4. 5) in (4. 7) the followmg express1on 1s obtalned for w and ¢

,(4.8') |

"'These are the transformatlon equatlons for Jinterpolating from the (w,4)
parameters used for data representatlon to the (wl,wz) parameters needed for -
inverse transformatlon -

- To convert ;) partlcular rectangular point lnto (w ,¢) domain, substitute its
wy -and Wy values in E ons, (4.8) and (4.9). The resulting values for w and ¢
may. not correspond to any for which Q(w,¢) is known. By virtue of equation |
(4. 3), Q(w,¢) will only be known over a uniformly sampled set of values for w

and 4. In order to determlne Q at the calculated- w and ¢, the follow1ng -

, procedure is used. Grven N, x N¢ uniformly located samples, Q(w,,d)J), R
- calculate a blllnearly 1nterpolated value of this functlon at the desrred w and ¢
: by usrng : '

Z] 2 wy ) (w‘w)hz(¢ ), - (4100

‘where

| w] SAw ] ot;herwise, (411)




62

(4.12)_’

otherwrse

:1 A¢ and Aw are the sampllng lntervals for ¢ and w, respectlvely When

‘ expressed in the manner shown ‘above, bilinear 1nterpolat10n may be -

'.1nterpreted as the output of a filter whose 1mpulse response is h;h,.

The results obtained with bilinear mterpolatlon can be considerably

o - lmproved if the sampling density in-the {w,¢)-plane is increased by using the

computatxonally efficient method of zero-extending the inverse two-dimensional -
‘inverse Fast Fourier Transform (FFT) of the Q(w;;¢;) matrix. The technique "
.con31sts of first. taking a two-dimensional inverse FFT of the N, x Ny matrix
o con51st1ng of the Q(w ,,¢J) values zero-extendmg the resulting N, x Ny array of
numbers to, ‘perhaps, mN,, x nM¢ and then takmg the FFT of this new array.
' The result is an mn-fold increase in the density of samples in the (w,4)-plane.

‘ 'After _computing Q( ,¢) at each pomt of a rectangular grid by the procedure

- | outllned above, the obJect f( ,y) is obtained by a slmple 2-D inverse FFT.

The ‘use of bilinear 1nterpolatlon and zero paddmg are both - good
- ftechmques for resampling-a function but they are used here i in a non standard “

o ‘way. Typlcally interpolation algorithms are derived assuming that the sampled

”_,data can be described as nearly linear (when using bilinear interpolation) and
'\frequency hmxted (when using Fourler domain zero paddmg) [Con80, Sto80,
Act70] In thls appllcatlon when resampllng the data from a circular grld to a
rectangular grld the functron is assumed to be smooth in the Fourier domaln
ﬁ -‘ThlS assumptlon is reasonable s1nce the data is assumed to be well behaved

_ The lnterpolatlon descrlbed above however, is carrled out in a rectlhnear -
'verswn ‘of the (w ¢) coordlnate system.- Thus four pomts in the (w,4) space,
where data is available," are first assumed to-be at the four corners of a
rectangle and then the mterpolatlon is calculated for a point in the middle.
- This is an approxrmatlon because the four data points actually define a smooth
functron that is deﬁned along four ‘points on two of the circular arcs. As will -
“be seen in’ the reconstructrons the effect of this approx1matlon is small but it
_ should be remembered when comparlng 1nterpolatlon schernes .



4.3 Backpropagatlon Algorlthms

It has recently been shown by Devaney [Dev82] and Kaveh [Kav82] that
there is an alternative method for reconstructing images from the diffracted
projection data. This procedure, called the fillered-backpropagation method, is
similar in spirit to the filtered-backprojection techniques which (due to their
superior numerical accuracy) have been one factor in the enormous success of
X-ray tomography. Unfortunately, whereas ’the. filtered- backprolectlon
algorithms' also possess efficient 1mplementat10ns the same cannot be said for
the filtered-backpropagation algorithms. The latter class of algorithms. is
computationally intensive, much more so than the 1nterpolat10n procedure -
dlscussed above. With regard to accuracy, they do.not seem to possess any
advantage especially if 1nterpolat10n is carried out after increasing the sampllng
density by appropriate zero-padding as discussed above.

. ‘The derivation of the backpropagation algorlthm w1ll follow as presented
by Devaney [Dev82] Flrst consrder the inverse Fourier transform of the object
function, - '

ofrv) = o

f fO(K v, BN CR £
‘ T00TO0 . ‘

This 1ntegral represents the obJect function in terms of the Fourrer transform
of the obJect along a rectangular grid. As already dlscussed a diffraction
‘ tomography experiment measures the Fourier transform of the object along
circular arcs; thus it will be easier to perform the integration if it is modified to
use the pro,je”ction data more naturally. This will be done using two coordinate
transformations: the first one will exchange the rectangular grid for a set of
semicircular arcs and the second will map the arcs into their plane wave

i

decomposition.

‘ First exchange the rectangular grid for semi-circular arcs. To do this
* represent K=(k, ky) in equat1on (4. 13) by the vector sum

| _ R = k(e5,) I (4.14)
 where By=(cos¢q,singy) and F=(cosX,sinX) are unit vectors representing the
~ direction of the wavevector for the transmitted and the received plane waves
respectively. - This coordinate transformation is illustrated in figure 4.4.
"To find the Jacobian of this transformation write |

k, = kg(cosX—cosdy) IR o (4.15)
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frequency domain = ___ S

| Flgure44 P The koso and kso used in the backpropagatlon algorlthm are
R ‘shown here .
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k

, = KylsinX-singg) (4.16)

and_ .

dk dk, = |kgsin(X—gg)| dXdg - (417)
= koy/ l—cos2(X—¢o)dX_d¢o o (418)
=k /TER (4.19)

and then equation (4 13) becomes
' 2n2m .

k02 f f,/ é’s’o)zo[k (“—s ]"‘0(“ '5’0’”d><d¢ (4.20)

"The factor of L is necessary because as discussed in section 4.2 the (X, )

ofrv) =

coordinate system gives a double coverage of the (ky,ky) space.
This integral gives an expreSsion for the scattered field as a function of the -
(X,¢0) coordinate system. While the data that is collected will actually be a
function of ¢, the projection angle, and k, the one dimensional frequency of
the scattered field along the receiver line. To make the final coordinate -
~ transformation take the angle X to be relative to the (k,7) coordinate system
diagramed in Figure 4.4. This is a more natural representation since the data
available in a dlﬁ'ractlon tomography experiment lies on a semicircle and
therefore the data is available only for 0<X <7. The X mtegral in equatlon
(4.20) above can be rewritten by noting ’

cosX = k/kg | ' ’ (4.21)

sinX = q/kg - | (4.22)
and therefore |
-1 ‘ . k '
dX = —dk. 4.23
T A N - (433
The X integral becomes
ko ) o
| ilh [ %l x| Of[{ko(?’“?o)]ejk@-%)'”d”- , | (4.24)
ko 4 ‘ |

Using the Fourier Diffraction Theorem as repraentedv by equation (4.2) the
Fourier transform of the object func’tion, O, can be approximated by a simple
function of the first order Born field, up, at the receiver line. Thus the object

i
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functlon in equatlon (4 24) can be written

O[ko@—so ] 2’7JUB(I€,’)‘-k )e_'j"'°. o (4.25)
v,_fv,In addltlon if a rotated coordmate system is used for.r = (£, ) where‘ |
* € = xsing — ycosg o . (4.26)
and ' ' | | ‘
N = xcos¢ + ysing | (4.27) |

. then the dot product ko{5=S;) can be written | ‘
R €+ {rko)n. | (4.28)
The coordinates (&,) are lllustrated in Flgure 4.5. Usmg the results above the

~©+ X integral is now written as

. ko o ’ ‘ . .
ko {d":l KI UB :'7_k ) ~ilog NE"’('I_ko) (4.29) '
ko ‘ - ,

- and the equatlon for the ob]ect functlon in equatlon (4. 20) becomes

' ‘ Jko 2% kq i
ofrv) = =" fd¢0 f d:cl | UB k,ko)e TThoei"é itk - (4.30)
~To " brirrg out the ﬁltered backpropagatlon lmplementatlon, the inner
'bmtegratlon is wrltten here separately o

Men) = & | ToHWG@ecpliog do (430
~ where |
| M) = [, o] <k
=0 Jw| >k -
R ' _ 4.32
Gn(w)"_ = exp[ (\/ko—w —ko)] |w| < ko (432)
) =0 o] >k
and o ST o . |
I‘¢( w) = UB(tc,'y—ko)e—’m (4.33)

| Wlthout the extra ﬁlter functlon G( ), the rest of Equatlon (4. 31) would
correspond . to the - ;ﬁltermg operation of the projection data in x-ray
tomography. The filtering as called for by the transfer function G,(w) is depth
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Figui’e 45  In backpropagatlon the prOJect is backprOJected with a depth
dependent filter function. At each depth, #, the ﬁlter
corresponds to propagatlng the field at a distance of Af.
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dependent due to the parameter 3, which is equal to xcos¢ + ysing..

. ~In terms’ of the filtered projections Ily(£,n) in Equation (4.31), the

* ‘reconstruction integral of Equation (4.30) may be expressed as ‘

S ’ A 7 iv .

f(x,y) :i» [ d¢ T, (xsing — yeosp , xcosp + ysing) (4.34)
0 S v

 The comphutationa,l procedure fei' reconstructing an image on the basis of
Equations (4.31) and (4.34) may be presented in the form of the following steps:

.“STEP 1: In accordance with Equation (4.31), filter each projection with a
“separate filter for each depth in the image frame. For example, if
only 9 depths are used as shown in Figure 4.5, 9 different filters
would need to be applied to the diffracted projection shown there.
[In most cases for 128 x 128 reconstructive, the number of discrete

- depths chosen for filtering the projection will also be around 128. If

S there are much less than 128, spatial resolution will be lost.] [Cra79]

| ST EP2 To each pixel (x ,y) in the i image frame, in accordance with Equation
' -(4 34) allocate a value of the filtered projection that corresponds to
the nea.rest depth line. ~ -

" STEP 3: Repeat the preceding 2 steps for all pro_lectlons As a new pro;ectlon
-  Is taken up, add its contribution to the current sum at pixel (x,y).

The depth dependent  filtering in Step 1 makes this algorithm
~computationally very demanding. For example, if N, depth values are used,
- the .processihg of each projection will take (N, +1) Fast Fourier Transforms
(FFT’s). If the total number of projections is N¢, this- translates into
(N, +1)N4 FFT’s. For most N x N reconstructions, both N, and Ny will be
approximately equal to N. Therefore, the filtered-backpropagation algorithm
will require approximately N2 FFT’s compared to 4N FFT's for bilinear
mterpolatlon [For precise comparisons, it must be mentioned that the FFT's
for the case of bilinear interpolation are longer due to zero-padding.] ‘
“Devaney [Dev82] has also proposed a modified filtered-backpropagation
algorithm,‘ in..which G,(w) is simply replaced by a s’ingle G, (w) where
No = xocos¢ + yosing, (xq,¥¢) being the coordinates of the point where local
~accuracy in reconstmctlon is desired. [Ehmmatlon of depth dependent filtering
reduces the number of FFT s to 2N¢]
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4 4 Signal Processmg Concerns

The reconstruction algorithms described above and in [Pan83] mvolve a

number of signal processing steps. The following work describes the _qu_ahty of
the final reconstruction when small changes are made to the signal processing
procedure. These changes are valid for reconstruction algorithms usmg elther
_space (backpropagatlon) or frequency domain interpolation. '

Assumlng first order approximations are valid, the algorithm for

reconstructing an object from diffracted projections is briefly as follows:

1)  Collect the data » '

- 2) Fourler Transform each pro_]ectlon , _

3) ‘Estimate the 2- dimensional Fourier transform of the ob]ect from the
transformed projections - I ,

4) - Perform a 2-dimensional inverse Fourler transform to get an estimate of '
the object. ' _ o

At each step of this procedure SIgnal processing theory suggests a number _
of procedures to improve the reconstruction. These include , ‘
a) -« Zero paddlng the projection data to reduce the effects of lnterperlod

interference. This also increases the resolution in the frequency domain

~and should make interpolation easier.
b) - Applylng a Hamming window to the projection data to smooth out the

- data at the ends of the receiver. - R
¢} Multiplying the two dimensional Fourier- Transform of the object by a
Low Pass Filter (LPF) (a Hamming window in this case) to reduce the
effects of high frequency noise.

These new steps are illustrated in Figure 4.6 where optional steps have been
indicated with dashed boxes. we have indicated the optional steps with dashed
boxes.

To evaluate the effects of each ’of these changes Figure 4.7 and Figure 4.8
shows the center line of reconstructions using all eight possible combinations of
options. The data was generated for a cylinder of radius 1)\ and a refractlve
index change of 5%. '

An important part of the reconstruction process is filtering the projection
data. For efficiency reasons the filter is implemented with an FFT algorithm
but these algorithms do not perform an aperiodic convolution like that used in.
linear systems theory. Instead a filter implemented with FFT’s performs
circular convolution. ’ '
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— - Pad w8 — FFT | Interpolation -~ Pass +— "o
| Data T4 Data | :wi'jiif’wj : | iFilter! FFT .
,Figuré 4.6 . The signal processing steps in a typical diffraction

~ tomography algorithm are shown here. The steps that are
needed are shown with a solid box while the optional steps
~-are shown with dashed lines. ‘
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If the data is first pa.dded with zeros so that the new data sequence is
tw1ce as long as the original then the results produced by circular and aperiodic
convolution are the same. In addition, zero padding the orlgmal projection
increases the resolution of the data in the frequency domain and thus makes a
simple interpolation scheme more accurate. Unfortunately the extra data more
than doubles the computational time. (For example an FFT takes NlogN
| operatlons so when N is doubled the computational expense goes up by a factor

of ‘ :

2
log2N

. =21+
Nlog,N

(4.35)

'Based on the reconstructions shown in Figure 4.7 it Is possible to conclude that
doubling the size of the projection data only makes a small improvement in the
quality of the reconstructions. Since the extra zeros more than double the
computational expense involved in filtering the data it is- probab]y best not to
zero pad. ' |

A second s1gna,l processmg concern is due to data truncation. In a real
world experiment it is only possible to collect and process a finite amount of
data. Generally this isn't a. problem since the data eventually goes to zero
outside - of some range and the data can be truncated without loss of
information. This is certainly true, for example, in x-ray CT projections but is
not true with diffracted projections. With fields the amplitude decays

proportionajlr to _Ili- and consequently the projection data never goes to zero.

Mathematically the data truncation error can be modeled as a
multiplication in the space domain by a rectangular window [Opp75]. In the
frequency domain this is equivalent to convolving the data with a sinc function
and thus smoothes the frequency domain signal. A number of windows like the
Hamming window have been designed to reduce the effects of data truncation.

Figure 4.7 shows that a Hammlng window does not have the same positive
effect with dlﬁ'ra,cted_ projections. In this case most of the hlgh frequency
information is at either en'd of the projection and thus the window only serves
to attenuate the high frequency components. This is shown in Figure 4.9
where the Fourier transform of the diffracted projection is shown before (top
graph) and after (bottom graph) applying a Hamming window to the projection
data. The loss of high frequency data caused by the Hamming window leads to
the rounded edges shown in the reconstructions shown in Fi_gure 4.7.
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Finally a very large improvement.is observed by adding a Low Pass Filter
before inverse Fourier transforming the data. The filtering done before
interpolation includes a 1/k term which also serves to enhance the high
frequency noise. By adding a LPF this effect is counteracted. - '

The best results would be obtained if it would be possible to characterize
the spectral density of the signal and the noise and then design a Wiener filter.
This is a difficult problem and adequate results were obtained by us1ng a Low
Pass Fllter of the form o

w(w) = 0.54 + 0.46008(%1) o '(4.36)‘

Based on the results shown in Figure 4.7 and 4.8 the best reconstructions
are obtained if a low pass filter is used to smooth the final reconstruction but
that zero padding the prOJectlon data and applying a Hammmg window to the
prOJectlon data do not improve the results.

Finally a small improvement was made to the backpropagation algorithm
by using bilinear interpolation instead of nearest neighbor. The
backpropagation algorithm consists of both a depth dependent filter and then
the addition to each pixel of a portion of the backpropagated field. In the
original formulation each pixel is assigned the nearest neighbor in the field, but
as shown in Figure 4.10 even better résults are obtained if the valued added to
each pixel is calculated using bilinear interpolation. Compared to the expense
of doing the backpropagation filter the bilinear interpolation “cost s
inconsequential and thus worth the effort. '

This is also shown when the Mean Squared Error in the reconstructions is
computed. The table below compares the error for bilinear interpOla'ti‘on versus
nearest neighbor and bilinear backpropagation. As can be seen from Table 4.1,
bilinear interpolation significantly improves the reconstruction.
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Table 4.1. Mean Squared Error in a reconsfruction
of a cylinder using three interpolation schemes.

