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ABSTRACT

One of the primary purposes of this research was to develop techniques to 
improve the quality of vacuum evaporated amorphous silicon (a-Si), i.e. lower 
the density of localized states in the mobility gap. The electron beam 
evaporation of amorphouss silicon and hydrogenation by ion implanting has 
proved promising. This technique permits independent control of amorphous 
silicon disorder and the hydrogenation level, thereby separating the process of 
hydrogenation from that of film deposition. Electrical measurement of field 
effect conductance changes was used as a probing tool to monitor changes in 
the properties of a-Si before and after hydrogenation. Field effect data was 
transcribed by a computer program to determine the density of localized states.

Amorphous silicon films were prepared by electron beam evaporation of a 
high purity silicon onto the surface of a thermally oxidized crystalline silicon 
substrate. The films were deposited at a fixed rate in a high vacuum. 
Immediately after deposition, some films were subjected to in situ thermal 
anneal and some films were not. A Comparison of the results of these two eases 
revealed the porous nature of evaporated a-Si. Hydrogen incorporation into a- 
Si films was performed by ion implantation followed by a low temperature 
thermal activation of the hydrogen.

After hydrogenation, a field effect conductance change of four orders of 
magnitude was observed on the devices which were not in situ thermally 
annealed. A comparison before and after hydrogenation demonstrates that 
almost three orders of magnitude reduction (from about 1022 to about 
1019/cm3-eV) in the density of localized states near the Fermi level (N F/T) was 
achieved. Varying the hydrogen implantation dosage between lxlO16 to 
1.5xl017/cm2, with all other sample preparation procedures fixed, caused a 
decrease in NF/T from 8.6xl020 to ixl019/cm3-eV.

The effect of in situ thermal annealing prior to hydrogen implantation 
was also investigated. By performing a 400°C anneal for four hours 
immediately following film deposition the film porosity was greatly reduced. 
The film was then implanted with hydrogen to a total dose of lxl017/cm2. A 
field effect Conductance change of six orders of magnitude was observed which 
yielded a N|F/T of 4xl017/cm3-eV, approaching that of glow discharge produced 
films.
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The second purpose of the research was to develop modeling techniques for 
the a-Si:H TFT. Despite rapid progress in the TFT performence, [performance] the 
theoretical basis to determine static- and dynamic-characteristics of TFTs has 
not yet been determined mainly because the influence of the localized states on 
TFT operation is very complicated.

The theoretical expression of drain current as a function of gate bias and 
drain voltage was derived. To use the theoretical expressions, the localized 
state density distribution N(E) must be known, A derived yet practical formula 
for the N(E) did not exist. A common way is to use the experiment of field 
effect conductance change to determine the N(E), With the data theoretical 
expressions the localized state density N(E) could be calculated by using a 
numerical technique, but it is cumbersome and connot [cannot]be determined uniquely.

As a design tool for devices and circuits, a simple theory which can express 
concisely the TFT characteristics is very important. In this report, several 
models for N(E) are listed:. Approximate analyses for characteristics pf a-Si:H 
TFT are derived. In two special cases, i.e. uniform localized state density 
distribution and exponential localized distribution, some useful approximate 
expressions was obtained. Compared with the experiment data, the uniform 
density distribution of localized state model is a good approximate expression 
for a large density discribution [distribution] of localized states near Fermi level/ The 
exponential model is a good approximate expression for lower density 
distribution of localized states near Fermi level.



CHAPTER 1

INTRODUCTION

We live in an electronic era of technological advances based to a large 

extent on crytallihe semiconductor devices. The marvels of modern 

semiconductor technology follow from sound physical knowledge and 

metallurgical control of single crystal materials. While semiconductor 

phenomena are hot unique td crystals, active devices almost always involve 

single crystals. Amorphous serhicohductdrs, with the well-established crystalline 

foundations as a departure point, offer new frontiers for research and hopefullyj 

promise for technological developments.

Considerable effort has been expended in trying to understand and predict 

the electronic, optical, and physical properties of amorphous semiconductors. 

Remarkable progress has been made in these areas, interrelating the basic 

characteristics and in some instances applying the results in the realization of 

device teehnologiss. Its potential application is in producing large area, low cost 

solar cells for energy conversion. Other a-si devices recently explored are thin 

film trahsisters[l-4], charge coupled devices(CCD)[5], image sensors[6], and
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liquid crystal dispay(LCD) driver devices'[3,4].

1,1 Definition of AmorphousSemiconductors

The mechanisms involved in the formation of crystalline or noncrystalline 

states by condensation from vapor and liquid phases primarily depend on the 

time that atoms op clusters of atoms interact to from bonds in metastable and 

stable structures. Crystallization is the long-range ordering of atoms in a 

periodic solid-phase lattice near equilibrium conditions. Amorphous and 

poly crystalline semiconductors are noncrystalline.

Amorphous semiconductors are noncrystalline, but crystalline state bonds 

still predominate in amorphous solids. They lack long-range periodic ordering 

of their constituent atoms. That is not to say that amorphous semiconductors 

are completely disordered on theatomic..acale. Local chemistry provides almost 

rigorous bond-length, and to a lesser extent, band-angle constraints, on the 

nearest-neighbpr environment. Amorphous semiconductors contain covalently 

bonded atoms, arranged in an open network with correlations in ordering up to 

the third or fourth nearest neighbors, ie they have short-range order. The 

short-range order is directly responsible for observable semiconductor properties 

such as optical absorption edges and activated electrical conductivities.

Amorphous semiconductors are not polycrystalline materials. 

Polycrystalline semiconductors are composed of grains with each grain 

containin g a periodic arry of atoms surrounded by a layer of interconnective or



boundary atoms. The grains, or crystallines, are formed by independent 

nucleation and growth processes randomly oriented and spaced with respect to 

one another. An amorphous semiconductor can be transformed to the 

polycrystalline State, but not the reverse. The irreversibility indicates that the 

crystalline state has a lower lattice energy. Indeed, the- polycrystalline state, 

too, will transform to a single-crystal state by the reduction of internal 

surface(grain boundary) energy. We can also infer that the transition from 

amorphous to polycrystalline state occurs by the reduction of internal surface 

energy. Howeever, in both case the internal surfaces are reduced or minimized, 

but not necessarily eliminated.

Amorphous semicondutors, while forming a single area of study with some 

unifying ideas, often is divided into two subfields, the tetrahedrally coordinated 

silicon-like materials and the chalcogehide glasses. Arsenic, from column 5 of 

the periodic table, forms a bridge between the two classes of materials;

The terms “glassy” or “vitreous” are often used synonymously for 

‘‘amorphous” or “noncrystalline”. However, in sortie fields of study, glassy or 

vitreous connotes the technical preciseness of a definable thermodynamic phase. 

The existence of a glass state, with its glass transition temperature, has been 

documented for some chalcogenides, but not for the tetrahedrally bonded 

amorphous semiconductors. For chalcogenide glasses, this is reflected in the 

ability to prepare them from a semicondutot melt by rapid coblingfquencbingj 

to temperatures below the glass transition temperature. For silicon and the 

like, quenching from the melt, which in this case is metallic with a different 

short-range order then the desired semiconductor, generally cannot be done 

rapidly enough to freeze in an amorphous atomic arrangement, polycrystallinity 

is the more common result.
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Once prepared, a material is empirically defined to be amorphous if its 

diffraction patten consists of diffuse ring(halos) rather then sharply defined 

Bragy ring or spots characteristic of polycrystalline or single crystal solids. 

While mixtures of amorphous and crystalline materials can exist, there does

not seem to be a continuous transition from one to the other. The conversion 

from amorphous to crystalline takes place by nucleation and growth rather

then by homogeneous atomic rearrangement.

1.2 Fabrication of Amorphous Silicon

Amorphous semiconductors that cannot be prepared dirctly from the melt 

a.re usually fabricated in the form of thin films by an atomic deposition 

procedure such as vacuum evaporation, sputtering, Chemical vapor deposition, 

plasma decomposition of gases, or electroplating. Ion bombardment of crystals 

is also used to leave an amorphous layer in the collisipn train of the ions.

The electrical and optical properties of the materials are directly 

influenced by the density of the localized elctronic states [7], which differentiates 

amorphous silicon from crystalline silicon. A prerequisite for fabricating 

successful devices in a-si is to have a low density of localized states, otherwise 

the Fermi level is pinned or nearly pinned at a fixed energy level.

It is known that hydrogenated amorphous silicon films(a-Si:H) have a 

lower density of localized states in the mobility gap[8] then non-hydrogenated 

filinsi Consequently the technigues of hydrogen incorporation and the effects of



hydrogen in reducing the localized states are of considerable interest and have 

been the main stream of basic materials research in a*si.

Hydrogenated amorphous silicon was first deposited from a glow discharge 

in silane(SiH4) generated by an external r-f coil[9j. These r-f eleCtrodeiess 

discharge systems "'usually operate within a frequency range of 0.5—13.5 MHz 

and at SiH4 pressures of 0.1—0.2 torr. The discharge chambers are generally 

small(on the order of 7 cm in diameter), and the samples are usually positioned 

horizontally on a heated pedestal. The best quality film are abtained with 

substrate temperatures in the range Of 200° — 400QG. The SiH4 flow rates are 

typically in the range of 0.2—5.0cm3/min, and the deposition rates are usually 

in the range of 100 — 1000 A/min. The deposition rate increases rapidly with 

increasing power and pressure, but the film quality starts to degrade at high 

deposit ion rates. These r-f electrodeless systems have the advantage of external 

electrodes, so that Contamination of the films by sputtering is minimized. 

However, these systems are relatively small, and the uniformity of the film is 

generally poor.

Radio frequency capacitive discharge systems employ parallel plate 

electrodes inside the discharge chamber and are similar to the systems used for 

sputter-deposition[10]. The capasitive discharge systems generally operate at

13.5 MHz and at SiH4 pressures in the range of 5—250 mtorr. The film 

uniformity is excellent, and some systems can accommodate substrates 1 ft2 in 

area The SiH4 flow rates are typically 10—50 cm3/min and depend on the size 

of the system as well as on the pressure and power. The power densities are 

usually in the range of 0.1—2.0 W/cm2, and the deposition rates are in the 

range of 50—500A/min.
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Deposition of a-Si:H has also been done by means of a DC glow discharge 

in SiH4[ll|. Deposition rates in the range of 0.1—1.0 /im/min cccan be obtained 

by varying the current density to a cathodic substrate from 0.2 to 2.0 mA/cm2 

in ~1.0 torr of SiH4. Cathodis films are bombarded by energetic positive ions 

during the deposition, and bombardment damage can degrade the film quality 

at high voltages and low pressures. Film uniformity is good if the substrate 

dimensions are much larger than the Crookes dark space(a dark region in the 

glow discharge near the cathode).

Another technique that has been used to deposit a-Si:H is sputtering in an 

atmosphere of Ar and II2[12]. In this approach a polycrystalline silicon target is 

sputtered in an r-f capasitive discharge system. The substrate is placed on a 

heated counterelectrode located opposite the target electrode. This technique 

has the advantage of being able to control the hydrogen content of the films by 

varying the partial pressure of H2. However, preliminary results obtained at 

RCA Laboratories indicate that the film quality is inferior to that obtained in a 

SiH4 discharge.

Chemical vapor deposition(CyD) has also been used to deposit a-Si:H. The 

non-doped CVD a-Si was deposited by thermal decomposition of SiH4 at 

550-H>00°C[13]. The CVD a^Si obtained exhibits no detectable vibrational 

absorption in the infrared due to Si-H bonds and incorporates silicon dangling 

bonds amounting to approximately lxl0lfl cm"3. When CVD a-Si:H films are 

deposited on a substrate at temperatures between 380 and 450°C in Si2H6[14], 

infrared transmission spectra showed the following results: (1) At lower 

temperature both SiH2 and SiH bonds are evident. (2) As the temperature 

increases, SiH2 bonds disappear and only SiH bonds remain. (3) From the IR 

spectra it appears that with increasing temperature the H content is reduced.



Fo^t-hydrogenation of CVD a~Si can be used to eliminate the electron spin 

density, which implier bond-gap states. Annealing in a hydrogen plasma has 

been developed for CVD a-Si[l5j. Undoped a-Si films were obtained by the 

chemical vapor deposition of SiH4 at a temperature of 650° C. The 

experimental setup for hydrogen plasma annealing is shown in Figue 1.1 The 

pressure of hydrogen, the substrate temperature, r-f power, and annealing time 

were 0.6 Tori, 350° 0, 40W(frequency : 13.56MHz), and 60 minutes, 

respectively. The hydrogen plasma was maintained until the substrate 

temperature fell below 250° G to avoid an effusion of the hydrOgen atoms out 

of the films during Cooling. The following Conclusions are drawn on the results 

of post-hydrogenated CVD a-Si: (1) The electronic properties ate closely 

connected with the hydrogen distribution, which is described by a 

complementary error fnnction. (2) The hydrogen penetration depth is estimated 

to be 0.5 p, where the spin density is reduced from lxlO19 cm-3 to 7xlQ16 cm-3

Another important method to obtain a-Si is by electron-beam evaporation. 

The typical procedures are thit the vacuum, substrate temperature and rate of 

evaporation are 1(H tori, 200° C, and 1—5 A/sec respectively. After a^Si is 

deposited, it is kept in a high Vacuum(l0~8 and annealed for 4 hours at 400° C. 

The density of localized state was measured to be 6x ID19/CM3—eV.

Hydrogened a-Si, made by electron beam ev apor ation, has been 

pr0duced[l6j by annealing in a hydrogen gas ambient at 400° C for T hour. 

This step has a decision benefit for the augmentation of the photovoltaic 

performance. On the other hand, by using hydrogen pplasma annealing as 

described in a-Si literature|l7], ttonOne has been able to obtain the same degree 

of benefit. A point of departure in this approach is the Use of molecular 

hydrogen instead of plasma[17], or atomic hydrogen[18] for hydrogenation. The
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oscillator
13.56 MHz

substrate

pirani gauge
to rotary pump

Figure 1.1 Experimental setup for post-hydrogenation of CVD a-Si films 

(from Reference 15)



hydrogen content after this annealing treatment is found to be, from nuclear 

reaction analysis [19],about 1 to 3% of the silicon content. This value is rather 

low in comparison with published data of as high as 30%[17]. Whether this low 

Value is due to the hydrogenation being incomplete; or alternatively the a-Si 

has less defective states to bond with hydrogen, is an important problem.

1.3 Purpose of the Report

'To date, the best device electrical performances have been achieved with 

glow discharge deposited a-Si:H films which have a low density of localized 

States in the energy gap [20-23]. Yet the properties of the deposited specimens 

are critically dependent bn a number of variables such as substrate 

temperature, type of discharge, discharge power, SiH4 pressure, and SiH4 flow 

rate. Complex surface reactions which involve electrons and positive ion 

fragments such as SiH, SiHg, and S1H3 take place during film growth. This 

behavior indicates that the density of gap states is strongly influenced by the 

deposition conditions. Hydrogen incorporation by this method is determined 

by the detailed plasma conditions at the specimen surface during deposition. 

The inherent complexity of the glow discharge process and the interrelations 

among the deposition parameters make it difficult to study the basic material 

properties of films prepared by this technique. Because of such a complex 

deposition process, which interweaves with the reactor design or Operating 

parameters, what critical specifications are needed to uniquely define a silane
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<. ydebbiftpbsition "'-system: ;;is still uncertain and unsolved. In another words, the 

experimental control of the plasma condition and surface reactions during 

deposition, to obtain well defined and reproducible electronic properties, 

remains a major problem. Hence the samples produced by this technique tend 

to have poor uniformity from run to run due to the complexity of the reaction 

process. Therefore it is not surprising that different characteristics of a-Si:H, 

produced by this method, are observed at different laboratories. For instance, 

Goodman [24] found that the density of localized states at the Fermi energy is 

lower when depositing at the substrate temperature (Ts) of 160°C than for the 

films depositing at Ts = 280°C. But the other published results indicates that 

250°C < Ts < 300°C is the optimum range for producing high quality films 

with a low density of localized states [8,25]. Even in the same Chicago group, 

Goodman’s results [24] disagreed with Tsai’s results [25] on the substrate 

temperature effect. Moreover, in the fabrication of a-Si:H films, two important 

factors, namely the degree of disorder and the hydrogen content cannot be 

independentlycontrolled in glow discharge or sputter deposited films.

In this research a technique is reported for the deposition of a-Si and its 

subsequent; hydrogenation, which permits independent control of a-Si disorder 

and the hydrogenation level. In addition, this technique serves to minimize the 

number of fabrication parameters thereby facilitating the study of 

hydrogenation phenomenon. With the number of fabrication parameters 

minimized, the technique is greatly simplified compared with the inherent 

complexity of the glow discharge process. Samples with excellent uniformity 

from device to device and from wafer to wafer were obtained. This uniformity 

will be demonstrated in the IDS vs. VG figures of Chapter 4.



The device structure used in this research is similar to the MOSFET with 

a thin film of amorphous silicon for the semiconductor which was produced by 

electron beam evaporation in a high vacuum. Hydrogen is incorporated into the 

film by ion implantation and therefore can be quantitatively Controlled^ This is 

followed by a. low temperature thermal anneal to activate the implanted 

hydrogen. A comparison of electrical properties of the evaporated films before 

and after hydrogenation provides valuable information on the effects of 

hydrogenation, independent of deposition parameters. The hydrogen content 

can be easily controlled by this technique as compared to the technique 

involving exposure of evaporated a-Si to an atomic hydrogen plasma [26], glow 

discharge decomposition of silane [20-23], sputtering deposition in the presence 

of hydrogen [27], and chemical vapor deposition (CVD) [28].

The electrical properties of a-Si thin films produced by the above methods 

are heavily dependent upon the fabrication parameters [7] such as the 

deposition conditions, nature of the substrate, post-deposition heat treatments; 

and the hydrogenation techniques. Therefore it is necessary to determine what 

parts of the observed experiment are due to fabrication, what parts are 

intrinsic to amorphous materials, and what parts are due to hydrogenation 

effects. In this research all the fabrication conditions were fixed. Only the ion 

implantation dosage of hydrogen is varied once an annealing procedure is 

established. \ -v- .■

The field effect measurement of the conductance change was employed in 

this research as a probing tool to study the characteristic changes of the a-Si 

upon hydrogenation. These measurements were performed on the devices which 

were subjected to a thermal anneal in' situ immediately following a-Si film 

deposition and also on the devices which were not annealed in situ. Comparing
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the results of these two cases gave valuable information about the porous 

nature of evaporated a-Si films and the effectiveness of the hydrogenation 

process. The effect of hydrogen in reducing the density of localized states was 

quantified by varying the implant dosage. Analyses of the field effect data 

indicated that the density of localized states near the Fermi level (Nf) 

decreased as the implant dosage was increased with all other experimental 

procedures fixed.

1.4 Organization of This Report

Chapter 2 presents a review of the relevant literature on a-Si and a-Si:H. 

The review includes a summary of generally known properties, hydrogenation, 

and doping of a-Si. The theoretical analysis of field effect conductance 

modulation and a brief discussion of the major applications of a-Si are also 

presented. Detailed experimental procedures are described in Chapter 3 which 

includes the sample preparation, field effect measurement procedures, ion 

implantation and thermal activation. Chapter 4 contains the experimental 

results of hydrogenation versus nonhydrogenation, field effect conductance 

change after hydrogenatipn, influence of implantation dosage on the reduction 

of localized states, hydrogen effusion, the effect of a pre-implant in situ 

thermal anneal on the reduction of localized states, and a discussion of surface 

states. In Chapter 5, the a-Si:H TFT is discussed, which includes the 

theoretical analysis, the approximative theoretical analysis, and a brief



discussion of some experiment results. Conclusions drawn from this research 

are in Chapter 6 which also includes sbme recommendations for future 

research. Two appendices are also included as part of this report. Appendix 1 

presents the initial wafer cleaning procedures. Appendix 2 illustrates the 

procedures to run the computer program and the program which is used to 

determine the density of localized states in the mobility gap from experimental



Prior to 1970, very little research was performed on amorphous materials. 

Since then more research has been involved in this field and most of the 

published results are experimentally oriented. Only few papers have dealt with 

any theoretical work. Up to the present a concise and complete theory of 

amorphous materials, which can explain all the observed experimental facts, 

has to be made available.

Several good reviews on 

Davis and Mott [29], Adler [7], Knights and Lucovsky [30], or edited by 

Brodsky [31]. The review in this chapter is only concerned with the literature 

on amorphous silicon. The review includes some generally known properties of 

intrinsic a-Si, hydrogenated a-Si, doped a-Si, field effect conductance 

modulation, and a brief discussion of some major applications of a-Si.
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2.1 Amorphous Silicon : Structure, Density of States Models, 

Hopping Conduction in Localized States at the Fermi Energy

[A] Structure

Silicon, an element in column IV of the periodic table, tends to bond 

tetrahedrally. In its lowest entropy state, silicon crystallizes in the “diamond” 

structure, in which it is most stable.

Amorphous semiconductors that canhot be prepared directly from melt­

quenching are usually fabricated in the form of thin films by an atomic 

deposition procedure. Among the fabrication methods of amorphous 

semiconductors, several important and commonly used methods for the 

preparation of a-Si are vacuum evaporation, r.f. sputtering, chemical vapor 

deposition (CYD)j and glow discharge decomposition of silane (SiH4) gas. X-ray 

diffraction studies [32,33] have confirmed the amorphous nature of these films. 

Further studies of X-ray, electron, or neutron diffraction data [34-37] yield a 

radial distribution function (RDF), the Fourier transform of the scattered 

radiation, which is the average density of atoms at a given distance from any 

other reference atom- The RDF shows that the first interatomic distance and 

the coordination number in a-Si are of the tetrahedral arrangement. The 

average bond length is 2.38 A as shown by Figure 2.1.

To date, the most widely accepted continuous random network model 

(CRN) of the ideal amorphous silicon structure is that of Polk [38]. The Polk 

model is a “ball and stick” model containing 440 atoms. Each atom in the 

rnodel has four immediate neighbors arranged in a distorted tetrahedral 

geometry in the sense that bonds may be slightly bent or stretched. The short



First neighbor peak of the radial distribution function for 

evaporated a-Si and glow discharged a-Si:H (from Reference 34)



range order is preserved to a distance of the first nearest neighbor. Beyond the 

second and third nearest neighbors, the structure gradually loses the long-range 

periodicity due to the slight bond stretching and bond angle deviation. In the 

model, the bond angles are distributed about their average value of 109° 28* 

with an average deviation of ±10° and a maximum deviation of ±20°. The 

maximum bond stretching is 16%. The density of this structure was found by 

Polk to be about 93% that of a corresponding crystal lattice. Available 

published densities [39] for amorphous and crystalline silicon are 2.35 and 2.42 

gm/cm3 respectively, yielding a density ratio of approximately 97%. In 

addition to the sixfold rings of crystalline silicon, the model also displays 

fivefold and sevenfold rings, Polk’s model represents an ideal structure for the 

amorphous state, a low energy metastable structure which can be extended 

indefinitely with no internal unsatisfied bonds. It is a structure toward which 

fabricated amorphous films approach.

