
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

7-1-1984

Advanced Industrial Robot Control Systems
Richard P. Paul
Purdue University

J. Y. S. Luh
Purdue University

S. Y. Nof
Purdue University

Y. Hayward
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Paul, Richard P.; Luh, J. Y. S.; Nof, S. Y.; and Hayward, Y., "Advanced Industrial Robot Control Systems" (1984). Department of
Electrical and Computer Engineering Technical Reports. Paper 525.
https://docs.lib.purdue.edu/ecetr/525

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages

•!*M*I*!*X*I

Advanced Industrial
Robot Control Systems

Richard P. Paul
J.Y.S. Luh
S.Y. Nof
Y. Hayward

TR-EE 84-25
July 1984

School of Industrial Engineering
and
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

Tenth Report
Covering Period Mar^h 1, 1983 to September 1, J984

ADVANCED INDUSTRIAL ROBOT CONTROL SYSTEMS

Richard P. Paul, L Y. S. Lyh, S, Y. Nof,
and V. Hayward

School of Electrical $ Industrial Engineering
Purdue University

TR-84-25

Prepared for:

:. NATIONAL SCIENCE FOUNPATION.
WASHINGTON, D. C. 20550

Attention: DR. WILLIAM M. SPURGEON

GRANT: MEA-8U9884

This research was supported by the National Science foundation under grant No, DAR
(APR) 77-14533. Any opinions, findings, and conclusions or recoirimendations in this
publication are those of the authors and' do not necessarily reflect the views of the Na
tional Science Foundation.

TABLE OF CONTENTS

Page

I. PROGRAM OBJECTIVE......................

II. PROGRAM ACHIEVEMENT............... ..1

III RESEARCH RESULTS SINCE MARCH 1983 REPORT........................2

IV. REFERENCES

V. DOCUMENTATION- . ..

APPENDIX 1. RCCL User’s Manual Version 1.021

APPENDIX 2. Minimum Distance Collision-Free Path Planning for
Industrial Robots with a Prismatic Joint..........139

APPENDIX 3. Real-Time 3-D Vision by Off-Shelf System with
Multi-Cameras for Robotic Collision Avoidance.......................159

APjPENDlX 4. Lagrangian Formulation of Robot Dynamics with Dual-Nuriiber
Transformation for Coniputional Simplification..........203

APPENDIX 5. RTM (Robot Time and Motion) User Manual Version 1.2......242

ADVANCED INDUSTRIAL ROBOT CONTROL SYSTEMS

Richard P. Paul, J. Y. S. Luh, S. Y- Nof,
and V. Hayward

School of Electrical & Industrial Engineering
Purdue University

I. PROGRAM OBJECTIVE

The objective of this research is to extend the flexibility a,hd . 'usefulness. of current
industrial robots by the integration of robot motion control directly into a. general pur
pose programming language, the development of force feedback and its integration into
the language, the formulation of a high-level task description language RTM, and by
the investigation of both off-line collision-free path planning and on-line collision
avoidance.

R. PROGRAM ACHIEVEMENT

Major accomplishments for the first five years of this grant, through March 1983 are:

A. Motion in Joint Coordinates - The initial theoretical development work
and simulation of a language system, known as PAL. The major components of PAL
included an editor/scanner that allows a user to create, edit, check and store motion
procedures; a teach module simulation for single stepping through procedures and for
spatial position correction; and a execution module.

Minimum Motion Time - By eliminating the need to stop at the end of each
path segments and by ensuring that the manipulator moves at maximum velocity and
acceleration, the iiiotiohtime can be reduced. This \yas accomplished by two Optimiza
tion methods: An algorithm for direct approximate programming of motions subject to
given physical constraint^; by dynamically identifying the slowest joint, which then
defines the coordination for driving of the other jbihts.

G* Newton-Euler Formulation of Dynamics and Resolved-Acceleration
Control for Manipulators - A new approach to the problem was developed by
adopting the idea of the “inverse problem” and extending the results Of “resolved-
motion rate control”. This approach differed in applying all feedback control at the
robot hand level, and in its Newton-Euler Formulation of motion equations.

D. RTM, A Technique for Analyzing and Specifying Work for Robots -
We have developed a higher level, user oriented technic[ue called RTM (Robot Time
and Motion), to systematically specify a work method for a robot in a simple, straight
forward manner, RTM can be used to evaluate and compare alternative robot work
methods befote having to program the robot motions in detail.

- 2-

E. Experimentation on Joint Torque Sensing - A simple, high gain, wide
bandwidth joint torque servo system has been developed to provide a fast response
without extensive computation or differential approximations.

F. Scheduling of Parallel Computation for a Computer-Controlled
Mechanical Manipulator - A method of “variable” branch-and-bound has been
developed which schedules the computation of tasks by distributing the load in a
sequential order among the CPU’s under the series-parallel prescedence constraints.

G. : Resolved Motion Force Control - In Resolved Motion Force Control
(RMFC) Cartesian forces are determined instead of joint positions and torques.

IK. RESEARCH RESULTS SINCE MARCH 1983 REPORT.

A. ROBOT MANIPULATOR CONTROL UNDER UNIX

1. Objective - The objectives of this research is to improve the capabilities of
current industrial robots. We propose a new solution to the problem by integrating the
robot control into an existing high level language. The robot manipulator is integrated
in such a manner that conventional programming techniques can be used to solve the
special requirements of manipulator control. We use the ‘C’ language and run the
manipulator under the UNIX operating system. The robot manipulator is integrated
into the language in the same manner as is input/output. That is, integration into the
language is handled by a small set of functions included in a library. The robot pro
gram thus becomes a conventional ‘C’ program. The implementation language of the
library is also written in ‘C,’ which provides a “user transparent” system, allowing com
plete freedom in the mode of controlling the manipulator. Concurrency is provided
within the operating system. An optimizing computer is available for both the user
and as implementation language. There are no special data types as the entire system
is represented in terms of standard language features. We have included the manipula
tor into the ‘C’ programming language in the form of a library, RCCL the Robot ‘C’
Control Library (see Appendix 1.)

2. Introduction - RCCL is not a language but a set of system calls suitable for
the control of robot manipulators. Manipulator programs become ordinary computer
programs, and the manipulator is considered as a peripheral device. Since manipulator
control primitives are defined at the system level, a program written in any language
which is able to provide the proper list of arguments can use the manipulator primi
tives. .

Instead of designing another robot programming language, we use the ‘C’ language
to write manipulator programs. The RCCL system is itself written in the ‘C’ language.
‘C’ is a high level structured language suitable for projects of any size, and which also
allows us to deal with low level implementation details. Programs are easily portable,
and yet can be efficiently implemented. Two Criticisms are often made of compiled
language based systems. First, the compilation time increases the edit-test cycle time;
secondly, if a program fails, because it is wrong from either the manipulation or the
programming point of view, the whole task has to be stopped. Our practice has shown

- 3 -

that these limitations are largely offset by the gain in flexibility and generality of a
powerful operating system. If for some applications an interpreted language is needed,
the interpreter of a general purpose or a dedicated language could also make use of
RCCL system calls. The RCCL design approach has advantages in modularity, flexi
bility, and hardware independence.

1. Overview

1.1. Manipulator Task Description

The location of an object is described by its position and orientation with respect to
some reference coordinate frame. In the following the word ‘location’ will implicitly
mean ‘position and orientation’. Tasks are described in terms of locations to be
reached in space in order to grasp, displace, or exert forces on objects located in the
robot work space. Tasks are also described by the sequence and the type of motions
necessary to carry out the work. Location descriptions require special data structures,
and sequential operations of a robot also require special primitives. Both can, however,
be implemented with the tools provided by high level languages namely, data struc
tures, functions, and structured flow of control. (The ‘C’ language does not know any
thing about a file, for example. Users wishing to manipulate files in their programs
have to include a system file called “stdio.h”. This file contains a description of the
necessary data structures. Files can be manipulated by system primitive functions like
read, write, fdbusf, or, flsbuf \1\).

1.1.1. Structured Location Description

RCCL handles what is referred to as structured location description [2]. The basic con
struct is the homogeneous transformation which is a mathematical construct describing
the location of coordinate frames. A homogeneous transformation can either be inter
preted as the description of the location of a coordinate frame with respect to another,
or as a transformation performed oil the first coordinate frame. One RCCL system call
directly constructs location equations in terms of dynamic data structures. The loca
tions can be modified at the level of the move statement in terms of small translations
and rotations described with respect to the tool frame. This provides a convenient
shorthand for specifying approach and deproach locations, or for specifying motions
which purposely overshoot the described location when the manipulator is to perform
guarded motions [21].

1.1.2. Motion Description

A task is made up of a number of path segments between successive locations. There
are many ways to generate trajectories for a manipulator^][5], RCCL provides two
types of motions. The first, called joint mode, consists of computing the set of joint
values for each path segment end and generating all intermediate values by linear inter
polation. The second type, which we will call Cartesidh mode, requires the system to
solve a modified location equation each sample interval and to compute the correspond
ing joint coordinates. The location equation is internally modified in such a way that

- 4 -

one frame, called the tool frame, moves along straight lines and rotates around a fixed
axis. These motion types are discussed elsewhere [3][6]. Here, we will assume that we
are dealing with a manipulator for which an analytical solution exists, relating a Carte
sian location to a set of joints coordinates [7][8][9][10]. In the current implementation,
manipulator motions are obtained by specifying a sequence of desired joint values to
the servo processes controlling the manipulator joints. However, most of what follows
does not assume a particular control method.

When the manipulator is to move while exerting forces or torques on objects, the
manipulator must be controlled in a such a way that forces and torques are controlled
directly in place of locations. The manipulator is then said to be Controlled in a comply
mode. Several methods [11] [12] [13] [14] are proposed for such control. RCCL imple
ments a variation of Shimano’s joint matching method [22]. RCCL provides for com
pliance specifications in the tool coordinate frame which is defined in the location equa
tion. Compliance is specified in terms of forces along, and torques around, the principal
axes of the tool frame. The manipulator loses one degree of freedom for each direction
along or around which it is complying, in forces or 'torque respectively. The trajectory
is then constrained by the geometrical features of the objects in contact. A more com
plete discussion of this subject can be found in [15].

1.2. Sensor Integration; Update World Representation; .

One of the man goals of RCCL is to facilitate the integration of sensors [16]. Sensors
are used to modify the behavior of the manipulator according to information acquired
from the manipulator or from its environment. Sensor information can be classified in
many different ways: according to the data type necessary to represent it, booleans,
scalars, vectors, arrays, tensors, etc.; by meaning: touch limit, distance, location, tem
perature, vibration, force, etc.; by the order of magnitude of the acquisition time,
whether minutes, seconds, milliseconds, or microseconds; by accuracy; and so on. Con
sidering this variety, the RCCL approach is deliberately to ignore, when possible, the
type of information we may have to deal with, but, on the other hand, to provide
means for an efficient utilization of this information.

1.2.1. Modifying Trajectories
Fast sensors can provide for direct synchronous sensory feedback. This corresponds to
the class of functionally defined transformations. In this case, a transformation is
attached to a function that will be evaluated each sample period, the purpose of the
function is to calculate the value of the transformation as a function of sensor readings.
The location equation in section 2.1.1. makes use of such a functionally defined
transform to describe a location with respect to a conveyor belt. If the motion is per
formed in Cartesian mode, the tracking is perfectly accurate, since the location equa
tion is evaluated at sample time intervals. When the motion is performed in joint
mode, the system estimates the expected location at the end of the segment by linear
extrapolation. If the function ally defined transform is computed as a function of time,
we can obtain mathematically described motions (circles, ellipses etc...).

The transitions to or from path segments involving moving coordinate frames must
deal with unpredictable velocity changes. Smooth transitions are obtained by adding a

- 5 -

modifying third order polynomial trajectory during the transition time. The manipula
tor is stopped by repeating a move to the same location. When the location involves
moving coordinate frames the manipulator comes to rest relative to the moving frame.
If a stop in absolute coordinates is required, a move to a fixed location must be per
formed before specifying the stop. The system internally maintains a location equation
which always reflects the current location of the manipulator. It is possible to have the
manipulator stop at an arbitrary instant at the location it currently occupies. Func
tionally described transformations can be used anywhere in a location equation. Tra
jectories can be modified with respect to any coordinate frame which provides unlim
ited applications.

2. The RCCL Implementation

When a manipulator is under RCCL control, four processes are concurrently running.
At the lower level, a servo process controls the location or the torque of each manipula
tor joint. The setpoint process, running at interrupt level, computes the Cartesian tra
jectories and determines the corresponding joint parameters. A real time communica
tion channel swaps information between the servo process and the setpoint process.
The user process running under time sharing is the user program and makes the RCCL
system calls. The setpoint process communicates with the user process via a motion
request queue containing all the necessary information.

3. Tools

3.1. Trajectory Planning

There exists a version of the RCCL library which, instead of computing the trajectories
in real time, computes them off-line. This is achieved by calling the setpoint function
in a loop instead of activating it upon interrupt. The same manipulator programs, pro
vided that they do not depend on external events and information, can be run in this
fashion. Some debugging tools are then provided. The system can be asked to keep a
trace of the motion requests, to store the sequence of setpoints on file in order to replay
them afterwards, or to plot them.

3.2 Teaching
A manual control program is included within RCCL. It consists of a very simple com
mand line language interpreter enabling an operator to move the manipulator interac
tively in Cartesian coordinates. Motions can be specified in world or tool coordinates.
Locations can be recorded via the update primitive. The manual control program is
implemented entirely in terms of RCCL primitives.

3.3 Transformation Data Base

A simple data base system has also been developed. Transformation values can be
recorded and read on-line in manipulator programs. The values can be displayed and
modified off-line for maintenance.

- 6 -

4. Conclusion
The main goal of this project was to show that manipulator control could be developed
in a more general context than within the framework of a stand-along robot controller
with its own language. The current RCCL implementation does not yet offer the con
venience of dedicated robot controllers because it requires a large machine. However,
as microprocessor based computers become more powerful and can run operating sys
tems like UNIX, the RCCL approach exhibits many advantages over conventional
robot, controller designs. The conclusion we wish to draw is that robot control can be
viewed as an addition to an already existing, tested, and standardized system, rather
than the design from scratch of a system which provides only for robot control. The
RCCC software has been distributed to approximately 20 research institutions world
wide.

v . ' ’ . - •

B. COLLISION-FREE PATH PLANNING FOR ROBOTS WITH A
PRISMATIC JOINT

Industrial robots are computer-controlled mechanical manipulators which perform
tasks for industrial applications. One of the essential operations in all the assigned
tasks involves the physical motion of the manipulator whose end effector moves from a
known initial position and orientation to a specified goal position and orientation. In
reality, the workspace of the robot is not free from obstacles such as fixtures, mechani
cal parts, etc., so that a collision may result if the robot moves freely without any gui
dance. If, however, the positions and orientations of all the obstacles are known for the
entire time interval of operation, it is possible to plan a collision-free path, if one exists,
for the robot to move along while performing its task.

The subject of collision-free path planning is relatively new. Within the past five
years, only a handful of people have been actively working on this subject. Among
them are Pieper [27] and Widdoes [28] who used planes, cylinders, and spheres to
represent obstacles (objects). The use of spheres has an advantage of avoiding the
orientation problem. However, the free space that is occupied by parts of the spheres is
wasted for planning purposes. In addition, the intersection functions are often non
linear involving square roots or transcendental functions. Udupa [29], Lozano-Perez
and Wesley [30], and Lozano-Perez [31,32], and Brooks [33] adopted the polyhedra as
the models which result in linear intersection functions. But the orientation problem
must be handled with care. Udupa discretized the space into cells which were labelled
free if not occupied by obstacles and objects. Lists of free cells are joined together to
form a collision-free path. To allow for arbitrary orientation, the obstacles’ expansions
over-compensate, which reduce the number and/or size of the free cells available for
path planning. Lozano-Perez described linked polyhedra using swept volumes. The
rotation range is then divided into a finite number of slices. Brooks adopts the idea of
generalized cones [34] which are equivalent to swept volumes. Free space is then
represented as overlapping generalized cones.

In the methods described above, some determine the free space inside which the
point robot may move freely without collisions with obstacles, while other determine
the forbidden region so that a collision-free path may be traced along the boundaries of
the region. This paper adopts the second approach to the problem which involves

- 7 -

objects and obstacles that interact with a robot which has a prismatic link, such as the
Stanford manipulator [35]. The prismatic joint, however, creates additional problems.
As usual, the objects and obstacles are approximated by enclosing polydedra. The
manipulator is represented by a point; in particular, the point at the tip of the end
effector. Its real body width is compensated for by expanding the polyhedral obstacles
[29-32]. Methods of constructing the expanded polyhedra are given in these references.
If the point robot enters into the expanded polyhedra, a collision will then occur. Now
since the prismatic joint of the manipulator has a long boom, it creates two pseudo obs
tacles: one by the restriction that the front of the boom remain free of collision and the
other by any confinement of the rear of the boom due to obstacles. The pseudo obsta
cle is not a physical object but a region of shadow in the workspace. However, when
the point robot enters into the pseudo obstacle, a collision between the boom and a
polyhedral obstacle occurs somewhere along its length. Thus the pseudo obstacles
together with the expanded polyhedra from the forbidden regions that the point robot
must stay away to avoid collisions.

It was shown that for robots with a prismtic joint, such as joint 3 of the Stanford
manipulator, the boom’s length may be compensated for by two pseudo obstacles for
every edge of the objects when the robot is, in the usual sense, represented by a point.
One of the pseudo-obstacles is due to the front end of the boom, and the other is due
to the rear end. An algorithm has been developed for the computation of the shortest
feasible collision-free path for the robot for the case of stationary obstacles. The algo
rithm converges in at most (N-2)(N-l)/2 iterations where N (see Appendix 2).

C. REAL-TIME 3-D VISION SYSTEM WITH MULTI-CAMERA FOR
COLLISION-AVOIDANCE

In the usual robot tasks, practically all involve some manipulation requiring the
motion of the end effectors from their initial positions and orientations to the specified
goal positions and orientations. However there are fixtures, mechanical parts, etc. in
the work-space of the root. Thus collisions between the robot and the obstacles may
occur unless some guidance for motion is provided.

A three-dimensional vision system for on-line operation that aids a collision
avoidance system for an industrial robot is developed. Because of the real-time require
ment, the process that locates and describes the obstacles must be fast. To satisfy the
safety requirement, the obstacle model should always contain the physical obstacle
entirely. This condition leads to the bounding box description of the obstacle, which is
simple for the computer to process.

The image processing is performed by a Machine Intelligence Corporation VS-100
machine vision system. The control and object perception is performed by the
developed software on a host Digital Equipment Corporation VAX 11/780 Computer.
Also, the communication with the robot collision avoidance program occurs on the VAX
11/780.

The resultant system outputs a file of the locations and bounding descriptions for
each object found. When the system is properly calibrated, the bounding descriptions
always completely envelop the obstacle. The response time is data-dependeht. When
using two cameras and processed on UNIX time sharing mode, the average response

- 8 -

time will be less than two seconds if eight or fewer objects are present. When using all
three cameras, the average response time will be less than four seconds if eight or fewer
objects are present. However, the total elapsed time is data-dependent. The program
could return in one second if no objects are present (see Appendix 3).

The use of three cameras is preferred since otherwise non-existing objects may be
found by the program. However, the perception error of detecting objects that do not
exist is more favorable than not to detect objects that do exist, for the purpose of colli
sion avoidance. The bounding description will often waste the space surrounding an
object. But, for the same purpose, the inclusion of extra space in the boundary is
favorable to not including a part of an object. Also, the user of the output must be
aware that the output descriptions may overlap in the three-dimensional space.

Again, the accuracy of the scheme is dependent on the accuracy of the initializa
tions performed and the resolution of the sensor. The user affects the accuracy of the
scheme by the accuracy of the lens models used, the orthogonality of the camera set-up,
the accuracy of the distance measurements, and the accuracy of the cursor positions
chosen during the system initialization. As for any vision system, choosing the correct
threshold for each camera and properly adjusting the lighting are also important.

D. DUAL-NUMBER TRANSFORMATION IN DYNAMICS FOR SIM
PLIFIED COMPUTATION

The industrial robots have serial link mechanisms whose dynamic behavior can be
described by equations in Lagrangian formulation as [36,37]:

n =■ E Du^j + Jai<ii + E Dijj(<ij)2 + E E Dijk4jQk + Di U)
j=i j=i j=i k=i

where
7; = input generalized force for joint i for i = 1,2,...,n; and
qk = generalized coordinate (i.e., joint displacement).

Whether equation (I) is utilized to solve forward dynamics problem for analysis and
simulation (i.e., solve for qj’s and their time-derivatives for given 7,’s), or to solve
inverse dynamics problem for control of robots (i.e., solve for t-’s for desired qj’s and
their derivatives), one must compute the coefficients Djj, Dp and D;. The computation
of these terms is, unfortunately, very complicated and time consuming. It involves an
evaluation of thousands of trigonometrical terms [38]. Obviously it is not a simple
computational task especially when the position-dependent and orientation-dependent
parameters change as the robot moves. Therefore it warrants the effort of searching for
methods of simplifying the computation.

Efficient algorithms for computing 7; have been developed by various authors dur
ing the past three years. Luh, Walker and Paul [39] computed the joint forces/torques
based on the Newton-Euler formulation. Walker and Orin [40] extended the approach
to compute the joint accelerations which were then used in the simulation of the robot
control scheme. Hollerbach [41] developed recursive algorithms based on the Lagran
gian formulation which were shown to be equivalent to the Newton-Euler method [42],
Recently Kane and Levinson [43] used specialized formulation for specific robots, while
Featherstone [44] approached the problem differently by using articulated-body inertias.

- 9 -

All the methods mentioned above are very efficient in producing numerical solutions.
However, they will yield very little insight views of the dynamical behavior of the
robot. To analyze the dynamics of the robot for full understanding and aiding in
designing new robots, it is desirable to simplify the computation of the coefficients D;j,
D;jk and D; and then deal with the differential equation (1) directly.

There are three known approaches of simplification, viz. geometric/numeric, com
posite, and differential transformation. Bejczy’s geometric/numeric evaluation [45,46]
deals with the nature of joints whether it is revolute or prismatic. Thus the 4 by 4
homogeneous transformation matrices Tjk in the coefficients can be simplified in
advance. Since many elements in the matrices are zeros, the resulting expressions for
D;, D,j and D;jk are less complicated [19,20]. The composite technique by Luh and Lffi
[47] involves the comparison of all the terms in Newton-Euler formulation of the
dynamic equation [39] in a computer. Some of the terms may be eliminated under vari
ous criteria. The remaining terms are then rearranged in a Lagrangian formulation.
The upshot is a computer output of a simplified equation in symbolic form. Paul’s
differential transformation [37] which converts dTP/dqj, the partial derivative of the
homogeneous transformation matrices, into the matrix product of the transformation
and a differential matrix which reduces D;j to a much simpler form. However, the term
D;jk contains a second order partial derivative <92TP/(dqj dqk) which was not simplified
until recently by Bejczy and Lee [48]. Their approach is to apply the differential opera
tor used by Paul, successively at the appropriate link-to-link coordinate transforma
tions. An alternative approach is to adopt the dual-number algebra and screw calculus
in the analysis instead of the homogeneous transformation.

In screw calculus [49,50], a vector may be represented by either six real numbers,
or thee dual numbers. The associated coordinate transformation matrices perform line
transformations, which is different from the point transformation by homogeneous
transformation. In robotics, this approach has been investigated by Pennock and Yang
[51], and Featherstone [44]. As shown by Rooney [52], the dual-number representation
is most concise, while the real 6 by 6 matrix representation contains redundant com
ponents since not all conditions that form the matrix are independent. The size of the
6 by 6 matrix gives an intuitive impression of excessive computational burden. Yet the
dynamical analyses are done by the real 6 by 6 matrix representation in [44] and [51]
because it is not feasible to express the inertia directly in dual-numbers.

This paper (see Appendix 4) presents a method of expressing the kinetic energy of
the system in terms of dual-number transformations so that the analysis of the dynam
ics using dual-number algebra is possible. The method is different from the momentum
approach by Yang [53]. Because of the property of line transformation, the dual
number transformation may deal with dual-velocity vectors. Thus the differential
transformation in the kinetic energy term yields only the first order partial derivatives
in D[jk so that Paul’s simplification approach [37] applies. Although there is no first
order partial derivatives in D;j in the dual-number representation, the computation of
Djj is still simpler than that by Paul’s simplified representation [37]. The computa
tional efficiency of the dual-number representation is exhibited by comparing the
numbers of required multiplications and additions for computing the joint
torques/forces 7- for all n joints, with those numbers required when the direct

- 10 -

homogeneous transformation [36], and Paul’s simplified homogeneous transformation
[37] methods are applied.

Table 1 summarizes the computational complexity of the three methods or com
parison. It is seen that the dual-number approach require less computations.

Table 1. Comparison of Computational Complexity

METHOD

NUMBER OF . NUMBER OF.
MULTIPLICATIONS4 ADDITIONS*

Homogeneous
Transformation

Differential
Simplification

Dual-Number

28—n4+91n3+79n2 + I9n 19-n4 + 62~~n3 + 54~n2 + ll~-n
2 2,6 4 6

28—n4+71n3 + 49—n2 + 7n 19—n4 + 48—n3 + 33—n2 + 4—n
T 2 i t ? f 122—n4 + 56n3+39n2 + 5—n 17-n4+43-Ln3 + 29—n2 + 3—n
2 2___ :___4_______8___ :___4___ _6___

‘Computing all Djj and D;jk for n joints.

E. RTM-ROBOT TIME AND MOTION METHOD
The RTM system is constructed around a list of basic elements that are divided

into four major groups: movement elements; sensing elements; gripper or tool elements;
process delay elements. Initially, RTM performance models have been developed for
the Stanford Arm and for the T3 robots. Experiments have also been carried out with
performance models for Unimate, PUMA, Minimover, and IBM RS/1 robots. A
number of work element modeling approaches have been tried, including: look-up tables
based on mean performance time values; regression equations based on experimental
laboratory data; velocity control models, which depend on the precise method by which
the robot is designed to move; path geometry, which presently requires relatively
detailed specification and motion parameters.

1. RTM Software - A user can specify a work method for a particular robot by
using RTM statements. The statements are of two main types: for robot operations,
each containing a standard RTM element and its parameters; and control statements
that include general information about the tasks, robot type, output detail and control
logic. The logic structure provides capabilities of REPEAT blocks, PARALLEL blocks
(for multiple robots or robots and machines), and conditional branching based on simu
lated conditions of status signals, such as sensory input. A summary of the RTM
software statements is shown in Table 1 and in Appendix 5.

-11 -

Table 2
Summary of RTM system’s statements

Statement Type

1. Sub-task title

2. REPEAT control card

3. PARALLEL control card

4. Conditional branching

5. Control transfer

6. Movement elements
(Rn,Mn,ORn)
a. Position

initialization
b. By end-point of

segments
or: c. By displacement

Statement Structure

SUBT, (no.), (title), (comment)

REP (no. of first operation),
TO, (no. of last operation)

(no. times to repeat), (comment)

PAR, no. of first,
TO, no. of last, (comment)

IF, (condition name.condition .value*),
GOTO, operation no. or subtask number
GOTO, operation no., subtask no., (comment)

(joints parameters)
(operation no.) (R. T. M. symbol), (comment)
(velocity), (joints parameters)

(operation no.), (R. T. M. symbol), A-Angular
(velocity), (displacement*) D-Linear

7. All other R. T. M. elements (operation no.), (R. T. M. symbol),
(operation parameter), (comment)

8. END Card END

9. CONDITION initialization COND
(condition name), (set of initial values*)
END

*
can be generated randomly

- 12 -

2. Performance Prediction Accuracy - Extensive laboratory experimentation and
analysis of realistic robot tasks have established that an important advantage of apply
ing the RTM method is in previewing robot work methods before programming them in
detail. The prediction accuracy of the system has been found to be only a few percent
away from the actual performance time. Specific results for predicting performance
time: for the Stanford Arm with the detailed path geometry approach deviations were
within -2% to +12%; with the table look-up approach within ±5%; for the T3 with
the velocity control models, within -2% to +3%; with the table look-up approach
within ±15%. Analyses have also been performed to study the relationship between
accuracy and task element variety and length. For example, the relative inaccuracy of
the table look-up approach for the T3 is evident mainly in multi-segment motions. In
less detailed tables several interpolations are required for such motions and conse
quently, the resulting error increases. On the other hand, an analysis of generic task
elements in manufacturing has led to the successful development of simplified RTM
models for “point operations” (e.g., spot welding, drilling).

3. Models for Sensory Elements - Modeling work and experiments have been
started in order to develop performance models of sensory elements in robot work,
mainly with the IBM RS/1 and with a T3 instrumented with touch and photo sensors
on the gripper. The models address several types of sensory work, such as “monitor”
elements and “sense input/output” elements. Additionally, several vision systems are
studied in order to understand the parameters of their performance time. It was found
that in most cases there is a strong dependency on the equipment used. Some of the
sensory models require information about dynamic properties of the work environment
as well as the expected feedback.

4. Probabilistic RTM Functions - RTM has been expanded to allow sampling
from user specified probability distributions of several input parameters.

a. Random elements
All time values specified for Time Delay or Process Time Delay, as well as motion

elements, can be supplied with random variable. For example,
Ml 10, D3

means, that element Ml is specified with expected motion length of 10 units, distri
buted according to a given distribution D3.

b. Random Repeat blocks
A block of RTM elements can be repeated a number of times using the REPEAT

instruction. The number of repetitions can now be specified as a random variable.

c. Random conditions
Conditional values can be used to evaluate a robot task in a realistic situation,

where malfunctions, sensory input, or variable requirements occur. This can be
analyzed by the RTM conditional branching. The particular conditions can now be
sampled automatically from a random distribution.

- 13 -

4. Interface of RTM to Robot Control Language - One of our research
objectives is to interface and integrate the RTM software to the robot control language.
As part of the control language, RTM models could be called by an engineer in order to
hierarchically evaluate and compare alternative work methods before programming one
in detail. Later, it will be possible to use some of the data supplied in the RTM state
ments directly for the statements of the control language. The environment of the C
language provides simple means of delivering this objective.

This objective has been studied relative to the RCCL, the Robot Control C
Library. It was found that with the more common, simplified RTM input (without use
of world coordinates), effective translation from RTM to RCCL cannot be accom
plished. However, with the RTM input using world coordinate specifications of
motions, translation is not only feasible, but also quite direct. Several example pro
grams have been studied and translated. Although the resulting RCCL program may
be non-optimal at the current stage, little additional data is needed from the user
beyond the RTM data for typical robot programs.

- 14 -

IV. REFERENCES

[Ij Kernighan, B K., “The C Programming Language,” Prentice-Hall, 1978.

[2] Paul, R. P., “Manipulator Language,” Workshop On The Research Needed to
Advance The State Of Knowledge In Robotics, April 15-17, 1980, organized by J.
Birk and R. Kelley, supported by N.S.F.

[3] Paul, R. P., “Robot Manipulators: Mathematics, Programming, and Control,”
MIT Press 1981.

■ a. ■. - .. : .■ ■■■ ■ ■ ■ .
[4j Derby, S., “Simulating Motion Elements of General-Purpose Robot Arms,” Inter

national Journal of Robotic Research, Vol. 2, No. 1, Spring 1983.

[5] Castain, R. H., Paul, R. P., “Polynomial Robotic Trajectories: A New
Approach,” TR-EE 82-37, Dec. 1982.

[6] Hayward, V., Paul, R. P., “Robot Manipulator Control Using the C Language
Under UNIX,” IEEE Workshop on Languages for Automation, Chicago, Nov. 183.

[7] Shimano, B. E., “The Kinematic Design and Force Control of Computer Con
trolled Manipulators,” Stanford Artificial Laboratory, Stanford University, AIM
313, 1978.

[8] Paul, R. P , Stevenson, C. N., “Kinematics of Robot Wrists,” International Jour
nal of Robotic Research, Vol. 2, No. 1, Spring 1983.

[9] Paul, R. P., Shimano, B. E., Mayer, E. G., “Kinematic Control Equations for
Simple Manipulator,” IEEE Transactions on Systems, Man, and Cybernetics, Vol
SMC-11, No 6, June 1981.

[10] Fisher, W. D., Private communication.

[11] Inoue, H., “Force Feedback in Precise Assembly Tasks,” MIT Artificial Intelli
gence Laboratory, Memo 308, Aug. 1974.

[12] Raiberg, M. H., Craig, J. J., “Hybrid Position/Force Control of Manipulators,”
Journal of Energy Resources Technology, Vol. 103, June 1981.

[13] Salisbury, J. K., “Active Stiffness Control of a Manipulator in Cartesian Coordi
nates,” 19th IEEE Conference on Decision and Control, Dec. 1980, Albuquerque,
New Mexico.

[14] Geschke, 0. C., “A System for Programming and Controlling Sensor-Based Robot
Manipulators,” IEEE Transactions on Pattern Matching and Machine Intelligence,
Vol. PAMl-5, No. 1, Jan. 1983.

- 15 -

[15] Mason, M. T., “Compliance and Force Control for Computer Controlled Manipu
lators,” MIT TR-515, April 1979.

[16] Rosen, C. A.,Nitzan; D., “ Use of Sensors In Programmable Automation”, Com
puter Magazine, December 1977.

[17] Paul, R. P., “Computational Requirements of Third Generation Manipulators”

[18] Fisher, W. D., “The Modification of a Robotic Manipulator and Digital Controller
to Incorporate Both Force and Position Control,” MSE Thesis, Purdue University,
May 1981.

[19] Luh, J. Y. S., Fisher, W. G., Paul, R. P., “Joint Torque Control by Direct Feed
back for Industrial Robots,” IEEE Transaction on Automatic Control, Vol. AC-
28, No. 2, February 1983.

[20] Zhang, H., Paul, R. P., “Determination of Simplified Dynamics of Puma Manipu
lator,” Purdue University.

[21] Will, P. M., Grossman, D. D., “An Experimental System for Computer Controlled
Mechanical Assembly,” IEEE Trans. Computers C-24 9, 1975, 879-888.

[22] Shimano, B. E., “The Kinematic Design and Force Control of Computer Con
trolled Manipulators,” Ph.D. Dissertation, Memo AIM-313, 1978, Stanford Univer
sity.

[23] Ernst, H. A. A., “A Computer Operated Mechanical Hand,” Sc. D. Thesis,
Masachusetts Institute of Technology, 1961.

[24] Paul, R. P., “WAVE: A Model-Based Language for Manipulator Control,” The
Industrial Robot 4 1 (March 1977), 10-17.

[25] Finkel, R., et al. “An Overview of Al, A Programming Language for Automa
tion,” Fourth International Joint Conference on Artificial Intelligence, Tbilisi,
Georgia, USSR, 1975, 758-765.

[26] Taylor, R. H., Summers, P. D., Meyer, J. M., “AML: A Manufacturing
Language”, International Journal of Robotics Research, 1, 3, Fall 1982, 19-41.

[27] Pieper, D. C., The Kinematics of Manipulators Under Computer Control, ARPA
Order No. 957, Stanford University, 1968.

[28] Widdoes, C., A Heuristic Collision Avoider for the Stanford Robot Arm, C.S,
Memo 227, Stanford University, 1974.

- 16 -

[29] Udupa, S. M., Collision Detection and Avoidance in Computer Controlled Manipu
lators, PhD. Thesis, California Institute of Technology, 1977.

[30] Lozano-Perez, T. and M. A. Wesley, An Algorithm for Planning Collision-Free
Paths Among Polyhedral Obstacles, Communications of the ACM, Vol. 22, No. 10,

[31] Lozano-Perez, T., “Automatic Planning of Manipulator Transfer Movements,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 11, No. 10, October
1981, pp. 681-698.

[32] ■—r} Spatial Planning: A Configuration Space Approach, IEEE Transactions on
Computers, Vol. 32, No. 2, February 1983, pp. 108-120.

[32] Brooks, R. A., Solving the Find-Path Problem by Good Representation of Free
Space, Proc. AAAI 2nd Annual National Conference oh Artificial Intelligence,
August 18-20, 182, Pittsburgh, Penn., pp. 381-386.

[34] Binford, T. 0., “Visual Perception by Computer,” Presented at the IEEE Systems
Science and Cybernetics Conference, December 1971, Miami, Florida.

[35] Scheinman, V. D., Design of a Computer Controlled Manipulator, AI Memo No.
92, Artificial Intelligence Laboratory, Stanford University, June 1969.

[36] Bejczy, A. K., Robot Arm Dynamics and Control, Technical Memorandum 33-669,
Jet Propulsion Laboratory, February 1974.

[37] Paul, R. P., “Robot Manipulators: Mathematics, Programming, and Control,”
MIT Press 1981.

[38] Luh, J. Y. S., “Conventional Controller Design for Industrial Robots - A
Tutorial,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 13, No. 3,
May/June 1983, pp. 298-316.

[39] Luh, Y. Y. S., M. W. Walker and R. P. C. Paul, “On-Line Computational
Scheme for Mechanical Manipulators,” ASME Transactions, Journal of Dynamic
Systems, Measurement and Control, Vol. 102, No. 2, June 1980, pp. 69-76.

[40] Waker, M. W. and D. E. Orin, “Efficient Dynamic Computer Simulation of
Robotic Mechanisms,” ibid, Vol. 104, No. 3, September 1982, pp. 205-211.

[41] Hollerbach, J. M , “A Recursive Lagrangian Formulation of Manipulator Dynam
ics and a Cooperative Study of Dynamics Formulation Complexity,” IEEE Tran
sactions on Systems, Man and Cybernetics, Vol. 10, No. 11, November 1980, pp.
730-736.

- 17 -

[42] Silver, W. M., “On the Equivalence of Lagrangian and Newton-Euler Dynamics
for Manipulators,” International Journal of Robotics Research, Vol. 1, No. 2,
Summer 1982, pp. 60-70.

[43] Kane, T. R. and D. A. Levinson, “The Use of Kane’s Dynamical Equations in
Robotics,” International Journal of Robotics Research, Vol. 2, No. 3, Fall 1983,
pp. 3-21.

[44] Featherstone, R., “The Calculation of Robot Dynamics Using Ariculated-Body
Inertias,” International Journal of Robotics Research, Vol. 2, No, 1, Spring 1983,
pp. 13-30.

[45] Dejczy, A. K. and R. P. Paul, “Simplified Robot Arm Dynamics for Control,”
Proceedings of 20th IEEE Conference on Decision and Control, December 16-18,
1981, San Diego, California, pp. 261-262.

[46] Bejczy, A. K., “Dynamic Analysis for Robot Arm Control,” Proceedings of 1983
American Control Conference, June 22-24, 1983, San Francisco, California, pp.
503-504.

[47] Luh, J. Y. S. and C. S. Lin, “Automatic Generation of Dynamic Equations for
Mechanical Manipulators,” Proceedings of Joint Automatic Control Conference,
June 17-19, 1981, Charlottesville, Virginia, pp. TA-2D.

[48] Bejczy, A. K. and S. Lee, “Robot Arm Dynamic Model Reduction for Control,”
Proceedings of 22nd IEEE Conference on Decision and Control, December 14-16,
1983, San Antonio, Texas, pp. 1486-1476.

[49] Brand, L., Vector and Tensor Analysis, Wiley and Sons, 1948, chapter 2.

[50] Dimentberg, F. M., The Screw Calculus and Its Applications in Mechanics,
Izdatel’stvo “Nauka”, Moskva 1965, English Translation by Foreign Technology
Division, WP-AFB Ohio, Part No. 680 993, April 1968.

[51] Pennock, G. R. and A. T. Yang, “Dynamic Analysis of a Multi-Rigid-Body
Open-Chain System,” ASME Transactions, Journal of Mechanisms, Transmission,
and Automation Design, Vol. 105, No. 1, March 1983, pp. 28-34.

[52] Rooney, J., “A Comparison of Representations of General Spatial Screw Displace
ment,” Environment and Planning (England), Series B, Vol. 5, 1978, pp. 45-88.

[53] Yang, A. T., “Inertia Force Analysis of Spatial Mechanisms,” ASME Transac
tions, Journal of Engineering for Industry, Vol. 93, No. 1, February 1971, pp. 27-
33.

- 18 -

[54] Yang, A. T., “Calculus of Screws,” in Basic of Design Theory, Edited by W. R.
Spillers, North-Holland Publishing Co./American Elsevier Publishing Co., 1974,
pp. 266-281.

V. DOCUMENTATION

[1] R. Paul, J. Luh, et al., “Advanced Industrial Robot Control Systems,” First
Report, NSF Grant APR77-14533, TR-EE-78-25, School of Electrical Engineer
ing, Purdue University, West Lafayette, Indiana 47907, May 1978.

[2] ——, “Advanced Industrial Robot Control Systems,” Second Report, NSF Grant
APR77-14533, TR-EE-79-35, School of Electrical Engineering, Purdue University,
West Lafayette, Indiana 47907, July 1979.

[3] —-, 3rd Report, NSF Grant APR77-14533, Covering Period July 1, 1978 to
January 1, 1979, School of Electrical Engineering, Purdue University, West Lafay
ette, Indiana 47907.

[4] ——, 4th Report, NSF Grant APR77-14533, Covering Period January 1, 1979 to
July 1, 1979, TR-EE 80-29, School of Electrical Engineering, Purdue University,
West Lafayette, Indiana 47007.

[5] ——, 5th Report, NSF Grant APR77-14533, Covering Period July 1, 1979 to
January 1, 1980, TR-EE 80-30, School of Electrical Engineering, Purdue Univer
sity, West Lafayette, Indiana 47907.

[6] ---- , 6th Report, NSF Grant APR77-14533, Covering Period January 1, 1980 to
July 1, 1980, School of Electrical Engineering, Purdue University, West Lafayette,
Indiana 47907.

[7] -—/‘Advanced Industrial Robot Control Systems,” 7th Report, NSF Grant DAR
77-14533, Covering Period July 1, 1980 to January 1, 1981, TR-EE 81-8, School
of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907.

[8] -—, “Advanced Industrial Robot Control Systems,” 8th Report, NSF Grant DAR
77-14533, Covering Period January 1, 1981 to July 1, 1981, TR-EE 81-16, School
of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907.

[9] R. Paul, “Cartesian Coordinate Control of Robots in Joint Coordinates,”
presented at the Third CISM-IFTOMM International Symposium on Theory and
Practice of Robot and Manipulators,” Udine, Italy, September 1978.

[10] R. Paul, “Programming and Teaching of Industrial Robots,” presented at the
National Electronics Conference, Chicago, October 1978.

[11] R, Paul, “Robot Software and Servoing/’ Workshop on the Impact on the
Academic Community of Required Research Activity for Generalized Robotic
Manipulators, University of Florida, February 1978.

[12] J. Y. S. Luh, “Long Range Robotic Research Including Sensor Feedback,” 23rd
IEEE Machine Tools Conference, Cleveland, Ohio, October 25-27, 1977.

[13] J. Y. S. Luh, M. Walker, “Minimum-Time Along the Path for a Mechanical
Arm,” Proc. 1977 IEEE Conference 6n Decision and Control, Vol. 1, New Orleans,
LA, December, 1977.

[14] R. P. Paul and S. Y, Nof, “Human and Robot, Task Performance,” in Computer
Vision and Sensor Based Robots, G. G. Dodd and R. Lothar (Ed.), Plenum Press,
New York, 1979.

- 19 -

[15] T. R. Anderson, R. P. Paul, “High Speed Coordinated Control of Industrial
Robots,” 9th I.S.J.R. Conference, Washington, I).C., May 1979.

[16] II. Takase, R. P. Paul, E. J. Berg, “A Structured Approach to Robot Program
ming and Teaching,” 79 COMPSAC Conference, Chicago, November 1979.

[17] R. Paul, B. Shimano, “Kinematic Control Equations for Simple Manipulators,”
IEEE Conference on Decision Making and Control, San Diego, January 1979.

[18] J. Y. S. Luh with C. S. Lin, “Multiprocessor-Controllers for Mechanical Manipu
lators,” Proceedings of COMPSAC 79, 3rd International Computer Software and
Applications Conference, 79CH1515-6C, November 6-8, 1979, Chicago, pp. 458-
463.

[19] R. L. Paul and S. Y. Nof, “Work Methods Measurement - A Comparison Between
Robot and Human Task Performance,” International Journal of Production
Research, Vol. 17, No. 3, 1979, pp. 277-303.

[20] J. Y. S. Luh with M. W. Walker, “Controller for a Mechanical Manipulator,”
Automatic Control Theory and Applications (Canada), Vol. 8, No. 1, January
1980, pp. 24-29.

[21] J. Y. S. Luh with M. W. Walker and R. P. Paul, “Resolved-Acceleration Control
of Mechanical Manipulators,” IEEE Transactions on Automatic Control, Vol. 25,
No. 3, June 1980, pp. 468-474.

[22] J. Y. S. Luh with M. W. Walker and R. P. Paul, “On-line Computational Scheme
for Mechanical Manipulators,” ASME Transactions: Journal of Dynamic Systems,
Measurement and Control, Vol. 102, No. 2, June 1980, pp. 69-76.

[23] S. Y. Nof, J. L. Knight, and G. Salvendy, “Effective Utilization of Industrial
Robots - A Job and Skills Analysis Approach,” A HE Transactions, Vol. 12, 1980.

[24] H. Lechtman, S. Y. Nof, “Robot Work Analysis: Task Performance by the Stan
ford Arm,” Research Memorandum, No. 80-4, School of Industrial Engineering,
Purdue University, February 1980.

[25] S. Y. Nof and R. P, Paul, “A Method for Advanced Planning of Assembly by
Robots,” SME AUTOFACT-WEST, California, October 1980.

[26] J. Y. S. Luh with C. S. Lin, “Optimum Path Planning for Mechanical Manipula
tors,” ASME Transactions: Journal of Dynamic Systems, Measurement, and Con
trol, Vol. 103, No. 2, June 1981, pp. 142-151.

[27] H. Lechtman, “Robot Performance Models Based on R.T.M. Method,” M.S.
Thesis, School of Industrial Engineering, Purdue University, May 1981.

[28] Nof, S. Y., “Decision Aids for Planning Industrial Robot Operations,” Proc. HE
Conference, New Orleans, May 1982, pp. 46-55.

[29] Nof, S. Y. and Lechtman, H., “Now It’s Time for Rate-Fixing for Robots,” The
Industrial Robot, June 1982, pp. 106-110.

[30] Nof, S. Y. and Fisher, E. L., “Analysis of Robot Work Characteristics,” The
Industrial Robot, September 1982, pp. 166-171.

[31] Fisher, E. L., Nof, S. Y. and Seidmann, A., “Analysis of Robot Systems-Basic
Techniques and Advanced Methods,” Proc. of HE Fall Conference, Cincinnati,
Ohio, Nov. 1982, pp. 385-395.

[32] Lechtman, H. and S. Y. Nof, “ Performance Time Models for Robot Point Opera
tions,” to appear in the Int. J. of Production Research.

20 -

[33] Seidmann, A, and Nof, S. Y., “Robotic Manufacturing Cel! Design,” TIMS-ORSA
Conf., April 1982, Detroit, Michigan.

[34] Seidmann, A. and Nof, S. Y., “Manufacturing Cell Design with Random Product
Feedback Flow” (forthcoming in HE Transactions).

[35] Nof, S. Y. and H. Lechtman, “Robot Time and Motion System,” Industrial
Engineering, April 1982, pp. 38-48.

[36] Luh, J. Y. S. and C. S. Lin, “Scheduling of Parallel Computation for a
Computer-Controlled Mechanical Manipulator,” IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 12, No. 2, March/April 1982, pp. 214-234.

[37] Luh, J. Y. S. and C. E. Campbell, “Collision-free Path Planning for Industrial
Robots,” Proc. 21st IEEE Conference on Decision and Control, December 8-10,
1982, Orlando, Florida, pp. 84-88.

[38] Lin, C.'S., P. R. Chang and J. Y. S. Luh, “Formulation and Optimization of
Cubic Polynomial Joint Trajectories for Mechanical Manipulators,” ibid, pp. 330-
335.

[39] Nof, S. Y., Computer Aided Planning of Robotic Assembly, Proc. of AUTOFACT
Europe, Geneva, Switzerland, September 1983.

[40] Robinson, A. P. and Nof, S. Y., SINDECS-R: A Robotic Work Cell Simulator,
Proc. of 1983 Winter Simulation Conf, Dec. 1983, pp. 350-355.

[41] Nof, S. Y., Robot Ergonomics: Optimizing Robot Work, a chapter in the Hand
book of Industrial Robotics, (S. Y. Nof, Ed.), John Wiley & Sons, 1985.

Appendix 1

RCCL User’s Manual
Version 1.0

Vincent Hayward

TR-EE 83-46
October 1983

22 -

RCCL Users’s Manual
Version 1.0

Vincent Hayward

School of Electrical Engineering
Purdue University

West Lafayette, Indiana, 4790.7

TR-EE 83-46

October 1983

This work was partially supported by a Grant from the CNRS project ARA (Automa-
tique et Robotique Avancee), France, and by the Ransburg Chair of Robotics. This mar
terial is also based on work supported by the National Science Foundation under the
Grant No. MJDA-8119884. Any opinions, findings, conclusions, or recommendations ex
pressed in this publication are those of the authors and do not necessarily reflect the
views of the National Science Foundation. Facilities to perforin this research are provid
ed by the Purdue University CIDMAC project.

- 23

Tabl@. of Contents

1. Introduction

2. Overview

3. Tutorial Introduction

4. Basic Components s Numbers, Vectors, Transformations, Differential motions,
Forces, and Events

4.1. Numbers

4.2. Vectors

4.3. Transformations

4.4. Differential Motions and Forces

4.5. Events

5. Task Description

6.1. Position Equations

6.2. Motion Description

5.2.1. The Basle Move Statement

5.2.2. Setting Options and Parameters

5.3. Synchronisation

5.4. Functionally Defined Motions

6. Sensor Integration

6.1. Presetting the World Model

6.2. Guarded Motions

6.3. Tracking

6.4. Updating the World Model

7. Force Control

7.1, Stop, Go on Force, on Displacement

7.2. Servo Modes, Comply and Lock

-24-

7.3. Carrying Loads

7.4. Examples

8. Structuring Programs'

9. Limitations

9.1. Force Control

9.2. Machine Errors

9.3. Process Slse

9.4. Sample

9.3. Large Rotations.

10. The Planner and Play Program

11. Program Options

12. Teaching

13. Summary .

13.1. Error Messages

13.2. Functions, Global Variables, and Macros

13*3. Undocumented Library Entry Points

13.4. Include Files

14. Transform Data Base

15. Details

15.1. Compile

■ 15.2. Link '

15.3. Lint

15.4. Run

18. The Display Program

17. Reference®

- 25 -

1. Introduction
This manual describes the first version of the RCCL robot programming system. The reader is

assumed to be familiar with the C programming language [1], and with the UNIX operating system. A
thorough understanding of the control and programming techniques described by Paul in [2] is highly
recommended if not mandatory. The design philosophy of RCCL is described in [3].

2. Overview
Using RCCL requires the user to be aware of the hardware and software components. The

hardware involves a VAX computer operated under UNIX. A special high speed input-output interface
[4] installed on the VAX Unibus extension establishes the communication with a Unimate robot controller
[5] . The controller’s hardware consists of an LSI1-11 microprocessor and several interfaces mounted on a
Qbus (serial, parallel, adc/dac, and host machine interfaces). The LSI-11 microprocessor controls six
6503 joint processors via a special parallel interface. The joint processors control the manipulator’s joints
via digital and analog circuitry.

Software components can be listed in terms of levels. Starting at the lowest level, we find the servo
code running in each joint processor. A superviser program, loaded in the LSI11 is driven by a hardware
clock interrupt. Each time sample, the superviser program gathers data from the manipulator state :
joint positions and torques, front panel switch register content, analog conversion readings, interrupts the
VAX and transmits the data. It then enters a wait state until the VAX sends back low level commands
that are transmitted to the joint processors. Interrupts are handled in the VAX by mean of a specialized
device driver. Each time an interrupt occurs in the VAX, the manipulator state is monitored by a real
time robot interface that checks for limit conditions. Error conditions are excessive joint rates or motor
currents. The manipulator’s state data is stored in a C structure available as a global variable [6], The
real time interface, after receiving the manipulator’s state information, calls a initial user’s function,
examines the content of a second global C structure describing all the possible command combinations.
It checks for validity, translates the requests into low level commands and transmit them to the robot
controller. A second user function is then called and can run for the remainder of the sample period.
The real time interface serves the purpose of a robot controller user’s interface and its functions and
operation are described in [6].

The setpoint process, or trajectory generator is part of RCCL, and uses the real time interface to
control the manipulator and obtain the manipulator’s state. The setpoint process is interrupt driven and
acts according to asynchronous motion requests specified in the user’s program via RCCL primitives.

~ 26 -

3® Tutorial Introduction
The first program we shall introduce, uses a reference coordinate frame located at the base of the

manipulator whose shoulder is at 864 mm above the base. The transform 76-describes the position of a
frame attached to the last link of the robot originated at the point of meeting of. the axes of the last
three joints, with respect to the shoulder. We want to move the manipulator at a position located at 600
mm in the X direction, 100 mm in the Y direction, and 800 mm in the Z direction with respect to the
reference coordinate frame. We also want that the last link points downward. The program may look
like: •

^include ” r c c ! . h ”

pumatask{)
{ ' - ■ : .

TKSFJPTR t , b;
POSJPTR ; p0.;-

t = gent r_t r s1(”T” , 0. , 0 . , 864 .) ;
b = gentr_rot(, 600. , 100., 80.0 „, yunit, 180.);

p0 = makepos i t i on { TO” , t , t6, EQ, b , TL, 16) ;

mov e(pO);
mov e (park) ;

} ' ' . • ' '

The file rcchh contains C structure type definitions and external entry points the same way the
system file “stdio.h” does. It gives access to what users programs may need in order to use RCCL func
tions, structures, and variables.

The variable declarations include the predeclared types TRSF_PTR, a pointer to a transformation
structure, and POSJPTR, a pointer to a position structure. The system builds the transformations
matrices needed to describe the task via the general and gen_rot functions. The reference coordinate
is called “T” and is set as a pure translation. As for all the RCCL functions that dynamically allocate
memory space, the first argument is a string of characters naming the created object. This name is
purely arbitrary and can be set to the empty string (””). However, giving meaningful names is a good
idea because RCCL uses them in many occasions to print informative messages. The remaining argu
ments of the gentrjrslf) function are the X, Y, and Z values of the p (position) vector of the transform.
The rotational part is automatically set to the unit rotation. The function gentrjrotQ allocates memory
and sets the positional part and the rotational part of the “B” transform. Arguments 1, 2, 3, and 4 have
the same meaning as for gentrJrslQ. Among several possible ways to specify rotations, we use here a
rotation around a vector. The variable ‘yunit’, which is of the type VECTJPTR, is a pointer to a vector.
This variable is provided by RCCL as a pointer to a vector whose value is {0., 1., 0.}. The rotational
part of the “B” transform is set to a 180 degrees rotation around the Y unit vector. (The fact that the Z
direction of the 76 transform is pointing in direction of the last link of the manipulator must be kept in
mind). The Z axis of the “B” transform is now pointing downward, because “B” is described with
respect to “T” whose Z direction points upward.

