
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

3-1-1985

Some Prototype Examples for Expert Systems v.1
K. S. Fu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Fu, K. S., "Some Prototype Examples for Expert Systems v.1" (1985). Department of Electrical and Computer Engineering Technical
Reports. Paper 534.
https://docs.lib.purdue.edu/ecetr/534

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F534&utm_medium=PDF&utm_campaign=PDFCoverPages

J

Some Prototype Examples
for Expert Systems

edited by
K.S. Fu
Volume I

TR-EE 85-1
March 1985

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

1

Table of Contents

Foreward

VOLUME 1

Part I — Manufacturing

Chapter 1
Production Scheduling: A Sub-Aggregate Level Expert Scheduling Module
J: G Mateyt........... 1

Chapter 2
Expert System for Scheduling
D. Ben-Arieh..19

Chapter3
Expert Systems in Quality Control
•K S. Chert106

Chapter 4
Deep Drawing Feasibility Expert System
G. i^Ae/...;.. 167

Chapter 5
An Expert System For Machine Selection of FMS
•5.Lan...J;:::uv.:.,.....:V...................... 287

Chapter 6
PROLOG EXPERT: A Simple PROLOG based Expert System Framework for
Synthesis, the BAGGER Problem as An Example
T. Sarjakoski870

VOLUME 2

Part II»- Robotics

Chapter 7 .
MR1: An Expert System for Configuration of Modular Robots
D. Dutta and S. Joshi...............282

Chapter 8
RP — An Expert System for Robot Programming
H. Zhang...............817

Chapter 9

-ii-

Spatial Planner, A Rule-Based System in Robotics
Y. L.Gu... v.... ,..

Part III- Vision

Chapter 10
An Application of Expert System Approach in Detection of Boundaries
Between Textures
K. B. Eorti and C. Chatterjee ___ ___________________________ _____867

Chapter 11
Stripe Pattern Interpreter and Stacker (SPIS): Expert System
H. S. Yang..^77

Part IV — Management

Chapter 12
An Expert System For New Product Evaluation in Small Companies
Z . Xu a n d Q. Xue,..........496

Chapter 13
Expert System for Inventory Models
K. Y. Tam and H. R. Rao.............525

VOLUME 3

Part V — Structural Engineering

Chapter 14
Expert System for Damage Assessment of Existing Structures
X J. Zhang............i.568

Part VI—Automated Programming

Chapter 15
An Experiment in Parallel Programming Environment:
The Expert Systems Approach
K: Y. Wang.....591

Part VII ~ Others

-Ill-

Chapter 16
A Prototype for an Expert System for Morphological Classification
of Prehistoric American Pottery
C. Tsatsoulis and K. S.Fu.....625

Chapter 17
Expert System for Contract Bridge Bidding
L. Y. Chang and C. F. Yu..................665

Chapter 18
Air Flight Scheduler Expert System
A. J. Vayda and W. Y. Kim.....698

Chapter 19
Diet Expert System in Hospital
L. Chang and S. /. Lin ,...784

FORWARD

This report consists of the nineteen term project reports for
the graduate-level course EE695G ” Expert Systems and
Knowledge Engipeering”, which was offered for the fall semester
of 1984 in the School of Electrical Engineering. The purpose of
the term project is to provide each student an opportunity of
designing and implementing a prototype expert system. The
application area of each of these expert systems was selected by
the studeiit(s) working on the projects. This report is published
for the purpose of documenting these results for future reference
by the students of the above-mentioned course and, possibly,
other workers in expert systems.

The nineteen reports are grouped into seven parts based on
their application domains. Part 1 - Manufacturing consists of six
reports, and Part II - Robotics contains three. Two reports in
each of Part III - Vision and Part IV - Management, and one in
each of Part V - Structural Engineering and Part VI - Automatic
Programming. The last part, Part VII - Others, consists of four
reports with different applications.

I would like to thank Mr. Edward K. Wong for his valuable
help in putting the materials together for this report.

K. S. Fu
Instructor, EE695G
February 1985
Lafayette, Indiana

Manufacturing

Chapter 1

Production Scheduling: A Sub-Aggregate Level Expert Scheduling Module

J. G. Maley

1 -

Production Scheduling:

A Sub-Aggregate Level Expert Scheduling .Module

James G. Maley

1. Introduction

1. 1 Problem Statement

The problem to be solved within the context of EE695G is the
development of an expert system which schedules a production
environment according to a user specified set of performance
measures. The■ system under consideration will not focus on the
real-time scheduling of parts through this production environment
but rather take the more aggregate view of a shift work schedule.
Encompassed by the scheduler in question are: the integrated per
formance measures* the system status changes on a shift level*
the input parameters or required due dates* and capacity for
large-scale implementation. This system will be a generic
representation of a manufacturing system now in use by the AMP
Corporation with specific test cases using their system.

1. 2 Problem Motivation

Witfhin the production systems research area* the exact solu
tion to the machine scheduling problem has eluded researchers for

a number of decades. Because of the difficulty of the problem,
numerous heuristic methodologies have been implemented in actual
production environments. These methods often require humans to
solve parts of the problems. In past years this would suffice
due to the fapt that a feasible schedule was better than no
schedule at all and a human scheduler could develop such a
schedule. Also, the human scheduler would become an expert at
determining the interelationships which would provide 'good '
schedules. Today, however, the competitive initiative of foreign
manufacturers has required a new look at schedulingi If 'better'

schedules are possible, then production can proceed at a greater
level of efficiency which could result in a more competitive cor
porate production system. Thus the motivation for developing a
production scheduler that more closely approaches the optimal
solution than current methods.

1 3 Research Overview

The expert system scheduler developed as a part of the
requirements for EE695G will be incorporated into the larger
framework described herein. To rephrase this, the work described
in this paper is only a part of the following more general model.
Figure 1 represents the present concepts for the configuration of
the system. The three inputs, orders, local data, and events;
are factors which change the status of the production facility
and thus affect the operation of the scheduler. These inputs have
the magnitude of frequency change specified. Note that the

- 3 -

'events- is a continuously changing or real-time varying input to
the system. At the level of scheduling under consideration in
this research# the 'events' data will only be '.incorporated into
the schedule at the next shift. Thus a different or an extended
system will be required to incorporate the data as it becomes
available. 7 ...

Performance
Learning Module

MeasuresOrders

□(weekly)

Local data
System
Model

Expert Scheduler

Events

0(coht.)
Outside

User
Interface

Schedule

Output

Figure 1. System Conceptualization

The expert scheduler, the focus of this research, is the core or
the heart of the complete system. With the ability to accept
various levels of input, the scheduler is a flexible piece of the
overall system. The implemented model currently takes only
information on weekly orders to schedule the machines involved in
the AMP manufacturing facility. The primary reason for this

4

limited implementation is the lack of a resident expert on the
entire system. Dr. James J. So lberg was the expert knowledge
source for the current scheduling process. His expertese stems
from his direct contact with the manufacturing facilities at AMP.
He was very knowledgeable on the more aggregate scheduling pro
cess as it actually occurs at the various facilities.

Also included in the system shown in figure 1 are the system
modeler - perhaps a simulation* the user modifiable performance
measurement criteria* and some type of learning module. The
aspect of this system of highest research interest is the learn
ing module. At this early stage of work* very few ideas of, its
structure have been generated. Hopefully* the work involved in
knowledge representation and reasoning will provide a basis for
further work in the learning area. The schedule output is self-
explanatory - it is just the resulting schedule from the system.
The last major portion of the system is the user interface. This
comes into play at both the performance criteria definitions and
the schedule output. The former because the user may decide that
different information is more important than during the previous
week. The latter because the user may Want to know why the system
developed the schedule that it did.

Sustem Organization

2. 1 Broad Overview

Appendix 1 shows the flow diagram of the scheduling system
implemented for EE695g. Because of the nature of scheduling! a
large number of computations are required. As such! complete use
of LISP! PROLOG/ or a production system language (0PS5/ YAPS/...)
would not be efficient. Therefore/ an integrated system utiliz
ing the control structure of UNIX was decided upon as the proper
system. An initial entry of the needed data was entered into a
standard data file. This file was processed by a production sys
tem implemented in 0PS5 to modify the records according to stan
dard rules obtained from the "expert". The resulting data was
transformed using a UNIX sort utility into the actual scheduling
routine used by AMP's experts. This routine is a modified if-then
set of rules programmed in FORTRAN-77 because of FORTRAN-77's
quicker computation time as compared to LISP. Finally/ the after
scheduling one week's worth of jobs/ the resulting schedule is
outputted to a data file. If at some point new entries are added
to the system/ then the loop would repeat itself as shown in the
d iagram. V

* *
6 -

2. 2 Knowledge Base

As was referred to above* production systems were chosen as
the knowledge representation scheme for this expert system. The
jp—THEN rules of production systems have almost become standards
of expert system implementations. Success of projects such as R1
(or XCQN), DENDRAL, PROSPECTOR, and PUFF have shown that produc
tion systems are a practical approach to take in developing a
working expert system. Advantages in production system's such as
modularity and uniformity also assisted in the determination of
using this method of representing the expert knowledge captured
in this work.

? 3 Inference Mechanism

With the two distinct part of the scheduling expert system

- 7 -

come two separate 'inference mechanisms. The initial prbd'uction
system is implemented in 0PS5 developed at Carnegie^Mel1 on
University and uses its inference scheme. This scheme is based
upon a recency ordering of the productions. When a production is
fired/ it is tagged with a "time" which is used for conflict
resolution. A complete description of the inference mechanism
can be found in the "0PS5 User's Manual. "

The section of the expert system programmed in FOPTRAN-77 is
basically a heirarchical structure with user defined parameters.
The parameters permit the user to determine the depth of a search
through the data to be applied to the rules. The rules themr
selves are applieti in sequential order to the data set from the
0PS5 section of the system.

3. Knowledae Acquisition

3.1 Where the Knowledge Came From

The knowledge acquisition stage of the development of this
scheduler expert system was performed during the semester with an
"expert" about the AMP manufacturing system. Dr. James J. Sol-
berg/ Professor in Industrial Engineering/ has visited AMP sites
and is well versed upon the subject of scheduling in the AMP pro
duction cells. Because of the financial impossibility of travel
ing to an AMP location in person/ Dr. Solberg volunteered t?o be
the resident expert. Please remember that he is familiar with

- 8-

both the system and the scheduling literature.

3. 3 Observations and Conclusions,

After numerous discussions with the expert* thd following
scenario was determined to be the usual process for scheduling
production runs at the AMP facility:

When an order arrives at the manufacturing supervisor's
office* a number of specific items are closely checked before the
order is sent to the production scheduler. The cost of the order
(directly related to the profit of the order)* the size of the
order, the company who is ordering* and whether or not the com
pany is asking for a special rush job (or a favor) are each taken
into consideration. After which* the order's due date is modified
so as to change the priority of the job. An example being* if
the order is worth more than $10*000 then lessen the due date by
2 days. The reasoning behind this philosophy is that important
jobs cannot afford to be late.

Once the due dates have been modified* scheduling takes
place. The main thrust of the scheduling is to maximize the
machine utilizations. Such a philosophy has developed due to the
corporate policy of evaluating the various plants on their
overall machine productivity. A second objective of the schedul
ing process is to minimize the lateness of jobs. In other words*
try to get each job done on time. This is carried out by deter
mining the slack in the system. Here slack refers to the due
date minus the scheduled finish date. The production scheduler
looks through an ordered list of the modified due dates and tries
to pick the Jobs which will result in the least change over time
from the now scheduled on the system. This process permits the
change overs to be minimized and thus let the machines run longer
to raise their average utilization. The expertise involved in the
scheduling process is in the determination in how far to search
for the best job to schedule next.

3. 3 Rules

The:rules that were ascertained from the AMP scheduling
expert are listed below:

IF the company is IBM or HP or DEC

THEN the order has preference and reduce the due date by 5 days

IF the company is CDC or Apple

THEN the order has slight preference and reduce the due date by
3

IF the company is Honeywell

THEN the order has no preference and increase the due date by 3
days

IF the company is not (IBM* HP* DEC* CDC* Apple* or Honeywell)

THEN the order is left as is

IF the company is granted "a special favor"

THEN the order has its due date reduced by 3 days

IF the order is worth less than $10*000

THEN it's a small order* don't worry about it* increase the due
date by 10 days

- 9 -

10 -

IF the order is worth between $10*000 and $100*000

THEN it's a good order and schedule as is

IF the order is worth more than $100*000

THEN it's a priority order* reduce the due date by 3 days

IF the company is IBM* HP* CDC* or Honeywell and the number to
produce is between 1000 and 5000 parts

THEN split the order into two equal sized parts* one with the
current due data and one with the due date increased by 5
days

IF the company is IBM* HP* CDC* or Honeywell and the number to
produce is over 5000 parts

THEN split the order into three parts* two half the size of the
first and increase the smaller orders' due dates by 5 and
iO days respectively

4. Experimental Results

4. 1 Capabilities

The expert scheduler created for EE695g is capable of han-

'■■■• ■/; ' - , 11 -

dling up to 100 jobs with little difficulty. In order to
increase the system's ability beyond this point the array struc
ture of the FORTRAN-77 section of the program must be modified;
Currently the memory requirements of the FORTRAN-77 code are the
limiting factors. A number of different examples have been run
using the current configuration of the expert system; all with
positive results. An initial goal that was set forth for the
project was to develop a user friendly interface. ''Unfortunately*’
time constraints did not permit this stage of development to be
undertaken.

4. 2 Demonstrative Examples

Shown in figure 3 is an example input record for the due-
date modification section of the expert system (implemented in
0PS5); The required information includes a job order number* the
part number being Ordered* the name of the company* the cost of
the order* the size of the order* the current due date and
whether or not the job is a special job (a favor) or not. By
referring to the rules listed above* the set of data shown in the
figure provide all the necessary information to modify the
current due dates. Using these two records* shown in figure 3*
along with eight others for a total of ten records* an example
problem was formed and executed.

Figure 4 shows the output of the 0PS5 due date modification
routine after it has been sorted by the modified due date. This
data is used as the input data stream for the FORTRAN-77 segment

702448 (order number)
66654 (part number)
IBM (company name)
20000 (order cost)
1000 (number to produce)
20 (due date)
20 'V (due date)
no (is this job a favor?)
702449 (order number)
66245 (part number)
CDC (company name)
30000 (order cost)
5000 (number to produce)
20 (due date)
20/ (due date)
yes- (is this job a favor?)

Figure 3. 0PS5 Input Data Example

of the expert system. Note in figure 4 that the order numbers
have been changed. This change takes place when a large order is
split into smaller orders. , ... a new order number is created. The
key aspect of this figure is the modified due date ordering of
the records.

Figure 5 is the final output file for the system. It shows
not only the orders and part numbers, but the machines that the
parts were scheduled upon, the start and finish times of the
parts as well as the resulting set-up time by scheduling the
parts on the machines. Note that the order of the jobs in figure
5 does not correspond directly with the order of the jobs in fig
ure 4 This shows that the system did modify the order that the
jobs were processed so that the machines were subject to as lit
tle set-up changes as possible.

- 13 -

Order # Part # Quantity Mod
Due Date

Due Date Cost Company
702449a 66245 2500 14 20 30000 CDC
702448a 66654 500 15 20 20000 IBM
702452 66624 2000 15 20 25000 DEC
702451a 66624 3500 17 25 25000 HP
702449b 66245 1250 19 25 30000 CDC
702453a 208022 500 20 20 2000 IBM
702448b 66654 500 20 25 20000 IBM
702450a 207076 3500 20 25 25000 HP
702457a 207076 2000 20 25 80000 HP
702451b 66624 1750 22 30 25000 HP
702449c 66245 1250 24 30 30000 CDC
702453b 208022 500 25 25 2000 IBM
702456a 66244 1500 25 28 75000 CDC '
702450b 207076 1750 25 30 25000 HP
702454a 66077 1250 25 30 22000 IBM
702457b 207076 2000 25 30 80000
702451c 66624 1750 27 35 25000 HP
702455a 66624 1250 30 30 35000 HONEYWELL
702456b 66244 1500 30 33 75000 CDC
702450c 207076 1750 30 35 25000 HP ■ '
702454b 66077 1250 30 35 22000 IBM
702455b 66624 1250 35 35 35000 HONEYWELL

Figure 4- Sorted Input for FORTRAN-77

4.3 Performance Evaluation

The computational aspects of the scheduling expert system
are not addressed in this report because of insufficient research
time to perform such a task. Evaluation of the expert knowledge
of the system! however! is now discussed. In order to evaluate
the performance of an expert system/ one would follow the same
procedure that one would use to evaluate a human expert. The
tests possible are empirical and statistical tests. The empiri
cal tests involve using a set of examples and observing how well
the system performs on these examples. The statistical tests
require a large number of examples to be executed by the expert

•Order # Part #
702449a 66245
702448a 66654
702452 66624
702451a 66624
702449b 66245
702453a 208022
702448b 66654
702450a 207076
702453b 208022
702449c 66245
702451c 66624
702457a 207076
702451b 66624
702456a 66244
702454a 66077
702450b 207076
702457b 207076
702455a 66624
702450c 207076
702456b 66244
702454b 66077
702455b

Quantity Mod Due Date Mach Set-up
A A Start End

2500 336 480
500 360 480

2000 360 480
3500 408 600
1250 456 600
500 480 480
500 480 600

3500 480 600
500 600 600
1250 576 720
1750 648 840
2000 480 600
1750 528 720
1500 600 672
1250 600 720
1750 600 720
2000 600 720
1250 720 720
1750 720 840
1500 720 792
1250 720 840
1250 840 840

0 34 1 " 9
0 14 72-- 9
0 29 73" 9
0 44 4 9
0 21 5 9
0 19 6 9

14 19 0
19 . 89 "■2: 0
19 31 6 0
21 43 5 0
29 68 3 0
31 110 6 11
34 89 1 9
43 73 5' ' : 0
44 90 4 9
68 182 3 11
73 228 757:. 16
89 151 0
89 139 2 . ■ 0
90 136 4 16
110 156 6 9
136 157 4 7 9

Figure 5. System Output

system. Then, using the data gathered, the system is statist!
cally evaluated. ' - ■

Due to lack of real problems at this point in time, no
extensive testing of the scheduling expert system was performed.
A small empirical testing of the system did show that on the lim
ited problems, the expert system performed as expected by creat-
ihg prod'Jct schedules that tried to maximize the machine utiliza
tion subject meeting due dates.

■ ■ - ■ 15- -

5. Conclusion and Discussion

The expert scheduler developed for EE695g is definitely a
prototype for an actual system that could be implemented in the
actual production environment at the AMP Corporation. The system
must be enlarged to include more rules and larger working memory
to handle the problems used in real production settings. With
this enlargement of capacity# the expert system will be able to
compete with the current human experts now scheduling the produc
tion system. From the results of this prototype* an expert sys
tem has been shown to have the ability to handle the expertise of
human schedulers. This ability in itself is reason enough to
press on with the expansion of the current expert system to
upgrade it to the implementation level.

6. List of References

Baker. Kenneth R. , Introduction to Sequencing mi Schg d^jin g, New
York: John Wi'ley and Sons. 1974.

Conway, Richard W. . William L. Maxwell. and Louis W.^ Miller.
Theoru of Seheduling. Reading* Mass: Addison-Wesley. 19o7.

Forgy, Charles L. , "OPS5 User 's Manual." Department of Computer
Science. Carnegie-Mel 1 on University, 1981.

Hayes-Roth. Frederick. Donald A. Waterman, and Douglas B. Lenat
eds.. Building Expert Sustems Reading, Mass: Addison-Wesley.

Solberg, James J., Personal Interview, Purdue University. Fall
1984.-

Whinston, Patrick Henry, Artificial Intelligence, Reading. Mass
Addison-Wesley. 1984.

1983.

•'Stamping Performance Data Output, '* AMP " >mputer
Scheduling Data, 1984.

Wilensky, Robert, LISPcraft
1984.

New York: W. W. Norton and Company.

- 17 -

Ap p endix 1

Flow Chart

{FORTRAN-77}

Any New Records

Modify Due Dates

By Expert Rules

Schedule Jobs

By Expert Rules

Input Orders

Raw Data

Sort Records

By Due Date

18

Start

Current Machine

Update Current
Machine

Week Scheduled
Yest

Exit and Stop

No

Schedilie on Yes__ Update Current
Current Machine i ' vdiiu uuy uu;

Machine

Yes, redfine

Chapter 2

Expert System for Scheduling

D. Ben-Arieh

' 19 -

EXP E R T SYSTEM F OR S CHE DHL I N G

David Ben - Arieh

1. THE EXPERT SYSTEM AND THE PROBLEM DOMAIN

The expert system in this project has to control a
production facility that feeds an assembly station. The
complete system consists of autonomous cells (CMS). and
an assembly station. and the expert system task is to
supervise this complex system.

1.1 A DESCRIPTION OF THE SYSTEM

The production system consists of computerized
manufacturing cells, that can perform a large variety of
processes with minimal set-up time. Parts are intro
duced into the system randomly or by demand and after
being processed the parts are fed to an automated assem
bly station. Parts can choose almost any machine to
perform the various processes in order to reach the
assembly station on time. The routing problem in the
production area is therefor a problem of dynamic rout
ing. in a job-shop environment with multi-purpose
machines. This problem is a combinatorial problem which
does not have s closed analytical solution.

■V

Because of the difficulty in controlling the system
with "conventional" methods. an expert system is sug
gested in this project. The expert system will use
knowledge about the current state of the shop# capabil
ity of every machine and the end product structure
{assembly tree and processing times). in order to decide
upon the best behavior of the system <route the parts,
assemble the product, etc).

The control problem of the production facility has
a similar nature to the general decision process. This
process involves the following steps which will be per
formed by the expert system:

1 Identifying the problem.

2. Establishing feasible alternative actions.

3 Evaluating the outcomes of the alternative actions.

4. Selecting the "best" action.

5. Implementing the chosen alternative,

t ? WHY EXPERT SVSEH

The problem of scheduling a job shop is a very com
plex one. as will be discussed later. Algorithms for
solving this problem analytically using a computer do
not exist, or consume too much time to be practical.

The next step in order to give a good solution was
an interactive scheduling system that combines the coe-
puter-computation■power* with the reasoning of a human
scheduler. Not much research has been done on such sym
biotic systems* but still some results can be shown
CGodin 19782.
It has been found that an interactive scheduler can get

a better performance of the system than an off line
scheduler with a fixed policy * even with a simple not
sophisticated policy. Another result showed that A
scheduler with some “look ahead" capability perform
better than a scheduler without predictive tools. Suresh
in his research CSuresh 19743* built a system that used
simulation to help the scheduler in predicting the -
effect of his decision on the system.
His system has the following structure:

Figure 1. The structure of an interactive scheduler

ORDERS

GPSS
SCHEDULING
MODEL

REPORT
*. GENERATOR

yr GOOD >■
SCHEDULE?DATA

GENERATOR

SCHEDULER

Other similar experiments can be seen in Ferguson <1969>
and Conner (1972). Although many of the experiments
not interested in the scheduling performance# but more
in learning about the decision mater# the results gath
ered can be combined into the conclusion that interac
tive intelligent scheduler with predictive tools# is
superior to any practical solution available.

the next step then will naturally lead to a compu
terized intelligent scheduler that has the knowledge and
understanding of qualitative measures of the schedule as
the human has# with the predictive and computational
capability of the computer. A part of this idea is
implemented in this project
It seems adequate to end this part with Simon and

Newel1 CSimon# Newell 19583. enthusiasm (overenthusiasm
?) about a new era that begins in which computers will
deal with judgemental and intuitive tasks.

2. SCHEDULINO - REVIEW

Scheduling is defined by Baker CBaker 19743as"the
allocation- of resources over time to perform a collec
tion of tasks69. Frost such a general definition it is
clear that th» scheduling domain contains a wide variety
of problems.

In order to narrow down the domain a problem clas
sification is required* and the first approach is based
upon the data variability* and data time dependency
{King and Spachis 19803.

i. Data variability: The problem is deterministic if
all of the data involved is deterministic. The
scheduling problem is stochastic if any of the data
is stochastic.

ii. Data time dependency: The problem is static if none
of the initial data changes over time* otherwise
the problem is dynamic.

This classification is depicted in figure 2.

y : > >

SCHEDULING
PROBLEMS

DYNAMICDYNAMICSTATICSTATIC
STOCHASTICSTOCHASTIC DETERMINISTICDETERMINISTIC

QUEUEINGVP-OPTIMAL NP-^-OPTIMAL If HEURISTICS HEURISTICS

;\ '' : v ^

Combinatorial Relaxed Prob.
search. incomplete Search

Branch & Bound. ■ . ^ , .' 1 .'Dispatching Rules
Integer Prog.
Dynamic Prog.

Limited Dispatching Markov Chains.
Network of Queues.
Mean Value Analysis
Non-Linear Opt.

Rules

Figure 2.
classification

of
scheduling

problems
and

solution methods

Another classification of scheduling problems is
according to three factors CDay and Hottenstein 1970J:

i. Number of components comprising a job (single com
ponent jobs* or multi-component jobs).

ii. Production resources possessed by the shop
(machines/ labor and machines).

iii. Jobs arrival for processing (all jobs are available
initially* or jobs arrive continuously).

The last factor define the problem to be static or
dynamic problem. The number of components factor deter
mine the the nature of the job route. The production
resources make the problem multi stage* or one machine
problem. This classification is depicted in figure 3.

Figure 3. classification of scheduling problems

(STATIC CASE) (DYNAMIC CASE)

HYBRID
SHOP

PARALLEL
ROUTING

PARALLEL
ROUTING

SEQUENCING
PROBLEMS

MULTI-STAGE
problem

ONE MACHINE
PROBLEM

SERIES ROUtlNG
(PLOW SHOP)

SERIES ROUTING
(FLOW SHOP)

SINGLE CHANNEL
QUEUEING PROBLEM

MiN PROBLEMS
(FIXED BATCH SIZE)

multi-stage
QUEUEING PROBLEM

CONTINUOUS ARRIVALS
(STOCHASTIC PROCESS)

2.1 SOLUTION METHODS

2.1.1 STATIC DETERMINISTIC PROBLEMS

An optimal solutions with an efficient polynomial
algorithms exist only for a limited set of static prob

lems: .

1. Singlemachine scheduling with a finite number of
: JObS.

2. Two machines problems with flow shop structure or
one operation on each machine.

3. M-mfichines problems with severe limitations (two
jobs# or identical machines with a unit process
time# etc).

For more complicated static problems the approaches com*-*
monly used are:

1. Combinatorial approach. This approach is based on
the changing of one permutation to another.

2. Mathematical programming. This includes linear pro
gramming# dynamic* convex# and quadratic program
ming# integer programming# branch and bound# net
works of flow and the like.

3. Heuristic approach (approximate solutions). This
approach when carried to completion guarantee an
acceptable solution if one exists, or the knowledge

- 28 -

that none exits.
Some of the methods used are:

i. Exact solutions to relaxed problems.

ii. Incomplete search.

iii. Ad hoc decision rules (dispatching rules).

2. 1, 2 DYNAMIC £C,HEftULiNQ

In the deterministic case* usually scheduling a
system (especially a job-shop system) is done with
dispatching rules that decide in real time which job to
choose from a (queue. However this approach do not con
sider multiple routes for parts* or assembly precedence
relations.

In stochastic problems the common approach is by
using queueing theory and networks of queues or opera
tional analysis of queueing models CDenning and Buzen
19783. The typical assumptions for this class of prob

lems are:

1. The system can be modeled by a stationary stochas

tic process.

2. Jobs are statistically independent.

3. Jobs steps from device to device follow a Markov

;chain. ::

- 29 -

4. The system is in stochastic equilibrium.

5. Exponential service times.

6. First come first serve queue discipline.
Because of the stochastic nature of the parameters

in dynamic scheduling* Monte-Carlo simulation has been
the principle tool of analysis. In this case some of the
scheduling solutions use dispatching rules.

In general the solutions to this class of problems
are impeded severly by the assumptions that prohibit
dependence between the system state and the policy in

use* there is no blocking allowed and no precedence con**
straints that a solution can consider.

3. CHS CONTROL PROMS

The control of a CMS can be analyzed from various
points of view. Most of the control mechanises decom
pose the CMS into hierarchical levels as mentioned in
EBuzacott 19763. In this paper the system is composed

of three main levels:

1. Prerelease planning* deciding which jobs are to be

manufactured by the system.

2. Input control, determining the sequence and timing

of the release of jobs to the system.

3. Operational control, controlling the movements of
parts between the machines and other process-time

decisions.

At each level of control the physical configuration
and the decisions made at a higher levels set con
straints on the alternative actions. It is also stated
that in each level it is possible to generate a better
solution if the 'rule' is more informed. It can also be
shornn that using information in the input control level
gives a better efficiency of the system than if rules

are only used in the prerelease level.

It is important to notice that the resource limita
tions causes the basic need for information to consider
solution. If for example there is no space limitation

within the CMS then the decision on release of jobs can
be made without using any information from the system at
all. Since usually the system is limited in space and
every machine has a small buffer. a better solution can
be generated using the detailed level of information ”
the operational control level.

A j»eiht Of view different from the hierarchical
control strategy can be seen in the the paper of Kusiak
(1984). In this paper the control of a CMS is performed
by a management system. and the operational control is
mainly interested in part scheduling. In this article
the various levels in the hierarchy differ in the time
horizon of the plans, and the lower level is the part
scheduling. The solution to this problem determines the
solutions to the tools. AOVs. pallets and the other
resources scheduling.

j. Kinternia and S. ©ershwiO C243 developed a dif
ferent structure of the control system of a CMS .In
their work the tasks thatare performed at each level
are not mentioned. but the lowest level deals with
dispatching the parts. In this work the hierarchical
structure is implicitly assumed but has no influence

upon the scheduling algorithm.

A different approach is found in CMcLean et.all. In
this research the hierarchical control of the CMS con

- 32 — ■ ';
tains the following levels:

i. Facility control: The highest level which contains

the design process and the management syStoat

<inventory# accounting etc).

2. Shop control: This level is responsible for the
reel tine management of resources distribution# and

jobs schedules in the shop.

3. Cell control: The sequencing of batches of jobs

through the workstations# and supervision of sup
port services such as calibration and material ban-*

: dling.

4. Workstation control: coordination between the
activities in a workstation floor equipment (robot*

WC machine# storage buffer etc).

5. Equipment control: controls a particular piece of

equipment on the shop floor.

■3.1 SCHEDULING OF ACMS

In an attempt to find an analytic solution to the
CMS routing problem# there is a need to examine the most
similar family of scheduling problems : the job shop

scheduling CBellmanl.

'jn the job-shop scheduling problem there are n
jobs# ahd m machines. Any job can be processed on each

of the a machines only once* and the order of the
machines required to process each job i» is represented
by a nxm matrix with Ti as its ith row where
Ti=(iql* iq2». . iqm).
The time to process each job on each machine Hq* defines
an nxm matrix with Pi as its ith row* where Pi*q is the
processing time of job i on machine Mq.

The sequencing problem is a static problem that
decides the order of all jobs on each machine in oreder
to optimize an objective function* given the ordering
matrix and processing time matrix for n jobs and m
machines. The order of all jobs on machine Mq is
expressed by Sq.

The assumptions that are taken in static job shop
scheduling problems are:

1. All h job sets are available in the beginning.

2. No processing of any operation can be done by more
than one machine.

3. Any operation starting to be processed cannot be

interrupted.

4. There are no priority orders within jobs and each
job has the same importance.

5. There is no limit on in-process inventory. Every

6.

job can wait

Each job can

until the -former operation is done

be processed by each machine only

once.

7. All m machines are available. Breakdowns or repair
of any machine does not occur during the planning

period.

8. The machines are independent of each other.

9. processing time of each operation are given and are
constant regardless of the order of processing.

It is clear that assumptions 1.4.5. 6. 7. 8 are not
valid in this case and violate the combined assembly and
production model. This conclusions leads towards dif
ferent solution methods, than the methods used in static:

job shop scheduling problems.

^ b CONTROL METHQOS. FQE—

In addition to the classical scheduling techniques

a large class of control algorithms uses close networks

of queues. This method uses theory developed by Jackson
<1963) and Gordon and Newell <1967) models the system as
a network of queues and parts that come out of one queue
enter another one. The first direct application of
queueing theory to FMS,s is due to Solberg <1978). 1"
this model there are the assumptions of: equilibrium

behavior, exponential service times, and infinite queue
space in the system. This assumptions makes the model to
have good agreement with those performance measures
obtained from similar systems. Some of the other works
that uses this theory are Stecfce's doctoral work CStecke
19813 that dealt with FMS detailed parts scheduling and
a research by Buzen CBuzen. 19733 that showed ways of
solving networks of queues.

Another model for FMS was suggested by Buza—
cott CBuzacott 19803. in which probabilities ^ij r
create transition matrix to route a part from class r

from machine i to j. In this work process times and
interarrival times are exponentially distributed. Some
of the conclusions of the work are:

1. in FMS in order to have the best performance. jobs
*

should have diverse routes available.

2. For jobs with same flexibility in the sequence of
operations it is better not to fix this sequence at
the pro—production planning level.

3. Common storage is superior to local storage because
of control needs. Local storage should be used
only if there is close control over the release of
jobs to prevent blocking.
A similar work by Suardo C19793 uses queues net

work. This work assumes FIFO discipline in the queues,

exponential service times and infinite buffer size in
the system (no blocking). This work does not give a
closed form solution but computationally it is solvable.
The model is stated as a non linear programming with
linear constraints and convex objective. The problem
converges to linear programming when the system

approaches saturation.

Another approach to FMS scheduling is
developed by Hilderbrant <1980) and is called mean value
analysis. In this work the writer assumes FIFO discip
line in the queues and steady state behavior. The
model tries to minimize completion time of the produc
tion target under constraints of machines failures.

4. AI APPROACH TQ THE CONTROL. PROBLEM

Some researchers distinguish four phases in the
developmentof computerized manufacturing systems CHat-
vany 19833:

1. The first phase was that of direct computer control
of groups of machine tools.

2. The second phase was that of flexible manufacturing
systems equipped with automatic workpiece transport
and changing devices* tool Changers.

3. The third step has been defined as that of computer
integrated manufacturing and consists of systems
that integrate the design* process planning and
production control to some extent.

4. The fourth and final phase is that of intelligent
flianufacturing systems that have the capability to
solve problems without explicit algorithm avail
able.

This approach emphasize the crucial role of Al
in the manufacturing environment because the unstruc
tured nature of the problems in this area.

Another work EBullers 19803 looked at the con-*
trol needs in the manufacturing environment. In this
areathere are three main levels of activities: the

strategic level* the tactical level and the operational
level. It seems that the most demanding level is the
operational level where problems are introduced dynami

cally and need to he solved as fast as possible. In this

wort the main task of an AX system is problem solving
both in static and dynamic time domains. In the static
time domain some of the necessary steps are: primitive
problem procedure invocation which are procedure calls
to the database that solve the problem. Some of the
problems that this approach can solve are for example:
Are there any parts of type B in the system?

Another mode of the system is procedure invo
cation of a unique axiomatic procedure. In this case a
unique procedure is invoked to reduce the goal problem
into a set of primitive problems. An example for such a
problem is to find the first operation for part A for
example. A more difficult step to take is 'procedure
invocation of a non-unique axiomatic procedure'. In this
case the system treats problems that require selection
of one of many procedures with the same name to reduce

the goal problem to a set of primitive problems. An
example to such a problem is: What operation is tab*

done next on part A?

The hardest problems to be solved involve
'procedure invocation of multiple* possibly non unique
axiomatic procedures'. A problem of this type is: On

what machine should part A be scheduled for the next
operation if the part needs a machine with the shortest
processing time.
Solving the problems in a dynamic time domain is more

difficult since the status of the system is changed with

a i ^PERT SYSTEM: REVIEW

Expert aystern is a tool that belong to the
artificial-intelligence field*/ and its objective is to
solve problems that are difficult or impossible to solve
numerically .Expert systems are problem solving com
puter programs that can reach a level of performance
comparable to that of a human expert in some specialized

problem domain.

Expert systems differ from regular application
computer programs in the internal Structure of the pro
gram: Application programs are basically composed of tWb

elements:

I. Specialize problem solving knowledge.

II Specific data of the problem.
On the other hand expert systems are composed of

three parts:

I. Knowledge base. A part that contains the general
.''"''■'knowledge of the problem in the application domain.

II. Global database. This part contains the facts known

or inferred about a specific case. This is the

working database.

III. The control mechanism (inference procedure). This
pari contains the set of functions that control the

41

interaction with the users# and update the current
State of the knowledge about the case in hand. The
control system also decides which rule to apply
next in order to solve the problem# and how to
search for a solution.

4.1.1 REPRESENTATION OF KNOWLEDGE

This topic is a crucial element in the expert sys
tem implementation. The representation of the knowledge
is a commitment to a vocabulary# data structures and
programs that allow the knowledge to be acquired and
used. ,

There are three basic requirements on
representation of knowledge in expert systems
CBuchanan#Dudal:

I. Extendability: The data structures and the programs
must be flexible enough to allow extension to the
knowledge base without forcing substantial revi
sion,. 7

II. Simplicity: The data structures must be conceptu
ally simple and uniform to achieve flexibility and
ease pf use# analysis display etc.

III. Explicitness: Represent the items of knowledge
explicitly to get easy debugging# inspection and
understanding of the knowledge available at each

' - 42 -

step of the solution.

In order to achieve the above goals three
types of representation framework are used in expert

systems:

I. Rule base system {production system) CDavis and

King3.

II. Frame based system (frames# semantic networks#

. scripts).

III. Logic based system (first order predicate logic).

_ 4. 1.2 IHE CONTROL P.ROCglH/Rgg.

Ir» the control level there are several methods that

are used in expert systems ENau 19833.

I. Propagation of constraints. In this problem-solving
technique# the set of possible solutions becomes
further and further constrained by rules or opera-

. tors; ■■■-

II. Data drives control (forward system). In this case
'■ are applied whenever their left hand side

condition is satisfied.

III. GoSl driven control (backward system). In this way
^ pf control# only rules that are applicable to some

particular goal are applied. In this way the soly-

tion starts with the known goal and try to reach
the initial conditions that are available in the

.: system.

IV. Mixed strategies. In this way the system looks fpr
a path that connects the goal with the initial
state/ by progressing from both ends of the prob
lem.' '

V. Problem reduction. This technique converts the
problem to an AND/OR tree* and the system then
needs an AND/OR search for a solution. Several
reduction steps can take place recursively in order
to simplify the problem further.

VI. ©enerate and test. In this case the system gen
erates states of the search space* and tests each
in turn until it finds one satisfying the goal con
dition;

4.1.3- THE EXPERT SYSTEM FOR SHOP FLOOR CONTROL

In the scheduling domain* the expert system tries
to imitate the shop floor experienced worker* that knows
from his experience how the machines and jobs interact*
and route the incoming parts upon his judgement. A good
experienced worker can find it difficult to explain*
justify and quantify his decisions. This fact makes it
very difficult to summarize this experience into an

expert system.

An interesting example for an expert system

that schedules a job-shop environment is ISIS CFox
1982# 19833. This system uses an heuristic search
approach in a constraint environment to achieve its
objective. This system which is written in SRL. (a
knowledge representation language)* schedules orders
that arrive to Westinghouse Electric Corporation Turbine
Component Plant. The objective is to meet due dates
while satisfying the constraints in the plant. The con
straints are divided into three main groups: In group
one there are "organizational SJoals" like in process
inventory# resources level# production level and shop
stability (in global terms). The second group contains
physical constraints (ability of machines etc) # and in
group three this system has the precedence relations and
resource requirements. The scheduling decisions are made
on the basis of current and future costs (lose of a cus'-?
tomer if a job is late)# and profits. The scheduling
then is a constraint directed search. taking into
account conflicts# importance of constraints and
interaction between constraints. The system has a multi

layer structure.

'■'■-■'."'■^■■'.'/'■■Another work that considers expert system for
production control is found in Nof's work ENof 19833.

4. 1. 4 ClagsificaiLl-gB of the expert system

Expert systems can be classified according to
the tasks they perform CStefik 19823* or the level Of
complexity that the problem has. This expert system
main task is planning* but it also supply monitoring
capability to the system (tool life* machine failure..).
The key problems that systems with these tasks have are:

I. Problems can be very large and complicated* and the
consequences of actions are not well understood.

II. Many details to take care of.

III. Interaction between plans for different subgoals.
This is one reason for the complexity of the sys
tem.

IV. If the plan is to be carried out by multiple
actors* coordination can become difficult. In the
routing case coordination is required between
machines* material handling devices* load-unload
stations* bar-code readers* etc.

V. The monitoring must be credible and the system must
avoid false alarms.

The specific problem that this expert system
must cope with has the following properties:

I. A 'real time' solution is required to the routing
problem# independent from the status of the system
(how complicated or 'bad' things are..).

II. Time varying data.

III. Large solution space. This property is reduced by
the problem reduction technique and the special

search method used.

IV. Evaluation for partial solutions. It is desired
that the system will have evaluation function for
partial solutions in order to prune undesirable
solutions. In this case the evaluation function is
a heuristic function that evaluate the solution by
the waiting time of the assembly station, and the
in process inventory in the system.

f“<n,t>-100 W<t>+SQj<t>
The expected idle time of the assembly sys

tem# caused by the shortage of part n.

Gi(t) = The buffer size at time t# in machine

■■ i. ■ . ■

Since this function is heuristic# we may find
better functions that have a better 'resolution' or
separation between good and bad partial solutions.

V. Interacting subproblems. This is the most severe
problem in achieving an optimal solution to the

routing problem. An example to interacting subprob—
lems can be found in the NOAH system CStefik 19821.
The example can be described by the following fig

ure: '.

Figure 4. example for interacting subproblems

Paint the celling and paint the ladder.

Level 3
(alter conflict resolution.)

Get Paint

Get Paint

Get Paint

Get Paint

Get ladder.

