Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
7-1-1984

Advanced Industrial Robot Control Systems

Richard P. Paul

Purdue University

J.Y.S. Luh
Purdue University

S.Y. Nof
Purdue University

Y. Hayward
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Paul, Richard P; Luh, J. Y. S.; Nof, S. Y.; and Hayward, Y., "Advanced Industrial Robot Control Systems" (1984). Department of
Electrical and Computer Engineering Technical Reports. Paper 525.
https://docs.lib.purdue.edu/ecetr/525

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F525&utm_medium=PDF&utm_campaign=PDFCoverPages

Advé,nced Industrial
Robot Control Systems

Richard P. Paul
J.Y.S. Luh

S.Y. Nof

V. Hayward

TR-EE 84-25
July 1984

School of Industrial Engineering
and | o .
School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

Tenth Report
'Coverlng Perlod March 1, 1983 to September 1, 1984

ADVANCED INDUSTRIAL ROBOT CONTROL SYSTEMS

RlchardP Paul, J. Y. S. Luh, S. Y. Nof,
- and V. Hayward
School of Electrical & Industrial Engmeerlng
Purdue Unlver51ty

TR-84-25
July 1984

Prepared for

NAT IONAL SCIENCE FOUNDATION
WASHINGTON D C. 20550

Attention: DR. WILLIAM M. SPURGEON
'GRANT: MEA-8119884

This research was supported by the National Science Foundation under grant No. DAR
(APR) 77-14533 Any opinions, ﬁndmgs and conclusnons or recommendatlons in this
publication are those of t‘__e authors and do not necessarlly reﬂect the views of the Na-
tlonal Sc:ence Foundatlon R

TABLE OF CONTENTS .

Pagé
I PROGRAM OBJECTIVE.......... S O ST R 11
II. PROGRAM ACHIEVEMENT...;- e bt 1
Il. RESEARCH RESULTS SINCE MARCH 1983 REPORT.....;..“.‘.....,;........::'2
IV. REFERENCES ...\ oo i 14
V. DOCUMENTATIONc.ocoocre. et 18
APPENDIX 1,.» RCCL User's Manual Version 1.0 et oo 21
APPENDIX 2. Minimum Distance Collision-Free Path Planning for
' Industrial Robots with a Prismatic Jointooeeveinnnnn, 139
APPENDD(3. Real—Tlme 3-D Vision by. Oﬁ"—Shelf System with B / |
: | Multl-Cameras for Robotic Collision Av01dance...............7....‘...159

| APPEND]X 4 Lagranglan F ormulatlon of Robot Dynamlcs w1th Dual-Number
‘ Transformation for Computlonal Slmpllﬁcatlon 203

APPENDIX 5. RTM, '(Ro'bot Ti‘i'n‘e and Mbtioﬁ) User Manual Version 1.2242

ADVANCED INDUSTRIAL ROBOT CONTROL SYSTEMS

RachardP Paul J. Y.S. Luh S. Y Nof,
~and V., Hayward :
School of Electrical & Industrial Englneermg
Purdue University

I. PROGRAM OBJECTIVE

The objectlve of thls research is to extend the flex1b111ty and usefulness of current
1ndustrlal robots by the lntegratlon of robot motion control dlrcctlv into a general pur-
pose programming language the- developmont of force fcedbacl\ and its mlogmtlon mto
the language, the formulation of a high-level task descrlptlon languagc RTM, and by
the investigation of both off-line colllslon free path planning and on-line collision
avoidance.- : - - '

Il. PROGRAM ACHIEVEMENT
Major accomphshments for the first five years of thrs grant through March 1983 are

A. Motion in Joint Coordmates - The 1n1t1al theorehcal development work
and simulation of a language system, known as PAL. The major ‘components of PAL
included an editor/scanner that allows a user.to create, edit, check and store motion -
procedures; a teach module simulation for single stepplng through procedures and for
spatial p051t10n correction; and a execution module

B Mlmmum Motlon Tlnne By ellmmatmg the need to stop at the end of each
path segments and by ensurlng that the mani'pulator tn'oves at maximum velomty and
acceleration, the motion time can be reduced ‘This was accomphshed by two optimiza-
tion methods An algorlthm for direct approx1mate programmrng of motions subject to
given physical constramts by dynam1cally ldentlfylng the slowest joint, which then

deﬁnes the coordination for driving of the other joints.

C. Newton-Euler Formulatlon of' Dyn mlcs and Resolved-Acceleratlon
Control for Mampulators - A new approach to the problem was developed by
adopting the idea of the ‘‘inverse problem” and extending the results of “resolved-
motion rate control”. This approach differed in applying all feedback control at the
robot hand level, and in its Newton-Euler Formulation of motlon equatlons

D. RTM A Techmque for Analyzmg and Speclfymg Work for Robots -
We have developed a. hlgher level, user oriented techmque called RTM (Robot Time
and Motlon)', t‘o sys.tematlcally spec1fy a work method for 4 robot in a SImple straight-
_forward m r.. RTM can be used to. evaluate and compare alternative robot work
methods before\havmg to program the robot motions in detall

E. Experimentation on Joint Torque Sensing - A simple, high gain, wide
bandwidth joint torque servo system has been developed to provide a fast response
without extensive computation or differential approximations.

F. Scheduling of Paraiieﬁ Computation for a Computer-Controlied
Mechanical Manipulator - A method of ‘“variable” branch-and-bound has been
developed which schedules the computation of tasks by distributing the load in a
sequentlal order among the CPU s under the series-parallel prescedence constramts

G. Resolved Motion Force Control - In Resolved Motlon Force Control
(RMFC) Cartesian forces are determined instead of joint positions and torques.

. RESEARCH RESULTS SINCE MARCH 1683 REPORT
A. ROBOT MANIPULATOR CONTROL UNDER UNIX

1. Objective - The objectives of this research is to improve the capabilities of
current industrial robots. We propose a new solution to the problem by integrating the
robot control into an existing high level language. The robot manipulator is integrated
in such a manner that conventional programming techniques can be used to solve the
special requirements of manipulator control. We use the ‘C’ language and run the
manipulator under the UNIX operating system. The robot manipulator is integrated
into the language in the same manner as is input/output. That is, integration into the
language is handled by a small set of functions included in a hbrary The robot pro-
gram thus becomes a conventional ‘C’ program The implementation language of the
library is also written in ‘C,’ which provides a ‘‘user transparent” system, allowmg com-
plete freedom in the mode of controlling the manlpulator Concurrency is provided
within the operating system. - An optimizing computer is available for both the user
and as 1mplementatxon language. There are no special data types as the entire system
is represented in terms of standard language features. We have included the manipula-
tor into the ‘C’ programming language in the form of a library, RCCL the Robot ‘C’
Control Library (see Appendix !)

2. Introduction - RCCL is not a language but a set of system calls suitable for
the control of robot manipulators. Manipulator programs become ordinary computer
programs, and the manipulator is considered as a peripheral device. Since manipulator
control primitives are defined at the system level, a program written In any language
which is able to provide the proper list of arguments can use the manipulator primi-
tives.

Instead of designing another robot programming language, we use the ‘C’ language
to write manipulator programs. The RCCL system is itself written in the ‘C’ language.
‘C’ is a high level structured language suitable for projects of any size, and which also
allows us to deal with low level implementation details. Programs are easily portable,
and yet can be efficiently implemented. Two criticisms are often made of compiled
language based systems: First, the compilation time increases the edit-test cycle time;
secondly, if a program fails, because it is wrong from either the manipulation or the
programming point of view, the whole task has to be stopped. Our practice has shown

-3-

that these limitations are largely offset by the gain in flexibility and generality of a
powerful operating system. If for some applications an interpreted language is needed,
the interpreter of a general purpose or a dedicated language could also make use of
RCCL system calls. The RCCL design approach has advantages in modularity, flexi-
bility, and hardware independence. '

1. Overview

1.1. Manipulator Task Description

The location of an object is described by its position and orientation with respect to
some reference coordinate frame. In the following the word ‘location’ will implicitly
mean ‘position and orientation’. Tasks are described in terms of locations to be
reached in space in order to grasp, displace, or exert forces on objects located in the
robot work space. Tasks are also described by the sequence and the type of motions
necessary to carry out the work. Location descriptions require special data structures,
and sequential operations of a robot also require special primitives. Both can, however,
be implemented with the tools provided by high level languages namely, data struc-
tures, functions, and structured flow of control. (The ‘C’ language does not know any-
thing about a file, for example. Users wishing to manipulate files in their programs
have to include a system file called ‘‘stdio.h”. This file contains a description of the
necessary data structures. Files can be manipulated by system primitive functions like

read, write, filbusf, or, flsbuf [1]).

1.1.1. Structured Location Description

RCCL handles what is referred to as structured location description [2]. The basic con-
struct is the homogeneous transformation which is a mathematical construct describing
the location of coordinate frames. A homogeneous transformation can either be inter-
preted as the description of the location of a coordinate frame with respect to another,
or as a transformation performed on the first coordinate frame. One RCCL system call
directly constructs location equations in terms of dynamic data structures. The loca-
tions can be modified at the level of the move statement in terms of small translations
and rotations described with respect to the fool frame. This provides a convenient
shorthand for specifying approach and deproach locations, or for specifying motions
which purposely overshoot the described location when the manipulator is to perform
guarded motions [21].

1.1.2. Motion Description

A task is made up of a number of path segments between successive locations. There
are many ways to generate trajectories for a manipulator[4][5]. RCCL provides two
types of motions. The first, called joint mode, consists of computing the set of joint
values for each path segment end and generating all intermediate values by linear inter-
polation. The second type, which we will call Cartestan mode, requires the system to
solve a modified location equation each sample interval and to compute the correspond-
ing joint coordinates. The location equation is internally modified in such a way that

one frame, called the tool frame, moves along straight lines and rotates around a fixed
axis. These motion types are discussed elsewhere [3][6]. Here, we will assume that we
are dealing with a manipulator for which an analytical solution exists, relating a Carte-
sian location to a set of joints coordinates [7][8][9]{10]. In the current implementation,
manipulator motions are obtained by specifying a sequence of desired joint values to
the servo processes controlling the manipulator joints. However, most of what follows
does not assume a particular control method.

When the manipulator is to move while exerting forces or torques on objects, the
manipulator must be controlled in a such a way that forces and torques are controlled
directly in place of locations. The manipulator is then said to be controlled in a comply
‘mode. Several methods [11][t2][13][14] are proposed for such control. RCCIL imple-

ments a variation of Shimano’s joint matching method [22]. RCCL provides for com-

“pliance specifications in the tool coordinate frame which is defined in the location equa-
tion. Compliance is specified in terms of forces along, and torques around, the principal
axes of the fool frame. The manipulator loses one degree of freedom for each direction
along or around which it is complying, in forces or 'torque respectively The trajectory
is then constrained by the geometrical features of the objects in contact. A more com-
plete discussion of this subject can be found in [15].

1.2. Sensor Integration; Update World Representation;

One of the man goals of RCCL is to facilitate the integration of sensors [16]. Sensors
are used to modify the behavior of the manipulator according to information acquired
from the manipulator or from its environment. Sensor information can be classified in
many different ways: according to the data type necessary to represent it, booleans,
scalars, vectors, arrays, tensors, etc.; by meaning: touch limit, distance, location, tem-
perature, vibration, force, etc.; by the order of magnitude of the acquisition time,
whether minutes, seconds, milliseconds, or microseconds; by accuracy; and so on. Con-
sidering this variety, the RCCL approach is deliberately to ignore, when possible, the
type of information we may have to deal with, but; on the other hand, to provide
means for an efficient utilization of this information.

1.2.1. Modifying Trajectories

Fast sensors can provide for direct synchronous sensory feedback. This corresponds to
the class of functionally defined transformations. In this case, a transformation 1is
attached to a function that will be evaluated each sample period. the purpose of the
function is to calculate the value of the transformation as a function of sensor readings.
The location equation in section. 2.1.1. makes use of such a functionally defined
transform to describe a location with respect to a conveyor belt. If the motion is per-
formed in Carfesian mode, the tracking is perfectly accurate, since the location equa-
“tion is evaluated at sample time intervals. When the motion is performed in joint
mode, the system estimates the expected location at the end of the segment by linear
extrapolation. If the functionally defined transform is computed as a function of time,
we can obtain mathematically described motions (circles, elhpses etc...).
‘The transitions to or from path segments involving moving coordinate frames must
deal with unpredlctable velocxty changes Smooth transitions are obtained by adding a

modifying third order polynomlal trajectory during the transition time. The manip‘ula—
tor is stopped by repeating a move to the same location. When the location involves -
moving coordinate frames the manipulator comes to rest relative to the moving frame.
If a stop in absolute coordinates is required, a move to a fixed location must be per-
formed before specifying the stop. The system internally maintains a location equation
which always reflects the current location of the manipulator. It is possible to have the
manipulator stop at an arbitrary instant at the location it currently occupies. Fune-
tionally described transformations can be used anywhere in a location equation. Tra-
jectories can be modified with respect to any coordinate frame which provides unlim-
ited applications. ‘

2. The RCCL Implementatioh

When a manipulator is under RCCL control, four processes are concurrently running.
At the lower level, a servo process controls the location or the torque of each manipula-
tor joint. The setpoint process, running at interrupt level, computes the Cartesian tra-
jectories and determines the corresponding joint parameters. A real time communica-
tion channel swaps information between the servo process and the sefpoint process.
The user process running under time sharing is the user program and makes the RCCL
system calls. The setpoint process communicates with the user process via a motion
request queue containing all the necessary information. ’

3. Tools

3.1. Trajectory Planning

There exists a version of the RCCL library which, instead of computing the trajectories
in real time, computes them oﬂ-hne This is achleved by calling the setpomt function
in a loop instead of activating it upon interrupt. The same manipulator programs, pro-
vided that they do not depend on external events and information, can be run in this
fashion. Some debugging tools are then provided. The system can be asked to keep a
trace of the motion requests, to store the sequence of setpoints on file in order to replay
them afterwards, or to plot them. :

3.2 Teaching

A manual control program is included within RCCL. It consists of a very simple com-
mand line language interpreter enabling an operator to move the manipulator interac-
tively in Cartesian coordinates. Motions can be specified in world or tool coordinates.
Locations can be recorded via the update primitive. The manual control program is
implemented entirely in terms of RCCL primitives. ’ '

3.3 Transformation Data Base

A simple data base system has also been developed. Transformation values can be
recorded and read on-line in manipulator programs. The values can be displayed and
modified off-line for maintenance.

4. Conclusion

The main goal of this project was to show that manipulator coutrol could be developed
in a more general context than within the framework of a stand-along robot controller
with its own language. The current RCCL 1mplementation does not yet offer the con-
- venience of dedicated robot controllers because it requires a large machine. However,
as microprocessor based computers become more powerful and can run operating sys-
tems like UNIX, the .RCCL approach exhibits many advantages over conventional
robot. controller designs. The conclusion we wish to draw is that robot control can be
viewed as an addition to an already existing, tested, and standardized system, rather
than the design from scratch of a system which prov1des only for robot control. The
RCCC software has been distributed to approximately 20 research institutions world

w1de

B. COLLISEONaFREE PATH PLA.NNENG FOR ROBOTS WITH A
PRISMATIC JOINT

Industrial robots are computer-controlled mechanical manipulators which perform
tasks for industrial applications. One of the essential operations in all the assigned
tasks involves the physical motion of the manipulator whose end effector moves from a
known initial position and orientation to a specified goal position and orientation. In
reality, the workspace of the robot is not free from obstacles such as fixtures, mechani-
cal parts, etc., so that a collision may result if the robot moves freely without any gui- -
dance. If, however the positions and orientations of all the obstacles are known for the
entire time interval of operation, it is possible to plan a collision-free path, if one exists,
for the robot to move along while performing its task.

The subject of collision-free path planning is relatively new. Within the past five
years, only a handful of people have been actively working on this subject. Among
them are Pieper [27] and Widdoes (28] who used planes, cylinders, and spheres to
represent obstacles (objects). The use of spheres has an advantage of avoiding the
orientation problem. However, the free space that is occupied by parts of the spheres is
wasted for planning purposes. In addition, the intersection functions are often non-
linear involving square roots or transcendental functions. Udupa [29], Lozano-Perez
and Wesley [30], and Lozano-Perez [31,32], and Brooks {33] adopted the polyhedra as
the models which result in linear intersection functions. But the orientation problem
must be handled with care. Udupa discretized the space into cells which were labelled
free if not occupied by obstacles and objects. Lists of free cells are joined together to
form a collision-free path. To allow for arbitrary orientation, the obstacles’ expansions
over-compensate, which reduce the number and/or size of the free cells available for
path planning. Lozano-Perez described linked polyhedra using swept volumes. The
rotation range is then divided into a finite number of slices. Brooks adopts the idea of
generalized cones [34] which are equivalent to swept volumes Free space is then
represented as overlapping generalized cones.

In the methods described above, some determine the free space inside which the
point robot may move freely without collisions with obstacles, while other determine
the forbidden region so that a collision-free path may be traced along the boundaries of
the region. This paper adopts the second approach to the problem which involves

objects and obstacles that interact with a robot which has a prismatic link, such as the
Stanford manipulator [35]. The prismatic joint, however, creates additional problems.
As usual, the objects and obstacles are approximated bv enclosing polydedra. The
manlpulator 1s represented by a point; in particular, the point at the tip of the end
effector. Its real body width is compensated for by expanding the polyhedral obstacles
[29-32]. Methods of constructing the expanded polyhedra are given in these references.
If the point robot enters into the expanded polyhedra, a collision will then occur. Now
since the prismatic joint of the manipulator has a long boom, it creates two pseudo obs-
tacles: one by the restriction that the front of the boom remain free of collision and the
other by any confinement of the rear of the boom due to obstacles. The pseudo obsta-
cle is not a physical object but a region of shadow in the workspace. However, when
the point robot enters into the pseudo obstacle, a collision between the boom and a
polyhedral obstacle occurs somewhere along its length. Thus the pseudo obstacles
together with the expanded polyhedra from the forbidden regions that the point robot
must stay away to avoid collisions.

It was shown that for robots with a prismtic J01nt such as joint 3 of the Stanford
manipulator, the boom's length may be compensated for by two pseudo obstacles for
every edge of the objects when the robot is, in the usual sense, represented by a point.
One of the pseudo-obstacles is due to the front end of the boom, and the other is due
to the rear end. An algorithm has been developed for the computation of the shortest
feasible collision-free path for the robot for the case of stationary obstacles. The algo-
rithm converges in at most (N-2)(N-1)/2 iterations where N (see Appendix 2).

C. REAL-TIME 3-D VISION SYSTEM WITH MULTI-CAMERA FOR
COLLISION-AVOIDANCE

In the usual robot tasks, practically all involve some manipulation requiring the
motion of the end effectors from their initial positions and orientations to the specified
goal positions and orientations. However there are fixtures, mechanical parts, etc. in
the work-space of the root. Thus collisions between the robot and the obstacles may
occur unless some guidance for motion is provided.

A three-dimensional vision system for on-line operation that aids a collision
avoidance system for an industrial robot is dcveloped Because of the real-time require-
ment, the process that locates and describes the obstacles must be fast. To satisfy the
safety requirement, the obstacle model should always contain the physical obstacle
entirely. This condition leads to the bounding box description of the obstacle, which is
simple for the computer to process. '

The 1 image processing is performed by a Machine Intelligence Corporatlon VS-100
machine vision system. The control and object perception is performed by the
developed software on a host Digital Equipment Corporation VAX 11/780 Computer.
Also, the communication with the robot collision avoidance program occurs on the VAX
11/780.