The above idealized network structure gives an image of no dangling 

bonds. Each atom is satisfied by its chemical valence bonding requirements. In 

the real world, defects (a lone broken bond or “dangling bond”) always exist in 

amorphous materials. These imperfections exist even in the crystalline 

materials. Figure 2.2, 2.3, and 2.4 visualize the CRN model and some possible 

defects;, ;.,v:

The a-Si films produced by vacuum evaporation method contain large 

numbers of voids, defects and other imperfections (thermal strains, density 

fluctuations) [12]. Evidence of the presence of microvoids in a-Si is found in the 

work of Moss and Graczyk [40] and also Brodsky [32]. Low angle electron 

scattering data, of Moss and Graczyk clearly indicate the presence of voids in 

the films Brodsky observed the large electron spin resonance (ESR) signal
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Figure! 2.2 A continuous random network (CRN) model of a-Si containing a 

dangling bond (from Reference 31)

3 Hypothetical construction of an a-Si lattice showing the existence 

of a lone broken bond (from Reference 31)



Figure 2.4 Scjiematic representation of possible defects in crystalline (top)



which is attributed to the unpaired electron spins from dangling bonds on the 

void edges. There will be more discussions on the subject of imicrovoidS in 

evaporated a~Si later in Chapter 4 section 4.6.

pBj Density of States (DOS) Models

Knowledge of the density of states function and the mobility of the states 

in amorphous materials is essential in the Understanding of the electrical 

transport and other properties of these materials. A good introduction oh the 

theory Of electronic states in amorphous semiconductors was given by Ki'amer 

and Weaire [41], while an introduction to the localized states in the mobility 

gap and defects in amorphous semiconductors was written by Davis [42]. The 

whole subject of the theory of states in a-Si is still in its infancy. The purpose 

of this section is only to qualitatively review the important features of several 

density of states models.

Due to the absence of long range order in amorphous semiconductors, a 

rigorous quantitative solution of the Schrodinger equation does not exist. 

However, the model of “purely topological disorder”, as represented by the 

Hamiltonian used by Thorpe and Weaire, allows a discussion of the behavior of 

bands and band gaps in tetrahedrally bonded amorphous semiconductors. The 

Anderson Hamiltonian represents “pure compositional disorder” and is the key 

model for the understanding of electron localization in disordered systems. 

Weaire and Thorpe [43,44] demonstrated that by quantum mechanically 

manipulating the matrix elements of the Hamiltonian, an energy gap exists in 

the “ideal” random structure which is defined as an amorphous solid with no
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impurities, no defects, and no dangling bonds. However, due to the deviated 

distribution of the bond angles and interatomic distances, some kind of 

electronic energy states (so-called “intrinsic” states) do exist in the gap. These 

gap states are fewer in number but nonzero as compared with those in the 

conduction band and valence band in which are named extended states. The 

carrier mobility [45] in the gab states is far less (several orders of magnitude) 

than that in the extended states.

The energy separating the gap states and extended states is called the 

mobility edge, hence this pseudogap is named the mobility gap. The intrinsic 

gap states are believed to be the band tailing states prolonged from the 

extended states into the energy gap as Figure 2.5 illustrates. While based on 

Anderson’s Localization Theory [46], Mott [47] also demonstrated that the 

spatial fluctuations in the potential caused by the configurational disorder in 

amorphous materials may lead to the formation of localized states which forms 

a tail above the valence and below the conduction bands.

"■v.yAs mentioned in the last section, fabricated a-Si films contain a large 

number of defects. and dangling bonds which make them depart from an 

idealized structure and result in additional electronically active states in the 

pseudo energy gap. These defect-caused localized gap states are named 

“extrinsic”; states to be distinguished from the band tailing-caused “intrinsic” 

states. The states in the pseudo energy gap are called localized in the sense 

that an electron placed in a region will not diffuse at zero temperature to other 

regions with corresponding potential fluctuations. Their quantum mechanical 

•wave function has a finite region of influence as compared to an extended state.

Figure 2.6 illustrates two of the density of states models proposed for the 

band structure of amorphous semiconductors known as the Cohen-Fritzsche-



'mobility edge

of a noncrystalline2.5 Density of states in the conduction 

material, showing the band tailing stat
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Figure 2.6 Schematic density of states diagrams for amorphous 

semiconductors (a) the CFO model, (b) the Davis-Mott model 

(from Reference 31)

CFO
MODEL

m

Figure 2.7 Band tail overlapping of CFO model



OvsMnskjr model [48] (CFO model) and the Davis-Mo11 model [49]. Recently a. 

different model, called the small-polaron model, wasproposedby Emin [50]. It 

should be noted that preparation methods and conditions have been shown to 

have a great influence on the number of localized density of states in 

amorphous silicon [23,9,51,52]. All the experimental data obtained from field 

effect [8,23;53,54], noise [55]y and photoconductivity measurement [56] support 

GFO model fOr amorphous silicon.

If the System disorder is sufficiently high, then the tail states of the 

conduction and valence bands extend so deep into the mobility gap that they 

eventually overlap each other. In the CFO model, the localized states are 

believed to be due to the overlapping Of the conduction add valence band tails, 

leading to an appreciable density of states in the middle of the gap (see Figure 

2.7). As a consequence of band overlapping, some electrons in the tail states of 

the valence band have higher energies than those from the tails of conduction 

band. Such electrons from the top of the tail states Of valence band fall into 

the lower tail states of conduction band. The Fermi level, Ep, thus falls close to 

the middle of the quasi energy gap where the total density of states reaches the 

minimum value. Assume the tail states of the Conduction band are of the 

acceptor type (i.e. neutral when empty and negatively charged when being 

filled), and the tail states of valence band are of the donor type (i.e. neutral 

when filled and positively charged when empty). The redistribution of the 

electrons mentioned above gives rise to the empty positive charges in the tails 

of valence band which are neutralized in equal number by the associated

negative charges from the tail states of filled conduction band.

In the Davis-Mott model, the band tails are nOt extensive but rather 

narrow and extend only a few tenths of an electron volt into the quasi gap.
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These localized states are associated with the absence of long-range order i.e. 

intrinsic states, Furthermore, there exists a band of compensated levels near 

the middle of the gap that can pin the Fermi level. This band, referred to as 

the J-band, originates from defects in the random network, e.g. dangling bonds, 

vacancies etCr Experimental data on chalcogenide glasses (57], which are 

amorphous materials involving S, Se, and Te, showed that Mott’s model is 

preferable,

[C] Hopping Conduction in Localized States at the Fermi Energy

^ A short note should be inade on the conduction in localized states near the 

Fermi energy, which is unique in amorphous materials. The interpretation of 

electrical transport data is closely interwoven with the energy distribution of 

the density of states. On the basis of the CFO modely there can be two 

processes leading to conduction in amorphous semiconductors.

At elevated temperatures, charge carriers can be excited beyond the 

mobility edge into the extended States. The current transport in the extended 

states is similar to usual band conduction in crystalline semiconductors but 

with a much smaller carrier mobilities compared with those of crystalline 

semiconductors. y,:,:y

:\:At:\:ioWvbut;;fi'nitd. temperatures, the conduction mechanism is dominated 

by the low mobility hopping conduction in the localized states near the Fermi 

energy. The carriers can jump from localized sites to other sites through a 

phonon assisted tunneling process. This transport, known as “thermally 

activated hopping” or “Variable range hopping” is similar to impurity band



conduction observed in heavily doped and highly compensated semiconductors 

at low temperatures [58]. A full and lengthy treatment on the temperature 

dependence of the hopping conductivity at Ep has been given by Mott [59] and 

a review article oh this subject has recently been published by Overhof [60] and

Nagels[6ij.-^';'’-^'\^'.-

Later in Chapter 4, the analyses of the field effect experimental data on 

the “as-fabricated” films showed no field effect conductance changes. It is 

believed that hopping in localized states at Ep dominates the conduction 

mechanism in these cases. The hopping conduction formula derived by Mott 

will be used to estimate the initial density of states near Ep on the “as- 

fabricated” films. It must be mentioned that Motts derivation implies a 

number of simplifying assumptions of which some are controversial. The final 

hopping conductivity (n) derived by Mott [59] is cited as follows : 

<t=o„|T)m|.(~A/T,/<|

.-Where

'olTHi^l"'hl|X|i:,',/"kT|'/2

A=2.1| a
kN(Epj

Pph : phonon frequency ~ 10,3/sec 

a : rate of fall-off of the wave function at a site 

0T1 ~ bO A

N(Ep) : density of states at the Fermi level 

e : absolute value of electron charge, 1.6xl(T19 coulombs



T : absolute temperature in Kelvin 

k : Boltzmann’s constant, 8.62xl(T5 eV/°K

It should be noted that the temperature dependence of <x has been confirmed 

experimentally [59]. However many other functions also fit the data.

2.2 Reduction of the Localized States in the Pseudogap

As mentioned in the section 2.2[AJ, a large number of defects and dangling 

bonds exist in ^'‘intrinsic*amorphous silicon as indicated by a detectable 

electron spin resonance (ESR) signal. A dangling bond, with its electron energy 

level lying in between the valence states and conduction states, contributes to 

optical absorption and electrical conduction processes and hence masks many 

interesting semiconductor phenomena. Further, a large density of fast 

nonradiative recombination centers, originating from the mobility gap states, 

makes photoconductivity or photoluminescence uninterestingly small in pure 

amorphous silicon; Finally, the Fermi level can not be moved significantly due 

to the large number of gap states when conventional impurities (phosphorus or 

boron) are incorporated. In other words, we have serious difficulties in doping 

such defect-rich amorphous silicon, As indicated in Chapter 1, the gap states 

have to be reduced in order to improve the quality of a-Si films for device 

applications. In this section, two commonly used methods to reduce the gap 

states, namely thermal annealing and passivatipn with dangling bond 

terminators, are reviewed.



[A] Thermal Annealing and Crystallization

Traditional thermal annealing [53,54] has the effect of healing the dangling 

bonds, removing the voids and reducing the dislocations byreconstruction and 

rearrangement of the amorphous network. Therefore thermal annealing has the 

effect of reducing the “extrinsic” gap states. Annealing at elevated 

temperatures increases resistivity by orders of magnitude. The clearing up of 

the gap states by thermal annealing or with an elevated deposition temperature 

is also demonstrated by the reduction of ESR signals as Figure 2.8 shows. More 

recently it was established that under clean conditions without contaminates, 

the annealing effects are limited arid that a-Si will crystalize before all the 

dangling bonds are removed [62]. Further discussion on removing the voids in 

evaporated a-Si by in situ thermal annealirig imrriediately after film deposition 

is given in Chapter 4, section 4.6. Incidentally, Fierce and Spiter [51] 

determiried the deposition conditions necessary for the fabrication of vacuum 

evaporated a-Si with a structure close to the ideal amorphous structure, which 

seems to exist though in concept only. These conditions include : 1) deposition 

pressure less than 5x IQ-6 torr, 2) evaporation rates in the range of 2 to 5 A/sec,

3) large evaporator to substrate distance (greater than 20 cm.), and 4) 

annealing or deposition on a substrate maintained at an elevated temperature 

(within 100°C of the crystallization temperature). It should be pointed out that 

when the films are subjected to high temperature proeessing arid if there is a 

thermal mismatch between the substrate and the film, then thermal strains can 

be left in the filiii.

In an even higher annealing temperature range, about 600PC to 700°C, the 

amorphous silicon will transform to a polycrystalline structure. The grain size 

in the polycrystalline structure increases with annealing temperature. Figure
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2.9 illustrates that the crystallization temperature is about 620°C. In these 

experiments, the temperature was raised from room temperature to about 

700°G The results show a well defined activation energy up to a temperature 

Tc indicated in the graph. More clearly shown by the inset, a discontinuity in 

gradient occurs at Tc. When heating to T > TC, an irreversible change in the 

conductivity has been produced. Curve (i) in Figure 2.9 was obtained after 

heating the sample to 700°C and allowing it to cool. Conductivity has increased 

by over four orders of magnitude at room temperature and the X-ray pattern 

shows that the specimen has been crystallized. For comparison, curve (ii) .was 

obtained by Pearson and Bardeen [63] on a specimen of polycrystalline silicon. 

Grigorovici [64] also reports that at high temperatures the thermoelectric effect 

in a-Si approaches the Values of crystalline silicon. This indicates that the 

conduction process at high temperature is similar to that in the corresponding 

■ crystalline-structure.7 • :: ■ ' !"':-

[B] Passivation with Dangling Bond Terminators

The electrical properties of a-Si prepared by vacuum evaporation [32,65] 

and inert gas (Argon) sputtering [32] were found to be similar [66] but were 

quite different from those prepared by the r.f. glow discharge decomposition of 

silane (SiH4) gas [66-68]. Evaporated and sputtered films were found to have 

considerably lower room temperature d.c. resistivities than those of r.f. glow 

discharge films [66]. Also field effect measurements showed that glow discharge 

films have a density of gap states two or three orders of magnitude less than 

that found in evaporated and sputtered films. It is believed that during glow
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discharge of silane gas, a substantial amount of hydrogen is incorporated into 

the a-Si film to form the silicon alloy or silicon matrix : Sil xHx (i.e. SiH, SiH2 

or Sitt3) [69-72]. The hydrogen atoms act as terminators to “passivate” the 

dangling bonds and hence provide a method to reduce the gap states other 

. than thermal annealing. One disadvantage of hydrogenated a-Si is the 

hydrogen evolution when the film is thermally treated above 350°C, but below 

the crystallizatidn temperature.

Besides hydrogen, several other species such as chlorine [73] and fluorine 

[74,75] have been considered as good candidates for terminators of dangling 

bonds. It is found that the bond energy of fluorine with silicon is about 1.6 

times as large as that of hydrogen-silicon, which indicates that fluorine forms a 

single bond with silicon more tightly than hydrogen. More precisely^ the bond 

strength of H-Si is 71.4 Kcal/mole and that of F-Si is 116 Kcal/mole [76]. 

Published reports [74,75] indicate that fluorine has remained in the a-Si film 

and kept their bonds with Si even after an annealing at 600°C (hence the name 

heat-resisting). In this sense, fluorine provides an alternative candidate for the 

dangling bond terminator which is more thermally stable than hydrogen.

A considerable amount of research effort has been centered on the 

hydrogenation of amorphous semiconductors. A good review on this subject 

was written by Knights and Lucoysky [30]. This subject, being the core of this 

research and report, is so important that ii deserves a whole section.



.2MI Hydrogen in Amorphous Silicon

[A] Preparation of Hydrogenated Amorphous Silicon

The preparation techniques used to date to produce hydrogenated 

amorphous silicon fall into three broad classes : 1) Decomposition or reaction of 

a hydrogen-containing compound, 2) Addition of hydrogen during a physical 

deposition process*' 3) Diffusion of hydrogen into a material deposited by some 

other technique. •

In the first class, there includes glow-diischafge (or plasma) decomposition 

of hydrides (silane), pyrolysis (thermal decomposition, similar tb chemical vapor 

deposition) of hydrides, and reduction of halides. The amount of hydrogen in 

the deposited film is controlled by the reaction chemistry and is not an 

independent variable. Hence independent control of this property is hot 

possible. Studies of the reactive species generated during the decomposition of 

silane [77] indicate that the dominant species in gas-phase reactions are the 

SiH, SiH2, and SiH3. Isolated silicon atoms are not present in any appreciable 

concentration. This is in strong contrast to the physical deposition techniques 

such as evaporation and sputtering that fall into the second class. In the 

plasma decomposition of silane method, substrates are typically placed bn a 

surface whose temperature can be controlled within the range 25 to 600°C. 

Deposition reactor designs can be classified by the type of electrical excitation 

used; direct current (d.c.) or radio-frequency (r.f.). In the case of r.f. excitation, 

the reactor designs can further be classified by how the excitation is coupled 

into the plasma; inductive or capacitative. The growth of the films is expected 

to proceed through nucleatipn, growth, and coalescence of islands. The
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deposition process is a surface reaction which is strongly affected by the 

deposition system parameters.

The second class comprises reactive sputtering and evaporation. In these . 

techniques the hydrogen partial pressure at the growing surface can be 

Controlled. The primary participants in deposition process are most probably 

atomic, e.g. silicon and hydrogen. In the method of reactive sputtering in 

hydrogen, both hydrogen partial pressure and argon pressure have been shown 

to be important variables in determining film properties [78]. Bias may also be 

a factor although little has been reported about its effect.

The third class of techniques involves the exposure of a predeposited thin 

film to atomic hydrogen. The major difference between this and the other 

classes is that the structure of the material is determined prior to 

hydrogenation. Independent control of hydrogen content can be achieved. Using 

films deposited in ultra high vacuum, Kaplan [26] exposed the deposited films 

to an atomic hydrogen plasma while the films were heated to 500 to 550°C. 

Pankove [79] rehydrogenated a plasma-deposited film from which most of the 

hydrogen had been driven off, Recovery of photoluminescence to ~50% of that 

of the original film was achieved. One limitation of the preparation method of 

class three seems to be the requirement that the material be heated, so that it 

is in an annealed state as it is being hydrogenated.

In this research, a new technique of hydrogenation is developed by ion 

implantation of hydrogen into a-Si produced by electron-beam vacuum 

evaporation. It allows independent control of hydrogen content and material 

disorder. This facilitates the study of the hydrogenation phenomenon. This 

preparation technique can be classified into class three. Since ion implantation 

is a low temperature process and the temperature of post-implant thermal
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activation is only 230°C, the limitation of class three does not apply to this 

method. 1

[B] Content and Stability ofHydrogen in the Amorphous Silicon

By far the largest hydrogen content (~58 at.%) is found in plasma 

deposited material [80]. Hydrogen content in the film produced by thiS 

technique depends strongly upon the fabrication conditions, e g. Substrate 

temperature, r.f. power, and silane concentration etc; All these System 

parameters interweave to each other. The largest reported hydrogen content in 

reactive sputtering produced a-Si is 25 at.% [80].This reflects primarily the 

fact that hydrogen has to be removed from the starting material in plasma 

deposition as opposed to being added in the other techniques.

Fritzsche and his coworkers [22,81] were first to investigate the stability of 

hydrogenated a-Si produced by plasma deposition. Using a hydrogen evolution 

technique they observed the following results. 1) Hydrogen did not effuse at 

temperatures below the deposition temperature. 2) Depending on the deposition 

parameters, the hydrogen could effuse out in two distinct temperature regions. 

One centered at approximately 350°C and the other at ~ 680°C just below the 

crystallization temperature. Fritzsche’s group suggested that these results 

indicated two different environments for the hydrogen and proposed that these 

sites might be SiH2 and SiH sites identified in Infrared Spectroscopy. There is 

some correlation between defect structures and hydrogen bonding 

configurations which will be further illustrated in section D. It seems likely 

from this and other observations [82] that defect structures may be the
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strongest influence in evolution patterns.

Other researchers also observed the evolution phenomenon of hydrogen 

and the subsequent increase in the density of localized states in a-Si [82-84]. It 

was also observed that the de-hydrogenated a-Si film could be re-hydrogenated 

by exposing the de-hydrogenated film to a hydrogen plasma [26,69].

jC], The Role, of Hydrogen

It is now widely recognized that a primary role for hydrogen in a-Si:H 

films is that of a defect “passivant”. The hydrogen atoms act as terminators to 

“passivate” or “compensate” the dangling bonds in a-Si, hence reduce the 

density of localized states in the mobility gap [20,21,22]. Figure 2.10 and Figure 

2.11 illustrate the role played by hydrogen in the passivation action.

Direct evidence of the neutralization of the dangling bonds by forming 

bonds with the hydrogen atoms is given by the disappearance of the ESR 

signal in hydrogenated a-Si as compared to pure amorphous silicon [85,86]. 

The ESR signal originates from the unpaired electrons which are produced by 

dangling bonds. An additional piece of direct evidence concerning the role 

played by hydrogen is from the work of Kaplan et al. [26] on hydrogenated a-Si 

which is produced by evaporation. By exposing the ultra, high vacuum (UHV) 

evaporated amorphous silicon to an atomic hydrogen plasma, Kaplan 

demonstrated that hydrogen bonds with silicon in a single Si-H configuration 

that produces an ESR signal reduction very similar to that observed for 

hydrogenated material produced by sputtering. There is ample evidence that 

atomic hydrogen, by forming a bond with a dangling bond, is responsible for
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the observed reduction of the electron spin density in amorphous silicon.

Effects consistent with the reduction of defect densities by hydrogen are 

widely observed in the transport properties of hydrogenated amorphous 

semiconductors. In evaporated or sputtered a-Si which is unhydrogenated, a 

combination of d.c. and a.c. conductivity measurements indicate that the 

primary conduction mechanism, at low temperatures, is variable range hopping 

in the localized states (~1020 /cm3-eV) at the Fermi level [87]. The first report 

that hydrogen did in fact alter transport properties in an amorphous 

semiconductor was made by Lewis et al. [27,88]. As hydrogen was introduced 

to the sputtering gas, the room temperature conductivity of a-Ge films was 

found to drop by several orders of magnitude and the conductivity then 

showed an activated behavior consistent with carrier motion in extended states. 

This effect was attributed directly to the saturation of dangling bonds with 

hydrogen, thus removing localized states from the gap. Subsequently similar 

behavior has been reported by the Harvard group [89] for a-Si:H. Similar effects 

have also been reported for materials produced by d.c. reactive sputtering [90] 

and by plasma hydrogenation of evaporated films [26].

^vvV^1o::tt..: is’.'in'tnrestiiig.', to. note ;that hydrogen,: in addition to passivating gap 

states, also plays an active role in enlarging the quasi bandgap by alloying with 

Si [91]. Producing a-Si by sputtering in the presence of hydrogen gas, Anderson 

[89] was able to make a-Si:H films with activation energies as high as 0.95 ev. 

A number of studies have been centered on the properties of hydrogenated a-Si, 

including the thermally activated conductivity, optical absorption edge [92], 

photoluminescence [26,93], electroluminescence, and photoconductivity.



[D] Structure of Hydrogenated Amorphous Silicon

A comparative study of atomic scale structure for both a-Si and glow 

discharge produced a-Si:H has been done by Barn a [94]. It was an electron 

diffraction study which showed that the radial distribution function (RDF) of 

a-Si is hot drastically perturbed by the introduction Of hydrogen, except that 

an Additional peak at 5 A Was observed on a-Si:H. This peak also appears in 

RDF’s of random network model structures. Therefore there is a higher degree 

of local order in the plasma deposited material than pure a-Si.

To investigate the local environments at the II sites, a number of groups 

[69-71] have studied the infrared absorption and Raman scattering of a-Si 

containing substantial amounts of bonded hydrogen. The material was 

described as a Si-tt binary alloy, a-Si^H*. Spectroscopic studies Of the local 

atomic structure in these binary alloys yield evidence for multiple as Well as 

single H-atoni attachment. Figure 2.12 illustrates the atomic motions of the 

vibrational modes used to investigate the structure of hydrogenated amorphous 

silicon. Films deposited on substrates held at 200°G or higher generally show 

absorptions and vibration modes corresponding to SiH, SiH2, and (SiH2)n 

groups, with no evidence for SiH3. However, SiH3 groups are clearly evident at 

samples produced on room temperature substrates.