Mean Squared Error

Bilinear, Interpolation - 48%
Nearest Neighbor Backpropagation 6.8%
Bilinear Backpropagation ‘ - 4.8%

i
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CHAPTER 5
LIMITATIONS

5. l Introductron

The quahty of a ﬁrst order drﬁ'ractron tomographrc reconstructlon is-

hmlted by both mathematrcal approx1mat10ns and experrmental hmltatlons In

the derivation of a model for the scattered ﬁelds elther the Born or the Rytov. :
approxrmatlon is used to solve the 1ntegral equatlons for the scattered field.
These approxunatlons are a source of error and limit the types of ob]ects that
“can be 1maged w1th dlﬂ'ractlon tomography The only way to reduce this type
of error is to use a better modél or a hlgher order approx1matlon Better
models for the scattered field w111 be dlscussed in Chapter 6 ' '

The experlmental llmltatlons on the other hand are caused by a shortage
of data. It is only possrble to collect a ﬁnlte amount of data about the

scattered ﬁeld ‘and the experlmental errors can be attrlbuted to 1nterpolat10n o

errors, ahasrng and the finite aperture Up to the l1m1t in resolutlon caused by

‘evanescent waves and the limit in quahty due to the Born and the Rytov
approxrmat1ons it is p0581ble to 1mprove a reconstructlon by collectlng
: addltlonal data o

Computer s1mulat10ns are presented in thls chapter 1Ilustrat1ng the errors
- in ﬁrst order dlﬁ‘ractlon tomography To study the eﬂects of the Born and the
Rytov approxrmatlons it is necessary to calculate (or even measure) the exact
scattered fields and then use the most accurate reconstructlon algorithms
available. The exper1mental €rrors can be minimized by calculating a large
' number of data points and us1ng a c1rcularly symmetrlc object to reduce the
errors due to’ angular sampllng I experimental errors.are minimized then the |
only remalnrng source of errors are caused by the approxrmatrons made in ‘the

_reconstrnctron algorithm. - As: already mentloned the mathematrcal limitations

'on the reconstructlons are a functlon of the object’s size and refractlve lndex

The experlmental errors are highlighted by minimizing the algorlthmlc'
€rTOTS. ThlS can be done in two ways. The more stralghtforward method is to
choose a sma__ object with a small change in refractlve index. As the size of

- vthe object and 1ts refractlve lndex are reduced both the Born and the Rytov
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apprO\rmations more accurately model the exact scattered field. A sccond
approach is to assume the Born or Rytov approximations are valid then use the -
_ Fourier Diffraction Theorem to generate the scattered fields from the Fourier
 transform of the obJect In both cases the amount of data calculated is varied

~to hlghlrght the dlﬁ‘erent experlmental eIrors.

-' 5.2 Mathematlcal leltatrons

In diffraction tomography there are dlﬁerent approx1mat10ns involved in
 the forward and inverse directions. In the forward process it is necessary to
assume  that the ob_]ect is weakly scattering so that either the Born or the
Rytov approximations can be used. Once an expression for the scattered field
‘is derived it is necessary to not only to measure the scattered fields but then
vnumer1cally 1mplement the inversion process

_ - To study the limits of the mathematical approximations the exact field for

the scattered field from a- cylrnder as shown by Weeks [Wee64] and by Morse
and Ingard [Mor68] is calculated for cyhnders of various sizes and refractive
. .blndex In the srmulatrons that follow a single plane wave of unit wavelength is
. 1nc1dent on the cylinder and the scattered field is measured along a line at a

.dlstance of 100 wavelengths from the origin. In addition all refractive index
_ changes are modeled as monopole (omnldlrectlonal) scatterers. By doing this
the drrectronal dependence of dlpole scatterers does hot have to be taken mto
account . R : o

At the recelver hne the recelved wave is measured at 512 pornts spaced at
‘ ‘1/2 wavelength mterv L d t “3s the rotatlonal symmetry of a single
‘ ‘cylrnder at the orlgu} _rs u se . duce ‘the computation time of the

snnulatrons Slnce all pro;ectrons are ldentrcal thls elrmlnates any angular

_,1» N )

' 1nterpolat10n error.’

5 2 l Evaluatlon of the Born Approxrmatron b

In usmg the Born approxrmatlon it is necessary to _assume that the

"amplltude of the scattered field is small compared to the incident field. - As

- already dlscussed the Born approx1matlon is most sensmve to phase changesv

- and thrs wrll be shown ﬁrst qualltatlvely and then quantltatlvely From
o '-Chapter 2 the phase change is given by T _

IR Phase Change = 41rn5)\ . . | (5..1)

o wherethe cyli’n_der has a r'a_dms“' 'of-‘a_ an_d :a refractive index of 1+n; -
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, The results shown in Figure 5. 1 are for cyhnders of four d1ﬁ‘erent refractlvev o
_indices. In addition Figure 5.2 shows plots of each reconstruction along a line
‘through the center of the cylinder. Notice that the y- coordlnate (refractlve

index) of the’ center line is plotted in terms of change from unlty R |

Simulations are shown for refractlve indices that range from 1% change

" (refractlve index of 1. 001) to a 40% change (refractive index of 1. 4) For each
refractlve index, cyllnders of size 1, 2, 4 and 10 wavelengths are shown. This

. gives a range of phase changes across the cyllnder (see equatlon (5.1) above)
from .004r to 167. :

Clearly, all the cyhnders of refractive 1ndex l 001 in Flgure 5.1 are

perfectly reconstructed As equatlon (5.1 predlcts the results get worse as the - =

- product’ of refractlve index and radius gets larger. The largest refractive’ 1ndex
that is successfully reconstructed is l‘or the cylinder in Figure 5.1 of radlus .
wavelength and a refractive 1ndex that differed by 20% from the surroundlng _
medium. ' ‘

While 1t is dlfﬁcult to evaluate quantltatlvely the three dlmens10nal plots B

it s certalnly reasonable to conclude that only cyhnders where the phase‘ ‘b

change across the object is less than or equal to .87 are adequately

reconstructed In general the reconstructlon for each cylinder where the phase» :
.change across the cylinder is greater than 7 shows severe artlfacts near the

~center. This hmltatlon in the phase change across the. cyhnder is consistent -~

“with the condltlon ‘described in Chapter 2

5.2.2 Evaluatlon of the Rytov Approxrmatlon

Figure 5.3 shows the simulated results for 16 reconstructlons using the"
‘Rytov approximation. To emphasize the insensitivity of. the Rytov
approx1matlon to large objects the largest object simulated has a diameter of
100\ | | - |
‘It should be pointed out that the rounded edges of the 1) reconstructions
are not due to any limitation of the Rytov approximation but instead are the
result of a two dimensional low pass filtering of the reconstructions. Recall
that for a transmlss10n experlment an estimate of the object’s Fourier
transform is only available up to frequencies less than V2 2kg. Thus the
‘reconstructions shown in Figure 5.3 show the hmltatlons of both the Rytov
.approximation and the Fourier leractlon Theorem, =~



Figure 5.1

1.10 | 1.20

1.01

Simulated reconstructions using the Born approximation for
16 objects with four refractive indices between 1.001 and 1.20
and four radii between 1 and 10\. '
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Figufe 5.3 Simulated reconstructions using the Born approximation for
16 objects with four refractive indices between 1.001 and 1.10
and four radii between 1 and 100\.
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5.2.3 Comparison of the Born and Rytov,Approximation

Reconstructions using exact scattered data show the similarity of the Born
‘and the Rytov approximation. Within the limits of the Fourier Diffraction
Theorem the reconstructions in Figure 5.1 and 5.3 of a 1\ object with a small
refractive index are similar. In both cases the reconstructed change in
refractive index is close to that of the simulated object.

The two approxrmatlons differ for objects that have a large refractive
index change or have a large radius. The Born reconstructions are good at a
- large refractive index as long as the phase shift: of the mcrdent ﬁeld as

predicted by equatlon (5. 1) is less than .

~ On the other hand the Rytov approximation' is very sensitive to the
‘refractive index but produce excellent reconstructions for objects as large as
100X. Unfortunately for object with a refractive index larger than 1% the
Rytov approximation quickly deterlorates ’ ' .

In addition to the qualitative studies a quantltatlve study of the error in
the Born and Rytov reconstructions is also possible. As a measure of error the
relative mean squared error in the reconstruction of the object function is
integrated over the entire plane. If the actual object function is o(r) and the
reconstructed object functlon is o (r) then the relatrve ‘Mean Squared Error

(MSE) is glven by ‘
f f [o r)—o ]2dr |
JJlolr)

Thrs study presents: the ‘Mean Squared Error for 120 reconstructrons based
on the exact scattered fields from a cyhnder In each case a 512 point receiver
line is at a distance of 10 X from the center of the cylinder. Both the receiver

line and the object reconstruction are sampled at 1/4 X intervals.

- (5.2)

The plots of Figure 5.4 preserrt a summary of the mean squared error. for
cylinders of 1,2 and 3 X\ in radius and for twenty refractive indices between
1.01 and 1.20. In each case the error for the Born approximation is shown as a
solid line while the Rytov reconstruction is shown as a dashed line. The data
~ used for these simulations was the exact scattered fields. from a cylinder
measured. at 512 recelver pomts along a recelver line 10\ from the center of the
cylinder. '

Many researchers [Kav82 Kel69, Sou83] have postulated that the Rytov
‘approximation is clearly superior to the Born but as the actual reconstructions
represented by Figure 5.4 show for a 1\ cylinder this is not necessarily true. It
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Figure 5.4 The relative mean squared error for reconstructions using the
| Born (solid line) and Rytov (dashed line) approximations.
The error for a total of 60 objects with a radius of 1, 2 and 3

wavelengths are shown. :
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- is interesting to note that, while the Rytov approﬁcimation shows a steadily
increasing error. with higher refractive indices, the error in the Born
reconstruction is relatively constant until a threshold is reached. For the 2\
and 3\ cylinders, this breakpoint occurs at a phase shift across the cylinder of
0.6 and 0.77. Thus, a criteria for the validity of the Born approximation is_
~ that the product of the radius of the cylinder in wavelengths and the change in
refractwe index must be less than .175.

Figure 5.5 presents a summary of the relative mean squared errors for
cylinders with refractive indices of 1.01, 1.02 and 1.03 for forty radii between 1
and 40\, Because the size of the cylinders varied by a factor of forty, the
- simulations parameters were adjusted accordingly. For a cylinder of radius R,
the scattered field was calculated for 512 receivers along a line 2R from the
center of the cylinder and spaced at 1/16R intervals. ' '

In each of the simulations, the Born approximation is only slightly better
than ‘the Rytov approxrmatlon until the Born approximation crosses its
threshold with a phase shift of 0.7w. Because the error in the Rytov
approximation is relatlvely flat, it is clearly superior for large objects with
small refractive indices. Using simulated data and the Rytov approximation
,objects as largeas 2000>\ in radius have been reconstructed. |

" '5..3 Evaluatron of Reconstructlon Algorlthms

.To study the approxrmatlons involved in the reconstructlon process it is
'necessary to calculate scattered data assuming the forward approximations are
kvahd This can be done in one of two different ways. As already discussed the
Born and Rytov approxrmat1ons are valid for small objects and small changes
1n refractive index. Thus, if the exact scattered field for a small and weakly
scattering object is calculated then it can be assumed that e1ther the Born or
the Rytov approxrmatlons is exact. '

- A better approach is to recall the Fourier Diffraction Theorem which says
that the Fourier transform of the scattered field is proportional to the Fourier

o transform of the object along a clrcular arc. Since this theorem is the basis for

' the first order inversion algorlthms if it is assumed correct the approximations
o 1nvolved in the reconstruction process can be studxed '

~If the Fourier Diffraction Theorem holds, the exact scattered ﬁeld can be
'calculated exactly for ob]ects that can be modeled as elhpses The analytlc

- ";__l'expressron for the 'Fourier transform of ‘the obJect along an arc is then
R proportrOnal to the scattered ﬁelds TlllS procedure is- fast’ and allows the
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scattered fields to be calculated for testing reconstruction algorithms and
experimental parameters. '

To illustrate the accuracy of the interpolation based algorithms, the image
in Figure 5.6a will be used as a test “‘object” for showing computer simulation
results. Figure 5.6a, with its gray levels as shown in Figure 5.6b, is a
modification of the Shepp and Logan “phantom’ described in [She74] to the
case of diffraction imaging [Dev83, Pan83]. The gray levels shown in Figure 5.6
represent the refractive index values. This test image is a superposition of
“ellipses, w1th each elhpse being assugned a refractlve lndex value as shown in
' Table 5.1. ’

- Table 5.1. Sumniary of parameters for diffraction
tomography simulations

Center Major Minor Rotation Refractive
Coordinate  “Axis Axis Angle - Index
, (00). 092 069 90 10
| (0-00184) 0874 06624 90 - <05
(022,00 031 011 72 -0.2
(0.220) 041 016 108 -0.2
(0,0.35) 025 021 90 0.1
(0,0.1) 0.046  0.046 - 0 0.15
(0,-0.1) 0.046  0.046 0 0.15
(-0.08,-0.605)  0.046  0.023 0 0.15
- (0,-0.605)  -0.023 - 0.023 0o 015
(0.06,-0.605)  0.046 . 0.023 =~ 90 0.15

- A major advantage of using an l‘i'mage like Figure 5.6a for computer
| SImulatlon is that the analytical express10ns for the transforms of the diffracted
prOJectlons can be written. The Fourier transform of an ellipse of semi-major
and seml-mlnor ‘axes A and B, respectlvely, is given by |
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Figiife 5.6 _A modified version of the Shepp and Logan head phantom is
' - "used to test reconstruction algorithms. The numbers

represent the relative change in refractive index from the
background value of 1.0.
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where u and v are spatial angular frequencies in the x- and y-directions,

respectively; and J; is a Bessel function of the first kind and order 1. When the

center of this ellipse is shifted to the point (xy,¥1), and the angle of the major
axis tilted by «, as shown in Figure 5.7b, its Fourier transform becomes

| O;llipse(uav) = : (53)

1/2
_27rAJliB{((u' )JA/B)? + (v' )2] } ;

—j{uxy +vyy)
ot

- : iz (5.4)
lwamr + v |
where R
v =u eos a +vsin (5.5)
and | | |
| v =-usina +vcosa. | (5.6)

, Now con51der the situation where the elhpse is illuminated by a plane. By
. the Fourier Diffraction Theorem the Fourier transform of the transmitted wave
| ﬁelds measured on the receiver line is given by the values of the above function
“on a circular arc. For the test object of Flgure 5. 7b, if weak scattering is
assumed and therefore there is no interaction among the ellipses, the Fourier
“transform of the total forward scattered field measured on a line, is the sum of
the values of functions like (5.4) over the cireular arc. This procedure is used
to generate the diffracted projection data for the test image.

} It should be mentioned that by using this procedure to calculate. the
 diffracted projection data only the accuracy of the reconstruction algorithm is
~tested, without checking whether or not the “test object’’ satisfies the underlying
assumption of weak scattering. In order to test this crucial assumption, it is
necessary to generate the forward scattered data of the object. For multi-
component objects, such as the one shown in Figure 5.6a, it is very difficult to
do so'due to the interactions between the components.

‘ Pan and Kak [Pan83] presented the simulations shown in Flgure 5.8.
Using a comblnatlon of increasing the sampling density by zero padding the
51gnal and bilinear interpolation, results are obtained in 2 minutes of CPU time
on a VAX 11/780 mlnlcomputer with a floating point accelerator (FPA). The
| reconstructlon is shown over a 128 by 128 grid using 64 views and 128 receiver
posmons. ‘ The_number of operations required to carry out the interpolation
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Figure 5.7 Assuming the Fourier Slice Theorem is valid the scattered

field can easily be computed as the values of the Fourier
transform of the rotated and translated ellipse.
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~ and 1nvert the ‘object functlon is on .the order of N2logN The resnltlng :
’ reconstructlon is shown in Figure 5.8a.