It is now time to set up a position equation using a call to makeposition. Makeposition returns a
pointer to a ring data structure that is used by the move primitive. It accepts a variable number of argu
ments. The first one is the name of the position. Up to the ‘EQ’ constant, the list of arguments make

RCCL is systematically coded according to the conventions of the C language Version 6. Recent versions of C
allow the passing by value of structures as function arguments. Although one may use these features in the
programs, none of the RCCL functions make use of them and structure arguments are always passed by ad*
dress.

- 27 -

up the left hand side of the position equation. Then comes the list of transforms making up the right
hand side. The constant ‘TL’ introduces the transform that we choose to be the tool transform. The tool
transform can be any of the frames contained in the equation, provided that it gives meaningful results,
more on that later. For now, we can say that most of the time, T6 or one of the frames described with
respect to T6 in the left hand side of the equation will be chosen. We obtain the following equation :

TT6 = B

The first move request causes the manipulator to move such that the position equation is satisfied.
In practice the robot will not exactly reach “PO”, but will perform a transition close to it before going
back to “PARK”. The‘park’position pointer is build into the system.

Before proceeding further, we shall add two modifications to this first example. We replace:

rriov e (p 0) ;
move(park);

by:
s e tmod(’c’);
mov e(pO);
s t op(0) ;
move(park);

By default, RCCL tasks start in joint mode. By calling setmodQ we ask for the moves to be per
formed in Cartesian mode, the tool frame, here T6, move along a line joining the “PARK” position and
the “PO” position. The stop statement causes the manipulator to stop during a null time at “PO”, that
is to say, to bring the velocity to zero. In other words, it will actually reach the position “PO”. The T6
transform, during the travel to “PO”, will be evaluated at sample time intervals as:

T6 = T_1 B DRIVE

The purpose of the DRIVE transform is to produce a straight path motion [2]. Most of the time, the
position equation will include one or several transforms to describe the end effector. This can be
achieved by creating one more transform and adding one argument to the position equation.

e = gen t r_t r s1(”E”, 0., 0., 170.);

pO = makeposition(”P0”, t, t6, e, EQ, b, TL, e);

Now the location described by the transformation “E” with respect to T6 will travel along a straight
Cartesian path and T6 will be evaluated as :

TQ - T~l B DRIVE E~l

- 28 -

4. Basic Components s Numbers, Vectors, Transformations, Differential motions, Forces,
and Events.

We shall now describe in more detail the meaning and form of a first set of RCCL primitives and
how they can be used in manipulator programs,

REMARKS'
All RCCL functions returning a structure, follow the convention that the result is the left argument

(output argument) and; that first argument is returned as the value of the function (in the same style as
etrc&t does). This allows to code in the following style :

t r an s -== rot (newtrans ("TRANS” , const), z un i t , 90.);'
i .

which in ;one line, allocates a transform and sets it to a pure rotation around the Z direction. Because
the type of each function is declared in the file reeLfa , the program Sint will complain if the returned
value is not used. Each function of this style is associated with a macro that capitalizes the first letter.
In case of ‘rot’, the macro is :

#define Rot (void) rot

such that the same above code can be written as:

t r an s = newt ran s'("TRANS" , const);
Rot(trans, zunit, 90.);

without complains from lint. ,

4.1. Numbers
The rccLh include file contains structured definitions of vectors and transformations that should be

used in connection with the corresponding functions. These structure declarations are preceded with C
‘typedef definitions that better describe the implementations of basic data types :

typedef int boo 1;

typedef float- real;. -
C knows two floating point variable types : double and float. They correspond on most machines to sin
gle and double precision floating point representation and arithmetic. For efficiency, all calculations are
performed in single precision. In order to insure consistency throughout the RCCL code, the type ‘real’
has been declared as a C typedef. Every single floating point variable is declared as such. Because C
structures are always passed by address, and because ‘double and float variables have different sizes,
the proper address calculations are insured. However, automatic type conversions will give meaningful
results if type ‘double’ variables are assigned to or from RCCL variables.

A set of math constant global variables is included in the library :

real pi^m is PI
real pib2jn is PI/2
real pi t.2jm is PI * 2
real dgfcordjn is PI / 180
real rdtodgjn is 180 / PI

The purpose of those variables is to avoid a unnecessary increase of the size of process data region
(see end(2)) and they are initialized at compile time. Setting them to any other values guarantees
unpredictable results.

- 29 -

4.2. Vectors
The type‘vector’is described by the following structure;:

typedef struct vector {
real x, y, z;

} VECT, *VECr_FTR;

The C ‘typedef’ feature is a way of giving another name to basic data types.
A G structure variable‘k’implementing a vector can either be coded as:

struct vector k;
or

VECT k,

A pointer to a vector variable can either be coded as :

struct vector *pk;
or 1

VECT *pk;
or '■ ' ,

VECT_PTR pk;

The choice is according to taste and coding habits. Using this structure gives access to the following
functions: dot, assignvect, cross, and unit. In order to describe the argument types of these functions
and the type of the value that they return, their heading declarations are displayed :

real dot(u, v)
VECT_PiR u, v ;

VECT_PTR as signvec t(v, u)
VECT PTR v , u;

VECT_PTR crossfr, u, v)
VECT_PtR r, u, v;

VECTPTR unit(v, u)
VECT^PTR v, u ;

The function dot returns the dot product of two vectors. The function assignvect copies its second
argument into the first one. Likewise, the function cross returns in its left argument the cross product
of the two remaining arguments. The function unit computes a vector collinear with its right argument
vector but of unit magnitude. Taking the cross product of two identical vectors is meaningless. By con
trast, the unit function can perfectly take two identical arguments. In that case, the magnitude of the
vector would be set to unity ‘in place’.

4.3. Transformations
The Corresponding C structure is :

typedef int(* ,IRFN)();

typedef struct transform {
char *name;
IREN fn;
VECT n, o, a, p;
int timeval;

} TRSF, «TRSF_PTR;

30 -

The first entry in the structure is a pointer to a string that stands for the transform name. The second,
is a pointer to a function. The function pointer can be set to one of the user’s background real-time
function or to one of the system functions const, varb, or hold. A more complete discussion of this
point occurs later. For now, we can assume that this pointer will most of the time point to the const
function, meaning that the transform is constant transformation and will not change throughout the exe
cution of the task. The next entry contains the value of the transform itself built in terms of four vec
tors: the normal, orientation, approach, and position vectors. The last row the transform is
assumed to be : {0 0 0 1}. In other words, the transforms can only be orthogonal transforms. The last
entry is the time of the last evaluation of the function, needed in the case of functionally described
transforms.

This type declaration gives access to the following functions :

TRSF_PTR as sign t r(11, 12)
TRSF_PTR tl, 12;

TRSF JPTR t ak e t r s I (11, t2)
TRSF_P'IH tl, t2;

IRSF_P'IR takerot(t1, t2)
TRSF_PTR tl, fc2;

IRSFJPTR trmul t(r , tl, t2)
TRSF_PTR r, tl, t2;

TRSFPTR trmultinp(r, t)
'mSFJP'IR r , t;

TRSF_PIR trmultinv(r, t)
TRSF_PTR r, t;

TRSF_PTR invert(r, t)
TRSF_PTR r, t;

TRSFPTR invertinp(t)
TRSF_PTR t;

The assigntr function is quite similar to the assignveet function above and the same remarks can be
made. It must, however, be noticed that only the value part of the transform is copied and not the other
components of the structure. The functions taketrsl and takerot perform a selective copy of the trans
lational (resp. rotational) part, and leaves untouched the rotational (resp. translational) part. The func
tion trmult multiplies the two right arguments transforms and leaves the result in the left argument.
This function requires the three arguments to be different. The function trmultinp multiplies the two
arguments and leaves the result in the left argument. The function trmultinv multiplies the left argu
ment by the inverse of the right one and leave the result in the left argument. The function invert
leaves in the left argument the inverse the right one. Since the arguments must be different, the function
Invertinp performs an inversion ‘in place’.

The following functions selectively set the terms of the transformations :

31

TRSF _PTR trsl (t , PX , py, pz)
TRSF _PTR t;
real px , py, pz

TRSF PTR vao(t, ax , ay, az , ox
TRSF^~PTR t;
real ax , ay , az , ox , oy, oz ;

TRSF PTR rot(t, k , h)
TRSF"’PTR
vect PTR k;
real ’h;

TRSF PTR eu1(t, ph i , the , ps i)
TRSF'"PTR t.;
real ph i , the, psi;

TRSF PTR rpy(t, ph i , the , ps i)
TRSF] PTR t;
real phi , the, psi;

All these functions use a transformation pointer as left argument, which as usual is returned as a value of
the function. The function trsl sets the terms of the p vector of the transformation and leaves the rota
tional part untouched. All distances in RCCL are expressed in millimeters. • The function vao sets the
vectors n, o, and a of the transformation. Since the vectors n, o and a are orthogonal, vao only needs
the terms of o and a and builds the vector n. The vectors whose components are passed as arguments
do not need to be orthogonal. The rotational part of the transform is built as follows: take the user’s
supplied a vector, normalize it and use it as the final a vector, take the user’s supplied o vector (which
may not be orthogonal) and build a possibly non unit vector n but orthogonal with o and a, reconstruct
o as to be orthogonal with n and a, normalize it, and finally derive n from o and a. The function pot
sets the rotational part of the transformation as a rotation around a vector possibly unnormalized, second
argument, of a given angle, third argument, expressed in degrees. The function eul sets the rotational
part of the transformation as a rotation expressed with Euler angles in degrees. Finally, the function
rpy sets the rotational part of the.transformation as a rotation expressed with roll, pitch, and yaw angles
in degrees. These rotation setting functions leaves the translational part of the transform untouched.

The next set of functions are similar in form to the previous ones, except that the transform, left
argument, is multiplied by a translation or a rotation (which is quite a different thing). As usual, the left
argument transformation pointer is returned as value of the function.

32

TRSF_PTR t r s lm(t , px, py, pz)
TRSFPTR t;
real px, py, pz;

TRSF PTR
TRSF PTR

vaom(t ,
t;

ax , ay , as

real ax, ay, az, ox, oy » os

TRSF PTR
TRSF PTR
VECT_PTR
real Si;

t o.tm.(t ,
■ t;.
k; ''

k , ’ h) ■

TRSFJPTR eulm(t, phi, the, psi)
TRSF_PTR t;
real phi, the, psi;

TRSF_PTR rpym(t, phi, the, psi)
TRSFJPTR t ;
re aS phi, the, psi;

As stated at the beginning of this section, when the value of the function is unwanted, a set a macros is
provided. They produce the following list of names :

As s ignvecfc
As s ign t r
T rmu it
Invert
T r s 1
Tr s 1m

Cross
Take t r s1
Tram 1 i up
Inve r tinp
Vao
Vaom

Un i t
Takerot
Train 11 i nv

Rot
Ro tm

Eui
Eu Im

Rpy
Rpym

As we are able to specify the rotational part of transforms with Euler or roll, pitch, yaw angles, we may
need to derive them from a given transformation. These representations are not unique for a given rotar
tiom. The functions are :

noatoeu l'(-ph.i , the, psi, t)
real *ph i , * the , *psi;
TRSF PTR f;

noatorpy(phi, the, psi, t)
real *phi , *the, *ps i;
TRSFJPTR' t;

Please note that the three first arguments are pointers to the three results of the pseudo type ‘real’.
We now need to use transformation as easily as we would use simple data types in C. At the

beginning of manipulation functions, one needs to declare transformations and to allocate memory for
them. This can be done in the following manner :

pumat ask ()"■•'
{

TRSF base;

}

. - 33 - ..

This way of allocating memory for transformations presents three major drawbacks. The first One is that
dynamic variables, allocated in the stack, only live the duration of the function call. Since the execution
of manipulator programs is not explicitly synchronized with the calculation of trajectories, the function
may well exit before the requested motions are completed. All the memory space allocated in the stack
would be allocated for other purposes. This will surely cause a lot a trouble because the values of the
transformations are used for the trajectory calculations. One may go around this by writing :

static TRSF base;

but the space would remain permanently allocated. The second trouble is that the Value of the
transforms and other entries in the structure need to be initialized. If one chooses to use dynamic stack
allocations, one also need to synchronize the function such as it does not exit before the transforms are
no longer in use :

puma task()
{

TRSF base;

base.name = "NAME”; /* set the name *./
base.fn = const; /* tell it’s constant*/
As s i gnt r (&base , unitr); /* init to unit transform */
Trs1(&bas e, G.,0.,200.); /* set it toat r an s1 ation */
base.timeva 1 =0; /* reset time eval */

wai t for (cbirip 1 e ted) /* tnake sure not any more in use */
} - ■/;'

The third drawback is that we will most of the time refer to transforms by pointers, and it would lead to
a heavy use the the operator. The initialization statement for a static ‘TRSF’ variable would not be
any more convenient and would be very error prone:

static TRSF base = {’’BASE”,
const,

- I- ,0. ,0. , .
0.,1.,0.,

..... o. ,0. ,1., , , ;
0.,0.,200.
0,

. }; ' ::
Although the techniques described above are perfectly viable, RCCL provides a built-in dynamic

memory allocation system for transforms (and positions). The basic call is the function newtrans:

TRSF_PIR newtrans(n, fn)
char *n, TRFN fn;

This function returns a pointer to a transform initialized to the unit transform. The second argument is
a pointer to a function, either one of the user’s functions which ,as we will see, have to possess certain
properties, or one of the predefined functions const, varb, hold, Since newtrans dynamically allocate
memory in user space, the creation of too many transforms will cause a program exit with the message
“mem. alloc error”. The statement :

freetrans(t);

permits the system to free the allocated memory when needed (it is implemented as a macfp).

- 34 -

Other RCCL functions make Use of newtrans as a short hand for common coding patterns:

TRSF PTR gentr_trsi(name , px, py, pz)
char *name ;
real px , ' •'.py., pz ; "V

TRSF JPTR gentr_rot(name, px, py, pz, k, h). '
char *name ;
real px, py, pz, h;
VECTJPTR k; ■

TRSF^_PTR gen t r^pao(n am e , px } PY, • PS F ax; ay, :az , ox, oy, oz)
char * n ame ;
real px, py» pz-, "ax,. ay, ' az , OX, oy, oz ;

TRSF _PTR gen t r_eu1(n am e , px , py-, pz , phi , the, psi)
char • *name ;
real px , py i pz, phi , the » ps i ;

'TRSF,_PTR gen t r_rpy(n am e , px , py > pz phi , the, psi)
char ♦ name ;
real px, py> pz , phi , . the , ; ps i ;

These functions permit us to create transformations and initialize them all at once. They all return a
pointer to the created transforms by default set as const transforms. The first four arguments are : the
name (string), and the components of the p vector. For creating transforms containing non unit rotar
tions, the expression of the rotational part is analogous to the previous family of functions. For example

TRSF_PlR t1, t2, t3; /* declare transform pointers */

t1 = trs1(eul(newtrans(”T1”, const), 10., 20., 30.), 1., 2., 3.);

t2 = gentr_eul(,’T2”, l.,2.,3.,10.,20.,30.);

t3 = gentr_trsl(”T3”, 1. , 2. , 3,);
Eul(t3, 10., 20., 30);

give three identical transforms.
The last group of transformation related functions are for output :

- 35 -

printr(t, fp)
TRSF_PTR t;
FILE * fp;

printe(e, fp)
’IRSF_PTR e;
FILE * fp;

prin ty(e , fp)
TRSF_P1R e;
FILE *fp;

printrn(t, fp)
TRSF_PTR t;
FILE * fp ;

The function pHntr prints the numerical value of the transform, first argument. The functions prints
and prlnty respectively print the Euler and pith, roll, yaw angles. The function prlutrn prints the
name, the numerical value and the angles altogether. All these functions take as a second argument a
UNIX file pointer. As an example, the output of the following sequence of calls :

TRSF JPTK tl, 12, 13 ;

, . tl = gentr_eul (”T1\ 10., 20., 30., 11.,. 12., 13.) ;
prin t f(”par t l\n”) ;
p r i n t e(11, stdout);
printrn(tl, stdout);

t2 = newt r an s(”T2”, const);
print f(”par t 2\n”);
prio t r{t 2, s tdout);■
Rot(t2, yunit, 90.) ;
Tr s lm(12 , 10., 20., 30.);
prin t rn(t 2 , stdout);

t3 = newt rans(”T3”, const);
printf(”part 3\n”) ;
printrn{trmu 1t(13, tl, 12), stdout);

print f(”p a r t 4 \ o ”) ;
printrn(trmu 1t(13, 12, tl), stdout);

would be :

- 36 -

parti
Eli. x:10.000 y:20.000 z:30.000 phi:11.000 the:12.000 psi:13.000
Tl : '

0.893 -0.402 0.204 10.000
0.403 0.914 0.040 20.000

-0.203 0.047 0.978 30.000
Eli x:10.000 y:20.000 z : 30.000 phi:11.000 the:12.000 psi:13.000
RPY xilO.OQO y:20.000 z:30.000 ph i : 24'.. 280 ■ the:11.688 psi:2.738
par t 2

1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 O.ooo

T2 : ■■■ V:'-'
0.000 0.000 1.000 30.000
0.000 1.000 0.000 20.000

-1.000 0.000 0.000 -10.000
Eli x:30.000 y:20.000 z:- 10.000 phi:0.000 the:90.000 psi:0.000
RPY. x:30.000 y:20.000 z:-10.000 phi:0.000 the:90.000 psi:0.000

■ par t 3
T3" ; •

-0.204 -0.402 0.893 26.700
-0.040 0.914 0.403 49.973
-0.978 0.047 -0-203 15.076

Eli x:26.700 y:49.973 z : 15.076 phi:24.280 the:101.688 psi:2.738
RPY x:26.700 y:49.973 z:15,076 phi:* 169.000 the:78.000 psi:167.000
part 4
T3 .

-0.203 0.047 0.978 60.000
0.403 0.914 0.040 40.000

-0.893 0.402 -0.204 -20.000
Eli x:60.000 y-: 40.00.0 * z:-20.000 phi : 2.323 the : 101.776 ps i : 24.240
RPY x:60.000 y:40.000 z:-20,000 phi:116.707 the:63.207 psi:116,922

This should also suffice to remind us that the matrix product (and also orthogonal transforms products) is
not commutative.

4.4. Differential Motions and Forces.
Although RCCL do not explicitly use the structured representation of differential motions or gen

eralized forces in manipulation primitive calls, they are made available to the user. A differential motion
is expressed in terms of a differential translation vector and differential rotation vector. A generalized
force is expressed in terms of a linear force vector and a moment vector. The corresponding structures
are :r

typedef struct diff {
’ VECT" t, r;

} DIFF, *DIFF_PTR;

typedef struct force (
VECT f, m;

} FORCE,, *FORCE_PTR;

The associated functions are ;

-37 -

DIFF_PTR assigndiff(t, o)
register DIFF_PTR t, o;

TRSFJPTR df_to_tr(t, d)
regi s ter TRSFJPTR t ;
register DIFF_PTR d;

DIFF__PTR tr_to_d'f(d;, t)
register DIFFJPTRd;
register TRSF_PTR t;

DIFF_PTR difftr(.dt, d, tr)
register DIFF_PTR dt, d;
register TRSFJPTR tr;

printd(d , fp)
DIFFJPTR d;
FILE *fp;

FORCE_PTR assignforce(t, o)
register FORCE_PTR t , o;

FGRCE_PTR forcetr(ft, f, tr)
register FCRCE_PTR ft, f;
register TRSFJPTR tr;

prin tm(d, f p)
FORCE_PTR d;
FILE *fp;

The function aeslgndiff performs a copy of a differentia! motion structure. The function dfjfcoytr builds
a transformation out of a differential motion. The function tr_to_df builds a differential motion struc
ture, given a transformation. The function diUtr transforms a differential motion expressed with respect
to one frame into the same differential motion expressed with respect to another frame. For example if
PI if a frame expressed in base coordinates and P2 its transformation by T such as :

P2 = T PI

A differential motion expressed with respect to Ply is obtained expressed with respect to P2. The left
argument of difffcr is the output argument : the transformed differentia! motion, the second argument is
the original differential motion and the third argument is the transform expressing the differential rela
tionship. The prlnd function prints on one line a differential motion.

The functions assignfofce, forcetF, prlntm perform analogous processing of generalized forces
and torques. Note that if the forces are expressed in Newtons, torques must be expressed in Newton-
millimeters since distances are in millimeters, the conversions are straightforward. As for other functions
of that kind the following name can be used instead, if the returned pointer is not used :

Assigndiff Difftr Dft o_t r Tr_to_df
As sign force Forcetr

For example, the following sequence of program statements :

- 38 -

DIFF Dpi, Dp2;
FORCE Fpl, Fp2;
'mSF_PTR t = getttr_pao(”T”, 10., 5., 0., 1., 0., 0,, 0.,0.,1.);

■'■..print rn (-t , stdout);

Dp2.t.x = 1.;
Dp2.t.y = 0.;
Dp 2 . t . z — . 5;. ■
Dp2.r.x = 0. ;

■ Dp2.r.y.=
Dp2.r . z = 0. ;
printd(&Dp2, stdout);
pr i n td (d i fft r(&Dpl, &Dp2, t), stdout);

Fp2;f x = 10.;'
Fp2.f.y = 0.;
Fp2.f.z = 0..; .
Fp2.m.x — 0;. ;
Fp2.m.y - 100;;
Fp2.m.z = 0.;
p rin tm(feFp 2, stdout);
printmj forcetr(&Fpl, &Fp2, t), stdout) ;

will produce the following output :

T : ' .
0.000 0.000 1.000 10.000
1.000 0.000 0.000 5.000
0.000 1.000 0.000 0.000

EDL x:10.000 y:5.000 z:0.000 phi:0.000 the:90.000 psi:90.000
RPY x:10;000 y:5.000 z:0.000 phi:90.000 the:0.000 psi:90.000
tx l.Oe+00 ty O.Oe+OO tz 5.0e-01 rx 0.0e+00 ry 1.0e-01 rz 0.0e+00
tx O.Oe+OO ty -5.0e-01 tz 1.0e+00 rx l.Qe-01 ry O.Oe+OO rz 0.0e+00
fx l.Oe+01 fy O.Oe+00 fz O.Oe+OO mx O.Oe+00 my 1.0e+02 mz O.Oe+OO
fx O.Oe+OO fy O.Oe+OO fz l.Oe+Ol mx l.Oe+02 my 5.0e+01 mz O.Oe+OO

4.5. Events'
RCCL uses the notion of event to synchronize the user’s program with the manipulator motions.

Motion requests Me entered into a queue at a given moment, and executed on the basis of the first in,
first out, when all the previous request are served. The first snare one can run into is depicted by the fol
lowing : .

for (i - 0; i < 10000; ++i) {
move (pi);-.,
move(p2);

. :

The almost .'infinite’ loop being asynchronously executed, the queue will be become saturated in a few
milliseconds; In this situation, we have chosen to cause an error condition since it will most of the time
be the result of a program flaw. In many occasions an event will be needed to explicitly synchronize the
program with the arm motions, say for opening and closing a gripper.

- 3.9 -

An event, is defined in RGGL as an integer :

typedef int event;

An event is essentially a count, if positive, it represents the number of processes waiting for the oc
currence. Occurrence of an event decreases the count by one, when the count drops to zero, no process
are waiting for it. RGGL maintains the built in event completed that occurs when the motion queue
becomes empty. The user’s program may use the primitive waltfor implemented as a macro, to syn
chronize with events, for example :

move(pi);
move(p2);
move(p3);
wa itfor(comp Ieted)
pr i n t f (•” the arm has reached ’p3’, proceeding.\.n.”)•;

or else, using the event called ‘end’ associated with each position :

move(pi);
move(p2);
move(pi);
move(p2);
OPEN; ‘
waitfor(pl->end)
CLOSE;
wa itfor(p2->end)

. OPEN;'
waitfor(pl->end)

' CLOSE;
wait for(p2->end)
OPEN;

to realize synchronization of gripper actions.

40

5. Task Description
Describing a task consist of specifying positions to be reached in space and motions to these posi

tions. RCCL implements structured positions descriptions, and asynchronous motion requests.

5.1. Position Equations
Position equations do not necessitate the use of absolute reference coordinates. Position equations

are one representation of the more genera! concept of transformation graphs. The position relationships
of the frames F, ,=iK can be expressed in terms of transformations products. Let a transformation T,
describe the position of the frame F< + 1 relative to the frame F; with Tn describing the transformation
from frame F„ to Fx, we have :

Ti T2 ’ ' ' T„ = Identity

A closed path of transformations from frame Fx to frame Fx, via the frames F, i=2,„ describes the posi
tion of Fx with respect to itself : the identity transform. The situation is depicted by a directed closed
graph :

Tl T2
---> FI ---> F2 ---> F3 Fn

Tn

where the vertices are frames and the arcs transforms.
Given a set of frames, containing two frames A and B, we can certainly find more than one path

connecting A to B. Let the frames on one path be called F, l=x,B, and the the frames on the other path
be called C, (=X m, we obtain :

TO Tl T2
- - -> FI-----> F2 - - -> F3

. A
---> G1-----> G2 ---> G3
R0 R1 R2

The corresponding transformation equation is :
T0 Tx T2 ■ • ■ Ta = R0 R2 ■ : ■ Rm •

Closed transformation graphs can be expressed in terms of a set of transformation equations. Transfor
mation graphs can be generalized, but we will restrict them to the form above.

RCCL uses transformations equations in order to describe the positions the manipulator has to
reach. We will first introduce the dedicated transform T6. We are dealing with manipulators having six
links and six joints, labeled from 1 to 6. The base of the manipulator is labeled Sink 0. Each of the
manipulator links is assigned a frame A. describing its position with respect to the previous one as a
function of the joint variable. The position of link 1 is described with respect to the base. The transfor-
raation product :

T6 = Ax • A6

describes the position of the last link with respect to the base. Note that for the manipulators we are
dealing with, it is convenient to assign the last three frames at the intersection of the three last joint
axes. Therefore, T6 does not take into account the end effector description.

Tn
F.n

B
Gn - - ->

Rm

41

By convention the following transform decompositions are given
Tl = Al

T2 = AIA2

T3-AIA2A3

T4 = Al A2A3A4

T5 = A1A2A3A4A5

T6 = Al A2A3A4A5A6

C/6 = A6-

U5 = A5AQ

: U4 = A4 AS A 6

U3 = A3A4A5A&

U2 = A2 A3 A4 AS AQ

U1 = Al A2 A3 A4 A5 A6

T6 = Tb C/6 = T4 C/5 = T3 C/4 = T2 U3 = Tl U2

Let us set up a position equation that structurely describes the situation when the manipulator is to
grasp an object lying on a table. We first need to assign frames to each of the elements involved :

- A frame is assigned to the shoulder of the manipulator : S.
A frame is located at the last link of the manipulator : M.
A tool is attached to the link 6, the frame T is assigned to the working end of tool.

A frame W describes the position of the working table.
- The position of an object lying on the table is described by 0.
- A grasp position is described by the frame G.

Suppose that the manipulator is moving such as to grasp the object, the corresponding graph is .

------ M ------ T ------

.............. W ------ O.................

In order to turn this graph into a transform equation, we first need to orient the arcs and label them with
transforms. The choice is arbitrary but a convenient possibility is :

T6 TOOL DRIVE
------ -> M --- --> T <---------

<.......W.........> O---- ->
BASE OBJ GRASP

where TOOL, BASE, GRASP, OBJ are predetermined transforms. The transform T6 is to be changed
such that the transform DRIVE comes to identity for the manipulator to reach the desired position, or in
other words, such as the frames T and G become identical. The way the DRIVE transform changes
(and therefore T6) as a function of time determines the way the frame M and T move with respect to S,
W, O, or G (Note that no absolute coordinate system is involved and we could say that S, W, O, and

G move with respect to M and T).
The equivalent equation of the position can be written :

BASE T6 TOOL - OBJ GRASP DRIVE

The equation of the final desired position can be written :
BASE TQ TOOL = OBJ GRASP

Transformations equations can be rewritten, solved for any of the terms, or replaced by equivalent ones.
For example, we have :

BASE T6 = OBJ GRASP TOOL 1

T6 = BASE'1 OBJ GRASP TOOL1

TQ = COORD POS TOOL'1 if COORD - BASE'1 ,POS = OBJ GRASP

'Etc.'..."'
The RCCL function makepositlon permits the user to set up such a position equation. The set-

point process will automatically compute the terms of the DRIVE transform such that the resulting
motion possess certain properties. The makepositlon function expects a variable number of arguments
They represent the left hand side of the equation, the right hand side, and a transform that will tell
which frame is to be considered as the tool frame, the frame T in the example above. Assume that the
transforms BASE TOOL, OBJ, and GRASP have been created via RCCL calls, and that we have the
respective transforms pointer available : base, tool, obj, and grasp. The ‘O’ definition of the function
makepositlon is :

POS_PTR makeposition (n, lhs [, lhs] ..., EQ, rhs, |, rhsj ..., TL,

char *n ;
TRSF^PTR lhs . ., rhs ...,tl;

and the call corresponding to the above example is :

POS PTR p; /* a position pointer */

p =makeposition(”P”, base, t6, tool, EQ, obj, grasp, TL, tool);

The names ‘EQ’ and ‘TL’ are predefined constants. The function makepositlon returns a pointer to a
ring data structure implementing the transform graph. The first argument is a string, the name of the
position The transform pointer t®, is built in RCCL, and predeclared in rccl.h. As the position data
structure is built, makeposition calls the function optimize in order to premultiply all possible pairs of
constant transformation {declared as const), in order to decrease the run time computing load. The
function optimize will internally replace the user specified position equation by an equivalent canonical
form : ■

T6 = COORD POS TOOL

The terms COORD or TOOL of this canonical form can be missing. The calls :

makepos i t i on (”P 1 ” , t6 ,s EQ, h , TL , 16) ;
makepos i t i on (”P2” , 16 , t, EX^, h , TL, t);
makepositibn(”P3”, 16, t, EQ, h, g, TL, t6),

lead to the following canonical equations :
T6 = POS COORD = None , POS = H , TOOL = None

T6 = POS TOOL COORD = None, POS = H , TOOL - T1

T6 = COORD POS COORD = H G , POS = T _1 , TOOL = None

There is an arbitrary number of argument transform pointers for makepositlon. The only restric
tion is that the left hand side of the equation must contain the predeclared pointer t® and the right hand

- 43 -

side must contain at least one transform. The transforms can arbitrary belong to one of the following
categories :

const : A transform of this type will be considered as constant through out the life of the corresponding
position equation. Its value must not be changed, as the system can decided to premultiply it with
another transform such as it may not appear in the internal equation used for the trajectory calcu
lation. This is the default type of the functions of the style gentr_... and it is the type that one
should use when possible.

varb : A transform of this type will not be premultiplied by the optimization function, and its value will
be used directly during the trajectory calculation. One sometimes need to change the value of a
transform after the equation has been set up. If the change occurs while the equation is evaluated,
the change will instantaneously be reflected in the manipulator’s trajectory. This can cause jerky
motions if the change is large and it should be carefully used. The function update described later
on, knows when to change the value of the transform when it is safe.

hold : A transform of this type is not directly used in the position equations, but a copy of it. We will
see that move requests are asynchronously issued and that a number of them can ve specified
ahead of time. A hold transform belongs to the subsequent motion request and its value is taken
into account only when the corresponding motion is actually performed.

The last category is the class of the functionally defined transforms. These transforms are attached
to a function belonging to the user’s manipulator program. The function is expected to compute
the values of the transform as the corresponding motion is performed. The function is executed at
interrupt level and therefore, is expected to have a reasonable execution time. As described in [6],
these functions cannot perform any type of system calls, (prints, reads, etc...). If the function
computes the values of the transform as a function of external data, one can obtain tracking. If the
values are computed as a function of time, one obtains functionally defined trajectories. We shall
call such a function a background function.

The type of a transform is indicated in the ‘fn’ field of the transform structure, a few examples :

int myfuhctionQ;

tl == gentr^trsl^Tl”, Q., 0., 0.)s

t2 newtrans(wT2’\ const);

t3 = newtrans(”T3”, varb);

■fc'4 . = ygentr_tr£l(”T4*, 0., 0., 0.,).; ■ ■■
t4->fn ~ -hold;' ■' ; ,

. -15 gentrjrot(”T5”r ;0.,--0.,. 0., ..zunit, 90.);: ■
t5->fn ,= myfuoction;

t6 = newtrans(”T6’’j myfunction);
Roi(t6, zunit, 90.);

tl is a regular const transform initialized to the unit value.
t2 is a regular const transform initialized to the unit value.
t3 is a transform initialized as a unit transform of type varb.
t4 is first created as const but is turned into a hold transform.
15 is first created as const but is turned into a functionally defined transform attached to the function

‘myfunction1 and is initialized as a rotation of 90 degrees around the Z axis.
t6 is created as functionally defined, and then initialized as a rotation of 90 degrees around the Z

axis... :-V
The makeposltion function implements a restricted case of transformations graphs. This limita

tion, may be removed one day. When multibranch transform graphs are required, the user must imple
ment it in terms of the basic graph described above and a combination of other RCCL function like Rot*
Trslm, Trmult, Invert^ and so on. The varb and hold features are then very important.

It is now time to introduce the position structure as described in the file rccl.h.

typedef struct posit {

} POS, *POSJPlR;
The first entry in the structure is the name of the position. The same remarks can be made as for the
transforms structures. The name is not directly relevant from the robot control point of view, but may
help in debugging. The second entry ‘code’ is a termination code for the corresponding motion. Internal
code values known by RCCL are currently :

#define OK -1
#define LIMIT *2
^define ONF ■ ! ■ :: - 3
#define OND -4

After the position has been reached, the code is set by the system to the value ‘OK’ if the motion has not
be interrupted by some condition. The value ‘LIMIT* means that the motion caused some joints to
dangerously approach their physical stops. RCCL automatically issue a stop to the current position. It
is then possible to recover from this error condition as explained later. The code ‘ONF1 means that a
prespecified force condition occurred, and the code ‘OND’ that prespecified differential motion condition

char ♦name;
int code;
real seal;
event end;

- 45 -

occurred. The next entry is a Boating point number ‘sca!4 The value of the field ‘seal’ varies from 0 to
1 as the motion is performed, and is useful for generating fu.nctiqnally defined motions or to trigger some
action at a given point of a trajectory. The entry ‘end’ is classified as.an event. It allows the user to
synchronize the program flow with the execution of trajectories. The use and the function of the fields
‘code’, ‘seal’, and ‘end’ will be explained in more detail as we go on.

When a position is no longer needed, memory space can be retuned to the memory pool by :

freepos(p)
POS_PTR p;

Care must be taken so that the corresponding data in no longer in use. Transforms involved in the
corresponding equation are not freed, an must be individually freed using freetrans.

5.2. Motion Description

RCCL implements two basic types of motions known as joint mode and Cartesian mode. The first
one consist of solving for T6 the position equation of the goal position at. the beginning of the motion
and obtaining for it the corresponding set of joint values. The trajectory is then generated by linear
interpolation of the joint values from the current position to the goal position. This type of motion
should be used for large motions as it requires the minimum joint motions and less computations. High
velocities can be obtained, however trajectories are not always easily predictable. The Cartesian mode
makes use the DRIVE transform to produce straight line trajectories for the toot frame. The transform
equation is evaluated for T6 each sample time-interval and the set of joint values obtained. This type of
motion permits us to obtain well predictable trajectories. If the position equation contains functionally
defined transforms, the associated functions are also evaluated at sample time intervals. The values
resulting from these evaluations will directly influence the arm trajectory. In that case the structure of
the position equation must be carefully considered.

5.2.1. The Basic Move Statement
The basic function definition is :

move(p)
POS JPIR p;

The call :

move(pos j;

where ‘pos’ is a pointer to a position equation returned by makeposltion. instructs the system to move
the arm toward the described position such as the equation becomes verified. When the arm is moving
from position to position, transitions occur between each path segment. It is important to smooth out
the velocity discontinuities that would be caused by an abrupt change of direction and velocity from one
path segment to another. There are a number of options and parameters that can be set globally or for
each path segment.

5.2.2. Setting Options and Parameters
The first group of parameters remains set until set to another value. The following calls cause a

setting of the parameter starting at the next move request :

-46 -

se tve 1 (tv., rv)
int .tv., rv ;

setmod(m)
int m;

setconf(c)
char *c;

s amp 1 e (s)
int s ;

The sefcvel call takes two integer arguments. The first is the desired translational velocity^ the
tool frame in millimeters per second, the second one is the rotational velocity in degrees per second The
system will calculate the path segment durations to obtain the desired velocities. Since rotational and
translational velocities lead to different durations, the system will pick which ever is the longest One
can give the priority to one or another by specifying very different values. For example, suppose that a
motion involves a 30 millimeters translation and a 30 degrees rotation, the call

setvel(30, 300);
will result in a 1 second motion due to the translation, and not an unreasonable 1/10 of a second motion
to perform the rotation. The function setmod defines the mode, Cartesian or joint, for the subsequent
motions The argument must be the character ‘c’ for Cartesian mode, and V for joint mode. For exam-

pie :

POS_PTR p, pi, p2;
inti, m;

p1 = makeposition(...);
j p2 = makeposition(.. .);

for (move(p2), i = 0; i < 10; ++i) {
if (i % 2 •! = 0) {

} e 1 s e ' ■
. : ;m = ’ j * ; ■

■P = P‘2;
■ . j ■ ;■ • ;'-

i s e tmod (m) ;
j • ■ move (p) ;

; ■■ Vi }
will cause the arm to move from p2 to pi (i odd) in Cartesian mode and from pi to p2 (i even) in Joint
mode. For C experts a more concise version could be :

| for (move(p2), i = 10; i--;) {
! setmod((m= i %2) ? ’c’ : ’j’);
| move(m ? pi : p2);

In joint mode the segment durations are computed based on the distances between the frame T6 at each
end of the segments, since this type of motion is joint Oriented. The function setconf permits us to
obtain ah arm configuration change during the subsequent motion. This motion ha* to be performed in

- 47 -

joint mode, since a configuration change always involves a degenerate arm configuration unreachable in
Cartesian mode. Once the configuration change is obtained, the motions can again be performed in
Cartesian mode. For the PUMA arm, the configurations csh b& : shoulder righiy - lefty (r/1); elbow
down - up (d/u); wrist flip - noflip (f/n). The argument Is a string specifying the configuration change.
For example, if the arm is lefty, up, noflip (“lun”), in order to obtain a wrist configuration change to flip,
the arm remaining lefty and up (“!uf”), we code :

/* the arm is currently ”hn” */

setmod(’j’); /* go in joint mode if it was-’nt */
setconf(”f”); /* specify flip */
move(new); / * go ” 1 u f ” */

Note that several letters can be specified in the string argument. A program with many configuration
changes is safely terminated by :

s e t con f(”1un”) ;
move(park) ;

The function sample allows us to change the sampling period of the whole system. Currently valid
sample rates are: 14, 28, 56, and 112 milliseconds. However the function rounds down the specified value
as : sample(lS). leads to 14, sample(30) leads to 28, etc. The default value is 28 milliseconds which is a
good compromise for most applications. The 14 millisecond rate is helpful for tracking applications, but
it is good practice to reset the rate to 28 or 56 when not needed.

The next group of functions cause the parameter to be taken into account for the subsequent move
request only.

s e t i me (t a, t s)
i n t t a , t s ;

evalfn(fn)
i n t (* f n) ();

dist anc e(s , v[, vJ . . .)
charts, real v;

A call to setlme allows us to force the motion to be performed within a given period of time. The first
argument specifies the duration of the transition time at the end of the segment, and the second argu
ment the duration of the segment itself. Times are specifies in milliseconds. Besides the cases when
motion duration is the primary factor, this call serves two purposes. At the present time no call has been
implemented to force a rate at the joint level. The consequence is that the system is unable to compute
the correct segment duration to perform a configuration change, since the same position can sometimes
be reached in different configurations. A duration calculation based on distances is in this case meaning
less. Therefore, the user must explicitly specify the motion duration. For this reason a macro has been
included in rcchh:

^define movecon f(p, ta, ts, cf) \
{setconf(cf) ; setmod(’j’); setime (ta, t s) ; move(p);}

The example above can be more conveniently coded as :

moveconf(new, 100, 700, ”f”);

The configuration change will be performed in 7/10 of a seconds with a 1/10 of a second transition time.
The function setime is also very useful for functionally defined motions. When a position equation
includes functionally defined transforms, there are situations when the system cannot compute the
correct segment duration based on the distance of the goal position because it can depend on arbitrary
factors. Likewise a macro has been added :

- 48 -

#d e fi n e mo v e c a r t (p , t ais) {setmod(’ c *) ; set ime(ta,. is); move(p);}

The code would be :
movecart(spira 1* 300, 2000);

perform a spiraling motion during Seconds with a 3/10 of a second escape transition. In the cases when
the segment duration calculation is left to the system but the acceleration time still needs to be explicitly

specified, the call : ■
s e time (200, 0); !

forces the acceleration time to be 2/10 of a seconds but the segment duration, being left unspecified, will
be computed by the system. On the other hand, it is sometimes necessary to specify a zero acceleration
time, meaning that no transition is desired. This is useful for some slow motions terminated on condition
and when the reaction time is of primary importance, The acceleration time can be specified as zero :

setime(0, 1000); ,

The function evalfn cause the function argument to be evaluated during the execution of the
corresponding motion. One thus can code any needed synchronous processing. The first application is to
perform some monitoring of externa! condition in order to interrupt a motion. For example, a flag called
nextmove , causes at any moment the current path segment to terminate and the manipulator to transi
tion to the next. Other applications can be to trigger some action at a precise point of a trajectory. For
this the field ‘seal’ of a position structure can be used. The user’s function given as argument is exe
cuted at sample time and therefore bears the same restrictions as the background functions of function
ally defined transforms : short processing, no read, prints and so on. This type of function will also be
called a background function.

The function distance specifies a distance modifier for the goal positions. Modifications are
expressed in the tool frame. The first argument is a string specifying the directions. Each direction is
expressed with two letters. The first letter can be either ‘d’ or V, standing for ‘distance’ and ‘rotation .
The second letter can be either ‘x’, ‘y’, or ‘z’, standing for the principal axes of the tool frame. A valid

directions specification is :
”dx rz” : translation along X, rotation around X

The remaining arguments are the magnitudes of the modifications. For example .

distance(”dz”, -30.);
move(p);

■ mov e (p) ;
implements a ‘approach’ style motion in the ‘Z’ direction of the tool. Modifications are obtained by
internally multiplying the POS part of the canonical transformation equation by a modification
transform. Any combination of directions can be specified, however magnitudes should remain small for
rotations. The function distance is also very usefull for motions terminated on condition to purposely
specify an overshooting motion. v

When a stop is needed the call :

st op (n) ; ■■■
where ‘n* is a duration in milliseconds repeats the last move statement with all it’s attributes, except the
time attributes. For example :

- 49 -

eva1fn(my funct i on) ;
. distance(”dx ry ”, 10., 3 .) ;
move(p) ;
e v a I f n (my f unc t i on) ;
distance(”dx ry”, 10., 3.);
setime (200, 2000) ;
move(p) ;

is more conveniently written as :

eva1fn(my function);
distance(”dx ry”, 10., 3 .) ;
mov e (p) ;
s t op(2000);

S.3„ Synchronization
A more delicate programming of the time' aspect is the price paid for the gain in flexibility obtained

by the motion queue feature. Synchronization is basically achieved by/suspending’ the execution of the
user’s program while motion requests are performed. This is can be done in two ways or by a combina
tions of. both. The program execution is suspended when spending time performing computations and
input output. .Suppose a program that interacts with a user or with some long response sensor, we obtain
the following pattern :

• TRSFJPIR z , e , b;
POSJP1R p;
doubl.e iz;

z = gent r_t r s1(”Z”, 0., 0., 864.);
e = gen t r_t r s 1 (”E” , 0. ,0. ,170.-);
b = gentr_rot(”B”, 600. , 128., 800., yuolt, 180.);
b->fn = hold;

p = makepps i t i on (”P” , zt6, e, EQ, b, TL, e) ;

(; ;) (
print f("enter Z leer erne n t ”) ;
scanf(”%f ” , &i z) ;
b->p .z += iz;
move(p).;

Each time the user enters data via ‘scanf, the value of the B transform is changed, since its type is hold
the new value is entered in the -motion queue as well as the motion request itself . and the next loop
immediately prompts the user for a new data entry.*" If the user enters data quicker than the manipulator
can move to the goal positions, she or he will be able to enter several requests ahead. If the user stops
entering data, the requests will eventually be served, the manipulator brought to rest and the program
execution suspended at the ‘scanf instruction. If the data is provided by some external device, say
another computer, a file ,or a sensing device the program will look like :

for

}

for (; ;) {
ge 11 r(b , device);
mov e (p) ;

}
where ‘gettr’ returns a new transform value. The data is obtained asynchronously with respect to the

- 50 -

motions, consequently two situations can occur. Either the external device is faster and the queue will
fill up, either the arm is faster and it will wait for new data. In both cases we obtain an optimal utiliza
tion of resources The only problem is to prevent the queue from becoming saturated. The external
variable requestnb is maintained by RCCL as the number of non served motion requests. We can now
introduce the primitive waltas (a macro) that takes as argument a predicate :

wa i t as(p red)

The macro waltas suspends the programs execution until the predicate becomes true. The final version
of the loop is

tor (• ;) {
gettr(b, device);
wa i t as (nbreques t < M\X)
move (p)

... } ; : v ■v ■/' ' . ..■/
The primitive waltfor (a macro) suspends program execution until occurrence of an event. We

have seen that the ‘end’ event is associated with each position record. One application is to obtain a
gripper opening and closing at given moments. The pattern of code :

distance(”dz9 , -30.) ;
move(p) ;

' move(p);
distance(”dz” , -30.);
move(p);

implements a possible position ‘approach, reach, and depart’ sequence. To obtain a synchronized gripper
opening and closing, the pattern is :

distance(”dz, -30,);
move(p);
move(p) ;
distance(”dz” , -30.)
move(p) ;.

waitfor(p->end)
• OPEN;. :
waitf pr(p->end)

. CLOSE;

The program is first suspended until, the ‘approach’ position is reached, opens the gripper, waits for the
position to be reached, and closes the gripper. One other application of waltfor is to obtain a suspend
sion of the program until all the requests are served. For example suppose that a function allocates posi
tions and transforms that have to be freed of upon termination of the function, we must make sure that
all the requests are executed before doing so :

- 51 -

dothat()
{

TOSF_PTR tl = gen t r_ ...
TRSF JPTR 12 = gen t r_ . . ,

P0S_P1R pi- makeposition(...
POS^PIK p2 - makepos i t i oe (

mov e(pi);
mov e(p 2) ;

move(there);
wai t for(completed);
f r e e t r an s (11);
f r e e t r an s (12);

f re epos(pi);
freepos(p2);

return;
}
The following program makes use of the there position that always reflects the position that the manipu
lator is occupying at the end of the previous path segment. Thus, when the ‘waitfor’ statement is issued,
we are sure that all the previous requests are served and the corresponding positions are no longer in use.
Note that the statement:

wa itas(requestnb == 0)

would do equally well.
Another way to obtain synchronous actions is to trigger them from a motion associated background

function. For example a gripper opening can be specified at a given point of a trajectory. We will make
use of the external variable goalpos, which is an ordinary position pointer updated by the system such
as to point at the position equation currently being evaluated. It can be used in the main program to
decide which position equation is currently being evaluated. The background functions can also use the
pointer goalpos to access the fields of a position structure, and the use of several global position pointers
can be avoided. These function can then be written independently of a given motion statement.

- 52 -

pumaiask()
{

in t open f n();

ev a 1f n(open f n);
move(p);

} -

open fn()

if (goalpos->scal > .5) {
OPEN;

}
}
or using an event':
event, openit =0; /* global variable */

pumatas-k()
{

ini open fn();

e v a 1 f n (o p e n f n);
move(p) ;
wa it for(open it)
OPEN;.'

>■ ; ’ '

open fa()
{

If (goalpos«>scal > .5 && openit > 0) {
- - open it;

}
}
Yet another possibility would be l

pumatask()
{

nwve(p);
waitas(goa1pos — p && p->scal > .5)
OPEN;

According to the situation, different combinations of these techniques can be used.

I
Libraries of

- 53 -

customize! functions or macros could be written to best suit the requirements.
The ‘wait’ style primitives have the property of suspending the program execution until occurrence

of an event or condition. One must be aware that the following code pattern :

mov e(pO);
wa iifor(pO->end);
move(pi);
wa i tfor(p1->end);

or
move(pO);
wa i tfor(comp1eted);
move(pi);
wait f o r(c omp!e t e d);

causes each position to be evaluated twice, since a new request is entered into the queue only when the
previous is completed. At that time, the system finds the queue empty and reissues a move to the last
position. .

In more detail we show the body of the macros walt&s and waltfor

#define waitas(predicate)

^define waitfor(event)

{whi1e(! (predicate)) suspendfg() ; }

{-H-(event); whi1e(event > 0) su spend f g (); }

The function suspendfg merely suspends the foreground program or user’s process during a short period
of time (currently .1 second). The ‘setpoint’ process, running in background at high priority maintains
the events associated with positions and the event completed. The code in the setpoint process looks
like :

newn = dequeue (&mqueue) ;
i f (newm = NULL) {

- -c omp1e t e d;
}

Consider the following situation :

move(pO);
mov e(pI);

f* do a lot of computations and/or io */

/* try to get a new request
/* then none
/* signal queue is empty

*/
*/

wa itfor(pO»>end);

If the sequence of code between the move requests and the wait statement takes more time to execute
than the motion to be performed, the task will not hang at the level of the wait statement.

One additonal point has to be considered, suppose we have the following situation :

54

mov e(pO);
- - d i s t ance ;

move(pp);
d i s tance (.... .) ;
move(pO); . '
mov e(pO);

w a itfor(pO->end)
/* do 3ome thing*/
wa itfor(pO->eud)
/* do another thing */

In this sequence of code the ‘pO->end’ event will occur four times, but will be waited for only two times.
If the sequence of code is in a loop, an unmatching number of moves and corresponding waits will shift
the synchronization each loop by the difference. One way to get around that is to reset the event count
prior to issuing the move requests :

for (...){
pO->end =0;
move(pO);

\dis tance(...);
move(pO);
d i s tance(...);
move(pO);
mov e(pO);

wai t for(pQr>end)
/* do something */

. wa itfor(p0->end)
I* do another thing */

}

5.4. Functionally Defined Motions
One of the principal features of RCCL is the provision for functionally defined motions. They are

approached in very general terms. Except the POS transform of the canonical equation, any of the
transforms of a position equation can be functionally defined. We will look in this section at transforms
as functions of time. Let us examine again the typical transformation graph of a Cartesian motion :

T6 TOOL DRIVE •
-----> M -----> T <--------

<............W -----------> O------- ->
BASE OBJ GRASP

We notice that the transforms T6 and DRIVE are themselves function of time. The system internally
computes the values of the DRIVE transform such that the frame immediately on its left, T, moves
along straight lines and rotates around fixed axes with respect to S, W, O, or G. One might notice that
the combination T TOOL can be considered as a single transform function of time such that:

T6 TOOL DRIVE~l= CONSTANT

The DRIVE transform can be broken down into a translational part and a rotational part :

- 55 -

DRIVE = Dt Dr

The D(transform determines the path of the center of rotation, while Dr determines the rotation itself,
which is a motion that one can easily visualize. The decomposition

DRIVE = Dr D

is also possible but the second transformation cannot be a pure translation in the general case. It is also
more difficult to visualize, because any change in the rotation part will also cause a change in the final
translational position. Actually, this situation occurs for the transformation product T6 TOOL, which
behaves symmetricly with respect to DRIVE. This effect can be observed when a manipulator equipped
with a tool performs a pure rotation around the tip of the tool : the manipulator must perform translar
tions and rotations whereas pure translations only require translations. This must be kept in mind when
introducing functionally defined transforms in the position equations. It is important to carefully deter
mine the placement of the center of rotation when laying out a functionally defined position equation.

For simplification we shall assume that the goal position has been reached so that the DRIVE
transform is reduced to unity. We shall also only keep two frames, the world frame W, and the tool
frame T. Let T(t) and i?(f) two transforms, pure translation and pure rotation function of time. The
four graphs leading to pure translations and pure rotations in world or base coordinates and then in tool
coordinates are :

Pure translation in world coordinates :

T6 TOOL
‘...........>------- ->

l !•
i i
<.............>

BASE T(t) .

Pure translation in tool coordinates :

T6 TOOL
........... >

I I
•.<: — * <..........
BASE T(t)

As mentioned before, pure translations lead to pure translations, no matter what frame we are
working in. The difference between these two cases is that if T(t) changes along a principal direction,
the frame T will also change along a principal direction in world coordinates in the first case, and in tool
coordinates in the second case.

Pure rotation in world coordinates.

T6 TOOL
.........> ------->

! I
i i
<..................... >

BASE R(t)

- 56- -

Pure rotation in tool coordinates :

T6 TOOL
...........>........... >

<.........<-----
BASE R(t)

The first case will cause the center of rotation to be fixed with respect to W (move with respect to
n The second case will cause the center of rotation to move with respect to W (be fixed with respect
to VP). We leave to reader the writing of the corresponding equations. Armed with this conceptual tool

we can introduce actual examples.

- 57 -

1) The first example defines two locations that differ position and orientation. The two posi
tions are described with respect to a moving frame in world coordinates. A loop causes a motion back
and forth from one position to the other. The final motion translates along the Y axis.