Get ladder. Apply paint to ceiling.

Apf>ly paint to ceiling.

Apply paint to ceiling.

Apply paint to ladder.

Paint the ladder.

Paint the ceiling.

Iri the context of parts routing# the system
routes every part separately# without being aware of
later routes that can interfere with the current one.
For example the route of part A does not consider the
route of part B (because it will take place after that
of part A)V but part B will block one of the machines

that part A needs.

42 PROLOG AND EXPERT SYSTEMS

PROLOG if a computer language whoso name stands for
PROgramming in LOGic. This language was initiated in

France at the university of Marseilles* by Alain Col-

merauer and others. This version of PROLOG was improved
by David Warren in the University of Edinburgh. who
created a PROLOG interpreter for the DEC-10 computer

CHayes and Michie 19833.

If we consider steps in the development of "AI** .
languages the first such a work was implemented by
Hewitt in PLAh&JER in 1971. and later on this language
was the basic model for such works. Simpler versions
were Imp1evented by Sussman. Winograd and Charniak in
MicrbPLANNER. by Rulifson in GA4 and later on in Coh-
niver (Sussman in 1972). However by 1972 these languages
became known for being inefficient and hard to control,

and so by 1975 the idea of such languages died in United
States. The only ■’language that was used was LISP that
was developed in the fiftys as a general language. A*
that time PROLOG was created in Europe, and it seemed
remarkably like PLANNER. however this language has
attracted the user community and seem to be successful.

In V work by McDermott he describe the advantages
and shortcoming of PROLOG CMcDermott 19803 :

Advantages ojP Sfi.QLjBS

1 It has a powerful pattern matching mechanism
(better than in PLANNER .GA4 or Conniver).

2. Data structures are very easily created according
to the knowledge of interest. The pattern matching
works the same on all kinds of terms.

3. The language is very efficient* not as compact as
LISP but just as fast.

4. PROLOG supplies certain AI oriented features such
as pattern matching and an assertional data base.

5. PROLOG- is easier to learn and implement than LISP.
Disadvantages, of PROLOG

1. The notion that PROLOG uses programming in logic is
not true.

2. The unification process used in PROLOG is in most
implementations not a real full unification (logi
cally it is even incorrect).

3. It is claimed that PROLOG do not use "side effects’*
which is not really true.

In another research effort by Warren and
Pereira in 1977* the writers compared PROLOG with LISP.
The findings were that PROLOG uses a simpler syntax than
LISP (it is more forgiving to syntax "errors")* and it
ran about 1. 1 to 2.6 times faster than LISP. From space
point of view PROLOG was at least two times better than
LISP. Other properties of PROLOG are better readabil

ity* size of code and complexity (degree of nesting).

A more detailed survey compared PROLOG with INTER-
LISP and FORTRAN CMizoguchi 19833. This research com
pared four expert systems written in the three
languages. The expert systems were APLICOT (PROLOG?*
EXPERT (FORTRAN). EMYCIN (Inter-Lisp) and AD IPS (Inter-
LISP). All the systems were used for a mission of fault
diagnosis in a reactor cooling system. The results show
that the PROLOG code was 5 times shorter than the
INTER-LISP and 10 times shorter than the FORTRAN, while
the response time was similar in all three systems.

Another example for a successful expert system
written in PROLOG is a system developed in Lockheed for
tactical data fusion CRauch et.al 19823. This system
gets as input high data rates from sophisticated mili
tary sensor system and outputs decisions about the mili
tary situation.

4. 3 Knowledge Based Simulation

The concept of using the knowledge embedded in a
knowledge based system in order to achieve a very
detailed simulation is new and not much has been done iVt

the area. One implementation is ROSS CKlahr and Faught
19803 which is used to create a very large scale simula
tion of a military air battles. This work was written in
a language called Director which has properties like

pattern matching and IF—THEN rule structure (very simi
lar to PROLOG). This system has about 75 behavioral
rules* 10 types of entities and it has been run with up
to 250 individual entities.

Another example that uses rule base system mas
written on a PROLOG basis (T—PROLOG). This system teas
developed in order to demonstrate the combination of
simulation with operative problem solving available
through the backtracking mechanism of PROLOG EFuto and
Szeredi 19841. This system was used to run simple simu
lations that required some conditions to become true at
the end of the simulation. Since during the simulation
there was no information about the conditions the simu
lation used to advance blindly and then backtrack if the
conditions were false.

5 THE IMPLEMENTATION

It is clear that scheduling a production with
assembly process is a very complex problem* especially
if a real time solution is expected. It is desired that
the algorithm should be centralized in order to be
powerful knowledgeable and fast enough* and it should be
adaptive in order to face all possible situations in the
system.

The inputs to the production system are 14 com
ponents that are to be machined. Nine of the components
are aimed towards assembly (al* a2* a3* bl* bS* b3* c* d* e)*
and five components are just using the CMS for machining
purposes (dummy! to dummyS). Each component i has ki
processes to take* and each process can be performed on
one of li machines from the set of five machines in the
shop. A component can be processed more than once on
the same machine* and the process times are Ti» j
(i*»l. . ki* j»l. . li) given in the database. .

The control system main task is to route the parts
dynamically according to the system state* part require

ments and the assembly state.

51 ASSUMPTIONS

I. The assembly times are not negligible in comparison
with the production times. This assumption force

the production system to consider the feedback from
the assembly; other wise the production should con
sider only the precedence of the parts.

II. Parts in queues do not have any priority rule# and
are processed in FIFO order.

III. The production system is balanced in the sense that
the average processing time of the various alterna
tives is similar# and by chosing the route it is
possible to control the arrival time of the fin
ished component to the assembly station. If some of
the parts are always late# there is no much need to
dynamically control the system.

6. THE EXPERT SYSTEH STRUCTURE

The expert system is meant to introduce the context
(or the environmental knowledge) into the decision mak
ing process. The objective of the proposed system is to

utilize all the data available in a computerized
manufacturing cell* create a good control mechanism to
supervise the system and generate real time answers to
problems arise during the system run time. The system
basically is structured as shown below:

Figure 5. system structure

DYNAMIC
DATA BASE

STATIC
DATA BASE

PROCEDURAL
KNOWLEDGE

SIMULATION
DRIVER

BEHAVIORAL
KNOWLEDGE

The control system interacts with the process controll
ers* gathers data from the shop floor and decide simple

decisions that reflects the automatic nature of the sys
tem. This system also consists of "algorithmic
knowledge" and a simulation-driver.

Basically the expert system is in a production sys
tem form. A system of such type usually consists of
three main parts:

1. Global database

2. Production roles.

3. Control (interpreter)
This gives the system the following advantages:

1. Modularity. It is easy to add rules* change them or
delete part of the rules.

2. Uniformity in structure. All parts of the system
are expressed in IF—THEN form.

3. Easy to understand.
The main disadvantage of the system is its inefficiency.
It requires a lot of search to find the rules and pro
cess them.

6.1 KNOWLEDGE REPRESENTATION

In this system two types of knowledge exists: 6
production knowledge (rules)/ and procedural knowledge
(which will be presented later on). The representation
of the production type of knowledge is done in predicate
form/ using PROLOG. In PROLOG the knowledge in a form of
clauses of first order predicate logic have three basic
forms:

1. Facts. This type of clause is of the form
p(a# b. '

assembly(wheel/ Cquantity(al#3)# quantity(a2#1>3).
part_i>rocess(al/Cdrill. mill3/bore93).

2. Goals. In PROLOG this type of clause is of the form
: -GOAL.
Example :

move_a_part (Machine/Process/Tool).

3. Procedures. This type of knowledge has the form
A B/C/E.

The 'z '..-..represent AND condition# and the 'i ' represent OR condit

An example
simulate :-check_conditions/

updatea*current_timez
perf orm_event.

Although the PROLOG language claims to use first order

■ - 57 -
predicate logic# there are several crucial differences
between the two. The simple clauses in PROLOG can be
thought of as first order implications. P : - G# means G
implies P. However the unification in PROLOG does not
follow the rules of first order logic because PROLOG
allows f(s#f> to match with f(y#g<y))« and so bind x to
g<x> without noticing the circularity.

6. 2

This system has two phases of acquisition of
knowledge:

1. Initial knowledge acquisition. This step was taken
when the system was built# and the knowledge about
the desired behavior was embedded as a PROLOG
predicates CIF-THEN rules).

2. Improvement phase. After the system was built
several trial runs were made# and more knowledge
about the system behavior was retrieved. This
knowledge was added to the knowledge base.

As an example we can compare the performance of the
assembly unit before the improvement and after. In this
case after running the system# it was observed that
parts in the production area do not consider similar

parts that have been arrived to the assembly# and the
production parts still use higher priority routes
(shorter routes). Several more rules were introduced as

- 58 -

a result/ and an improved behavior teas observed. Com
parison between the performance of the two systems can
be seen in figure* . Although the utilization of the
assembly station was only slightly improved# a major
reduction of queue sizes resulted from this change.

' - 59 -

Figure &. comparison of system performance before and
after improvement.

BEFORE IMPROVEMENT
67 71 77 84 102 110 119 123 153 162

ENDPRODUCT

67 73 97 105 124 131 149]

WHEEL
FRONTFRAME

AXLE

ENDPRODUCT

AFTER IMPROVEMENT

- 60 -

(---coyi+tviue oC')

153 162 170 180 187 204 212 221 225

204 210 217 225

6.3 THE DATA BASE

The data base is the part of the expert system
which stores the system states* the properties of the
system components* and interacts with the system. This
part does not include the knowledge base part. The data
base for the system is composed of a static data base*
and a dynamic one. The static data base contains infor
mation about the processes required* the part structure*
the machines available and their capabilities. The
dynamic data base contains data about queues in the sys
tem* parts' current process* the time a part is required
and the assembly unit states.

The data base stores the information in predi
cates form* that is available in PROLOG.

EXAMPLE QE BAM 1IE23S IM DAJA gAS£

/*• PART CODE NUMBER part_type(code* part type) •*/
part_type< 1* al >.
part_typeCSi a2>.

/* PROCESS-MACHINE TABLE (PROCESS. EMACHINES LIST!). */

pro_machine(l» Cl* 23).
pro_machine(2» C3* 4* 53).

/* PART-PROCESS TABLE (PART* C LIST OF PROCESSES 1). */

part_pro<ai» Ci» 8» 93).
part_j»ro(a2. C7i3» 123>.

/♦PART-PROCESS-MACHINE-TIMETABLE */
/# p__tCPART NUM. Cprocess(PROC. NIOT. Ctime(MACHINE. TIME). . 3)3) */

part_time(al» Cprocessd. Ctimed. 4)# time(2/ 6)1)#
procMs(8/ Cti*i#(3i 7>» ti«ie(4»9)» 10) J)»
process<9, Ctime<2. 4), time(3, 6). time<3.8)3)3).

/* LIST OF THE ASSEMBLY TREE */

assembly(li'heel# tquantity(al» i)» quantity (a2» 2). quantity <a3» 3)3).
assembly (FrontFrame. Cquantity(bl. 1). quantity (b2. 1). quantity (b3. 1)3)

/•* QUEUES/ STATE : queue (MACH. NO. C q_t ime < PART« TIME)». . 3)
Time is the (queue+process) time. It is the time a new
part has to wait For process.

queue< i# Cq_time(ai# 9). q_time(d. 5)3 >.

queue(2. C3>.

/* THE CURRENT PROCESS AND MACHINE: (Part,Process#Machine) */

current_process<ai»9. l).
current jirocess Ca2* 7» 3).

6. 3. 1 INFORMATION RETftlgVMr.

During run time eF the system. the decisions and
hypotheses are made based upon the system state at that

time. In order to have the desired information thi* sys
tem utilizes the query capability of the PROLOG
language. The query process is based upon the predicate
form of the PROLOG language and imitate the required
predicate with a variable name for the required data
item. This implies that the predicate form of the data
base must be known in order to retrieve any desired

item.
example

Data item in the database:
current_j>rocess (al» 9* 1).

Query:
current„j>roce*s(X. 9» Y).

Answer:
X » ai
Y * 1

6.4 THE PRODUCT IQN_RULES

This part contains the knowledge of the system Cits
expertise). There are three components of knowledge in
this system: The first one consults with the data base
and the system behavior knowledge and decides upon the
system response to basic changes in its states. The
behavioral knowledge of the system is represented in a
combination of predicate logic and production rules*
which is given by the PROLOG language.

Examples for the rules are:
IF a part finishes a process
THEN move the part to the next machine*

supply the machine with the first part in queue
update the queues.

IF part arrives.
THEN find its first process*

route it to a machine (found by the algorithm)*
add the part to the appropriate queue.

IF a part is removed from the queue.
THEN find the last part in the queue

delete the part from the dynamic data base:

The representation of those conditions in PROLOG is:

part arr ival (Part) : - f ind_f irst_j>rocess (Part# M* A)» ! #

- 65 -

(bigjnumber (3)* A < B)*
add_to.jiueue<Part» M* A)»
create_current_proces5<Part*M)»
try_5Chedule__end_ofijjrocessCPart» M), !

move._a„pirt<rt* Part) :- f ind_next_step (Part. X).
not_last<X)»
f ind_jnext_process(Part» NewM. A)«
check_Schedule(Part* NewM* A>«
remove_from_queue<M)»
schedule_next_j>art (M)* !.

m As it is seen from the example the objective of
this part is to supply the system with the automatic
nature it has. This part takes care of the part move
ments* activation Of the various components of the sys
tem* and the bookeeping required in the model.

The rules in this part can be divided into two main

groups:

1. Finding to finding rules. These rules relate to
events that occur in the system as the antecedent*
and the hypothesis as the consequence. In this sys
tem the hypotheses are stated in action form* they
are the actions that are assumed to be the right

answers to the findings discovered.

66

IF cunent_ti(ii«(A)i
st0p_fciflie<8>«
A < B.

THEN #nd<jDf_simulation„time(C)t
A<C.

2. Hypothesis to hypothesis roles. These are the more
common rules in this system and they connect every
hypothesis assumed to be true with all the other
hypotheses that need to be checked (by performing
an action).

EXAMPLE
IF move_a_j>art (M* Part).
THEN f ind_next_step (Part* X>*

not_last(X)»
f ind_next_j>rocess(Part» NewM* A). . .

The second part of the knowledge is the algorithmic
knowledge. This part solves the routing decision
according to the current system states. The algorithm is
dynamic and dependent upon the system current states as
reflected in the dynamic data base* and not on mean

off-line data.
The algorithm is composed of two parts:

I. A production system written in PROLOG* that checks
the logical conditions# retrieve the required data
from the data base* and decides what is needed to

be solved.

II. A computational unit* written in PASCAL that mani
pulates the decisions made by the production sys
tem; and computes the cost of the various candidate
solutions (next step in the algorithm). The algo
rithm is presented later on with an initialization
procedure.

The third part of the knowledge is the simulation
driver. A discrete simulation system is basically con
sists of three major parts:

1. The model of the system being simulated. This part
defines the network structure of the system; the
entities flow and the decisions required at each
node. Usually this part is modeled by using a simu
lation language; or graphic symbols.

2. The data base of the simulation. This part is usu
ally transparent to the user and keeps track of
queues; entities; time of operations and collect
the required statistics.

3. The event listing mechanism. This component chooses
the next event to be processed# advances the simu
lation clock and motivate the entire simulation
process.

- 68 -

The control system needs to have a simulation
driver* because it is cheaper and more flexible to try
its decision capability on a simulated manufacturing
environment* instead a real one. In this may me ignore
the need for the interface part of the system* but loose
the flexible behavior of a real system. Since the system
contains the data base and the behavioral fcnomledge for
controlling the environment* the only component needed
is the event file mechanism. This part recognizes three
major types of events in the system:

1. Part arrivals. Initially all parts are introduced
to the system in the same time* and later on a part
that finishes production phase generates a request

for the same type of part.

2. Process finishing. This event includes the deci
sions mhether the part needs a route to the next
process* needs to be sent to the assembly phase*
and deals mith the system ability to perform the
decisions. When a machine becomes idle the first
part in its queue is taken for production CFIFti

order).

3. Assembly event. When there is any combination of

parts in the assembly station that enables a
subassembly or the end product to be assembled this

■event- is performed.

This part is written in PROLOG * it is very simple and
modular and enable the control system to react to simu
lated events# instead of real ones.

6.5 CONTROL STRATEGY

In this section several components of the control

are described.

RULE

The main technique for rule selection is the match
ing technique. In PROLOG the matching is similar to
unification in predicate logic with some variations.

SgNEkl&L R^sq^TlON
Sometimes several rules has the same L. H. S (there

for has the same name)* and all of them can be trig
gered. In oreder to choose a specific rule to fire* the
system ithrough PROLOG) select the rule according to
their order in the database. In order to make a rule
more favorable* it is possible to move the rule Upwards
in the list (or downwards for a lower likelihood rule).

Another strategy partially used is "context limit
ing" strategy. This approach checks the context of the
rule* and Only rules with the right context can be trig
gered. In this system the context is mentioned immedi
ately in the R.H.S (Consequent) so the rule is first

chosen by matching its name* and then by its order* and
only then by the context.

, EXAMPLE .

Rules for event that deals with assembly are in the form:
IF the step is perform_event»

the context is assembly.
THEN change the status of the assembled part.

add the part to the finished part storage*
change status of the robot to "idle".

Another rule for event that deals with finishing a process is in

the form:
IF the step is perform_event*

the context is part_finish,
THEN identify the part*

move the part.
ACTION In this system any rule that fires leads to an
action. This action is a change in the system state as
is reflected in the data base. Part that moves from a
queue to a process* or enters a different queue* start
assembly or finishes assembly* all of these changes are
reflected in the database.
Changes in the database are utilized through predicates
that are specified rules whose task is to create the
desired change in the data base.
Examples for such rules are:

opdaie_Jiyeue<_time<T).

asserta(robotCfree)>.
updaie__event_list.
r emove_jP rom_queue <M).
add^to^queuetPart* M* A).

7. SUMMARY

This expert system tries to deal with a new domain:
scheduling. In this field so far the expertise is lim
ited and difficult to formulate. This system is used to
schedule a specific environment in which a production

system feeds an automated assembly station.

It is difficult to compare this system to others
because today only one expert system for scheduling
exists (ISIS)* and there is no much information avail
able about its scheduling process. As understood from
the literature the ISIS system is used for higher level
scheduling (daily schedule or even weekly or monthly)*
since it considers aggregate constraints. The presented
system is used for real time scheduling and real time
answers for scheduling problems* rather than long term
schedule..

Computationally this system is expensive. Running
on the VAX 11/780 it takes the computer about 9 sec. to
load the six different files that compose the system:

File "po" read time is 0.7 sec.

File —algo" read time is 1. 6 sec.

File "process" read time is 1. 75 sec.

File ■ "states" read time is 0. 35 sec.
File "sira" read time is 2.9 sec.

File "assembly" read time is 1. 35 sec.

To reach a decision about the part's route it takes
the system from 0.1 sec to 0.25 sec* and a simulation of
240 min in simulation time takes about 7 minuted on the
computer <in this period hundreds of decisions* data
base changes and retrievals has to take place). However
the slowest part in the system execution are the "system
calls" that execute the compiled PASCAL code for the
decision procedure.

The readability of the expert system is good
because the predicates were given names that show their
function and explain their task. A different user that
runs the system can understand its decision process but
needs some familiarity with PROLOG and its recursive
nature.

The decision network for parts of the system is
shown in the appendix where the branches are AND
branches and are executed from left to right.

REFERENCES

Cl 3 Baker K. R.# "Introduction to Sequencing And
Scheduling"# Wiley and Sons# 1974.

£23 Be liman R. # Esogbue A. 0. # Nabesh ima I.#"Mathematical
Aspects Of Scheduling And Applications"# Pergamon
Press 1982.

£33 Buchanan B. G.# Duda R. 0# "Principles of Rule-Based
Expert Systems". Report no. HPP-82-14# Stanford
university.

£43 Boilers W. I. # Not S. Y. # Whins ton A. B. # "Artificial
Intelligence In Manufacturing Planning Arid Con
trol"# AIIE Trans Dec# 1980.

£53 Buzacott J. A. # "The production capacity of job
shops with limited storage space"# Int J. Prod.
Res. vol. 14# no 5# 1976.

£63 Buzacott J. A. » Shanthikumar J. 0. # "Models for
Understanding Flexible Manufacturing Systems"#
AIIE Trans. 12(4), Dec 1980# pp. 339-350.

£73 Buzacott J. A. » "Optimal operating rules for
automated manufacturing systems"# IEEE Trans.
Automat. Contr. vol. 27# no 1# 1982.

/-"•s ■
£83 Buzen J, P. »"Computational Algorithms For Closed

Queueing Networks with Exponential Servers"# Comm.

of ACM, VO 1 16. no. 9, 1973, pp. 527-531.

C93 Conner J. L. , "A Heuristic Method for Solving Job
Shop Sequencing Problem", Production and Inventory
Mgt. 13, 1, pp. S4”68, 1972.

C103 Davis R. , King J. , "An overview of production sys
tems". Machine Intelligence vol 8, pp 300—332.

C113 Day J. E. and Hottenstein M. P. « "Review of Sequenc?-
ing Research", Naval Research Logistics Quarterly

1970.

C123 Denning P. J. » Buzen J. P./"The Operational Analysis
of Queueing Networks Models", Computing Surveys
vol. lO, no. 3, 1978.

C133 Ferguson R. L. , Curtis H. J. , “A Computer Aided
Decision System", Mgt. Science 15, 10, pp. 550—5&1,
June 1969.

E143 Fox M. S. , Allen B. , Strohm Q. »"Job-Shop Scheduling:
An Investigation in Constraint-Directed Reason
ing", Proc. NCAI 1982, Pittsburg, PA, pp. 155-158.

C153 Fox MS.,"Constraint Directed Search: A Case Study
of Job-Shop Scheduling", Ph.D Thesis, Carnegie-

Mellon University 1983.

C163 Futo I. »Szeredi J. ,"System Simulation and Coopera
tive Problem Solving on a PROLOG Basis", in

/•s ■ ■ ■ - 76 -

"Implementations of PROLOG" edited by Campbell

J. A. # Ellis Horwood# 1984.

C173 Godin V-B. # "Interactive Scheduling: Historical
Survey and State of the Art'S AIIE Trans. Sep

' 1978.

C183 Gordon W. J. # Newell G. F. # "Closed Queueing Net
works with Exponential Servers"# Operations
Research vo 1 IS. no. 2. Apr 1967# pp. 244-265.

C193 Hart P. E. .Nilsson N.-J. » Raphael B. "A Formal Basis
for the Heuristic Determination of Minimum Cost
Paths"# IEEE Trans, systems science and cybernet

ics vol ssc-4. no. 2. july 1968.

C203 Hatvany U. #Lettner F.V. • "The Efficient Use Of
Deficient Knowledge"# Annals of the CIRP# vol

■ 32/1/1983. :

C213 Hayes J.E. . Michie D. "Intelligent Systems"# Ellis
. Norwood# 1983. ; ■

C223 Milderbrant R. R. #"Scheduling Flexible Machining
Systems Using Mean Value Analysis". Proc. of IEEE
conference on Decision and Control# Albuquergos#
N, Mexico# 1980.

C233 Uacbsoin J. R. » "Jobshop like Queueing Systems"#
Management Science vol 10# no.1# Oct 1963#

pp. 131-142.

£243 Kimefflia J. * Gershwin S. B. # "An algorithm for the
computer control of a flexible manufacturing sys
tem VI IE Trans. dec 1983.

£253 King J. R. # Spachis A. S. #"Scheduling: Bibliography
and Review”# I. J. of Physical Distribution and
Material Management# vol. 10 (3).

£263 Klahr P. # Faught W. S.»"Knowledge Based Simula
tion”# in proceedings of the first annual national
conference on AI# Stanford 1980.

£273 Kusiak A. # “Flexible manufacturing systems: a
structural approach"# working paper no. 4/84#
university of Nova Scotia.

£283 McDermott D. # "The Prolog Phenomenon"# in SIGART
newsletter# no. 72# July 1980# pp. 16-20.

£293 McLean C. R. # Bloom H. M. # and T. H. Hopp# "The vir
tual manufacturing cell"# NBS report.

£303 Mifoguchi F. # "PROLOG Based Expert System"# in "New
Generation Computing"# no. 1# 1983# pp. 99-104.

£313 Nau D.S.# "Expert computer systems"# Computer# Feb

1983.

£323 Nilsson N. J. # "Principles of Artificial Intel I i'-

■ - 78 -
<*v-

gence"# Tioga Pub. # 1980.

£333 Nof S Y. *"An Expert System For Planning/Replanning
Programmable Production Facilities"# Proc ICPR Aug

1983* Windsor Canada.

£343 Pohl X. »“First Results on the Effect of Error in
Heuristic Search"# in Machine Intelligence# vol 5#

1970. pp 219-236.

£353 Pohl'I.* "Practical and Theoretical Considerations
in Heuristic Search Algorithms"# in Machine Intel

ligence* 9# 1977# pp 55—72.

£363 Rauch H. * Firschein 0. .Perkins W. A, and Pecora
V *"An Expert System for Tactical Data Fusion".
IEEE conf. on circuits# systems and computers #

- .1982.

£373 Simon H. A.. Newell A.# "Heuristic Problem Solving:
The Next Advance in Operations Research". Ppera-f
tions Research 6# 1* pp.1—10* Jan. 1958.

£383 Solberg J. J. *"Quantitative Design Tools for Compu
terized Manufacturing Systems". Proc. Sixth

North—American Metalworking Research Committee#

Gainsviile# Florida# Apr 1978.

/~S £393 Stecke K.E.# “The optimal planning of Computerized
Manufacturing Systems"# Ph. D Thesis# Purdue

University/ 1981.

£403 Stefik M. et al. , "The organization of expert sys
tems". AI, 18 <1982> pp. 135-173.

£413 Soar do O. M. S. . "Workload optimization in a FMS
Modeled as a Closed Network of Queues". Fiat
Research center. CIRP Annalen 28(1). pp. 381-383.

£423 Suresh J. K. . "A Simulation Based Scheduling and
Management Information System for a Machine Shop",
Interfaces 6. 1 part 2, pp. 81-96, Nov. 1975.

£433 Warren D. , Pereira F, »"PROLOG- The Language and
its Implementation Compared with LISP", SIGART
Newsletter, no. 64, Aug 1977.

- 80 -

* *
* A P P E N D I X *
**************************'■******

8. rHE^LQmLTHM;_g:VAi,UATION OF PARTIAL SOLUTIONS

The scheduling algorithm has to search through
many possible actions that the scheduler can take. These
alternatives have to be evaluated and the best one is to
be chosen. These possible assignments of jobs to
machines depends upon the availability of the machines*
queues that each machine has* type of process to be done
next* capability of the machines to perform the task and
other criteria. In order to evaluate the proposed route
the scheduler needs to evaluate the route according to
some measure of performance. The route decision is a
tree like decision procedure: first the next process has
to be scheduled than the next one (which depends upon
it)* and so on. it is desired to have an evaluation
function of partial solutions in order to reduce the
number of possible solutions generated.

8. 1 AN ALGORITHM FOR-HeUB.I8TJ.flL-SEARCH

.;.^^/;In case of heuristic search there are several
known algorithms* of which the best known is algorithm
A* (Nilsson 1980* Hart Nilsson and Raphael 1967) or HPA
(Pohl 1970* 1977). This algorithm makes use of an
evaluation function for partial solutions of the form:

fw)g<x)+wh<x).

where s » start node* t «* terminal node.
g(x) w The 'distance' from s to x as found in the search.

h(x> ** The estimated 'distance' from x to t.
ui « weighting factor.

This function has some conditions to follow in

order to get desirable properties. The requirements are:

I. h (n> £' h*(n).
where h»<n> is the cost of the minimal path .from

any n io t.

II. Consistency:(h<x)-h<y>><£<x«y) for all x#y. Here
c(x#y> is the real distance from x to y.

III. O; 5£w£i.
The properties of this search are:

I. Admissibility. The algorithm always terminate in an
optimal path from s to t.

II. Optimality. The search includes the fewest nodes in
finding « solution path fPohl 1970>.

Ill The more informed the algorithm is the shortest the
search is. By information one means the accurate

estimate of h<ri>.

IV. The algorithm can use dynamic weighting w<x> that

changes according to the distance of x from s.

8. 2 SEARCH PROCEDURE FOR THE ROUTING PKOBLEH

The routing problem differs from the general
search problem by severe! important properties: First
only the initial state is known. The goal node is not
known* therefor the solution to the search is not only
the path from s to t but alsothe terminal node itself.
A second major difference is that the routing problem
with the proposed objective function is not a consistent
problem. It means that h<x>-h<y> F c<x7y>, a situation
caused by the fact that some of the arcs have a 'nega
tive' cost which reduce the objective function when
added. Another difference is that the routing problem
is dynamic problem which means that the same subproblem
can have various values under different conditions. One
o-f the results is that h<n> cannot be evaluated in
advance. These properties do not allow the use of algo
rithm A* as it is and some modifications must be done.

On the other hand since the search algorithm
can be very 'informed' it is desired to use all the
information available to reduce the search space. The

information can aid in considering the alternatives in
various times and states (which imply different values
for the evaluation function even for the same branch).

- 83 ■
*» • ;

8. 3 THE SEARCH PROCEDURE

In order to evaluate various solutions the
first step is to solve arbitrarily the routing problem,
then to evaluate this solution according to the evalua
tion function and improve the solution by considering
only the candidate solutions that can improve the func
tion. By identifying undesired solutions the candidate
list is reduced and an exhausting search is avoided.
The solution estimation is performed according to the

knowledge available about the system and the conse

quences of the various partial solutions.

m The evaluation function is:
f<x> * Mxlt '+■ Sw.. j .

The w is the waiting time of1 the part being routed

and j belongs to the set of available machines <includ
ing the assembly station>.
The "It' is the idle time of the assembly station.

In order to discuss the algorithm more con
cretely the use of graph model is made for the heuristic

search and a program which can search problems

represented in the model.
The problem space is the finite tree T.
T m <x.E) is the feasible process assignment tree.

> .
X « <xl,x2,...> the set of nodes.
E=<el,e2, ..> the set of edges such that ej »

<xi,xj>, xi,xj « X and xj eP<xi?.
p is the successor mapping and if x»P<y? then y“P *<x?.

It is important to notice the special structure of the
tree. Since the successor edges do not depend upon the
predecessor it means that PCxi? » E<i> * P <xj?> cohere
xi> xj are in the same level in the tree.

Each edge i in the tree (connects xh to xi>
have a finite cost associated with it and this cost can
be represented as a tuple <Ai»wi).
Wi is the waiting time of the part on the machine.
Ai is the total time spent in the machine (Ai *» pi +

wi# and Pi is the process time).
A Solution is called optimal if it has the least value

of fCx) (least costly path).

Other symbols are:
C: E—>R2» the cost of the edges.
m<s> t) * (s=xl#x2#. . . xk«t) the path from s to t.
c<mCs,t?? * M<It+? + <It-? + Ew je m<s,t? .. ' J J
It+ is EA^ - Et, where EA^>= Et <the idle time of the

assembly station?..
It- is ISAj ~ Et I where Et > EA^the waiting time for

assembly?."
Et is the time the part is required for the assembly
<due date?.

- 85 -

8-4 THE ALGORITHM

1. Start with xi*xl=s, calculate xj=r <xi> <for pro
cess j that follows i). such that Aj * MIN -CAk !

' keEi>.
Repeat step 1 until T<x)*0. <no more processes to

take).
Calculate f<x> for the path found.

2 If It+ >« O exit. The path is optimal for It+ > 0.
Else start with E(i) * E(l>.

i. Remove from E(i) all arcs ej for which wj > wi

(wi belongs to ei found in 1).

ii Replace ei with ej such that CAj - Ai> <* lit?

and wj * MIN < wk I keE<i».
Calculate f(x).

iii. Remove ei from Ei.

iv. Continue until Ei '*• ei '** O.

3. Calculate V <xi>. if P<xi>* O .y go back to 2.

EXAMPLE

- 86 -

Figure 7. example

Given: Et =10,

Calculate the initial path:

path is <(1.3). <3* 7). <7. 9>>
M<0) +2 + 8 * 10f (x >

There are no edges to remove Cwi =* MAX <wj>>.

Replace (1»3) with (1*2) with cost = (5.1).

6 and lt=0,

Since lt**0 e4 can be removed (cannot replace

In step 2 we exit with the final path:
<(1«2)» <2» 7)* <7# 9)>. The cost is 6.

. .. - 88 -

8.5 THE INITIALIZATION ALGORITHM

Sumbols
Component: An elementary part (not subassembly).
atime .: the assembly time of part (component) j•

J
expected time.: The time part j is required at the assembly.

J •
p<j>: The successor mapping (finds immediate sons of j>.

Input: assembly tree T(A» V)* assembly times for

part j: atime. for all jeV.
•J

Output: list of expected times for all components
and parts in T; expected time^ for allj e V.

THE ALGORITHM

1. Find the set of all the minimal subtrees . . 3 i
that are composed only of components.

Set Et » 0.

2. Until all subtrees are covered do:

i. All components j e l are assigne-d

expected time. = Et.J

ii. expected tirne^ “ Et.

iii. Et ■* Et + atimej.

3.

- 89 -

i. Ct «® O.

xi. Find A, such that j s A and expected time. =

Ct. (find set of all parts and components
with expected time * Ct). If A contains com
ponent j then Find fc “ P ^(j) Cthe root oF j)>
and l«T“1<k>.

Else <only part in A> 1 * F *<j>.

iii. If node 1 has no expected time assigned to it.
and all its predecessors have then:

For every component j arrive to 1
assign: expected time.=Ct.

expected timej*Et.

Et * Et + atimej.

Ct = Ct + atime,r <1>

iv. IF 1 s* endprodoct <the root oF the tree) go to

ii.

- 90 -

EXAMPLE

Assembly Times

Part Time

Wheel 8

Frentfram® 9
Astle 4
Frame 6
Endproduct 7

f

Step 1: The parts are wheel composed of al#a2#a3.
frontframe (also ff) composed of bl«b2#b3

Step 2: al#a2#a3 have expected time * Q.
expected tifl«?wheel» 0,
Et:» 8. ' -

bl>b2#b3 have expected time *8.
expected t ime^=8.
Et rn 17. .

Step 3:
i. . . Ct'■«* O.

A « <al# a2#a3> with expected time * O.
A contains only components so P * <A> = wheel.
1 = P~* (wheel> = axle.

part c which arrives to axle gets expected timec=17.
e is the only component so Et « 17+8 =25.
Ct = 0 + atime<whTO]l> » 8.

ii. ct « 8, A » -Cbl,b2,b3>/ k • P *(A> » ff,
1 « P”*(k> = ■frame (or f >.

part d gets expected tlme^ * 25.
Et » 25+3 = 28. Ct = 8+9 * 17.

iii. A * <c>» k * axle# 1 « endproduct.
1 gets expected time * 28.

Et * 28+6 « 34.
Ct » 17 + atimea;><;le=25.
Since 1 is endproduct we are done.

TRACE OF THE SIMULATION

G THE OPTIMAL ROUTE IS G

CHOOSE MACHINE 4
CHOOSE MACHINE 4
CHOOSE MACHINE 2
THE OPTIMAL ROUTE COST IS: 1303
eyrrent_time 0 part b2

m
G THE OPTIMAL ROUTE IS G

current time O part bl - 92 -

■%

•%

•%

CHOOSE MACHINE 5
CHOOSE MACHINE 1
CHOOSE MACHINE 5
CHOOSE MACHINE 5
THE OPTIMAL ROUTE COST IS: 2204
current__t ime O part b3
G THE OPTIMAL ROUTE IS G

■H CHOOSE MACHINE 3
CHOOSE MACHINE 5
CHOOSE MACHINE 2

^ CHOOSE MACHINE 1
THE OPTIMAL ROUTE COST IS: 2117

m current_time 6 part c
G THE RESULT OF THE ALGORITHM G

THE EXPECTED TIME IS : 17
THE INITIAL ARRIVAL TIME IS: 17

THE ROUTE FOR THE PART IS:
mac hirie no: 2
machine no: 1

367 statements executed in 0000.150 seconds cpo time
% ■' '

THE ROUTE COST IS: 7

10
7

SYSTEM OUTPUT
- 93 -

current_time 7 .'.■'ev*nt_list
O C (3/ p#ri_finisht 2* *2>> (4, part_f inish, 1, al), (5, ;»a*»'twf ini*h, 5, b2),

C5, part__finish,3, a3)< (9i part^finishi^i bl)'
queue(2, Cq__time(dummy5, 22)» q_time(dummy3, 17), q_time(c, 10), q_time(a2, 3)3).
queued, Cq_tiffle(dummy4, 19), q_time(dummy!, 14), q_time(d, 7), q_time(al, 4)3).
queue <3, C q_t i me (dummy 2, 15), q_time(e, 8), q_time(b3, 6), q__time(a3, 5)3).
queue(5» Cq_time(b2, 5)3).
queue(4, Cq__time(bl,9)3). -
queue(assembly,'C3').

current_j)rocess (dummy 5, 96, 2).
current_jjrocess(dummy4, 99, 1).
current_process(dufflmy3»93, 2).
current_proceis(dummy2, 92, 3).
current jroeeWstdummyl, 90, 1).
current^r^ceSs(e, 2,3).
current_process(d« 1, 1).
current _process(c» A, 2).
current_j»rqcess (b3» 2, 3).
current_j>roceSs(b2, 11, 5).
current_j>rocess(bl, A* 4).
current_process(a3» 10,3).
current_j»rocess(a2» 7,2).
-current_process{al, 1, 1).
f inished_storage : C3current__time event dist
3 £ (4, partLFinish, 1, al), (5, oart f inish, 5, b2), (5, part_f inish, 3, a3),

(9* part_finish, 4, b 1)» (10, part_f inish, 2, c) 3 ■queue<2. Lq_tline("dummy5,19), q_time<dummy3, 14), q_time(c, 7)3).
■queue<5, Cq time(a2,11), q time(b2, 2)3).
■queue(assembly, '£3').
■queue(4, Cq_time(bi» A) 3).
■queue (3, Cq__time(dummy2» 12), q_time(e, 5), q_time(b3, 3), q_time(a3. 2) 3).
■queued, Cq_t ime(dummy4. 16), q__time<dummy 1,11), q_time(d,4), q__time(al, 1) 3).

“urrent__process(a2, 5, 5).
::urrent__process(dummy5* 9A* 2).
.rurrent^processXdummyd, 99, 1).
::urrent_process(dummy3, 93, 2).
::urrent_process(dummy2* 92, 3).
current_j>rocess(dummy 1, 90, 1).
"urrent j»roce95(e, 2, 3).
~urrent_process(d» 1, 1).
"urrent_process(c. A, 2).
“urrent_j»rocess(b3, 2,3).
::urrent_process(b2, 11,5).
:urrent_process (bl, 6, 4).
current _process <a3, 10, 3).
current __process(al* 1, 1).
Rinished_storage :C3current_time event_list
I £(5, part_f inish, 5, b2), (5, part_finish» 3» a3), (7»part_f inish, 1, d),

<9, part_f inish, 4, b 1)» (10, part__f inish, 2, c > 3

- 94 4-
Till-: STATIC DATA BASK----- :----------- “

/* DEFINITION OF AN INFINITE NUMBER #/
m (l0mi b i g_nu(nber < lOOO).

/*• NUMBER OF COMPONENTS IN THE SYSTEM */
m' • part^types <9>.

PART CODE NUMBER part_type(code#part type) */
m par t_type (1# al).

part_ty"p:e:X2# a2)..
par t^trype(.3# a3).

0k. part__ty pe(4# bl>.
part_jtype(5# b2>.
■parfc_type<-'6> t*3>.

0k .part_type<7# c). .
part_type(8# d>.
part_type(9# e).
part_type<10#dummy 1).
part_type(11#dummy2).
part_type(12#dummy3).

.?% part_type(13#dummy4).
part_type(14# dummy5). *

** /* PROCESS-MACHINE TABLE (PROCESS# CMACHINES LIST3). */
pro_mach ined# Ci# 23).

m pro_mach ine (2# C3# 4# 53).
pro_mach ine <3# Cl# 3# 43).

■ pro^machine(4# C4# 53).
m • pro_machine(5# Cl# 4# 53).

pr d.jnach iiie (6# C2# 3# 43).
pr o^mach ine (T# C1# 2# 43).

... ' prp^mach’inelS# C3# 4# 53).
pro_maeh ine (9# C2# 3# 53).
pr o_mach ine! 10# Cl# 2# 3# 43).

y% p rp^fnac h i ne (11 # C1 # 3# 4# 53 >.
pro_mach ine< 12# Cl# 2# 3# 4# 53).
pro_mach ine (13# C2# 3# 4# 53).
/* PART-PROCESS TABLE (PART#C LIST OF PROCESSES 3). */

^ par t__pro(al# Cl# 8# 93).
part_prd(a2/ C7# 5# 123).
par t j)r o (a3# C 10# 5# 7# 23).

. par t^ro Cb l# C6# 8# 123).
par t_j»ro <b2# C11# 3# 5# 83).
paT t_pro (b3# C2# 4# 13# 73) .
partj&rqCc# C6# 123).
par tjro (d # C1 # 5# 7# 93).
part^raCe# C2# 3# 10# 113).
part^proCdummy 1 # C90#99#983>.
parq (dummy2# C92# 94#953).
part_jpro (dummy3# C93# 94# 983).
par t_jpra(dummy4# C99#92#973).
part_prp(dummy5/C96#99#923).