} Flgure 5.8b represents the. result of back propagatmg the data to 128
depths for each view while Figure 5.8¢ 1s the result of back propagatlon to only
a single depth centered near the three small elllpses at the bottom of the
, prcture The results were caleulated on a VAX 11/780 mlnlcomputer with a
F loatlng Pomt Accelerator (F PA) and the resultlng reconstructlons were done
_over a 128 by 128 grid. Like the prev1ous lmage the 1nput data consrsts of 64
pl‘O]QCthllS of 128 points each. :

There is & significant difference in not only the reconstruction time but
also the resultinig qUallty ‘While the modified back propagatlon only took 1.25
minutes the resultlng reconstructron is much poorer than the full back
propagatron which took 30 mlnutes of CPU tlme A cornparlson of the various
algorlthms is shown in Table 5.2. ' : '

Table 5 2 Comparlson of Algorlthms N

Algorlthm :.' Complexrty ~CPU Tlme

Interpolatlon | S N2logN o 2‘M1nutes '
| ‘Back Propagatlon o NdN¢NlogN '30 Minutes
Modlﬁed Back Propagatlon N¢NlogN 1.25 Minutes|

.4 Experrm' Tital erltatlons

In add1t1on {6 the limits on the reconstrictions 1mposed by the Born and
the Rytov approx1matlons there are also experimental limitations. These

addltlonal factors are caused by
R | Wave propagatlon ln free space
e Sampling the data along the recelver line
"o Finite recerver length '
. lelted v1ews of the ob]ect

" In inverse scatterrng theory thée measured complex amphtude of a received
wave is sampled ﬁltered and then interpolated to estrmate the Fourier -
transforrn of the obJect functlon The reconstruction process is llnear because
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f:1t cons1sts only of ﬁltermg the data and then calculatmg its inverse Founer
_ transform ‘ ‘

The ﬁrst three factors each can be modeled as a srmple constant low-pass
I ﬁltermg of the scattered field. Because the entire process is linear the net effect

- isa single low. filter at the lowest of the three frequencies. The experlment can

be optlmlzed by adJustlng the parameters of the experlment so that each low
pass filter cuts off at. the same frequency. -

‘ Avlrmlted number of views also can be modeled as a low pass filter. In this ’
- case, though, the cutoff frequency varies with the radial direction.
. 5.4 Evanescent. Waves

The most fundamental liinltation is that evanescent waves are ignored.

o Si‘nce these waves have a complex wavenumber they are severely attenuated

over a distance ‘as small as several wavelengths This limits the highest -
: recelved wavenumber to T .

k. = 27

mar =T

69

ThlSlS a fundamental limit of the propagation process and the resolution of the

| f_._vreconstructron can only be improved by movrng the experlment to a higher

frequency (or shorter wavelength )

B 4 2 Sampllng the Received Wave o
After the wave has been scattered by the ob]ect and propagated to the

receiver line it must be measured. This is usually done with the a point

-receiver. Unfortunately 1t is not pos31ble to sample at every point, so a non
- zero samphng interval must be chosen. - This rntroduces a measurement error
into the process. By the Nyqulst theorem thlS can be modeled as a low pass
: ﬁltermg operatlon where the hlghest measured frequency is glven by

meas T

and T is the samphng interval. Of course thrs analysis has 1gnored the non-

B hnear eﬁects of ahasmg and the resultlng frequency shifts that occur
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5.4.3 The Effects of a Finite Receiver Length ,

Not only are there phys1cal limitations on the finest sampllng lnterval but
usually there is a limitation on the amount of data that can be collected This.
generally means that samples of the received waveform will be collected at only
a finite number of points along the receiver line.- This is usually justified by
taking data along a line long enough so that the unmeasured data can be safely
1gnored Because of the wave propagation process th1s also lntroduces a low
pass ﬁlterlng of the recelved data. ' : '

~ Consider for a moment a s1ngle scatterer at some dlstance, lo; from the k
receiver line. - The wave propagating from this single scatterer is a cyllndncal
wave in two dimensions or a spherical wave in three dimensions. This effect is
diagramed in Figure 5.9. It is easy to see that the spatlal frequenc1es vary w1th
- the p051t10n along the receiver line. ‘ '

~ An opt1c1an studylng this problem would be 1nterested in know1ng the
resolvmg power of the system as a function of the size of the aperture [GooB8]. - -
The analysis would normally be carried out assuming that the object is far -
enough from the aperture so that it can be assumed it is in the aperture’s far
field. But in this work the frequency content of the measured field is a limiting
factor in the reconstruction quality so the effect of a limited aperture will be
'analyzed with an emphasis on the spatlal frequency content of the received
field. The two approaches to be con51dered here use a point source and analyze
the frequency content at the aperture Since all points in space are in the far
field of a point source this analysis glves 1dentlcal results to classical optlcs
theory , ,
It is ea51er to analyze the effect by cons1der1ng the expandlng wave to be
locally planar at any point distant from the scatterer. At the point on the
receiver line closest to the scatterer there is no spatial variation [Goo68]. This
corresponds to recelvmg a plane wave or a received spatial frequency of zero.
ngher spatlal frequenc1es are received at points along the receiver line
that are farther from the orlgln The received {frequency is a- function of the
sine of the angle between the diréction of propagation and a perpendicular to
the receiver line. This function is given by '

k(y) = ky,,sin (5.9)
where 0 is the angle and kﬁiax is the wavenumber of the incident wave. Thus
at the origin, the angle, 6, is zero and the received frequency is zero. Only at
infinity does the angle become equal to ninety degrees and the received spatial
frequency approach the theoretical maximum.
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"Fivgure_ 5.9 o The ﬁeld scattered by an object is measured along a receiver

llne w1th finite length
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This reasoning can be Justlﬁed on a more theoretical baSlS by consulerlng
the phase of the propagating wave.  The received wave at a point (x ( "lo y) due_ _
to a scatterer at the orlgln isgivenby . :
» ejko\/‘ x*+y? ‘
ux=lyy) = S —.

Vx2+y2v
The ih’stantaneous spatial frequency along the receiver line (y Uv‘a,ries) of this
wave can be found by taking the partial derivative of the phase with respect to

[Gag78] o | -
phase = koVy?+x? o (sa1)
S key e
kr’ecv. = 2 o E SRR (512) .
| ,/ +y » e .
where kl.ecv is the spatial frequency recelved at the pomt (x lo,y) ‘From Figure
5.9 it is easy to see that ' ’

(5.16)

sinf = —L—' ‘ N (B E)
and therefore equatlon (5.9) and (5.12) are equlvalent

This relation, (5.12), can be inverted to give the length of the recelver line-
for a given maximum received frequency, K .- This becomes

-k

- 4 maxX
‘ \’/ko?—k,?m

Since the highest received frequency is a monotonically increasing function
of the length of the receiver line it is easy to see that by limiting the sampling
of the received wave to a finite portion of the entire line that a low passed
version of the entire scattered wave is measured. The highest _niea,sured'
frequency is a simple function of the distance of the receiver line from the
scatterer and the length of measured data. This limitation can be better
understood if the maximum recelved frequency is written as a function of the
angle of view of the receiver line. Thus substituting

(5.14)

w@) =L 615

it is easy to see that
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(5.16) |

and

L= ko tand
e tan20+1

" Thus ‘l{‘,ecv is a monotonically increasing function of the angle of vieyv, 6. Tt is
‘easy to see that the maximum received spatial frequency can be increased by
either moving the receiver line closer to the object or by 1ncreasrng the length

(5.17)

"~ of the receiver hne

5 5.4.4 Evaluatron of' the Experlmental Effects

"Exact scattered data is used to verify the optlmum experlmental values
- and the effect of a finite receiver length is shown in Figure 5.10. The spatial
“frequency content of ‘a wave is found by taking the FFT of the sampled points
along the receiver line and is compared to the theoretical result as predicted by
" the Fourier Transform of the object. The theory predicts that more of the

" high frequency components will be present as the length of the receiver hne

' increases and this is confirmed by simulation.

While the above. derlvatlon only consrdered a s1ngle scatterer it is also
‘approximately true for many scatterers collected at the origin. This is possible
because the inverse reconstruction process is hnear and each point in the object
scatterers an 1ndependent cyllndrlcal wave. -

5 4 5 Optlmlzatlon

Slnce each of these three factors is lndependent their effect in the
frequency domaln can be found by srmply multlplylng each of their frequency
responses together As has been described above each of these effects can be
modeled as a simple low-pass filter of the theoretical data so the combined
eﬂ'ect is also a low pass ﬁlter but at the lowest frequency of the cut-oﬁ' of the

. three eﬂ'ects

Flrst cons1der the effect of lgnorlng the evanescent waves. Since the
7max1mum frequency of the recelved wave is hmlted by the propagatlon ﬁlter to
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Reconstructions of an object using a detector spacing of (a)

(c) 1.5X and (d) 2.0\ are shown here.

) LOX,

5X, (b

Figure 5.10
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(5.18)

it is -easy to combme this expressmn with the expressmn for the Nyqulst '

e 'frequency into a single expression - for the smallest “mterestmg sampling

mterval This is given by

' ' Kmax : Kmeas (5.19)
or o
| =T (5.20)
, andvrear'ra‘ngih:g_ - .
o T>1/2)\ - » o (5.21)

' Thus if the recelved waveform is sampled with a sampling interval of more
“than 1/2 wavelength the measured data might not be a good estimate of the
" received waveform because of aliasing. On the other hand it is not necessary to
sample the received waveform any finer than 1/2 wavelength since this
- provides no.additional information. Doing this it is possible to conclude that
the sampling interval should be greater than 1/2 'wavelength - '

o In general the experlment will also be constrained by the number of data
“points (M) that can be measured along the receiver line. The distance from the |

~ object to the receiver line will be considered a constant in the derivation that
’ '_'follows If the recelved waveform is sampled umformly, the range of the

recexver line is given unlquely by
=+ o (5.22)

This is- also shown in Flgure 5.9.

‘ " For a. receiver line at a ﬁxed dlstance from the object and a fixed number
of receiver points this is a:classical optimization problem. As the sampling

- mterval is increased the length of the receiver line increases and more of the °

received wave's high frequencxes are measured. On the other hand increasing
the sampling interval lowers the maximum frequency that can be measured

-before allasmg occurs.

-The optimum value of T can be found by settlng the cutoﬁ' frequenc1es for

- the Nqust frequency equal to the highest received frequency due to the finite

,recelver length and then solvmg for the sampling interval. If this constraint is

' Vnot met then some of the information that is passed by one process will be
3 ’attenuated by the others This results i in
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% i W | f . . (5.29)

evaluated at |
kel  (5.29)

and :
%T—' (5.25)
o) 8M (5.26)
Making the substitution | ‘ v
o ) :ﬁ v. R R -

the optlmum sampllng 1nterval 1s glven by S

. )\ | 64az+ i

~ This substltutlon is similar to the tand substitution that is made in the
heuristic approach above Also notice that the smallest positive value that the
sampling interval can become is 1/2 wavelength. This corresponds to the
Nyquist frequency for a propagating wave.

The optimum sampling interval is confirmed by simulations. Again, using
the method described above for calculating the exact scattered fields, four
élmulations are shown of an object of radius 10 wavelengths' using a receiver
that is 100 wavelengths from the object. In each case the number of receiver
:‘posmons is fixed at 64. The resultlng reconstructions for a sampling interval of
5, 1, 1.5 and 2 wavelengths are shown in Figure 5.10. Equation (5. 28) predicts
an optimum sampling interval of 1.3 wavelengths and this is confirmed by the
simulations. The best reconstruction occurs with a sampling interval between 1

and 1.5 wavelengths.
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' 5.4.6 Limited Views

In many applications lt is not possible to generate or receive plane waves
~from all directions. The effect of this it to leave holes where there is no
estimate of the Fourier transform of the object.

 Since the ideal reconstruction algorithm . produces an estlmate of the
Fourier . transform of the object for all frequencies within a disk a limited
number of views introduces a selective filter for areas where there is no data.
~ As shown by Devaney [Dev84] for the VSP case a limited number of views
degrades the reconstruction by low pass ﬁltermg ‘the image in certain
directions. Devaney s results are reproduced in Flgures 5.11 and 5.12.
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to -00 egs. : © -45 to 135 degs.

-87.5 to -112.5 degs. -45 to -96 degs. _-10 to -55 degs.

Figure 5.11 These figures show the coverage in the frequency domain for
six different receiver limitations (from [Dev84]). -
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R ';i ',éf’ . H ). .
" 0 to -180 degs.

675 to-112.6 degs. . . .. .~ -45to-96degs. - .  -10to-B5 degs.

Fiéuré 5.12 - Images due to the limited field of views as shown in Figure
TR 5.11 from [Dev84].
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CHAPTER 6
HIGHER ORDER APPROXIMATIONS
TO THE SCATTERED FIELD

8.1 'Introduction .

’ Reconstructlon algorithms based on the theory presented in Chapter 2
generate severe artifacts for objects larger than a few wavelengths or a change
in refractive index greater than a few percent. These reconstruction algorithms
are limited by the first Born or the first Rytov approx1matlons and thus any
1mprovement in the reconstructlons will be accompllshed by modehng the
scattered fields more accurately. With this more accurate model it will again
be necessary to invert the equation to arrive at an estlmate of the obJect

This section will describe iterative techniques that more accurately model
the scattered fields. In addition to the theoretical derivations a number of
" simulations will be presented and the convergence of each serles will be
discussed.

“Two approaches to more accurately compute the scattered field will be
discussed here. Both approaches are iterative but they differ widely in their
philosophy. The first approach, known as a fixed point method, assumes an
initial guess that is a small perturbation from the correct solution. If the
scattering integral is a contractlng operator then this procedure converges to
the correct answer. The second approach, based on a matrix formulation of
the discrete wave equation, refines an  initial guess by projecting it onto
hyperplanes. Since each projection reduces the error this method always
converges. Unfortunately the matrix formulation is more expensive (requires
‘more calculations) than the fixed point method by a factor of several hundred.
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8.2 The Singularity of the Green’s Function

In each of the procedures to be discussed in this chapter it is necessary to
evaluate an integral of the form

S Jg(e=1" e’ (6.1)
‘where g(f=7' ) is the Green’s function described in Chapter 2 or '
—Ng(R) +jdo(R
g(e-!) = ol )4 ilo{R) ; (6.2)

and R = |7=7'|. This integral in equation (6.1) would be straightforward
except for the fact that Ng(R) tends to oo as R goes to zero.

The effect of this singularity is further complicated since for computer
simulation it is necessary to sample the function at discrete positions. If
straightforward sampling is performed on such a function any small change in
the location of the sampling grid would cause a large change in the sampled
value at the origin.

Fortunately it is possible to derive an approximate value for the sample at
the origin. The actual value at the origin is not so important but when the
Green’s function is multiplied by the sampled kernel and integrated the result
should be identical to a sampled version of the continuous integral.

Since all functions have been sampled they ecan be assumed to be
reasonably smooth and the integral approximated

YA(F)e(TT). | - (6.3)

When T is equal to Tj the area around the singularity is evaluated and the
contribution of the T term of the summation should be equal to the original
integral in a square reglon around the origin.

All functions are sampled with interval T, in both the x and the y
directions, so the following equality is necessary

IrT
: 22 o ‘
AFeE) = [ [ 1@ )g@r)dr . (6.4)
T
2 2

It f( ) is smooth enough then it can be considered a constant within the small
region of the integral and brought out of the integral. The sample of the
Green’s function is now written :
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While it is possible to evaluate this integral using approximations to the
Bessel functions, a better solution is to evaluate the integral numerically. The -
approximate expansions for the Bessel functions are only valid for small values
of R and are no longer accurate as the sampling interval, T, ~approaches a
quarter of a wavelength. , : _

A better solution is to numerically integrate this function by dividing the
original TxT region' into a NxN grid of points and summing up each of the
samples. The samples of the real part of g(r~T') are shown in Fi igure 6.1 for a
grid size of 4x4 and 16x16. As shown in this figure the point exactly at the E
origin can be ignored by offsetting the grid so that the singularity at the origin
is never sampled. The effect of ignoring this undefined location can then be
seen by examining the progressmn of average values as the number of samples v
in the T? region near the origin 1s increased. These values are shown in Table

6.1 for a sampling interval of Z wavelengths Notice that this is a Cauchy

sequence and converges to an average value for the Green’s function over the
‘TxT region. It is this value that will be used as the value of the Green’s
function at the origin in each of the computational procedures to be discussed
in the remainder of this chapter.

6.3 Fixed Point Methods o _

The fixed point method is the most straightforward computational
approach to solve an equation. In the remainder of this section it will be used
~ to find a solution of both the Born integral and the Ricatti equation.

Consider a fixed point solution to the equation x = f(x) defined over the
region x€[a,b]. Given an initial guess, x4 a better estimate of the solutlon &,
can be found by [Sto80]
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Figure 61 The real part of the function g(f-7') is shown here sampled
‘ on a 4x4 grid (top) and a 16x16 grid (bottom). '
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Table 6.1. Average value of the Green s

function over a. -i~)\ region sampled on an NxN grid.

N | G(0)

4 0.0925259 + j0.226659
'8 | 0.0927197 + j0.225568

| 16 0.0927666 + j0.225206
32 0.0927782 + j0.225228
64 | 0.0927811 + j0.225211
128 | 0.0927818 + j0.225207
256 | 0.092782 + j0.225206
| 512 | 0.092782 + j0.225206
| 1024 | 0.092782 + j0.225206

x =) (6)
or more geperally ‘ , | }
| B | Xipg =1(x;). ()
- This is illustrated in Figure 6.2. o

While this method doesn’t always converge, it is possible to show that it
will converge to a unique solution if the absolute value of the function’s first

derivative is always less than one. ~ Mathematically this condition can be
written '

| f '(’x)ll <1 xe[a b]. _ (6.8)
If this condltlon is true then it is also possible to. show that f() is a contractlon
operator or ‘ / '

| ) 1(xo)| <K| XX x€[a,b] o (6.9)

where K<1 - ‘ '
That these two conditions are ‘equivalent is easy to show by considering
two cases. First, assume that f() is a contracting operator. From the definition

of the derivative
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- F iguvr;e.v6.>2 . An initial estimate for the 's“‘ol_ution‘ of the equation f(x) =0is
~ . refined using the iteration x; = f(x;-1)- ‘ ,
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o f(x +h)-f(x)
Ifl(x)l . 1111—131 (x+hy=x |

" But from equatlon (6. 9) this ratio and the denvatlve are less then K.
To show the converse or that : o
Clrm<t o xelad (6.11)
i‘mplieé a contractmg operator - first assume the opposite case
If xg)~f(x1)| >|x5=x;|. Without loss of generality assume Xp is greater than

Xy and write the followmg integral

|t )] = fr@ax. (6.12)

X3

There are two cases to consider. First assume that f(xz)—f(x1)>0 and write
0<fx2—fx1 ff' o (613)

~ But if f’ (x)<K then thls mtegral can be bounded from above by
o g v o : o
0< |fx2 ~f(x,)] = [ (x) Jdx < (xz—xl)K - (6.14)
' RS _ o : .
This cOntradietS the orlgmal assumptlon

“For the opposite case, f(xo)-1(x4) < O,
| f(xg)—1(x,) Xy | = f(x)~1(x,) —ff' = ) | (6.15)

But if  (x)>-K then | | |
| - 0 > 1(x4) —fxl ff’ dx > —(xz—xl) - - (6.16)

For both cases, 'f(x1)>f(x2) and f(x2)>f(x1)' the orlgmal assumptlon is
contradicted - therefore proving that if lf’(x I )| <K then the function is a
contractmg operator. L :

| To study the convergence . of the fixed pomt method to the ‘correct
solution, ' assume a value for x;. Then the error after the i+1 iteration is

glven by

CUN
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| Error = |x,+1-£]v = | £(x;)-¢€] - _ (6.17)

‘ But since € is a fixed pomt solution of the function f thls expressmn for the

Error = |xl+1 gl = |f(x‘)—f of. | (6 i8)

. .By the contractlon property of Equatlon (6 9) this last term is bounded from
‘above by ,

|x,+rei—|f @) <K|xre. (6.19)

~“Thus the error after the i+1th lteratron will always be less than the error after

v i iterations.. In addition since K is less than one the sequence ix i~ |
bounded from above by the converging geometric series x(,Ki therefore the fixed:
pomt method converges to a correct answer.