1 #ioclude ”rcc! . h”
; 2 .,

3 pumat ask()
A { ■

5 TRSF_P1R z, e , b, pal, pa2, conv;
6 POS_PIR pO, ptl, pt2;
7 int convfn));
8 int i ; ■■ :.
9 • ■ ■ ; ...

10 conv = newtrans(”CONV” ,convfn);
11 z = gentr_trsl (”ZV 0., 0.,864.);
12 e = gentr_trs1(”E” , 0, ,0. , 170.);
13 b = gentr_rot(”B”, 600. , - 500., 600., y«n i t, 180.) ;
14 pal = gentr eul(”PAl” , 30., 0., 50., 0., 20., 0);
15 pa2 - gentr~eu1(”PA2” , -30., 0., 50., 0, -20., 0.);

17 pO = makeposition(”P0” , z, t6, e, EQ, b, TL, e);
18 ptl — makeposition("FTl”, z, t6, e, EQ, conv, b, pal, TL, e)
19 pt2 — makeposition(”PT2”, z, t6, e, EQ, conv, b, pa2, TL, e)

■' 20 ̂ .
21 setvel(300, 50);
22 s e tmod (’ c ’.).;
23 setime(300, 0);
24 move(pO);
25 for (i = 0; i <4; ++i) {
26 movecart(pt1, 100, 1000);
27 movec ar t (jpt 2, 100 , 1000);
28. ■ ■
29 setmod(’j’);
30 move(park);

• 31 }
32
33 conv fn(t)
34 TRSF_PTR t;
35 {
36 t->p.y += 3.;
37 } .■

Line 1 includes the necessary RCCL declarations. Line 3 deserves a comment : when using the puma
manipulator, the RCCL library calls the function ‘pumatask’ as the task to be executed. Before calling
the ‘pumatask’ Function, the system perform some initializations. When the function returns, as you
might expect, the system performs a ‘waitfor(completed)’ before concluding and exiting. Line 5 and 6,
allocates transform and position pointers as needed by the task. Line 7 declares the name ‘convfn as a
pointer to a function that describes the moving coordinate frame, and line 8 allocates a counter variable.
Line 10, allocates a functionally defined transform attached to ‘cOnvfn’. Lines 11 through 15, allocate
and initialize transforms as described earlier. The Z transform sets a frame at the base Of the manipular-
tor. The E and B transforms ire the tool transform and U location with respect to the simulated con
veyor Note that the B transform contains a 180 degree rotatidh around the Y axis such as the Z direc
tion of frame described by B points downward (relatively to CONV and Z). The transforms PA 1 and
PA 2 define two locations with respect to the frame described by B.

- 58 -

Lines 17, 18, and 19 set up the position equations as described earlier.
Line 21 sets the velocity to 300 millimeters per seconds and 50 degrees per second and the motion

mode is set to Cartesian mode on line 22. The cal! to setlme on line 23, containing a null segment time,
and specifies a 3/10 of a second acceleration time when reaching P0 to allow for a sufficiently long transi
tion time because the next motion occurs with respect to a moving frame (the system has no means to
now how fast it is going to move). The ‘for’ loop, lines 25 to 28, causes eight move requests to be
entered in the queue. The eight motions are performed in 1 second each with a 1/10 of a second transi
tion time as specified by the macro movecart. Line 29 sets the mode to joint because the arm is to per
form a large motion and the path the tool frame is going to follow is of no concern. Line 30 is the last
motion request to the -park1 position.

The function ‘convfn’, lines 33 to 37, starts being evaluated when the first motion to “PTl” begins
and during the seven subsequent motions. The background function attached to the transform is called
by the system with one argument pointer, a pointer to the transform it is attached to. This permits us
to write functions independently from the actual transform they are attached to. Since newtrans
created the transform CONV as a unit transform, the value of the p, element of the position vector
increases from 0 to approximative!/ 286 millimeters(it is increased by 3 millimeters each 28 milliseconds
for 8 seconds). At the time the manipulator reaches P0, the CONV transform is equal to the unity
transform. The first time the manipulator moves to PTl, the motion is the result of a combination of
the Cartesian motion from P0 toward PTl and the motion due to the moving coordinate frame.

This example introduce the first method for generating functionally defined motion by a periodic
increment of a static variable (here a transform element).

- 59 -

2) In this second example we will suppose that the manipulator is mounted on a revolving base or
that the manipulator is working with respect to a circular conveyor whose rotation axis is collinear with
the first joint. We have introduced minor differences in order to point out some other aspects.

1 #i nc]ude . ”rc c I . h”
2
3 static iet 10;
4
5 pumatask()
6 {
7 TRSF PTR z, e , b, pal, pa2, pivot;
8 POS_PIR pO, ptl, pt2;
9 int pivot f n();

10 inti;
11
12 pivot = newt rans("PIVOT” , pivot fn);
13 z = gentr_trs1(”Z”, 0., 0., 864. j ;

14 e = gen t r _t r s1(, 0.

©H

■

©

15 b “ gentr_rot(”Bl”, 600. , -300., 700., yunit, 180 •);
16 pal — gen t r en!(”PAl” , 30. , 0., 50., -10., 10., 0.)
17 pa2 = gen t r __eu ! (’’PA2”. , -30., 0., 50., 10. , - 10. , 0 .

18
19 pO = makepos i t i on (TO” , z, t6, e, EQ, b, TL, e);
20 ptl = makeposition(”PT1” , pivot, z, 16, e, EQ, b, pal

21 pt2 = makepos i t i on (,?PT2” , pivot, z, 16,, e, EQ, b, pa2

22
23 s e tv e1 (300, 20);
24 s e tmod(’o’);
25 set ime (200, 0);
26 move(pO);
27 wait for(completed) ;
28 10 = r time ;
29 for (i = . 0; i < 6; -H-i) {
30 move(ptl);
31 move(p 12);
32 ' }
33 setvel(400, 100);
34 s e tmod(? j ’);
35 move(park);
36 }
37
38 pivotfn(t)
39 TRSF_PTR t;
40 {
41 Rot(t, zunit, (tO - rtime) * .010);
42' }

The lines 1 to 26 are basically the same ones and do not deserve further comments.
In this example, the moving coordinate frame will explicitly be written as a function of time. It

makes use of the external variable rtime updated by the system each sample interval. The variable
rtime reflects the time elapsed since the beginning of the task in milliseconds. Although this variable
may be reset by the user to any value, we have chosen to record in ‘tO’ the time when the functionally
defined motion begins. Although the position of the moving coordinate frame is periodic, it is necessary
to set the beginning of the motion at a given instant in order to keep the resulting task execution within

60 -

the work range of the manipulator. The macro waltfor suspends execution until all the preceding
motions are executed and the initial time is recorded at line 28. In actual implementations, the use of an
event WouSd permit us to synchronize the task execution with arbitrary motions of, say, the conveyor.
The segment times in the ‘for’ loop, lines 29 to 32, are left unspecified and will be computed as to obtain
an angular velocity of 20 degrees per second (Sine 23).

It is important to notice the placement of the functionally defined transform in position equations
so as to produce the desired effect.

The'functionally defined frame is merely described as a negative rotation around the Z axis of 10
degrees per second.

-61 -

3) In this third example the positions PA1 and PA 2 are now described with respect to rotating
table off the axis of the manipulator’s first joint. This wiH cause the end effector to rotate such as to
maintain a constant orientation with respect to the table.

1 ^include ”rccl.h”
2
3 'Static' int tO;
4
5 pumat ask()
6 { ' ' V,
7 IRSF_PTR z, e , b, pal, pa2, table;
8 POS_PTR pO, ptl, pt2;
9 i n t t ab1efn();

10 . int i ;
11
12
13
14
15
16
17
18
19
20
21

table — newt ran s(”TABLE”, tablefn),
z = gentr_trsi(”Z”,0., 0., 864.);
e = gentr_trsi(”E” , Oi , 0- , 170:);
b = gentr_rot(”B”, 600. , 300, 700 . , yun 11, 180 .) ;
pal = gentr_rpy(”PAl< , 0., 0., 0,, 0., 0., 10.);
pa2 = g e n t rr p y (” PA2 ” , 0. , 0- , 0. , 0. , 0 - , - 10.) ;

pO = makepos i t i on (”PQ” , z, t6, e, EQ, TL, e)>
ptl = makeposition(”PTl”, z, t6, e, EQ, b, table, pal, TL, e
p12 - makep6sition(”PT2”, z, 16, e, EQ, b, table, pa2, TL, e

22
23 setvel(3Q0, 20);
24 setmod(’ c ’) ;
25 setime(2Q0, 0);
26 move(pO);
27 wait for(complef ed);
28 tO = r time ;
29 for (i =0; i <6; ++i) {
30 move(pt1);
31 nrioye (pt2) ;
32 }
33 setvel(400, 100);
34 setmod(’j’);
35 move(park);
36 }
37
38 t ab 1e fa(t)
39 IRSF PTR t;
40 {
41
42
43
44
45
46

real rps = .03;
real alpha = rps * (tO - rtime).* .001

t->p.x =100. * c o s (a 1 ph a * p i 12_j?i). ;
t->p.y = 100. * sinjalpha *, pit2_m);
Rot(t, zunit, alpha* 360.);

47
The positions equations set apart, this prograip i* quite similar to the preyious^one. The main difference
lies in the way those equations are set up in order to-obtain tire desired effect. The functionally described

62 -

transformation is made up from a translation part and a rotation part. The variable ‘rps* describes a
rotational velocity of 3/Id) of a rotation per second. The variable pit2_m belong to the set of math
constant entry points.-

- 63 -

4) The last example describes a task that causes the mSinl^ulatpr end effector to follow a circular
path while always being perpendicular to its trajectory. This Scnieved by setting up a position equation
to obtain a remote center of rotation.

1 #include "reel .h”
2 . ' . ; ■ ■ '
3
4 pumatask()

■ 5. f .'■■■ ■'•.■■■■ ■

6 TOSF_PIR z, e , b, perpO, perp, roty;
7 POS_PTR pO, pt;
8 int perpfn();
9

10 z = gentr_trslf’’Z”, 0., 0., 864.);
It e = gentr_trs1(”E” ,0., 0. , 170.);
12 b = gentr_tfsi(”6*, 600. , 300., 600.);
13 roty = jgeh t r_rot (’’RdTlP , 0., 0., 0., yunit, 180.);
14 pe rpO = gent r_rot(”PERPb”, 6 . , 0. , 300 . , xun i t, 0.) ;
15 perp = newtrans(”PERP”, perpfh);
16 ■ ;
17 pQ = makeposition(”P0” , z, t6, e, perpO, EQ, b, roty, TL, e),
18 pt= makeposition(wPT”, z, t6,e, perpO, EQ, b, perp, roty, TL,
19
20 setve1(400, 100);
21 setmod(’c’);
22 set ime(300, 0);
23 move(pO);
24 setime(200, 4000);
25 mov e(p t);
26 setmod(’j’);
27 move(park);
28'
29 .. :^ :
30 perpfn(t)
31 TRSF_PTR t;

.■32... {' V' ■'
33 real rpm = .20;

35 Rot(t, xunit, rpm * goalpos->scal * 360.);
36 ■ } ^ ' 1 •-

In this example, the functional motion parameter is the ‘seal’ position structure entry. When the
background function is evaluated, the global goalpos pointer is equal to ‘pt’. The variable rpm stands

for rotations per motion.
We have introduce some examples for coding functionally described trajectories. The lay out of the
programs, especially the position equation specifications are certainly not unique, and a lot of room
is left to imagination.

- 64 -

6. Sensor Integration
By using sensors, the user, has the ability to write, programs that'may depend on information

acquired at run time. The behavior of the manipulator can.-be. influenced by modifying the locations it is
moving to or by interrupting a motion. If the location can'be determined/ahead of time, we shall call
that presetting the world model. A special case is the transforms initializations. If the locations can be
determined synchronously and permit us to influence the manipulator’s path, we shall cal! that tracking.
If the locations can be determined by stopping the manipulator on condition, we shall call that guarded
motions. If the final position of the manipulator is to be retained for the determinations of locations, we
shall call that updating the world model,

6.1.,;Presetting the World Model#
In the section ‘Synchronization’ we have already met such a situation. The example of a program

interacting with a user was given :

. :'tor (; ;) {
pr i ntf(”enter Z increment ”);
scanf{”%f” , &i z) ;
b->p.z+= iz;
move(p);

;.v/v 'y-./;.;'-

The hold transform feature allowed us the specify different locations ahead at time and no synchroniza
tion is specified.

Let us consider the integration of a computer vision system. We assume that a camera has been
attached to the link 4 of the PUMA manipulator. The computer vision is described in terms of a func
tions ‘snapshot’ which is supposed to take a picture of the scene and store it in memory, and of a func
tion ‘getobj’ able to extract the position and orientation of an object in the camera coordinate frame.
The operation of taking the picture is expected to be short but the task is programmed in such a way
that the processing time of ‘getobj’ does not require to stop the arm. The strategy consist of moving the
manipulator toward a position where we expect an object to be captured in the field of the camera. We
synchronize the program such as the picture is taken at a given point of the trajectory. We also record
at this instant the position of the manipulator given by T6 and we reconstruct the camera coordinate
frame from the transform 175 internally maintained by the system. We could also compute the values of
the transform T4 since we can know at any moment the joint angles values (see include files). Thus we
have all the information necessary to perform an approach motion where the object has been found,
grasp it, and move it to some other place.

A bare bone version of the task is described in terms of three position equations : the position
where to expect an object to be seen by the camera, the position where t6 grasp the object, and the posi
tion where to put it :

- 65 -

1 #i nc1n d e ”rcc! .h”
2 #i nc!ude ”hand.h”
3 #include ”which.h”
4
k

#i nc1ude ”kine.h”
o
6 pumatask()
7 {
8 TRSF__PTR z, e , cam, o, coord, t6r, u5i, expect, drop;
9 POSPTR look, get, put;

10
11 z = gentr_trsl {Z ” , 0., 0., 864.) ;
12 e = gentr_trs1(”E” ,0. ,0, , 170.) ;
13 cam = gentr_rot{”CAM” , 0., 0. , 50. , xunit, 90.);
14 expect - gentr_rot("EXPECT”, 500. , 100. , 600. , yun i t , 180
15 drop = gentr_rot(”DROP ” , 400. , -100 . , 500. , y u n i t, 180.);
16 o = newt raas(”0”, hold);
17 coord = newt rans (”COGRD’’ , hoi d);
18
19 u5i = newt r'ans (”U5I” , varb);
20 16r = newt r an s(”T6R”, varb);
21
22 look = makepos i t i on (’’LOOK” , z , 16 , e , EQ, expect, TL, ‘e) ;
23 get = makeposition(”GET”, 16 , e, EQ, coord, cam, o, TL, e);
24 put = makepos i t i on ("’PUT” , z, t6, e, EQ, drop, TL, e);
25

- 66 -

26
27 setvel(200, 100);
28 for (; ;) {
29 move(look);
30 waitas(goaIpos = look J
31 snapshot (') ;
.32 As sign t r(16r / 16) ;
33 Inver t (u5 i , &snc s_d . u.5) :
34 Trmu 11 (coord , t6r, u5i)'
35 if (! getobj (o)) {.
36. ■ break;'
37 .. }
38 get ->end —'0;
39 d i s t ance (’'dz w , -30.);
.40 ■ ’ move(get);
.41 move(get);
42 s top(50) ;
43 dist-ance^dz”, -30.);
44 . , move(get);
45
46 wa itfor(get->end);
47 wa itfor(get->end);
48 CLOSE;
49 printf(”c1 osing\n”);
50 move(pnt);
51 wait for(put->end);
52 OPEN; ■
53 printf(”opening\n”); ■ •
54 .} •
55 move(park);
56 }
57
58 snapshot))
59 {
60 pr int f(” snap\n”);

ook->sca

61 }
62
63 ge t ob j(t)
64 TRSF_PTR t;
65 { ~
66 static int number =5;
67
68 TrsI(t, 0., 0., 200. + number * 30.j;
69 Rot(t, yunit, 10. * number);,
70 re turn-(number--);
71 }

> -8);

Q

Line 1 includes RCCL declarations. Line 2 includes the file hand.h that contain the two macros
‘OPEN’ and CLOSE’ to actuate the pneumatic gripper. Line 4 includes the file kine.h that contains
manipulator dependent informations about the kinematics. This file contains the structure declarations
and external declarations of variables internally used by RCCL. Since this file depends on the manipula
tor type it must be preceded with the definition of the particular manipulator (‘PUMA’ for the Puma
600, ‘STAN’ for the Stanford arm). The file which.h included line 3 contains the line : “#define

- 67 -

PUMA” that describe the current implementation. We are primarily interested in the variable called
Bnsc_d declared in k!ne.h as :

typedef struct sincos {
real cl, si, c2, s2, c23, s23, c3, s3, c4 , s4, c5, s5, c6 , s 6;
real dlx, dly, dlz, rlx, rlz, d2x, d2y, d2z, d3x, d3y, d3z;
real h;
1KSF u5)

} SNCS, *SNCS_PTR;

extern SNCS sncs_d;
The elements of sncs_d are kinematic parameters updated at sample time that the user may use. For
the Puma manipulator, the first line is the list of sines and cosines values of each joint angles. The
second and third line exhibit the coefficients of the Jacobian matrix that contain multiplications com
puted in link 4 [9j. The fourth line of type ‘TRSF’ is the transform US and we shall make use of it.

Back to the program, after the pointer declaration we find, lines 11 through 20, the allocation of
transforms. For simplicity, we will name them the same way as the frames that they describe.

Z : a reference frame at the base of the manipulator.

E : the end effector frame*

CAM : the camera frame described with respect to link 4.

EXPECT : the position where we expect to find an object in the camera field with respect to the Z

frame.

DROP : the position from where we would like the manipulator to drop the object.

O : The position of the object in camera coordinates that we declare as hold since it will be changed at
during the task execution.

COORD : The position of the camera in base coordinates that is changing as the manipulator moves.

U5I and T6R : auxiliary transforms that are used to hold the inverse of U5 and a copy of T6 at the
moment of taking the picture. They will be used to compute the transform COORD, but are not
used in a position equations.
The three calls to makeposition, lines 22, 23, and 24 define to following transform graphs :

LOCK :

T6 E
--------->------- ->

Z EXPECT

This first graph is tjuite ordinary.

- 68 -

GET :

T6 E
---------> -----> <-

<......... >
COORD CAM O

This graph describes the final position entirely in manipulator coordinates. The transforms COORD and
O are measured at the moment of taking the picture and their values memorized in the motion queue. It
is mapped on the equivalent graph :

GET :
CAM

----->
0

T4
---- ; - -■>

U5
--------->

E

T6
_____ .s

N- - - • •
COORD CAM 0

from which we can derive :
COORD = T6 US'1

PUT :

T6 E
.........> ------->

Z DROP

Again, an ordinary graph.
Statement, Sine 27, sets the velocity and one can notice that the motion type is left in joint mode,

since we are more interested in the end of path segment position than with the trajectories. The body of
the program is essentially a loop that will exit when the function ‘getobj’ returns zero value. The func
tion ‘getobj’ is simulated and returns five different successive values for the O transform.

At the beginning of the loop, line 29, a motion is requested toward the ‘LOOK’ position. The pro
gram is then synchronized such that ‘snapshot’ is called at 80 per cent of the trajectory. Note that a
‘waitas(look->scal > .8)’ statement may not be sufficient since after execution of the first loop the value
of iook->scar is left at 1. as a side effect of the previous loop, and no synchronization would be
achieved. Values of T6 and Ub are copied on the fly, and the COORD transform value computed, lines
32 to 34. The function ‘getobj’ has the remaining trajectory time to obtain of value for 0. An
‘approach - grasp - depart' sequence is then performed before the next loop, lines 39 to 44.

This program is only a sketch and many improvements are possible. For example, we may like to
interrupt the motion and proceed to the grasp sequence as soon as a value for 0 is obtained. We shall
see in the next section how to achieve this result. Another variation would be to introduce a conveyor
carrying objects in the vision field of the camera. The only required modifications would be the position

equation for ‘GET’
get = makepos i t ion(’’GET’\ z , t6, e , EQ, copy, coord, earn, o, TL, e

This is because the object position information is entirely contained in the transforms T4, CAM, and O,
and the position‘GET’would be tracking the conveyor.

6.2. Guarded Motions
This section explains how to interrup a motion on condition. Interrupting a motion can allow us to

stop or to start the arm, to suspend or resume a motion toward a position. This can be achieved in all
eases by setting the Hag called nextmove at a non zero value. This causes the motion currently being
performed to be interrupted and the next in the queue to begin. The value to which the flag nextmove
has been set is returned in the ‘code’ field of the structure ‘POSr, described earlier. When using this
feature, the user must be careful not to conflict with values that have a predetermined meaning for

RCCL :

^define OK - 1
^define LIMIT -2
^define ONF -3
^define OND -4
For example, one could use only positive values.

There are basically two ways of using the flag nextmove. It can be set either from a background
function, or from the user’s foreground process. Let us illustrate this by an example using a simple sen
sor which is a small linear potentiometer. The distance of which the shaft is inside the body of the
potentiometer can be measured through analog channels. The robot controller performs analog to digital
conversions when specified via the function adcopen and the values can be read from a global array
updated at sample intervals [6]. We will make use of this information to program guarded motions.

70 -

1 ^include "rccl.h” •
2 ^include ’’hand.ii”
3 #include ”rtc.h”
4 ^include ”umac.h” •
5 ■
6 extern struct how how;
7 . v:V; _ : ■"■■■
8 static sat sensor;

: 9 \ '
10 #define TOUCHED 10
11 ■ ■ v'.-.v : ■ .: ■ \ ■. '
12 puma task()
13 .■■■■.■: ' . - "■ •
14 int touch!n() ;
15 'IRSF_P'IR z, bl, b2, fing, getit, flip;
16 POSJPTRget, pi, p2;
17. int q;
18
19 z = gen t r^_t r s 1 (”Z” , 0,, 0 , , 864 .);
20 bl - gentr_trs1(”B1”, 600 . ,-200., 400.);
21 b2 = gentr_trs1(”B2”, 600. ,-100., 400,);
22 Bng = gentr_rot(”FING”, 6., 0., 200., zunit, -90.);
23 getit = gentr_rot("GETIT”, 600. , 01, 600., yunit, 180.);
24 flip = gentr_rot("FLIP”, 0., 0., 0., yunit, 180.);
25
26 ...pi'— makeposi t i on (”P-1” , r, t6, fing, EQ, bl, flip,TL , fing)
27 p2 = makeposition("P2” , z, t6, fing, EQ, b2, flip,'ll, , fing)
28 get = makeposit ion(”GET” , z, t6, EQ, getit, TL, 16);
29 . ' : ' ' ■ . ■ ' ■
30 setvel(300, 100);
31 move(get);
32 wai t for(completed);
33. OPEN; :
34 printr(”put the sensor in the jaws ”);
35 QUERY(q);
36 CLOSE;
37 printf(”go ahead ”);
38 QUE3tY(q) ;
39 .. - if (q == ’n’) {
40 move(park);
41 re turn
42 '■ ;■ 7'-' / ;

43 sensor = adcopen(7);
44 setvel(100, 100);

. • for (; ;) {' .
4.-6 pl->end = p2->e.nd -= \0'-; .
47 move(pi) ;
48 eva!fn(touchfn);
49 setime(0, 0);
50 distance(”dz”, 100.);

: 51 move (pl) ; "..■■■
. 52 ■ mov e(p1); • .

■ 53 . ;
■54 move(p2);
55 evalfn(touch fa);
56 setime (0 , 0) ;
57 dis t ance (’9dz” , 100 .) ; *
58 move(p2);

‘59 move (p2) ;
60 .
61 waitfor(pi->end)
62 printf("guarded motion 1 starts\n”);
63 wai t for (pl>>end)
64 if (pl->code == TOUCHED)
65 printf(”touched\n”) ;
66 else
67 pr s n t f(”no t t ouched\n”) ;
68
69 waitfor(p2->end)
70 printf("guarded motion 2 starts\n”);
71 waitfor(p2->end)
72 if (p2->code :== TOUCHED)
73 pyiofcf-(-"touched\ n ") ;
74 else-..
75 priijt f("not tpupjied^n.^-);;
76 ■" .. /Vv-V ■■■'
77 pr i n t f ("mor $? ”);
78 QUERY(q); if (q ==■ - nf) break;.. /
79 ■ }■■■■■
80 se'ty.e 1.(300 , 100) ;
81 move(park);
82 waitfor(comp 1eted) ;
83 OPEN;

. '84' ' } , .
85
86
87 touchfn()

■ 88';- , {.. ' ■' ■ - ■■'■ ■
89 if (how.adcr[sensor] > 1) {
90 nextmove == TOUCHED;

■ Qi • ,} • .
92 }

We are now familiar with lines 1 and % Line 3 includes the real time interface declarations [6], in
order to gain access to the analog conversions. Line 4 includes- the .iile umac.h tha a set of

- 72 -

useful micros (see include files), among them we shall use the macro ‘QUERY’ that causes the prompt “
(y/n) ” to be printed on the terminal and will return when the user has typed a ‘y’ or a V. The typed
character Is then returned in the macro’s argument. Line 6 declares the type of the array in which we
get the analog readings. Line 8 allocates an integer that will be the index in the array ‘adcr’ of the read
ings of the opened analog channel. Line 10 defines the return code of the guarded motion. Let us skip
the transforms and position initializations that do not show anything special. With a combination of
queries we ask the operator to place the sensor in the gripper’s jaws and to command the gripper to
close. We leave to the operator the option of canceling the task on line 39 if something goes wrong.
Line 43 allocates analog channel number 7 to the sensor. In the body of the loop, lines 45 to 78, the
manipulator performs two guarded motions : moves to a position next to an expected obstacle, moves
along the Z direction in the fuel frame, while evaluating at sample intervals the monitoring function
‘touchfh’. The cal! to aetlme specifies a zero transition time at the end of the motion in order to obtain
a fast reaction time. The null transition time can be specified here as we have made sure that the veloci
ties are small. We also make sure that the motion queue contains a position such as the arm will back
up when the obstacle in encountered. This is the purpose of the move statements lines 52 and 59.

Using the waitfor macro, the program can print information at the terminal as the task proceeds.
In particular, it is possible to decided if the guarded motion did encounter an obstacle. The value
‘TOUCHED’ is returned in the ‘code’ part of the positions if the monitoring function caused a motion
interruption, otherwise the value ‘OK’ is returned. The monitoring function, lines 86 to 91, checks the
analog conversion reading ahd sets the Sag nextmove when appropriate.

Some other combinations are possible, as Shown by the following code patterns :

move (p) ;
eva1fn(monitorfn);
setimejlOO, 10000); '/ V :
move(p);
wait f b r (compfeted)
if (p->code != EXPECTED) {

printf(”timeout af ter 10 seconds\n”);
error)) ;

. ■/rY>YiY'\'' Yy'-YY-Y' ;■ ■. v:-;'
mbve(pl);

causes the arm to stop at the position ‘p’ while evaluating a monitor function, and the motion to resume
on condition. It is not possible to use a stop statement here, since stop keeps all the attributes of the
previous motion and we need to specify a new move request. The sequence of code :

eva!fn(monitorfn);
move(p);
stop(lOGO);

, ' move (p):7; .

does not causes a motion to be interrupted for One second, unless the position ‘p’ has been reached when
the stop request is executed because it is equivalent to a new motion to the last position. Similarly, one
must be careful that the stop statement does riot necessarily mean that the manipulator will stop in
absolute coordinates if the position equation for ‘p’ contains moving coordinate frames. When an abso
lute stop is needed or when a motion has to stop and the manipulator has to remain exactly at the posi
tion where it stopped, RCCL provides a built-in position equation of the following form :

T& = HERE

where HERE is a transform internally maintained by the system to be always equal to T6 at the end of
any path segment. At startup time, the system issues the following call :

there = makepos i t i on (’’THERE” , t6 , EQ, here , TL, 16) ;

to implement this feature, where here is of type TRSF_PTR and there of type POS_PTR. 'fhe

- 73 -

following code pattern shows how we can use the fact that the hag next move can he set from the user’s
process to implement a stop on terminal input :

raov e (p) ;
move(there);
print f("h i t return to interrupt motion”);
getcharf);
nextmove = YES;

When ‘return5 is hit, the system'interrupts the motion .toward *p\ and starts a transition to the position
‘there’ that causes the arm to over shoot by a magnitude as great as the velocity was high.. When the
velocity is. small and a sharp stop is needed we can write :

move(p);■
setime(0,' 0);

. move(there.
printf(”hit return to interrupt motion ”) ;
getcha r •
nextmove = YES;.

In the same way monitoring can achieved with :

mov e (p) ; '
wa it as(goalpos == p)
p->end = 1; /* Presetevent */
wh i1e(p->end) {

if (conditioh) {
nextmove ~ YES;

' ' ' - V : , . ■■ ‘ - ‘
suspend fg();

} '

This way of coding can be useful in the cases when it is not possible to place the condition calculations in

the background function.
.RCCL internally monitors if the joint physical limits are going to be reached (within a few degrees

for each joint). If such an error condition occurs, the system automatically issues a move to the there
position, that causes an immediate stop next to the limit position and returns the code ‘LIMIT’ for the
motion that caused the error condition. A new motion is then taken out of queue and the error condition
is reset. If the new motion persists in causing a joint limit error, the whole task will abort. If motions
are likely to cause such joint limit errors, the returned codes should be checked and the appropriate
action undertaken.

$.3. Tracking
Tracking is obtained by synchronously updating functionally defined transforms from sensor- read-

ings. All the examples given in the section “Functionally defined motions” would become examples for
tracking motions if we would replace the parameter ‘time’ by some sensor readings reflecting the position
of the moving coordinate frames. We shall however explain yet another example using the simple poten
tiometer based position sensor introduced in the previous section. The sensor, placed m the tool frame,
allows the manipulator to track an arbitrary surface intersecting the Z axis of the tool frame. The track
ing function is written in such a way that it causes the motion velocity to be proportional to the distance
the shaft of the linear potentiometer is protruding out of the sensor. A velocity control of the manipula
tor end effector is implemented such as that the shaft is partially inside the body of the sensor, the veto-
city along the Z axis of the tool frame is controlled to be zero.

-■74 -

1
2
3
4

' 5 ■
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

^include -reel .h”
^include ”rte.h”
^include ”umac.h”

ex ter n s t r u c t how h ow;

int sensor;

pumatask()
{ TRSF_PTR 2, bl, b2, fing, fins, over;

POS_PTH pi, p2, get;
;int fingfn()
int q;

fing newt r ans (”FIMj” , fingf n
Sng, zunit, -90);

fins =3 gen t r_rot (”FINS” , 0 . ,
i = gentr^rot(”Z”, 0->
bl = gentr _r ot(”B1”, 600. ,
b2 — gen t r_rot(”B2*, 600. ,

0. , 0
864.

300. ,
300. ,

over = gentr rot("OVER”, 600., 0.

. , zunit, -90.);
, zunit, 0 .);
450., yunit, 180.);
450., yunit, 180.);

. 600., yunit, 180.)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4 2
43
44

pi
P'2
ge t

makeposition(”P1” , z , t6, fins, BQ, bl, TL, fins);
makeposition(”P2” , z, t6, fing, EQ, b2, TL, fing);
: makeposi t ion(”GET”, z, t6, EQ, over> TL> ^6),

sensor = adcopen(7);

sefcmod(*c’);
for (; ;) { ‘

setve1 (400, 300) ;
move (ge t').;.
move (pi) ;■
setve!(100, 100);
sampl e(15) ;
mov e(p2);
samp I e (30) ; ■ .. .
printr(’’more ?”); QUEHY(q); if (q ==’n’) break

setvel(400, 300);
setmod(’j’);
move(park);

45 - '
46 .. . ' . .

'47
48 ' ' • ■
49 fing fa(t)
50 TRSF^pm t ;
•51 {
52 t->p z += (bow.adcr[sensor] * .01 - 3.) / 3.;

;:53. } .

- 75 -

This example uses three positions equations. The position Pi from where the tracking motion
begins, uses a TOOL transform FINS set as a translation and ai rotation such as to present the sensor
with a proper angle. The position P2 is the end of the trackings motion, the TOOL transform FING is
initialized to be equal to FINS. However, as the motion progresses, its p2 element will be changed by the
function ‘fingfn’ in order modify the trajectory in the desired direction. The function lines 49 to
53, implements the control law whose parameters have been experimently determined, in terms of a gain
and an offset. The sample rate is set at a higher value during the tracking motion in order to obtain a
faster response.

An interresting variation of this program would be to record the value of T6 as the tracking
proceeds. Since it is not possible to perform any input-output from a background function, a buffer alter
nating technique would need to be implemented : while the background function fills one buffer, the
user’s foreground process could dump another one on file. It would then become possible to replay very
long motion sequences, as they have been recorded or in such a way that the tool frame would have a
fixed angle with respect to the tracking trajectory as required in welding applications (Section “Function
ally defined motions”, example 4).

When the sensory input is too slow or when computations are too lengthy to be performed in a
background function (10 ms cpu time every 28 ms would really tie the machine down), a pseudo tracking
can be obtained by using an asynchronous loop in the user’s process updating a varh type transform. For
example :

TRSF^PTR z , e , b , f ;
POS_PTR pO, pi, ... , pt;
TRSF changes;

z = . , .
e = . . .
b = . . .
r = . . .
upd = newtrans(”UPD”, varb);

pQ ~ makeposition ;
pi = makeposition (...);
pt = makeposition(”P”, z, t6, e, EQ, b, upd, r, TL, e);

move(pO) ;
move(pi) ;
move(pt);-

wa i t-as-(goal pos .= pt)
whi1e(goalpos = pt) {

get sensor {Slc hanges) ;
Trmultinp(upd, ^changes);
suspendfg() ;

} . ’ '

The function ‘getsensor’ returns alterations to be performed on the transform UPD, that are accu
mulated by successive multiplications. The function suspendfg is. used to. allow the machine to
“breath”. The changes should hot cause morh than a few millimeters or degrees position steps at the end
effector.

- 77 -

The update function .causes the position equation ‘pos’ to-he .solved for the transform Trans’, using the
value of T6 at the end of the corresponding path segment. Qf course, the transform must belong to the
position equation. The .transform must also be of type varb. The second argument, a position equation
pointer, is not necessarily the same argument as the one of the corresponding motion statement. -For
example, we can update a transform on user request :

a ==' gen t r :
e = gee t r. . .
y =• gentr
% '= gen t r . . .

x = new.trans(”X” , varb);

pi = makeposi t i on (”PT” , z, t6, e, .EQ, a , TL , e) ;
p2 = makepos i tion(”P2” , z, 16 , e, EQ, x , y, TL , e) ;

update(x , p2);
move(pi);
move(p 2);

•• pr i n t f (”h i t return' toj interrupt motion
ge t char();
nextmove = YES;

An update request is associated with position PL When the user hits ‘return1, the motion toward PI is
interrupted and the transform X is solved as :

X ~ Z T6 E Y~l

and the position P2 corresponds Exactly to the position the manipulator was and a stop is obtained. Sub
sequent motions to this position are therefore possible. The transform X can also be used in other posi
tion equations. One must notice that all the positions containing X are consequently changed. This
leads to numerous applications of update.

- 78 -

7. Force Control
In assembly tasks, objects are required to be brought into contact, and motions have to be stopped

when the collision occurs Once objects are in contact the task is said to be constrained because arbi
trary motions are no longer possible in every direction. The notion of guarded motion has been intro
duced earlier and force guarded motions are quite similar. The force monitoring function is built into the
system considering that it is somewhat dependent on the installation and that force specifications are
really an integral part of a motion description. Force specifications are transmitted to the background
process via the limit primitive. When the task is constrained, the arm is requested to exert forces on
objects and is no longer position servoed for each of the six degrees of freedom. Depending on the
geometry of the task, one or several directions are selected to provide for compliance. The arm is then
said to enter a comply mode which is specified by the comply primitive, When the contact between
objects ceases, or when constraints disappear, the arm has to gain back position servoed directions. This
is achieved by the lock primitive. The cessation of contact can be detected by differential motions of the
arm when the constraints disappear. The primitive limit is also used for this purpose.

7.1. Stop, Go on Force, on Displacement
As we have seen before, stop and go are not essentially different, they both correspond to the interr

uption of a motion. When a limit condition is specified, a monitor function is internally activated for the
subsequent motion. The form of limit is :

Simit(dirs, value [,valuel...)
char *d i r s ;
double value;

The limit directions specifications are expressed in the string first argument with a combination of the
following, separated by one or several spaces :

fx ' fyV-fz ::-force -■■■■■ along X Y Z
■ tx ■:.iy. ,t:z • : torque' ■about X Y Z :

dx dy dz : displacement along XY Z
rx ry rz : rotation about XYZ

All limit specifications are expressed in the tool frame of the corresponding position equation and take
effect for the subsequent move request. To each direction specification must correspond a value, for
example:-'

limit(,,fx tz”, 10. , 5.);

will request a force of 10 Nektons along X, and of a torque 5. Newton-meter about Z to be moni
tored. When either of the specifications is exceeded, the corresponding motion fa interrupted and the
task proceeds with the next request in the motion queue. The ‘code’ field of the corresponding position is
set to ‘ONF’. Likewise, distance specifications can be coded as :

iimit(’’dx ry”, 3., 1.);

that causes the motion to be interrupted when the distance change along X exceeds 3 millimeters or
when the rotations about Y exceeds 1 degree. Only absolute values of the limit specifications are taken
into account.

7.2. Servo frfodes, Comply and Lock -
A comply servo mode fa requested via the comply primitive according to the following format:

comp 1y(di-rs, value j, value] ...)
char *dlrs ; ■-
double value;

The comply primitive causes the subsequent motion request to be executed such that forces and/or

torques are maintained in the tool frame instead of positions and/or rotations. The arm then enters the
specified comply mode in the corresponding motion and air the fallowing motions un-til the lock primitive
brings the manipulator' back into position servo mode for the selected directions. The format for lock is

lock(dirs)
"char rs ■'

The first argument of comply and lock is a string containing direction; .specifications made up of a
combination of the following :

fx'fy. fz : force along X Y Z
fcx ty.'tz-1 torque about X Y Z.

The second argument of comply is the signed magnitude of the desired forces and/or torques.
Care must be taken that the sequence of servo mode specification is consistent. Requiring the arm

to comply along or about a direction already in comply servo mode or locking a" direction not in comply
servo mode will cause an error. In order to keep track of the different specifications, line indentation is
advised

inove(pO) ; .
■ comply(”dy”,) ; .7 V

move(pi) ;
7'.; move(p2); ; A7/;-''

comply(”dx .ry”, 5;. , 3.); •
move(p3);

■ 1ock (* ry”); : ;;
move(p4);
move(p5);

1 ock (”dx5’) ;
move(p6) ;

A 1 ock(wdy”) ;
: move{p7)-; . : ,•

Either Cartesian or joint motion modescan used for complying motion sequences. However, they
behave differently. In Cartesian mode, the system automatically compensate for position errors due to
unwanted accommodating joint motions [2j. In joint-mode, there is no compensation,

7cS. Carrying Load®
The function massls .allows the user to specify that a mass' is- to '.he. carried -by the. manipulator. .

The mass of'the object, expressed in kilograms, causes the system to. compute gravity compensation
terms in the motions using-force control. . -The mass of object is initially.-set .to 0.;and;can. be set or. reset ■
via massk: ..

- -.mass i s..(mass).
doub1e mass;

As usual, the new value is taken into account the next motion request.

7.4. Example®
1) The first example involves a solid horizontal surface. The manipulator is programmed to reach

to the table in a motion normal to the expected surface. It then enters the comply mode in order to slide
along. During the second sliding motion, it detects an edge of the surface by exerting a preload force and
monitoring theposition changes in' the Z direction of the tool frame.

- 80 -

1
2
3
4'

17
18
19
20
21
22
23
24

^include ”rcc 1 .h”
^include ”umac.h”

pumatask()

O V
6 TKSF PTR z bi, b2, b3,

7 pqs^PTR pi, p2 , p3,. p4, p5

8 int ; ;q.;-
9

10.. - ! z .= ge® t.r _ tT.-S 1 ("Z”.; - . 0. V 0

11 ' . . e.. = gentr._ t r s i (> 0. , 0

12;fa 1 ■ ~.gen tr _r.o t'(”B1w , 600.

13 b2 ■=- genir _ro t/(”B2” , 600.* i
14 ;..V b:3 == . gen t r jOt;{ ”B3” ,.600 • i
15 fa 4 gen t r J° t (”B4 ” ,600 • f
16 b5 = gent r o t (■• ”B5” , 500 *. i

pi = makeposi t ion(”P1”
p2 = makeposition(”P2”
p3 = makeposition(”P3”
p4 = makeposi t ion(”P4”
p 5 = mak e po s ition(”P 5”

864 .) ;
170.);

-loo., 300. , yun i t , 180.
200 . , 300 . , yun i t , 180.
200 . , 400 . , yunit, 180.

-100., 400. , yun i t , 180.
-100., 300 . , yun i t, 180.

z , t6, e, EQ, bl, TL,i ®) >
z , 16, e , EQ, b2, TL,r «).;■
z , t'6, e , EQ, b3, TL , e) ;
z, t'6, e , EQ, b4 , TL t ®) >
z, 't'6'. e, EQ, b 5, TL > ®) *

25 setmod(’ c ’);
26 setvel(200, 100);
27 move(p4);
28 f or (;)..■■{ '
29 QUERY(q); if (q -= ’n’) break;
30
31 pi->end = 0;
32
33 se tve1 (20, 20);
34 Iimi t (” f z” , 20.) ;
35 move(pi);

■ 36 '
37 setveI(100, 50);
38 comply(”fz”, 10.);
39 move(p2);
40 lock(”f z”);

' 42
43 waitfor(pl->end);
44 if (pl->code != ONF) {
45 nex tmo v e = YES;
4g pr i iit f (”where i s the t ab 1 e ?\n”);
47 setve1(200, 100);
48 move (park) ;
49 return;.'-
50 }
51
52 mov e(p3);
53 move(p4);
54 ‘
55 1 imi t (” f z” , 2(5.);
56 setve1 (50, 50);
57 ihove (pi) ;
58 ■ :;
59 1 imi t (”dz” , 3 .);
60 comply(”fz”, 10.);
61 mOve(p5);
62 1ock(”f z”) ;
63
64 move(p4) ;
65 ■-
66 waitfor(p5->end);
07 if (p5->code != OND) {
68 pir int if ("where is the edge ?\n”) ;
69
70 .
71 setvei(300, 50);
72 move(park);
73 }

The transforms arid pbsitiohs define a set of five position next to the surface. The surface if
assumed to be less than 100 millimeters beiow the position P4, such that a collision should occur when
moving from P4 to Pi, located i00 ttiillimeteir below P4. PositiOh P3 is at the same level than P4 and

82 -

above P2. Position P5 is assumed to bring the end effector off the boundaries of the table, when moving
from PI to P5 As we may have more motions toward PI that waits for the end of motion, the pl-
>end’ event is reset for each loop line 31. Lines 33 to 40, implement a sequence of motion requests so as
to program the manipulator to enter the comply when the obstacle in encountered Lines 43 through 50
we make sure that the limit have actually been met, otherwise the motion toward P2 is canceled as well
as the task In the normal case, Sines 52 and 53 bring the arm back above the surface. The same
guarded motion is then performed toward PI, but now the motion in comply servo mode is performed
toward P5 where the edge of the surface is expected to be found. The termination of this last motion is
also checked at lines 66 through 69. A preload force in the Z direction is applied for all motions to make

sure that the contact is maintained.

83 .~

2) In this second example, the manipulator is programmed for the task of turning a crank. Two
compliant directions are required in this operation. During |he compliant motion, the to0/ frame rotates,
so as to keep a constant orientation with, respect to the cranjfc handle. Vtf® define the compliant directions
with respect to this frame. A grasp position is also defined to allow for some clearance. The task will
turn the crank a given number of times. One turn is programmed to last 4 seconds.

1 ^include ”rccl.h”
2 #include umac.h55
3 #include 5,hand . h”

\ 4. ;
5 int turns;
6
7 pumat ask()

.8 - '

'9 TRSF_PTR z , e, shaft, handle, apro, grasp , rotpx, rotnx
10 PQS_P'IR get, away;
11 POS_PTR turn;
12 int pxfn(), nxfn();
13 int q;
14
15 rotpx ~ newt rans("ROTPX” , pxfn);
16 rotnx = newt rans (”RQTNX”, nxfn);
17 z = gentr trs1(”Z”, 0. , 0., 864.);
18 e = gentr trsl(”E” , 0. , 0. , 170.);
19 shaft = gent r_tr s1("SHAFT”, -200., 500., 600.);
20 shaft->fn = varb;
21 handle =gentr trsi("HANDLE”, 0., 0., 50. U
22 apro = gentr trs1(’’APRO” , - 50., 0., 0.);
23 grasp = gentr_rpy("GRASP” , 0. , 0 , 0. , 0. , 190. , 0.);
24
25 get = makeposition(
26 ’’GET”, Z, t6, e, EQ,, shaft, handle, grasp , TL, e);
27
28 away = makeposi t i on(
29 ”AWAY”, z, t6, e, EXJ, shaft, handle, grasp, apro, lL, e);
3a ;
31 tur-n, = makepps i t ion(
32 "TURN”-, z, t6, e, EQ, shaft, rotpx , hand!e, rotnx, grasp, TL
33
34 setve1(300, 300);
35 move(away);
3.6 ’ . OPEN* ■
37 if (!teach(shaft, get)) {
38 move(away);
39 move(park);
40 return;
41; ;

- 84 -

42 sh'af t ~>fa = consfc ;
43 = 'v optimi ze (turn); '
44 ■- turns = -4-;

: . 45 waitfor(completed);
■ ' 46- * V ' 'CLOSE; ' ■

47 comply(”fx fz % 0. , 0.);
. ... 48- movec art (turn , 200,. 4966 * • turns); '

49 ■ lock(”fx; fz' ")•;. ■
7‘50 . move (ge t) ; . •

51 wai t forf turn->end) ; .
52 OPEN; ' '
53 ,'d istancef"dx% -30

■ 5'4;; 7move (ge t ; -.
•v/55. '-set vei-(200,. ;50);; - • 7

56 setmodf V j 1);
■ 57 move (park).; \

63 '■}
59

• 60 px fn(fc)
•■-.-■.61 ■ .TRSF_PTR t; .

’’ 7-62.
63 Rofc(fc, xunifc, goalpos->scai * 360 * turns);

; ■ ■ . 65 7 -
66 nx f n(fc)

. " ■ 67 TRSFJP1R t;
. ■■ 68 { ; ; ,

69 Rofc(fc, xunifc,goalpos->scal * 360 * turns);
: '70 }

The manipulator is first moved to a safe position away from obstacles. Lines 37 to 41, the manual
teach mode built in RCCL is called. This teach mode makes use of the update function to record a
position. That is why the transform SHAFT is first declared as a varb transform. Once this transform is
taught, its type can be /changed* line 42, and the position TURN optimized line 43. Gripper actions are
obtained as usual. Once these preliminary operations are performed, the turning motion can begin. It is
obtained in terms of a functionally defined motion, line 48, executed in comply servo mode. The duration
of the motion is the number of turns times four seconds. Care has been taken line 32, such that the com
pliance frame is properly specified.

- 85 -

3) The third example illustrates the peg in a hole insertion task. The strategy consists of moving
toward the expected location of the hole with a small approach .angle. Even with a poor position accu
racy the end of the peg will enter the- hole with a high degree of confidence. As soon as a collision
occurs, the- manipulator is programmed to go in comply mode in the Z direction with a preload force in
the same direction. While .complying, the peg is rotated so as to be aligned with the axis of the hole.
.The'manipulator is then programmed to comply in the normal directions of the hole axis and a motion-
inside the hole is immediately started. The presence of. a small chamfer helps the peg not to slip off the
initial insertion position. The force in Z is also limited since the msertion.may jam due to a misalign*?
ment. The fit is not very tight, and we can expect that a portion of the peg is inserted before the jam
occurs. A sequence of four accommodation rotating motions using update*' allows the manipulator to
“feel” the walls of the hole and to record a correct alignment. In a final effort, the peg is inserted, all the
way. Finally, the peg is pulled out with no difficulty since the .alignment.-has been corrected. The
moment when the task becomes unconstrained is detected by monitoring the differential motions.

- 86 -

^include ■” f cc 1 . h.
#inc.lu'de "umac.'h”'
^include ” hand--, h”.

5 pumat as M)
6 {■

TRSFPIR z,.e, peg, hole, roty7 .
8 POSjPTR align,'in, .touch;
9 ini .q; .

10
11 % = -gent r_t-r s I.(”Z” , 0.,
.12 e ==’ gent.Jr _t r s I (.”B” ., 0. 0.. ,-
13 ■.peg- == g e u t r _ t r s I (” PEG” , ■ P . ■ ,■ 0 .
14 hoie = gentr_trs.I ('"IDLE" ,-50.
15 hole->fh varb;
16 ■ bottom .= gentr_trsl (”B0TtCM” , ■ ■
17 . ■ f®ty ■ = gen tr_rot (”ROTY” , _-0.,.0
18 angle = gent r_rot ("ANGLE” , 0.',
19
20

.21
■22
23
24

a! i gn = makepos i t.i on (
"ALIGN" , z, 16, e , peg," EQ? hole, roly, TL,'peg);

touch = makepo.s i t i on (.
"TOUCH”,--z, t6, e, peg,. EQ-, hole, angle, rdty , TL, p-eg)

25
. i n- =. makepos i t-i.o.n (26

27 ” IN” , ' Z-, • 16, e , peg ,.
28
29 s.e tve 1.(300, 50)..;
30 move(aI i.gn).; '
31 i f . (!. t each (-ho I e ,' a 1 i
32 , : ■--■ setye 1 (.300 ,
33

d i s t.ance (”dz34
35 ■.move
36

se tmod (? j-5.) ;37
38 : move(park); .
39 ret.u r'n;
40
41 se tmod (’ c *) ;
42. ■ setve1 (100, 100); ..
43

d i s tance...(”dz-”, -10.)44'
45 move (-touch) ;
46
47 - . QpERY(q)>; ‘ ■
48

. 'i.f""‘(q ■=?==49
50 ■ ■ ■ s e t ve 1 ■(300 ,
51 . . se tmod (-Vi
52 . move (pa;r k) ;.
53 . return;-' '

87 -

54 }

- 88 -

57 : setvel (4, 7) ;
58 d i s tancc (”d;z” , ^ 4 •) 5
59 move (touch-) ; ;
60
61 ; lirrii t (” f z ” , 25 .)
82. • d i s t.an c e (” d z ” ■ 5 .) ;
63 move (■ touch) ; ■
64
65 c omp!y(”fz” , 15.);
66 move(align);
67 ■ ’ 1 ock (w f z”) ;
68

. 69. ’ compl y (fx "fy” , 0.. , 0 .);
70 1 imi t (” f z ” V- '20 .) ;
71 • move(in);
72 .
73 opd a t e (hole, in)';
7.4 , 1 ii-ni t (f z . tx’\ ’40.

■ 75 ,/di s.tance(” rx” , 2 .)
76.' move (in-)-;
'7,7
78 tipdate(hole, in);
79 . I i m i t (”f z t x”, 40.
80 d i s t an c e (” r x ” , - 2 .
81. "■ mo v e (i n)
82
83 npdate(ho 1e, i n) ; .
84 ' 1 imi t-("fz. ty ” , 40;..
85 dis tance(”ry”, 2.)
86: move(in) ;
87.
88 u p d a t e (h o 1 e , ■ in);'
89 .1 imi t (” fz ' ty ” , 40 .

. 90. d i s t.anc e (” ry ” , - 2 .
91 , move(in);
92 •"
93 -upda.t e (ho le in);

' 94 ■ ■ ' Timi t(”fz/\. 20) ; -
.95 ■ '■d i --s t an c e (*d z , 10.
96. move(in);
97
.98 ! imi t (”dx dy/V 1’.'-,
'99 move(align);
100' \ock{”lx f y ”)’'
101
102-' setvel ('50, 50);
103 . . dis tape e(”dz” , - 50.) ;
104 ' ■ move (align);- ■
105
106 ■ :se tv.e 1.(.300, .50) ;
107' setmod (
108 move (park.) ;
109 }

- 89. -

The beginning of this task is quite similar to the previous example .and also ..makes use of the
manual teach mode to record an approximate initial position,. .Lines 44 and 45, the manipulator moves
to an approach position and a chance is given to the user to.cancel the task. Line 57 to 63, an approach
motion and a purposely over shooting motion is programmed in order to obtain the initial phase of the
insertion process. While complying and exerting a preloading force the peg is rotated,-lines 65 to 67, to
the aligned position. The first insertion attempt is performed line 70 and 71. Lines 70 to 91, are pro
grammed the accommodation motions using update to record the successive alignments. The.final phase
of the insertion process is performed lines at 93 to 96. The. peg is then pulled out of the hole, while mon
itoring the differential motions signaling that the motion becomes unconstrained. The peg is then taken
away lines 102 to 104.

- 90 -

4) The last example demonstrates how compliant degrees of freedom can be accumulated as con
straints are met. The manipulator is programmed to detect the walls of a corner and to record the posi
tion of the corner. The program then uses this position information to move the manipulator next to the
corner within a very small distance.

r . ^include ■” re cl. h”
2 #i nc 1 ude \ ”umac . h*
3‘
4 pumafc ask (-)
5 {

.'6 . TRSF_PTR z , e, peg, corner , r oty

7 > POSJPTR' pcor ;
!s| i nt q;
9

10 z = gen t r t r s1(”Z” , 0. , 0. , 864.);
11 e = gentrtrsl (” E” , © o o

12 peg = gent r trsJ(”PEG\ 0., 0., 10.);
13 corner = gentr_tr-sl("CXKNER” , -50., 500. , 550.);
14 corner ->f n =. varb ; •
1.5 roty = gent r_rot(”ROTY”, 0. , 0., 0., yunit, 180.)