^ /* • PART-PRQCESS-MACHINE-TIME TABLE */
/* P_t(PART NUM# Cprocess(PROC. NUM# Ctime(MACHINE# TIME). .3)3) */
part^time(al#Cprocess(1#Ctime(1#4)#time(2#6>3)#

process(8#Ctime(3#7)#time(4#9)#time<5#10)3)#

- 95 -

prdcess(9*£time(2#4)*time(3»6)»time(5»8)3)3). .
part_time(a2* rpracess(7* Ctimed*2># time(2» 3)# time(4* 5)3)*

process(5# Ctimed* 7)# time(4# 9)» time(5* 9)3 >»
process(12*[timeC1 * 2)* time(2*3)» time<3*4)*

time(4* 5) * time (5* 6)3)3).
part_time(a3» £process (10* Ctime(1*2)* time(2* 4)* time(3* 5)* time(4* 7) 3)»

process(5* Ctimed. 3)* time(4# 5)* time(5# 5)3)»
process(7» Ctimed* 5)* time(2* 6)# time(4» 9) 3)*
process(2*Ctime(3#6)#time(4#6)* time(5V&)3>3).

part_time(bl» Cprocess(6» Ctime(2# 7). time(3» 9)# time(4# 9) 3)#
process(8# Ctime(3» 2)* time(4# 4)* time(5# 6)3)#
processd2# Ctimed. 5)* time(2# 5)» time(3. 8).
time(4» 10). time(5* 10) 3) 3).

part_time(b2* Cprocess (11* Ctime (1» 2)* time (3* 2)* time(4» 5)* time (5* 5)3)*
process(3* Ctime (1*4)* time(3* 4)* time<4* 5)3)*
process (5* Ct ime(1# 5)* time (4* 6)> time (5* 8) 3)#
process(8» Ctime(3* 5). time(4, 8). time(5* 9)3)3).

part__t ime (b3* Cprocess (2* C t ime (3* 1) * time (4* 2) * t ime (5* 5) 3)*
process(4* Ctime(4* 7) * time(5* 7) 3)»
proc#ss(13* Ctime(2« 2)# time(3* 5)* time(4* 6)* time(5* 6) 3)»
process (7* Ctime(1*2)* time (2* 5) * time<4* 9) 3) 3).

part_time(c* Cprocess(6# Ctime(2* 7)* time(3* 8)*time(4*10)3)*
process(12* Ctimed* 3)* time(2* 5). time(3* 7)»
time(4, 10)* time(5, 10)3)3).

part_time(d*. Cpr.ocess (1* Ctime(1 * 3)* time(2* 6)3)*
process(5* Ctime(1* 3)* time(4» 6)* time(5* 7)3)*
process(7» Ctimed* 4)» time(2» 5)* time(4,8)3)*
process(9» Ctime(2* 2)» time(3« 3)* time(5« 6)3)3).

part_time(e* Cprocess(2* Ctime(3* 2)» time(4» 4)* time(5* 6)3)*
.^process<3* C.time (1* 4)# time(3* 6)# t ime'(4» 7) 3)«.
process(10* Ctime(1*2)* time(2* 3)* time (3* 5) * time(4* 5)3) *
process (11# Ct ime (1# 6)# time(3# 10)* time(4* 10)* t ime (5* 10)3)3).

part_time(dummy1* Cpr ocess (90# Ctimed* 7)3)*
process(99* Ctime(3* 6)3)* process(98* C time(5* 5)3)3).

part_time(dummy2# Cprocess(92# Ctime(3* 7)3)#process(94» Ctime (4. 3) 3)# process(95» Ctimed* 5) 3) 3).
part_time(dummy3* Eprocess<93* Ctime<2#7)3)*

process(94* Ctime(4* 6)3)* proc ess(98* C time(3* 6)3)3).
part_time(dummy4* Cprocess(99* £time(1# 5) 3)»process(92*Ctime(3»6)3)*process(97. Ctime(2*5)3)3).
part_time(dummy5* Cprocess(96* Ctime(2* 5)3)*process(99» CtirneO* 6) 3). process (92# Ctime (5* 5)3) 3).
/* BUFFER SIZES */

buf f er_size(1# 6).
buffer_size(2# 6).
buf fer_size(3* 6).
buf f er^si^eX#* 6).
buf fer_size(5* 6).
buffer_size (assemb ly* 27).

THE DYNAMIC DATA BASE

/* EXPECTED TIME OF PART X */
/■» The program computes these values */
/* QUEUES' STATE : queue (MACH. NO, Cq_time (PART. TIME). .. 3)

Time is the (queue+process) time. It is the time.a nefc»
part has to wait for process.

queue(1, £3).
queue(2. £3>.
queue (3. £3 >.
queue(4.£3).
queue(5* £3).
/■» TOOL AVAILABLE : tool (MACH. NO. £TOOL NO. ... 3) */
tool Cl. £1. 2. 4. 6. 8. 123).
tool (2. £2. 3. 4, S, 7. 9. 103).
tool (3, Cl. 3, 3, 6, 7, 93).
tool (4. £10. 11. 12, 133).
tool (5. Cl, &».©» 10. 123).

MACHINE STATUS : status(MACH. NO. FAIL/WORK). */

status (i»:l).
status (2/1).
status(3, 1).
status (4.0).
statusO. 1).
/# THE CURRENT PROCESS AND MACHINE: (Part, Process, Machine) */
/*
current_prpce5s(aL 9. 1).
current_process(a2, 7, 3).
cuTrentjr oc ess < b 1, 8. 4).
eurrervt_j»rocess (b2» 11,2).
current process(b3, 1. x).
currentjrocess(c» X. jc).
current j»rdcess(di X, u). .
current_j»rocess(e, X, m).
*/

■/* REPAIR TIMES */ V.
repair^time<M» T).
/* CENTRAL STORAGE CONTENTS */
centralist or age (£ 3). • .
/* ASSEMBLY STATION CONTENTS »/
queue(assembly,£1).
/* FINISHED PARTS STORAGE */
f inishediStorage(£3).
edit(s> :~ system("vi states").

- 97 - : , ■

PARTIAL AND/QR TREES OF THE RULES *

START SIM

EXPECTED TIME SIMULATE

CHECK_
CONDITIONS

UPDATE_ >
CURRENT TIME PERFORM

EVENT
UPDAT E_EVENT>

LIST SIMULATE

NEXT ARRIVAL PART FINISH lEND ASSEMBLY

PART ARRIVAL

MOVE A PART

* All branches are AND branches, and the execution order
is from left to right, in a depth first manner.

- 98 -

CHECK_>
CONDITION,

CURRENT_
TIME(A)

STOP_TIME
(B). END_OF_SIM

TIME(C)

PART ARRIVAL,
FIND TRY_S CHEDUL

END OF PROC.FIRST PROCES

/ ”creAte_ s
CURRENT PROCADD TO

QUEUE

A < B

QUEUE

ASSERTA(new
queue)RETRACT(oldQUEUE(M,K) (part-to-queui queue)

MOVE A PART
r SCHEDULE_
.NEXT PART.FIND NEXT ST

REMOVE_
FROM_QUEUENOT LAST(X) CHECK SCH. ;

NOT(X=LAST)

)C READ[N,A] XSEE(OUT)INITIAL COST SEEN

(SCHEDULE_ NEXT_PART.)

SUCCEED ^

0

m

m

m

- 100 -

THE BEHAVIORAL KNOWLEDGE (RULES)

<0R%
/* THIS PART OF THE PROGRAM TAKE CARE OF UPDATING THE

DATABASE, AND DECIDING UPON THE SEQUENCE OF OPERATIONS
THAT THE SYSTEM MUST TAKE. */

/* THIS PART INTRODUCE A NEW COMPONENT TO THE SYSTEM */
/» The •first two predicates generate 'dummy' parts */
part_arrival(Part) : —. beIong„to(Part, dummyset),part__t ime (Part,Cprocess(P,CtimeCM, T>3)

count_queue_size(M, Size),
buffer_size(M, Q),
Size < Q,

((queue (M, CD, A is T) » (queue(M, Cq_time(_» TT) «_3> », A is TT + T)>-
add_to_queue(Part, M, A),
asserta(current__process (Part, P» M))»
try_schedule_end_of_jJr0c ess (Part, M>, ! .

/* Now queue is full */part_arriva1(Part) :— belong_to(Part,dummyset),schedule_event(next_arrival. Part, 10).
*/This part deals with parts that goes to assembly

part_aTrival(Part) find_first_process(Part,M,A), 1,
(big_nu«»ber (B>, A < B),
add_to<_queue(Part, M» A),
create_current_process (Part, M>»
try_schedule_end_Qf_process(Part, M>» !.

part_arrival(Part). /*—- It means that all queues are blocked,
and the part is rejected. —-*/

/* THIS PROCEDURE UPDATES THE QUEUE WITH THE NEW PART */
add_to_queye(Part, M, A) : —

queue(M, K),
append (Cq_time(Part, A)3»K» Z),
retract(queue(M, _)),
asserta(queue(M»Z)).

/* THIS PROCEDURE REMOVE THE CHOSEN PART FROM THE QUEUE */
remove_from_qUeue(NUM) ;- queue(NUM,A),find_last(A, X), \

effaee(X, A, Z>»
retract(queue(NUM, A)),
asserta(queue(NUM,Z)).

find_Iast(CA:B3, X) f ind_Iast(B, X).
find last (CB « C33, B).
efface!A, CAJL3,L)
efface!A,CB«L3, CBJM3) #f faee (A, L» M).
belong^_tq(Part, dummyset) (Part * dummy 1; Partedummy2;

Part®dummy3i Part®dummy4; Part^dummyS).
f ind_f irst__process (Part, M, A) : - initial_cost(Part, Z>,

see(out),
read (CM. A3),
seen.

try_schedule_end_of_process(Part, M) : - eount_queue_size(M»1)»
current jjrocess(Part,Pro, M)»
schedule_end_of_process(Part, Pro, M) .

101

trg_schedulewend_of_proces*(Part. M>.
count_queu©_8ize(M»Size) queue(M«CList!Tai13).

count__tail_size(Tai 1. I >.
Size is I + 1.

count_tail_size(CL!Tail3»I>
count_tail_size(Tail» R).
I is R + i.

eount__taiil_size(C3. 0).
count_queue__si ze(M» O).

machine__ie_up <M) status(M. i).
update_current_j»rocess(Part. M) :— next_process(Part.G).

retract(current_process(Part. _. _)).
asserta(current_process(Part.G»M)).

/* In case of a new part */
create_current,,j»rocess(Part» M) : - part_pro(Part» CAIT3>.

asserta(current^process (Part. A. M)).

■*
* ' -.’M " ;'"V

■ * ■
*/
/* THIS PART MAKE THE CHANGES WHEN A PROCESS IS FINISHED */
/* First cluases represent dummy parts V.
move_a_par t (M. Part > :^ belong_to(Part»dummyset),

part_time(Part« G).
current _process(Part»-P.M).
schedule_dummy (Part. G» P. M>»
remove_from__queue(M).
schedule_next.j)art (M).

schedule_dummy (Part. Q» P» M) : —
loob_f or_next_pT‘ocess(Part. G. P. NewP. NewM* NewT).
not(NewP ■ last).
count__queue_size(NewM» Size).
buffer_size(NewM»Qi).
check_queue(Part. NewP. NewM. NewT. Gl. Size).
retract(current_j»rocess(Part, P. M) >.

sehedule^dummy(Part.Q.P»M) retract(current_process(Part. P. M)).
/* This was dotie for process «*■ last */

chec ft _queu© (Part. NewP. NewM. NewT* Q» Size) r~ G Size.
((queue(NewM. Ca.time(._< Tl) «_3). A is T1 + NewT) i
(queue(NewM. C3)» A is NewT)).

add__to_queue(Part. NewM. A).
asserta(current_process(Part. NewP. NewM))•
try_sch ed u 1 e__end_of_jproc ess (Part. NewM).

check_queue(Part. NewP. NewM. Q. Size) ~
send_to_j:entral_storage(Part).
asserta(current__process (Part* NewP. NewM)),

n iook_fot,_next_j»rocess(Part. G. P. NewP. NewM. NewT) : —
G «® Cprocess(P.Ctime(M»Time)3)‘Tai13.
(Tail » Cprocess(NewP. Ctime(NewM. NewT)3)ITailll

V (Tail ■ C3 .NewP * last. schedule_new_dummy(Part))). !.
look_f or_nex t.j)rocess (Part. Q. P. NewP. NewM. NewT) : —

Q 885 Cprocess (__. £time(M. Time) 3) I Tai 13.
loo5t_for_next_process(Part. Tai 1. P.NewP. NewM. NewT).

- 102

49%

m
PS

m

■

schedule_new_dummy(Part) :— urand(10#U)»introduce_a_part(Part# U).

move_a_par t <M# Part) ?ind_next_step(Part#X)«
not__last(X)»find_next_proeess(Part#NewM#A>#
checlc_schedule(Part# NewM# A)#
remove__from_queue(M)#3chedule_next_part(M>» !.

move_a part(M, Part) send_ta_assembly (M. Part)#schedule_next.j>art(M).
find_next_step(Part#X) next^procassCPart#X)# !.
not_last(X> notCX ■ last).

find_next_j>rocess.(Part# NewM# A) : — initial_cost(Part# Z)#
see(out)#
read(CNewM# A3)#
seen.

check schedule(Part#M# A) big__number (B).
' ”/ A < B#add__to__queue(Part# M# A)#

opdate„current_jprocess(Part# M>#
try_schedule_end_of.j>rocess(Part# M).

check schedule(Part# M,A) update_current_process(Part, M),send_to_Gentral_storage(Part).
send_to_central_6torage(Part) central_storage(Q)#

current process(Part# CurrentP# _)#append(C(Part#CurrentP)3#G#List)#
retract(centralist©rage(Q))#
asserta(central-„storage(List)).

sc hedu1e_nex t part(M) : ~• Queue(M# A)#find„last(A#Q_time(Part#_>>»
current_process(Part# Pro# M)#
schedu 1 e_en d_of_precess (Part# Pro# M).

schedule_next_j»art(M). /* Means that the Queue is empty
sendito_assembly(M#Part) : —count__queue_size (assembly# Site)#

buffer__size(assembly# G)#
Size < Q»remove_from_queue(M)#
retrac t (current process (Part# __# M))#
expected_time(Part# A)#
add„_to_queue(Part# assembly# A)#
introduce_a—part (Part# 1) »
assemble.

send_to_assembly(M#Part).
intr od uce a part (Part# Time) i *rschedule_event(next_arrival#Part#Time).

*/

/■#

curr ent_time<0>.
stop_time(l20j.
end_of__simolation_time(480).
event_l ist (C3)„
start_sim find_jexpected.J;imes#

! introduce_a_unit-_load#
prepare_output#
simulate# !.

introduce_a_unit_load part_type(Num.Part>#
part_arrival(Part)»
fail.

introduce_a_unit_load. /* unit load is loaded */
urand(R#N> :-seed(S)«

N is (S mod R) +1#
■retract(seed(S))»
NeuiSeed is (125 * S + 1) mod 4096#
asserta(seed(Neu»Seed >)# !.

simulate :-check_conditions.
current_time(A)# event__list(C(Al#Bl#Cl) 1TJ)#
A »< Al#
update_Gorrent_time(A« A1)#
perf orm_event (Al# Bl# Cl >«
update_event_list#
prepare_output#
simulate.

simulate told# !.
check_conditions :— current_time(A>»

stop_time(B)#
A < B.
end.j3f __s imu 1 a t i on__t i me (C) #A < C.~

check_conditions :— current_time(A)»end_of_simulation_time(C >»A <fc»
stop_time(B>#
Bl is B + 120#
retract(stop_time(B>)#
asserta(stop_t ime(Bl))#
!, fail.

update_current_time(A#Al) retract(current_time(A>)#
asserta(current_t ime(Al))»
T is Al — A#
update__yueue__time(T>»
update_expected_time(T).

104

update__queue_time (T) queue(M, A).
update_queue_timel(A, T»Nlist),
retract(queue(M,A)),
asserta(queue(M, Nlist))»
■fail. "Kr\

update_queue_time(T).
update„_expected_time (T) expected_time(X,Y>,

NewTime is Y - T,
retract(expected_time(X»Y))»
asseTta(expected_time(X, NewTime)1.
.fail.

update_expected_time(T>.
update_queue_timel (C3, T» C3).
update„_queue__timel (A, T, N1 ist) : —

A « Co time(Part. Time)’Tail3.
Ntime is Time - T,
update_queue_timel(Tail*T,List)/
append (Cq_time(Part« Ntime) 3, List. N1 ist), ! .

update_event_list event_list(CAJT3),
retract(event_list(CAiT3)).
asserta(event_list(T)).

V.-

perfbrmJ_event(Etime» Ecode, Attrib>
Erode .* next_arrival,
part_arrival(Attrib>, !.

perform^event(Etime*Ecode. Attrib) : -
Ecode * part__finish,
(M, Part) ** Attrib,
move_a_part(M» Part)» !.

perform_event(Etime, Ecode, Attrib)
Ecode ** end_assembly»
asserta(assembled(Attrib)),
finished_storage(G>»
append(C(Attrib. Etime)3. Q. List>.
retract(finished_storage(Q>).
asserta(finished_storage(List)>. ;
retract(robot(busy>)»
asserta(robot(free)>«

listing(expected_time>,
(not(Attrib » endproduct) ; retract_all_assembled_parts)j

.it
assemble.

v.

schedule_end_of_process(Part»Process, Machine)
find_process_time(Part, Process, Machine. ProTime),
schedule_event(part_finish, (Machine. Part), ProTime

find_j>rocess_time(Part» Process, Machine. ProTime)
part_time(Part, G),
find_j>roper_list(Process. Q. List).
find_j>roper__tiroe(Machine. List, ProTime).

f ind_j»roper__list(Process, Q. List)
Q «* CAJT3,
A “ process (Process, List).

fj nd proper, 1 ist(Process» <3, List) G = CAST3,
f ind_proper^list(Process» T. List).

- 105 -

f ind_properi_time(tt# L# ProTime) : — L ■* CA2ST3#
A2 * time(M« ProTime).

find_proper_time(M#L»ProTime) :- L « CA2JT3.
f ind_proper_time(M# T# ProTime).

retract_all_assembled_parts
retract(assembled(wheel>)»
retract(assembled (axle))»
retract(assembled(frontframe)>»
retract(assembled(frame)>*
retract(assembled(endproduct)).

schedule_event(Ecode*Attrib. Time) : —
current_time(A)»Etime is Time + A #
Event « C (Etime#Ecode. Attrib)3#
event_list(List)»
append(Event#List#Listl)#
bubble_sort(Listl<List2).
retract(event_list(List)>#
asserta(event_l1st(List2)).

bubble_sort(L» S): —
append (X, CA. B) Y1. L)»
A » (Ti# _#__)# B * (T2#_#_),
(T2 < Tl).
append(X# CB» A«YJ#M)#
bubble_sort(M. S># !.

bubble_sort(L# L).
prepare_output : - tell (out 1)# current...time (X)# write(eurrent^time)# tab (5)

write(event_list)» nl# iirrite(X). tab(5># event_list(Y)#
write(Y)»nl»listing(queue). nl>listing(current_process)
nl# write('f inished_storage : ')# f inished_ storage(W)#
write(W).

edit(sim) system("vi sim ”>.

Chapter 3

Expert Systems in Quality Control

Y. S. Chen

-106 -

Expert Systems in Quality Control*

Ye-Sho Chen

1. Introduction

1.1. Expert Systems

1.1.1. What Is An Expert System?

According to Weiss and Kulikowski [WEIS 84], an expert system is one that

(1) handles real-world, complex problems requiring an expert’s interpretation

(2) solves these problems using a computer model of expert human reasoning,

reaching the same conclusions that the human expert would reach if faced

with a comparable problem.

This artificial intelligence area focuses on developing programs that can

operate at human expert levels in restricted problem domains. Such programs

use knowledge and inference procedures to solve problems. They can act as

consultants backing up human experts, tutors, or program analyzers wading

through mountains of data. A typical rule-based expert system program uses

sets of production rules, all of which have the following form:

IF <antecedent assertion 1 is true>
<antecedent assertion 2 is true>

THEN Consequent assertion 1 is true>
Consequent assertion 2 is true>

♦Note that this report will be part of the author's book on Expert System in Quality Control,
please don’t copy.

The author would like to thank Mr. Muh-Cherng Wu for his courtesy of Figs. 1-6.

- 107 -

Using IF-THEN representation, the quality of the results of an expert system is

primarily a function of the size and quality of the knowledge base that it

possesses.

Work on expert systems has received extensive attention recently, and

prompted growing interest in a wide range of environments. Following is a par

tial listing of systems, each followed by its function and problem area [GEVA 82]:

ACE repair and maintenance, telephone cable.
AM concept formation, mathematics;

CASNET glaucoma diagnosis/therapy, medicine;
DENDRAL data analysis and interpretation, chemistry;

EL analysis, electrical circuits;
GUIDON computer-assisted instruction, medicine.
HARPY: signal interpretation, speech understanding;
■IMS management, automated factory;

MOLGEN planning, molecular genetics;
MYCIN diagnosis, medicine;
NOAH planning, robotics;
111 design, computer system configurations;

SACON user advisor, structural analysis computer program;
VISIONS image understanding, physics; ■

VM monitoring, patient respiration;
; XCEL consultant/intelligent assistant, computer sales;

In addition, a substantial effort is underway to develop expert systems for use in

the construction of other expert systems. These include [GEVA 82]: ■

Programming ROSIE, AGE, HEARSAY III, EMYCIN, OPS 5,
Tools. RAINBOW, KMS, EXPERT, ARBY, MECS-AI, UNITS.

Knowledge TEIRESIAS
Acquisition EXPERT

Tools KAS

Learning META-DENTRAL
Tools EURISKO

1.1.2. Why Build An Expert System?

The motivations and advantages for building an expert system are:

(l) Expert systems are cheap. Human experts are expensive, in short supply,

108

and when available, can work for limited times and at limited locations.

(z) With machines that are relatively inexpensive, experts can be "cloned" pro

viding their expertise to many locations simultaneously.

(3) Expert systems never die. Human experts have limited life span. Expert

systems can continue updating the new knowledge if learning ability is

available.

(4) Expert systems can own "universal" expertise. Human experts are limited,

in the sense that they can only be expert of some small areas. Integration

of diverse expertise can possibly be implemented in an expert system.

Some of the earliest medical expert systems, like CASNET and MYCIN, used

knowledge from several experts in building their reasoning models.

(5) Expert systems assist people. Competent individuals in a field can be

assisted to operate at expert levels. They can receive expert training by

observing the behavior of the expert system and by interacting with the

expert system in tutor mode.

(6) Expert systems help formalize expert knowledge. To build an expert sys

tem, we need a formal knowledge representation of the expertise. In formal

izing the expert knowledge of how a human expert solves difficult problems

with today's best knowledge, we are laying out explicitly how future alterna

tives can be sought. The expert system thus becomes an empirical tool for

experimenting with the representation and uses of knowledge. As such it

. can make an invaluable constribution to the advancement of practical

knowledge.

1.1.3. Suitable Tasks for Developing An Expert System

Dr. Steven J. Fenves from Carnegie-Mellon University gave a presentation

entitled "Knowledge-Based Expert Systems" at a Purdue University Civil

-109-

Engineering seminar on November 13, 1984. In the talk, he pointed out tasks

suitable for building an expert system:

(1) A purely algorithmic solution is not appropriate.

(2) The task domain must have established experts.

(3) The experts shall be better than amateurs.

(4) The task shall not be too easy or too difficult for experts.

(5) The use of expert systems shall result in considerable savings.

Dr. Fenves gave as an illustration of item (5) the rule of one expert sys

tem firm: If it doesn't save $1,000,000, we won't do it.

Professor Davis of MIT also gave a list of characteristics of good problems

where expert systems can be applied [DAV1 84]. The following is part of his list

which is different from the previous five.

(1) The task is primarily cognitive. Medicine and physics quality; tennis, jug

gling, and bicycle riding do not.

(2) The skill is routinely taught to neophytes. It is good if the skill is routinely

taught to people who do not know it because it means the experts are

accustomed to explaining themselves.

(3) The task requires no common sense. A good problem involves no common

sense. Expert systems based on an established, taught body of knowledge

rather than on common sense are more likely to be built successfully.

1.1.4. Process of Building An Expert System

The process of building an expert system is called Knowledge Engineering.

The person who builds the system is called Knowledge Engineer. Experience

indicates that there are some important differences between the normal

- 110 -

software development cycle as experienced in a typical data processing environ

ment and the process of developing an expert system. The process of knowledge

engineering raises new challenges [SAGA 84], While a complete time-tested

methodology for building export systems does not yet exist, there are some

guidelines shared by several knowledge engineers [WEIS 84; SAGA 84].

(1) Problem identification. Identifying potential applications is perhaps the

most subtle and difficult task facing a knowledge engineering group. The

eight suitable tasks discussed in the previous section may serve as a good

reference.

(2) Problem assessment. Identifying a suitable problem is usually not enough to

justify proceeding. It is necessary to perform an economic analysis of the

application as well. Sagalowicz [SAGA 84] gave a technique which he

believed will reveal a number of savings. This is to identify the individual, or

group of individuals, in the organisation most competent at performing the

particular task, then determine the effect of "cloning” that individual to be

available round the clock at any location.

(3) Knowledge acquisition. In this stage, a knowledge engineer is needed to

acquire book knowledge or interview experts, abstract the main charac

teristics of the problem, and then proceed to build a protype system.

(4) Choice of knowledge representation. The choice of knowledge represention

in computer must have two attributes: power to express the expert

knowledge and simplicity to describe,, update and explain the knowledge in

the model Several methods are proposed, e.g. predicate logic, semantic

network, frame and production system. Among those methods, the IF-THEN

production system is widely used.

(5) Demonstration prototyping. We must recognize that a key success in build

ing an expert system is starting small prototype and building incrementally

111

to a significantly acceptable system. Demonstration prototypes serve

several purposes: first, they allow the knowledge engineer to get enough

experience with the application to meaningfully estimate the extent of a

project. Second, they provide a test of the suitability of the technical

approach taken and gain the feedback from the end-users which may be

crucial to later stages of the project. Lastly, the prototype may serve to

demonstrate feasibility. A good demonstration may be helpful for securing

the resources to build a full-scale operational system.

(6) Refinement and Performance Evaluation. Once the prototype produces

acceptable reasoning, it can be expanded to include more detailed variants

of the problems it must interpret. Then it will be tested against more com

plex cases that will be used as a standard test set for performance evalua

tion. Many adjustments of the primitive elements and their relationships

are bound to come about as the result of this evaluation. The process of

refinement and evaluation is iteratd until the system is acceptable to cover

the entire application.

(7) Operational Integration. During this phase the system is placed in its actual

environment and put to work. Depending on the nature of the application

this may involve porting the system to different hardware. Developing and

debugging the documentation, training the end-users and creating a

maintenance group are part of this phase.

1.2. Quality Engineering

(2) Japan's good product quality is well-known. Americans have compiled an

extensive list of explanations to account for the Japanese success including

management methods, statistical process control, just-in-time inventory,

quality circles and designed experiments using the Taguchi method [COPP

84] and others. The study of all these "keys to success" has been given the

name of Quality Engineering. Dr. Taguchi - Japan's secret weapon [AUTO 84],

divides further the quality engineering task into off-line quality control and

on-line quality control. In the following subsections, we will describe briefly

the two "lines" and propose the potential application areas of expert system

techniques.

1.2.1. On-line Quality Control and Trouble-Shooting

Traditional quality control programs in the U.S. and elsewhere have relied

on a combination of sampling inspections and statistical process control

methods. These programs, termed as on-line quality control, have the responsi

bility to keep processes on the target or nominal value of the specification. Pro

cess control deals firstly with the construction of control charts which are

used to detect assignable causes failing the quality of the product. When the

control charts give the signal of out-of-control, the process is usually shut down

and the quality control circle people get together to do trouble-shooting, the

second stage of process control. Trouble-shooting is fairly experience-oriented,

especially when the process is complicated. The heavy reliance on experience

in trouble-shooting makes it amenable to expert systems. Beranek and Newman

(BBN) has built an electronic trouble-shooting expert system, call SOPHIE [GEVA

83]. A microtroubleshooter for equipment fault diagnosis which runs on an IBM

Personal Computer was developed by Mainwork Ltd [CROA 84;page 10]. In the

foreseeable future, we expect more trouble-shooting expert systems to come to

the markets. >

Two powerful tools are commonly used in doing trouble-shooting. They

are: cause-and-effect diagram (or fish-bone diagram) and Pareto diagram. Fig

ure 1 illustrates a cause-and-effect diagram for car repair. The diagram is

obtained by translating the rules in [STOC 69]. The mnemonic variables are

listed in Table 1. The complexity of the diagram shows the necessity of experts.

Figure 2 demonstrates a Pareto diagram, a cumulation of past experience, of

problem in battery systems. So, when we have a battery problem, we may want

to check the lead line first. From Figure 1, we see a huge number of production

riiles, e.g.

IF NSTAR (car won’t start)
and DMOTR (starter doesn’t work)
and DSPKR (speaker doesn’t work)

THEN DBATS (problem in battery system)
and

IF DBATS (problem in battery system)
THEN ILCON (7 10) (7 out of 10, ill-contact in lead line)

NWBAT (2 10) (2 out of 10, no water in battery)
DEBAT (1 10) (l out of 10, dead battery)

Using Figure 2, we have ranked priorities when we face uncertainty.

Since the cause-and-effect diagram comes as the result of a "brainstorming

process" and the equipment faults are well-defined, there is a high degree of

confidence in the reliability of using production rules. Also, the utility of Pareto

diagram is feasible, and we don’t have the problem of inexact reasoning. In

short, trouble-shooting in quality control is a task domain that is well suited for

expert system development.

1.2.2. Off-line Quality Control and Experimental Designs

The emphasis of on-line quality control has been on tightly controlling

manufacturing processes. However, as many products - and their associated

manufacturing processes - begin to assume extremely high degrees of complex

ity, the old "inspect and fix" mode may no longer be suitable. A story illustrating

the need of other quality control techniques is given by Mayo [MAYO 84]. One

American laboratory was testing a new product design for durability. Com

ponents that failed during the tests were simply replaced by better quality (and

more expensive) counterparts. No attempt was made to redesign the product

around the less expensive components. The final design released for manufac

ture therefore exceeded the original budgeted cost.

Today's managers and engineers are forced to redesign their approach to

quality control. They have to spend more time on quality engineering activities

before sending a product into full-scale production. This approach is called "off

line quality control". The overall goal at this stage is to design a product so that

it can be easily and cheaply produced.

According to Taguchi [TAGU 79], off-line quality control advocates a three

stage design process; (l) system design, (2) parameter design, and (3) tolerance

design. With the development of a new product, the engineers begin with the sys

tem design. The system is designed with a specific function. Parameter design

attempts to optimize the performance of the system through experimentation.

Different parameters in the system are modified for experimentation using the

least expensive materials. The final stage of the design process is tolerance

design. Only if the product is not acceptable at its optimum level is tolerance

design considered,

The Taguchi’s design process is fairly knowledge-intensive. Firstly, we need

to know the feasible factors and their associated knowledge to compose a good

system. Secondly, we need to know the right level of each factor and the

corresponding cost structure to achieve the "optimized" states. Finally, at the

tolerance design stage, we need to consider higher grade materials or more

expensive processes with tighter tolerances. The Taguchi’s design process is also

experience-oriented. Because in the real world one never gets a right goal

immediately, learning is an essential part of the design process.

Knowledge-intensive and experience-oriented task reveal the great demand

of expert systems in the Taguchi’s design process. Recently, Rutgers University

held a workshop on knowledge-based design [MOST 84] with the goal of gathering

researchers taking an AI approach to automating hardware and software design.

Also, AT&T Bell Laboratories is going to host a workshop on AI in statistics with

one area of emphasis on the use of expert systems in designed experiments

[AT&T 84].

1.3. Goal of the Paper

The goal of this paper is to build a prototype equipment fault diagnosis

expert system. Also, it is hoped to compare the system performance with other

existing ones'. With this goal in mind, the author began to look for a suitable

subject. The search procedures are :

(1) Find out all the quality control books through the computer search termi

nal of Potter library.

(2) Browse through all the good journals of quality control.

(3) Talk to several professors who taught quality control before.

(4) Read through the two expert system books [HAYE 83 & WEIS 84].

The decision was made after three week's search to focus on "car repair". The

reasons for this choice are :

(1) We know cars better than anything else.

(2) We have a good manual for car trouble-shooting.

(3) We can compare our system performance with the system of Weiss and Kuli-

kowski [WEIS 84].

The author also has interest in developing a prototype expert system for off-line

quality control. However, the task is more complicated than the trouble

shooting, it takes longer time to develop one. The author intends to have the

dream come true in the near future.

2. System Organization

Our system composes of four components. The first part will ask question of

the user to gather information about the problem. A summary report is printed

after the questions are answered. The second part does the interpretive analysis

and gives the user treatment recommendation. The "heart" of this step is

knowledge base and inference machine which will be examined carefully later.

The user may raise why, how and what questions, bur system can answer some

simple "canned" problems in part three. The final section inquire the

confirmation from the user in order to update the uncertainty values in the pro

duction rules. Figure 3 gives an overview of our system organization.

2.1. Dynamic Questionaire

In this case questions are posed using a straightforward format, involving

multiple choice questions, checklists, or individual numerical or truth-value

(yes/no/unknown) responses. The reported results are then summarized, An

example is given below.

Example 1.

Hello! You are working on the EXPERT system.

**** BEGINNING OF QUERY ***********************+*****************•+**«******

Enter Name or ID Number :^Chen

Enter Date of Visit :Dec-10-84

1. Type of Problem:
(1) Car won't start
(2) Car starts but problem in engine

- 117 -

(3) Other car problems
Checklist :(l)

2. Does starter work?
(1) No
(2) Yes

Choose one :(2)

3. Is any fuel in carburetor?
(1) Yes
(2) No

Choose one :(l)

tip**
**** SUMMARY REPORT ****
**

Name or ID Number: Chen

Date: Dec-10-84

List of Findings

(car won 't start)
(starter works well)
(fuel in carburetor)

The questionaire is dynamic, in the sense that we don’t ask dummy questions.

We think that an expert system should possess this characteristic. The other

example is listed to illustrate the dynamic merit of our questionaire,

Example 2.

Hello! You are working on the EXPERT system.

$$$$*$$$$?*$*$$*$*3?<**$$ $#%****** $**$#**$#***
**** BEGINNING OF QUERY ******************#**+**********+**+*********#**«***

Enter Name or ID Number :Chen

Enter Date of Visit :Dec-4-84

1. Type of Problem:
(1) Car won’t start

- 118 -

(2) Car starts but problem in engine
(3) Other Car Problems

Checklist : (2)

2. What is the engine problem?
(1) Engine heat
(2) Odorous smell
(3) Noise in engine
(4) Low speed abnormal
(5) High speed abnormal

Checklist : (30

3. What kind of noise in engine?
(1) Pulon
(2) Puchi

Checklist :(l)

*******************:*****************************
**** SUMMARY REPORT *+**t***

Name or ID Number: Chen

Date: Dec-4-84

List ol Findings

(engine start but with problem)
(noise in engine)
(a kind of engine noise sounding like pulon)

2.2. Interpretive Analysis

After the findings are gathered, the system will give diagnostic status and
treatment recommendations. The details of the output will be explained later.

Example 1 - Continued.

*************** *********>1*5** ********* ************
**** INTERPRETIVE ANALYSIS **•*
********************•************•*+******•*****

Treatment Priority Treatment Recommendation

0.3 (30 out of 100) Adjust the contact of high voltage line
0.2 (20 out of 100) Replace the spark plug
0.2 (20 out of 100) Adjust distributor line in contact

- 119 -

0.1 (10 out of 100)
0.1 (10 out of 100)
0.06 (6 out of 100)
0.04 (4 oilt of 100)

Fix the distributor connector
Smoothing the platina contact
Making width of platina contact shorter
Making width of platina contact larger

Are you interested in the internal symbols?
Yes/No : Yes

Diagnostic Status : Findings to Hypotheses

(rule f-i-3 says variable DIGNS)
(rule i-h-3 says variable SECON (3 10))
(rule i-h-3 says variable DSCON (2 10))
(rule i-h-3 says variable DPLAT (2 10))
(rule i-h-3 says variable DSPRG (2 10))
(rule i-h-3 says variable DDIST (1 10))
(rule i-h-4 says variable PLASM (5 10))
(rule i-h-4 says variable PLAWL (3 10))
(rule i-h-4 says variable PLAWS (2 10))

Explanation of Variables

(DIGNS : problem in ignition system)
(SECON : second high voltage lead line is ill-contact)
(I)SCON : lines in distributor are ill-contact)
(DPLAT : problem in platina contact)
(DSPRG : problem of spark plug)
(DDIST : disconnection in distributor)
(PLASM : platina contact surface in not smooth)
(PLAWL : width of platina contact is too large)
(PLAWS : width of platina contact is too small)

Treatment Recommendations

(rule h-t-1 says variable FXDIS)
(rule h-t-2 says variable AJSEL)
(rule h-t-3 says variable LWPLA)
(rule h-t-4 says variable SWPLA)
(rule h-t-26 says variable SMPLA)
(rule h-t-27 says variable AJDSL)
(rule h-t-28 says variable RPSPG)

Explanation of Variables

(FXDIS : fix the distributor connector)
(AJSEL : adjust the contact of high voltage line)
(LWPLA : making width of platina contact larger)
(SWPLA : making width of platina contact shorter)
(SMPLA : smoothing the platina contact)

- 120 -

(AJDSL : adjust distributor line in contact)
(RPSPG : replace the spark plug)

2.2.1. Knowledge Base

In our EXPERT system, four representional components are used to design
the knowledge base :

(1) Findings or observations (data),
(2) Hypotheses or conclusions,
(3) Treatment Recommendations,
(4) Reasoning or production rules.

Following the ideas of Weiss and Kulikowski [WEIS 84], there is a sharp distinc

tion between findings and hypotheses. Findings are the observations or measure

ment results needed to reach conclusion. Hypotheses are the conclusions that

may be inferred by the production rules. Treatment recommendations are asso

ciated with a measure of priority. The user may try the treatment with the

highest priority first. Findings, hypotheses and treatments are reported in the

form of mnemonic variables. For example, what follows is a list of variables used

in Example 1.

Findings

(NSTAR : car won't start)
(MOTDE : starter works well) .
(FCABU : fuel in carburetor)

Hypotheses

(DIGNS : problem in ignition system)
(SECON : second high voltage lead line is ill-contact)
(DSCON : lines in distributor are ill-contact)
(DPLAT : problem in platina contact)
(DSPRG : problem of spark plug) .
(DDIST : disconnection in distributor)
(PLASM : platina contact surface in not smooth)
(PLAWL : width of platina contact is too large)
(PLAWS : width of platina contact is too small)

Treatments

(FXDIS : fix the distributor connector)
(AJSEL : adjust the contact of high voltage line)
(LWPLA : making width of platina contact larger)

121

(SWPLA : making width of platina contact shorter)
(SMPLA : smoothing the platina contact)
(AJDSL: adjust distributor line in contact)
(RPSPG : replace the spark plug)

The reasoning procedures are expressed as production rules, or IF-THEN

statements. In terms of our representation; the production rules can be

categorized in terms of the three types of logical relationships among findings,

hypotheses and treatments :

(1) FH : finding-to-hypothesis rules,
(2) HH : hypothesis-to-hypothesis rules,
(3) HT : hypothesis-to-treatment rules.

In the EXPERT program, FH rules are represented by the LISP variables : f-h-

rules and f-i-rules; where f, h and i stand for finding, hypothesis and intermedi

ate hypothesis. The two variables are :

(setq f-h-rules
’((rule f-h-1

(if ((> variable) SENGP)
((< variable) NSENG)
((< variable) PULON))

(then ((< variable) DDIST)))

(rule f-h-2
(if ((> variable) SENGP)

((< variable) NSENG)
((< variable) PUCHI))

(then ((< variable) SECON)))

. (rule f-h-3 ■
(if ((> variable) SENGP)

((< variable) ABLOW))
(then ((< variable) PLAWS)))

(rule f-h-4
(if ((> variable) SENGP)

((< variable) ABHIH))
(then ((< variable) PLAWL)))

(rule f-br5 .
(if ((> variable) OTHER)

((< variable) UNWHE)
((< variable) SLONE))

(then ((< variable) LTIRP (8 10))
((< variable) SQBRK (2 10))))

(rule f-h-6

(if ((> variable) OTHER)
((< variable) UNWHE)
((< variable) SLTWO))

(then ((< variable) LWHSW (5 10))
((< variable) LJWHP (3 10))
((< variable) LGERX (2 10))))

(rule f-h-7
(if ((> variable) OTHER)

((< variable) BRAKE)
((< variable) DBRKP))

(then ((< variable) BKFLU (8 10))
((< variable) LKBFL (2 10))))

(rule f-h-8
(if ((> variable) OTHER)

((< variable) BRAKE)
((< variable) ONBRK))

(then ((< variable) WALYN (6 10))
((< variable) GDRMU (4 10))))

(rule f-h-9
(if ((> variable) OTHER)

((< variable) CLUTH)
((< variable) NSHFT))

(then ((< variable) LSCLT)))

(rule f-h-10
(if ((> variable) OTHER)

((< variable) CLUTH)
((< variable) NHISP))

(then ((< variable) LSCLT)))

(rule f-h-11
(if ((> variable) OTHER)

((< variable) ELECR)
((< variable) ODSMK))

(then ((< variable) DSBAT)))

(rule f-h-12
(if ((> variable) OTHER)

((< variable) ELECR)
((< variable) SPKNP))

(then ((< variable) SHCON (6 10))
((< variable) DRELY (4 10))))

(rule f-h-13
(if ((> variable) OTHER)

((< variable) ELECR)
((< variable) FLASH))

(then ((< variable) DFUSE (9 10))
((< variable) LSWIR (1 10))))))

- 123

(setq f-i-rules
’((rule f-i-1

(if ((> variable) NSTAR)
((< variable) DMOTR)
((< variable) DSPKR))

(then ((< variable) DBATS)))

(rule f-i-2
(if ((> variable) NSTAR)

((< variable) DMOTR)
((< variable) SPEKR))

(then ((< variable) DMOTS)))

(rule f-i-3
(if ((> variable) NSTAR)

((< variable) MOTDE)
((< variable) FCABU))

(then ((< variable) DIGNS)))

(rule f-i-4
(if ((> variable) NSTAR)

((.< variable) MOTDE)
((< variable) DCABU))

(then ((< variable) DFUEL)))

(rule f-i-5
(if ((> variable) SENGP)

((< variable) HEENG))
(then ((< variable) DCOOS)))

(rule f-i-6
(if ((> variable) SENGP)

((<■ variable) ODORS))
(then ((< variable) LEKFU)))))

For each if-then rule, if there are more than one consequences, then there is a

pair of numbers associated with each of them. For example, in rule f-h-5, we

have two variables in the then part : LTIRP and SQBRK. The pair (8 10) means 8

out of 10, LTIRP was fired when the antecedents of rule f-h-5 were satisfied. The

numbers in the production rules, if any, are obtained from the previous equip

ment fault records.

