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ABSTRACT

i'

i

In this report, a newly modified Newton algorithm (MNA) and a data 

structure for sparse matrix manipulation are presented for analyzing large-scale 

electronic circuits on the Cyber-205 supercomputer. The MNA is improved 

from the Multilevel Newton Algorithm (ML NA) developed by E abbat, 

Sanjiovanni-Vincentelli, and Hsieh (1979). The time complexity and conver­

gence rate of MNA are analyzed. The computation steps are shown in detail 

by some example circuits. Scalar and vectorized simulation programs have 

been tested run on a VAX 11/780 Scalar machine and on the Cyber 205 vector 

processor at Purdue University. From the results obtained, we observe that 

the MNA results a speedup of about 100 on the Cyber-205 as compared with 

using a scalar computer to analyze an electronic circuit containing 500 identical 

.subcircuits.



CHAPTER! 
INTRODUCTION

the paper organization and research contribution! Eelabbd previous TVorks are 
briefly reviewed.

1.1 Circuit Analysis Methodologies
Digital computers have been used widely in large-scale circuit analysis. 

This report presents a Modified Newton Algorithm (MNA) for circuit analysis. 
The supercomputer Cyber-205 is used for analyzing large-scale electronic 
circuits with this new algorithm. In the time-domain, a nonlinear lumped 
circuit system is characterized by a set of differential equations. [1] [5]

f( u(t), u(t), t ) = 0 T > t > 0 , (1.1)

where u(t)£Rp is a vector of node voltages, or branch currents, or capacitor 
charges, or inductor fluxes, and 0 is the origin in Rp, The mapping, 
f: RpxRpxR1—>Rp, is a differential function with respect to u(t) and u(t), On 
a digital computer, the Backward Differential Formula (BDF) [16] can be used

to discretize the operator -7- . The BDF of order k is defined by:

■ 'k .. '■■■■ ; ■■ ■
! -hun + 1 = *n+i-i , (1-2)

, i=0 .

where un + 1 is the computed value of u(t.n + 1), and un + 1_; is the computed 
value of u(tn + 1_j), for i = 0, 1, • • • k. The time increment h = tn + 1—tn, and 
the <*i’s are selected such that Eq 1.2 is exact for polynomials of the degree<k. 
Substituting Eq 1.2 at t =tn + 1 into Eq 1.1, we obtain

f ( un, • • • un + 1_k, tn+1 ) = 0 0 < tn+1 < T (1.3)

Since the k past values un,...un + j_k are known at time tn+1? Eq. 1.3 becomes a 
function of un+1. Then Eq 1.3 can be written as

Fn+i(un + i) = 0 ■;, t•:

Where Fn+1 : Rp—►RP is continuously differentiable, and the index n + 1
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indicates different time instants. Then a digital computer can be used to solve 
a nonlinear circuit by Eq.1.4 . For example, a linear capacitor is characterized
by:

c dV
dt

= 1

or
dV
dt

Where'V is the voltage, across the capacitor, I is the . current through it, and C 
is the capacitance. Using the BDF to discretize Eq. 1.6, we obtain

VB+i=V-+h- *n + l
c

or

Ul = YVn+x--S-V„ (1.8)

Using Eq.1.8, at time tn + I, the capacitor is equivalent to a resistor and a 
current source, called an associated discrete circuit [5j. Figure 1.1 shows this 
equivalence for a linear capacitor at time tn + 1. After such an equivalence, 
there will be no time dependent elements in the circuit. Only linear resistors, 
nonlinear resistors, independent and controlled sources appear. Then the 
circuit can be solved by the Newton Raphaon Algorithm at time 

•t'n + i:for".' V:<;;tn + i < T . : •
There are several algorithms for solving the nonlinear equation defined in 

Eq.1.4, such as Single Level Newton Algorithm (SL.NA) and Multilevel Newton 
Algorithm (MLNA). This report presents a newly modified Newton algorithm 
to analyze large-scale circuits and studies the speedup from code vectorization.

1.2 Circuit Analysis On A: Supercomputer :
Circuit analysis requires to solve the linear system of equations:

.. ;. A-X =b' ■ ■■. (1.9)

When the size of a circuit is large, the matrix A becomes very large and very 
sparse. Since ’the additions'and' multiplications' with the zero operands are 
redundant, avoiding them may gain speedup and save memory space. There 
exist several techniques for sparse matrix manipulation, such as using a row- 
column pointer structure and bit matrix mask structure as described in [2). 
For the-:-row-column pointer method, the nonzero elements of A are stored
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rowwise in increasing order. We denote this vector as NZ . This vector has 
length m, where

' . m = p-n2 (1.10)

The parameter n indicates the dimension of the matrix A, and p is the 
percentage of nonzero elements in A. This method needs to use two extra 
integer arrays to locate the nonzero elements. One array, called the row 
identifier array IUR, has length n and contains the location of the first nonzero 
element of each rows of A. Another array, called the column identifier array 
IUL,, has length m and contains the corresponding column numbers. Adding or 
multiplying the nonzero elements need to access NZ, IUR and IUL for locating 
the nonzero elements in A. These operations need extra CPU time beyond the 
regular addition or multiplication times. This method is used only when A is 
small.

The second method uses a bit mask matrix B to replace the vectors IUR 
and IUL to locate the nonzero elements. The matrix B has the same dimension 
as A. Each entry in B has only one bit, with a value 1 for a nonzero element 
in the corresponding position of A, and a value 0 for a zero element. For a 
computer which has the capability of bit processing like Cyber-205, memory 
space can be saved when this technique is used. However, to locate a nonzero 
element requires to count the number of i’s in B from the beginning. When 
the dimension of B is very large, the counting may become very time 
consuming..

The third method uses the same bit mask matrix B as in the second 
method. An integer array R is used to indicate the first nonzero element in 
each row of A. For example, R(i)=j means that NZ(j) is the first nonzero 
element in the i-th row of A. Although this method needs a little extra 
memory to store the vector R, only one row of I’s in B needs to be counted at 
one time. So it can reduce the addressing time from 0(h2) to O(n).

The supercomputer Cyber-205 at Purdue University has two vector 
arithmetic pipelines and a bit masking pipeline. It has a complete set of 
instructions for bit processing. Therefore the Cyber-205 is very suitable to 
implement the modified-bit-matrix method for manipulating very large and 
sparse matrices.

JUS Organization And Contributions --

A new algorithm, MNA, is proposed in this paper which is developed from 
the .SLNA and MLNA. The SLNA and MLNA have some problems when used



for solving a very large scale circuit. The MNA is developed to overcome these 
problems. A given circuit is partitioned into a main circuit ajdd many 
subcircuits in our approach. These subcircuits are treated as a vector and are 
solved by a pipeline supercompute efficiently. The nonlinear equations are not 
used here. And we do not have to solve the Jacobian matrices as in ML NA,

Solving a large-scale circuit partitioned intp / -levels, demands / -levels of 
Newton loop in MLNA ( one main loop and / -1 inner loop ). So the number of 
iterations in MLNA increase as an exponential function of the number of levels. 
There is no inner loop in MNA. The number of iterations in MNA is a 
constant. The MNA has quadratic convergence in most cases, which is faster 
than the "Pairwise quadratic convergence” in the MLNA. Using the MNA to 
perform circuit simulation experiments on Cybur'-205, significant GPU time can 
be saved.

Chapter 2 explains the MNA and compares it with the SLNA and MLNA 
in their relative merits. Mathematical proofs of MNA are given there. In 
Chapter 3, two examples are used to illustrate the computational steps in the 
MNA. The complexity and convergence of MNA are then afialyed. Chapter 4 
shows sparse matrix techniques for solving large matrices on supercomputer, 
and illustrates how to vectorize the MNA . The scalar version of programs are 
also explained. In Chapter 5, the Cyber-205 is used to solve large-scale circuit 
examples by various program versions. The scalar computer VAX 11/780 is 
used as a reference machine to solve the same problems. The results are 
presented based on simulation experiments. The speedup of each computation 
step is shown by some curves. Conclusions and suggestions are given in 
Chapter 6. The input data sets, numerical results from the simulations and 
three versions of circuit simulation programs are attached in the Appendices.



CHAPTER 2
THE MODIFIED NEWTON ALGORITHM

This chapter reviews the Single-Level and Multilevel Newton Algorithms 
and presents the new algorithm, MNA, for large-scale circuit simulation on a 
vector processing supercomputer

2.1 Single Level And Multilevel Newton Algorithms
The Single Level Newton Algorithm (SLNA) has been used to analyse the 

circuits widely. Since the complexity of solving a circuit characterized by an 
rixn matrix is 0( n3 ). It will require many hours to solve a large system With 
more than several thousand unknowns. Moreover, the main memory in most of 
today’s computer does not have enough space to hold the entire data base,
The tearing techniques are used to overcome these problems [17]. In the SLNA, 
a set of nonlinear equations F(X) = 0 is used to characterize a nonlinear 
circuit. In the j-th Newton iteration, we have

dF(x)
dx

AxJ = -F(xJ
X—XJ

Where xJ is an unknown vector in the j-th iteration, the 

Jacobian matrix of F(x), and

(21)

dF(x)
dx

is the

. Ax> = xj + 1 - xJ ■;;'-:-:;(2,2j'

In general, a large-scale digital circuit or memory array may have many 
repeated subcircuits with the same structure as shown in Fig.2.1a. Assume all 
subcircuits are only connected to the main circuit, and no connections each 
Other, the matrix in Eq.2.1 will have a block-diagonal form as in Fig.2.1b, In 
the tearing technique, this matrix is ■partitioned into one main matrix and some 
submatrices that can be solved separately. There are five steps in each Newton 
iteration:



Sub circuit

Main circuit

Figure 2.1 A main
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1) LU decomposition of submatrices

2) Solve for

3) Matrix multiplications

A • :■“•SSI
^ssi^ssi

Ri from ^ssi ^i ^smi

T; from T-tJ — A •• l v ssi ^msi

ci from ^ssi ci ^si

- RiTi

Ki = TiCi

4) Solving the main matrix

5)

V'' n -■ ’ : ■ n -
^mm S ^rni

. i-1
bm - F b *:m Zj . mi

; V’' i=l ‘

^ssi ysi — I ^si ]

U • x ■■■ y •ssiAsi Jr si.

Where from step 1 to 3 are used for solving the i-th submatrix Assi. Assume 
the dimension of the submatrices is ns, the time complexities in the first three

steps are about — ns3, ns3 and ns3. The calculating in step 2 and 3 may take a 
3

long time when the submatrices are large. If there are N submatrices, they can 
be solved in parallel, and the total time complexity is estimated to be;

N ( —ns3 + ns3 + ns3 ) ~ —N ns3v 3 .. ■ ' *: 3

Step 4 is for solving the main matrix. Let n is the dimension of the main

matrix, then the time complexity in step 4 is about —n3, and the time
3

complexity in step 5 is about N-ns2. Assume the number of the Newton 
iterations for this approach is p, the total time complexity for tearing technique 
SLNA will be about

p( — Nns3 + — n3) = ns3 + n3)



Another approach is called Multilevel Newton Algorithm (MNLA) which 
use a inner Newton loop to solve the subcircuits instead of the step 1 to 3 
mentioned above. We can Use

F( U, Y, w) “ 0 (2.4)

to formulate a main circuit, and use

®i( Up Yj, X; ) - 0 (2.5)

to formulate the i-th subcircuit S; in the circuit. The P and Hj are sets of 
nonlinear equations, the U, Y, W, U;,Yi? and Xj are vectors, U is the outputs 
of the main circuit, Y is the inputs of the main circuit, ta is the inner variables 
of main circuit, Uj and Y; are inputs and outputs of the i-th subcircuit, and 
UjEU, Y;(EY, X; are the inner variables of the i-th subcircuit.

At the j-th iteration of the main 
following equation; :

( ^11 + M. _dYr ■ dF
V AT 7 UV ATI / >BV dY dXJ dw

loop in MLNA, one has to solve the

-F(Ui , Yi , <J)
AoA

AUj '= Uj + 1 - Uj

Aa>* — + l — uj

Differ en tint in g [5] [ 14], we have

dF{ OF j
dVv d\U '
0V2 &f2

0Uj dU2 ‘ ' - •

■V;; m 
y m ■

0F„ r^n
d\3i dV2 '

(2.7)



9F
BY

dF
d(jj

BY
BX3

8Fl Bl\ 5Fj
BYl dY2 •
<9F 2 m
Mi dY2 ' '

Wn *Fn ^F„
Mi 9Y2

Bl\ 9F, 9F,
&(jj 1
of2

Bu)<>
of2 y.

Bul
. _. . •

M ^Fn ’ ' 9Fn

Bul Boj2 ■ Bum

9Yi m Mi
9U, bv 2 ■ ' ‘

9Y2 9Y2
9U, 0U2

W, <?Y, 9Y,
8\Jl dV2 • ' ‘ *Uk

■: ^p

Since the nonlinear equations F(X) is known, the Jacobian matrix [ —— ],
^p ^p

fe f and [ —— ] in Eq.2.6 can be obtained directly. But the Jacobian 
BY Bu

matrix [ -—7 ] can be obtained only after all of the subcircuits are: solved. 
. ; B U

Fortunately the subcircuits are only connected to the main circuit and no
connections are between each other. The internal variables in different 
subcircuits are not related. Therefore the entries in Eq.2.10 satisfy the 
following property:



dY,
ffl.

p - 0

<5Y„
When YD and Ua are not in the same aubeircuit, ——2- becomes zero So we can 
-vauq .

•

separately calculate these nonzero entries in [—- j as follows:

Assume the i-th subcircuit is characterized by Eq.2.5, Since the elements 
of XJ- are calculated from the main circuit in last iteration, the Eq.2.5 can be 
written as ■

Yr) =0 \ (2.11)

Then another Newton algorithm loop (inner loOp) is needed to solve the Xj and 
Yj. In thisinner loop we have

m an 
ax ’ dY

'AX1
AY: ~ -H( X , Y ) (2.12)

After this loop wq obtain the unknowns in the subcircuit X; , Yi , Moreover, 
from theEq.2,5, we have

W. + M. UK + M
-- —m dY dXJ x=XiY=Yi

= 0

Where

oH an 
axaY

m

ax
1 an ' <
IX=X; Y=Y; dY . .. / ('J-**-, -‘M. . av

5Hj dllx anx
au, a\}2 ■ * * • «U.
w. dl\2
dUj av2

^Hn3 ^Hns

aur dV2 5UC

m
av (2.13)
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dH
dX

dH
dY

dH, dll. dH,

dX, dX2 • ' *xb
m2 dH2

dX,. dX2

^Hns ^Hns ^Hns

dx. dX2 • • dXb

dH, dH, dH,

dYt dY2 v ' Wc
dll2 dll2

&YV dY2

^H„s dH„s ' ' ‘

dY,; dY2 • • • dYc

Where ns is the dimension of the subsystem, b is the number of inner variables 
in the subsystem, c is the number of inputs and outputs in the subsystem. 
Substituting the results X; , Y; from the inner loop into Eq.2.14, we obtain the

dY
values of which is just needed by Eq.2.9 in main loop [5]. Therefore for

each iteration of main loop, it needs to do a whole inner loop to solve the X; 
and Y;.

Let the N, n, and ns are all as defined in SLNA, the time complexity for

solving the main circuit and subcircuits are about — n3 and — ns3. Suppose a
3 3

two-level circuit demands p iterations in the main loop, and q iterations in the 
inner loop. The total time complexity in MLNA is about

P (-g: qN-ns3 + -^-n3) =■ (qNns3 + n3) (2.14)

In this approach, the inner loop is used to solve the subcircuits instead of 
solving some extra matrices and matrix multiplications, if q equals to 7, 
Eq.2.14 would be the same as Eq.2.3. Lin has proved that, if we do not apply 
the latency technique, the amount of computation in MLNA should be close to 
that in SLNA.
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2.2 The Modified Newton Algorithm
The new algorithm, Modified Newton Algorithm (MNA) is proposed to 

improve the efficiencies of the SLNA and MLNA. This new algorithm reduces 
the calculation steps and number of iterations, and preserves all the advantages 
of the SLNA and MLNA. Sometimes, it even improve the convergency of the 
MLNA Moreover, we do not need to use all the nonlinear equations F and H;, 
and can avoid solving any Jacobian matrices like those in Eq.2.6 and Eq.2.13.

In the SLNA , we can apply the Newton algorithm at the element level. 
That is to establish a associated discreted equivalent circuit to simulate the 
nonlinear circuit in the j-th iteration, and use the linear nodal equation to solve 
it [6] (7]. In the MNA, we use a set of independent sources and controlled 
sources to simulate the subcircuits at each iteration. Then we include these 
sources in the main circuit and use linear equations to solve them. Figure 2.2 
shows the the flowchart of the MNA.

For ex ample j consider N nonlinear subcircuits each with c + 1 ports which 
are connected to a main circuit. The structure of the equivalent current 
sources for the subcircuit is as shown in Fig.2.3. There are c voltage controlled 
current sources G|(vs) which are functions of the port voltages vs, and c 
iterative independent current sources Jjj in each equivalent subcireuit. The 
superscript j means that they have the different values at different iterations. 
The main circuit and these equivalent subcircuits can be solved by the 
Associated Discrete Equivalent Gtrcwjf (ADEC) method.

Any current at any port must be a function of the voltages across all ports 
of a subcircuit as shown in Fig.2.4a. Where vs is the vector of voltages across 
all ports of tflis subcircuit, Ik is the current through the k-th port of the 
Subcircuit. When this port is considered as one branch of the main circuit as 
shown in Fig.2.4b, we can use the nodal equation to solve the main circuit. 
The Jk and Ek characterize the independent sources in the main circuit, vkis 
the branch voltages in the main Circuit, I is the branch current in the main 
circuit. Since the currents through all other devices in the main circuit are also 
the functions of the branch voltages. So they can be characterized by the same 
funH.ibn.'V^tVjs) as the subcircuits. For an example, if we replace a linear 
relistor iri the main circuit by the active devices in Fig.2.4b, the Jk, Ek will 
become zero, and the Gk becomes only a constant.