16
17 ■ •pco-r '== ihakepos i t i on. (
1-8 ’’POOR”, z, 16, e, peg, EQ, corner, roty, TL, Peg)
19
20 se t v eI(300, 5 0);
21 move(pcor);
22 if (Steach(corner , poor)) {
23 . setvel(300f- 50);
24'
25 se tmod (’ j ’) ;
26' mov e (p a r k) ;
27. return;,
28 }'
•29 s e tmod (T c ’)
30/ s e ty e 1 (100-, 100) ;
31
32 d i s t a n c e (” d 2 ”, .-50.) ?
33 - move(pcor) ;
34
35 ■ QUmY(q);. .
36
37 if (q == ■) {
38 s.etvel(30O'f- 100);
39 s e tmod(’j ’);
40.. move(park);
41 ■ return ;•
42. }
43' move(pcor);
44
45 se tve1(5, 20);

91 -

46
47 . timit(”fz’\ 20.);
48 d i s t an c e (” d z ” , 10.);
49 move (pcor) ;
50 comp 1 y (” f z ” , .10.);
51 limitpfy”, 1^.);
52 distance(”dy”, -10
53 move(poor)
54 ■ comp 1y{”fy”, -10.)
55 update(cor
56 limit ("fx*
57 d i sian c e (” <
58 mo
59 Iock(”fz fy”);
60 setvel(50, 50) ;
61 d-i s..t:anc e (”dx dy dz”, -10.,
62 move(pc or);
63
64 s.e tve 1 (:-300 , 50) ;
65 s eimod(’ j ’) ;
66 move (park)';
87 ■d i stance (”dx dy dz ” , -10.,
68 move(pcor) ;
69 s e tmod(’ c ’) ;
70 s e-t v e I (50 , 50) ;
71 dis tance(”dx dy dz”, -1.,
72 move(pcor);
73 dis tance(”dx dy dz”, -10.,
74 move(pcor);
75 s e fcve l (300, 50);
76 s e-tmod { ’ j 5) ;
77 move(park) ;

-4 00

10. -50.);

10. ■50.);

i., -1 ■);

Again the preliminary phase is quite similar to the previous example. The approximate location of
the corner is taught by an operator and a chance is also given, line 32 to 43, to cancel the task. The
reader may notice that in this example, the corner is oriented in such a way that approaching it
corresponds to positive displacements in the X and Z directions, and a negative one in the Y direction.
The manipulator approaches the first wall of the corner moving along the Z direction, lines 48 and 49,
and enters the first comply mode, line 50, before moving to the next wall. The same process is repeated
for the Y and Z directions. In each case a preload force is exerted in the appropriate direction in order to
maintain contact with the walls. The last accommodation motion, line 58, is associated to a call to
update so as to record the final position. Two compliance degrees of freedom are accumulated and the
manipulator is brought back to position servo mode line 59. The peg is then taken away, lines 60 to 62.
Before going back to the recorded position, the arm is moved at high velocity to the PARK position.

- 92 -

8. ■ Structuring Program©
We shall attempt in this, section to show how higher levelprimifcives can be written in term of

RCCL functions. We: shall make use of the macro processing facilities to define in a few lines some
manipulator language statements often encountered. A primitive Insert based on a bare bone version of
the insertion task explained earlier is described. This Insert primitive, newly defined is used in a repeti
tive task. Each loop the manipulator moves to a ‘get’ position where a feeder conveys pegs to- be
inserted on an assembly. The holes locations are stored os file and may have bees taught in a previous
operation or obtained from a CAD/CAM system.' The loop synchronizes with the feeder’s actions via an
external variable :

.M iic 1 ude ■ ” r c c S . h”
• '2 #i n-cl ude "”umac * h”
'3 ^include "hand'.fa” ■

4
3 #define AWAYZ(p, 1) . (d i s t aisce (wdz ” , - (1)); move(p); }

" 6 #define OVERSHOOTZ(p, 1) {disfcance(”dz”, (1)); move(p);}
■ 7- ^define FAST se tve1 (300 , 300 .)■;

8 #define SLOW s e tve1(50, 50.);
9 #define CAUTIOUS setve 1(7', 7) ;

10
11 1*
12 * do one insertion
13 •/
14
15 insert(z, grip, peg, hole, depth, ang).
16' TRSF PTH z, grip, peg , ho! e ;
17- . real depth/ ang ;
18 {
19- TRSF_PTR bottom, angle, roty ;
20 P0S_P‘1H align, in, touch;
2 1- '
22 bottom— geotr t r s 1 (’’BOTTCM” , 0., 0., -depth);
23 angl e = gentr r o t (”ANGLE” , O'. 0., 0., yunit, ang);
24 ■ r oty'= gent r _rot("ROTY”, 0., 0., 0 ., yunit , 180.);
25
26/ align = makeposition(
27 "ALIGN”, z, ' t6, grip, peg, BQ, hoi e, angle, roty, TL, peg)

'2.8
29- •touch' — makepos i t i on (
30 ’’TOUCH”, z, 16, grip, peg, EQ, hoi e, angle , roty, TL, peg)
31
32 in = makepos ition(
33 "IN", z, 16, grip, peg, EQ, hole, bottom, roty, TL, peg);
34

- 93 -

35 s e tmod(’ c’);
36 FAST
37 AWAYZ(touch, 10.)
38 CAUTIOUS
39 AWAYZ(touch, 4.)
4G 1 imi t (” f z ” , 25.);
41 OVERSHOOTZ(touch, 5.)
42 c omp 1 y (” f z ” , 15.);
43 mov e (a 1 i g n) ;
4 4 1 oc k (” f z ”) ;
45 comp 1 y (” fx fy”, 0., 0.
4 8 update(hole, i
47 1imi t (” f z ” , 20
48 OVERSHOOTZ(in,
4 9 lock(”fx fy”);
50
51 SLOV
52 AWAYZ(align, 50.)
53 wait for(in->end)
54 OPEN
55 move(there);
56 wa it f o r(comp 1e t e d);
57 f r eepos(a 1ign);
58 freepos(in);
59 f reepos(touch);
60 f r ee t r ans(bot tom) ;
61 f reetrans(angle);
62 freetrans(roty);
63 return;
64 }
65

- 94 -

66 /*
67' * monitor.3. feeder
68 */
69
70 -^define PARTS.. .1
7 1 -#.d e fs n e EMPTY ' 2
72
73 moo feeder{) .
74.
75
76 .
77
78
79
80
81
82
83
84.
85
86
87
88
89
90.
91
92
93
94
95
96
97
98
99

10'O
101
102
10.3
104
105
106
107
108
109

. no
in
112

'113

{
■ i f ^ feeder sensor — P ARTS| {

nextmove = YES;
CLOSE

if (feeder sensor =
parts = 0;

}

/*
* Do insertions
*1

ini parts = YES;

pumat ask()
{ . TRSF PTR z, e, assy, h, 'feeder, grasp,, pegs;

PCS PTR get ;

z = gent r();
e = gent r-() ;.
as sy =? gen t r () ;
grasp = . gent r();
feeder = gen tr(); .
pegs = gent r.() ;
h “ newtrans(”H”, hold);

/'* base frame */
/* end effector */•
/* ass emb!y */
/$ gasp pos */
/* feeder *j
I * peg re!, e */
/* h rel. to assy */

get = makeposition(”GET”, z, t6, e, EQ, feeder, grasp, TL, e)

whi!e(parts){
move{ge t) ;
ev a 1f n(mon feeder);
setime (200, 10000);
move(ge t);
gettr(h, file);
inse r t (-z , e, pegs, h, 20., 15.);

} ■
' 1 .

- 95 -

Conveyors are expensive, and rugged objects could be thrown from place to place. We shall see
here how. a ‘throw’ primitive (seldom found in regular robot programming languages) can be'easily writ
ten. In order to obtain a'maximum acceleration, we shall program a sequence of motions that only uses
the transition part. This example is only given as an illustration because the dynamic qualities of the
Puma manipulator proved to be not quite sufficient.

- 96 -

1
2
3
4
5
6

#i nc ! ude ”rccl .h”
nciude ”hand.h”

^.include' ”umac .h”

real when; /* to open the gripper */

7
8
9

^define MAXA.CC ■ .015 /* rrm/rns 2 * f

fc h r ow (vO)
10 VECT PTR vO;
11 {
12 i n t .openat();
13

v0->x) / MAXACC; /*14 real Tx = (12. *
15 reai Ty = (12. * v0->y) / MAXACC; /*
16 real -Tz - (12. * v0->z) / M«ACC.; /*
17 int T = ((FABS(Tx) > (Ty)) /*
18 ? ((FABS(Tx) > FABS(Tz))
19 ? Tx : Tz) /*
20 ■ ■: ((FABS(Ty) > FABS(Tz))
21 ? Ty : Tz));
22
23 real dx , dy , dz ;
24
25 . s top(0);
26 s e tmod(’ c *) ;
27 dx = Tx * v0->x / 2.;
28

£
i

o>*1
!

>» 2. ;
29 . dz = Tz * v0->z / 2. ;
30
31 d I s t anc e (”'dx dy. dz”, -dx , -dy , -dz);
32 se t ime(T / 2, T);
33 move(there); /* back up */
34
35 whe n = .9 0; /* open the grippe r
36 evalfn(openat); /* before the end
37 distance(”dx dy dz”, 2. * dx, 2. * dy, 2.
38 setime(T / 2, T) ;
39 move(there); /* move as fast as
4'0
4 1' setime(T / 2, T); /* come back
4 2 move(there);
43 s t op (0)■;
4 4 'return;
45 }
46
47
48 .openat ()' /.* opens the' gripper at a given moment * /
49 {
50 if (goa1pos->sca 1 >=. when) {
51. OPEN
52 ■ }
53 }

*/
•/
*/
*/

*/

*/
da)j

97

54
55 pumat ask ()
56 {
57 TRSF PTR b0, grip;
58 POS' PTR pO;
59 VECT veS;
60 inf q;
61
62 grip.- gentr_trs1(’’GRIP” , i

©©©

63 bO = gentr r o t(”BQ ”, 400. , 150., 700., yun i t , 45.)
64
65 pO = -makeposiii'On(”PQ” , t6 , grip, EQ, bO, TL ,grip
66
67 QUERY (q)
68 CLOSE
69 setconf(”d”) ; /* elbow down, like the Great Di M
70 ' set ime(100, 3000);
71 move(pO); /* move above the- shoulder
72 ve 1 .x = .0;
73 v e ! . y = . 0 ;
74 ve1. z = .6; /* m/s at 45 degrees, see '
75
76 ■ t h r ©w (&v e I-) ;
77
78 s e tmod (’ j 5).; /* back to park */
79 . s e t c on f(”u”); /• elbow np */
80 setime (100, 3000) ;
81 move(park);
82 }

*/

The acceleration times , lines 14 to 21, and the tnagiiiiiides, lines 27 to 29, are derived from the
coefficients of the quartic- polynomial functions used to generate the transitions [2]. The segment .times
are exactly twice the accelerations times.

9.1. Force Control , . ..
In the case of the Puma manipulator, the implementation of force control suffers a number a limita

tions due to the simplicity of the implemented method. Force measurements are obtained by monitoring
the motor currents. Coulomb friction terms, at the joint level, have been expenmentiy measured [8J.
When the velocity of a joint is small or null, these terms are irrelevant and cannot be used to improve
the accuracy of the control. When the arm if to stop on force, this is of little importance since the joints
likely to provide the guarded motion are moving. Nevertheless, this fact has to be kept in mind. Grav-
ity loadings have also been experimently measured. Experiments have shown that although the mass of
an object carried by the manipulator: could be measured, the accuracy is not sufficient and is likely to
cause offset errors for the gravity loadings. The function massls has been implemented to get around

this.
Force specifications possess an estimated accuracy of approximately 10 Newton in most of the work

space. This is pretty close to the load capabilities of the manipulator, therefore extreme prudence is
recommanded. Despite this Sack of accuracy, the tasks using force control explained in this document all

run with a good reliability.
When the manipulator transitions from comply servo mode to position servo mode, a glitch often

occurs and is as noticeable as the velocity is high and the load important. It is usually harmless, and
correspond to the position servo correcting the first setpoint.

Compliance in a given direction is obtained by selecting the joints most suitable to provide the
desired effects [2j. The joint selection method is simplified. It does not take into account the translation
part the loot frame. This means that in comply servo mode, force specifications will always match the
inner joints-(1, 2, 3) and torques specifications the wrist joints (4, 5, 6). Although the method is reliable
and simple, it suffers, the drawback that no remote center of compliance can be specified. Time con
straints have prevented further work on this points, and any contributions are welcome.

9,2. Machine Errors.
When the robot task is running in real time, the process is locked into core memory and the inter

rupt function of the system as well as the user’s background functions are run at very high priority in
kernel mode. Any system call (machine trap), will crash the system (beware of the prints). The same
problem occurs for any machine error like a bad memory reference of a floating point exception in any
part of the process. Some debugging tools are provided as explained later.

9*3* Process ‘Sise
When the real time process is -run, it is locked into core memory and the virtual memory system

desactivated Therefore, the process cannot grow it’s allocated region. Dynamic allocation is performed
within a preallocated memory area. The system calls like ‘malloc’ are replaced by alternative functions
|6j. A set a macros : ■.

^define 'mal S oc malloc_l ,
^define free f r e e._ '
^define real loc real loc__l‘. ; .
^define cal loc calloc_S
#define.cfree cfree_! ...

@e Limitation©

allows the user to safely write :

p - ma 1 1 oc (20) ;

This causes a more annoying problem when it comes to opening.-files. Files can be opened'only
when-the real time channel is closed. However, the user can always code : '

- 99 -

m o v e (p)';
stop)200) ;
wa it f o r(comp 1 e t e d) ;
re 1 ease(”opening files”);
fdl = creat(...
f d2 = open(...

startup));
move) . . .);

The process is temporally put back in normal mode by the function release [8], and file ‘opens can take
place. The function startup will resume real time execution by the depressing the ARM POWER but
ton when requested by the system. Failing to follow the procedure will also cause a system crash.

9.4* Sample
The sample period is normally 28 ms. It can be set to 14 via the function sample and when not

needed the sample period can be reset to 28 ms. Changing the sample period can cause a slight glitch.
If the velocity if the manipulator is small, the glitch is negligible. For example the for loop of tne exam

ple section 7.3 can be coded :

32 for); ;) (
33 se tve 1 (400 , 300);
34 move(get);
35 move(pi);

stop(0);
36 setve 1 (100.-, 100) ;
37 s amp 1e(15) ;
38 move(p2) ;

siop(Q) ;
39 samp 1 e (30.) ;
40 pr i n t f ("more ?■”) ;
41 } ■

QUERY) q); if (q == break;

If the user’s background functions take to much time to execute, the behavior of the real time
interface no always easy to predict. In the best cases, it causes a crash of the superviser program running
in the LSI-11 The arm power is immediately turned off, and nothing annoying happens. The superviser
is restarted and everything comes back to normal. It seems that when the user’s functions processing
time is slightly too Song, the VAX still accepts interrupts, but stacks them and this quickly causes a sys
tem crash. Finally, if the interrupt code is very long (an infinite loop, for example), the system is total y
blocked and a manual boot is necessary.

9.5* Large Rotations.
For a reason that has not been yet determined, some motion transitions involving large rotations do

not behave quite correctly.

10, The Planner and Play Program
In order to write and debug the first draft of manipulator programs, a special library is provided.

This library has exactly the same entry points as the regular library, but replaces the interrupt code with
a loop Exactly the same programs can by run and tested. The synchronization features are simulated
so that everything happens in the same order as in the real time version. The user is advised to run the
programs in this mode before actual execution. The resulting sequence of points can be dumped onto fi e
for execution by the play program [6]. Trajectories can be also stored and displayed on the terminal by a
special program called dsp.

100. -

When programs with guarded motions are run in this fashion, the conditions will never foe met,
unless special simulation monitoring functions are written. When programs include comply statements,
the comply mode is simulated as follow : the compliant joints are selected according to the geometry of
the task and are artificially. frozen as if the resulting forces would keep them immobile. The accommoda
tion motions compensation feature being still activated, it may produce funny but meaningful trajec
tories. Tracking with external information can produce various results according to the situation at
hand. Nevertheless it is very useful to test ahead manipulator programs. All branches must be tested
because manipulator control is essentially programming with side effects. It is always useful to ‘play’ the
resulting trajectories in free space to get an idea of what is going to happen.

- 101-

11. Program Options '
Programs can be run with a number of options :

v This option allows the user to specify the printing of information. A file called ‘@@.out’ is created
in the current directory. It contains informations about what the system understood of the calls to
makeposition. A record will be printed for each move request. For the planning version only, a
record will be printed by the trajectory generator at the time the request is executed, for example
the beginning of the file ‘@@.out’ for the camera guided task Section 7.1. is :

makepos ition, pos "LOCK” Z T6
optim, initial equation T6 =
opt im, Ona 1. equation : T6 -

’’COORD” : ”TOOL” : -E ”POS”:

E = EXPECT
-Z EXPECT -E

/TEMPI -E
_TEMP1

makeposition, pos "GET”
optim, initial equation :
optim, final equation :

’’COORD”: COORD(h) CAM

T6 E = COORD CAM O
T6 = COGRD(h) CAM 0(h) -E

T6 = COORD(h) CAM 0(h) -E
"TOOL”: -E ”POS”: 0(h)

makeposition, pos "PUT”
optim, initial equation :
optim, final equation :

’’COORD”: ’’TOOL” : -E

Z T6 E = drop
T6 = -Z DROP -E

T6 = _TEM)2 -E
”POS”: TEM>2

request LOCK mode j acct 56 sgt 0 velt 200 velr 100
conf upd : smpl 0 mass 0.000000

PARK -1 28 j 84 84 280 28
force 00 0 0 0 0 0 0
cplj .00 000000
dst 00 0 0 0 0 0 0
exd 00 0 0 0 0 o p

LOCK -1 336 j 56 56 2660 28
force 00 0 0 00 00
cply 00 0 0 0 0 0 0
dst 00 0 0 0 0 0 0
exd 00 0 0 0 0 0 0

102 -

r equesi
con f

• d \ s t dz

request
con f

■ request
con f..

request
c o'n. f
d'i'st dz

GET -1

GET- -1.

GET.. - 1

C35T mode j acct 56 sgt 0 ve It 200 ve I r 100
upd : smpl 0 mas s 0.000000
: -30

GET mode j acct 56 sgt 0 ve 11 200 ve 1 r 100
upd : smpl 0 mass 0.000000

STOP mode j acct 0 sgt 28 velt 200 ve I r 100
upd : smpl 0 mass 0.000000

GET mode j acct 56 sgt 0 velt 200 velr 100
upd : smpl 0 mass 0.000000
: -30

3024 j 56 56 1568 28
force 00 00 0000
cpiy 00 0 0 ,0 0 0 0
dst 00 0 00000
exd 04 0 0 -30 000

4592 J 56 56 280 28
force 00 0 00000
cply 00 0 00000
dst 00 0 0 0 0 0 0
exd 00 0 00 000

4872 j 56 56 140 28
force 00 00 0000
cply 00 000000
dst 00 00000 0
exd 00 0 0 0 0 0 0

103 -

request PUT mode j acct 56 sgt 0 velt 200 velr 100
con f upd : smpl 0 mass 0.000000

GET -1 5012 j 56 56 280 28
force 00 000000 ’ '
cply 00 000000
dst 00 0 0 0 0 0 0
exd 0400-30000

PUT -1 5292 j 56 56 2492 28
force 00 000000
cply 00 0 0 0 0 0 0
dst 00 0 0 00 0 0
exd 00 0 0 0 0 0 0

PUT -1 7784 j 56 56 112 28
force 00 000000
cply 00000000
dst 00 0 00000 .
exd 00 000000

request LOOK mode j acct 56 sgt 0 velt 20Q velr 100
conf upd : smpl- 0 mass 0.000000

Etc ...

The equations are printed, then their canonized form before and after optimization. Transforms
are marked according to their type : varb (v), hold (h), functional (s). The optimization premulti
plications generate the ‘_TEMPx’ names. For each request all the parameters are printed, Tor

example:
request LOCK mode j acct 56 sgt 0 velt 200 velr 100
conf upd : smpl 0 mass 0.000000
means : position ‘LOOK’, mode ‘joint’, acceleration time 56 ms, segment time is 0 that isi : will be
computed at execution time, current velocities are 200 mm/s and 100 deg/s, no configuration
change required, no transform to update, no sample time change, current mass of object is 0. kg.
The trajectory generator prints in a compact format the specification at the beginning of each

motion (planning version only) :

GET -1 5012 j 56 56 280 28
force 00 000000
cply 00 000000
dst 00 0 0 0 0 0 0
exd 04 0 0 -30 0 0 0

means : previous motion terminated ‘OK’ (-1), time is 5012 ms, mode is ‘joint’, accelerations times
first transition is 56, second 56, segment time is 280, time increment is 28. No force limit, no com
ply no differentia! motion stop, distance is -30 mm in Z direction. For the records .orce , cpy
‘dst’ and ‘exd’, the first number is an octal code (00 for no specification, translation or forces : 01
for X, 02 for Y, 04 for Z, rotations Or torques : 10 for X, 20 for Y, 40 for Z, and the combinations .

01, 03, 05, 06, etc ...);
If the the option ‘-w’ as very verbose is given, the values of the transforms created by the ‘gentr...’

style function is also printed.

104

This option corresponds to the global flag prihts_out* This flag can be turned on or of the text of
the programs themselves :

prints _o u t. = YES; ■
: pO =='mak'epos i fc i on ;

p1 = raakeposition(. * .) ;

move(pO);
. mov e.(pi);
• p rint s _ou t = M3;

Ttije information is printed to the fpi'file pointer : .

■ FILE *fpi ;
This file pointer is. initialised to the, ‘stderr’ file pointer. When the Sag prints jout is set to a non
zero valise, the makeposltion and move messages go to the terminal. When the option ‘~v’ is
specified, the file c@@.onV is created and fpl points to'it, and the messages are stored on the file.
One can use this feature for any .purposes/ for example :

pumat a.sk ()
{■-

trsf_pth
POS P1R ...

prints _ou t — NO;
p = tiiakepos i t i on (. . .) ;

move(p);

fprintf(fpi, ”bla bla”);

}
If the task is run without option ‘-v’, ” bla bla” goes on ‘stderr’ file, if the task is run with option -
v’, ”bla bla” goes into ‘@@.out’.

g This is the ‘graphic’ option (planing version only). The setpoints are stored in the files ‘../g/fl.out’,
‘../g/f2.out’, one for each joint. When displayed with the program dap a character ‘J’ stands for
joint mode straight part, ‘T’ for joint mode transition, ‘E’ for first point of joint mode transition,
‘C’ for a Cartesian mode straight part, ‘H’ for Cartesian transition, and ‘V’ for first point of Carte
sian transition. In order to use this option, the user is required to have a ‘graphic’ directory ‘../g’
at the same level in the file tree hierarchy as the current directory. This will avoid having the
current directory constantly clustered with junk files.

d This is the ‘data’ option (planning version ohly), when specified, the system creates the file ‘©.out’
in the current directory that will contain one line per setpoint according to the following format:

POS M time tseg j 1 j2 j3 j4 j5 j6 se1

Where ‘POS’ is the name of the goal position, ‘M’ is the mode (J, T, E, C ,V ,H) as described
above, ‘jl’...‘j6’ are the joint angles in range coordinate [6], and ‘sel’ an octal value showing which
joint are complying in comply mode (0 no joint, 01 for joint 1 , 02 for joint 2, 04 for joint 3, 10 for
joint 4, 20 for joint 5, 40 for joint 6, 3 for joint 1 and 2, etc.).

- 105 -

a This option when set, causes the joint angles to be output in solution coordinates [6]. It serves for
option M’ and ‘g\

k This option when, set, causes the values of T6 to be printed in lieu.of the joint angles. For'the
option ‘g’ twelve files (fl.out ... fl2.out) are created, the values of the vectors ‘p’, V, V, and V;
For the option ‘d’ the format becomes.:

POS M time tseg px py pz ex ny ns ox oy oz ax ay as

It serves for option *d’ and ‘g\

e This option causes the. file ‘@@@.o.ut’ to be created in the current directory (planing version only).
The file contains the' sequence of encoder values suitable to be used by' the play program [6j.

Dname This option specifies the file ‘name’ as a data base of transforms. Can be used in association with
the teach mode (see below).
This option corresponds to the global file descriptor fddb initialized to -1 . When the option
Dname’ is specified, fddb describes the file ‘name’. "If the-file ‘name’ does not exit the user is
prompt as :

n ame doe s’*nt.exit, create.? (y/h)

Answer as appropriate.

b This option turns off the force control features (brute option). In the case of the planning version,
no simulated joint accommodation will occur. In the case of the real time version, it allows us to
test the manipulator programs free of obstacles. ■
This option corresponds to the global flag force_ctl which is turn off by the --b ■ option. The flag
can" be turned on or off in the text of the programs.

106 -

12. Teaching
The teach mode is activated by a call to the teach function :

teach(t r ans, pos)
TRSF_PTR trans;
PO.S_P.TR- pos ; .

The teach function gives control to the. user on the manipulator motions. When the teach mode begins,
the following message appears on the terminal :

teach mode VI.0, transform TRANS , position POS
? j
a simple command line language allows the user to move the manipulator around. When the desired
position is obtained, the transform ‘TRANS’ can be solved for the position equation ‘POS’ for the
current value of T6. This is obtained on user’s command by a call to update. Once the position is
recorded, the manipulator can be moved elsewhere. Upon exit of the teach mode, if no position have
been recorded the user is prompted as :

nothing taught, exit ? (y/n)
If ■•„’ is answered, the teach mode is not exited, if ‘y’ is answered, the teach mode exits and the teach
function return the value ‘NO’. When a transform has been recorded, upon exit the function teach
returns the value ‘YES’. Even if a transform has been recorded, teach can be forced to return ‘NO’ by
typing a ‘q!’. Applications of this have been shown in section 7. If successive records are made, only the
last one is taken into account.

When a data base file has been specified, the teach mode behaves.differently. .The transform to be
taught is searched in the data base under its name, if found,-the function teach directly uses-the value
and immediately exits returning ‘YES’, update is then not called. If the transform cannot be found in
the data base, teach enter the regular manual mode. The user can record the transform value and save
it on the data base. If no data base has been specified the user is informed of that fact. A data base edi
tor (see below) can-be used for off-line maintenance.

The interactive commands are displayed when a '?’ mark is typed. By convention, the lower case
‘x’, ‘y’, ‘z’ characters stand for translations or forces, and the upper case ‘X\ ‘Y’,'Z’ stand for rotations
of moments : ■
These commands 'are executed one per1 line:

<return> ' .interrupt arm mot ion
q ..quit'/
qf quit, ignore not recorded.
r record t r an s f o rm
p display current settings
s save transform on data base

' 1 • toggle force monitor
v <t r> set'velocities
m <m> set mass of object

9 this me s s age-
These commands c emu-Sate :•

o •. • .open hand
c close hand

.. - w-<x/y/z/X/Y/Z> <k> ..move world coordinates
t <x/y/z /X/Y/Z> <k> ■ -move, tool coordinates
e <x/y/z/X/Y/Z> <k> .'change tool transform •
f <x/y/z/X/Y/Z> <k> , set force l imits '

107 -

Messages from the system can be :

no data 'base specified

nothing recorded

s topped on force

» s topped

next to. 1 imi t (s)

not so' fast"

A teach session can be. obtained by running the'program :

^include ”r c c1 . h”
^include ”umac-.h”

pumat ask()
{

TRSF_PIR z, e , bO;
POS_PTR p0;

i = gen t r_t r s1(”Z”, 0. , 0., 864.);
e = gentr_t rs1(”E” , 0. ,0. , 170.);

bO = gentr_rot(”B0”, 600. , -200., 800. , yunit, 180.)
bQ->f n = varb;

pO = makepos i t i on (”PQ” , .z, t6, e, EQ,- bO , TL, e);

se tmod(’c’);
s e tv e1(300, 100) ;
move(p0) ;
whi.Se (teach(b0, p 0)) .

setvel(300, 100); .
move(park);'

}

The session can look like :

108 -

$ a. o u t - Dd a t a
data does’nt exit, create ? (y/n) y
ge t t r : BO no t fonnd
teach mode VI.0, transform BO, position P0

■ ?P
T6:

.1.000 -0.000 -0.000 600.001
- 0.000 i .ooo 0.000 -200.000

0.000 0.000 -1.000 106.000

E:
1.000 0.000 0.000 0.000

0.000 i .ooo 0.000 0.000

0.000 0.000 1.000 170.000
veloc t : 100 r:10

no force
mass -of

1 imi t
object : 0..000000 kg

? v 30 7
?wx200 wz ,«300 wYlO
'?
» 's topped
not so. fast
?wz 200
? I
?p
T6:

-0..985 0. ooo -0.: i7i 826. 436
-0.; 000 i..000 0..000 -200..006
0,.171 0,,000 ."-b..985 6.,044

i’ .000 o..000 0...000 0 .000
■■0 .000 ■ ■' 1 .000 0 .000 0 .000'
0 . ooo 0 . ooo 1 .000 170 .000

veloc t:30 r : 7 3 4 ' 5 6

7o7ce TTmTts TTx oToo ~-Ty 0.00 7z 0.00 fXO.OO 7y 0.00 7z 0.00
mass, of object 0.000000 kg
? fx.20 fY5
?ws - 30

■s topped on force
?p
T6: : ;

-0.985 0.000 -0.171 826.436
-0.000 1.000 0.000 -200.000
0.171 ■-.0.000 -0.985 16.013

E: '
1.000 d.boo 0.000 0.000
0.000 1,000 ' 0.000 0.000
0.000 0.000 1.000 170.000

veloc t:30 r : 7
2 3 4 5 6

force 1imi ts ":fx 20..00 f y 0.00 fz 6.00 f.X 0.00

mass of object : 0.000000 kg

109 -

The teach mode uses its own position equation to move1 thS arm around. The too! transform is
preset to a 170 mm translation in the Z direction, but can be chained. The messages ”not so fast” or
”next to limit(s)” do not appear when the condition occurs, but when the next command is typed. The
y command prints the current values of T6, E, velocities, the relative position of the joints m their
range, the current force limits when toggled on, and the current mass of object.

- 110

13. Summary'

■'13.1* Error Messages
An RCCL internal error, causes a message to be printed and as exit of the process for the planning

version When run in real time mode, the process does not exit but the arm power, is turned off and the
process’is put to sleep, this is to allow the user to ‘break’ the program and take advantage of the
automatic home position return [6]. If the error occur at the level of the real time interface, we refer the
reader to [6] for a, determination of the error. If the error is a RCCL error condition, the messages can

be :■ ■ ■

"position "POS” : transform not initialized - makeposition” : one of the transform pointer is

‘NULL’..

"position "POS” : missing t6 or tool - makeposition” ; bad position equations structure.

"position "POS” : missing rhs - makeposition” : bad position equation structure.

"position "POS”, transform "TRANS" : pos functionally defined - makeposition” : the POS part of
the canonized equation cannot be a moving frame.

"position "POS” : pos cannot seriously be t6 - makeposition” : the POS part is equal to T6 due to
a bad choice of the TOOL part.

"giveup” : The function glveup has been called, a message follows.

"bad spec. - limit” : wrong directions specifications.

"bad force spec. - comply” : wrong directions specifications.

"bad force spec. - lock” : ditto.

"bad distance spec. - distance” : ditto.

"conf must change in joint mode” : the current motion mode is not correct for a configuration
change.

"invalid update transform type” : the involved transform must be of type varb.

"couJd’nt find updatable transform" : a transform has been required to be updated but does not
belong to the specified equation.

’’alloc err” : motion queue saturated.

”mem. alloc error” : no more dynamic memory allocation space.

"limit, ‘time’” : a joint limit occurred at time ‘time’, the program does not exit and tries to recover
by stopping and getting a new motion from the queue, (planning version only).

”joint(s) limit” : an unrecoverable joint limit occurred, (planning version only).

"glitch ‘time’” : a velocity discontinuity occurred, at time ‘time’ (planning version only).

"jam” : unexpected behavior of the queue management, should never occur.

"cannot unit Vector” : the unit function has been required to unit a zero magnitude vector.

’’Write io error”, ’’write io error”, ”close io error” : an i/o error occurred while writing data (plan-

sling version only).

”*** could’nt queue at ‘time’”, this message may occasionally appear, but it never did so far.

Not®
The user can use the function glveup to cause a task cancellation :

giv eup(mes s age , level); .

The first argument is a string, the second argument tells if the error condition occur in a back-
ground function (level 0) or in the user process (level 1), for example :

pumatask()
(

}

ev a 1f n(monit o r) ;
move(p) ;
while (goalpos* = p) {

}

if

}

(bigjness) {
g i veup (” canno-t do that , i);

monit o r()
{

if (no t_good) {
giveup(”wrong data” , 0);

}

The error message would be :

- 112.-

cannot'do.that-
g iv .eu.p

or.

wrong ■.data''".-.'.
giveup

13.2. Functions, Global .Variables* and Macroi .
■ Follows a brief description of'the RCGL function library. .

Dictionary5 of the terms .

ax : x element of V vector of a transform (real).

ay : y element of ‘a* vector of a transform (real).

az : :z element of V. vector of a transform (real).

bool : an integer expression evaluating to 0 or non zero.

code : an- integer expression (OK LIMIT ONF' OND predefined).

conf : a string at most one of the T V V ‘d’ T ‘ii? characters and .

diff : DiFFJPTR, a pointer to a f>IFF structure.

.dixs a string of the form” ”fx fcy-% force and distance specs,

eve :, an event count.

force : FORCE_PTR, a pointer to a FORCE .structure,

fp : a UNIX file pointer *FILE (stdout, stderr ...).

func : pointer to a function.

level : ah integer expression evaluating to 0 (interrupt) or 1 (user),

list : a list of transform pointers (TRSF_PTR) separated by commas,

msg : a string.

mode: the.character T or V. .

113 -

name : a string.

ox: x element of ‘o’ vector of a transform (real),

oy : y element of ‘o’ vector of a transform (real),

oz : z element of ‘o’ vector of a transform (real),

period : an integer expression in milliseconds,

phi : an angle in degrees (real),

pos : a pointer to a position structure (POS_PTR).

pphi : a pointer to a angle in degrees (*real).

ppsi : a pointer to a angle in degrees (*real).

psi: an angle in degrees (real).

pthe : a pointer to a angle in degrees (*real).

pX : x element of ‘p’ vector of a transform in millimeters (real).

py : y element of ‘p’ vector of a transform in millimeters (real).

pz : z element of ‘p’ vector of a transform in millimeters (real).

rotvel: a rotational velocity in degrees per second (int).

tacc : an acceleration time in milliseconds (int).

the : an angle in degrees (real).

time : a time in milliseconds (int).

trans : a pointer to a transform structure (TRSF_PTR).

transvel : a translational velocity in millimeters per second (int).

values : a list of specifications in millimeters, degrees, Newtons, or Newton-meters

vect : pointer to a vector structure (VECT_PTR).

- 114 -

Description of Functions, Variables, and Macro®
Note : if p is pointer, *p is what is pointed to. functions names are marked T. variables names V,

macros names ‘m5.

f asslgndiff(diffl, dim): copy *diff2 into ♦diffl, return diffl.

f assignforce(forcel, forces) i copy *force2 into *forcel, return forcel.

f asslgntr(tran®i, trans2) s copy *trans2 into *transl, return transl.

f.: - V astiighveci(vectl, vechS)rcopy *vect2 into *vectl, return vectl. • \

v completed r signaled when motion queue goes empty and the arts is evaluating last position

' (event).. '

•f. comply(dlrs, values) s specify compliance for subsequent requests,

f eonsiQ Ydoes nothing but typifies a transform as constant (TRFN).

f cross(vectl9 vectS, vect3) s compute in ♦vectl cross product of *vect2 and *vect3, return vectl.

f df to tr(trans, diff) s builds differential transform *trans out of differential motion *diff, return

trans.

v dgtord_m : read only (real), convert from degrees to radians what is multiplied by.

f difTtr(dlffl, diff2, trans) t transforms differential motion *diff2 into differential motion *diffl, with
a frame differential relationship *trans, return diffl.

f distance{dirs, values) : internally changes the position expressed in tool frame.

f d6t(vectl, vect2) i return (real) the dot product of *vectl and *vect2.

f cui(trans, phi, theta, psl) i set the rotational part of *trans from Euler angles, return trans.

f eulm(trans, phi, the, psi) {multiplies * trans, by a rotation expressed with Euler angles, returns
■■ trans. ■ :

f evalfn(func) ! causes the function *func to be evaluated for next motion request,

v force_ctl s turns on/off force control features (bool).

f forcetr(forcel> force?, trans) s transform generalized forces *force2 into generalized forces
♦force!, With aframe differential relationship *trahs, return force!.

V

- 115 —

fpf i information file pointer (*FILE).

f freepos(pos) i returns to the memory pool the storage allocated for building a positions equation
ring structure. '

f gensymQ s return a pointer to an always different string (_TEMP1, _TEMP2, ...).

f gentr_eul(name, px, py,. pi, phi, theta, psi) ; make a constant transforms out of a. ‘p’ vector
and Euler angles, return a trans. •

f gentr _pao(name, px, py, pi, ax, ay, as, ox, oy, os) s make a constant transforms out of a ‘p’
vector and‘a’, ‘o’vectors, return a trans.

f gentr jrot(name, px, py, pi, vect, theta) : make a constant transform out of a ‘p’ vector and a
rotation of theta degrees around *vect, return a trans.

f gentr_rpy(name, px, py, pi, phi, theta, psl) : make a constant transforms out of a V vector
and roll, pitch, yaw angles, return a trans.

f gentr_trsl(name, px, py, pi) s make a constant transforms out of a ‘p’ vector and a unit rota-

tion, return a traos.

f giveup(msg, level) s cancel a task, and print msg when broken.

v goalpos s a read only (POSJPTR)', equal to the position pointer of the equation currently

evaluated.

v hdpos ; a write only (short), hand position information,

v here * a read only (TRSFJPTR), equal to T6 at segment termination,

f holdQ s does nothing but typifies a transform as to be held (TRFN).

f invert(transl, transZ) : store in * trans 1 the inverse of *trans2, transl and trans2 different, return
trans 1.

f invertinp(trans) s stores in *trans the inverse of *trans, return trans.

v j© s a read only (JNTS_PTR), the current desired joint setpoint in range coordinates.

v jd s a read only (JNTS_PTR), the desired differential joint setpoint.

v lastpos s a read only (POS_PTR), equal to the position pointer of the last evaluated equation,

f limlt(dirs, values) t trigger force or differential motion monitoring for the next motion request.

- i16.-

f lock(dirs) : bring back the arm in position servo mode for the specified directions.

f makeposmon(n&me, list, EQ, list, TL, trans) i build a position equation ring structure, returns
a pos.

f. move(pos) : enter a motion request toward a position described by pos in the motion queue,

m movecart(pos, taec, time) : do setmod(’c’); setime(tacc, time); move(p).

m move<*onf(pos, tacc, time, conf) : do setcoaf(conf); setmod(’j’); setime(tacc, time); move(p).

m movejnt8(po8, tacc, time) s do setmod(’j’); setime(tacc, time); move(p).

f riewtrsns(name, func) : allocate storage for a Hraus, attach it to function *func, return a trans.

v nextmove s a write only code, when set, causes the current motion interruption and the value
returned in the corresponding position structure field ‘code’.

f noatoeiil(pphi, pthe, ppsl, trans) : derive the Euler angles from *trans.

f noatorpy(pph!, pthe, ppBi8 trans) s derive the roll pitch yaw angles from *trans.

f optimlze(pos) : optimize a position equation ring structure.

v park s a read only (PGS_PTR), the park position.

v pi in : a read only approximation of the number pi (real).

v pib2 m : a read only approximation of the number pi/2 (real).

v pit2_m s a read only an approximation of the number pi*2 (real).

f prmtd(diff, fp) : print *diff on file *fp.

f prlnte(trans, fp): print*trans on file *fp (Euler angles).

f prlntm(force, fp) : print *force on file *fp.

f prlntr(transj fp) s print *trans on file *fp (n o a p). ^

f prSntrn(trans, fp) : printf nrans on file *fp (name, n o a p, Euler, rpy).

v prints_but : causes prints when set (boOl), |

117 -

f prlnty(tran8, fp) s print *trans on file *fp (Euler angles).

v rdfodg m s a read only (real), convert from radians to degrees what is multiplied by.

f relea0e(msg) : closes real time channel.

f rsquestnb : read only (int), the number of not served motion requests,

v rest s a read only (TRSF_PTR), T6 at the park position.

f rot(trans, vect, theta) : set the rotation part of Hraas from a rotation around *vect, of angle

theta, returns trans,

f rotm(trans, vect, theta) s multiplies *trans by a rotations made out of a rotation around *vect,

of angle theta, return trans.

f rpy(trans, phi, the, psl) : set the rotation part of *trans from a rotations of roll pitch an yaw

angles, return trans.

f rpym(trans, phi, the, psl) s multiplies *trans by a rotation of roll pitch and yaw angles, return

trans.

V rtlme s an (int), the time spend since the last reset, in milliseconds,

f sample(period) : change the sample rate, next motion request,

f setconf(conf) : change the arm configuration next motion request,

f eetime(tacc, time) : set the acceleration and segment time next motion request,

f setmod(mode) s set the motion mode, next motion request.

f setvel(transvel, rotvel) i set the translational an rotational velocities, next motion request,

f startupQ : start real time channel,

f stop(time) : repeat last motion request, during time.

f strsave(strlng) 5 copies string in allocated storage and return pointer to it.

f euspendfgQ : put foreground process to sleep for 1/10 of a second.

f takerot(transl, ti-ansS) s copy ‘n’ ‘o’ ‘a’ vectors of *trans2 into *transl, return transl.

- 118-

f taketrsl(tranal, trana2) : copy ‘p’ vector of *trans2 into ‘transl, return transl.

v t6 : read only (TRSF_PTR), the current desired value of T6.

f te&eh(tr'ans, pos) s enters manual teach mode, may update ‘trans, using pos, return user's exit

style.

v there : a (POSJPTR) such as move(there) stops the arm.

v timelncrement: a read only (int), the current sample time.

f tr_to_df(diff,..tran'is)' * make ‘diff out a differential transform ‘trans, returns diff.

f 'trnmlt(translf .trans2, transS) « multiply *trans2 by ‘transS, and store the result in distinct

♦transl, return transl.

f trmuIfcSnp(transl, ,trans2) s multiply ‘transl by *trans2, and store the result in ‘transl, return

transl.

f trimiltinv(transl» tr.n.2) * multiply ‘transl by inverse of ‘trans2(and store the result in

♦transl, return transl.

f trsl(tranB, px, Py, pz) : sets the translation part of ‘trans from p vector, return trans.

f trslm(trap8, px, py, ps) : multiply ‘trans by a translation from p vector, return trans.

f unlt(vectl» veet2) s store in *vectl, the unit magnitude vector, collinear with vect2, return vectl.

v unite j a read only (TRSFJPTH), the unit transform.

f update(trans, pos) : solve ‘trans in equation ‘pos, for the value of T6 at the end of the execution
of the subsequent motion request.

, v«,(tran., ax, a,, ox, oy, »«) = ** P”1 «r *«“» ,">m 'lcmMt!' °' ”°°
orthogonal vectors,- return trans.

f vaom(tr&ns, ax, ay, a., ox, oy, ot) t multiply ‘trans by a rotation from elements of non neces-

. sarily orthogonal vectors, return trans.

f varb() s does nothing but typifies a transform as to be variable (TRFN).

m walta8(bool); evaluates bool every 1/10 of a second and proceed if exp is not 0.

m waltfor(eve) : increment eve, test eve every 1/10 of a second, proceed if eve drops to 0.

v xunit s a read only (VECT_PTR), the X unit vector,

v yunit i a read only (VECT_PTR), the Y unit vector,

v zunlt s a read only (VECT_PTR), the Z unit vector.

13.3. Undocumeted Library Entry Points
The following list is a set of undocumented entry points of the basic RCCL library that may cause

link conflicts. The labels always end with a recognizable suffix. The user must keep in mind that the
entry points of the real time control library are still available, but should normally be used only for read
ing analog to digital conversions, for example.

-120 -

Function s

assign] 33
c h e c k's t a t e 3 .
deqneue_n ■
diffjn'ts_n'
d-rivefn_n
enqiieue^a
focpyc_n
f o j n t s 3
fopar_n.
ge tobs j 3
ge t obs 13
gravSoad_e
j&.cobD_n
Jacob
j ac0MP3
jns_to^t. r_e -
jnsend3 .
newposition3
newterm^n;
p'oly-cpyc^n
po!y j nt s 3’
polypar_n
selection
set-par 3
s etpoin t 3
s h i f 11 r 3
s oive con f3 .'
s'olved^n-
sol v edo3
so1vei3 ■ .
s o1vei03 .
t 2 j 01 S3
t2par_n.

. t r_to__j ns3

Variables :

a rmk_c '
iob f3

mo tion r e q_n
mqoeu03 ■'
opsw n
s n c s

13Include Files

reclii
. This file includes all the necessary ingredients for writing-programs that will-link with the RCCL

library : '

121 -

rccl.h.

#i nc I ude- <s t d i o . fa>
#inc1ude <3nat h . h>

#deioe YES 1
#d .efine NO 0
#d e fi ne UNDEF 2

#define OK - 1
#d e fi n e LIMIT -2 •
#d e fi n e ONF -3
^define ON) -4 '

#d efine PIB2 i.
^define PI 3.
#d e fin e PIT2 6.
#d e fi ne radtodeg 57
#d e fi n e DEGTORAD 0.
^define SM\LL (1
#define EQ 1
#d e fi n e TL 2

#define mal1oc mal1oc_ I
#d efine free f r e e _ 1
^define realloc real 1oc 1
#define cal 1oc cal 1o c _ I
#d efine c f r ee cf-ree J

/*
/*

included here for safety */

*/

f* normal path segment termination code */
/* ran into a limit, arm stopped */
/* terminated on force */
/* terminated on differential motion */

5)

/•
/*
h
/*
/*
/*
/*■

h

pi / 2
P». •
p s * 2
180 /pi
pi / 180
considered as small
Ihs = rhs
tool ~

*/
*T
*1
*/■

■*/
*/
*7
*/

f* .. — */

/* replace dynamic allocation entries */

/’ •/

122 -

I*
* RCCL
*/

rccLh

t'ypedefs

t .y p ed e f ;i ii t bool ;

t y p e d e f float real;'

typedef int event;

t.y pede f • .strict vector {
real xy y, z;

} VECT, *VECT_PTR;' ■■

typedef i n t(* TRFN)(); .

typedef .struct tr ans form .{
ch'aV ^n.ame ;
TRFN In ;
VEOT n , .'o , a, p ■;
int t imeval ;.

J-TRSF, *TRSF_PTft;

typedef struct jns {
char ^coeC;

'• real ’ thT, th2>' th3, th4, th5, th6
}■;'JNTS-, * JNTS JPTR; ..

typedef. struct posit {■
char *name.;
i n t . c ode ;
r-eal seal; ■
'event, 'eod; ,

} PCS'/ *POS_PTR; -

typedef' struct force { .
- VECT f , m; ;

}'FORCE, ^FCHCE^PTR;

t y p e d e f ■. s t ru c t d i ff { ■
" VECT t, r ; •

}' DIFF, '♦DIFF^PIR; ..

l* '
*. RCCL functions
*/

extern POS_PTR makeposition();

extern TRSFJPTR newt rans (.) ,
gent r__rot () ,
gent r_eu 1 () ,.

. gent r_rpy(), .
' ■ gent r_pao(),

gen t-r_t r s.l () ;
as signt r (j ,
t ake t r s ! () ,
take rot () ,
t ranil.t () , '
t rmu!tinp(),■
t rmul t i h v () j' '

‘ i n v e r t ('
i nve r t i np (') ,
t r s 1 () ,
vao(j

' r o t () ,
■ eu l (-) ,

rpy()>
t r s lm(.) ,
v aom() ,
r o tm () ,
euIm{ j■
■rpym() , .

:d f ()■;

Feduk

extern DIFF.JPTR as s i gnd-i ft () , ■
t r_to_df(),
d i ff t r () ;

extern. FCRCE^PTR assignf6rce()
f o r c e t r () ;

extern VECT^PTR ass i gnyec t (■),
c r os s() ,
noit();

extern real dot();

extern

rccLh

int cons t(),
ho 1d() ,

• v a r b (j ,
opt imi. t e () ,
p rin td() ,
p r i ntm() ,

. f r eepos (■) ,
■star tup(),

. suspend f g()
gi veup(),■
releasef),
s e tmod ().,
set ime {) ,
s e t v e 1 () ,
■eval fn () ,
set c on f(),
update(),
samp 1e(),
mas s I s () ,
1'imi t () ,
c omp !y(),
Sock ()',
distance!),
mov e ().,
s top() *'
noatoeiiS!)j
noatorpy(),
p r i n t r () ,

' p r i n t r n () ,
p r i n t e !) ,
pr i n ity (•) ,
teach 0;

- 125 -

/*
* variables
*/

rccLh

.ext era JNTS_JPTR' j 6 ,
jd;

extern 'IRSF_P.TR 16 ,
here,
rest,
unit r;

extern VECTJPTR xe it,
y tin i t
zunit;

extern POS PTR 1 as tpos,
goa1po s,
there,
park;.

extern event completed;

extern FILE *fpi-;

extern bool - prints_out,
fore e_ei1;

extern i n t fddb;

extern ■in t r t ime ,
t ime i nc r emeu t,
requestnb,
nex tmove-,
terminate;

extern real pijm,
pib2_m,
p i t 2 __m,
d g t o r d _m,
r d todg_m;

extern short hdpos;

#define wait as (.predicate)

#d efine waitfor(event)

/ $ current joint .range values */
j* current joint, incr eme n t s '*/

/* current T6 */
/* equals T6 each, end of segment*/
/* T6 park position */
/* unit- transform * /.

/* X uni t vector *../
/* Y unit vector * /
/* Z'unit vector */

/* last evaluated position ' */.
/* current evaluated position */
/* such as 16 - here *f
/* such as 16 —'rest */

/* queue.empty *j

/* info file pointer •*/

/* info prints switch */
'/* force.- control switch */

/* data base file- descriptor */

/* current time since reset . */t>
/*■ current sample period */
/* number of .requests in queue */
/* motion interruption flag- */
/* in rtc */

/* math constants */

/* hand control information .*/

{whiJe(! (predicate)) suspend fg;() ;•}

{++(event);\
whi le(event > 0) suspendfg(); }

126 -

rccLh

e 0 o e As sign t r (void)assigRtr.'
efin e- Taketrs 1 (void) t ake t r s\

#d efi.ne ■Ta k e r 6 t .(void)takerot
#d efin e Trmu It, (v oid)trmu 11 -
'#d e fin e- Trmultin'-p (wo id)t rmu 11 i np
#d e fi n e T rmu1tinv .(vo i d) t rmu 11 i nv
#d efine' Invert (Vo i d‘) i nve r t
#d efine Invert i.np (v-o i d) i nve r t i np-
^define Tr si (void)trsl-
#d e fi n e Vao ■ (void)vao
#d efi.ne Rot ■(void)rot v

■ #d efine Eu I (void)eu1
^define Rpy (void)rpy
#d e 0 n e T r s 1 m '.(void)trslm

efine Va om (void)vaom-
#d efine Rotm (v o i d).r o t.m
#d efin e Eu 1m (void)eu1m
#define ' Rpym •(void)rpym-

#defme As signd i ff (vo i d) as s i gnd i If.
'^define Df.' to_t r ■' (void)df i o__t r
^define .Tr_to_df (v o i d) t r _ t o _d f
jfd efine As sign f o r c e . (void)assignforce
#de’fin e Forcetr (void)force t r
^define D'ifftr (void')difftr .

■(vo i d) as s i gnvec t ■ • ■ • •
(void)cross
(vo S d)un11

fdefine movecartjp, ta, t s) (setmod(’c’); setime (ta, ts); move(p);}
^define move j n t s (p , ta, ts) {s e tmod(’j); setime (t a, ts), move(p),}
^define move conf (p , ta, ts, cf) {setconf(cf) ; setmod(’j’); setime(ta, ts); move

^define freet rans(t) {f ree((char *) t); t = NULL;}
#define "f reepos i t i.on(p) (f reepos(p) ; p = NULL ; }

kine*fa
' This Ole describes the items, related to the kinematics of the. considered manipulator. That is why,

if you are using the Puma 600, the name ’PUMA’ must be #defined somehow. The macros updates the
Jacobian coefficients, they can be ignored and are listed here for completeness only. The external entries
may‘be of some importance.-

#d efine Assignvect
efine Cross

■^define Unit

kioe.li

#i fdef PUMA

#define ELBOV DEG 01 /* e S bow degene r acy
fdefine ALIGN DEG 02 /* T6 in X Z Jt 1 plan
#define WIIST DEG 03 /* wrist degeneracy

typedef struct kiodyo .{
real a2, a3, d3, d4, d32, e432, aa3d4, e4aa4ad;
real cp21, cp31, cp32, cp50;

} KINDYN, *KINDYN_PTTt;

typedef struct sine os {
real cl, si, c2, s2, c23, s23, c3, s3, c4, s4, c5, s5, c6, s6;
real dlx, dly, dlz, rlx, rlz, d2x, d2y, d2z, d3x, d3y, d3z;
r e a I h ;
TRSF u5;

} SNCS, *SNCS_PTR;

128 -

'kine.h
/ ❖

* Macro updates coe f of Jacob from the sin cos

*1 ‘ .

$define GETH\
(\

sncsd.h = snc s_d.c2 * armkc.a2 +\
. snc s_d . s 23 * armk_c .-d4 +\

sncs_d.c23 * armk_c-. a3;\
}
^define UPDJ\
(A ■ 1 ' ' '

sncsd.dlx = snesd.h * sncs_d.s4 -\
armk_c.d3 * sncsd.c23 * snc3_d.c4;\

SECS d .dly = sncs_d.s23 * armk c.d3;\
sncs d dlx = sues d.h ^ sues d.c4 a rmk__c . d 3 ^ snc s ^d «c 23 * secs __d • s 4 ,
snc s~d.r lx - -sncs_d.s23 * snc s_d.c4;\
snc s~d. r Iz = sncs_d.s23 * snc s_d.s4;\
sncs d d2x = armk_c.a2 * sncs_d.s3 * sncs_d.c4;\
sncs”d.d2y = armk c. a 2 * sncs_d.c3;\
sncs d.d2z = -armk_c.a2 * sncsd.s3 * sncs_d.s4;\
sncs”d.d3x - sncs_d.c4 * armk_c.d4;\
sncs d . d3y — a rmk c.a3;\
sncs~d.d3z = -sncs_d.s4 *-armk_c.d4;\

}■

5^define GETU5\

sncs d.u5.n.x = sncs_d.c5 * sncs_d.c6;\
sncs d . u 5 . n . y sncs_d, $ 5 ^ sncs_d . c 0 , \
sncs_d . u 5 . n . z = snc s__d . s6 ; \ .