HH rules are represented by i-h-rules.

(setq i-h-rules
'((rule i-h-1

(if ((> variable) DBATS))
(then ((< variable) ILCON (7 10))

- 124
((< variable) NTOAT (2 10))
((< variable) DEBAT (i 10))))

(rule i-h-2
(if ((> variable) DMOTS))
(then ((< variable) SGEAR (6 10))

((< variable) DIGCL (2 10))
((< variable) BDCON (2 10))))

(rule i-h-3
(if ((> variable) DIGNS))
(then ((< variable) SECON (3 10))

((< variable) DSCON (2 10))
((< variable) DPLAT (2 10))
((< variable) DSPRG (2 10))
((< variable) DDIST (1 10))))

(rule i-h-4
(if ((> variable) DPLAT))
(then ((< variable) PLASM (5 10))

((< variable) PLAWS (3 10))
((< variable) PLAWL (2 10))))

(rule i-h-5
(if ((> variable) DFUEL))
(then ((< variable) VAFUE (4 10))

((< variable) FIFUE (2 10))
((< variable) PIFUE (2 10))
((< variable) PUFUE (1 10))
((< variable) WAFUE- (1 10))))

(rulei-h-6
(if ((> variable) DCOOS))
(then ((< variable) LMOIL (5 10))

((< variable) BFANB (2 10))
((< variable) BWPIP (2 10))
((< variable) BWTAK (110))))

(rule i-h-7
(if ((> variable) LEKFU))
(then ((< variable) PIFUE (6 10))

((< variable) PUFUE (4 10))))))

Finally, HT rules are represented by h-t-rules.

(setq h-t-rules
'((rule h-t-1

(if ((> variable) DDIST))
(then ((< variable) FXDIS)))

(rule h-t-2
(if ((> variable) SECON))
(then ((< variable) AJSEL)))

(rule h-t-3
(if ((> variable) PLAWS))
(then ((< variable) LWPLA)))

(rule h-t-4
(if ((> variable) PLAWL))
(then ((< variable) SWPLA)))

(rule h-t-5
(if ((> variable) LTIRP))
(then ((< variable) ADPSI)))

(rule h-t-6
(if ((> variable) SQBRK))
(then ((< variable) LSBRK)))

(rule h-t-7
(if ((> variable) LWHSW))
(then ((< variable) FXWSW)))

(rule h-t-B
(if ((> variable) LJWHP))
(then ((< variable) FXWHP)))

(rule h-t-9
(if ((> variable) LGERX))
(then ((< variable) FXGPX)))

(rule h-t-10
(if ((> variable) BKFLU))
(then ((< variable) ABKFL)))

(ruleh-t-11
(if ((> variable) LKBFL))
(then ((< variable) ABKFL)))

(rule h-t-12
(if ((> variable) WALYN))
(then ((< variable) DRLYN)))

(rule h-h-13
(if ((> variable) GDRMU))
(then ((< variable) JGDRM)))

(rule h7t-14
(if ((> variable) LSCLT))
(then ((< variable) FXCLT)))

(rule h-t^l5
(if ((> variable) DSBAT))
(then ((< variable) CHELC)))

(rule h-t-16
(if ((> variable) SHCON))

(then ((< variable) RPCON)))

(rule h-t-17
(if ((> variable) DRELY))
(then ((< variable) RPRLY)))

(rule h-t-18
(if ((> variable) DFUSE))
(then ((< variable) RPRUS)))

(rule h-t-19
(if ((> variable) LSTYIR))
(then ((< Variable) FXWIR)))

(rule h-t-20
(if ((> variable) ILCON))
(then ((< variable) FXCON)))

(rule h-t-21
(if ((> variable) NWBAT))
(then ((< variable) AWBAT)))

(rule h-t-22
(if ((> variable) DEBAT))
(then ((< Variable) RPBAT)))

(rule h-t-23
(if ((^ variable) SGEAR))
(then ((< variable) NPUSH)))

(rule h-t-24
(if ((> variable) DIGCL))
(then ((< variable) RPIGL)))

(rule h-t-25
(if ((> variable) BDCON))
(then ((< variable) AJBLN)))

(nale h-h-26
(if ((> variable) PLASM))
(then ((< variable) SMPLA)))

(rule h-t-27
(if ((> variable) DSCON))
(then ((< variable) AJDSL)))

(rule h-t-28
(if ((> variable) DSPRG))
(then ((< variable) RPSPG)))

(rule h-t-29
(if ((> variable) PIFUE))
(then ((< variable) CLPIF)))

-127-

(rule h-t-30
(if ((> variable) WAFUE))
(then ((< variable) CLFUT)))

(rule h-t-31
(if ((> variable) VAFUE))
(then ((< variable) COCAB)))

(rule h-t-32
(if ((> variable) FIFUE))
(then ((< variable) RPFIL)))

(rule h-h-33
(if ((> variable) PUFUE))
(then ((< variable) RPFUE)))

(rule h-t-34
(if ((> variable) LM01L))
(then ((< variable) ADMOL)))

(rule h-t-35
(if ((> variable) BFANB))
(then ((< variable) RPBLT)))

(rule h-t-36
(if ((> variable) BWP1P))
(then ((< variable) RPWPI)))

(rule h-t-37
(if ((> variable) BWTAK))
(then ((< variable) RPWTK)))))

The FH, HH, and HT production rules represent the static knowledge struc

ture of our EXPERT system. The rules are extracted from the cause-and-effect

diagram and categorized by content. We will discuss rules-extraction and

conflict resolution by content limiting later in Section 3.1.

%
2.2.2. Inference Machine

The control strategy in our EXPERT system is forward-chaining. It starts

with a collection of assertions and tries all available rules over and over, adding

new assertions as it goes, until no rule applies. Our forward-chaining program is

designed by modifying the "stream programming" of Winston and Horn [WINS

84], Stream programming is a powerful and newly developed concept [ABEL 84

& IDAJ 84]. An example of stream programming in its simplest form is shown in

Figure 4. A stream is created when an object is input to a stream generator. The

created stream is transformed in several stages, and finally reduced to an

object by a reducer. The use of the stream idea is common when talking about

input/output operations: programs read information from streams connected to

input files and write information to streams connected to output files. It is

claimed that a wide class of practical programming can be covered by the

stream programming paradigm [IDAJ 84].

Winston and Horn’s program was originally designed to handle complicated

types of production rules (see their book for examples). When applied to our

production rules (much easier type), the idea of the program is the simple

"match and fire" strategy. For example, in Example 1, we collected the findings

NSTAR, MOTDE and FCABU from the dynamic questionaire. When the forward

chaining procedure is applied, it loops through the FH rules, i.e. f-h-rules and f-

i-rules, first. Since all the antecedents of rule f-i-3 are satisfied, the rule is fired

and we get a new assertion DIGNS, the consequence part of rule f-i-3. The pro

cedure then loops through the HH rules, i.e. i-h-rules, and fires rule i-h-3. This

time the new assertions are : SECON, DSCON, DPLAT, DSPRG and DDIDT. Since

DPLAT satisfies the antecedent part of rule i-h-4, the rule is fired and the vari

ables PLASM, PLAWS and PLAWL are added to the previous assertions. Finally,

the procedure loops through HT rules and,fire rule h-t-1, h-t-2, h-t-3, h-t-4, h-t-

26, h-t-27 and h-t-28. At this moment, the system prints the treatment recom

mendations, explanation of variables and priority of the treatments.

Note that Winston and Horn’s program was written in COMMON LISP with

some minor errors in it. We modified it to run on the FRANZ LISP interpreter

- 128 -

-129 -

stored in the ECN machine.

2.3. Questions and Answers

The user may perform some simple questions and answers dialogue in our

system. At the end of the interpretive analysis, the system maintains a list of

rules successfully used. Each element is to contain the name of the rule, the

antecedents, and the. conclusion. From this set of rules, the system can answer

questions such as (Have you used rule ... ?), (How did you deduce that... ?), and

(Why did you need the assertion ...?). Besides these, the user may also ask ques

tion like (Can you explain ... ?); This procedure explains the mnemonic variables

used in the production rules. If the user asks questions besides the four

"canned" forms, the system will return: Sorry, I can't answer your question.

Example 1 - Continued.

****♦. ***
QUESTIONS AND ANSWERStit**

In this section, you may ask me questions like
(Have you used rule h-t-i ?)
(Can you explain DBATS ?)
(How did you deduce that AWBAT ?)

or (Why did you heed the assertion RPIGL ?)
I will answer your questions as soon as possible.
Thank you!

Question :(;Have you used rule i-h-3 ?)
Answer :Yes! I have used this rule.

Question :(Have you used rule h-t-1 ?) >
Answer :Yes! I have used this rule.

Question :(Have you used rule f-h-5 ?)
Answer :No! I did not used this rule.

Question :(Can you explain ABCDE ?)
Answer : (There is no such variable!)

Question :(Can you explain DBATS ?)
Answer : (DBATS : problem in battery system)

- 130 -

Question :(How did you deduce that AWBAT ?)
Answer :(AWBAT is not established)

Question :(HQ>w did you deduce that NSTAR ?)
Answer :(NSTAR was given)

Question :((Why did you need the assertion RPIGL ?)
Answer : (RPIGL was not used)

Question :(Why did you need the assertion NSTAR ?)
Answer :(NSTAR;is needed to show DIGNS)

Question :(Do you love me ?)
Answer :Sorry, I can’t answer your question.

Question:(stop)
Answer :ok!

2.4. Confirmation and Updating
Since the user may have several choices of treatments with different priori

ties, the system will ask the user to make confirmation on his decision. The cer
tainty factor in the production rules will be updated.

Example 1 - Continued.

**
**** CONFIRMATION AND UPDATING **** **

In this section, I need your confirmation on the
treatment I gave you above in order to update the
uncertainty numbers in the production rules.

Treatment Priority Treatment Recommendation

0.3 (30 out of 100)
0.2 (20 out of 100)
0.2 (20 out of 100)
0.1 (10 out of 100)
0.1 (10 out of 100)
0.06 (6 out of 100)
0.04 (4 ovit of 100)

Adjust the contact of high voltage line
Replace the spark plug
Adjust distributor line in contact
Fix the distributor connector
Smoothing the platina contact
Making width of platina contact shorter
Making width of platina contact larger

Do you accept the 1st treatment?
Yes/No: No

Do you accept the 2nd treatment?
Yes/No : Yes

-131 -

The production rules are updated.

Do you accept the 3rd treatment?
Yes/No : Yes
The production rules are updated.

Do you accept the 4th treatment?
Yes/No : No

Do you accept the 5th treatment?
Yes/No : No

Do you accept the 6th treatment?
Yes/No : No

Do you accept the ?th treatment?
Yes/No : No

Do you want to see the updated production rules?
Yes/Xo : Yes

The updated production rules are :

(setq i-h-rules
'((rule i-h-1

(if ((> variable) DBATS))
(then ((< variable) ILCON (7 10))

((< variable) NWBAT (2 10))
((< variable) DEBAT (1 10))))

(rule i-h-2
(if ((> variable) DMOTS))
(then ((< variable) SGEAR (6 10))

((< variable) DIGCL (2 10))
((< variable) BDCON (2 10))))

(rule i-h-3 ■
(if ((> variable) DIGNS))
(then ((< variable) SEC ON (3 12))

■■■■., ((< variable) DSCON (3 12))
((< variable) DPLAT (2 12))
((< variable) DSPRG (3 12))

: .((< variable) DDIST(1 12))))
(rule i-h-4

(if ((> variable) DPLAT))
(then ((< variable) PLASM (5 10)) %

((< variable) PLAWS (3 10))
((< variable) PLAWL (2 10))))

(rule i-h-5
(if ((> variable) DFUEL))
(then ((< variable) VAFUE (4 10))

, ((< variable) FIFUE (2 10))
((< variable) PIFUE (2 10))
((< variable) PUFUE (1 10))
((< variable) WAFUE (1 10))))

(rule i-h-6

- 132 -

(if ((> variable) DCOOS))
(then ((< variable) LMOIL (5 10))

((< variable) BFANB (2 10))
((< variable) BWPIP (2 10))
((< variable) BWTAK (1 10))))

(rule i-h-7
(if ((> variable) LEKFU))
(then ((< variable) PIFUE (6 10)) ((< variable) PUFUE (4 10))))

nil
nil))

3. Knowledge Acquisition
According to Hayes-Roth, Waterman and Lenat [HAYE 83], knowledge

acquisition is the transfer and transformation of problem-solving expertise from
some knowledge source to a program. The expertise to be elucidated is a collec
tion of specialized facts, procedures, and judgemental rules about the narrow
domain area rather than general knowledge about the domain or common-sense
knowledge about the world. In general, the knowledge acquisition process is one
of the most difficult phases of expert system building.

Dr. George V.E. Otto of AT&T Bell Laboratories in Whippany, New Jersey,
gave a talk on "Artificial Intelligence and Expert Systems,” in the Chicago ACM
Chapter on October 16, 1984. In his seminar, he stated "AI Mantra for the 80’s: In
the Knowledge Lies the Power; In the Knowledge Acquisition Lies the
Bottleneck!!" He then pointed out problems in knowledge acquisition:

(1) Knowledge engineering is not a well understood process.

(3) Knowledge engineers are in short supply.

(3) Knowledge representation language and environment is still evoling.

(4) Each expert system is still hand crafted.

(5) Reasons for rules often not coded.

(6) AI support environments still evoling.

Fortunately, in the equipment fault diagnosis task domain, the knowledge

acquisition is relatively easier to deal with. At least three reasons support this :

(1) The faults of equipment are Well-defined, because of their physical nature.

(3) The use of cause-and-effect diagram captures the expertise in a complete

and compact way.

(3) Pareto diagram solves the uncertainty problem.

133

In the following, we will discuss how cause-and-effect diagram and Pareto

diagram are used in our knowledge acquisition process.

3.1. Cause-and-EfTect Diagram

To create a cause-and-effect diagram, a team of experts is formed. In a

plant, the experts may include design engineers, technicians, line staffs and so

on, each of them shall have high degree of understand and long period of experi

ence about the system. After the team is formed, a brainstorming process

begins. During the process, various causes are proposed to explain a certain

effect. Sometimes previous data or pilot experimentations are necessary to sup

port the explanation. The more complicated the diagram is, the more sophisti

cated the system is.

In our car repair model, the knowledge was stored in a manual like book.

Since it is commercially available and has Chinese version, we assume the book

is reliable; in the sense that it was obtained by real experts using an intensive

degree of brainstorming process. We then transferred the rules in the manual

into a cause-and-effect diagram as shown in Figure 1. We also made a

corresponding decision tree because it is commonly used in real world. The tree

is shown in Figure 5. Cause-and-effect diagram and decision tree are basically

the same. Both diagrams illustrate a classification structure. The only difference

may be the former is easier to absorb knowledge of many experts and show

clearly the relationship between cause and effect. On the other hand, decision

tree is less complicated and easier to be understood by the readers.

From Figure 5, we see how the dynamic questionaire was designed, how the

FH, HH, HT production rules were extracted and how the certainty factors in

some rules were obtained.

- 134 -

At the root of the tree, three branches are possible. NSTAR, SENGP and

OTHER correspond to car won’t start, start but problem in engine and other car

problems, respectively. If NSTAR is chosen, then a question with two branches

brought to the user. If the user responds with MOTDE, then he receives a ques

tion with two possible choices again. At this moment, if he chooses FCABU, then

the system stops questioning by listing the findings collected up to this point.

For instance, in our case we have

List of Findings

Explanation of Variables

(NSTAR : car won 't start)

(MOTDE : starter works well)

(FCABU : fuel in carburetor)

In the meantime, the system moves to the inference engine by looping through

the FH and HH production rules and prints

Diagnostic Status : Findings to Hypotheses

(rule f-i-3 says variable DIGNS)
(rule i-h-3 says variable SECON (3 10))
(rule i-h-3 says variable DSCON (2 10))
(rule i-h-3 says variable DPLAT (2 10))
(rule i-h-3 says variable DSPRG (2 10))
(rule i-h-3 says variable DDIST (1 10))
(rule i-h-4 says variable PLASM (5 10))
(rule i-h-4 says variable PLAWL (3 10))
(rule i-h-4 says variable PLAWS (2 10))

Explanation of Variables

(DIGNS : problem in ignition system)
(SECON: second high voltage lead line is ill-contact)
(DSCON : lines in distributor are ill-contact)
(DPLAT : problem plaintina contact)

- 135 -

(DSPRG : problem of spark plug)
(DDIST : disconnection in distributor)
(PLASM : platina contact surface in not smooth)
(PLAWL ; width of platina contact is too large)
(PLAWS : width of platina contact is too small)

Finally, the system moves to the HT rules and gives the treatment recommenda

tions, along with the priority list.

Treatment Recommendations

(rule h-t-1 says variable FXDIS)
(rule h-t-2 says variable AJSEL)
(rule h-t-3 says variable LWPLA)
(rule h-t-4 says variable SWPLA)
(rule h-t-26 says variable SMPLA)
(rule h-t-27 says variable AJDSL)
(rule h-t-28 says variable RPSPG)

Explanation of Variables

(FXDIS : fix the distributor connector)
(AJSEL : adjust the contact of high voltage line)
(LWPLA : making width of platina contact larger)
(SWPLA : making width of platina contact shorter)
(SMPLA : smoothing the platina contact)
(AJDSL : adjust distributor line in contact)
(RPSPG‘ replace the spark plug)

Priority of the Treatments

0.3 AJSEL
0.2 RPSPG
0.2 AJDSL
0.1 FXDIS
0.1 SMPLA
0.06 SWPLA
0.04 1 LWPLA

The use of decision tree (and cause-and-effect diagram), not only shows the

rules-extraction, but also demonstrates categorization of rules by content limit

ing.

- 136 -

3.2. Pareto Diagram

We saw from Figure 2, Pareto diagram is a graphical representation device

which gives the Weight distribution of possible causes. One way to transform a

Pareto diagram into a production rule is to assign a pair of data; with the first

tuple representing the number of faults for the corresponding variables and the

second tuple representing the previous total faults of the antecedents. For

example, before updating, the original form of rule i-h-3 is ,

(rule i-h-3
(if ((> variable) DIGNS))
(then ((< variable) SECON (3 10))

((< variable) DSCON (2 10))
((< variable) DPLAT (2 10))
((<variable)DSPRG(2 10))
((< variable) DDIST (1 10))))

Since two variables RPSPG and AJDSL are confirmed (see Example 1 of Section

2.4.), the corresponding hypotheses shall be updated. Because the system kept

track of all the rules used, it is easy to trace the rules fired RPSPG and AJDSL.

The two rules Are

(rule h-t-27
(if ((> variable) DSCON))
(then ((< variable) AJDSL)))

(rule h-t-28
(if ((> variable) DSPRG))
(then ((< variable) RPSPG)))

Now, the two variables DSCON, DSPRG and the associated consequences of rule

i-h-3 are updated. The new rule is

(rule i-h-3 >
(if ((> variable) DIGNS))
(then ((< variable) SECON (3 12))

((< variable) DSCON (3 12))
((< variable) DPLAT (2 12))
((< variable) DSPRG (3 12))
((< variable) DDIST (l 12))))

1 137 -

A Experimental Results

5. Demonstrative Examples

In the previous sections we decompose the program piecewise to explain

the system organization. Now, we demonstrate a complete program to show our

system in more details.

Example 3.

Script started on Sun Dec 23 21:04:28 1984
S lisp
Franz Lisp, Opus 38.69
-> (load 'EXPERT)
[load EXPERT]

Hello! You are working on the EXPERT system.

**
**** BEGINNING OF QUERY ****
**

Enter Name or ID Number :Ye-Sho

Enter Date of Visit:Dec-27-84

1. Type of Problem:
(1) Car won’t start
(2) Car starts but problem in engine
(3) Other Car Problems

Checklist: (3)

2. Possible other type of problems
(1) Wheel(s)
(2) Brake
(3) Clutch
(4) Electric

Checklist :(l'$)

3. How is the wheel unstable?
(1) Slant in one direction
(2) Slant right and left

Checklist :(l)

4. What type of brake problem?
(1) No brake until deep press

138 -

(2) Only one side is bad brake
Checklist :(2)

**
♦*** SUMMARY REPORT *•**

Name or ID Number: Ye-Sho

Date: Dec-27-84

List of Findings

(Possible other type of problems) '
(Wheel(s) unstable when car is running) •
(Brake system is in abnormal condition)
(Wheel slants in one direction)
(Brake on one side is good the other side malfunctions)

***,|l',94,4i
**** INTERPRETIVE ANALYSIS *♦**• ♦•»*+***11'**'K* ********* ******** *****************

Treatment Priority Treatment Recommendation

0.4 (4 out of 10) Add tire pressure
0.3 (3 out of 10) Drying the lining of brake
0.2 (2 out of 10) Adjust the brake drum gap
0.1 (1 out of 10) Loosen the contact of brake

Are you interested in the internal symbols?
Yes/No : Yes

Diagnostic Status : Findings to Hypotheses

(rule f-h-5 says variable LTIRP (8 10))
(rule f-h-5 says variable SQBRK (2 10))
(rule f-h-B says variable WALYN (6 10))
(rule f-h-8 says variable GDRMU (4 10))

Explanation of Variables

(LTIRP : lack of tire pressure)
(SQBRK : squeeze of brake)
(WALYN : water in lining of brake system)
(QDRMU : unbalance of brake drum gap)

Treatment Recommendation *

(rule h-t-5 says variable ADPSI)
(rule h-t-6 says variable LSBRK)
(rule h-t-12 says variable DRLYN)

- 139 -

(rule h-t-13 says variable JGDRM)

Explanation of Variables

(ADPSI : add tire pressure)
(LSBEK : loosen the contact of brake)
(DRLYN : drying the lining of brake)
(JGDRM -. adjust the brake drum gap)

*********************** *************************
.*«■ QUESTIONS AND ANSWERS •■*■■
**

In this section, you may ask me questions like
(Have you used rule h-t-1?)
(Can you explain DBATS?)
(How did you deduce that AWBAT?)

or (Why did you need the assertion RPIGL?)
If you have no more questions, just type "(stop)".

Question :(Why did you need the assertion LT1RP?)
Answer :(LTIRP is needed to show ADPSI)

Question :((Jiow did you deduce ADPSI?)
Answer : (ADPSI demonstrated by LTIRP)

Question :(Can you. explain ADPSI?)
Answer :(ADPSI : add tire pressure)

Question :(Yo¥ou are so stupid?)
Answer :Sorry. I can’t answer your question.

Question :(tftank you Very rmuch!)
Answer :Sorry, I can't answer your question.

Question.:(stop)
Answer :ok!

**
«■ \ , CONFIRMATION AND UPDATING *
m.***

In this section, I need your confirmation on, the
treatments I gave you above in order to update the
uncertainty numbers in the production rules.

Treatment Priority Treatment Recommendation

0.4 (4 out of 10) Add tire pressure
0.3 (3 out of 10) Drying the lining of brake
0.2 (2 out of 10) Adjust the brake drum gap
0.1 (1 out of 10) Loosen the contact of brake

- 140 -

Do you accept the 1st treatment?
Yes/No : Yes
The production rules are updated.

Do you accept the 2nd treatment?
Yes/No : No

Do you accept the 3rd treatment?
Yes/No : No

Do you accept the 4th treatment?
Yes/No : Yes
The production rules are updated.

Do you want to see the updated production rules?
Yes/No: Yes

The updated production rules are :

(setq f-h-rules
’((rule f-h-1

(if ((> variable) SENGP)
((< variable) NSENG)
((< variable) PULON))

(then ((< variable) DDIST)))
(rule f-h-2

(if ((> variable) SENGP)
((< variable) NSENG)
((< variable) PUCHI))

(then ((< variable) SECON)))
(rule f-h-3

(if ((> variable) SENGP) ((< variable) ABLOW))
(then ((< variable) PLAWS)))

(rule f-h-4
(if ((> variable) SENGP) ((< variable) ABHIH))
(then ((< variable) PLAWL)))

(rule f-h-5
(if ((> variable) OTHER)

((< variable) UNWHE)
((< variable) SLONE))

(then ((< variable) LT1RP (9 12)) ((< variable) SQBRK (3 12))))
(rule f-h-6

(if ((> variable) OTHER)
((< variable) UNWHE)
((< variable) SLTWO))

(then ((< variable) LWHSW (5 10))
((< variable) LJWHP (3 10))
((< variable) LGERX (2 10))))

(rule f-h-7
(if ((> variable) OTHER)

((< variable) BRAKE)
((< variable) DBRKP))

(then ((< variable) BKFLU (8 10)) ((< variable) LKBFL (2 10))))

- 141 -

(rule f-h-8
(if ((> variable) OTHER)

((< variable) BRAKE)
((< variable) ONBRK))

(then ((< variable) WALYN (6 10)) ((< variable) GDRMU (4 10))))
(rule f-h-9

(if ((> variable) OTHER)
((< variable) CLUTH)
((< variable) NSHFT))

(then ((< variable) LSCLT)))
(rule f-h-10

(if ((> variable) OTHER)
((< variable) CLUTH)
((< variable) NHISP))

(then ((< variable) LSCLT)))
(rule f-h-11

(if ((> variable) OTHER)
((< variable) ELECR)
((< variable) ODSMK))

(then ((< variable) DSBAT)))
(rule f-h-12

(if ((> variable) OTHER)
((< variable) ELECR)
((< variable) SPKNP))

(then ((< variable) SHCON (6 10)) ((< variable) DRELY (4 10))))
(rule f-h-13

(if ((> variable) OTHER)
((< variable) ELECR)
((< variable) FLASH))

(then ((< variable) DFUSE (9 10)) ((< variable) LSWIR (1 10))))
nil
nil))

t
-> HD""
Goodbye
$ ~D
script done on Sun Dec 23 21:08:43 1984

5.1. Performance Evaluation

Performance evaluation is an important area of building expert systems.

Weiss and Kulikowski [WEIS 84], and Hayes-Roth and others [HATE 83] devoted

several spaces discussing this topic in their building expert systems books. Pro

fessor King-Sun Fu of Purdue University believed at least three topics should be

covered in discussing performance evaluation. They are : reasoning power, cost

142 -

and learning.

As stated in Section 1.3., we select car trouble-shooting as a topic to com

pare the car repair model of Weiss and Kulikowski [WEIS 84]. Although their car

repair model is not complete, we may compare the two systems from the design

point of view.

5.1.1. Reasonihg Power

There are similar characteristics on reasoning power between the two sys

tems :

(1) The production rules are composed of.FH, HH and HT. The advantage of this

device is to resolve the rules conflict by content limiting. Also, the partition,

of the production rules into three categories, saves the execution time of

the inference engine. Otherwise, the system will loop through air the pro

duction rules, some of them might be irrelevant.

(2) Forward-chaining is used as the control strategy.

(3) Both systems have simple explanation ability. Matching the query with cer

tain template is used as question understanding device. Generation of

canned text is used to answer question.

There are differences on reasoning power between the two systems

(1) Knowledge acquisition. We use a cause-and-effect diagram and a Pareto

diagram to collect expertise. Weiss did not specify exactly how their pro

duction rules were obtained. In this sense, our system is easier to be under

stood and updated. These shall be important factors when we talk about

reasoning power.

: 143 -

(2) Collection of findings. We use dynamic questionaire to gather findings. A

good feature of this approach is to avoid asking irrelvant questions. Quite

differently, Weiss used a fixed format of questionaire. We ask questions as

most human experts do; in terms of cause-and-effect diagram, we start

from the effect part first and trace to the possible causes leading to the

effect. We continue the effect-first-cause-next process until we hit the leaf

of the diagram, conversely, they start from the leaves and move to the

body of the diagram. Figure 6 and Table 2 show the cause-and-effect

diagram of their car repair model. From this figure, we see their ques

tionaire was designed by partioning all the leaves of the diagram into

several groups. Each group represents a question shown on page 78 of their

book. One drawback of their approach is that questionaire shall be

changed, when new knowledge is added.

(3) Certainty factor. In our system, the use of uncertainty numbers is objective

and more reliable. This is because we use the idea of Pareto diagram which

enables the updating ability of the production rules. Conversely, thier cer

tainty factor is subjective and unreliable. As we all know certainty factor is

a very important ingredient of reasoning power.

5.1.2. Cost
Since our system is written in LISP, the cost of running our system shall be

cheaper than Weiss’s FORTRAN-oriented system. However, excution speed is not

the only factor in judging the use of programming languages. Several other fac

tors shall also be considered. One reason that FORTRAN was used is because this

language has more Users than the programming languages for AI, e.g. LISP and

PROLOG. According to the advertisements in the first issue of International jour

nal of Expert Systems and Knowledge Engineering [CROA 84], several dedicated

FORTRAN machines are commercially available for building expert systems.

- T.44 - ■.

The author believes to talk about the cost of expert systems, one should

consider what kinds of functions the expert system can perform. This is similar

to buying a personal computer in today's market.

Both of the systems don’t have the ability of learning. The ability to learn is

still a big research area in Artificial Intelligence.

6. Discussions and Conclusions

6.1. Discussions

In the following we will discuss several interesting topics related to this

paper. These include: beyond the prototype model, human fault diagnostic

models, and comparison of expert system program and conventional one.

6.1.1. Beyond the Prototype Model

As we mentioned in section 1.1.4., further testings, refinements and gen

eralizations are needed to shape a prototype expert system. In Figure 7, Dr.

Davis [DAVI 84] showed six states of development for some well-known expert

systems. Ranging from "a gleam in somebody’s eye” to wide commercial use,

five systems have reached the stage of commercial use. But a larger number of

programs are somewhere between the stage of debugged program and experi

mental use. Davis continued to make a note on R1 which has by far the most

clearly defined development process, evolving through a sequence of stages

similar to those listed in below.

(2) System development

(3) Formal evaluation of performance

- 145 -

(4) Formal evalution of acceptance

(5) Extended use in prototype environment

(6) Development of maintenance plans

(7) System release

In its first formal evalution the system was tested on approximately twenty

cases. The results suggested that R1 would soon solve problems correctly 90

percent of the time. But when it was distributed to its user community for more

extended testing, users criticized the system performance 40 percent of the

time. What happened? Some of those problems were mistakes on the part of the

users resulting from incorrect data or a misunderstanding of program opera

tion! But there was a more basic lesson: research environments, no matter how

carefully tailored, are not identical to user environments. John McDermott, one

of the developers of Ri, has said that Rl’s knowledge base grew at least as much

during the final stage of its development as it did in any of the previous stages of

its development.

The same theme shall apply to our trouble-shooting expert system. One

drawback of the system is the expertise came from a book knowledge. We need

criticisms from real car repair experts and further improvements if the system

is to be accepted in the marketplace.

6.1.2. Human Fault Diagnostic Models and Second Generation Expert Systems

Rouse and his colleagues [ROUS 83 & ROUS 84] made a series of investiga

tions of human problem solving performance in fault diagnosis tasks. They

attempted to synthesize a model capable of describing human problem solving

in general. This model, based on a thorough review of the problem solving litera

ture, is conceptually proposed recently. The model operates on three levels:

(1) Recognition and classification. This is the process whereby humans deter

mine the problem solving situations with which they are involved. Familiar

situations may invoke a standard "frame" [MINS 75] while unfamiliar situa

tions may lead to the use of analogies or even basic principles of investiga

tion.

(2) Planning. This may involve the use of familiar "scripts" [S.CHA 79] br, if no

script is available, require generation of alternatives, imagining of conse

quences, valuing of consequences, etc [JOHA 79].

(3) Execution and monitoring. This involves the use of so called symptomatic

rules (S-rules) and topographic rules (T-rules). This dichotomy between

symptomatic and topographic problem solving was formalized in a fuzzy

rule-based model. This model first attempts to find familiar patterns among

the symptoms of the failure (i.e., among the state variables of the system).

If a match is found, S-rules are used to map directly from symptoms to

hypothesized failure. If there are no familiar patterns among the state vari

ables, the model uses T-rules to search the structure (i.e., functioned rela

tionships) of the system.

What Rouse and his colleagues did matches the research direction of expert

systems, the so called second-generation. Second-generation systems are those

that perform the same task already accomplished by another system, but do so

using some variation in representation of the knowledge or control structure, or

both. One goal of second-generation systems is experimentation: to demon

strate, by doing the same task done by the first-generation system, whether the

altered knowledge representation or control structure results in improved per

formance. A good example of second-generation vs first-generation expert sys

tem is CENTAUR vs PUFF [AIKI 83], PUFF was written to perform pulmonary

function test interpretations. The structure used to represent knowledge in

- 146 -

PUFF were IF-THEN production, rules. CENTAUR is better than PUFF because the

format* represents its knowledge as a combination of frames and production

rules and performs tasks more flexible and powerful than the latter.

Evidently, our trouble-shooting expert system belongs to the first-

generation. To upgrade our system in an expert sense, one good way may be to

implement Rouse and his associates' conceptual model. This will be progressed

by the author in the near future.

6.1.3. Comparison of Expert System Program and Traditional One

One trivial question a beginner might ask in learning expert systems is

"What is the difference between an expert system from an ordinary computer

application?'7 A short answer to this question is that ordinary computer pro

grams organize knowledge on two levels: data and program. Most expert systems

organize knowledge on three levels: data, knowledge base, and control strategy.

More clearly, what distinguishes an expert system from an ordinary com

puter application is that in a conventional computer program, pertinent

knowledge and the methods for utilizing it are all intermixed. In an expert sys

tern, the problem-solving model appears explicitly as a knowledge base rather

than implicitly as part of the coding, and the knowledge base is manipulated by

a separate, clearly identifiable control stragey. For example, in our car repair

expert system, we have global data base, knowledge base and inference machine

clearly seperated (See Figure 3).

One important reason for the modualization is that each part may need to

be updated, edited and deleted frequently. The global data base is the working

memory of the system. It keeps track of input data for the current problem, the

status of the current problem, and the relevant history of what has been done so

far. The knowledge base stores the required knowledge of the tasks. Extendibil-

: - 148 -

ity, simplicity, and explicitness are basic requirements to consider when choos

ing a knowledge representation scheme. The inference machine is actually a

collection of procedures which makes decisions about how to use the system’s

knowledge by organizating and controling the steps. The procedures are

modified whenever a more powerful algorithm is released. For example, a new

algorithm, RETE developed by Forgy at Carnegie-Mellon University [FORG 81], is

claimed recently to have a nice feature. Large production systems that use the

RETE algorithm generally execute much faster than similar systems without it;

Someday, we might modify our inference engine by using RETE algorithm.

6.2. Conclusions

Quality control is a well-suited and cost-effective area for the development

of expert systems. In this report, the author showed a prototype expert system

for trouble-shooting in on-line quality control. Also, a prototype system for

experimental design in off-line quality control is in preparation. Besides con

tinuing shaping the prototype model by testing and refinement, we need to gen

eralize the model by closely keeping track of the newly developed techonology.

Listed below are part of them:

(1) Knowledge representation. Since real experts use more than rules, the use

of production rules only represents surface-structure knowledge of human

experts. Some causal models representing deep-structure knowledge are

being pursued, under the title of Congitive Science, by some leading AI

scientists. ’

(2) Inference machine. Besides forward-chaining, there are several other infer

ence procedures commonly used, e.g. backward-chaining, pattern match

ing. generate-and-test, and constraint satifaction. The use of these various

procedures depends on the nature of the problem tasks. It would be

interesting to see a paper discussing the use of each inference procedure in

its best working environment.

(3) Learning. The field of machine learning strives to develop methods and

techniques to automate the acquisition of new information, new skills, and

new ways of organizing existing information, As Simon [SIMO 03] has pointed

out, if learning could be automated and the results of that learning

transferred directly to other machines which could further augment and

refine the knowledge, one could accumulate expertise and wisdom in a way

not possible by humans - each individual person must learn all relevant

knowledge without benefit of a direct copying process.

(4) Programming tools. Brown [BROW 84], a pioneer researcher in Al, says that

the success of AI and expert systems rests not in the intellectual arena but

in the recent dramatic advances in hardware, particularly hardware that

can effectively execute LISP - the lingua franca of AI. He continued. "AI sys

tems that required dedicated, million-dollor mainframes five years ago now

can run on machines that cost only $25,000. For the first time we have

cost-effective delivery engines for expert systems, a major change." Besides

LISP, severed programming languages are suited for expert systems

development; e.g., PROLOG, and OPS 5. The RETE algorithm mentioned

above is used in the OPS family of production system languages.

(5) Natural language front-end. Expert systems that need to produce English

explanations have for the most part gotten along quite well so far on simple,

small, linguistically naive generation programs. Full-scale, linguistically

motivated text generation capabilities will be required of expert systems

simply because the intricate grammatical contraints on the text produced

by recursively embedded source data structures will eventually swamp any

ad hoc facility, especially as the number of objects in the system requiring

- 150 -

description grows and the sophistication of the desired text increases. This

trend will lead to a better explanation and consultation ability for expert

systems. ’

In summary, the feasibility of using expert systems technology in quality

control is without questions. However, to build a real expert system, it is neces

sary to do intensive testing, constant refinement, and incremental generaliza

tion as a cbntinuing task during the entire useful life of the system.

- 151 -

7. Ref erences and Appendix

7.1. References
[ABE1.84] .

Abelson, H. and Gerald J.S. "Structure and Interpretation of Computer Pro
grams," MIT Press, Cambridge, Massachusetts, 1984.

[AIM] •
Aikins, J.S. "Prototypical Knowledge for Expert Systems," Artificial Intelli
gence, pp. 163-210, 1983.

[AT&T84]
"Workship on Artificial Intelligence in Statistics," AT&T Conference Center,

Princeton NJ, 15-16 April 1985. (See the Ad in AI Magazine, p.87, Fail 1984)
[AUT084] ;■.. °

"Dr. Taguchi - Japan’s Secret Weapon," August 1984 Issue of Automotive
Industries, pages 18 and 20.

[BROW84]
Brown, J.S. "The Low Road, the Middle Road, and the High Road," In the AI

Business, Commercial Uses of AI, 1984.
[BUCH84] ;

Buchanan, B.G. and Shortliffe, E.H., "Rule-Based Expert Systems : The
MYCIN Experiments of the STANDFORD Heuristic programming project,"
Reading, MA : Addison-Wesley, 1984.

[CORP]
Copp Richard, "Report on Japanese Quality Engineering using Designed
Experiments," July 1984, American Supplier Institute, Incorporated.

[CROA84]
Croall, I., Ishizuka, M., and Watterman, D. (Eds.) "EXPERT SYSTEMS", VoL l,
No.l, July 1984.

[DAVI84]
Davis Randall, "Amplifying Expertise with Expert Systems," The AI Business,
Commerical Uses of Artificial Intelligence, edited by P.H. Winston and K.A.
Prendergast, 1984.

[FORG81]
Forgy, C.L. "OPS5 user’s manual," Technical Report, Carnegie-Mellon Univer
sity, Department of Computer Science, 1981.

[GEVA82]
Gevarter, W.B. "An Overview of Expert Systems,” (NBSIR 82-2505) Washing
ton, DC: National Bureau of Standards; 1982.

[GEVA83]
Gevarter, W.B. "Expert Systems : Limited but Powerful," Computers, 1983.

[HAYE83]
Hayes-Roth, F., Waterman, D., and Lenat, D. (editors) "Building Expert Sys
tems,” Addison-Wesley, New York, 1983.

[IDAJ84]
Ida, J. and Tanaka, J. "Functional Programming with Streams," New Genera
tion Computing, 2 (1984) 261-275, OHMSHA LTD. and Spring-Verlag.

[JOHA79]
Hohannsen, G. and Rouse, W.B. "Mathematical Concepts for Modeling Human
Behavior in Complex Man-Machine Systems," Human Factors, 21(6):733-747,

M
- 152. -

1979.
[MAY084] .

Mayo John, "Process Design as Important as Product Design," Manger's
Journal, The Wall Street Journal, 1984.

[MINS75] .
Minsky, M. "A Framework for representing knowledge," In P.H. Winston (Ed.),
The Psychology of Computer Vision. New York: McGraw-Hill, 1975.

rL M0ST84]
MOSTOW Jack, "Rutgers Workshop on Knowledge-Based Design" ACM SIGART
newsletter, pp. 19-32, #90, October 1984.

[ROUS]
Rouse, W. B., "Models of Human Problem Solving: Detection, Diagnosis, and
Compensation for System Failures", Automatica, vol. 19, 1983, pp. 613-625.

[R0US84]
Rouse, W. B. and Ruston, M. H., "Human Problem Slolving in Fault Diagnosis
Tasks", Advances in Man-Machine Systems Research, Vol. 1, 1984.

[SAGA84]
Sagalowicz, D. "Development of an Expert System," EXPERT SYSTEMS: The
International Journal of Knowledge Engineering; Vol. 1, No.2, October 1984,
pp. 137-141.