According to the Nodal Equations Method (NEM) [6], the main circuit with 
the branches in Fig.2.4b, is described by:



START

v

SYMBOLIC PROCESSING

SOLVING SUBCIRCUITS 

COMPUTE EQUIVALENT SOURCES

UPDATE MAIN NETWORK 

SOLVING MAIN CIRCUIT

. y - -

SUBSTITUTE TO SUBCIRCUITS

STOP

Figure 2.2 Flowchart of the MNA
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Figure 2.3 Equivalent current sources in subcircuits



Subcircuit

Subcircuit

One Branch of Main Circuit

Figure 2.4 The equivalent circuit of subcircuit ports
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A J = AI ^ Ag(vs) (2.15)

Since

Atvn = v = vs - E (2.16)

vs = A‘vn + E

Equation 2.15 can be written as

Ag(Atvn + E) - A J = 0 (2.17)

A is the reduced incidence matrix of the main circuit, g is a function of 
(AtVn + E), I is the branch current vector, J is the independent current 
sources vector, and E is the independent voltage sources vector.

J =

^1 > ^2 i

Jf > J2 >

E = E, ,EJ2 j E»f

Where the n is the number of the nodes in the main circuit, vn is the vector 
that indicates the voltages form all nodes in main circuit to the datum, vs is 
the voltage vector of the subcircuit ports and the main circuit devices. Using 
the Newton Raphson algorithm to solve Eq.2.17, We obtain the equations at the 
j-th iteration:

'v„ + E| ,•*

and

r j +1 ^ «.] .—

— yJ — ■ n

dv

V„ + E)

:D
Li

Ag(Aev^ + E) — AjJ 

A g(Atvi + E) - AJ J2.I8)

A4 vJ + E = vi

:(2.10)

Where is the voltage vector vn in the j-th iteration, and v j is the voltages 
across the subcircuits in j-th iteration, and IJ is the vector of currents through 
the subcircuits’ports in the j-th iteration. Let us define here:



, (2.20)A A J
V = V

The Jacobian matrix YJ is the incremental conductance matrix in the j-th 
iteration. That is

3G, 9Gj dGp
5vr dv2
8G2 dG2

to'i dv2

=1 s . , ■
■ • (2-21)

bgd 8Gn ' ’ 8Gn
dvl dv2 : V =vj

Gk here are functions of vs. Then the Eq 2.18 can be written as
vj + i =Tn vl-I AYjAn^ [ AIj - 2 (2-22)

or ’■

I AYjA, i^r1 = A [ J - Ij + Y[Jv-ri.l

= A [ J- V + Yj( vj B)| (2.23)

Define:

jsj = Ij-YjvJ (2.24)

Then the Eq 2.24 becomes

[AYjA1 ]v j+i = n A[J-(P -Yjvi) “ Yj E ]

: A |l J .Jj) - Yj E (2.25)

Now, let us look back to the linear circuit. If we use the standard linear 
branch as shown in Fig.2.5 to replace the nonlinear branch in the same circuit 
as mentioned before. Then using the NEM to solve this linear circuit we have:

[AYbA‘]v„=A[J-YbE] (2.26)

Where the A is the reduced incidence matrix, Yb is the conductance matrix, vn 
is the nodal voltage vector, J is the current sources vector, E is the voltage 
sources vector. Here Eq.2.25 and Eq.2.26 have the similar structures. The only 
differences are that the conductance matrix Yb in Eq.3.4I is being replaced by 
the incremental conductance matrix YSJ , and the vector J is being replaced by

YJ =* s
V„ + K)

dv
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Figure 2.5 A branch in a linear circuit



J ~ J/ . These mean we can use some equivalent conversions for solving 
nonlinear circuit per iteration. After the conversion, all subcircuits and 
nonlinearity in the main circuit will be replaced by the linearized discrete 
equivalent circuit, Then the standard NEM can be used to solve the linearized 
circuit. v

The discrete equivalent circuit for each branch is shown in Fig.2.6a , 
where is the entry of jj, GsJk is obtained from some entries in matrix Yj . 
Because the GsJk is the function of vector vs, it can not be characterized as a 
simple conductor but a current source controlled by the vector vg as in 
Fig;2.6a. The circuit in Fig.2.16a can be reconstructed as in Fig.2.6b. By 
comparing the Fig.2-.6b with the Fig.2.4b, we can known why we use two 
Current sources to replace each port of the subcircuits in MNA.

From the Eq.2.21 and Eq.2.24 we have

Jj =V - Yjyj

dG, dGl dGv
dvl dv2 Mn

if; dG2 dG2
vsl

u Ml dv2 vs2

0G„ dGn &Gn ^sn

dvl m2 Mn

v = ysk-Ek 

vsk = vk + Ek

So the entries of YJ becomes

5Gj _ 0Gj <9vsk _ 5Gj 
9vk <9vsk 5vk dvsk

Then we have

Gj,sk I
vsl

5Gk
Ms2

and the Jjk can be calculated by

5Gk
(2.27)
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Figure 2.6 The equivalent circuit of a subcircuit



jJk = ii-[
dGk dGi
dv,sl dvs2 dv„T

vsl
vs2

(2.28)

Since the different subcircuits have no connections each other, the
dG
dv

^ = 0
sq

when Gp and vg(j are in different subcircuits. Therefore the parameters in 
different subcircuits can be calculated simultaneously. When there are many 
identical subcircliits in the main circuit, we can treat them as a vector and use 
a pipelined supercomputer to process them efficiently. The major difference 
between the MNA and the MLNA lies in the method of solving the subcircuits. 
When the values of Gj and Jj are calculated in the MNA, it does not use the 
differential equations Hj. The equivalent circuit is used to simulating the 
subcircuits. Instead of a inner loop in MLNA; the simple NEM is used directly 
for obtaining the Gj and jj.

For example, consider c + 1 ports subcircuit shown in Fig.2.7a. Using the 
ADEC method, the equivalent circuit is obtained in Fig.2.7b . Using the MNA 
method, we obtain the port currents in the j-th iteration F. The incremental 
conductance GsJk(vs) is calculated in two steps.

First we set all the independent sources in Fig.2.7b to be zero, The 
resulting circuit is shown in Fig.2.7c. The input voltage vj is applied to the 
subcircuit, and the other ports of the subcircuit are connected to datum as 
shown in Fig.2.8a. Solving it we can obtain the subcircuit incremental current

if 1,112, • U
Li

Then applying the input voltage v^ .to the subcircuit as shown in Fig.2.8b, we 
obtain another incremental current I-j.

H ’ ^2 > ‘ ‘He

After we apply the voltages from vsl to vsc to the subcircuit, the current 
vectors from l| to I| can be obtained accordingly.

Secondly we use these incremental currents to calculate the corresponding 
incremental conductance in the j-th iteration:
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Figure 2.7 An example subcircuit



Subcircuit

Figure 2.8
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dGiK) = ill

Ti

SGt(vj = Ui

dys2 v2

dG,(vs) = Hi

■ . ' vc

_ Ik

dvsl n

^G2(vs) = }k

dys2 v2

^G2(vs) = lk

^vsc vc

With the results of F and Gj, the iterative current sources of equivalent circuit 
Jj cab be calculated by Eq.2.28, Applying the value of Gj and Jj in the main 
circuit and using the ADEC method, we then obtain the complete solution of 
the system in the j-th iteration.

2.3 Comparisons Of Three Newton Algorithms
In the MNA, the given circuit is partitioned in to one main circuit with 

many subcircuits, and the equivalent current sources are calculated in each 
iteration The dimension of the matrices used will be reduced after this 
partition, and these subcircuits can be treated as a vector, and be solved in 
parallel. So the pipelihed supercomputer can be used to process these 
Vectorized equations efficiently. The more subcircuits in the system, the higher 
speedup.-.can'be achieved in MNA.

Using a tearing technique for the SLNA, some extra calculations are 
needed to solve the subcircuits. If do not consider the sparse technique, the 
time complexity of each iteration in SLNA is much higher than that in MNA, 
In ML NA, for each iteration of main loop, the entire inner loop operations 
must be repeated to solve the subcircuits. So a large number of iterations will 
be. demanded. When we solve a 1-level system, the number of iterations may 
increase as an exponential function of 1. This may destroy the advantages of 
vector processing.



MNA has only one main loop. The number of iterations in the main loop 
is a constant which does not increase with the number of levels in the system. 
In each iteration of the MNA, only one LU decomposition and back- 
substitution are needed for solving the equivalent sources for each Subcircuit; 
This leads to potential speedup advantage over a vector processor.



CHAPTER 3
COMPUTATIONAL REQUIREMENTS

Two examples are used to illustrate computational steps in the MNA. We 
start with a multiple-port subcircuit which shows how to compute the 
equivalent sources of the subeircuits. Another example is used to show all 
calculation steps in the MNA. Finally, we discuss the complexity and 
convergence issues of the proposed MNA for computer aided circuit analysis.

3.1 Circuit Formulation Using The MNA
We have to find the equivalent circuits for all the subcircuits in each 

iteration of the main loop. An example is used below to formulate the 
equivalent circuit. Consider a four ports subcircuit in Fig.3.1 which is 
characterized by the following equations:

ij = 0.5 U? + U,

i2 = U24 + U2

i3 ^ Uf ■

; . i4 = 0.5 Uf

is = - Us

In the j-th iteration, we assume initial values are: vj = 1 , v| — -3'and 
Vij — 2. The associated discrete equivalent circuit of subcircuit in the j-th 

iteration is as shown in Fig.3.2 [7]. Using the ADEC method, we obtain the 
following formulation:

. dij ■■
gi = du7 = Ul + 1 = 2 ’ J< =ii-g<Ui =-°-5

4 = -Jf \=4U2 + 1 = 5 , J-j -i.-Kjl'.- 3
2



I > 0.5i.

Figure 3.1 A four-port subcircuit



i > 0.5i

Figure 3.2
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4 =
dio

= 3Uf = 12
dU3

g4 = U4 = 2 ,

g|=2U6-l = 1

, 4 = is “ g|U3 = “l6

Jl = i4-giU4=-2

n - % - giu5 = -i
Using the MNA method to solve this linearized circuit, we have the following 
system of equations: '

0 2 —2 0 -1 0 1 ' V1 0.5

-5 -2 19 0 0 -1 o v2 18.5

6 0 -5 -1 0 o -0.5 v3 -2

1 0 0 o 0 0 0 II 1

0 1 0 0 0 0 0 h 3

0 0 1 o ■o 0 o h
2 ’

-2 2 0 0 0 0 -1
h .

. 2 .

The restilts ate expressed as a column vector:

v2
v3
II
h
h
h

1
3
2

-3
3.5
,8.5

2

The current vector in j-th iteration is thus obtained as:

V =
M
4
4

-3
3.5
8.5

We set all independent sources in the equivalent circuit to be zero, the circuit
in Fig.3 2 becomes that in Fig.3,3. Then we calculate the incremental 

■ dGj(vs)
'■■in; the following'steps:conductance d\sk



1 > 0.5i

Figure 3.3



Step 1: Let the y, = 1 , v2 - 0 , v3 = 0 , then using the MNA method to 
solve the circuit in Fig.3.3, we have to solve the following system:

0 2;:; -2 0 -1 o 1 0

-5 '■—2 19 0 0 o v2 o
6 0 -5 -1 0 0 -0.5 v3 0

1 6; 0 0 0 0 p II 1

0 1 0 0 0 0 o h 0

0 o 1 o 0 o 0
h

0

-2 2 0 0 o 0 -1
*4

.0

(3.2)

with the results

■7
-2
-5

dGi(Ys) 7 _ . 
dvsi

_ -2 _
^vsi '1.': ^

^G3(v5) ^ -5

Md 1

Step 2: Let v, = 0 , v2 = 3 , and v3 - 0 
obtain:

-5

Solving the circuit again, we

^Gi(vs) _ ^3 
dvs2 3



dG2(vs) 12
dvs2

^G3(vs) _ -6

= 4

= -2
dys2 3

Step 3; Let Vj = 0 , v2 =0 , and v3 — 2 . we obtain:

h =
-10
-4
38

and

5GiK) -10
dv

= -5:
s3

^G2(vs) _ -4 _ 
2vs3 2

5G3(vs) 38
'=, 19

s3
Then the G> and JJ can be obtained as following:

*sl

*s2

Vs3-

and

aGi(vs) 9G ,(y,)
^vsl 5vs2 5vs3

= [7,-1 , -5 ]

ffy*.! 5G2(vs)

dvsl ’ ^vs2 ’ ^vs3

[ •2 • < •2 ]

»<yv,i 9G»K) ^G3(vs)

dvsl dvs2 5vs3

= “5 , -2 ,19
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■3 7x1 + (-I)x3 + (“5)x2 3

%=I1-Gsj2vJ

The final equivalent circuit in the j-th iteration is shown in Fig.3.4. Then we 
use the ADEC method to solve the main circuit.

3.2 Computation Steps In The MNA
Another example circuit ( Fig.3.5 ) is used to illustrate the computations 

involved in the MNA. The associated discrete equivalent circuit for the 
subcircuit is shown in Fig.3.6a. The equivalent circuit for solving the main 
circuit in the j-th iteration is shown in Fig.3.6b.

Assume the initial guess is v ® — 7 , v ® = 1 , and v® — 0 . The 
following steps are needed in each iteration of the main loop:
Step Is Caiculate the G® and J®.

Using the ADEC method, we have

dUx Ui = v2°
2

dU2 JU2 = v3°
0

0

By the MNA method, we obtain the equation
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Figure 3.4 Equivalent current sources in a subcircuit
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Main circuit I Subcircuit

Figure 3.5 An example circuit



or

1+g? -1 ;; -1 v2 -n

-1 i+g2° o v3 ' —

1 0 0 . I _ v2°

3 -1 -11 v2 . 1

-i i o

1 o o

The solution vector is obtained:

v3

I

(3-3)

v2 i

■Tz\ i

■i\ i.

where I is the current at port 1°. Then we set all independent sources in 
Fig.3.6nto be zeroand keep theinpht voltage V^/we have

l+g? -i -i v-2 . 0

-1 l+gf 0 v3 . = 7 0

. 1 : 0 . 0 I v2°

The solutions are:

v2; ' 1

1

_ 1 j. 2 :

Here 1 is the incremental current. Since the subcircuit has only one input 
voltage v2, the equivalent circuit is formulated as follows:
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Figure 3.6 The equivalent circuit to Figure 3.5



G^ys = 2y,.:::.^

Js° = 1° - Gs° vs = 1 - 2x1 = -1

Step 2: Substituting Gs° and Js° into the main circuit as shown in Fig.3.6h, and 
using the MNA method , we obtain:

or

1 ' “I : .. 1 V1 0

1+GS° 0 v2 -Js°

l : 0 0 h T

1 -1 1 Vi 0

-1 -3'. - 0 v2 zr . 1

1 0 o h 7 .

This step yields the solutions:

Vj = 7.0 ... 

v2‘ = 2.666667 

ia1 = -4.333333

Step 3: Substituting the results from the main circuit into the subcircuit, we 
obtain:

(3-7)

l+g,° -1 1 v2 -j?

-1 l+g2° 0 v3 —; -J2°

1 0 0 . I

The corresponding results are:

vj = 2.666667 

vl= 2.666667 

I = 4.333333
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Now, the first iteration of entire circuit is completed. The results 
v/ , v2, and vj1 will be used as the initial values to start the second iteration. 
The steps in second iteration will be similar to those in the first one. Detailed 
steps are skipped. Only the results after the second iteration are shown below:
Repeat step 1: Calculate the Gj and Jg1. Using the ADEC method, we have:

= 5.333333
Ul = Vl ..

= 5.333333
y2 = v}

J/ = ii " Si v/ =-7.111111 

H = *2 -£2*2 = -7.111111

Using the MNA method to solve the circuit in Fig3.fi,a , we have:

arid

-1 v2
-Jr1

0 v3 ■■ -j2v

.6 . 1

v2 = 2.666667 

v3 = 1.543860 

; I = 8.233918'

where I is the port current l1 of the subcircuit. Then we set the independent 
sources in Fig.3.6a to be zero, solving the circuit we have:

Hr,1 • 1 • 1 v2 0

-1 1+k2‘ 0 v3 ■ = 0

1 0 6 I v2>

Vo = 2.666667



26

Thus

v3 - 0.421053 

I - 16.467840

^Gi(Vs)
dvsl

16.467840
2.666667

= 6.175439

G.g\*Vg = 6.175439 v2 

Jg1 = 1* - G^ Vg1-= -8233918

Repeat step 2: Substituting Gg1 and Jg1 into the ma.in circuit and using the 
MNA method, we obtain:

' vf = 7.0 

vf = 2.1230645 

if = -4.876936

Repeat step 3: Substituting the results from the main circuit to the 
subcircuit, we obtain:

vf = 1.458028

The second iteration of MNA is then completed. The values vf , vf , and vf 
will be used to start the third iteration similarly. The results of the main 
circuit and the subcircuit in successive iterations are listed in TableA.l of 
Appendix A. In this example, it takes five iterations to Obtain the exact 
solutions:

v, = 7.0

v2 = 2.0 ■

V3 = 1-0' 

h - “5.0

The procedures described above correspond to one main loop in MNA. Instead 
multiple loops are required in the MNLA. This is the important difference 
between the two algorithms [2].
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3.3 Complexity And Convergence Issues
From the above two examples for each e-port Subcircuit, the computations 

involved requires to solve c linear systems of equations characterized by 
Axjbj , A x2 - b2., • • • Axc = bc . Since they are described by the 
same coefficient matrix A, the L U decomposition method is used:

A = LU

Ly* = br

U x; ■= yr (3.8)

The matrix A is decomposed into a lower-triangular matrix L and a upper- 
triangular matrix U, Then the back-substitution is used to obtain the vector 
y. and the solution vector X;. In each iteration of the MNA, we need to 
perform one L U decomposition and c back-substitutions for a c-port 
subcircuit, we know that the time complexity for the submatrices LU 
decomposition is 0(ns3), but for back-substitution it is only 0(ns2). When the 
diinension of the submatrices A is large, the time complexity for solving c 
equations with the same coefficient matrix A is 0(ns3) + cO(ns2) = 0(ns3) 
that is the same time complexity for solving one equation.

Table 3.1 gives the time complexities of these algorithms. As a reference,- 
the time complexity of the Semi-Direct Method (SDM) is listed here [19]. The 
time complexity of each iteration in this method is about the same as in MNA, 
but this method has the linear convergency rate. Assume the circuit is 
partitioned to two levels. Tj, T2, T3 and T4 are time needed for solving the 
subcircuit in four algorithms, T is the time needed for solving the main circuit, 
arid S is the speedup of vector processing over scalar processing.