That this solution is unique can be seen by assummg two solutions, §; and

&, to the equation x=f(x). But ‘these two. solutions v1olate the contraction

property since ,
| &= le ‘lffl'f§2| >K|eg. (620

: Thus if f() 18 a COIltl‘aCtmg operator then the fixed pomt solution will converge
to the correct answer. . S o

| 6.3.1 The Born Series | v |

E Recall from Chapter 2 the scattered ﬁeld can be wrltten
s(?) fgﬁ" ’)0"')110(?' d?' + JeE=T" o' Ju (7' )dr’ . (6.21)

The ﬁrst Born approxrmatron, as already descrlbed srmply represents the first
_ iteration of the fixed point method wrth the 1n1t1al guess u(o) =0. Thus the ﬁrst
: 1teratlon is wr1tten e

(1) = ugf®) = fg(H")o(*' JuoE e - (622)

If the kernel g(*-T' )o(f'), is a contracting operator an even better estimate

o can be found by substrtutlng uo(") +uB(") for u,(T) in equation (6.22) to find

u)r) = fgrf Joft" Iuo(r')+uB<?' . (6.23)

‘ vIn general the r-th order Born ﬁeld can be written

oo '“’rf') ool ol o (624
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An alternate representatlon is possrble if the total ﬁeld is wrntt'” ‘, R

| u("f’) = uo(Tl+u1(T')+u2(")+ SRR (6 25)

whel;e o _ e ~_ ‘ 'f‘ v .
“(m(") fux(_" "')g(?—f ) - (s26)

- By expandmg equatlon (6.24) it is poss1ble to see that the ﬁxed pomt “
’ approx1matlon for.the: scattered ﬁeld ulg) is 5 -

m Euﬁ) o (e
audlinthe-:limit N : o o .‘ o |
| ' u('*) = “o(_l+“1(—7+u2(_7+“3(_l+ (6 28)
, Thls representatlon (6 28) has a Tore mtmtlve 1nterpretat10n analogous to o
~ the Huygens principle. The Green's function gives the scattered field due to a~
- point scatterer and thus the 1ntegral of equatlon (6. 24) can be’ 1nterpreted as
calculatlng the first order scattered field due to the field u;. For this reason the

first order Born approx1matlon represents the ﬁrst order scattered ﬁeld and ui
represents the 1 'th order scattered ﬁeld ' " '

A varlatlon of the integral Born series presented here was- first descrlbed '

'and 1mplemented by Azimi and Kak [Azi83]. In [Azi83] the scattered fields are -
“calculated for an ‘object that consists. of multlple cyhnders by consrdermg the .
1nteract10ns of the scattered ﬁeld with the other objects Usmg the equatlons_v -

presented in Chapter 5 and [Wee64] and [Mor68] it is possible to calculate the
exact scattered ﬁeld from a cylindrical object 1llummated with a plane wave.

’Unfortunately it is not possible to calculate the exact fields scattered by a pair o

of cyhnders using this approach because the field from one obJect interferes
with the other. : -

- Instead Az1m1 and Kak propose a multlple scatterlng approach where the;
1nc1dent field is first scattered against each cylinder and then the scattered
: ﬁelds from each cyllnder are propagated to the other cyhnder( 5) where they are .
‘vscattered again. This is 1llustrated in Figure 6.3 where the incident field is
'denoted by uo and the field uy, denotes the field that has scattered oﬂ of object
i, then object j and finally object k

Since the field scattered by a cylinder is not a plane wave the key to thls
procedure is to caleulate the scattered fields along lines between the cylinders.

_The field along this line can then be decomposed into plane waves [G0068] and

each plane wave scattered separately by the cylmder
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inc \

Figure 6.3  ‘The incident field is scattered against each cylinder and the
resulting fields are propagated to other cylinder for
additional scattering. - :



120

‘While nothing is known about the convergence of this series its use in
diffraction’ tomography is limited because it is only practlcal ‘when the ﬁeld
_ scattered from each object can be computed exactly. Thus it has been used as
a method to generate data for testing diffraction tomography algorithms. -

Under both the Born and Rytov approximations an integral of the form

Ui +1(F) = [ufF Jo(¥’ )g(r-T" )dr -~ (825)

is to be evaluated. A naive approach to this 1ntegral would be to evaluate it
numerically but domg this requires on the order of N4 operatlons Performmg

the integration over a 128 x 128 grid, for example would require over 270
million operations per iteration. Thrs is clearly unreasonable o

The computational requlrements can be greatly reduced by notlng that the
- Green’s function, g(¥F'), is only a function of the difference between the two
points and that the integral can also be interpreted as a convolution. Thus,
representlng the - convolutlon in the frequency domaln allows for an efficient
~ implementation requiring only 6N2logN operations to do the mtegratlon For a .
128 x 128 grid this is only 700 thousand operations or a reduction in the
computational complexity by almost 400. This approach is efficient using an -
array processor and for an object sampled over a 64 x 64 grid this integral can
be computed in under 2 seconds using a Floating Point Systems AP120B array
Processor. |

To evaluate the Born integral on a digital computer it is necessary tousea

truncated and sampled version of the object function and the field. Truncating
the two functions is error free because the object function is assumed to have
finite support. In addition since only a finite number of receivers are present
this further limits the number of data points that need to be calculated. On
the other hand, since any function with finite support has infinite bandwidth it
is not possible to sample the data without introducing errors. For smoothly
varying data it is possible to approximate the data with discrete samples. In
the work to follow the samples are taken over a rectangular grid using different
sampling intervals, all less than a wavelength. - SR

If the series u; decays to zero then the total field is given by a summation
of each scattered field, or

W= Sum )
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Two dlﬁ'erent studles were performed to verify this approach to solving the
wave equation. . Most importantly it was necessary to verify that the total
scattered field converged to the same answer as predicted by an exact solution
“to the wave equation. In addition it was necessary to determine the region of
- convergence of the Born series.  These issues will be discussed later in this
"chapt.er. - ,

fAsimentioned before, the integral equation in (6.25) is efficiently evaluated
by implementing the convolution in frequency domain. Recapitulating this
discussion, the frequency domain fimplementation can be summarized as
-~ follows. - ” ‘ '
Fll‘St for all X; and yy, the scatterlng potential, S, is calculated from the
.~product of the * 1nc1dent" field and the ob_]ect

( ]’Yk) ( ];Yk)o( ]FYk) L (6 30)

' Then by usmg two—dunensronal FF T’s, determine the follow1ng two transforms .

"s(uj,,wk) = T2 FFT{(S(xj,yk))] o (631)

' Gi(uj,wk) = T2 FFT[(.G(xj,yk))]. o ' o (632)

" To find the Fourier transform of the scattered field form the followrng product
in the frequency domain for all'y; and w; .

st (o 4) = S(uj 1) Gl (6:33)

- The 1+1 th scattered ﬁeld is " then found by mvertlng the above expression to
find -

U 43(X,5) = D) IFF T{Uiﬂ(upwk)}- . (639)

To properly calculate the integral using the FF T approach it is necessary
to remember that the discrete multiplication implements a circular convolution.
A circular convolution can be turned into an aperiodic convolution by zero
padding the data [Opp75). For example a Floating Point Systems (FPS)
AP120B Array Processor with 65,536 words of main data memory can only deal
with arrays up to 128 x 128 elements.” This memory limitation and the need to
A implement an aperiodic convolutlon limits the evaluation of the field to a 64 x
. 64 grid. -
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The exact scattered field from a dielectric cylmder with plane wave
lllumlnatlon is well known in the literature. This exact solution to the wave
‘equation can be used to- check the results of the Born iteration. Figure 6.4
shows a simulated experiment. In this experiment a plane wave 1s incident on
a cylinder of radius 2\ and a refractive index of 1.1. The scattered field was -
-calculated at 64 Teceiver posrtlons along a llne 775)\ from' the center of the
object ~
’ Figure 6.5 show the exact scattered field along the receiver line. ‘In each
of the plots that follow the real components of the field will be shown with a
solid line, while the dotted lines represent the imaginary part of the field. : -

~Figure 6.6 shows the result of iterating the Born integral. The first Born
approx1mat10n (Figure 6. 6a) gives a very poor estimate of the exact ﬁeld smce
this estlmate is based only on first order scattering. L o

" In ord_er to accurately calculate the scattered fields it -is ‘neces'sary to
include the higher order scattered fields: This is shown in figure 6.6." Clearly in
this case even the 30 th to- 100 'th order scattered ﬁelds are- s1gn1ﬁcant to the
total ﬁeld _ s
By comparing'ﬁgnres 6.6 and 6.5 it can be seen that in this case the Born
series converges to the exact scattered fields. This simple example shows the
correctness of the Born iteration code. E | o

- The Born integral defines an 1nﬁn1te series of partlal scattered ﬁelds that
are. summed to find the total scattered ﬁeld An important measure of any
infinite series is its region of convergence. - The region of convergence defines a
class Of objects where the Born iteration converges to the exact scattered field.
~ For an arbitrarily complex obJect the region of convergence is “defined over an
v infinite dimensional space since an infinite number of parameters are needed to' '

‘deseribe the object,
~ There are two trivial ob]ects that can be analyzed analytlcally First
- consider a pair of pomt scatterers separated by a distance of R located at T; -

and T, T,. If each scatter has an area (or volume) of ¢ and the object function for |

~ each of these scatterers is equal to O then an approximation to the ﬁrst order
Born field at T, due to the scatterer at T is ‘ o -
uf(f) = oGR)O ()

Clearly there exists a value of O such that u! will have a magmtude greater )
“than the incident field. This field, u!, can then be scattered wrth the pomt S
scatterer at T, and measure the ﬁeld at ?1 to ﬁnd ' : -
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Figure 6.4  An experiment used to illustrate the higher order Born series.
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Figure 6.5 ~ Exact scattered field for the object shown in Figure 6.4. The
S real component of the field is shown as a solid line while the
imaginary component is dashed. '
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uf?(7y) = 0G(R)O[u (%) | (6.36)

If the term aG(R)O is greater than one then each succeeding term of the series
u; will diverge. This analysis has ignored the effect of the other scatterer and
~ the field at T; caused by the scatterer at T, but this doesn’t change the basic
_ conclusmn that the Born series can- converge or diverge dependmg on the
- object.

’ This effect can also be analjrzed in the frequency domain. By taking the
Fourier transform of equation (6.25) the convolution with the Green's function.
can be expressed as a multiplication in the spatial frequency domain. Equation
(6.25) - becomes [Sla83, Sla84] -

Uin(R) = G(K)[()(K)*Ui(K)}- . o (6-37)' |

where ‘*’ represents convolution in the frequency domain.

If the object function is assumed to be constant for all space then O(K) _
becomes an impulse and equatlon (6 37) above becomes -

Uin® = 0GRU(K). (6.38)

~This is a simple result and it is eaSY to see that the series, u;, will diverge :
if there is any frequency where - | v | ‘
o | GEoOo>1. . (839)

~In this simulation study the region of convergence for a single
homogeneous cylindrical object was examined. Since any cylinder can be
completely described by its size and refractive index the region of convergence
is ‘defined over a two dlmensvlonal space. More complicated objects could be
‘studled but the results would not be as graphical.

1t has already been shown that for either small cylinders or small changes
in the refractive index the first Born - approx1mat10n provides a good estimate
to the exact scattered field. This is equivalent to saying that the higher order
scattered fields decay qulckly towards zero. If is easy to see that under these
two conditions the Born 1ntegral serles w1ll quickly converge to the exact
~solution. ' :

" The total energy in the two dimensional field is used as a simple measure
kv»of convergence. Obviously if the total energy in the i’th scattered field is
decaying towards zero as the Be;'n integral is iterated then the series is



128

converging. On the other hand if the total energy is 1ncreasrng then ‘the Born
_ integral can not p0551bly converge.

- For a given ob]ect radlus the region of convergence is deterrnined by
conductlng a binary search for the largest refractlve index where the Born
series converges. For each comblnatlon of object size and refractive index it is
necessary .to make a decision of convergence or dlvergence and adjust the
refractive index accordingly.

, The decision of convergence or divergence is made by studylng the total
~ energy in the partial scattered field as the iterations are performed For this
purpose a series is defined to be convergent if during each of four iterations the
total energy in the partial scattered fields is monotonically decreasing. While if
the energy is monotonically increasing then it is decided that the series
diverges As long as the last four terms are not monotonic than the iterations
continue. The energy versus 1teratlon number for the experlment ‘of ﬁgure 6.4
is shown in figure 6.7. :

Figure 6.8 dlsplays the region’ of convergence for sampllng intervals of
10.125X, 0.25X and 0.5\. Each plot shows the maximum refractive index a_s a

function of chinder radius. For all experiments with a refractive index below =

the line the Born series converges while for all experiments above the hne the
series diverges. : = .

In each case the shape of the curve agrees with the orlglnal observatlon
the Born series converges for either small objects or small changes in the
refractive index. The dependence of the region of convergence on the sampling
interval is still under study. One possible explanation is that the numerical
errors are larger for the larger sampling intervals.

While more complicated ob_]ects can be simulated it is more dlfficult to
present the region of convergence in a simple fashion. In general the region of
convergence will be described over a multidimensional space but can be
reduced to two dimensions be keeping some of the parameters fixed. Two
simple families of object that can be reduced to a two dimensional space will be
described next. In each case the results will be compared to the results for a
cyllndrlcal object. ' ' B

A simple extension of the previous work for a single cyhnder is to consider
two cylinders separated by a small distance. Figure 6.9 shows the region of
convergence for two orientations of the cylinders with respect to the incident
field. In both cases two identical cylinders are separated by a distance of 1 X. |
Thus the region of convergence is reduced to two dimensions, the radius of the
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~two cylinders and their refractive index. The solid lines in Figure 6.9 show the
region of convergence for the two cylinders compared to that for a single
cylinder (shown as a dashed line). L ‘

“As would be expected the region of convergence for two cylinders is always
smaller than that for a single cylinder. This is true since the convergence is
plotted as a function of the radius of one of the cylinders and adding another
cylinder increases the scattered field. As already described increasing the
scattered ﬁeld can only cause the Born series to converge more slowly

Flgures 6 10 and 6.11 show the region of convergence for. a single elhpse
with an eccentricity of 2 (length of major axis over minor axis is 2.) Since an
ellipse can'not be described by its radius the region of convergence is plotted as
a functron of the length of both the major and minor axis of the ellipse. The
two ﬁgures differ only in the orientation of the ellipse with the incident field
and in both cases the convergence for a single cyllnder as a function of its
radlus is plotted as'a dashed line. ‘ '

The convergence of the Born series for an elhpse (solld hnes) compared to
“a cylinder (dashed lines) is consistent with the idea that more scattering leads.
to the divergence of the Born series. The ~upper solid lines show the
convergence plotted as a functlon of the elhpse s major axis and is above the
dashed lines for all lengths This is because an ellipse with major axis of lengthv
9r has less area than a circle of radius r. Conversely the lowest line (solid)
plots the convergence as a function of the ellipse’s minor axis and is always
below the dashed lines. (Note that the two solid lines represent the same
ellipse. The only difference is that region of convergence is plotted with respect
to different parameters.) '

Figure 6.12 shows the same data as the previous two figures but now the
two orientatiohs are superiniposed. From this figure it is easy to see that the
convergence of the Born series is sensitive {o the orientation of the ellipse.
When the major axis of the ellipse is parallel to the direction of the incident
field the region of convergence is reduced. This is consistent with the
limitation described in Chapter 2 that the phase change in the field as it travels
~ through the object is a good indication of the validity of the Born
~approximation. When the major axis is aligned with the incident field the
phase change is larger than when it is perpendlcular to the field and thus the
Born series is more likely to dlverge '
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' 6 3.2 Born Serxes thh Attenuatlon BT o s
; ' Wh1le to this pomt only fields in non-a,ttenuatmg medla have been
discussed it is easy to also talk about the Born series when attenuatron is
.present Now the refractive 1ndex and the wavenumber are no longer just real
valued and 1nclude an imaginary component’ to represent the attenuatlon
- The relatlonshlp between the real and 1maglnary components of the
wavenumber are easily seen by examlnlng one solutlon to the homogeneous
wave equatlon _ ' '

) = e

where T = (x,y) It ko is complex and equal to ISR o h

~‘then the real component will ‘continue to represent the perlodlc component of
the field. The imaginary component kl, contributes a multiplicative term,

e kK , that causes attenuation of the- plane wave with i ‘increasing distance.

- There are two approaches that can be used to deal with attenuation. ‘In
the s1mpler approach the average wavenumber kg, is real and ‘all of the
‘attenuation is a perturbation from the average wavenumber. Thus the object
function is complex and as will be shown shortly ‘the region of convergence. 1s
reduced for large attenuatlons In the second approach the attenuation is
included in the average wavenumber thus reducing the magnitude of the ob]ect 'I
function. The only difference in the formulation is that the Green s functlon
changes but now increasing attenuatlon leads toa larger reglon of convergence..