Figure 2.13 further shows the sketches of a theoretical study by Chin et 

al.[95] on the bonding configurations in hydrogenated amorphous silicon. The 

H-bondiOg configurations Considered include the following : I) monohydride; 

SiH, 2) dihydride; SiH2, 3) trihydride; SiH3, 4) broken-bond model; a broken 

Si-Si bond with two H atoms inserted i.e. SiHHSi, 5) (SiH2)2; a special case of 

the polymeric form (SiH2)n, 6) bridge model; SiHSi, 7) ring-center model; H 

atom at the center of a six-member ring, 8) interstitial H atom. The method
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they used is a linear combination of atomic orbitals (LCAO) for first principles 

calculation [96,97] of electronic energy of a-Si. The conclusions drawn from this 

study are as follows. In the cases of the SiH, SiH2, SiH3, SiHHSi and (SiH2)2 

configurations, the theoretical results are consistent with the observed 

photoemission experiments. But a distinct discrepancy is found between 

theoretical results and photoemission spectra for the SiHSi bridge model, ring* 

center model, and the interstitial model. Therefore these three models are not 

appropriate for the major constituents in a-Si:H.

2.4 Doping of Amorphous Silicon

Based upon what was learned experimentally, it was established that with 

the incorporation:of hydrogen into a-Si films, the density of localized states in 

the material could be reduced drastically. The next question to ask is the 

possibility of doping a-Si into n-type or p-type for solid state device 

applications, analogous to substitutional doping of crystalline silicon. 

Nonhydrogenated a-Si, prepared by sputtering or evaporation, usually possesses 

a large density of localized states, 1019 to 102°/cm3-eV or greater. Even large 

densities of pentavalent or trivalent impurities would not move the Fermi level 

by more than a few kT [98], since any generated excess carriers would be 

absorbed by the defect states. In another words, the density of localized states 

is far too high to allow much change in the Fermi level position and 

consequently in the electrical properties. That is the reason for the insensitive



behavior to doping of nonhydrogenated a-Si produced by evaporation or 

sputtering method. However, glow discharge deposited films, with hydfogen 

incorporation, were shown to have low density of localized states, 1017/cm3-eV 

or less [98[. Therefore it was possible to substitutionally dope a*Si prepared by 

the r.f. decomposition of silane.

Spear and LeGomber [98] succeeded in demonstrating that in glow 

discharge produced a-Si the Fermi level could be moved from 0.6 to about 0.15 

ev below conduction band by addition of a small amount of PII3 gas to the 

SiH4 source during the glow discharge deposition process with the substrate 

held at a temperature between 500 and 600°K. Meanwhile the Fermi level 

could be relocated to about 0.2 ev above valence band by adding diborane 

(B2H6) to the silane gas. They demonstrated that the “intrinsic:”: conductivity 

of about 10~12 mhos/cm can be increased to 10~2 mhos/cm on both the n-type 

and p-type materials.:

By using mixtures of arsine and silane, Knights [10] showed that glow 

discharge deposited a-Si can also be doped with As donors. The Harvard group 

[99] showed that it is also possible to dope r.f. sputtered a-Si by the addition 

of either phosphine or diborane to the argon-hydrogen sputtering gas. In this

way, the room temperature conductivity of films could be increased from 

2xl(T10 to 4xl(F6 mhos/cm by adding phosphine.

Spear and LeGomber [lOO] made a comment about the efficiency of gas 

phase doping in a-Si which concluded that about one third Of the incorporated 

phosphorus atoms act as donors. Additional valence bonds of the remaining 

phosphorus atoms are most probably accommodated into the random network. 

The same seems to apply to doping with boron.
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2.5 Theoretical Analysis of Field Effect Conductance Modulation

Field effect experiment measures the current change from the source to 

drain due to an applied transverse electrical field. This technique gives more 

detailed information about the distribution of localized states than other 

measurement techniques. In this section, the relationship between field effect 

conductance modulation and the density of localized states is reviewed. The 

review is based upon the theoretical analysis done by Neudeck and Malhotra

[54] which includes several simplifying assumptions. In Chapter 4, section 4.4, 

a computer program [101,102] developed by the Chicago group is used to 

analyze the field effect experimental data. The theory behind this computer 

program is basically the same as that of Neudeck and Malhotra. However this 

computer program numerically solves Poisson’s equation for a given density of 

stales distribution, N(E), instead of using approximate solutions. The computer 

program also uses the finite temperature statistics on the Fermi-Dirac function. 

The method to run this cumbersome program is given in the Section 4.4 of 

Chapter 4 and also in Appendix 2;

The density of states model used for the analysis is shown in Figure 2.14 

at 0°K, The choice of the type of states above and below Ep is arbitrary. Any 

combination of acceptor and donor states, which satisfies the charge neutrality 

condition will also give identical results. Figure 2.15 illustrates the energy 

band diagram with a positive gate voltage. Some definitions which are used in 

the calculations of the, 'characteristics', of. the space Charge in the semiconductor 

are given below :

v 1) x is the distance into the semiconductor from the semiconductor



Figure 2.14
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AMORPHOUS SILICON

Figure 2.15 Band diagram for the surface of the amorphous material near 

the insulator with a positive gate voltage Ifrom Reference fL4l



insulator interface.

2) w(x) is the energy with respect to the Fermi energy Ef-

3) The subscript “b” is added to a variable at a point where the 

bands are flat.

4) £(x) = wb-w(x), amount of band bending in the semiconductor.

f(x) is a positive number for positive gate voltages.

5) Nt(w) is the number of localized states per unit volume 

per unit energy.

6) n(x) and p(x) are the number of electron^ and holes 

per unit volume.

[A] Space Charge Region

For a band bending £(x), the charge density p(x) in the space charge 

region can be written as :

$(*). ■
/?(x)=-^e / Nt(w)dw (2.5.1)

o ■ " ; ;■

The mobile charge are included assuming that the extended states electrons 

and holes obey Maxwell-Boltzmann statistics.

I(x) .
p(x)=-e f Nt(w)dw+epbexp[-£(x)/kT]-enbexp[f(x)/kTj (2.5.2)

■■O'-."

where nb and pb are the bulk concentrations of electrons and holes in the 

extended states.
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By inspection of Figure 2.14, the above equation can be written as :

/>(x)=-e{NtF^(x) + nbexp[|(x)/kT]-pbexp[-|(x)/kT]} (2.5.3a)

for £(x) < wA, i.e. E < BA at any point x.

For E>Ea or f>wA the exponential increase in the density of states can 

be included and Nt is written as :

Nt(w)=NtFexp{m[w(x)-wA]}

where m controls the rate at which the states increase and NtF is the density of 

localized states at the Fermi energy. Therefore, for £(x) > wA, by carrying out 

the integration :

/>(x) =-e[NtFWA + (NtF/m)(exp{m(|(x )-Wa] }-l)

+ nbexp[f(x)/kT]-pbexp[-f(x)/kT]] (2.5.3b)

[B] Relation between the Band Bending and the Gate Voltage

To determine the amount of band bending, £(x), Poisson’s equation needs 

to be solved for the electric field which in turn is related to the applied voltage.

By Poisson’s equation :

V2o(x )=-,./<

where 0(x) is electrical potential.

Poisson’s equation for electron energy inside the amorphous material in 

terms of energy variable f(x) can be combined with equations (2.5.3a) and 

(2.5.3b) to form the following equations :
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^=“(NtF?(x)+nbexp( )-pbexp( -^-)] (2.5.4a)

for £ < WA and

d2£(x) __ e2 
dx2 c

NF
t.-V A. m

-{exp[m(£(x)-WA)j-l}

+nbexP( ^-hPbexpl -^) (2.5.4b)

for e > WA.

The electric field 4>f is given by the following equation :

' - d^ _-l d£(x)$ =
dx e dx

In order to solve for , both sides of equations 2.5.4(a), 2.5.4(b) can be
dx

multiplied with 

f(x) as follows :

dx
and integrated from -oo to x or equivalently from 0 to

-oo dx dx2 “ 4 dx v dx' " J0 ' dx dx

Then from equation (2.5.4a),

(ii)2=2£
dx e

iN^+nbkTlcxpl^HI+ptkTIexpf-j^t-lt,--L

dx =-Fi=- 2y{NtF^2+nbkT[exp(^r)-lj +pbkT{exp( ^
1/2

for 1 < WA.
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The negative sign is selected to make the field in the correct direction for 

positive gate voltages. Similarly, for the case of the exponential localized band 

tails, integrating from zero to WA and then from WA to £(x), yields :

il
dx F?

,v2 Nf Nf
+ -^-{exp[m(e-WA)J-l}

+nbkT[exp(-^-)-l]+pbkT[exp(--j^r)-l]}
1/2

(2.5.6b)

f°r C ^ WA. Again, F2 is the positive root and is a positive number for a 

positive f.

From equation (2.5.5), the electric field at the surface is

=<f>' , _n|= 1
8 (x"0) e dx =TFn(es)

x=0

where £s = f(0) , n=l for f<WA and n=2 for £>WA. The surface states 

between two amorphous materials (Si02 and a-Si) are unknown. For the large 

density of states case the surface states are probably insignificant. In the case 

where the localized states are much less, then surface states effect the result. 

For a simple and ideal case, assume there is no interface charge then

^ox^ ox (x=0)

where $ ox is the electric field in the oxide, e and eox are permittivities of 

semiconductor and oxide respectively. Therefore,

= ——F (£1 ■ ■ ■• ox ' dr nvss;

Let dox be the oxide thickness and AV0X be the voltage drop in the oxide, then



.. =4>' d =ifc-F (f)
‘ ’ ox ^ oxuox x mwec„

Since Yg = AVsemi + AY0X where VG is the applied gate voltage

AV _,j — ^ is the voltage drop in the semiconductor, hence

Vr =
*0X

e eetox

[C] Conductance Modulation

With zero gate bias, sheet conductance is given by ^

Gso^^nnb+^pPb)

where “t” is the amorphous silicon thickness. When a positive voltage is 

applied, the energy band near the surface is moved closer to the conduction 

band mobility edge thereby increasing the electrons in the extended states. The 

total conductance is

' t t v
Gs^e(Mn/n^+/ip/pdx)

O' o

and the change in sheet conductance AGS = Gs - Gso is given by

AGs=e[/in/(n^nb)dx+/Mp/tp^Pb)<ix] (2.5.8)
O Q

The integrals can be written as
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t O
An=/(n-nb)dx =/(n-nb)

O &

dx ^ n-nb
(2.5.9)

and

1 P—Pb
Ap=/(p-Pb)dx = J—--df

o o r 1VW
(2.5.10)

The sheet conductance modulation would be

AGs=e
_ > exp«/kT)-l d.+ t'expK/kT)-l

' ■ H r,(() 5 MpPbJ0 F,(e) $

where 4 is related to the gate voltage by equation (7). For the case where

e>wA:

AGs=e
wA

w*

o T l(£* WA *2(s)

A similar expression for AGSi and F(^) can be obtained for negative gate 

voltages by changing the signs of m, WA and £s.

The experimental results are the total current from the source to drain for 

various gate voltages with a fixed value of voltage from drain to source. The

drain to source current IDS can be written in terms of the sheet conductance as

Ids=Vds(Gso+AGs) (*L)r h + AG* 
length"Vds( 1 )Gso(1+ Gso

or
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Ids~VdsGx(1+ ) (2.5.11)
. ^so

where Gx is the total source to drain conductance. From equations (2,5,8),

(2.5.9) and (2.5.10),

AGS _ /<nAn+;ipAp _ cvAn+Ap 
Gso ” t(^nnb+^PPb) t(anb + pb)

where the mobility ratio a is defined as /in//ip.

The density of localized states at the Fermi energy, NtF, is entangled in 

the expression of AGS through the terms of An and Ap. As shown in equations 

(2.5.7) and (2.5.11), NtF is embedded in the expressions of both IDS and VG 

which are experimentally measurable variables. Information of NF can be 

extracted from the analysis of Ipg vs. VG data by the aid of a computer 

program.

2.6 Major Applications of Amorphous Silicon

Several important and major applications of a-Si are presented in this 

section. Some other new ideas for device applications of a-Si are still being 

actively explored in research. The presentations are intended to be brief and 

introductory only. Detailed information can be found in the references 

provided.
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[A] Amorphous Silicon Solar Cells

The solar cell is a semiconductor device that converts sunlight directly 

into electrical power. When light is absorbed by a semiconductor junction, the 

photogenerated electrons and holes are collected by the contacting electrodes, 

resulting in a photocurrent. A solar cell under load is subject to a forward 

bias. If the illuminated device operates in the fourth quadrant of the device I-Y 

characteristics, then the device can deliver electrical power to the external load. 

For a thin film semiconductor device to act as an efficient solar cell, several 

conditions must be satisfied. First, the optical absorption coefficient must be 

sufficiently large to absorb a significant fraction of the solar energy. Secondly, 

the photogenerated electrons and holes must be efficiently collected by 

contacting electrodes on both sides of the semiconductor film. Thirdly, a large 

built-in potential is also necessary for efficient photovoltaic energy conversion 

since this potential determines the output voltage of the cell. Finally, the total 

resistance in series with the solar cell must be kept small so that the IR drop 

during Operation is only a small percentage of the output voltage.

The main advantage of an amorphous silicon/solar cell is its promise of 

low cost fabrication of large area solar arrays, The low cost merits are due to 

both the low cost processing and the use of relatively low cost substrate 

material. Amorphous silicon films can be deposited on inexpensive substrates 

which are electrically active or passive such as glass, plastic, ceramic, metal, or 

graphite. The total material costs are on the order of a few dollars per square 

foot. On the other hand, the main disadvantages of a-Si solar cells are low 

efficiency and long term instability. Recently, a-Si solar cells of 10% conversion 

efficiency have been produced by RCA. The long term instability is due to the 

fact that light can induce changes in the electronic properties of a-Si:H film,
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the Staebler-Wronski effect. Staebler and Wrohski [103] observed that the 

photoconductivity and the dark conductivity of undoped a-Si:H decreased 

slowly during light illumination. The effect can be largely explained by 

assuming that optical illumination introduces states close to the center of the 

band gap: ,

A good and brief overall review on solar cells is given by Sze in the 

chapter 14 of his book “Physics of Semiconductor Devices”, 2nd edition. A 

detailed review on the special topic ‘‘Amorphous Silicon Solar Cells” is written 

by Carlson and Wronski in the chapter 10 of the book “Amorphous 

Semiconductors”, edited by M.II. Brodsky. Photovoltaic energy conversion of 

a-Si solar cells was observed in several types of devices such as p-n, p-i-n, and 

Schottky barrier junctions as well as heterbjuiictions. Figure 2.16 demonstrates 

Various device structures that have been used to make thin film solar cells with 

hydrogenated amorphous silicon. The cells without an antireflection coating 

transmit only ^40-50% of the incident light into the a-Si:H. The average 

transmission can be increased to ^80-90% by means of antireflection coatings 

("v450A) such as Zr02, Ti02, S13N4 and ITO (indium tin oxide).

The photovoltaic properties of a-Si:H solar cells are dependent on the a-Si 

film qualities which are again strongly influenced by the substrate temperature 

during glow discharge deposition. Efficient a-Si:H solar cells can only be made 

with substrate temperature in the range between 200 and 460°O because the 

films deposited in this temperature range tend to have minimum defect density 

of states. Beyond this temperature range, the devices exhibit very poor 

photovoltaic properties due to large defect states [22]. It must be emphasized 

that since the electronic and optical properties of glow discharge a-Si:H are 

strpngly dependent on deposition conditions a wide variety of cell
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characteristics can be obtained. Up to the present, our knowledge concerning 

the defect states in a-Si:H is still not sufficient and our understanding of the 

relatiohship between the discharge kinetics and film properties is even less well 

developed. Therefore many of the properties of the a-Si, and the related a-Si 

solar cell devices, are not well understood. Much more research is needed in this 

field. Hopefully, in the near future, thin film a-Si:H solar cells may provide the 

people of the world-with inexpensive, nonpolluting power from an inexhaustible

source.

[B] Amorphous Silicon Thin Film Transistors

Besides solar cells, amorphous silicon thin film transistors (a-Si TFT) have 

also been intensively studied arid explored recently. Some proposed 

applications of a^Si are simply modifications or just an extended Usage of a-Si 

TFT’s. ; 'V

The first published work on an a-Si TFT was done by Neudeck and 

Malhotra [1]. Figure 2.17 demonstrated the geometric configuration (both 

experimental and calculated) for the device. For a-Si TFT, transistor operation 

depends entirely on the transport properties of the majority carriers, i.e. 

electrons in most cases. At zero gate voltage, low off current is achieved 

because the conductivity of a-Si is low. In the turned-on condition at VG *> 0, 

a strong majority carrier accumulation layer is induced in the a-Si channel. The 

drain characteristics ID vs. VD for a fixed value of VG appear quite similar to 

an ordinary MOSFET. As the drain voltage (VD) is increased, the drain current 

(ID) increases but begins to saturate at large values of VD, indicating a channel
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pinch-off type condition.

The most promising and important application of a-Si TFT’s is in the field 

of large panel, matrix-addressed Liquid Crystal Display (LCD) which is driven 

with a-Si TFT arrays [104-10$j> Figure 2.18 illustrates theequivalent circuit of 

TFT-aided LCD picture element. The operation speed of a-Bi TFT is 

intrinsically much slower than that of single crystal silicon MOSFET. Yet a-Si 

has the flexibility to he deppsited on various inexpensive substrate materials in 

a large area. Therefore it is believed that a-Si TFT will be useful for some low 

cost slow speed switching arrays, such as a scanner for large area lensless 

facsimile transmitters and large area character displays as well as three 

dimensional integrated circuits,

A variety of experimental device structures such as inverted, noninverted, 

dual gate etc. were investigated. Figure 2.19 shows a schematic structure of an 

inverted gate device [107], Figure 2 JO illustrates the schematic of a dual gate 

a-Si;H TFT [2]. In the dual gate structure, two conducting channels in the a- 

Si:H film, one at the top silicon-silicon nitride interface and one at the bottom 

interface, can be formed by applying positive biases to both gate electrodes. 

The device can also be operated in the single gate mode by grounding one gate 

electrode and applying a positive bias to the other gate electrode. Figure 2.21 

shows the cross sectional view of an a-Si enhancement/depletion (B/D) inverter 

[108]. Figure 2.22 illustrates the equivalent circuit of the proposed inverter and 

Figure 2.24 demonstrates the transfer characteristics of the inverter. 

Amorphous silicon FET’s can operate with both n- and p- chahnel by only 

changing the gate voltage polarity. The inverter shown has a p-channel 

depletion type load.
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Figure 2.20
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A short comment should be addressed to the nature of the contact 

between the metal (usually Al) and the a-Si. It has long been known that 

contacts produced by the evaporation of metals onto amorphous semiconductor 

surfaces tend to be ohmic in nature, i.e. they display little or no rectifying 

effect [109]. Sputtered and evaporated a-Si films, in particular, show no 

evidence of metal-semiconductor rectification. Glow discharge produced films, 

on the other hand, have been found to display strong rectification properties 

when coated With metals such as Al, Cr, An, Pd and Pt [110]. That is why in 

some a-Si TFT’s there is a n+ doped layer of a-Si between the metal and the 

undoped glow discharged a-Si film; to malce the contact be ohmic.

[C] Amorphous Silicon Image Sensors

Figure, 2.24 shows a unit. cell".structure of an a-Si image sensor [6]. The 

cell consists of an a-Si FET, an a-Si photoconductor and an MOS capacitor. 

The equivalent circuit is shown in Figure 2.25. The device operates as follows : 

While the FET is off, the current which flows through the photoconductor is 

accumulated in the capacitor. When the FET is turned on, these accumulated 

charges are discharged. If the RC time constant of the capacitance of the MOS 

capacitor and the dark resistance of the photoconductor is much longer than a 

period of the clock pulse applied to the FET, the amplitude of the current 

packet passing through the FET is proportional to the intensity of 

illumination. Thus, by successive application of a clock pulse train to the cell 

array, a one-dimensional or two-dimensional image can be picked up.
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The features of this unit cell can be summarized as follows : 1) The 

accumulation of the photocurrent can be realized by a small Capacitance, 

because the dark resistivity of the a-Si is very high. 2) The electron mobility- 

lifetime product and the quantum efficiency of a-Si are about 1CT4 cm2/v and 1 

respectively [111]. The gain of the a-Si photoconductor at applied voltage of 10 

volts will be .about' 1000. This high gain can be utilized effectively. This is one 

of the merits of an a-Si image device. 3) It is possible to fabricate large area 

image sensors, because the a-Si can be deposited easily and Uniformly on 

various substrate materials such as glass, metal and so on. The device will be 

useful for a cheap and large area sensor IC, for example in facsimile 

transmission.

[D] Amorphous Silicon Charge Coupled Devices

Figure 2.26 illustrates the cross sectional view of an a-Si charge coupled 

device (CCD’s) with a four phase clock pulse [5], The a-Si in the structure is 

sandwiched between staggered transfer electrodes with a silicon-oxynitride 

insulator. Electrons are transferred along the a-Si film with a serpentine 

motion. It is difficult to realize a-Si CCD’s in a conventional structure because 

an electric field cannot penetrate sufficiently deep into a-Si for charger coupling. 

Therefore the sandwiched and overlapped structure is used for the ease of 

charge transfer. The prototype device fabricated On a glass substrate had a 

transfer inefficiency of as low as 0.4% transferring at 0.5-1 KHz clock 

frequencies. Amorphous CCD’s will be potentially useful for large area linear or 

two dimensional image sensors.
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electrode A at a high level, (b) both electrodes A and B are at a

high level, (c) B remains at a high level while A falls to a low 

level (from Reference 5)



Figure 2.27 shows a Schematic motion of electrons in the a-Si. Initially 

ttiiijr the transfer electrode A is connected with clock pulse f x Which is at a 

high ietel Voltage Signal electrons (excess) are gathered at the a-Si/insulator 

interface jhst Under electrode A. When the next transfer electrode, B, which is 

initially connected with the low level clock pulse $2rises to a high level 

these electrons move easily to the bulk a-Si region Sandwiched between 

electrodes A and B, where overlapping Of the depletion regions under two 

electrodes occurs. When 4^, at electrode A, falls to a low level then electrons 

move to and are stored at the opposite a-Si/insulator interface just above 

electrode B. Thus one transfer has been accomplished. During the charge 

transfer, electrons experience trapping and detrapping by localized states in a- 

Si. Analysis indicates that more than 05% of the initially stored electrons can 

be transferred within Smpsec.