' .'snc s~d.u5.o. x— -snc s_d.c5 * sncs_d.s6;\■
sncs d . u 5 . o . y = -sncs_d.s5 * sncs_d.s6;\
sncs_d.u5.o.z = sncs_d.c6;\
sncs d.u5.a.x — gncs_d.s5;\
sncs_d.u5.a.y= -sncs_d.c.5;\
s n c s _d . u 5 . a. z — 0 . ; \

} ■■ ■ 2
#end i f

#i fdef STAN . ' '
typedef struct kindyn {

real d2, 422;
} KINDYN, *KINDYN_PTR;

typede f struct sincos {
real cl, si, c2, s2, d3, c4, s4, c5, s5, c6, s6;
real dlx, dly, dlz, rlx, rly, rlz, d2x, d2y, d2z, r2x, r2y, r2z,

d3x, d3y, d3z, r4x, r4y;
} SNCS , * SNCS _P1K;

129 - '

kineJi
#define UPDJ\
(\

real\
kl = _sncs_d.c4 * sncs_d.c5,\
k2 =■ sEes_d.s4 * sncs_d.c5,\
k3 = sacs_d.c4 •* sncs_d.s5,\
k4'=sncs_d.s2*sEcs^d.d3,\
k5 = kl * soc..s_d . c6 ? \
k6 = sncs_d.s4 £ snc sjd .'c6 , \
k7 = k5 - s ac s_d.s 4 * sues_d.s6?\
k8 — k2 *sncs_d.c6+sncs_d.c4 * sncs_d.s6,\.
k9=kl*sncs_d.s6+'k6,\
k 10" - k2 * so.cs_d.s6 + socs_d.c4 * secs_d.c6,\ .
k11= k 5 + k6,\
kl 2= snc s_d . s4 * snc s._d . s.5 , \
k13= s e c s _d.s 5 * sncs_d.c6y\
k!4= sncs_d.s5 * sncs_d.s6;\
sec s_d.dlx = (-armk_c. d2 * {sncs_d.c2 * k7 - snc s_d-.s2 * k13) +\.

k4 * k8) ;\
sncs_d.d2x = $ncs_d.d3 * k7;\
sncs_d.d3x.=-kl3;\
sne s_d.dly = (-armkj .d2 * (- sncs_d . c2 * k9 -f sbcs J. s2 *■ k!4) +\

k4 * k 10);\
sncs_d.d2y=-sncs_d.d3*kll;\
snc s_d.d3y = k!4;\
sncs_d.dlz = (»armk_c . d2 * (sncs_d.c2 ^ k3 i s nc s _d . s 2 * sncs_d.c5) +\

k4 * k 12);\
sncs_d.d2z = sncs_d.d3 * k3;\
sncs_d.d'3z=:sncs_d.c5;\
sue s_d . r lx = (-sncs_d.s2 * k7 - sacs J.c2 * k 13) ; \
sec s_d.r 2x = k8;\
see s_d.f4x = -kl3 ; \
sncs_d.rly =■ (sncs__d.s2 * k9 + secs_d„c2 -* k 14) ; \
snc s_d.r 2y = k10;\ ...
snc s_d. r 4y = k14;\
sncs_d . rl.z = (- sues J . s2 * k3 + snes J. c2 * snesj.. c5) ; \
snc s__d . r 2z = k 1 2 ; \

}
#end i f

130 -

klne.fo

extern. KINDYN armk. c ; ' ■ 7* arm kinematic and dynamic 7
/* const an t s . . 7

e:x tern SNCS ■'.sue s d ; /* current s'in cos, Jacob coeff */
./* and U5 matrix 7

extern JNTS 'jc a I_c; ' / * rest position joint range 7

extern JNTS jmi n_c ; /* angles range. offset values 7

-)ex t e;r n' JNTS ■ -j r ng_c . / * maximum joint range- values 7

extern. JNTS ■ jmxv_c; /* max joint vel oc i t i es *j

The variable armkc contains all the arm constants : link parameters, and gravity joint loads.
The variable sues d contains a set of variable kinematic parameters updated at sample time intervals :
joint angles sines and cosines, the terms of 3 by 3 upper left Jacobian submatrix, computed in Sink 4, and
the matrix C/5. The variable Jcal_c is the joint angle values at the ‘park’ position, in radians. The vari
able jmln c is the set of angle offsets used to map joint angles expressed in' solution coordinate frame \-n
, + jrJ ontoloint angles expressed in range coordinates [0, range]. The variable jrng c is the set of joint
ranges in radians. The variable jmxv c is the set of admissible velocities in radians per second.

which »h
Including this file is equivalent to #define PUMA for now.

which.h

^define- PUMA. ■ ■■/* current system setting '*/

#i fdef PUMA .
^define ARMTYPE 1 /* for the interface’ 7
^define NJOINTS 6
#define VALII /* for the hardware clock */
#e 1 s e
#i fdef STAN
#define ARMTYPE 2
#define NJOINTS 6 ;
#e!-se

not rich enough ■
#end i f
#end i f ■ ■ ■ ■ .

hand.h
Macros to operate the pneumatic gripper:

13.1

hand.h

^define CLOSE hdpos = ?o 5 ;

^define OPEN ■ hdpos = 7 c 5 ;

j * clos-e pneumatic gripper *'/

/* open pn-eumat'i c ■ gr ippe r . */

umac.h
This file defines some useful macros that are self explanatory. The dangerous side effects of macros

must be kept in mind, for example :

FABS(dot(vec t))

will call dot twice !

umac.h

#define SINCOS(s, c, a) {s = sin(a); c - cos(a);}

^define FABS(a) (((a)<0.) ? -fa) : (a))

^define ABS(a)

#d e 8 n e ROUND(a)

$d e 8 n e TERMIO (z)

#de8ne GETCHAR(c)

#define QUEHY(c)

(((a) < 0) ? -(a) : (a))

((a - (doub1e)(iet)a >= .5) ? (int)a +1 : (irit)a)

do {errno = 0; z; pause();} while (errno == EINTU);

while f(c = getchar()) = \
I I c = ’\t’ j) c = ’\n’> J

print f(” (y/n) ”);
do {

GETCHAR (c);
} while (c ! = ’ y 1 &&, c 1 n ?).;
{ i n't v ; ■
if ((v = getchar()) != ’\n’)
(void) ungetc(v , stdin);}

\
\
\
V
\
\.

exiodJi
This file describes the bit definition of the W field of the how structure of the real time inter-

face [6].

-132

#d efio e
#d e fi o e -
#dofin e
#d e fi n e
#d e fi n e
#define
^define
jfd e fi n e
^define
^define ..
■^define
#d e fi n e
^define
^define
fdefine
#d efine
^define
^define'
#deine

exIocLfo

externg 0! /* external input/output
EXTERN1 02 /* b i t dcfiri i t i oiss

EXTERN 2 04 /*
EXTERN3 010 /*
EXTERN 4 020 h
EXTERN 5 040 l*
EXTERN6- 0100 i*
EXTERN7 0200 /*
ARNfMR 0400 1* high power on/of bit (high/

(j)FFL 01000 h external low signal to stop

RUN 02000 ■ /* front panel.switch - run bit

RESTART 04000 /• front panel switch - restart

HNDOH 01000 h close pnenmatic hand/ release

HNDCU 02000 /* open pneumatic hand/reIease

EXTRA4 04000 I* spare output bit (not wired)

EXTRAO 010000 1* spare I/O bit (not wi red)

EXTRA1 020000 /* spare I/O bit (not wi red)
EXTRA2 : 040000 V* spare I/O bit (not wi r ed)
EXTRA3 0100000 /* spare I/O bit (not wared)

the arm
1 GW

bit low
(high/1ow

(high/low)

•/
*/.

*/
*/
•/
•/
*/
*/

*/
*/.

*/
*/

) */
*/
*/
*/
*/
*/
•/

133 -

14. Transform Data Base
A very simple data base system is implemented. Transforms are stored tinder their names as set in

the ‘name’ field of the ‘TRSF’ structure. From the programming point of view .the following functions
can be called :

make tdb(name)
char *name ;

savetr(trans, fd)
TRSF^PTE trails;
intfd;

gettr(trans,fd)
TRSF JPTR trans;

■ int.fd;..

r emt r (.name , fd) / ■ <
char ^name ;
intfd;

dumpdb(fd , v)
intfd;
boo 1 v;

c omp a c t (n ame)
char *n;

The function makehdb creates an empty transform data base and returns the corresponding file
descriptor. This function cannot" be called, when the real time channel- is opened, this is the purpose of
the option ‘-D\ The function' savetr stores a transform under its name in the data base. If the
transform already exits the user is prompt :

change ? (y/n)

if Y is answered, the value T is returned otherwise ‘O’ is returned. The function gettr retrieves a
transform and sets its value. The value ‘0’ is returned, when the transform is found, ‘-2’ If not. Both-
functions print an informative message on ‘stderr’ at .the time the action is performed. The function
remit* removes a transform from the data base. The value ‘O’ is returned, when the transform is found,
*-2’ if not. The function dismpdb dumps the contents of the data base described by the first argument
on the ‘sfcdout’ file. The second argument, when non zero, specifies a ‘verbose’ dump. The function
compact compacts the data base, and permits to save some file space if the: data base as been exten
sively used. This function should not be called from manipulator programs.

In manipulator programs, use the file descriptor fddb as argument for the data base functions. All
these functions return ‘-1’ if something goes wrong. The messages are :

134

Informative messages :

save ir. NAME ' c r e at-ed DATE
savetr : NAME changed at DATE
s a v e t r : NAME added' at DATE
gettr : NAME last change : DATE
ge tir : NAME not found-
r emt r : NAME -r emoved
remii : NAME not found
dump ': NUMBER entries-

Errors me s s ag es are :

read error on data base file
write error, on data base file
seek error on data base file
can’t duplicate data base file
could ’ n t u'n link
bad magic number .
could’nt creat transform data base file
open error on data base file
search.error
data base.file saturated

A data base editor called edb allows the user to maintain transforms files. The user can modify an
active transform with .patches' or multiplications The active transform can also be read from, the data
base, renamed,"or reset to the unity transform. Transforms-can' be added to, changed in, or removed
from the data base: All combinations are thus allowed. When a ‘break’ is typed at the terminal the fol
lowing message is printed : .

These commands are
q '

<*[■

u <name>:
' s

n <n . a me >

r <name>.
i .

. pt x y z
p <X/Y/Z> a\

pa x y z x
p.e ph i. the
pr ■■ ph i the-

These ■ commands are
mt x- y. z

m <X/Y/.Z> a
ma x y z x
me phi the-
mr p hi ' the

executed one per line:'
quit and save file-
quit, and do not- save
dump data base [verbose

.use transform ’name1
save active transform
rename active transform
show active transform

'.remove.- transform ’name’
invert active transform
patch a translation x y

rotation a around
a rotation
a rotation
a rotation

f r om fi 1 e

z
X, Y, or Z axis

defined by a and o vectors
from Euler angles
from roll pitch and yaw angles

patch a
y z patch
ps i patch
p si patch
cuntil l.a.t i ve :

multiply- by translation x y z
• mu Itiply by rotation a -around X, Y,' or Z axis

y z multiply' by rotation defined 'by a and o vectors
psi multiply by rotation from Euler angles
psi multiply by r.otat ion - f rom ro 1 1 pitch and yaw’angles

135

15, Details

15.1e Compile
Nothing special- about compilations, use UNIX’s cc command. In order to be able to include the

declaration files independently from the directory they may. have been be stored in, a possibility is to
define a shell variable, ‘reel’ say, in yoof .login or .profile files as

rcc!=”-I/b/rcc S/h” for sh users
set rccl = (- I/b/rccl/h) for c sh users

15*2. Link
Your code must be linked with four libraries :

reel..a The real..time version basic library
dbot.a ’ The data base library
rie.a The real time channel
libnm. a sy s t em new math library

One may conveniently expand the ‘red’ shell variable :
rcc!=”-I/b/rccl/h /b/rcc1/I/reel.a /b/rcc1/I/dbot.a /b/rccl/l/rtc.a •inm”
set rccI~(-I/b/rceI/h /b/rccl/l/rccl.a /b/rcc1/I/dbot.a /b/rccI/I/rtc.a -1nm)

Such that you can type :

$ cc myprog.c free 1

In order to get the planning version, just set a shell variable, ‘plan’ say :
p!an=”-I/b/rccS/h /b/rccI/1/rcc1.plan /b/rcc1/1/dbot.a /b/rcc1/l/rtc.a -Inm”
set pIan=(-I/b/rcc 1 /h /b/rcc 1 /I/rcc 1 .plan /b/rcc1/1/dbot.a /b/rcc1/ I/rtc a - Inni)

and type :

$ cc myprog.c $p1 an

15.3. Lint
Linting programs proves to be very useful, set a shell variable, ‘rlint’ say :

r1int=”- I/b/rcc1/h -v /b/rccl/l/l 1 ib-rccl /b/rccI/I/I1ib-dbot /b/rccl/S/11ib-rtc”
set r1int=(-I/b/rcc1/h -v /b/rcc1/1/l1ib-rccl /b/rcc1/I/11ib-dbot fbfrcc1/1/11i^

and type :
$ lint my prog.c Srlint
The llib-rccl, llib-dbot, Ilib-rlc files contain the descriptions of the functions compiled'and stored in the
corresponding libraries.

15.4* Run
Type :

$ a.out [-options]
once the channel has been set up and the arm calibrated. The options can be cumulated after (except
the ‘D’ option) :

$ a.out -b -v -e-d -g -k -Ddata

is equivalent to

136 -

$ a/out -bvedgk -Dd.afca

You will get the programs calib, mkenc, play, dl ,edb, and dsp if the ‘path5 of your shell leads to the
right directory : ■

P ATI I-$ PATTI: /!>/rccl/s
export PATH

(for sh users)

set. pat-h = ($path; /b/rcc 1/s) (for c s h users

I®. The display program.
The 4sp program uses the terminal in pseudo graphic mode like a page editor. The user’s terminal

must 'possess screen" addressing capabilities (see termcap(5)). The user’s session environment shell vari
able TERM must be set to the corresponding terminal (adm3a, adm5, vtlOO, etc..). By default, the dsp
program reads files of the form :

.. /g/fi1e.out

The display of this file is obtained by typing :

$ dsp fi 1 e
If no argument is given, the user is prompted.

The program displays files that are a sequence of numbers of type double. The program also looks
for a file of the form :

../g/t.out
that must be a sequence of same length of numbers of type int. If the file ‘tout has the proper length,
these numbers will appear in the left column of the display. The program also looks for a file of the form

../g/c.out
that must be a sequence of characters. These characters will be used for the display on the basis of a one
to one correspondence. If the character file is not found, dsp uses a The pseudo graphic display is
tilted of 90 degrees to provide a maximum resolution, (low on the left, hight on the right, instead of the
usual bottom/top). If you do not like the idea of the ’’../g” directory place in your shell’s environment :

GRAPHDIR=” the directory you like”
but the planning library assume that the ”../g” directory exists. The program is interactive and the help
message is :

- 137 -

!*/s/r/u/d/g/h/b/f/a/v/p/q/+-n/?

?
+-n

q
p
V
a
f
b
h
g
d
u
r
s

. @
! *

his me s s age
[+,-Jdigits <space> : direct addressing

qu i t
position display
velocity display
acceleration display
forward one page
backward one page
half page forward
half page backward
down one line
up one line
redraw
scale
back to prompt

! <space> file <space> : show another file

Type any character to continue

\

138 -

17. References
[ij Kemighan ,B. K., "The C Programming Language”, Prentice-Hall, 1978.

[2j Paul, R. P., "Robot Manipulators: Mathematics, Programming, and Control”, MIT Press 1981.

[3] Hayward V., "Introduction to RCCL : A Robot Control ”C” Library”, TR-EE 83-43, October 1983.

[4] "High Speed QBUS-UNIBUS Interface”, Engineering Drawings, School of EE, Purdue University,
Nov. 1963.

[5] Fi;sh«fr, W. D., "The Modification of a Robotic Manipulator and Digital Controller to Incorporate
Both Force and Possition Control”, MSEE Thesis, Purdue University, May 1981.

[6] Hayward V., "Robot Real Time Control User’s Manual”, TR-EE 83-42, October 1983.

{7] pauj; R. p., Shimano, B. E., Mayer , E. G., "Kinematic Control Equations for Simple Manipula
tor”, IEEE Transactions oh Systems, Man, and Cybernetics, Vol SMC-11, No 6, June 1981.

[8j Zhang, H., Paul, R. P., "Determination of Simplified Dynamics of Puma Manipulator”, Purdue
University.

[9] Paul, R P., Rong Ma, Zhang H., "The Dynamics of the Puma Manipulator”, The International
Journal of Robotic Research, (to be published).

(Revised 8/83)

MINIMUM DISTANCE COLLISION-TREE PATH PLANNING-

FOR INDUSTRIAL ROBOTS WITH A PRISMATIC JOINT*

J. Y. S. Luh and C. E. Campbell

School of Electrical Engineering

Purdue University

.. West Lafayette, Indiana 47907

Abstract

A collision-free path is a path which an industrial robot can physically take while

traveling from one location to another in an environment containing obstacles. Usually

the obstacles are expanded to compensate the body width of the robot. For robots

with a prismatic joint, which allows only a translational motion along its axis, addi

tional problems created by the long boom are handled by means of pseudo obstacles

which are generated by real obstacle’s edges and faces. The environment is then

modified by the inclusion of pseudo obstacles which contribute to the forbidden regions.

This process allows the robot itself again to be represented by a point specifying the

location of its end effector in space. An algorithm for determining the shortest distance

collision-free path given a sequence of edges to be traversed has been developed for the

case of stationary obstacles.

* Supported by NSF Grants DAR (APR) 77-14533 and MEA-8119884.

- ViO -

I. INTRODUCTION

Industrial robots are computer-controlled mechanical manipulators which perform

tasks for industrial applications. One of the essential operations in all the assigned

tasks involves the physical motion of the manipulator whose end effector travels from a

known initial position and orientation to a specified goal position and orientation. In

reality, |he workspace of the robot is not free from obstacles such as fixtures, mechani

cal parts, etc., so that a collision may result if the robot moves freely without any gui

dance. If, however, the positions and orientations of all the obstacles are known for the

entire time Interval of operation, it is possible to plan a collision-free path, if one exists,

for the robot to travel along while performing its task.

The subject of collision-free path planning is relatively new. Within the past five

:-years, only a handful of people have been actively working on this subject. Among

them are Pieper [Ij and Widdoes [2] who used planes, cylinders, and spheres to

represent obstacles (objects). The use of spheres has an advantage of avoiding the

orientation problem. However, the free space that is occupied by parts of the spheres is

wasted for planning purposes. In addition, the intersection functions are often non

linear involving square roots or transcendental functions. Udupa [3], Lozano-Perez and

Wesley [4], and Lozano-Perez [5,6], and BrOoks [7] adopted the polyhedra as the models

which result in linear intersection functions. But the orientation problem must be han

dled with care. Udupa discretized the space into cells which were labelled free if not

occupied by obstacles and objects. Lists of free cells are joined together to form a

collision-free path. To allow for arbitrary orientation, the obstacles’ expansions over

compensate, which reduce the number and/or size of the free cells available for path

planning. Lozano-Perez described linked polyhedra using swept volumes. The rotation

range is then divided into a finite number of slices. Brooks adopts the idea of general

ized cones [8] which are equivalent to swept volumes. Free space is then represented as

overlapping generalized cones.

141

In the methods described above, some determine the free space inside which the

point robot may move freely without collisions with obstacles, while others determine

the forbidden region so that a collision-free path may be traced along the boundaries of

the region. This paper adopts the second approach to the problem which involves

objects and obstacles that interact with a robot which has a prismatic* link, such as the

Stanford manipulator [9]. The prismatic joint, however, creates additional problems.

As usual, the objects and obstacles are approximated by enclosing polyhedra. The

manipulator is represented by a point; in particular, the point at the tip of the end

effector. Its real body width is compensated for by expanding the polyhedral obstacles

[3-6]. Methods of constructing the expanded polyhedra are given in these references. If

the point robot enters into the expanded polyhedra, a collision will then occur. Now

since the prismatic joint of the manipulator has a Song boom, it creates two pseudo obs

tacles: one by the restriction that the front of the boom remain free of collision and the

other by any confinement of the rear of the boom due to obstacles. The pseudo obsta

cle is not a physical object but a region of shadow in the workspace. However, when

the point robot enters into the pseudo obstacle, a collision between the boom and a

polyhedral obstacle occurs somewhere along its length. Thus the pseudo obstacles

together with the expanded polyhedra form the forbidden regions that the point robot

must stay away to avoid collisions. The discussion begins with 2-dimensional problems

with stationary objects and obstacles, and is then extended to 3-dimensional problems.

*The joint that allows only a translational motion along its axis is conventionally called the prismatic
joint. The sliding link of the joint is called the prismatic link. The terminology was introduced by J.
Denavitt and R. S. Hartenberg in their paper entitled, “A Kinematic Notation for Lower-Pair Mechan
isms Based on Matrices,” ASME Transactions (Vol. 77): Journal of Applied Mechanics, Vo!. 22, June
1955, pp. 215-221.

// PSEUDO OBSTACLES OF STANFORD MANIPULA TOR

A Stanford manipulator is shown in Figure 1 which consists of a platform, a pillar,

a long boom, and a forearm with a wrist and a gripper. A 2-dimensional space will be

considered first. Refer to Figure 2(a) and (b) for a relative location between a polygo

nal object and the boom. It is seen that at the front end of the boom there is a pseudo

obstacle, the shaded area in Figure 2(b), which is created by the geometrical

configurations of the polygonal object and the robot boom and their relative locations.

The pseudo obstacle is completely determined by three parameters: d, and 02. These

three parameters can be determined as follows. Extend the boom towards the polygo

nal object and locate the two vertices which lie farthest from the boom pivot and that

the boom can touch: one at the left and one at the right. Connect these two corners by

a straight line, and d is the distance from the line to the boom pivot. Also connect the

two corners to the boom pivot by straight lines. 0l and 92 are the angles between these

two lines and d. Intuitively, the existence of the pseudo obstacle depends on the condi

tion that d< L, where L is the length of the boom. Finally, the forbidden region at

the front end of the boom is the union of the pseudo obstacle and the polygonal object.

Using this approach, the problem associated with hidden lines of obstacles is avoided.

In some industrial robots such as Unimate 21G0G of Unimation Inc., the rear of the

boom is concealed in its housing. Obviously the fear of the boom is of no concern as

long as the body of its housing is compensated for. However^ some other robots, such

as the Stanford manipulator, have the entire booms exposed openly Without covers, and

additional care must be exercised as follows. If a polygonal obstacle is close to the rear

of the boom, another pseudo obstacle is created by the restrictions imposed by requir

ing that the rear of the boom remain free of collision. Refer to Figure 2(c), where the

rear end rests against an edge of the polygonal object. If the edge is long enough, then,

by sliding the rear end against the edge, the front end traces a “water-drop-like” figure.

The “drop” forms a pseudo obstacle at the front of the boom in the sense that

- 1-43 -

whenever the point robdt enters into the “drop”, a collision somewhere along the rear

end occurs. Thus the pseudo obstacle outlines an additional forbidden region.

The “drop” may be described in terms of two constants L and h, and two vari

ables z and u, as shown in Figure 2(c), where L is the length of the boom and h the dis

tance from the boom pivot to the edge of the polygonal object. From the figure it is

seen that

— = L/(a2+h2)1^2 for . z > h / (1)

which leads to a relation between z and u:

z2 = (hL)2/[u2+L2~z2+h2 + 2u(L2-z2)1/2], z > h (2)

To construct a polygon that encloses the drop, as shown in Figure 3, first the tangent

function is determined:

s ahLIL^zWlahLHL^'V+t2)372] (3)
du

The polygonal enclosure has three defining points: the top where the tangent is horizon

tal, the side where u has its extreme value, and the cusp at the bottom.

Top a —► 0, u '—*• 0, z L, and dz/du ► 0.

Side dz/du—+oo so that

ahLz - (L2-'Z2):I^2(a2+h2)3/2 = 0 (4)

which leads to

u = h[(L/h)2/3 - I]3/2 (5)

If L < h, then u becomes imaginary which implies that the “drop” does not

exist since the rear of the boona is not able to touch the edge of the polygonal

object. .

144 -

Cusp u —► 0, z —►. h, a2 —*• (L2-h2) so that

dz/du = -h/^-h2)1/2 (6)

which describes the slope of the tangent to the left of the cusp.

The polygonal enclosure of the “drop” wastes some free space but preserves polyg

onal descriptions of the forbidden region. The amount of waste may be computed as

follows. From Figure 4, it is seen that the area of enclosure is

Ae - (2(L-zs) + (zs-h)] | u |

where zs = h[l + [u| /(L2-h2)1/2j

The area of the “drop”, however, is

■ L
Ad. ~ 2 / (1 - h/z)(L2-z2)1'/2dz.

* h

Let 7 = L/h, then the ratio

Ad _ t27t/2 + (y2—l)1/2 - Trsin'Hl/^) ~ 2ylnf7 + (t2-!)1/2]
Ae ” (2(7-1) “ (r/3~l)3/2 (t2”!)"172] [^2/s-1]3/2 ,

and Ad/Ae —*■ jr/4 — 0.785 as 7 —*• oo. It should be noticed that the ratio depends on 7

only. A few values were computed and tabulated below:

(7)

(8)

(9)

(10)

7 = 1.001 5.0 10.0 102 103 104

Ad/Ae = 0.8584 0.8148 0.8080 0.7982 0.7908 0.7871

Thus the efficiency of the 2-dimensional enclosure of the “drop” varies from 78.5% to

145 -

near 85.84%.

If the edge of the confining polygonal obstacle at the rear of the boom is short

enough, then the forbidden region “drop” is clipped or deformed as shown in Figure

5(a) and (b) respectively. For the first case, the clipped polygon can be determined

once $ is determined. In the second case, the deformed “drop” can be modified by clip

ping and is contiguous to another clipped drop due to the second edge if /? is known.

For simplicity, the original polygonal forbidden region is used in clipping to avoid addi

tional computation although some free space is wasted.

If the 2-dimensional polygonal enclosure of the “drop” is rotated about the z-axis,

a cylinder capped by a circular disk on the top and a cone at the bottom results as

shown in Figure 6(a). To retain the 3-dimensional pseudo obstacle in the form of a

polyhedron, another enclosure must be further developed. First the cylindrical section

is modelled by an n-faceted polyhedral pillar which encloses the cylinder. Refer to Fig

ure 6(b) in which

R = | uj /cos(r/n) (H)

Then, in the Cartesian coordinates as shown in the figure, the n vertices of the n-

faceted polygon of the pillar at the top are located at (R cos k7r/n, R sin k?r/n, L) for k

= 0,l,...,n-l; while those at the lower end of the pillar are located at (R cos kjr/n, R sin

kir/n, zs). The cusp point is situated at (0,0,h).

- 146 -

III SHORTEST path among an, ordered set of chords

It is known that a shortest, collision-free path for a point robot in an environment

composed of polyhedral obstacles in 2-dimensional workspace consists of line segments

connecting an ordered set of vertices of some of these obstacles [4,5]. To determine the

shortest path in a 3-dimensional workspace, consider an ordered set of N chords which

represent the edges of polygonal forbidden regions as shown in Figure 7, where Aj and

B- are the two end points of chord i for i = t,2,...,N. Then, any point on chord i can

be represented by

: + S. o <• ofi < 1>.-- . (12)

Thus (Pi~Pi-i)f (£~Fi-i) is the distance squared between two points on two adjacent

chords (adjacent in terms of the sequence to be traversed), where ()’ = transpose of ().

be the total distance squared from Pr to ... to 5,. Since the initial starting location

and the terminal goal location is known, al and 0!N are given. Thus minimizing J with

respect to for i - 2,3,...,N-1 is equivalent to finding the shortest path. This is a sim

ple quadratic programming problem with N variables and N constraints, which can be

solved by a number of known methods. -$ne. of them is the symmetric variant

approach which is a generalization of the simplex for linear programming [10, p. 270].

In this method, the number of primal basic variables is not always equal to N, but may

vary from N to 2N [10, p. 274}. The asymmetric method [10, p. 280] by Dantzig [11],

and later independently by van de Panne [12], does not have the parametric variation

of the incoming variable. Instead, this variable enters the basis as soon as it is assigned

a nonzero value. Consequently the nonstandard tableaux occur. Graves [13] and

Lemke [14, 15] propose a parametric method which is the generalization of Dantzig’s

self-dual parametric method for linear programming [10, p. 310]. The difference is that

- 147 -

Graves’ approach is equivalent to the symmetric variant of the self-dual parametric

method while Lemke’s is to the asymmetric variant scheme. It is known [10, p. 279]

that the symmetric variant approach converges in no more than (2N)!/(N!)2 steps. The

asymmetric method, however, does not make any use of the existing symmetry so that

the computational effort is increased [10, p. 320]. In the following, an iterative algo

rithm is presented which converges in no more than (N-2)(N-l)/2 iterations, which is

much less than (2N)!/(N!)2 iterations.

From (12) one obtains

Pj-Pj-i = ^(Aj-Bj) - otj-ifAj-j-Bj-!) + Bj-Bj-j (14)

Let Gj = Aj-Bj, Dj = E-B^, and ()’ be the transpose of (), then

(Pj^Pj-l)' (Pj"Pj-i) + (Pj + rPj)' (Pj + i"Pj>

= 2aj2Cj Cj + 2ajC|[(-Oj_1Cj_1+Dj) - (aj + iCj + 1 + Dj + 1)]

so that

5j/5oi = dis(5-a-1n&"&-i)]/aai
j=2

= 4ai2i!2i + 2^i +^i) ” (ai + £i + l+Di+l)l

(15).

(16)

dH Ida? = 4Cj Cj (17)

Since for i=2,3,...,N-l, Cj■= Aj-Bj ^ 0. Then d2J/dcq2 > 0. Let {a*} be the solution

set to dJ/dcq = 0, i.e., {a*} satisfies

"(Ai-Bi)' (Am-Bm)^!-+ 2(Ai”Bi)MA5-Bi)or

148 -

-(Ai-Sit'IAi + rii + .KVi =(&-,-2Bi+l + 1)'(Ai-Bi) (18)

for i .= 2,3,...,N-1. Hence {cq*} yields a minimum J. System (18) yields a system of

(N-2) equations with (N*2) unknown a*’s. The system is a tri-banded structure which

is easy to solve. However, since the constraints 0 ^ <q 1 ^re not imposed in equa

tion (18), the solution may be infeasible. To convert the infeasible solution to a feasible

solution, suppose that among the Oj s, at least one ttk is such that o;k [0? 1]- Let dk

be the value indicating the intersection of a path at edge k. Then

J(«i,a2, • • • , dk, . . . , Q!N-l>aN) > J(al»a2> • • • >ak- • • • -“N-I’^n) (19)

By (15), one may express J as

J. = a a2 + b cq + c

where the parameters a, b and c do not contain any terms of cq. Thus di/dorx - 0

yields

V =~b/(2a)

so that

J* = J(K» = -b*/(4a) + c

Now.

J(a1;a2\ . . . - J* = ad2 + bd;+c - [-b2/(4a)+c]

■= a[di + b/(2a)j2

= a[drcq*]2 > 0

since a = 2Ci'Ci > 0. Now J* is fixed, thus J(q;1,q;|, . . . ,dk, ,decreases

as | dk-ak] decreases. Based on this property, d; is set to zero if a* is less than zero,

or set to one if greater than one. An iterative algorithm for obtaining a feasible

solution is then developed. In the algorithm, is written as b; for simplicity. Essen1

tially, the procedure starts with solving the sysifeii equation (18). If the solution is

infeasible, then choose one of the cq’s that is not in the range [0,1], but it is closest to

the starting edge. Set this a{ to its closest allowable extreme value (i.e., either zero or

one) temporarily, then divide the remaining eq’s into two groups and solve equation

(18) again for them Now, if there are infeasible cq’s which are even closer to the initial

edge than before, then repeat the procedure for all the cq’s that were computed during

this iteration. Otherwise only the second group is re-iterated. The procedure repeats

until all* the feasible cq’s are obtained. The detailed algorithm is as follows:

Step 1. Set I = 1 and J — 1. :

n-i i-i u, . . .
Step 2. Solve (18) for {aj} and {a-} . Here {a-} = emptyy if V > U,

Step 3. Collect ail those a{s such that ax g [0,1]. Among these a^s, find the smallest

i and call it k; i.e., find k = min i for o, ^ [0,1].

Step 4. If {«;) < 0 U »i > 1} - </>, (i.e., if no disallowed co exists), stop the pro

cess and output the feasible solution. Otherwise, continue.

Step 5. If ok < 0, set bk = 0. If Qk > 1, set ak =1. Continue.

Step 6. If k < I: set I = k. Go to Step 2.

Else if k > I: set J ~ I, then I = k. Go to Step 2.

The convergence proof of the algorithm is shown in the next section. Using the

. ... :: . . (N-2)(N-1) , A. .
algorithm, a feasible solution may be obtained m no more than ■ iterations.

Usually, the solution will be found in fewer than N steps, A FORTRAN program has

been written for the implementation. Using numerical examples, the feasible solutions

produced from the program agree with those that were computed from the Powells

150 -

improved DavidomFletcher-Powel! method [16].

IV.. CONVERGENCE OF THE ALGORITHM

To show the convergence of the algorithm, let In, Jn and kn be the values of indices

I, J and k, respectively, at the n-th iteration. Initially let I0 = 1 and J0 = 1 according

‘ I “1
to Step 1. Since I0~l < J0 + l, then in Step 2 one obtains = <j> and

I0 + l < 1 < N-l. Thus by Step 3, min i = k0 > I0 provided k0 exists. From Step 6,

one obtains Jj — Iq and Ij = kg so that

h<h ■ , (2°)

For n=l, one obtains from Step 2 that Jj + 1 < i < I5~l and It + 1 < i < N—1

but i 5* IL. However, kt ■= min i for a; g [0,1] so that, if k, exists then either

Ji + 1 < kj < Ip-1 or ^ + 1 < kj < N-l.

(a) Jj +1 < kj. < Ij—1. This implies Jj < kj < Ij. Now Step 6 yields I2 = kj so

that.

h<h (21)

and

. Js < I2 (22)

Inequality (21) implies that the value of I is decreasing. But the value of J is not

altered, i.e.

■ ■ . ^2 = ^1 (23)

Hence combine (22) and (23) to yield

J2 < (24)

- .151 -

(b) Ij + 1 < kj < N— 1. This implies kj > It, and Step 8 yields J2 — and 12 — kj.

The second equality implies

I2 > I, (25)

which means that the value of I is increasing. Combining the first equality of

case (b), i.e., J2 - Ilt and (20) yields

h > h ' (2^.

i.e., the value of J is increasing. Again, combining the first equality and (25)

yields

' J2< I2 ' (2T)

Thus, in either case, J2 < I2.

By induction, one obtains Jn < In for n =1,2,..- in general. Now Step 2 yields

Jn + 1 < i <Tn-l and Ip + 1 < i < N-1 but i ^ In. If kn = min i exists, then either

Jn + i < kn < In-1, or In + 1 < kn < N-1. Follow the same reasoning described above,

one can conclude that:

(a) For the case of Jn + 1 < kn. <-In—1, n —1,2,...

I„ + i < In (decreasing in I)

Jn + 1 - Jn (no change in J)

Jn + 1 < In + 1 (J is the lower bound of I)

(b) For the case of 1,, + j < kn ..< N-1, n~.l,2,

' Ito + i > In (increasing in I)

Jn + 1 > Jn (increasing in J)

- -1jj2 -

Jn + i < In+i (J is the lower bound of I)

SITUATION A
©

.If at the n-th iteration, the value of k is such that I„ + l < kn < N—1, then Jn, the

value (of J at n-th iteration, , must increase at least by one to become Jn + i.- In general,

if during the process of iterations beginning from n-th iteration, the value of k falls in

the interval [1 + 1, N~l] in any (N-J„-l) iterations, then the value of J must increase at

least by (N—Jn—1), so that the minimum possible value for J- will be

Jn + (N-Jn~l) - N~l. Since J is the lower bound of I, i.e., J < I, the minimum possi

ble value for the corresponding I will be.N. Consequently at the immediate next itera

tion, the two largest possible sets are {<*•,}/+/ = {<*i}N+\ an<^ + i = {ai)N *• Since

the largest possible value for I at any time is N, both sets are empty so that the itera

tion process is terminated.

SITUA TION B, .

If at the n-th iteration, however, the value of the k is such that

Jn + 1 < kn < In-1, then the value of J does not change so that Jn + 1 = Jn. But In, the

value of I at n-th iteration, must decrease at least by one to become In + 1. Now the

highest possible value for In is N. Beginning at the n-th iteration, it is possible to have

a maximum of (N— Jn—1) consecutive iterations (including n-th iteration) such that at

each one of them the value of k falls in the interval [J + l, 1-1]. The reason is that at

all these consecutive iterations, the value of J remains the same so that

Jn = Jn + 1 = • • • = Jn+N-J,-i But the value of I decreases at least by one at each

iteration so that at the end of the consecutive iterations, the In + N-jt-i has a maximum

possible value of N-(N-Jn-1) = Jn + 1. At the immediately following iteration,

. - 153 -

supposing the value of k also falls in the interval [J + l, 1—1]. Then

Jn + N_jt = •••=!„ and max. In+N-J, = 4 which is a contradiction to

Jn + N_jt < In+N-j8. Let c. = n + N-Jn-1. Since = W/. + i = ^ value

of k for that iteration, if it exists, must fall in the interval [1 + 1, N-l].

These two situations may alternate to yield a longest convergent process as fol

lows. At the very beginning, I0 — Jq ~ 1 so that {#;} j+*i — I®;}® eihpty and Situa

tion A applies. Now min.Jj = 2 and the longest possibility is that Situation B applies

at the following (N-minJfl) = (N~3) consecutive iterations. This is followed by

Situation A again which yields a minimum value of 3 for J. Now Situation B applies at

the next (N-min.J-1) = (N-4) consecutive iterations, etc. As shown before, Situation

A cannot apply more than (N-J0~l) = (N-2) times during the entire iterative process.

Thus the total number of iterations is |l+(N-3)] + [1+(N~4)J + •••
N-2

+ [l+(N-3-{N-2-l})l = Yi 1 = (N-2)(N-l)/2. Thus the iterative algorithm con-
i=i

verges in at most (N~2)(N~T)/2 iterations. •

V. SUMMARY

It was shown that for robots with a prismatic joint, such as joint 3 of the Stanford

manipulator, the boom’s length may be compensated for by two pseudo obstacles for

every edge of the objects when the robot is, in the usual sense, represented by a point.

One of the pseudo-obstacles is due to the front end of the boom, and the other is due

to the rear end. An algorithm has been developed for the computation of the shortest

feasible collision-free path for the robot for the case of stationary obstacles.

REFERENCES
[1] Pieper, D. C., The Kinematics of Manipulators Under Computer Control, ARPA

Order No. 957, Stanford University, 1968.
[2] Widdoes, C., A Heuristic Collision Avoider for the Stanford Robot Arm, C.S. Memo

227, Stanford University, 1974. ' ,
[3] Udupa, S. M., Collision Detection and Avoidance in Computer Controlled Manipula

tors, Ph.D. Thesis, California Institute of Technology, 1977.
[4] Lozano-Perez, T. and M. A.- Wesley, An Algorithm for Planning Collision-Free

Paths Among Polyhedral Obstacles, Communications of the.ACM, VoS. 22, No. 10,
October 1979, pp. 560-570. ^ n

[5] Lozano-Perez, TV “Automatic Planning of Manipulator Transfer Movements,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 11, No. 10, October

. .1981, pp. 681-698..
[0] —, Spatial Planning: A Configuration Space Approach, IEEE Transactions on

Computers, Vol 32, No. 2, February 1983, pp. 108-120.
[7] Brooks, R. A., Solving the Find-Path Problem by Good Representation of Free

Space, ’ Proc: AAAI 2nd Annual National Conference on Artificial Intelligence,
August 18-20, 1982, Pittsburgh, Penn., pp. 381-386.

[8] Binford, T. O., “Visual Perception by Computer,” Presented at the IEEE Systems
Science and Cybernetics Conference, December 1971, Miami, Florida.

[9] Scheinman, V. D., Design of a Computer Controlled Manipulator, AX Memo No. 92,
Artificial Intelligence Laboratory, Stanford University, June 1969.

[10] Van de Panne, C., Methods for Linear and Quadratic Programming, North-Holland
Publishing Co., 1975. : y :

[11] DantZig, G. B., Linear Programming and Extensions, Princeton University Press,
1963. ' :

[12] Van de Panne, C., A Non-artificial Simplex Method for Quadratic Programming,
Report 22, International Center for Management Science, Rotterdam, 1962.

[13] Graves, R. L., “A Principal Pivoting Simplex Algorithm for Linear and Quadratic
Programming,” Operations Research, Vol. 15, 1967, pp. 482-494.

[14] Lehike, C E., “Bimatrix Equilibrium Points and Mathematical Programming,”
Management Science, Vol. 11, 1965, pp. 681-689.

[15] ——t “On Complementary Pivot Theory,” in Mathematics of the Decision Sci
ences, Part 1, edited by G. B. Dantzig and A. F. Veinott, Jr., American Mathemat
ical Society, Providence, Rhode Island, 1968. ,

[16] Powell, M.J.D., “A Survey of Numerical Methods for Unconstrained Optimiza
tion,” SIAM Review, Vol. 12, No. 1, January 1970, pp. 79-97.

Figure 1 . 'Stanford Manipulator.

iK
i

156 -

Front End

Pivot

ROBOT BOOM Pivot

/ t Robot Boom

Rear End

1 ' 2

Pivor"Water-drop
Pseudo
Obstacle ^

Robot Boom

P i vot

Polygonal
. ~~ ^ < Obstacle

PivotPolygona1
Obstac1 ePo1ygona1

Obstacle
Robot BoomPseudo

Obstacle

Forbidden
Region

Figure 2. Pseudo Obstacles and Forbidden Regions.

Defining Points

Tangents

Figure 3. Defining Points
Tangent of the
"Water-drop".

“ T “ Pivot

Figure k. Enclosure of the
"Water-drop".

C Jipped
"Water-drop"

P i vot

Pol y-
gona 1

Obstac1

Deformed
"Water-drop"

f —[j
Poly- [«
gonal i

Obstacle^

(a) (b>

Figure 5. Clipped and Deformed "Water-drop".

(Revised 8/83) .
REAL-TIME 3-D VISION BY OFF-SHELF SYSTEM WITH '

' MULTI-CAMERAS FOR ROBOTIC COLLISION AVOIDANCE* '

J.-Y. S. Luh and J. A. Klaasen
School of Electrical Engineering

■ Purdue University .
■West Lafayette, IN. 47907.

ABSTRACT ■"
A three-dimensional vision system for 'on-line operation that aids a collision

avoidance system for an industrial robot is developed. Because of the real-time require

ment, the process that locates and describes the obstacles must be fast. To satisfy the

safety requirement, the obstacle model should always contain the physical obstacle

entirely. This condition leads to the bounding box description of the obstacle, which is

simple for the computer to process.

The image processing is performed by a Machine Intelligence Corporation VS-100

machine vision system. The control and object perception is performed by the

developed software on a host Digital Equipment Corporation VAX 11/780 Computer.

Also, the communication with the robot collision avoidance program occurs on the VAX

11/780.

The resultant system outputs a file of the locations and bounding descriptions for

each object found. When the system is properly calibrated, the bounding descriptions

always completely envelop the obstacle. The response time is data-dependent. When

using two Cameras and processed on UNIX time sharing mode, the average response

time will be less than two seconds if eight or less objects are present. When using all

three cameras, the average response time will be less than four seconds if eight or less

objects are present.

^Supported by NSF Grant MEA-8119884, and Bethlehem Steel Corporation Equipment
Grant-in-Aid for Education,

I. INTRODUCTION
Customarily the industrial robots are defined as computer controlled mechanical

manipulators used in industrial applications [1]. In the usual robot tasks, practically all

involve some manipulation requiring the travel of the end effectors from their initial

positions and orientations to the specified goal positions and orientations. However

there are fixtures, mechanical parts, etc. in the work-space of the root. Thus collisions

between the robot and the obstacles may occur unless some guidance for traveling is

provided. :', ;

A conventional approach of safe traveling is to turn off the power and stop ail the

actions whenever such an obstacle standing in the robot’s path is detected. In doing so,

no possible accident of collision will ever occur. But, by stopping the motion of the

robot, its throughput and hence the productivity is reduced. Alternatively one may

maneuver the robot to travel around the obstacles. The problem, however, is compli

cated since no a-priori knowledge about obstacles is assumed. In addition, they may

appear in the robot’s path unexpectedly. Consequently maneuvering an industrial

robot to avoid a collision with obstacles in real time involves not only the fast obstacle

detection and description, but also fast decision making.

To ensure the safety requirement, the descriptive model of the obstacle should

always enclose the physical object entirely. Since the description of the obstacle must

be processed through the computer, it is desirable to avoid any complicated model. As

the objective is to prevent collision, a detailed description of the obstacle is not neces

sary. A simple model which satisfies these conditions is a bounding box as depicted in

Figure 1. When the Cartesian coordinates are defined to be parallel with the edges of

the box, it can be described by the lower (minimum value) and upper (maximum

value) bounds of the obstacle on the three axes.

To solye tire detection problem, the use of sensors is unavoidable. For practical

reasons, noncontact sensors are preferred. To simplify the experimentation, passive

- 161

systems that determine the range by means of multiple cameras are considered. The

binary image processing is chosen to shorten the execution time. From the published

literature, it is found that the vision system developed at SRI International satisfies the

needs [2]. This technical approach is now commercialized. At least two manufacturers,

viz. Machine Intelligence Corporation of California and Automatix of Massachusetts,

have marketed vision systems which adopt and improve the SRI International’s scheme.

The machine vision system is a passive system, and the camera simply detects the

reflected radiation from the environment. To determine the ranges of the objects, the

passive system requires multiple cameras [3j. For this project, the object perception of

its 2-dimensional projection for each camera is done via the Machine Intelligence Cor

poration (MIC) VS-100 vision system. The sensors are General Electric TN-2200 solid-

state automation cameras, which contain charge-injection-device sensors [4,5]. The pix

els are spaced as squares whose centers are 0.0018 inch apart, and are practically con

tiguous in the 128 by 128 array. The frame time is 17,688 pixel times, which is user

selectable from 0.20 milliseconds to 1.43 microseconds. Thus, frame rates could be

above 2000 per minute. The spectral response of the TN-2200 reveals that the sensor is

twice as sensitive to infrared signals as to violets and blues.

Within the MIC system, the contiguous regions from connectivity analysis [6] of

run-length encoded data [7] are identified and organized into data structures of essen

tial features [8]. These features are analyzed such that location, orientation, and recog

nition data can be communicated to an external computer. The features utilized in

this project were the location of the centroids, the maximum x and y values, and the

minimum x and y values of each region, where x and y are the coordinates of the 2-

dimensional image of each camera. Typical processing time of the MIC system is

shown in Figure 2 [9|.

-162 -

H. THE EXPERIMENTAL SYSTEM
Passive machine systems, unfortunately, need to correlate the pixels of each cam

era to the pixels of the other cameras [10,11]. Then, the intersection of the rays, that

the pixels represent, is found by geometric relations. For this project/ three cameras

are used. The perceptions of whether the regions of each camera correspond to a real

object, and the location and description of the possible object, are performed by the

controlling software.

The functions to he controlled are threshold adjustment, camera parameter initiali

zation, picture taking, and data communication. The control of the three cameras to

be used is handled through the MIC system which is in turn controlled by a DEC VAX

11/780 computer. The VAX 11/780 interacts with the user and the MIC VS-100 to

select a threshold and the camera parameters. The VAX 11/780 also instructs when

the MIC system should take a picture, how to process it, and what results to send back.

The essential response contains the location of the centroid and a description of the

bounding box for each object found, in the coordinates System.of the work-space. This

information is output to a file which is accessable by the robot’s collision avoidance

program. Figure 3 shows a block diagram, of the information flow of the overall

scheme.

The hardware link from the VAX 11/780 to the MIC VS-100 vision system consists

of a UNIBUS, DR 11-C interface, two 40-pin parallel cables, and a DRVll interface to

the LSI-11 of the MIC VS-100 vision system. The VAX 11/780 uses the UNIX operat

ing system [12]. All of the controlling software and communication interfacing has been

written in the C programming language [13],

Figure 4 shows the environmental arrangement of the project. It provides a work

space of six feet high in an area of eight feet square. It is embraced by black wall-

panels. There are two cameras (Camera #0 and #1) mounted horizontally and one

camera (Camera #2) mounted on the ceiling. They are orthogonally mounted with

' ■■ 163 - •' . / V

each camera five feet away from the center of the work-space. The ceiling is nine feet

high with standard ceiling lighting. To improve tht lighting, a 75-watt floor lamp is

added. ■■'

IH. COMPUTATION OF 3-D LOCATION FROM CAMERA IMAGES

As seen in Figure 5, the orthogonality of the center lines of the cameras is essen

tial. These three lines form a coordinate system (x,y,z) in such a manner that the posi

tive x, y and z axes point towards, respectively, Cameras #0, #i and #2; and are nor

mal to their corresponding image coordinates (xj, yj), j = 0,1,2. If the three axes do

not intersect at one point, transformation of one axis is required to form the coordinate

system. In any case, system (x ,y,z) is assigned as the camera coordinates. If the coor

dinate system of the 3-D workspace, as seen frorti;c<>ordinates'’(x;,y,z)v'.is-'diRefehtTrpi)a

(x,y,z) itself, a coordinate transformation, which involves a translation and rotations

[1], is required when computing the 3-D location of the object from its camera images.

For simplicity, coordinate system (x,y,z) is assumed to align with the coordinates of the

work-space.

Scaling Factor of the Lena
The scaling factor is needed in computing the 3-D location. As usual the scaling

factor of the lens is defined as the ratio of the object size to the object distance from

the lens, which is the same as the ratio of the image size to the focal length. To deter

mine the scaling factor experimentally, first the width of view on the plane perpendicu

lar to the lens axis, and the distance from the lens to the plane are obtained physically

with a measuring tape (see Figure 6). Then the scaling factor may be computed by the

method of the least-squafes-fit. For the 4.8 mm c-mount lenses used in the experi

ments, thirty pairs of data are read. The least-squares-fit computation yields a scaling

factor of 1.264 with a standard deviation of 0.0163. Using the published data by the

- 164 -

camera manufacturer [4], an linear interpolation results in a scaling factor of 1.2385.

There is a 2% error between the two values of scaling factor. For the reported experi

ment, the last-squares-fit value is used. .

3-D Location Formulas When: Using Two Cameras

: When two cameras see an object in the 3-D work-space, each has- a two-

dimensional image. The goal is to derive formulas that compute the location of the

object in the space based on the two images. In the following, Cameras #0 and #1,

which are mounted orthogonally in a horizontal plane, are considered. Formulas can be

modified by exchanging appropriate image coordinate variables for combinations

involving the vertically mounted camera.

Refer to Figure 5. From the object’s point of view Camera #j has an image of the

object with an image coordinates (Xj,yj), j - 0,1. The origins of the image coordinates

are user defined by positioning a cursor in each image at a pixel corresponding to a

physical point which may not be the center of the image frame (microsensor). Transla

tions may be required to shift the origins of coordinates (xj, yj) to rest on the axes of

the work-space coordinates (x,y,z). For simplicity, let the origins of coordinates (x0,y0)

and (xjjyj) be resting on x and y axes respectively. Then the correspondence between

the image and the work-space coordinates are: Image coordinates ~ Work-space coordi

nates: Xq y, y0 r- -z, Xj ~ -x, yj ~ -z. A point q in the work-space can be defined

by a vector q = (^xTyTz) in the coordinates of that space. Supposing the point has

images in Cameras #0 and #1. These images are described in terms of pixels (px0,py0)

and (pxl,Pyj) in the image frames (microsensors) of Cameras #0 and #1 respectively.

How can q be computed from the two images?

For i■■'= x,y,z and j = 0,1, let Qjj be the i-th component of vector q from Camera

j’s point of view; Then for Camera $0.

Qzo/(width of view) - -py0/(pixel width) (1)

where the negative sign comes from the correspondence between y0 and -z as indicated

in the preceding paragraph. Let dj be the object distance from Camera #j; j = 0,1.

Along the X-axes, the object distance from Camera #0 is (d0 - q*). Thus, from (1),

Qz0{d0 * qxV(width. of view) = Qy{scaling factor)

= ~Pyo(do “ 0<)/(P«ei wid*h) ■ ('2j

■ Let : ", : '

.yj* = pyj(scaling factor)/(pixel width) (3)

where the pixel width varies with different cameras, and is 128 for OE TN-2200 in

either coordinate, then one obtains from (2):

Qzo == “yo(do “ <L> ^

Likewise, : ; . -'

Qzi — ~yr(di ^

. Qxi = -x^dj - qy) ' (6)

QyO "■X0*(d0 -' qx) ' (?)

where

Xj* = psj(scaling factor)/(pixel width) (8)

Equations (4) through (7) give one relation for each of the x and y components of q;

but two relations for z component, one from each of the two cameras. To solve, let

- 166 -

Qy QyO\ ■ (10)

Then solving equations (6), (7), (9) and (10) yields

q* = x^-dj + Xod0)/(l + XgX|) by Camera #1 (11)

qy = Xo(d0 + x?dj)/(l + *oxi) by Camera #0 ■ (12)

Consequently, from (4), (5), (11) and (12),

V ' + xo*n.
% " yH-di + *'J<W/(1 + xo*x,*)

by Camera #0

by Camera #1
(13)

Now j py | /(pixel width) <1. As long as the maximum value of the ratio is less than

the inverse of the scaling factor, the maximum magnitudes of Xq and Xj are less than 1

by (8), so that the denominator of (11), (12) and (13) cannot be zero. These three equa

tions are the location formulas for the case of using Cameras #0 and #1.

3-D Location Formulas When Using Three Cameras

Although the location of the point q in the 3-D work-space can be determined by

using two cameras, some of the hidden free space may not be detected, as illustrated by

an experimental example in Section VI. Wasting free space is not desirable because it

restricts the maneuver of the robot. This leads to the use of three cameras.

Again refer to Figure 5, an added image coordinate system (x2,y2) is for the verti

cally mounted Camera #2. The correspondence between this system and the work

space coordinates are: Image coordinates ~ Work-space coordinates: X2 ~ x, y2 ~ ~Y-

Since three orthogonally mounted cameras are used, each component of point q is

viewed by two cameras:

- 167

x - component viewed by Camera #1 & #2 Qxl &Qx2

y - component viewed by Cameras #G & #2—► Qy0 & Qy2

z - component viewed by Cameras #0 & #1 ► Qz0 & Qzj

where Qi2 is the i-th component of vector q from Camera #2’s point of view, i = x,y.