When the atténuation of the object is treated as just a perturbatlon of the
object function from the real valued wavenumber then the effect is to reduce
the region of convergence. This is shown in Figure 6.13 where it. can be seen
that the magnitude of the object function, not ]ust the refractlve index,
determines the convergence of the Born.

The work first done with the Born approx1matlon assumed that the -
average refractive index was real valued only. Since the real part of the
wavenumber represents the speed of the wave and the imaginary - part its
attenuation, any attenuation in the object is included in the unknown
perturbation. The magnitude of the perturbation determines the applicability B
of the Born and Rytov series therefore a more accurate estimate of the average
refractive index will lead to smaller perturbations and better results with first
order diffraction tomography algorithms.
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Consider an experiment where an object and the surrounding media are
both highly attenuating. This might be typical of a microwave tomography
experiment where the attenuation of microwaves is predominately due to the
water molecule.

In this case a small perturbation model would be more accurate if’ the
average value of the wavenumber, k,, is sssumed to include an imaginary
component. Thus the real part continues to represent the spatial frequency of
the wave while the imaginary part indicates the bulk attenuatlom of the wave
as it travels through the media. ‘

An Bmpormnt part of this derivation is to remember that a field can be
described in two different manners; if you like, there are two sets of basis
functions that can be used. A field that satisfies the Helmholtz equation is
usually described in terms of plane waves. A plane wave is an exponential
solution to the Helmholtz equation and for a plane field described by

where
| K= (k) - (e
then valid plane waves s&tisfy\r _ » :
ki+k? =k§ | (6.44)

kg in this equeﬁtion represents the wavenumber of the media.

A problem with this approach is that both k, and k, can be complex. The
complex valued wavevectors lead to evanescent waves whlch attenuate with
distance. While for most applications the evanescent fields ean be ignored
(they tend to be small compared to the non attenuating components) the same

assumption can not be made when calculating the field inside the object or
when the object is in an attenuating media.

Comnsider an attenuating plane wave propagating in the x direction
uff) = kT = okx = iletiflx  g>g (6.45)
In this case o represents the phase term, while B represents the attenuation.
For positive x this is an attenuating plane wave, but for negative x the wave
grows exponentially. Thus it is normally necessary to specify that the wave is
zero for x <0,
Due to the non symmetry of attenuating plane waves and the efficiency of

[ast Fourier Transform algorithm a much more natural set of basis functions is
provided by the Fourier domain. In this approach the field is represented as a
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“sum of Fourier components. If the field does not have any evanescent
comporents the Fourier and the plane wave representations are identical.

The distinction becomes important when attenuating fields are considered.
Mathematically the two approaches are equally valid but while an attenuating
plane wave has a single component in the plane wave representation it has an
infinite number of Fourier components. The difference is further illuminated if
an attenuating plane wave is propagating through a homogeneous media. This
field is represented as a single plane wave that satisfies the wave equation but
1ts Fourier representation has an infinite number of components. While each of
its Fourier components do not satisfy the wave equation they do represent a set
of basis functions for describing linear operators. For this reason the Fourier
approach is optimum for propagation problems [Goo68] and convolution
integrals. »

Again, like was done for the non atténuating Born, Figure 6.14 shows the
components of the Born _integral for a complex wavenumber. The major
differences are that the incident field becomes an attenuatmg plane wave and
the attenuating Green’s function is more straightforward to calculate sinee it
1o longer has a singularity in the frequency domain.

The incident field ;
uff) = ei(“'*-iﬁ)x x>0 | (6.46)
i3 a complex (2 dimensional) function and its Fourier transform can be found

by considering it as a multiplication of a complex sinusoid by a one sided
exponential. The following one dimensional Fourier pairs are used:

ejv“"t' e 2mb{wwp) _ | (6.47)
and
et p L 1 :
at >
e {>0 e (6.48)

Multiplication in the space domain /c()rresp(‘)nds to convolution in the frequency
domain so the Fourier transform of an attenuating sinusoid is written

o
o) Far (6.49)
In two dimensions the Fourier transform of the incident field is written
ok, )2
UO(K) = 4 (6.50)

j(kx—a) +a .
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~ where the wavevector of the incident field i is grven by = (oz,ﬁ) This is shown
in Flgure 6.14(Incident Field). » :
The Green’s function for complex values of kg is even simpler than the

-non-attenuatlng case. By taking the Fourier transform of the wave equation
_ w1th a delta forclng function it is easy to see that ’

- 1 :
GA) = —/———. 6.51
M = (6.51)

Since |Kl 2 is real and k¢ is complex there are no singularities in this function.

- 'The Fourier transform of the Green's function i is still circularly symmetric and
- is shown in Figure 6. 14(Green s Function).

The Fourrer transform of the two d1mens10nal scattered field can be_
wrrtten now as ‘

U(R) =G (K){Uo() K)l (6.52)

‘The convolutlon of the incident field and the object is a , shifted and a
'smeared version of* the Fourier transform of the object. The convolution can .
be considered in two parts. The smearing caused by the width of the incident
~ field in the spatial frequency domain can be ignored since it just redistributes
some of the energy of the object function’s Fourier transform. The remaining -
- component, the shift in the frequency domaln is identical to the non

attenuatlng Born case.. :

As derived above the Green s functlon for an attenuatlng medla does not
have a ring of smgularltles and therefore samples a semi-circular region of the
modified ob_]ect function. This is shown in Figure 6. 14(Scattered Field).

Thrs procedure naturally leads to the Born series for objects with bulk
attenuation. Figure 6.15 shows a composite graph of the region of convergence
for a number of different attenuating media between 0 and 1 nepers per
wavelength. - It is. lnterestlng to note that the region of convergence gets larger
as the attenuation increases. This i is due to the’ reductlon in multlple scatterlng
because to the attenuatlng term in each - wave. Thus for an average
attenuatlon of 1 neper per wavelength (the amphtude of the field drops by 3dB
- per wavelength) the Born series converges for all ob]ects with a refractive
index less than 20%. In addition the convergence of the Born is less sensitive
to the size of the object since the waves are attenuated before they travel the
complete drstance of the object
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6. 3 3. Rytov Serles

: The 1mplementat10n of the Rytov series is much like that of the Born.
: 'Thus from Chapter 2 the Rytov 1ntegral for the scatterlng phase is. wrltten

0= )[V¢1(*’)V¢1(?')+0(7”)] uf') dr". 659 |

A ﬁxed pomt solutlon to this equatlon is poss1ble if a guess for 'gb{o) is used in
the right side of this equation and a new value for the scattered phase, P, is
“computed. If the kernel of equation (6.53) is a contracting operator then i
~will be a better estimate of the scattered phase. This iteration step can be

o B carried out as often as desired until the change in the scattered phase is small.

The computer 1mplementatlon of the Rytov: series is more difficult than

o the Born due to the derivatives inside the integral. In the Born approximation

it s poss1ble to decompose the series and think of the entire iteration as

* modehng h1gher ‘order scattermg On the other hand in the Rytov integral the
[ VyF' ) Vb, (7*)) term is a non-linear function of the scattered phase and thus

it is not poss1ble to cons1der each term separately

" The computer. ,1mplementatlonv of the Rytov series' is made especially

~ difficult since the scattered potential does not have finite support as it does in

the Born series. Recall, in the Born series the scattering potentlal is a function
of the product of the scattered. ﬁeld and the object function and the
convolutlon mtegral need be evaluated only where the obJect functlon is non-

= zero Thus carrymg out the Born lntegratlon over a ﬁnlte reglon does not

_ lntroduce any errors..

- This i is not the case w1th the Rytov mtegral since the scatterlng potent1al -
s now glven by the express1on R = :

, ‘ lv'ﬂll?'lv'/’l(?' )luo(?l EEEE (5 54)
- In general the scattered phase qbl,’_ls not equal to zero K llmltlng the
' ’1ntegratxon to a finite reglon w1ll always 1ntroduce errors. '

S Since the derivative is a linear operator it can be 1mplemented as a
- convolution integral. Unfortunately, as will be shown shortly, the structure of
the’ problem is such that the most accurate method based on FFT’s is not
workable. T S . v ’ ' :

, When usmg an FFT to lmplement a convolutlon 1ntegral it is necessary to
- zéro pad the orlgmal data S0 that the FFT represents an aperlodlc convolution.

: _*Whlle this techmque works very well for most srgnals it has disastrous

| -consequences when calculatmg the derlvatlve of the ﬁeld Slnce the ﬁeld never
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- goes completely to zero there is always a sharp tranSJtlon between the ﬁeld and
~the start. of the zero padding. This transition leads to a large value of the
derlvatlve at this point and eventually to large errors in the scattered field:

- The standard procedure for dealing with this problem is to use a window
to smooth out the transition. . This solution is not viable here since the problem
is to calculate the scattered phase at the outer edge of the grid, exactly where
‘the eﬁect of the window is greatest. Thus even though the kernel for the
derivative operator is very compact the long talls lead to errors w1th an FFT .
based lmplementatlon : ' o

A better solution is to approx1mate the derlvatlve operator w1th a two
pomt kernel and make appropriate adjustments at the edges of the grid. A
. third order polynomial is fit to the three pomts (—t,y—y ) (0,y,) and ( ,yl) with

_the function [Sto80] ' '

TbY | bt pchgx

f(x) = N : , . (855
o () = 2t —t2 2t (; )
'The ﬁrst derivati_ve of this pol_ynomial is found to be ; o
f"(x) - Y1 ¥

| ot (6.56)
o2t (6.56)

At the edge of the grld all- three values of the ﬁeld are not avallable and 502

second order polynomlal is ﬁt to the two pomts and the derlvatlve becomes N

f'(xv).,;' L y°—ty' " o (6».5’7)_"
| x=0 B
or
| f'(x)"‘ = y‘;y".? (6.58)
x=0 -

These operators are stralghtforward and allow the V2 operator to be computed' .
qulckly in the tlme domain. ' :

The convergence of the Rytov series is much hke that of the Born. . That .

the Rytov series converges to the correct answer is shown in Figures 6.16 and
6.17. Figure 6.16 shows the exact scattered field from a 2\ cyllnder with a
- refractive index of 1. 13 The field was measured at a receiver line 7.75\ from
the center of the cylinder and sampled every 1/4X. Finally Figure 6.17 shows
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that the Rytov serles does converge to the exact solutlon for the scattered field.

The region of convergence of the Rytov series is compared to that of the
Born in Figure 6.18. A number of works [Ke169 San70, Man70 and Wes84] '
have discussed this issue but it is not clear from the theoretical work which
series is superior. These numerical implementations of the Born and Rytov
_series shovv the Rytov to converge for a large range of objects' than the Born
does. This is especially surprising considering the dlﬁerent domalns of vahdlty
of the Born and Rytov approximations. o

The dlﬂ"erence between the Born and Rytov series is hlghhghted in Flgures
6.19 and 6.20. These two figures show the convergence of the Rytov series for
- an object made up of two cylinders and an elliptical object. While in the Born
_approximation -the orientation of the object changed the convergence of the
series the same is not true for the Rytov series. ‘The convergence results for
the Rytov series are identical for either orientation (0 and 90 degrees).

The behavior of the Rytov series with an attenuating object is shown in
Figure 6.21. Like the Born series the Rytov series is relatively insensitive to
attenuation in the object until the attenuation becomes large enough. The
attenuation at which the convergence of the Rytov series falls to zero is
_ -dependent on the radlus of the cylinder:. ' AN

If the object and the media have an average attenuation then the Rytov
serles will converge more easily.  This is shown in Figure 6.22. Usrng an
“attenuating Green's function reduces the field at dlstances far from the object -
and thus makes it easier for the Rytov series to converge. ‘

8.4 Matrix Formulation

An alternative to the fixed point methods like the Born and the Rytov
was shown by Kaczmarz [Kac37], app_lied' to the forward scattering problem by _
Richmond [Ric65] and extended to inverse scattering by Johnson [Joh83, Tra83
and Joh84]. The Kaczmarz algorithm has found widespread use in
- tomographic imaging based on ray tracing. Its use for this type of problem and .
a discussion of several possible optimizations and tricks is discussed in [Her73,
Her76 and Her80]. While the Born and the Rytov series use discrete math to
implement a continuous solution to the Helmholtz equation, a different ,
approach is possible if the field and the object are first discretized. The
Helmholtz equation now becomes a matrix equatlon and with approprrate
mampulatlons can be put in the form ’ '
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‘Figure 6.18 . The convérgence of the 'Born_ and the Rytov series are
iy compared. The upper line represents the Rytov series.
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3Figure 6.20 :

‘ The reglon of convergence of the Rytov series for an elhpse
© The upper solid line is plotted as a function of the major axis
;- while the lower solid line is a function of the minor axis.

The - solid line represents the convergence for a single

' g‘cyhnder. o
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Figure 6.21 ~ The convergence of the Rytov series is shown as’ &jl’ful_'l'ctidn:"j '
S of the cylinders radius and attenuation. The attenuation of -
- the object is shown in nepers. ’ o .
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The ‘coﬁvergé'ﬁce'of ‘the ';Rjt_tov. series is shown as a .function,
of the cylinder radius and the average attenuation of the
media. The attenuation is shown in nepers. '
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" 'where X 1s the contlnuous ﬁeld A 1s a functlon of the object and the Green S
function and b represents the eﬁ'ects of the incident field. - o ‘

~ The Kaczmarz algorlthm is ‘used to. solve thls matrlx equatlon because it B

operates on only one row of the matrlx at a tlme Thls property is 1mportant :
~ due to the large size’ of the matrix 1nvolved (as many as 4000 equatlons and
unknowns. ) The Kaczmarz algorlthm belongs to a class of operators known as
Row Action Methods and is descrlbed by Tanabe [Tan71] and by Censor‘ _

[Cen81] | SR v S

_ Most work w1th large matrlces assumes that a. s1gn1ﬁcant fractlon of the
, matrlx is zero Thus it is only necessary to store the locatlon and-the value of
the non zero elements and then it is possible to use sparse matrix technlques to
solve the equatlon (see for example Chapter 3 of [Hey85].) Since every element ;
of the Green’s matrix is non zero it is not possible to use these techmques and
mstead the Kaczmarz approach allows the calculatlon of a solutlon uslng_‘ i
"',modest amounts of computer memory ’ |

_ As will be shown later the Kaczmarz algorlthm always converges to a
proper solutlon of the discrete equation Ax =b. If the discrete representatlon. L
- of the field; the object - and the Green's functlon accurately model the true " o

‘functlons then the Kaczmarz solutlon will satlsfy the Helmbholtz equation.

: An exact solutlon to the wave equatlon is given by the 1ntegral equatlon

S 0T = Jofe) ') +ufr gFF ). (660)
. By samplmg faster than the Nyqulst rate each of the terms in the above
;equatlon can be dlscretlzed without errors as ’ : , ‘

ujd :l](lT,]T) . g o '(_6.61)‘ :
uod:u (iTJT) L (ee?)
o= -o(iT,jT)';---'f o (6.63) o
$=gimim.  (esy)

. The d1screte versron of the Helmholtz equatlon can now be wrltten

W= BB Mg (e
- , k——wl-—w o o o o L
Again, as in the vimplementation of the Born and Rytov series, assume that the
object has finite support. Since the object ‘multiplies each term’ in ‘the
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: summatron the summatlon need be carried out only for those values of k and 1

"where okl is non-zero. . Thus. without loss of generality the object will be

o ‘assumed to exist only for 1<i<N and 1<J<N and. all. summations Wlll be

o assumed to go from 1 to N

e ,dlmens1onal vector as. follows

| ‘The: forward process w1ll be descrlbed first. To 'dovthis rearranget the
dlscrete verswn of the wave equatlon to find ' ' '

ZZ okluklglk,.llb_—_ ’J—EE 0 lkh‘l (666)

o

o The u, ’J term can then be moved mto the summatlon tofind . _ _
. = EZ Okl kl ,k,,l — 22 [6kl_‘_0klg1 ,jl]ukl . (6.67)‘

__‘fwhere the Kroenker delta 5“ is deﬁned as

13 ’ .
ol Jr - for i=k andJ"l o
_ ,5., _0 elsewhere | . (6.68)

“To. put thlS in standard matrix form represent each ﬁeld as a one— "

e L g ON-1 ‘1;0" WL o -
l xo - [ xo } ’xo L Xo . ,XO Y. ,xo’ g ey o . (6669) E

e Al
" X= [XO,IO’ x-‘(l,‘l’. l ’XO,N—I’ xl.,O,' x-l,l, v ,xl,N—-l, ey - (5.70)

_N_xo‘ L : 'N'—l N—lr

:where []T, represents vector transpose An N2xN2 matrix, A, can now be

: - defined that represents the effects of all summatlons Slnce the object and the
-+ Green's. functlon are both’ known they can be combmed into a single matrix
e }and the dlscrete version ol' the wave equatlon can be wrltten

o fwhere the terms of the A matrlx are glven by
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1 1= o‘ogoo N ) 1go -1 ... —gN-LN- 1g—N+1—N_+1‘ -
—o% ogm o 1=o% 1goo e _ON—l,N—lg—N+1—N+_2 o
1 v_ooogoz —o‘”g‘” i N 1N—1g N+1,¢N--53 o
A=1| - oogos - o1g02 o -1 N-1g N+1-N+4] ('6 72)
_00N1,N—l ~~01 NlN2 R N-1,N-1.0,0°
g 0"'g , I-o g’

The ﬁeld X, is a one d1mensrona.l matrix w1th N2 elements and the constant
- vector b is given by . , ; ; '
| b = Ax S (673)
. At first gla.nce thls equatlon (6. 71) represents an especla.lly s1mple form for
the scattered field; that is until the size of the vectors are con51dered For a
small 64x64 reconstruction the b and x vectors have 4096 complex elements
and the A matrix is a square 4096x4096 matrix with more than 16 million _
complex elements. Inverting a matrix of this size would require over 32 Mega-
words of memory or more than that which ex1sts on all but a handful of
: processors today. , , o :
There are two tricks to solvrng this problem The first of whlch is to
realize that it is not necessary to find the inverse of the A matrix but only to _
find a vector field, x, which satisfies the discrete wave equation. Secondly by
usrng a row action method such as that proposed by Kaczmarz and Johnson et
al, it is no longer necessary to store the entire A matrix in memory. Thus it is
possible to solve the system of equations storing only 4N2 equations at a time.
For a 64x64 field this represents only 16000 elements so the storage
requirements are reduced by a factor of 1000. _ .
As described in [Ros82], the Kaczmarz method finds a vector x that
satisfies the equation Ax=b by considering each row of the matrix A to‘
: represent a separate equation. Thus the matrix . : e

3311 ajp a3 - o -
AT ag e a0 (674)
331 33z ag BT

can be considered to be three equations of the form



by = a;xy ‘+ aj9Xy + a5%3 , o

by = agiXy F agXy + agxs : - (8.75)
‘ bs = - 331Xy + agyxy t+ agX; ‘ |

. terms of an n-dlmenslonal space each of these equatlons represents a srngle
hyperplane and the 1ntersect10n of all ‘n’ planes describes a single solution
point x. ‘

- The Kaczmarz algorlthm iteratively refines an initial guess by projecting
"the point onto each hyper-plane in sequence. The process of computlng the
vprOJectlon ofito ' the hyperplane also represents finding the point on the
hyperplane closest to the original guess. As will be shown later this new x will
always lie closer to.the new solution vector than the original guess.