The resultant system outputs a file of the locations and bounding descrlptlons for
each object found. When the system is properly cahbrated the bounding descriptions
always completely envelop the obstacle. The response time is data-dependent. When
using two cameras and processed on UNIX time sharing mode, the average response

time will be less than two seconds if eight or fewer objects are present. When using all
three cameras, the average response time will be less than four seconds if eight or fewer
objects are present. However, the total clapsed time is data-dependent. The program
could return in one second if no objects are present (see Appendix 3). :

The use of three cameras is preferred since otherwise non-existing objects may be
found by the program. However, the perception error of detecting objects that do not
exist is more favorable than not to detect objects that do exist, for the purpose of colli-
sion avoidance. The bounding description will often waste the space surrounding an
object. But, for the same purpose, the inclusion of extra space in the boundary is
favorable to not including a part of an object. Also, the user of the output must be
aware that the output descriptions may overlap in the three-dimensional space.

Again, the accuracy of the scheme is dependent on the accuracy of the initializa-
tions performed and the resolution of the sensor. The user affects the accuracy of the
scheme by the accuracy of the lens models used, the orthogonality of the camera set-up,
the accuracy of the distance measurements, and the accuracy of the cursor positions
chosen during the system initialization. As for any vision system, choosing the correct
threshold for each camera and properly adjusting the lighting are also important.

'D. DUAL- NUMBER TRANSFORMATION IN DYNAMICS FOR SIM-
PLIFIED COMPUTATION

The industrial robots ‘have serial link mechanisms whose dynamic behavior can be
described by equatlons in Lagrangian formulatlon as [36 37]

| n= Z Dqu + Ja.lql + Z Dl_u q] + E Z Dukqjqk + D . ' (I)
=1 =1 k=1
» = : = i#k
where - :
7, = input generalized force for joint i for i = 1,2,...,n; and
qe = generalized coordinate {i.e., joint displacement}.

Whether equation (1) is utilized to solve forward dynamics problem for analysis and
simulation (i.e., solve for g;'s and their time-derivatives for given 7;'s), or to solve
inverse dynamics problem for control of robots (i.e., solve for 7's for desired qj's and
their derivatives), one must compute the coeflicients Du’ Djj and D;. The computation
of these terms is, unfortunately, very complicated and time consuming. It involves an
evaluation of thousands of trigonometrical terms [38]. Obviously it is not a simple
computational task especially when the position-dependent and orientation-dependent
parameters change as the robot moves. There‘fore it warrants the effort of searchlng for
methods of simplifying the computation.

Efficient algorithms for computing 7, have been developed by various authors dur-
ing the past three years. Luh, Walker and Paul {39] computed the joint forces/torques
based on the Newton-Euler formulation. Walker and Orin [40] extended the approach
to compute the joint accelerations which were then used in the simulation of the robot
control scheme. Hollerbach [41] developed recursive algorithms based on the Lagran-
gian formulation which were shown to be equivalent to the Newton-Euler method [42].
Recently Kane and Levinson [43] used specialized formulation for specific robots, while
Featherstone [44] approached the problem differently by using articulated-body 1nertlas

All the methods mentioned above are very efficient in producing numerical solutions.
However, they will yield very little insight views of the dynamical behavior of the
robot. To analyze the dynamics of the robot for full understanding and aiding in
designing new robots, it is desirable to simplify the computation of the coefficients Du,'
D;jx and D; and then deal with the differential equation (1) directly.

There are three known approaches of simplification, viz. geometric/numeric, com-
posite, and differential transformation. Bejezy's geometric/numeric evaluation [45,46]
deals with the nature of joints whether it is revolute or prismatic. Thus the 4 by 4
homogeneous transformation matrices Tjk in the coeflicients can be simplified in
advance. Since many elements in the matrices are zeros, the resulting expressions for
D;, D;; and Dy, are less complicated [19,20]. The composite technique by Luh and Lin
,[47] 1nvolves the comparison of all the terms in Newton-Euler formulation of the
dynamic equation [39] in a computer. Some of the terms may be eliminated under vari-
ous criteria. The remaining terms are then rearranged in a Lagrangian formulation.
The upshot is a computer output of a simplified equation in symbolic form. Paul’s
differential transformation [37] which converts 0TP/dq;, the partial derivative of the
homogeneous transformation matrices, into the matrix product of the transformation
and a differential matrix which reduces D;; to a much simpler form. However, the term
Djj contains a second order partial denvatlve 8* Tp/(an dqy) which was not simplified
untll recently by Bejczy and Lee [48]. Their approach is to apply the differential opera-
tor used by Paul, successively at the appropriate link-to-link coordinate transforma-
tions. An alternative approach is to adopt the dual-number algebra and screw calculus
in the analysis instead of the homogeneous transformation.

In screw calculus [49,50], a vector may be represented by either six real numbers
or thee dual numbers. The associated coordinate transformation matrices perform line
transformations, which is different from the point transformation by homogeneous
transformation. In robotics, this approach has been investigated by Pennock and Yang
[51], and Featherstone [44]. As shown by Rooney [52], the dual-number representation
is most concise, while the real 6 by 6 matrix representation contains redundant com-
ponents since not all conditions that form the matrix are independent. The size of the
6 by 6 matrix gives an intuitive impression of excessive computational burden. Yet the
dynamical analyses are done by the real 6 by 6 matrix representation in [44] and [51]
because it is not feasible to express the inertia directly in dual-numbers.

This paper (see Appendix 4) presents a method of expressing the kinetic energy of
the system in terms of dual-number transformations so that the analysis of the dynam-
ics using dual-number algebra is possible. The method is different from the momentum
approach by Yang [53]. Because of the property of line transformation, the dual-
number transformation may deal with dual-velocity vectors. Thus the differential
transformation in the kinetic energy term yields only the first order partial derivatives
in Dy so that Paul's simplification approach [37] applies. Although there is no first
order partial derivatives in Dj; in the dual-number representation, the computation of
Dj; is still simpler than that by Paul's simplified representation [37]. The computa-
tiona! efficiency of the dual-number representation is exhibited by comparing the
numbers of required multiplications and additions for computing the joint
torques/forces 7, for all n joints, with those numbers required when the direct

- 10 -

homogénebﬁs transformation [36], and Paul’s simplified homogeneous transformation

[37] methods are applied.
Table 1 summarizes the computational complexity of the three methods or com:-

parison. It is seen that the dual-number approach require less computations.

Table 1. Comparison of Computational Complexity

NUMBER OF ~ NUMBER OF

METHOD MUL TIPLICATIONS* | ADDITIONS*

Homogeneous » , . . 3 5
‘Transformation .| 28—;~n4+91n3+79n2+ 19n 19 nf+62-n’+54 n’+11-n

Differential ‘

Simplification 28,—1?n4+71n3+49%n2+7n 19—1-n4+48ln3+33§n2+4én
| Dual-Number 22§-n4+56n3'+39n2+5§-n 171h4+43}i-n3+29-2n2+3f6fn

*Computing all D;; and Dy for n joints.

E. RTM-ROBOT TIME AND MOTION METHOD

The RTM system is constructed around a list of basic elements that are divided
into four major groups: movement elements; sensing elements; gripper or tool elements;
process delay elements. Initially, RTM performance models have been developed for
the Stanford Arm and for the T® robots. Experiments have also been carried out with
performance models for Unimate, PUMA, Minimover, and IBM RS/1 robots. A
number of work element modeling approaches have been tried, including: look-up tables
based on mean . performance time values; regression equations based on experimental
laboratory data; velocity control models, which depend on the precise method by which
the robot is designed to move; path geometry, which presently requires relatively
detailed specification and motion parameters.

1. RTM Software - A user can specify a work method for a particular robot by
using RTM statements. - The statements are of two main types: for robot operations,
each containing a standard RTM element and its parameters; and control statements
that include general information about the tasks, robot type, output detail and control
logic. The logic structure provides capabilities of REPEAT blocks, PARALLEL blocks
(for multiple robots or robots and machines), and conditional branching based on simu-
lated conditions of status signals, such as sensory input. A summary of the RTM
software statements is shown in Table 1 and in Appendix 5. '

- 11 -

Table 2

Summary of RTM system’s statements

Statement Type
1. Sub-task title

2. REPEAT control card

3. PARALLEL control card

4. Conditional branching
5. Control transfer

6. Movement elements
(Rn,Mn,ORn)
a. Position
Initialization
b. By end-point of
segments
or: c¢. By displacement

7. All other R. T. M. elements

8. END Card

9. CONDITION initialization

*can be genierated randomly

Statement Structure
SUBT, (no.), (title), (comment)

REP (no. of first operation),
TO, (no. of last operatign)
(no. times to repeat), (comment)

PAR, no. of first,
TO, no. of last, {comment)

IF, (condition name.condition.value*),
GOTO, operation no. or subtask number _
GOTO, operation no., subtask no.; (comment)

(Joints parameters)
(operation no.) (R. T. M. symbol), (comment)
(velocity), (joints parameters)

(operation no.), (R. T. Mk. symbol), A-Angular
(velocity), (displacement) D-Linear

(operation no.), (R. T. M. symbol),
(operation parameter), (comment)

END
COND .
{condition name), (set of initial values)

END

-12 -

2. Performance Prediction Accuracy - Extensive laboratory experimentation and
analysis of realistic robot tasks have established that an important advantage of apply-
ing the RTM method is in previewing robot work methods before programming them in
detail. The prediction accuracy of the system has been found to be only a few percent
away from the actual performance time. Specific results for predicting performance
time: for the Stanford Arm with the detailed path geometry approach deviations were
within -2% to +12%; with the table look-up approach within +5%; for the T® with
the velocity control models, within -2% to +3%; with the table look-up approach
within . £15%. Analyses have also been performed to study the relationship between
accuracy and task element variety and length. For example, the relative inaccuracy of
‘the table look-up approach for the T? is evident mainly in multi-segment motions. In
less detailed tables several interpolations are required for such motions and conse-
quently, the resulting error increases. On the other hand, an analysis of generic task
elements in manufacturing has led to the successful development of simplified RTM
models for “‘point operations” (e.g., spot welding, drilling). :

3. Models for Sensory Elements - Modeling work and experiments have been
started in order to develop performance models of sensory elements in robot work,
mainly with the IBM RS/1 and with a T3 instrumented with touch and photo sensors
on the gripper. The models address several types of sensory work, such as “monitor”
elements and ‘‘sense input/output” elements. Additionally, several vision systems are
studied in order to understand the parameters of their performance time. It was found
that in most cases there is‘a strong dependency on the equipment used. Some of the
sensory models require information about dynamic properties of the work environment
as well as the expected feedback. :

4. Probabilistic RTM Functions - RTM has been expanded to allow sampling
from user specified probability distributions of several input parameters.

a. Random elements
All time values specified for Tlme Delay or Process Time Delay, as well as motion
elements, can be supplied with random variable. For example,
M1 10, D3
means, that element M1 is specified with expected motion length of 10 units, distri-
buted accordlng to a given distribution D3.

b. Random Repeat blocks
. A block of RTM elements can be repeated a number of times using the REPEAT
instruction. The number of repetitions can now be specified as a random variable.

¢. Random conditions

Conditional values can be used to evaluate a robot task in a realistic 51tuatlon
where malfunctions, sensory input, or variable requirements occur. This can be
analyzed by the RTM conditional branching. The particular conditions can now. be
sampled automatlcally from a random distribution.

- 13-

4. Interface of RTM to Robot Control Language - One of our research
objectives is to interface and integrate the RTM software to the robot control language.
As part of the control language, RTM models could be called by an engineer in order to
hierarchically evaluate and compare alternative work methods before programming one
in detail. Later, it will be possible to use some of the data supplied in the RTM state-
ments directly for the statements of the control language. The environment of the C
language provides simple means of delivering this objective. ‘ .
- This objective has been studied relative to the RCCL, the Robot Control C
Library. It was found that with the more common, simplified RTM input (without use)
of world coordinates), effective translation from RTM to RCCL cannot be accom-
plished. However, with the RTM input using world coordinate specifications of
motions, translation is not only feasible, but also quite direct. Several example pro-
‘grams have been studied and translated. Although the resulting RCCL program may
‘be non-optimal at the current stage, little additional data is needed from the user
beyond the RTM data for typical robot programs.

- 14 -

IV. REFERENCES

[
[2]
8
(4]
[5]
[6]

[7]

8]

(9]

[10]

[11]
[12]

[13]

[14]

Kernighan, B. K., “The C Programming Language,” Prentice—Hall, 1978.

Paul, R. P., “ManipulatorvLanguage,” Workshop On The Research Needed to
Advance The State Of Knowledge In Robotics, April 15-17, 1980, organized by J.
Birk and R. Kelley, supported by N.S.F.

Paul, R. P., “Robot Manlpulators Mathematws Programming, and Control,”
MIT Press 1981 '

l
Derby, S., “Slmulatmg Motion Elements of General-Purpose Robot Arms,” Inter-
national Journal of Robotic Research, Vol. 2, No. 1, Spring 1083.

Castain, R. H., Paul, R. P., “Polynomial Robotic Trajectories: A New
Approach » TR- EE 82-37, Dec. 1982.

Hayward, V Paul, R. P., “Robot Manipulator Control Using the C Language
Under UNIX| > IEEE Workshop on Languages for Automation, Chicago, Nov. 183.

Shimano, B. E., “The Kinematic Design and Force Control of Computer Con-
trolled Mampulators > Stanford Artificial Laboratory, Stanford University, AIM
313, 1978. ,

Paul, R. P., Stevenson, C. N.; “Kinematics of Robot Wrists,” International Jour-
nal of Robotic Research, Vol. 2, No. 1, Spring 1983.

Paul, R. P., Shimano, B. E., Mayer, E. G., “Kinematic Control Equations for
Simple Manipulator,” IEEE Transactions on Systems, Man, and Cybernetics, Vol
SMC-11, No 6, June 1981.

Fisher, W. D., Private communication.

Inoue, H., “Force Feedback in Precise ‘Assembly Tasks,” MIT Artificial Intelli-
gence Laboratory, Memo 308, Aug. 1974.

Raiberg, M. H., Craig, J J., “Hybrid Position/Force Control of Manlpulators
Journal of Energy Resources Technology, Vol. 103, June 1981.

Salisbury, J. K., “Active Stiffness Control of a Manipulator in Cartesian Coordi-
nates,” 19th IEEE Conference on Decision and Control, Dec. 1980, Albuquerque
New Mex1co

Geschke, C. C., “A System for Programming and Controlling Sensor-Based Robot
Manipulators,” IEEE Transactions on Pattern Matching and Machine Intelligence,
Vol. PAMI1-5, No. 1, Jan. 1983. .

15
16
17

13

[19]

| [20]
[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

- 15 -

Mason, M. T., “Compliance and Force Control for Computer Controlled Mampu—r
lators, » MIT TR 515, April 1979.

Rosen, C. A.,Nitzan; D., “ Use of Sensors In Programmable Automation”, Com-
puter Magazme December 1977.

Paul, R. P., “Computational Requirements of Third Generation Manipulators”

Fisher, W. D., “The Modification of a Robotic Manipulator and Digital Controller
to Incorporate Both Force and Position Control,” MSE Thesis, Purdue Umversrty,
May 1981. ; _

Luh, J. Y. 8., Fisher, W. G, Paul, R. P., “Joint Torque Control by Direct Feed-
back for Industrial Robots,” IEEE Transaction on Automatic Control, Vol. AC-
28, No. 2, February 1983.

Zhang, H., Paul, R. P., “Determination of Simplified Dynamics of Puma Manipu-
lator,” Purdue University. ; _

Will, P. M., Grossman, D. D., “An Experimental System for Computer Controlled
Mechanical Assembly,” IEEE Trans. Computers C-24 9, 1975, 879-888.

Shimano, B. E., “The Kinematic Design and ForceControl of Computer Con-
trolled Manlpulators ” Ph.D. Dl‘aSClt&tlon Memo AIM-313, 1978, Stanford Univer-

sity.

Ermst, H. A. A, “A Computer Operated Mechanical Hand,” Sc. D. Thesis,
Masachusetts Institute of Technology, 1961.

Paul, R. P., “WAVE: A Model-Based Language for Manipulator Control,” The
Industrial Robot 4 1 (March 1977), 10-17.

Finkel, R., et al. “An Overview of Al A Programming L.anguage for Automa-
tion,” Fourth International Joint Conference on Artificial Intelligence, Thilisi,
Georgia, USSR, 1975, 758-765.

Taylor, R. H., Summers, P. D., Meyer, J. M., “AML: A Manufacturing
Language”, International Journal of Robotics Research, 1, 3, Fall 1982, 19-41.

Pieper, D. C., The Kinematics of Manipulators Under Computer Conirol, ARPA
Order No. 957, Stanford University, 1968.

.Wlddoes C., A Heuristic Collision Avoider for the Stanford Robot Arm C.S.

Memo 227, Stanford Umversrty, 1974.

[29]
[30]

[31]

34
39
36]
37)

[38]
[39]

[40]

[41]

- 186 -

Udupa, S. M., Coliision Detection and Avoidance in Computer Conirolled Manipu-
lators, Ph.D. The31s California Institute of Technology, 1977.

Lozano-Perez, T. and M. A. Wesley, An Algorithm :for Planm'ng Collision-Free
Paths Among Polyhedral Obstacles, Communications of the ACM, Vol. 22, No. 10,

Loiano—Perez, T., “Automatic Planning of Manipulator Transfer Movements,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. .11, No. 10, October
1981, pp. 681-698. |

----, Spatial Plarmmg A Oonfguratzon Space Approach, IEEE Transactlons on
Computers Vol. 32, No. 2, February 1983, pp. 108—120

Brooks, R. A., Solving the Find-Path Problem by Good Rep‘resentation of Free
Space, Proc. AAAI 2nd Annual National Conference on Artificial Intelligence,
August 18-20, 182, Pittsburgh, Penn., pp. 381-386.

Binford, T. O., ‘“Visual Perception by Computer,” Presented at the IEEE Systems
Science and Cybernetics. Conference, December 1971, Miami, Florida.

Scheinman, V. D., Design of a Computer Controlled Manipulator, Al Memo No.
92, Artificial Intelligence Laboratory, Stanford University, June 1969.

Bejczy, A. K., Robot Arm Dynamics and Control, Technical Memorandum 33-669,
Jet Propulsion Laboratory, February 1974.

Paul, R. P., “Robot Manipulators:: Mathematlcs Programming, and Control,”
MIT Press 1981

Luh, J. Y. S., “Conventional Controller Design for Industrial Robots - A
Tutorial,” IEEE Transactions on Systcms Man and Cybernetics, Vol. 13, No. 3,
May/June 1983, pp. 298-316.

Luh, Y. Y. S, M. W Walker and R. P. C. Paul, “On-Line Computational
Scheme for Mechanlcal Manipulators,” ASME Transactions, Journal of Dynamic

- Systems, Measurement and Control, Vol. 102, No. 2, June 1980, pp. 69-76.

'Waker,’ M. W. and D. E. Orin, “Efficient Dynamic Computer Simulation of

Robotic Mechanisms,” ibid, Vol. 104, No. 3, September 1982, pp. 205-211.

Hollerbach, J. M., “A Recursive Lagrangian Formulation of Manipulator Dynam-
ics and a Cooperative Study of Dynamics Formulation Complexity,” IEEE Tran-
sactions on Systems Man and Cybernetics, Vol. 10, No. 11, November 1980, pp.

- 730-736.