[SCHA77] : ■
Schank, R.C. and Abelson, R.P. "Scripts, Plans, Goals, and Understanding."
Hillsdale, NJ: Lawrence Erlbaum, 1977,

[SIM083] ; •
Simon, H.A. "Why Should Machines Learn?" In R.S. Michalski, J.G. Carbonell,
and T.M. Mitchell (Eds.). Machine Learning: An Artificial Intelligence
Approach. Palo Alto, CA: Tioga Press; 1983; 25-37.

[STOC69]
Stockel, M. W., " Auto Service and Repair". Good-Heart Willcox Company,
Inc., S. Holland, IL.

[TAG U 79]
Taguchi, Genichi. "Introduction to Off-Line Quality Control," June 1979,
American Supplier Institute, Incorporated.

[WEIS84]
Weiss, S.M. and Kulikowski, C.A. "A Practical Guide to Designing Expert Sys
tems,” Rowman & Allanheld, Publishers, 1984.

[WINS84]
Winston, P.H. and Horn, B.K.P. "LISP", 2nd edition, Addison-Wesley Publish
ing Company, 1984.

fit figures and Tables V? m? esOi &

L (o V)

/ °'l
/ . ■ BDCo

Table 1. Explanation of the Abbreviated Variables in our Gar Repair Model.

(ABHIH: engine abnormal in high spped but normal in low speed)
(ABKPL: add brake fluid)
(ABLOW: engine abnormal in low speed but normal in high speed)
(ADMOL: add motor oil)
(ADPS1: add tire pressure)
(AJBLN : loosen the lead line clean and fix it)
(AJDSL: adjust distributor line in contact)
(AJSEL: adjust the contact of high voltage line)
(AWBAT: adding water in batteiy)
(BDCON : battery lead line ill-contact)
(Bi-'ANB : loose or broken of fan belt)
(BKPijU: lack of brake fluid)
(BRAKE!: brake system in abnormal condition)
(BWPIP : water pipe broken)
(BWTAK: water tank broken)
(CHELC: check electric circuit if short circuit exist)
(CLEUT: clear fuel tank)
(CLPIF: clean the fuel pipe line)
(CLUTH : problem in clutch)
(COCAB: Cool carburetor)
(DBATS: problem in battery system)(DBRKP: no brake untill deep press on accelator)
(DCABU : no fuel in carbretor)
(DCOOS: proWem in coolant system)
(DDIST: disconnection in distributor)
(DE3BAT: dead battery)
(DETJEL: problem in fuel system)
(DEUSE: fuse is dead)
(DIGCL: ignition coil does not work)
(DIGNS: problem in iginition system)
(DMOTR: starter does not work)
(DMOTS: problem in motor system)
(DPLAT : problem in platina contact)
(DRELY: relay is out of order)
(DRLYN : drying the lining of brake)
(DSBAT: disconnecting batteiy)
(DSCON : lines in distributor are ill-contact)
(DSPKR: speaker does not work)
(DSPRG : problem of spark plug)
(E3LECR: problem in electric system)
(EUABU : fuel in carburetor)
(E1EUE: block of fuel filter)
(ELASH: flash light is out of order)
(EXCLT : fix the clutch)
(EXCON : fix the connector)
(EXDIS: fix the distributor connector)
(EXGPX: fix the gear box screw)
(EXWHP: fix the joint between wheel and propeller)
(EXWIR: fix lead wire to light)
(EXHTSIf: fix wheel screw)
(GDRMU: unbalance of brake drum gap)

- 155 -

- 156 -

(HEENG: car start but engine has problems)
(1LCON : ill-contact in lead line)
(JGDRM : adjust the brake drum gap)
(LEKFU: fuel leakage)
(LGKRX: loosen of gear box screw)
(UWHP : lossen between wheel and propeller shaft)
(LKBFL: leakage of brake fluid)
(LMOIL : lack of motor oil)
(IiSBRK: loosen the contact of brake)
(LBCLT : loosen of clutch)
(JLSWIR: loosen of wire)
(LTlliP: lack of tire pressure)
(LWHSW : loosen of wheel screw)
(LWPLA: making width of platina contact larger)
(MOTDE : starter works well but engine doesn't work)
(NHISP: no high speed)
(NPUSH: put transmission in N and push the car)
(NSENG : noise in engine)
(NSHJT : noise in shifter)
(NSTAR: car won't start)
(NWBAT : no water in battery)
(ODORS : odorous smell in engine)
(ODSMK: odorous smell and smoke when car running)
(ONBRK: one side brake is good the other side is malfunction)
(OTHER : possible other type of problems)
(PIFUfi : Mock of fuel pipe)
(PLASM : platina contact surface is not smooth)
(PLAWL : width of platina contact is too large)
(PLAWS: width of platina contact is too small)
(PUC111: a kind of engine noise sounding like puchi)
(PULON : a kind of engine noise sounding like pulon)
(POFUE : fuel pump is dead)
(RPBAT : replace a battery)
(HPBLT: replace the fan belt)
(RPCON : replace the connector)
(UPE1L : replace fuel filter)
(ItPFUE : replace the fuel pump)
(RPEUS: replace fuse)
(liPIGL : replace the ignition coil)
(RPRLY : replace the relay)
(JtPSPG : replace the spark plug)
(KPWPI: replace water pipe line)
(RPWTK: replace water tank)
(SECON : second high voltage lead line is ill-contact)
(SENGP : engine start but with problem)
(SGEAK : motor gear and fly gear squeeze)
(SHGDN : short circut of connector)
(SLONE r wheel slant in one direction)
(SLTWO : wheel slant right and left two direction)
(SMP1A : smoothing the platina contact)
(SPEKR : speaker sound well) ’
(SPKNP : speaker sound and can not be stopped)
(SQBRK: squeeze of brake)
(SWPLA: making width of platina contact shorter)

- 157

(UNWHE: wheel unstable when car is running)
(YAFUE: verporization of fuel in carburetor)
(WAFUE : water in fuel tank)
(WALYN : water in lining of brake system)

user

Dia^wostic
•Status

Tfc©\T*veA/r

R^Cc. AA M &A>AtX0*J
^H/vt ^p^fe-T2c.v/^-

Fipure 3. Sustem Organization of Trouble-Shooting Expert Sustem.

of^LJb

liaure 4. Stream Programming.

ddxm

Kgure 5. Decision Tree of the Car Trouble-Shooting

fc** f

to it

160

r

A
f oni>OS0.

■2- U-kf

>11/?^) mv)4) '
)1V

'0

a

C\J
vO

I

N ' ^

i ^ ■> ->
e/ > - y

CL05‘

J-lVfo-n^sxs

■ inure £. Cause—and—Effect Diaoraffi of. Weiss 's Car Repair Model..

- 164 -

Table 2. Explanation of the Abbreviated Yaziables in Weiss's Car Repair Model

(BATD : battery discharged)
(CAB : battery cables loose or corroded)
(CULT: fuel filter clogged)
(CHOKE: choke stuck)
(CLEAN : clean and tighten battery cables)
(DIM : headlights are dim)
(EGAS : gas gauge reads empty) '
(ELEC : electrical system problems)
(EMPTY: no fuel)
(FCWS : car won’t start)
(HLT : fuel filter clogged)
(FLOOD: car flooded)
(FOTH : other car problems)
(FUEL : fuel system problems)
(GAS : put more gasoline into tank)
(GBATT: charge or replace battery)
(GRIND : grinding noise from starter)
(LCAB : battery cables loose or corroded)
(LGAS : very strong odor of gasoline in carburetor)
(MGAS : normal odor of gasoline in carburetor)
(NCKNK: no cranking)
(NGAS : np odor of gasoline in carburetor)
(NSl’AR: replace starter)
(OCKNK: normal cranking)
(OPEN : remove air cleaner assembly and manually open choke+ with pencil)
(RFILT: replace gas filter)
(SCRNK: slow cranking)
(STRTR: starter malfunction)
(TEMP : outdoor temperature(degrees lO)
(WAIT : wait 10 minutes or depress accelerator to floor+)

- 165 -

HEARSAYHII
PROSPECTOR
PUFF
TEIRESIAS
INTERNIST
MACSYMA
META-DENDRAL
DENDRAL
PROGRAMMER'SAPPRENTICE
ABEL
HARDWAREDEBUGGING
SOPHIE
STEAMER
MYCIN
R1
DIP ADVISOR

. j : I ?
i

y.^1
^ f ;

: /j w

• •• ” i.

• ■ xixIII

I- & i
1' 1

■" . i' :

111 ^ j j
I!III

Figure 7. State of Development of Some Well-Known Expert Systems.

Chapter 4

Deep Drawing Feasibility Expert System

G. Eshel

Seep Drawing Feasibiiitu Expert System - 167 -Sad Eshei
ABSTRACT

Peep Drawing Feasibility Expert System (DDFE) checks
producib i 1 ity of axi-symmetric parts by the deep_drawing
processes. The system will be incorporated within a general
metal_working process_planning system, that will include
forming processes, for generating multi-technology
process_outlines.

Before entering the detailed-specifications design stage
of a process, the processjlanner checks the feasiblity of
producing the specified part by the examined process. The
expert knows the capabilities of the process he is considered
an expert in, the significant features of the raw_material,
and the resources available - raw_material in stock and the
capability of the machines.

The DDFE is designated to be operated by the designer or
by the process_planning coordinator. Both are not domain
experts (in the deep-drawing technology). Nonetheless,
they seek an answer about their feasibility inquiry. Thais
why the system is not interactive, - it goes by the
fundamental principle of automatic process_planning, as
opposed to computer aided process_planning.

Since a complete theoretical analysis of the
deep_drawing process has not yet been accomplished, the
expert is vital. To infer the answer the expert uses a
combination of theoretical computations, empirical results,
and approximate measures. Extracting the process-capabi1ity
knowledge, and putting it into a formal representation, is
the core of the DDFE, and the most challenging task of the
system designer. The essentials of the process_planning
approach and the deep_drawing process are described in the
first part of the report.

The knowledge of the DDFE is organized as a hierarchical
ru!e_based system. The data_base and the inference machine,
are largely independent and user_updatab1e. Inference, is
done through primitive matching of Horn clauses. It draws
primarily on the built-in theorem—proving capabilities of
PROLOG, - the language it is programmed in - and higher
level, "macro"s. To the extent possible, database (
relational, represented as: ” PROLOG facts'"--) is genralized
in frames, and rules are structured. This facilitates almost
unrestricted data_base updates and, some rule modification
capabi1ity.

The portion of the DDFE described hereby gets as an
input, the CAM representation of the required part, and tests
producibi1ity, employing the main process ("cupping") and
redrawing.

It works and has produced sound advices.

%

%

%

%

^ ■

- 168 -

1. TERMINOLOGY
General:
The evaluated workpiece is represented by the right-hand side*

of the crp5s_sectional view, of a plane through the axis of sym
metry.
Sizes: longitudinal sizes given in inches* angles : degrees.

Abbreviations in the program:
H - denotes height* or* in list processing; Head of a list.
Final-shape - in program: the shape at end of process.
ID - inside diameter.
Initial-shape - in program: the shape at start of process.
OD - outside diameter.
R - denotes : radius. May be prefixed or suffixed to another term.
RM - raw_material.
T - in list processing* denotes Tail of a list.
WT - wall thickness* default for: nominal wall thickness.

Notation for f1ow diagrams:

■ '% ■

%

*

FF — form feature*
SE - Shape Element*
WP — Workpiece.
LEGEND:

t
»

■—— - a possible path for material flow
............. - a possible path for process_planning
•v-*v-v-v'v<v<v»vs.<v, _ a cut in the global picture* to isolate a window,

x - a fork: path selection.
<yy) - the No. of the conceptual process_planning operation.

- 169 -

I Process name* I
I II I
I I» I -

' <Process__Output>■ I ..•••' ' ' ' ’ : ■s .
(yy) ! ^CConceptual backwards analysis!]#

... -1 •
X~--------- ------------------- ;-----------
I II I .

' >’ ' Vv !

Meaning assigned to terms in the document

assemblu - adopt the std. ANSI# ZI-94 definition: a joining of
parts / subassemblies that can be disassembled without destroying
the components.

aux. operations /processes - if the main process is assumed to be
a forming process# then all machining and HT operations are auxili
ary operations.

comp 1ementaru processes - processes within a family of processes#
that come to modify main shape obtained by main process.

component — usually refered to as: a component of an
assemb1y/sub-assemb1y/fabrication

composite process - a sequence of one main process# or sliced
raw_material» and the following secondary processes# being of dif
ferent metalworking processes.

conceptually solved problem - A problem treated and conceptually
solved in a dissertation or research work# although not yet imple-

merited.

Deiiachine. DeFojrm. DeDraw. ... - the conceptual backwards,
proc ess_planning activity of producing the initial shape of the
workpiece, once its final shape in the particular process is given.

Deep Drawing Ratio - deep drawing ratio. Usually denbtes the maxi

mal feasible cupping for

design - assumed to
manufacture.

OB
a complete draw.Befinedas: RM

OB

conform with principles
cup

of design-for-

envelope - the wall + the two bases.

fabrication - workpieces joined so that to disassemble them means
destruction of the components.

Feasibility - implies both technological workability, availability
of resources. and an acceptable, upper bound limit, to the effort
to achieve it. This last measure would be refered to as: "general
ized cost". Further elaboration in & 2.

finished form — (or: finished shape) the shape and mechanical
properties of the material after the end of the worked process.
Note: "finished form" pertains to any intermediate process. while
"finished required part" pertains to the final process.

finishing processes - processes which do not chnage the nominal
sizes but the surface texture.

initial form — < or: initial shape) the shape and specifications

- 171

of the material* of the workpiece* at the start of the process.

main shape - the "thinned" < skeletonized) outline of the
envelope, r- where its form features are "filled" with material.

main shape of a process - the standard prototype shape of either
the initial or the final shape of a process.

massive Forming processes - A Forming process in which the shape
undergoes massive change, usually Hot-Forming, and IS is a Billet.

methodologically - < or: symbolically) applies to a demonstration
that is included schematically or by an example only, to demon
strate existence and to imply that a thorough work is needed to
include the entire scope. It is assumed that this form of presenta
tion does not cause loss of generality of the issue at stake.

net shape—forming - forming process that yields a final shape and a
surface that does not require finishing. Usually, this notion per
tains to forging processes.

aarametrization of a process — a very flexible definition for fil
ling up the frame of a process with semantics.

preform - a raw shape produced by a massive forming process.

orimaru processes - massive forming + casting .

primaru workpiece - a one-component workpiece - there is no join
ing operation in the current context of evaluated manufacturing
processes.

prioritu o£ a process - the notion is used here when several
processes compete over producing a certain feature* to denote that
a certain process is always prefered to another.

process outline - the twin-tuple sequence of nasne^of^process and
shape_of_workpiece at beginning of process.

process plan - the sequence of the processes and process parame
ters needed to produce a defined part to design specifications.
Does not include control instructions of the equipment actuators.

process planning - the process of determining the proc ess _p Ian.

prototype shap e - the type of shape that a process is capable of
producing (might be referred to as : "simple prototype shape"* too
>.

Revalue - the ratio between the plastic starin in the stretching
direction (width and/or length* or hoop stretch) to the ration in
the orthogonal direction (wall thickness).
secondary processes - processes that employ a relatively small

deformation (drawing* spinning* swaging* ...) or significant
metal removal < to exclude various finishing processes).

semi-composite proc ess - a sequence of e simple process followed
by supplementary processes.

shape feature - a FF that is produced* clearly and solely* by a
sheet metal process.

simple process - a secondary process whose initial shape is stock

- 173 -
mater ial.

stage - < or: pass) usually pertains to forming processes: an
element of the forming process which performs a change of shape.
Corresponds to a "cut" in the machining process.

sub-assemblu - a lower level assembly, can be a fabrication or a
workpiece.

supp1ementaru process - a forming process that modifies a certain
shape element of the entire workpiece and thus complements the main
process.

techno!oou - a sequence of main processes (each might be a
multi-stage) and aun. operations to work a given initial form into
a finished product.

wall - the rotational profile of the workpiece, - without the
bases.

workpiece - a primary mechanical part while in the process of
being worked on.

- 174 -

■%

% ■

'■%

■!»

•%

2. ENVIRONMENT, AUTOMATIC PROCESS PLANNING, DRAWING PROCESSES andTHE R5LE OF THE EXPERT
2.1 INDUSTRIAL ENVIRONMENT, SCOPE

Environment.
The industrial environment the DDFE is incorporated in, is the

small_batch, one of a kind, technologically advanced - manufactur
ing. The prevalance of this mode is widely publicized and will not
be elaborated here. Normally, in this manufacturing environment,
whenever a process_plan for a workpiece is designed, candidate
processes to compose the processes_outline, unto which, the part
will be manufactured, are all the known processes in' the
plant/enterprise. Thus, expanding the Automated Process_Planning
Methodology, to include non-chip-forming processes is a real indus
trial necessity.

Families Of Products And Processes:
The "holistic" idea is demonstrated through a. simplified fam

ily of parts and processes. The parts are workpieces with rota
tional symmetry. This property leads to the use of rotational-
shape_producing processes. A domain that contains machining, as
well as various forming processes, like: drawing, spinning,
tube_sinking, and raw^tube-producing processes: An expansion can
include special surface deformation processes, which are grouped
into the finishing processes < like shot-peening, burnishing, etc.
) too. The system is currently capable of generating deep-drawing
processes, only.

A process is capable of producing simple prototype end_shapes
out of a predefined raw_workpiece prototype, (see: prototype)
only. This constraint may be later released.

Types of materials, forms, and sizes of raw_material are the
commercially available ones. "Commercially available" means here:
within the range.of products, of the raw_stock producing mills, -
not confined only to stock that is held usually in warehouses, or
considered an 'off the shelf' product.

Comment: Axisummetric Products.
The family of rotational parts constitutes a major share of

the batch manufacturing industry, and thus, the need to generalize
the scope of products, is not that acute. - Due to its large share
of the above described industry, furnishing a solution to the fam
ily of rotational parts is of great significance, even without
applying the methodology to other types of products.

175 '
Representation of technology:
Technology is represented realistically : boundaries will be

set for normal industrial use# and not for the special cases.
Assumptions# with regard to processes and relationships among the
processes# apply to the bulk of the products in this environment#
but not necessarily# to 100% of them. (e. g. : Usually# the spun
surfaces in the tube-shear-spinning process are not machined#
although they might on rare occasions. A rule that states "spun
surfaces are not machined" covers the normal shop practice).

2.2 FORMING PROCESSES WITHIN THE MANUFACTURING PROCESSES.
2.2.1 The Plastic Deformation

A solid body subjected to a force of small magnitude is
deformed elastically such that the strain is directly proportional
to the Stress. When relieved of the stress* the body returns to its
original dimensions. Therefore* elastic deformation is a revesible
or recoverable process. But* when the imparted forces result in a
composition of stresses that exceed a certain yield boundary* the
body is permanently deformed. and the process is irreversible, or:
irrevocable. Actually > there is no complete ‘regain of the
deformed strain in elastic deformations* and* on the other hand*
each irrevocable process exhibits a small rate of elasticity. But*
definite revocabi1ity / irrevocabi1ity are useful idealizations*
even though a range of elasto-plastic problems is treated in plas
tic i ty..

The main properties that determine the workpiece behavior
under stress* vary extremely with regard to material* its grain
structure* temperature* duration of the process* the history of
deformations taken place.
The theoretical theory of plasticity attempts to formalize experi

mental observations of the macroscopic behavior of a plastically
deformed workpiece.
To put in the appropriate context: the physical explanation of the
elastic and plastic properties of solids* is taken from the micros
copic point of view, - in relation to the material crystal struc
ture.. ;
A comprehensiv study of plasticity in C Johnsonl, Slater j.

The term: "Forming processes" pertains to the whole range of
processes in which the shape and mechanical properties of a solid
metal workpiece, are altered without material removal. inspite of
the remarkable advance of knowledge about the process during plas
tic deformation, and development of new analysis methodologies, in
the last decades* full knowledge is yet illusive* and forming
processes expertise remain largely experience based.
2.2.2 ; Formina Processes* and Their Classification

There is no accepted classification method for the enormous
number, and variations, of forming processes utilised in industry.
The more common ones are:
a. characterization by the homologous temperature - hot* warm*

cold.
b. chip_forming vs. chipless forming (already refered to above

).

c. a mechanical analysis point of view: state of stress of the
workpiece (simple, complex, uniaxial* ..).

- 177 -

d. a type_of_stress_involved view: tensile, compressive;
e. characteristics of plastically deformed zone: size* local (

sheet forming) <—> comprehensive < bulk deformation
processes-).

f. amount of strain rate involved.
Several methods tried to unify the advantages of each of the

classifications above. Thomsen; Yang and Kobayashi C Slater 1 sug
gested a scheme based upon the kind of stresses involved; taking
into account their properties. They have ended up in 4 groups;
which will serve as a reference for further classification in the
course of this work.
1. Squeezing group: the workpiece is subjected to compressive

stresses and a large change in shape is produced. — forging;
extrusion; rolling; swaging; spin and roll forging. Most of
these processes are hot worked.

2. Drawino group: the workpiece is subject principally to a ten
sile stress. Generally; a smaller plastic deformation is
acheived per operation. The workpiece is usually a bar sheet
or tube; and primary changes are in shape; while changes in
thickness are the result of those changes.. ' processes in
this grbup include: wire bar and tube drawing; and the range
of deep drawing processes.

3. Sending group: here the workpiece is subjected to couples;
thus inducing stress gradient throughout the thickness.
Change of shape is dominant; while change of thickness is
mostly of secondary order. — flanging and break—form operations
are included in this group.

4. Cutting group: chipless forming: - piercing; blanking, shear
ing/ Chip forming group: conventional machining opera
tions. A third subgroup include more recent processes; mainly
small-rate metal removal processes: EDM, ECM, ultrasonic
machining, electron-beam and laser machining.
Sheet metal forming is a broad term for .metal-working

processes in which the shape of a punch and a die is reproduced
directly in the metal. Thats why, it is sometimes called: " press
forming ", or: " die forming ". From the kind_of_stress classifi
cation all the sheet metal processes fall within the drawing group.

Another classification of metal working processes, which is
found useful for embedding the sheet metal forming processes, dif
ferentiates between primary and secondary processes, while the
secondary are categorized by their < surface / volume > ratio.
The primaru processes impart large strains, shape fluid metal or

mold doughy metal. This group corresponds to the " Squeezing group
" + casting and powder metallurgy.

The secondary processes group include, thus the following fam
ilies and processes (U-S designates, here: Uni-Stage operation
process, the default is multy-stage > :
Forming:

Low surface/volume
- main processes:

* Tube-Drawing (with stationary / floating mandrel)
* Shear Forming (tube spinning, cone spinning)
* Deep Drawing < ironing, tube sinking)

- supplementary (to complete/modify shape)
* Nosing (Tube Sinking, Tube Expanding), (U_S)

Large surface/volume
- main processes

*■ Deep Drawing (rubber forming, hydroforming,
with/without blank holder)

* Spinning (forming various surfaces of revolution)
■ * Roll Forming + Weld. * (U_S)

- supplementary (to complete/modify shape)
.* Dimpling (radius, cone, flange), (U_S)

tubular shape_producing methods
(with some overlap with above classified processes):

■* Shear Forming: Tube Spinning
* Ring Rolling, (U_S)

■ * Roll-Forming + Weld. , (U_S)
Metal removal:

- large scale : shearing
- small scale : point - machining.

Note:
the various plastic surface deformation processes (shot and blow
peering, burnishing, etc.) are grouped into the finishing
processes and therefore will not be included, although the need to
utilize a process of this familiy will be stated.

- T79 -

2.3 GENERALIZATION OF AUTOMATIC PROCESS-PLANNING
2- 3. 1 Process Planning Functions & Phases:

Process_plahning is a function and a process. The function is:
The subsystem responsible for conversion of design data to work instructions ", C Weil 3.

This view of process_planning is not confined to the metal removal
domain of processes* although* currently, it is a standard practice
to delimitate it to machining only C Weil 3.
While production planning is intended to realize the efficient
utilization of resources to obtain production goals*
process_planning is exclusively concerned with the selection of
the processes and process parameters to perform the manufacturing
operation itself.

Proc©ss_p1anni^9 < manual or automatic > can be viewed as a
tree of activities . In the process of determining the methods
and the sequence of processes to work out a required finished com
ponent, to design specifications* 13 main phases can be dis
tinguished:
1. Selection of the process_outline.
2. Determination of raw_material allowable forms and conditions.
3. Determination of auxiliary operations, within the

process^outline framework.
4. Determination of elements within the each process of the process_j3utl ine.
5. Tool / die design.
6. Machines selection.
7. Determination of holding / clamping devices.
8. Determination of inspection instrumentation and tools.
9. Determination of the intermediate shapes and tolerances.

10. Parameterizing each operation / element. < e.g.: cutting con
ditions, press speed, ...).

11. Identifying difficult / impossible design features and correct
them, with designer, if possible.

12. Working duration, - direct and indirect. 1

1. extending C Weil 3 version of a machining_only
process_planning.

- 180 -
13 Selection of the optimal / " best " for shop needs

process_plan.
The DDFE is going to concentrate on the c loser_to_the__root

branches of this tree of activities:
- selection of raw-material / initial form
- selection of a technology (the sequence of processes)
- specifying initial and final form at the end of each operation.
- assigning machines to operations.

2. 3. 2 Foreward <—> Backward Process Planning
Before an activity is automated it must be well formulated in

a formal way. Process_planning automation is difficult because it
is not a straight forward activity. The manufacturing processes*
on the other hand* are much easier formalizable. The manufacturing
activities have definite order and procedures to be carried out
upon. they consists of discrete sequential steps. Defining the
process_planning activities in terms of the manufacturing opera
tions* yields them formalizable too. One useful* recent* method
for formulating the process_planning activities* in terms of the
manufacturing activities* is the bac kward process blanning or:
inverse-manufacturing. By this approach* every process_planning
activity is seen as the inverse of the manufacturing activity*
along the whole ladder of the process_plan.

Applying this principle, for drilling a hole* would mean: fill
up the tubes removed during the machining activity* starting with
the finished hole, ending with the hole filled to its initial-
state-surf ace. Similarly* for a forming process, instead of draw
ing the cup from a blank* the inverse process_planning would mean:
straighten the cup to produce a blank, such that can be found in
s t p c k.

This approach, while implemented to the sequence of operations
that comprise the process_plan, means: a backward sequence of
processes* starting from the finishing process* ending up with the
rawjnaterial recognised in stock.

*

- 181 -

2 3 3 BgDer^nnnfll Itli D.ggl^ln Q1 grPCCtSPt EfiL Process Planning

Aft noted ftbov#, expanding the applicability of
process^planning beyond the chip-forming pfocotMi, it one of the
primary objective* of building thi* eipert system. One view of
»uch a generaliled system. it described here by.

MATERIAL FLOW IN THE MANUFACTURING ENVIRONMENT:

I Fiau_M.i ti»r i a 1
I acqoiiition I

K bars, sheet# plates# tubes..>

uastinp. I
Powder_Mi*ta 1 lur gy I

Massive Forming

Kpreformed pert>

Secondary Forming
processes + aux.
metal removal

I<casting>
I
1I
I
I
i
I
I
II
r

i Machining v
I 8c L____I
I Finishing Processes S

Kflfiished worbpieee>
I

? I
(Preparation for joint!
I I

lx)
I

(X)I

Kflnished worlpiece« ->
K-ready to be joined»

lx) II I

I Fabrication

Kfabricated WP>

I Machining
I Fabricated I4P
I

V V V V V

I Assembly
I

<finished assembiy>

Note: Sheet foetal parts# that may employ several forming processes
following a large-scale MR process, are all included in the domain
of: 'secondary forming processes ♦ aux. metal removal

182 -

•%

■m

%

%

-%

I'fWGLSS'-P.LAIWNQ AfitftLYai.fi ELQH
: i
! Rau*_Ma ter i a 1 I
! Acquisiton I

< t ub e>
C r o d >
‘C r i n g >
<plate>

A< ingots > I IO- I
- * |

<6 h e s? t> ! ICplateM I<tubes>l —-1 Krods*I (b i 11 ats> I
: ii (! 1j

111
Casting*

Powder^metallurgy
i? (■*<casting>
i

*CDeForm_7o Std. _RM3*1
1

iS Massive l Forming i 11 11 1
/\ <*v<preform>1 i

I
1

IJ
I
I ! Secondary Forming*! I including multipleI t forming processes.—OI auxiliary processes I * metal removal

I 'Xformed p«rt> II « I
I 1 11 ——------—
*------- >-----—“8 f tI I * II * I I------ >--——* ,~ I I I*C DeMa chining __1 3*1 ^ II *CDeMachinlng_23*I I *CDeMachining_33*

I l l I *CDeMochining 43*j Ilf “
-------------- ——I--- ----I Machining j |» V L. j* Fininshing Processes I

I*tDeForm_To Mass. Form. 3* i

<Finished WP>1 <“■—*——~x
#CDeJoin-Prep. 3*1

!

• l I Joint preparation I
* I

^Finished WP*- <*>••<*> K-ready to join>
CDeFebricate3

I . . I i

Fabrication
's<fabrication>

Machining the Fabricated WP
''Cmachined fab. >I

(t) l Z) < 2) i :i i —
A i i

i i : i i i -----
#CDeAssemb 1 « J# | J '-
I I I I I I I I

(y) Uj) (y i
l

Ass efflb1y

i
I
I
!

t
l

- 183 -

2.4 ESSENTIALS OF THE DEEP DRAWING PROCESS.
5h eet-metal—forming processes* broadly referred to as:

"press-forming", "die-forming", "deep-drawing" or: "stamping"
processes# represent a wide spectrum of flow conditions. At one end
of the spectrum, stands the forming of a flat bottomed cylindrical
cups out of a flat blank, (cupping), where principal strain is
positive (tensile)» the other is negative (compressive)» and
the change of thickness is neglible. At the other end we find
biaxial—stretching operations where two of the principal stresses
are tensile, and resultant thinning is significant.

Sheet metal forming ' is distinguished from bulk-forming
processes# in that here, tension dominates* and one or more sur
faces of the deformed region are not supported by tools.

Formability depends upon: lubrication# tooling. rate of
materiaL flow# material properties, and true -'slip-lines (the lines
in the deformation zone along which shear occurs •). The slip_lines
depends largely on the radii of the boundaries connecting the zones
of flow. See [Johnson! 3* C Koistinen 3, t Niemeier 3.

A simple illustration of the relatively simple process : cup
ping, would explain the some of the basic highlights of the metal
flow in the deep drawing processes. C Johnsonl 3. The essentials
of the tools are shown in fig. 2.4.1, and the progressive states of
the drawn blank illustrated in fig. 2.4.2.

punch

blank

Y BLANtf-
HOLDgR /

fig. 2.4.1 - tools in cup drawing.
(from: I Johnsonl 3.)

%

%

■%

fig. 2.4.2 - progressive states of drawn blank.
< from: C Lyman 3.)

For a more extensive evaluation of the drawing process. - see
C Woo. Slater. Johnsonl. Lee 3.

Analysis of the cupping process shows 5 distinct regions
developing in the blank C Johnsonl. Slater distinguishes 6 zones 3.

A forming limit in this process occurs when the stress at one
of tin?. local 'necks* drawn in fig. 2. 4. 3 exceeeds the yield stress,
- thlmv Lite local necking would start to elongate in the direction
of tension, until fracture reached. The most frequent defects are:
wrinkling, puckering, exaggerated earing, wall tearing, and edge
cracking. An extensive discussion of defects common to the deep-
drawing family of process in C Johnson2 3. Some typical
deep_dr*aniing defects in fig. 2.4.5.

Sheet metal forming is limited either by wrinkling or buckling
of the sheet, due to inadequate restraint or insufficient.tension,
or, by tearing, out of excessive tension. From the analytic point
of view, failure here, is usually caused by plastic instability in
tension, rather than fracture. Nonetheless neither of the two most
common measures of tensile ductility : -reduction in area and
total elongation, - correlate significantly with the process per
formance. For each process, material, and operational parameters;
if a large number of tears are examined, a curve which establish
the "secure" boundaries of strain, can be drawn. This curve is
called. Forming Limit Diagram, it has the typical shape as in fig.
2.. 4. 4.

- 185 - , :

— Punch Stretching
—- In-Plane Sketching
—M-K Predict Ion

(n • 0.24 m • Q, 012 r • 1.5 >

•Modified by
Fracture Limit

f-aoio

0.8

fig. 2. 4. 4. - typical forming limit diagram
(from: C Ghosh 1.)

See C Andersen 3. C Koistinen 3, C Hecker 3, for more details.

186
• m.

■ y*

m

■m

Ear and
elonqoied mch-v^

(funned

w°1J_thinning
earing

Cxcesi
metal

Punch
Punch

puc ken rig
comp os i -te pyob I em

fig 2.4.5 - some typical defects occuring in deep_drawing.
< . from: C Lyman 3.)

9

-187-

2- 5 COMPLEMENTARY DEEP DRAWING PRDCFRc;^
When the basic preliminary draw can not produce the required

cup, additional complementary processes are required. The most com
mon ones in practical die—forming industry are*
i. Redrawing, >

ii. Sizing : Flanging,
Contouring,

iii. Reducing: Necking,
Nosing,

iv. Expanding:Regular,
Bulging,

v. Ironing,
vi. Embossing.
vii. Trac trix_die drawing
viii. Hydrostatic drawing

The main process itself, can be categorized, by the type of
strains developing during the draw, into three main groups:
i. cylindrical_cupping,

ii. taper_cupping,
iii. spherical_cupping,

Analytical insufficiency does not prevent the deep-drawing
processes from being carried out extensively in the industrial
world. C Wick 3, C Lyman 3. The inability to provide exact solu
tions has led to the development of empirical knowledge and approx
imate rules. C Hobbs 3. These rules mostly rely upon consequential
observations of the drawn shells. Such knowledge furnishes in
practical performancei formability limits, blank holding force and
the relationships between the various radii (bottom fillet, flange
fillet), of the drawn shell. The subject of formability limits has
only recently been extensively researched , thus, furnishing a more
complete practical know-how. C Pittman 3.

2. 6 OTHER AXI-SVMMETRIC SHAPE PRODUCING PROCESSES
% - 188 -

■%

■%

As noted above, the cause of automatically generating the
proc ess_out 1ine is the existence of competing# axi-symmetric_shape
producing processes. Some of the outstanding ones are:
1. Hydroforming:

i. Guerin / Verson_Wheelon / Marform#
ii. Rubberjad^f orming#

i i i. Bulging.
2. Sp inning . ■

i. Metal spinning
ii. Flow forming

iii. Shear forming.
3. Explosive forming:

i. Th in_shel1s#
ii. Thick shells.

each of these processes# has its advantages# and shortcomings#
especially# with regard to range of sheets and materials worked#
and the outc oming mechanical properties. As a first stage exten
sion of the system# it is recommended# to embed these processes.

%

%

189 -

2 7 THE ROLE AND THE NEED FOR OF THE DRAWING-PROCESSES EXPERT
The role of the metal_forming specialist (expert) is to

provide the designer and the manufacturing engineers with informa
tion required to design the product and efficiently operate a
metal—forming process. The information includes the nature and
extent of the deformation involved* and the forming parameters to
facilitate the process* such as: force* power* lubrication As
indicated above* no complete analytical solution of any of the
metal forming processes* has yet been accomplished. Among the main
difficultie.s in obtaining such a solution:
i. The phenomenological nature of the mechanical properties of

the materials. We are able* thus far* to characterize the
material behaviour* in various ranges* but not to deduce quan—
titavely its properties from its structure.

ii. Material properties are constantly changing during the flow of
the metal. Its dependence upon the temperature* rate of flow,
and internal flow directions has not yet been fully under
stood.

iii. Plastic anistropy (inhomogeneous features of different direc
tions) and the exact values of friction* at each zone of
deformation* are neither constant nor known.

iv. A complete solution* which involves elasticity and the chang
ing conditions of plasticity* is mathematically complex.
Because of the analytical complexity* process__planning of

f orming processes is done by spec ific_process experts. It is a
common industrial practice to rely upon different experts for each
sheet metal process* and even for different types and sizes of
products, process. Moreover, specialization and expertise, are con
fined to class of products. Thus* one can find that conferences
for producing stampings for the auto industry and for the
airplane-building industry deal with different material. C Kois-
tinen 3, C Chen 3.

a. e ’zmvmm ihe DBAHJWfi-EacfiEfiaEa &x£eri ttiiBiM a muzjtesm
srsiEti E6R Qzmmnm auipmaiically. cjaaeoains PRqcE8flj3.uiLiME&
One possible incorporation of the DDFE in a more comprehen

sive* generalized* process_planning system* that includes other
axi-symmetric .shape producing processes of cless-II < drawing-
stresses)* is shown below:

(for legend; see & terminology >.

. COMPOSITE PROCESS

UfcLPUI IP EEQQESR ELAbMIM:<Finished WP>
I Machine : I
I I •
!Nonrotational FF'sl

KFinished WP# with material fill->
Kfor nonrotational FF/s>I

<1> Y#CDeMachining nonrotational FF'» 3*
v

I Machino: SI I
I Rotational FF's I

KFinished WP, with material fill->
Kfor rotational & nonrotational FF 'i>I ^

(2)J #CDeMac hining rotational FF's .3#
I(The FF's that can be obtained by machining only)
v

I Machine : {
I complement FF's I
I of Forming Proc. I

KFormed WP, without comp 1emntary FF's>
!< that are removed through machining >I

(3)I*E Demachine FF's.of.complementary.forming 3a
v

IForm:First Process I
(fine. : aux. oper.) (
I uni/multi-stage i

KFirst-Process.Formed WP>
<3. 3)f*C DeForm Complementary Forming processes 3*

I < i. e: Delronning. DeSizing* DeExpanding* ...)v
K(n-1)-th process.Formed WP>

<3. 3)I*C DeForm.Intermediate.Forming 3*
1 /(n-l)-th process#/
I (eg: DeReDrawing* DeSplnning.Intermedlate_Pass)

I Form: n-th Processl
I < inc. : aux. oper.) I
I uni/multi-stage I

Kn-th-Procees.Fermed WP>I
<3. 2)l#C DeForm.Basic.process 3#

I (DeDraw, DeSpin, ...).
v

tForm: Sup. Process I
I < inc. : aux. oper.) i
I uni/multi-stage I

KFormed WP>. I
<4)I#C DeForm.A.Squeeiing.Proeess 3#

v
I Locate/ Purchase I
I Raw-Material in I
I in Stock. (

KStd. RM shape. >
E1ML QQ6L QE EfifiCESS-ELAMlM

fig. 2.0.1 - One Concept of A Multg-Expert Process.Plenning System.

- 191 -

2. 9 ABOUT APPLICABILITY.

The applicability and generality of a research do not always
go together. Engineering research is often directed to a class of
problems which is quite clearly bounded. Extensive elaboration is
required to convert a general methodology to a working application.
None the less* results can be extended beyond the original field of
application. It is hoped* this system will not be an exception to
this rule.

Usage & Extensions
Some of the potential uses of the DDFE within a plant are:

- A more thorough check of producibi1ity of designs at the design
stage.
- Make the process_planning function more efficient.
- Discover new manufacturing possibilities.

The motivation to automate the machining processes* — to save
tedious* recurring* manual work* optimize parameters* utilize more
extensive knowledge and expertise* etc.*- is valid with all other
metal working processes.
A successful realization of the proceSs_planning design for the
primary parts < i. e. : not including fabrications) opens the route
to "DeFabrication" - decomposition of the fabricated part into pri
mary workpieces* and "DeAssembly" - decomposition of the assembled
part into primary workpieces or fabrications.

%

%

- 192 -

3. 1 STRUCTURE OF FEASIBILITY
Feasibility is intuitively perceived as technical workability,

but automating the process_outline generation requires a formal,
complete definition of feasibility. Since technical feasibility
alone, would have led to infinite number of process outlines, the
need to tie feasibility to "soundness" or "cost viability" is obvi
ous.

3. GENERATING FEASIBLE PROCESS OUTLINES FOR FORMING PROCESSES.

The following brief discussion of feasibility relates
process_planning parameters with it.
A process_outline is feasible, IF (

Every operation of the sequence of processes is feasible,
The sequence, as a whole, is feasible.

For any intermediate process, including the concluding one:
An operation is feasible IF

The material (raw_workpiece) entering the process conforms to
the required prototype Initial Workpiece,

The changes of features of the finished (outcoming)
shape conform to the prototype changes of the process,

■■■■■.'.'...■Th'e. changes, of features of the finished (outcoming)
shape are executable.

The appropriate and sufficient equipment exists (main machine
and auxiliary equipment).

The first operation should yield to an additional condition:
First (Initial > operation is feasible IF

The material (raw_workpiece) entering the process conforms to
the required prototype Initial Workpiece,

The the changes of shape features and mechanical features of
the finished (outcoming) shape conform to the
prototype changes of the process,

The the changes of features of the finished (outcoming) shape
are executable,

The appropriate and sufficient equipment exist (main machine
and auxiliary equipment),

Raw_liaterial of the required type, form, condition, & quantity
is available.

The sequence as a whole is feasible IF
Management requirement are satisfied (quantity, lead-time >,
The over-all cost of the sequence is in the order* of or less

than some reference process, usually:
machining. (if that process is capable of

producing the desired properties).

The cost criterion* which is the only hon-technical criterion,
is introduced in order to block against generating
technolo g ic a 11 y—f ea sib1e but logically absurd process^outlines"
E.g.: If turning on a lathe can obtain the required surface finish
honing should not be considered.

The complementary process to verifying feasibility is:
parametrization. In parametrization the process is assumed to be
feasible and the detailed instructions to carry it out are filled.

. i -

3-2 THE ROLE OF FEASIBILITY TESTS IN AUTOMATIC PROCESS PLANNING

- 193 -

The first stage in the process of selecting the "best" < or:
"optimal" > process_outlinej is generating the candidate
process_outlines. These candidates should withstand the feasibil
ity tests* as defined in the section above.