If the i'th row of the A-matrix is denoted as a; and < , > represents the
- dot product then a better solutlon to the equatlon Axj =b is glven by

<al,x > - b

a;.
. <23 > o
: ,Thls operatlon is 1llustrated ln Flgure 6.23.

xitl = x'j

~ (6.76)

- Simple ‘geometrical arguments should convince  the reader that this
equation, (6.75) will always produce a better estimate of the solution vector x.
-For a two dlmenswnal case this situation is illustrated in Figure 6.24. In this
: example a point, Xy, on the line CD w1ll ﬁrst be prOJected onto the hne AB or a

. solutlon of the equatlon "_ _ o _
- For any point on the line CD the point X, on the hne AB is always a better
‘estimate of the solution then the original point. Thus the Kaczmarz algorithm

always converges. The distance between two points x; and X4 will be defined
in the normal Euclidean sense or s

Dlstance2 —l<x1—x’+1 xixitls>. | (6.78):v

Since the solution vector, x, lles along ‘the line' AB an initial estimate xI can
always be 1mproved by projecting the point onto the line. The point xitl s
closer to the solutlon than all other points on the line CD so this always‘
represents a better estimate. Since all points on the line CD project to the
point xJ ¥! this procedure always reduces the error. Thus it is ‘easy to see that
~ the erroris monotonlcly decreasing and in addition will always converge to
~ zero. (For now the cases where the system is either over determined or
~ underdetermined are ignored. Both of these cases represent systems of



‘ ‘Fiigu'_.l'e 6.23 o An in’itia_l estimate for the solutjon, xJ, is refined by finding -
. : the closest point on the line, x1*1,
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Figure 6.24 The point x2 is a better estimate of the solution point then
: any other point on the line DC. , '
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'equatlons that don’t necessarlly have a unique solutlon )

The speed of convergence is proportlonal to the 1ndependence of the rows

. of the A matrix. Figure 6.25 shows the convergence for two widely separated

cases. In Flgure 6.25a ‘the two hyperplanes are perpendlcular and the
Kaczmarz algorithm converges to the solution in one 1terat10n no matter what
‘the starting point is. (One iteration is defined as prOJectlng the x vector onto _
each of the hyperplanes) On the other hand in Fi igure 6. 25b the hyperplanes
are nearly parallel and it will take Kaczmarz algorlthm many lteratlons to .
converge to the correct solution.

- Since the Kaczmarz. method only works with a single row of the A matrlx
at a tlme it is possible to make a space—tlme tradeoﬁ' The form of the A
matrix is srmple enough that it is relatlvely inexpensive to recompute each row ’
of the matrix as it is needed. While on many computer systems it is possrblev
to precompute the A matrix and store it on disk, getting the data back off can
be time consuming. For the computers access1ble at Purdue (F loatmg Pomt
Systems AP120B and Control Data Corporation Cyber 205) it is more cost
effective to recompute the A matrix as needed. This approach has made the
problem solvable for more than trivial smed matrices.

- For an lmplementatlon of the forward scatterlng problem on a CDC Cyber ,

1205 super computer calculating one row of the A matrix requires 98 ,000
- floating p01nt operatlons (64x64 grid). Since calculating the pl‘O]ecthD requires
57,000 ﬂoatlng pomt operations this implementation takes 2.7 times longer
than the ideal (all values of the A matrix available immediately.) On the other
hand retrieving the data off disk, either explicitly or using virtual memory,
could take 100 times longer than the ideal situation*. Thus for this system of
“equations the tradeoff is easy to make.” With a Cyber 205 one iteration of the

Kaczmarz algorithm takes 233 million . floating point operations and can be =

computed in 1 second of CPU time. This represents a real cost of 21¢ per -
iteration as charged at the standard rate by the Purdue Un1vers1ty Computer
Center S

To make the 1mplementatlon of the Kaczmarz algorlthm as fast as possrble

several quantities are precomputed and stored for quick access. The x and y

coordinates of each grid point do not change during the course of the problem

Theoretlcally it should be possible to orgamze the data on the dlsk in a sequentlal
fashion and overlap execution time with IO time. With high enough bandwidth the total
execution time should be nearly equal to the ideal situation. Unfortunately, most operat-
ing systems are not thls cooperative, :
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@

B

(b) :: B

" Figure 6,25 ~ The orthogonality of the hyperplanes determines the rate of

o . convergence. If the hyperplanes are perpendicular then the
- solution will be reached in only one iteration (a) while it will
take much longer if the hyperplanes are nearly parallel (b).
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and thus it is possible to store these in main memory and not recalculate them.
In addition the Green’s function is circularly symmetric and thus a function of
only the radial distance. By ‘precomputing the values of the Green’s function
along a single radial it is possible to use bilinear interpolation to quickly
compute the Green’s function for each grid point glven the radlal distance and
the values along the radial. '

The algorithm for one iteration of the Kaczmarz- algorithm can be written

For each equatlon (representlng the scattered field at a single
point) '
Compute the Green’s Function |
®  Subtract a vector representing the x position of each
- grid point from the current equation. '

e - Subtract a vector representing the y position of each
grid point from the current equation. :

° Square each distance and add

K Find square root and multiply by scahng factor to ﬁnd o
the argument of the Green's function. '

. Use bilinear interpolation to ﬁnd_the Green'’s function
- atevery point.

Flnd the A matrix
Y Multiply the Green’s fl]IlCthIl and the ob_]ect
L ~ Subtract from the identity matrix (611)
Project xi onto the hyperplane. o |
An additional complication in this approach is caused by the use of

complex numbers. While the dot product operation is defined for complex
vectors better results are obtained if each complex equation is considered to be
two real valued equations. This simple change reduces the error by a factor of
100 or more but does increase the number of equations for a 64x64 image from
4096 to 8192. While the number of unknowns remains the same (4096 complex -
values or 8192 real values) there are now two projections that are needed for
each row. Fortunately the number of operations remains the same.

- The implementation of this algorithm was tested by comparing the results

of the exact solution for a small cylinder. Using the incident field as the first
| “guess’ for the solution several iterations were calculated and the real part of
the solution is shown in Figure 6.26. This compares favorably with the exact
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‘Figilré 626 The reél‘ parts of the scattered field are gﬂompared as
. computed by the Kaczmarz approach (solid line) and the
exact solution to the boundary conditions (dashed line).
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solution shown as a dashed line. In this example and the work to follow one
1terat10n is defined as projecting a vector, x? onto each of the N2 hyperplanes ,

The speed at whlch this algorlthm converges to the correct ‘answer is
shown in Flgure 6.27. Here the real part of the field for a sectlon of space near
the origin is shown before iterating (the incident field is the initial guess) and
~ then after one, two and three iterations. This result is especially encouraging
‘because the first iteration has changed so rapidly towards the correct answer

Ramakrlshnam [Ram79] proposed that faster convergence of a prOJectlon
algorlthm could be obtained by using pair wise orthogonalization. As already

described, the Kaczmarz approach will converge in one step when all the

equations are orthogonal and as the hyperplanes become more parallel it will .
take longer for the method to converge. ‘

- Certainly the best way to speed up convergence is to first orthogonallze. -

the system of equatlons Then it would be possible to solve the system of

equations in a single iteration. Unfortunately the work ~required to
orthogonalize the system is identical to that needed to find the inverse of the -

matrix. In addition it then would be necessary to compute and store all the - Lo

elements of the matrix. Due to the large size of the matrix this | is not practical.

Ramakrishnam proposed that pair wise orthogonahzatlon be used to make
each hyperplane perpendlcular to the prev1ous hyperplane. With this approach
the equatlon for the field at each pomt is made orthogonal to the precedlng one
usmg the relation ‘ : :

| <AAL> o
A, i (6.79)

A = A-A_
1 (B | <Al—1,AI—1>
and
.| <A AL > o S
bi = bi—bi~l ] l : (6.80)_' .
' <Ai—l’Ai—l>

Here the new orthogonalized system of equations are denoted with the matrix
A and the vector b, A; is one row of the A matrix and b is the correspondmg :
element of the b vector. ‘ ‘

- While this approach is not optimum it does have the'advantagethat at
each step storage for only one extra row of the A matrix is needed.
'Ramakrishnam showed for a simple restoration problem that pair wise
orthogonalization reduced the number of iteration needed to obtain a given
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Figure 6.27 Three iterations of the Kaczmarz algorithm are shown to

demonstrate the convergence of the approach to a single
answer. :
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mean squared error by a factor of two. Slnce the orthogonahzatlon is done-
with several dot products the reductlon in 1teratlons more than balances the

extra work

An alternative approach is rearrange the order of the equations to reduce

their mterdependency This idea was first pubhshed by Hounsfield in the

original patent for CT imaging [Hou72]. It seems reasonable that the
hyperplanes describing the field at adjacent pomts (less than a qnarter
wavelength apart) would be nearly parallel When the solution vector is first
pro;ected onto one plane then projecting onto a second parallel hyperplane will
not significantly improve the answer. "Thus convergence will be faster 1f the -
parallel hyperplane is saved till later in the iteration sequence. o

This idea i is 1llustrated in Flgure 6.28 for a two dimensional case w1th four
hyperplanes. In each case the order prolectlons are cons1dered is 1ndlcated as_ ,
the hyperplane number at the end of the line. First in Fig 1gure 6.28a the two

sets of parallel planes are cons1dered separately while in Figure 6.28b the two
sets are interleaved. It is easy to see that the ﬁrst orderlng will take twice as

‘many iterations as the second.

To calculate the scattered ﬁeld usmg the Kaczmarz algorlthm a system of '
equations is set up that represents the field at each point as a function of _the

refractive index distribution For ease of programming the x vector, the field -

at each point in the grid, is organized so that adjacent elements in the vector
represent the ﬁeld at adjacent points in the grid. Thus if the hyperplanes are
consrdered in order there will be a high degree of correlatlon between the_
equatlons and convergence will be slow. '

The degree of independence of two equations can be found by ﬁndlng the

angle between the two hyperplanes. If two equations contain nearly the same -

“information then the angle between ‘their respective hyperplanes will be zero

“while if the two equations are independent there will be an angle of 90 degrees.
From standard vector theory the angle between two hyperplanes is defined as

<AA>

cosf = — — (6._81)"”1 SO

VIKAAS <ALAS>)

where A; and A represent the rows of the A matrix or the normal vector to the
two hyperplanes '
The order ‘equations are con51dered is a function of a parameter called 6E

that represents the change in equation number. For each iteration of a Nx N o

grid the parameter i steps from 0 to N2—1 and ‘is mapped into an equation
nurnber J, by the relation '
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RO
Figure 6.28 }»’,‘I‘h‘efdrder equations are considered can affect the rate of
T - convergence. If the two sets of parallel lines are considered
~ separately (a) then the convergence is twice as slow as it

would be if they are interleaved (b).
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: (1*6E) mod N2 o v (6.82)
With the proper ch01ce of 6E the equation number j w1ll step through all N2.
" equations. ( _
The table below 6.2 shows the average and max1mum cosine of the angle
for a range of refractive indices between 1.01 and 1.5. A system of 1024
‘equations is used to define the scattered field over a 32 x 32 grid. Thus when
the parameter g is 1 adJacent equations are compared whlle the equations are
as far apart as p0351ble when 0 1 is set to 513 ‘

. Table 6.2. The average and maximum
cosine of the angle between hyperplanes is shown as a function
of the refractive index and the number of equations skipped.

Refractive | &5 | Average | Maximum|
~Index | | cosf | cosd
. 101 | 1] .000592 | .010902 |
: 513 | .000125 001338 |
1.1 1| .019414 | .1682
513 | .001981 | . .013842
1.2 | 1] .064287 | .377699
| 513 | .005448 | .025288 |-
L5 | 1| .238268 | .623253-|
| 513 | .022828 | .06990

‘From the information in this table two points are apparent. First, as the -
refractive mdex is increased both the average and the maximum cosine of the
angle increases. For small refractive indices the A matrix is dommated by the-
diagonal terms and thus each equatlon is nearly independent of the others.

This also explains why the Kaczmarz algorlthm converges much faster for e -

small refractive indices.

Secondly, equations describing the field at widely spaced points have a
large angle between their respective hyperplanes. As can be seen from the
- above table by comparing equations that are widely separated »the average and
the maximum cosine of the angle are reduced by a factor of 10. - Thus even
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w1th a refractlve lndex as great as 1.5 the minimum angle between hyperplanes
is 1ncreased to 86 degrees by sklppmg a large number of equatrons
, The advantages gained by conSIderlng non adjacent equations is conﬁrmed
by considering the convergence of the algorithm. For the system of equatlons _
deﬁned by Ax = b the residue i is glven by :

Residue = <Ayx>-b. (6.83)

“The residue measures the distance between the solution vector x and the
hyperplane described by A; and the total residue is defined as the sum of the
o squares of the residues from each row of A. This figure can then be used as a
measure of quality of the solution. ‘

g - The total residue when calculatlng the scattered field from a cylinder of
] radius 1)\ and refractive index 1.1 is shown in Figure 6.29. The study was done
for 16 iterations and compares the total residue when the equations are

considered in order (6g is 1) and when the equatlons are widely separated (bg is - -

513). To reach any given total residue, 1terat1ng the solution by considering
adjacent equations takes twice as long to converge as when the equatlons are

o wrdely separated.’

. Consrdermg widely separated pomts gives the same beneﬁts as pair wise
orthogonalization (convergence is twice as fast) but without the extra work. In
‘addition when the _equations are widely separated the planes are nearly

?perpendlcular and thus there is little to be galned by pair wise

orthogonahzatlon v

- It is also pos51ble to study the effect of pro;ectlng the field in a non
sequentlal fashion by considering the field after one iteration. Figure 6.30
shows the exact (dashed line) and the Kaczmarz field (solid hne) from a
cyhnder of radius 1\. The cyhnder has a refractlve index of 1.01 and the
Kaczmarz iteration 1s carried out over a 32 x 32 grid. In addltlon to
emphasnze the difference made by changes in 8E, the 1n1t1al guess, Xq, for the
ﬁeld was the incident field.

y Whlle at first glance all of the Kaczmar,z ﬁelds are very poor
: approxrmatlons to the exact field it is important to note that after one more
iteration all of them have converged to the correct ‘answer. Thus the only
effect of alterlng the order of the equatlons is to change the rate of
convergence. '

The reason for the dlﬂ'erence in one iteration of the Kaczmarz is best seen
by comparlng the field when &g is one and 1023. Recall that skipping 1023

- Tequatlons in a system of 1024 equations pro;ects adjacent equations, like ‘the
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The residue remaining after the first 16 iterations of the
Kaczmarz algorithm are shown as a function of the number

of equations skipped (6g). -
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o F’iguré ‘6’,’3’0 "~ The ﬁeld after ome iteration is shown as- a functlon of the
e number of equations sklpped



172

513

bE:

&
ety
San=—"m

g

=al\
N
/ 7
Ve
Y/ «

SYA

, g
. N
S SN
= ) N
u'ﬂh"ﬂrf/ /e

~
*

1023

6E=

H
vvvvv

66666

Exact Solution

Continued.

Figure 6.30 -



173

‘ “ _original case with 65=1, but instead the equations are treated in reverse order.
Since the diagonal elements of the A matrix dominate the matrix with a
refractive index of 1.01 each projection only mod'iﬁes the field at one point in
“the grid. Thus with &; = 1 the field is calculated in the same direction as the
incident - field traVels from negative to positive y. This means that the field
inside the cyhnder has been calculated before the feld is calculated at the
receiver’ line: On the other hand ‘when the equations are projected with
by = 1023 the ﬁeld at the receiver line is calculated before the field has been
| adjusted for the scatterlng 1ns1de the cyllnder :

Unhke the fixed point algorlthms (Born and Rytov serles) the Kaczmarz

- algorlthm should always converge to the correct scattered field. The speed the

‘series converges is related to the average orthogonality of the defining equations

and as shown in Table 6.2 the equations become more dependent as the
obJects refractive index increases. .Thus the Kaczmarz algorithm converges
more slowly for objects w1th large refractlve index.