It should be noted that a great deal of research on the applications of a-Si 

in the photocopy techniques has being done by Xerox Company at their Palo 

AiltO Research Center. These documents have been kept secret, unable to be 

accessed hy the general pubic.
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CHAPTERS

EXPERIMENTAL PROCEDURES

Detailed ex perirnental procedures are described in this chapter. The 

substrate and the film fabrication procedures are- presented first, followed by 

measurement and test procedures. Hydrogenation by ion implantation is the 

last process to be described.

Figure 3.1 shows the device structure which was used in the early course 

of this research. In order to avoid surface contamination due to wet chemical 

etching of the gate contact window and to simplify the fabrication procedures, 

the device structure was changed to that illustrated in Figure 3.2. The 

substrate was changed to N/N+ epitaxial type of silicon and the aluminum 

gate contact was located on the back (bottom) of the substrate. The following 

fabrication procedures are presented only for the device structure shown in 

Figure 3.2, known as the inverted gate structure.
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3.1 Sample Preparation

[A] Substrate Fabrication

In order to study the properties of amorphous silicon films using the field 

effect measurement technique, we must minimize the effects of the non-ideal 

underlying MOS system. This requires a low leakage, pinhole-free, thin 

insulator with negligible ionic motion and high breakdown fields. The best 

characterized insulator to date is thermally grown silicon dioxide on single 

crystal silicon. If grown carefully, this kind of high quality silicon dioxide 

satisfies all the aforementioned requirements and thus was chosen as the 

insulator needed for the field effect measurements. In addition, the silicon 

substrate matches the a-Si thermally and resulted in a-Si films with less 

thermal strains and structural defects.

The substrate is a single crystal silicon wafer of 1.5 inches in diameter, 

supplied by the Monsanto Corporation. It is < 100> oriented N/N+ epitaxial 

type silicon. The epitaxial layer is about 8 to 10 microns thick, having 

resistivity of about 3.5 ohm-cm. The heavily doped N+ silicon base is about 8 

to 9 mils thick, haying resistivity of about 0.013 ohm-cm. Silicon oriented in 

the <100 > direction was used because the thermally grown silicon dioxide on 

the surface has a lower fixed charge and a lower density of surface states at the 

SbSiOjj interface [112] than the oxide grown on <111> oriented silicon.

The wafers were ultracleaned using electronic grade solvents, distilled 

deionized water, teflon beakers, and clean tweezers. The ultracleaning 

procedures are presented in the Appendix 1. Great care was taken in these 

cleaning procedures to assure a high quality oxide could be grown successfully



during the: subsequent thermal oxidation. Each successive step in this cleaning 

process was performed in an individual, labeled teflon beaker. Tweezer 

handling was kept at a minimum. The oxidation furnace had been purged with 

HC1 for 30 minutes prior to oxidation to minimize the sodium contamination 

[113,114], which leads to ionic motion in the oxide [115] during field effect 

measurements. Zero grade dry oxygen was passed through the furnace for at 

least half an hour before the wafer was loaded in the furnace. The wafer was 

loaded into the oxidation furnace Within 20 minutes'after it was ultracleaned to 

avoid any contamination during the intermediate tirtie. The dry oxidation was 

performed at 1200°C for 125 minutes, resulting in a high quality oxide layer of 

about 3000 A thickness which was checked by a chart of colpr. The wafer was 

pushed in and pulled out from the furnace slowly to avoid any thermal shock. 

Cleanliness of the oxidation furnace affected the oxide characteristics 

drastically. A ’contaminated furnace resulted in leaky oxides with low 

breakdown voltage and undesired fixed charge in the oxide. To make sure that 

a high quality oxide was obtained, tests for leakage current and sodium 

contamination were conducted on the oxide. The structure of the devices tested 

was a simple MOS structure. The leakage current through the oxide was 

measured at a voltage of 140 volts on either the drain or source contacts to be 

in the range of 10-11 amperes, negligible as compared to the a-Si film current at 

the same voltage; The voltage shift due to sodium contamination after a bias 

temperature stressing test (bias—±20 volts, T:=1350C), a commonly used 

technique on metal-ox ide-semiconductor (MOS) devices, is only 0.8 volts. 

Figure 3.3 shows the capacitance-voltage (C-V) plot for the bias temperature 

stressing test. The typical measured density of fixed charge and surface states 

at the interface was in the range of 1010 to 10H/cm2-eV .
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[B] Amorphous Silicon Film Fabricatioxi

■■■■' ' i§: ■

I. Evaporation Faeilitfes

Figure 3.4 is a schematic representation of the Varian Vaclon system used 

for the a-Si thih film deposition. The systern consists of a mechanical pump, 

three sorption pumps and an electronic ion pump. Ah ion pumped vacuum 

system cah produce a very clean evaporation environment free of the oil 

contamination usually encountered in diffusion type pumping systems. The 

base pressure of the system was usually 6x10 9 tOrr.

The feedthrough ring shown in Figure 3.4 permits the attachment Of such 

accessories'.as' a • thermocouple (TC) gauge, ultrahigh vacuum (UHV) and 

milliibrr gauge tubes, plus Water conducting lines for cooling the crystal 

detector, and crucible hearthes. Feedthroughs for ■■■electrical and motional 

purposes are also installed oh the ring."Electrical■■feedthroughs include high 

voltage electrodes for the electron-gUn and its control, Substrate holder heater 

Wires, and thermocouple Wires for substrate 'temperature: monitoring. Motional 

feedthroughs are for controlling and positioning of the shutter and the 

hearthes.

Amorphous films Were prepared by electron beam evaporation of a 

90.999995% pure pOlycrystalline silicon Source contained in a vitreous carbOn 

crucible Which was situated in a Water cooled copper hearth. The silicon chunks 

Wete cut from a poly crystalline silicon bar into small pieces and Ultracleaned in 

tefloh beakers and bloWn dry With ultrahigh pUrity nitrogen. The substrate was 

fastened With tWo copper clips to a stainless steel mounting block and placed 

above the source-chimhey-shutter assembly. The distance between the
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Figure 3.4 Schematic representation of vacuum evaporation apparatus



substrate holder and silicon source Crucible was about 36 cm. The mounting 

block had provisions for heating Of the substrate to 400°C and temperature 

measurements, consisting of a tungsten filament and a chrOmel-alumel 

thermocouple.

The deposition rate was monitored and controlled by using a Sloan Omni 

II deposition control master in which a local oscillator was tuned to the 

frequency of a quartz crystal monitor which was mounted in the vacuum 

system. The evaporant was deposited on the quartz crystal and the mass 

loading on the Au coated crystal caused a decrease in the resonant frequency of 

the crystal. The frequency difference between the crystal monitor and the 

tuned Oscillator was converted into a d.c. voltage signal. Electronically 

differentiating this d.c. voltage provided an indication of the rate of frequency 

change and indirectly the rate of mass or thickness change taking place On the 

crystal.The Omni-il compared this indirect rate with a desired rate and 

generated a signal that was proportional to the difference between the two. 

This generated error signal Was used to control a silicon controlled rectifier 

(SCR) power pack. The SCR chopped output waveform was applied to the 

filament of the electron gun through a step-down transformer which controlled 

the power delivered to the source to regulate evaporation and maintain the 

desired (constant) rate of deposition. The total frequency shift between the 

crystal and the oscillator frequencies, which Was proportional to the evaporant 

thickness on the quartz crystal, was detected by the Omni R. The circular Au 

coated quartz crystal was mounted on a water cooled holder. The thicknesses Of 

the films were measured On a Sloan Dektak thickness gauge to calibrate the 

Sloan Omni-IT crystal deposition monitor. It was determined that a 1 KHz 

frequency shift on the monitor corresponded to a thickness of a-Si of typically
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about 750 A. It was very close to the calculated value by using the 

approximate formula given by the Sloan manual : Af =* DT/2 where Af is total 

frequency shift, D is material density in gm/cm3 and T is film thickness in

Angstroms.

The electron-gun (E-gun) is a Varian 6KW high rate source. Figure 3.5 

illustrates the E-gun source parts. Note that in Figure 3.4, the E-gun position 

is sidewise to make a clearer drawing. Actually the filament of the E-gun source 

is located vertically in front of the crucible as demonstrated in Figure 3.5. This 

position arrangement prevents source contamination due to the tungsten 

filament of the E-gun. The beam is deflected by a permanent magnetic field 

from its point of origin into a sharp curvature of 210° to intercept the crucible. 

The electron beam is moved around within the crucible by a variable 

electromagnetic field. The variable electromagnetic field is controlled by two 

knobs labeled “A” and “B” which are installed on a remote control module. 

Electrons are accelerated toward the grounded crucible assembly by a large 

negative voltage at the filament. The beam current provided by this E-gun 

source is in the range of 0 — 1000 mA with beam voltage of 6000 volts. 

Therefore the E-gun source can provide an electron beam with a maximum 

power of 6KW. The crucible, which is 2.5 cm in diameter, is made of vitreous 

: carbon.
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II. Film Evaporation Procedures

The wafer was loaded into the vacuum system immediately after removal 

from the oxidation furnace. After closing the vacuum system, an eighteen or 

twenty four hour 140°Cbake-out of the work chamber and pump was 

performed. This bake-out procedure reduced the residual gas in the chamber to 

a minimum and removed many of the contaminants. The system was then 

allowed to cool and pump dbwri for several hours to a pressure less than 6xl(T9 

torr. After that period, the substrate was heated to 400°C for one and one half 

hours to thermally clean the surface of the substrate. The thermal cleaning 

reduced the hysteresis [51] in the field effect curves (IDS vs. VG) to an 

insignificant value. This procedure also decreased the time dependence of the 

source drain current each time the gate voltage is stepped to a new value. The 

substrate wes allowed to cool to 200°C before silicon was electron beam 

deposited. The deposition iyas performed within one hour after thermal 

cleaning. Pressures prior to evaporation were typically below lxl(T7 torr 

(usually 7x10 8 torr). The water cooling system to the crystal and the Sloan 

deposition controller were turned on and allowed to warm up before deposition 

was initiated. The shutter was closed during the initial part of the deposition 

sequence thus shielding the substrate from the silicon evaporation source. The 

electron-gun was turned on. After focusing and positioning the beam spot in 

the vitreous carbon crucible, the silicon source was melted and thermally 

soaked below its evaporation temperature for 10 to 15 minutes to allow for 

Qutgassing of the source. The electron beam emission current was adjusted to 

provide additional power to the source until evaporation began and the Omni- 

II controlled the deposition rate. After the deposition rate was stabilized at the 

desired level, the. shutter was opened. The vacuum system pressure during



deposition stabilized at a typical value of 3 to 5x 10 7 torr. In this research, the 

deposition rate was fixed at about 3 A/sec. Films with high deposition rates 

tend to have a less homogeneous structure and contain more defects and voids 

thatt the films deposited at low rates. The density of localized states increases 

with the deposition rate [51]. Typical evaporations required 3 to 5 minutes. 

Amorphous silicon filni of thickness 700 to 750 A were deposited over the entire 

wafer. These values were used due to the fact that 90% of the current flows 

through an a-Si conducting channel which is a layer less than TOO A thick [101] 

adjacent to the SiC^-amorphous silicon interface. The device is modeled as a 

modulated resistor which is in parallel with a bulk resistor. The a-Si film is 

kept thin to maximize the conductance modulation of the field effect 

measurement. On the other hand, the film should be thick enough to prevent 

penetration of the electric field through the U*Si for the case of a very low 

density of localized states film.

Immediately following deposition, some films were given a four- hour 

300°C or 400°C in situ thermal anneal and some films were not subjected to 

such an anneal. The final field effect results, after hydrogenation, were quite 

different for these two cases. Further discussions on these differences will be

presented in the following chapter. The in situ thermal anneal was conducted 

by turning on the substrate heater element, which was a coiled tungsten wire of 

10 mil in diameter. It required about 45 minutes for the substrate holder to 

reach 400°G.
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[C] Drain and Source Contacts

The sample was allowed to cool to room temperature, then removed from 

the vacuum system and loaded immediately into another vacuum system for 

aluminum (AI) deposition of the source and drain contacts. The source was Al 

staples of five nines purity. The staples were cleaned ultrasonically with hot 

Trichloroetheylene (TCE), Acetone, rinsed with deionized water, and blown dry 

with ultra pure nitrogen. These staples Were evaporated from a degreased low 

alkali tungsten filament which had gone through the same cleaning procedures 

as used to clean the Al staples. The NRC vacuum system pressure prior to Al 

deposition was usually 3 to 5xl0~7 torr. An aluminum layer of about 1000 A 

thick was deposited with a filament current of 25 mA for one minute.

After Al deposition, the wafer was removed from the vacuum system and 

.subjected; to a process for stripping the backside silicon dioxide. Black wax was 

applied on a piece of Kodak slide cover glass which was heated on a hot plate. 

The Al coated side of the wafer was placed face down on the glass. After being 

removed from the hot plate and allowed to cool, the back oxide was etched 

With a buffered HF solution. The wafer was then removed from the glass plate 

and subjected to cleaning treatments with solvents. Trichloroetheylene was 

used first to dissolve the black wax which was left on the wafer. The wafer was 

then rinsed with Acetone and finally rinsed with deionized water and blown dry 

with ultra pure nitrogen.

The source^drain contacts to the a-Si films were produced by standard 

pbotolithographic techniques. The contact photomask was made on a Gyrex 

model 105 pattern generator. A positive photoresist, Shipley Az-1450 J, was 

used throughout the research. The photoresist was spun on the wafer at a 

speed of 4.75 Krpm for 30 seconds, resulting in a typical resist thickness of
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about one micron. The resist was then dried, prior to exposure, by pre-baking 

in an oven at 90°C for 15 minutes. The resist coated wafer was then aligned 

with the photomask on a Kasper model 17A wafer aligner. After a 14 second 

exposure with ultraviolet light (with light setting of 5.8 MW/cm2), the 

photoresist pattern was produced by developing in Az developer, diluted 3:1 

with D.L water, for approximately 35 seconds. Following a D.I. rinse for 2 

minutes, the resist pattern was hardened by a 20 minute post-bake at 90°C. 

Using a standard aluminum etch, which contained 760 c.c. H3P04, 150 c.c. 

CH3COOH, 30 c.c HNO3, and 50 c.c. H20, the excess aluminum was removed, 

leaving behind the desired source and drain contact pattern. After a D.I. water 

rinse, the unexposed photoresist was then stripped with Acetone at room 

temperature. The wafer was again rinsed with D.I. water and blown dry with 

ultra high pure nitrogen. The wafer was finally loaded into the same NRC 

vacuum system for aluminum back gate contact deposition which resulted in a 

layer of aluminum of about 1500 A thick. A cross section view of the completed 

device structure is illustrated in Figure 3.2. Since the resistivity of the N + 

substrate base is 0.013 ohm-cm, which corresponds to a heavily doping density 

of about 5xl018/cm3, a good ohmic contact is formed on the back aluminum 

gate. Therefore no contact sintering is performed. In addition, contact sintering 

is usually performed at a high temperature of 550°C which is not a compatible 

process for the a^Si.

The Gyrex produced pattern of drain source contacts was of an 

interdigital finger geometry. This geometry was used because of the high 

resistivity (~ 107 ohm-cm) of the a-Si material. The geometry reduced the 

resistance between the source and drain by about three orders of magnitude for 

ease of current measurements since only a small voltage will be applied across
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the contacts. The pattern “printed” on the wafer was an image of the pattern 

on the photomask which consisted of 50 interdigital finger pairs. These fingers 

were designed to be one mil wide and 97.5 mil in length, with 1.75 mil of 

spacing between fingers. The actually measured dimensions of the pattern on 

the wafer were 0.98 mil, 95.3 mil and 1.68 mil respectively. Considering the 

drain source current across the space between a pair of fingers, the ratio of

channel width to channel length (i.e. finger length/finger spacing) is 56.7 (i.e.

95.3
1.68

) which is calculated by using the above measured values. With a total of

50 interdigital finger pairs, the overall ratio of channel width to channel length 

is 2836. Figure 3.6 is a Calcomp plot illustrating the pattern used. Overlap 

regions in portions of the pattern were used to ensure electrical continuity due 

to potential errors in the pattern generator tolerance. There were eight 

identical patterns on each wafer.

3.2 Some Experiment Measurements

STRUCTURE: X-ray analysis is used to determine the sample structure. 

A General Electric XRD-5 x-ray unit was used in the diffraction mode. Ka 

radiation from a copper target was used. The output was obtained in the form 

of a strip chart recording where diffracted x-ray intensity, in relative units, is 

plotted as a function of 20, where 6 is the angle of insidenee.



Figure 3.G An interdigilal finger pat tern for Gold effect measurements
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THICKNESS: Sample thickness of all a-Si film was measured using a 

Sloan Dektak. Estimated accuracy for absolute thickness measurements using 

this technique is ± 10%. The silicon dioxide thickness was determined from 

the time and the temperature of the oxidation using standard charts between 

the thickness of the oxide and the time for various temperatures.

A more precision method to measure the Sio2 thickness is an 

ellipsometer [116]. Ellipsometers are precition optical instruments which 

measure changes in the state of polarized light reflected from the surfaces of 

the sample. Such measurements permit determination of the optocal constants 

of sample surfaces, and the thickness and refractive index of thin films on those 

surfaces. The measurements involve rotation of a polarizer and an analyzer to 

cause extinction of a beam of polarized light reflected from the surface of the 

sample. The photoelectric ellipsometer system type 43603-200E was used in this 

research. A Fortran 77 program, that performs the calculations required to 

analyze ellipsometer, measurements was used to analyze the data. The program 

was written for use on DEC 11/70’s and 11/780 VAX’s with UNIX operating 

systems. The film thickness and index of refraction was determined.

RESIDUAL GAS ANALYSIS: The residual gas analyzer used was a 

Granville Phillips model Seprascan 400. For detection purposes a Kiethley 602 

electrometer was used and a strip chart was Connected to the output to record 

the detector’s output.



3.3 Field Effect Measurements

The field effect measurements in this research were carried out by applying 

a small fixed drain-source voltage (typically 1.5 volts) and measuring the 

current as the gate voltage was changed over positive and negative values;

A light shielded aluminum box with a hinged top cover plate served as the 

measurement compartment. Shielded cable input/outpiit terminals Were made 

using BNC connectors. Inside the compartment an aluminum block, which 

served as the substrate holder, was insulated from the box by an alumina plate 

and a thick teflon slab. To avoid any surface leakage due to moisture or other 

conduction paths, a curled copper tube was installed to proyide for dry Ultra 

high purity nitrogen to flow over the sample during the measurements.

Three probes were used inside the compartment to make electrical 

connections to the device under test. Each probe consisted of a polyethlene 

block with a teflon rod attached so as to extend 0.5 ihch to 1 inch above the 

substrate holder. At the end of each rod 10 mil thick tungsten probes were 

attached. Coaxial cables were used to connect the probe tips to the 

input/output terminals.

A Keithley model 6I0C electrometer was used for making measurements 

on the thin film samples. The instrument has an input impedance in excess of 

1014 Ohm and has the capability of measuring current to 10-15 amperes full 

scale. Throughout the current measurements the range multiplier switch on the 

electrometer was set to give a maximum drop of 0.1 volts across the meter. 

The electrometer was also used to check the isolation of the probes in the 

measurement compartment. The resistance measured between two probes

inch apart on a teflon strip was greater than the highest meter range.
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The resistance between the ground and each probe was also greater than the 

highest meter range.

The circuit for the field effect measurement is shown in Figure 3.7. 

■'Connections to the batteries and electrometer were made with RG-62/U 

coaxial cable through BMC connectors. The Keithley 610C electrometer was 

used for the source drain current measurement and a digital voltmeter was 

used to measure the gate voltage.

When making the measurements, the ultrahigh purity dry nitrogen source 

was first turned on and then contacts with the device terminals were made. 

The gate voltage was set by adjusting a potentiometer across a battery supply. 

For each setting of gate voltage, the source-drain current (ISD) was recorded 

after 5 minutes had elapsed to insure that near steady state conditions had 

been achieved. In order to make sure that the measured change in source drain 

current was due to the field effect and not leakage current through the silicon 

dioxide insulator, checks were made by measuring the leakage current between 

gate and source, gate and drain, and the source-drain current on reversing the 

polarity of the 1.5 volts battery. For good devices very small change in source- 

drain current was observed and the leakage was negligible as compared to the 

source-drain current. The data to be analyzed were obtained by taking the 

average value of IDS and ISD for each setting of gate voltage. The potentiometer 

was then reset to a new gate voltage. The electrometer was locked to protect it 

from damage when the gate voltage was changed. The gate voltage was usually 

changed in steps of 5 volts and was increased up to 140 volts. Once the 

measurements for positive gate voltage were completed, the polarity of the 

batteries were reversed and the sequence was repeated for negative gate 

voltages. Typically, source drain currents ranging from 10 11 to 10-5 amperes
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were measured for applied gate voltages ranging from 0 to 140 volts. The above 

measurements were made at room temperature, 23°C.

3.4 Hydrogen Ion Implantation and Thermal Activation

Hydrogenation of the a-Si in this research was conducted by ion 

implantation of hydrogen into the evaporated a-Si films. After the initial field 

effect data were taken, the sample was loaded into an AI model 210 ion 

implanter. Ion implantations were performed when the system pressure was 

pumped down to a typical value of 8xl0-7 torr. Since the a-Si film was only 

about 750 A thick, a light element such as hydrogen, implanted with moderate 

energy, can easily penetrate the a-Si film. Therefore a technique, developed by 

other researchers [117], was used in this research to reduce the hydrogen energy 

for implantation^ The hydrogen ions were produced by ballistic impact of 

hydrogen molecules source with electrons which were emitted from a hot 

filament. The hydrogen ions entered into a magnetic mass analyzer. By 

adjusting the magnetic field, the analyzer could be made to select only the 

desired ion species with mass to charge ratio of 2, namely H2+ ions. These H2+ 

ions were then accelerated by an electrical potential of 25 Kev, which is the 

minimum acceleration energy available at Purdue, to obtain 12.5 Kev H| + 

implanted ions. The channeling effect, to which attention has to be paid in the 

ion implantation into crystalline material, was not considered to be important 

here because of the amorphous material. Hence, the incident direction of the
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implanted ions was normal to the sample surface. In addition to the low 

acceleration voltage, the ion beam current was also maintained at a low value, 

less than 10 //A/cm2, to avoid ion beam heating of the film. Different 

implantation doses ranging from lxlOI8/cm2 to 1.5xl017/cm2were applied in 

this research. Typically, it took about 5 hours to finish the implantation with a 

dosage of 5xlO10/cm2. The implant dosage was measured by a current 

integrator installed in the ion implanter. The concentration profile for single 

energy' hydrogen implanted into amorphous silicon is essentially that of a 

Gaussian distribution [117] with a, projected range of around 1600 A [118]. 