[42]

[43]

[44]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

- 17 -

Sitver, W. M., “On the Equivalence of Lagrangian and Newton-Euler Dynamics
for Manipulators,” International Journal of Robotics Research, Vol. 1, No. 2,
Summer 1982, pp. 60-70. -

Kane, T. R. and D. A. Levinson, “The Use of Kane’s Dynamical Equations in
Robotics,” International Journal of Robotics Research, Vol. 2, No. 3, Fall 1983,

pp. 3-21.

Featherstone, R., “The Calculation of Robot Dynamics Using Ariculated-Body
Inertias,” Internatlonal Journal of Robotics Research, Vol. 2, No. 1, Spring 1983,

pp- 13-30.

Bejczy, A. K. and R. P. Paul, “Simplified Robot Arm Dynamics for Control,”
Proceedings of 20th IEEE Conference on Decision and Control, December 16-18,
1981, San Diego, California, pp. 261-262.

Bejezy, A. K., “Dynamic Analysis for Robot Arm Control,” Proceedings of 1983
American Control Conference, June 22-24, 1983, San Francisco, California, pp.

503-504.

Luh, J. Y. S. and C. S. Lin, “Automatic Generation of Dynamic Equations for
Mechanical Manipulators,” Proceedings of Joint Automatic Control Conference,
June 17-19, 1981, Charlottesville, Virginia, pp. TA-2D.

Bejezy, A. K. and S. Lee, “Robot Arm Dynamic Model Reduction for Control,”
Proceedings of 22nd IEEE Conference on Decision and Control, December 14-16,
1983, San Antonio, Texas, pp. 1466-1476.

Brand, L., Vector and Tensor Analysis, Wiley and Sons, 1948, chapter 2.
Dimentberg, F. M., The Screw Calculus and Its Applications in Mechanics,

Izdatel’stvo ‘““Nauka”, Moskva 1965, English Translation by Foreign Technology
Division, WP-AFB Ohio, Part No. 680 993, April 1968.

Pennock, G. R. and A. T. Yang, “Dynamic Analysis of a Multi-Rigid-Body

Open-Chain System,” ASME Transactions, Journal of Mechanisms, Transmission,
and Automation Design, Vol. 105, No. 1, March 1983, pp. 28-34.

Rooney, J., “A Comparison of Representations of General Spatial Screw Displace-
ment,” Environment and Planning (England), Series B, Vol. 5, 1978, pp. 45-88.

Yang, A. T., “Inertia Force Analysis of Spatial Mechanisms,” ASME Transac-
tions, Journal of Engineering for Industry, Vol. 93, No. 1, February 1971, pp. 27-
33.

[54]

-18 -

Yang, A. T., “Calculus of Screws,” in Basic of Design Theory, Edited by W. R.
Spillers, North Holland Publishing Co./American Elsevier Publishing Co., 1974,

pp. 266-281.

V. DOCUMENTATION

1!
[2]
[3]

4

[6]
[7]
#
[9]

[10]

[11]

12)

[13]

[14]

R. Paul, J. Luh, et al, ‘““Advanced Industrial Robot Control Systems,” First
Report, NSF 'Grant APR77-14533, TR-EE-78-25, School of Electrical Engineer-
ing, Purdue University, West Lafayette, Indiana 47907, May 1978. '

-—--, “Advanced Industrial Robot Control Systems,” Second Report, NSF Grant

APR77 14533, TR-EE-79-35, School of Electrical Engmeerlng, Purdue University,
West Lafayette Indiana 47907, July 1979.

----- , 3rd Report, NSI' Grant APR77-14533, Covering Period July 1, 1978 to
January 1, 1979, School of Electrical II'ngineering, Purdue University, West Lafay-
ette, Indiana 47907.

----- , 4th Report, NSF Grant APR77-14533, Covering Period January 1, 1979 to
July 1 1979, TR-EE 80-29, School of Electrical Engmeerlng, Purdue Unlver51ty,
West Lafayette Indiana 47907

----- , 5th Report, NSF Grant APR77-14533, Coverlng Period July 1, 1979 to
January 1, 1980, TR-EE 80-30, School of Electrical Engineering, Purdue Univer-
51ty, West Lafayette Indiana 47907.

----- , 6th Report, NSF Grant APR77-14533, Coverlng Period January 1, 1980 to
July 1 1980, School of Electrical Englneermg, Purdue University, West Lafayette
Indlana 47907.

—--,*Advanced Industrial Robot Control Systems;” 7th Report, NSF Grant DAR
77-14533, Covering Period July 1, 1980 to January 1, 1981, TR-EE 81-8, School
of Electric‘al Engineering, Purdue University, West Laffayette, Indiana 47907.

—-, “*Advanced Industrial Robot Control Systems,” 8h Report, NSF Grant DAR

77-14533, Covering Period January 1, 1981 to July 1, 1981, TR-EE 81-16, School

of Electrical Engineering, Purdue University, West Lafayette, Indiana 47907.

R. Paul, “Cartesian Coordinate Control of Robots in Joint Coordinates,”
presented at the Third CISM-IFTOMM International Symposium on Theory and
Practice of Robot and Manipulators,” Udine, Italy, September 1978.

R. Paul, “Programming and Teaching of Industrial Robots,” presented at the
Natlonal Electroniecs Conference, Chicago, October 1978.

R. Paul, “Robot Software and Servoing,” Workshop on the Impact on the
Academic Community of Required Research Activity for Generalized Robotic
Manipulators, University of Florida, February 1978.

J. Y. S. Lubh, “Long Range Robotic Research Including Sensor Feedback,” 23rd
IEEE Machine Tools Conference, Cleveland, Ohio, October 25-27, 1977.

J. Y. S. Luh, M. Walker, “Minimum-Time Along the Path for a Mechanical
Arm,” Proc. 1977 IEEE Conference on Decision and Control, Vol. 1, New Orleans;
LA, December 1977.

R. P. Paul and S. Y. Nof, “Human and Robot Task Performance,” in Computer
Vision and Sensor Based Robots, G. G. Dodd and R. Lothar (Ed) Plenum Press,
New York, 1979

[15]
[16]
[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]
(28]
[29]
30]

[31]

[32]

- 19 -

T. R. Anderson, R. P. Paul, “High Speed Cocrdinated Control of Industrial
Robots,” 8th L.S. J R. Conference Washmgton D.C., May 1979.

H. Takase R. P. Paul, E. J. Berg, “A Striictured Approach to Robot Program—
ming and Teaching,” 79 COMPSAC Conference, Chicago, November 1979.

R. Paul, B. Shimano, ‘“Kinematic Control Equations for Simple Manipulators,”
IEEE Conference on Decision Making and Control, San Diego, January 1979.

J. Y. S. Luh with C. S. Lin, “Multiprocessor-Controllers for Mechanical Manipu-
lators,” Proceedings of COMPSAC 79, 3rd International Computer Software and
Apphcatlons Conference, 79CH1515- 60 November 6-8, 1979, Chlcago pp. 458-
463.

R. L. Paul and S. Y. Nof, “Work Methods Measurement - A Comparison Between
Robot and Human Task Performance,” International Journal of Production
Research, Vol. 17, No. 3, 1979, pp. 277-303. |

J. Y. S. Luh with M. W. Walker, “Controller for a Mechanical Manipulator,”
Automatic Control Theory and Applications (Canada), Vol. 8 No. 1, January
1980, pp. 24-29.

J.Y. S. Luh with M. W. Walker and R. P. Paul, “Resolved-Acceleration Control
of Mechanical Manipulators,” [EEE Transactzons on Automatic Control, Vol. 25,
No. 3, June 1980, pp. 468-474.

JY. S Luh w1th M. W. Walker and R. P. Paul, “On-line Computational Scheme
for Mechanical Manipulators,” ASME Transactzons Journal of Dynamic Systems,
Measurement and Control, Vol. 102, No. 2, June 1980, pp. 69-76.

S. Y. Nof, J. L. Knight, and G. Salvendy, “Effective Utilization of Industrial
Robots - A Job and Skills Analysis Approach,” AIIE Transactions, Vol. 12, 1980.
H. Lechtman, S. Y. Nof, “Robot Work Analysis: Task Performance by the Stan-
ford Arm,” Research Memorandum, No. 80-4, School of Industrial Engineering,
Purdue Umversrty, February 1980.

S. Y. Nof and R. P. Paul, “A Method for Advanced Plannlng of Assembly by
Robots,” SME AUTOFACT- WEST California, October 1980.

I Y. S. Luh with C. S. Lin, “Optlmum Path Planning for Mechanical Manipula-
tors,” ASME Transactions: Journal oj' Dynamic Systems, Measurement and Con-

trol, Vol. 103, No. 2, June 1981, pp. 142-151.
H. Lechtman “Robot Performance Models Based on R.T.M. Method 7 M.S.

Thesis, School_ of Industrial Engineering, Purdue University, May 1981.

Nof, S. Y., “Decision Aids for Planning Industrial Robot Operations,” Proc. IIE
Conference, New Orleans, May 1982, pp. 46-55.

Nof, S. Y. and Lechtman, H., “Now It’s Time for Rate-Fixing for Robots,” The
Industrial Eobot, June 1982, pp. 106-110.

Nof, S. Y. and Fisher, E. L., “Analysis of Robot Work Characteristics,” The
Industrial Robol, September 1982, pp. 166-171.

Fisher, E. L., Nof, 5. Y. and Seidmann, A., “Analysis of Robot Systems-Basic
Techmques and Advanced Methods,” Proc of IIE Fall Conférence, Cincinnati,
Ohio, Nov. 1982, pp. 385-395. | ‘

Lechtman, H. and S. Y. Nof, * Performance Time Models for Robot Point Opera-
tions,” to appear in the Int. J. of Production Research

[33]
[34]
[35]
136]
[37]

[38]

[39]

[40]

[41]

- 20 -

Seidmann, A. and Nof, S. Y., “Robotic Manufacturing Cell Design,” TIMS-ORSA
Conf., April 1982, Detroit, Michigan.

Seidmann, A. and Nof, S. Y., “Manufacturing Cell Design with Random Product
Feedback Flow” {forthcoming in IIE Transactions).

Nof, S. Y. and H. Lechtman, “Robot Time and Motion System,” Indusirial
Engineering, April 1882, pp. 38-48.

Luh, J. Y. S. and C. S. Lin, “Scheduling of Parallel Computation for a
Computer-Controlled Mechanical Manipulator,” IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 12, No. 2, March/April 1982, pp. 214-234.

Luh, J. Y. S. and C. E. Campbell, “Collision-free Path Planning for Industrial
Robots,” Proc. 21st IEEE Conference on Decision and Control, December 8-10,
1982, Orlando, Florida, pp. 84-88.

Lin, C. S., P. R. Chang and J. Y. S. Luh, “Formulation and Optimization of
Cubic Polynomial Joint Trajectories for Mechanical Manipulators,” ibid, pp. 330-
335. :

Nof, S. Y., Computer Aided Planuning of Robotic Assembly, Proe. of AUTOFACT
Europe, Geneva, Switz_erland, September 1983.

Robinson, A. ’P. and Nof, S. Y., SINDECS-R: A Robotic Work Cell Simulator,
Proc. of 1983 Winter Simulation Conf., Dec. 1983, pp. 350-355.

Nof, S. Y.,' Robot Ergonomics: Optimizing Robot Work, a chapter in the Hand-
book of Industrial Robotics, (S. Y. Nof, Ed.}, John Wiley & Sons, 1985.

- 21 -

Appendix 1

| RCCL User’s Manu&i |

Vincent Ha}’.,Wardi

TR-EE 83-46
October 1983

- 22 -

' RCCL Users’s Manusl
Version 1.0

Vincent Hayward

School of Electrical Engineering
Purdue University =
West Lafayette, Indiana, 47907

TR-EE 83-46

October 1983

This work was partially supported by a Grant from the CNRS project ARA {Automa-
tique et Robotique Avancée), France, and by the Ransburg Chair of Robotics: This ma-
terial is also based on work supported by the National Science Foundation under the
Grant No. MEA-8119884. Any opinions, findings, conclusions, or recommendations ex-
pressed in this publication are those of the authors and do not necessarily reflect the
views of the National Science Foundation. Facilities to perform this research are prov id-
ed by the Purdue University CIDMAC project.” \ S ’ '

- 23 -

Table of Contents

1. Entroduct!on

2. Overview

3. Tutorlal Introduction

4. Basic Components : Numbers, Vectors, Transformations, Differentlal ,motidxm,-
Forces, and Events

4.1, Numbers

4.2. Vectors

4.3. Transformations

4.4. Differential Motions and Forces
4.5. Events

5. Task Description

5;1. Position Equations

5.2. Motion Description '

5.2.1. The Basic Move Statement

5.2.2. Setting Options and Parameters v
5.3. Synchronization

5.4. AFunctionaHy Defined Motlons

8. Sensor Integration

6.1. Presetting the World Model

8.2. Guarded Motions

8.3. Tracking

6.4. Updating the World Model

7. Force Control

7.1. Stop, Go on Force, on Dispﬁgcement

7.2. Servo Medes, Comply and Lock

- 24 -

73 Carrying VLoads
' 74 v E;xamples‘v

8. Structuring Programs

9. Limité.tﬁhs |

9.1. Force Conﬁ;rol

8.2. MachinévErrors

l9.3.- Process Size

0.4. Sample

8.5. Large Rotations. ‘

16. The Plannér gnd Play Program '
il. Program vOptlons

12. Te}achlngv

13. Summary |

_13..1.‘ Error Messages
| 13.2. Functions, Global Variables, and Ma.cr_os
13.3. Undocumented Library Entry Points |
13.4. Include Files B

14. Trgnsform bété Base

15. Detalls i

16.1. Compiie

1:5.25 Link

15.3. Lint

15.4.:Rbubn o ’

16. _ The Diépigy E_rogf;m;)

17. References

- 25 -

1. Introduction

This manual describes the first vérsion of the RCCL robot programming system. The reader is
assumed to be familiar with the C programming language [1], and with the UNIX operating system. A
thorough understanding of the control and programming techniques described by Paul in [2] is highly
recommended if not mandatory.. The design philosophy of RCCL is described in [3]. :

2. Overview

Using RCCL requires the user to be aware of the -hardware and software components. The
hardware involves a VAX computer operated under UNIX. A special high speed input-output interface
4] installed on the VAX Unibus extension establishes the communication with a Unimate robot controllet
[5]. The controller’s hardware consists of an LSI1-11 microprocessor and several interfaces mounted on a
Qbus (serial, paraliel, adc/dac, and host machine interfaces). The LSI-11 microprocessor controls six
6503 joint processors via a special parallel interface. The joint processors control the manipulator’s joints
via digital and analog circuitry.

Software components can be listed in terms of levels. Starting at the lowest level, we find the servo
code running in each joint processor. A superviser program, loaded in the LSIi1 is driven by a hardware
clock interrupt. Each time sample, the superviser program gathers data from the manipulator state :
joint positions and torques, front panel switch register content, analog conversion readings, interrupts the
VAX and transmits the data. It then enters a wait state until the VAX sends back low level commands
that are transmitted to the joint processors. Imterrupts are handled in the VAX by mean of 2 specialized
device driver. Each time an interrupt occurs in the VAX, the manipulator state is monitored by a real
time robot interface that checks for limit conditions. Error conditions are excessive joint rates or motor
currents. The manipulator’s state data is stored in a C structure available as a global variable {6]. The
real time interface, after receiving the manipulator’s state information, calis a initial user’s function,
examines the content of a second global C structure describing all the possible command combinations.
It checks for validity, translates the requests into low level commands and transmit them to the robot
controller. A second user function is then called and can run for the remainder of the sample period.
The real time interface serves the purpose of a robot controller user’s interface and its functions and

operation are described in [6]. »

The setpoint process, or trajectory gemerator is part of RCCL, and uses the real time interface to
control the manipulator and obtain the manipulator’s state. The setpoint process is interrupt driven and
acts according to asynchronous motion requests specified in the user’s program via RCCL primitives. .

- 26 -

3. Tutorial Introduction

The first program we shall introduce, uses 2 reference coordinate frame located at the base of the
manipulator whose shoulder is at 864 mm above the base. The transform 76 describes the position of a
frame attached to the last link of the robot originated at the point of meeting of the axes of the last
three joints, with respect to the shoulder. We want to move the manipulator at a position located at 600
mm in the X direction, 100 mm in the Y direction, and 800 mm in the Z direction with respect to the
reference coordinate frame. We also want that the last link points downward. The program may look

like:
#include ”vrcc‘i .h”

pumatask{)

{ o

TRSF_PTR t, b;

POS_PTR p();

geni,r trsl(”T” 0., 0., 864.);
"gentr_rot(”B”, 600. , 100., 800., yunit, 180.);

{
b

p0 =‘makepositi01‘1(”P0”, t, t6, EQ, b, YTL, t6);

"move({p0);
move(park);

The ﬁle‘.rccl.h contains C structure type definitions and external entry points the same way the
system file “stdio.h’’ does. It gives access to what users programs may need in order to use RCCL func-

tions, structures, and variables.

The variable declarations include the predeclared types TRSF_PTR, a pointer to a transformation
structure, and POS_PTR, a pointer to a position structure. The system buiids the transformations
matrices needed to describe the task via the gen_trsl and gen_rot functions. The reference coordinate
is called “T’' and is set as a pure translation. As for all the RCCL functions that dynamically allocate
memory space, the first argument is a string of characters naming the created object. This name is
purely arbitrary and can be set to the empty string (7). However, giving meaningful names is a good
idea because RCCL uses them in many occasions to print informative messages. The remaining argu-
ments of the gentr_ trsl() function are the X, Y, and Z values of the p (position) vector of the transform.
The rotational part is automatically set to the unit rotation. The function genir_rot{} allocates memory
and sets the positional part and the rotational part of the “B” transform. Arguments 1, 2, 3, and 4 have
‘the same meaning as for gentr_trsl(} Among several possible ways to specify rotations, we use here a
rotation around a vector. The variable ‘yunit’, which is of the type VECT _PTR, is a pointer to a vector.
This variable is provided by RCCL as .a pointer to a vector whose value is {0 1., 0.}. The rotational
part of the “B’’ transform is set to a 180 degrees rotation around the Y unit vector. (The fact that the Z
direction of the T6 transform is pointing in direction of the last link of the manipulator must be kept in
mind). The 7 axis of the “B” transform is mow pointing downward, because “B’’ is described with
respect to “T”. whose Z direction points upward. '

It is now time to set up a position equation using a ¢ali to makeposition. Makeposition returns a

pointer to a ring data structure that is used by the move primitive. It accepts a variable number of argu-
ments. The first one is the name of the position. Up to the ‘EQ’ constant, the list of arguments make

. RCCL is systematically coded according to the conventions of the C language Version 8. Recent versions of C
allow the passing by value of structures as function arguments. Although one may use these features in the
programs, none of the RCCL functlons make use of them and structure arguments are always passed by ad-
dress.