L ~ Two other factors determlne the rate of convergence of the Kaczmarz
~series. As shown in Flgure 6.29 the order the equations are conSIdered changes'
‘the rate of _convergence of the series. For this reason most of the simulations
| shown in thls work were done using a 6E equal to N2/ 2+1 where the size of the
grld is NxN.  While it hasn’t been 1nvest1gated even better performance could
poss1bly be obtalned by alternatmg dlﬂ'erent values for bg. ’

o Flnally quantlzatlon and, samphng errors slow the rate of convergence.
’ Thls is shown in Figure 6.31 for a sampling interval of X and .25)\. In both
~cases the radius of the cylmder is equal to elght times the sampling interval
' »and the calculatlons were. performed over a 32x32 grid. The plots show the

" real (solid. hne) and 1magmary (dashed llne) components of the scattered field as

o calculated by the Kaczmarz algorlthm and an exact algorithm based on the
_.Bessel functlon expansxons descrlbed in [Wee64 and Mor68] '
, Each of the plots 1n Flgure 6.31' shows the scattered ﬁeld after 32
‘iterations. - Whlle the exact limits - of the Kaczmarz algorlthm are difficult to
define it is poss1ble to say that the: Kaczmarz algorithm has converged for -
. refractive indices up to 1.4 w1th a samphng interval of .1\ and up to 1.2 with a
‘ samphng 1nterval of .25\ Calculatmg the scattered field from objects with
. larger refractlve 1nd1ces mlght be pos51ble but w1ll need more accurate
1mplementatlons ‘ : _ ‘ ’

Al the results shown here were sampled us1ng rectangular basis functxons

' thnle accordlng to the sampllng theorem a rectangular set of baSlS functlons
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can represent the original continuous function without errors more accurate

integrations might be possible using sinc functions [Joh83 Ste81]. This idea
has not been explored here.
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' : CHAPTER 7 o
HIGHER ORDER RECONSTRUCTION ALGORITHMS

7 1 Introd uctlon

Reconstructions based on the theory in the first five chapters of this work
are based on first order approx1mat10ns to the scattered field. In other words
for both the Born and the Rytov approximations it is necessary to assume that
the field inside the object is equal to the incident field and then it is possible to
derive a simple (hnear) expression for the scattered field as a function of the
object. Finding a better estimate for the field inside the ob]ect is: the central
problem in 1mprov1ng dlﬂractlon Teconstructions. . -

_' The reconstruction problem 1S more dlfﬁcult than the forward problem -
discussed in Chapter 6 because now both the object and the field inside the
object are, unknown This means that is is necessary to desrgn a procedure that
simultaneously estimates both the object and the field inside the object. This
procedure is made more difficult because the reconstruction is formed by
'1llum1nat1ng the object by a number of different fields and the exact field inside
the object must be calculated for each view.

Three approaches to the inverse problem will be descrlbed here. Most
general and therefore computationally most expensive is to write a system of
equations that describes both the field and the object and then find the
‘solution vector that gives the smallest error. Unfortunately the system of
equations is non-linear and some sort of search procedure must be used to find
the best solution. This approach to the problem was first discussed by Johnson -

et al[Johg3].

Computationally less demanding solutions to the problem are based on
iterative algorithms. A perturbational approach much like that used to
generate the Born or the Rytov series was first proposed by Jost and Kahn
~ [Jos52] and later extended by Moses [Mos56] and Prosser [Pro69, Pro76]. This
approach was first developed for quantum scattering problems but is equally
valid for the electromagnetic and acoustic wave equations.
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A hybrid approach to the problem was first proposed by Johnson [Joh83]
and is a two step iteration procedure. It is based on the idea that is is only -
‘necessary to-calculate the'objeet since for any given object and incident field it
‘is possible to calculate the exact field inside the object. Thus the
reconstruction - procedure - first estimates - the object’s refractive index
~ distribution- and then an estimate of the field inside the object can be
calculated using any one of the procedures described in Chapter 6. The key to
this procedure is then to calculate a better estimate of the object given a better
estimate of the actual field inside the object.  This approach will be descnbed-
in section 7.4 as an example of a fixed point iteration.

7.2 Non Linear Approach
- The most general approach to estimate the object given the scattered field
is to define a solution space that includes both the refractive index of the
object and the exact field inside the object for each of the views. Both the
non-llnear equatlons and the number of unknowns combine to make this a
difficult ‘problem. The non- -linear nature of the problem means that a search
- procedure must be used to find the best solution and unlike fixed pomt or
- perturbation methods it is not possible to say a priori how fast the search will
»reduce the error or whether it will ever converge -

, The unknowns in this problem are deﬁned over an NxN grld and con51st.
of the ob_]ect and the exact scattered field from Ny views. If the number of

S views, N¢, is on the same order as N then there are a total of N3 unknowns and

thus at least N3 deﬁnlng equatrons are needéd for a well behaved solution
- [Sar81). - '

For each view Ny measurements of the scattered field are taken and this
deﬁnes N¢NM equatlons of the form : e » -
| EEWUE Mﬁ%ﬂwﬂﬁ-' @
where uy 4 IS the measured scattered field for a view at angle ¢ and- pos1tlon?
Both "u, 4(F), the total field inside the object for the view at angle ¢, and off),
- the object’s refractive index, are unknown. Since the unknowns are calculated
over a dlscrete NxN grid the integral above becomes a summation or

wm TDMNW%FJ 5 E)

" Unfortunately :the measured pornts only contribute NyNy equations_'._-

- therefore there are motre unknowns than equatlons by a factor of approximately

N (again assumlng that N¢ and NM are on the same order as N). The
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additional equations are defined by noting that the field inside the object must

also satisfy the Helmholtz equation. There are N ¢N2 equations of the form _
ut,q&(?) = ug g(F) + fu, 4 )O(T’ )g(r-=T’ )d'r’ o (13

or in discrete form _ : ; o o | ‘

(T =g ¢(" ) +T? Eut L 0('"J)g( ') (7.4

Thus the combination of equations (7.2) and (7.4) define a total of

N¢NM+N¢N equatlons whlch must be solved for both u, 4(F) and o).

The dlfﬁculty caused by the large number of unknowns is compounded by
the non hnearlty in the ‘equations. In both equatlons (7.2) and (7.4) the
product of the two unknowns the field and the object, is convolved with the

Green’s function and this product means that the Kaczmarz algorlthm as used

in Chapter 6 is no longer applicable.

The usual approach to solve a system of non-linear equations is to define

the error as a function of the difference between the left and right side of the =~ -

equations. An optimum solution is then formed by a search procedure that
looks for a minimum in the error function. One implementation of this
algorithm reported by Tracy et al [Tra83] took 7 hours of computer time on a

small minicomputer to find the object over an 1ix11 grid. Calculating the - -

object over a larger grid (at least 128x128 is probably needed for medical -
1mag1ng) would be prohlbltlvely expensive.. :

7.3 Perturbation Algorithms |
As already described in Chapter 6 perturbation algorithms are an

‘im’portant technique for solving the scattering problem. This technique was
first used to solve the inverse scattering equation by Jost and Kahn and the

general techniques are described in more detail in the books by Nayfeh [Nay73,
Nay81] A discrete version of the work by Jost and Kahn was first reported by
Devaney in [Dev82] :

A perturbatlona‘l expansion of the forward scattering problem is found by

letting the object function be written in terms of a small perturbation
parameter ¢ or "

. off) = eX(P) ’ S ’(7.5)_ '
and the total field written as a polynomial in terms of the vsamevperturbation

- parameter or
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u(‘) E éuy(T). . (7.6)

. i=0

' Now both the ob]ect and the field are expressed as a function of the free
- variable €. At first glance the problem is made more difficult by the addition of
the extra perturbation parameter but by gatherlng together the powers of € the
, _problem can be easily solved.

The equatlon for the total ﬁeld

L (") = mc‘°) + fut" Jo(¥') ( T’ )d7’ (7.7)
- ,1s now wrrtten as a function of cor '
'»E €uy(F) =y, + fE éiy(r) JeX(¥ )g(?—‘r”) (7.8)
i=0 ‘ :

Rearranging this equation as a polynomial functlon'of € both the. scattered field
and the object satisfy an equatlon of the form

. 0 - [UO(_j umc] + ) ’ o ‘ ‘ ’ | . (79)
| élul(") IUo(”’)X(?’ (?T‘”)d"'] + |
2{u1'i’) [ug(F! (r =4 d""] +

6[ur(‘l') qu("’ X(”' (’* ')d"'l + -

‘In order for this eqnatlon to be valld each coeﬁicrent of ¢ in the series
. expansion- must be identically equal to zero. This requirement is all that is
necessary to solve the more general problem for u; as a function of the
perturbation parameter ¢, but in the scattering problem only the solution for
€=11is interesting. Therefore by settrng the coefficient of each power of ¢ equal
~ to zero and then setting the value of € equal to one the following equatlons

result ‘

U T Uy T (7.10)

| um fuor' e @)
and in general , | , -
wm = Jug (X RET)E inl (7.12)

This is the same system of equations defined as the Born series in Chapter 6
therefore the same condltlons define the region of convergence for this
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perturbation solution. This method of analysis was also applied to the
scattering problem by Keller [Kel69] and by Oristaglio [Ori85].

The forward scattering problem represents a relatively simple example of
the perturbation method. The inverse problem is solved by assuming that the
Born series converges and writing the total scattered field as

u(F) = [u(! ol Jg(F-F )dr’ + (7.13)
[ [uoff JoF)g(E! =" )P ofF! ! )g(FF! ! )aF!! +
[ fual®" Yol Jgfe" ! =7 T of" (" =T )ar""

oﬁ'lll)gﬁ?_?lll)d'F'll + -
Now replace the scattered field by

u(f) = ey(r) (A TY
and express the object as a polynomial in € or
[C T '
off) = Y, o). (7.15) .
i=0

The scattered field is now written

) = [uof ) eoff g ) + (7.16)

J [uo(® ) elo(F Jg(' ' =T )dr* Y eloy(T' ! )g(r=T"" )dr'! +
1 . I

i

J‘ffuo(?r )Zeioi(—fn )g(?r "t )d-iﬂ Zejoj(?l ! )g(?l 1t )df.vl !

Eekok("r’"')g(?—’r'"')d?"’ + ...
k

where S; is used to denote scattering by object u;.

This expression can be simplified by defining an integral operator S that
maps an incident field into the field scattered by the object. If an incident
field, uy(t), is scattered by an object, ofF), then the scattering operator is
defined by the following integral

u(T) = S(ug) «  [fuolf’ Jo(¥’ )g(r-7')dr’. - (1)

Now the Born series in equation (7.13) can be written
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u{F) = S(ug) + S%(ug) + Ss(“o)/ + e o (1.18)
~ where S L
S =sfsiw) 0 a9
v‘:_“Using‘ this notation (7;16j can be _writhen . o o
o = e uo* + o (7.20)

226 €iS;(Si{ug)) +

}22&&%& S(uo) + -+

This' expreSSien' can be-51mp11ﬁed even further by denoting the iterated kernel
S;(Si(uo)) by the expression S(ug). Now the Born series is written

@=yse+ @

EZ:G e’ekSle(uo))) + -
i) k.

'Notlce that the first summation above represents first order scattermg from a
“pumber of different objects while the second set of summations represents all
. possﬂ)le second order scatterlngs from the same ensemble of objects.

, ~ A series solution’ for the ob_]ect function is found by gathermg together the
'.coefﬁments of llke powers of €. This gives the followmg polynomlal in e

o ezp('r’) = €8y{ug) + 62[32(“0)"'Su(‘lo)] + ' (7.22)
€3[S3(ug) +.Szl(u‘o)+Sm(u0)‘+sm(uo)]+ =

“Just as was done in derlvmg the Born series each ‘power of ¢ is
1ndependent and therefore the followmg equahtles can be written

= Sl(uo) o (7.23)

| | .Sz(ilo) Su(“o) o o | (7.24)
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| “ 53(‘10) 521(‘10) 512(‘10) S111(‘10) S (1.29)
and in general R B e
(“o) =- E  Sipe-ei(w)  n>20 (7.26)
’ i1+i2+ . +'in :}i ) S .- . :
_ Conslder first the equatron for . The solutron for the object functlons is
only interesting when €=1 therefore z/)"u and the first equality above can be
written ' ’ ‘ ; : '

Th1s equatlon represents the measured scattered ﬁeld as the first order
» scattered field from the ob]ect o, and by the Fourier Diffraction Theorem this
'equatlon can be solved exactly for o;. Because the object is illuminated with
the incident field this is true for all experiments, regardless of the size of the’
object and its refractive index. This contrasts with first order diffraction
tomography where the obJect is modulated by the total ﬁeld and thus the
Fourier Dlﬁ'ractlon Tomography is only valid when the total ﬁeld can be F
-approxrmated by the incident ﬁeld : : '

Whlle equatlon (7. 23) only expresses the scattered ﬁeld from one v1ew of

fuor'ol (T ) (E

"the ob]ect it is - poss1ble to combine the scattered field from a number of" -

different views and then use the first order reconstructron algorrthm descrrbed :
in Chapter 4. Thus the result of the first order reconstructlon algorrthms: .
descrlbed in Chapter 4 and 5 is exactly equal to 01 ‘ '

 The second order object is  slightly more dlfﬁcult to compute From‘_
- equation. (7 23) the ﬁrst order scattering from the second order ob]ect is given

by |
Sa(ug) = —Sy4(ue). : o (7 28)’
The expressron Sn(uo) represents the second order scatterrng from the ﬁrst
‘order object and is easily calculated because o; has already been computed.
The higher order terms follow in a similar fashion except a number of partial
- scattered fields are summed to find the first order scattered ﬁeld from ;- '

The procedure used to calculate the higher order object i is shghtly different
from that of the first order object because of the location of the receiver line.
,The first order object is a function of the scattered field and the placement of -
~ the receiver hne is limited by experimental constraints. On the other hand the
higher order fields are defined on a rectangular grid since an FFT based
" implementation of the Born integral is the most efficient procedure. Thus for -
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~ the hlgher order terms the ﬁeld are calculated over the ‘entire grid and then
only the ﬁeld along one srde of the grid is used as lnput to the reconstructlon

-‘procedure _
_ In summary the algonthm for reconstructlng the object us1ng the higher.
. order Born’ serles is , , e _
o Use the measured ﬁelds and the first order Born reconstruction _'
- algorithm to compute 0;-
L For each i>1 do the followrng

e Calculate the . higher order scattered ﬁeld from each of the
already computed objects (See equation (7. 26)).

¢ . Use the first order inversion algorithm to invert S; and find o;.

e Sum up each of the o; to get' the object reconstruction.

" Notice that this algorithm is “e)ract " Except for the numerical approximations

needed' for the reconstructlon ‘procedure there are no mathematlcal

- approx1matlons to lrmlt the quallty of the teconstruction.

The most expensive part of this algonthm is not- doing the reconstructions

) ~ but 1nstead in computlng the higher order scattered field, S;. While it is easy -

S oto. lmplement a fast algorlthm to compute each partial field in S; the total
3 ".number of 1ntegrals increases rapidly with each succeedlng 1terat10n Table 7.1
* shows the number of partlal fields and the total number of 1ntegrals needed for
, each of the first twenty iterations. Since each integral takes a constant amount
- of CPU time, no matter ‘how it is implemented, the practical limit of this
algorithm with today’s computers is certainly under ten iterations.
The convergence of this series is dependent on the convergence of both the
- forward Born series shown in equation (7. 13) and the object series shown in
equation. (7.15). Thus if; either series: is_divergent then this reconstruction
procedure will also dlverge and produce an undeﬁned answer.

" The convergence of the forward series was dlscussed in Chapter 6 This,

for example, showed that for an object of radius 2\ the scattered fields could
be calculated usmg the Born series only for ob]ects with a refractlve index of

 less than about 11% This puts a severe limitation on the type of objects that

can be reconstructed with the higher order Born series. For objects that do fall
within the allowable range ‘the reconstructron with the higher order Born series
_ should be quantltatlvely more accurate than that done w1th a first order |

algonthm R ‘
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‘ T.a‘b‘leb7.l. The number of,pértiél field
~terms and integrals needed to calculate each

. iteration of the inverse higher order Born series.

Tteration  Terms . Integrals
B | 0 .0
2 1 2
3 3 1
4 719
5 15 e 47|
6. 31 111
7 63 255
8 127 575
9 255 1279
10 511 2815(
1 1023 6143
12 - 2047 13311
13 4095 28671
14 8191 61439
15 16383 131071
16 32767 278527
17 65535 589823
18 131071 1245183
19 262143 2621439
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The serrousness of thls llmltatlon is further seen by recallmg that the

: ,hrgher order Born series only - converges when the first order field closely

.“approxrmates the total scattered field. This is the same condition that
3 determlnes the accuracy of the first order reconstruction algorithms so the
‘ultimate improvement is limited by the quality of first order reconstructions.

. " Thus it will not be possible to image any object with a larger refractive index

| ~or radius than those in Figure 71 using an algorithm »based on the Born series.

The co'nvergence of ‘the object series has yet to be determined. Jost and
"Kahn in [J0552] report ‘the - ‘convergence of the hlgher order ‘Born inversion

- ‘aprocedure for two quantum mechanical scattering experiments.