Therefore much of the implanted hydrogen went through a-Si film into the 

silicon dioxide insulator. In order to increase the implanted hydrogen in the a- 

Si film, to optimize the hydrogenation technique, a thin film overcoating 

photoresist of the wafer is suggested (further discussed in Ghapter 6, section

On some samples, after hydrogen implantation, the field effect 

measurement was performed before and then after the samples were thermally 

annealed in a Marshall oven at 230°C for 2 hours in a nitrogen ambient. This 

time and temperature was chosen based upon a series of experiments in which 

the annealing temperature or the annealing time was changed while the other 

parameter was fixed. More discussions on these experiments are given in 

Ghapter 4, section 4.5; After thermal annealing the slightly milky surface, 

which was observed on the films after implantation, disappeared. The thermal 

anneal activates (forms H-Si bonds) the implanted hydrogen, and hence this 

post-implant annealing is referred to as thermal activation to distinguish it 

from the in situ thermal annealing on the deposited films. The field effect 

measurement was again carried out after thermal activation .
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Chapter*

EXPERIMENTAL RESULTS AND ANALYSIS Of THE DATA

Experimental results along with their corresponding discussions are 

presented in this chapter. The results are presented in a way which is intended 

to elucidate the following points : (i) the specific fabrication steps for the 

device, (2) the field effect data observed due to this treatment, and (3) 

interpreting the data and to discuss the results. The data presented from 

section 4.2 up to section 4.5 are the data obtained from the hydrogenated 

devices without in situ thermal annealing. These reports include a comparison 

of hydrogenated and nonhydrogenated results, field effect conductance change 

after hydrogenation, influence of implantation dosage on the field effect curves, 

and hydrogen effusion phenomenon. A comparison of hydrogenated results with 

and without in situ thermal annealing is included in section 4.6.

The field effect measurement of the conductance Change was employed in 

this research as a probing tool to investigate the changes in the localized states 

of a-Si upon hydrogenation. This measurement has become a standard 

experimental technique for determining the density of localized states in
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amorphous silicon. Unlike other techniques, which can only estimate the 

density of states at the Fermi level or the total number of unpaired electron 

spins, the field effect technique provides the most detailed information about 

the density of states within the span of the mobility gap [12,13,42,43,92,110]. 

The field effect technique is also very useful for studying the changes in a single 

sample as it undergoes a series of treatments.

Nearly eighty wafers have been fabricated and measured. Two wafers 

were processed concurrently during each fabrication sequence. There were eight 

devices on each wafer. A numbering scheme was devised for easy identification 

of the devices fabricated. A single device on the last fabricated wafer, 42*-(2)-

[3], is taken as an example to demonstrate this numbering scheme. The first 

two digits, namely “42”, serve as an identifier which is simply the sequential 

number of the completed fabrication process. The mark “*” means the device 

structure is that of a back gate contact type. The following number in round 

parentheses, namely “(2)”, indicates that this is the second wafer of the 

concurrently processed two wafers. Therefore nearly eighty ^wafers have been 

fabricated in this research. The last digit in the square parentheses, namely 

“[3]”, locates the position of the designated device among a total of eight 

devices on each wafer. Figure 4.1 shows the locations of all the eight devices on 

a wafer. In some cases, devices were cut separately from each other for different 

experimental treatments.



4.1 Schematic representation of the locations of devices on a
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4.1 Results of Some Experiment Measurements

STRUCTURE

X-ray diffraction studies were made to verify that the films were 

amorphous. Because of the lower absorption coefficient of silicon, films of at 

least 10 microns were needed to get a sufficient difracted signal to be detected. 

Due to the lower evaporation rate(<5 A /sec) used, it was not feasible to 

deposit films thicker than 2 — 3 microns. Moreover thicker films crazed and 

did not adhere to the substrates.

Silver coated quartz crystals, which were used as the sensor for the 

thickness monitor, had films of at least 10 microns thick, these films were 

deposited at an average rate of 5 A /sec on the water cooled quartz crystals. 

The main difference between the films on the Ag coated quartz crystals and the 

films op the oxidized silicon wafers was the nature of the substrates. Thermally 

grown silicon dioxide is amorphous whereas the film on a quartz crystal is 

polycrystalline. A, film deposited under identical conditions is more likely to be 

amorphous on an amorphous substrate then on a polycrystalline substrate.If 

the thicker films on the polycfystalline substrate are amorphous, then the films 

on the amorphous substrates should indeed be amorphous.

Figure 4.2 shows the x-ray diffraction pattern of a 9 ft thick as — 

deposited silicon film on an Ag coated quartz crystal. The broad peak near 27° 

in 29 is due to the diffraction of Gu Ka radiation from the <111> plane of Si. 

The second broad peak from the <220> plane can be seen around 53°. 

Complete lack of structure is indicated by the broad peak similar to that 

obtained by Brodsky et al.[119]. The two relatively sharp peaks shown are due 

to the diffraction from Ag films beneath the a-Si films. For comparison 

purposes^ x-ray diffraction patterns from an Ag coated quartz crystal without
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Figure 4.2 X-ray diffraction patten of: (a) 9 micron a-Si film deposited on Ag
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any a-Si film is also shown in Figure 4.2(a). The film was then annealed in the 

vacuum for 4 hours at 400° C just as other films were annealed. The x-ray 

diffraction pattern from the annealed films are nearly the same as those shown 

in figure 4.2(b) for the as — deposited films. This indicates that all the Si films 

deposited on room temperature substrates and annealed for 4 hours at 400° are 

“x-ray amorphous”.

RESIDUAL GAS ANALYSIS

The analysis of the residual gases in the vacuum system was used to 

determine what gases might be trapped in the amorphous thin film during 

evaporation and

the ambient conditions under which the film was being annealed.

The spectra scan 750, the analyzer used, identifies the various gas species 

in the vacuum system by ionizing some of the gas molecules. These ions are 

then passed through a mass filter which repeatedly scans throligh the mass 

range, periodically permitting ions with a specific charge to mass ratio to pass 

while restricting other ions with a different charge to mass ratio. The filtered 

ions are collected and a signal proportional to the collected ion current is 

displayed on a time base which is the same base used to scan the mass range.

The analyzer was used in a slow scan mode and the output was detected 

with an electrometer. The output of the electrometer was fed into a strip chart 

recorder to get a permanent record of the analysis. Figure 4.3 shows the strip 

chart, record of the residual gas analysis before evaporation and during an 

annealingcycle. The plot is the intensity of the peaks due to ionized gases 

versus the mass of the ionized species. The intensity of the peaks is related to 

the amount of the gas present, but in this research no quantitative analysis was 

made of the a,inount of the species present. The horizontal scale, which is
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related to the mass of the gas ions, was calibrated by bleeding nitrogen into the 

vacuum system and observing the peak corresponding to the N2 increase in 

intensity. Once the nitrogen peak was determined, knowing the molecular 

weight of nitrogen and comparing the distance of its peak with other peaks 

with respect to the start of the scan, molecular weights of other gases present 

were determined and are labeled on each peak.

Before evaporation the gases contain mainly oxygen, nitrogen, carbon 

dioxide, water vapors, and some hydrocarbons, The intensity due to water 

vapor is the maximum which is not surprising since water is very hard to pump 

out the ion pumped vacuum system. The day the analysis was made, the 

relative humidity was around 65%. During annealing cycles nitrogen and 

carbon dioxide peaks increased considerably. This is probably due to the 

outgassing of the source and the chamber walls.

The residual gas analysis shows that the gases present in the vacuum 

system before evaporation and during the annealing cycle are typical laboratory 

gases which are commonly found in vacuum systems. No quantitative analysis 

of the amount of gases present was conducted.
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4.2 Amorphous Silicon with Vacuum Annealing and Thermal 

Etching at 400°C

The field effect measurement was attempted on an unannealed sample 

deposited at a 4.0 A /sec. With no measureable change in source to drain 

current as shown in figure 4.4. The A1 contacts were removed and the sample 

annealed at 230° C for 3 1/2 hours. The field effect conductance modulation was 

then observed. A second sample, deposited at the same initial rate, was 

annealed for 2 hours at 400° C. As shown, several orders of magnitude change 

in the source to drain current was observed. A third film of the same deposition 

rate was annealed for 1 hour at 400° C, then an additional 1 hour, and then an 

additional 2 hours. The field effect curves showed little additional conductance 

modulation after the initial 1 hour 400° C anneal. Direct anneals of 8 and 12 

hours at 400° G were performed but again the shape and values of conductance 

change remained essentially as before.

The initial films were deposited without thermal etching of the substrate 

prior to deposition. If the thermal etching was performed, the deposition was 

started a wait of five to six hours. The unetched films showed a time 

dependence in the source drain current after a change in the gate voltage, i.e., 

there was a decrease in the source drain current with time after an increment 

in the gate voltage as shown in figure 4.5. The steady state was reached in 

about 30 minutes and the steady state current vs. gate voltage plots showed 

hysteresis as illustrated by figure 4.6. When the film was deposited after 

thermal etching and the time between the deposition and the thermal etching 

was less then 2 hours, typically one hour, only one minute was needed to reach 

steady state. There was a decrease of about 10% from a peak value in the 

source drain current after a change in the voltage. Hysteresis in the field effect
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curve Was also redriced to a negligible amount. (Figure 4.5 and 4.6 illustrates 

the reduction;) Therefore, the thermal etching and the annealing at 4bb0 C 

were made ail integral part bf the sample preparation procedure.

4.51 Hydrogenation Inaplants Versus Nonhydrojgenation

fir this section, strong experimental evidence of hydrogen incorporation 

into the a-Si film by ion implantation technique is demonstrated. A comparison 

of the field effect conductance change between the devices which were hydrogen 

implanted arid those Which were not implanted With hydrogen clearly confirms 

the reductioh of the density of states in the mobility gap by hydrogen 

iricdrpdratiori. None of these devices were in situ thermally annealed. 

Therefore the resrilts are totally due to the effect of hydrogen participation.

Device 31*-(2)-[S] and device 31*-(2)-[3] are two separate devices fabricated 

dri the same Wafer. Device 31*-(2)- [8] was not subjected to ion implantation, 

but was thermally annealed at 230°C for two hours in the Marshall oven. No 

field effect conductance change is observed on the IDS vs. VG plot before or 

after annealing as illustrated by (la) and (2a) in Figure 4.7. Device 31*-(2)-[3] 

Was hydrogen ion implanted with a dosage df 5x 10I6/cm2 and Went through the 

";ib'eriticai''Tdst-i'iriplarit thermal treatment ris device 31*-(2)-[8]. Curve (3b) in 

Figure 4.7 shows that a large field effect 'Conductance change occurs on this 

device. The larger the field effect conductance change on the device, the lower 

the derisity of states in the mobility gap. Comparing line (2a) with curve (3b)
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NONHYDROGENATED DEVICE 31*-(2)-[8]:
(la) INITIAL DATA
(2a) AFTER 2 HR. THERMAL ANNEAL @ 230°C

S
 INITIAL DATA
AFTER IMPLANTATION 
AFTER 2 HR. THERMAL 
ACTIVATION @ 230°C

100 140

Field effect data of nonhydrogenated device 31*-(2)-[8] and 

hydrogenated device 3r-(2)-[3] with implant dosage 5xl016/cm2
Figure 4.7



very clearly demonstrates the role played by hydrogen in reducing the density 

of states in the mobility gap. Plots (la), (lb), (2a), and (2b) show no 

Conduction modulation because the density of localized states is too large This 

large number of localized states tend to pin the Fermi level near midgap, which 

prevents significant band bending from occurring when gate voltage is applied. 

Hence no conductance change (Ips) is observed. Reducing the density of 

localized states with hydrogen ’incorporation is different from that of thermal 

annealing. Thernial annealing, when performed at high temperatures (typically 

40Q°C for 4 hours), on the nonhydrogehated a-Si film has the effect Of healing 

the amorphous structure and removing most of the voids [120]. The proposed 

model for hydrogen incorporation depicts the activated hydrogen, through 

post-implant low temperature thermal annealing, as participating in the 

removal of localized defect centers in the mobility gap and forming either an 

antibonding state in the conduction band or a bonding state in the valence 

band [121]. The hydrogen incorporation and activation into the amorphous 

silicon structure has reduced the density of localized states in the mobility gap 

to a lower level. Hence band bending is now much easier to achieve when gate 

voltage is applied. Therefore large conductance changes (Ids) are observed. To 

acquire similar results, thermal annealing alone requires a much higher 

temperature [51] (400°C) for a longer time (4 hours) than does hydrogen 

activation (230°C, 2 hours).

Incidentally, good uniformity and excellent initial data consistency of the 

a-Si film produced by this technique is clearly illustrated by plots (la) and (lb) 

in Figure 4.7. This fact is also shown by the plot (1) in Figure 4.8 which 

demonstrates the results of different samples. All these confirm the statement 

in Chapter T which says the a-Si film produced by this technique has good
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uniformity and consistency from device to device and from wafer to wafer as 

compared with glow discharge produced a-Si film.

4.4 Field Effect Conductance Change after Hydrogenation

In this section, field effect conductance changes after hydrogenation are 

further demonstrated and discussed. Figure 4.8 shows the field effect curves of 

device 37*^(1)-[3], which was hydrogen ion implanted with a dosage of 

1.5xl017/cm2. Curve (1) and curve (2) are the data taken after fabrication and 

implantation respectively. Both curves are flat lines which show no conductance 

change with applied gate voltage. It is found that the level of flat line (2) is 

lower than that of line (1) if the implant dosage is above lxl017/cm2. The 

reverse situation is observed if the implant dosage is below 5xl016/cm2 as 

illustrated by line (lb) and (2b) in Figure 4.7. This indicates that implantation 

with a lower dosage slightly increases the density of gap states, while 

implantation with a higher dosage decreases the density of gap states. This 

observed differences might be due to two factors, namely hydrogen passivation 

and radiation damage compete with each other during implantation. In the 

case of higher implant dosage, more substitutional hydrogen passivation takes 

effect even before hydrogen activation is performed and hence suppresses the 

small radiation damage effect which appears more pronounced in the case of 

lower implant dosage. The conduction mechanism for line (1) and line (2) in 

Figure 4.8 is variable range hopping in the localized states. So is line (la), (2a),
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Figure 4.8 Field effect data of device 37 —(1)-[3] with hydrogen implant 

dosage 1.5xl017/cm2
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(lb), and (2b) in Figure 4.7. The upper limit of the density of states is about 

1022/cm3-eV as analyzed by applying Mott’s Hopping Theory [45,58,59].

After low temperature thermal activation at 230°C for two hours, four 

orders of magnitude conductance change was observed as illustrated by curve 

(3) in Figure 4.8. This is the first evidence demonstrating the difference in the 

field effect characteristics before and after the a-Si films have been 

hydrogenated. Using glow discharge produced films already incorporating 

hydrogen, Goodman [24] demonstrated similar changes in field effect 

characteristics by expelling hydrogen from the film through thermal annealing 

at high temperatures. The conclusion of both Goodman’s experiment and this 

experiment, while conducted in reverse, is that the presence of hydrogen lowers 

the density of localized states and thus accentuates the field effect variation. In 

Figure 4-8 the field effect response after thermal activation appears for both 

positive and negative gate voltages, but is asymmetric about zero due to the 

difference of electron and hole mobilities [52]. The plot is not centered about 

VG=0 due to fixed charge at the Si-Si02 interface or in the oxide. The field 

effect curve tends toward saturation in the high field region (beyond ±100 

volts). This saturation is partly due to the degradation of the carrier mobility 

in the high electric field regionjand partly because of the increasing density of 

localized states at energies sufficiently away from mid-gap. In very low density 

of localized states films that are very thin, depletion could penetrate through 

the a-Si film.

If we assume that all the implanted hydrogen remains in the a-Si film, the 

atomic percentage of hydrogen content is about 45% for this dosage. H/Si ratio 

is 0.8, that is, for every five Si atoms present in the amorphous layer, four 

hydrogen atoms are present. Among the available published papers



[82,111,122-124], hydrogen contents of 5 - 50 at.% have been reported in the 

films prepared by the glow discharge decomposition of silane gas. The 

evaporation produced a-Si is quite porous, therefore a lot of hydrogen may 

reasonably be incorporated interstitially in the film.

The concentration profile of implanted hydrogen in a-Si is essentially that 

of a Gaussian distribution [117] with a projected range of around 1600 A and a 

projected standard deviation of about 600 A [118]. Because of the thin a-Si 

film and the minimum implant energy available, some of implanted hydrogen 

passes through the a^Si film and into silicon dioxide insulator which is about 

3000 A thick. Some hydrogen might even reach the Si02 - Si interface. In 

order to increase the implanted hydrogen in the a-Si, a thin film of photoresist 

Overcoating is suggested.

4.5 Influence of Implantation Dosage on the Reduction 

of Localized States

Figure 4.9 shows the field effect curves of four devices with different 

implantation dosages while all Other experimental parameters are kept fixed. 

As the implantation dosage is increased, the amount of conductance change for 

both positive and negative gate voltages increases, indicating a reduction in the 

localized states. Also the conductivity at zero gate voltage decreases and the 

width of the flat portion of the plot (nearly no conductance change region) 

decreases.
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1) DEVICE 3fl*-(2)- 
'2) DEVICE 31* -(2)- 
’3) DEVICE 32* -(2)- 
4) DEVICE 37* - 1 -

:1 x 1010 IONS/cm2 
:5 x 10*“ 10NS/cm2 
:1 x 1G17 lONS/cm2 
:1.6 X IQ1710NS/cm:

(AMPS)

100 140

Figure 4.9 Ellect of four different ion implantation dosage of hydrogen 

field effect curves in amorphous silicon
on
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A computer program [101,102], which uses both an iterative predictor- 

corrector algorithm and finite temperature statistics to numerically solve 

Poisson’s equation,’ has been used to analyze the field effect data to determine 

the density of localized states (NTF) near the Fermi level. The computer 

program and information on how to run the program are presented in 

Appendix 2. The theory behind this program is basically the same as that 

presented in Chapter 2, section 2.5 except that this program uses finite 

temperature Fermi statistics while the analysis in section 2.6 uises the limiting 

case of Fermi function at T^fPK to calculate the charge density for Poisson’s 

equation. The predictor-corrector computer algorithm is employed in the 

program to find the distribution of the density of states in a-Si. The main 

points of the program are outlined below. In order to be consistent with the 

computer program, some notation used here is a little different from that used 

in Chapter 2, section 2.5.

The application of a non-zero field across the sample bends the mobility 

edges of the conduction and valence bands of the a-Si down or up respectively

for positive or negative gate voltages, VF. The potential distribution inside the

a-Si material, V(x), is determined by the solution of Poisson’s equation

d^Vlx) _ 4?re
dx2 €s

P(x) (4.5.1)

where x is the distance inside the a-Si from the a-Si-insuIator interface.

The charge density, /?(x), is given by the energy integral over the density 

of states,, N(E), using finite temperature Fermi statistics :

00
/><x-|= / N(E)|«E-eV(x)H(E)](dE)

~oo

where f is the Fermi-Dirac function at temperature T, i.e

(4.5.2)
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f(E) 1 +exp((E-EF)/kT)

The program uses numerical techniques to do this finite temperature Fermi 

statistics calculation which is demonstrated from the numbered lines 42 to 49 

of the program provided in Appendix 2.

Poisson’s equation is subject to the boundary conditions that V(x) must 

approach zero with zero slope at some finite x; and

-OV v„|v* HV|x|
dx

(4.5.3)
x=0

where Vp is the voltage at the a-Si-insulator interface, d is the thickness of the 

insulator and ci, es are the dielectric constants of the insulator and a-Si, 

respectively. This boundary condition is due to the continuity of the normal 

component of the electric displacement at the interface. The validity of 

equation (4.5.3) is based on the assumption that there is no real charge trapped 

in the insulator or at the interface plane.

Using our firstguess for N(E), the program solves Poisson’s equation, 

equation (1), with a predictor-correcto.r computer algorithm to find V(x) which 

satisfies the boundary Conditions. The final V(x) is inserted into the following 

equation of the induced change in conductance to obtain G(Vp) and this is 

compared with the experimental data.

j/dx[exp(eV(x)/kT)-l]+

1
a + 1

t
—fdx [ex p(-eV(x )/kT )-l]
t o

(4.5.4)

where G0 is the total conductance when the energy band is in a flat situation.



“t” is the thickness of the a-Si and “a” is the ratio of the contribution by 

electrons to that by holes. Note that in Chapter 2, section 2.5, the expression

ACS _ aAn+Ap .
GSQ ^

is the same as equation (4.5.4) above if nj,=pb and An, Ap are presented in the 

integral forms which were given by equations (2.5.9) and (2.5.10) respectively in 

Chapter 2, section 2.5.

The integral for G in equation (4.5.4) is valid only if the band bending 

caused by the applied field shifts all localized states rigidly with V(x) without a 

change in their carrier mobility parallel to the surface. It is further assumed 

that the only effect of interface states is to create a nonzero flat band voltage, 

vFB. In order to match the boundary condition, equation (4.5.3), the effect of 

flat band voltage is taken care of in the program by VFIELD — 

VDATA(NVF)-YFBP (see Appendix 2, numbered line 61 of the program). The 

program compares the calculated conductance (Gca]c) With the experimental 

values of G (Gdata), modifies N(E) accordingly and starts again by solving 

Poisson’s equation with the new N(E). This iterative process is repeated until 

the average fractional error of Gcaic relative to the experimental data is less 

than the experimental uncertainty or a preset limit (typically around ±5%). 

The solution is then considered to have converged and N(E) is not modified 

further.

For the first guess of N(E), it is best to begin by trying to find the N(E) 

near EF which gives the correct G(VF) near VFB, and to then progressively 

work out to higher values of |VF-VFB| and of |E-Ef|. If the initial guess is too 

far away, the program will show signs of divergence. This happened in the 

course of this research when the experimental data were analyzed. Figure 4.10



shows a flow chart for the computer program which derives N(E) from G(VF).

This computer program was used to analyze the experimental data shown ! 

in Figure 4.9. Figure 4.11 demonstrates the effect of hydrogen implant dosage j
' ' I

on the reduction of the density of localized states in a-Si films. N-j>f after 

hydrogenation decreases from 8.6xl020 to lxl019/cm3-eV as the implant dosage | 

of hydrogen increases from lx IQ*6 to 1.5xl017/cm2.

The mechanism of hydrogen incorporation by implantation is different | 

from that of the glow discharge of silane or sputtering deposition in the 

presence of hydrogen. In the implantation method, hydrogen was incorporated ] 

after the a-Si film had been deposited. The optical absorption data obtained by j 

other researchers [117] suggest that the a-Si:H structure produced by ion | 

implantation favors monohydride formation. In the glow discharge or 

sputtering method, hydrogen was incorporated in the film at the same time as 

the a-Si:H matrix was fabricated. The hydrogen content and the film properties 

are greatly related to the surface reaction during the deposition. Although most 

good quality glow discharge materials mainly have SiH [125], SiH2 and SiH3 

groups may also exist [68,123,125]. In the glow discharge method, film 

properties are influenced by several deposition parameters, especially the 

substrate temperature during deposition [20,126].