In the MNLA the entire inner loop is required in each iteration of the 
main loop, and one L U decomposition 'is-needed for each inner loop iteration. 
The comparison of computation steps in the MLNA and MNA are shown in 
Fig. 3.7. Figure 3.7a shows a main loop in the MNA and there are three major 
steps in each iteration. Figure 3.7b shows a two-level structure of the MLNA. 
In solving an 1-level system, the program should have 1 levels of looping. If 
there are p iterations in each loop, then the MNLA would need p1 iterations for 
solving a subcircuit in the 1-th level. But only p iterations are needed in the 
MNA. This is a significant improvement, when the system becomes large.

In general the SLNA has a quadratic convergence rate, 
the set of equations in the SLNA. Then the increment
iteration would be approximately the square of the increment in

et FtU) = 0 be 
AU in each 

the last
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Table 3.1. Time Complexity.

ALGORITHM

COMPUTER
TYPE

SLNA* •; MLNA 'i : \ MNA SDM“

SCALAR P(NT,+T) P(qNT2+T) P(NT3 + T) P(NT3 + T)
VECTOR P(NT, +T)/s P(qNT2+T)/s P(NT3 + T)/s P(NT4 + T)/s

* Assume the tearing technique is used
** This method has the different convergency rate with the other algorithms.
N: The number of subcircuits
n: The number of unknowns in the main circuit
ns: The number of unkowns in one subcircuit
s: Speedup of vector processor over scalar processor

T = — n* T, = — ns* + 2ns* = 7-ns*■'3 ■■ ' ' 1 3 . ■ 3 '

T2= J-ns* Ts = ins* T4=ins*

T!>T2 = T3 = T4
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DO 10 — DO 10 "V

Step 1 <

Inner-
loop

DO 20 —

20 CONTINUE

Main-loop

-

10 CONTINUE 10 CONTINUE

END END

'(*>)'.

Figure 3.7 Program structures in the MNA and MLNA



iteration. Let us demonstrate this by the same circuit shown in Fig.3.5. By 
the SLNA the discrete equivalent circuit is shown in Fig.3.8. Assuming the 
initial guess is the same as before, v® = 7 , v® — 1 , v® — 0 , we have:

dii
di Ui = v?

<jj2
dU 2 [U2 v2°

Jf -if - sfv? ' ' 

if = if-?fvf =0.

Using the MNA method we have the following set of equations:

-1 : “1 r 0 1 V1 0

-1 2+gf 0
v2

-j?

0 ■'-■-IU 2 + g| 0 v3 -u?

1 0 0 0 .
i

Solving it, we obtain the results after the first iteration of the SLNA.

V,1 = 7.0 - ::

: V21 - 2.666667 .

V3 = 2.666667

i1 = -4.333333

Table A.2 in Appendix A gives the results after each iteration in the SLNA. 
The increments decrease after each iteration at a quadratic convergence rate.
Equations 2.24 and 2.25 show that the MNA has the same convergency rate as 
in the SLNA. This also can be found by comparing the TableA.l and 
TableA.2, They exactly have the same values corresponding to each iteration.

In a strict sense, the convergence of the MNA depends on the structure of 
the circuit. Suppose the circuit is characterized by a set of differential 
equations, F(U) = 0 . Let U* is the solution vector, and the J(U) is the



figure 3.8 The discrete equivalent circuit for SLNA



Jacobian matrix of F(U). When

. det J(U*) = 0 (3.10)

the MNA and SLNA both have linear convergence. However, in general; when 
Eq.3>10 is not true, the MNA and SLNA would have a quadratic convergence 
rate br faster [5] [6]. So we claim that the MNA has a quadratic convergence 
rate.

In the MLNA, the convergence of the main loop depends bn the precision 
of the results in the inner loop. The higher is the precision in the inner loop, 
the higher will be the convergency in the main loop [l|. In general the inner 
loop termination criterion is chosen as ;

AX , AY < min { r° AU , Aw (3.11)

Where AX and AY are the increments of the inner loops, AU and Ao; are the 
increments of the main loop, r° is the initial termination criterion of the inner
loop. It has been proved that for a= 2, the MLNA has the quadratic 
convergence or faster [1]: [5]. However this means the precision of the inner 
loop should be very high. As an ^xainple, withr an increment of the main loop
in the j-th iteration AU , Aw = 0.0001, the precision at the inner loop 
should be equal to or less than 0.00000001, which demands many inner 
iterations to satisfy this criterion. If one wants to improve the convergence of 
the main loop in the MLNA, the number of iterations in the inner loop Would
be increased, and the total time complexity of both main and inner loops may 
not be reduced.

If pr.< 1, inner loop can then use the same termination criterion as used in 
the main loop. The convergence rate of MLNA is neither quadratic nor linear, 
but called ’’Pairwise quadratic convergence” as proved in [5]. This convergence 
is shown in Fig.3.9a. It displays some ’’kinks” which mean that the curve 
alternates between slow-decreasing and fast-decreasing intervals, even when the 
number of iterations j become very large. Figure 3.9b shows the curve of 
quadratic convergency of MNA. It converges faster than the MLNA when 
ct < 1 . The comparison of the convergence rates of four algorithms is shown 
in Table 3.2.



(a) Quadratic convergence

(b) Pairwise quadratic convergence

Figure 3.9 Convergence rates



Table 3.2. Convergence Rates

SLNA MLNA MNA SDM
QUADRATIC QUADRATIC 

a = 2
(Rabbat, et al.)

QUADRATIC

LINEAR

det J(UV0
PAIRWISE

QUADRATIC

(Lin, et al.)

detJ(U*)*0 (Lin, et al.)



CHAPTER 4
VECTORIZED SIMULATION PROGRAMS

This chapter presents the major vectorized programs used in circuit 
simulation. Section 4.1 describes the subnetwork update program The 
program for LU decomposition to solve the subcircuits is explained in section 
4.2. Section 4.3 illustrates the program for the main network update. The 
programs for solving the main circuit are described in section 4.4.

4.1 Subnetwork UpdatePrograms
As mentioned before, in MNA, the circuit is partitioned to a. main circuit 

and some subeircuits. Hence, the dimensions of the matrices in the equation 
can be reduced. Moreover, if there are a lot of identical subcircuits in the 
circuit, they can be treated as the elements of a vector. For example, assume 
there are N subcircuits which have the same structure, and there are two 
parameters p; and q; in i-th subcircuit. Since all the subcircuits have the same 
structure, the vector P = [pj , p2 , • • • pN] and Q = [qt , q2, • • • qN] can be 
used to represent the parameters in all the subcircuits. If we need to add p; 
and qj up , we can use the vector pipeline of the supercomputer Cyber-205 to 
do the vector addition P+Q for all the subcircuits. It can obtain a higher 
speedup than using the scalar processor to add them individually.

From the example in the last chapter, we know that the associated 
discrete equivalent circuits of the nonlinear resistors as shown in Fig.3.2 are 
needed. And these values are put into the equations before solving the 
equivalent current sources of subcircuits. We call these procedure subcircuit 
update.

Assume the current of a nonlinear resistor is the function of the voltage 
across it,

i = f(v) (4.1)

Then the incremental conductance is calculated by



Mil
dv

The iterative current is calculated by
JJ — jJ — g)yJ

(4-2)

(4.3)

The f(v) can be any kind of function of the voltage v’s, which may assume a 
very complicated form. So, for calculating easily on the computer, we use the

Taylor expansions of functions f(v) and The more items of Taylor

expansion are taken * the more precision will be obtained. We use the first 10 
items of the expansion in our simulation program. The coefficients of the items 
of the functions will be stored in a two-dimensional array called PO. Each 
column of PO corresponds to one type of nonlinear resistor. The coefficients of
Mil are stored in the upper half of the columns in PO, the coefficients for

dv v/'
f(v) are stored in the lower half positions. As an example, there is a PO whose 
structure is as follows:

PO

ai k,
a2 k2
a3 ^3

a10 kj0

k20

It means that the the first 10 items of the Taylor expansion of

first type of nonlinear resistors ate

^f(v) g , 8 ma J~ = ajVa + a2v + , • • • a10 
dv

dv
for the

f(v) = anvfl + a12v8 + , • • • a^o

Generally, there are more than one types of nonlinear resistors in the circuit, 
and the k-th column of PO corresponds to the k-th type of nonlinear resistor. 
A two-dimensional array called DS is used to store the pointer for each 
nonlinear resisitor in the subcircuits. Each row of DS corresponds to one
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nonlinear resistor. The first and second entries in a row are the numbers of 
nodes to which the corresponding nonlinear resistor is connected. The voltage 
across the resistor can be obtained from these two nodes. The third entry of 
the row indicates which column of PO corresponds to this nonlinear resistor. If 
a number i is in the third position of one row of DS, it means the 
corresponding coefficients of the nonlinear resistor is stored in i-th column of 
PO. The last entry of DS is either 1 or 0. 0 means that the resistor is 
connected to the datum of the subcircuit, and 1 means that the resistor is not 
connected to the datum.

Let us look at an example shown in Fig.4.1a. The first row of DS 
corresponds to the nonlinear resistor shown in Fig.'4. lb, which is connected 
from node 3 to node 5, and not connected to the datum. The corresponding 
coefficients of its function are stored in the second column of PO. The second 
row of DS means that the nonlinear resistor in the subcircuit shown in Fig.4.1c 
is connected from node 4 to node 7 that is the datum of the subcircuit. The
corresponding coefficients of its function are stored in the third column of PO.

All the nonzero elements of the matrix A for solving the subcircuit are 
stored in array NZS, and the'.elements'of-the right vector b are stored in array 
brs. The values of gJ and JJ need to be inserted into the arrays NZS and brS. 
Therefore, two bit mask arrays are used to locate gj and Tin the NZS and brS.

In the simulating program, we assume all the subcircuits have the same 
structure, and each subcircuit has only two ports. Furthermore, we assume the 
symbolic processing and row exchanges, column exchanges for all matrices have 
been done before the simulation. Two integer arrays NZPSc and brSc are used 
to indicate the order exchanges of gj and T in NZS and brS. Another integer 
array CIS indicates the column exchanges of matrix A for subcircuits. The 
program for calculating the gJ and T in subcircuits is as follows:
1) Obtain the voltages accross the nonlinear resistor

P-0 ■■
DO I0i=l, nls 
IF (DS(i 4) EQ.0) THEN 
V( 1 ;y)—XS( 1 ,DS(i,l);y)
'ELSE: .
V(l;y)=XS(l,DS(i,l);y)-XS(l,DS(i,2);y)
ENDIF

2) Calculate the polynomial

g(l;y)=0,0
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3 5 2 1

4 7 3 0

DS =

6 5 67

(a) Array DS (b) Resistor used

Figure 4.1 The array DS and resistors used



DO 20 j=l, 10
g(l;y)=g(l;y)*V(l;y)+PO(j,DS(i,3))

20 CONTINUE., ::
I(i;y)=0.0 
DO 30 j=ll,20
I(l;y)=I(l;y)*V(l;y)+PO(j,DS(i,3))

; 30 CONTINUE .

3) Obtain the J and G ,

-g(l;y)*V(l;y)-I(l;y)
' P=P + 1 
G(i,p;y)=g(i;y)
IF (DS(i,4).EQ. 0) GOTO 10 
p=p+l
G(i,piy)=-g(i;y)

10 CONTINUE

Where nls is the number of nonlinear resistors in each subcircuit, the y in 
program is the number of identical subcircuits in the circuit. All the 
subcircuits will be treated as a vector and be solved by the vector pipelines of 
Cyber-205.

The vector XS is used for storing all variables of the subcircuits, G is a 
two-dimensional array for storing all g in NZS. Changing order of g and J and 
inserting them into NZS and brs respectively can be achieved by the following 
operations:

p—0
DO 40 i—1, ms 
IF (BTOL(NZPS(i))) THEN
p=p + l
NZS(l,i;y)=G(l,NZPSc(p);y)

. ENDIF . / .
40 CONTINUE "

p=0 ■ .

DO 50 i=l, ns
IF (BTOL(bps(i))) THEN
P-P + l
brs(i,i;y) = J(l,bpSc(p);y)

- ENDIF'
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50 CONTINUE

Where ms is the number of nonzero elements in NZS, ns is the dimension of 
the matrix A for the subcircuits. If only the scalar processor of Cyber-205 is 
used, the corresponding program to do the same operations as the above one 
will be as follows:

DO 10 z=l, y 
P-0
DO 20 i=l, nls
IF (DS(i,4).EQ.O) THEN
V=XS(z,DS(i,l))
ELSE
V—XS(z,DS(i,l))-XS(z,DS(i,2)) 
ENDIF

g=o
DO 30j- l, 10 

30 CONTINUE:^

. I—0.V-i.;
DO 401=11, 20 
I=I*V+P0(j,DS(i,3))

40 ' CONTINUE'

:;,V.j(i)=g*v-i;

p=p+i

IF (DS(i,4} EQ.O) GOTO 20 
P-P + l
0(p)=-g

20 CONTINUE;'^"/

P-0
DO 50 i=l, ms 
IF (BTOL(NZPS(i))) THEN
P-P + 1 ;
NZS(z,il=G(p)
ENDIF
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50 ' ‘ CONTINUE ■

: • . ■■y p-o.■■ :. V"■ y :" y- V.; ’ y:;.:y . ;’:v;/'yy; y JC'--yV.y':
DO 60 i = l, ns
^ THEN ■ ■y"-;;'':

■ P~P + 1 '
brs(z,i)-J(p)
ENDIF

60 CONTINUE - '
10 CONTINUE

From the program above we can see, the program of scalar version needs an 
additional loop to replace a set of vector instructions in the vector version. So 
it is riot efficient.

Finally, to update the subcircuits, the port voltages of the subcircuits 
which come from the main circuit, should be inserted into array brS. Because 
each subcircuit has only two ports in our simulation, an integer vector bpV is 
used to locate these port voltages in the equation of main network, and a 
variable bpp is used to iridicate their positions in the equations of each 
subnetwork.

4.2 Sub circuit Decomposition Programs
From the example in chapter three, we can see, that the equivalent 

independent current sources and controlled current sources of the subcircuits 
should be calculated after updating the subnetworks. Then these values are 
put into the equations of main circuit in order to solve it in each iteration. In 
MNA, it needs to do only one LU decomposition for each subcircuit instead of 
a loop where one LU decomposition is done for each iteration in MLNA 
algorithm for each main iteration. Since it may need to do more than one time 
of substitutions for one LU decomposition, the operations to do these twTo 
things are written as a separate subroutine.

LU decomposition method is used to solve the equation Ax = b. The 
elements in L and U are determined by the following formulas:

‘ij =
0

^i,i - 2J
p=i

if
if
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0
1

K' •«
. i-1
S \p up,j)
p-i

if i>j 
if i=j 
if i<j

(4.5)

The program to calculate the k-th column of L is as follows:
T) Initialize

DO 10 i=k, ns .v:
TF (BTOL(BS(i,k))) THEN/ V-:

; \uum(l;y)~0.0 ■ 
ql=RS(i)-I

2) Calculate the sum of the l;p-upj

///-//.'-DO 20p=l,k-l
IF (BTOL(BS(i,pj)) THEN
ql=ql + l —/'-"\
IF (BTOL(BS(p,k))) THEN 
qu—RS(p)+Q8SCNT(BS(p,l;k))'l

sum(l;y)=NZS(l,ql;y):f=NZS(Cqu;y)+sum(l;y)
V ENDIF v;;::
/ENDIF ■

3) Obtain the k-th column of L

ql=ql + l

; - endif

Where BS is a two-dimensional bit mask array for the subcircuits, RS is an 
integer vector to Ideate the first nonzoero element of each row of A for the 
subcircuits.

Since the first column of does not need any computation which can be 
obtained directly from the matrix A, We can calculate the columns of L only 
from 2 to ns. Similarly, the last row of U does not need calculating either. 
The program for calculating the k-th row of U’is as follows:
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1) Initialize

IF (k NE.ns) THEN .
DO30 j=lc + l, ns 
IF (BTOL(BS(k,j))) THEN 
sum(l;y)—0.0 

: ql=RS(k)-l ;
qq=qi

2) Calculate the suni qf lip-iipj

DO 40 p = 1, k~l .
IF (BTOL(BS(k,p))) THEN
ql^ql + l ..V ; ... •, . ^V>rV':
IF (BTOL(BS(p,j))) THEN

,; qu=RS(p) + Q8SCNT(BS(p,l;j)))-1 ; -V^v
sum(l;y)=NZS(l,ql;y)*NZS(l,qu;y)*surn(l;y)
ENDIF r : -'v^'

:. 40 ',' CONTINUE ■■ ' : ; / ■

3) Obtain the k-th row of U

qq—Q8SCNT(BS(k, 1 ;y)) + qq 
ql=ql + l
NZS(l,qq;y)=(NZS(l,qq;y)-sum(l;y))/NZS(l,ql;y) ^
ENDIF

30 CONTINUE-' ... : \ ;;

The Q8SCNT is one of the intrinsic functions of the CYBER 200 FORTRAN 
which is available on Cyber-205. Appendix B will give the illustration in 
detail of these intrinsic functions used in our simulation. Since the 
corresponding program of scalar version for simulation is too long, we are not 
going to present it here but put it in Appendix D.

When solving the linear equations by LU decomposition, we need to solve 
the equtions as in Eq.3.8. The elements of vector x and y can be obtained by 
the following formulas:

k-i
(V- E *k,pXp) (t.6)

^ P = 1
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xk - yk~ E uk,Pxp (4-7)
p —k + 1

The program for solving k-th element of y is as follows:
1) Calculate the sum of lk p yp

sum(l;y)=0.0
dd-RS(K)-l 
DO10j = l, k-1 
IF (BTOL(BS(k,j))) THEN 
dd=dd+'l’
sum(l;y)=NZS(l,dd;y)*YS(l,j;y)+sum(l;y)
ENDIF

10 CONTINUE

Where YS in the program is the temporary vector y.
2) Obtain the k-th element of y

dd=dd+l..
YS(l,k;y)=(brS(l,k;y)-sum(l;y))/NZS(l,dd;y)

The program for solving k-th element of x of subcircuits is as follows:
1) Calculate the sum of Ujj p-Xp

1—ns-k
qq—RS(l)+Q8SCNT(RS(l,l;j))-l
sum^lsyJ^O.O
DO20p-l + l, ns
IF (BTOL(BS(l,p))) THEN
qq=qq+l
sum(l;y)=NZS(l,qq;y)*XS(l,p;y)+sum(l;y)
ENDIF

20 CONTINUE \

2) Obtain the k-th element of x

XS(l,I;y) =YS(l,l;y)-sum(l;y)

From the XS we can obtain the values of the currents of the subcircuits. Then 
the equivalent current sources are calculated by Eq.2.27 , Eq.2.28 and Eq.2.29. 
This part of program is simple and we put it in Appendix C. The results of 
equivalent sources for subcircuits are stored in array EG and EJ.