Whereas in machining feasibility is a clear-cut measure* being
satisfied usually allows implementation of the process* - ih metal
forming* the actual process parameters are matter of additional
experiments and technological development. The successful accom
plishment of the process is not guaranteed. Hence* feasibility
check in metal forming corresponds to process-selection in machin
ing. .

In machining, frequent feasibility tests are:
i. If the tool can reach the machined area*

ii. If the process is capable of producing the type of feature*
iii. If machine sizes suffice.
iv. If the machine precision withstands requirements
In forming processes, feasibility would test* in addition:
i. If conditions for start_of_flow of material are satisfied*

ii. If the flow of material can be accomplished without a defect /
failure been encountered.
Because of the complicacy of the analytical analysis, and the

variety of affecting factors* and their relative weight* for each
process* these feasibility checks assume distinguished importance.

3. 3 ASSUMPTIONS ABOUT FEASIBILITY OF A FORMING PROCESS
The following assumptions lay the foundations for the validity

of the feasibility discussion in the deep-drawing processes:
I» If some parameter is within the required range* it is assumed*

the concrete selection will be successfully accomplished* dui—
ing the actual parametrization.
e. g. : if control of friction can bring us to values in the

range of: L 0.04* 0. OS 1* and the actual feasibility required
friction of 0.05* it is assumed that the exact value will be
obtained.

XI. Die and punch can be designed successfully to produce the
required shape. 4

III. Feasibility can be decomposed. E. g. : feasibility of drawing a
tapered wall can be separated from the checking the tapered
shell radii. IV.

IV. Feasibility check can follow the extreme boundaries pattern.
I. e.: for each feature examined either a lower or an upper
bound can be set.

195 -
3. 4 FEASIBILITY REQUIREMENTS OF EQUIPMENT and RAW MATERIAL.

Equipment Feasibilitu
As defined above availability of the appropriate equipment is

a condition to carry out the operation/ while availability of
raw_material conditions the gross process_outline. Equipment is
appropriate IF
i. It is of the right class*

ii. Its structural features of the main machine satisfy require
ments* < i.e: control type* number of strokes in a press* type
of actuation* ... >.

iii. Its capacity contains the requirements* (e. g. ; tonnage of the
first stroke greater than the required blank holding force*
...) '

iv. Its sizes facilitate the work < e. g. : bed size allows the part
clamping* . . .).
In addition* each machine has a characteristic cost and other

managerial characteristics < restricted here to : average wait time
)> that participate in the overall feasibility check of the pro
cess. '

The DDFE check feasibility by the following rules:
The structural- requirements group consists of

i. the control type < NC* manual* . . .)*
ii. the actuation < mechanical* hydraluic* pneumatic* . . .)*
iii. group of special_machine oriented features < e. g. : for a

press: # of slides).
Here* the feasibility a goes by a scheme of descrete matching.
Upper bound specification does not fit. A general rule may
specify:

IF mechanical_actuation is required
THEN hydraulic_actuation will do too.

OR: :.-V
IF a two-slide press is required
THEN either a two-slide press or a three-slide press fits.

The scheme determines the applicable matching range.

g £^LB-iL£A.jlM. 9roup contains all the quantitative ■features of the main machine and the auxiliary equipment,
l-or a press, the capacity requirements include such features as:- tonnage in the i-th stroke*
- length of the cushion,

maximal speed of each stroke,
- accuracy (defined as deviation of punch under max. force),

The features of the machine that facilitate the execution of
the process, should be either "greater_equal_than" (most of the
features), or "1 ess_equal_than” (accuracy) the computed requirements.

Raw Matera1 Feasibi1itu
Raw_material is apprpriate IF

It is of the required material,
It is of the right form < sheet, tube, rod, ...),

- fiber direction dictates different features.
It is in the right mechanical condition,
Each raw_material unit in stock can issue at least one

workpiece,
There are enough units to provide for all the required quantity.

The mechanical condition property is of special complicacy. If
there is no exact matching with the exactly required condition for
the forming operation, a heat-treatment should be considered. The
heat-treatment for raw_materia1s is a complicate operation, in
practice, and in extracting the knowledge for its feasibility.
Among the underscored check-ups for this preparatory operation:

i. Check for the appropriate, available, proven, heat-treatment process.
ii. Check for the apropriate heat-treatment furnace (appropriate

in terms of: sizes, temperature, temperature distribution,
temperature tolerance, cooling facilities, ...),

iii. Check for the appropriate atmosphere (air, neutral-gas,vacuum, ...)
in order to simplify the first stage of the DDFE it is assumed

that only exact matching of the raw_material will satisfy therequirement.

35 A gENERALIZED ALGORITHM FOR GENERATING COMPOSITE
PROCESS OUTLINES. • j ‘
The generalized algorithm for generating feasible process__ou11 ines follows a general# recursive/ approach of "test

and rectify". Proceeding# backwards from the finished required
workpiece# unto a recognized_in_stock' raw_material and initial
basic process# an initial process_outline is generatad. The com
plete sequence of the process^outline is tested for feasibility#
forewards# - from the first process# arid if a feasibility fault is
found# the process__out1ine is rectified. The recursive
lest_and_rectif y continues until no fault is found.

The logic for not following a generate_an_operation_and_test
algorithm# is that since the intermediate twin-tuples of C
Initial_shape# Process_name 1 are not definite an infinite number
of process-out 1ines may be generated.

A schematic flow-diagram of this algorithm in fig. 3.5
Note: the flow chart below only demonstrates the main idea about:
"test and rectify " it does not present a ready_to_program algo- r i t h-m.

*
K Finished WP, from designer >
I
v

- 197 -

I set initially : I
i Goal WP *« f
I Finished UP I

v
?-------------------- *-- --- <------
v < Goal WP,
I for process_outline >

I Update refinement I
1 stage. | (I

I
v

! generate (
J backwards)
I process_outline J

I C Iinitial WP in
I process_outline>
v

I
IIII
(
IIII
I

l
tIII

I test feasibility I (set: new goal_part I
(of process_out1ine((finished shape of 1
(foreu/ard I (infeasible operation?

I < Pracess_outline- !
I diagnostics > I

infeasibility
fault

detected ? .

NO I

1 process_out1ine I
(is feasible. I
(display results. I

1
\ /
v

fig. 3.-9 - Tes t^and^rec ti f y flow-diagram

- 198 -

%

%

■

4. 1 A GUESTION TO A DEEP DRAWING EXPERT, and EXPECTED ANSWERS.
Since the Deep-Drawing Expert is perceived as incorporated

within the total automatic process—p lanning system (the general
ized one, that includes non-chip producing processes); consulta
tions with him will take the form of:

*' what is the combination of processes) in your field of exper
tise, that can produce the required end^product "
"If the required end-product is not within the range of expected

end-products (either not in the form of the main shape of the pro
cess, or of deviating sizes) produce an intermediate product, out
of which the end-product can be later extracted.”
This modification produces an interdiscip1inary process—out 1ine,
or: composite process—out1ine.

The simplest composite process-outlines are those composed of
the main forming process and an auxiliary machining process. If
the required end product can be extracted from the outcoming shell
by machining only, the shell inscribes the end product - (the end
product is enclosed within the shell.)

Thus, for the composition of machining and deep—drawing, in
case some irregularity of the end—shape is discovered, the
deep—drawing expert assumes he is allowed to produce an inscribing
shape In this case, his first operation will be: " inscribe the
end product by a parametrized standard main shape of the process
This enclosing is defined, symbolically, in appendix I-II, in the
process independent predicate: "enclose". For the first stage
development of the DDFE it is assumed the required parts are
already beyond that preparatory stage. (they fit the main—shape
of the process').

If the required end product does conform to the standard pro
totype of the process, the expert is expected to come out with one
O'P the ; follotning definite answers:

” The required end product is producible by the family of
processes,,. and this is the feasible process—outline (the sequence
of twin-tuples of initial shapes and processes) "

OR:

’’ The required end product is not producible by the family of
processes, and this is the first irregularity discovered during the
check

The DDFE leaves the task of modifying the design to the
designer. ;

4. DESIGNING FEASIBLE DEEP-DRAN INO PROCESSES.

The expert infers the answer by utilizing his knowledge of the
process flow_of_metal characteristics in the process* the general
forming processes knowledge (materials properties* fields of
strains. . . >* and the plant resources (raw_material availability
and equipment properties).

Note* that the feasibility check is not an interactive ses
sion. It is a basic concept of automatic process_planning that the
inference of the process will be fully automatic and not interac
tive. Interactiveness requires some expertise in the manufacturing,
field* and it is because of this inexpertise. that automatic
process^) lanning systems are sought.

- 199 -

4. 2 APPLYING TEST AND RECTIFY FOR GENERATING DEEP DRAWING
PROCESS OULINES
The methodology of generating a deep-drawing process_outline*

which is implemented in the predicate:
GENER ATE_AND_TESTi_PROCESS_OUTL INE. ih appendix I-II* is hereby
described:

The root-rule predicate - GENERATE_AND_TEST_PROCESS_OUTLINE -
can be implemented (start the feasibility check)
if the required part (actually* the inscribing envelope* out of

which the part can be machined.).
If no need for machining* identify the candidate processes

required for producing each of the elements of the final shape* and
assign priority to each of them. Output of this stage: a list of
candidate processes. with priority of application for the
current_fInal_shape.
Backwards* generate a process_outline such that » each twin_tup1e

in the sequence consists of process_name and the initial shape for
that process* back unto the first stage.
The first process is distingushed from the intermediate processes

by the fills of the twin_tup1e-slots: a basic process (a process
performed out of a standard raw_material in stock)* and a standard
raw_material in stock.
For the initial candidate process_outline generated: start the

’’test and rectify " procedure.
(The " test_and_rectify " process is currently implemented only

for the basic process).
For the raw_material selected test feasibility of initial process.

(the predicate : FEASIBLE INITIAL PROCESS in the program per
forms this test).

Feasibility of an initial process is validated if :
1. there exists an appropriate and sufficient material in stocl<

.2. an appropriate machine in the shop is available
3. can the required shape be worked in the basic process without

defects from the stock raw_material as is (no heat treatment
or any machining except for cutting the blank).

Shape tests include check if the die and punch radii/ are greater
than the required minimum, for the draw_ratio is less than the max.
allowable draw_ratio for the shell material.
If a fault is detected rectify process:

Rectification root-rule for the main_process, rectifies
process_outline and retests. The test is comprehensive for every
modification.

i. IF raw_material fail: Check for next possib1e thicker size (
if thicker plates allowed)> until no more available
raw_materials in stock.

i ;t. If machine fail: - do not rectify, - stop_and_explain.
iii. IF shape fail: check redrawing.

Incorporating complementary processes, and ironning - see
scheme in S< 3.5. These parts are not yet implemented.

- 201

THE METHODOLOGY OF INFER ING DRAWING-PROCESSES FEASIBILITY
A Drawing_expert that gets the specifications of the part

required, first modify the shape to the std. output of the family
of processes. This adjustment includes:
1. Prepare the required part for drawing feasibi1ity_check.

1. enclosing the finished part with a minimal rotational,
axisymmetric envelope.

2. check for minimal fillet radii and mark them.
3. modify marked radii (if involves change of end_shape —

with designer).
4. Re-enclosing the axisymmetric envelope: increase wall

thicknesses of segments of the envelope, so that the fil
let radii of a segement will be connected by straight
continuous lines, subject to certain rules of thinning.

5. Check significance of mechanical properties: is a
heat_treatment required after end of draw ? - if the
body does not undergo ironning,

6. add allowances for finish machining.
2. Identify candidate complementary processes.
3. In conformance with priority table : Infer the initial

input_workpiece (raw_workpiece) for the complementary pro
cess.'

4. Perform stages #2, & #3 until a main-process output_workpiece
reached.

5. Check wall_thickness changes and decide upon ironing.
6. Perform redraws, if required because of shape contour.
7. Check feasibility of main process. Infer if redraws to produce

simple cup is required.

%.

%

■%

■%

- 202 -

4. 3 INPUT.
4’ 3. 1 CAN REPRESENTATION OF THE WORKPIECE and THE ULTIMATE GOAL:
RETRIEVAL FROM C. A- D. DATA BASE.

CAM representation is the description of the uiorkpiece in
terms of the process it is bound to be produced. hence# the CAM
representation of the workpiece is not unique and not general. It
is process dependent. For machining purposes# the process genera
tor should deal with form features - or rather surface features.
Whereas for forming operations# volumetric description of the work-
piece is required (sometimes# together with surface features >.

Since axisymmetric shapes and axisymmetric__shape_prbducing
processes are evaluated# a concatenation of volumetric shape ele
ments will suffice as an appropriate CAM representation. In the
following paragraph a CAM representation of a simple shell.

The ultimate goal of the automatic process_planning is to gen
erate the process_outlines directly from the CAD data_base. In
such art ideal system# a feature recognizer module would extract the
information for the CAM representation of the workpiece. Another
module would interpret and combine the extracted features to a set
of workpiece properties (one of them may be the GT class of the
shape). Features extraction directly from the CAD database have
been thus far# only conceptually proved feasibile.
4. 3. 2 FORMAT OF INPUTTING A QUESTION.

As noted above# conceptually# the required finished product
description, is taken directly from the CAD database. Practically:
the CAM interpretation of the CAD description is inputted directly.
Then, assume: preliminary preparatory stage has been accomplished.
- Main_shape recognized / modified to conform with the requirements
of the process.
In this case : the part was inscribed within a "minimal" rota

tional, axisymmetric# with bottom# envelope.
The part is represented as a four-tuple predicate in the fol

lowing frame:
part (Part name, Part_material» Part_shape# Part_requirements)
The part shape slot is nested within the part frame# being a

frame in itself.
The part_shape frame is composed of a list of elements# each

of them is a frame. The element frame is:

- 203 -

Element_name*
Element_type»
Wall_thickness*
Ins i d e__d iameter*
Appropriate_parameters

<- determined by 'element_type')
Recess_radius» < Fillet-radius)

the The corresponding frame for
parameter_type slot of the el each parameter tuoe dgtprmin^H ement. by

Frame for part requirements;
t Required_quantity, allowed Lead_Time 3

The following shell-shape of fig. 4. 3. 2. l i
description in illustration 4. 3. 2. 2

fig. 4. 3. 2. 1 - shell shape.

- 204

part(part_3,
CC st, 4130 3, C 36, rc 33,
C

C f, h, 1/2, 10, 15, 1 1,
* C a, al, 1/2,6, CIO, 43, 2.5 3,

C ui, v, 1/2, 6, 7, 1 3,
C b, h, 1/2, 0, 6, 0 3

3,
C 100, 21 3

).
% '

illustration 4. 3. 2. 2 - shell of fig. 4. 3. 2. 1 - coded.

%

-a

- 205 -
5- IHE KNOWLEDGE OF JHE DRAWING-PROCESSES EXPERT and ITS REPRESEN- TATION ' ~ 7
5.1 GENERAL.

As noted above, a complete solution to the deep_drawing prob
lem is not available get, only segments of the resultant behaviour
of the deformed part in the process, are known. These practical
segments fit the expert_like approach synthesis: different models
apply to different sets of conditions and contexts.

It has been found that this real life appearance of knowledge
best fits a production system formulation. Hence, the general
forms of knowledge representation in the DDFE are either production
rules or facts. The rules are structured in the form of "Horn
Clauses", and the facts in relational database. The Horn_clause
has one left hand predicate, which stands for the antecedent of the

"IF precedent THEN antecedent" form.
Thus formally, allowing only one consequent to any combination of
conditionals. The one_result form does not limit the actual
result, only its formal representation, because any left-hand
predicate can be the antecedent of any set of conjunctions / dis
junctions of right hand predicates. Both recursion and graph
structure of rules stem from the fact that any right-hand predicate
may bear in itself a composite combination of precedents (includ
ing itself).

Since in many cases a rather natural description of knowledge
may be a semantic network, an hierarchical structure of rules
corresponds to this relationship. In this case the initial rule,
out of which the tree branches down, is called: root-rule.

There are several layers of knowledge, according to the level
of complicacy and generality of the rules. The knowledge in each
layer is a set of rules.
The layers, in descending order represented below:
1. Rectify a process_outline.
2. Generate a process_out1ine Define (generally) and infer feasi

bility of any intrmediate process.
3. Define (generally) and infer feasibility of the basic (ini

tial) process. 4
4. Define process capabilities (any process) to produce its

parametrized std. shape, from a std., parametri zeff,
raw_workpiece.

its5. Define process capabi1ities (any process) to produce
parametrized std. shape, in terms of the resources sought.
Define composite computations (related to search the
data_base and manipulate the retrieved data).
Define primitive matching of the data_base : expand the PROLOG
built-in capabilities to database search.

8. Define low_level computations.

% - 206 -

*

•%

m

5. 2 ALGORITHMIC, PROCESS-INDEPENDENT KNOWLEDGE
The algorithmic, process-independent knowledge, or the gen

eralized knowledge of the expert, is actually the high intelligence
of the DDFE. It encompasses the following areas:
i. General conditions for feasibility.

ii. Generation of a next process
iii. Generation of a process_outline < " test_and_rectify ").

This high level knowledge is reperesented in the form of pro
duction rules with some common structural elements; The predom
inant common structural elements are:
i. The call to the stop_and_explain function in cases of

encountering a fault.
ii. The definition of the feasibility conclusion.
iii. The strctured interpretation of the part and final shape

information.

- 207 -

5-3 PROCESS CAPABILITIES KNOWLEDGE. - EXCERPTS
5. 3. 1 Contents of Process Capabilities

The detailed process ...capability knowledge for the deep_drawing
- main_,process - ; 2, The excerpts extracted in
this paragraph are intended to exemplify the type of the practical
engineering knowledge, which is constitutes the process capabili
ties files. In the appendix, the rules are either, self explanatory
or a preceeding comment helps clarify them.

The process capabilities knowledge is the process-dependent
knowledge. Here at least one variable of the predicate is instan
tiated. Most commonly, to the name of the process.
The rule here is of the following general form:
IF

{ process conditions, inital_shape properties)
THEN

< Required Final_shape feasible within the following range >.
Or, in Horn_clause form:
predicate_name< Part, Initial_shape, Process, Final_shape) :-

combination_of<

•*

%

•C sets of process conditions in terms of the initial_shape >
).

The three main areas of process capabilities rules are:
i. Raw_,material and initial shape workable in the process,

ii. Exact and Minimal machine requirements
i i i, ■ Elements of the produced shape and their relationship to the

initial shape < of the particular material).
Some of the rules formulated in this paragraph are simplified

for the cause of demonstration. (putting them in the coded rule
form is much more efficient). . —

- 208 - 2."

5. 3, 2 Assigning a workpiece to a process: verifuino practical
boundaries.

Description of Shape■% ■

As shown in St 4. 3 shape is a structured concatenation of rota
tional riji5L5.» starting from the rim (flange). Each of the ele
ments filled in the slot* is an frame in itself. The element
frame, which is a six-tuple predicate, has, as its second variable,
"type of ring shape" slot. The possible values of this slot, and
their meaning, is following:

%

- 209 -
Bang ft of values foji iiLg. rina

TUPft Code

U

parameters:
parameter

i n s i d e_diame t er

+ (angle)
- (angle 1
t radius
- radius
t radius
- radius
+ radius
- radius
t radius

a* 3* 3 Preliminary Constraints Qn Processed Shapes.
Sometimes! it is useful to employ global boundary limits#

before going into detailed tests. Qy this principle# some rough
features of the part are defined and checked through different
predicates# in the process_capabilities data-base.
The approach by which the feasibility is checked through series of

refinements# is adopted in other rule_Jbesed p r p c e sB_p 1 anning sys-
terns < C Descottel# C daviesl). To demonstrate the type of the
feasibility constraints some excerpts for spveral deep drawing
processes are presented. “

of deep_drawing processes holds whence:
*

i

The following set some boundaries due to range of Machines to
work the drawings out. These are machine-dependent# faetory-
dependept constraints. The main machines that determine the fol
lowing limits are:

The domain
la
WT > 10

210

%

%

%

i.
i i.

i i i

Deep draining.
Presses sizes. (largest
Heat-Treatment furnaces
nace height and diameter
Lathes to turn the discs

50 > 0D > 1 }
50 > H i

opening & table sizes).
(highest possible temperature,
),
for the initial drawing

f ur-

Hudroforming .
The hydroforming process producess a nominally uniform wall

thickness shapes. The undesirable changes in wall thicknesses are
of secondary order (comparable to conventional deep drawing
processes). Control of that change, requires, currently, an
engineering development, of a sophisticated, numerically con
trolled, process.
The process domain contains:

In addition to the Deep_Drawing Constraints:
WT<~ - for Alluminium 2024, ?0?5 16
hTTCrT- - for Stainless Steel .Ik

5. 3. 4 Shape Producing Capabilities.
< change in mechanical properties not presented here).

Drawing, Main Process
Raw material: Circular Sheet / Plate.
In this process one draw is performed. The general con

straints on shape produced by the Main_process only, are:
D.>B. for any j>i. x- j '

D.l
recess R.— l

<25

Deep_Drawing_Ratio for the first "cupping" operation is within
the boundaries of: < 25% .. 55% >. The highest values obtained by
the maximum drawability alloys: stainless steel and copper alloys,
while the lowest for refractory metals (like columbium based and
tungsten). The limitation of one draw, limits the practical scope

- 211

of products* significantly.
Aside for the class of stretching processes, where normal aniso

tropy prevails, no pre_planned strain_hardening is considered.
From the technological point of view, the drawn part undergoes

different type of process (the resultant stresses is different,
the dominant strain, ...), depending upon its structural features.
The features that determine the process behaviour are:
i. relative depth of shell (rough classification to: shallow -

deep;'),
ii. relative wall_thickness (rough classification : thin -thick

),

iii. main shape (rough classification: tapered, ' straight_walled,
spherical, - the dominant shape determines the class)»

iv. flanginess (wide flanged cups, no_flange cups, ...),
v. strechabi1ity, (rough classification would differentiate

between shells that undergo stretching to those who do not)
A division of the main_process, based upon a those technologi

cal classification of shapes is employed in the process_capabi1ity
rules. - <- .This clas
sification turns to a different approximate model of computing
allowed (feasible) drawing.

The class representation in the program takes a quin-tuple
predicate, excluding the depth_of_shel1 class, which is treated as
the resultant variable, dependent upon the previous four.

Some typical factors in the classification (not necessarily
the full classification criterion as in the "classify_X" rules)
are elaborated below:

The following rules pertain to shallow cups only:

4Shallow drawings : H < ^ * ID
Cupped Bottom shape type: Main_shape: horizontal,

flanged : flange : exists.
width_of_flange > 3 * thickness_of_blanl<-
(an estimate to thickness of blank:
Bottom thickness)

%■%

■%

%

%

%

- 212 -

not_flanged

Stretched cups

flange does not exists.
negation of conditions for flange existence.
Bottom shape type: Main_shape: ri

OD-Ah2
nominal desired/ WT reduction: —-———— .

0DRM

Shallow flanged cup: flange : exists.
width_of_f lange £ thickness_of_blank . *
strain_hardening:
assuming an empirical equation of the form:

crsY+e .

corresponds to an engineering strain of:

3 , 0DRMa+ha
2 In „ "a""ODRM

- assuming R values < 6thickness
6length

in the order of : - 2$

(see R-values* in terminology).

■%

' %

Schematic relationship between the limiting draw ratio* stock
thickness and punch diameter for carbon Steel illustrated in fig.
5. 3. 2. 1 (from: l Hobbs 3.)

- 213

Cracks at bottom

0100 1.8Y1.85\ 1.9 \l.95\2.O

i Wrinkling in baseit i _ i 1 1 1
0 10 20I 30 40 50 ,60 70 80 90 100

fig. 5. 3.2.1 - limit draw_ratio as a function of: WT# R# for steel.
aspects of differnt cuppings fif. iks. Ql§ill

Deep Drawing

18.760
sph R "■

j (straight)

43.300;=,
diam

0.2M minimum
thickness

after drawing

l.ow-corbon steel
(ASTM A285,

grade C)0 263 •
Detail of drow bead and draw rodlui 0243

*. Variation in wall thickness of a
hemisphere drawn with the n*e of a draw

bead

f ig. 5. 3. 2. 2
different WT in drawn hemisphere

< from: C Lyman 1)

Blank cist, it In.

First draw operation

Final draw operation

fig. 5. 3. 2. 3
two-stage taper drawing.

(from: C Lyman 3)

- 214 -

5. 3. 5 Shapes &£ complementary
Redrawing :

Initial Shape
i. Straight dialled cylindrical segment.

ii. Max ^ratio of DeepJDrawing_Ratios: i redraw : i+1 redraw
“ f:3

Product of Process
i. A limit of 8 redraws is assumed* including intermediate heat-

treatments. #
ii. The same shapes as of DeepJDrawing - Main_process* except for

the limitations on resultant Deep JDrawing_Ratios and heights,

4»

a

%

fig. 5. 3. 5. 1 fig. 5. 3. 5. 2
typical redraws for a stepped cup diagramatic redraws:

(from: C Hobbs 1). < from: C johnsonl 3).

- 215 -

Ironing
Initial Shape
i. straight cylindrical portion

ii. rest of shape features conform to deep_drawing ^ Main_process
with / without redraws.

Ui' Dinitial_cylinder > Diron©d_cylinder by * 35£ “ 55J‘
Product of Procesb
i. thinned wall thickness of ironed segment.

ii. uniform wall thickness.
iii. can be used for correcting ondesired thickening / wrinkles in

wall.

39 diem 1020 steel
Hot rolled

(commercial quality)
0.220 in.

Materiol
Operation 2 f°r

Re drown (hot) f00* r'n9
0.220 min-«^f—-

0.220 min

14 diam

0.130

Operation I
Drown (cold)

0.220
0.220

Operation f
Spun and welded

Operation .3
Redrawn (hot)

Operation 4,
Redrawn (hot)

Operation 6
Re-ironed (cold)

Drew 1500-ton double-action hydraulic
First redraw 500-ton double-action hydraulic
Other redraws500-ton single-action

hydraulic
Lubricants:

Draw..Sulfonated oil
Fourth and fifth redraws (a) Dry Boap

Die materials: .
Hot operations..........Graphitic tungsten tool

steel(b)
Cold operations D2 tool steel

Die hardnessRockwell C 60
Tool life, pieces per grind(c) ..»................. 1000
Lot size, pieces 1000
Annual production, pieces............ 1000

(a) Including ironing operations, which needed additional lubrication, (b) 1 J)0% G, 0.40% ton,
0.65% SI, 2.80% W. (c) Tools were reconditioned after annual run. v

fig. 5. 3. S. 3 - some typical uses of ironning and redrawing
(from: C Lyman 3').

%

%

■ m

%

. %

216 -

Sams. &ft.ape,s af pe.EMp,q» - expandino and sizing.
. t from: C Lyman 3.)

fig. 5.3.54
reduction - necking

Sizing plug ^— O«toil A 4130
Zip) •••••

J-Nacking die

5.673

0090
0062

0.054
Q04S

0.75 R

Oefoil A

Split bottom die

5. 3. 5. 6 sizing

5.4 RESOURCE KNOWLEDGE .
The resource knowledge includes the properties of the

raw_materials in stock and the equipment capab i 1 i t i es. This
knowledge* which is later termed as : dynamic data_base (because
it reperesents a current state in the plant) is represented as
facts. A PROLOG fact is of the form:

prediacte_name< Instantiated variables).
These facts are represented and interpretted as frames* with

all slots filled (all the variables are instantiated).

-.217 - ■■■■■•.

5.5 GENERAL TECHNOLOGICAL KNOWLEDGE.
The general technological knowledge pertains to technological

facts which are not process related (or process_dependent). Such
facts are the formability properties* the machinabi1ity ratings*
per particular material* and empirical results about workpiece
behaviour during the forming processes.
Such designated facts are:
max. draw ratio*
min. allowed die radius*
heet_treatmeht. requirements between stages (passes).

The general technological knowledge is reperesented as struc
tured frames, and grouped in

static data_base. It is named static* although it is bound
to be constantly updated* because it is current_state-independent.

5.6 EXTRACTING UPDATING and DEVELOPING THE DRAWING PROCESSES
EXPERT KNOWLEDGE.
The knowledge of any forming processes expert is extracted

from a combination ofi textbooks* research articles* summarized
shop tables* handbooks for material properties* maintainance duco-
ments (for machine capabilities) and the plant's resource
data_base.

Extracting the process-capabilitu knowledge is the c ore and
the foundation of §. forming-proc esses expert su stem. It is con
ceived to constitute the next stage after accomplishing the process
modeling phase. Process modeling of froming processes* is quite a
new research area (see references. See NAMRC Conferences for the
last 7 years* C Chen 3* C Thomas 3. The referenced researches try
to characterize the flow of the metal* in the deformation zone* as
a function of the material and process parameters.

Putting the process capabilities knowledge into a (any) for
mal representation is yet another difficult* innovative* and

challenging task. The e
first module of the
successfully accomplish
master the domain exper

xperience of formulating and buiId in
DDFE system* suggests that this task

ed only if the persons building the
tise and the knwoledge engineering art

g the
may be
system

The process-capabilities knowledge of the DDFE is extracted
from:
i. Textbooks* - the analytical analysis. (references C Lyman 1*

C Hobbs 3, C Wick 3), represent a real knowledge source for
this portion >. The textbooks furnish the approximate-
’idealized models for computing draw_ratios forces, and outcom-
ing strain-hardenning.

ii. Research papers. especially the ones elaborating deep-
drawabi1ity. and formability limits. (for example see refer
ences C Koistinen 3. C Niemeier 3).

iii. Shop tables, are a kind of unique knowledge every forming
engineer collects throughout his industrial experience. It
refers to such topics as: lubrication rules. blank holding
devices. and die-punch spacing to prevent wrinkling and puck
ering. Because of the enormous work done in composing such
curves, the specific conditions, in which the experiments were
taken, are of utmost importance.
- tab 1es

iv. Materials handbooks are very important day-to-day tools for
extracting the main properties affecting formability* such as:
- yield and ultimate tensile strength
- ductility characteristics: reduction of area. ^

elongation.
- characteristic anisotropy during stretching;
- strain hardening curve.
- change of properties with temperature.

v. Maintainance documents - usually, in the plant the maintai-
nance department has the most accurate records about machine
capabilities. Current capabilies and the theoretical ones (
machine performance as specified by the manufacturer). Plant
data-base is the source of the state of raw_materials in
stock. functioning facilities < main and auxiliary machines)
and shop managerial practices, such as cost of machine hour
and typical lead-time.
The underlying principle in the DDFE. and other Expert Sys

tems, is the independence of data of the program. Here, the
independence assumes an additional aspect: the lower-level rules
can be modified, let alone the static and dynamic data base. A
user-friendly mode of updating both the data_base and the lower-
level rules is initiated by callnig the " up_date_X " files. - -

t ■ (Thus far only tentative action is specified as a
comment).

-219 -

6. THE PPf:E-51SJJSI3
6.1 8Y5TEM STRUCTURE^

USER

---------—>--------- ----- 1 START I

I I—----- —-- ---- ;
I I required end pert l
I I CAM definition and I
I I main shape check. I
t —----- -------------------------- —
I I
I v
I ------------------------- -----------------
I I Query formulation: I
I I I 11 Is part feasible"!
I I * l •

I I
I vI -------?—?---------
I I System manager: f update^rules/scopp
--------- <----- 1 initiate system I—-——-—->--------- •—

I I I
——--------------- -— -----——»■ Stop and_explain 1

I —— -----— >---------------------- ----- -----— . I
I Run_module I I

I i i
Inference_machine v II

--------------- --------------------- -----------------------------------——---------—---------- I II —------——--I I I
I Generalized ProceesI | I I

I •———*—————----- -- I feasibility III I
f | Composite data I I inference rules II II
I | extraction Sc I —--——— I I I
I | computations I I III
I--------------------- -------------- --------- ------ —------------- -- I I I
| I ‘ I II I I
j I I Process_cpabi1ities I I I I
I I I II II
, i ---------------------—---III
I I I I <-— I

I I I I
I ---------------------------------- -------- | r
I I PROLOG built-in I I I
I I search and match I II
I I routines I I I
, --- I I
--- ------------------- - I/ . I

Data-base / IIIIIII
I static data-base: I
I general technology I

I dynamic data-base: I
I plant resources I

6. 2 SYSTEM MANAGER.
Since the DDFE is not intended to be an interactive system*

the managing modules are designated to guide the useri
- how to initiate the system*
- houi to put in his question* and
- how understand the system evaluation.

The system manager groups the following modlues:
i. System communicator

ii. Knowledge_updating guide
iii. Explainer /
iv. System parametrizer

The sustem communicator is organized in files:
" start ”* " explain " a "* " message ".
Following the typing in of "start" the user is guided through the
screen* to proceed the session. The message and the consultation
are demonstrated in appendix I

The sustem knowledge updating auide sets the scope of updating
the knowledge. It is intended to explain the user the allowed
range of modifying the knowledge* lead him how to append* update
and modify knowledge, in each of the modifyable files. This module
is symbolically represented in the "update_ .. " files. (not com
plete yet >.

The explainer is the program stop_and_explain* which is
invoked whenever a feasibility fault is discovered. It is in
charge of :
- stopping the feasibility evaluation session*
- getting out of the PROLOG mode*
- explaining the user the design fault found.
A demonstration of the job it is doing - in appendix I#

The sustem parametrizer is intended to set the parameters of
the cost-feasibility function. The parametrizer specifies the
standard comparative process in comparison to which cost feasibil
ity is evaluated* and the order_of_the_cost parameter. A process
will be considered feasible if its estimated cost is below X times
the cost of the standard process. - that X is the
order_of_^the__cost parameter. Cat this stage : machining from a
solid block is taken to be the measure of cost-feasibility >»

- 221

.6.3 THEINFERENCE MACHINE and HIERARCHICAL RULE STRUCTURE:
The implementation of the reasoning knowledge representation*

as elaborated in Sc 5, is in a hierarchical rule structure. Imple
menting the rule structure* the general inference machine and the
partially instantiated rules for the process capabilities* in
Horn_clauses* facilitates the PROLOG application. Conceptually the
inference machine is built of the following modules :
1. The generalized knowledge: structured rules.

2. Formal representation of the capabiliites knowledge base:
instantiated rules. ?

3. Matching: PROLOG matching and backtracking* and DDFE composite
matching. ■ .
As noted above, all the rules* through all the inference

machine, are in clausal form, thus perpetuating, naturally* a top-
down rule structure. This structure, is actually a net-structure,
and not a tree structure, because "lower level" clauses are Embed
ded in different clauses which "stem" from different roots. The
predicates employed in the different branches / layers of rules are
not confined to general search procedures, but include functional
clauses too. (e. g. : the classify predicates* c

DDFE adopts the PROLOG depth-first bac ktree king search stra-
teou to explore alternative branches of the search space. The
order in which clauses are written determines the order in which
they are tested. Thus, a clause of the form:

X : - A, B* C.
will attempt to solve X by testing A first then B and lastly C.

Once a goal* say C, fails, PROLOG tries to resatisfy B. Once B is
resatisfied* the search to resatisfy C resumes, from the beginning!
This mode of search goes on until all the data_base is searched

or, other means ("cuts", "cut-fail"s, ...) clauses can not be
resatisfied. Further discussion of these features can be found in
C Clocksin 3* X Deyi 3.

As noted above# both the dynamic and static data_bases are
frame based. The conceptul frame leads to an implementation of the
represention in a "flexible relational data_base". The conceptual
flexibility is of a restrained degree of freedom in the slot fil
ling. It allows different types of variables and composite struc
tures to be filled in every slot. This embarks on the PROLOG pro
perty of equally treating variables and nestedlists, which actually
assume every possible network structure.

For example: The variable "Material" in the predicate: "rm" (
raw_material):
where : rm< [_!Material 3)# ,
Material can be instantiated to :

steel;
[steel, 4130 3;
[[steel, 41303, [annealed! 3;
[[steel,[sae 413033, [36, rc 13; ...

A 4 THE DATA BASE: RELATIONAL DATA BASES and FRAMES.

6.5 WORKING WITH THE DDFE.
The DDFE is currently capable of evaluating the main question

it is designed for: " Can the particular end_workpiece be manufac
tured in the deep drawing process ? ". Nonetheless, other answers
are extractble, provided that an appropriate predicate for them is
defined. These expansions are in the process of development.

After initiating the system the user is guided how to read_in
the knowledge files, and prepare the part to be evaluated. While
the part is evaluated, the intermediate important conclusions are
recorded, or if a design fault is discovered, the user is immedi
ately informed about it, and the evaluation is terminated. The
procedure of working with the system is described in appendix I -.

6.6 FORMULATING THE PROBLEM FOR THE DDFE.
The user should write the description of the part, its produ-

cibility he wants to verify, in a designated file: " db_part ".
The frame for the part specification is explained in the file,
while it is invoked. Sample parts, tested and stored in the file
"part", and their decoded meaning, in appendix I

- 223 -

7. TESTING AND EVALUATING THE DDFE.
7.1 CURRENT SCOPE OF PRODUCTS AND PROCESSES.

Thus far only the main_process module and partial knowledge of
the redrawing and ironning have been programmed. Running the DDFE
with sample parts# largely demonstrated a dependable capability.
Some results of the runs to evaluate the system appear in appendix
I

The following conclusions can be drawn with regard to its
current capability and future forecasted reliability:
i. The range of feasible change of thickness in an intermediate

element has not yet been fully defined.
ii. Four of the six main defects are not yet fully defined.
7 P THE COMPUTATIONAL EFFORT.

The DDFE is written as a subset of the PROLOG C-intefpretter#
in the UNIX system. Because the internal data-base representation
in PROLOG is not user controlled# some assumptions about randomness
and uniform distribution for entity search# have been introduced.

Reading ("Consulting". in the PROLOG terminology) the
current files takes about 25 sec.# one third of them for the
data_base files. This means that# were a real knowledge base to be
consulted# it would have taken tens of minutes. (introducing only
100 items of stock would add half the current consultation time ,).
The time performance here is estimated to increase proportionally
to the data__base size:
— 0 (n)» where n is the number of data_items in the data_base.

As for the program execution time:
The two modes of search# in the DDFE differ significantly in per
formance. While there are % 100 rules, searched sequentially, the
real performance problem lies with the data_base search. Since the
depth-first search of PROLOG t Clocksin 3 is adopted# the computa
tional effort is largely dependant upon the size of the data_base.
Changing the order of sequence of the materials in the data_base (
in the "DB_ST0CK" file >* alone# increased the execution time from
1.7 sec. to 3.3 sec. for a successful consultation. The depth-
first tree search of the data_base here* yields an average perfor
mance measure of: 2
0 <<< LoQg number_of_tables > X #_of_data_items_in_a_table > >.

Hence* from the computer resources point of view# this system
can not fit a real plant needs. In order to do it an interface to
a more efficient DBMS should be introduced. An attempt to solve the
PROLOG problem by this means* in T Deyi 3.

-■224

8, ABOUT RELATED EXPERT SYSTEMS.
AI applications in CAM, and especially the utilization of

expert systems to process_planning has grasped the imagination end
effort of the recent CAM research. But thus far, very few systems
passed the conceptual definition stage and none is available beyond
the academic environment of its designer.

Two systems have been reported in papers. GARY E Descotte] is
the oldest and the most known one. GARY uses a rule based system (
about fifty rules reported to have been formulated)» to generate,
in a series of refinements, a process_plan to machine parts. The
report elaborates only about, prismatic parts. The reasoning abil
ity of the system, is quite limited, because it follows a rigid
structure of preparatory metal-removal and finish-machining. When
a contradiction among assertions (or pieces of advice > is
detected, the system discards the previously applied piece of
advice, and updates the current solution. Gary is implemented in
MACLISP on the HB-&8, under the MULTICS system.

GARY, unlike DDFE, attaches a weigh to each piece of advice, a
measure which enables it to discriminate between assertions when a
contradiction is detected. Machines are described by their proper
ties, and each property < e. g. : type_of_mach ine_is_chuc k__lathe) is
examined in the program, according to the set of rules, which
checks for it.

GARY uses a series of refinements to produce the final pro
gram The DDFE, which is concerned with verifying feasibility,
before going to the detailed process_plan, resembles GARY in that
it generates a rough process_outline first, and employs a recursive
procedure to refine it,

The second, recently reported process_planning system, EXCAP C
Davies 1, developed at UMIST, England. EXCAP is designed to gen
erate process_plan to machine rotational parts (axy-symmetric).
It uses a fuzzy logic rule structure, to introduce the element of
uncertainty, in the form of:

IF < to a certain extent > condition
THEN < to some degree > action.

From the paper, it appears, as if the system is partly interactive,
and not all the decisions are automatic.

In comparison to the DDFE, its predominant enhancement is the
fuzzy logic. But, it should be noted, the DDFE is designated to
verify feasibility, and feasibility should not be fuzzy, - render
ing the uncertainty measure, here, redundant.

• - - 225'- ■

9. EXTENSIONS AND FURTHER DEVELOPMENT.
As mentioned throughout the report/ much of the effort/ put in

thus far in the system/ is directed towards completing and expand
ing the system. With the current generalized inference modules the
following process can be readily incorporated/ once the
process_capabi1ity knowledge is formalized:
i. Redrawing/

ii. Sizing : Flanging/
Contouring/

iii. Reducing: Necking/
Nosing/

iv. Expanding: Regular/
Bulging/

v. Embossing.
Accomplishing a more rigorous definition/ of the main_proce55i

redrawing and ironing/ requires some/ relatively small changes in
the instantiated < to process name > root-rule for for process
feasibility. The appropriate way to take care of such expansions
and future modifications/ is by:defining a supervisory rule for infering one_process feasibility/
that would search for all the instantiated feasibility predicates
of the examined process.

Next envisioned expanding stage is to embed a data_base
management system with the DDFE/ so that rules will be searched by
the prolog interpretter/ directly/ while/ facts through interfacing
the DBMS.

Another step in enhancing the utilyzation of the system is to
facilitate additional queries. The most likely way to do this is by
defining a set of predicates/ each of them can be instantiated
independently.