- 27 -

up the left hand side of the position equation. Then comes the list of transforms making up the right
hand side. The constant ‘TL’ introduces the transform that we choose to be the foo! transform. The too!
transform can be any of the frames contained in the equation, provided that it gives meaningful results,
more on that later. For now, we can say that most of the time, T6 or one of the frames described with
respect to T'6 in the left hand side of the equation will be chosen. We obtain the following equation :

T T6=28 ' '

The first move request causes the manipulator to move such that the position equation is satisfied.
Tn practice the robot will not exactly reach “P0”, but will perform a transition close to it before going
back to “PARK”". The ‘park’ position pointer is build into the system. B

Before proceeding further, we shall add two modifications to this first example. We repléce:

move{p0);
move(park);

by:
setmod(’c’);
move(p0);

stop(0);
move(park);

By default, RCCL tasks start in joint mode. By calling setmod() we ask for the moves to be per-
formed in Cartesian mode, the tool frame, here T6, move along a line joining the “PARK’’ position and
the “P0” position. The sfop statement causes the manipulator to stop during a nuli time at “P0”, that
is to say, to bring the velocity to zero. In other words, it will actually reach the position “P0”". The T6
transform, during the travel to “P0”, will be evaluated at sample time intervals as:

T6 = T' B DRIVE

The purpose of the DRIVE transform is to produce a straight path motion [2]. Most of the time, the
position equation will include one or several transforms to describe the end effector. This can be
achieved by creating one more transform and adding one argument to the position equation.

e = gentr_trsl("E”, 0., 0., 170.);

p0 = makeposition(”P0”, t, t6, e, EQ, b, TL, e);
Now the location described .by the transformation “E’’ with respect to T6 will travel along a straigyht

Cartesian path and 76 will be evaluated as : .
76 =T B DRIVE E!

- 28 -

4. Baslc Components : Numbers, Vectors, Transformations, Differential motions, Forces,
and Events. :

We shall now describe in more detail the meaning and form of a first set of RCCL primitives and
how they can be used in manipulator programs.

REMARKS

All RCCL functions returning a structure, foliow the convention that the result is the left argument
(output argument} and that first argument is returned as the value of the function {in the same style as
strcat does). This allows to code in the following style :

~trans = rot (newtrans(”TRANS”, c‘oﬁst), zunit, 90.);

which in one line, allocates a transform and sets it to a pure rotation around the Z direction. Because
the type of each function is declared in the file reelh | the program lint will complain if the returned
value is not used. Each function of this style is associated with a macro that capitalizes the first letter.
In case of ‘rot’, the macro is : ‘

#define Rot (void) rot
‘such that the same above code can be written as:

trans = newtrans(”TRANS”, const);
Rot(trans, zunit, 96.);

without comiplains from lint.

4.1. Numbers

The recl.h include file contains structured definitions of vectors and transformations that should be
used in connection with the corresponding functions. These structure declarations are preceded with C
‘typedef’ definitions that better describe the implementations of basic data types :

typedef int bool;

typedef float real;

C knows two floating point variable types : double and float. They correspond on most machines to sin-
gle and double precision floating point representation and arithmetic. For efficiency, all calculations are
performed in single precision. In order to insure consistency throughout the RCCL code, the type ‘real’
has been declared as a C typedef. Every single floating point variable is declared as such. Because C
structures are always passed by address, and. because ‘double’ and ‘float’ variables have different sizes,
the proper address calculations are insured. However, automatic type conversions will give meaningful
results if type ‘double’ variables are assigned to or from RCCL. variables.

A set of math constant global variables is included in the library :

real pi_m is PI
real pib2_m is Pl [2
real pitZ2_m is PI * 2

real dgtord m s PI [/ 180
real rdtodg m is 180 / Pl

_ The purpose of those variables is to avoid a unnecessary increase of the size of process data region
(see end(2)) and they are initialized at compile time. Setting them to any other values guarantees
unpredictable results. '

- 29 -

4.2. Vectors = ,
The type ‘vector’ is described by the following structure :

typedef struct vector {
real x, y, %;
} VECI‘ *VECT PIR;

The C ‘typedef’ feature is a way of giving another name to ba.snc data types.

“A C structure variable ‘k’ implementing a vector can either be coded as:

struct vector k;

or _)

VECT k;
A pointer to a vector variable can either be coded as :

struct vector *pk;

or o ‘
VECT #pk;

or ~
VECI"P'IR pk;

The chonce is according to taste and coding hablts Usmg this structure giveé access to the followilig
functions: dot, assignvect, cross, and unit. In order to describe the argument types of these functions
and the type of the value that they return, thelr heading declarations are displayed :

“real dot(u, v)
VECT PIR u, v;

'~ VECT_PTR assignvect (v, u)
VECT PTR v, u;

VECT PTR cross{r, u, v}
VECT PIR r, u, v;

VECT_PTR unit(v, u}

VECT PIR v, u;
The function dot returns the dot product of two vectors. The function assignvect copies its_second
argunient into the first one. Likewise, the function ¢ross réturns in its left argument the cross product
of the two remaining arguments. The function unit computes a vector collinear with its right argument
vector but of unit magnitude. Taking the cross product of two identical vectors is meaningless. By con-
trast, the unit function can perfectly take two identical arguments. In that case, the magmtude of the
vector would be set to unity ‘in place’.

4.3. Transformatxons

The correspondmg C structure is :

typedef int(* TRFN)();

typedef struct transform {
char *name;
TRFN fn;
VECT n, o, a, p;
int timeval;

} TRSF, #TRSF _PTR; ’

- 30 -

The first entry in the structure is a pointer to a string that stands for the transform name. The second,
is a pointer to a function. The function pointer can be set to one of the user’s background real-time
function or to one of the system functions const, varb, or hold. A more complete discussion of this
point occurs later. For now, we can assume that this pointer wili most of the time point to the const
function, meaning that the transform is constant transformation and will not change throughout the exe-
cution of the task. The next entry contains the value of the transform itself builé in terms of four vec-
tors: the normal, orlentation, approach, and position vectors. The last row the transform is
assumed to be : {0 0 0 1}. In other words, the transforms can canly be orthogonal transforms. The last
entry is the time-of the last evaluation of the function, needed in the case of functionally described
transforms. ’

" This type declaration gives access to the following functions : -

TRSF_PTR assigntr{tl, t2)
TRSF PTR t1, t2;

TRSF_PTR taketrsi(t1, t2)
TRSF_PTR t1, t2;

TRSF _PTR takerot(tl, t2)
TRSF PTR t1, 2;

TRSF_PTR trmult(r, t1, t2)
TRSF PIR r, tl, t2;

TRSF_PTR trmultinp(r, t)
TRSF_PIR r, t; '

’IRSF__P'IR trmultinv(rs, t)
TRSF PIR r, ¢;

TRSF_PTR invert(r, t)
TRSF PIR r, ¢; :

TRSF _PTR invertinp(t)
TRSF _PIR ¢;

The assigntr function is quite similar to the assignvect function above and the same remarks can be
made. It must, however, be noticed that only the value part of the transform is copied and not the other
components of the structure. The functions taketrsl and takerot perform a selective copy of the trans-
lational (resp. rotational) part, and leaves untouched the rotational (resp. translational) part. The func-
tion trmult multiplies the two right arguments transforms and leaves the result in the left argument.
This function requires the three arguments to be different. The function trmuitinp multiplies the two
arguments and leaves the result in the left argument. The function trmultinv multiplies the left argu-
ment by the inverse of the right one and leave the result in the left argument. The function invert
leaves in the left argument the inverse the right one. Since the arguments must be different, the function
invertinp performs an inversion ‘in place’.

The following functions selectively set the terms of the transformations :

- 31 -

TRSF _PIR trsi(t, px, py, pz)
TRSF_PTR t; | |
real px, py, pz;

TRSF_PTR vao(t, ax, 2y, az, ox, oy, oz}
TRSF PIR t; ' ’
real ax, ay, az, ox, oy, o0%;

TRSF_PTR rot(t, k, h)
TRSF_PIR t;

VECT _PTR k;

real h;

TRSF_PTR eul(t, phi, the, psij
TRSEF_PTR t;
real phi, the, psi;

TRSF_PTR rpy(t, phi, the, psi)
TRSF_PIR t; '
real phi, the, psi;

All these functions use a transformation pointer as left argument, which as usual is returned as a value of
the function. The function trs} sets the terms of the p vector of the transformation and leaves the rota-
tional part untouched. All distances in RCCL are expressed in millimeters. The function vao sets the
vectors n, o, and a of the transformation. Since the vectors n, o and a are orthogonal, vao only needs
the terms of 0 and a and builds the vector n. The vectors whose components are passed as arguments
do not need to be orthogonal. The rotational part of the transform is built as follows: take the user’s
supplied a vector, normalize it and use it as the final a vector, take the user’s supplied ¢ vector (which
may not be orthogonal) and build a possibly non unit vector n but orthogonal with o and a, reconstruct
0 as to be orthogonal with n and @, normalize it, and finally derive n from ¢ and a. The function rof
sets the rotational part of the transformation 2s 2 rotation around a vector possibly unnormalized, second
argument, of a given angle, third argument, expressed in degrees. The function eul sets the rotational
part of the transformation as a rotation expressed with Euler angles in degrees. Finally, the function
PPy sets the rotational part of the transformation as a rotation expressed with roll, pitch, and yaw angles
in degrees. These rotation setting functions leaves the translational part of the transform untouched.

The next set of functions are similar in form to the previous ones, except that the transform, left
argument, is multiplied by a translation or a rotation {which is quite a different thing). As usual, the left
argument transformation pointer is returned as value of the function.

TRSF PTR
“TRSF_PTR

real px,

t;
PY, PZ;
TRSF_PTR
TRSE P’IR
real ax,

vaom(t,
t;
ay, az,
TRSF_PTR
TRSF_PIR
VECT _PTR
¢ real h;

rotm(t,
£y
k;

CTRSF- PTIR
TRSF_PTIR
real phi,

eulm(t,
t;
the, ps
TRSF PIR rpym(t
TRSF PTR t;
real phi,

the, ps

trsim(t,

- 32 -

pX, Py, Pz)
ax, ay, ai1, O0X, oy, OZ)

ox,

oy, oz;

k, h)

phi, the, psi)
i;
phi, the, psi)

b

As stated at the beginning of this section, when the value of the function is unwanted, a set a macros is -
_provided. They produce the following list of names :

Assignvect Cross
Assigntr Taketrsl
Trmult Trmulinp
Invert Invertinp
Trsl Vao
Trsim ~Vaom

Unit

Takerot

Trmultinv

Rot Euli Rpy
Ro tm Eulm Rpym

As we are able to specify the rotational part of transforms with Euler or roll, pitch, yaw angles, we may
need to derive them from a given transformatlon These representatlons are not unique for a given rota-

tion. The functions are :

noatoeul(phl,
real #*phi, =*the,
_IRSF_PTR t;

nboatorp}"(phi , the,

real #phi,

*the,
TRSF PIR t¢; :

the»,

psi, t)
*psi;

psi,
*psi;>

t)

Please note that the three first arguments are pointers to the three results of the pseudo type ‘real’.

We now need to use transformation as easily as we would use simple data types in C. At the
beginning of manipulation functions, one needs to declare transformations and to allocate memory- for
them. This can be done in the following manner : '

pumatask()

{

TRSF base;

-.33 -

This way of allocatmg memory for transformations presents three major drawbacks.. The first one is that
dynamic variables, allocated in the stack, only live the duratlon of the function call. Since the execution
of manipulator programs is not explicitly synchronized with the calculation of trajectories, the function
may well exit before the requested motions are completed. All the memory space allocated in the stack
would be allocated for other purposes. ‘This will surely cause a lot a trouble because the values of the
transformations are used for the trajectory calculations. One may go around thls by writing :

statrc TRSF -base;

but the space would remain permanently allocated The second trouble is that the. value of the
transforms and other entries in the structure need to be initialized. If one chooses to use dynamic stack
allocations, one also need to’ synchronize the function such as it does not exit before the transforms are
no longer in use :

~pumatask()
TRSF base; '
base.name = "NAME”; . [* set the name %/
-base.fn = const; [* tell it’s constant =/
Assigntr(&base, unitr); - /* init to unit transform */
Trsi(&base, 0., 0., 200.); [* set it to a translation */
base.timeval = 0; _ [* reset time eval +/ :
~waitfor(completed) ' /* make sure not any more in use X/

} | g |

The third drawback is that we will most of the time refer to transforms by 'pointers and it would lead to
a heavy use the the ‘&’ operator. ‘The initialization statement for a static ‘TRSF varlable would not be

any more convenient and would be very error prone: Co :

static TRSF base = {”BASE”

const

1. 0.,

0. ,1 0 ;-

0.,0. S
0.,0. 200.
0

s

3

Although the techniques described above are perfectly viable, RCCL provides a built-in dynamlc
memory allocation system for transforms (and positions). The basic call is the function newtrans:

TRSF_PTR newtrans(n, fn)
char *n, TRFN fn»;

This function returns a pointer to a transform initialized to the unit transform. The second argument is.

a pointer to a function, either one of the user’s functions which ,as we will see, have to possess certain

properties, or one of the predefined functions const, varb, hold. Since newtrans dynamlcally allocate

memory in user space the creation of too many transformis wrll cause & program exit with the message
“mem. alloc error”. The statement :

freetrans(t);

permits the system to free the allocated memory when needed (it is implemented as a macro).

- 34 -

Other RCCL functions make use of newtrans as a short hand for common coding patterns:

TRSF_PTR gentr_trsl(name, px, py, pz)
char #name; -
real pX, P}’y pz;

TRSF_PTR gentr rot(na.me px, py, pz, k, h}
- char *name,

real px, py, pz, h;

VECI‘_P'IR k,

TRSF_PTR gentr pao(name pX, Py, D&, aX, ay, 3z, OX, .dy, 0z)
char *name; ’ . ‘ ‘ ’
real pX, Py, Pz, aX, ay, azvkox; oy, ©0z;

TRSF PTR gentr eul(name, px, py, pz, phi, the, bsi)
char *name; ’ o
real- px, PY, PZ, phl,,the, psi;

TRSF. P’IR gentr_ rpy(name px, py, pz, phi, the, psi)'
char *name; - - , : ' .
treal px, py, PZ, phl, the,_ps_i;

These functions permit us to create transformations and initialize them all at once. They all return 2
pointer to the created transforms by default set as const transforms. The first four arguments are : the
name (string), and the components of -the p vector. For creating transforms containing non unit rota-
tions, the expression of the rotational part is analogous to the previous famlly of functions. For example

TRSF_PTR t1, t2, t3; /+ declare transform pointers */

t1 = trsi(eul (newtrans("T1”, comst), 10., 20., 30.), 1., 2., 3.);

t2 = gentr_eul ("T2”, t., 2., 3., 10., 20., 30.);

t3 = gentr_t,r'sl(”TS?’, 10,02, 3.);.'
Eul(t3, 10., 20., 30); '
give three identical transforms

The last group of transformatxon related functions are i‘or output : _

- 35 -

printr(t, fp)
TRSF_PIR t;
FILE #*{p;

printe(e, fp)
TRSF_PIR e;
FILE #{p;

printy(e, fp)
TRSF_P1IR e;
FILE =*fp;

printrn(t, fp)
TRSF_PIR ¢;
FILE #*fp;
The function printr prints the numerical value of the transform, first argument. The functions printe

and printy respectively print the Euler and pith, roll, yaw angles. The function printrn prints the
name, the numerical value and the angles altogether. All these functions take as a second argument a

UNIX file pointer. As an example, the output of the following sequence of calls :
TRSF_PTIR t1, t2, t3;

¢1 = gentr _eul (*T1”, 10., 20., 30., 11., 12., 13.);
printf(”part 1\n”};

printe(tl, stdout);

printrn(tl, stdout);

t2 = newtrans(”T2”, const);
printf(”part 2\n”);
printr{t2, stdout);

Rot(t2, yunit, 90.);
Trsim(t2, 10., 20., 30.);
printrn(t2, stdout};

t3 = newtrans(”T3”, const);
printf(”part 3\n");
printrn{trmult{t3, t1, t2), stdout};

printf(”part 4\n”);
printrn(trmult(£3, t2, t1), stdout);

would be :

- 36 -

part 1 : ' , : ‘ :
‘EUL x:10.000 y:20.000 2:30.000 phi:11.000 the:12.000 psi:i3.000
T1 : o S
0.893 . -0.402 0.204 -10.000
0.403 ~0.914 0.040 20.000
-0.203 0.047 0.978 30.000 :
EUL x:10.000 'y:20.000 2:30.000 phi:11.000 the:12.000 psi:13.000
RPY x:10.000 y:20.000 ©2:30.000 phi:24.280 the:11.688 psi:2.738
part 2 ' ‘ o v
71.0060 0.000
0.000 - 1.000
- 0.000 -~ 0.000
T2 + - » o
0.000 - 0.000 -1.000 . -30.000
0.000 1.000 0.000 20.000
-1.000 0.000 0.0600 -10.000 ‘
EUL x:30.000 y:20.000 2:-10.000 phi:0.000 the:90.000 'psi:0.000
RPY x:30.000 y:20.000 z:-10.000 phi:0.000 ‘the:90.000 psi:0.000
part 3 - : - - ’ .
T3

.000 -~ 0.000
2000 0.000
.000 0.000

-0 Q

-.0.204 -0.402 - 0.893 = 26.700
<0.040 0.914 0.403 49.973
-0.978 0.047 -0.203 15.076 . -
EUL x:26.700 y:49.973 2:15.076 phi:24.280 the:101.688 psi:2.738
RPY x:26.700 y:49.973 2:15.076 phi:-169.000 the:78.000 psi:167.000
part ‘4 : , : :
T3 : v
-0.203 0.047 @ 0.978 60.0090

0.403 0.914 '0.040 ~40.000

-0.893 0.402 -0.204 -20.000 : S
EUL x:60.000 y:40.000" 2:<20.000 phi:2.323 - the:101.776 psi:24.240
RPY x:G0.000 y:40.000 2z:-20.000 phi:116.707 the:63.207 psi:116.922

This should also suffice to remind us that the matrix product {and also orthogonal transforms products) is
,notconunutaﬁve :

4.4, Dxﬁ'erentxal Motions and Forces.

" Although RCCL do not explicitly use the structured representatxon of differential motions or gen-
eralized forces in manipulation primitive calls, they are made available to the user. A differential motion
is expressed in terms of a differential translation vector and differential rotation vector. A generalized
force is. expressed in-terms of a lmear force vector and a moment vector. The corresponding structures
are: '

typedef strdct difi {
| VECT t, r;
} DIFF, *DIFF _PTR;

typedefl struat force { »
» " VECT f, m;.
} FORCE, *FORCE_PTR;

" The associated functions are :

DIFF_PTR assigndiﬁ(t, o)
reglster DIFF PTR ¢, o;

TRSF_PTR df_to_tr(t, d)
register TRSF PTR t; =
regrster DIFF_PIR d;

:DIFF PTR tr to df(d, t)
‘register DIFF PTR d; -
register TRSF_PTR t;

_ DIFF_PIR difitr(dt, d, tr)
- register DIFF_PTR dt, d;
register TRSF P'IR tr;

printd(d, f ._)'
DIFF PR d;
FILE™ *1p;

FORCE _ P’IR assrgnforce(t o)
reglster FORCE PIR t, o;

-FORCE_PTR fo_rcetr('ft_, f, tr)
“register FORCE PIR f¢t, f;
register ’IRSF_P’IR_tr;_

printm(d, fp)
FORCE_PTR d;
"FILE #*fp;
The function ass!gndlff performs a copy of a drﬂ'erentlal motion structure The functlon ar to tr bullds
a transformation out of a differential motion. The function tr_to_df builds a differentia! motion struc-
ture, given a transformatron The function diﬁtr transforms a differential motion expressed with fespect
to one frame into the same differential motion expressed with respect to another frame. For example if

Plifa frame expressed in base coordinates and P2 its transformation by T such as:
P2 =T P1

A differenfial motion expressed wrth respect to P, is obtalned expressed. wrth respect to P2. The left
argument of difftr is the output argument : the transformed differential motion, the second argument is
the original differential motion and the third argument is the transform expressing the differential rela-
tionship. The prind function prints on one line a differential motion. .