4.3 Main Network Update programs
After the values of the equivalent sources ;arefound, there are two 

operations should be done. First the discrete equivalent sources for nonlinear 
elements in main circuit should be calculated. Second the equivalent sources of 
the subcircuits should be inserted into the main circuit, and then the main 
circuit is solved with the NEM method. We call these operations the main 
network update, which is similar to subnetwork update except that there is 
only one main Circuit in main network update while there are y subcircuits in 
subnetwork update. It is difficult to optimize the vectorized program especially 
when the main circuit is small.

In simulation program the nonzero elements of A for main circuit are 
stored in the array NZ, the vector b on the right side of the equation Ax = b 
is stored in the array br. The integer array D has the same structure as DS in 
subnetwork update. gJ and JJ contain the values of discrete equivalent sources 
in the main circuit, the integer arrays NZPc and bpe are used to indicate the 
position exchanges of them in NZ and br. The bit arrays NZP and brp are 
used to locate the positions of gJ and JJ. The program for calculating gJ and JJ 
is as follows:
1) Find the voltages accross the nonlinear elements

p=0
DO 10 i=l, nl
IF (D(iAjiEQ G)) THEN
v=X(D(i,l))
ELSE : -
v=X(D(i,l))-X(D(i,2))

V ENDIF

2) Calculate the polynomial of nonlinear elements

g=Q8VPOLY(v,PO(l,D(i,3);10);g)
1=Q8VPOLY(v,PO(l l,Dg3); 10)-1)

3) Obtain J and G

p=p + l ■
'G(p)-g. '
IF (D(i,4),EQ.O) GOTO 10 

' P=P + 1 •
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Where nl is the number of nonlinear elements in main circuit. Q8VPOLY is 
one of the intrinsic functions of CYBER 200 FORTRAN for calculating the 
polynomial Since the length of the polynomial is short in the simulation, the 
Speedup for thisfunction is poor. To optimize the vectorized program, we add 
two temporary arrays NZo and bro in the program. The program for inserting 

■ gt and into NZ and br is as follows:
1) Update the NZ

NZo(l;p) =Q8SCATR(G(l;p),NZPc(l;p);NZo(l;p))
G(l;p)—NZo(l;p)
NZ( l;m)=NZ( 1 ;m)+Q8VXPND(G(l;p),NZP(!;m);NZo( l;m)j

2) Update the br

bro(l;nl)=Q8VSCATR(J81;nl),bpc(l;nl);bro(l;nl))
J(l;nl)=bro(l;nl)
br(l;n|^br(I;n)+Q8VXPM)'('J(l;nl)-jbp(X;n);bro(t;n))

Where n is the dimension of A for the main circuit. Q8VSCATR and 
Q8VNPNI) are intrinsic functions which are illustrated in Appendix B.

The bit arrays NZQ and brq are used to locate the values of the 
equivalent sources of the subcirCuits in NZ and br. The integer arrays NZQc 

^v':and;;hqc;;>fe.rjsed' :to 'indicate the exchanges of these values in NZ and br. The 
bit array E is used to show whether the subcircuit is connected to datum of the 
main circuit. A tempora,ry array EO is used to optimize the vectorization. 
Inserting of the equivalent sources can be done by the following operations:
1) Calculate the EO

P=0 ' -

EO(p)=EG(i)
IF (.NOT.(BTOL(E(i)))) GOTO 10
p=p + l
EO(p)=-EG(i)

10 CONTINUE

2) Update the NZ

EO(l;p)=NZO(l;p)
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NZ(l;m)=:NZ(l;m) +Q8VXPND(EO(i;p);N2Q(^

3) Update the br

bro(l;y)=Q8YSCATR(EJ(l;y),bqc(i;y);brO(l;y))
EJ(l;y)=bro(l;y)
br(l;n)::::br(l;n)+Q8VXPND(EJ(l;y),bq(i;n);bro(l;ii)) 

Where m is the number of nonzero elements in NZ, p is a counter here.

4.4 Programs For Solving The Main Circuit
Since only one equation Ax = b is required for solving main circuit, it is 

difficult to vectorize the program. The temporary arrays sum, tu, tl, and NZT 
are used here to optimize the program. By Eq.4.6, yk can be calculated after 
the k-th column of L is obtained. So we compute the L, U, and Y by one 
DO-loop for saving the CPU time. This part of program is as follows:
1) Generate the vector tu

tu(l;k-l)=0j0 
DO 10 i=l, k-1 
IF (BTOL(B(i,k))) THEN 
qu =R(i) + Q8SCNT(B(i, 1 ;k))-l 
tu(i)—NZ(qu)
END IF

10 CONTINUE

2) Calculate the sum of lj p-Up j for L

DO 20 i=k, n
IF (BTOL(B(i,k))) THEN
ql=R(i)

tl( 1; k-1) =- Q8VXPND(NZ( ql;k-1 ),B(i, 1 ;k-1); tl(l.;k-1)) 
sum( 1)—Q8SDOT(tl( l;k-l),tu( 1 ;k-1))

3) Obtain the L
ql-Q8SCNT(B(i,l;k-l)) + ql 
NZ(ql) ==NZ(ql) suro(l)
ENDIF

■' 20 , CONTINUE '

4) Calculate the sum of lk p yp for y

ql=R(k)



tl(l;;k-l)=Q8VXPND(NZ(ql,k-l),B(k,l;k-l);tl(i;k-l)) 
sum(l)—Q8SD0T(tl(l;k-l),Y(l;k-l))

5) Obtain the y

Y(k)?(br(k)-sum(l))/NZ(dd)

6) Calculate the sum lj,p-up j for U

. IF (k.NE.n) THEN \ 
ql-R(k)-l

sum(l;dd)=0.0 
DO 30 j=i, k-i 
IF (BTOL(B(k,j))) THEN 
ql=ql + l 
qU=R^

WHERE (B(k,k d? l;dd)) sum(l;dd) =sum(l;dd)+tu(l;dd)*NZ(ql) 
ENDIF

30 vcontinue;;/'.'

7) Obtain the U

hqu=Q8SCNT(B^ 
qu— ql+1

^ZT(l;nqu)^Q8VCMPRS(sum(l;dd),B(k,k + l;dd);NZT(l;nqu)) 
NZ(qu + l;nqu)^(NZ(qu:■+ l;nqu)-NZT(l;nqu))/NZ(qu)

' ENDIF-

The program for solving the x is as following:

l=n-k
qq=R(l) + Q8SCNT(B(l,l;l)
tu(I;k)=<38VXPND(NZi(qq;k),B(l,l + I;k);tu(l;k))
sum(li'“^83DOT(tu(l-;k),X(l + l;k))
X(l)i=Y(l)-sUm(l)

The key parts of the simulation programs have been described in this chapter. 
Two detailed versions of the programs are given in Appendices C and D: one
written in



CHAPTER 5

We use large-scale circuit example to obtain the simulation results on the 
Cyber-205. Various, programs for different purposes are used in the simulation 
experiments. Section 5.1 presents the example circuit and initial conditions. 
Section 5.2 presents the results for different program versions, and analyzes the 
speedup performance of the MNA. The implications and further improvements 
are then elaborated. ; >

5.1

An example circuit is used for the circuit analysis simulation. The main 
circuit with the equivalent current sources of the subcircuits is shown in 
Fig.5.1. N is the number of the subcircuits which are connected to the main 
circuit. In our simulation program, N can vary from 1 to 1000. All the 
subcircuits have the same structure shown in Fig.5.2, and they are connected 
together in parallel, which means that they have the same parameters. This is 
for simplifying the input and output procedure such that we only need to input 
and output the variables in one of the subeircuits. Assume the initial guess for 
nodal voltages in main circuit is

L6II
0_r 

' 
> v® = 14.3

v| = 6.0 : v4° = 5,0

= 0.0

The initial guess for nodal voltages in subcircuits is

vj° = 15.0 v2° = 5.0

v3° = 7.0 \ v| = 4.0

All input data and circuit simulation results are given in Appendix A.
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subcircuits. Since the variables in each subcircuits are the same, the results for 
only one of the subcircuits are listed here. All subcircuits are connected in 
parallel. Table A4 lists the variables in one of the subcircuits with different 
number of subcifcuits in main circuit.

In Table A5, the average CPU time in each calculation step is listed, 
where the time unit used is second. The input time and the output time are 
not included in the table. Since the GPU time for each calculation step 
includes some operating system overhead time, doing the same operation may 
take different time. So we use the average values in the tables. There are 
several program versions in our simulation experiments. Table A5.a lists the 
GPU time where the vector pipelines of Cyber-205 are used. Table A5.b lists 
the GPU time where only the scalar processor of Cyber-205 is used. The 
number of subcircuits N used in vector version simulations takes value 1, 10, 
50, 100, 200, 500, and 1000. The same values for N are used in the scalar 
Version except 1000 because the CPU time of the Cyber-205 is expensive. 
Table A5.a and Table A5 b show that the performance of updating and solving 
the subcircuits in the vector Version is even Worse than that in the scalar 
Version when the Circuit contains Only one subcircuit. This is because the 
number of the subcircuits is too small to utilize the pipeline. Table A5.C lists 
the GPU time for using the scalar processor of Cyber-205 and without any bit 
processing instructions used. As a reference, Table A5.d lists the GPU time for 
using the VAX 11/780 machine. Due to limitation by the memory space to 
user, the number of subcircuits in Table A5.C and Table A5.d is only up to 200. 
The average speedup of the Vectorized program versus the program of the 
scalar version is shown by some curves. The curves of speedup for each 
calculation step are shown in from Fig.5.3 to Fig.5;7 . The speedup increases 
rapidly when N increases, Figure 5.3 shows that the speedup of the subcircuit 
update is about 100 when N equals to 500, Figure 5.5 shows that the speedup 
for Solving the subcircuits is about 10. Since there is only one main network, it 
is diffichlt to optimize the vectorized program. Figure 5.4 shows the speedup of 
main networkupdate is about 10 when N is 500.

The dimension of the matrix for solving the main circuit is much larger 
than that for the subcircuits, so solving main circuit takes most of the total 
GPU time. To Optimize this part of program is very important even though it 
may be difficult, We add some temporary vectors to improve the efficiency of 
the program, which will require some extra memory space, but it can save the 
GPU time. Figure 5.6 shows the speedup for solving main circuit is more than 
100; This is significant. Figure 5.7 shows the speedup for back-substitution is 
about 20. Figure 5 9 shows the overall speedup is about 100. From the curves
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Figure 5.3 Speedup in subnetworks updates
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Figure 5.4 Speedup in main networks updates
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Figure 5.5 Speedup in solving subcircuits
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Figure 5.6 Speedup in solving the main circuit
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Figure 5.7 Speedup in back-substitution
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we can see, the speedup increases rapidly at the beginning, and slows down 
when N becomes very large. This means it may tend to a constant. From 
Figure 5.8 we can see, when the subcircuit number N is very large the GPU 
time fpr vector version program is approximately 6.8xlO-3 N2, and for scale 
version is about 3.16xlO-3N3 . Figure 5.10 gives the curves of the CPU time 
for different versions of the program. As a reference, the GPU time for VAX 
11/780 is shown on the top of the figure.

5.3 Implications And Further Improvements
From the results of simulation we can see, when the vector pipelines of 

Cyber-205 is used to solve the large-scale circuit by MNA, a high speedup can 
be achieved. Since the setup time fpr the pipelines in Cyber-205 is long, when 
the number of subcircuits is smaller, the speedup is poor. Figure 5.9 shows 
that the increase of the speedup will slow down when N becomes very large, 
which means the speedup might tend toward a constant with a very large 
system. Because the CPU time of Cyber-205 is expensive, N takes limited 
values up to only 500 in the curves, and the corresponding overall speedup is 
more than 100. If more subcircuits were in the main circuit, the speedup might 
be higher than this. The vectorization in each calculation step is different, and 
the speedups for these steps are different too. In Fig.5.8 the total CPU time 
includes the time for calculation, data access and system overhead, such as 
page fault handling etc., the input-output time is excluded here. For the 
example circuits, the total time complexity for vector version is 0(N2), and for 
scalar version it is 0(N3).

A considerable amount of time has been used for page fault handling in 
our vectorized simulation. Table A6 shows that the execution time for scalar 
code is 340 seconds when N is 500, and the time for page fault handling is 12 
seconds. For vector code, the time is reduced to 4 seconds, but the time for 
page fault handling does not change. This means that reducing page faults 
becomes very important in the vectorized MNA.



CHAPTER 6 
CONCLUSIONS AND SUGGESTIONS

Our research findings are summarized below. Several suggestions are 
made for those who wish to conduct further studies on vectorized circuit 
analysis using supercomputers.

6.1 Concluding Remarks
A new Newton algorithm has been proposed to perfrom circuit analysis on 

vector Computers. The subcircuits are treated as the elements of a vector and 
are processed by a vector pipeline. Higher efficiency can be achieved over 
existing algorithms. We revealed the Speedup advantages of the new algorithm 
The symbolic processing and row column exchanges in MNA are exactly the 
same as in the SLNA and MLNA. The major advantages of the MNA are 
summarized beloW:
1) A large circuit is partitioned into multiple levels. There is only one main 
loop in the program. The number of iterations in the main loop is a constant 
and does not increase with the number of levels. The complexity in each 
iteration increases linearly With respect to the number of levels in the circuit.
2) The main loop of the MNA has a quadratic convergence rate in most cases. 
This is important for the overall speedup of the circuit simulation program, 
especially when the circuits are very large. This convergence rate is faster than
the pairwise quadratic convergence of MLNA reported in Lin [5]
3) The nonlinear equations for the main circuit and the subcircuits are not 
needed in the MNA. Only the parameters of circuit elements are used. This 
makes the input of the data of a large circuit much easier. The calculations for 
all the Jacobian matrices can be avoided in MNA which saves GPU time.
4) In out simulation experiments, the speedup is approximately 100, when 500 
subcircuits are in the main circuit. The modified bit matrix structure is 
attractive for large-scale circuit simulation. Only the nonzero elements and bit 
mask matrix have to be stored in memory. This results in higher efficiency on 
the Cyber-205 supercomputer.
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5) The vector pipelines of Cyber-205 have a long setup time. If the circuit 
contains a few subcircuits, the speedup would be poor. When the circuit 
contains many identical subcircuits, a significant speedup can be expected. 
The larger is the number of subcircuits in the circuit, the higher will be the 
speedup.

6.2 Suggestions For Further Research
From the results of our simulation experiments, two suggestions are made 

for continued studies:
1) Since the vectorized programs are written in CYBER 200 FORTRAN, they 
have to be translated to machine language by the compiler of Cyber-205. 
Therefore, the overall CPU time needed depends on the efficiency of the 
compiler. For example, page fault handling will demand CPU time. If the 
page size and page allocation are reasonable, the page fault occurrences may be 
reduced. Thus the CPU time will be also reduced. This problem can be 
alleviated by writing the program in assemble language. This requires us to 
know the machine architecture and operating system in more detail.
2) :The data input/output demands long time delays. Since the Cyber-205 
CPU time is expensive, it may be more advantageous to use a small scalar 
computer to perform - the input/output functions. The circuits in our 
'simulations are partitioned into only two levels. Since the number of iterations 
in the MNA is a constant, higher benefit may be obtained if more levels are 
used. The latency technique is not considered either. Latency may further 
improve the efficiency of the MNA on a vector supercomputer [20-23].
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APPENXIX A: INPUT DATA SETS AND SIMULATION RESULTS

The main circuit and subcircuits are all characterized by the linear 
equations as the form Ax = b in MNA. The matrix A for the subcircuits is 
shown |n Fig.A(a), Since the symbolic processing and the row column 
exchange do not be included in our simulations, these processing should be 
dome before the data input. After these processing, the A becomes that in 
Fig.A(b). The symbol x in Fig.A(b) indicate that there is a fill-in element. 
The bit mask matrix for subcircuit BS is as shown in Fig.A(c). In Fig.A(d) are 
the vector b for subcircuits, the b after row exchange, and the bit array bpS, 
the integer array RS indicating the first nonzero element in each row of A, 
The matrix A for main circuit is shown in Fig.A(e). Its dimension can be 
changed up to 1000. After symbolic processing and row column exchange, A 
becomes that in Fig.A(f). Figure A(g) show's the bit mask matrix for main 
circuit B. The vectors b before and after row change, the vectors bg and bp, 
and the integer array C for the main circuit are shown in Fig,A(h).

Table Al and A2 list the simulation results of MNA and SLNA as 
reported in Chapter 3. The large scale circuit simulation results on Cyher-205 
are given in Table A3 to A6.