Table 4.1 presents a summary of the fabrication parameters and selected 

electrical properties of the samples from which valuable information was 

abtained in the research.
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Table 4.1 Summary of fabrication parameters and Density of Localized 
States near the Fermi level of a-Si samples

Derset D*kk «-s>: a*M Dep. X>cp. Dep. m *itm Implxxit Isnplwet . ^ T:liefa:i3--’Nei'-. ■thickm*m Tkktaew Pita*. Pro*. K»** Temp, • • Aft ti e*! 7 Do»>^c Cfelm-teer Aeimtiiog (/cit’-eV(A)
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. 4 fa. ■ .
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I fa.

8.0*10"

**-{2)-l2] 3250 731 1.4 *10** 6.2*10"’ 3.4 m 1*10" 4.6* 10*? © 230*Cj
2 fa.

8.6*10®

S2M2H<1 3000 750 1.1*10"’ £1*10"’ 3.2 137 1*10*’ 6.0*10"’ © 230' C,
2 kr.

Si*10"
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2 hr.

1*10"
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. • ; 4; iuv
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4.6 Hydrogen Effusion

In this section, time and temperature for the activation of hydrogen were 

determined based upon a series of experiments. The phenomenon of hydrogen 

effusion was found during the course of experiments.

With temperature fixed at 230°C during thermal activation, annealing 

times of 1, 2, and 4 hours have been used to activate the implanted hydrogen. 

Figure 4.12 shows the field effect curves of three separate devices used for this 

experiment. These three devices, 31*-(2)-[5], 3I*-(2)-[3], 31*-(2)-[4] were 

fabricated and hydrogen implanted on the same wafer and then separated 

before they were thermally treated at 230°C for 1, 2, and 4 hours respectively. 

Nearly identical results were observed in the field effect data. Therefore time is 

not a critical factor in the activation process. With the time fixed at 2 hours, 

different activation temperatures of 200, 230, 260, 290°C were tested. The 

results were also nearly identical, except at 290°C. As shown in Figure 4.9, the 

field effect response of the 290°C activation is less than that of the 230°C 

anneal. The field effect data indicates that hydrogen starts to effuse out of the 

a-Si at 290°Q, which results in a higher density of localized states. This 

phenomenon is in agreement with the results of Goodman [24] and other 

researchers [20,127,128], who reported that hydrogen effusion occurs during the 

annealing of glow discharge produced a-Si:H films at temperatures of around 

300°C.
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CONSTANT DOSE OF fix 10ltt iona/cm3
(1) DEVICE 31 * -(2)-[6]s 1 HR. ACTIVATION @230 *C
(2) DEVICE 31 * -(2)-[3): 2 HR. ACTIVATION @230 *C
(3) DEVICE 31* r(2).{4ji 4 HR. ACTIVATION @230 *C

(AMPS)

140 -100 -00 -20 0 20 00 100 140

VG(VOLTS)

Figure 4.12 Field effect curves of three devices with fixed thermal activation

temperature (230°C) but different annealing times of 1, 2, and 4 

hours





4*7 Effect of pre-implant in situ Thermal Annealing 

on the Reduction of Localized States

All the results presented to this point were acquired on devices which were 

not subjected to in situ thermal annealing immediately following a-Si film 

deposition. In previous samples large amounts of hydrogen have been implanted 

into the electron beam vacuum evaporated a-Si film. However the density of 

localized states, although reduced drastically, remains large compared to high 

quality glow discharge produced material. Before these films can be useful for 

device applications, the density of localized states must be further reduced by 

several orders of magnitude. In this section, the effect of a pre-implant tn sttu 

thermal annealing on the reduction of localized states is demonstrated. The 

porous nature of vacuum evaporated a-Si is confirmed through this experiment.

The in situ thermal annealing was performed immediately following a-Si 

film deposition. An adjustable transformer was set to deliver a current of about 

10 amperes to the substrate heater which was a coiled tungsten wire of 10 mils 

in diameter. The temperature of the substrate holder was monitored by a 

digital voltmeter (DVM) which was connected to a chromel-alumel 

thermocouple attached to the substrate holder. The DVM reading equivalent to 

400°C was determined by referring to the thermocouple table which lists the 

temperatures and the corresponding thermoelectric values based upon 0°C 

reference junction. The table value must be corrected by a value corresponding 

to the measured room temperature. Usually, it took about 20 to 30 minutes for 

the substrate holder to reach the desired temperature. After 4 hours in situ 

thermal anneal, the heater current was turned off and the substrate was 

allowed to cool to room temperature before the wafer was removed from the 

vacuum system and taken to the ion implanter.
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Figure 4.14 shows the field effect curves of ISD vs. VG for three devices 

with different in situ conditions while all other sample preparation procedures 

were held constant. Each had an implant dosage of 5x1016 ions/cm2 and had a 

post implant thermal activation at 230°C for 2 hours. Device 31**(2)-[3], (curve 

(1)), was not subjected to thermal anneal in situ after a-Si deposition. Device 

31*-(l)-[2], (curve (2)), and device 39*-(2)-[3], (curve (3)), were thermally 

annealed in situ for 4 hours, immediately following film deposition, at 300°C 

and 400°G respectively. Comparing curve (1) with curve (3) clearly 

demonstrates that with the aid of in situ thermal annealing at 400°C, the field 

effect conductance change was improved by three orders of magnitude over the 

non-annealed device. Also illustrated in the figure is that the field effect 

conductance change is more pronounced for an anneal at 400°C than at 300°C.

It is known that evaporated amorphous materials are quite porous 

[129,130]. Fritzsche [131*133] and his coworkers have shown that the internal 

surfaces of the interconnected voids in a-Si are oxidized with substantial 

oxygen incorporation as soon as the film is exposed to air. It is believed that 

absorbed water vapor, which can not be removed, causes internal oxidation and 

prevents subsequent hydrogemsilicon bonds from forming, and hence prevents 

this hydrogenation technique from achieving its maximum effectiveness.

In this experiment, by means of thermal annealing in situ, the amorphous 

structure has been healed by partially removing the voids. Therefore the film 

has been made more impervious to water vapor and hence reduced the 

possibility of extensive internal oxidation. With less oxidation the subsequent 

hydrogenation effect is enhanced, resulting in a significant improvement in the 

field effect data which corresponds to a lower density of localized states.



^CONSTANT DOSE OF 6xl0lc iona/cm3)
(1) Device 31 -(2)-|3|; no thermal anneal in aiti
(2) Device 3i*-|l)-|2}: annealed in situ <£i 300 °( 
m Device 30*-(2)-|3]: annealed in aitu Cl 400 °(

120 -80 -40 40 80 120

devices with the same implant dosage 

different in situ thermal annealing
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Besides H.Fritzsche’s [131-133J and the work presented here, other 

researchers also reported that micropores penetrated the structure of 

evaporated a-Si. J.C.Bean and J.M.Poate [134] have investigated the nature of 

these Voids and their influence on the epitaxial crystallization rate of UHV 

evaporated amorphous silicon. They reported that crystallization was inhibited 

in samples exposed to air at room temperature due to the gas absorption on 

the internal surfaces of the voids.

Figure 4.15 illustrates the field effect curves of device 39*-(2)-[3], which 

was thermally annealed in situ at 400°C for 4 hours immediately following film 

deposition. The device was initially hydrogenated with a dosage of 5xl016 

ions/cm2, resulting in the field effect curve (2). Curve (3) is the data taken on 

the same device after it was subjected to a second hydrogen implant with a 

dosage of 5xl016 ions/cm2 (total dosage on the device is lxlO17 ions/cm2). 

Analysis of the data corresponding to curve (3) shows that the density of 

localized states near the Fermi level has been reduced from 7xl017/cm3-eV to 

4x 1017/cm3-ey. With this density of localized states a much improved a-Si 

thin film transistor (TFT) is possible [1].

Figure 4.16. illustrates how the localized states are distributed in energy 

around the Fermi level for device 39*-(2)-[3], This plot is obtained from the 

output of the computer program being applied to the experimental data of 

Figure 4.15, curve (3). Note that the localized states are relatively constant 

near the center of the gap and increase at energies away from mid-gap.

Table 4.2, which contains some data from section 4.3, shows the effect of 

hydrogenation with different implantation dosages on the density of localized 

states. The data demonstrates quantitatively the effect of hydrogen implant 

dosage on the reduction of the density of localized States. The table also



(1) initialdata
(2) after hydrogenation 

(doue:5 x 10' /cm1)
(3) after hydrogenation

Figure 4.15 Field effect data of device 39



Device 39* - (2)

4.16 Density of localized states in the band gap for film 39*-(2)-[3] 

after hydrogenated to a dose of lx I017/cm2



Table 4.2 Summary of effects of in situ thermal anneal and hydrogen 
Implant dosage on the Density of Localized States of a-Si samples

film 400* C anneal in situ Implanted ions/cm2 N|/cm3-eV

i 36*-(2H2); NO : 1x10*** S.6xI02®

NO 5 x 10*a 8.0x10*°

32’-(2)-W NO lxlQ*7 3.3x10*°

; 3T'-(«H3| NO 1.5xl0*7 1x10*°

30H2M3] YES 5x10*° 7xl0*7

j 3G*-(2)-[3) YES lx IQ*7 4xl0*7
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compares films with an in situ 400°C anneal with those which were not

annealed.

4.8 Some Discussions on Surface States

Surface states at the Si-Si02 interface and at the amorphous silicon-Si02 

interface are included in the field effect measurements* Surface states are of 

concern because a large density of surface states may easily mask the bulk 

localized state density of the a-Si. For example, suppose a density of surface 

states as large as ~ 1013/cm2-eV exist at the Si02 - amorphous silicon interface. 

A density of ~ 1013/cm2-eV is equivalent to a density of 1.3xl018/cm3-eV bulk 

states in a thickness of the a-Si of 750 A. Thus, surface states in the order of 

1013/em2-eV can easily mask bulk densities which are less than 1018/cm3-eV. 

The positive fixed charges at the interface can shield the electric field applied 

at the gate, thus weaken the electric field in the a-Si. Large gate voltages are 

needed to obtain sufficient energy band bending and start the onset of the 

conductance modulation, i.e. an increase of drain source current. Evidence of 

this occurring will appear in the ISD vs. VG plots as voltage shifts about VG=0. 

In terms of crystalline silicon, this effect implies the increase of threshold 

voltage in a MOSFET. In addition, if surface states at the Si02 - amorphous 

silicon interface trap a large number of charge carriers, the conductance 

between drain and source will be degraded because of these trapped charges.



ffeShSiCbj: interface these undesired surface states are greatly reduced 

mth CUrefUi fabrication techniques. By using the quasi-static technique [135], 

the1- measured density of surface states at the Si-Si02 interface was determined 

to he in the range of lO10 to lO^/cm^eV [136]. Figure 4.17 showsthe surface 

Male distribution obtained from this measurement. Any radiation damage 

occurring during iOn implantation with hydrogen is expected to be negligibly 

Mnally Since the predominant energy loss mechanism is electronic stopping [137]. 

Ffeverthefess^ most radiation damage will be annealed out by the post-implant 

thermal treatment.

Some questions arise concerning the surface states at the interface of the 

two amorphous materials (SiO^ and a-Si). It is expected that some implanted 

hydrogen will reach the interface, passivate the interface dangling bonds, and 

hence reduce the surface States there. Since a field effect conductance change of 

six orders of magnitude has been observed in this experiment, it seems 

reasonable to assume that surface states at the a-Si:H-Si02 interface are close 

to a value of 10n/cm2. This value has been reported to be an upper limit of 

the surface states at the interface as obtained from photoemission studies by 

Williams, Varma, Spear, and LeComber [138].
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4.17 Surface states distribution at the Si-Si02 interface of a MOS

capacitor, 33
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CHAPTER 5

A—Si:H TFT

In recent years, extensive studies had been made on hydrogenated 

amorphous silicon thin film transistors(TFTs), which are considered to be one 

of the promising switching devices for large-area. liquid-crystal display 

panels[139], The on/off current ratio as large as six orders of magnitude has 

already been achieved in a-Si:H TFTs[104]. Despite rapid progress in the TFT 

performance, the theoretical basis to determine static- and dynamic- 

characteristics of TFTs has not yet been settled mainly, because the influence 

of the gap states on TFT operation is very complicated. Neudeck and 

Malhotro[l] derived a simple theory to obtain TFT characteristics in the case 

of uniformly distributed gap states. Recently, Tohru Suzuki et al[140] reported 

the theoretical expressions of drain current as functions of gate bias and drain 

voltage. The TFT characteristics computed for various cases of gap state 

density distributions revealed the presence of a clear correlation between the 

TFT performance and the gap state density distribution. Satoru Kishida et 

al[141] presented a simple equation on the characterahistics of an a-Si TFT
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with realistic semiconductor film thickness and having an exponential or 

uniform gap state density distribution.

5.1 General Analysis for Characteristics of A-Si:H TFT

5.1.1 General Expression for Drain Current

Figure 5.1 illustrates the stracture of the a-Si:H TFT studied in this 

research. The electrostatic petential in the surface space charge layer at the 

point (x,y) is expressed as V(x,y)=V0(y) + u(x,y). Here, V0(y) is the potential at 

the edge of the space charge layer, where du/dx=0 is satisfied, and u(x,y) 

refers to the surface band bending. The sign pf u(x,y) is positive for VG- 

ubi>Vo(y) (VG is the gate bias and ubi is the build-in potential) and negative 

for VG“Ubj <V0(y).

For simpliest, we derive the formula for an enhancement TFT, i.e. only 

consider the electron conductance and neglect the hopping conductance. The 

conductance for an element of the channel length dy and the width W is 

composed of the flat-band conductance G0(y+dy) and of the field-induced 

condutance AG(y+dy) arising from the band bending u(x,y). G0 (y+dy) and 

AG(y +dy) are written for electrons as
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Al S.Contact

a-Si:H Film Al D. Contact

<100> N + - SiAl G,Contact
TCrrnn nrrrifi 111 rrrrrrrm-n

Figure 5.1 Schematic diagram of an a-Si:Ii TFT
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Wda
G0(y + dy}=<Tp—ip . (5.1.1)

and

AG(y+ dy) = W
dy

/ {<ToexP[eu(x ,y )/kT]-<r „} dx 
o

dy

eu%)
/ exp(eu/kT)—1 d(eu)

dnjdx e (5.1.2)

Here, <r0 is the flat-band conductivity of bulk a-Si:H and ua (y) is the surface 

potential at y, i. e., ua(y)=u(0,y). Then. the differential resistance of the 

element is given by

dR —[G0(y + dy) 4-AG(y -f dy)]-1

-_dy_
<W / , j exp(eu/kT)~l d(eu) 

a q du/dx e (5.1.3)

Since the potential difference cross the channel element dV0(y) for the drain 

current ID is equal to IDdR, the following equation holds:

yjr=».Wld,+ / '' d(eU> l4Vo(y) . (5X4)

Integration of this equation over the channel from source(Yo(0)=0) to 

drain(V0(l)=::VD is the drain voltage) yields an expression for the drain current:

In —
(X0W

1

Vd eu*(y)

<W> + /( f ,,XP^T|~1 l<iv„(y)
0 0

(5.1.5)

If both the electric field strength du(x,y)/dx and the surface potential ua (y) 

are obtained as a function of V6 (y) for given values of VG and VD, the drain
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current Ip can be calculated by eq.(5.1.5).

5.1.2 Determination of the Electric Field Strength <9u(x,y)/<9x

The surface band bending u(x,y) at the posit ion (x,y)fora fixed value of y 

obeys the one dimensional Poisson’s equation:

d2u(x,y) __AxI (5.1.6)
5x2 c0ks ■

Where, ks is the dielectric constant of a-Si:H and p(x,y)is the space-charge 

density due to the Fermi-level shift of qu(x,y). In general, the charge density is

OO
/<i,y)=(-ej / N(E)|f(E-eV(x,y))-f(E)]dE (5.1.7)

-oo

Where N(E) is the energy dependent density of states, and in its most general 

form implicitly includes all localized and extended states; f(E) is the Fermi- 

Pirac distribution function

l + exp(
E~Ef

kT
(5.1.8)

Here, Ep is the Fermi-level. If both sides of eq.(5.1.6) are multiplied by 2 dnjdx 

and integrated from X to the edge of the space-charge layer, where dn/dx —0 is 

satisfied, then one obtains du(x,y)/dx for positive u(x,y) as

du I eu(x,y) OO 2
/ d(eu) / N(E){f(E-qu(x ,y))-f(E)}dE
0 -oo

(5.1.9)

The denominator of eq.(5.1.5) du(x,y)/dx is therefore determined by eq.(5.1.8),
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The surface potential ua(y) is connected to the voltage drop across the 

insulating film V;(y), the built-in potential ubi and the gate bias VG by

VG^ubi=vo(y)+vi(y)+ua(y) (5.1.10)

The surface space-charge density Qa(y)—Vi(y)(Ci=the insulator capacitance 

per unit area) is related to the surface electric field du(x,y)/dx]x=0 by Gauss’ 

law Qa(y)—Cbks^u/(9x ]x =0, so that eq,(5.1.10) is rewritten as

VG-V6(y)-ubru>(y)

: eufy) V, : oo i

=7r[2‘ok, / J(e«) / N(E){f(E-eu(x,y))-f(E)>dE]2 (5.1.11)
: ■ i-'’ - ..'-0 ; -CO : .

This indicates that the surface potential ua(yj can be uniquely determined as a 

function of V0(y), if the gap state density distribution and gate bias are given.

By the use of eqs.(5.1.9) and (5.1.11), the theoretial drain current ID is 

expressed by eq.(5.1.5) and can be calculated as a function of drain voltage.



gvl.4. Localised State Density Bistpibiition N(E)

Et is necessary to knowthedensity of electronic states, N(E), of an 

amorphous semiconductor in order to understand and implove itselectronic 

propertieSv This has become especially topical with the recent development of 

amorphous solar cells, diodes, switching devices and transistors. In crystalline 

semiconductors the density of states in the band gap is zero except for the 

presence of discrete energy levels. In constract, it is eommenly believed that 

there is a continuous distribution of electronic states in the mobility gap of 

tetrahedrally coordinated amorphous semiconductors. Because of this difference, 

many techniques which can be used to determine N(E) for a crystal are not 

readily applicable to amorphous materials.

Recent years, the widely used experimental techniques for determining 

N(E) are field-effect measurement and capacitance-voltage measurement. Using 

the measurement data of the localized state density distribution N(E), we can 

get the % vs VD for valuer of Vg according to eq (5.1.5) by using numerical 

analysis techniques.

For analytical calculations an analytical formula of localized state density 

distribution N(E) is necessary. There are several models in literature. Listed 

are some as following:

(1) Neudeck and Malhotra[l] submited a model, that was

N(E)-Nt E<Ea ■ (5,1.12)

N(E)—Ntexp[m(E(X)^EA)j E>Ea (5.1.13)

Where hi controls the rate at which the states increase and Nt is the density of 

localized States at the Fermi energy.
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(2) Tohru Suzuki et al.[l40] proposed a function for localized state density 

distribution

N(E) = 1016 A+B exp(-
E-E„+0.6

0.05
-) + exp(—

E-E. + l.O
0.05 ■)

+C
E-Ec+0.5

exp('------- ------) + exp(n 0.025 7 . 1
E-Ec + l.l 

0.025
) (5.1.14)

Here, A, B, and C are curve fitting paramters and the N(E) curve has a 

minimum density of states at Ec -0.8eV. Three kinds of results are: (a) 

A=B=C:=1 reproduces a measurement result; (b) A—10, B=C=1 refers to the 

case with a high density of states near midgap; (c) A=B=1, C=0 corresponds 

to the case with a low density of states near the band edges.

(3) Satoru Kishida et al.[141] assumed adensity distribution of localized 

state as

E_E
N(E)=NGexp—(5.1.15) 

k1g

Where Ng is the localized state density just under the conduction band edge 

and Tg is the characteristic temperature.



Approximate Analysis for Characteristics of' A-Si:H .TFT': ■

The theoretial analysis of the a-Si:H TFT characteristics has been derived 

in the5 previous section. But these implicit explessions need to use cumbersome 

<^lciMation to be solved. For designing of devices and circuits, a 

simple less accurate theory which can intuitively grasp the physical; phenomena 

and!-—-Y characterics is very important.

5.2.1 Simple Theory

According to Tickle[142j the ID— VD characteristic of a TFT can be 

obtained from Equation (5.2.1). The potential, V, is the voltage between the 

gate and the conducting channel

' ■ vG ' ■ '■ ■. "• '
i,»=f siv).iv •)

L Vg-Vd .

The width of the channel is W, while L is its length. The voltage VG and VD 

are the gate and the drain voltage respectively.

Neudeck and Malhotra[l} derived the sheet conductivety of the channel, 

g(v), as a function of the gate voltage VG. The rather complex expression 

obtained was shown to be approximated by Equation (5.2v2)

g(V)^baV (5.2.2)

llere a is a function of the slope of the straight-line portion of logg(Y) vs VG 

plot, while b is an arbitrary constant that will depend upon the carrier 

mobility, temperature, and geometrical factors of the device. By substituting 

into Equation (5.2.2) into Equation (5.2.1), the drain current was calculated as
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ID=B|eaVG(l-e aVD)J (5.2.3)

Were B is a constant equal to Wb/La. This formula is only appropriate for the 

region where logg(V) vs VG is a straight line and the “inhanced” channel is not 

pinched off. The calculated curve was consistent with the experimental data in 

the region of larger gate voltages and where the channel is not “pinched-off”.

TO expand region, where Equation (5.2.3) can be used a new expression 

for g(Y) that would be applicable at lower gate voltages is given by Equation 

(5.2.4) [143]

g(V)=b(eaV+c) . (5.2.4)

The constant c is related to the construction and depends on the density of the 

localized states in the bandgap of the a-Si. As these states near the Fermi 

'energy are smaller, a will become larger and c gets smaller. By adding the 

constant c, Equation (5.2.4) will more nearly approximate the g(V) of practical 

devices at low gate voltages. Substituting Equation (5.2.4) into Equation 

(5.2.2), we get

ID=B[eaV^l-e'!,Vo)+acVD] (5.2.5)

5.2.2 An Approximative Theoretical Analysis A
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In this approximative analysis, the following is assumed: (1)

Approximation of zero temperature statistics; (2) Uniform localized state

density distribution; (3) For a-Si, the density of electrons trapped in localized 

States is much larger than the excess density of free carriers(electrons or holes). 

We have for the charge density:

■ ; eu
/j(x,y)=-ejN'rd(eu)=-e2N'i'U (5.2.6)

Substituting it into eq. (5.1.6) yields:

%^ = -^Nxu(x.y) (5.2.7)

This equation is easily solved for u(x,y) and shows the band bendind to be 

exponential

u(x,y)=u(0,y)exp(-Lx) (5.2.8)

Where u(0,y) is the surface potential.