Now the object distance from Camera #0 has two values: (d0 - Qxl) and (d0 - Qx2),

which has an average value of [d0 - (Qxl +,Qx2)/2\. Thus, for the case of using three

cameras, equation (4) is modified as: •

Qz0 = -yf [d0 ^ (Qxi + Qx2)/2} (14)

Likewise, equations (5), (6) and (7) are modified as, respectively,

■Q«i =' <il“(QyO + Qy (15)

Qxl r '-*i dl " (QyO +

QyO —' x0 do (Qxl -!■ Qx2)/2 (17)

The remaining two relations are derived in a similar manner as:

Qx2 " x2 d2 - (QzO + Qzl)/2 (18)

Qy2 (QzO * Qzl)/2 (19)

where d2 is the object distance from Camera $2; x2 and y| are defined in a similar

manner as in equation (3) with appropriate pixel images in Camera #2. Equations (14)

through (19) can be written in a matrix from as:

- 168 -

-2 o xf o 0
. > ■<

Qxi
■■ . 1

xidi

0 2 .0 0 x| x2 Qx2 x2d2

Xq x0* ■■2/ -.0 0 ; o; QyO xodo

0 0 0 -2 72 y| Qy2 = 2
T2d2

y0* To ■ -o , o ; -2 o QzO Jodo

o i 0 yi yi 0 -I Qzi yidi.

(20)

whicli has the following solution:
. • ' . - • /

(x2*d2~2do)(”yoy2+2xo) + (2di+y2M2)(x2yo +4)
Qxi = xi 8 + 2x2yo-2yry2+ 2xoX1*-x1*yoy2~xox2yr

Qx2 X2
(yi*di d~2d2)(xQX f~h4) 4- (xt*di + 2do)(-Xoy *-f2yo)

.8 ■+ 2x2Vo-2yry2+2xoX1*-x1eyoy|-XoX2*yr

QyO “ X0
(x2*d2-2d0)(4-y ;y|) 4- (2ds -Hy|d2)(x|y1*-2xn

8 + 2x|yo~2y1,y2* + 2xoX1*“X1*yoy2-XoX2yr
(23)

Qy2 = 72
(y1Mi4-2d2)(xQ*xi* + 4) 4- (x*dl+2d0)(-Xoy| +2y0*)

8 4- 2x|y^-2yiy2 +2xoxf-^;yoy2-x,Jx|yf
(24)

QzO = To*
(x 2 d2-2 d0)(4—y t*y |) + (2dj +y2d2)(x2y1*-2x1*)

8■+ 2x|yo-2yfy2 +2x0*x1*-x1*y0*yi-x0*x2*y1#
(25)

yi
(x|d2-2d0)(-yo y2 + 2x0*) + '(2dt +y2 d2)(x2 y0* +4)

8 + 2x 2 yo ~2y ^y2 4" 2x q x *~X j*yo y2-X q x 2 y *
>'

(26)

Finally

-169 -■■■.■

<h
Qxl by Camera #1,
Qx2 by Camera #2, (27)

Qyo by Camera #0,
V — |Qy'2 by Camera #2, (28)

%
Qz0 by Camera #0,

Qzi by Camera #!, (29)

Under the same condition stated for the case of using two cameras, the denominators of

(21) through (26) cannot be zero. These six equations together witl$ (27) through (29)

are the 3-D location formulas for the case of using three cameras.

IV. EFFECT OF NONLINEAR LENSES .

The Comsicar 4.8 mm is a wide-angle nonlinear lens which is used in the cameras

for the experiments to view the entire work-space at a close distance. Wide-angle

lenses expand the image at the center of the lens and compress the image at the perim

eter, which introduces distortions that must be corrected and calibrated.

Model for Nonlmeap Iienses

The model for nonlinear lenses can be determined by least-squares-fit of experi

mental data. Because the image function of a physical object should be symmetrical

about the center of the lens, the location of the center of the lens in the physical plane

is important. This projection of the lens center in the physical plane had to be

estimated for the purpose of constructing a model. First, a square object that almost

filled the image was placed in front of the camera. The edges of the object were

aligned to be parallel with the edges of the image frame (microsensor). The corners of

the object were compressed at the corners by the nonlinearity of the lens. Then, the

points at which the distortion was at a minimum along each qf the four image edges

170 -

were recorded. The intersection of the up-down and left-right lines through these four

points was calculated. The location in the physical plane that corresponded to the

pixel at the point of this intersection was used as the projection of the lens center.

As shown in Figure 7, there are four salient points in the image in Camera #j, viz.

origin of the manually assigned image coordinates (xj, yj), centers of the lens and the

image frame (microsensor), and the point of interest. They are related by the vectors

Hi and

as indicated in Figure 7. Since the model of the distortion effects must be symmetrical

about the center of the lens, no even power terms must exist in the distortion model

Let = pj - Xj. The chosen model is of the form,

adjusted radius = A (image radius)3 + B(image radius), (30)

where,
r , ' f |l/2

image radius = (Px)2 + (Py)2 , and

A and B — constants yet to be determined.

The distortion data for the Comsicar 4.8mm lens was obtained with a measuring

tape as in the case of obtaining the scaling factor data. Light and black backgrounds

with contrasting objects were both used. At first, points were only taken along an axis

of an image. But, to accurately represent the extreme effects at the corners of the

image, points were also taken near the corners and along the edges of the image.

Again, the data was recorded over many different sessions, to allow for the effects of

slightly different operating conditions to be averaged into the data. The least-squares-

fit to the data of 44 points yields A = 3.506 x 10“5 and B = 0.87007.

-171 -

The adjusted values of p* and which would be the values of p* and |>y if a

linear lens were used so that no distortion would exist, can now be computed as

adjusted

adjusted p^. (adjusted radius)
cos 9
sin 9 (31)

where

9 = tan !(Py/Px)

However, the trigonometric functions are slow, increase error due to round-off, and

require double precision floating point variables. A faster computation can be achieved

by using the following formula:

adjusted p'x
_ adjusted radius Px

adjusted Py
> «

image radius Py

= (a[(Px)2 + (Py)2)] + B} Px

py

u

(32)

Error Due .to Misalignmeiit of Centers of Lens $iid linage '

The distortion effect caused by the nonlinear lens yields the following observation.

Points approaching the perimeter of the lens image are increasingly sensitive to errors

in this location. During experimentation with GE TN-2200 camera, the location of the

lens center on an image moved in a circle of radius three pixels when the lens Was

rotated inside the ease of its mount. This occurrence demonstrates that the lens center

may not coincide with the image center. If the microsensor in a camera is further away

from the lens, a larger radius would result.

To illustrate the error caused by the misalignment, consider an example of using

two cameras which are dp = dt = 36 inches away from the origin of the work-space

(see Figure 5), with q* = qy ^ q., — 15 inches. This value is chosen because it

172 -

corresponds to the pixel close to the perimeter of the lens image, which is more sensi

tive to errors. With the 4.8 mm nonlinear lenses, the scaling factor for either camera is

1.264. The pixel width for GE TN-2200 camera is 128. If the lens center in each cam

era is perfectly aligned with the center of image frame (microsensor), i.e., if Xj = 0, the

image pixels are (px0,py0) = (63,-63) and (pxI?pyl) = (-63,-63). These values may be

obtained by either experiments or computation as follows. By equations (4) through

(7), (9), and (10), one obtains x* = 5/7, Xj = y0® = Yi = -5/7. Using (3) and (8) to

yield adjusted px0 = 72.333, adjusted pxl = adjusted pyl = adjusted py0 = -72.333.

Although these values are at the outside of the image field which do not physically

exist, they are the adjusted pixels in equation (32). The solution of (32), however,

yields the answer (px0,py0) ” (63,-63) which is close to the corner (64,-64). Similarly

one obtains (pxS,pyl) = (-63,-63).

Supposing these pixels are read from the experiments and one wishes to determine

the 3-D location of the point q from the pixels. By (32), one obtains the adjusted pixels

(PxOiPyo) ~ (72v35,—72,35) and (pxl,pyl) = (-72.35,-72.35). By (8), one computes

Xq = 0.71446, y0* = x/ = yf = -0.71446. Finally one uses two-camera location formu

las (11), (12) and (13) to determine q* = qy = 15 inches and qz (by Camera #0) = qz

(by Camera #1) =15 inches. It is seen that no distortion error has occurred.

Now supposing the lens center in each camera does not align with the center of

image frame (microsensor). Now the adjusted gj is the pixel values in the image frame

(microsensor) corresponding to the point of interest as if a linear lens were used so that

there were no distortion caused by the lens nonlinearity. Thus, if Xj 5* 0 is introduced,

the adjusted ml now becomes (adjusted ml + X:). For X: = _01, the
Xj^O Xj=0 I Z\

adjusted ml ‘ now has the values: “adjusted px0 = 72.333 -2 = 70.333 and adjusted
■■ Xj^O

py0 = adjusted pxl = adjusted pyS = —72.333 —2 = —74.333,” so that (32) yields:

- 173 -

70.333
-74.333: 3.506 x 10^ + Py2o) + 0.87007

PxO
PyO.

(33)

-74.338
-74.333 3.506 x 10"5 (pxf + py|) + 0.87007 (34)

These two equations are nonlinear but the symmetry in (34) suggests that pxl = pyI to

yield .

70.12 (0.01 pxi)3 + 87.007 (0.01 pxl) 4- 74.333 = 0

On solving, one obtains, when rounded off to the nearest integer, (pxl,Pyj) = 1—64,-64).

However, two ■variables' are coupled in equation (33) which makes it difficult to solve. It

may be solved by iterative procedure. For this equation, the answer is, after founded

off to integers, (px0,Pyo) = (62,-64). It is seen that when the lens centers for each cam

era is off set at (-2,-2), the image pixels near the perimeter are shifted from (63,-83) to

(62,-64) for Camera #0 and from (-63,-63) to (-84,-64) for Camera #1. Now, using the

adjusted pixels values and equations (11), (12) and (13), and following the same pro

cedure as before, one computes qx = 16 inches, qy = 14 inches, q% (by Camera

#0) = 14.45 inches, and qz (by Camera #1) = 16.00 inches. But physically

py - Py = p3 = 15 inches. Thus a maximum error of (16.Q9-15)/(width of review), or

4.11%, is introduced by ignoring the misalignment.

Compensation for Distortion

In reality, pixel values p,j for i = x,y and j = 0,1,2, are obtained from the MIC

vision system once an object is viewed. They are modified to compensate the appropri

ate off-set of lens centers. Equation (32) is then applied for each j to determine the

corresponding adjusted pjj’s. These computed values are modified again to remove the

off-set compensation. Finally, depending on either two or three cameras are used, the

174 -

3-D location formulas, equations (11) through (13), or (21) through (29) are invoked to

compute the object in work-space, qk for k = x,y,z, as viewed from different cameras.

Now q is defined in 3-D work-space (x,y,z) whose relative location with respect to

the center of image frame (microsensor) is predetermined. Refer to Figure 7, |j and Xj

are determined, and (pj + jj) are produced by the version system. Thus from the

adjusted (pj + fj), the physical location of £ can be determined. Now

<Ej + lj) = (Ej - Xj) + Uj + ij)-so that

Adjusted (pj + fj) ^adjusted (pj — Xj) + adjusted (fj + Xj) (35)

By incorporating the relation between 3-D work-space coordinates (x,y,z) and the

assigned image coordinates (Xj,yj), the adjusted (pj + fj) is then used in the 3-D loca

tion formulas to determine £.

Iterative Algorithm for Calibrating Location of Lens Centers

Instead of using estimation procedure described earlier, the off-set of the lens

center may be determined by a combination of an experiment and an iterative compu

tation using equation (32). The process is tedious and time consuming. Fortunately it

has to be done only once for each set-up.

To start the procedure, an object is placed in the work-space whose coordinate has

already been chosen. The values of qx, and as well as d0, dj and d2 are then phy

sically measured. Here it is assumed that all three cameras will be used. For the case

of using only two cameras, the modification of the following procedure is straightfor

ward. ’

Initially the lens center of each camera is assumed to align with its corresponding

center of image frame perfectly. One then computes the values of p5j for i=x,y and

j =0,1,2 using the steps shown in the previous example. The corresponding adjusted

Pij’s are then computed via equation (32); call them p;j. Finally, (21) through (29) are

used to compute qk for k— x,y,z. Note that for the case of using three cameras, there

are two computed values for each qk.

In reality, the lens center of each camera may not align with its corresponding

center of image frame (microsensor). But the cameras produce the values of pjj as

images, from which the adjusted pjj’s are also computed via (32) and are called p;j.

Now compare the six computed qk’s with the three physically measured qk’s. If the

difference for a qk is larger than a prespecified value e, then the corresponding p;j is

corrected by a value 6, i.e., the lens center is corrected by a value :S on the basis of

“adjusted pjj.**.. Otherwise the correction process continues for the next qk. The direc

tion of correction is guided by the manner how p;j is deviated from py. When a lens

center shifts in a positive (or negative) direction along an axis, the corresponding coor

dinate in the image of the same physical point moves in a negative (pr positive) direc

tion. When all differences are within the specified c, then e is divided by Cj and 6 by c2,

where Cj and c2 are prespecified positive constants that are greater than 1. The itera

tive process then repeats until 6 is not greater than a positive constant BMAX. Thus

the lens centers which are determined at the “adjusted” level, are precise to the value'

of DMAX. The value of BMAX was set to 0.0001 during initial experimentation, but

was increased to 0.001 for later experiments to speed up the calibration without seri

ously reducing the precision. Note that although the stop condition is controlled by

DMAX, the comparison is done with the physical measured values of qk’s. This permits

a manual judgment on the realistically allowable errors. The initial values for e and 6

were determined by trial and error, and were large and conservative. Based on the

functional relations defined by equations (11) through (13), (21) through (29) and (32),

heuristically set c|=Cj; and Cj—2 is preferably used in the experiments.

Although the convergence of the iterative procedure is not available, the process

does not converge only when py’s differ from their theoretical values by a, large amount.

176 -

To avoid-the entrapment in an infinite loop caused by this situation, the iterative pro

cess is terminated if the number of iterations exceeds the value IMAX. This value is

set to 2 x IQ3.

Since the distortion is most pronounced at the edges of the image corresponding to

the perimeter of the lens, points that appear near the edges will produce a more reliable

result. The calibration should be performed with as many sets of points as possible.

The resultant lens center off-set from each calibrated point, i.e., the difference between

pT and the final are averaged. This averaged value is added to all the adjusted p^’s

during the operation performed later to compensate the distortion.

V.... DETECTION, LOCATION AND DESCRIPTION OF OBSTACLES

Once the cameras have observed the scene and the 3-D location formulas are

applied to compute the sizes of objects, the task of conducting a search for obstacles is

refdy to start. An initial approach is to divide the work-space into volume cells which

are formed by the window grids from each camera. Each cell would either be empty or

contain an obstructive object. However, if one takes the full advantage of the camera

resolution and employs 128x128 = 16384 window grids for GE TN-2200 cameras, there

will be 2,097,152 volume cells. Even using the window size of two pixels square,

64x64x64=262,144 volume cells are required. It involves not Only a large size of

memory storage, but also a long processing time to describe and then to inform the

robot about the obstacles. Thus a different approach for the task is desirable.

There are three separate problems within this task. The first problem is the deter

mination if the obstacles exist. The second is the estimation of the locations of the

existing obstacles. And the third involves extracting useful information to form a

description of the obstacles. The constraints are time, accuracy, and a meaningful

description which serves as an input to the collision avoidance program.

- 177 -

The method presented in this paper requires each camera processing one image,

with the MC vision system retaining information oh all the regions of each camera in

its memory. Also, some simultaneous processing is performed on the LSI-11 of the MC

vision system and the host DEO VAX 11/780. The host computer can write the MC

vision system a command to take and process a picture. Then, since the image, process

ing time of the MC vision system is often more than 100 msec., the host computer can

do some work before reading the response from the MC system. The length of saved

time cannot be accurately measured. However, the total time consumed by this

method, which is called the search algorithm in the following, is relatively short. The

method mainly relies on sets of six numbers furnished by the MC vision system. They

are x-min, x-max, x-centroid, y-min, y-max, and y-centroid for each 'blob' found by

the camera.

Determination, of Existence and Location

After the pictures are taken and the features adjusted, the search algorithm cross

checks the centroids of the regions of each camera with that of the regions of the other

cameras. In the following, the set of six numbers for, each 'blob ' mentioned above are

assumed to be the adjusted values so that the distortions and off-set errors have already

been compensated. Recall that the 3-D location formulas yield two values for one or all

coordinate values, depending on whether two or three cameras are used. If the

difference between the two centroid values, of each coordinate, is less than a prescribed

constant e, an object is determined to exist. For convenience, the constant e is called

the “error margin.” Let wj be the width of view of Camera #j, then the error margin is

chosen to be

178 -

I
c3max(w1,W2) if along x-direction
c3max(w0,w2) if along y-direction ' (36)

c3max(w0,wj) if along z-direction

where c3 is a prescribed percentile fraction. The value of c3 is determined by trial and

error.. For the experiments described in the paper, the value between 3% and 5% is

used, k smaller search error may introduce the output with some actual objects omit

ted, and a larger value may introduce the output of objects that do not exist.

The location of the existing object’s centroid is estimated to be the average of the

calculated centroid coordinate values based on those that are furnished by the MIC sys

tem.

Extraction of Description
The description of an obstacle must be a worst case bounding description, i.e., the

t;,

bounding geometry that encloses the entire obstacle. But the features of each region, of

the MIC VS-100 vision system restrict the bounding description. From the maximum

and minimum x and y coordinate values for each region, a worst case bounding rec

tangular solid with sides parallel to the axis planes can be constructed. Then, the

minimum, centroid, and maximum values of each three dimensional coordinate are out

put to a file to be read by the collision avoidance program.

First, the worst case adjusted coordinates from the distorted images are calculated.

This feature adjustment processing is performed simultaneously while the MIC VS-100

is processing the next picture. The distortion effects are most apparent at the extreme

radius values, i.e., corresponding to edges of the image or perimeter of the lens. Thus,

which quadrant of the assigned image coordinate (xj,y-) for j=Q,l,2 the centroid is in

determines which pairs of minimum and maximum values should be used to calculate

the adjusted worst case minimum and maximum values. Figure 8(a) indicates which

pairs are used in which quadrants. This determination of the worst case values is only

necessary for pictures taken through a nonlinear lehs.

Now, the pictures have been taken and the features adjusted. If the centroids of a

set of regions are determined to originate from the same object, the worst case three

dimensional coordinates at the corners of the rectangular solid are calculated. Figure

8(b) shows the scheme used to label the bounding box points. Due to the perspective

qualities of any lens, the points on a side of the box will not be on a plane. The worst

case values of the calculated bounding points coordinates are used to describe the box .

Figure 9(a) indicates which values from each camera are used to determine the three-

dimensional coordinates of the bounding box;

Remember that the xrtiax value from camera $0 is a worst case value in the posi

tive y-direction. However, the xmax value from camera #1 is a worst case value in the

negative x-direction. A maximum x or y value from the cameras does not always coin

cide with a maximum positive value in the three-dimensional space. Thus the three-

dimensional coordinates of each bounding point are determined with the inputs from

each camera as in Figure 9(a). Then, the worst case coordinates of each side of the

bounding volume are determined. The assumption that the cameras are basically on

orthogonal axis eliminates two points on each plane as worst case candidates for the

common coordinate. Figure 9(b) depicts which points are used to determine the worst

case value for each coordinate. This elimination of two candidates is done to conserve

cpu time.

Further simplification can be made in the two camera situation. The removal of

camera #2 causes the vertical edges of the box to be parallel with the z-axis. Thus,

less coordinate calculations are required.

- 180 -

VI. SYSTEM OPERATIONS
The overall 3-D vision system consists of three software programs in addition to

the software that operates the MIC VS-100 vision system. They are the Interface Pro

tocol, the Interprocessor Communications Device Driver, and the Monitor and real-time

Search Program. These software programs, as well as the real-time operation speed and

accuracy, of the output information are presented as follows.

Software Programs ■
The interface protocol is provided by the Machine Intelligence Corporation. The

DRVll and DR 11-C hardware allow each machine to generate two kinds of interrupts

in the other machine. It may assert CSRO to cause an “interrupt A” (INTA) or CSRl

to cause an “interrupt SB” (INTB). There are 32 data lines, 16 in each direction. To

send a one-word message, it is necessary to load that word into the sending machine’s

output register, then to signal the other machine with INTA or INTB. In the MIC

software, INTA is generally used for control and status messages, and INTB is used for

data ready or data received.

The Device Driver connects the DEC VAX 11/780 to the MIC VS-100, and allows

the MIC vision system to be driven by the VAX. The Device Driver written for this

project did not use interrupts. The CSRO and CSRl hold their bits until turned off.

The Monitor and Search Program include all the functions to be processed that are

described in this paper.

System Initialization

In using the 3-D vision system within a real-time robot environment, the Monitor

is first used to initialize the parameters and possibly run a few test searches. Then, all

the current parameters are written to a data file. As the robot needs more current

information, it calls a real-time Search Program. The real-time Search Program inputs

- 181 -

the system parameters, conducts a search for objects, outputs the results, and returns

to the calling program. The Monitor and real-time Search Program cannot run simul

taneously. However, if the real-time Search Program is not running, the Monitor can

be reentered to adjust some parameters.

To operate the 3-D vision system, first load the MIG VS-100 machine vision system

with the files on tape. Then enter the “SYSTEM SETUP” mode via the light pen con

trol and use the “DISPLAY CAMERA IMAGE” and “SELECT CAMERA” commands

to align the cameras along orthogonal axes. For example, place small objects along an

axis and move the camera positions until the objects appear as one object. One may

also have to adjust the threshold of each camera.

Next, enter the “SWITCHES” command via light pen control. And turn the

“EXTERNAL-COMPUTER-CONTROL” switch on. Return to; the MIC logo by.

selecting the “QUIT” commands.

On the DEC VAX 11/780, execute the vision system Monitor program. Initialize

each parameter as the Monitor asks for its value. Put a small object at the origin of

the camera coordinate frame. This will be used to select the corresponding location

within each image. The distance values will have to be measured by hand. Use the

unit of measure that one desires the output to be in. And enter what lens is on each

camera.

Next is the optional lens center calibration. Choose some points to calibrate the

lens center locations. One must place objects at known locations in the camera coordi

nates. Then center the cursor over the corresponding locations in each image.

Now that the system has been initialized, try a few sample searches. Two features

added to the Monitor allow the user to control the amount of noise while decreasing the

threshold level (increasing the sensor sensitivity). The user can adjust the minimum

area of a region that is considered a ‘blob’. This can be used to have the MIC VS-100

eliminate multi-pixel noise, or to allow the VS-100 to be sensitive to very small objects.

£2- .182 -

Adjust this parameter if desired. Also, the user can establish a window around an

‘active5 region of the image. All data outside this region is ignored by the MIC VS-100.

This allows a noisy edge of the image to be removed from any processing. The use of

active windows also reduces the amount of time used by the MIC VS-100 to process a

noisy picture. Hit the ‘d’ command to store any new window values.

After exiting the Monitor, the Search Program can be called to conduct a search

for objects. Unless the VS-100 has been turned off, the parameter file can be used to

initialize the system parameters if the Monitor is reentered.

Speed of Real-Time Operation
There are three independent parameters that affect the speed of the search algo

rithm. The first is the time to process an image within the MIC VS-100 vision system.

This time is data-dependent. It can range from 100 milliseconds to one second. Both

larger numbers of pixels turned on and more individual regions found within an image

contribute to longer image processing times. The second component is the time to

transfer data between the LSI-11 of the MIC VS-100 and the host DEC VAX 11-780.

However, in this project, this interface has been refined to the point that the time

involved can be ignored. The third parameter is the cpu time used by the host DEC

VAX 11/780. This is also data-dependent. The larger the number of regions found per

camera, the more time the nested loops that check all possibilities consume. And the

more objects found, the more worst case boundary calculations that have to be per

formed. Thus, as more objects enter the work-space, the longer the time before the

search routine will output the file of objects found.

Also, the search using three cameras is longer than the search using two cameras.

This is because the three-camera search has an extra image to process, many more pos

sible combinations of regions to check, and three-dimensional location formulas that are

more time-consuming. Figure 10 shows the VAX 11/780 cpu times and the total

183 -

elapsed times of the search programs. The data contains values for both the two cam

era and the three camera search algorithms. AlsbV the data spaas values from no

objects to eight objects in the work-space. As a reference, the objects were arranged

such that when n objects were found, each image contained n regions. Sometimes, a

camera will see regions that do not correspond to objects in the work-space. And some

times a camera will see one region that corresponds to more than one object behind

another. This problem may be eliminated by using an additional camera as demon

strated by an illustrative example shown later.

Precision of Output

The precision of the program’s results depends upon two items: the resolution of

the image sensors used, and the accuracy of the initializations performed. The resolu

tion of the sensors affects both the accuracy of the initialization procedure and the

accuracy of the features calculated during an object search.

During the initialization of the system parameters while using the Monitor, a cur

sor is used to choose the pixel in each image which represents the origin of the assigned

image coordinates. A small object is used to represent this point in space. Figure 11

depicts four situations where the resolution of the object’s image will introduce initiali

zation errors. In each situation,, the actual centroid location is not one of the pixel

centers which must be chosen. The integer value representing a specific pixel will intro

duce error.

Another problem of this scheme is that the bounding regions may overlap. Figure
*

12 depicts a situation where this overlap may occur. To describe a larger bounding box

would introduce much more wasted space. And to describe the single complex region

contained within both boxes would slow the response of the search and greatly increase

the complexity of the computation of the output.

184

N©si»Existiag Objects

To restore the 3-D environment based on the images from two cameras with the

scheme presented in the paper, false scene including non-existing objects may result for

some environmental arrangement/ As an illustration, consider a scene of four objects as
©

shown in Figure 4. For the purpose of explanation, they are labelled A, B, C, and D as

shown in Figure 13. Their physical locations with respect to two horizontal cameras

are so arranged' that Camera #0 only sees A, C, and D with B hidden behind C; while

Camera #1 only sees D, C, and B with A hidden behind C. The Search Program found

,five objects as indicated in Figure 14. Figure 15 shows the output giving the locations

and descriptions of the five objects in reference to the work-space coordinates defined in

Figure 16. It gives one more object than physically in existence. Note that in Figure

15, the output data are arranged in the following format:

x-min . x-centroid . x«max

y-misi y-centroid y-max

z-rnin. z-centroid z-rnax

A brief explanation of the situation is that Camera #0 sees three objects A, C, and D

along three rays 0A, 0C, and 0D, respectively, where 0A is the ray from Camera #0 to

object A, etc. Likewise, Camera #1 sees three objects D, C, and B along three rays

ID, 1C, and IB, respectively. Now, ray 0D intersects ID at D. Ray 0C intersects 1C

at C and IB at B. However, Ray 0A intersects 1C at A but intersects IB at an ima

ginary point which yields a non-existing object. The phenomenon of the non-existing

object, however, may be eliminated if the image of the vertical Camera #2 is incor

porated. As shown in Figure 17, Camera #2 found four regions and the output gives

the locations and descriptions of the four objects.

185 -

YU. CONCLUSIONS
A 3-D vision system using the Machine Intelligence Corporation VS-100 system has

been developed for robotic collision avoidance. As shown in Figure 10, the search pro

gram will take less than two seconds to determine eight objects or less while using two

cameras, and less than four seconds while using three cameras. However, the total

elapsed time is data-dependent. The program could return in one second if no objects

are present. Also, note that the DEC VAX 11/780 was in UNIX “normal mode”, with

three other users in time sharing, during the collection of the data. If the search pro

gram is called when the DEC VAX 11/780 is in “real-time mode” with no system loads

or other processes running, the response time will be reduced.

The use of three cameras is preferred since otherwise non-existing objects may be

found by the program. However, the perception error of detecting objects that do not

exist is more favorable than not to detect objects that do exist, for the purpose of colli

sion avoidance. The bounding description will often waste the space surrounding an

object. But, for the same purpose, the inclusion of extra space in the boundary is

favorable to not including a part of an object. Also, the user of the output must be

aware that the output descriptions may overlap in the three-dimensional space.

Again, the accuracy of the scheme is dependent on the accuracy of the initializa

tions performed and the resolution of the sensor. The user affects the accuracy of the

scheme by the accuracy of the lens models used, the orthogonality of the camera set-up,

the accuracy of the distance measurements, and the accuracy of the cursor positions

chosen during the system initialization. As for any vision system, choosing the correct

threshold for each camera and properly adjusting the lighting are also important.
(

ACKNOWLEDGEMENT
The authors wish to acknowledge that George Goble wrote the Interprocessor

Comm,unications Device Driver program.

- 186 -

REFERENCES','.

1. Luh, J. Y. S., “An Anatomy of Industrial Robots and Their Controls,” IEEE
Transactions on Automatic Control, Vol, 28, No. 2, February 1983, pp. 133-153.

2. . Nitzan, D., C. Rosen, et a!., Machine Intelligence Research Applied to Industrial
Automation, SRI International 9th Report, Menlo Park, California, August 1979.

3. Nevatia, R., Machine Perception, Prentice Hall, 1982, pp. 158-167.
• ■ . ■ ' _ ■ ■

4. TN-2200/2201 Solid-State Automation Camera, Literature EHM-12408/5000,
Optoelectronic Systems Operations, General Electric, Syracuse, New York.

5. Ballard, D. H. and C. M. Brown, Computer Vision, Prentice Hall, 1982, p. 50.

8. Rosenfeld, A., “Connectivity in Digital Pictures,” Journal of ACM, Vol. 17, Janu-
/ . ary 1970, pp. 146^170.

7 Agin, G. J., “Computer Vision Systems for Industrial Inspection and Assembly,”
Computer (IEEE Computer Society), Vol. 13, May 1980, pp. 11-20.

8. VS-X00 Machine Vision System Reference Manual, Version 1.38, Machine Intelli
gence Corporation, Sunnyvale, California, 1980.

9. Gleason, G. J. and G- J. Agin, “The Vision Module Sets Its Sight on Sensor-
Controlled Manipulation and Inspection,” Robotics Today, Winter 1980-1981, pp.
36-40.. .

10. Yakimovsky, T. and R. Cunningham, “A System for Extracting Three-
Dimensional Measurements from a Stereo Pair of TV Cameras,” Computer Graph
ics and Image Processing (Journal), Vol. 7, No. 2, Academic Press, April 1978, pp.
195-210.:’ \ >•.:

11. Thompson, A., “Camera Geometry for Robot Vision,” Robotics Age, Vol. 3, No. 2,
March/April 1981, pp. 20-27.

12. UNIX Time-Sharing System: UNIX Programmer’s Manual, 7th Edition, Bell Tele
phone Laboratories, Inc., 1979.

13. Kernigham, B. W. and D. M. Ritchie, The C Programming Language, Prentice
Hall, 1978. > : .

Figure i. Bonding Box Representation ofObstacle

188 -

OPERATION PROCESSING TIMES
General Operation; Processing Time Measured Processing Time
Read in the image and process it

© Using software run length
! encoding
| ■ 4S4 ins- + 0.97 ms/segment 583 ms

® Using hardware run length
encoding
287 ms + 0.53 ms/segment 321 ms

Connectivity analysis
88 ms +■. 1.8 ms/segment + 3.3
ms/blob 270 ms

Perimeter accumulation
0.86 ms/segment + 2.3 ms/blob 102 ms.' .

Accumulation of second moments
2.3 ms/segment 235 ms

Perimeter and radius calculation
5.2 ms/segment 500 ms

Note: Blob — connected component |

Figure 2. Operation Processing Times for MIC VS-100 Vision System.

- 189

Figure 3. Schematic Diagram for the Overall Vision System

I

I

Figure 4. Environmental Arrangement for Experiments.

06
1

Image coordinates
from camera #2)

x’ y

Camera #1

(image
coordinates
from
camera #1)

Camera
image coordinates
from camera #0

Figure 8

Camera Orientations

I
Distance B

i

PO
1

193 -

Point of
Interest

Center of Lens

Center of N
Image Frame

p. + f.

Origin of
Assigned Image
Coordinates

Figure 7. Four Salient Points in Image in Camera #j

- 194 -

Figure 8 (a)

Worst Case Pairs within a Distorted Image

- 195 -

Camera #2

Camera #1

Figure 8(b)

The Bounding Box

196 -

Bounding
point

number
(see Fig. 8)

Camera #0
features

Camera #1
features

Camera #2
features

% ■ Jo Xi yi x2 72
0 ' xcnt' ycnt xcnt ycnt xcnt ■ ycnt
1 xmin ■ ymax xmin ymax . xmax . ymax
2 xmax ymax xmin ymax xmax ymin
3 xmax ymin xmin ymin . xmax ymin
4 xmin ymin; xmin ymin xmax ymax
5 xmin ymin xmax ymin xmin ymax
6 xmax ymin xmax ymin xmin ymin
7 xmax ymax xmax ymax - xmin, - .ymin
8 • xmin ymax xmax ' ymax . xmin ymax

(a) Bounding Box Information

Worst Case Coordinate
of the bounding box

Candidate Points from the
bounding box (see Figure 8)

xmin ■ 6 and 8
■ xmax 1 and 3
ymin ; . 4 and 8
ymax . 3 and 7

■ zmin 2 and 8
. zmax 3 and 5

(b) Bounding Box Coordinates

Figure 9. Construction of Bounding Box

Number
Of:;-:

Objects

Vax cpu time Total elapsed time

2 Cameras 3 Cameras 2 Cameras 3 Cameras

0 0.0417 0.0485 0.743: 1.1.63 :.
•1 0.0500 0.0750 0.959 ; 1.381
2 . 0.0733 0.1284 ; 1.155. ■ , 1.675 ;

. 3 ;■ 0.0883 0.1750 1.295 ' 1.832
■ ' 4 0.1150 . 0.2600 1.400 ’ 1.979

. 5 . 0.1583 . 0.3800 ' 1.543:. ■ ■■ 2.301
8 0.1683 0.5383 1.694 ' 2.995

: 7. 0.1933 0.7500 ' •: 1.718 3.157
8 0.2017 1.0016 1.907 .. 3.342 ; '

Notes: These values are the averages of ten samples. The data was obtained when
there were three other users on the Vax, causing a load average of 1.5 to 4.5. The Vax
cpu time data is only accurate to 1 /60th of a second. The total elapsed time data was
measured with a stop watch, after 10 calls to the search routine, and measured to
1/100th of a second.

Figure 10. System Execution Times

198

Figure II

Pixel Selection Errors

- 199 -

V : Figure 12

Boundary Description Overlap-

- 200 -

Figure, i$. Description of Bounding Boxes for Five Qbjects- Found

Figure 16. Work-space Coordinates and the Four.Objects:

Figure 17. Description of Bounding Boxes for Four Objects Found

- 203 -

LAGRANGIAN- FORMULATION OF ROBOT DYNAMICS

. WITH DUAL*NUMBER TRANSFORMATION ■ :

. FOR COMPUTATIONAL SIMPLIFICATION *

J.Y.S. Luh and Y.L. Gu

School of Electrical Engineering

Purdue University:

West Lafayette, Indiana 47907

ABSTRACT

Among a variety of formulations of robot dynamics, the Lagrangian equation

yields an insight of the robot behavior but suffers from the excessive computational

complexity, The dual-number transformation is capable of transforming velocities from

one coordinate frame to another. By incorporating dual-number transformation into

the Lagrangian equation, it is possible to apply the differential operator directly so that

the computation of the joint torques/forces of the robot is simplified.

I. INTRODUCTION

The industrial robots are computer controlled mechanical manipulators used in

industrial applications. They have serial link mechanisms whose dynamic behavior can

be described by equations in Lagrangian formulation as:

d \ dh , dh _ ... _ „ : ti\‘-1'2.....(1)

where q; = generalised coordinates

L = L(qj,..„qn,q1,...,qn) ^ Lagrangian ,

"^Supparf^cJ b\j f'J $ <31’-ant /vl £ A ~ $ 9 jT $ 4*;

204

rj = generalized forcing function ,

The generalized coordinate q; represents the displacement of joint i. The Lagrangian is

also defined as L = K - P where K and P are, respectively, the kinetic energy and

potential energy of the system. By applying the Lagrangian equation to a robot with n

joints (or (n + 1) links), one obtains [1,2]: ' .

T\ = E Dij<ij + Jai<ii + E Dijj(^j)2 + E E Dijk4j4k + °i (2)

j=i i=!

where

Dii = E Tr[Upj J„(Upi)’|
p=max(i,j)

% = E Tr(UpjkJp(Upi)'] (4)
p=max(i,j,k)

D-, - ~ E mpg' Upi Fp (5)

p=» <

Tr “ trace operator,

(f — transpose of (),

T| — input generalized force for joint i,

mp — mass of link p,

fp = a vector describing the center of mass of link p with respect to p-th coordinate

system,

g' . = [0, 0, 9.8 m/sec2, Oj is a gravitational acceleration vector at a sea level base,

j — S K = 1
j^k

(3)

- 205 -

Jp = inertia matrix for link p,

_ ars_ Qj forP>j,
^Pi ~ ^qj ~ P ,otherwise , . (6)

Upjk

(Tf *) Qj (T£?) Qk (!&,)' , for p > k > j ,

(To_1) Qk (XIII) Qj (Tfr), for p > j > k ,

0- ■ ' /otherwise*
(7)

0 -1 0 0
1 C D 0
0 0 0 0
0 0 0 0.

, if joint j is rotational,

o pro]
0 0 0 1 > if joint j is translational,
.0 0 0.01 :

Tj5' = 4 x 4 matrix which transforms any vector expressed in k-th coordinate system

to the same vector expressed in j*tk coordinate system.

qk ~ generalized coordinate (he., joint displacement).

For each joint I, the required torque or force is divided into five groups as shown in

(2). The first group represents the contribution from inertias of all the joints. The

second term represents the inertia torque of the actuator of joint i. The third and

fourth groups in (2) are the contributions from, respectively, the centrifugal term and

the Coriolis force, while the last term is resulted from the gravitational acceleration.

Whether equation (2) is utilized to solve forward dynamics problem lor analysis and

simulation (he., solve for qj’s and their time-derivatives for given r/s), or to solve

inverse dynamics problem for control of robots (i.e., solve for r/s for desired qj’s and

their derivatives),-one must Compute the coefficients Dy, D;jk and D; that are-defined by

- 206 -

(3), (4) and (5) respectively. The computation of these terms is, unfortunately, very

complicated and time- consuming. It involves an evaluation of thousands of-tri

gonometrical terms [3]. Obviously it is not a simple computational task especially when

the' position-dependent and orientation-dependent parameters change as the robot

moves. Therefore it warrants the effort of searching for methods of simplifying the

computation. ■

Efficient algorithms for computing r- have been developed by various authors dur

ing, the past three years. Lull, Walker and Paul [4] computed the joint forces/torques

'based on the Newton-Euler formulation. Walker and Orin<[5j -extended the approach

to compute the joint accelerations which were then used in the simulation of the robot

control scheme. Hollerbach [6] developed recursive algorithms based on the Lagrangian

formulation which were shown to be equivalent to the Newton-Euler method [7].

Recently Kane and Levinson [8] used specialized formulation for specific robots, while

Featherstone [9] approached the problem differently by ,usin& articulated-body inertias.

All the methods mentioned above are very efficient in producing numerical solutions.

However they will yield very little insight views of the dynamical behavior of the

robot. To analyze the dynamics of the robot for full understanding and aiding in

designing new robots, it is desirable to simplify the computation of the coefficients By,

Dyk and D; and then deal with the differential equation (2) directly.

There are three known approaches of simplification* viz. geometric/numeric, com

posite, and differential transformation. Bejczy’s geomefcric/humeric evaluation [10,11]

deals with the nature of joints whether it is revolute or prismatic. Thus the 4 by 4

homogeneous transformation matrices Tjk in (6), (7) and (8) can be simplified in

advance. Since many elements in the matrices are zeros, the resulting expressions for

D-,, By and Dyk are less complicated [10,11]. The composite technique by Luh and Lin

[12] involves the comparison of all the' terms. in Newton-Euler formulation of the

dynamic equation [4] in a computer. Some, of tire •terms may be eliminated under vari

ous criteria. The remaining terms are then rearranged in a Lagrangian formulation.

The upshot is a computer output of a simplified equation in symbolic form. Paul’s

differential transformation [2] which converts dT^/dq^, the partial derivative of the

homogeneous transformation matrices, into the matrix product of the transformation

and a differential matrix which reduces D;j to a much simpler form. However, the term

D;jk contains a second order partial derivative d2Tg/(dq-} <9qk) which was not simplified

until recently by Bejczy and Lee [13]. Their approach is to apply the differential opera

tor used by Paul, successively at the appropriate link-to-Iink coordinate transforma

tions. An alternative approach is to adopt the dual-number algebra and.screw calculus

in the analysis instead of the homogeneous transformation.

In screw calculus [14,15], a vector may be represented by either six real numbers,

or thee dual numbers. The associated coordinate transformation matrices perform line

transformations, which is different from the point transformation by , homogeneous

transformation. In robotics, this approach has been investigated by Pennock and Yang

[16], and Featherstofie [9]. As shown by Rooney [17], the dual-number representation is

most concise, while the real 6 by 6 matrix representation contains redundant com

ponents since not all conditions that form the matrix are independent. The size of the

6 by 6 matrix gives an intuitive impression of excessive computational burden. Yet the

dynamical analyses are done by the real 6 by 6 matrix representation in [9] and [16]

because it is not feasible to express the inertia directly in dual-numbers.

This paper presents a method of expressing the kinetic energy of the system in

terms of dual-number transformations so that the analysis of the dynamics using dual-

number algebra is possible. The method is different from the momentum approach by

Yang [18]. Because of the property of line transformation, the dual-number transfor

mation may deal with dual-velocity vectors. Thus the differential transformation in the

kinetic energy term yields only the first order partial derivatives in B-k so that Paul’s

- 207 -

- 208 -

simplification approach [2] applies. Although there is no first order partial derivatives

in D,j in the dual-number representation, the computation of D;j is still simpler than

that by Paul’s simplified representation [2]. The computational efficiency of the dual

number representation is exhibited by comparing the numbers of required multiplica

tions and additions for computing the joint torques/forces 7- for all n joints, with those

numbers required when the direct homogeneous transformation [Ij, and Paul’s

simplified homogeneous transformation [2] methods are applied. ■

,H. MOVING RIGID BODY AND KINETIC ENERGY

Consider a moving rigid body Lj with its center of mass at point Gj, and an arbi

trary point at Oj upon which a coordinate system (xj, yj, zj is attached as shown in

Figure 1. The radius vector from Oj to Gj is denoted by Cj. Let Vj and u} be, respec

tively, the linear and angular velocity of coordinate system (Xj, j-}, Zj) with reference to

the base coordinates (x0, y0, s0). Then the linear velocity of the center of mass Gj is

[16,18]:

YGj = Tj + Wj X Cj ((9)

where x denotes the cross-product. The kinetic energy of the moving body Lj is

KJ = . (1°)

where mj is the mass of the body Lj, JGj the 3 by 3 inertia matrix of the body about its

center of mass in (x0, y0, z0), and ()' the transpose of (). Let

be the antisymmetric matrix whose components are the combinations of those of Cj.

Then '

'*]

and Cj i

I—Cw:

o.
yj

-e.xj ■-C (11)

0

- 209 -

0. QJ, ZZ QJ. sgvj -J -l A (12)

Combine (9), (10) and (12) to yield

~ f HnTj + 2wj ^jvj) + +:I»jCjCj-)wj] ;- (13)..

In Appendix A, it is shown that

Jj -■ JGj + mPPi '. /(«)

where Jj is the inertia matrix of the same body Lj about the origin of coordinates (Xj,

yj, ,.*j) in (x0, y0, i0). Thus (13) can be written as

; " Kj = y[nH(vfvj + SwjCjVj) + wjJjWj], (IS)

for simplicity. When the numerical values of Jj are needed for computation, however,

it is more convenient to compute them from (14) since JGj can be obtained directly.

EL- KINETIC BNISIGYOF THE ROBOT' ^

Consider an industrial robot having (n + 1) links among which link 0 is bolted on

the platform. For j * 1,2,...,n, let link j be represented by the rigid body Lj described

in Section II. Then equation (15) represents the kinetic energy of link j. The total

kinetic energy of the robot can be expressed as:

+ H^jVj) + cufjjWj] (16)
. £ i=i

Let AjL|-- be a 3 by 3 rotation matrix which projects any vector with reference to

(xj, yj, Zj) coordinate system onto (xj_1, Fj—i, system. 'Since Ajf-t 'is an orthonor

mal matrix, then

In addition,

- 210

- AoAf ... Aj-i

Thus equation (16) may be written as:

f s KICAj0^/(AfTj) + 2(AjWj/(AfCJAi)(AfTi)}
... 4 i=i ■ '

;.+ (A^/lAfJjAjJCAf^)] ; (17)

To simplify the notation, let

(jj? zz. A P(jj» (18)

be the linear and angular velocities of link j, respectively, projected onto their own

coordinate system (kj, yj, 2|). Likewise, let

Cf = AfGjA 1, If = A^JjA i, (19)

then Cj* and Jj* are, respectively, the radius and inertia matrices of link j about their

center of mass referred to their own coordinates (xj, y-}, Zj). As a result, equation (17)

can be written as:

K = i S [^{(v/l’vj' + 2(^1’ qv;} + K/JjXl
: 4 1=1 .

(20)

IV. KINETIC ENERGY'IN TERMS OF DUAL-NUMBER

TRANSFORMATION

The kinetic energy of the robot given in (20) can also be expressed in terms of

dual-number transformation. It is intended to show that the dual-number representa

tion of the robot dynamics leads to a simplified computation of the coefficients D,j and

D,jk of the Lagrangian dynamical equation (2),

Dual-Number Transformation

The dual-numher algebra has bees extended tb the vector and matrix calculus

[14,15].' The. basic operations or tie dual-vectors and dual-matrices are similar to those

in the complex variable algebra. In this paper, physical quantities such as displace

ments, velocities, etc. are represented by dual-vectors while the coOrdMates transforma

tions are represented by dual-matrices. The dual-vectors are line vectors [17]^ which is

different from the usual vector of a point. The dual-matrices are line transformations

which transform lines in the space to other lines. The line transformation is efficient in

spatial geometry and kinematics [17] since lines such as axes of rotation and paths of

traveling arise naturally.

Accorl% to the Principle Of Transference [i9], the dual-number algebraic opera

tions are the same as those of ordinary real number aigebra by replacing real numbers

by dual numbers. The dual-number transformation (Or matrix) is defined based on the

following observation. Consider the standard defining relationship between coordinate

frmaes of two adjacent links of an industrial robot, as shown in Figure 2, given in [2, p.

53]: . ■. '".Xv \

“rotate about in_j (axis), an angle $n;

translate along zn_j, a distance An;

translate along rotated xn_i = Xn (axis), a length an;

rotate about xn, the twist .e-or;

The homogeneous transformation that describes these four steps is

c$n 0 0 1 0 0 0
9
1 0 0 a.1 1 0

. o. • • 0

c8n o o 0 1 0 0 0 1 0 0 0 c«n -san 0
■1 ~ 0 . O' . 1 0.. 0 0 1 An ■ 0 0 1 0 0- S«n can ■o'

0 0 0 1 0-
. ’

0 0 1 0 0 0 0 b 0 ' 1

where c$n - cos Bn, s&n ~ sin 9n, etc. for abbreviation. Note that the first two

matrices represent a rotation about and a translation along the same axis, hence they

212

'are commutable. 'The transformation T£_i transforms any 4-dimensional vector with

reference to the n-th link coordinate frame to the n-lst link coordinate, frame. To

apply the dual-number algebra to the robot kinematics, one defines a dual-displacement

scalar

K=-4n+.€*n<". (22)

in which, as mentioned above, 0a and An are displacements with reference to the same

axis; and e is the dual unit having the property e2 = 0 [14-I9j. In a way, 0a describes

the displacements of a “screw” after it is turned, which gives rise to the name of “cal

culus of screws”. Likewise one defines

<*n = + €an (23)

The dual-number transformation that describes the four steps is given by [16,19]:

C0n ~$h o] ’i 0 10 ■ c K “S^ncdn shs®n]
S0a cK 0 0 cdn ~saJ = sK c&ncan ~C^sdfn (24)

0 ■ 0 1J 0 sdn. c«n J 6 san Cdrn J

It is seen that A | is orthonormal so that

= (An%r =Ar1 (25)

For computational purposes, one may use the trigonometric identities sin (x+y)-sin x

cos y + cos x sin y and cos (x'+y) - cos x cos y - sin x sin y, the dual-number pro

perty e2—0, and the Taylor’s expansion [14,19] to obtain

S0n = s0n + €&nc0n , c0n = c8n - e&as&n ,

and (26)

sdn = soa ■+ eanco;n , cdn - can “ eaEso;n ,

By substituting (22)’, (23) and (26) into (24), ^nd then performing some algebraic

- 213 -

manipulations, one obtains

A."-i = K-t + *ii (27)

where

Rn —
n—1

cO —s9ca s9sa '-=As 9 —Ac0ca'+asfea Ac9sa -h as9ca
— sd eBca —c9sa G n —

j Dn-1 ~~ Ac 9 -iAs0ca—a'C0SQt As9sq—slc9cq

,0 SG CQ . , o acd? ~as a
(28)

in which 9, a, A and a stand for 9W otn, An and an, respectively, for simplicity. Qbvp

ous Rnn_! is a pure rotation operator which is orthonormal so that (R^-i)'1 = (Rn-i.)\

while S£_i is a singular matrix since its determinant equals zero.

Properties of Dual-Number Transformation

Since A“_j describes the same “foUr steps” as T"_j does, then Aj is a dual-number

transformation which transforms any dual-vector with reference to (xj, yp *j) coordh

nate frame to the same dual-vector with reference to (% jh is*) coordinate frame. By

(27). and (28),

AjJ = ftj + eSJ (29)

A *
and the transition property holds for AjJ Such that

(A/),1 h-I - i j -i A i + l A i + 2A ■' “ Af — A; Ai + i A JAj_j (30)

Combining (25) and (27) yields an identity matrix:

: I = [(RJ)’ + £(S?)'] [RJ + <SJ|

= (R.J)'(RJ) + eKSj/fRj) + (Rj)'(SJ)]

which leads to

(RJ)'(RJ) =1, (32)

and

- 21-4

. (Sj)'(Rj) + (Ri)'(Si) = O (33)

Equation (32) implies that Rj> is orthonormal which is in agreement with (28). Since

(Aj)' = A/ and (Rj*)' = RJ, then (8/)' = S^. But (Sj)' (Sj1)-1 since 8/ is singular and

Sjl # SjkS^ in general. However, by equation (33), one obtains:

, ' $ = (S/)' = -(R/)'s/(R/)'- (34)

Since R/ = I = A;1 = R{ + eS;*, then

= O (35)

which is expected since S”_j is singular. Finally, (Rj> + eS/) = A/ = A;kA^

—(Rjk+€S|k) (Rl + eS^) = RikRi + ^(R^+S^) so that:

RJ = RikR1[and S/ = R^Sj' + S^R* (36)

Equations (29) through (36) summarize the essential properties of the dual-

transformation.

Kinetic Energy of the Robot

The dual-displacement qj = + cAj is a dual-vector where @j is the angular dis

placement vector about a specific axis while Aj is the linear displacement vector along

the same axis. In industrial robots, link j either rotates about Zj_j-axis, or travels along

that a^is. The magnitudes of the displacements are measured from their own reference

points. Thus the dual-displacement of link j with reference to (Xj_j, j-rl, Zj_j) is:

= (0j d-eAj)
0
0
ixj

(37)

Especially

-215 -

q;
[0 0 $jjf for revbfiite joint,
[0 0 cAjf for prismatic joint (38)

where 0-} and Aj are the third components of vectors 0-} and Aj, respectively. Let

fj = u-* + €Tj4 , j = 1,2,...,n, (39)

9
be the dual-velocity of link j with reference to coordinates (X;, y-., X:). It relates to qj

by [16]:

Vj = A/-1i| + (40)

with v0 = O since link O is stationary. The first term in (40) comes from the dual

velocity q: with reference to Z:_,-axis, while the second term is the contribution of the

dual-velocity of link (j-1) with reference to coordinates (Xj_s, yj_l7 Zj-i). Apply the

recursive relation (40) repeatedly, one obtains

AT'4 = t (Atilqr r («)
i-1 i=l

Substituting (27) and (37) into (41) yields

0>i = t W-.)' «| 0 + X t [(SiLiM + W-i/aJ
i-=l i=l

Compare (42) with (39) to obtain

= t

i=l

0
0 ,r*

ll
= i pj-irt + (R,-L,)'Ail

i=l

(42)

(43)

By combining (20) and (43), the total kinetic energy of the robot becomes

K = i £ {mj [0 0 I] (t ISJ.,#-, + E^AJ i [(Si-,)'Jk + (Ri-./Akl)
2 j = i k^l

0
.1.

- 216 -

6

+ 2m;[0 0 1] (£ EMC/ £ [(Si-A + (Ri-l)'AJ)
i=l k = l ■ .

+ [ooi] (£ R/.A1-' £ mJK)
i=l k-1

0
(44)

For i, j =1,2,3, let D = [D^] be an arbitrary 3 by 3 matrix; and let

Tr,(D) = [0 0 1]D = 0*5= Tr3(D) (45)

Consequently, (44) can be written as

K = {stt (EjiA + Fj^A + GjbAA
2 j = l i=l k = l

(46)

where

Ejik = TcjlRi-.J/fRi-,)'] + 2mjTr3[R:L1C;(S|i-1)'] + mjTr3[Si.l(S|i-1)']

Fjjk = 2mj{Tra[R*,1C>(Ri-,)'] + TrJSi-.lRi-,)’!)

Gjit = mjTrsPffl (47)

Equations (46) and (47) indicate the main difference between the expressions of kinetic

energy in terms of dual-number transformation and homogeneous transformation. The

homogeneous transformation transforms point vectors. If a point is described with

reference to (x;, j-v Zj), then the position of the point in base coordinates is the point

vector pre-multiplied by T]. The velocity of the point in base coordinates will contain

terms of (dT^/dqjXdqj/dt). Consequently the kinetic energy of the robot is [2, p.
j=i

167]:

217 -

K = | £ Tr|£ £ '(aTi/a^JJif^i/aqjj'^qiJ (48)
1 i—1 j=.l k=l

which includes the partial derivatives of T^. When K is substituted into equation (1)

to form the Lagrangian equation, its time derivative yields terms of second order par

tial derivatives 52T,j/(5qk5qj), which causes difficulties in simplifying the computation.

The dual-number transformation, however, performs line transforms [18, 17] which

transforms velocity vector described with reference to one coordinate system directly to

another coordinate system. Thus no derivatives of the dual-number transformation

appear in the expression for the kinetic energy, as indicated in equations (48) and (47).

As shown in the next section, when the kinetic energy K is placed in the Lagrangian

equations, the time derivative of K yields only the first order partial derivatives of the

dual-number transformation so that Paul’s simplification procedure [2] applies.

It should be emphasized that because of the line transformation property of the
* . -

dual-number transformation, using it in the terms of potential energy does not have

any advantages.