The functions assignforce, forcetr, printm. perform analogous processmg of generallzed forces
and torques.. Note that if the forces are expressed in Newtons, torques must be expressed in Newton-
millimeters since distances are in mllhmeters, the conversions are straightforward. As for other functions

of that kind. the following name can be used mstead if the returned pomter is not used :

Assrgndrﬂ' - Difitr : .Df__to__tr ' Tr_to_df
Assignforce Forcetr : o -

For example, the following sequence of program statements :

- 38 - .

DIFF Dp1, 'Dpz“
FORCE Fpl, Fp2; R ‘ ‘ . :
‘ IRSF;PTR‘t = gentr pao(”T” 10.,5., 0., 1., 0., 0., 0., 0., 1.);
"fvprinﬁrn(t, stdout); '

Dp2.

t.x = 1.;
Dp2.t.y = 0.5
Dp2.t.z = .5;
Dp2.r.x = 0.;

© Dp2.r.y = .1
“Dp2.r.z2 = 0.;

printd(&Dp2, stdout}; - :)
printd(difitr (&Dpl, &Dp2, t), stdout);

"Fp2. 10.;

f.x =
Fp2.f.y = 0.;
Fp2.f.2 = 0.;

o Fp2.m.x = 0.;
‘Fp2.m.y = 100°;
Fp2.m.z = 0.;

printm(&Fp2, stdout) SRR
prantm(forcetr(&Fpl &Fp2 t),v.stdou_t);

wnll produce the followmg output :

"0.000 ©0.000 1.000 * 10.000
- 1.000 ~ 0.000 0.000 5.000
. 0.000 © 1.000 ~ 0.000 0.000 L
EUL x:10.000 y:5.000 z:0.000 phi:0.000 the:90.000 - psi:90.000
RPY x:10.000 y:5.000 z:0.000 phi:90.000 the:0.000 psi:90.000

tx 1.0e+00 ty 0.0e+00 tz 5.0e-01 rx 0.0e+00 ry 1.0e-01 rz 0.0e+00
tx 0.0e+00 ty -5.0e-01 tz 1.0e+00 rx 1.0e-01 ry 0.0e+00 rz 0.0e+00
fx 1.0e+01 fy 0.0e+00 fz - 0.‘0e+00 mx . 0.0e+00 my 1.0e+02 mz 0.0e+00
fx 0.0e+00, fy _0.0e1+»00v fz 1.0et01 mx 1.0e+02 my 5.0e+01 mz 0.0e+00

- 4.5, Events .

'RCCL uses the notion of event to synchromze the user’s program with the manipulator motions.
‘Motion requests are entered into a queue at a given moment, and executed on the basis of the first in,
" first out, when all the prevnous request are served. The ﬁrst snare one can run ‘into is deplcted by the fol-.
lowing : _ TR - o S
‘ for (l’-—O 1<10000 Hl){

move (pl); '
, move (p2);

The almost ‘infinite’ loop being asynchronously executed, the queue will be become saturated in a few

* . milliseconds: In this situation, we have éhosen to cause an error condition since it will most of the time

be the result of a program flaw. In many occasions an evént will be needed to expllcltly synchronlze the
_progra.m wnth the arm motlons say for opemng and closmg a gnpper

-39 -~

An ¢vent, is defined in RCCL as an integef :
~ typedef int event;

An event is essentxally a count, if posmve it represents the number of processes waiting for the oc-
currence. Occurrence of an event decreases the count by one, when the count drops to zero, no process
are waiting for it. RCCL maintains the built in event completed that occurs when the motion queue "
becomes empty. The user’s program may use the primitive waltfor 1mplemented as a macro, to syn- .
chronize with events, for example : ‘

move(pl)
~ move(p2);
" move(p3);
wa:tfox’(comp!eted)
prlntf(the arm has reached p3’, proceeding. \n”)

or else, using the event called ‘end’ assocnated wnth each position :

move(pl);
move (p2);’
move (p1);
move(p2);
OPEN;
waitfor(pl- >end)
CLOSE;
waltfor(pQ >end)
OPEN;
- waitfor(pl- ->end)
- CLOSE; :
~waitfor(p2->end)
OPEN;

to realize synchronization of gripper actions.

- 40 -

5. ‘Task Description

‘ Describing a task consist of specifying positions to be reached in space and motions to these posi-
tions. RCCL implements structured positions descriptions, and asynchronous motion requests.

5.1.. Position Equations

Position equations do not necessitate the use of absolute reference coordinates. Position equations
are one representation of the more general concept of transformation graphs. The position relationships
of the frames F; ;= , can be expressed in terms of transformations products. Let a transformation T
describe the position of the frame F;,, relative to the frame F; with T, describing the transformation
from frame £, to Fy, we have : o .

‘ . : ' ' T, Ty -+ T, = Hdendity

A closed path of transformations from frame F, to frame F,, via the frames F; j=;, describes the posi-
tion of F; with respect to itself : the identity transform. The situation is depicted by a directed closed
graph : oo

T1 T2
eee>F1 -=->F2 --->F8 Fn
l |
To

where the vertices are frames and the arcs transforms.

Given a set of frames, containing two frames A and B, we can certainly find mbre than one path
connecting A to B. Let the frames on one path be called F; =1, and the the frames on the other path
be called G; i=1,m, We obtain : ’ ’ :

_To Ti . T2 Ta
--->F1 --->F2 --->F3 Fan --->
A , . ' S B
o> Gl --->G2 --->G3 ..., Gn --->
RO R1 - R2 " Rm
The corresponding transformation equation is : v
ToT1T; -+ Ta=RoRy -~ Rp

Closed transformation graphs can be expressed in terms of a set of transformation equatiohs. Transfor-
mation graphs can be generalized, but we will restrict them to the form above.

RCCL uses transformations equations in order to describe the positions the manipulator has to
reach. We will first introduce the dedicated transform T6. We are dealing with manipulators having six
links and six joints, labeled from 1 to 6. The base of the manipulator is labeled link 0. Each of the
manipulator links is assigned a frame A; describing its position with respect to the previous one as . a
function of the joint variable. The position of link 1 is described with respect to the base. The transfor-
mation product : ' T ’ :
' T6=A1 e As

describes the position of the last link with respect to the base. Note that for thé manipulators we are
dealing with, it is convenient to assign the last three frames at the intersection of the three last joint
axes. Therefore, T6 does not take into account the end effector description.

- 41 -

By convention the following transform decompositions are given
Ti= Al

T2=Al1A2
T3 = A1 A2 A3
T4=A1A2A3 A4
T5=A1 A2 A3 A4 A5
T6= A1 A2 A3 A4 A5 A6
Us=A6
Us = A5 A6
U4 = A4 A5 A6
U3 = A3 A4 A5 A6
U2 =A2A3 A4 A5 A6
Ul=A1A2A3 A4 A5 A6
T6=T5U6=T4U5=T3Us=T2U3=T1U2

Let us set up a position equation that structurely describes the situation when the manipulator is to -
grasp an object lying on a table. We first need to assign frames to each of the elements involved :

- A frame is assigned to the shoulder of the mampu!ator ;8.
- A frame is located at the last link of the manipulator : M.
- A tool is attached to the link 6, the frame T is assigned to the working end of tool.
- A frame W describes the pdsition of the working table.
. The position of an object lying on the table is described by 0.
- A grasp position is described by the frame G
Suppose that the manipulator is moving such as to grasp the object, the corresponding graph is :

In order to turn this graph into a transform equation, we first need to orient the arcs and label them with
transforms. The choice ic arbitrary but a convenient possibility is :

T6 TOOL DRIVE
----- >M---e->T <-----
l i
5 G
I |
<-eve- Wooeee- >0 ----- >
BASE OBJ GRASP

where TOOL , BASE, GRASP, OBJ are predetermined transforms. The transform T6 is to be-changed
such that the transform DRIVE comes to identity for the manipulator to reach the desired position, or in

other words, such as the frames 7 and G become identical. The way the DRIVE transform changes ‘
(and therefore T6) as a function of time determines the way the frame M and T move with respect to S,
W, 0, or G (Note that no absolute coordinate system is involved and we could say that S, W, O, and

- 42 -

G mbve_.w_it‘h'respe’ct -_to‘M;_and T). ‘
"The'equivalen_t_ equation of the position can be written @
R ‘ ’ _BASE T6 TOOL = OBJ GRASP DRIVE
The equation of the final desired position can be written :

BASE T6 TOOL = OBJ GRASP

' Tranéforma.tions‘ equations can be rewritten, solved for any of the terms, or replaced by equivalent ones. -

For example, we have : , . :
' : BASE T6 = OBJ GRASP TOOL™

_ T6 = BASE™ OBJ GRASP TOOL™ -

, . T6= COORD POS TOOL™ it COORD = BASE™ ,POS = OBJ GRASP’

" The RCCL function makeposition permits the user to set up such a position equation. The set-
point process will automatically compute the terms of the DRIVE transform such that the resulting
motion possess certain properties. The makeposition function expects a variable number of arguments.
“They represent the left hand side of the equation, the right hand side, and a transform that will tell
which frame is to be considered as the tool frame, the frame -T in the example above. Assume that the
transforms, BASE, TOQL,,QBJ ;and GRASP have been created via RCCL calls, and that we have the
“respective transfbrms pointer available : base, tool, obj, and gresp. The ‘C’ definition of the function
makepositionis: - : : ’ / ' ‘

POS;PTR-Maképositibh(n; Ihs .|, 1hs] ..., EQ, rhs, [, rhs] ..., TL,
char *n; [S . :
"IRSF*P’Iths‘.r..V,'xh's 2

and thé‘ call corresponding to the above example is: R

- POS_PTR p; % a p'o"s'i tion pointer */

S p = makxepbsvi »t;i:von"(;"?P”‘,‘»vbbra'se-,') t6, “tool, EQ, obj, ‘g"r:zisp,_ TL, tool);
The names ‘EQ’ and “TL’ are predeﬁhed constants. The function makeposition returns a poirit’er to a

ring data structure implementing the transform graph. The first argument is a string, the name of the

position. The transform pointer t8, is built in RCCL; and predeclared in recl.h. As'the position data -

structure is built, makepqsition calls the fupéti’on optimize in order to premultiply all possible p@irs_ of
~ constant tranSfor.maLion {declared as comst), in order to decrease the run time computing load. The
function optimize will internally -replace the user specified position equation by an equivalent canonical
form : : . : B o Do o -
. . T6=COORD POSTOOL
The terms COORD or TOOL of this canonical form can be missing. - The'calls: .
makeposition(”P17, t6, BQ, h, TL, t6); .
makeposition(”P2”, t6, t, EQ, h, TL, t); .
makeposition(”P3”, t6, t, EQ, h, g, TL, t6);
lead to the following canonical equations : - N v ;

T6= POS COORD = Nonc, POS = H , TOOL = None
'T6 = POS TOOL COORD = None, POS = H, TOOL = T™!
T6 = COORD POS - COORD = H G, POS =T ™, TOOL = None

o 'T_hére is'ap ,afbit;ary numbet of argumeiﬁt-_'.tran‘stor‘_m' p:(‘)ivnters,fpr, makeposition. The only ,restfic-
tion is that the left hand side of the equation must contain the predeclared pointer t8 and the right hand

tl')‘

< 43 -

side must contain at least one transform. The transforms can arbltrary belong to one of the following
categories :

const : A transform of this type will be considered as constant through out the life of the corresponding

varb :

hold :

position equation. Its value must not be changed, as the system can decided to premuitiply it with
another transform such as it may not appear in the internal equation used for the trajectory calcu-
lation. This is the default type of the functions of the style gentr ... and it is the type that one
should use when possible.

A transform of this type will not be premuitiplied by the optimization function and its value will
be used directly during the trajectory calculation. One sometimes meed to change the value of a
transform after the equation has been set up. If the change occurs while the equation is evaluated,
the change will instantaneously be refiected in the manipulator’s trajectory. This can cause jerky
motions if the change is large and it should be carefully used. The function update described later
on, knows when to change the value of the transform when it is safe.

A transform of this type is not directly used in the position equations, but a copy of it. We will
see that move requests are asynchronously issued and that a number of them can ve specified
ahead of time. A hold transform belongs to the subsequent motion request and its value is taken
into account only when the corresponding motion is actually performed.

The last category is the class of the functionally defined transforms. These transforms are attached
to a function belonging to the user’s manipulator program. The function is expected to compute
the values of the transform as the corresponding motion is performed. The function is executed at
interrupt level and therefore, is expected to have a reasonable execution time. As described in [6],
these functions cannot perform any type of system calls, (prints, reads, etc...). If the function
computes the values of the transform as a function of external data, one can obtain tracking. If the
values are computed as a function of time, one obtains functionally defined trajectories. We shall

call such a function a background function.

The type of a transform is indicated in the ‘fn’ field of the transform structure, a few examples :

- 44 -

int mjfunction();
: t,1 = v‘gentr_trsl(”Tl”, 0., 0, 0-)";
42 ._': ’ne;Vtra'nS(”TT» Conslt)f-

t3 = newt,ransr("T3”,.Val'b)?

t4 .= gentr_| trsl("T4”, 0., 0., 0.,); . :
"_;.‘t4->fn = hold; . . R

5 = gentr rot(*T57, 0.,-0, 0 zunit, 90.);:.
: ‘t5->fn = myfunctron , R

6 = newtrans(T6", myfun‘ction);‘
Rot(t6, zunit, 90.);

t1 s a regular const transform initialized to the unit value. -
t2 is a regular const transform initialized to the unit value.

t3 i a transform initialized as a unit transform of type varb.
t4 is first created as const but is turned into a hold transform.

t5 s first created as const but is turned into a functionally deﬁned transform attached to the function »
’myfunctlon and is initialized as a rotation of 90 degrees around the Z axis.

t6 is created as functionally defined, and then initialized as a rotatlon of 90 degrees around the Z
axis. .

The makeposltion function rmplements a restricted case of transformatrons ‘graphs. This limita-
tioni may be removed one day. When multibranch transform graphs are required, the user must imple-
ment it in terms of the basic graph described above and a combination of other RCCL functron like Rot,
Trslm, Trmult, Invert, and 30 on.. The varb and hold features are then very |mportant

‘1t is now time to introduce the position structure as described in the file recl.h.

vtypedef struct.posit {
char *name;
int code;
real scal;
event end;.
} POS, *POS_PTR; ’

The first entry in the structure is the name of the posrtlon The same remarks can be made as for the
transforms structures. The name is not directly relevant from the robot control point of view, but may
help in debugging. The second entry code is a termmatron code for the correspondmg motion. Internal
code values known by RCCL are currently

#define OK' -1
#define LIMIT -2
#define ONF -3
#deﬁne OND -4

After the posrtron has been reached the code is set by. the system to the value ‘OK’ if the motion has not
be ‘interrupted by some condition. The value ‘LIMIT' means that the motion caused some joints to -
dangerously approach their physical stops. RCCL automatically issue a stop to the current position. It
is then possible to recover from this error condition as explained later. The code ‘ONF’ means that a
prespecrﬁed force condition occurred and the code ‘OND’ that prespecified drﬂ'erentral motion condition

- 45 -

occurred. The next entry is a floating point number ‘scal’. The value of the field ‘scal’ varies from 0 to
1 as the motion is performed, and is useful for generating ﬁ'unctlonally deﬁned motions or to trigger some
action at'a given point of a trajectory. The entry ‘end’ is classified as an event. It allows the user to
synchronize the program flow with the execution of trajectories. The use and the function of the fields
_‘code’, ‘scal’, and ‘end’ will be explained in more detail as we go on. :

When a position is no longer needed, memory space can be retuned to the memory pool by :

freepos(p)
POS_PIR p;

Care must be taken so that the corresponding data in no longer in use. Transforms involved in the
corresponding equation are not freed, an must be individually freed using freetrans.
5.2. Motion Description

RCCL implements two basic types of motions known as joint mode and Carfesian mode. The first
one consist of solving for T'6 the position equation of the goal position at the beginning of the motion
and obtaining for it the corresponding set of joint values. The trajectory is then generated by linear
interpolation of the joint values from the current position to the goal position. This type of motion
should be used for large motions as it requires the minimum joint motions and less computations. High
velocities can be obtained, however trajectories are not always easily predictable. The Cartesian mode
makes use the DRIVE ‘transform to produce straight line trajectories for the too! frame. The transform
equation is evaluated for 76 each sample time interval and the set of joint values obtained. This type of
motion permits us to obtain well predictable trajectories. If the position equation contains functionally
defined transforms, the associated functions are also evaluated at sample time intervals. The values
resulting from these evaluations will directly influence the arm trajectory. In that case the structure of
the position equation must be carefully considered.

5.2.1. The Basic Move‘ Statement
The basic function definition is :

move(p)
POS_PIR p;

The call :
move(pos};

where ‘pos’ is a pointer to a position equation returned by makeposition. instructs the system to move
the arm toward the described position such as the equation becomes verified. When the arm is moving
from position to position, transitions occur between each path segment. It is important to-smooth out
the velocity discontinuities that would be caused by an abrupt change of direction and velocity from one
path segment to another. There are a number of options and parameters that can be set globally or for

each path segment.