[A] Uniform Localized State Density Distribution Case

Substituting eq.(5.2.6) into eq'(5.1.9) yields

in]
^]x=x

x
eu
/eNTud(eu)

^cr^s 0

2 21 Nr^~ 
e«K> 2

-±
f NTe2 12

u = ±Lu

Where L is

(5.2.9)
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L =
NTe2

^0KS

Substituting eq.(5.2.6) into eq.(5.1.11) yields

vG-viy)-ubrua(y)= C:

eu^y)
foKs / Nxeud(eu) 

0

u*(y)=
VG-V0(y)-Ubi

■^-(£<>K„NT)2+1

Under larger VG, eq.(5.2.11) can be approximated by

ua(y) =
e k2C0JL0X

e2d 2K.N,
(Vo-V0(y))

(5.2.10)

(5.2.11)

(5.2.12)

Substituting eq.(5.2.9) into eq.(5.2,5) yields (5.2.13)

ID=-
<r0W

1

vD
<%+/

eu*(y)

/ exp(eu/kT)~l d(eu)
Lu e

K(y) (5.2.13)

In eq.(5.2.13), the pre-exponential factor 1/eu changes gradually compared with 

exponential factor exp(eu/kT). Thus we can take the 1/eu term out of the 

integrand, and ignor the ”1”. Eq.(5.2.12) can then be approximated as

Id-
<toW

a v Leu i
exp

kT dV0(y) (5.2.14)

Substituting eq.(5.2.12) into eq.(5.2.14) yields



r *

<T0W
1

€ k 2^O^OX
OX T

. ,;\fpKpx2.: . $ ; Kpx 1 . (5.2.16)
k^iANt tT k, aoli.

\V k:T-.l,„K,^ IT (5.2.17)
-1 mox 1 euaL

euLda (5.2.18)

^^B^xptaVGp^e^^^D^+acV^] (5.2.19)

Let us assume that the localized state density N(E) in the semiconductor

tails ekpdnehtially with respect to energy E from the conduction band edge to 

theUaidgap as

E-E,

G

l^hSre &g is the localized state
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and TG is the characteristic temperature.

(i)tg»t

When Tg is much higher than the ambient temperature T, the zero kelvin 

approximatioh of Fermi-Dirac distribution function is satisfied. This is because 

the function decrease rapidly to zero with the increase of E from E=EF and 

because it approaches rapidly to 1 with the decrease of E from E=Ep.

From eq.(5.1.7), the charge density is 

■ Ep+eu

/>(x,y)=(-e) J N(E)dE (5.2.21)
ef

Substituting eq.(5.2.20) into eq.(5.2.21), get

Ep+eu E"“E

^Xiy)-(-e) / Naexp-jp^dE 
Ep G

EF-Er ' pii=-eN0kT0eXp-^—^(exp-j^-l) (5.2.22)

From eq.(5.1.9), we obtain

! ... '

2 . .<9u
dx X”X f0Ks

eu(x.y) E
/ NGkTGexp 
0

-E.
kTG

-(exp eu
kTr

-l)d(eu)

<oK

Nok2T02eXp^(eXp^--f-l)
kTf kTG kT(

(5.2.23)

when the gate voltage VG is sufficiently large, 

eua(y)»kTG

is satisfied. Eq.( 5.2.23) can be approximated by
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tfti = -fc
2NG

1
2 EF—Ec pii

kTGcxp J ^ • exp-
G

Eq.(5.1.11) can be approximated by

V,-V,,rV„jy)=-i A i XT V9rr i> EF Ec eua 
2c0ksNQk2TG2exp i rn exp-

kTG r kTG

2K.d,v2NGk2TG2
(k atOJ^OX

i
2. Er-E,F eir

exP'^7^exP

Now solve eqv(5.2.25) for u V

exp eir
2kTG

f lr 2 co^ox
1
2 Ef-Ec

|2Mo/N0k2TG2 l'!i|> 2kT0 (V,-UbrV,

From eq.(5.1.5), we have

<r0W VD

/
0

eu!y) e0Ks 2 (1

G

Ec Ef r f eu , 2Tg 
2kTG ^XP-2kT- T

*0W vD eoKs ,2. 2T v E-Ef;
(^r,exp'

2kT(G

eua x/ 2Tg-1expK^-il-^-tldVJy)

(5.2.24)

(5.2.25)

(5.2.26)

)]deu dV0(y)

(5.2.27)
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*0W
<*aVD±

e0ks
r
2 2T £okox2

/■'To 1.
T 2/ EC-EF

2eNG 2T<r' 2K,d„2NGk2TG2
exp

2kTG

2Tg
T

VD 2Tg-T
/[VG-ubrV0(y)] T dv0(y) 
0

(5.2.28)

We define a device constant Kj as

Kr= 2T 2
2Tg-! ,2eN0, 2KA,2NGK2Ta2

i T 2;

exp
Ec Ef

2KTG

2Tg

and obtain

Id-"'
(rM 2Tg-T

d1VD±K1/(V0-ubrVo(y)] * dV0(y) 
0

Integrating eq.(5.2.30) yields

^oW
lY>- 'I.Vp + v,IV K,

2Tc 2TC
(V0-Ubi) T -(Va-%rVD); *

Especially in the case that VD ~ 0, Ij) is given by

Id-"
<r„W

1

■ 2Tg t
d^+K^Vo-Ubj) T VD

(5.2.29)

(5.2.30)

(5.2.31)

(5.2.32)

In the VG-Ubi-yD<0 case, i.e. the saturated condition, the same as in the MOS 

FET case, we have



145.

In —
<*qW

<Wd + 2T,G

2Tg 
-Ubi)T (5.2.33)

It is worth noting that the on-off transition is expressed not by ID «exp(aVG) 

like the weak inversion ease of a MOS FET, but by logIj>°clog(yG-Uy).

(2)Tg<T

When. Tq. is lower than T, the localized state density increases more 

rapidly with energy then the Fermi-Dirac distribution function decreases. 

Therefore, the zero kelvin approximation of Fermi-Dirac distribution function 

becomes invalid. since the number of electrons trapped by the localized states 

above Ep is larger than below Ep, from eq.(5.1.7), the charge density is

Ec-eu. E -E
,y)=-e / N(E + eu)exp(-pr-

' -oo '

Ec-eu E—E^+eu Ep-E 
=-e / NQexp( , m - --)exp(—— )dE

kTr kT

=eN,G
-L-'-l' 
kT kTG J

EF-Ec + eu 
eXP(“--- urn )kT kTn I "rv kT 

Substituting eq.(5.2.34) into eq.(5 1.9), we obtain

dn
dx

L=±bk 1 1 ri / EF EC

kT_kT^- *Xp,_kT-

dxl=x

(5.2.34)

eu
kT

-1) (5.2.

9 „ „ i Ep-E. + eu
± 1 —T7~ NgK2T2T g 7^T~7i^ ex p( urn------ )

^Ks Tn-T
(5.2.36)

Eq.(5.Lll) can be approximated by
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Vc-Ubi-V^y)^ 2£0k,NGk2T2TG 1
T«-T

exp
Ep~Ec + eua

kT

and we obtain

exp eir <oKox tg-t

dox 2f„K,N,;k2T-T(;
exp

ef-ec

2kT

fVG-«bi-V0(y)]

Substituting eq.(5.2.36) into eq.(5.1.5) yields

In —'
Vd

d»VD±/
0

2e0Ks(TG-T)
NnTGAG

Ec Ep. 
exp[——— 11 2kT J exp eua(y) ^

2kT

•D=-~<l.VD+Ki[(VG-Ubi)2-(»o-Ubiva)]

Where K is defined as

K
4xNGkT

1
G

exp
ec-ef

kT

In the case where VpsiO,

II* = “j"~~ |'faVp + KIV,-U, ;)VD|

In the case of a saturated device,VD>(VG-ubi)

(5.2.37)

(5.2.38)

(5.2.39)

(5.2.40)

(5.2.41)
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Tie square root of Ip depends linearly On VG and slightly depends on TG and 

T. This feature is similar to that of a MOS FET in strong inversion. However 

the physical origins are quite different.

5.3 Experiment Results

Figure ;5.2 [if illustrates the drain current vs drain voltage Vp for 

various values of gate voltage VG, these data were obtained for a TFT made 

from a 56® A thick amorphous silicon film deposited at 3.2 A/see onto the 

3000A thick Si02 substrate followed by a 400°C anneal for 4 hours. Note that 

the drain characteristics Ip vs Vp for a fixed value Of VG appear quite similar 

to an ordinary MOS FET. As the drain voltage, Vp, is increased Ip increases 

but begins to saturate at large values of Vp, indicating achannel pinch-off type 

condition. At these larger values of VG and Vp there appears to be a channel 

shortening phenomenon or a leakage component giving the beyond pinch-off 

regin a slight slope to the “straight line” part of the plott v

Tigure 5.3 shows the experimental plot of Ip vs VG for a fixed value of Vp. 

For this device the “a” of eq.(5.2.3) obtained from the slop of Figure 5.3 is 

OilOlS by at least squares fit to the experimental data points. The arbitray 

constant “B” was obtained from one point on Figure 5.2, by using
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EXPERIMENTAL
CALCULATED

Figure 5.2 Experimental and calculated drain characteristics for aft a-Si 

TFT (from Reference 1)
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Figure 5.3 The drain current vs gate voltage for fixed values of VD (from 

Reference 1)
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ID=31.2xlO_12e01018VG[l-e 01018Vd] (5.3.1)

The dots of Figure 5.2 were calculated from eq.(5.3.1). This derivation is 

based on below pinch-off operation and that the exponential relationship is 

valid, hence, for gate voltages less than 50V eq.(5.2.3) becomes invalid. Figure

5.4 illustrated a similar plot of the experimental and calculated data for gate 

voltage to as low as 54.6V and with an expanded scale near the origin.

The approximate expression of eq.(5.2.5) was verified by the following 

experimental results. Figure 5.5 illustrates the experimental plot of ID vs VG for 

a fixed value of VD=1.5 volts for both positive and negative gate voltages. The 

contants a, B, and c can be obtained from Figure 5.5, which for this device is 

a=0.085, B=lxl0-8 A and c=3. Therefore, the static characteristics are given 

by eq.(5.3.2)

ID — 1x10 8[e° 085V<^(i—e 0'085yD) +b.604Vjr>] (5.3.2)

Figure 5.6 compares the experimental data with eq,(5.3.2) between 

V.FGD—10V and 100V. Figure 5.7 compares experimental data with eq.(5.3.2) 

between VD=IV and 10V, while Figure 5.8 compares the experimental data 

with eq.(5.3.3).

ID — 1 x 10-8[e° 085^‘3( 1—e °' 085Vd)j (5 3 3)

These results prove that eq.(5.2.5) is more accurate than eq.(5.2.3). Eq.(5.2.5) 

provides a better fit to the data than eq.(5.2.3) when VG is smaller then the 

straight-line portion of Figure 5.5.

when VG<20V, the Ip vs Vp dependence is changed to a linear plot. The 

experimental plot of ID vs VD for VG=0, 10V and 20V is given in Figure 5.9. 

Only for gate voltages larger than 20v can the channel be formed. We can
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Figure 5.5 Experimental drain current vs gate voltage for sample 30’-(l)-[l]
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Experimental and calculated[eq.(5.3.2)] drain characteristics for 

sample 30*-(l)-[l], yD=l to 10V
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Figure 5.9 Experimental drain charateristics for sample dO'-llJ-Jl], VG<Yth



define a threshold voltage Vtj, for a-Si:H TFT. For VG<Vth the Ip vs Vp 

characteristic of a-Si:H TFT is linear. This is different from an IGFET which is 

in saturation. The channel of an a-Si:II TFT is formed slowly and never really 

is pinehed-off. The Ip vs Vp characteristic of a-SI:H TFT is changed from linear 

(VG< Vth) to saturation (VG>Vth).This feature is controlled by the density 

of localized states and the stracture of adSi:H TFT.

Curve A of Figure 5.10 shows the experimental results of voltage VG 

versus drain current Ip characteristics[141]. In order to obtain reproducible 

results, a pulsed votage VG was applied to the gate and the drain; Thus the 

FET operated in the saturated region. Clock frequency and the duty ratio of 

the pulse were 100 Hz and 50% respectively. The ambient temperature was 

20°C. The TFT had 2300 A and 2000 A thick SION and a-Si layers, 

respectively, both of which were deposited by the arc discharge decomposition 

method,and had'-a 50 ^m long and 200 fim wide channel. It can be seen that 

log(ID)“log(VQ) data is approximated by a kinked line. For low values of VG 

the slope of the approximate line was 5.2. This means that the localized state 

density far from the conduction band edge fall exponentially toward the 

midgap and that the characteristic temperature of the localized state density 

distribution is T62°K. For large VG, the slope of the approximate line was 

about 2;4, This means that there are localized states of extremely high density 

near the conduction band edge and that the transition from the low density 

region near the midgap to the high density region near the band edge is very 

sharp.

The curve B of Figure 5.10, shows the experimental results of VG vs Ip for 

a device which was made by electron beam evaporated a-Si and ion implanted 

with hydrogen. The structure of this device has been described in Section 3.1,
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and the procedures of the measurements were been expressed in Section 3.2. 

Compared with curve A, the shape of curve B was nearly the same curve A, 

except in the low VG area which Was not a straight line. For medium values of 

Vq, the slope of the approximate line Was 5.5. Therefore, the characteristic 

temperature of the LSDD is 806PK. For large VG, the slope of the approximate 

line was 2$. : ''v;;

5,4 Biscussibn of Resiilts

Amorphous silicon field-effect-transistdrs has been found to have extremely 

high on-off ^current ratios and sharp On-off transitions. They are promising as 

non-linear devices for switching arrays, in large area parel displays and image 

sensors. It is necessary to develop desige methodologies for devices and circuits. 

For this purpose, the relation between FET characteristics and the electrical 

properties of a-Si, i.e., the localized state density distribution, must be clarified 

during the early stages of development. An one-dimensional analyses of the 

FET characteristics was utilized in the field effect technique to charaxterize the 

localized state density distribution in a.-Si[10Ij. The results of this work 

demonstrated the fact that N(E) conldn’t be determined uniquely. Because of 

the Fermi factors in eq.(5.1.7), any structure finer than 2kT in the density of 

state cannot be resolved. Thus it is impossible to determine whether the 

density of states is a continuous distribution or whether it contains some 

narrow peaks.
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The cumbersome numerical calculation for determining the localized state 

density distribution is not suitable or a design tool for devices and circuits. A 

coarse and simple theory which can express concisely the FET characteristics, 

is very important. The simple theory and experimental data can be used to 

abtain the localized state density distribution.

For high localized state density distribution, e.g. higher than 1019 /cm3-ev, 

the uniform localized state density distribution may be used. Eq.(5.2.5) is a 

good aproximate formula for the a-Si TFT characteristic.

For lower localized state density distribution, e.g. lower than 1017 /cm3-ev, 

the exponential localized state density distribution may be a suitable model. 

Figure 5 9 shows the experiment results. Glow- discharge a-Si:H TFT and an 

electron beam evaporated a-Si:H TFT all are . good aproximation. The 

differences between the glow discharge a-Si:H TFT and the electron beam a- 

Si:B TFT are the insulater layer and the measurement conditions. In section 

5.3, we have expressed the measurement condition and the insulater layer for a 

glow discharge a-Si:H TFT. The electron beam a-Si:H TFT is different. The 

insulator is Si02 and the thickness of SiD2 is 3000 A. The measurement 

conditions are a DC voltage instead of pulsed voltages. Furthermore, every 

point was measured 5 minutes after the operating voltage was applied.

In conclusion, if the density of localized states near Femi level is large, the 

density of localized states model can be uniform. If the density of localized 

states near Femi level is much lowers the model should be exponential,



CHAPTER 6

FOR FUTURE RESEARCH

8.1 Conclusions

The significant results of this study demonstrate that implanting hydrogen 

into a, vacuum evaporated amorphous silicon film is effective in reducing the 

density of localized states in the mobility gap, as illustrated by the field effect 

measurements. The controllable hydrogenation of evaporated amorphous 

silicon has been performed by ion implantation followed by a low temperature 

thermal activation. The effects of hydrogenation and those of structure disorder 

from film fabrication can be independently controlled by separating the process 

of hydrogenation from that of amorphous film deposition. This technique, as 

compared with glow discharge or sputtering methods, minimizes the number of 

fabrication variables and hence facilitates the study of the hydrogenation 

phenomenon. Quantitatively controlled hydrogenation is achieved, while 

preserving some of the advantages of the evaporation method, such as 

fabricating large area samples with excellent uniformity and consistency. A
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comparison of electrical properties of the evaporated films before and after 

hydrogenation provides valuable information on the effects of hydrogenation 

independent of fabrication.

After hydrogenation, a field effect conductance change of four orders of 

magnitude was observed on the devices which were not thermally annealed 

in situ following film deposition. Almost three orders of magnitude reduction 

in the density of localized states near the Fermi level had been achieved. The 

effect of hydrogen in reducing the density of localized states was quantified by 

varying the implant dosage. Analyses of the field effect data indicated that the 

density of localized states near the Fermi level decreased as the implant dosage 

was increased while all other experimental procedures were fixed. As more 

hydrogen is incorporated in the a-Si, more dangling bonds were passivated by 

the implanted hydrogen hence the density of localized states Was further 

reduced. , ■

The vacuum evaporated a-Si is quite porous and the internal surfaces can 

oxidize with the substantial oxygen incorporation when the films are exposed 

to the air. By performing a 400°C anneal for four hours the film porosity was 

greatly reduced. The effect of in situ thermal annealing on the evaporated a-Si 

films prior to hydrogen implantation reduced the voids, alleviated the internal 

oxidation and enhanced the effectiveness of the subsequent hydrogenation. A 

field effect conductance change of six orders of magnitude was observed which 

yielded a density of localized states near the Fermi level of 4xl017/cm3-eV, 

approaching that of high quality glow discharge produced films. The localized 

states have been further reduced by several orders of magnitude as compared 

to the results of non in situ anneal case. The effect of the-'in- situ thermal 

annealing on vacuum evaporated a-Si prior to hydrogenation demonstrated the
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capability of this technique.

'6*2'-Recommendations for Future Research '

The following recommendations are for future research which involves the 

study of basic material properties of a-Si. Exploration of' devices and

applications of a-Si is not intended.

.The most significant results of this study demonstrate that the density of 

localized states in the mobility gap has been reduced to. 4xlG17/cm3-eV on the 

evaporated a-Si by combining the processes of in situ thermal -anneal and 

hydrogenation with- a high implant dosage. As indicated in Chapter 8 section 

3.4, much of implanted hydrogen went through the a-Si film and was located in 

the- silicon dioxide insulator due to the thin a-Si film and the minimum' implant 

energy, available at Purdue. In order to keep more implanted hydrogen , in the 

a-Si. film, to optimize the hydrogenation technique, a thin film (photoresist) 

overcoating, the wafer - is suggested. When the hydrogen species reach the 

photoresist-amorphous silicon interface, the energy will be reduced. The 

thickness of the thin-masking photoresist should fee carefully determined. The- 

- concentration profile of the implanted hydrogen in two different materials (ie. 

photoresist and a-Si) with- different stopping powers should . be simulated 

beforehand. Care also should be taken to remove the post' implanted 

photoresist. In some cases ion bombarded photoresist is hard to remove.
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With the lower density of localized states, a-Si:H films produced by this 

technique should be able to be doped (by ion implantation) into n-type or p- 

type materials. In fact, seeking the possibility of doping evaporated a-Si should 

be a goal for the hydrogenated material. However several difficulties may occur 

in doping. It is speculated that radiation damage may be more serious than 

hydrogen implantation when the conventional dopants (Phosphorus for n-type 

and Boron for p-type) are used as the implant species; even with low 

acceleration voltages. This radiation damage which occurs due to the heavy 

implanted ions may partially break apart the already formed Si-H bonds in a- 

Si:H network in addition to breaking some Si-Si bonds. In crystalline silicon, 

radiation damage is removed by subsequent thermal annealing at a high 

temperature (800°C to 900°C). This is not possible for the a-Si since it 

crystallizes at about 620°C. In addition hydrogen starts to effuse out of the film 

at about 290°C as indicated in Chapter 4, section 4.5. Therefore how much 

radiation damage can be removed and how much activation of the implanted 

species can be achieved by low temperature annealing are two major concerns 

in the doping process. How serious the problem will be is unknown until some 

experiments have been performed. ;

If radiation damage is as serious as predicted, the following suggestions are 

recommended :

(1) Do some thermal annealing during the implant. The temperature 

should be below 260°C; 230°C is suggested. In this way, the damage produced 

by ion bombardment is annealed during irradiation, which may prevent the 

clustering of small defects into larger microvoid structures.

(2) Seek alternative lighter dopant species other than Phosphorus and 

Boron. Li+ is recommended for a donor type dopant and should produces less
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radiation damage. .

'(3) Try Laser annealing,

(4) Try using fluorine as a bond terminator for unsatisfied silicon bonds in 

a-Si. As indicated in Chapter 2, section 2.2B, fluorine forms a single bond with 

silicon more tightly than hydrogen. Published reports [74,75] indicate that 

fluorine has remained in the a-Si film and kept their bonds with Si even after 

an annealing at 600°C. If the same reduction in the density of localized states 

can be achieved by this terminator, a higher temperature post-implant thermal 

anneal is possible.

Finally, it is suggested to use Molecular Beam Epitaxial (MBE) techniques 

to produce and study the material properties of a-Si and a-Si:H. High quality 

a-Si films, with very low density of localized states should be able to be 

produced on the amorphous substrate (Si02 for example). Also available is the 

“in process” analytical instruments to monitor the amorphous structure and 

hydrogen content during film deposition. If this technique is successful, many 

more research projects could be designed.
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Appendix 1

(1) Rinse in D.L water 5 times

(2) Ultrasonic clean in Acetone for 5 minutes

(3) Ultrasonic clean in TCR for 10 minutes

(4) Ultrasonic clean in Acetone for 10 minutes

(5) Rinse in D.L water 15 to 20 times 

(©) Soak in Piranha (K^C^IUSC^—1:1) for 10

minutes

(7) Rinse in D.L water 15 times

(8) Etch in HF:D.1.==1:20 for 2 minutes (no ultrasonic) 

(0) Rinse in-DU water 15 to 20 times
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'Appendix 2

Computer Programs for Evaluating':.;.-the- Density."., of States 

Distribution In a-Si

A computer program was employed to transcribe the field effect 

experimental data into the distribution of the localized states in a-Si. To run 

the computer program in the Purdue University Computer Center, the 

following job cards were used :

- Account #, ID, MF100000, L5OG0, T1Q24, PR. ' , v :

RFL (lfJOOOO)

MMFFTN :(U^N)

■ ; UPSET |PRESET=ZERO) ; / ■

.. ifio. / .

. #E0R

At the bottom of the main program, the required parameters and 

constants are first read in according to the order assigned in the program. The 

experimental data are read next. The initial guess of the distribution of the 

density of states are put at the end. It should be noted that an initial guess 

which is too far away may result in divergent results.