¥. LAGRANGIAN EQUATION IN TERMS OF DUAL-NUMBER

TRANSFORMATION

The potential energy of the robot is given by

P = E mj8 rjo (49)

. j=i

where mj is the total mass of link j, Pjc is the position vector describing the center of

mass of link j with reference to base coordinates, and g' is the gravitational accelera

tion vector at a sea level base and equal to [0, 0, 9.8 m/sec2]. The Lagrangian equation

is given by (1) in which L = K - P, qj is the generalized coordinate, and t. is the gen

eralized forcing function. For the robots,

218 -

0-, , if link i is revolute ,
Aj , if link i is prismatic , (50)

is the displacement of link i, and t- represents either the torque or the force depending

on whether link i is revolute or prismatic.

Revoluie Link

If link § is revolute, then q# = 0§. Now

dl

4 l=i i=i k=i
9-A +

0F;=jik *A +
5Gjik

AiAk)

d
T'l°

and

&L

d&§
f E t I(Eji, + + Fj(iAJ
- j=f i=l

(51)

(52)

Note that in (51). and (52), the first summations start from j=J instead of 1 because

Ejik, Fjik, Gjik are independent of 0} while 0j is independent of 09, for j < L Let

% “ Eji* + % . (53)

Then, by (11), (45) and (47),

+ miTr3[SiL1(S^1)'|} (54)

dhSubstitute (53) into (52). and then take the time derivative of —r- to yield

- 219 -

* * f '' d$
+ f E E E l-^f - *A + v ,A

2 j=J i=l k=l d&k

j?i , w jfk5F ;<i • • 5F;0
+ + Jf-Ai*k] (55)k dfi

Finally, by (1), (51) and (55), the external torque of revolute link j? becomes;

2 j=?i=i

+ if£ £ [(Ali - ^ ^; 5F:,t dF::* •
2 jt} itj k=i ^k ^ dAv d&\ d&§

+ (
gFjgj <9Gjik x; ^ , A ' d
d&u

•lAiAj + e ”i« gj-n
i=»

JO. (56)

If all the n links are revolute, such as Unimate PUMA 560 robots, then A; is zero for all

i so that (56) reduces to

u = I e £ Vi + t t £ t <
dEjlk ,,

2 j=fi=i 2 j=Htl k=i d0k dd*)0A + E ^-*jo (57)
j=f

Since in (57), the computation is independent of the order of summation so that (57)

can be rewritten as

n n
n = E D|A + E E Dlik0A + D,

i=l i—1 k=l
(58)

where

D,i = { E % (59)

220

n _ J_ A dBPk,
- o 1, >»/». ^)2 j=max(i,f)

Df. = E
a Tjo

(80)

(61)

for robots having revolute links only.

Prismatic Link ■

If link j? is prismatic, then qq = At; and the Lagrangian formulation of the exter

nal force for that link is

_ d , dh v _ dL
' ~ dt dAi SAi (62)

The explicit expression for (62) can be derived in a similar manner as that for the revo

lute link. Thus the explicit expression is the same as (56) except that the roles of 9k

and Ak are interchanged. Thus,

n = |s i !*jiA + FjjiJj
2 j=f i=l

1 n ■ J, j 5^1? :a: ^*iik

4- (■
d^-.jfk

99:
+

dFy# <9F;;t . • •jik
d&k d&q

)Ak9{

, , ^Fji9 dEjik^'Vr , A • - d
+ (—-— -------—)9\9k] + y) m;g —p;-1 99k d&q] ‘ kJ jtJ J d&q J0 (63)

gives the external force for the prismatic link f, where

- 221 -

'= 2mjTr3(R/_}) - ' '■ (84)

VI. DIFFERENTIAL OPERATORS OF DUAL-NUMBER

TRANSFORMATION FOR.SIMPLIFICATION

In [2, p. 172] differential operators of homogeneous transformations are introduced

to simply the computation of coefficients in the Lagrangian equation. Likewise,

differential operators of dual-number transformation in dual-vector space may also be

introduced for the same purpose. Let dqk be a differential displacement (rotation or
A

translation) of link k. Let represent the dual-number differential coordinate

transformation of (xk, yk, zk) with reference to (xj, yp Zj). Then the total differential

change of dual-number transformation Aj3 is

dA/ = ^ AMydqk for i < j. \ - :(65)
k=i + l ...

On the other hand,

dA}3 - (5Ai3/^qk)dqk (86)

Combine (65) and (66) to yield

«9A//5qk ■= Aj*<ijk for i < k < j (67)

Since qk is the displacement of link k with reference to yk_j, zk_i), i.e., either

about or along the zk_j-axis, then (5A3/<9qk) represents the differential change of A3

with reference to (xk_i, yk_i, zk_i). But A/ = A:k_iA^_}, and moving links k does not

affect link i for i < k. Thus

Aj^^k-jA^i' for i < k < j (68)

By (67) and (68) one obtains

222

af = (A^r'A^'a^Ai!k-1

— Ajk f°r 1 < ^ < j (69)

Equation (68) may be used to determine the numerical value of by setting i -

k-1 and j = k. That is .

ak-i = (aAkk_,/aql)(Ai_1)'

since Ak_i is orthonormal and Ak_/ — I. Now (24) and (26) give

A-k-l “ ®k^k

(70)

(71)

where

~S^k 0 c$k eAks^k —s0k—eAkc0k 0

1! S^k <4 0 s0k +eAkc0k c0k~eAks0k 0
jk o- 1 0 0 1

(72)

and

Ot =■

1 0 0

0 CQfjj ~'SQ!k

0 SQ!k Cftjj

1 0 0
= 0 cok--‘eaksak —sak—eakcok j

0 so^ +eakcok cok~£ajcso'|c

(73)

Note that both 0k and Ok are orthonormal. If link k is revolute, then qk - 0k so that

(70) becomes

akk-, = (3eu/aok)nt(eknky

0 “1 0
1 0 0

[0 O' oj
(74)

If link k is prismatic, then qk — Ak so that

~ 223 -

£k-i = (aek/aAk)nk(©knk)'

0 -1 0
1 0 0
0 0 0.

For convenience, let

d> =** + «!*

and

■fo -i o|
$=100

[0 0 0J

Then

Stk-l
3 , if link k is revolute ,

1© , if link k is prismatic ,

!0 , if link k is revolute ,

§ , if link k is prismatic ,

Now substituting (29) and (76) into (69) yields

+ edk = (Rjk-‘ + £Sjk'1)(«kk-1 + £dt,)(Ri-, + cSi_j)

= Ejk->4k-,Ri-1 +

+ ■Rjk_1$k-1S^_i) for k < j .

By (78) and (79), equation (81) for k < j becomes

R:k_1$Ri -i , , if link k is revolute
6\ = 0

, if link k is prismtic ;

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

and

224

Sf-'fltii-, + RiM«si_, , if

. k-1
k is revolute ,

k is prismtie ;
(83)

Finally, substitute into (67) to obtain

(dUi/dqk) + £(dSj/dqk) = + e(Rjd* 4- SjS?) for i < k < j . (84

Consequently

SRj/aqt = <
t,j if , for i < k < j ,

. otherwise ;

and

dSi/dqk
Rid? + , for i < k < j ,

® , otherwise ;

Since qk equals either 0k or Ak, depending on whether link k is either revolute or

prismatic, then by (36), (82) (83), (85) and (86), one obtains, if link k is revolute:

- (

k-i -i , for i < k < j ,

, otherwise ;
(87)

as i/d«k = „
-l + ®i' '®i-i , for i < k < j ,

, otherwise ;
(88)

and if link k is prismatic:

- 225 -

dsl/&Ak
'xf'sRi-i

,0
, for i < k < j *

, otherwise ;

where S is given in (77).

(90)

VII. COEFFICIENTS OF LAGRANGIAN EQUATION.IN EXPLICIT

FORMS

The Lagrangian equation for robot dynamics are given by equations (56), or (58) or

(63). Using either one of the equations to compute the external torque/force, one must

evaluate all the coefficients which contain the first Order partial derivatives of E^, Fjik,

Gjik, and By (11), (34), (45), (47), (53), (64) and (87) through (90), these par

tial derivatives for max(i,k) < 0 < j have explicit expressions as follows:

3Eiik/cW, = Tr,(Rftag-1jj,Rjk-,l'

- Tr^Sp.iR^Gj-Rf']}

+ mjiTrjiRHJSS^Sj1-'] + tr3[SJ;i«R/.1S*-1l

+ .Tr,(R{^-,S/-'] + T^ISJ-J.^.S;-1]} (81)

= 2 TrjtRti^lJj’R,^1 + mjCj'S*-1)!

+ 2 Tr3[Rp,«R;-1(jj,Rfl +

(92)

- 226 -

+ 2 injTrjKRp,*^-, + SftiR/.JfSf' - Cj*Rf‘J|

dFyJde, = 2 mj{Tr3|R;.-'1ffi^1Cj*Rjk-1] - TrjtRftJR^-tCj’Rf']

V +..Trs[Sfi®^:,1]'+ TrrfRfi^Rf-')

+ Trj(Rtl,®j_1Sf1]} (93)

9Gjik/aC(= mjTr3[Riti«R(kr1!| (94)

a%/a«i = 2 dGyjaei (95)

aEylk/dA, =

6, ■ .+ mj{Tr3|RjtjfRM*-‘]' +Tr3iRt;1iR;.1Sf1]} (96)

Difj'dt*. = ^{Tt,[R{J1ag.lCj*Rf‘1 + 'TrsJRfi^-ICi*R^!]>

+ 2mi{Tr3(RiL-liiR;.1Sjk-1] + TrsIRfriR^Sf1]} (97)

aFjik/aA| = 2mjTr3(Rjtl«R#k:11] (98)

^Gy^/dAg = 0 , and (99)

d#jik/dA? = 0 (100)

The gravitational term in the Lagrangian equations (56) and (57) involve the partial

derivative dr^/dtii, and in (63) involve 5rj0/d&q, These derivatives are evaluated

directly with fj0.

- 227

YE. ILLUSTRATIVE EXAMPLE

The Stanford manipulator shown in Figure 3 is adopted as an example to illustrate

the use of formulas derived in the paper. The link parameters of the manipulator are

given in Table 1. It has seven links and six joints so that E —6 . By' (28

c$4 0 ““3$j c$2 0 S$2

R,1 = S$j 0 c$i ID 2 — ?K 1 ~~ S&2 o' “C$21 , R| = I,

0 -1 ' 0 0 1 ■o

[c$4 0 —s$4 C$5 o' s$5 C$6 “S$6 ' 0

1!

■"fcs S$4 0 c$4 fO
.»
&
*•
 C

n

!! s$5 o “C$5 , R| = S$g C$6 0

0 -1 0 0 1 0 J! i
0 0 1

“S$| 0 ”C$1 j-sS2 0 C$2 fo -1 0
So' = h C$1 0 -S$l ; sf - hhh 0 S$2 ; S| — A2 1 0 0

0 0 0] 1° 0 0 0 0 0

S4 ™ — 06 —
3 ~~ d5 ~~ o

Using (36) one also obtains

r

Rf
c$5c$6

s$8
s$5C$8

“C$5S$g

-S05S08
s$6

S$5
“C$5

0
s6, d4_ ~ 0

R6
C04C^5C0g-S^4S^g
S$4C$6C$g + C$4S$8

“S$5c$6

-C$4C$5S$8-S$4C$6 C$4S$J
-s$4c$5s$6+c$4c$8 S$4S$;

S$5s$g C$5
si =

E0 9 E0 Q 6
3 ? d2

[-S04C05C#g-C04S0g S$4C$5S$g-C$4C$g -S$4S$5

C$4C$5C$g-S$4S$g -C$4C$5S$8-S$4C$g
0 0

c$4s$8
0

Rf and Sf can be obtained in a similar manner but are omitted here because their

lengthy expressions. Now applying (36) further to yield

- 228

t|
C04c05 ~$#4 e^4s^5] |c$4 0 -s$4j

s<94c05 e$4 S$4S$5 , R{ = S$4 0 . C^4

-S^5 0- C«5 0 -1 0
«

L5
3

f 54 >

~S^4C^5 ~C04 -S^4S^5 ■ B—8^4 0 ~C#4
i| = A3 c$4c$5 -s04 C$4S$5 L S| = A3 C$4 0 “S#41 , S|

Sample Computation o/Dj;

From the given link parameters shown in Table 1, it is- seen that for i > 4, A; = 0

so that A; = Aj = 0. Thus for f = i — 4, the first summation term in (56) is the same

1 6
as the first summation term in (58) which gives D44 = XI ^j44- To compute #j44,

2 j=4

one mhst first compute

Jj* = A/>(Jaj +. mjCjCj'lAi = Aj>JaiAj + mj[(Aj°CjAiXAj''Cj'Ai)]

by (14) and (19). If the off-diagonal terms in the inertia matrices are ignored for simpli

city, then one obtains

,2 c
. 2

Ikjix 0

Aj° JGjAi =mj 0 kjjy 0
!0 O

for j = 1,2,...,6, where kjxx is the radius of gyration “xx” of link j about the origin of

coordinates (xj, y-, Zj), etc. Using (11) and the given data of center of mass in Table 1,

one computes:

■ fo O l] fo' ”1
AfCjAo - ±b; 0 0 .0 , AfCjA-*■= ±b: 1 0

1-1 O' OJ 10 0 oj

for i — 1,2,4, and j = 3,5,6, with “ + ” sign for b1? b4, b5 and b8, and sign for b2

and b3. Since S3 = S3 — S3 = 0, then (54) yields #444 = 2Tr3[R3A4(Jq4 +

229. -

m4C4C4)A04E|] = 2m4k|yy. Likewise, #544 = 2m5[(k52xx + b'i)s% + k£zzc%] and

#644 = 2m6[(k|xxc206 + k6yys206 + b|)s205 + k§isc%}. Consequently D44 = m4k|yy

+ m5[(k52xx + bf)s205 + k52zc2^5] + m6[(k62xc\ + kJyS206 + bf)$20s + k62zc205].

Since link 3 is prismatic, D33 must be computed from (83). Since f = i = 3, and
S S S

\ = 0, then D33 = ~ E *j33 = E mjTrs(Rf) = E mJ (64)-
* j—3 J=3 j-3

Sample Computation of ik

1 5For § = i = k = 4, one obtains from (53), (56) and (91), D444 — — E
2 j—4

#(#j44 ~ Ei4i)/dh = T E dEj44/<904. Now dEU4/de4 = 2Tr3[$R34J4R |j. Since 6 has
‘ 2 j=4

all zeros in its third row, then 5E444/894 = 0. For the same reason, 5Ej44/d&4 = 0 for j

= 5,6. Thus D444 = 0.

1 8
For j? =5 and i = k = 4, one uses the same equations to obtain D544 = — E

2 j=5

{d^bJd&4 - <9Ej44/^5). Now d%bJd&4 = 2{Tr3[R435R35J5*R53] + Tr3[Rf«Rf J5*R54]}

= 0, and 5#654 = 2Tr3[R46R3 Jg*R|] = 0, so that D544 = ~ £ 0Ej44/d05 =
J j=5

-{Tr3[R345RfJ|R53] + Tr3[R345R45J6*R63]} = -[m5(k|xx + b2 - k52Js05c% +

m6{(klxxc2^8 + k6yys2^8 + b62 “ k|zz)s%C^5}j.

Sample Computation of Dj

Since g = (0 0 gj is the gravitational acceleration, then g Fj0 = ghj where hj is

the z component of the position vector describing the center of mass of link j in coordi

nates (x0, y0, *0). From Figure 3, it is seen that hx = fj - b4, h2 - Qv

h3 = f j + (A3 ~ b3)c(?2, h4 = + (A3 - b4)C02, h5 = f t + (A3 + b5c05)c02 -

b5s05c04s02, and h8 = fj + (A3 + b6c$5)c02 “ b6s05c04s#2. Thus dh.Jdd4 - 0, dhb/d&4

8
= b5s05s04s02, and dhb/d84 = b6s05s$4s02 so that D4 = £ nijg dTi0/d64 =

j~4

230 -

6
£ nijgdiij/<904 - g(m5b5+m6b6)s^s^4si92, Ds (s#5c02 + c%c$4s$2), and
j=24

d6 = o: .

Since dhz/dAz = 5h4/5A3 = dhs/dAz = dhJdAz = c02, then for the prismtic

joint 3, P3 = (m3 + m4 + m5 + m6)gc02.

Vffl. COMPUTATIONAL COMPLEXITY AND COMPARISON

The complexity of computation is represented by the numbers of multiplications

and additions required to compute all the coefficients Dj; and D?ik.

Method of Direct Homogeneous Transformation

The method of direct homogeneous transformation refers to the computation of

the coefficients directly using (3), (4) and (5).

(a) Df,

Since Tr[UjkJjU;j = Tr[T‘->QkTi.1Jj (T^/lQ,)'(+•')'! end

X X X ■ X1 0 -1 .0 o' lx X X x!
Tn - X

X
. X '
x"

X
X

X
X ’ Qm — 1

0
0
0

0
0

0
0 • +=x X

X
. X
X

X
X

[o 0 0 1. lo 0 0 oj1 be X X X.

where x represents the numerical value of that element in the matrix, and it is not

necessarily zero, then the number of multiplications required in computing one trace

operator is 3 * 2 • 4 + 3 • 4 • 4 + 3*4’2 4-3*2 = 102 and the number of additions

is 3 * 1. * 4 + 3 * 3 • 4 + 3*3*2 +3*1 + 2 — 71.

(b)

Since Tr[UjkmJjUj;] = TrlTy'QkTH'Q^.JjlTj-./Q^Tr 1/j, the number of

multiplications in . computing one trace operator is 3 * 2 * 2 +3*2*4

+ 3*4*4 +3*4*2 + 3 • 2 = 114, and the number of additions is

3*1*2 + 3 * 1 • 4 + 3 * 3 *4 + 3 » 3 • 2 + 3 *1 + 2 = 77.

(c) Total Number

- 231

To compute all the input torques/forces for the robot having n moving links, one

must evaluate Nj trace operators for D?i and N2 trace operators for DSik, where [4]

Ni =. E E i 1 = n(n + l)(2n +l)/6, and N2 = £ £ £ £ 1 = n2(n + l)2/4.

i—1 j—i k—1 i=l j=i k=! m=l

Consequently, the total numbers of multiplications and additions are:

Number of multiplications = 102N, + 114N« = 28—n4 + 91n3 + 79—n2 + 19n
2 2

Number of additions = 71N, + 77No = 19—n4 + 62—n3 + 54—n2 + 11—n
2 6 4 . 6

o

Method of Differential Operator Simplification

Paul’s differential operator simplification method applies to D?i only.

(a) Dp;

The simplification formula for D;j is given by equation (6.79) of [2, p. 174]. Thus,

instead of evaluating the trace operator, one must compute

mp((P*,)'Kp(P«i) + (Pdj'lPdj) + (%)'n x + Pdj x P«0]

Now each cross product involves six multiplications and three additions, thus to com

pute one such , expression, one requires to perform (6*2 + 1*3*3 +

3 + 3 + 6 + 6 + 3) = 42 multiplications and (3 - 2 + 1*2*3 +

2 + 2+3 + 3 + 3 + 2 + 2) — 29 additions.

(b) D0ik

The parameters is not simplified, and hence it requires 114 multiplications and

77 additions to compute one trace operator.

(c) Total Number

For n input torques/forces, one must compute Nj dot-product-cross-product

expressions and ‘M2 trace operators. Thus:

I •

232 -

Number of multiplications = 42Nj + 114N2 — 28--E4 + 71n3 + 49“~n2 + 7a
&> &

Number of additions = 29NS + 77N2 = 19-7 n4 + 48n~"a3 + 33-~-n2 + 4™n
1 .4 6 4 6

Method of Dual-Number Transformation

For the purpose of comparison, the expression having largest number of computa

tional operations is used.

(a) Dfi o-

In (58) and (63), since either 0; = 0, or Aj — 0, and 4^ involves more computa

tions than Fjg; does, then use for evaluation. Now is given by (54) in which

matrix C-* has zeros along its principal diagonal Thus to compute it involves

(1 • 3*3+3) + 3 +(1*2*3 +3) *2—33 multiplications and (1*2*3 + 2)

+ 2 + (1 * 1 *3 + 2) *2 + 3 = 23 additions.
t';

(b) DJik

By the similar reason, d^y^/dOt is used for evaluation. That partial derivative is

given by (92). In (92), 6 is defined by (77) which simplifies the computation. Thus in

computing the Tr3 operator, each of R5R and R5S requires only the multiplication of

the third row of 115 with R or S, i.e., 1 * 2 * 3 = 8 multiplications. Likewise, each of

CS and CR requires 3 * 2 * 1 = 6 multiplications. Hence to compute one d^y^/ddi one

must compute (1 * 2 * 3 +3*3*1 + 3 *2 *1 + 3) • 2 + (1 • 2 * 3 • 2

+ 3*2*1 + 3) * 2 = 90 multiplications and (1 * 1 * 3 + 3 • 2 ♦ 1

+ 3 *1 *1 + 3 + 2) • 2 + 3 + (1 * 1 * 3 * 2 + 3+ 3*l*l + 3 + 2) *2 —71 addi

tions.

(c) Total Number ■ *

For computing all n input torques/force, one is required to perform

33Nj + 90N2 “ 22—n4 + 56n3 + 39n2 + 5—n multiplications and
2 2

233 -

23N, 4- 71 No = 17—n4 + 43—n3 + 29—n2 + 3—n addition.
1 4 6 4 6

Table 2 summarizes the computational complexity of the three methods for com

parison. It is seen that the dual-number approach requires less computations.

IX. CONCLUSION

The Lagrangian formulation of dynamical equations for robots is inherently com

plicated. The homogeneous transformation is a point transformation which operates on

the displacements. Using the homogeneous transformation in the Lagrangian equation

thus introduces second order partial derivatives. The dual-number transformation,

however, is a line transformation which is extended to dual-vectors to represent veloci

ties. When the dual-number transformation is adopted in the Lagrangian equation,

only the first order partial derivatives will appear. Thus the differential operator can

be applied directly. As a result, the magnitude of computational complexity is reduced.

REFERENCES

1. Bejczy, A. K., Robot Arm Dynamics and Control, Technical Memorandum 33-669,

Jet Propulsion Laboratory, February 1974.

2. Paul, R. P., Robot Manipulators: Mathematics, Programming and Control, MIT

Press, 1981.

3. Luh, J. Y. S., “Conventional Controller Design for Industrial Robots - A

Tutorial,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 13, No. 3,

May/June 1983, pp. 298-316.

4. Luh, J. Y. S., M. W. Walker and R. P. C. Paul, “On-Line Computational Scheme

for Mechanical Manipulators,” ASME Transactions, Journal of Dynamic Systems,

Measurement and Control, Vol. 102, No. 2, June 1980, pp. 69-76.

- 234 -

5. Walker, M. W. and D. E. Orin, “Efficient Dynamic Computer Simulation of

Robotic Mechanisms,” ibid, Vol. 104, No. 3, September 1082, pp. 205-211.

6. Hollerbach, J. M., “A Recursive Lagrangian Formulation of Manipulator Dynam

ics and a Cooperative Study of Dynamics Formulation Complexity,” IEEE Tran

sactions on Systems, Man and Cybernetics, Voi 10, No. 11, November 1980, pp.

730-730.

7. Silver, W. M., “On the Equivalence of Lagrangian and Newton-Euler Dynamics

for Manipulators,” International Journal of Robotics Research, Vol. 1, No. 2,

Summer 1982, pp. 60-70.

8. Kane, T. R. and D. A. Levinson, “The Use of Kane’s Dynamical Equations.in

Robotics,” International Journal of Robotics Research, Vol. 2, No. 3, Fall 1983,

pp. 3-21.

9. Featherstone, R., “The Calculation of Robot Dynamics Using Articulated-Body

Inertias,” International Journal of Robotics Research, Vol. 2, No. 1, Spring 1983,

pp. 13-30.

10. Bejczy, A. K. and R. P. Paul, “Simplified Robot Arm Dynamics for Control”,

Proceedings of 20th IEEE Conference on Decision and Control, December 16-18,

1981, San Diego, California, pp. 261-262.

11. Bejczy, A. K., “Dynamic Analysis for Robot Arm Control,” Proceedings of 1983

American Control Conference, June 22-24, 1083, San Francisco, California, pp.

503-504.

12. Luh, J. Y. S. and C. S. Lin, “Automatic Generation of Dynamic Equations for

Mechanical Manipulators,” Proceedings of Joint Automatic Control Conference,

June 17-19, 1081, Charlottesville, Virginia, pp. TA-2D..

- 235 -

13. Bejczy, A. K. and S. Lee, “Robot Arm Dynamic Model Reduction for Control,”

Proceedings of 22nd IEEE Conference on Decision and Control, December 14-16,

1983, San Antonio, Texas, pp. 1466-1476,

14. Brand, L., Vector and Tensor Analysis, Wiley and Sons, 1948, chapter 2.

15. Dimentberg, F. M., The Screw Calculus and Its Applications in Mechanics,

IzdateFstvo “Nauka”, Moskva 1965, English Translation by Foreign Technology

Division, WP-AFB Ohio, Part No. 680 993, April 1968.

16. Pennock, G. R. and A. T. Yang, “Dynamic Analysis of a Multi-Rigid-Body
<a

Open-Chain System,” ASME Transactions, Journa of Mechanisms, Transmission,

and Automation Design, Vol. 105, No. 1, March 1983, pp. 28-34.

17. Rooney, J., “A Comparison of Representations of General Spatial Screw Displace

ment,” Environment and Planning (England), Series B, Vol. 5, 1978, pp. 45-88.

18. Yang, A. T., “Inertia Force Analysis of Spatial Mechanisms,” ASME Transac

tions, Journal of Engineering for Industry, Vol. 93, No. 1, February 1971, pp. 27-

33.

19. Yang, A. T., “Calculus of Screws,” in Basic of Design Theory, Edited by W. R.

Spillers, North-Holland Publishing Co./American Elsevier Publishing Co., 1974,

pp. 266-281.

20. Goldstein, H., Classical Mechanics, Addison-Wesley, 1959, p. 144.

APPENDIX A - INERTIA ABOUT THE ORIGIN OF COORDINATES

To compute the inertia matrix Jj of the rigid body Lj about the origin Oj of coor

dinates (xj, yj, zj) in (x0, j0, z0), let Amj be the mass of the i-th particle of the body,

and Pji and Sj; the radius vectors from the origin Oj and the center of mass Gj, respec

tively, to Am; as shown in Figure 1. Then it is well known [20] that the angular

momentum referred to Oj is

t&j = E Ami hi x hj x rji)l
i

= E Ami (hi * rjiH ~ hi ‘ wj)rji] (A-x)

where is the dot product. Since (r^ * i^) = (pjj/pji and (Pjj * Wj)Pjj = hihji) lwj

where (/ = transpose of (), (A.1) can be written as

hj =EAmi[(rji)'rjiI-rji(rii)']«j (A.2)
i

in which I is the identity matrix, and Pj^PjJ is the outer product matrix. But

hj = JjWj, hence

Jj = £ Ami[(rji)'riiI-rji(rii)'| (A.3)
i

which is symmetric since Ty^ryJ is symmetric. From Figure 1, Pjj = Sj5 + Cj, so that

equation (A.3) can be written as:

Jj = E Ami Ksji + cj/(sji + ®j)! “ (sji + cj)(sji + cj)1 (A*4)
i

But Gj is the center of mass so that J] Am^ = 0. Hence equation (A.4) reduces to
i

jj = E Ami ((Sji/Sji1 + Cj ¥ “ “ CjCj3 (A-5)
i

Since the origin Oj is arbitrarily assigned, equation (A.3) derived above is satisfied at

- 237 -

the center of mass Gj, i.e.

BGj = E Am» Ksji)” sj.! ~ j1' j*' (A.6)

+ m(cj cjl -

Refer to the definition of Cj and Cj, it is seen

e- Cjl = (cx2j + c 2j + cr- and CjC;
c2- cxjcyj cxjczj j

CyjCXj c 2-cyj cyiczj (A. 8)
czj®xj c*icyj c2 1 n j

Thus Cj Cjl - CjCj" = CjCj" = Cj" Cj and hence (A.T) becomes

- 238 -

Table 1. Link Parameters of Stanford Manipulator

Center of Mass in

Link

1

2

3

4

5

6

0; A;

$2 02

0 A?

%

00

0

a; Sj <5os a; sm a;

~5r/2

tt/2

0

-x/2

v/2

0

0

0

0

0

0

1

„P-

0

1

1

0

..... “L

(*i» Ji* *i)

(0, b„ 0)
(o, ~b2, 0)

(0, 0, 7bs)

..

{0, 0, b5)

0

- 239 -

Table 2. Comparison of Computational Complexity

METHOD
NUMBER OF NUMBER OF

MULTIPLICATIONS® ' ADDITIONS®
Homogeneous

Transformation
Differential

• ■ Simplification

Dual-Number

28—a4+91n3 -f 79n2 + 19n 19—n4 + 54—n2 +11—n
■2 2 § 4 8

28—-n4+71n3 + 49—n2+7n , 19—n4+48—n3 + 33—n2 + 4—a
2 2 | f ft

22—n4+56n3+39n2 + 5—n 17—n4+43—n* + 29— n2+3—a2 .._2_______________________ 4___ fi_____________________ 4__________________fi_J
“Computing all D;j and D;jk for n joints.

240 -

r. .

Rigid

Figure 1 * Moving Rigid.. Etody

joint n

Fiaure 2» Link Parameters 8, Lt a and a

241

Figure 3, Stanford Manipulator with Joint Coordinates and Link Parameter

242 -

RTM (Robot Time and Motion) User Manual
Version 1.2

A.P. Robinson, H. Lechtman and S.Y. Nof

School of Industrial Engineering
Purdue University

West Lafayette, Indiana 47907

Research Memorandum Wo. 84-12
July 1984

This research was partially supported by the National Science
Foundation under grant MEA-8119884. Any opinions, findings,
and conclusions or recommendations in this publication are.
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

- 243 -

RTM (Robot Time and Motion) User Manual

Version 1.2

A.P. Robinson, H. Lechtman , and S.Y. Nof

School of Industrial Engineering
Purdue University

1. INTRODUCTION

The RTM method is a means of estimating robot cycle times based on
information describing the robot's task, but without a need for
extensive programming. This method has been incorporated into a
software system which reads standardized input describing the task and
applies the RTM-method based on that input. This manual has been
prepared to explain the proper use of the RTM input language and how it
operates with the RTM prototype software. Currently, the system can
model both the Stanford Arm (SA) and the Cincinnati Milacron T-3.
(Additional RTM capabilities that have been researched, and examples of
applying RTM to other robot types are provided in the references [1-7],
but are not included in the standard RTM software.) A commercial version
of RTM has also been developed [8, 91. Discussions of the motion time
modeling mechanism, a detailed example of its application, and
experimental evaluation of RTM are presented in the appendix.

The manual is organized in the following manner,

1. Introduction
2. Explanation of RTM Elements
3. Overview of RTM Software
4. Overview of the Input Deck
5. Summary of. Input Formats
6. Summary of Control Structures
7. Output Summary, and examples of Input and Corresponding Output
8. Distribution Sampling in RTM
9. Study of Automatic Interfacing between RTM and RCCL
10. Combining RTM with a robotic cell simulator (SINDECS-R)

It should be emphasized that the main purpose of RTM is to provide the
foundation for a simple-fco-use technique for practical robot work method
evaluation, and robot models comparison. While computational models of
individual work elements may occasionally be inaccurate, the RTM method
has proven quite accurate for complete task method analysis. Additional
subroutines for more robot models can be developed into the prototype
structure of RTM,

- 244 -•

2. RTM ELEMENTS

A listing of all RTM elements, their definitions, and their
required parameters is presented in Table 1. All elements are
applicable to the Stanford Arm, The "Stop on Position Error" and "Stop
on Force or Moment" elements cannot be applied to modeling the T3. Also
unused by the T3 modeler are the complex grasping elements GR2 and GR3.
The T3 does not posses these capabilities and the elements should not be
included in a T3 task description. Sensor elements can be added to both
robot types if sensors are available, as specified in Section 11.

3. SOFTWARE OVERVIEW

A diagram representing the RTM software structure is shown in Table
2. The software can be thought of as three separate groups of
subroutines.

1. Input Routines

2. Run Routines

3. Modeling Routines

Input routines receive the input data and store it in standardized
formats and locations to be accessed by the run routines. The run
routines represent the RTM analyzer of Table 2. They index through the
motions of the task according to the control structures of the input
tasks. Modeling routines are called by the run routines when a motion
time is to be estimated.

Motion times for the T3 can be estimated in two ways. One way
accesses a table of reference times and interpolates linearly to
estimate motion time based on motion length and velocity. The second
method utilizes equations which predict motion time based again on
motion length and velocity, but relying on the velocity control models
of T3. The Stanford Arm software possesses the second form of motion
time estimation. A summary of all current RTM input statements is
provided in Table 3«

4. INPUT DECK;

4.1 Card Vt Robot name and input type

Two characters signifying the robot name are specified in columns 1
and 2 [current available names include; T3 - Cincinnati Milacron T3 and
SA - Stanford Arm]. If the robot is the T3 the users also must specify
input type. This type can be either 1 or 2 and is declared in the
fourth column. Input type is explained in a later section.

03

- 245 -

Tab!© 1: RTM Symbols and Elements

Element S^©» Symbol

R n

Mrs

ORn

a
9

10

RE

T

D

'Definition of Element Element Parameter®
n-scgmenf rcach: Move un- .

loaded manipulator along a
path comprised of n seg
ments

n-sagmont move: Move object
along path comprised of n

. segments
n-segment orientation: Mov®

finger at a time
Release object by opening

fingers
Process time delay when the .

robot is part of the process
Tima delay when the robot is

waiting for a process com-
pSelion.

Displacomant (linear or
• angular) and velocity

or
Path geometry and

velocity

. SEi ■

. manipulator'mainly to reo
rient

stop on position error Error bound
4*1 ■ ' ■ SEI Bring the manipulator to rest

4.2 SE2

immediately without ivsiting
to null out joints errors

Bring the manipulator to rest

SR

within a specified position
error tolerance

Stop on force or moment . Force, torque and touch

5.1 SF1 ■. Stop the manipulator when
values

5.2 SF2
force conditions are met

Stop !ho manipulator when

5.3 ■ SF3
torque conditions are met

Stop the manipulator when eh ■

5.4 SF4

ther torque or force
conditions are met

Stop the- manipulator when

VI
touch conditions are met

■ Vision operation Time- function

7.1
GRi

GR1
Grasp an object
Simple grasp of object by

7.2 • GR2
closing fingers

Grasp object while centering

7.3 GR3
hand over it

Grasp object by dosing on®
Distance to dose/open

fingers

Tim© function

Isms function

Tacle 2 l General Structure of the RTM Analyzer

RTM Specification
of a work-method
for a given robot model

Computational
Performance
Models
for a given
robot model

Element tables
for a given
robot model

Various robot
models libraryVarious robot

tables library
Performance Evaluation
Of the specified method

Table . 3.
Statement Type

SiiMJLliL o± RTH system's statements
Statement Structure

1. Sub-task title SUBT# (no. >* (title)* (comment)
2. REPEAT control card REP, no.of first ,TO, no.of last * no.timej ,< comment >

to. repeat

* Ccomment)
3., PARALLEL control card

operation' operation
PAR* .no. of first * TO* no. of last

4. Conditional branches
operation operation

IF* Ccondition naro®.condition. value-* >, SOTO* operation no.

5. Control' transfer GOTO* operation no. * (comment).
subtask number

6. ' Movement elements
(Rm Mm ORn)

subtask no.

3. Position
initialisation

b- end-point of
segments

QT: c. By displacement

(joints parameters!
(operation no. HR. T. M. symbol)* (comment)
(velocity)*(joints parameters)
(operation no.), (R. T. «. symbol)* A-Angolar * (velocity), (displacement)

B-Linear
7. All other R.T.H. elements (operation no.), (R. T. M. symbol>, (operation parameter). (comment)
8- END Card END

9. CONDITION initialization CQNB
(condition nance>, (set of initial values*) ■
END

can b@ generated randomly

247

248 -

Examples ? SA
T3 1
T3 2

4.2 Card 2: Task title

80 character limit - no format required.

4.3 Cards ~ N_; RTM Motion Descriptors

If the robot is the Stanford Arm or the T3 with input type 1, the
first card of this section [card 3 of the standard input deck] is
used to specify the robots initial position.

4.4 Final Card; END

End is written in the first three columns of the last card to
specify the last card of the input deck.

5. HTM ELEMENT INPUT FORMATS;

For analysis of T3 tasks, RTM allows two means to convey motion
length data to the program. Only M, R, and OR elements are affected by
this distinction„ SA input allows only one format.
5.1 TJ3 Input Format Type Jk

With this input type motion length is determined by changes in
World Coordinates. World coordinates specify an end effecfcer position
with X,Y,Z translation coordinates, and D,E,R rotation coordinates, all
relative to the robot base.

Motion card format is as followsi

[serial //] [b] [motion type] [# of segments]
[velocity,X,Y,Z9D9ESR] user comment

where;

- 249 -

Serial number

b

Motion type

of segments

User comment

Velocity

an integer number assigned to this move.
Serial numbers are assigned by the users to
all task elements.

one or more blanks

M = move arm With loaded gripper
R s reach for object with unloaded gripper
OR■= orient the gripper [loaded or unloaded]

the number of linear segments through which the
robot moves before coming to a complete stop.
Velocity and coordinate cards must be specified
for each segment.

free format. Must begin in column 50 and end before
or at column 79.
the velocity assigned to this motion. For the T3
this must be 1, 2, 5, 10, 20, 30, 40, or 50 ips.

When using this input type the first card of the motion des
criptor section must hold six values representing the robot1s initial
position.

. An example of type 1 input is shown in Figure 1.

5.2 T_3 Input Format Type 21

With this input type motion lengths are simply specified in inches
(or degrees) with no reguard to relative location in the robot's work
area. The format is as followsi

[serial #] [b] [motion type] [# of segments]
[b] [velocity, motion length]

Items have the same definition as in type 1 input. Motion length
is a real number specifying motion distance in inches (if motion type is
M or R) or angle of rotation in degrees (for motion type OR). If a user
comment is required an asterisk must be placed in column 80 of the above
card. The next card must contain only a user comment, beginning in
column 50 and ending at or before column 79.

An ex ample of type 2 input is shown in Figure 2.

250

simulation of loading and unloading a latti
30, 13, -23. 15, 180, .'0, 0
1 ovJ
SO,. 60# 35, -291 90, 35, 0
2 re
3 ri
5« 60, 38, -29, 90, 35, 0
4 «vJ
Sri
3, 65, 37, -20, 90, 33, 0
6 uvJ
10, 30, 22., -20, 90, 35, -90
7 m i
10, 67, 23, -26, 90, 33, -90
0 re
V d 42. 78
10 ml
2, 74, 26, “26, 90, 35, -90
11 grJ
12 % 42. 7B
1 3 ' lu 1
5, 74, 26, -20, 90, 35, -90
14 or 1
10, 74, 36, “20, 90, 35, 90
13 mi
2, 34, 26,-26, 90, 35, 90
16 i 33.7
17 ve
HI mi
5, 69, 23, ~26, 90, 33, 90
IV grJ
20 mi
10,72,10, “26,9, 035, 90
2.3. - OVJ
10, U3, 12, “26, 90, 33, 0
22 m I
2.03, 12,-29,90,35,0
23 d 21. 94
24 re
23 ri
5, 77, 7, -29, 90, 35, 0
26 ml30, 40, 13, ”23. 15, 100, 0, 0
end

go to fear stock
©pen fingers of :tot»l $2 lower fingers over fe&r stock

grasp the bar stock
raise in two stages
move while rotating

move to front of lath®
open fingers of tool #1
wait for lath® cover to open enter:.bring fingers over par^
grasp the processed part
wait for chuck to open
raise part
rotate .gripper 100. d©gr§?@®

lower ^rm •
wait for chuck to close
release bar stock
move out of lath.©
close fingers Uf tool #2
may® to intermediate point
rotate gripper while moving

move to part disposal
wait for release signal
release .finished part
raise up
return to start position

Figure i - Input type 1 for the T’

251 -

i'J U
turning -cen4®rfi — 1 oad/un2o®d and guaging with
1 r 1 5, 4. t

2 0VJ
3 'mi Us 10. 2 .

■4 mi 30, 97. 2

•5 d J I6. 7.
6 ml 20,28. 7

7 g-rl
U d J 66. 6
9 ml 1/0, 1.0'

• 10 ml 20, 7. O' ■

11 cn-J 50,90.0

12 ml 20, 7. 0

13 mi 1,1.0
14 d i 00. O
15 vc
16 ml 20, 22. 0
17 d JOO.O ■
IU mi 30, 70. O
19 m2 «, 10, 3. 0, a, 2, 2. 0
20 vc
23 d HO: O '
22 yrl
23 mi 5,4. 0
24 ml'.20. 20. 0

25 mi 3, 4. O
26 i*c • .
2/ fid 20, 4.0'

end

doubl® grippsr
*

r$«@ch for hsr stock part
grasp it, identify by diam®,t®r

si
re is© th© pcirt
move part to required machiri®
wait for machine coyer to ©p©n

*

move to part in machine
grasp finished part <2nd gripl
wait for chuck- to retract

*

?b»ov* finished part

move out of mac hi sue

flip gripper

move back into machin©
place raw part in machine
wait for chuck to hold part
release part
move out of machine
wait for cover to cloae

*

*

move to guaging station
place part in guag&
r©leas© part
guag tng cycle-'
grasp 'guaged part
move to depart'from gusg©

move to finished part exit

place part on exit rack
relsas© finished part

*
*

raise arm

Figure 2 - Input type 2 for.the T3

- 252.

5.3 General T3 Input:

Inputs not affected by the choice of input type are Grasp, Release,
Delay, and Vision, Formats are as follows:

■Grasp:
[serial #] [b] [GR1] user comment
gripper closing is simulated

Release: .

[Serial $3 [b] [Rg3 user comment

gripper opening if simulated':

Time Delay:.

[serial #3 [b] [T3 [to3 [delay time in tmu]
add given time to the total task time, where the
robot is actively involved in processing.

Delays :
[serial #3 [b] [D3 [b] [delay time in tmu] user comment

add a given time to the total task time, where the
robot is waiting for process completion.

Vision:' . ; / .
[serial #3 [b] [VI] [b] [vision cycle time] user comment

a value representing a yifion cycle time
is added to the total task time

All user comments must begin in column 50 and end at or before
column 79.
5.4 SA Motion Input:

Motions of the Stanford arm can be described to the program in
three ways.
1, The user can specify a three component vector describing the

direction in which the motion is performed. This input type is
useful for one segment moves and reaches.

2. The motion's six component endpoint location (in world coordinates)
can be specified, This input type is used for orient motions and

253 -

moves which combine either a move or a reach with an orient.
3. The motions departure and approach vectors can be specified, in

addition to the motion's end points to fully specify a 3 segment
motion.

All three types of input use a single format which is as follows:

[Serial #][b][mot.type][# of segments 3 [b][spec.time][X,.Y,Z,D,E,R3[#]
[X,Y,Z],[X,Y,Z] [user comment]

Where:

Serial # - as before

b - as before

Motion type - M move with loaded gripper .
R reach with unloaded gripper
OR orient loaded or unloaded gripper

U of segments - number of segments of this move. Limited to
either 1 or 3 for the standard arm.

Specified time - the time, specified by the user, that this motion
should take. This is the SA's velocity control
mechanism. Zf this value is zero, the SA will
operate at its maximum velocity.

X,Y,Z,D,E,R - use only X,Y,Z if input type one is used.
Input all six values if type two is used.

& - asterisk placed in column eighty if comment
is to follow on next card. This can be omitted
if there is no comment.

X,Y,Z,X,Y-,Z - departure and approach vectors. These can be
omitted if input type three is not used.

User comment - user comment beginning after column 50

5.5 General SA input:

All other RTM elements for the Stanford arm have at most one
parameter. GR1 and RE elements have length as their parameter. T, V,
D, and GR2 have their operation time as a parameter. SE1, SE2, and SF
have no parameter. The input format for these elements is:

- .254 -

[Serial #] [b] [element type] [b] [operation parameter] [comment]

Where' i ■■

Serial number and b are as before4 Element type and operation
parameter are defined above, And comment is a user comment which begins
after column fifty. Ah example of SA input is shown in figure 3*

6. CQNTROt STRUCTURES*

In addition to motion by motion inputs RTFl iilOWS various logical
input structures to permit more versatile task descriptions. These dfe:

; 1 i Repeat
.■ 21 ’ parallel ;.

3* Goto
4. If (Condition) gOto

formats are given below:

6.1 Repeat:

Repeat a set of instructions (serial numbers I through J) a given
(N) number of times; Format is as follows:

[REP] [b] [I] m [TO] [b] [J] [bl [N] [b] [TIMES]

blank .

the serial nymbef of the first element of the
repeat blibk

the serial number of the last element of the
repeat block

the niiber Of times the block is to be repeated

The REP card should directly proceed input statement 1;

6.2 Parallels
Perform instructions 1 through *J ih parallel; the time recorded

for the parallel blOek will be that of the longest operation in the
block. Format iS aS follows:

where:

b

I

J

N

^
u
rc

br 3 ng pin bac & to p 1 c
□0. 73, 31 * 2. 5* 90* 90, 0
I 'r'J 0, IS. 43* 32. 33, 3. i, 133, 90, 0
0, O, 3, -1, -1*4btf!*

grJ 0. s
mi Oi O* 0* 1

3 sf
6 m3 0, 28. 2. 29. 88, 2. 7, 90, 90, O
-1, -i, 4* O* O* 37 fc
O ml 0, 0, 0* 1

9 fcf
ID u- 0. 373
end

go to p isi
.stop there
grasp It *
release pin from place

go above pin store location
stop there *
enter pin into hole
stop when entered into place
release pin

Figure 5 - Input for the Stanford Arm

- 256 -

{PAKJ [b3 [I] Cb] [TO] [b] [J]

Where • .

I - fcheserial number of the first element of the
parallel block

J - the serial number of the last element of the
parallel 'block •.

6.3 Goto: '■

Change the logical flow of the program. Format is as follows:

[GOTO] [b] [goto descriptor]
•• ' l - . • V '

Where:

goto descriptor •» can either be an element serial number,
a subtask, or the end of the program (END)

6.4 If (condition) goto;

Take various paths throughout the program based on prespecified
condition values. Format is as follows: ,

[IF] [b] t(3 [b] [Cond ID3 [b] [.comparator.1
[bitCond value] [)] [b] [GOTO]

[goto deser]
Where s

Cond ID - a prespecified conditional identifier (see
later section') .:

comparator - a standard Fortran comparator
[,EQ. ,NE, ,LE. ,GE» »LT, ,GT.]

Cond Value - a value previously assigned to the Cond ID

Goto deser - goto descriptor as above (included on the
same line as the IF statement)

6,5 Conditional Identifiers and values:

Conditional Identifiers and values must be declared near the
beginning of the input deck, directly after the Task Title. Format is
as follows:

- 257 -

[*COND] •
[COND ID# 1 D [b] [CONDVAL#11,CONDVAL#12t.....,CONDVAL#1N]
[COND ID #2] [b] [C0NDVAL#21(C0NDVAL#22C0NDVAL#2M]

[COND ID#J] [b] [CONDVAL#J1,C0NDVAL#J2,......CONDVAL#JP]
[§END]

The number of condition values declared for a single condition ID
must be equal to the number of times that condition is going to be
examined (tested) during the program (or N,M,and P do not have to be
equal). Condition values are used sequentially* in other words the
first time COND ID#1 is examined it will have the value of C0NDVAL#11,
the second time it is examined it will have the value of C0NDVAL#12, and
so forth. If conditions are not being used in an application the entire
condition declaration section can be omitted.

6.6 Subtasks;

A subtask is a set of motions which can be thought of as being
complete and distinct from the entire task being examined. They are
generally more applicable to robots with sensory inputs and
decision/branch capabilities. Subtasks in RTM are analogous to Fortran
statement labels. These labels can be accessed by GOTO and IF(cond)
GOTO statements. Examples of all control structures are given in
Figure 4.

7. OUTPUT STRUCTURE

RTM generally supplies a line of output for each input element.
Included in the standard output line for the T-3 is;

1. Serial Humber
2. Element Type
3. Number of Segments
N. Motion Length in Inches (or degrees)
5. Motion Velocity in Inches per Second
6. Motion Time in TMU (see below)
7. User Comment
8. RTM Comment

Control structure output frequently incites RTM comments which
explain the execution. This output is best explained through the
example outputs of Figures 5* 6, and 8. These figures correspond to the
input of Figures 1, 2, and 4. . ■

- 258 -

in i>
demonstration of-control strue tures #cimd
noport 0, !., 0, 0, 2, i
norep 0« 0/ 0, 1#g!l{S
&uhti
2 rl JO* 4. 0

2 gvJ
3 ml 30, 15. 0

if (luipart . ©q. 1) goto subt2
4 ml 30* 35. 0

5 mi J, 10. 0

rep 6 to 7 3 times
6 mi b.S.O

7 o»J t»# 5. 0
0 mi 30* 10. 0 ■

9 ml 60, 15. O
10 m2-a,-30, 4. 0# a# lOi 2. 0
U ve
12 vi 20* 5. 0

13 ri 30,30.0

if -(itorep . «q. i> goto and
goiosuhtl
SUtlt2
par J to 2
1 mi 30, 60. 0

2 or J 30, 180. 0

3 m2 j>, 30, 3. 0, a, 5, 2. 0

4 rt ■
5 rl 30, 3. 0

6 ri 30, 55. 0

if Cnurep . ®q; 1) got® end
goto subilend

sort and pallatise

move to part on feeder
grasp part

raise part .

move to part type 1 washfr

insert -part, into dasher

scrub part with multiple

up and down motions

raise put' of.-washer

move to type! pallet-

2pwd?r part to pallet in 2 sep
release part

raise arw ■

return-.to- feeder'

move to type 2 pallet

and invert casting .

lower part to pallet in 2
release part

raise arm

return, to feeder

*
*
*

&

Figure 4 - Examples of RTM Control Structures

controlC®V«S

- 259 -

this tomorrow tool

«i<Aulation of loading' and unl®adi«§ a lath®

serial
no.

r tm
tyajsbol

caotion
■l@ngih

jstot i ora
velocity

Qps?r<ati©n
fc-im®
C fcsa«3

■ «6®r comment

i orl 90. 00 10. 00 97. 4 g© to bar stock

2 ro ■ . 3 ©p®n fingers of tool ®2

3 ■ t i 3. @3 1 3. 00 42. 3 lowes* Hng&ra over bar .afcocfe

4 grl . 3 grasp the bar stack

3 v & 9. 06 3. 00 60. 4 v&i a©

6 orl 90. 00 10. 00 97. 4 wbil© rotating

7 »1 31. 39 10. 00 97. 9 ©ova to front of lathe

e r® . 3 open fingers of tool 41

9 d 42. e wait for lath® cover «e span

10 Ml 3. S3 3. 00 91. 1 enter: bring tool ovar part

u an . 3 jjrosp the processed part

12 t 42. a wait for chock to open

13 Ml 6. 00 3. 00 43. 3 reia® part

14 orl ISO. 00' 10. 00 104. 7 rotate gripper 1B0 degrees

13 Mi 41. 67 3. 00 30Q. S lower arm

.' 16 t 13. 7 wait far chuck to close

17 rs . 3 release bar stock

IB Ml 33. 13 5. 00 203. 3 Move out' of lathe

cojasaent

Figure 5

control serial rtro motion motion operation user comment
card no. symbol length velocity tim®

Can 3 CipsX £tfli u3

19 §rl . 3’ close Pinger a © f tool ©2

20 mV 81. 00 10. 00 88. 7 move to intermediate point

21 ©r 1 90. 00 10 . 00 97, 4 rotate gripper whilesoving

2-2’ ml 3 . 00 2: 00 51.. 8 love to part disposal

23 d 21.9 wait for release signal

24 T9 . 3' release finished part

•25 Tl 5. 00 5. 00 37. 9 raise up

26 ml 39. 64 10. 00 120. 2 return to start position

the total tim@ for the task is 2028. 3 Xtmu3. 35 73, 0 £s©c3 = 1. 2 £min3

Figure 5 (continued)

c@®®ent

I

!

260

centre!-cerd

tfcc teaorrew ' tool

turning center* - losd/unlead end swaging with deufei® gripper

*erial rts motion Ration ©peretion uter comsienfe
ns. symbol length velocity time

i in 3 CipO £tmu3

1 rl 4. 10 5. 00 32. 7 reach for 6©r stock pert

2 §ri .3 grasp it» identify by diameter

3 el SO. 2© S. 00 66. 8 raise the pert

4 ml 77. 2© 30. CO 100. i cove part to required machine

S 0 116. -7 tsait for machine cover to ©pen

6 2©. 70 20 00 SO. © save t© pert in machine

7 grl * 3 grasp finished pert <2nd grip)

© 4 3 66. 6 osit for chuck to retract

7 el 1. ©0 20. 00 IX,s reBOve finished pert

10 si 7. 00 20. 00 22.3 ®9ve out ©f swBchine

XI erl 70. ©0 SC. DO 27. 6 flip gripper

12 el 7. ©0 20. 00 22. 3 «cve back into machine

13 el i. 00 1. ©0 37. 7 place new pert in machine

14 tf 10Q . © t*eit for chuck to hold pert

IS re . 3 release pert

16 el 22. BO 20. 00 41. 8 move out of machine

17 * 100. 0 wait for rover t© clos®

iB el 70. 00 30. OO 75.0 move to gucging station

Pigwre 6.

261

control serial xtm mot i on mot ion oper&tion user comment comment
card no. symbol length' ve1ocity time

£ i n 3 ; E i p s-3" t tmu 1

19 m2- 7.-OO/. 10. 00 37. 9 place part in guage

20 re ■ . 3/; release, part:

21 d 80. 0 guaging cycle.’

22 grl . 3 . grasp guaged part

23 ml; 4.: 0 0 5. 00 32. 4 move to d.epari'fram■' g-u a g e -.