5.2.2. Setting Options and Parameters

The first group of parameters remains set until set to another value. The following calls cause a
setting of the parameter starting at the next move request :

- 46 - .

setvel(tv, rv)
int tv, Tv;

‘setmod (m)
int m;

setconf(c)
char *c;

\ sa.mple(s)"
int s;

The setvel call takes two integer arguments. The first is the desired transiational velocity of the
tool frame in millimeters per second, the second one is the rotational velocity in degrees per second. The
system will calculate the path segment durations to obtain the desired velocities. Since rotational and
translational velocities lead to different durations, the system will pick which ever is the iongest. One
can give the priority to one or another by specifying very different vaiues. For example, suppose that a
motion involves a 30 millimeters translation and a 30 degrees rotation, the call :

setvel (30, 300);

will result in a 1 second motion due to the translation, and not an unre»asonable 1/10of a second motion
to perform the rotation. The function setmod defines the mode, Cartesiqn,or‘ joint, for the subsequent
motions. The argument must be the character ‘¢’ for Cartesian mode, and ‘j’ for joint mode. For exam-
ple : R : ' :

| POS_PTR p, pl, p2;

| int i, m;
Copl = makeposition{...);
p2 = makeposition(...);

for (move(p2), i = 0; i < 10; ++i) {
it (i%21=0){ :
s m = "¢’
p = pl;
)} else { -
m="j";
P = pZ;

setmod (m);
. move (p);

R
will cause the arm to move from p2 to pl (i odd) in Cartesian que and from pl to p2 (i even) in Joini
mode. For C experts a more concise version could be : - e '

| for (move(p2), i = 10; i--;) { ‘

: ‘setmod((m =i % -2) ? ‘¢’ : i’);
: move(m ? pl : p2);

o | |
- In joint mode the segment durations are computed based on the distances between the frame T6 at each
end of the segments, since this type of motion is joint oriented. The function setconf permits us to

obtain an arm configuration change during the subsequent motion. This motion has to be performed in

- 47 -

joint mode, since 2 configuration change always involves a degén‘ei’ate arm configuration unreachable in
Cartesian mode. Once the configuration change is obtained, thie motions can again be performed in
Cartesian mode. For the PUMA arm, the configurations can be : shoulder righty - lefty (r/l); elbow
down - up {d/u); wrist flip - noflip (f/n). The argument is a string specifying the configuration change.
For example, if the arm is lefty, up, noflip (“lun”), in order to obtain a wrist: configuration change to flip,
the arm remaining lefty and up (“luf”’}, we code : :

/* the arm is currently "lun” =/

setmod('j’); /* go in joinmt mode if it was'nt */
setconf{”f”); /* specify flip */
move(new); [* go "luf” =/

Note that several letters can be specified in the string argument. A program with many configuration
changes is safely terminated by :

setconf(”lun”);
move (park};

The function sample allows us to change the sampling period of the whole system. Currently valid
sample rates are: 14, 28, 56, and 112 milliseconds. However the function rounds down the specified value
as : sample(15) leads to 14, sample(30) leads to 28, etc. The default value is 28 milliseconds which is a
good compromise for most applications. The 14 millisecond rate is helpful for iracking applications, but
it is good practice to reset the rate to 28 or 56 when not needed. - »

The next group of functions cause the parameter to be taken into account for the subsequent move
request only.

setime(ta, ts)
int ta, ts;

evalfn(fn)
int (* fn)();

distance(s, v[, v] ...)
char *s, real v;

A call to setime allows us to force the motion to be performed within a given period of time. The first
argument specifies the duration of the transition time at the end of the segment, and. the second argu-
ment the duration of the segment itself. Times are specifies in milliseconds. Besides the cases whea
motion duration is the primary factor, this call serves two purposes. At the present time no call has been
implemented to force a rate at the joint level. The consequence is that the system is unable to compute
the correct segment duration to perform a configuration change, since the same position can sometimes
be reached in different configurations. A duration calculation based on distances i3 in this case meaning-
less. Therefore, the user must explicitly specify the motion duration. For this reason a macro has been

included in recl.h:

g#define moveconf(p, ta, ts, cf) ,
{setconf(cf); setmod(’'j'); setime(ta, ts}; move(p);}

The example above can be more conveniently coded as :
moveconf(new, 100, 700, e

The configuration change will be performed in 7/10 of a seconds with a 1/10 of a second. transition time.
The function setime is also very useful for functionally defined motions. When a position equation
includes functionally defined transforms, there are situations when the system cannot compute the’
correct segment duration based on the distance of the goal position because it can depend on arbitrary
factors. Likewise a macro has been added : ‘ '

- 48 -

#tdefine movecart(p, ta, ts) - {setmod(’c’); setime{ta, t3); move(p);}
The code would be :
movecart{spiral, 300, 2000);

perform a spiraling motion during 2 seconds with a 3/10 of a second escape transition. In the cases when
the segment duration calculation is left to the system but the acceleration time still needs to be explicitly
specified, the call : o ‘ » ' '
_ setime(200, 0); » T !
forces the acceleration time to be 2/ 10 of a seconds but the segment1 duration, being left unspecified, will . '
be computed by the system. On the other hand, it is sometimes necessary to specify a zero acceleration
time, meaning that no transition is desired. This is useful for some slow motions terminated on condition

and when the reaction time is of primary importance, - The acceleration time can be specified as zero:
‘setime(0, 1000); .- » '

The function evalfn cause the function argument to be evaluated during the execution of the
corresponding motion. One thus can code any needed synchronous processing. The first application is to
perform some monitoring of external condition in order to interrupt a motion. For example, a flag called
nextmove , causes at any moment the current path segment to terminate and the manipulator to transi-
tion to the next. Other applications can be to trigger some action at a precise point of a trajectory. For
' this the field ‘scal’ of a position structure can be used. The user’s function given as argument is exe-
cuted at sample time and therefore bears the same restrictions as the background functions of function-
ally defined transforms : short processing, no read, prints and so on. This type of function will also be
called a background function. ’ : ‘ '

- The function distance specifies a distance modifier for the goal positions. Modifications are
expressed in the tool frame. The first argument is a string specifying the directions. Each direction is
expressed with two letters. The first letter can be either ‘d’ or ‘r’, standing for ‘distance’ and ‘rotation’.

The second letter can be either ‘x’, ‘y’, or ‘z, standing for the principal axes of the tool frame. A valid
directions specification is.: ' . »

7dx rz” : translat ion along X, ' rotation aro_u;nd X ‘
The reméining argufrlents afg the magnitudes of the modifications. For example :
‘ “distance(”dz”, -30.);

‘move(p); Feo

move(p);

" implements a ‘approach’ style motion in the ‘Z’ direction of the tool. Modifications are obtained by
internally . multiplying the POS part of the canonical transformation equation by a modification
transform. Any combination of directions can be specified, however magnitudes should remain small for
rotations. The function distance is also very usefull for ‘motions terminated on condition to purposely
specify an overshooting motion. - L ‘ ' :

When a stop.is needed the -éall :
‘stop(n);

Where u! is a duration in milliseconds r_e;iea& the last move statement with all it’s attributes, except the
time attributes. For example : : S : o

- 49 -

evalfn{myfunction); ‘
~distance(”dx ry”, 10., 3.);
move(p);
evalfn(myfunction);
distance(”dx ry”, 10., 3.);
setime(200, 2000);

move(p);

is more conveniently written as :

evalfn(myfunction);
distance(”dx ry”, 10., 3.};
move(p);

stop(2000);

5.3, Synchronizstion

A more delicate programming of the time aspect is the price paid for the gain in flexibility obtained
by the motion queue feature. Synchronization is basically achieved by ‘suspending’ the execution of the
user’s program while motion requests are performed. This is can be done in two ways or by a combina-
tions of both. The program execution is suspended when spending time performing computataons and
input output. Suppose a program that interacts with a user or with some long response sensor, we obtain
the following pattern :

TRSF PIR z, e , b;
POS_PIR p;
double iz;

z = gentr_trsi(”2”, 0., 0., 864.);
e = gentr_trsl(”E” , 0. , 0. , 170.};

b = gentr_rot(”B”, 600. , 128., 800., yunit, 180.);
b->fn = hold;

p = makeposition(”P” , z, t6, e, BQ, b, TL, e);

for (; ;) {

printf(”enter Z increment ”);

scanf("%f”, &iz);

b->p.z += i1z,
: "move(p);

}

Each time the user enters data via ‘scanf’, the value of the B transform is changed, since its type is hold
the new value is entered in the motion queue as well as the motion request itself and the next loop
immediately prompts the user for 2 new data entry.” If the user enters data quicker than the manipulator
can move to the goal positions, she or he will be able to enter several requests ahead. If the user stops
entering data, the requests will eventually be served, the manipulator brought to rest and the program
execution suspended at the ‘scanf’ instruction. If the data is provided by some external device, say
another computer, 2 file ,or a sensing device the program will look like =

for (; ; } {
gettr(b, device);
move(p);

}

where ‘gettr’ returns a new transform value. The data is obtained asynchronously with respect to the

- 50 -

motions, consequently two situations can occur. Either the external device is faster and the queue will
fill up, either-the arm is faster and it will wait for new data. In both cases we obtain an optimal utiliza-
tion of resources. The only problem is to prevent the queue from becoming saturated. The external
variable requestnb is maintained by RCCL as the number of non served motion requests We can now
introduce the primitive waltas (a macro) that takes as argument a predicate :

waltas(pred)

~ The macro waltas suspends the programs execution until the predicate becomes true. The fina! version
of the loop is : . ‘ :
S for (; ;) { ;
o ~gettr(b, device});
~ waitas(nbrequest < M%.X;
“move(p}); Lo :

\.}

The pnmmve waltfor (a macro) suspends program eXecution until occurrence of an event. We
have seen that the ‘end’ event is associated with each position record. One application is to obtam a
gnpper opening and closing at given moments The pattern of code :

‘distance(”dz”, -30)
‘move(p); . :
move (p});
distance("dz”, -30.);
move(p);

implements a possible position approach reach and depart’ sequence. . To obtam a synchromzed gripper
opening and closing; the pattern is :

distance(”dz”, -30..);
move(p); .
move(p); - L
distance(”dz” , -30.);
,move(bp) PR

waitfor(p- >end)
OPEN; :
wartfor(p >end)
CLOSE; .

The program is first suspended until, the ‘approach’ position is reached, opéns the gripper, waits for the
position to be reached, and closes the gripper. One other application of waltfor is to obtain a suspen-
sion of the program until all the requests are served. - For example suppose that a function allocates posi-
tions and transforms that have to be freed of upon termination of the functlon, we must make sure that
all the requests are executed before doing so :

dothat ()

{
TRSF_PIR t1 = gentr_

TRSF_PTR t2 = gentr_
POS_PTR pl = makeposition(
POS PTR p2 = makeposition(.
move(pl);

move(p2};

move(there);
waitfor(completed);
freetrans(tl);
freetrans(t2);

“'freepos(pi);‘
freepos(p2);

return;
) o |
The following program makes use of the there position that always refiects the position that the manipu-
lator is occupying at the end of the previous path segment. Thus, when the waltﬁ'or statement is issued,
we are sure that all the prev1ous requests are served and the correspondmg positions are no longer in use.
Note that the statement :

waitas(requestnb == 0)

would do equally well. .

Another way to obtain synchronous actions is to trigger them from a motlon associated background
function. For example a gripper opening can be specified at a given point of a trajectory. We will make
use of the external variable goalpos, which is an ordinary position pointer updated by the system such
as to point at the position equation currently being evaluated. It can be uséd in the main program to
decide which position equation is currently being evaluated. The backgrourd functions can also use the
pointer goalpos to access the fields of a position structure, and the use of several global position pointers
can be avoided. These ﬁ‘unctlon can then be written independently of a given motion statement. ’

pumatask()

{

int openfn(};

evalfn(opéhfn);
“move(p);

3
opénfn()

if (goalpos->scal > .5) {
, ~ OPEN; ‘
b

or using an event

event openit = 0; /* global variable */

pumatask()

{

‘ int openfn();
évaifn(bpénfn)'
move(p);
wa i tfor(open: t)
OPEN

¥

openfn()

{

if (goalpos->scal > .5 && openit > 0) {
7 --openit; '

¥
Yet another possibility would be :
pimatask()

{
moveée(p); ’
waxtas(goaipos == p && p->scal > .5)
. OPEN; o

}

According to the situation, different combinations of these techniques can be used. Libraries of

- 53 <

customize ¥ functions or macros could be written to best suit the reqmrements _

The ‘wait’ style primitives have the property of suspendxng the program execution until occurrence
of an evexnt or condition. One must be aware that the following code pattern :

move (p0);
~waitfor(p0->end);
move(pl);
waxtfor(pl-)end);
or

move(p0);
waitfor{completed);
move(pl);
waitfor{completed);

causes each position to be evaluated twice, since a new request is entered into the queue only when the
previous is completed. At that time, the system finds the queue empty and reissues a move to the last
position. . ‘ '

In more detail we show the body of the macros waltas and waltfor

#define waitas(predicate) {while(!(predicate)) suspendfg();}

#define waitfor(event) {++(event); while(event > 0) suspendfg()'}

The function suspendfg merely suspends the foreground program or user’s process during a short penod ,
of time (currently .1 second) The ‘setpoint’ process, running in background at high priority maintains
the events associated with positions and the event completed. The code in the setpoint process looks

like :

newm = dequeue(&xﬁqueue); [* try to get a new request | * [
if (newm == NULL) { - /* then none * [
--completed; . /* signal queue is empty * [

}
Consider the following situation :

move (p0);
move(pl);

/* do a lot of computations and/or io */
waitfor(p0->end};
If the sequence of code between the move requests and the wait statement takes more time to execute

than the motion to be performed, the task will not hang at the level of the wait statement

One additonal point has to be considered, suppose we have the following situation :

- 54 =

move{p0};
distance(...);
move(pO);
distance(...);
move{p0);

move (p0});

‘waitfor(p0->end)

~ /* do something */
waitfor(p0->end)
/* do another thing */

In this sequence of code the ‘p0->end’ event will occur four times, but will be waited for only two times.
It the sequence of code is in a loop, an unmatching number of moves and corresponding waits will shift
the synchronization each loop by the difference. One way to get around that is to reset the event count
prior to issuing the move requests : '

for (...) { v
p0->end = 0;
move (p0);
distance(...);
move (p0);
distance(...);
move(p0);
move (p0);

waitfor(p0->end)

/* do something */
. waitfor(p0->end)

[+ do another thing */

)

5.4. Functionally Deﬁnéd Motions'_ -
One of the principal features of RCCL is the provision for functionally defined motions. They are
approached in very general terms. Except the' POS transform of the canonical equation, any of the
transforms of a position equation can be functionally defined. We will look in this section at transforms
as functions of time. Let us examine again the typical transformation graph of a Cartesian motion :

T6 . TOOL DRIVE -
B >M----- >T <----- '

I |

S G

| | l

<z Woeeon- >0 ----- >

BASE ~ OBJ GRASP

We notice that the transforms T6 and DRIVE are themselves function of time. The system internally
computes the values of the DRIVE transform such that the frame immediately on its left, T, moves
along straight lines and rotates around fixed axes with respect to S, W, O, or G. One might notice that
the combination T TOOL can be considered as a single transform function of time such that :

T6 TOOL DRIVE '=CONSTANT '

The DRIVE transform can be broken down into a translational part and a rotational part :

- 55 —

DRIVE = D, D, ,
The D; transform determines the path of the center of rotation, while D, determines the rotation itself,
which is a motion that one can easily visualize. The decomposition

DRIVE =D, D

is also possible but the second transformation cannot be a pure translation in the general case. It is also
more difficult to visualize, because any change in the rotation part will also cause a change in the final
translational position. Actually, this situation occurs for the transformation produci T6 TOOL , which
behaves symmetricly with respect to DRIVE. This effect can be observed when a manipulator equipped
with a tool performs a pure rotation around the tip of the tool : the manipulator must perform transla-
tions and rotations whereas pure translations only require translations. This must be kept iz mind when
introducing functionally defined transforms in the position equations. It is important to carefully deter-
mine the placement of the center of rotation when laying out a functionally defined position equation.

For simplification we shall assume that the goal position has been reached so that the DRIVE
transform is reduced to unity. We shall also only keep two frames, the world frame W, and the tool
frame T. Let T(t) and R (¢) two transforms, pure translation and pure rotation function of time. The
four graphs leading to pure translations and pure rotations in world or base coordinates and then in fool
coordinates are :

Pure translation in world coordinates :

T6 TOOL
----- > cene>
l I
w. T
| l
R >

BASE T(t)

T6 TOOL
----- > cenae>
! |
w T
| | |
L Lonmen
BASE T(t)

As mentioned before, pure translations lead to pure transiations, no matter what frame we are
working in. The difference between these two cases is that if T(t) changes along a principal direction,
the frame T will also change along a principal direction in world coordinates in the first case, and in fool

coordinates in the second case.

Pure rotation in world coordinates.

T6 TOOL

-~ 56 -

Pure rotation in tool coordinates :

T6 TOOL,
----- > -ene->

| |

W T
| |
Ceemnn Leenm

BASE R{t)

. The first case will cause the center of rotation to be fixed with respect to W (move with fespect to
T). The second case will cause the center of rotation to move with respect to W (be fixed with respect
to W). We leave to reader the writing of the corresponding equations. Armed with this comnceptual tool

we can introduce actual examples.

- B7 =

1) The first example defines two locations that dlﬂ‘erby position and orientation. The two posi-
tions are described with. respect to a méving frame in world coor linates. ‘A loop causes a motion back
and forth from one position to the other. The final motion translates along the Y axis. ‘

1 #include "rccl.h”

2 v

3 pumatask()

K TRSF PTR z, e , b, pal, pa2, conv;

6 POS_PTR' p0, ptl, pt2;

7 int convfn(); '

8 int i; '

9 : o ,

10 conv = newtrans(”CONV”, convfn}; :

11 z = gentr _trsl(”2”, 0., 0., 864.); N

12 ' e = gentr_trsl{”E” , 0. , 0. , 170.);

13 b = gentr_rot(”B”, 600. , -500., 600., yunit, 180.);
14 pal = gentr_eul(”PAL” , 30., 0., 50., 0., 20., 0.);
15 pa2 = gentr eul(”PA2” , -30., 0., 50., 0., -20., 0.);
16 . : ‘ ' ,

17 p0 = makeposition(”P0” , z, t6, e, EQ, b, TL, e); :
18 pt1 = makeposition(”PT1™, z, t6, e, EQ, conv, b, pal, TL, e);
19 pt2 = makeposition(”PT2”, z, t6, e, EQ, conv, b, pa2, TL, e);
20 . - ‘ v . :
21 setvel (300, 50);

22 setmod(’'c’);

23 setime (300, 0);

24 , move (p0); . ,

25 for (i = 0; i < 4; +i) {

26 movecart(ptl, 100, 1000);

27 _ movecart{pt2, 100, 1000);

28 v : ‘

29 : setmod(’'j’);

30 - move(park);

31) -

32

33 convfn.‘(t)
34 TRSF PTR t;

35 { « :
36 t->p.y += 3.,
37 }

Line 1 include_s‘the_necveésary RCCL declarations. Line 3 deserves a comment : when using the puma

manipulator, the RCCL library calls the function ‘pumatask’ as the task to be executed. Before calling

the ‘pumatask’ function, the system perform some initializations. When the 'functijoh returns, as you
might expect, the system performs a ‘waitfor(completed)’ before concluding and exiting. Line 5 and 6,

allocates transform and position pointers as needed \b‘y? th_e task. Line 7 declares the name ‘convfn’ as 3

pointer to a function that describes the moving coordinate frame, and line 8 allocates a counter variable.
Line 10, allocates a functionally defined transform attached to ‘convfn’. Lines 11 through 15, allocate
and initialize transforms as described earlier. The Z transform sets a frame at the base of the manipula-
tor. The E and B transforms are the tool transform and a location with respect to the simulated con-
veyor. Note that the B transform contains a 180 degree rotation around the Y ‘axis such as the Z direc-
tion of frame described by B points downward (relatively to CONV and Z). The transforms PA1 and

PA2 define two locations with respect to the frame described by B.

- 58 -

Lines 17, 18, and 19 set up. the position equations as described earlier.

Line 21 sets the velocity to 300 millimeters per seconds and 50 degrees per second and the motion
mode is set to Cartesian mode on line 22. The call to setime on line 23, containing a null segment time,
and specifies a 3/10 of a second acceleration time when reaching PO to allow for 2 sufficiently long transi-
tion time because the next motion occurs with respect to a moving frame (the system has no means to
now how fast it is going to move). The ‘for’ loop, lines 25 to 28, causes eight move requests to be
entered in the queue. The eight motions are performed in 1 second each with 3 1/10 of a second transi-
tion time as specified by the macro movecart. Line 29 sets the mode to joint because the arm is to per-
form a large motion and the path the fool frame is going to follow is of mo concern. Line 30 is the last
motion request to the ‘park’ position.

The function ‘convin’, lines 33 to 37, starts being evaluated when the first motion to “PT1"” begins
and during the seven subsequent motions. The background function attached to the transform is called
by the system with one argument pointer, a pointer to the transform it is atéached to. This permits us
to write functions independently from the actual transform they are attached to. OSince mewtrans
created the transform CONV as a unit transform, the value of the p, element of the position vector
increases from 0 to approximatively 286 millimeters(it is increased by 3 millimeters each 28 milliseconds.
for 8 seconds). At the time the manipulator reaches PO, the CONV transform is egual to the umity
transform. The first time the manipulator moves to PT1, the motion is the result of a combination of
the Cartesian motion from PO toward PT1 and the motion due to the moving coordinate frame.

This example introduce the first method for generating functionzlly defined motion by & periodic
increment of a static variable {(here a transform element). '

2) In this second example we will suppose that the manipulator is mounted on a revolving base or .