Table A6. Times Needed for User, System and Page Faults Handling

Numberof
Subcircuits

User CPU Time*(s) System CPU Time(s) Net Page Faults(s)

Scalar Vector Scalar Vector Scalar Vector

:-r' 1.9 1.9 1.0 1.0 11.2 11.9

10 2.0 1.9 1.0 1.0 11.3 11.9

50 2.5 1.9 1.0 l.o 11.3 11.9

100 5.5 2.0 1.0 1.0 11.3 11.9

200 26.0 2.4 1.0 1.0 11.3 11.9

500 345.4 4.6 1.0 1.0 11.4 12.0

1000 12.0 "■ '. 1.0 12.3

Input/Output Times Are Included
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52.f

Table Al. Results of the MNA Simulation

Number of 
iterations

(j)

Variables in the main circuit Varianbes in the subcircuits

Vj vi : ; Jl ; ; ' vj Gj Jj

0 7.0 1.0 0.0 2.0 -1.0
'1 7.0 2.666667 -4.333333 2.666667 6.175439 -8.233918

' ■/'-2 S'-j/'- 7.0 2 123064 -4.876935 1.458028 4.990777 -5.050256
7.0 2011470 -4.988530 1.056501 4.701707 -4.4045713

V\' 4 ■ ■ 7.0 2.000203 -4.999796 1.001090 4.667315 -4.334630 ,
V: 5: 7.0 2.000000 -5.000000 1.000000

Table A2. Results of the SLNA Simulation

Number of 
iterations

(j)

Variables in the circuit

vj vj Vj
v yo^y;?;" 7.0 ;-y 10 0.0

y 1 'V. 7.0 2.666667 2.666667 -4.333333
'; 2 7.0 2.123064 1.458028 -4.876936
V 3 .;;v: 7.0 2.011470 1.056501 -4.988530
y'.y^ 4 .^ 7.0 2.000203 1.001090 -4.999796
'Vw...5 i' 7.0 2.000000 1.000000 -5.000000



Table A3. Results Obtained in the Main Circuit

Number of 
subcircuits

Main Circuit Variables

ha - V,;,;
1 . 0,00023194 15.0 14.3 14.21430961 14.20918220

10 0.00022998 15.0 14.3 14.21217756 14.20724574

50 0.00022328 15.0 14.3 14.20303835 1419894491

100 0.00021724 15.0 14.3 14.19215019 14.18905557

200 0.00020844 15° 14.3 14.17156648 1417036002

500 0.00019112 15.0 14.3 14.11602041 14.11990955

1000 6.00017209 15.0 15.3 14.03710825 14.04823638

Number of 
subcircuits

Main circuit Variables

is k v4
1 0.00090818 0.00128569 -‘0.0151450 13 49213682 0.01307401

10 0.00092754 0.00128782 -0.01719880 1347826175 0.01512683

50 0.00101055 0.00129696 -0.02601451 13.43076520 0.02393841

100 0.00110944 0.00130785 -0.03653093 13.38800212 0.03445006

200 0.00129640 0.00132843 -0.05643029 13.32564756 0.05434058

500 0.00180090 0.00138398 -0,11017436 13.20295807 0.10806125

1000 0.00251765 0.00146289 -0,18656576 13.06817581 0.18441980



Table A4. R esults Obtained in One Subcircuit

Number of 
Subcircuits

Subcircuits Variables

V, V2 ■ vs ! ' V4

: 1 ' 15.0 13.49213632 13.74011897 12.7147804

10 15.0 13.47826175 13.74139862 12.70100470

50 15.0 13.43076520 13.74577911 12.56384735

100 15.0 13.38800212 13.74972294 12.61139075

200 15.0 13.32564756 13.75547342 12.54948480

500 15.0 13.20295807 13.76678753 12.42768413

1000 15.0 13.06817581 13.77921587 12.29388772

Number of 
Subcircuits

Subcircuits Variables

h h ■ *7 ■ *8

1 -0.02519762 -0.00005460 0.02539449 -0.00023194

10 -0:02517203 -0.00005763 0.02536542 -0.00022998

50 -0.02508417 -0.0000680 0.02526592 -0.00022328

100 -0.02500554 -0.00007734 0.02517634 -0.00021724

200 -0.02489053 -0.00009097 0.02504573 -0.00020844

500 -0.02466425 -0.00011777 0.02478873 -0.00019112

1000 -0.02441568 -0.00014721 0.02450643 -0.00017209
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Table A5. CPU Times for the Execuation of Various Programs 

(a) Vector Code (Cyber 205)

Number of Update the Solving the Update the Solving the 
Subcircuits Subcircuits Subcircuits Main Circuit Main Circuit

Substitution
Tinie

Total
Time

i 3.24 x 10"4 1.01 x 10~* 1.2 x 10"4 6.53 xlO'4 2.82 x 10"4 1.2 x 10"2
10 3.39 xlO"4 1.20 x 10~* 1.51 x lO"4 1.42 x10"* 3.03 x 10"4 1.7 x 10"2
50 3.55 x 10“4 2.01 x 10* 2.11 x 10"4 8.00 x 10* 3.98 x 10"4 5.49 x 10"2

100 4.23 x 10-4 CO © 00 X © 2.99 x 10"4 2.37 x lO"2 5.37 x 10"4 1.40 x lO"1
200 4.77 x 10"4 5.12 x 10 s 4.46 x 104 7.96 x 10"2 7.63 x 10 4 4.32 x 10"1
500 7.34 x 10 4 1.13 x 10"2 9.16 x 10"4 4.44 x 10"1 1.50 x 10* 2.29

1000 1.13 x 10"* 2.17 x 10"2 1.72 x 10"* 1.72 2.72 x 10* 8.76

(b) Scalar Code (Cyber 205)
1 1.60 x 10"4 9.35 x 10"4 2.11 x 10"4 8.7 x 10"4 2.42 x 10"4 1.2 xlO"2

10 9.16 x 10~4 2.40 x 10 s 2.90 x 10"4 4.13 x 10"* 7.39 x lO"4 4.24 x 10"2
50 4.32 x 10 s 9.21 x 10"* 7.49 x 10"4 1.07 x 10"V 2.99 x 10 * 6.21 x 10"1

100 8.58 xlO"* 1.77 x 10'2 1.32 x 10"* 6.7 x 10"1 5.8 x 10"* 3.52
200 1.71 x 10~2 3.47 x 10"2 2.46 x 10"* 4.73 1.15 x 10"2 23.96
500 4.27 x 10"2 8.58 x 10"2 5.90 xlO"3 68.43 2.84 x 10"2 342:95

(c) Scalar Code (Cyber 205 without use of bit processing)
■l 3.40 x 10'4 1.03 x 10"* 1.39 xlO"4 6.57 xlO"4 2.83 x 10'4 1.2 x 10"2

10 1.11 x 10"* 2.21 x 10"* 3.2 x 10"4 3.78 x 10"* 6.81 xlO"4 4.06 x 10"2
50 5.30 x 10"* 9.04 x 10"* 8.36 x 10"4 8.92 xlO"2 2.94 x 10 * 5.37 x 10"1

100 1.05 x 10"2 1.76 x 10 2 1.48 x 10® 6.75 x 10 1 5.76 x 10"* 3.55
200 2.10 x 10"2 3.46 xlO"2 2.77 x 10"* 4.78 1.14 x lO"2 24.25

(d) Scalar Code (VAX 11/780)
1 1.67 x 10"2 2.67 xlO"2 0.0 4.33 x 10 2 3.33 x 10"* 4.50 x 10"’

10 2.67 x 10~2 6.67 x 10"2 1.00 x 10 2 8.33 x 10"2 2.33 xlO"2 1.67
50 1.30 xlO"1 2.37 x 10'1 1.30 xlO"2 1.81 6.00 x 10"2 11.22

100 2.63 x lO"1 4.58 x 10"V 1.6 x 10 2 12.67 1.30 x 10"1 67.68
200 4.93 x 10'1 8.60 x 10"1 3.67 x lO"2 100.55 2.83 x 10 1 511.95
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APPENDIX B: CYBER 200 FORTRAN INTRINSIC FUNCTIONS

Listed below are the CYBER 200 FORTRAN intrinsic functions used in 
this report. These description are taken directly froni reference [9]

Q8SCNT
Q8SCNT(v) is a specific scalar function that returns the number of 1 bits in 
the argument, The argument must be a vector of type bit. The result is of 
type integer.

For example, if bit vector VI consists of the elements 10 0 1 1, the result 
of Q8SCNT(Vl) is 3.

Q8SDOT
Q8SDOT(vl,v2) is a generic scalar function that returns the dot product of the 
twb arguments. The argumehts must be vectors and can be of type integer, 
real, or half-precision. If the arguments have different lengths, the excess 
elements of the longer argument are ignored. The result is of the same data 
type as the arguments. The result is the sum of the products of corresponding 
elements of the vector arguments.
■■^:.- /:':F<)r.iexample,.:if vector VI consists of the elements 0 1 3, and vector V2 
consists of the elements 2 2 2, the result of Q8SDOT(Vl,V2) is
(G*2j) (1*2) +(3*2), which is 8.

Q8VCMPRS(v,cv;u) is a generic vector function that creates a vector consisting 
of selected elements of the input argument V. Teh input argument v must be 
a vector and can of type integer, real, or half-precision. The input argument 
cv, which is used as a control vector, must be a vector of type bit. The output 
argument can be a vector of the same data type as the input argument, or an 
integer expression that specifies the length of the vector function result. The 
input arguments must have the same length The length of the vector through 
which the function result is returned is determined by the number of 1 bit in 
cv. o.. ■ "■ ; ■
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The function result consists of all of the elements of the input argument v 
whose corresponding elements in the control vector cv contain a 1 bit.

For example, if input argument VI is a vector that consists of elements 2 
4 6 8, and input argument CV1 is a bit vector that consists of the elements 0 1 
0 1, the function reference Q8VCMPRS(V1,CV1;U1) assigns the values 4 8 to 
the output argument Ul.

Q8VPOLY
Q8VPOLY(vl,v2;u) is a generic vector function that computes a polynomial at 
several points, The input arguments must be two vectors or one scalar and one 
vector. If a scalar is used as an input argument, the scalar must be the first 
input argument. The input arguments can be of type real or half-precision. 
The output argument can be a vector of the same data type as the input 
arguments, or an integer expression that specifies the length of the vector 
function result. The input arguments can have different lengths. The length of 
the vector through which the function result is returned must be the same as 
the length of the input argument vl, or longer.

The input argument v2 contains the coefficients of the polynomial: the 
first element of input argument v2 is the coefficient of the highest order term of 
the polynomial, and the last element of input argument y2 is the coefficient of 
the lowest order term of the polynomial, which is the constant. The length of 
input argument v2 determines the order of the polynomial. The order is one 
less than the number of elements in input argument v2. The input argument 
vl contains the points at which the polynomial is to be evaluaed. The value of 
the first element of input argument vl is substituted for the variable in the 
polynomial, the polynomial is evaluated, and the result is placed in the first 
element of the function result. This is repeated for each element of input 
argument vl.

For example, if input argument vl is a vector that consists of the elements
2.0 3.0 5.0, and input argument v2 is a vector that consists of the elements 4.0
2.0 1.0, the function reference Q8VPOLY(Vl,V2;Ul) assigns the values 21.0
43.0 111.0 to the output argument Ul. These values were computed by 
substituting each element of input argument Vl for the variable in the 
polynomial defined by the input argument V2. The polynomial is:

4x2 + 2x + 1



55

Q8VSCATR
Q8VSCATR(v,i;u) is a generic vector function that creates a vector consisting 
of selected elements of the input argument v. The input argument v must be a 
vector and can be of type integer, real, or half-precision. The input argument i 
must be a vector of type integer. The output argument can be a vector of the 
same data type as the input argument v, or an integer expression that specifies 
the length of the vector function result. The input argument i and the vector 
through which the function result is returned must have the same length.

Each element of the input argument v corresponds to an element in input 
argument i. The elements in input argument i indicate to which elements in 
the function rsult the elements in input argument v are assigned. For example, 
if an element of i contains a 1, the element of input argument v that 
corresponds to that element in i is assigned to the first element of the function 
result. An element of the function result can be assigned more than one value; 
the last value an element is assigned is the value that it retains.

For example, if input argument VI is a vector that consists of the 
elements 2.0 4.0 8.0 8.0, input argument II is a vector that consists of the 
elements 1 4 4 2, and output argument Ul is a vector that consists of the 
elements 9.0 9.0 9.0 9.0, the function reference Q8VSCATR(Vl,Il;Ul) assigns 
the values 2.0 8.0 9.0 6.0 to the output argument Ul. The fourth element of 
the output argument is assigned the value 4.0, but is then reassigned the value 
6.0. The third element of the output vector is never assigned; therefor, it 
retains its previous value.

Q8VXPND
Q8VXPND(v,cv;u) is a generic vector function that creates a vector that 
consists of the elements of input argument v plus additional elements having 
the value 0 or 0.0. The input argument v must be a vector of type integer, 
real, or half-precision. The input argument cv, which is used as the control 
vector, must be a vector of type bit. The output argument can be a vector of 
the same data type as the input argument v, or an integer expression that 
specifies the length of the vector function result. The length of the vector 
through which the function result is returned must be the same as the length of 
the input argument cv.

Each element of the function result corresponding to an element in the 
control vector cv that contains a 0 bit is assigned the value 0. The elements of 
the function result corresponding to 1 bits in the control vector are assigned 
values from the input argument v. The leftmost values from input argument v



are used, and any excess values are ignored.
For example, if input argument Vl is a vector that consists of the 

elements 5.0 5.0 5.0, and input argument CVl is a bit vector consists of the 
elements 1 0 0 1, the function reference Q8VXPNI)(Vl,CVl;Ul) assigns the
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APPENDIX C: SIMULATION PROGRAMS IN VECTOR CODE
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FILE NMAE MMNA
THIS PROGRAM IS USED TO DO THE LARGE CIRCUIT 
ANALYSIS USING THE MMNA ALGORITM. THE NUMBER 
OF SUBCIRCUITS IN THE CIRCUIT CAN BE FROM 1 
TO 1000. THE MAIN PROGRAM AND ALL SUBROUTINES 
ARE WRITTEN IN UECTOR UERSION.

UARIABLES:

NZ - A REAL ARRAY CONTAINING THE NONZERO 
ELEMENTS IN MATRIX A FOR MAIN 
CIRCUIT.

NZS - A REAL ARRAY CONTAINING THE NONZERO 
ELEMENTS IN MATRIX A FOR SUBCIRCUITS.

B - A BIT MASK ARRAY FOR MAIN CIRCUIT.

BS ^ A BIT MASK ARRAY FOR SUBCIRCUITS

BR - A REAL ARRAY CONTAINING THE RIGHT HAND 
SIDE OF THE EQUATION AX=B FOR MAIN 
CIRCUIT.

BRS - A REAL ARRAY CONTAINING THE RIGHT HAND
OF THE FIRST NONZERO ELEMENT IN EACH ROW OF 

i THE MATRIX A FOR MAIN CIRCUIT.

R - A NITEGER ARRAY FOR INDICATING THE POSITIONS 
FO THE FIRST NONZERO ELEMENT IN EACH ROW OF 
THE MATRIX A FOR MAIN CIRCUIT.

RS - A INTEGER ARRAY FOR INDICATING THE
POSITIONS OF THE FIRST NONZERO ELEMENT IN 
EACH ROW OF THE MATRIX A FOR SUBCIRCUITS.

D - A iNTEGER ARRAY CONTAINING THE POINTERS OF 
NONLINEAR DEUICES IN MAIN CIRCUIT.

DS - A INTEGER ARRAY CONTAINING THE POINTERS OF 
NONLINEAR DEUICES IN SUBCIRCUITS.

PO - A REAL ARRAY CONTAINING THE COEFFICIENTS OF
POLYNOMIAL FOR FUNCTIONS OF NONLINEAR DEUICES 
IN WHOLE CIRCUIT.

X - A RAEL ARRAY CONTAINING THE UARIABLES IN MAIN 
CIRCUIT.: ;

XS - A REAL ARRAY CONTAINING THE UARIABLES IN THE 
'' uSUBCIRCUITS. ■

ci - A INTEGER ARRAY INDTCaTiNG THE COLUMN ORDER 
EXCHANGE OF THE MATRIX A FOR MAIN CIRCUIT.

CIS - A INTEGER ARRAY INDICATING THE COLUMN ORDER 
EXCHANGE OF THE MATRIX A FOR SUBCIRCUITS.

NZP - A BIT ARRAY FOR INDICATING THE POSITIONS OF 
G IN THE NZ.

NZPS - A BIT ARRAY FOR INDICATIOG THEPOSITIONS OF 
V V ;G IN THE NZS,
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PROGRAM MMNACTAPE5=INPUT, TAPE6=0UTPUT)

ROWWISE BC1100, 1100)» BSC l'Of 10)

REAL NZSC1000,50),NZC3100)*POC20,5),XSC1000,10),BRC11QQ),
1 BRSC1000,10),10(1000),EJC1000),EGC1000),IBRC1100).IBRSC1000,10),
1 JTSC1000,4),INZC3100),INZSC1000,50),XC1100),T1,T2,T3,T4,T5

INTEGER I, J, K, M, MS, N, NS, NL,NLS,P,Y,BPG,BPP,
1 DC IQ,4),DS(4,4),Cl(1lOO),CISC 10),
1 RC1100),RSC1O),NZPCC20),NZPSCC8),
1 NZQCC1000),BPCC10),BPSCC4),
1 BQCC1000),BPUC1000)

BIT B,BS,EC 1000),NZPC3100),NZPSC50),NZQC3100), 
1 BQ C110 0),BP C110 0),BPS CIO)

INPUT THE DATA

CALL INP CIBR, IBRS, X, XS, INZ, INZS, B, BS, R, RS, D, DS, Cl, CIS, M, MS, 
1 NZP,NZPC,NZPS,NZPSC,NZQ,NZQC,E,BP,BPC,Y,
1 BPS,BPSC,BQ,BQC,NL,NLS,N,NS,PO,BPG,BPP,BPU)

SET THE NUMBER OF ITERATION

READC5,1) K 
FORMAT C1014)

TT1=0.0

DO 10 L=1,K

COPY THE NZ AND NZS

NZC15M)=INC15M)

DO 3 1=1,MS
NZSC1,15 Y)=INSC1,1;Y)
CONTINUE

UPDATA THE SUBNETWORK

IF CNLS.NE.0) THEN 
TT3=SECQNDC)
CALL UPNS CNZS,BRS,NZPS,NZPSC,PO,DS,XS,NS,NLS,CIS,MS,JTS,Y) 
TT4=SEC0NDC)
T1=TT4-TT3 
END IF

LU DECOMPOSITION FOR SUBNETWORK

TT3=SECQNDC)
CALL LUS CNZS,BS,RS,NS,Y)
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C ^ CALCULATE THE EG AND EJ

DO 20 1=1.NS 
BRS(1,I;Y)=0.0

20 -■''...'■■.■...■CONTINUE':
DO 30 I=1»Y 
BRS(I»BPP)=X(BPU(I))

30 CONTINUE

C SOLUE THE SUBNETWORK

CALL SX Y (NZS»BRS.BS.RS.NS,Y,XS >

C
C

C
C

SO

SO

E
C

70 ;