24 m-1- 20 OO- 20,00../ 37.9 move, t-o- ■ fini shed-;' part, exit

25 ml 4/ 00 5 . 00 . ■ 32. 4 place- part ■ on e-x it/ ra.c.k,-

26 re." . 3 release finished/part

27- ml 4: oo 20.00 17. 0 rai &e. arm ;.

total time for the taskis' 1210. 7 Etmul = 43: 6 C sec 1; = . 7 Emin3

Figure- 6 (continued)

Stanford — arm

bring pin back to place

control serial
card no.

rtffi
symb o1

motion
1 eng th
C in 3

pp eration
time
Ctmu3

user comment

.1 r3 16. 01 40. 3 §o to pin
2 se2 22 0 stop there
3 grl . 50 6. 3 grasp it
4 ml <*

— O o ©0 release pin from place
5 sf 7. 0

6 m3 18. 07 36. 3 go above pin store location
7 se2 22. 0 stop there

8 ml 1. 00 B. 0 enter pin into hole
9 .7.0 stop when entered into place

10 re . 37 5. 5 release pin

the total time for the task is 162.4 Ctmul = 5. 8 Csec3 “ .1

comment

move instruction

change instruction

move instruction

change instruction

Cm i n 3

Figure 7

the tofflorrow tool

rfcaonctr.t I on .♦control .tructur,, - ,.rt

su&iask number j

serial
8YO.

rta
systbs l

esoti on
length
Un3

saoti an
ve1©city
r ip. *3

eperatian
t j<ae
ft©u3

ws*r £0®®ffnt e©«M*n.t

1 rl 4. DO 10 . 00 21. 2 ©ove to part on fester
■ 2 jrl . 3 §r©sp part
3 al as. c© SO 00 22. 3 raise part

%t -(nap-art . «q.
go to the start &?
the cond value «*

-4 ©1 3S. ©0 30. OO 42. 5 . ©eve to part type J washer
S ©1 10. QO 1. DO 287 . 9 ■insert .part into washer

repeat fr©» & to
6 «1 S. ©0 S. OO 37. 9 seruh part ®sth Multiple.
7 • 1 S. DO 5 00 37. 9 up and down ©etions

3 tiffies

Fi§vr& S .

<7
92

control Serial.
card no.

r tm
symb ol

motion
length
Ci n 3

motion
velocity
Eips3

epe?ration
time
Ctmu3

user comment 'comment

75. 8 one repeat cycle tine
227. 5 total repeat tine

' ' -8. ' . 6lt 10. 00 30. 00 22. 3 raise out of was.h@r
9 15.00 50. 00 . 22. 3 move to type 1 pallet
to fn2 6. DO 30. 00 12 5 loui©r part to pallet in 2 *egs
ii r® .3 release .part
12 Ti 5. 00- 20. 06 17. "0 raise arm
13 rl . 30. 00 50. 00 26.'8 return to feeder

if if <nerep . @q. 1.00)
go to end of task

■ the eond value ~ © s© do not
goto

the total time of the subt&sk is 702. 9 Ctmu3 «
go to the start of subta&k # i

25. 3 Csec3

Figure 8 (eont.)

sub task number ;1

cantrol
card

serial
no.

rtm
symbol

motion
leng th
t in3

motio n
ve.1 ©c i ty
tips 3

operation
t ime
Ctmu-3

user comment comment

1 rl ■ 4,0.0 10. 00 21. 2 move to- part -:on feeder

2 grl .3 grasp part

3 ■ ml IS. .0.0 SO. 00 22. 3 raise- part

•if If (nopart . «q. 1. 00)
jo to the start 'of subtast # .2 •
■the coil'd- valu® « 1. ©0 so

the tota 1 fcima Of t-he.. .-aju-bta-ftk is 43,8 Ctmu'3 ™ 1.6 £sec3

subtask number 2

control
card

serial
no.

rtm
symbol

motion
length

C in 3

motion
ve 1o city

I i p s 3

.operation user comment
■time'
Ctmu3

comment

par

1 ml a- o d o 50. 00 43. 5 move to type 2 pallet

activities 1 to 2 performed in paral-el

2 or 1 180. 00 50. 00 45, 0 and invert casting

45. 0 the operation time is that of
activi ty 41 2 « the " largest activity

Figure 8 (cont.)

266

control serial
card no.

rtm
symbol

motion
length

motion
velocity

qp ©ration
time

user comment c omment

—. «»______ C in 3 tips! C tmu3

3 m2 7.00 30.00 8. 5 louder part to pallet in 2 segs
4 ■ T9 , . 3 • release part

S T 1 5. 00 30. OO 17. 0 raise arm

6 rX 55. CO 50. 00 40. 7 return to feeder
i P

if Cnorep - e'q. 1.00)
g© to end- of task
the eond value - 0 so do not

goto
the total time of the sub task is ill. 5 Ctmu3 «■ 4. 0 £ sec 3

§o to the start of sub task #■ 1

subta-sk number l

control
card

serial
no.

rtm
symbol

motion
1 eng th

C in 3

motion
velocity
t i p s 3

operation
time
C tmu3

user comment comment

X r X 4. 00 io; oo ■21.2 move to pert on feeder
2 gr i .3 grasp pert

3 mi 15. 00 50. 00 22. 3 raise- part

if (nopart . eq. l.OO)
go to the start of sobiask $ 2
the- cond value ~ o so do not

3S. 00 30.00 42. 5 move to part type X washer

Figure 8 (cont.)

control serial rtm motion motion operation user comment comment
card no. symbol 1 eng th velocity t ime

£ i n 3 £ i p s 1 £ tmu 3

r@:p

6’
7

8
9

10
11

12

18
if

goto
the* total tim®

ml 10. 00

ml 5. 00

ml 5. 00

ml 10. GO

ml 15. 00

m2 6: 00

r®

T 1 5. 00

r 1 30. 00

f the s u b t a s' It

1. 00 287. 9

5. 00 37. 9

5. 00 37. 9

75. 8
227. 5

30. 00 22. 3

50. 00 22. 3

30. 00 12. 5

. 3

GO6C
M 17. 0

50. 00 26. 8

702. 9 CtmuJ ”

insert part into washer

repeat from 6 to 7 3 times.

scrub part with multiple

up and down motions

one repeat cycle time

total repeat time

raise out of washer

move to type 1 pallet

lower part to pallet in 2 sogs

release part

raise arm

return to feeder

if (norep . eq. 1. GO)
go to end’ of task
the cond value - 0 so do not go

go to the start of subtask # 1
. 25. 3' EsecD '

I

I

Figure 8 (cont.)

1

268

sub task . number 1

c-ontrol serial
card no.

r tm
symbol

motion
length
£ in3

motion
velocity
CipsD

operation
time
C tmu 3

1 T 1 4. 00 10. 00 21. 2

2 gr 1 3

3 ml tS
i O o 50. 00 22 3

1 P •

4 ml 35. 00 30. 00 42. 5

5 ml 10. GO 1. OO 287. 9

rep

6 ml U5 o o 5. 00 37. 9

7 ml 5. 00 5. 00 37. 9

75. 8

227. 5

8 ml 10. 00 30. 00 . 22. 3

9 ml 15. 00 50. 00 22. 3

to . m2 6. 00 30. 00 12. 5

■ I i r@ .3
12 T 1 5. 00 20.00 17. 0

13 rl 30. 00 cs o o o 26. 8

if

F : :■ ■ j r e 3

user comment comment

mvi to part on feeder

grasp part

raise part

if (nopart . @q. 1. 00)
go to the start ©f sub task # 2
the eond value = 0 so d-o not go

move to part type 1 washer

insert part into washer

repeat from 6 to 7 3-tines
scrub part with multiple

up and down motions

f

S

one repeat-cycle time

total repeat time

raise out of washer

move to type i pallet

lower part to pallet in 2 segs

release part

raise arm

return to feeder

if (norep . eq. 1.00)
go to end of task
the cond value - 1. 00 so go

269

the total time of the sub task is 702

the total time for the task is 2263.

E tmu 3

C tmu 3

Figure 8 (cont.)

25; 3 [sec 4 =' .4 Emin 3

81. 5 Lsec3 = 1.4 Emin3

I

1

270

- 271

Stanford Arm output is similar to T3 output except that motion
velocity is not included. An example of SA output is shown in Figure 7.
This output corresponds to the input of Figure 3.

The time for the total task is summed at the end of the output.
The sum is presented in TMU (Time Motion Units? 1 TMU = 0.036 Sec),
seconds, and minutes.

8. RTM’S DISTRIBUTION SAMPLING CAPABILITIES

8.1 Introduction

The capability of sampling from distributions to define parameters
previously input as constants by the user has been added to a new
version of RTM. This capability makes RTM a more effective modeler of
robotic tasks. A task where this capability would be realistic would
be, for instance, one in which the robot waits for parts arriving along
a conveyor at random intervals. After a part arrives the robot would
escort it through its processing. The distributions available, the
syntax and some examples of their use are explained in this section.

8.2 Available Distributions

The distributions currently available are listed in Table 4. They
include the uniform, normal, triangular, and exponential distributions.
These were judged to be the most important in the modeling of robotic
tasks, and were included in this probabilistic extension of RTM for that
reason. These distributions may be sampled to define the variables
listed in Table 5. These variables include:

1. length of a delay;

2. distance the arm is to move;

3. number of times a block of RTM primitives is to be
repeated, and

4. sequential conditional values for a given conditional
identifier.

The above constitute all the situations for which distribution
sampling would be practical for RTM.

8.3 Distribution Declaration Syntax

Distributions and their parameters are specified before any motion
primitives are input, and proceed specification of conditional
identifiers. The specification format is as follows:

$DIST #, type, parameters

- 272 -

Distribution

1. Uniform (U)

2. Normal (W)

3. Tr iangular (T)

4. Exponential (E)

Required Parameters

minimum and maximum boudarie

mean and standard deviation

minimum* mode* and maximum

mean

Table 1+ Probability Distributions Applied by RTM

RTii variables for which distribution
samplings can be substituted:

1 Time of delay for the RTM operatives T> D> and Vi.

2. Distance of a reach (R)» move (M)j or art Orientation
(OR). Note this is only applicable to type 2 RTM
input,where velocity and distance are specified.

3. The number of times a repeat block is to be performed

4. The sequential values representing a conditional
identifier.

Table 5

- 274 -

where:

- The distribution identification number®
It is assigned and referenced by the
user later in the input to specify
which distribution should be sampled.

type - A single capital letter specifying
distribution type. N denotes Normal, E
denotes Exponential, U denotes Uniform,
and T denotes Triangular.

Parameters - as required by the distribution type in
the order shown in Table '4. Parameters
should be separated by commas.

8.4 Substituting Samples for Constants

For cases one through three of Table 5, distributions are accessed
by the user specifying S,D#" (# is the identification number of the
requested distribution) in place of the motion, time, or hepeat
parameter.

For examples

T D4

would use a sample from distribution four as the time to be delayed.

Ml 109D3

would use a sample from distribution three as the motion length of the
one segment move. 10 specifies the motion velocity.

REP 3 TO 7 D2 TIMES

would sample distribution two, round the sample to the nearest integer,
and repeat instructions 3 through 7 that number of times.

Case four of Table 5 is handled differently. When not using the
distribution sampling capabilities, the user specifies a conditional
identifier, followed by the list of sequential values that identifier is
to take on when examined. Using the distribution sampling capability,
the user can now generate that list of sequential values by using the
following formats

CONDID "D’,#,numval

- 275 -

where:

CONDID - is the conditional identifier (as before)

- is the identification number of the
distribution to be sampled.

numval . - is the number of conditional values to
generate. The distribution will be sampled
this many time and each sampling will be
rounded to the nearest integer.

I

Note that when HIM expects an integer, the sample from the
distribution is rounded to the nearest integer. This occurs in the case
of block repetition definition, and conditional value generation.

8.5 Example

An example of the use of distribution sampling with RTM is shown in
Figure 9. Three distributions are declared. The first is normal with a
mean of ten and a standard deviation of three. The second is uniform
with a minimum of thirty, and a maximum of fifty. The third is uniform
with a minimum of sixty and a maximum of ninety.

The first distribution is used to determine ,the number of times the
block of primitives from serial number 1 to serial number 29 is
repeated. The second distribution determines the amount of time the
robot waits before a part arrives (input instruction #1). The third
distribution is used to determine the cycle time of the gauging device
(input instruction #22).

The output from this example is shown in Figure 10. The sample of
distribution 1 yielded a value of 8 when rounded to the nearest integer.
Thus, the block of primitives is repeated 8 times. The sample of
distribution 2 returned a value of 42.7, thus the robot waits 42.7 TMU
before the part arrives. The sample of distribution 3 returned a value
of 68.3» which is the time it takes for the gauging cycle to complete.

9. STUDY OF AUTOMATIC INTERFACING BETWEEN RTM AND RCCL

9.1 Introduction

RTM (Robot Time and Motion) is a software system which estimates
the time a robot takes to perform work motions, as described above. Its
input describes the points in space through which the robot moves and
the actions performed at some of these locations (eg. close gripper).
One objective of RTM is to allow the user to optimize the motions of a
given task (ie. minimize the cycle time) without requiring actual
operation of the robot. A current limitation of RTM is that after
describing the task to the simulator and optimizing it, the user must

- 276 -

vj :*
■$d ii.1 l»n< 10. #3.
*£d i si 2, U, 30. , 50.
«di vt 3, w, 60. i 90.
turning centers' — lo<§d/unl©ad
rep I to 29 dl times1 d fi;*
2 rl ti*4. 1

3 grJ4 mi In 10. 2
5' ml' 30# 97. 2
6 d 116. 7
7 usi 20# 28. 7
B. gr 1
V d J 66-. 6

gouging with double gripper

wait for' part to arrive.
•6

reach for liar stock part
grasp it* identify-by diameter

raise the part

move part to required, piac.hine
wait for machine cover to open

«
move to part in machine
grasp finished part (2nd .'grip)
wait for chuck to retract

10 mi 20# 1. 0
remove finished part

*

11 ml 20, 7. 0
move out of machine

a

12 or J 50. 90. 0 • *
flip gripper’

13 mi 20, 7. 0 '
move hack into machine

. #

14. ■ Mi J 1,1.0--
place new part' in machine-

4

1 5 d 100. 0 wait for chuck to hold part
16 vr release port -
1.7 mi 20, 22. 8

move out of machine
4

HI d JOO. 0 wait for -cover to close
19- mi 30, 70. 0

move to -guaging station ,
4

20 m2 a, 10, 5. 0, a« 2, 2. 0
place part in guage

a

21 vs- release part
22 d d3 guaging tyc Ii*
23 pvJ grasp guaged part.
24 mi 5, 4. 0 ■

move to depart from guag©
a

25 oil 20,-20. 0
move to finished part skit

a

26 Oil 5, 4. 0
place part.on exit Track

a

27 re release finished pari
28 ml 20, 4. 0

raise -arm
a

29 v J 30, 27.
esid

Figure V

the tomorrow tool

turning centers - load/unload and g.uaging with double gripper

control serial, rtm motion s&.etion operation user comment comment
card no. symbol length velocity time

Cin 3 Ci p $ 3 Ctmul

T'eP repeat from- 1 to 29 8. times

1 d-. 42. 7 wait for part to arrive i
.2- ' rl 4. 10 5. 00 • .32. 9 reach for bar stock part

3 ' grl .3 grasp it; identify by diameter

4 mi 10. 20 5. 06 66. 8 raise the part

5 mi 97.20 30. 00 100. I move part to required machine

' 6 d • 116.7 Wit for machine, cover to ©pen-
7 ml 28. 70 20. 00 50. 0 move to part in machine

8 §r 1 . .3 grasp finished part (2nd grip)

9 • d 166. 6 wait for chuck to retract

10 ml o.o ooow 11. 5 remove finished part

11 ml 7. CO 20. 00 22. 3 move out cf machine

12 or t 90. 00 50. 00 27. 6 flip gripper

13 ml 7. 00 20.00 22. 3 move back into machine

14 mi 1. 00 Oo 3.7, 9 place new part in' machine

15 ’■ ' d 100. 0 wait for chuck to hold part

16 re . 3 release part

17 ml 22 80 20. 00 41.8. move out of machine

Figure 10

1

277

control serial
card no.

r t«
symbol

motion
length
TinJ

motion
v@ 1 oci t y
£ i p $ 3

operation
t i me
£imu3

user comment

18 4 100. 0 laait for cover, to close

1.9 ■ffll 70. 00 30. 00 75. 0 move to guaging station

20 7. 00 10. 00 37. 9 place part in guage

21 re . 3 release part

22 d 68.3 guaging cycle

23 ' . gr 1 . 3 grasp' guaged part

24 ml 4.- 00 w o o 32. 4 move to depart from gu-age
25 Bl- 20. 00 20. 00 37. 9 move'-.t-o finished part exit
26 ■«1 4. 00 5 00 32. 4 place part on exit rack
27 r@ . 3 release finished part

28 ©1 4. 00 20. 00 17. 0 raise arm
29 rl 27. 00 30. 00 35. i return to input conveyor

1276.8

10214. 5

the total time for .the t<ssk i s 10214.5 Ctmu3 = 367. 7 £see3 = 6.

c omraerrt

©ne repeat cycle time

total repeat time

£min3

Figure 10 (coot,)

- 279 -

again describe the motions to the robot control language, thereby
unnecessarily repeating some input information. It is the purpose of
this section to outline a data translator which will modify the RTM task
description into actual robot control instructions. The feasibility and
requirements for such translation are studied, but no program has been
developed based on the results of this study. The robot control
language used is described below.

9.2 RCCL

RCCL, a Robot Control "C" Library, is a library of data
nianlipulation and robotic execution functions. These functions can be
called by a user's program to manipulate a robotic arm. Basic use of
the library, entails manipulation of homogeneous transformations to
represent points in space the robot is to reach. The capacity is
provide by. the library for the storing and manipulation of these
transforms, as well as generation of robot arm position by solving
transform equations. Background in homogeneous transforms and their
manipulation is offered in Paul [10]. A complete discussion of RCCL and
a user’s manual are presented by Hayward in [11, 12, and 131.

A simple example of the use of RCCL, taken from Hayward’s manual
[13] is shown in Figure 11. The variables to be used are first
declared, two as transforms (t and e) and one as a position (pO). The
two transforms are then initialized with the gentr_ statements. The
position variable is then set to correspond to the solution for the t6
component of the transform equation fc*t6=b. The first move call
instructs the robot to move to position pO. The second move call
instructs the robot to move to a system-kept position, called park.

This example is intended to show the general structure of an RCCL
program. The reader is directed to Hayward’s 88RCCL User’s Manual” [131
for any actual working knowledge of the library.

9.3 RTM Primitive’s Link to RCCL

The RTM input language consists of ten primitive operators. These
are shown in Table 1. As can be seen, some operators describe motion,
(M, R, and OR), some describe actions (SF, SE, GR, and RE), and some
describe extraneous processing for which the robot must be delayed (D,
T, and VI). To modify this input into RCCL compatible input, a system
must output the RCCL instructions which would perform the same
operations. Table 6 shows each RTM operator translated into equivalent
RCCL commands. It should be noted here that RCCL, as an actual control
program, is a much more detailed descriptor of tasks than is the input
language of RTM. Thus, while the RCCL translation of the RTM input will
perform the required tasks, it is by no means the most graceful way to
accomplish the task using RCCL.

- 280-

RTM descriptor . RCCL equivalent

Translation and orientation motions:

R1 e=pentr_tr5-l <0. # O. # tool length);
• b - g e ri t r-_t r & 1 (*' b 84 * x > .y # r) #

HI ■ psaiakeposition (88p 8S* t6* ■&* &Q* b* TLj e)*
move <p)i
stop 10);

OR 1 as above but
b-g ent-r_jrp y ^ y< r)j

Rn ' foT<i«l# +H)
b~g @ntr__'tr 1 s <14b *\x. i.* y. i> z. i);

fin p-makepo&itionC 8epeL i6# §?# TL» e).i
ffiOVg(p)i
.freepos(p)i
freetrans£ b);

> •

stop(O);

ORn as above but:
b«g en t r_r p y (*' b " * x. 1 * y. i» 2. i * cl. i »■ e. i» v. 1)

parameters n» y« z» d# and r come from position
description in world coord i nates.' tool length must
be assumed or input in. later phase. If input is' in
d i sp lac@ment-v.el oc i ty format# direction information
must be gained externally. RCCL does not distinguish
between a reach with an -unloaded end effector <Nn) and
a move with a loaded end effector Clin).

SE Not able to be modeled by RCCL

Table 6 RCCL Equivalents of RTM Primitive Operators

281 -

■r

Stop on force* torque* both

SF1 stop on force

SF2 stop o'n torque

SF3 stop on either
force or torque

li©it(8sfdir*\ force)!
move C p);

1 imi t (14 td ir% torque66) >
move<p)i

I imi t C "f d ir*‘* "td ir’Vf orce* torque > *
move C p)*

SF4 stop . on . touch limitP'f xM* "fy"* "fx"* J> 1* J U
(same as stop ort move<p)i
force with lam
threshold)

fdi'r 83 f»* fy# or fz meaning force in’ ** y* or 2 direction
tdir =* txi ty* ©r tz meaning torque in b* y> or t direction
fore© is specified in newtons, torque is specified in
newton^wiBters.'

Delay* 'time delay* .and vision:

D . stop <delay .time>i
T IS 5C
Vi et ea

Stop command follows a move command. Delay time-
is &p®ci#i®d in milliseconds. '

Gripper actions:

GR (stove(p)j
waitforCp -> end)*
CLOSE;

RE - ' (nove<p)i
uaitforCp -> end)!

■ OF EM; ■

High level gripp'er 'actions cannot be modeled.

Table 6 (cont.)

- 282 -

tu ;*
st cinturn turning csntsrs - load/unload
#di fei 1, u, 0. , 1.^disi 2, ??* @0. i 22. .
$dis»t 3# Tit SO. e 10.
ftcond
nopprl dl* 5
norrp 0, 0* 0, 0, I
©end
fiubtJ
1 H i»i 4. 1 ■

2 pv'J
if (iiopart . ©q. % > .goto sufet2
3 ml t»# 10. 2

4 ml 30, 97. 2

5 4 • J 16. 7
6 ml 20,28. 7

7 0vJ
8 d J66. 6
9 ml. 20, 1.0
10 mi 20, 7.0

11 vv J 50,90.0

12 ml 20, 7. 0

13 ml 1.1.0
14 d 100. O
J h vc-
16 ml 20, 22. 8

17 d JQO. O
10 ml 30, 70. 0

19 m2 a, 10, 5. 0, a. 2, 2* 0

20 vt*
21 d d2 .22 gvJ
23 mi 5, 4. ©

24 ml 20, .20. 0 '
25 mi 5, 4. 0

26 vc
27 vl 10, 4.-0

20 vi 30,02.
if (u&T&p . ®q. 01 goto &ubii
goto ©nd

Figure 11

and guaging with doubl© grippe.r

*

reach f&t tsar ©tucfc-part
grasp its- identify by da<am$ti?r

reiss the? type? 1 part ■»
move part to first cinturn
wait for cinturn cover to open

ft
move? to part in cinturn
■grasp finished, pari (2nd grip)
wait for collet to retract

r®i»ov@ finished part

movs out of cintunt

flip gripper

moves'hack into cant-urn

place new part in cinturn
wait for collet to hold part
release part

move out of cinturn
wait for cover ’to close

move .to guagip.g station

*
#
ft

ft

ft

place part in gunge

gwaging cycle
grasp guaged part

move to depart from guag®

move to finished part disposal

place part on disposal rack
release finished part ft
rai s© ft

283

©Uh taf
1 ml t>, 10. 2

2 ml 30. 36. 2

3 d' J16. 7
4 mi 20,28.7

3 g r J
6 d J 66. 6
7 fui 20, 1. 0

© ml 20, 7. 0
9 or J SO, 90. 0

10 ml 20, 7. 0

11 ml 1, 1. 0

raise the type 2 part
#

®ove part to second c.inturn
wait for cinturn cover to open

•a-
move to pttrt in cinturn
grasp finished' part CSnd grip)
wait for collet to retract

a
remove finished part

*move out of cinturn
#

flip gripper
*

isaove hack into cinturn

12 cl JO0. 0
13 n-
14 mi 20,22.8
15 d JOO.O
16 ml 30, 83. 0

11 ml* a, IOj 9. 0, a* 2, 2. 0
. 18 re

IV d .(S3 .20 yvj .21 tul 3, 4. 0
22 mi 20, 20. 0
23'mi .9/4. O'

24 re
23 vi 10, 4. 0

place new part in cinturn
wait for collet to hold part
release part

«
®ov.j? out of cinturn
wait for cover to. close

&
(move to guaging station

«place part in guag©

guaging cyclegr«*&p guaged part
*

®°ve to depart from guag©
*

move i© finished part disposal
, ■ ' *place part on disposal rack

release finished part

33 r J 30, 70. raise arm
if (i.or.p .eq. 0) goto aubtl return to feeder
end

Figure. 11, continued

- 284 -

9.4 RTM Control Link to RCCL

In addition to primitive operators^ SII- allows some task control
commands, as shown in Table 7. These control commands allow the user to
define Repeat blocks, which are collections of primitives repeated a
number of times; Parallel blocks, which are a collection of primitives
performed simultaneously, and Conditional Branching. The translation of
the control commands to RCCL is shown in Table 8.

9.5 Example

An example translation of RTM input to RCCL input is shown in
Figures 12 and 13. (The RTM input is shown in Figure 12, the RCCL
translation is shown in Figure 13.) For easy comparison of the two,
distances of the RTM input have been kept in inches in the RCCL
translation. An actual RCCL program would require these distances to be
specified in millimeters. Delay times, however, have been translated
from TMU (time measurement units of RTM) into milliseconds. A number of
observations can be made from this example. First, it can be seen that
the translating program must examine the entire RTM input deck before
translating any of it. This first pass is to count the number of
positions for which RCCL requires transform and position pointers to be
declared. A second pass is required in order to actually generate the
RCCL input. Second, the robot’s tool length and the zero point of its
world coordinates (e and z transforms of Figure 13) must be assumed
according to robot type. This can be easily accomplished since robot
type is specified in the first line of the RTM input. Third, this

.example assumes that the dual gripper commands 0PEN1, QPEN2, CLOSE!, and
CLOSE2, can be incorporated into RCCL. Finally, it can be seen that the
stop(O) commands following all move statements (shown in the translation
table, Table 6, have been mostly omitted from the example translation.
This is because the robot is not required to pome to a complete stop
unless an action needs to be performed at the point. Omitting these
stops will allow the robot to move through the specified points without
stopping, rather than stopping at each intermediate point.

9.6 Discussion

The example shows that given the detailed type of RTM input, it is
relatively easy to translate BTM input into RCCL commands. The input
shown represents points by their world coordinates, and no elements were
included in the RTM input which could not be modeled with RCCL.

A second type of RTM input, for which the user only supplies
distance moved and does not specify world coordinates, cannot be
effectively translated. The translating program, upon receiving this
type of input, could conceivably prompt the user for the direction
he/she wished the robot to move C+X, -X, +Y,,..). The resultant RCCL
program would maneuver the robot direction-by-direction in order to
reach the specified point, For example a move of 10 inches in the x
direction, -15 inches in the y, and 3 in the z would require three
separate move segments rather than a single move to the destination

- 285 -

ontrol Operator Description

REP(eat) Repeat a set of
priraatives a given
number of times.

PAR <a1iei) Perform a set of
primitives simultaneously

IF .(condition) GOTO Branch to various points
in the task based on statu
of condition.

Table 7 RTM Control Operators

286 -

t:i s
simulation of loading and unloading a lathe
AO, 13, -23. 15, 180, 0/ 0
1 orl
10,60,33,-29,90*35,02 vt
3 ri-
5, 65, 38, -29, 90, 35, 0
4 hi*J
3 ri
5, 63, 37, -20, 90, 35, 0
6 uvJ
10, 33, 22, -20, 90, 35, -90
7 mJ ’ *
20, 67, 23, -26, 90, 35, -90
3 ru
7 d <12. 78
10 mi
2, 74* 26, -26. 90, 35, -90

.11 gjrl
12 t *12. 78
13 ml
5, 74, 26, -20, 90, 35, -90
24 orJ
10, 74, 36, —20, 90* 35, 90
1 3 ft» i
2* 34, 26, -26, 90, 35, 90
16 t J3.7
r/ vi
le mi
5, 67, 33, -26, 90, 35, 90
19 gri
20 mi
10,72,10,-26,9,035,90
21 orJ
10, 03, 12, -26, 90, 35, 022 fill
2, 03, 12, -29, 90, 35, 0
23 d 2i. 94
24 v 6’
23 vJ
3, 77, 7, -29. 90, 35, 0
26 fill
10, 40, 13, -23. 15, 180, .0, 0
end

go to bar &toc k
open fingers, of tool $2
lower fingers oyer bar stock

grasp the bar stock
raise in two stages

move while rotating

move to. front of lath© .

open fingeri, of tool #1
wait for lath® cover to open
•enter: bring fingers over part

grasp the processed part
wait for chuck to open
raise part

rotate gripper 1B0 degrees

1ower arm

wait for chuck to close
release bar stock
move out of lathe

close fingers of tool #2
mov®* to intermafdiat© point

rotate gripper whi1 © moving'

move to part disposal ■
wait for release signal
release finished part
raise up

return to start position

Figure 12: Sample BTM Task

- 287

t'3t<n.k()
i

trsf_ptr z* @* 1)0* bl* b2. b 3* b4* bb* b6> b 7* b8, b 9* biO* is i I * b!2* bi3* b!4*
pos_ptr pO* pi* p2; p3* p4* p5* p6* p7* p8* p9* piO* pll, pi2* p!3* p!4*
©~gentr_trsi < 39©96* 0. * 0. * 10.) i
z *g en tr__tr s K^z'bO. * 0. * QOO.)"y

bO»genti\jrpy (sib0*\ 40. * 13..* -23. 15* 1B0. > 0. * 0.); .
bl-gentr_rpy (,,blM# 60. * 35. * -29. * 90. * 35. * 0.);
b2-gentr_trsl C Mb2ll< 65. * 30. * -29.)*
b3~gen tr_trsl (8tb3*S 65. * 37. * -20.);
■b4-gentrjrpy-< f,b4‘\ 30. * 22. * -20. * 90. * 35. * -90.)*
b5=gentr_trls< Mb5M# 69. * 23. * -26.)*
b6=sgenfr_trsl <Mb6M* 74.- * 26. * -26.)*
b7=gentr_trsl (s*b78'* 74. * 26. * -20.) j
b8*gentr_rpy C t4b8”* 74. * 36. * -20. * 90. * 35. * 90.);
b9=gentr__trsl C 8ib9"* 3.4. * 26. * -26.)>
b 10=gentr^trsl < MbIOM# 69. , 23. *-26.)i
b 1 l-gentr_irsl C s'b 11", 72. * 10. * -26.) j

• b 12=gentrjrpy <4lbl2“* 83. * 12. * -26. * 90. * 35. * 0.)j
b 13=gentr_trsl C *'b 13"* 83. * 12. * -29.)i
b 1 4-g@ntr_trsi < "b 14“* 79. * 9. * -29. > #
pQ-makeposition("pO"* z* t6* e* EG* bd* TL* e)*
pl«makeposition<”pl"*z*t6*©*EG*bl*TL*e>*
p2*ma kep os iti on < "p2M* ** t6* e# f£Q, b2*'Tl» «>)*
p'3-ma kep os i ti on(,,p3,,# z* t6* e» EG* b3* TL* e);
p4~mafceposition(64p4“* z* i6* e* EG* b4* TL* e);
p5-makeposi tiani 14p5'S z* £6, §?* EG* bb* TL* e>;
p6»ma k <?pos i -t 1 on < 84p6'** 2 * t6* ©* EG* b6* TL* &)*
p7«mak-epppit ion<:4,p79J* z* t6* e* EG* b7* TL* e)i
p8=makeposi tionC "p'8M* 2* t6* e* EG* bB* TL* e
p9=makepositior».< “p944* z* t6> @* EG* b9* TL* &);
p,10«makepositio‘n< “-plO'S z* t6* e* EG* blO* TL* ©)*

* p i 1 -'mak epos it ion (Mp 11 *S z* t6* e* EG* b 11* TL* e.)»
p 12-mak ©position < “p 124‘* z* t6* e* EG* b!2* TL* &)*
p 13*ffleik'frposi tion < *'p 13“, z* t6* @* EG* b!3* TL* e);
pl4^makeposition(,4pl444 * z* t6* ©* EG* b!4* TL* e);

Figure 13: RCCL translation of sample RTM task

^ 288

setmod(c)#
setv©1<10# 10) j
move(pO)i
move(pi)#
waitforC pl->end)*
OPENSi
setve 1(5* 5) # •
move(p2)i
wait for(p2^>end)*
CLOSE2;
move(p3);
setve1(20*10);
move(p 4) *
move (p.5) #
wait for (p 5~->end) *
QPENli
stop(1530.)i ■
setvel (2* 2).*

■ move(p6)*
waitfor(p6->@nd)*
CLOSE 1;
stop (1530.)j
s@ t v@ 1 (5, 5) j
move(p 7)<
setvel(20* 10)i '
move-(pB)i
setve1(2* 2)j
move(p9)#
s top < 500.) i
0PEN2;
setvel (5* 5)i
move(p10)j
CLOSES,
move < p 11) j
move(p12)i
6 & t ve 1 (2* 2) i
move(p!3)i
stop (780.)j
OPEN 1i
setvel (5* 5)i-
nvo v e (p 14) #
setve1 CIO# 10)*
move(pO)#

/•* set .cartesian mode */
/* set velocity #/
/# 'move to initial position#/
/* go to bar stuck #/ .

/■* open fingers of tool #2 &/■

/# lower .fingers over bar stock #/

/* grasp .the bar stock >/
/* raise-bar stock #/

/#-mpve while -rotating #/
■/* move to front of.lathe #/

■/* open fingrs of ' tool-.#1 ft/
• /* wait for lathe'cover to'operi'*/-
. /# enter: bring' fingers over part'#/

7* grasp the - processed part #■/
/* wait for chuck t.o open #7
/* raise' part #/

/* rotate gripper 180 degrees #/

/* lower arm #/
■ /* wait for chuck to close'.#/ ■
/# release'bar stock */

/# move out of lathe */
/* close fingers of tool #2 #/
/# move to intermediate* point */
/# Rotate gripper while moving */
/# move to part disposal */
/# wait for release signal #/
/# release finished part */

/# raise up ' */

/* return to start position #/

Figure 13 (eoxit.)

289

RIM $ ta f <n@nts RCCL oquivdltfhi

REF (&@rnol> TO (serno2) M Times for Ci»0 i i < N-i j ++i) <
RCCL. equivalents of
R'SM primitives numbered
sernoi through §@rnoL?

>

a ,35 52 sa .k: a: z3 .as ss as a a i» as-ass as s as a'KsaBsssKiEssssssKssss&sjsssssssssa.sss

PAR (sernoi) TO (serno2) move(p) (serial number I)
secondary action to fo& performed
in parel 1 el
wait for < p.-> rndDi

comment: only applicable to
an action;perormed in parallel
with a move.

B'lBKaat-fiui:# ~xa i&^misiaiBissimaisaBaxxjarmsaxsaam&maiBiKi&a siszia'saatx-si.JsBa.aastse amtam^sa,»iSBSiS3B»B3tBtsta» sasx&.aa^sssausms»»ss

IF (condition) GOTO (goto descriptor) if (condition) £
statements to he executed> '

if (not condition) .<
alternative statements>

comment: problems here sorting
out gotos

■tfs is.as ~ i-; ~ u .ass jEaE5sssr^5s^aas;sa5E;3Sss3^r53«s:as3S. 5SSSSZ7ZS2£:SU^S2S£SS;£:

Table 8: RCCL Equivalents of RTM Control Commands

- 290 -

point. This restriction is a major drawback of a RTM to RCCL
translation system, since this second type ff'RTM input is the easier of
the two to use.

A second point to comment on is the free use of position and
transform pointers in the example of Figure 13. In the pointer
declaration section, all pointers were reserved as permanent parts of
the memory. RCCL permits the user to temporarily assign memory to a
point which is not needed throughout the entire program. ,. This memory
can be reallocated to another point later in the program. This feature
can keep the memory requirements at a reasonable level, and prevent the
storing of unnecessary positions and transforms. For any large RTM
program, the use of this feature is recommended.

9.7 Shortcomings

As mentioned before, not all RCCL capabilities can be implemented
from RTM information. These include;

1. Distinguishing between joint and. cartesian motions

2. Interacting with a moving conveyor

3. Complying or exerting a force in one or more directions

4. Integrating with sensors

An example of an RCCL program which could not have bqeft generated
from an RTM input deck is shown in Figure 14 along with a step by step
explanation of the RCCL input. The example and the explanation are both
taken from [13]. Such input could not be requested by an RTM input
translation because the RCCL input 1) requires both cartesian and
jointed motions, and 2) requires the robot to interface with a moving
conveyor.

9.8 Conclusion

Through the examples presented, one can see that while. RTM input
can be translated into a runable RCCL program, the use of such a
translation program will severely limit the user's.RCCL capabilities..

10. COMBINING RTM AND SINPECS-R TO MODEL ROBOT WORK CELLS

10.1 Introduction

We have found that RTM and a robotic work cel.1 simulator called
SINDECS-R combine well to accurately model robotic work cells. This
section briefly describes SINDECS-R, and points out how RTM can be used
to generate some of SINDECS-R*s input parameters. An example of
combining RTM and SINDECS-R is then shown. Finally, some research

291

1) The ufi&l example defines iwo locations that differ by position and orientation. The two grosjh
tious are described with respect to a-moving frame is world coordinates. A loop causes % motion back
and forth from one position to the other. The final motion translates along the Y axis.

^include 38 re el .b891
2

' 3
4
5
0
7
8
9

10

pum&iask (|
i

TRSFJPIfK s , s fe 0 psl,' p&'2 , ■ c©ffiw;
posJpib po.. p-ts. pi2;
iot conw Ca();

■inti;
coov -5= newt r ana ("OQNV” , convlfa);

11 s = genir_tra 1(WZWf 0. , 0., 864.);
12 e = .gent r_t s si f "E” , 0. s 0. f 170.|;
13 b = gentot(*B"f 000. , -500., 000., yi
H pal = gcnU^eui (<,PA1W , 30., a., 50.. 0
IS pa2 = g*nlf_e«|("PA2" , -30., 0., 50.s !
16
17 g>0 = mak epos i il oa (TO85 t s, t6e e, b
18 pil ='mak epos i 4 io-u("PTl*, t0 to, e, J3Q, t
19 pt2 = makepoaition("PT2", a, to, c, BQ, 1
20-
21 ' setve 1(300-, 50J;
22 a etmod(® c*);
23 @e t line (300, ©);
24 move(pO);
25 . for (i- * 0; I < 4 ; -H-l) (
26 ' . movecar t (p-t i# 100 , 1000);
27 movecarL(pt2v 100 , 1000); -
28 }
29 se tmod(6 J 81;
30 . move(park);
31 >
32
33. COQV t0(t)
34 THSF pm t.; *
35 (* ~
36 l->p.y += 3.;
37 }

1 includes the necessary RCCL declarations. Line 3 deserves a comment :

t. 180.);
20.. 0.);

0.. -20., 0.);

TL,
ecsuv, pal

pa2 TLe
TL,

«);

«)

manipulator, the HUL hbrarjr'calls the function 'pumatask* as the task to be executed.' Before calling
the ‘pumalask’-function, the system perform some initializations. When the function returns,'as yosa
might expect, the system performs a ‘vaitforfcbmpleled)' before concluding and exiting. Line S-and 6
allocates transform and position pointers as needed by the task. Line 7 declares the name 'convfa' as, a
pointer to a function that describes the moving coordinate frame, and line 8 allocates a counter variable
Line 10, allocates a functionally defined transform attached to ,coovfa\ Lines IS through 16, allocate
and initialize transforms as described earlier. The Z transform sets a frame at the base of the manipula
tor. The E and B transforms are the tool transform and a location with respect to the simulated con
veyor. Note that the B transform contains a 180 degree rotation around the Y axis such as the Z direc
tion of frame described by if points downward (relatively to CONV and 2). The transforms PA l and
PA 2 define two locations with respect 4© she frame described by '3.

Figure lb

- 292 -

Lines I7S 18, aod 19 set up the position equations as described earlier.
Line 21 sets the velocity to 300 millimeters per seconds and 50 degrees per second and the motion

mode is set to Cartesian mode on line 22. The call to aetlsne on line 23, containing a null segment time,
and specifies a 3/10 of a second acceleration time when reaching P0 to allow for a sufficiently long transi
tion time because the next motion occurs with respect to a moving frame (the system has oo means to
now how fast it is going to move). The Tor' loop, lines 25 to 28, causes eight move requests to be
entered in the queue. The eight motions are performed in i second each with a l/l.O of a-second transi
tion time as specified by the macro movecart. Line 29 sets the mode to joint because the arm is to'per
forin a large motion and the path the toot frame is going to follow h of.no concern. Line 30 is the la&t
motion request to the ‘park' position.

The function ‘coavfn’, lines 33 to 37, starts being evaluated when the first motion to "PTl" begins
and during the seven subsequent motions. The background function attached to the 'transform is called
by the system with one argument pointer, a pointer to the transform it is attached to. This permits us
to will',- fomhons w;d« pcudinJ ly from the at.lu.il iium-foim they are at i ;j> h*.d to/ biiice newt tti,*

— '-J «* .• Vmmi * i ih- ■■■>••!'*» .r m? nf4. [to*; Hon- vhi>i>

in. ir. it t n f; . ft; /'tit: iu:Wwith:S::i if innt rn-d b/ t ntiHintt f <:fs r;n h 78 nnlfkn o-nds
i ,! , . . - ; ■ . ' i i . .. 4 ■ ! ■ j h ti. / i*li l' », . . /•._(.1 I.., it. i .rlJ,-iy

f e orr> bin ?,hon oft- r if a ? ■•ml?Jaw l I. - his* timo the ■ L ’
the Cflr/rfian motion from PO toward PTl and the motion due to the moving coordinate frame.

This example introduce the first method for generating functionally defined motion by a periodic
increment of a static variable (here a transform element).. "

Figure Ik (cont.)

- 293 -

projects' in which these two systems have been applied are discussed.

10.2 SINDECS-R

SINDECS-R simulates a number of robots working in a cell. Stations
of the work cell can model NC machines, ' assembly, or other operations.
When tending NC machines the robot(s) act only as materials handling
devices, delivering parts and loading machines when necessary. When
tending, assembly or other operations, the robot(s) may be required to be
present throughout some or all of a part’s processing. The program
simulates the operation- of the defined cell under user selected flow
control strategies. It generates performance data on the cell which
includes production rates, machine utilizations, and robot utilizations.

Input to the simulator consists of the number of machines or
stations, definition of part types and their processes, definition of
robot motion times between stations, definition of the times the robot
takes to unload and reload machines, and the user’s choice of rules to
be applied to solve the flow control decisions that have to be made
during the cell’s operation. Further details about SINDECS-R can be
found in [l1}, 151.

.10.3 RTM and SINDECS-R

HIM can be used to generate the robot motion times that are
required'' by SINDECS-R*s input. After spatially defining the locations
of stations in the cell, RTM can -generate the motion times the robot
would require to move parts the distances described in the the spatial
arrangement . RTM can also be used to determine, the times the robot
should take to unload and. reload the stations. This requires the user
to determine, the motions necessary to perform the unload and/or reload
at a station, and generate the times to perform these motions using RTM.

10.4 Example

Suppose a work station has the spatial layout shown in Figure 15.
A single robot- tends the stations, and acts as a materials handling
device transporting parts throughout the cell. The RTM output of the
analysis of motion times within the cell is shown in Figure 16. The
comment of each primitive’s output denotes which stations this motion
time is to be applied to. It should be pointed out here that station
number zero denotes the input and output station of the cell. It is
assumed that parts enter and leave the system at this station.

Figure 17 shows the output of the RTM analysis to determine the
times for individual unload and reload of the machines. In SINDECS-R,
unload time is the time the robot requires to remove a completed part
from a machine. This time is used when no parts are waiting in the
machine's queue. Reload time is the time required to remove a completed
part from a machine and load the machine with an unprocessed part from
its queue„

- 294 -

R.= Robot
M -■Machine
I/O = Input/Output

Figure 15

control
card

ifrial
no.

rtm motion motion
symbol length velocity

C in 1 C i p s 3

1 mi 24. 00 30. 00
2 en! 84.00 30. 00
3 ml 96. 00 30. 00
4 ml 72. 00 30. 00
5 ® 1 24. 00 30. 00
6 a1 24. 00 30. 00
7 ml 72.00 30. 00
Q ml 84. 00 30. 00
9 ml 72. 00 30. 00
10 ml 36. 00 30 00
11 ml 84. 00 30. 00
12 ml 72. 00 30. 00
13 ml 48. 00 30. 00
14 ml 72. 00 30. 00
15 ml 84. 00 30. 00
16 ml 96. 00 30. 00
17 ml 84. 00 30. 00
18 ml 49. 00 30 00

Figure 16

the tomorrow tool

move .times between stations

operation user comment comment
time
l tmu 3

32. 4 0 -1
87. 9 0 -2

99. 0 0 -3

76. B 0 - 4
32. 4 0.-5

32. 4 1 - 0

76. B 1.-2

87. 9 1-3
76. S i - 4

43. 5 1-5

87. 9 2 -0

76. 8 2 -1

54. 6 2-3
76. e 2-4

87. 9 2 -5
99. 0 3 -0

87. 9 3 - 1
54. 6 3 -2

295

control serial
card no

r tm
symbol

motion
1@ny th
C in 3

«s»c t i on
velocity

l i p s 3

spe.rat,' on
time
Ctmu3

user comment e o mmen t

19 ml 48. 00 30. 00 54. 6 3 - 4 .

20 ml 84. 00 30.00 87. 9 3-5

21. ml 72. 00 30. 00 76. 8 4-0

22 mi 72. 00 30. 00 76. 8 4-1

23 67! i 72. 00 30. 00 76. 8 4 - 2

24 ml 48.00 30. 00 54. 6 ■4-3

25 ml 60. 00 30. 00 65. 7 4-5

26 ml 25. 00 30. 00 33. 3 5-0

27 ml 36. CO 30. 00 43. 5 : 5 - i

28 ml 84. 00 30. 00 67, 9 .5-2

29 ml 84. 00 30. 00 87. 9 5-3

30 ml 60. 00 30. 00 65. 7 5-4

the total time for the task is 2082. 9. .Ct mu 3 = ' 75.0 t sec] * 1.2 [min] |

From-to move times - rtm output

Figure l6 (cost.)

±3 X
'. i n { c t2 d C r U • L ‘ r

? nr \
3 rj ■ <4 c n
4 * 1 ?,2 « ?
5 r, 1 4 0 * ? P, . Q

rr ec l'. i n t c rr «.• c r i r r
f:rfls: cart
w n i t for c h i, c V to ot pm

null port oft chuck

rove out of n>ac h \ ne

Unlove- tire - r t rr- input

the tomorrow tool

unload time — double gripper

centrol serial
card no.

r’t'm
symbol

motion
1 eng th
Ein3

motion
valocit y
£ i p s 3

operation
time
C tmu3

user comment

i r2 28. 00 40. 00 16. 4 reach into machine
2 gri . 3 grasp part
3 d 4. 0 wait for chuck t© ©pen
4 mi 2. 00 2. 00 37. 9 remove part from chuck
5 ml 20. ©0 * o o o 29. 6 move out of machine

the total time for the task is 88. 2 £tmu3 - 3. 2 Csec3 * ' 1 I oi i n 3

Figure IT Unload time - rtm output

i

c esi®ent

297

U PJ •-

isers

i- C *COO
o © ©©CO

01 “S3ef- ■*" & 3 «•*- ® w. ■<*
C C3 ~i

*s e £e «■ 1 S’

operation
machine

process time

p(good
)
C3

i. 00000
operation

machine
process time

ptreturninfl to this
station for .rework)

E 1Q &1 "O . a &-1 T5
£ 1

© ©
«43 ►“© ©© o C O, ■© o. ©

uo
© •o.

e* %3«+ —*& “5t+ » «-• ?*- I— o c3 3
C 3
C ra «-■

O 3 “2 83
**? rs-*? o£o «+•“3 S’
W 60

298

- 299 -

part typ® 2
process # 1

p(scrap)“ 0
p (rework >ra 0
p(good i. ooooo

operation machine process time

' i 4. 60. 00-
2 3. 90. 00

p{returning to this
station for rework)

0
0

part type 3
process # 1

p< scrap . o ■
p rework)® 0
p(' good)“ 1. OOOOO

op eration machine process time p{returning to this
station for rewark)

1 2. 100. 00 ■ 0

rolipt i

' 0 1. 17 3. 16 3.36 2.-76 1. 17 0
1. J7 0 2. 76 3. 16 2. 76 1. 57 0
3. J6 2. 76 0 1. 96 2. 76 3. 16 0

. 3. °*6 3. 16 1. 96 0 1. 96 3.' 16 0
y.-y& 2. 76 2. 76 1. 96 0 2. 36 0
i.'jv . 1. 36 3. 16 3. 16 2. 36 o 0

0 0 . 0 0 0 0 0

station unload re 1oad

0 3. 20 14. 20
J 3. 20 14. 20

3. 20 14. 20
:t 3. 20 14. 20
4 3. 20 14. 20

3.20 14. 20

Figure 18 continued

- .300

result® of sindecs-r analysis

production rat® for this system » 1.200 pieces per hour

standard deviation '* 2. 87i

production' rates by part type

part 1
part 2
part 3

prod rate
. 480
. 400
. 320

std dev i. *>091. 7 02
l. 076

average time in system * 451.079 minutes

standard dsviation *® 204. 4B8

average time in system by part type

ave time ■ std dev
part i 445. 862 ■ 269. 164
part 2 519. 488 204. 192
part 3 373. 392 ' 53. 017

qua 1ity rat©©

rat© &td dev

scrap . 080 . 800
rework 0 0
good ooN 2. 871

Figure 18 continued

- 301 -

sewer utilization measures

tape run stats

machine
type

server
utilization .

standaT
deviati

1 . 300 . 458

. 2 ■ . 856 . 351

3 . 853 . 354
4 . 684 . 465
5 . 066 . 248

machine occupation stats

machine
type

server
utilization

standard
deviation

1 . 352 . 478

2. 1. 000 0
3 1.000 0

4 . 925 . 264

5 . 081 . 273

robot utilzation statistics

serial
number

robot
utilization

standard
devia tion

1 . 725 . 446

Figure 18 continued

- 302 -

These robot motion times are supplied by a user to SINDECS-R. The
SINDECS-R input is not shown here. The output of the simulator is shown
in Figure 18. The three part types represent the three distinct types
of parts which were produced in this robotic cell.

Note here that any fictitious robot motion times could have been
supplied to SINDECS-R. The use of RTM to estimate these times merely
makes the simulation more realistic in its depiction of cell
performance.

10.5 Research Combining RTM and SINDECS-R

The combination of RTM and SINDECS-R has been used for a number of
research topics since the development of SINDECS-R in 1983. One
application was in a comparative analysis of a robot in a cell using a
double gripper to one using a single gripper. The motion times of parts
between stations was the same in either case, but the RTM-generated
reload times distinguished the two cases. The robot with the double
gripper could simultaneously manipulate the part being unloaded and the
fresh part being loaded into the machine. The robot with the single
gripper could only manipulate one part at a time [153.

A similar study was performed comparing a robotic cell applying
vision to one with touch sensing. RTM was used in this case to
determine the inter-station motion times [153.

RTM and SINDECS-R were also used to examine the performance of an
operating system whose purpose is to coordinate multiple robots in a
cell. RTM was used to generate the motion times between stations. A
modified version of SINDECS-R 'was used to generate ' performance
information of a cell with dynamic avoidance capability collision to one
with no possibility of collision.

Another investigation has combined RTM and SINDECS-R to model a
single machine station with tool changing capabilities. The cell was
modeled with the robot changing tools, using times generated by RTM, to
automatic tool changing by a dedicated tool changing mechanism.

References

1. Paul, R.P. and Nof, S.Y., "Human and Robot Task Performance",
presentation at the International Symp. on Computer Vision and
Sensor Based Robots, Warren, Michigan, November 1978. Appeared as
a book chapter in Computer Vision and Sensor Based Robots, G.G.
Dodd and R. Lothar (Eds,), Plenum Press, New York, 1979. Also
published in a revised. version under the title "Work Methods
Measurement - A Comparison Between Robot and Human Task
Performance", Int. jJ. of Production Research, Vol. 17, No. 3, 1979,
PP. 277-303.

303 -

2, Nof, S.Y. and Paul, R. P., "A Method for .Advanced Planning of
Assembly by Robots",, Proc. of Autofact Wests, Anaheim, California,
November 1980.

3. Lechtman, H., "Robot Performance Models Based on the R.T.M.
Method", unpublished M.S. Thesis, School of Industrial Engineering,
Purdue University, West Lafayette, Indiana, May 1§81.

i|. Nof, S.Y. and Lechtman, H., "Robot Time and Motion", Industrial
Engineering, April 1982, pp. 38-48.

5. Nof, S.Y. and Lechtman, H., "Now It’s Time for Rate Fixing for
Robots", The Industrial Robot, June 1982, pp. 106-116.

6. Lechtman, H. and Nof, S.Y., "Performance Time Models for Robot
Point Operations", Int. _J. of Production Research, Vol. 21, No. 3,
1983.

7. Nof, S.Ye, "Robot Ergonomics: Optimizing Robot Work", chapter in
the Handbook of Industrial Robotics, S.Y. Nof, Editor, John Wiley
and Sons, New York, 1985.

8. Hershey, R.L., Leztz, A.M. and Nof, S.Y., "Computer Methods for
Predicting Robot Performance", Proc. of Autofact 5, Detroit,
Michigan, November 1983, pp. 3.9-16. ■ ■ ■ ■

9. Hershey, R.L., Leztz, A.M. and Nof, S,Y., "Predicting Robot
Performance with ROFAC, A Decision Making Aid", Proc. of HE Conf.,
Toronto, Canada, November 1983.

10. Paul, R.P., "Robot Manipulators: Mathematics, Programming, and
Control", MIT Press, 1981.

11. Hayward, V,, "Introduction to RCCLs A Robot Control 'c* Library",
TR-EE83-43, School of Electrical Engineering, Purdue University,
West Lafayette, Indiana, October 1983.

12. Hayward , V., "Robot Real Time Control User * s Manual", TR-EE83-42,
October 1983.

13. Hayward, V., "RCCL User's Manual", TR-EE83- , October 1983.

14. Robinson, A.P. and Nof, S.Y., "SINDECS-R: A Simulator for Robotic
Cell Activities", Proc. Winter Simulation Conference, Arlington,
Virginia, December 1983, pp. 350-355.

15. Robinson, A.P., "Principles for Robot Work Design", Unpublished
MiS. Thesis, School of Industrial Engineering, Purdue University,
West Lafayette, Indiana, August 1984. ■

	Purdue University
	Purdue e-Pubs
	7-1-1984

	Advanced Industrial Robot Control Systems
	Richard P. Paul
	J. Y. S. Luh
	S. Y. Nof
	Y. Hayward

	tmp.1542052450.pdf.jHdm8