;59_

that the manipulator is working with respect to 2 circular conveyor whose rotation axis is collimear with
the first joint. We have introduced minor differences in order to point out some other aspects..

#include "rccl.h”

37
38

40
41
42

static int ﬂ);

pumatask()

b

pivotfn{t)
39 TRSF_PIR t;

{

} .

TRSF_PIR z, e , b, pal, pa2, pivot;
POS_PIR pO, ptl, pt2;
int pivotfn();

int

pivo
z
e
b
pal
pa2

po =
ptl
pt2

t

g
g

8

b

= newtrans(”"PIVOT”, pivotfn);

entr_trsl(”Z>, 0., 0., 864.);

entr_trsl(”E” , 0. , 0. , 170.});

entr_rot(”B1”, 60¢. , -300., 700., yunit, 180.);

gentr_eul{”PA1” , 30., 0., 50., -10., 10., 0.):
"gentr_eul ("PA2” , -30., 0., 50., 10., -10., 0.);

makeposition(”PO” , %, t'ﬁy e, mr b! ’ILY e);

makeposition(”PT1”, pivot, z, t6, e, EQ, b, pal, TL,
makeposition(”PT2”, pivoet, z, t6, e, EQ, b, pa2, TL,

setvel (300, 20);
setmod(’'c’);

setime(200, 0);

move (p0);
waitfor(completed);

t0 = rtime;

for (i = 0; i <6; ++i) {

move (ptl);
move (pt2);

setvel (400, 100);
setmod{’j’);
move (park);

13

Rot(t, zunit, (t0 - rtime) * .010});

The lines 1 to 26 are basically the same ones and do not deserve further commeflts.

In this example, the moving coordinate frame will explicitly be written as a function of time. It
makes use of the external variable rtime updated by the system each sample interval. The varjable
rtime reflects the time elapsed since the beginning of the task in milliseconds. Although this variable
may be reset by the user to any value, we have chosen to record in ‘t0’ the time when the functionaily
defined motion begins. Although the position of the moving coor:djha.te frame is periodic, it is necessary
to set the beginning of the motion at a given instant in order to keep the resulting task execution within

- 60 -

the work range of the manipulator. The macro waltfor suspends execution untii all the preceding
motions are executed and the initial time is recorded at line 28. In actual implementations, the use of an
event would permit us to ‘synchronize the task executiyon with arbitrary motions of, say, the ‘conveyor.
The segment times in the: ‘for’ loop, lines 29 to 32, are left unspecified and will be computed as to obtain
an angular velocity of 20 degrees per second (line 23). '

It is important to notice the placement of the functionally defined transform in position equations
s0 as to produce the desired effect. »

The functionally defined frame is merely described as a negative rotation around the Z axis of 10
degrees per second. ’

- 61 -

3) In this third example the positions . PA1 and PA2 are now described with respect to rotating
table off the axis of the manipulator’s first joint. This will cause the end effector to rotate such as to
mamtam a constant orientation with respect to the table S ; -

1 #lnclude "recl . h”
2 ' :
"3 static int tO;
4 o
5 pumatask(}
7 TRSF_PIR 2z, e, b, paly pa2, table;
8 POS PTR po, ptl pt2; ‘ ,
9 int tablefn(); '
10 int i;
1 S
12 : table = mewtrans(”TABLE”, tab!efn)
13 7z = gemtr_trsl(”Z”, 0., 0., 864.)i
14 e = gentr_trsl{"E” , 0. , 0. , 170.); ~ o
15 b = gentr_ rot{”B”, 600. , 300., 700., yunit, 180.);
16 : " pal = gentr_rpy(” PAr”' , 0., 0., 0.,0,0., 10.);
17 - - pa2 = gentrv_rpy(PA2” , 0., 0., 0., 0., 0., -10.};
18 : » v
19 - p0= makeposition(”P0” , z, t6, e, EQ, b, TL, e); :
20 v ptl = makeposrtlon(”PTl” z, t6, e, EQ, b, table, pal, TL, e};
21 : “pt2 = makeposition("PT2”, z, t6, e, EQ, b, table, pﬁ2,eTL;re);'
22 : : ‘ . S
23, setvel (300, 20);
24 setmod('c’);
25 ~ setime (200, 0);
26 - move (p0);
27 wantfor(cmnpleted)
28 t0 = rtime;
29 - for (l =0; i <6; ++r) {
30 - : , rnove(ptl) :
31 E move(pt2);
32 . ’ ‘
33 Setvei(400 100);
34 - setmod{’j’);
35 - move(pgrk) '
36) . '
37 '
38 tablefn(t)
39 TRSF _PTR t;
40 { -
41 ~real rps = .03; : o
42 - ~~ real alpha = rps * (t0 - rtime) * .001;
43 : o
44 t->p.x = 100. * cos(alpha * pit2 _m);
45 ~ t->p.y = 100. * sin{alpha * pit2 m m) ;
46 - Rot(t, zunit, alpha * 360)
47)} - Z

The positions equations set apart, this program is quite similar to the previous one. The main difference
lies in the way those equatlons are sef; up in order to’ obtam the desrred effect. The functlonally descnbed

- 62 -

transformation is made up from a transiation part and a rotation part. The variable ‘rps’ describes a
rotational velocity of 3/100 of a rotation per second. The variable pitZ_m belong to the set of math

constant entry points.

- 63 -

4} The last example describes a task that causes

path while always being- perpeudrcular to its tra]ectory.

to obtain a remote center of rotatron

the manipulator end effector to follow a circular
This achleved by settmg up a posmon equation

1 #include "recl.b”
2 B
3
4 pumatask()
s oL
6 TRSF_PIR z, e , b, perp0, perp, roty;
7 POS PTR p0, pt;
8 int perpfn();
10 z = gentr trst("z”, 0., 0., 864.);
11 e = gentr_ trsi(”E” , 0. , 0. , 170.);
12 b = gentr trsi(”B’, 500. , 300., 600.); ‘
13 roty = gentr_ rot(”ROTY 0., 0., 0., yunrt 180.);
14 perp0 = gentr_ rot(”PERPO” 6., 0., 300., xunit, 0.);
15 perp = newtrans(”PERP”, perpfi); : _
17 p0 = makeposition(”P0”, 1z, t6, e, perp0, EQ, b, roty, TL, e);
18 pt = makeposition(”PT”, 1z, t6, e, perp0, EQ, b, perp, roty, TL, e);
20 setvel (400, 100);
21 setmod('c');
22 setime (300, 0);
23 move(p0); -
24 setime (200, 4000);
25 move(pt)
26 setmod(’j’);
27 . . move(park),v
28 }. -
29
30 perpfn(t)
31 TRSF PR t;
32 o |
33 real rpm = .20;
34 ' : .
35 Rot(t, xunit, rpm # goalpos->scal * 360.};
36} ' : . : ,

In this example, the functional motion parameter is the ‘scal’ position structure eutry When the

background function is evaluated the global goalpos pointer is equal to ‘pt’.

for rotations per motion.

The variable ¢ rpm stands

We have introduce some examples for coding l‘uuctronally described trajectorres The lay out of the
programs, especially. the position equation specifications are certainly not unique, and a lot of room

is left to imagination.

- 64 -

3. Sensor Integration

By using sensors, the user has the ability to write programs that may depend on information
acquired at run time. The behavior of the manipulator can be influenced by modifying the focations it is
moving to or by interrupting a motion. If the location can be determined ahead of time, we shall call
that presetting the world model. A special case is the transforms initializations. If the locations can be
determined synchronously and permit us to influence the manipulator’s path, we shal! call that tracking.
If the locations can be determined by stopping the manipulator on condition, we shall call that guarded
motions. If the final position of the manipulator is to be retained for the determinations of locations, we
shall call that updatmg the world model

6.31. Presetting the World Modei,

In the section ‘Synchronization’ we have already met such a sxtuatlon The example of a program _
interacting thh a user was given : .
for (‘; ;) A{. . ,
- printf(”enter Z increment ”);
scanf("%f”, &iz);
- b->p.z t= iz;
o ‘move (p);
The hold transform feature allowed us the specxl‘y different locations a2head at time and no synchromzé.-
tion is specified. :

Let us consider the mtegratlon of a computer vision system We assume that a camera has been
attached to the link 4 of the PUMA manipulator. The computer.vision is described in terms of a func-
tions ‘snapshot’ which is supposed to take a picture of the scene and store it in memory, and of a func-

tion ‘getobj’ able -to extract the position and orientation of an object.in the camera coordinate frame.

The operation of taking the picture is expected to be short but the task is programmed in such a way
‘that the processing time of ‘getobj’ does not require to stop the arm. The strategy consist of moving the
manipulator toward a position where we expect an object to be captured in the field of the camera. We
synchronize the program such as the picture is taken at a given point of the trajectory. We also record
at this instant the. position. of the manipulator given by T6 and we reconstruct the camera coordinate
" frame from the transform U5 internally maintained by the system. We could also compute the values of
the transform T4 since we can know at any moment the joint angles values (see include files). Thus we
have all the information necessary to perform an approach motlon where the object has been found, .
grasp it, and move it to some other place.

A bare bone version of the task is described in terms of three posmon equations : the 'position
where to expect an object to be seen by the camera, the position where to grasp the object, and the posi-
tion where to put lt :

O W =T DL W

- 65 -

#include “rccl.h”
#include "hand.h”
#include "which.h”
#include "kine.h”

pumatask()

{
TRSF_PTR z, e, cam, o, coord, t6r, ubi, expect, drop;
POS PTR look, get, put;

z = gentr_trsl(”2”, 0., 0., 864.);
e = gentr_trsi{("E” , 0. , 0. , 170.);
cam = gentr_rot{("CAM", 0., 0., 50., xunit, 90.);

expect = gentr_rot{"EXPECT”, 500. , 100., 600., yunit, 180.);
drop = gentr_rot(”DROP”, 400. , -100., 500., yunit, 180.);
o = newtrans(”0”, hold);

coord = newtrans(”COORD”, hold);

u5i = newtrans(”U51”, varb);
t6r = newtrans(”T6R”, varb};

look = makeposition{”LOOK”, z, t6, e, BEQ, expect, TL, e};
get = makeposition(”"GET”, t6, e, EQ, coord, cam, o, TL, e);
put = makeposition{”PUT” |, z, t6, e, BEQ, drop, TL, e};

- 66 -

26

27 setvel (200, 100);

28 for (5 5) {

29 move (look);

36 _ waitas{goalpos == look && look->scal > .8};
31 snapshot();

32 ' Assigntr(t6r, t6};

33 Invert(u5i, &sncs_d.ub);
34 Trmult{coord, t6r, udi});
35 : it (tgetobj(o}) {

36 . break;

37 } .
38 ' get->end = 0;

39 “distance{"dz”, -30.};
40 move (get}; o
41 move{get);

42 stop(50); ,
43 distance{”dz”, -30.});
14 . move(get);

45 :

46 waitfor(get->end);

47 waitfor(get->end);

48 CLOSE;

49 printf(”closing\n”);

50 ' move {put};

51 _ ~ waitfor(put->end);

52 OPEN;

53 printf(”opening\n”);

54 | |

55 move (park);

56 } :

57

58 snapshot()

59 o '

60 printf(”snap\n”};

61 }

62

63 getobj(t)
64 TRSF_PTR t;

65 { v

66 static int number = 5;

67 ‘

68 Trsi{t, 6., 0., 200. + number * 30.};
69 Rot (¢, yumit, 10. * number};

70 return{number--};

71}

Line 1 includes RCCL declarations. Line 2 includes the file hand.h that contain the two macros
‘OPEN’ and ‘CLOSE’ to actuate the pneumatic gripper. Line 4 includes the file kine.h that contains
manipulator dependent informations about the kinematics. This file contains the structure declarations
and external declarations of variables internally used by RCCL. Since this file depends on the manipula-
tor type it must be preceded with the definition of the particular. manipulator (‘PUMA’ for the Puma
600, ‘STAN’ for the stanford arm). The file which.h included line 3 contzins the line : “#define

- 67 -

PUMA" that describe the current implementation. We are primarﬂy interested in the variable caﬂed '
snsc_d declared in kine.h as: ' :

typedef struct sincos { ‘ : :
real sl, ¢2, 82, ¢23, 823, c3, 83, c4, s4, c5, s5, c6, s6;

real dlx, dly, dlz, rix, rlz, d2x, d2y, d2z, d3x, d3y, d3z;
real h; ' :
TRSF u5;

} SNCS, *SNCS_PTR;

extern SNCS sncs _d;

The elements of sncs_d are kinematic parameters updated at sample time that the user may use. For
the Puma mampulator the first line is the list of sines and cosines values of each joint angles. The

second and third line exhibit the coefficients of the Jacobian matrix that contain multiplications com-
puted in link 4 [9]. The fourth line of type “TRSF’ is the transform US and we shall make use of it.

Back to the program, after the pointer declaration we find, lines 11 through 20, the allocation of
transforms For simplicity, we will name them the same way as the frames that they descnbe

Z: a reference frame at the base of the manipulator.

E : the end effector frame.
CAM : the camera frame described with respect to link 4.

EXPECT : the position where we expect to find an object in the camera field with respect to the Z
frame. .

DROP : the position froin where we would like the manipulator to drop the object.

O : - The position of the object in camera coordmates that we declare as hold since it will be changed at
during the task execution.

COORD :,The position of the camera in base coordinates that is changing as t'her rﬁanipﬁlator moves.

UsI and T6R : auxiliary transforms that are used to hold the inverse of U5 and a copy of T6 at the
moment of taking the picture. They will be used to compute the transform COORD but are not _

used in a position equations. ,
The three calls to makeposition, lines 22, 23, and 24 define to following transform graphs

LOCK :

T6 E
----- p
Coremn meeme>
2. EXPECT

' This first graph is- quite ordinary.

- 68 -

COORD CAM)
This graph describes the final position entirely in manipulator coordinates. The transforms COORD and
O are measured at the moment of taking the picture and tkeir values memorized in the motion queue. It
is mapped on the equivalent graph :

GET : :
CAM 0]
----- > eeme=>
T4 U5 E
----- Sl s>
Té
............ >
Commmn mem- > ----- >

from which we can derive :
COORD = T6 U5

PUT

Again, an ordinary graph.

Statement, line 27, sets the velocity and one can notice that the motion type is left in joint mode,
since we are more interested in the end of path segment position than with the trajectories. The body of
the program is essentially a loop that will exit when the function ‘getobj’ returns zero value. The func-
tion ‘getobj’ is simulated and returns five different successive values for the O transform. '

At the beginning of the loop, line 29, 2 motion is requested toward the ‘LOOK’ position. The pro-
gram is then synchronized such that ‘snapshot’ is called at 80 per cent of the trajectory. Note that a
‘waitas{look->scal > .8}’ statement may not be sufficient since after execution of the first loop the value
of ‘look->scal’ is left at 1. as a side eflect of the previous loop, and no synchronization would be
achieved. Values of T6 and U5 are copied on the fly, and the COORD transform value computed, lines
32 to 34. The function ‘getobj’ has the remaining trajectory time to obtain of value for O. An
‘approach - grasp - depart’ sequence is then performed before the next loop, lines 39 to 44.

This program is only a sketch and many improvements are possible. For example, we may like to
interrupt the motion and proceed to the grasp sequence as soon as a value for O is obtaired. We shall
see in the next section how to achieve this result. Another variation would be to introduce a conveyor
carrying objects in the vision field of the camera. The only required modifications would be the position

6o -

cqutionfor ‘GET" : o
This is because the object position information is entirely contained in the transforms T4, CAM, and 0, |
and the position ‘GET’ would be tracking the conveyor. : SR . ,

6.2. Guarded Motions . _ v S v
This section explains how to interrup a motion on condition. Interrupting a motion can allow us to
stop or to start the arm, to suspend or resume a motion toward a position. This can be achieved in all
cases by setting the flag calied nextmove at a non zero value, This causes the motion currently being
‘performed to be interrupted and the next in the queue to begin. The value to which the’»'ﬂag’n’g;&tmévg
- has been set is returned in the ‘code’ field of the structure ‘POS’, described earlier. When using this
feature, the user must be careful not to conflict with values that have a predétermined meaning for
RCCL:. ' ' .

ftdefine OK . -1

fdefine LIMIT -2
#define ONF =~ - -3
#define OND . . -4

For example, one could use only positive values.

There are basically two ways of using the flag nextmove, 1t can be set’e_ithér from .a‘b‘ackgr',ogm‘d

function, or from the user’s foreground process. Let us illustrate this by an example ilsiq'g a simple sen-
sor which is a small linear potentiometer. The distance of which the shaft is inside the body -of ‘the

potentiometer can be measured through analog channels. The robot controller performs analog to digital

_ conversions when specified via the function adcopen and the values can be read from a global array
 updated at sample intervals [6]. We will make use of this information to program guarded motions. -

© 00D UG

" #include
~ftinclude’
. ftinclude ”
#include 7

e

z
b
b

- 70 -

”rccl}h”y~,"'-
"hand b
pte. k7 0
wmac.h”

exferhréy}ﬁct ho@ how;
Cstatic dmt semsor;
Wﬁﬂﬂﬁ(f ‘ i L . _

int touchfn() '
TRSF_PTR z, bl b2 ﬁng, getlt, ﬂlp,
POS PTR get, pt, p2

int q;

= gentr trsl(z7,.. 0., ‘0,,u864.)j

1= geptr_trsl(”Bl” 600. ,-200., 400.);
2 = gentr trsl(”B2”, 600. ,-100., 400.);

“fing = gentr_rot(”FING”, 0., 0., 200., zunit; -90.); -
- getit = gentr rot{”GETIT”, 600. ;, 0., 600., yunit, 180.);
'A_ﬁip'=‘gent;_rot(”FLIP”,’0., 0., 0., yunit, 180.);

pt

= makepositiOn(”Pl”»,fz,ft6; fing, EQ, bl, fiip,TL , ﬁhg);
p2 = makeposition(”P2” , z, t6, fing, BEQ, b2, flip,TL , fing);

‘>get = makeposition(”GET”, z, t6, EQ, getit, TL, t6);

setvel (300, 100);

- move(get);
o waxtfor(completed)
" OPEN;

prlntf(”put the sensor in the jaws)»

QUERY(4q) ;
CLOSE;-

_ prnntf(go ahead ”)
QUERY(q);

lf (q == n’):{i tL
: move(park);
Creturn;

L

43 ' sensor = adcopen(7};
44 setvel (100, 100);
45 for (5 ;) { ' -
46 pl-3end = p2->end = 9;
47 ‘ : move (pl); S
48 , evalfn(touchfn)
49 - : setime(0, 0j;
50 - distance("dz”, 100.);
51 move (pl);
52 - move (pl);
53
54 : - move(p2); :
55 _ ' evalfn(touchfn);
56 setime(0, 0); :
57 N distance{”dz”, 100.);
58 _ move (p2);
59 , V move(p2)
60 S
61 ‘ waltfor(pl >end)
62 , ‘ printf(”guarded motion 1 starts\n)
- 63 E o waltfor(pl ->end) : ,
64) if (pl->code == TOUCHED)
65 : ‘ printf(”touched\n”)
66 o else’ o
67 : o printf(”not touched\n”);
69 ‘ waitfor(p2->end)
70 S printf(”guarded motlon 2 starts\n);
71 - waitfor(p2->end)
72 , ~if (p2->code == TOUCHED)
73 : printf(”touched\n”);
74 ' else ' :
75 . printf(”not touched\n”);
76 . |
77 : prlntf(more ? ”); .
78 - QUERY(q); if (q == 'n') break;
79 o ‘
80 setvel (300, 100);
81 move (park);
82 waitfor{completed);
83 OPEN; \
84 '} o
85 ‘
86 :
87 touchfn()
88 { : S . o
89 . if (how.adcr|sensor] > 1) {
90 . . nextmove = TOUCHED;
91) - '
92 } -

We are now familiar with lines 1 and 2. Line 3 lvncludes the real time interface doclarauons [6] in
order to gain access to the analog conversions. Line 4 mcludeq the file umac.h that. contalm a set of

Z 72 -

useful macros (see include files), among them we shall use the macro ‘QUERY’ that causes the prompt
(y/n) " to be printed on the terminal and will return when the user has typed a ‘y’ or a ‘n’. The typed
character is then returned in the macro’s argument. Line € declares the type of the array in which we
get the analog readings. Line 8 allocates an integer that will be the index in the array ‘ader’ of the read-
ings of the opened analog channel. Line 10 defines the return code of the guarded motion. Let us skip
the transforms and ‘position initializations that do not show anything special. With a combination of -
queries we ask the operator to place the sensor in the gripper’s jaws and to command the gripper to
close. We leave to the operator the option of canceling the task on line 39 if something goes wrong.
~ Line 43 allocates analog channel number 7 to the sensor. In the body of the loop, lines 45 to 78, the

manipulator performs two guarded motions : moves to a position next to an expected obstacle, moves
along the Z direction in the fool frame, while evaluating at sample intervals the monitoring function
"‘touchfn’. The call to setime specifies a zero transition time at the end of the motion in order to obtain
a fast reaction time. The null transition time can be specified here as we have made sure that the veloci-
‘ties are small. We also make sure that the motion queue contains a position such as the arm will back .
up when the obstacle in encountered. This is the purpose of the move statements lines 52 and 59.