■C'X:/
Cr

OBTAIN THE I WITH ZERO INPUT

iO a;y)=xs(i» bpg;Y >
CALCULATE THE BRS

P=0
DO 40 1=1.NS 
IF (BTOL(BPS(I))) THEN

P=P+1
DO 50 J=1.Y
BRS(J»I)=JTS(J * BPSC(P))
CONTINUE

ELSE
DO 60 J=l»Y 
BRS(U,I)=IBRS(J.I)
CONTINUE

END IF 
CONTINUE

SET THE SUBNETWORK INPUT

BO 70 1=1.Y 
BRS(I.BPP)=X(BPU(I))
CONTINUE

CALCULATE THE SUBNETWORK 

CALL SXY tNZS>BRS,BS,RSVNS.Y.XS)

C OBTAIN THE EG AND EJ

DO 90 1=1,Y EG(I)=-I0(I)/X(BPU(I)) 
EJ(I)=XS(T,BPG)-IO(I) 90 CONTINUE
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C COPY THE BR

BRC1;N)=IBRC1?N) ; ^ {

TT4=SEC0ND()
T2=TT4-TT3

C UPDATA THE NONLINEAR DEUICESOF THE MAIN NETWORK
C -----------------------------------------

TT3=SEC0ND()
IF (NL.NE.O) THEN
CALL UPNM CNZ* BR* NZP* NZPC* BPC> BP* PO>D* X* N*NL* Cl> M) 
ENDTF

C UPDATA THE INPUT OF THE MAIN NETWORK

C
C

C
C

CALL UPI C NZQ*Y,N,M*NZQC* EG * EJ,E,BQ*BQC *NZ *BR)

TT4=SEC0ND()
T3=TT4-TT3

LU DECOMPOSITION AND SOLUE THE MAIN NETWORK

TT3-SEC0NDC)
CALL LUM (NZ>X»BR»B>R*N) 
TT4=5EC0ND()
T4=TT4“TT3

SUBSTITUTE TO THE SUBNETWORK

TT3=SEC0ND()
DO 100 1=1,Y 
BRS C19BPP)=X (BPU(I)) 

100 CONTINUE

CALL SXY (NZS*BRS* BS »RS»NS»Y *XS) 
TT4=SEC0ND()
T5=TT4-TT3

TT1=TT1+T1+T2+T3+T4+T5

C PRINT THE RESULTS OF THIS ITERATION
C . -------- ------ ■--------------------------------------

WRITE(6* 6) L

WRITE(6* 7) (X(I+Y-1) *1=1*N~Y+1) 

WRITE(G*8) (XS(1»I)>1=1»NS) 

WRITE(6*9) T1»T2» T3»T4, T5

G FORMAT (1X,****//35X,*THE NUMBER OF ITERATION V, 15//
1 25Xfs****************************************************?*/)

7 FORMAT•C/3QX,/THE VALUE OF VARIABLE IN THE MAIN NETWORK V//
1 10Xf5F15.8//)

8 FORMAT (/30X,/THE VALUE OF VARIABLE IN FIRST OF SUBNETWORKS &/'

1 20X.4F15.8//)
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FORMAT (////30X#*THE UALUE OF THE CPUTIME FOR THtS ITERAYION*//' 
1 10X.5F15.8/////)

10 CONTINUE

Tl=TTl

C OUTPUT THE FINAL RESULTS

CALL OUT (N.NS.Y.XrXS.Tl)

STOP
END ■ ~ 'V' __ ' "J-

c
C FILE NAME UPNS
C
C THIS SUBROUTINE IS USED TO DO UPDATA THE
C SUBNETWORKS. ALL OF THE FUNCTIONS OF THE
C NONLINEAR DEUICE IN SUBCIRCUITS ARE WRITTEN
C AS THE POLYNOMIAL OF THE UOLTAGE U.
c ■

SUBROUTINE UPNS (NZS»BRS>NZPStNZPSC»PQ»DS»XS»NS»NLS»CIS» 
1 MS>JTS»Y)

REAL NZS(10d0»50)vNZSO(1000»8)»XS(1000»10).BRS(1000.10). 
1 GS(1OOO»8)*TIS(1O0O)« TXS(1000»10).USC1000).GTS(1000),
1 PO(20»5)»JTS(1000»4)

INTEGER DS(4» 4) *Y» CIS(1.0) > NS* NZPSCC8) *
1 NLS»MS* PtI»J» Z

BIT NZPSC50)

C FIND THE U ACROSS THE NONLINEAR DEUICES

DO 10 I=1»NS
txsci»gis(I);yt=xs(i.i?Y) ;

10 CONTINUE

C CALCULATE THE GS AND JS

P=0
DO 20 I=1»NLS 
IF(DS(I»4).EQ.O) THEN 
USdTY)=TXSU,i)S(I»l);Y> ^
ELSE :■
US(i;Y)=TXS(lyDSCl. 1);Y)-TXS(1. DS(I*2)»Y)
endif ;

GTSC1JY)=0.0

C- CALCULATE THE POLYNOMIAL



63

DO 30 J=l',10
gts(i;y)=gts(i;y)*us(i;y)+po(j,ds(I,3))

30 CONTINUE

C OBTAIN THE JTS
c ——----------------

TIS(l;Y)=0.0 
DO 35 J=11920
TIS(1JY)=TIS(15Y)*US(15Y)+P0(J,DS(I,3)) 

35 CONTINUE

JTSClf IlY)=GTS(l5Y)*US(l;Y)-TIS(lSY)

C OBTAIN THE GS
C ■ --------

P=P+1
gs('i,ps-y)=Gtsci;y)
IFCDS(I,4).EQ.O) GO TO 20 
P=P+1
GS(l,P5Y)=-GTS(lSY)'

20 CONTINUE

C OBTAIN THE NZSO
C —----- —------------- — :

DO 40 1=1,P
NZSO(1115 Y)=GS(1,NZPSCCI); Y) 

40 CONTINUE

C UPDATA THE NZS
c —----------------------——

P=0
DO 50 1=1,MS
IF (BTQLCNZPSCI))) THEN
P=P+1
nzs(i,i;y)=nzso<i,p;y)
END IF

50 CONTINUE

RETURN
END

: FILE NAME LUS

THIS SUBROUTINE IS USED TO DO THE 
: DECOMPOSITION FOR THE MATEIX A OF 
: SUBCIRCUITS.

LU
THE

SUBROUTINE LUSCNZS,BS,RS,NS,Y)

ROWWISE BSC 10,10)

REAL NZSC1000> 50)>SUM(1000)

INTEGER RSC10),NS,Q,QQ>QL,QU,I,K,P,U,Z,J,Y

BIT BS
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C CALCULATE THE FIRST ROW OF U
c . —-----------------—---------- --- ------------------------------------------------—

Q=1
DO 2 1-1=2 > MS
IF (BTOL(BS(l»W))) THEN 

: Q=Q+1
n2S(i»q;y)=nzs(i.q;y)/nzs(1,i;Y) 
END IF

2 CONTINUE

DO 10 K=2* NS

C CALCULATE THE KTH COLUMN OF L (TO 20)
C . -------- :----------------------- ------------- ------------------- ----------------

DO 20 I=K* NS 
IF (BT0L(BS(I»K))) THEN

C INITIALIZATION
C —---------------------------;

sum(i;y)=o.o

QL=RS(I)-I 
DO 40 P=1»K-1

C FIND THE INDEX OF L AND U
C --------------------------------—---------------

IF (BTOL(BSdfP))) THEN 
QL=QL+1
IF (BTOLCBS(PfK))) THEN 
QU=RS(P)+Q8SCNT(BS(Pf1?K))-l

C CALCULATE THE SUM
c ----------------—-----------------

SUM(1»Y)=NZS(1f QL5 Y)*NZS(1» QU;Y)+SUM(1;Y)

END IF 
ENDIF

40 CONTINUE

C OBTAIN THE L
C -------------------------

QL=QL+1
NZS(1,QL;Y)=NZS(1f QL 5 Y)-SUM(15 Y)
ENDIF

20 CONTINUE

C CALCULATE THE KTH ROW OF U
c —----- - - - - - - -———

IF (K.NE.NS) THEN

DO 120 J=K+lfNS 
IF (BT0L(BS(Kf J))) THEN

C INITIALIZATIONc —------  —
sum(i;y)=o.o



QL=RS(K)“1
QQ=QL
DO 140 P=lfK-l

C FIND THE INDEX OF U AND L

IF (BT0L(BS(K,P)>) THEN 
QL=QL+1
IF (BTOLCBSCP,J))) THEN 
QU=RSCP)+Q8SCNT(BS<P,1;J))-1

C FIND THE SUM

SUM(l;Y)=NZS(If QL;Y)*NZS(QU;Y)+SUMC1*Y)

END IF 
END IF

140 CONTINUE

C OBTAIN THE U

QQ=Q8SCNT(BS(K*1iJ))+QQ 
QL=QL+1
NZS(1> QQTY) = CNZS(1» QQ;Y)“SUMC1;Y))/NZS(1» QL» Y) 

END IF
120 CONTINUE

END IF

CONTINUE 
RETURN 
END

FILE NAME SXY

THIS SUBROUTINE IS USED TO SOLUE THE UECTORS 
Y AND X FOR THE SUBCIRCUITS.

SUBROUTINE SXY (NZS» BRS* BS>RS» NS» Y*XS)

RONNISE BSClOflO)

REAL NZSC1000,50),XS(1000,10),YSCIOOO, 10)V 
1 BRSdOOO, lO)f SUM(ldOO)

INTEGER RS(10),NSfLrQQ,IfKfPf 
1 ZfJfDDfY

BIT BS

C FIND THE FIRST ELEMENT OF Y

YSClf1jY)=BRS(lf1;Y)/NZS(If I?Y)

C CALCULATE THE Y (TO 20)C ------- ------ ---------- ----- .

10

C
C
C
C
C
C
C——
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DO 20 K=2* NS 

C INITIAL SUM

SUM(1JV)=0.0

C CALCULATE THE SUM

DD=RS(K)-1 
DO 40 J=1»K-l 
IF (BTOL(BSCK.J))) THEN 
DD=DD+1

SUM(15V)=NZSa»DDJY)*YS(l.J;Y)+SUM(T;Y)
END IF 

40 CONTINUE

C OBTAIN THE Y

DD=DD+1
YSCl,K;Y) = (BRSa*K;Y)~SUMa;Y))/NZSa»DDJY) 

20 CONTINUE

C CALCULATE THE LAST ELEMENT OF X

XS(i»NS5Y)=YS(l.NS;Y)

C CALCULATE THE X (TO 70)

,'DO: 76'Kri»'NS-l 

C FIHD THE INDEX OF L

L=NS-K •

QQ=RS CL)+Q8SCNT(BS(L > 1! L ) ) -1 

C INITIAL THE SUM

SUMC15 Y)=0.0

C CALCULATE THE SUM V

DO 100 P=L+1»NS
:■■■■■; iFJXBTOLC BS(X».P))>..:THEN ■■

QQ=:QQ+^
SUM(i;V)=NZS(i»QQ;Y)*XS(1»P»Y)+SUM(1»Y)

END IF
100 CONTINUE

C OBTAIN THE X

XS(1»L*Y)=YS(1»LJY)“SUM(1JY)
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70 CONTINUE

RETURN 
ENDc----

C
C FILE NAME UPNM
C ■
C THIS SUBROUTINE IS USED TO DO THE UPDATA THE
C NONLINEAR SEUICES OF THE MAIN NETWORK. ALL OF
C THE FUNCTIONS OF NONLINEAR DEUICES IN MAIN
C CIRCUIT ARE WRITTEN AS THE POLYNOMIAL OF
C UOLTAGE U.
C
CC----------------------------------------------------------------~~.-

SUBROUTINE UPNM (NZfBR» NZP»NZPC,BPC.BPrPOrDfXrNfNL»Cl.M)

REAL NZC3100)»XC1100)»BR(1100)»PO(SO»5)»G(20)f 
1 TXC1100)*TIrU» JTC16)»GTf NZOC3100)f BROC1100)

INTEGER NZPCC20)>DC10>4)>BPC(10)>Cl(1100)f Nf 
1 NL» P> I» J» M

BIT NZPC3100)fBPC1100)

C FIND THE OLD ORDER OF X
C . ——-------

TXC15 N)=Q8USCATR(X Cl;N),Cl(1;N)J TX C1;N)) 

C CALCULATE THE G AND JT (TO 20)

P=0
DO 20 1=1>NL

C FIND THE U ACROSS THE NONLINEAR DEUICES

IF (D(I,4).EQ.O) THEN 
U=TX(DCIf 1))
ELSE
U=TXCD(Ifl))-TXCDCIf2))
ENDXF

C CALCULATE THE POLYNOME

GT=0.0
DO 30 J=lf10 
GT=GT*U+POCJf DC If 3))

30 CONTINUE

TI=0.0
DO 40 J=llf20 
TI=TI*U+PO(Jf DC If 3))

40 CONTINUE

C OBTAIN THE JT
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JT(I)=GT*U~TI 

C OBTAIN THE G

P=P+1 
GCP)=GT 
IF CDCI» 4).EQ.0) GO TO 20
p=p+i
GCP)=-GT

20 CONTINUE

C UPDATA THE NZ
G • ' ---- ---- -----——*--- —---

NZO(1;P)=Q8USCATRC G C U P ).NZPCCUP);N20CUP))
g(i;p)=nzo(i;P)

NZ (1; M) =NZ Cl J M) +Q8UXPNB (G C15 P)". NZP CUM) 1NZOC15M))

C UPDATA THE BR

BRO ( U NL )=Q8USCATRC JTC U NL). BPCC U ND5BROC11 ML))
JT C15 NL)=BRO C1;NL)

BR C U N )=BR C15 N) +Q8UXPND C JTCUNL), BP CUM): BRO CUN))

C-
G
Gv
€
C
C
e
cc-

RETURN
END

FILE NAME UPI

THIS SUBROUTINE IS USED TO UPDATA THE INPUT 
OF THE MAIN NETWORK. ASSUME ALL OF THE 
SUBCIRCUITS HERE HAUE ONLY TWO PORTS.

SUBROUTINE UPI CN2Q«Y» N.M»NZQC»EG>EJ*E*BQ>BQC»NZ» BR)

REAL NZC3100)> BRC1100)* EGC1000)»
1 EJC1000),NZOC3100).EOC2000).BROC1100)

INTEGER P» L» Y»N*M»NZQCC2000)»BQCC1000)

BIT NZQC3100). BQC llOO)* EC 1000)

C
C

10

C

CALCULATE THE EO

p=o
DO 10 1=1.Y 
P-P+l
EO C P)=EG Cl)
IF C.NOT.CBTOLCECI)))) GO TO 10 
P=P+1 ..
E0CF)=-EGCI)
CONTINUE

UPDATA THE NZ



y 
nn

 nn 
on

 n n 
no

nn
on

no
n 

nn
NZOC1; P)-Q8USCATR( EO (15 P)VnZQC( l;P); NZOC15 P)) 
EO(l;P)=NZO(i;P)

NZ C15 M)=NZ <1;M)+Q8UXPNDC EO Cl;P),NZQCl;M)5NZOC15 M))

UPDATA THE BR

BRO(IJY)=Q8USCATR(E J (1; Y),BQC(lSY);BROC15 Y)>
ej(i;y)=bro(i;Y)

BR(1J N)=BR (1; N)+Q8UXPND(E J (1»Y),BQ(15 N)»BRO(1»N))

RETURN
END

FILE NAME LUM

THIS SUBROUTINE IS USED TO DO THE LU 
DEGOMPOSltlQN FOR MATRIX A FOR MAIN 
CIRCUIT AND SOLUE THE UECTORS Y AND X.

SUBROUTINE LUM CNZ.X*BR,B*R,N)

RONWISE 8(1100,1100)

REAL NZ(3100),X (110b)> Y( 1100),BRC1100), SUM (1100), 
1 TU t1100)*TL (1100),NZT(1100)

INTEGER RCl100), N, I, J, K, Q, QL, QQ, QU, P,DD, W

BIT B

FIND THE FIRST ELEMENT OF Y

Y(1)=BR(1)/NZC1)

CALCULATE THE FIRST RON OF U

Q=Q8SCNT(B(1,2;N-l))
NZ C 250)=NZC 2 J Q)/NZ C l)

DO LU DECOMPOSITION AND CALCULATE Y (TO 20)

DO 20 K=2,N

GENERATE THE UECTOR TU

TU(l;K“l)=0.0 
DO 30 1=1,K-i 
IF (BTOL(B(I,K))) THEN 
QU=R(I)+Q8SCNT(B(I,l;K))-l 
TUCI)=NZ(QU)
END IF 
CONTINUE

CALCULATE THE KTH COLUMN OF L(T0 40)
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DO 40 I=K»N
IF (BTOLCB(I.K))) THEM
QL=R(I)

C CALCULATE THE SUM

TL(1J K-l)=Q8UXPND(NZ(QLSK-l')* B(I»1»K-l)5 TL( 1* K-l)) 
SUM(1)=Q8SD0T(TL(1»K“1)»TU(l» K-l))

C OBTAIN THE L

QL=Q8SCNT(B(I»1;K-1))+QL 
NZ(QL)=NZ(QL)-SUM(1)
END I F

40 CONTINUE

C CALCULATE THE Y

.. QL=R(K)

C GENERATE THE UECTORTL

TLClsK 1>=QBUXPND(NZ(QL5K-1>»B(K» llK-DSTLUSK-l)) 

C CALCULATE THE SUM

SUM(1)=Q8SD0T(TL(15K-I).Y(1JK-1))
DP=Q8SCNT CB (K*1 * K- l)) +QL 

G OBTAIN THE Y

Y<K)=(BR(K)-SUM(1))/NZ(DD)

C CALCULATE THE KTH ROW OF U

IF (K.NE.N) THEN
QL=R(K)-1
DD=N-K
SUM(l;DD)-0.0 
DO 80 J=1.K-1 
IF (BTOLCBCK.J))) THEN 
QL-QL+1 v
dU-R(J)+Q8SCNT(B(J.15 K)>

C
C

80

CALCULATE THE SUM

tO( 1; DD) -QiBUXPND (NZ (QU?DD)*B C- J.K+1;DD);TU C1J DDI) . 
WHERE (B(K * K+1»DD)) SUM(1;DD)=SUM(15 DD)+TU(1»DD)*NZ(QL)
END IF
CONTINUE: ;

C
C

OBTAIN THE L)

NQU-Q8SCNT C B (K* K+.l'J.DD ) )
IZT (1 i NQU) =Q8UCMF>RS(SUMC 1; DD). B( K. K+l i DD) »NZT( 15 NQU)) IZ(QU+1:NQU>=C NZ(QU+1iNQU)-NZT(1%NQU))/NZCQU)

)■
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END IF ■
20 : CONTINUE

C ' CALCULATE THE X

X(N)=Y(N) ■ v,;:.