- 226 -
10. BIBLIOGRAPHY

Note: whenever there is more than 2 authors only the first one
is mentioned here, together with the addendum: "et al".

1. Andersen, B. S. : A numerical Study of The Deep-Drawing process,
in: Pittman, J. F. T. et al, ed. : Numerical Methods In Indus
trial Forming Processes, Pineridge press, U. K. 1982.

2. Chen, C. C. (ed.) Experimental Verification of Process
Models, Proceedings of Symposium, Cincinnati, Ohio, Sept.
1981, American Society of Metals, 1982.

3. Clocksin, W. F. > Mellish, C. S. : Programming In PROLOG,
Springer—Verlag, 1981.

4. Davies, B. J. , Darbyshire, I. L. : The Use Of Expert Systems In
Process-Planning, in: Annals of CIRP, Vol. 33/1/1984.

5. Descotte, Y. , Latombe, J. C. : GAR I : A problem solver that
plans how to machine mechanical parts, IJCAI, Aug. "7-th, 1981,
Vancouver, Canada.

6. Deyi, L. A PROLOG Data_base System, John Wiley & Sons, 1984.
7 Hobbs, R. M, Duncan, J. L. : Press Forming, Advanced technology

Course # C21L4, American Society for Metals, 1979.
8. Hecker, S. S. , et al (ed.): Formability Analysis, Modeling, and

Experimentation, Proceedings, Oct. 1977, Chicago, 111, Ameri
can Society of Metals, 1978.

9, Ghosh, K. A. : " Plastic Flow properties In Relation To Local
ized Necking In Sheets, in: Koistinen, D. P. , Wang, N. M. (ed.
.V: Mechanics Of Sheet Metal Forming, Plenum Press, 1978.

10. C jp'h-nson 1 3/ Johnson/ W.
city* Joun Wiley & Sons/

i Mellor/
1976.

P.-B. : Engineering Plasti-

11. [Johnson?]/ Jounson/ W.
sical Defects Arising

j Mamalis*
in Metal

A. G. : A Survey of
Working Processes

Some Phy-
in: e d.

Tobias, S. A. : 17-th Inti. Machine Tool Design and Research
Conference, Birmingham, Sept. 1976.

12. Koistinen, D. P. , Wang, N. M. (ed.): Mechanics Of Sheet Metal
Forming, Plenum Press, 1978.

13. Lee, D. : Computer Aided Control of Sheet Metal Forming
Processes, in: Journal of Metals, Nov. 1982.

14. Lyman, T. (ed. >: Metals Handbook, Vol. 4: Forming, American
Society for Metals, 1969.

- 227 -

15. Niemeier, B. A. * et al (ed.): Formability Topics - Metallic
Materials, symposium. May. 1977. Toronto. Canada. American
Society for Testing Materials. 1977.

16. Niwa, R. > et al: An Experimental Comparison od Knowledge
Representation Schemes, in: The Al Magazine. Summer 1984.

17. Pittman. J. F. T. et al. ed. : Numerical Methods in Industrial
Forming Processes. Pineridge press. U. K. 1982.

18. Slater. R. A. C. : Engineering plasticity. Joun Wiley & Sons,
1977.

19. Stefic. M. , et al: The Organization Of Expert Systems, A
Tutorial, in: Artificial Intelligence 18(1982), 135-173.

20. Semenkov, 0. I. , Bersenev. V. A. : Semiotic Models In Geometric
Design Automation, in: Blake, P. : ed. : Advanced Manufacturing
Technology. North Holland, IFIP. 1980.

21. Thomas. J. F. » Dadras. P. : Modeling Of Sheet Forming Processes
- An Overview, in: Chen, C.C. (ed. > : Experimental Verifica
tion of Process Mod els, Proc eedings of Symposiurn. C incinnati,
Ohio, Sept, 1981, American Society of Metals, 1982.

22. Wanheim, T. , et al: Physical Modelling of Metal Forming
Processes. in: Journal of Applied Metal Working. American
Society For Metals, Vol. 1 No. 3-5, 1980.

23. Wick, C. , benedict, T. J. , Veillueux, R. F. : Tool and Manufac
turing Engineers Handbook. Vol. 2: Forming, Society of
Manufacturing Engineers, 1984.

24. Weil, R. , et al: Survey of Computer Aided Process_Planning
Systems, in CIRP Annals, 1981.

25. Woo, D. M. : On The Complete Solution of The Deep-Drawing Prob
lem, in: Inti. Journal of Mech. Sciences. Vol. 10, 1968.

- 228 - a

13. Appendix I - SAMPLE DDFE RUNS and RESULTS.
Samp 1e Parts:

The parts were coded into Tile db_part.

4

'

/* File name: DB PART
/* File contains the coded information about the enclosing part */•

It is assumed that, by a certain procedure the finished_part *r
/* has been enclosed by an inscribing envelope throughout *r
/•* preparatory stages. */■
/« If that stage has not yet been accomplished, or; the part is #r
/* already in the form of a drawable workpiece —
'/# - proceed directly from this file. */*
/* FRAME for part #/■
/# part (Part_name> Part_material, Part_shape, Part_requirements> */*
/•» FRAME for Part_shape: a list of axisymmetric elements: #/*
■/* FRAME for element: */
/* C */
/•* ~ Element_name, #/

./*■■• - Element_type, #/
./*■ ~ Wal l_th ic kness, */
/*.;■ ~ Inside_diameter, */

“ Appropriate_parameters */
'■ /* determined by 'element_type') */

“ Recess_radius, (Fillet-radius) */
/* 3. .. . */
■« Fhr corresponding FRAME for each parameter_type given in text */ /*■ FRAME for Part_requirements: &/
/'*; c Required_quantity, allowed Lead_Time 3 */

part < part_l»
E C st, 4130 3, annealed 3,E

C f, h, 1/2, 8, 11, 4.5 3,
C w, v, 1/2, 8, 4, 2.1 3,
C b, rl, 1/2, 8, C3, 43, O 3

3,
C 400, 21 3

'.part part_2,
C C st, 4130 3, C 36, rc 3 3,
C '

t f, h, 1/2, 10, 15, 1 3,
C w, v, 1/2, 7, 5, 2. 1 3,
C b, rl, 1/2, 7, E15, 43, 0 3

3,

•-H

- 229 -
C 400, 21 3

>.

part< part_3,
CC st, 4130 3, C 36, re 33,
C

l f, h, 1 /2, 10, 15, 1 3,
C b, dll 1/2, 6, CIO, 43, 2. 5 3,
C ID, 1/2, 6, 7, 1 3,
C f, h, 1/2, 10, 12, 0 3

3,
C 100, 21 3

).
/* end_of_file : "db_part" •*/

m

%

- 230 - ■ . ^

SAHPLE RUNS:
Initiating The System:

user types: "start”}
system returns:

WELCOME TO THE CONSULTATION WITH
DDFE

- Deep-Drawing Feasibility Expert System -
The session is carried out within a PROLOG interpretter

You will be automatically carried into the PROLOG mode
The terminal will return with a ' ! ? ' sign.
Then, please type in : *Czz1. * ■
This command calls for the all the data_base files to be consult*
After each file is consulted, you will get a messsage on the sen
The consultation takes about 24 seconds.
In the end of the consultation you will get a message:

' consultation finished successfully. '
Then, please print: C < file_name_of_your_part > 1.

GOOD LUCK WITH THE SESSION.
- —— ---- -—— user types: CzzD.
- —-------■— system returns:

CProlog version 1.3
! ?— Czzl.
db__draw^_ratio reconsulted 4728 bytes 1. 25 sec.
db_draw_sphere reconsulted 340 bytes 0.150001 sec.
db_1drawing_force reconsulted 604 bytes 0. 266668 sec.
db_equipment reconsulted 1852 bytes 0. 5 sec.
db_Torming_properties reconsulted 744 bytes 0.283334 sec.
db_materials reconsulted 1404 bytes 0. 383335 sec.
db_part reconsulted 1476 bytes 0.366667 sec.
db_process_class reconsulted 1036 bytes 0. 35 sec.
db_radius reconsulted 1228 bytes 0.400002 seC.
db_shape_cap reconsulted 3140 bytes 0.7 sec.
db^stock reconsulted 1732 bytes 0.316667 sec.
comp_blank reconsulted 2416 bytes 0.700001 sec.
comp_draw_ratio reconsulted 1300 bytes 0. 416667 sec.
comp_force reconsulted 1396 bytes 0. 450003 sec.
enclose reconsulted 0 bytes 0.11667 sec.
explain reconsulted 532 bytes 0.166668 sec.
extract_shape_data reconsulted 8800 bytes 2.95 sec.
infer_sequence reconsulted 4692 bytes 1.71667 sec.
prelim__process_match reconsulted 2788 bytes 0.850003 sec.
print_data reconsulted 3412 bytes 0.900005 sec.
priority reconsulted 1588 bytes 0.666667 sec.
process_.shape_capabi 1 ity reconsulted 8480 bytes 3. 11667 sec. .

-231 -

process_machine_required reconsulted 1736 bytes 0.666672 sec.
selec t_control reconsulted 0 bytes 0.0333415 sec.
rule reconsulted 3484 bytes 1. 46667 sec.
rm_search reconsulted 3092 bytes 1.2 sec.
procedures reconsulted 4520 bytes 1.06667 sec.
update_dynamic_db reconsulted 76 bytes 0. 116669 sec.
update_static_db reconsulted 0 bytes 0.100004 sec.

Consultation completed successfully
Your part is represented in file xl. type in "CxlD".
In order to get out of the PROLOG mode/ type "CaT".
message reconsulted 0 bytes 0. 133335 sec.

n consulted 66596 bytes 22. 4833 sec.
yes
! ?- Cxi 3.

user types: Cxll.
system returns:

CONSULTATION SESSION COMPLETED SUCCESSFULLY
please type in "Ca3. *' and read results in file "kovez"

xl consulted 0 bytes 1. 56667 sec.
yes....
! • ?—
--------------- - user types: Cal.
“-------- -----system returns:

Prompt_sign
and the user looks into the specified file.

■%

%

■■■*

■%

- 232

Advise About Part-1:

Desired Finished Part Specifications
-g—-a: as as ssss as ss as rsssss: as ss as as as fis as ss as se.ssstssssssss

Fin
Part name
Required
ished Part

is —part iMaterial - CCst,41303, annealed3
Inscribed Within The Following Envelope

The structured form of the workpiece is

f t h >
UIj- v>
hr rl>

Quantity
The EXPERT

Start of g

1/2, 8, 11* 4. 5*
1/2, 8* 4, 2. 1*
1/2, 8, C3, 43, 0*
and Due date required - 400 units, 21 weeks from n
has learned your required part.

OUJ.

:

The Candidate processes are -
£deep_drawing # tmain—process# draw33
[deep_drawing#redrawing!!

Current Sequence of Processes And Shapes Tested
Process name - Cdeep_drawing, Cmain_process
Raw workpiece tested is of the shape of - BLANK

Its sizes are :Wall thickness - 1/2
Blank diameter - 16.4424

drawl3

— Next Process —
Process name - inspection
Desired Shape At end Of Process

f, h, 1/2, 8, 11, 4.5,
w, v, 1/2, 8, 4, 2. 1,
b, rl, 1/2, S, C3» 43, 0,

Feasibility Check For Generated *!l!!
Important intermediate findings will be reported by:
/FOR INFORMATION ONLY /

/ FOR INFORMATION ONLY /
The blank computed to produce the required shape

Blank wall tickness = 1/2
Blank diameter => 16.4424

Form of raw_material accepeted in this process is

- 233 -

OPERATIONAL INFORMATION
applicable material found

The raw material found in stock is
material name - rm_3
Material form - flat
Material sizes -

Wall Thickness -1/2
Width -36
Length -96

Quantity - 50
Matrial Type - 1st,41303 and condition - annealed

/FOR INFORMATION ONLY /
Computed machine requirements:
Machine build requirements are:
Any legal value
hydraulic
Any legal value
Machine capacity requirements are:

3619. 11
Any legal value

8.39999
Any legal value
Any legal value
Any legal value 16. 4424
12

OPERATIONAL INFORMATION
appropriate machine found
The appropriate machine is press6
Machine type - press
Structural features -

Control - nc
Actuation - hydraulic
Number of slides 2

The maximum tonnage is - C4000#60003
Accuracy# in mm. -0.2

i s :

: flat

- 234 -

The stroke length and cushion are - C 300. 4003. C80,103
Strokes_per_minute and SIide_velocity are - 15. C800, 6003

Bed_openning and Upright_openning are - 40. 30
Cost_per_hour (Dollars)» and Charateristic_wait_time are - 100.•%

/ FOR INFORMATION ONLY /
List_of_draw_ratios : !
[Cup_diameter/Blank_diameter, 2. 05533
C(Blank_d iameter / Sphere_Opening) / Sphere factor .1.541473

“

/ FOR INFORMATION ONLY /
Elements of shape drawn are classified as:

[spherical,thin.not_flanged, no_stretch3

The following shape features have been evaluated:
- Fillet_radius at flange
- Fillet_radius at bottom
- Draw ratios of current shape

all have been found workable ! .

Advise About Part-2:

- 235 -

Desired Finished Part Specifications
Part name is - part_2
Required Material - CCst, 41303,C36, rc33

Finished Part Inscribed Within The Following Envelope
The structured form of the workpiece is

f, h> 1/2, 10, 15, 1,
w, v, 1/2, 7, 5, 2. 1,
b, rl, 1/2, 7, CIS, 43, 0,
Quantity and Due date required - 400 units, 21 weeks from now.

The EXPERT has learned your required part.

Start of generating a feasible process for the part

The Candidate processes are -
Cdeep_drawing, Cmain_process, draw!!
Cdeep_drawing»redrawing!

Current Sequence of Processes And Shapes Tested -
Process name — Cdeep_drawing, Cmain__process, draw!3
Raw workpiece tested is of the shape of - BLANK

Its sizes are :
Wall thickness - 1/2
Blank diameter - 27.2506

-— Next Process -—
Process name — inspection
Desired Shape At end Of Process

f, h, 1/2, 10, 15, 1,
w, v, 1/2, 7, 5, 2. 1,
b, rl, 1/2, 7, C15,43, 0,

Feasibility Check For Generated Sequence of Processes Starts-
Important intermediate findings will be reported by:

/ FOR INFORMATION ONLY /

/ FOR INFORMATION ONLY /
The blank computed to produce the required shape is :

Blank wall tickness = 1/2
Blank diameter ~ 27.2506

Form of raw_material accepeted in this process is: flat

Violation of feasibility condition:
Discovered in process: locate appropriate raw material in stock
The initial shape of this process is : exactly_blank_wt
The conditions that could not be satisfied: Too few sheets
Discovered during: Computation of quantity
the EXPERT advises you to recheck your specifications.
Freeeeding features and tests are in file: "kovez".

Chapter 5

An Expert System For Machine Selection of FMS

S. Lan

AN EXPERT SYSTEM FOR MACHINE SELECTION OF FMS
Sheree Lan

- 237 -

1. INTRODUCTION

1. 1 Background

The concept of flexible manufacturing systems (FMS) is very
appealing to low volume and mid-volume manufacturing. In these
types of manufacturing* both the productivity and flexibility of
the manufacturing system are of major concern. An FMS consists
of a number of numerical contrpl(NC) machines# a material han
dling system, and a computer control system. The machining sys
tem (NC machines) and the material handling system are automated
and controlled by the computer system. By computer-integration
of NC machines and the material handling system. FMS can easily
adapt to different jobs and still achieve high productivity.

The design of FMS is a very Complicate task. It takes time
from months to years. The design process of FMS follows the
configuration—analysis—mod ificatioh loop iteratively until good
designs are found CBARA793. Most sources available in literature
of FMS design deal with problems of using simulatipnal and
analytical techniques for analyzing some known FMS designs. Very
few. if not none, try to identify or formalize approaches needed
to design initial configurations of FMS. The initial configura
tions of FMS have always been built up by some rules of thumb
CKLAH831 and by designers' experience CIT082). If the knowledge
of FMS configuration can be extracted from human designers and

- 238 -

put into the form of an expert system* then the FMS design task
can be sped up significantly. These configurations then can be
simulated or analyzed* and modified configurations obtained.

The most important component of an FMS is its machining sys
tem. Usually* this accounts for the largest expenditure of an
FMS CLEWI733. Also* the configuration of the machining system
has the largest influence on the capability of the system. It is
felt that the configuration of machining system is the first step
in FMS design. Once the machining system is configured* the per
formance of different material handling system? can be modeled
and analyzed rather easily.

1.2 Statement of problem

This report is to describe the design of an expert system
for machine selection of FMS. Machines under consideration are
just generic machines. The purpose of the expert system is to
decide the types and quantities of machines required to fulfill
the manufacturing of some known products. Only prismatic work-
pieces (workpieces in box shape) are considered. The information
of product design and profess planning is assumed available.

- 239 -

2, SYSTEM ORGANIZATION

Th© designed expert system consists of four main components:
role base# operation base* machine base* and stact base- The
inference program looks for the adequate solution of machine com
binations based on these four components.

2. 1 Rule Base

The rules are expressed in - tl^e(IF. . Then.,) form. Rules
are put in a file and read by the program* which will convert the
rules* and store them in a linked list. The, rules consist of
"Simple fact" and defined "Function". "Simple facts" are less
than 10 characters long words# represent the situation of certain
stage or flag. "Functions" are eight characters long words
specified by the knowledge engineer. They are coded in the pro
gram. users can only use defined functions while change rules.
There are some attribute names for functions. Each attribute
name represents one attribute in operation base. The program
will recognize the attributes of rules and access the attributes
information from operation base.

o o Operation base

For this system* the information of work contents is col
lected and put in a file which is accessible to the system. All
required processes of all products are put in a table# attributed
by their features# as shown in Figure 1. According to the
defined format and order, users can input the operation data to

240 7

f>*\ the file, the system can recognize these data and put in a linked
list of records.

2.3 Machine base

The machine configuration is changed when one possible rule
is applied. The machine base links all operations in each group.
The rules can easily apply to adequate machines and operations,
change the operation base and machine base simultaneously.

2. 4 Stack base

The stack base is a record file, which keeps the inferencing
procedure information. Any change in operation base, rule base,
and machine base will be recorded, formalized in stack record and

• write to filestack. The stack base takes the advantage of vari
ous type of files in PASCAL language. The run time working space
can be saved and backtracing is easier to perform.

3 5 Inference program

This is the program which checks the rules, searches for the
one that the condition part is satisfied, and trigs the conse
quence action. The search of a satisfactory rule is done by the
order priority strategy. To improve the efficiency of searching,
rules are divided into two groups. and the configuration pro
cedure is divided into three stages. The first group of rules
are for the "grouping' of operations. The second group of rules
manage to delete under-loaded machines and specialize well-loaded
machines, so that a good combination is obtained.

- 241

2.6 Control strategy

The strategy selected is order priority# mainly’ because it
is easy to implement and also it does not cause any'"'"confliction
while using the system.

2.7 Information Management

The foie base is represented in IF. . THEN form. The simple
facts are 10 characters long words. At the beginning of each
rule# the global contexts can be present to represent repetition
of operation type# horse power type# and special operation type.
They are TO characters long words :

1. forallopty - for all operation types

2. forallhpty - for all horse power types

3. forellspop - for all special operation
The defined functions are 8 characters long followed by a
The defined functions are listed as follows :

1. machloadt - machine load

2. machexisi - machine exists

3. transfer(- transfer load from machine one to machine two

4. attrload(- attribute load in a machine

5. attrexisC - attribute exists in a machine

6. attrtrant — transfer load for an attribute from on machine
to another

7. defoptypt —define operation type number

8. defhptypt - define horse power type number

9. nofactext - no such fact exists

10. delefact(- delete the fact
The attributes are represented as 8 characters long words fol
lowed by a '* ' and their ranges. The attributes are listed as
follows :

1. opertype - operation type* by a specific operation type

2. houpower - horse power* by lowerbound* to upper bound

3. spoperat — special operation* by a specific operation

4. wkspleng - workspace length* by range of length

5. wkspwide - workspace width* by range of wide

6. wksphigh - workspace height* by range of height

7. feedrate - feedrate* by range of feedrate

8. vrdemand - demand* by range of demand

- 243

3 KNOWLEDGE ACQUISITION
• • . v

The knowledge required in selecting machines is the 'group
ing' and 'combining' rules involved. Some of these rules are
mentioned in journal papers and industrial magazines CKLAH833.
Some of them are the result of the computer simulation runs, or
from analysis. At this moment, only rules of the first type are
used. However, it is possible to interface simulation or analyt
ical programs with the rule base. All these rules can be
explained by economic analysis from different levels. For exam
ples, some rules try to eliminate machines with unsufficient
loading, assign their work content to other machines. Some rules
will reduce the flexibility imposed on the machine to impTpve the
efficiency of the machine. The logic behind these rules is sum
marized in the following subsection.

3.1 Logic of machine selection

Selecting machines for some workpieces can be viewed as an
function of matching work contents and machine capability. If
the intended products for an FMS is known, then the process plan
ning system will generate the processes required to manufacture
them. Each process is characterized by some features, which are
the implicit form of work content. Some of the important
features are machine power, work space, degree of motion, and

type of operations.

Machine power required for operations can be calculated from
process plans. Usually, higher powered machines are of higher

- ?Ak -

prices. It is expected to assign the work contents (operations)
to appropriate machines* so that the operations can be performed
under the best conditions (i.e. cutting speeds* feeds* etc.)* and
also the machine is not overpowered.

Work space is concerned with the working envelop required
while machining a workpiece. A machine over-facilitated of
workspace not only cost the initial investment but also decrease
the efficiency.

By degree of motion capability* it means the type of posi
tioning and cutting motion the machine is able to operate. While
under capacitated machines cannot achieve the work required* over
capacity in degree of motion of machines increases the initial
Cost,

Operation types include drilling* milling* boring* reaming*
etc. One special type of operation is the multi—spindle opera
tion. Machines specialized for multi-spindle operations are
available* for examples* head indexers* head changers* and spe
cial drilling machines. Usually* machining centers can operate
with small heads. For large-sized heads* head-changing machines
are ..'required.

'i

4. EXPERIMENTAL RESULTS

4.1 Runs

Two illustrating examples have been run on this expert sys
tem and the results are analyzed. The sample run screen script
file of Run 1 is included in Appendix. According to the program
designing' the operation base can be added at some intermediate
stage of inferencing procedure. The rule base can also be reset
at anytime. Run 4 is a sample illustrating the operation base
input at different stages. Run 3 is the comparing example of Run
4. but input operation base all at once.

Irt Run l» there are 29 operations running. In first result
combination, there is no machine horse power less than 10 of
operation type 1 and 3 existing. If the user feel the cost of
using machine horse power less than 10 is cheaper than using
machine horse power between'10 and 20 , the user can go back to
the stage that applying transforming from horse power less than
10 to horse power between 10 and 20.

In Run 2, there are 21 operations running. These operations
do not have many type 3 operations. There are a lot of opera
tions of type d in type 1 operations, and type f in type 2opera
tions. The loads of these operations are comparatively less than

Run 1 data.

In Run 3, they are the combination of Run 1 and Run 2. The
operations are input together at the beginning. The special

machines are introduced more than in Run 1 and Run 2.

In Run 4* they are also combination of Ron 1 and Run 2# but
the operations are input at different time. The results are
slightly different from Run 3.

4.2 Evaluation

The running time used is varied by the given operation data.
The average time used to perform a 30 operations system is about
35 cputime. The backtracing will be more time - consuming*
but comparing to human* it is still faster.

The user can change the rules i.e. total number of operation
type* horse power ranges for machines* and the priority of rule
order If the user has different grouping methods* he can also
use the defined functions and attributes to implement his own
rules-'.

The system can use several different rules at run time. The
ruies change the context and apply different strategy as the user
needed. Only one thing* the system does not check the ambiguous
situation. The strategy is always rule order priority.

As we had shown above* the system can input operation at
certain stages of inferencing procedure. Also* the system can
keep the backtraced information in a file (filestack). When next
time the system is called* the previous information is still
there* and save computing time.

m, 5. CONCLUSIONS

The rule base we used in sample runs is a general rule for
configuring. The smaller operation type will be grouped to
larger operation type if it has low load. The lower hOrse power
operation will also grouped to higher horse power machine if it
has low load. So# initially# the larger operation type and
higher horse power machine will be used as much as possible. The
result i* optimal but when concerning efficiency may not be
optimal. Thus# the certainty factors should be introduced here.

Since the certainty factors are not used in this system# the
on line users should have some knowledge of their needs. The
system will search the first combination. The rule applied and
stack information can be backtraced. If the user does not like
some machine being used# he can ask the system to go back to the
stack number right before the machine is generated* or before the
load of that machine is increased by transfering other machine
load to it.

- 247 -

- 248 - . ■ , ..

REFEREES

CBARA793: BARASH. M. M. , et al. Optimal Planning of Computerized
Manufacturing Systems. NSF Grant No. APR 15256. A Pro
cess Report. School of Industrial Engineering. Purdue
University. 1979.

CBARR813: BARR. A. .Feigenbaum.E.A. . "The Handbook of Artificial
Intelligence", vol 2. 1981.1982.

CHAYE833: HAYES-Roth. F. . Waterman. 0. A. » Lenat. D. B. . "Building Expert
System". 1983.

CITO 823: ITO. Y. . et al. "Description of Machining Function in FMS
m. and its Analysis". Proc. of MTDR Con.. 1982.

CKLAH833: KLAHORST. H. T. » "How to Plan Your FMS". Manufacturing
Engineering. Sept. 1983.

CROFF813: KOFFMAN.E. B. » "Problem Solving and Structured Program
ming in PASCAL.”. Addison-Wesley. 1981.

CLEWI733:LEWIS,F. A. , "Some Factors Affecting the Design of Pro
duction Systems in Batch Manufacture". Proc. of MTDR
Con. . 1973.

CMeDE813: MCDERMOTT. J. , "R1 The Formative Year". Al Magazine. Sum
mer. 1981.

- 249 -

Figure 1 : Data Organization Table

Partid optype operation optime
min

workspace
l*w*h

HP
hp

tlln
ft

feedrate
cuft/min

demon
#/yr

OOOlOOOl 1 d 2. 37 3*4. 5*2 10 1.4 1. 56 2000
00010002 1 r 1. 65 4*5*1 15 2. 0 3. 44 2000
00010010 2 m 3. 00 1*1*1 30 0. 5 0. 11 2000
00020001 1 t 2. 50 1*1*1 15 1. 1 1. 22 1200
00030001 1 d 2. 90 1*1*1 25 1. 2 0. 90 900

Data specification :
operation type : 1 - 2 axis positioning

2-2 axis contouting
3 - 3 axis
4-4 axis
5 - 5 axis

operation : d — drilling
m - milling <2 axis and milling)
t - tapping
r — reaming

■I b - boring
c - counterboring
f — finish
h - hole

operation time : (minutes / part)
work—space required : L * W * H (cu. in.)
horse power required : (hp)
tool length : (in.)
feed rate : (in. / revolution)
demand : (yean demand)

maching loading ■*: total machine time / annual time per machine,
annual time per machine *250 * 24 * 60 * demand

RUN (- 250 -
Script started on Tut Dec 4 04:49:57 1984
X ob}

This program will allow the users to

1) reset (change) "Inference Rule"» Its IF
part and THEN part. Only those "Simple Fact"
and defined "Complicated Fact" can be used as
the reasons. The rules are In order priority

2) Input operation data,

3) run the Inference procedure.

Please enter the option (1*2»3 or q) 1

What is the (simple fact) file name : filefact
What 1s the rule file name 1 filerdle

This program will allow the users to

1) reset (change) "Inference Rule"* Its IF
part and THEN part. Only those "Simple Fact"
and defined "Complicated Fact" can be used as
the reasons. The rules are 1n order priority

2) Input operation data.

3) run the Inference procedure.

Please enter the option (1»2»3 or q) 2

Input operation data In a file (y/n)? y
What i1 l e ? I an

This program will allow the users to

/^s

1) reset (change) "Inference Rule"» Its IF
part and THEN part. Only those "Simple Fact"
and defined "Complicated Fact" can be used as
the reasons. The rules are 1n order priority

2) input operation data.

3) run the Inference procedure.

Please enter the option (1,2»3 or q) 3

- 251

.Jhat stack number do you want to start with ?
•Hease enter the stack number : 0

0.9 00
IF

stapeO
not actex(define)

THEN
defoptyp(3)
defhptypt3)
define

1.000
I F

attrex1s<opertype♦1♦0»0*0)

THEN a 11 r t ran(ope rtype * 1*0 » 0 » 0 »1»0 * 0 * 1•0)
2.0 00

1 F .
a11rex1s (opertype*2* 0 * 0 * 0)

THEN
a 11 rt ran(Ope rty pe * 2*0*0*0*2*0*0»1.0)

3.0 00

a1trex 1 s(opertype* 3»0»0»0)

THEN
a11rt ran(opertype» 3*0*0*0*3*0*0*1.0)

A. 0 00
I 9

a11rex1s(opertype*4 * 0»0»0)

THEN
a11 rt ran (opert ype »4»0*0*0*3*0*0»1.0)

6.000
1 F

nofactex(stagel)
mac hex1s(-l»0 * 0) *

THEN
delefact(stageO)
de le f ac t (de f 1 ne)
stage!

7.000
IF staoel

■ macbe x 1 s.(*»1 * 0 * 6)
attrex1s(houoower*0.0*l0.0»-l*0*0)

THEN ia 11 r t ran (hdupower»0.0*10* 0»**1»0*0 *“1*1*0* 1.0)
■ft*.

- 252 -
8.0 00

IF
S t age 1
attrexts(houpower*10.0,20.0,-1,0*0)

THEN
attrt ran(houpower,10.0 ,20.0,-l,0 ,0,-1*2,0,1.0)

9.0 00 ,
IF

stapel
attrex1s(houpower♦20.0,1000*0»-1*0*0)

THEM
a 11 r t ran (h oupowe r, 20.0,1000.0 , -1■* 0,0»-1,3,0,1.0)

10.000
IF

s t age 1

THEN
delefact(stagel)
s t age?

11.000
IF

s't a ge 2
is che x 1 s (1, -1,0)* -■. nsch L oad(1,-1»0 * 0•0» 0•7)
machload(2,-1*0,0.3,100.0)

Then
transferCl,-1,0,2,-1,0,1.0)

25.0 00
IF

stage?
machex1s(3»1,0)
"i e c h L o a d (3,1,0,0 • 0,0.7)
m a chload(4*1,0,0.0,0.3)
machtoad(3,2,0,0.3,100.0)

THEN.
transfer(3,1,0,3 ,2*0*1.0)

35.000 *
. IF

stage 2
machload(-1,-1,0,1.8,100.0)
nttrloadCspooerat ,* ,-l»-l ,0,1.8,100.0)

THEN ’ .
a 11 r t r a n (spooerat,*,-1,-1,0,-1,-1,*,0.5)

The result arrangements of oneratlons are :

253 -
stack number; 13
rule applied : 35.000

*^35.000
stage?
machloadC-1»-l«0»1.8»100.0)
a11rload (spoperat»*»-1»“110 11.8>10O * 0 >

THEN
attrt rantsppperat♦*» 0»-l*-l»*»0.5)

1 00010001 1
2 00010002 1
3 00010003 1
4 00010004 1
5 00010010 2
6 00010020 1
7 00020001 1
8 00020002 1
9 0 002 0 0 03' 1

10 00020004 1
n 11 00020010 2

2 00020011 V 2
13 00020021 3
14 00020031 3
15 00020032 3
16 00030001 1
17 00030001 2
18 00030002 1
19 00030003 1
20 00030004 1
21 00030010 2
22 00030011 2
23 00040001 1
24 00040002 1
25 00040010 2
26 00050001 1
27 00050002 1
28 00050003 1
29 00050020 3

(by parttool1d)
load

0.728
0.5 56
1*750
0.519

0 0.587
3 0 0.103
3 0 0.719
2 0 0.488
2 t 0.381
2 b 0.483
3 0 0.728
1 0 0.800
2 0 0.656
3 0 0.453
2 0 0.659 '
3 0 0.625
1 0 0.6 04
3 c 0.438
2 t 0.415
2 b 0.463
1 0 0.458
3 0 0.208
3 0 0.229
3 c 0.094
1 0 0*302
3 0 0.669
20 0.463
2 t 0.151
3 0 0.204

current existing ■ facts :
1 stage?

current arrangement of operations
oartld mach hp special

2 0
3 c
3 0

machine
machine
machine
machine
machine

c h 1 ne
machine
machine
machlne

1 2 0 include parttooUd
1 2 0 Include parttooUd
1 2 0 Include parttooUd
12 0 Include parttooUd
l 2 0 total load : J 1

1 2 t Include parttooUd
1 2 t Include parttooUd
1 2 t Include parttooUd
1 2 t total load : 0.947

by machines) •
•

00010001 load •
• 0.728

00010004 load •
• 0.5 19

00020002 load • •
• 0.4 88

00050002 load ■ •
• ' 0.463

197

00020003 t oad •
• 0.381

00030003 load * 0.415
0 C 0 5 0 0 0 3 l o a d • 0.151

machine 12b Include pa r 11 oo 11 d : 0 002 0004
machine 12b Include part too 11 d : 00030094
machine 1 2 b total load : 0.945

..achlne 13 0 include parttoolid : 00 01 0003
machine 13 0 '1 nc lude . par 11 oo 11 d : 00010020
machine 1 3 0 include parttoolid : 00020001
machine 13 0 Include parttoolid : 00030001
machine 1 3 0 include parttoolid : 00040001
machine 1 30 include parttoolid : 00050001
machine 1 3 0 total load I 4.095

machine 1 3 c Include parttoolid : 00010002
machine 1 3 c include parttoolid : 00030002
machine 1 3c Include parttoolid : 00040002
machine 13 c total load : 1.087

machine 2 10 include parttoolid 00020011
machine 2 1 0 Include parttoolid : 00030001
machine 210 Include parttoolid : 00030010
machine 2 1 0 Include parttoolid : 00040010
machine 2 1 0 total load t 2.165

machine 2 3 0 Include parttoolid * 00010010
machine 2 3 0 include parttoolid : 00020010
machine 2 3 0 Include parttoolid : 00030011
machine 2 30 total load : 1.524

machine 3 20 Include parttoolid : 00020021
schine 3 2 0 include parttoolid : 00020032

machine 3 2 0 total load : 1.316

machine 33 0 include parttoolid : 00020031
machine 3 30 include Parttoolid : 00050020
machine 3 3 0total load : 0.657

- 254 -
load :
load :

load J
load :
l oad :
load :
load :
load 1

load :
load :
l oad :

load :
load :
load :
load :

load :
load :
load :

load :
load :

toad :
toad :

Do yoii want to see the intermediate steps (y/n)? y

stack number t 0
rule applied : 0.000

current existing facts :
1 stgqeO

current arrangement of operations (by parttoolid) :
pertid mach hp special load

1 OOP 10001
2 00010002
3 00010003
4 ceo10004
5 CP 010 010

^6 00010020
. 7 0 0 0200 01

:: 9. 0 002.0002
9 00020003

10 00020004
11 0 P 0 2 0 010

0
0
0
0
0
0
0
0
0
0
0

0 0 0.728
0 0 1.112
0 0 1.750
0 0 0.519
0 0 0.587
0 0 0.103
0 0 0.719
0 0 0.488
0 0 0.762
0 0 0.966
0 0 0.728

0.483
0.463

1.750
0.103
0.719
0.625
0.229
0.669

0.556
0.438
0.094

o.eoo
0.604
0.458
0.302

0.587
0.728
0.2 08

0.656
0.659

0.453
0.204

A 715.00 0

s 13 fie 2
maciiload(-l»-l»0»1.8»100.0)
a 11 r l oad (s pooer at» * ♦ -1 ♦ -1 * 0 11 • 8 »10 0 • 0)

RUN 2. - 255 ‘
stack number : 11
rule applied: 35.000

THEM
attrtranispoperat»*»-!♦-1»0»-l»-l»*»0.5)

current existing facts :
1 stage?

current arrangement of operations (by parttoolld) :
o a r 11 d mach hp special load

1 00060001 1 3 0 0.348
2 CQ060002 1 3 0 0.0 69
3 00060003 1 1 0 0.481
4 00060004 . 1 1 0 0.412
5 00060010 2 1 0 0.417
6 00060030 : 3 3 0 0.783
7 00070001 ' 1 1 0 0.542
B 00070002 1 o 0 0.748
9 00070003 . ■ 1 ■ 3 0 0.382

10 00070004 1 2 d 0.332
*11 00070005 v 1 2 d 0.293^12 0 00 70 0 1 C 2 1 0 0.371
13 00070011 2 ■. 3 0 0.259
14 0.00 70 050 ■ 3' 3 0 0.251
15 00080001. ■ 1 2 d 0.287
IS 00080002 ■ 1 2 0 0.775
17 000B0003 1 3 0 0.4 75
13 00030004 1 1 0 0.350
19 Q0C6C005 1 3 0 0.400
20 00030006 1 3 0 0.325
21 00060010 '■V.,' 2 3 0 • 0.775

current arrangement of operations (by machines) •*
machine i 1 0 Include parttoolld : 00060003 load •* 0.481
machlne i 1 0 1nclude parttoolld J 00060004 l oa d •• 0.412
machine i 1 0 Include parttoolid : 00070001 load • 0.542
machine i 1 0 1nclude parttoolld : 00080004 load •• 0.350
machine i 1 0 total load : 1.786

%
machine i 2 0 1nclude parttoolld : 00070002 l oad • 0.74 8
machine i 2 0 Include parttoolld : 00080002 load •• 0.775
machine i 2 0 total load : 1.523

machine i 2 d Include parttoolld l 00070004 load •• 0.332
machine i 2 d 1nclude parttoolld : 00070005 load •• 0.293
mac H1ne i 2 d Include parttoolld : 00080001 load •- • 0.287

chine 2 d total load : 0.913

machine 1 3 0 1nclude parttoolld : 00060001 load •• 0.348
machine 1 3 0 1nclude parttoolid : 00060002 load •• 0.069
machlne 1 3 0 Include parttoolld : 00070003 l oad •* 0.382
machine 1 3 0 1nclude parttoolld : 00080003 load •# 0.475

machine 13 0 Include part too lid : 00080005 load : 0*400
machine 1 3 G include parttooMd : 00080006 load : 0.325
machine 13 0 total load : 1*999

machine 2 1 0 1 nc l ude par tt oo 11 d : 00060010 load : 0*417
machine 21 0 Include parttoolld : 00070010 load : 0*371
machine 2 1 0 total load : 0*788

machine 2 3 0 Include parttoolld : 00070011 load 0.259
machine 2 3 0 Include parttoolld : 00080010 load : 0*775
machine 2 3 0 total load : 1*034

machine 3 3 0 Include parttoolld : 00060030 load : 0*783
machine 3 3 0Include parttoolld : 00070050 load : 0.251
machine 3 30 total load I 1*035

- 256 -

- 257 -

■N 35.000

stape 2
machload(-l»-l»0♦1.81100.0)
attrload(spoperat**»-l*-lt0*1.8»l00.0)

KON 3
•tack number : 13
jle applied : 35.000

attrtran(spoperatt**-l»-l»0*-l»-lf*»0.5)

nrrent existing facts :
1 stage2

mrrent arrangement of operations (by parttooUd)
■ r 11 d mac h hp special load

1 00010001 1 2 d 0.364
2 00010002 1 3 c 0.556
3 00010003 1 3 0 1.750
4 00010004 1 2 0 0.519
5 00010010 2 3 m 0.294
6 00010020 1 3 0 0.103
7 00020001 1 3 0 0.719
8 00020002 1 2 d 0.244
9 00020003 1 2 t 0.381
0 00020004 1 2 b 0.483
1 00020010 2 3 m 0.364

„2 00020011 2 1 f 0.400
3 00020021 3 2 0 0.656
4 00020031 3 3 0 0.453
5 00020032 3 2 0 0.659
8 00030001 1 3 0 0.6 25
7 00030001 1 1 0 0.6 04
S 00030002 1 3 c 0.4 38
9 00030003 1 2 t 0.415
0 00030004 1 2 b 0.463
1 00030010 2 1 f 0.229
2 00030011 2 3 m 0.104
3 00040001 1 3 0 0 *229
4 00040002 1 3 c 0.094
5 00040010 2 1 f 0.151
9 00050001 1 3 0 0.669
7 00050002 1 2 0 0.4 63
8 00050003 1 2 t 0.151
9 00050020 3 3 0 •0.204
0 00060001 1 3 0 0.348
1 00060002 1 3 0 0.069
2 00060003 1 1 0 0.481
3 00060004 1 1 0 0.412
4 00060010 2 1 f 0.208
5 00060030 3 3 0 0.783
6 000700C1 1 1 0 0.542
7 00070002 1 2 0 0.748
8 00070003 1 3 0 0.382
9 00070004 1 2 d 0.332
0 00070005 1 2 d 0.293
1 00070010 2 1 f 0.1'86
2 00070011 2 3 m 0.129