C * ••THIS VERSION OF FIELDEFF MODIFIES G(E) ITSELF TO FIT DATA • • •
C • » ® FIELDEFF » “ * FIRST SOLVES A SECOND ORDER DIFFERENTIAL EOOATION LIKE• 
€ **••• YOOTOOTaFUMCT 1 OWfX . Y . YDOT ) WHERE VOOT-DY/OX
C ••“*• GIVEN INITIAL VALUES OF Y A NO VOOT AT THE FIRST VALUE OF X (X-O O) 
e •»••* THESE ARE TO, YDO AND ARE CALCULATED IN THE PROGRAM.
€••••• IT USES THE SOLUTION FOR POTENTIAL AS A FUNCTION OF DISTANCE 

/€■*•••* INTO THE SAMPLE TO COMPUTE THE CONDUCTANCE VERSUS VOLTAGE CURVE 
■ C ••••• IT ASSUMEST>0 IN STATISTICAL WEIGHTS TO COMPUTE CHARGE DENSITY 

C ••*•* VFIELO IS THE FIELD VOLTAGE (AWAY FROM VFBP) IN KILOVOLTS 
c •»»*• VFBP IS APPLIED FIELD VOLTAGE THAT YIELDS NO BAND BENDING 

; V C ••••“ IF TERSE*.TBUE. MUCH OF THE POSSIBLE OUTPUT IS OMITTED 
€ »>••• TEMP -IS TEMPERATURE OF SAMPLE IN DEGREES K 
C ••••• ALPHA IS RATIO OF ELECTRON TO MOLE CONDUCTANCES AT VFBP 
C •>*•• SJGO IS THE CONDUCTANCE AT THE FLAT BAND POSITION
C *•••* DELX IS STEP SIZE IN X FOR SOLVING OIFF. EO'N . . . OELX-OELXQ AT XK>
£ •“>••• THICK IS THE SAMPLE THICKNESS IN CM.
C ••••• DSUB IS THE THICKNESS OF THE SUBSTRATE IN CM.
C ••••• ESAM ft ESUB ARE DIELECTRIC CONSTANTS OF SAMPLE AND SUBSTRATE 
C ••••• ESAM«12.0 FOR SILICON; ESUB*3.TO FOR QUARTZ; £SUB•9.3 FOR S13N4 
C • ••»■ VMN ft YMAX ARE LIMITS ON PLOT OF VFIELO
C *•••• IF ERROR* . TRUE . PROGRAM COMPUTES SIGMA FOR 151 ERROR IN YO 
€«•••• IF PLOTS*.TRUE. PROGRAM PLOTS SIGMA-CALCULATED VERSUS VFIELO 
C •••*» NDATA IS THE NUMBER OF DATA POINTS SPECIFIED 
€•«•*• WALTER IS THE MUH9ER OF DIFFERENT G(E)’S TO BE TRIEO 
C •••** MODIFIED OENSE(NN) IS IRONED OUT OVER (h*i ♦/- IRON) EACH TIME 
C ***** AMN IS THE *A* IN THE MEYER-NELDEL RULE; SIG»SJGO*EXP(A*V) 
c •»••• (VDATA.SDATA) are pairs OF (VFIELD.SIGMA) data points 
C ••••• SIGMA IS THE CONDUCTANCE IN INVERSE OHMS AT APPLIED VOLTAGE, VFIELO 
C ••••• NTOT IS THE TOTAL NUMBER OF ENERGY VALUES SEPARATED BY 
C ••»•* DELE. AT WHICH DENSITY OF STATES. G(E). IS READ IN.
C ••••• BOLTZ IS THE BDLTZMAN K FACTOR IN EV/DEGREE K 
C ..... oEA IS THE SURFACE ELECTRON DENSITY ON THE SAMPLE (Q/(E*A))

0001 LOGICAL TERSE, ERROR. PLOTS
0002 DIMENSION EXOOOO) ,V( 3000) ,VD( 3000) ,TI TLE( 20) .DEX(3000) .RDWOOOO)
0003 * DIMENSION VDATA(50).VCALCC50).PH10750).SlGMA<50)
0004 DIMENSION GRAPH( 2000) .NSCALE (5 ). SLAST(SO) . SDATA(SO) .SCALCXSO)
0005 01 MENS I ON RHO( 200) , EN( 200) . DENSE ( 200 ) .DTEMP ( 200 ) .OUNSE { 200)
0006 COMMON/CHARGE/RHO.EN.NTOT .DELE.L,ROW.ESAM.ESUB
0007 / DATA ITER/2/
0008 DATA NSCALE/1.O.3.0.3/
COOS 100 READ(5.*.EN0*999) TEMP. ALPHA, SIGO. DELXO. THICK. DSUB.

1 ESAM. ESUB. VFBP. TERSE
OOfO READ(5.•) XMAX. XMIN. YMAX. YMIN. ERROR. PLOTS
0011 READ(5.104) TITLE
0012 104 FORMAT(20A4)
0013 READ(5.*) NDATA. WALTER. IRON. AMN
0014 WRITE(6.106)
0015 . 106 FORMATt • 1 DATA : * .5X . *VF IELD (KV. ) *-.5X. ’SIGMA (MHO) ‘ 5
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0046 
004 7

0048
0049
0050
0051
0052
0053
0054
0055

0056
0057

0058
0059

0060 
006 1 
0062
0063
0064
0065
0066
0067
0068
0069
0070 
007 1 
0072 
007 3

DO 123 IN-2.NSUB
123 RH0(NN)*RH0(NN)*DELE*DENSE( IN)* •

1 I 1 ,/C.I j *EXP({ EN(iN)-EN(MN) )*TK ) )-1./( 1.*EXP(EN( IN)*TK> } )
124 WRfTEtS.ISI) 8N. SN(WN). DENSE(NN). RHO(NN)
131 FORMATE' 'VI3.BX,F?.3.1GX.£11.4.1«X.E11.4)

' SL0PE*0.01 ' ■
VALUE*0.020 •, ■■.- ■
VRIYE{6,149 ) TITLE. INALT. WALTER

149 FORMAT E * r 20A4./, *0 TRIAL #'.I2.' OF ',12 . * FOR 6(E)* )
VRITE(6.ISO) THICK. DSUB. TEMP. ALPHA. VFBP. SIGO. DELXO. Atm

150 FORMAT ( ‘O SAMPLE THICKNESS ■’.Ell.4.* CM.'../** SUBSTRATE TH
1ICKNESS - '.E11.4.' CM.',/.' SAMPLE TEMPERATURE »’.F€.t.' DEGRE
2ES KELVIN'./.• ALPHA »’,£10.3./.' FIELD VOLTAGE WEEDEO FOR
3 NO BAND BENDING(VFBP) IS 8 . FT. 3. ' KV.'./. CONDUCTANCE AT VF
4BP IS *.E 11 .4.' WHO’./','. FIRST STEP SIZE IN X
S'EDELXO) IS *.E11.4. ' CM. •./.'© MEYER-NELOEL PARAMETER (S1G *
SSIGO*EXP(A*V)) IS A ■'.F5.1./. ')

VRITE(6. 1S2) VALUE. SLOPE. IRON
152 FORMATE'O ACCEPTABLE LIMITS FOR CONVERGENCE OF SOLUTION ARE:*

1 ./. * POTENTIAL MUST BE LESS THAN'.F7.4. • TIMES THAT AT X-O*
2 ./. * SLOPE MUST BE LESS THAN*'.F7 .4 . • TIMES THAT AT X-O*
3 ,/.' THE ARRAY DENSE(N) IS SMOOTHED OUT OVER N ♦/-*

^4 .12.' EACH TIME IT IS MODIFIED')
VrITE(6.153)

153 FORMAT(*- VFIELD CONDUCTANCE 01FF.CAP. 0/E*A NTRY DELVO*
1.7X, 'VO',6X. 'VOOTO'.7X. *XLAST '.6X. 'VLAST *,4X. 'VDOTLAST LMAX'.SX.
2'VCALC PCT . './.‘ (KV)'.7X.'(MHO) (FO*CM-2) ELEC*CM-2 • ,6X . 
32('(VOLTS ) ' ) .2X,'(V/CM)•,BX. V(CM-)',€X. '(VOLTS)*,4X.•(V/CM)'.10X.
4 '(KV) ERROR' )

C •
c ••* SET UP TO SOLVE POISSON'S EQUATION

■■•c
DO 971 NVF * 1,MOAT A 
VFIELD“VOATA(NVF)-VFBP

. miss-o
IF(NVF.EO.T) GO TO 161
IF((VDATA(NVF)-VFBP)•(VDATA( NVF-1)~VFBP).LE.O.) 0EA*0.0 

■ GO TO 162 .
161 0EA-0.0 ■ ■
162 IF(VALUE.LE.0.02.AND.MI SS.EQ.O) OLAST-OEA 

OEA*VFIELD/FACTOR
SLOPE*0.01 
VALUE-0.020

163 NTRY-0
IF(VALUE.GT.O.02) MR ITE(6.164)VALUE. VFI ELD

164 FORMATE'O ->«>-> ACCEPTABLE LIMITS FOR CONVERGENCE HAVE BEEN RAISE
10 SO THAT:'./.* POTENTIAL MUST BE LESS THAN'.F7.4 . ' TIMES
2THAT AT X-O'./. ' FOR VFIELO- '.17:4. 'KILOVOLTS ONLY'*)"
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Olio ; VD(t)®VDO ...
Of 1 1 IF(VALUE. LE .0.02) VOO»VO
O! 12 AY®YO ■ '
Of 13 AYD*YDO .■
0114 ■■■' AX*0.O '
Of 15 IF(ABS(YDO).LE.1.E*BO) VDO-.1E-SO
Of 16 If(ABS(YO)„,LE »1.E-SO) VO- . IE-SO
0117 200 L»L*1
Of IB IF(L.GE.2999) 60 TO 648
Of 1© IF( L. LE.2 ) CO TO 210
0120 PEtX«OELX®(VO(L-2)/VO{L-T)>*iVDCt-2)/VOfL»*))
0121 IF (DELX . LT . DELXO/TOO. ). OELX-OCLXO/tOO.
0122 ,.v.;IfCDEL.X.Gt.0.005»THICK) DELX-THICK®0.005
0123 *F < AX tr , THICK. Ate. AX*DELX .CT .THICK ) DELX-THICK-AX
0124 210 DEX(L)-DELX
0125 BV®AY*DELX»AYD
0126 CX*AX*0EUX/2.
0127 ' CY*.5*(AY*B Y )
0128 BYDO*DEON(CX.CY.AYD)

■■ -.-'.■^,..BVD»AYD-*DELX»BYOO-
0130 I»1
0131 250 1-1*1
0132 £SV»AY*DELX»(AY0*BY0)
0133 DX«AX*DELX
0134 CYDD-DEOW(CX..5‘CAY+DY).BYO)
0135 DYO-*YO*DELX»CYDD
0136 OYOO-DEON(OX.OY.OYO)
0137 BY*DY '
0138 BYD-DYD
013© BYDD-CVDD
0140 IFd .LT . ITER) CO TO 250
014 1 EX(L) -DX
0142 V{ L)®DY
0143 VD(L)«DYD
0144 ■ AX«DX ■-
0145 \ AY*DY v
0146 AYD®OYD ■
0147 YL“YO '
0148

’ f
IF(MISS.NE.O) GO TO 494•

■ c 
c

»»• CHECK TO SEE IF Y(X) FITS BOUNDARY CONDITIONS 
• ?

014© IF(AY/VF1 ELD.LT.O.) GO TO 490
0150 IFCAVD/YDO.LT O.) GO TO 492
0151 IF(AY/YO LE .VALUE. AX© ,(AVO/YDO.LE-SLOPE-OR.ABS(AYD) 

1 GO TO 500
0152 IFCAX.LT.THICK) GO TO 200
0153 IF<AY/VO.GE.0.) GO TO 492



©155 
■0156. ■ 
©15? 
0156 . 
©159

©ISO 
©161 
©162 
©163 
0164 
© 165 ' 
©156

©167 
©166 
©16© 
©170 
©17 1

©154

©172
©173
©174
0175
©176
:©177
©176
©179

©180 
©18 r-- ;.

©162

4®0 ©©Nt l NtlE .
c * value of potential has changed sign

IFC ITIME .i.E©.‘2) DELY©*DELV0/2.
JF.( D£L VO/V©. LT .1 .E“6) CO TO *55 
VO-YO*©ELV©
GO 70 'ITS'

482 CONTINUE
C • SLOPE OF POTENTIAL HAS CHANGED SIGN

©ELVO“OELVO/2^-*NDABS( V(L~ 1 J/V©) .LE .VALUE ) ISO TO 696

IfiOELVO/r©.LT.1.E-5} GO TO ©55 V 
VO-VO-OELYO 

' IT1ME®2 ' ' '
■. GO TO 175 - . - -

rr/1%^ ■VALUE •AWD • *'-eT • 5L0PE ■■■■■■■■■■■■■■ TGfO ;.T;Q §00
ifcav/yo.gt.©. .aao.atd/ydo;gt.0.) l»l^i

496 L-L-l ■'■
,500 :LNAX»-L- ■
502 VOQ«YO

LMAX1»LWAX-1
C
C
c
c

COMPUTE V-CALCULATED AS IMSPIRED BY MADAN AND LE“C0MSER 
COMPOTE DIFFERENTIAL CAPACITANCE (©CAP) ALSO ?

YOEL®YO-ELAST '"■
If(AESCVOEL) LT.1 E-10) YOEL*1.E-1©
©CAP * ( 1.602£-18)* C ©£ A—©L A ST)/ (YOE LI 

. PHIO(NVF)®YO , ■ -
VCALC (NVF )-0. £ •FACTOR* (©EX ( 1 ) ®R©tf(t ) «©£XfLMAX) •ROtflLMAX i |

, ■■ .565

. '<0’’ ® » • • 1
" Q m © • V i 
0 > •» 6 1 
£ ■> :• 9 -I
.£ ■ ,® • ©9 I
][Q- . :»**-
e.; ■* ;

VL*AC(NVF)»VCALC(MVE)*(DEXCL)*R©W{L))*FAC¥©R
VC A L C < N V F ) * ( VC A L C ( N VF ) ♦ V F B P ) ' ' ■

“ THIS PART OF THE PROGRAM COMPUTES THE CONDUCTANCE ©F A SAMPLE 
GIVEN THE POT ENT I At AS A FUWCT ION OF DISTANCE INTO THE SAMPLE 
WHERE £X(L ) IS THE 01STANCE FROMTHE SUBSTRATE SURFACE:

v (L ) ."IS THE POTENT IAL AT,'EX{L'} IN ONlTS,:©F EV.' ; v 
V(L) IS COMPUTED IN THE FIRST PART OF THE PROGRAM AS A FW OF £X(L)

;;■;'. IF C - NOT .TERSE. AND .MISS . £0.0) WRITE(60S70)
570 f OSMAT { •- * .12 5 C ’» ‘ )./. «0. -:t '* . »X ,*X * . 12X , 'SIGMA ’.SIX. * ©£ LI * ,

1 12X, *y '.13X.•VDOT *,1IX, *DELX *,7X. *VFIELD *)
.AREA"O'.$• ALPHA*1 ©EXI t) » CEXP( ( TK-AMN ) • V( 1) 1 ).-©E.X(LMAX)®

' * (EXP((TK-AMN)*V{LMAX))-1.J) : « O.5* <DEX(1)®CEXP(-CTK-AMN)*
2 VI 1 ))- IV) - ©EX(LMAX)«(EXP(-(TK-AMN)*V(t4*AX > )-,1 . J>

ec:tc
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mui
02 IFiVO-ttvO | 45© T © €55

':~iSuS,ijassw j &ssiM2!i<*»;
♦ ABSr ALDGf SL ASTMowr I v , -

.:02%O 
022 1

.022 i. 
©223

0224
©225

0226
:022?
0228--
0229
©236
0231
©232
©233

0234
©235
©235" G '

: 02.37/

©238 
©2 39 
©240
©24 1

• €
: c
€
C •

€55

Wt HAVE MADE ©SE OF THE FACT TBAT:
A8 S C AlDCfSCALC/SDAT A jf )"♦ ABS (AL©dC SL AST/SDATA ||

go to *s©
* * rli/sfl! ) : ^I*;eE * EW( MM ) . AMD , EM{ NN) .SE 1 VO-3 ,/TSO ©ft WP7 AM T 
a * A^CA^f

WRITE STATEMEWTS FOLLOW; DO WOT DELETE

. AX , ay. del*©
KV ;■ .. L * *. 14 . •' 

DELXO *•.E1©.3, 
STEP SI2E * )

A:T.;XA‘;,f tOv'3'.-

3 / &BS{ AI Oft! erAi J i!V.I ii '®ALOG(DENSE (WN))J.
*60 CONTINUE 

GO TO 870
C * ■ '
C ■■.»** DIAGNOSTIC
c

848'WRITE(*.'949) VFIELO. L 
*49 format;■ VFIElO* *,F7;3, ;• 

t' CM.. V*1.E10.3,• VOLTS 
2 ' CM . . . INCREASE FIRST

DELXO*2.©»DEx(1)
VO*ELAST
NTRv»©
NDx6»NDXO'M ■ ■
IF(NOXO.LT.SO) GO TO 169 '
GO TO 97 1 ■
■ISSSi * * -?!° > NTRV- **•*' . A YD , L . VF IELD.TO.YDO.OrA1ALUES JeRE : • ./! • • 'x*”e ltT4°SX ' •ECl.DID *°T C£WVERSE • • ' V

2* ;L« •.■1,4../. • VFIELD* * .F8,:
2“ E 11.4, • 0EA-V.E11 4)

VALUE-VALUE*0,02©
'IF(VALUE . LE O.TO) GO TO 1S3

,“i5fw"Jofinw>cSS"S^-),s 5,“LL ENOU°M 4BSCLU,E ,*LUE 10 m
lf(abs<ay/ro) ie Valuej go to 502

-©0 'TO 970 - .
BBS WRI T£ ( € . 9SB ) L ■; V(L), Vf 1 E LD 
96$ > FORMAT-( • »>«>*> A8S(TK*VCt)l ■>■ 174 

1 OVERFLOW OR UNDERFLOW*./.• «>»>»>
2VFI ELD * * , F8..38 r KILOVOLTS • }

©55
960

- y» ’
:ksr:

»Eii, 4. * 
TO" .. ■ TOOT*1

.El 14. V ;tT.n4V':' ■
T’OOTO "

, OR©EL VO/VO .-it . SLOPE ) )

;6' ' 
VC ,14

THERE 
; • ) ;••'■'/

WOULD HAVE BEEN AW 
* ,E 1 i...-4'

C£r



0242
0243
0244
0245
0246

0247
0246
0249
0250
025 1
0252
0253
0254
0255
0256
0257
0258
0259
0260
026 1

0262 .O'
'.■©2:63,

0264
0265
0266
0267
0268 
0269 
02 70
027 1 
027 2 
027 3 
0274 
02 7 S
0276 
027 7 
0278

970 CONTINUE
IF(NOT.ERROR) GO TO 97 1 
KlSS-NISS«t
If{MISS.LE.2 ANO.ABS(VFTELD).GT. 1,E-6> GO TO 171 

871 CONTINUE
>.C . .'4 :

C THIS REMOVES UWPHYSICALBUMPS AND HIGGLES IN S(El THAT MIGHT APPEAR

NQRI-IRQN ■
SF( 1NALT .EQ . 1 ) NORI-MAXO( 1RON.3 )
IFflNALTEO. 2 .ANO.NALTER.GE .3) MORI-MAXOCIRON,2t 
DO 972 .M4-1.K70T

OUNSE(NN)«DENSE(NN)
IF(DT£NP(Mhl) .LT.3.E1B) OTEMP(NN)-3 .E15 

*22. IF(DT£MP(NN).GT .3 . E2 1 ) DTEMP(NN)-3.E21 
DO 074 t#il*1,NT0T ■'

IRONY- I ♦ 2* MI NO CNN- 1 .NTOT—PR4.N0R1 )
■ PLOG-O O

DO 973 1-1.IRONY
IADD--( IRONY-1)/2-»f-f

9 73 OL OG-D t OG ♦ A L CKS ( D T E NP { ♦ I ADD ) )/F LO A T ( I RON Y }
974 DENSE (NN ) »EXP (©LOG )
980 IF(.NOT.PLOTS) GO TO 965

■ :'C- ' “ ■ ''
C ••• PLOT LOG SIGMA ( CONDUC T ANCE ) AGAINST VFIELD (APPLIEO FIELD VOLTAGE) 
C»*f AND ALSO AGAINST VCALC (CALCULATED VFIELD) ON SAME GRAPH 
C • ■ '

MRITE(6,983) TITLE. 1NALT. MALTER
863 FORMAT( ‘ 1 ’. 25X. 'PLOT OF CONDUCTANCE IN MHO VERSUS APPLIED FIELD VO 

1LTAGE IN KILOVOLTS *./. *0 •.2044./. • TRIAL # *.12.* OF *.12.* FOR
2 GTE)*') . ■ ■

CALL PLOT 1 (NSCALE .6.8.5.20)
... . CALL PL0T2(GRAPH.4 . OO.-4 .0. YMAX . YMIN)

CALL . PL0T3(.«O* . SIGMA, VCALC.50)
CALL PL0T3( ' • • . S IGNA . VOATA . 50)
CALL PL0T4(21 .‘APPLIED FIELD VOLTAGE*)

■ VR1 TE(6,984 ) '.
88.4 FORMAT (*0 * .55X. ‘LOG OF CONDUCTANCE ‘«/. ‘O •: V-APPLIED

10: V-CALCULATED‘)
985 CONTINUE

DO 987 I-1.NDATA 
987 SLAST(I)-SCALC(I )

VRITE<€,995) AVEOFF
. 895 FORMAT •--«*-«>-->AVERAGE OF ABS(LN(SIGMA-CALCULATED / SIGM

1A-DATA)) 1S‘.F7.3)
IF( INALT ,GE .NALTER. OR :ABS( AVEOFF ) . LE . .05) GO TO 100 
WRITE(6.112) NTOT 
GO TO 121



0279 999 STOP
0280 END

0001
0002
0003
0004
Ooos
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0007
0008

0009
0010

DEON

FUNCTION DEON(X.r.YO)
DIMENSION RH0( 200 ). EN( 200 ) , BOW{ 3000 )
COMMON/CHARGE/RHO . tN.NtOT . DELC . L . BOW. ESAM.«SOB 
DO 400 J«2.NT0T

IF(V.LE.EN(U)) GO TO 4SO 
400 CONTINUE
450 ROW( L )«RHO( O- 1 )♦ (RHO( U) -RHO( U- 1 ) ) • ( V-ENCU- i j )/DELE 

OEON-C1 .B096E-S)‘RDW(l)/ESAM 
C t.8096E-6 * (4«PI*E«E)‘(i. EV/1.602E-12 ERQS)

RETURN 
END


	Purdue University
	Purdue e-Pubs
	10-1-1984

	Amorphous Silicon Thin Film Transistor Fabrication and Models
	G. W. Neudeck
	Zhi Li
	T. C. Lee

	tmp.1542052450.pdf.N1gp5