‘While the above derlvatlon of the perturbatlon approach has expanded the
object as a perturbation ‘about zero it is- also possible to consider the object to
be a small perturbatron of a known object This generalization is known as the
Distorted Wave Born Approximation (DWBA) and is described in [Tay83,
New66, Dev83 and Bey85]. This procedure is made more difficult because the
o Green s function used in the integral now represents the scattered field from a

o pomt source wrth the eﬁect of the known object 1ncluded The convergence of
: thls procedure 18 not known ' :

.4 leed Pornt Algorlthms o

o A thrrd untested approach to solve the 1nverse dlﬁ‘ractlon problem is to use
a fixed pomt algorlthm Whrle the “overall algorithm is relatlvely
: stralghtforward it is necessary to perform a ﬁrst order reconstruction of the
object when illuminated by an arbltrary field. This is much more difficult than
the first order reconstructron algorithms based on piane ‘wave illumination
: descrlbed in Chapter 4. (The synthetlc aperture approach does use point
'sources but since a dlﬁ'erent phase is added to the scattered ﬁeld for each

transmltter position a plane wave is synthesrzed ) ' '

‘A ﬁxed ‘point algorlthm for calculatlng the object that scattered a
measured ﬁeld is based on the equatlon -

o = f(o) :‘d S  g9)

where o is the desrred object function. Wlthln the llmlts of convergence of the
serles an lnltlal guess o,_l can’ be 1mproved upon by lteratlng the ‘equation

f(o.-_) N € &)

7 The exact form of the iteration function, f can take a number of different
forms Grven only the scattered fields then either the Born or the Rytov
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Born Convergence (t=0.25)
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First order reconstructions of four objects at the limit of the
Born series are shown here. Objects with a reconstruction
worse then these can not be improved by an inversion
procedure based on the Born series because the Born series
will not converge. S :
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approximation can ‘be used to make an initial guess for the object. Both of
these approximations assume that the field inside the object can be
approximated by the incident field and this is the major source of error in the

first order reconstruction procedures.

- It seems reasonable that a better estlmate of the ob]ect functlon could be
found if the field inside the object is known. While it is not possible to know
this without knowing the object first, a good estimate of the field should be
possible given an estimate of the ob)ect If the initial estimate of the object is
“good enough’” then a calculation of the scattered field given this estimate of
the ob]ect should be more accurate then just using the 1n<31dent field. -

Using this new estimate for the field inside the object a better estlmate of
~the object functlon should be possible. The general lteratlon formula can now

be written . . o ,
-0; = Reconstruct(Estimate Freld(ol_ ) '; (7.31)

Here the functron labeled “Estimate Field” lcon31sts of estlmatlng the total
ﬁelds inside the object 0;-; and the function labeled “Reconstruct” consrsts of .
estimating the object given the total field in the obJect The first iteration is
the simplest since the estimate of the total field in the object is srmply the
mcldent field. Higher order iterations are made even more difficult since lt is
necessary to estimate the fields 1nsrde the object for each of the N¢ v1ews

~Any number of means can be used to 1mplement ‘the two different steps in
the algorithm. Estimating the field inside the object can “be done with any of
the procedures described in Chapter 6, lncludlng the Born and Rytov series or
the algebraic approach. The procedure to use would depend on whether the
object falls in the algorithm’s region of convergence and on the efﬁcrency of the
algorithm with the available hardware '

‘Inverting the total fields to get an estimate for the object is the most
difficult part of the algorrthm The Fourier Diffraction Theorem only applies to
objects 1llum1nated with a plane wave so a more general approach is needed.
One solution to this problem was proposed by Vezzetti and Aks [Vez79].  Their
- work still assumes plane waves inside the object but now the field inside the
object is modified by the average refractive index. With this approach they do
show an lmprovement in the quality of the reconstruction but it is doubtful
whether this approach would be accurate enough for a fixed point algorithm.

A complete solution for the object given an arbitrary set of illuminating
fields would undoubtably be based on a least squared approach. While there
are enough equations, given the field everywhere, to determine the object the - .
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system of equatlons would be very unstable beca,use the Green s function only
samples one arc of the scatterlng potential’s Fourier transform. This means
that if the field is known over an NxN grid and it is desired to calculate the |
~ object over the: same grld then there would be a total of N2N¢ equations
. defining the N2 unknowns. Thus the system of equations to determine the
- object is overdetermined and any error in the field estimates will lead to an
inconsistent set of equations. A least squared approach could then be used to
find the solution vector that best satisfies the defining equations.

The convergence of this method is unknown. Like the fixed point
“methods discussed in- Chapter 6 it is necessary for the “derlva.tlve” of the
function be less than one in some region for the algorlthm to converge. It
‘probably isn’t unreasona.ble to assume that this method will only converge
. when the first order estlmate of the object is “good.”
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‘CHAPTER 8
CONCLUSIONS

A number of idea.s are new to this work. While they have served to answer
a number of questions about diffraction tomography there remains much work
to be done. This chapter, therefore, reviews the state of the art of dlﬂ"ractlon
tomography as presented by this work and 1nd1cates drrectlons for future.'
research. ‘ ' |

Chapter 2 reviewed the wave equatlon and 1ts 1ntegral solutlon While

this material is well known among people doing research in dlffractlon_ -
tomography ‘and inverse scattering its presentation here empha,srzed the
common mathematlcal problems in acoustic and electromagnetlc scatterlng I

For this reason all distances were expressed in- wavelengths and the object
function represented the (complex) refractive index variation of an
1nhomogene1ty for either acoustic or electromagnetic waves. Researchers more
concerned with experimental work will want to use the relatlonshrps presented -
in Chapter 2 to convert the results presented in the remainder of this work to
more physrcal quantities. ‘ R

Flna,lly Chapter 2 also presented two approxrmatlons the Born and the -
Rytov, which allow linearized versions of the wave equation to be written.
These two first order perturbational approximations are important because .
they allow simple inversion algorithms to be derived. Since these
- approximations are so critical to first order diffraction - tomography the
‘ mathematical limitations of each approximation are also discussed.

The Fourier Diffraction Theorem relates the scattered field measured on a
line to the Fourier transform of the object and is presented in Chapter 3. This
theorem is only true when either the Born or the Rytov approximation is valld
but it has generated much excitement in the research community.

The Fourier Diffraction Theorem was derived by two different methods in i

this work. Both approaches to the Fourier Diffraction Theorem lead to the _‘ o
- same relationship between the scattered field and the object’s Fourier

transform. The conventional approach is to decompose the Green'’s function, '
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the field scattered by a point scatterer, into plane waves and simply substitute 7 '

this result into the integral solution to the wave equation. A second, new
approach, is to consider the Fourier Diffraction Theorem entirely in the Fourier
‘domain. - ‘This method points toward a more natural computer implementation
and was explorted in Chapter 6 for computing better approximations to the
scattered field. S -

- The remalnder of Chapter 3 dlscussed experimental methods for collectxng-

-enough scattered data so that a unique estimate for the object can be formed.
The potential methods described include using a plane wave to illuminate the

. object, synthesizing plane waves much like what is done in phase array antenna

de51gn and broadband (in time) incident fields.

Chapter 4 discussed two mathematical algorithms for inverting the
scattered data to estimate the object’s (complex) refractive index. Much like

conventional (straight ray) tomography there are two approaches that can be _

used to invert the scattered data. These two algorithms, often described as
1nterpolat10n in the space domain and frequency domain, were presented here
and thelr algorlthmlc complexrty was discussed.

- In addition several srgnal processing concerns were examined in Chapter 4.
- By ‘calculating the Mean ‘Squared Error between the object and the
- reconstruction it was concluded that zero padding each projection is a good
"way to reduce the mterpolatlon error in the frequency domaln On the other' '
hand, ‘using a Hammmg w1ndow to shape the projection and reduce the effect
of the finite aperture severely attenuates the high frequency 1nformatlon in the
prOJectlon and increases the error.

The hmltatlons of first order dlﬁ'ractlon tomography were discussed in
Chapter 5. Two types of errors limit the quality of the reconstruction:
mathematical limitations caused by the approximations used to derive the
Fourier Diffraction Theorem and experimental limitations caused by the ability
to only collect a finite amount of data. The mathematical limitations are the
most severe. In der1v1ng the Born and the Rytov approx1matlons it was
necessary to assume that the scattered fields were small compared to incident
fields. This is equivalent to saying that the object must be weakly scattering
for the ﬁrst order diffraction tomography algorithms to hold and if this
“condition isn’t met then the reconstructlon w1ll have serious artifacts. '

The limits of first order diffraction tomography are easrly descrrbed in
terms of the magmtudes of the scattered fields but a more meaningful measure
s to study the range of ob_]ects where the approximations are valid. This was
done in Chapter 5 by calculatlng the exact scattered fields from a large number
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of cylinders and then making an estimate of the object assuming that the first
order diffraction tomography algorithms are valid. Thus it was concluded that
‘the Born . approximation is valid when the product of the diameter of the
' cylinder (in wavelengths) and the absolute value of the refractive 1ndex change
is less than 0.5. On the other hand the size of the object is not as critical to
‘the Rytov approximation. Instead the refractive index change is the limiting
- factor and reconstructions based on the Rytov approximation are good as long
as the refractive index of the object is less than a few percent.

The experlmental limitations, on the other hand, can always be mlnlmlzed .
by collecting more data. Thus it is clear that interpolation error can always be
reduced by increasing the number of projections or the number of samples per 3
projection. Another, less obvious, limité,tion is- the finite aperture of the
projection. Unlike conventlonal (stralght ray) tomography where. the projection _
of a finite sized ob]ect has a finite length, the same is not true for scattered
fields. With diffraction tomography the scattered field never goes to zero and

the sampling interval for the proj'ectio'n must be carefully balanced to prevent.' e

aliasing but yet large enough to measure the hlgh frequency mformatlon far -
from the center of the pro;ectlon An expression for this relatlonshlp was
derived in Chapter 5 and several reconstructions were presented w1th dlﬁ'erent

sampling intervals to confirm the optlmum sampling interval. -

The limitations of first order reconstruction algorithms were addressed m'
Chapters 6 and 7. The most severe limitation is caused by the first order
perturbation models assumed in deriving the Fourler Diffraction Theorem.
Thus Chapter 6 discussed several approaches to more accurately model the
scattered fields. With one of these more accurate models it should then be
possible to invert the relationship and derive a better reconstruction algorithm.
A survey of several possible approaches to 1nvert1ng the scattered data is
presented in Chapter 7. v _

Since better reconstructions will be based on more accurate models of the
field :inside the objec‘t two approaches to more accurately model the. scattered
- field were presented in Chapter 6. The most severe limitation of first order
: algorlthms is the assumption that the field inside the object is approxunately
equal to the incident field. Thus when this condltlon 1s not vahd the Born and
the Rytov approx1matlons are no longer valid. v ,

The simplest t-_echmque is to assume that the perturbational model used to

derive the Fourier Diffraction Theorem is approximately correct and simply
include more of the higher order terms. The result is a series of terms much
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like a Taylor series. This is an iterative procedure and was applied to both the -
Born and the Rytov approximations.

An . important measure of any series is a description of its region of
convergence. In this case the region of convergence is a function of the entire -

o object and the results presented in Chapter 6 were simplified by considering the

. 1ndex.

convergence as a function of size and refractive index of simple objects. Thus

~the region of convergence can be described by two parameters and all objects
outside this region {because they are larger or have a greater refractive index

- change) will cause the series to diverge. _

The series described in Chapter 6 were calculated by sampling the object

- and the fields and then using an efficient algorithm based on Fourier

transforms. In each case the scattered field was calculated by multiplying a

function of the object by a field and then convolving this ‘“‘scattering potential’’ -

with the Green’s function. The convolution represents the most expensrve part -
of the algorlthm and can be eﬂiclently calculated using FFT’s. _ '

The convergence properties of the Born and the Rytov series were
determlned by a bmary search procedure. Thus for a given size the refractive
index of the ob_]ect was varied till a point was found were the series converged
for all refractlve 1nd1ces that were smaller and diverged if the refractive index
was’ larger than thls point. By varying the size of the object it was possible to
-show a region of convergence as a functlon of both obJect size and refractive

~ The ‘simulationsof the Born series showed it to converge only when the
first iteration is an accurate estimate of the field inside the object. Thus the
phase change of the field as it travels through the object is a good indication of
not only the quahty of a first order Born reconstructlon but also descrlbes the
“region of convergence of the Born series. '

.The convergence of the Rytov series is more surprising. For all cases
studied the Rytov series’ region of. convergence includes the region of
convergence for the Born. This is especially surprising since the first order
Born and Rytov approx1matlons have different reglons of vahdlty

In addition Chapter 6 also presented a study of the effects of attenuatlon
on both the Born and the Rytov series. A key part of this work is the idea
that attenuatlng plane waves can be described either in terms of a solution to
~ the wave equation or in the Fourier domain. In a non-attenuatmg media the
two approaches are identical since plane wave solutions to the wave equation
are also Fourier waves.
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Cons1der1ng an attenuatmg plane wave in the Fourler domam makes it
possible to calculate the higher order Born and Rytov -series for attenuating
- media. Whlle the algorrthms remain the same. there is a 51gmﬁcant difference
in its convergence properties. Since the energy in the field is attenuated as it
travels away from the scatterlng site the region of convergence for- both the
Born and the Rytov series is increased as the attenuatlon of the media is
increased. Thus the attenuation of the medla balances the extra ﬁeld caused
by a larger scatterlng potentlal T o ‘

A second approach to calculatlng the scattered fields from a known object
was also discussed in Chapter 6. By sampling the object and the ﬁelds a set of
- discrete equatrons can be written that relate the field and the object. Without
using any approximations it is then poss1ble to express the ﬁeld as the solution
'of a linear matrix equation. '

While the form of the matrix- equatlon is srmple the large amount of data

~ makes this problem difficult to compute directly with today’s computers. '
Instead it: was necessary to use an iterative technique known as the Kaczmarz
approach to solve the matrix. Whlle the iterative technlque used can be shown
theoretically- to always converge numerical errors limit the range of objects to
those that have a refractlve index change of less than 20—40% '

The rate of convergence of this method is only a functlon of the"
‘orthogonality of the deﬁnlng equatlons Thus when the ob]ect has a small
refractlve index the deﬁnlng equatlons are nearly orthogonal and the Kaczmarz
approach quickly converges to the correct field. On the other hand as the
refractive index is increased the hyperplanes defined by the equations become
nearly parallel and convergence is much slower. Since the Kaczmarz approach
treats each equation for the field separately faster convergence is often possible
by sequencing the equatlons SO that each equatlon is nearly parallel to the one
before it. ,

Flnally Chapter 7 ‘presented a survey of several techniques for -
,reconstructlng an object without using first order approximations. The most-
difficult part of this problem is that it now necessary to actually compute the

field inside the object. In first order diffraction tomography the field inside the -

~ object is assumed to be a plane wave but this can’t be true with higher order
approximations. Since it is necessary to illuminate the ob]ect from a number

of different directions to perform the reconstruction a calculation of the field is =

' necessary for each view. The large number of equatrons makes this a difficult
‘ and expensive process. '
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A straightforward approach is to write a system of equations that
‘ descrrbes both the field inside the object and the refractive index of the object.
It should then be possible to solve this system of equations for both the field
- and the object. Unfortunately it is a non-linear system of equations because

- the deﬁning equations are'a function of the product of the two unknowns. For

- “this reason it is necessary to use some type of search procedure to solve for
' 'both the fields and the ob]ect ‘

, A second approach ﬁrst used in hlgh energy Pphysics and descrrbed in
Chapter 7, is to do a perturbation expansion for the object. This is similar to-
'”the Born and the Rytov- series described in- Chapter 6 but now the object is
assumed to consist of a series of components :

. The convergence of this approach is a function of two series. Since thrs
approach is based on a Born series expansion for the scattered field it is only
valid when the ﬁeld inside the obJect can be described as a converging Born
series. As seen in Chapter 6 this is a rather severe hmrtatron In’ addition the
o iobject is expressed as a separate series expansion and for this approach to
o converge it lS necessary for both the Born serles and the object series to
o converge. ' ‘
| Frnally a thlrd approach descrlbed in Chapter 7 is to make a ﬁrst order N
estimate for the object and then use this' object to calculate a better estimate
for the field inside the object Like the Born and the Rytov series described in
‘Chapter 6 this is a fixed pomt algorrthm ‘This approach is made even more
~ difficult than first order reconstructlon algorrthms since it is necessary ‘to
calculate an estimate of the object given an arbltrary illuminating field. Since
each projection is no longer independent the Fourier Diffraction Theorem is not
“valid and a reconstruction procedure will need to look at all the scattered data
srmultaneously ‘This can be easrly done usrng a matrlx formulatlon but there
is a severe performance penalty ' ’

The convergence propertles of thrs partlcular series is not known although
it is probably reasonable to assume that the region of convergence will be a
~ function of the quallty of the first order estimate of the field. - It using the first
order estimate of the field is not better than the original assumption to use the
mc1dent field then certamly ‘the serles will drverge ThlS condltlon represents a
severe’ hmltatlon for the technlque

_ Future work on thls problem could contlnue in several aress. The
perturbatlonal approach has a limited range of convergence but for objects that . -

fall within this range a better quantltatlve estlmate of the object should be

7possrble than that whlch is possrble usrng first order algorlthms The same is
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~ also true for the fixed point approach but more work is needed to determine
the range of convergence. ' ‘

Certainly the only guaranteed approach to solve the inverse scattering
problem is to find a solution to a non-linear set of equations. ‘There are a
number of algorithms that can be used but the large number of equations (a
128x 128 reconstruction has over 2 million unknowns and equations) makes this
a very difficult problem. |
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