DO 120 K=1.N-1 

C CALCULATE THE SUM !.

' ■ L=N-K ; ■

QQ=R (L)+Q8SCNT(B (L«1J L))
tu(1jk)=Q8UxFndcnZ(qqjk>,B(l,l+i;k);tu(i;K)) 
sum(1)=q8sdot(TU(i;k).x(L+i;k))

C OBTAIN THE X

X(L)=YCL)-SUM(1)

120 CONTINUE

RETURN 
END

c ■■ :: ;-
c FILE NAME OUT

C THIS SUBROUTINE IS USED TO OUTPUT THE
C FINAL RESULTS OF MMNA PROGRAM.
C . _____

SUBROUTINE OUT (N*NS*Y>X»XS*T1)

REAL T1*X(1100)*XS(1000*10)

INTEGER N*NS*I*Y 

WRITE (6*4) Y

WRITE(G.l) (XCI+Y-1)* I=1*N-Y+1)

WRITE(6* 2) (XS(1 *J>* J=1* NS)

WRITE(6*3) T1

FORMAT (/25X,*THE FINALE RESULTS OF THE MAIN NETWORK*//
10X* 5F15.8/)

FORMAT C25X**THE FINALE RESULTS IN THE FIRST OF SUBNETWORKS*// 
20X* 4F15.8/)

FORMAT (////35X**THE TOTAL CPU TIME*//35X**T =*,F15.10/)

FORMAT (////30X*/THE NUMBER OF SUBNETWORKS IS*.I8//25X,
^**#iHH»*#*#.*«**«#*****»****j»f*.*«*#*#*»"*»»*»**«»*^/^l

RETURN 
END

1
1

2
1

3

4
1
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APPENDIX D: SIMULATION PROGRAMS IN SCALAR CODE



FILE NMAE MMNA 
THIS PROGRAM IS USED TO DO THE LARGE CIRCUIT 
ANALYSIS USING THE MMNA ALGORlTM. THE NUMBER 
OF SUBCIRCUITS IN THE CIRCUIT CAN BE FROM 1 
TO 1000. THE MAIN PROGRAM AND ALL SUBROUTINES 
ARE WRITTEN IN SCALAR UERSION.

UARIABLES!

NZ - A REAL ARRAY CONTAINING THE NONZERO 
ELEMENTS IN MATRIX A FOR MAIN 
CIRCUIT.

NZS - A REAL ARRAY CONTAINING THE NONZERO 
ELEMENTS IN MATRIX A FOR SUBCIRCUITS.

B - A BIT MASK ARRAY FOR MAIN CIRCUIT.

BS - A BIT MASK ARRAY FOR SUBCIRCUITS

BR - A REAL ARRAY CONTAINING THE RIGHT HAND 
SIDE OF THE EQUATION AX=B FOR MAIN 
CIRCUIT.

BRS - A REAL ARRAY CONTAINING THE RIGHT HAND
OF THE FIRST NONZERO ELEMENT IN EACH ROW OF 
THE MATRIX A FOR MAIN CIRCUIT.

R - A NITEGER ARRAY FOR INDICATING THE POSITIONS 
FO THE FIRST NONZERO ELEMENT IN EACH ROW OF 
THE MATRIX A FOR MAIN CIRCUIT.

RS - A INTEGER ARRAY FOR INDICATING THE
POSITIONS OF THE FIRST NONZERO ELEMENT IN 
EACH ROW OF THE MATRIX A FOR SUBCIRCUITS.

D - A INTEGER ARRAY CONTAINING THE POINTERS OF 
NONLINEAR DEUICES IN MAIN CIRCUIT.

DS - A INTEGER ARRAY CONTAINING THE POINTERS OF 
NONLINEAR DEUICES IN SUBCIRCUITS.

PO - A REAL ARRAY CONTAINING THE COEFFICIENTS OF
POLYNOMIAL FOR FUNCTIONS OF NONLINEAR DEUICES 
IN WHOLE CIRCUIT.

X - A RAEL ARRAY CONTAINING THE UARIABLES iN MAIN 
CIRCUIT.

XS - A REAL ARRAY CONTAINING THE UARIABLES IN THE 
SUBCIRCUITS.

Cl - A INTEGER ARRAY INDICATING THE COLUMN ORDER 
EXCHANGE OF THE MATRIX A FOR MAIN CIRCUIT.

CIS - A INTEGER ARRAY INDICATING THE COLUMN ORDER 
EXCHANGE OF THE MATRIX A FOR SUBCIRCUITS.

NZP - A BIT ARRAY FOR INDICATING THE POSITIONS OF 
G IN THE NZ.

NZPS - A BIT ARRAY FOR INDICATIOG THE POSITIONS OF 
G IN THE NZS.
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on
 

nn
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PROGRAM MMNA(TAPE5=INPUT * TAPE6=QUTPUT)

ROWWISE BCl100*1100), BS(10,10)

REAL NZSC1000,50),NZC3100),POC20,5),XSC1000, 10),BRC1100)*
1 BRSC1000* 10)*IOC 1000)*EJC1000)*EG(1000>,IBRC1100)*IBRSC1000*10)
1 JTSC1000* 4)*INZC31O0),INZSC1000,50),X(1100)* T1* T2,T3* T4* T5

IMTEGER I, J* K* M* MS* N* NS* NL, NLS* P* Y* BPG, BPP*
1 DC 10,4), DSC4,4)* Cl (1100)* CISC 10),
1 R(1100)*RSC10)*NZPC(20)*NZPSC(8),
1 NZQCC 20 0 0),BPC(10)* BPSC(4)*
1 BQC(1000)*BPU(1000)

BIT B,BS> EC1000)* NZPC3100)* NZPSC50)* NZQC3100)* BPC1100) * BPSCiO)* 
1 BOC1100)

INPUT THE DATA

CALL INP (IBR*IBRS*X*XS*INZ*INZS*B*BS*R*RS,D,DS,Cl*CIS*M*MS* 
1 NZP^NZPC*NZPS*NZPSC*NZQ*NZQC,E*BP*BPC*Y*
1 BPS* BPSC,BQ,BQC,NL,NLS,N,NS,PQ* BPG*BPP,BPU)

SET THE NUMBER OF ITERATION

READ(5,1) K 
FORMAT(1014)

XT 1=0.0

DO 10 L=1*K

COPY THE NZ AND NZS

DO 4 1=1*M 
NZCI)=INZ(I) 
CONTINUE

DO 3 1=1,MS 
DO 3 J=1,Y 
NZSCJ*I)=INZS(J,I) 
CONTINUE

UPDATA THE NONLINEAR DEUICES OF THE SUBNETWORK

IF (NLS.NE.O) THEN 
TT3=SEC0ND()
CALL UPNS (NZS,BRS*NZPS,NZPSC,PO*DS*XS,NS*NLS,CIS* MS* JTS* Y) 
TT4=SEC0ND()
T1=TT4-TT3
END IF

C LU DECOMPOSITION FOR SUBNETWORK



TT3=SECONDO
CALL LUS (NZS,BS,RS,NS,Y)

C CALCULATE THE EG AND EJ_

DO SO 1=1,NS 
DO SO J=l* Y 
BRS(J*I)=0.0 

SO CONTINUE

DO 30 1=1*Y
BRS(I,BPP)=X(BPU(I))

30 CONTINUE

C SOLUE THE SUBNETWORK

CALL SXY (NZS,BRS, BS,RS,NS,Y,XS)

C OBTAIN THE I WITH ZERO INPUT

DO 35 1=1,Y 
IO(I)=XS(I,BPG)

35 CONTINUE

C CALCULATE THE BRS

■■ P=0
DO 40 1=1,NS 
IF (BTOL(BPS(I))) THEN

P=P+1
DO 50 J=l,Y
BRStJ,I)=JTS(J,BPSCCP))

50 CONTINUE

- . ELSE,
DO 60 J=l*Y 
BRSCJ,I)=IBRS(J, I)

60 CONTINUE

ENDIF
40 CONTINUE

C SET THE SUBNETWORK INPUT

DO 70 1=1,Y 
BRS(I,BPP)=X(BPU(I))

70 CONTINUE

C CALCULATE THE SUBNETWORK
C ■ -T--—-——————

C^LL SXY (N?S,BRS,BS,RS,NS,Y,XS)

C OBTAIN THE EG AND EJ
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c —-——----- •
DO 90 1=1,Y
EG(I)=~IO(I)/X(BPU(I))
EJ(I)=XS(I>BPG)-IOCI)

90 CONTINUE

C COPY THE BR
C ‘ ■ --- ------------- ;

DO 95 1=1,N 
BR(I)=IBR(I)

95 CONTINUE

TT4=SEC0ND()
T2=TT4-T.T3

C UPDATA THE NONLINEAR DEUICES OF THE MAIN NETWORK
C . ——  * —---------- --  ---------- ----------------------- -

TT3=SEC0ND()
IF (NL.NE.O) THEN
CALL UPNM (NZ?BR?NZP?NZPC#BPC#BP#PO#D,X# N»NL#Cl # M) 
ENDIF

C UPDATA THE INPUT OF THE MAIN NETWORK
C . —    —-------------- ; —*-------- ——

CALL UPI (NZQ#Y,N#M#NZQC# EG#EJ# E# BQ# BQC#NZ# BR)

TT4=SEC0ND()
T3=TT4-TT3

C LU DECOMPOSITION AND SOLUE THE MAIN NETWORK
c ------- -------‘---- ----------------------------- -

TT3=SEC0ND()
CALL LUM (NZ,X#BR#B#R#N)
TT4=SEC0ND()
T4=TT4-TT3

C SUBSTITUTE TO THE SUBNETWORK
c ------------ —------ ---------------------

TT3=SEC0ND (.)
DO 100 1-1 # Y
BRS (I # BPP) =X (BPU CD)

100 CONTINUE

CALL SXY (NZS# BRS# BS# RS» NS# Y# XS) 
TT4=SEC0ND()
T5=TT4-TT3

TT1=TT1+T1+T2+T3+T4+T5

C PRINT THE RESULTS OF THIS ITERATION
C _____----—---- :--------- ------------------------ —-------- --

WRITE(6#G) L

WRITECG# 7) (XCI+Y-l),I=1#N-Y+1) 

WRITECG# 8) (XSC1» X)»1 = 1>NS) 

WRITEC6#9) T1#T2#T3#T4#T5
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FORMAT (IX.****//35X,s*THE HUMBER OF ITERATION 15//
E5X»^a-**************************************************^)

FORMAT (/30X,*THE UALUE OF UARIABLE IN THE MAIN NETWORK */✓'• 
10X»5F15i8//)
FORMATC/aOX^THE UALUE OF UARIABLE IN FIRST OF SUBNETWORKS *// 
20X.4FI5.8//)
Format (//v/aox^THE ualue of the cputime for this iterayion*//
10X.5F15.8/////) :

10 CONTINUE

T1=TT1

c OUTPUT THE FINAL RESULTS

CALL OUT (N,N5»Y,^,XS,T1)

'.-’STOP V'
end

c r'''v■ ' ■'■-■..v.'..'' -:■ ■
C , FILE NAME UPNS
C ■. • ■ ■■■■■" ■■■ ■ ■' '■ >. 'V ■-
C THIS SUBROUTINE IS USED TO DO THE UPDATA
C SUBCIRCUITS. ALL OF THE FUNCTIONS OF THE
C NONLINEAR DEUICES IN SUfiCIRCUITS ARE WRITTEN
C AS THE POLYNOMIAL OF THE UOLTAGE U.

■C' ■ ' .• i --r i: ;■ ■■■

G
1

7 - : ' 

:8'-:

9
1

SUBROUTINE UPNS (NZS.BRS,NZPS,NZPSC.PO,DS.XS,NS.NLS, CIS. 
1 Ms,UTS,Y) ^

REAL NZS(1000.50), X5(1000*10),BRS(1000.10).P0(20»5),
1 NZSO(8).GS(8),TXS(1000,10),US,GTS,JTS(1000.4)

1NTEGeR NZPSC(8).DS(4.4).CIS(10)VNS*
1 NLS.MS.P.I.J.Z*Y

■ ^IT/NZPSlSQ)

C FIND THE OLD ORDER OF XS

DO 10 1=1,NS 
DO 10 Z=l,Y ;
TXSCZ,ClS(I))sXS(Z,lT r v 

10 CONTINUE

C CALCULATE THE GS AND JS

■. -''DO.' 20 Z=1,Y
P=0 '.•.’r.: - V .■■■■;' ■■>■■■
DO 25 1=1,NLS 
IF (DS(I,4).EQ.O) THEN 
US==TXS (Z, DS C 1 ,1))
ELSE
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US=TXSCZ,DSC 1,1))-TXSCZ, DSC 1,2)) 
END IF

C CALCULATE THE POLYNOME
C ——  —-----------

GTS=0.0 
DO 30 J=l,10
GTS=GTS*US+POCJ,DSC I,3))

30 CONTINUE

C OBTAIN THE JTS
C

TIS=0.0 
DO 35 J=11 , 20 
TlS=TIS*US+POCJ, DSC 1,3)) 

35 CONTINUE

JTSC^,I)=GTS*US-TIS

C OBTAIN THE GS

P=P+i
GSCP)=GTS '
IF CDSC1,4).EGL 0) GO TO 25 
P=P+1
GSCP)=-GTS 

25 CONTINUE

C OBTAIN THE NZSO

DO 40 1=1,P 
NZSO Cl) =GS C NZPSC CD)

40 CONTINUE

C UPDATA THE NZS
c ------ -----------------------------—

P=0
DO 20 1=1? MS
IF CBTOLCNZPSCI))) THEN
P=P+1
NZS C Z,I)=NZSO CP)
ENDIF

20 CONTINUE

RETURN
END

c-----------------------------------—------------------------------------------------- ---------------------------------------- -------------—--------------------"

C
C FILE NAME LUS
C
C THIS SUBROUTINE IS USED TO DO THE LU
C DECOMPOSITION FOR THE MATRIX A OF THE
C SUBCIRCUITS,
C
C~------------------------------------ ------------------- ---------------—-------------- —

SUBROUTINE LUSCNZS,BS,RS,NS,Y) 

ROWWISE BSC 10,10)
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REAL NZS(1000*50)»SUM(1000)

INTEGER RS(10) * NS * Q* QQ* QL» QU*I* K* P* W* Z> J* Y 
BIT BS

C CALCULATE THE FIRST ROW OF U

L-' Q=1 •
DO 2 1-1=2* NS
IF (BTQLCBSC1*W))) THEN 
Q=Q+1
DO 4 Z=l*Y
NZS(Z,Q)=NZS(Z,Q)/NZS(Z,1)

4 CONTINUE
END I F

2 CONTINUE

C DO LU DECOMPOSITION (TO 10)

DO 10 K=2,NS

C CALCULATE THE KTH COLUMN OF L (TO 20)

I DO! 20 I=K.NS
IF (BTOL(BS(I.K))) THEN

C INITIAL SUM

;’L'\:;'’-V;DO'3o;z=l.Y"y
SUM(2)=0.0 

30 : CONTINUE

':'/;L-':QL=RS'CT)^l^:'^/;''.;. •
DP 40 P=1*K-1

C FIND THE INDEX OF L AMD U

IF (BTOLCBS(I.P))) THEN 
QL=QL+1 ■ L
IF (BTOL(BS(P*K))) THEN 
QU=RS(P)-1 
DO 50 KK=1*K
IF (BTOLCBSYP.KK))) QU=GU+1 

50 ' CONTINUE

C CALCULATE SUM

DO BO Z=i.Y
SUM(Z)=NZS(Z,QL)*NZS(Z,QU)+SUM(Z)

;S0'-;-'.'.-.-'.--C0NtiNUE'.:

ENDIF 
/ ENDIF

40 CONTINUE :

QL-QL+1 
DO 70 Z=l* Y

C OBTAIN THE L



NZS(Z> QL)=NZS(Z> QL)-SUM(Z) 
70 CONTINUE

END IF
20 CONTINUE

C CALCULATE THE KTH ROW OF THE U
c -------------—------- --———

IF (K.NE.NS) THEN 
DO 120 J=K+1? NS 
IF CBTOlCBSCKf J))) THEN

C INITIAL SUM
C ——----

DO 130 Z=1,Y 
SUM(Z>=0.0 

130 CONTINUE

QL=RS(K)-1 
DO 140 P=1*K~1

C FIND THE INDEX OF U AND L
C ' -——---------------  —

IF (BTOL(BS(K> P))) THEN 
QL=QL+i
IF (BTOLCBSCP,J)>) THEN

QU=RS(P)“1 
DO 150 KK=1> J
IF (BTOLCBSCP*KK))) QU=QU+1 

150 CONTINUE

C FIND THE SUM
C --------------- .

DO ISO Z=19Y
SUM(Z)=NZS(Z§ QL)*NZS(Z> QU)+SUMCZ) 

ISO CONTINUE

END IF 
END IF

140 CONTINUE

C OBTAIN THE Uc

QQ=QL 
QL=QL+1 
DO 170 KK=K> J
IF (BTOLCBSCK*KK))) QQ=QQ+1 

170 CONTINUE

DO 180 Z=l» Y 
NZS(Z? QQ)=(NZS(Z> QQ)-SUMC Z)) /NZS(Z*QL) 

180 CONTINUE
ENBIF

120 CONTINUE
ENDIF

10 CONTINUE

RETURN
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END

c -T 1 ;■■
C ^ FILE NAME SXY

v.' C ' : T ■ V
C THIS SUBROUTINE IS USED TO SOLUE THE HECTORS
C Y AND X FOR THE SUBCIRCUITS.

SUBROUTINE SXY (NZS.BRS.BS.RS*NS>Y.XS) 

ROWWISE BSCIO.10)

REAL NZS(1000.50)»XS(1000»10).YSC1000.TO).
, 1 BRSCIOOO,lQ)rSUM(lOOQ)

INTEGER RS(IO).NS.L.QQ.K.P.
• 1 Z» J.DD.Y

BIT BS

C FIND THE FIRST ELEMENT OF Y

DO 10 2=1.Y
YS(Z. 1)==BRS(Z. 1 )2NZS(Z. 1)

10 CONTINUE

C CALCULATE THE Y (TO 20)

DO 20 K=2»NS

■:;./CV'>/^''':lNlTlAL'SUf1....;v-"

DO 30 Z=1^YSUrt(Z)=o.o :
■; 30 CONTINUE \

■!/::: c*€cuLate the Sum v

.' DD=RS(K)-1 •'
DO; 40 J=1.K-1 
IF (BTOLCBSCK.J))) THEN 

. DD=DD+1

■’ DO 50 Z=l» Y
SUM(Z)=NZS(Z.DD)*YS(Z,J)+SUM(Z)

50 ■ 'CONTINUE-;”:-.::.