- 258 -

43 00070050 3 3 0 0.251
4 <) 00030001 1 2 d 0.287
45 0003000? 1 2 t 0.387^*\S 00030003 1 3 0 0.475
't 7 00030004 1 1 0 0.350
4 3 00030005 1 . 3 c 0.200
4? 00080006 1 3 0 0.325
50 00080010 2 3 m 0.387

current arrangement of operations (by machines) :
machine i 1 0 1nclude parttoolld : 00030001 load • 0.604machine i 1 0 Include parttoolld : 00060003 load • 0.481
machine i 1 0 1 nc lude parttoolld : 00060004 load •• 0.412
machine i 1 0 include parttoolld : 00070001 load • 0.542machlne i 1 0 Include parttoolld : 00080004 l oad » -.• 0.350machine i 1 0 total load : 2. 390

machine i 2 0 Include parttoolld : 00010004 load •- » 0.519machine i 2 0 Include parttoolld : 00050002 load •• 0.4 63
machlne i 2 0 Include parttoolld : 00070002 load •• 0.748machine i '2 0 total load : 1. 729

machine .1 2 d include parttoolld : 00010001 load •. • 0.364
machine i 2 d include part too lid : 00020002 l oad «• 0.244
machine ■i 2 d Include parttoolld : 00070004 load •o 0.332
machine i 2 d include parttoolld : 00070005 load •ft 0.293
machine i 2 d include parttoolld : 00080001 load ■ft 0.287
machine i 2 d total load : 1. 521
^chlne i 2 t 1nclude parttoolld : 00020003 load • ft• 0.381
machine i n£ t Include parttoolld : 00030003 load •• 0.4 15
ma c h 1 ne i 2 t Include parttoolld : 00050003 load ft« 0.151
m a c h 1 n e i r>\£ t Include parttoolld : 00080002 load •ft 0.387
machine i 2 t total load : l. 334

machine i 2 b Include parttoolid: 00020004 load ftft 0.483machine i 2 b Include parttoolld : 00030004 load ft 0.463
m a c h 1 n e i 2 b total load : 0. 945

mac hine -t T 0 Include parttoolld : 00010003 load ftft 1.750machlne i 3 0 Include parttoolld : 00010020 load ftft 0.103machine i 3 0 Include parttoolld : 00020001 load ft 0.719
machine i 3 0 include parttoolld : 00030001 load ftft 0.625machine i, 3 0 Include parttoolld : 00040001 l oad ftft 0.229
machine i 3 0 include parttoolld : 00050001 t oad ft

■ ft 0.669
machine i 3 0 include parttoolld : 00060001 load ft 0.346mac hine . i 3 0 1nclude oarttooUd : 00060002 load ftft • 0.069
m a c h 1 n e i 3 0 Include parttoolld * 00070003 load ftft 0.362
machine i 3 0 Include parttoolld : 00080003 load ft -ft 0.475
machine 1 3 0 Include parttoolid: 00080006 load ftft 0.325
machine i .3 0 total load : 5.694

m a c h 1 n e . i 3 c Include parttoolld : 00010002 load ftft 0.556
machine i t c include parttoolld : 00030002 l oad ftft 0.438
Mchine i 3 c 1nclude parttoolld : 00040002 l oad ftft 0.094

4 chine i-' 3 c Include parttoolld : 00080005 load ftft 0.2 00machine i 3 C total load 1.288

machine 2 l f 1nclude parttoolld : 00020011 load ftft 0.400
machine 2,' l f 1 nc l ud e parttoolld : 00030010 load ft 0.229

•machine 2 1 f Include parttooUd : 00040010 load : 0 . 151n a c h 1 n e 2 1 f Include parttooUd : 00060010 toad : 0 ♦ 2 0 8nachlne o 1 f Include parttooUd : 00070010 l oad I 0*186""•'■chine 2 1 f total load : 1.174
-nachl ne 2 3 m Include parttooUd : 00010010 load : 0 • 2 94machine 2 3 m Include parttooUd : 00020010 load : 0*364lac hi ne 2 3 *71 Include parttooUd : 00030011 load : 0.104eachl ne 2 3 m Include parttooUd : 00070011 load : 0.129machine 2 3 m Include parttooUd : 00080010 load : 0.387•achlne 2 3 m total toad : 1.279

nach1ne 3 2 0 Include parttooUd : 00020021 load : 0.656achlne 3 2 0 Include parttooUd : 00020032 load : 0.659ach1ne 3 2 0 total load : 1.316

ac hine 3 3 0 Include parttooUd : 00020031 load : 0.453achlne 3 3 0 Include parttooUd : 00050020 load : 0.204achlne 3 3 0 Include parttooUd : 00060030 load : 0.783achlne 3 3 0 Include parttooUd : 00070050 load : 0.251
achlne 3 3 0 total load : 1.692

/■"N 3 5* 0 0 0
i«

stage 2'
rr a chto a d(~l9~l$Qfl*8tl00*05
attrload(spoDeratf*f-lf“lt0fl*8fl00*0)

T H 5 M
attrtr3n<spoperatf*f-lf-lf0t-lt-l?*t0«5>

RUN 4 - 260 -
stack number l 23
rule anplied : 35*000

current existing facts t
1 stage?

current arrangerrent of operations (by parttool 1 d)
oar t id mach hp sped at Load

1 00010001 1 2 d 0.364
c 00010002 1 3 c 0.556
3 00010003 1 3 0 1.750
4 00010004 1 2 0 0.519
5 00010010 2 3 m 0.294
6 00010020 1 3 0 0.103
7 0 0 0 2 0 C 0 1 1 3 0 0.719
8 00020002 1 2 d 0.244
3 00C20003 - 1 2 t 0.381

10 0 0 0 .? 0 0 0 4 1 2 b 0.483
11 0002 (3 010 2 3 m 0.364

,j$%2 00020011 2 1 f 0.4 00
i 3 0 0 C 2 0 0 2 1 3 2 0 0.656
14 00020031 3 3 0 0.4 53
15 00020032 , 3. 2 0 0.659
16 00030001 1 3 0 0.625
17 00030001 1 3 0 0.604
IB 0 00 30 0 02. 1 3 c 0.438
19 00033003 1 2 t 0.415
20 0 00 330 0 4 1 2 b 0.463
21 . 00030010 oc. 1 f 0.229-> n <L C, 00030011 2 3 m 0.104
23 00040001 1 3 0 0.229
24 00040002 1 3 c 0.0 94
2 5 0 0 0 4 0 0 1 0 2 1 f 0.151
2 6 0 0 0 5 0 0 01 1 3 0 0.669
27 00050002 1 2 0 0 .463
2 B 0 0 0 5C 0 0 3 1 2 t 0.151
23 00050020 3 3 0 '0.204
3 0 00060001 1 3 0 0.348
•31 00060002 1 3 0 0.069
32 0 0 0 6 0 0 0 3 . 1 1 0 0.481
33 00060004 1 1 0 0.412
3 4 00060210 2 1 f 0.208
35 00060030 3 3 0 0.783
36 00070001 1 1 0 0.542

00070Q02 1 2 0 0.748
00070003 1 3 0 0.382

3 9 00 0 70 0 04 1 2 d 0.332
40 00070005 1 2 d 0.293
41 00070010 2 1 f 0.186
42 0 0 0 70.0 11. 2 3 m 0.129

- 261 - ■

33 00070050 "'•33 0 0.251
+4 00080001 1 2 d 0.287
<5 00080.002 1 2 0 0.775
1,6 000 80 0 03 ; 1 3 0 0.4 75
»7 00080004 "-.'.■V. .-.I'-:". ■■■■; 1 0 0.350
»8 00090005 1 3 0 0.400
•9 00080006 / 1 3 0 0.325
>0 00080010 ' 2 3 m id.387
iirrent arrangement of operations (by machines) :
■ chine 1 1 0 in clude pa rttoolld : 00060003 load : 0.481
■chine 1 1 0 inetude parttoolld : 00060004 load : 0.412
chine 1 1 0 include parttoolld : 00070001 load : 0.542
■chine 1 1 0 1nelude part too 11d : 00080004 load : 0.350
■ c h1ne 1 1 0 total load : 1. 7 86
<cb1 ne 1 2 0 include parttoolld : 00010004 load : 0.519
chine 1 2 0 include parttoolld : 00 050002 load : 0.463
■chine 1 2 0 include parttoolld : 00070002 load : 0.748
chine 1 />frl 0 I nc lude part t oo 11 d 00080002 load : 0.775
ich1 ne 1 2 0 total load : 2.504
chine 1 d include parttoolld : 00010001 load t 0.364
chine 1 2 d include parttoolld : 00020002 load : 0.244
chi ne 1 •O«c d in c lu d e par 11 o o11d : 00070004 load * 0.332
chine 1 2 d in c 1 u d e part tool 1 d : 00070005 load : . 0.293
chine 1 2 d Include parttoolid : 00080001 load : 0.287
chine 1 2 d total load : 1• 521
chine 1 2 t 1nclude par11oolid : 00020003 ■ load : 0.381
chine 1 2 t Include parttoolld : 00030003 load I - C.415
chine 1 2 t include parttoo lid : 00050003 load : 0.151
chine ;i 2 t tOtat IPad * 0• 947:
chine i 2 b Include parttoolid : 00020004 load I 0.483
chine i 2 b include parttoolld * 00030004 load * 0.463
chi ne i 2 b total load : 0. 945
c hi ne l .3. 0 include par t tool id : 00010003 load * 1.750chine i 3 0 include parttool1d : 00010020 load : 0.10 3chine i 3 0 Include part toolid : 00020001 load : 0.719
chine i 3 0 Include parttoolid : 00030001 load : 0.625
chine i 3 0 include parttoolld : oo 03 oodi load : 0.604
chine i 3 0 1h clud e pa r t too tid * 00040001 load * 0.229
chine l 3 0 inc lude part too 1.1 d : 00050001 load : 0.669
chine i 3 0 include parttoolld S 00060001 l oad : 0.348
chine i 3 0 include parttoolld : 00060002 load : 0.069
chine l 3 0 1n clude part t oo 1id : 00070003 load : 0.382
chine i 3 0 include parttoolid : 00080003 load : 0.475
chine l 3 0 include parttoolld : 00 08 0005 load : 0.400
chine l 3 0 include parttoolld : 00080006 load ; 0.325
chine . l 3 0 total load * 6. 698
chine i 3 c Inc lude part too 1id : 00010002 load J 0.556
chine . l 3 c Include part too lid I 00030002 load : 0.438
**bh1ne l 3 c include parttoolid : 00040002 load : 0.094
chine i 3 c total load i 1• 087
chine 2 1 f include parttoolld : 00020011 load : 0.4 00
chine 2 1 f 1nclude parttool1d I 00030010 load : 0.229

.71 a c h 1 ne
machine
iti a c h 1 ne

h 1 ne

mac hi ne.
machine
machlne
machlne
mac hine
machine

machine
machlne
machine

machlne
machine
machine
machine
m a c h 1 n e

1
1
1
1

f Include parttoolld
f 1nclude parttoolld
f Include parttoolld
f total load : j

- 262 -

3m Include parttoolld
Include parttoolld
Include parttoolld
Include parttoolld
Include parttoolld

m total load : i,

m
3 m
3 m.
3 m

3 2 0 Include parttoolld
3 2 0 Include parttoolld
3 20 total load : i

3 3 0 Include parttoolld
3 30 Include parttoolld
33 0 Include parttoolld
3 30 Include parttoolld
3 3 0 total load : j

: 00040010 load :: 00.060010 load :00070010 load :174
00010010 load :00020010 load :00030011 load :00070011 load :00080010 load :279
00020021 load :00020032 load :316
00020031 toad :00050020 load :00060030 load :00070050 load :

16 92

0.151
0*208
0*186

0*294
0.364
0.104
0.129
0.387

0*656
0.659

0*453
0*2 04
0 • 783
0*251

RULES - 263 -

0.9
IF
stageO
nofactex (define)
END IF
THEN
defoptyp(3)
defhptyp(3)
define
ENDTHEN
1
IF
a11rex is<opertype»1♦0i010)
ENDIF
THEN
attrtran(opert>-pe»l»O»0«O»lfO»O*l.O)
ENDTHEN
2
IF
attrexis(ooertype»2*0»G*0)
ENDIF
THEN
•attrtran(oDertype*2*0*0».0t2*0*0»1.0)
ENDTHEN
3
IF
at trex1s(ooertype*3f0«0*0)
ENDIF
THEN
attrtran(opertyDe*3.0»0«0»3»0»0»1.0)
ENDTHEN
4
IF
attrex1s(opertype»4»0»0t0)
ENDIF
THEN
attrtran(opertype*4*0*0*0»3t0*0»1.0)
ENDTHEN
5
IF
attrex1s(opertypet5»0.0»0)
ENDIF
THEN
attrtran(opertype»5*0»0*0»3*0*0»1.0)
ENDTHEN
6 > , foraltopty
IF
notactexCstagel)
machex1s(-l»0»0>
ENDIF
THEN
delefact(stageO)
delefact(def1ne)
stage 1
ENDTHEN
7
fora 11op ty
IF
stagel

f** \

marhex1s{-l*0*C)
attrex1s(houpower*0.0»l0.0,-1,0*0)
EMDIF
THEN
attrtran(houpower»0.0*lG.0»-l*0»0*-l*l,0*1.0)
ENDTHEN
«
forallopty
IF
s t a g e 1
attrex 1s(houpower*10.0*20.0*-l»0*0)
END IF
then
attrtran(houpower*10.0*20.0,-1,0*0*-l,2,0,1.0)
F N D T H L N
9 , . . >
to ratlopty
IF '
s t agel
attrex1s<houDower*20.0»l000.0»-l,0»0)
END IF
THEN
attrtran < houpo we r♦2 0.0,1000.0,-1,0 * 0 * -1 * 3 » 0 * 1.0)
ENDTHEN
10
IF
stapel
ENDIF
THEN ' ' ,
deletact(stage!)
stage?
ENDTHEN
11
torallhpty
IF
stage? '
machex1s(l»-l*0)
machload(l*-l*0*0.0,0.7)
machtoad<2,-1*0*0.3*100.0)
E N DIF
THEN
transter(1,-1,0,2,-1,0 *1.0)
L ND THEN
12
to ra 11hot y
IE k . .
stcge2-
machex is(2 »-l* 0)
macnLoac(2*-1,0*0.0*0.7)
machLoaa(3,-1*0*0.3*100.0)
EMDIF
THEN
transfer(2,-1,0,3,-1*0*1.0)
EMDTHEN
13
torallhpty
IF
stage 2 ■
ma che xis(3 »-1 * 0)
machload(3,-1,0,0.0*0.7)

- 264 -

mac h l o ad (4 * -1 *0* 0.3*100.0)
ENDIF
THEN

’.transfer (3*-1*0*«,-1,0 *1.0)
EMDTHEN
14
forallhpty
IF
stage2
machexis(4»-l,C)
mac hload(4 *-1 * C * 0.0 * 0 • 7>
mach load(5*-1,0*0.3*100.0)
END I F
THEN
.-transfer <4,-1,0*5 *-1*0 *1.0)
ENDTHEN
16 ■
IF
stage?
machex 1s(1,1»0)
mach load(1,1,0*0.0,0.7)
ma c h l o ad (2 * 1 * 0 * 0 • C * 0.3)
mach load (■1*2*0*0.3*100.0)
ENDIF
THEN
transfer(1,1«0,1,2 *0,1.0)
END!HEN
17
IF ■
stage?
machex1s(1*2*0)
machload(1*2*0*0.0,0.7)
mach Load(2*2,0*0.0*0.3)
machload(1*3*0*0.3*100.0)
ENDIF
THEN
transfer(l*2»Q»l*3*0*l.Q)
ENDTHEN
18
IF
stage?
machex i s (1»3*0)
machload(1 * 3 * 0 *0•0* 0•7)
machload(2*3,0*0.0*0.3)
machload(1*4*0*0.3*100.0)
ENDIF ,
THEN
transfer(l*3»0*l»4,0*1.0)
FNDTHEN
19
IF
stage?
machexIs(1*4*0)
machload(1*4*0*0.0*0.7)
machload(2*4,0*0.0*0.3)
-ma ch l.o add, 5* 0*0.3 *100.0)■
ENDIF -
THEN
transfer (1*4 *0 *1 *5-*0,1.0)
ENDTHEN

staae2
irnchex is (2* 1* G)
machload(2*1*0*0.0*0.7)
machload(3«l*C*0.0*0.3)
m a c h l o.ad (2« 2 * 0 * 0.3 * 10 O • 0)
END IF
THEN
transter<2*l*0«2*2*0*1.0>
ENDTHEN
22
IF
s t a g e 2
,ri£ichex1s(2*2»0)
mciChload(2*2»O*O.0,0.7)
roachload<3*2*0*0.0*0.3)
it, achlo ad (2*3*0*0.3*100.0)
END] F
THEN
transfer(2»2»0»2»3»0*1.0)
ENDTHEN
2 3
IF
stage?
machexis(2»3»0)
machload(?*3*0*0.0*0.7)
roachloaa(3*3*0»D.0*0.3)
rnachlo ad(2*4*0*0.3*100.0)
END IF
THEN
t ra nsfer(2*3«-0*2*4*0*1.0)
ENDTHEN
24
IF
stage?
machex1s(2*4*0)
mach load <2* 4* 0 «,0.0 * 0.7)
roachlo a'd(3*4»0»0.0*0,. 3)
mach load(2 * 5» 0 « 0.3 * 100.0)
END IF
THEN
,trnnsfer('2*4*0*2»5*0*1.0)
ENDTHEN
2 5
.IF
s t a g e 2
machexis(3*l*0)
machtoad(3 * 1 * 0«0 * 0 * 0.7)
mach load(4 * 1,0.0.0 *0.3)
mac hto ad (3» 2 » 0 * 0.3*100.0)
ENDIF
THEN
transfer(3«lf0*3»2»0*1.0)
ENDTHEN
26
IF
s t a g e 2
machexis(3«2*0)
rnachlo ad (3*2*0*0.0*0.7-).

machload(4«2*0 *0.0*0.3)
mac hload(3*3*0*0.3*100.0)
END I F
THE N
t r a n-s f e r (3 » 2 * 0 ♦ 3 * 3»0 * 1.0)
ENDTHEN
27
IF
s tage2
mac hex 1s(3♦3»0)
rnach load (3« 3* 0 »0.0» 0.7)
machload(4» 3» G♦C•0 * 0•3)
machlo ad (3*.4 *0*0.3*100.0)
END IF
THEN
t ransfer<3 *3*0*3*4*0*1.0)
ENDTHEN

' 28
IF .
staae2
mac hex is(3*4»0)
ma c hlo ad(3 * 4 » 0 » 0•0 * 0•7)
mac hload(4♦4♦0 »0•0 ♦ 0•3)
maxhlo ad'(3*5*0*0.3*100.0)
END IF
THEN
transf er(3* 4 »0 *3»5*0* 1•0)
ENOTHEN
30
IF , i
stage2
machex1s(4*1*0)
machload(4*1*0.0.0*0.7)
machload(5«1*0»0.0*0.3)
machLoad(4.2*0*0.3*100.0)
ENDIF
THEM
t ransfer(4*1*0»4,2*0»1.0)
ENDTHEN
31
IF
stage2
machexis(4*2*0)
machtoad(4*2»0*0.0*0.7)
m a c h l o ad (5 * 2 * G * C • 0 ». 0 • 3)
machloacj(4«3*G*0.3*100.0)
ENDIF
THEN
t r an s f e r(4 * 2 * 0 * 4 » 3» 0 * 1... 0)
ENDTHEN
32
IF
stacje2
machexis(4*3 * 0)
machload(4*3*0*0.0*0.7)
m a c hi o ad (5 * 3 *0 *0.0*0.3)
ma c hiLoad (4 * 4 * G * C • 3 * 10 0.0)
ENDIF
THEM
transfer(4*3*0* 4*4*0*1.0)

CNDT HEN-
33
IF . . -

. s t <: g e 2
mathexis(4,4♦0)
machLoad(4«4*0 *0»0,C.7)
ma c hload(5 * 4«0 « 0•0 * 0.3)
mac hload(4♦5 * 0 * 0<.3»100*0)

. END IF
THEN -
■transfer <-4»4*Q*4*5»0*1.0)

ENT, THEN
- 35 :• : ' ./

f o r a 11 op t y
t ora 11 hot y
fora 11spop
IF - '
s t a c, e 2
marhload(-1♦-1,0,1.8*100.0)
e 11 r load(scoperat ♦* *-l »-l * 0 *1,8 ♦ 10.0 *0)
E ND IF - -

' 'THEN
attrtran<spoperat »0 t-1 ♦-1 ♦ ** 0 *5)
ENDTHE N

- 268 - O

t

Profrr&M

Start
TnfetniWs o-*<i

£eti«ct stack w«*W

trkxck Aiumker a*d mxI yi*Il*tt*l*r

Chapter 6

PROLOG EXPERT: A Simple PROLOG based Expert System Framework for

Synthesis, the BAGGER Problem as An Example

T. Sarjakoski

- 270 -

PROLOG EXPERTS A simple PROLOG based Expert System
framework for synthesis* the BAGGER problem as an

example •

Tapani Sarjakoski

1. IVlROQyCTION
The design of this system 1s motivated by my research
'•■■Xpert ' system for analyzing photogkammetric measurement

DATA": I noticed that there is a great resemblance betweer
my research and the BAGGER. The BAGGER suited well as ar
example-1 .problem to develop a simple EXPERT SYSTEM framework.

As stated above* my research deals with analyz1 ng photoaran-
metric measurement data. On the other hand* the BAGGER is
an example of synthesis* How can there be anything in coir-
mon? there 1s* because the task of analyzing photogram-
metric measurement data involves also synthesis: The task is
very much computation oriented and it Vs thus critical that
there is a plan of the secuence in which the computations
w1ll bi carried out. On the other hand* the BAGGER alsc
inctuaeS'soiiie features of an analysis system: 1t has tc
decide* for example* it a bag is already full.
In the following i have hot expanded the BAGGER example as
Such out I have designed a simple PROLOG based framework for
synthesis. It is not limited for BAGGER example and coulc
be used tor example to implement my own problem.

?. GYSfEM ORGANIZATION :

2.1. Remarks of PROLOG and its usage

The PROLOG is as such already a fairly powerful tool for
Logic programming: Facts and rules can be entered in s
straightforward manner because the PROLOG interpreted is
actually a realization of a systern ut111zing Clausal Form of
Log 1c.-;■

The first Implementation of the BAGGER 1s a good example c1
using PROLOG directly for building an Expert System. The
subseouent: phases of the 8AGGER ’can be rea11 zee as a simple
prolos clause:.

;

I
■;

1
1'

i

run_bagger

271 - m?

chec k^order^phase* .yo; :yf¥f:
bag_large_1tems_bhase* -Vo;" \Vv AjpA,
bag^medium^ltems_phase»
bag_smalt_items phase*

The context limiting 1s now .realized In a very simple way:
by writing a procedure tor each phase. Because PROLOG
interpreter -satisfies the goals from left to right it actu
ally assures a tixea order of execution*

The .complete listing of the first implementation of the
?.AGG£« is in Appendix BAGGERl* I consider that it shows
very clearly that an Expert System can be written in PROLOG
very easily by using a conventional procedural approach^
However* there is missing one feature which is usually con
sidered to be an essential part of an Expert Systeih: er
Explanation Facility*

, ' - ' . . ' . , -y.EY: •- ..yry?'. ■ ■
In the following is described another PROLOG approach Which
is called PROLOG EXPERT. It is a kino of framework whiC-ih is
also supported by a simple explanation facility* "eXfi laian".

2.2. Knowledge re££esentatigg PROLOG EXPgRT-

>£•1 L££i.s

%’M

The facts are represented by using PROLOG clauses, for exarr- 1 e:
unbagpedlbread)•
container (bread *.plast 1 c_bag) .
sipe(granola*large)*tro7en(bread *no) •
trozen(ice_crearn*yes) .

All the facts are considered to be
HOARD of the PROLOG EXPERT1*.

The total set of facts for the BAGGER example are listecl ir
the AOoendix BAGGER. FACTS.

£*■£•£• ' EeJLee yyyo
There are two kincs of rules which can be used in PROLCG
t xBER T : main rules and auxit 1 ary rules.

' a in rules are written as PROLOG clauses and have the Syntax

rule(CrulenameX) <cond111ons>* then*<acttons>. >
tec example y-y-yY---

rule(hi):-

/••LA . •"a".

located on the BLACK

Vyy

step(check_order)»
unbapgedCpotato_ch1ds)t
soft_dr1nk(X)»
not unbagged(X)«

then •
add^unbaggedlpeosl).

The Inference machine has access to this rules

Auxiliary rules are also written as PROLOG clauses. As e
matter of fact they can be any PROLOG clauses. The auxili
ary rules are accessed by the main rules* either as condi
tions or as actions* for example in the rule(bl) we have
usee the auxiliary rule

arid^uhbdggedl X> ;1“ y
writ e_on_black_boa rfl(unbagped(X > > *
pr intst r?no(" ^ < ")»
pr1nt(X)*
prIntstringl" added .•.")*nl.

N’oie! The print-commands are Included only for cfferine
some*^ progress;5 InformatIon for demonstrating the run of
the PROLOG EXPERT in solving the BAGGER example.

It sotekaUxIliary fules are used as conditions they can be
Interpreted as "dehived tacts”.

There are two impohtantbrocedures which must be used In the
action parts of the main rules lor in the auxiliary rules if
these are then used in the action parts):

wr ite^on.b lac k_fboard (< tac t>)
■ and ■

r emOve_,f r om (< f adl>> •

They allow the user to add facts to or remove facts from the
BLACK BOARD.

£.2.5. Explanation^

For each main rule the use has to enter also an explanations
Tne syntax for it is as follows:

exPlanation(<rulOname>»X) :^
X = C
C"1f"*

" < e x p lanation for c ondit ion 1>"*

•*<explanat1on for condition n>BT*
C“then"*

•*<exp lanat 1 on for action !>”♦

The exDlanation is
rule in English*
facility*

"<explanation for action

used for c lar if ying the ffieani rig of ; t he
It can be displayed with the Exglanirti cr

.■ ■■ . . ■ - •v ■'.> -T’-s;
fill the main rules* auxiliary rules and eXbtanations : arf
listed in Appendix BAGGER RULES* • :. c':'/

2*3. Inference Machine
The Inference Machine of the PROLOG EXPERT w^ooLd ■: toe: ^¥al ly
Simple if no history would be collected of the applicatior
of the rules:

proloo^expert:-
repeat
app ly__ru leC Rule^name) »
step(stop)*

eooly_rule(Rule„name)
rule (Rule__name)» !•

vhat actually would happen when using this i t-nWf^n ce
Machine* is that poets •

r ul e (Rul e_name > and
step(stOD)

would oe tried to be satisfied repeatedly until the goat
s t er (stop) . ‘-i’ll''-

is satistied* This means that the user can stop the Infer-
ence Machine by adding the fact

step(stop)*
to the BLACK BOARD*

Because of the way PROLOG interpreted searches trough the
note base. "Prolog expert" will always apply Rule Ordering
Tor Conflict Resolution* It must be noticed* however* that
Specificity Ordering and Size Ordering can actually: be
implemented by using Rule Ordering - simply by ordering -the
rules properly in the data base. ,

The actual implementation (listed in Appendix PROLOG EXPERT>
*p only slightly more complex because it generates a list of
ite noplication of rules: Following facts are saved each
time .a rule ti res : • * . :

- rOte name ■
- list: of fac ts removed f roni t he BLACK BOARD
- 11st of facts addjed to the BLACK BOARD

The history 11st 1s stored as a fact on the BLACK BOARD.
Additionally* two more facts* ‘"additions*' enc "removals",
are ured to pass the information of actions on BLACK BOARD
from of*bcedures "w:r 1 te_pn_black^board" and " remove_.f rom" tc
the orotedure "op_oate_historyi.list'’*.

The Inference machine does not control the application of
the auxiliary rules* nor does it collect any history cf
-their applicat ion. •

?.4. Ejxg: l an a t jp p f a cl l it y

Once th# PROLOG EXP|RT has been run* the history of the
application of the rules can be Investigated by using the
explanation facility "explain". It allows the user to scar
the history list forwards and backwards. For each applies- .
tIon of a hule it is possible to display the actions on the
BLACK BOARD as well as the '-explanationand the rule itself.

The explanation facility is listed in Appendix PRCLCG
EX p CRT / EX PL A IN .r 'Add it Iona 11 y» 1 ts functions wl tl become
very obvious by looking at the example run at Appendix EXAM
PLE RU\U '■■■;'/' '/

3. . rnTTI^G RULESr AND FA£I£ ■

The rules and facts are stored In normal text files. They
can be manipulated by conventional text editors. No special
system if des 1 gne« vfor erterlng::ruIts - and facts. I feel
that it is quite an adequate solution. Especially* because
the rules and facts Can be split into several files accorc-
ing to the context. The string-search capability of the
editors is very useful. The user has to take care of the
oroper Ordering of the rules•
a. Eonning SXsjfcE
For running the system it is necessary to start the PROLOG
interpreter and load the PROLOG EXPERT as well as the case-
dependent facts and rules Into the PROLOG data base*

For the BAGGER example following parts must be: loaded:

-general routines’^ike "append"* "member"♦ "print-
string" ' ; \
-"prolog_expert" and "prolog_expert/expla1n"

-the facts and rules of the problem

f

i!-

- 275 -

-the initial facts which also have to be on the BLACK
BOARD (the ones of BAGGER are listed in Appendix INI-

. TIAL FACTS)

The possible syntax errors of the rules and facts wilt be
discoverec by the PROLOG Interpreter*

The problem can be solved by keying in the goat
"rrolcg_expert". The Output of the proqram is listed it
Appendix EXAMPLE RUN. , h

Or-ce .the. program has been finished* the final state on; the
-LACK BOARD can be investigated by using for example PROLOG
■commands I

Iist1ng(1nit1ated_pag>.

listinu(numper_of_bags). " a'

11 s ting(unbapped)•

ft the moment, no more sophisticated tools have been built
for that purpose. "

ine explanation facility can be started by keying In the
coal "explain". The progress of the explain facility is
very much self-explanatory which can be noticed from Abien-
dix EXAMPLE RUM.

...h- discussion . ;
2*i« ;■ EfiDLOG os a basis for oujUdina an EXPERT .SYSJEM

fs pointer! out already in'.the; introduction. PROLOG is a very
sii 11ole tool for building an problem solver with, an essence
ot an Expert System. This is demonstrated by BAGGERI. In a
st r a ic,ht f or w ar a approach no explanat ion f a c 111 ty 1A of fere c .

As the Implementation of PROLOG EXPERT shows. it is rela
tively easy to design a simple framework for rule-HAasec
Expert System with a simple explanation facility. Hdwiefeer.
the framework obviously poses some restrictions, pcf
ole, the contribution of the "auxiliary rules'* Oh the Ablu
tion of the prob lem does not show up in the history. It 1s
possible to replace the "auxiliary rules* by writing
corresponding "main rules" which add the derived facts fcr
ruler. - to the BLACK BOARD. But then we lose something of
the expressive power of PROLOG: It is very natural tc
express /the derived facts in PROLOG as Horn clauses, haylnc
the conclusion on the left hand side and the conditions or
the- right hare side.

276

£•£• £fisi£Cail££ b£tw££Q iiEart SxsiaiQ sea araaadarjji

It seems beneficial to implement some portions of an Expert
System by using conventional procedural approach* This
holds especially for the low-level operations of an Expert
System* for example In the BAGGER it was very natural tc
write the procedure (or auxiliary rule) "start_fresh_bap"»
even 1f 1t would be possible to implement ft by using mair
rules. Analogically* it is very natural to write FRGLCG
clause for "full bag"*

These low level rules (derived facts* rules and actions) car
be catted "elementary conditions" and "elementary actions".
They would* on a way* define a case-dependent language*
which is reasonably static for the problem. It also has tc
pc welt defined* for example the BLACK BOARD actions must
well known Also* all the people being Involved with the case
have to know and understand the elementary operations.

£.3. *ore about thfi Explanatjog Faci11ty
For clarifying the explanations* I have used the technique
of writing separate explanations for each rule. I consider
it useful* it allows the usage of liberal* comment-like
explanations* Of course* the is a danger that the explana
tions do not correspond to the actual rules* Lack of
explaining the application of the auxiliary rules, is a draw
back in the current Explanation Facility.

5.4* Interaction

The current BAGGER run as a pure batch process because all
the tacts are considered to be given at the moment of start
ing the ITAGGER* It would be possible to add rules for ask
ing tor more facts* In such a situation a more versatile
Exolanation Facility would be useful for answering to cues-
tions lIke WHY?*

I • 2 • ' • LSSjaiCS l££':- -2£g.L '-

In the Current realization of PROLOG BAGGER there 1s a pos
sibility that ^ run in a loop for ever* due
to improper set cf rules for solving the problem* It wculc
be relatively simple to expand PROLOG EXPERT for covering
that situation: If no rule fires or the firing- rule has not
caused any changes on the BLACK BOARD* the program is in an
infinite Loop and must be interrupted* Automatic entering
of the Explanation Facility and the user possibility tc
modify the facts would be a nice feature for debugging pur
poses.

APPEND"* X A . example run ot the first version
for solving the BAGGER problem

Srrint started on Sat Jan 5 18:55:03 1985
1 orolog
Cf’rolog version 1.3
I ?- lstart 3*
editor consulted 578 bytes 0*116667 sec*
appends consulted 120 bytes 0*0666671 sec*
member 1 consulted 148 bytes 0*05 000 08 sec.
start consulted 8M bytes 0*316667 sec*

yes
I ?- Cos gel]. r -
bag pi consulted 76 0 0 bytes 1*6 sec*
yes
| ?- run_bayper*

Bag per starts checking the order

< neosi > added Into the list of unbagged items

Pacoer starts bagging large items

< peosi > is placed In bag number < 1 >
< granola > is placed in bag number < 1 >
<-granola > is placed in bag number < 1 >

b taper starts bagging medium items

< ice-cream > 1s put in an insulated freezer bag
< bread > is placed in bag number < 2 >
< ice-cream > is placed in bag number < 2 >
< po.ta t o_c h i ps > is placed in bag number < 2 >

Bagger starts bagging small Items

< plop > is placed in bag number < 2 >

. > c s
I ?- c at(baag 1) •
ur,bagged (bread).
unb’acge ci (c l op) •
u f ■ p a g g e d (c r a n o l a) *
unbagged(era no la) • .
unosciied (i ce_c ream) •
'bagged (pot a t e„ch 1 ps) •

container (bread*r'last1c_bap) • '
rentainer(glop•jar>.
centainer(granola *carcbosrd„box)•
c ont o 1 ne r (1 ce_c re am *c ar dbn rd__ca r t on) •
c or. t a i n? p(oepsi*bottle) •
r c n t o'iner (pot a t o_ch ip s» o l sst 1 c_bap > •

278 -
:0 size (breadf medium)*:
U- S12 e (gtopt Sma l l) • ■
s1ze(granolatlarge)*
s1ze(1ce_creamtmed1 urn>•
s i ze(Depst»larpe)•
s1ze(Dbtato_ch1ps»meoium)«

t rozendbreaeUrio) •
trozen(gloptno)•
frozen(grandla»no>•
t rozend ce_cream t yes) .
t rozen(peps 1 t no) *.
t rozen<pot ato_chips tno)•

s o t1 _p r 1 n k (p e p s 1) •

run_bagger i.»
check_orderwphaset
bag_,ta rge_1 tems_phase«
bag^medium_1terns_phase*
bag_small_1tems_phaset! •

check^order_phase I-
n l *
pr intstrir.a("Bagger starts--checking the order")»nlt
nl»
cheek_order*. ,

check^order t~ /* rule B1 */
unbaggedCpotato^chlps)*
soft^drlnk(X)♦
not unbapged(X)t
add_unbagged(pens 1)t
check^order*

check_oroer ;- !• / * rule R 2 */

?rio_unbagaed(X) :-
a s s e r t a (u n b a a y e d (X)) t
pr 1 n ts t r 1 np (" <■">•♦■
print(X) t '
p r 1n t s t r 1 ng (" > added into the 11st of unbagced items*')

check_select1on *- !« /* this 1s a dummy rule tor assuring that'.*/
/* »check_selec11 on * does not fall */

lbeg„.targe_1tefns_phase I-
nl»
pr int st r Ingl^B agger starts bagging la rge 1t err s*) »r lt
nl»
bag^large_1terns♦ !•

bag^rred1um„1tems—phase t-
nit
pr lot st rlnq ('"Bagger starts bagging medium 1 terns.") tn 11
nit
bag^meoium_1temst! . “

Dag_smail_1tems_phaSe;:-

'0f%'

y---

n l ♦
prints tring <"Bagger starts
nl V ■ ?;■
bag_.smatl._1 terns*! . . ■ ~

bag_large_items:*
unbagged(X) ♦
size(X*Large)♦
container (X*bottle)*

■ items
Number
put_item_in^bag(X»Bag^numba.,,
bag_large^1tems*

' ■ ' ®::;'
oag_larae_iterns

unbagged(X)*
s1ze(X*Large)♦

Ifg* :"W;yrW
1I®k

S-:'' ■- •!.'■yj :
■MbfiW.":’-yy --my

;&
eirs") »r t ♦

rc l e B2 */

3iner (X ,bottle) *
5_in_bap(Bag_number» targe*Number)* .

itern_in bag(X *Bag_number) ♦

ft-
.......... ■

items_in_bag<Bag_number*targe♦Number)*
Number < 6*
put_.it em_in_bag(X VBag_number) ♦
bag_large i terns.

V/7l

bag_tarpe._1 terns :-
unbagped(X)♦
size(X * large)♦
start_fresh_bap»
bag_la rae_iterns.

Deg_large_iterns !*

7/ ,v- .-•••■ftl®/. ■■ ;
/*:; rule 65 */

;'Sft :
■■ .

/* rule Bfc */
. ■■ /: v ■ ■ • .■

/* rule B7 */oap_med1um_1terns
unbagged(X)*
size(X*med1um)*
empt y_bag_pr^.bag^wi th^mediumyl terns (Bag_nufnfber) *
not_tutt_bag(Bag_number) * *”

. trczen(X.yes)•
not insu tated(X)♦
put_1n_1nsutateti_.freezer_bag<X> ♦
bac_med1um_1terns•

nag_medi um_i terns /* ruLf Pf */
unbagged(X)♦
size(X*medium)•
empty_bag_or_bag_wi th_medium^iterns (Bag_number)»
not_1ull_bag(Bag_number)* ^ ~
put_1tem_tn_bag(X*Bag_number)♦
bag_itiedi um_i tems *

oeg_metii urr_1 terns
unba'cged(X) ♦
s1ze(X♦medium)«
start_fresh_bag*
bag_medium_iterns•

!'l-ig_med1um_1tems .

r.,-'p._p'i!3 11_1 terns
unbagged(X)♦
s 1 ze(X♦smat t)*

• .. ft'ft-''

I*;,
BS */

■ ^ ..

-v

/* rtrie BIO */

/* rule B11 *7

:■■■, . - 28o - ■■
not^full_bag(Bag_number)«
not conta1ns(Bag_numberYbottle)♦
Put_1tPm.,l.1n_:bag(X ♦Bag_number) ♦

b e gsma-tlItems>;.:>"“ v'-; :■ . ■ /* rule B12 */
r;:. ■■■ unbagped(X)»

V-.:-
bdt^sfu tt^bag<Bag^nufflber) *
out^ltem_1n_baa(X♦Sag_number)♦
bab^Sinal L_1tems»

' bee _s matt... 1 terns; l- :. ' /* rule B13 */
unbaggedCX)♦
s1ze<X ♦ sma11)♦
start_fresh_bag»
bep^smat ls_1 terns. .

b3g_sn;3tl_1tenis i • /* rule PM */

1t ems_1n_bag(Bag_number* SizetNumber) • “
1n1t1ated_bag(Pag_number♦Item_t1st)♦
ccHiht^lt ems (Itenr.ii.st ♦SlzetNumber).

c oun t _11pitiS (t 3»S 1 ze*0 > •
•count_1tem8(£Head|Ta1l3t$1ze«Mumber>

s1ze{head«S1ze)t
count_items(Ta1t»S1ze*M)»
Number 1s N

count_1'tems<CHead.|Ta1l3»Size* Number)
county Items (TaHtSIze♦Numbe r i •

bVt_item_in^bagCItem»Baq^nU(nber)
retrac t (1n1t lated^bag (Baq^number»I tem__ 11st))»
append (I teiti_>l1stttItem3»Mew_iteni„l.istT#
assertz(1n1tlated^bagCBag^bumber*New^item_l1st)):♦
retract(unbagped(Item))♦
pr1ntstr1ngC" < ")♦
pr1nt(Item)»
pr1ntstrInp(" > ts ptaeed In bag number < ")>
print(Bag_number)»
or1ntstrina(" >">»
nL •

1n1t1ateri_bap<l*CD)«
number_ot_baqs(1)•
start_fresh_bag:**

retipaet f niimber^P^bags CN))♦
N; ;■ 1-s'...-;.N ■ * 1*
assert7<number_of„bags<^))♦
assertzt 1n1 t1ated_bag(l“i*I 3)) •

e mp t y _o a g_o r„„b ag_v< 11 h^m ed 1 um^11 e m s (E3 ag_hu mb e r) :-
1n1t1ated_bag(Ra0-.number-*C3)*

empty_bap_or-bag_;w1th_med1um_1tems(Bag<(.number) :-
1n11lated^bag<Bag_numfcer* 11emL1st)♦
count_1tems(Iteml1st♦medium»Number)«
.Number >0.

- 281 -/ ' .

■■ r ";V. >
c c-nt a1 ns (!3ag_number ♦■.Container)-

i n 111a ted_bag(Bag,enurober *I tem_l1st)«
container(Itern?Container)*

".{SP;;' v.
|i;;

member (I te/n* Item„t:1st>•

1 ut._i n_l nsu l steti_f reezer^bay (It em)
!'4V .■ : a .■ -.v

a s ser t z (1 nsu La tecK Itein)) v
printstr 1 nq(w < ")»
print(Item)« •
printstrinq(M > is put 1n an insulated freezer bec“)»rl.

nct_tult_bag(Bag_nurr!ber > /* the cheek 1s not 1npleihent.ee *
/* every bag 1s consider to be not.full »

in1t1atedtoDag<Bag_numb:er»It'em^^1'-s:t)'* •■■■■■■■■..
yrs
i ?-
l Prolog execution halted 2

script done on Sat Jan 5 18:55:59 1985

	Purdue University
	Purdue e-Pubs
	3-1-1985

	Some Prototype Examples for Expert Systems v.1
	K. S. Fu

	tmp.1542052450.pdf.VkSX_