:,'V.END IF -■'/■
; 40 : :■ CONTINUE

■ ; C \ OBTAIN THE Y ;

DD=DD+i 
DO 20 Z=l.Y
YS(Z» K) = (BRS(ZfK)-SUM(Z))/NZS(Z.DD)

20 continue

C CALCULATE THE LAST ELEMENT OF X
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DO 60 Z=l»Y 
XS(Z* NS)=YS(Z* MS)

GO CONTINUE

C CALCULATE THE X (TO 70)

DO 70 K-l.NS-1 

C FIND THE INDEX OF L

L=NS-K
V QQ=RS(L)-1

DO 80 P=i»L
IF (BTOL(BS(L*P>)) QQ=QO+l 

80 CONTINUE

C INITIAL THE SUM

DO 91) Z=1.Y 
SUM(Z)=0.0 

90 CONTINUE

C CALCULATE THE SUM

DO 100 P=L+1*NS
IF (BTOLCBS(L.P))) THEN
QQ=QQ+1

DO 110 Z=l*Y
SUM(Z)=NZS(Z»QQ)*XS(Z* P)+SUM(Z)

110 CONTINUE

END IF
100, CONTINUE

G OBTAIN THE X

DO 120 Z=l>Y
XS(Z*L)=YS(Z*L)-SUM(Z)

120 CONTINUE

70 CONTINUE

RETURN
END ■ ___________ ____

C "
C FILE NAME UPNM
C
C THIS SUBROUTINE IS USED TO DO THE UPDATA
C MAIN NETWORK FOR NONLINEAR DEUICES. ALL OF
C FUNCTIONS OF NONLINEAR DEUICES IN MAIN
C CIRCUIT ARE WRITTEN AS THE POLYNOMIAL OF
C UOLTAGE U.
C ____ ____________ ■ _ _ ■

SUBROUTINE UPNM (NZ*BR>NZP»NZPC*BPC»BP*PO>D»X*N*NL*CI*M) 

REAL NZ(3100)»X(lld0)»BR(1100)*F,O(2O*5)*G(SlO)*



oo

1 TX(1100).TI.U.JT(IO).GT.NZOCEO)
INTEGER D(10.4),Cl(1100).N.

1 NL.P.I.J.M,NZPCC20).BPCC10)

e FIND THE OLD ORDER OF X

DO 10 1=1.N
TXCCICI))=X(I)

10 CONTINUE

G ; CALCULAE THE G AND JT (TO 20)

O'.p=0 ■' -
DO 20 1=1.NL 

' IF CD Cl. 4) .EQ.O) THEN 
0:.v'\0. ■ -O U=TX(D(I.l))

ELSE
U=TX(D(I.1))-TXCDCI»2))

■ ' ENDIF ■:

; C CALCULATE THE POLYNOME

GT=0.0 
DO 30 J=l»10 
GT=GT*U+P0(J,DCl.3))

;.;:".30':.:o:-,:; continue

OBTAIN THE JT

T1=0.0 ■
DO 35 J=11»20 
TI=TI*U+POCJ.DC 1.3))
CONTINUE: s

JTCI)=GT*U-TI

C OBTAIN THE G

pSp+1 o’.'.
G(P)=GT
IF (D(I.4).EQ.O) GO TO 20 

TO P=P+1 ' :
. G(P)=-GT 0-0 ■

20 CONTINUE

C OBTAIN THE NZO

DO 40 1=1.P 
NZOCI)=G(NZPC(I))

40 CONTINUE

'■'.!;--CT.- UPDATA THE NZ

C
C

35
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P=0 ; \ "v,:— • r.-'
DO 50 1=1> M 
IF fBT0L(N2P(T))) THEN ^ p=p+i ■ v
NZCI)=NZO(P)
ENDIF

50 CONTINUE

C UPDATA THE BR

■: P=o
DO GO I=l>N 
IF (BTOLCBPCI))) THEN 

■ ' : P=P+1 ■ .
BR(I)-JT(BPC(P))
ENDIF

GO CONTINUE

RETURN
END •

c v ; ■ •
C * FILE NAME UPI
c : ■■ : : , ■:, . v
C THIS SUBROUTINE IS USED TO UPDATA THE INPUT
C OF THE MAIN CIRCUIT* ASSUME ALL OF THE
C SUBCIRCUITS HERE HAUE ONLY TWO PORTS.
C , - . ■■■■•; '

SUBROUTINE UPI (N2Q* Y> N# M> N2QC? EG, E J * E# BQ >BQCrNZ* BR)

REAL NZC3100)>BRtl 100)fEG(1000),
1 EJC1000)> NZO(20dO)»EO(2000)rBRO(1000)

INTEGER NZQCC2000)VBQC(1000),
1 P,I,Y,NrM

BIT NZQ(3100)»BQC1100)»E(1000)

C CALCULATE THE EO

P=0
DO 10 1=1,Y 

' P=P+1 '
EOCP)=EGCI)
IF (.NOT.CBTOL(ECI)))) GO TO 10 
P=P+1
E0(P)~EG( I)

10 CONTINUE

C OBTAIN THE NZO

DO 20 1=1 > P 
NZO(I) =EO(NZQC(I))

20 CONTINUE

P=0
DO 30 1=1 >M

C UPDATA THE NZ



IF (BTQLCNZQCI))) THEN 
P=P+1 "
NZ(I)=NZd(P)
END IF v'-yy,'vv,

30 CONTINUE

C OBTAIN THE BRO

DO 40 I-l»Y 
BRO( I)=EJ(BQC(I)) 

40 CONTINUE

£ UPDATA THE BR

' P-0 .
DO 50 1=1.N
IF (BTOL(BQ(I))) THEN
P=P+1
BR(I)=BRD(P)
END IF

50 CONTINUE

RETURN
END

C-
C
C
C
££

v£
Cc-

7FILE NAME LUM

THIS SUBROUTINE IS USED TO DO THE LU 
DECOMPOSITION FOR MATRIX A FOR MAIN 
CIRCUIT AND SOLUE THE UECTORS Y AND X.

SUBROUTINE LUM(NZ.X.BR»B»R.N)
ROWWISE B(llOO.llOO)
REAL NZ(3100)»X(1100)> Y11100)»BR(1100)»SUM» 

7l TU<1100),TL(1100)

INTEGER RdlOO)»N* I * J» K» QL» QU-> Q»
-V:; ; 1-:'. QQSP, DD» W

BIT B
£ FIND THE FIRST ELEMENT OF^Y

Y(1)=BR(1VNZ(1)
> -/' yPAL^^ Uy, / : /vV'

Q=1
DO 10 W=2»N 
IF (BTOLCB(1 * 14))) THEN 

7 Q-Q+l7TNZCQ)=NZ(Q)/N2(1)
END IF v-7

10 : CONTINUE

C DO LU DECOMPOSITION AND CALCULATE X Y (T0_20)
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DO SO K=2.N

C GENERATER THE UECTOR TU

DO 30 1=1,K-l 
IF (BTOLCB(I,K))) then 
QU=R(I)-l 
DO 35 P=1,K
IF (BTOL(Bd.P))) QU=QU+1 

35 CONTINUE
TUCI)=NZ(QU)
ELSE
TU(I)=0.0 
END IF

30 CONTINUE

C CALCULATE THE KTH COLUMN OF L (TO 40)

DO 40 I=K,N
IF (BTOL(B(I,K))) THEN
QL=R(I)-1

C CALCULATE THE SUM

SUM=0.0 
DO 50 P=1»K-1 
IF (BTOLCBCI»P))) THEN 
QL=QL+1
IF (BTOL(B(P»K))) SUM=N2(QL)*TU(P)+SUM 
END IF

50 CONTINUE

C OBTAIN THE L

QL=QL+1
NZ(QL)=NZ(QL)-SUM 
END IF

40 CONTINUE

C CALCULATE THE Y

SUM=0.0
DD=R(K)-1
DO 60 J=l> K-l
IF (BTOL(B(K,J))) THEN
DD=DD+1
SUM=NZ(DD)*Y(J)+SUM 
END IF

BO CONTINUE

Y(K)=(BR(K)-SUM)/NZ(DD+1)

C GENERATE THE UECTOR TL

QL=R(K)-1
DO 70 I=1,K-1
IF (BTOL(B(K»I))) THEN
QL-QL+1
TL(I)=NZ(QL)
ELSE



TL(I)=0.0 
END IF

70 CONTINUE

€ — CALCULATE THE KTH ROW OF U (TO 80)

IF (K.NE.N) THEN 
DO 80 J=K+1»N 
IF (BTOLCBOOJ))> THEN

C CALCULATE THE SUM

sUMtO.o 
DO 90 1=1.K-l 
IF (BTOL(B(I»J))) THEN 
QU=R(I)-l 
DO 100 P-l» J
IF (BTOL(B(I.P))) QU=QU+1

100 CONTINUE

SUM-NZ(QU)*TL(I)+SUM 
' ' ENDIF :

30 CONTINUE;

C OBTAIN THE U

V qu=QL -
DO 110 P=K* J
IF CBTOL(B(K*P))) QU=QU+1

110 CONTINUE

NZ< QU)-(NZ (QU ) -SUM) OHZ (QL+1)

; ENDIF
80 CONTINUE

ENDIF
20 CONTINUE

c ' -x -

■ X(N)=Y(N)

DO 120 K-l.N-1 

C FIND THE INDEX OF U

L=N-K 
QQ=R(L)~1 

* DO'130 P=l» L
IF CBTOL(B(L*P))) QQ=QQ+1

130 CONTINUE

C calculate THE SUM

; SUM=0.0
DO 140 P=L+lvN 
IF (BTOL(B(L,P))) THEN 
QQ-QQ+1
SUM=NZ(QQ)*X(P)+SUM 
ENDIF



nn
nn

nn
nn

 h- n n
140 CONTINUE

OBTAIN THE X

X(L)-Y(L)-SUM
CONTINUE
RETURNEND

FILE NAME OUT
THIS SUBROUTINE IS USED TO OUTPUT THE FINAL RESULTS OF MMNA PROGRAM.

SUBROUTINE OUT CN»NS>Y.X.XS.Tl)
REAL T1»X(1100)»XS(1000*10)
INTEGER N*NS»I» Y 
WRITE (G*4) Y
WRITE!6?1) CX(I+Y-l)»1=1* N-Y+l)
WRITEC6* 2) (XS(1.J).»J=1»NS)
WRITE(G,3) T1

1 FORMAT (/25X>/THE FINALE RESULTS OF THE MAIN NETWORK///
1 10X.5F15.8//)

2 FORMAT (/25X.ZTHE FINALE RESULTS IN THE FIRST OF SUBNETWORKS///
1 20X* 4F15.8//)

3 FORMAT (////35X*/THE TOTAL CPU TIMEZ//35X,ZT =Z»F18.10/)
4 FORMAT (////30X,/THE NUMBER OF SUBNETWORKS IS/rI8//25X»

1 /*»*******»*»******»»*************«****************////)
RETURN
END



APPENDIX E: THE PROGRAM FOR GENERATING 
INPUT DATA SETS

the circuit being simulated.
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FILE NAME IMP

THIS SUBROUTINE IS USED TO GENERATE THE DATA OF THE 
EXAMPLE CIRCUIT. LET THE SYMBOLICA PROCESSING AND THE 
ROW COLUMN EXCHANGING HAUE BEEN DONE HERE.

SUBROUTINE INP (IBR,IBRS,X,XS,INZ.INZS,B,BS.R.RS,D.DS,Cl,CIS.
1 M.MS,NZP,NZPC,NZPS,NZPSC,N2G,NZQC,E,BP,BPC,Y,BPS.BPSC,
1 BQ.BQC.NL.NLS.N.NS.PO.BPG.BPP.BPU)

ROWWISE BC1100,1100),BS(10»10)

REAL INZC3100).INZSCiOOO.Sd),IBR(liOO).IBRSC1000,lO).X(HOO).
1 XS(1000.10),P0(20» 5)

INTEGER N,NS,NL»NLS,M»MS,Y.BPG,BPP.RC1100)»RS(10)»D(10,4)»
1 DS(4,4),Cl(1100),CISC 10),NZPC(20),NZPSC(8)»NZQC(2000),BPC*10), 
1 BQC(1000)»BPU(1000),BPSC(4)»BB(10)»RR(10)

BIT B,BS» NZP(3100)»NZQ(3100)»
1 E(1000).NZPS(50).BQ(1100),BPS(10),BP(1100)

READCS,!) Y 
1 FORMAT(1014)

REAB(5,1) (Cl(I+Y )»1=1,9)
READCS,1) (RR(I),I=i»9)
READ(5,1) (RS(I),1=1.8)

V - M=3*Y+35 
MS=27 N=Y+9 

■ NS=8 
NL=2 .NLS=2

: . DO S 1=1,N DO 5 :J=1,N ■B(I+U)=B*0*
5 ; CONTINUE

DO 6 1=1, Y ■■■:.
; B(I,I)=B*1*B(I» Y+8)=B^1>!

B(N,I)=B^1^G CONTINUE
v DO 7 1=1,9 READCS, 1) CBB(K),K=1,9)
DO 7 J=l,9 '7 IF (BBCJ).NE. 0) B( I+Y, J+Y) =B^ls«s 
DO 8 1=1,8READCS,!) (BB(K),K=1,8)
DO 8 J=l,88 IF (BB(J).NE.O) BS(I,J)=B/l?i
DO 9 1=1.Y 
R(I)=2*I-1 INZ(2*I-1)=-1.0



9
INZ(2*I)=0.0INZ(2*Y+I+31)-l. Q

2

READ(5,2) (INZ(2*Y+I),1=1 READ(5,2) (INZ(3*Y+1+31), 
READ(5,2) CiNZSCl, I ) , 1-1, FORMAT(5F10.5)

10

DO 10 1=1,2READ(5,1) (D(I,J),J-l,4) 
READ(5,1) (DS(1,J),J=l,4) 
CONTINUE

11
DO 11 1=1,M
NZP(i)=B*0?*
NZQ(I)=B*0*

12
DO 12 1=1,NBP(I)=B*0*
BQ<I)=B^0^

13
DO 13 1=1,8CIS(I)=iBPS(I)=B20*

14
DO 14 1-1> 27NZPS(I)=B*0*

15

DO 15 1=1, YOKI)=1+9
NZQC(I)=INZQ(2*I)=B*12BPU(I)=Y+8
BQ(I)=B^1^
BQC(I)=IE(I)=B*0*

16

DO 16 1=1,4
NZPC(I)=INZPSC(1)=I
BPC(I)=IBPSC(I)=I
NZP(2*Y+4)=B*1*
NZP(2*Y+5)^B*1*
NZP(2*Y+28)-B^i^ NZP(2*Y+30T=B^*
NZPSC3)=B*1*NZPS(4-J=B*1*.NZPS(G)=B*B*NZP5(7)=B*1*
BP(Y+3)=B;*1*BP(Y^8)=B^1^
BPS(3)=B*T*BPS(4)=B*T;*

17

DO 17 1=1,Y
DO 17 J=l,8
XBRSCI,J)=0.0
XS(I,J)=0.0

18
DO 18 1=1, N
IBR( 1 >=0.0
X(I)=0.0

4)



BPG=8BPP=2
IBR(Y+1)=15.0
IBR(Y+2)=0.7IBR(N)=-1.0E~9
IBRS(1,1)=15.0
XSd, 1 )=15.0 XSd»2)=5.0 
XSd»3)=7.0 XSd. 4)=4.0
DO 19 1=1.Y DO 20 J=l»2720 INZSd.J)=INZSd, J) XSd,2)=XS(1.2) 
XSd,l)=XSd,l) XS(I.3)=XS(1.3) XSd,4)=XSd,4) 
IBRSC1.1)=IBRS(1.1)19 CONTINUE
DO 21 1=1.921 R(I+Y)=2*Y+RR(I)
XCY+l)=15.0 X(Y+3)=6.0 X(Y+2)=14.3 
X(Y+8)=5.G
DO 22 1=1,20 
DO 22 J=1.222 PO(I»J)=0.0
PGd0,l)=0.001 P0<19,l)=0.001 
P0(20»1)=0.0005 PO(2,2)=2.205 PO(l1,2)=0.245 
PO(10,3)=0» 0002 P0(19»3)=0.0002 
P0(20,3)=^0.000005
RETURNEND

500
1 2 3 5 6 7 8 4 3
1 2 4 7 11 15 21 28 32
1 2 3 G 9 13 18 22
1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 1 0 0 1 0 O 0
0 1 1 1 0 1 0 0 0
0 1 0 1 1 1 0 0 0
1 0 1 1 0 1 0 1 1
1 0 1 0 1 1 1 1 1
0 0 ■ -i: 0 0 1 0 1 1
0 0 i 0 O' 1 0 1 1
1 0 0 0 0 0 0 0
0 1.;:. ■ 0 0 0 0 0 0
0 1 i 0 0 1 0 0
0 1 0 1 0 0 1 0
1 0 1 0 1 1 0 0
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1110 0 1
0 1 (3 1 0 1
o i :L 1 0 1
1.0 1.0 -1

-1.0 -0.01 -0
0.01 -0.01 -1
0.10002 -0.1 -0
0.00001 -0.00001 1
0.0 0.99 0

-1.0
-0.00001 -0.5 0

1.0 1.0 0
0.0 0.0 -1
1.0 0.0 -0

-1.0 0.99 -0
-1.0 0.00002 -0

0.01 1.0
1 3 1 1
2 3 :3 1
3 4 ;3 1
2 4 ;2 1

o
0
1

0.0 0.0
0.1101 0.0
0.0 -0.00001

-0.00001 0.01
1.0 1.0
0.0 0.0

-1.0
0.0 -1.0
0.Q2 -0.02

-0.00001 0.02001
0.00201 0.5

-0.00001 0.5

i
i
l

0
1
0
5
0
0

00101
0
0
02
00001
00001
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