Using the waltfor macro, the program can print information at the terminal as the task proceeds.
In particular, it is possible to decided if the guarded motion did encounter an obstacle. The value
“TOUCHED'’ is returned in the ‘code’ part of the positions if the monitoring function caused a motion
interruption, otherwise ‘the value 'OK’ is returned. The monitoring function, lines 86 to S1, checks the
" analog conversion reading and sets the flag nextmove when appropriate. : '

Some other combinations are possible, as shown by the following code patterns :

move(p); o)

‘evalfn{monitorfn); =
“setime(100, 10000); AR A

move(p); ~ '
waitfor{completed)

if (p->code 1= EXPECTED) { |

‘ printf{”timeout after 10 seconds\n”);
error{(); '

move(pl); , , :
causes the arm to stop at the position ‘p” while evaluating a monitor function, and the motion to resume

on condition. It is not'pqssibie to use a stop statement here, since stop keeps all the attributes of the
previous motion and we need to specify a new move request. The sequence of code : ‘

_evalfn(momitorfn};
move(p);
stop{1000); .
move(p)s;

does not causes a-motion to be interrupted for one second, unless the position ‘p’ has been reached when
the stop request is executed because it is equivalent to a.new motion to the last position. Similarly, one
must be careful that the stop statement does not necessarily mean that the manipulator will stop in
absolute coordinates if the position equation for ‘p’ contains moving coordinate frames. When an abso-
lute stop is needed or when a motion has to stop and the manipulator has to remain exactly at the posi-
tion where it stopped, RCCL provides a built-in position equation-of the following form : '
: T6 = HERE ' :

where HERE is a transform internally maintained by the system to be always equal to 76 at the end of
any path segment. At startup time, the system issues the following call : -

‘there = makeposition(”THERE”, t6, EQ, here, TL, -t'6); . _
to implément this feature, ‘where here is of type TRSF_PTR and there of type POS_PTR. The

- 73 -

following code pattern shows how we can use the fact that the flag nextmove can be set from the user’s
process to implement a stop on terminal input :

move{p};

move (there);

printf(”hit return to interrupt motion ”);
getchar({};

nextmove = YES;

When ‘return’ is hit, the system interrupts the motion toward 'p’, and starts a transition to the position
‘there’ that causes the arm to over shoot by a magnitude as great as the velocity was high. When the
velocity is small and a sharp stop is needed we can write : '

move(p);

setime(0, 0};
"move(there);

printf{(”hit return to interrupt motion "};
getchar(};

nextmove = YES;

In the same way monitoring can achieved with :

move(p);
waitas(goalpos == p)
p->end = 1; » [* preset event */

while(p->end) {
if {condition) {
nextmove = YES;

suspendfg{);
} :

This way of coding can be useful in the cases when it is not possible to place the condition calculations in
the background function. : , :

RCCL internally monitors if the joint physical limits are going to be reached (within a few degrees
for each joint). If such an error condition occurs, the system automatically issues a move to the ‘there’
position, that causes an immediate stop next to the limit position and returns the code ‘LIMIT’ for the
motion that caused the error condition. A new motion is then taken out of queue and the error condition
is reset. If the new motion persists in causing a joint limit error, the whole task will abort. If motions
are likely to cause such joint limit errors, the returned codes should be checked and the appropriate
action undertaken. '

6.3. Tracking

Tracking is obtained by synchronously updating functionally defined transforms from sensor read-
ings. All the examples given in the section ‘‘Functionally defined motions” would become examples for
tracking motions if we would replace the parameter ‘time’ by some sensor readings reflecting the position
of the moving coordinate frames. We shall however explain yet another example using the simple poten-
tiometer based position sensor introduced in the previous section. The sensor, placed in the foof frame,
allows the manipulator to track an arbitrary surface intersecting the Z axis of the tool frame. The track-
ing function is written in such a way that it causes the motion velocity to be proportional to the distance
the shaft of the linear potentiometer-is protruding out of the sensor. A velocity control of the manipula-
tor end effector is implemented such as that the shaft is partially inside the body of the sensor, the velo-
city along the 2 axis of the tool frame is controlled to be zero. '

- T4 -

“#include reel . h”-

1y
2 #include "rtc.h”
3 #include “umac.h”
4 .
5 extern struct how how;
6 o
7 int sensor; -
8 o
9 pumatask()
10 { S - - :
i1 ‘ TRSF_PTR z, bl, b2, fing, fins, over;
12 POS PIR pl, p2, get; o
13 int fingfn();
14 int q;
15 o
16 fing = newtrans{"FING”, ﬁngfu)
17 v Rot (fing, zunit, -90. 3 :
18 " fins = gentr_ rot(FINS” 0., 0., 0., zunit, -90.);
19 _ 1 = gentr rot(”Z2”, 0., 0., 864., zunit, 0.);
20 - . bl = gentr_ rot(”Bl” 600. 1 .300., 450., yunit, 180.);
21 ' b2 = gentr_ rot(”B2”, 600. , 300., 450., yumit, 180.);
22 - over = gentr_rot(OVER”, 600., G., 600;, yunit, 180.};
23 .
24 pl = makeposition(”P1l” , 2, t6, fins, EQ, b1, TL, fins);
25 - p2*= makeposntlon(”PZ” , z, t6, fing, BQ, b2, TL, fing);
26 .- o get = makeposition(”GET”, z, t6, EQ, over, TL, t6)
27 ' S - ‘ o
28 |
29 sensor = adcopen(7);
30 : : o . '
31 ‘setmod{'c’);
32 o for (; ;) B
33 - , 'setvel(400 300} ;
34 SR move(get);
35 " move(pl); -
36 . setvel (100, 100};
37 : sample(15); =
38 : move(p2);
39 o ‘ sample(30}; R , '
- 40 - ~ printf("more ?7); QUERY(q); if (q == 'n’) break;
41 B ’ S
42 © gsetvel (400, 300);
43 ' setmod{’j’);
44 move (park);
45 -} - e
46
47
48

49 fingfn(t)

506 TRSF PTR t;

51 { |

52 y ot >p 2 = (how adcr[sensor] * ‘01 - 3.) /] 3.;
B3 : '

- 75 -

This example uses three positions equations. The position P1 from where the tracking motion
begins, uses a TOOL transform FINS set as a translation and 4 rotation such as to present the sensor
with a proper angle. The position P2 is the end of the tracking motion, the TOOL transform FING is
initialized to be equal to FINS. However, as the motion progresses, its p, element will be changed by the
function ‘fingfn’ in order modify the trajectory in the desired direction. The function ‘fngfn’, lines 49 to
53, implements the control law whose parameters have been experimently determined, in terms of a gain
and an offset. The sample rate is set at a higher value during the tracking motion in order to obtain a
faster response. ' :

An interresting variation of this program would be to record the value of T'6 as the tracking
proceeds. Since it is not possible to perform any input-output from a background function, 2 buffer alter-
natmg technique would need to be implemented : while the background function fills one buffer, the
user’s foreground process could dump another one on file. It would then become possible to replay very
long motion sequences, as they have been recorded or in such a way that the fool frame would have a
fixed angle with respect to the tracking trajectory as required in welding applications (Section “Function-
ally defined motions”, example 4).

When the sensory input is too slow or when computations are too lengthy to be performed in a
background function (10 ms cpu time every 28 ms would really tie the machine down}, a pseudo tracking
can be obtained by using an asynchronous loop in the user’s process updating a varb type transform. For
example :

TRSF PTR z, e, b, r;

POS_PIR p0, pi, ... , pt;
TRSF changes;

[~ T« ol T
|

pd = newtrans{”UPD”, varb};

p0 = makeposition(...);
pl = makeposition(...); v ‘ :
pt = makeposition(”P”, z, t6, e, EQ, b, upd, r, TL, e);

move{p0};
move(pl);
move{pt);

waitas(goalpos == pt)

while(goalpos == pt) {
getsensor(&changes);
Trmultinp(upd, &changes);
suspendfg();

The finction ‘getsensor’ returns alterations to be performed on the transform UPD, that are accu-
mulated by successive multiplications. The function suspendfg is used to allow the machme to
“breath’. The changes should not cause more than a few millimeters or degrees position steps at the end

" effector.

- 77 =~

The update function causes the position equation ‘pos’ to be solved for the transform ‘trans’ , using the
value of 76 at the end of the corresponding path segment. Of course, the transform must belong to the
position equation. The transform must also be-of type ‘vard. The second argument, a position equation
pointer, is not necessarily the same argument as the one of the correspondmg motion statement. For

example, we can update a transform on user request :

a = gentr...

e = gentr...

y = gentr...

2 = gentr...

x = newtrans(”X”, varb);

pl = makeposition{”P1”, z, t6, e, EQ, a, TL, e);
EQ, X, y! TL: e):

p2 = makeposition(”P2”, z, t6, e,

update(x, p2);

move(pl);

move{p2); .
printf(”hit return’ to’ xnterrupt motlon ")
getchar() :
nextmove = YES;

An update request is associated with position P1. When the user hits ‘return’, the motion toward P1 is
interrupted and the transform X is solved as : '
X=ZT6EY"

4nd the position P2 corresponds éxactly to the position the manipujator was and a stop is obtamed Sub-
sequent motions to this position are therefore possible. The transform X can also be used in other posi-
tion equations. One must notice that all the positions containing X are consequently changed This

leads to numerous applications of update.

- 78 -

7. Force Control . _ o ; ‘

In assembly tasks, objects are required to be brought into contact, and motions have to be stopped
when the collision occurs. Once objects are in contact the task is said to be constrained because arbi-
trary motions are no longer possible in every direction. The notion of guarded motion has been intro--
~ duced earlier and force guarded motions are quite similar. The force monitoring function is built into the
system considering that ‘it is somewhat dependent on the installation and that force specifications are
really an integral part of a motion description. Force specifications are transmitted to. the background
process via the limit primitive. When the task is constrained, the arm is requested to exert forces on
objects and is no longer position servoed for each of the six degrees of freedom. Depending on the
geometry of the task, one or several directions are selected -to provide for compliance. The arm is then

-said ‘to enter a. comply mode Awhi'ch’ is ‘specified by the comply primitive. ‘When the contact beiween

~ objects ceases, or when constraints disappear, the arm has to gain back position servoed directions. This

‘is achiéved by the lock primitive. The cessation of contact can be detected by differential motions of the
arm when the constraints disappear. The primitive Iimit is also used for this purpose..

~ 7.1. Stop, Go on Force, on Displacement -

As we have seen before, stop and go are not essentially different, they bpthicorrespond.to the interr-
uption of 2 motion. When a limit condition is specified, a monitor function is internally activated for the
“subsequent motion. The form of limit is: e ' - ‘

,l:imit}("dir‘é‘, value. 1, value] “...)
“char, *#divrs; .
- 'double value; R , _
. The lii_nit directioné ‘sp:éciﬁcations arejékpressed_ in the string first argument bw'ithv'_a cdmbinatibn of the
_-following, sepa;ated by one or several spaces.; - ’ S

‘ r - Y Z
“dx dy dz : displacement along X YZ
RS 2 9 3 2 £ Rt rotation ~ about X Y% ‘ ‘
A}llvlimit_'ébégiﬁcations. are expressed in the ool frame of the corresponding position equ‘at,ivon and take
effect for the subsequent ‘move request, To each direction -specification must- correspond a value, for
example : - . _ L ' : o .
S timit("fx t37, 10., 5.)5
- will reque}st»a'forcbe— of 10 Newtons -aiong X, and of a torque 5. ‘Newton-meter about Z to ‘b‘e moni-
tored. When either of the specifications :is exceeded, the corresponding motion is interrupted and the
task proceeds with the next request in the motion queue. The ‘code’ field of the corresponding position is
set to ‘ONF’.: L-,ikewise,-d,istancé spe’ciﬁcation_s can be coded as: . _ :
limit(dx ry”, 8., 1.); o | |
that.causes_thg motion to be"inteﬂjuptved when the distﬁnée ‘change along X exceeds. 3 millimeters or
* when the rotations about Y exceeds 1 degree. Only absolute values of the limit specifications are taken
into account. R R ’ : o

7.2. Sefvo Modes, Comply and Lock I B |
-~ A comply servo mode is requested vj'aithé "_cp'm"ply 'primitiVe according to the following format : - -
,,comply(dirs;,Vafﬁé‘[;_valuejﬁ;f;)j7r S S S
~char *dirs; - P L
‘double value; -

The _c"ombly,primitiﬂ ,qahsesv the subsequent motion request to be executed such that forces and/or

R

torques are mamtamed in the tool frame instead of posrtrons and/for rotatrons “The: arm then enters the
specified comply mode in the correspondmg motion and ali the f owmg motlons until the lock prrmltrvev
brings the mampulator back into posrtron servo mode for the selected drrectrons The format for lock is

lock(dirs)a'
' char *drrs,

The first argument ol' comply and lock is a. strmg contammg drrectron specnﬁcatrons made up of a
combmatlon of the followmg . L ‘

fx - fy fz force | along XvY VA
bx ty tz :_' torque about XY Z

The second argument of comply is the srgned magnrtude of the desrred l‘orces and /or torques

- Care must be taken that the" sequence of servo. mode specrﬁcatron is consistent. Requrrmg the arm
to comply along or about a diréction. already in comply servo mode or. lockmg a' direction not in comply
© servo mode will cause an error ln order to keep track of the drﬂ'ereut specrﬁcatrons line mdentatron is

advrsed

move(pO) .
comply(”dy 0.);
‘ 'move(pl)
“‘move(p2);
comply(dx ty” 5., 3.
R move(
lock(‘ry);
move (p4);
" move(p5);
lock(”dx”);
3 move (p6);
lock(7dy”);
- move(p7)"

),,
p3).

v Either Cartesian of]omt motlon ‘modes can used for complymg motron sequences However theyv‘
» behave drﬂ'erently In Cartesian mode, the system automatrcally compensate for posrtron errors due to -
- unwanted accommodatmg joint motlons [2] In joint mode, there is no compensatlon :

7.3. Carrylng Loads
The function massis allows the user to specify that a mass is to be carrred by the mampulator v
The mass of the object, expressed in kilograms, causes the system to compute gravity compensation
termis in the motrons using - force control “The mass of object is mrtrally set to 0 and can be set or. reset -
"via massls: : , . : . S
,massis(mass)
‘double mass;

As usual the new value is taken into account the next motion request;)

7.4. Examples . s
1) The ﬁrst example mvolves a solid horrzontal surface The mampulator is programmed to reach
to the table in a motion normal to the expected surface. 1t then enters the comply mode in order to slide
_ along. Durmg the second sliding motion, it detects an edge of the surface by exertlng a preload force and
momtormg the posrtlon changes i the 7 direction of the tool frame ' : » :

IU{#{néiudé,”

- 80 -

. rcel.h”
2 “#ihclude'”umac;h”
3 :
g pumatask()
5 : ‘ I ' .
6 “»,’IRSF PIR z, e , bl, b2, b3, b4,
7 - POS_PTR’ pl p2, p3, pd, pS;
8 |ut a; S '
9 8 : DR S
0. . . ;‘“z_=vgentf_ti5l(?Z”,, 0., 0., 864.)
SR D U e = gentr_trsl(”E” , 0. ;, 0., 170.);
12 - bl.= gentr rot{(”B1”, 600. ,-100., 300[,
13 b2 = gemtr_rot(”B2”, 600. , 200., 300.,
14 . b3 = gentr_ rot(”B3”,. 600. , 200., 400.,
15 - b4 = gentr_ rot("B4", 600. :,-100., 400.,
16 b = gentr rot(Bs”, 500.._,-.100. -300.
17 L A ; o B ‘
18- pl .= makeposntaon(”?l”v; z, t6, e, BQ,
19 p2 = makeposition(”P2” , z, t6, e, EQ,
20 "p3 = makeposition("P3” , 1, t6, e, EQ,
21 _p4 = makeposition(”P4” , z, t6, e, EQ,
122 p5 = makeposition("P5” , 2z, t6, e, FQ,
23 . L L

yunit,
yunlt

yunit,.

yunit,
yunit,

bl
b2,
b3,
b4,
b5,

gdggd

. e e e

25 .

26
27

29
30

31

32

33 .

34

35

. 36

37

38

41
42
43

44 -

. 45

46
47
48

50
51

52
53

© 54

56

57
58
59
60

61

62

63 -

64
65

66

67
68

69
70

71

72

'73

28 .

39
40

- 81 -

setmod(’c)
setvel (200, 100)
move(p4);

QUERY(q); if (q %i,’n’)‘bréak;f';f

pl-Send = 0

setvel (20, 20);
Vimit("fz7, 20.);
move(pl);

“setvel (100, 50);

comply(tz”, 10.);
move(p2)

Clock(7f27);

-‘waltfor(pl >end)

if (pl->code != ONF) {
‘nextmove = YES;
prlntf(where is the table "’\n)
setvel (200, 100) R
“‘move (park);
return; -

b

) -move(p3)
move (p4);

Timit(f2", 26.);

- setvel (50, 50),;
move(pl)

1&nﬁt(*dz”, 3:);

" comply(”fz”; 10.);

o move(p5);
tock(”fz™);

" move(p4);

waltfor(p5 >end) ,
if (p5->code != OND)

.

-}
setvel (300, 50);
mové(park);

pnntf(”where is the edge ?\n”),

The transforms and posmons deﬁne a set of ﬁve posmon ‘next to the surface. The surface if
assumed to be less than 100 mllhmeters below the posmon P4, such that a colhslon should occur when
moving from P4 to P1, located 100 millimeter below P4. Posmon P3 is 4t the same level than P4 and

- 82 -

above P2. Position P35 is assumed to bring the end effector off the boundaries of the table, when moving
from P1 to P5. As we may have more motions toward P1 that waits for the end of motion, the ‘pl-
 >end’ event is reset for each loop line 31. Lines 33 to 40, implement a sequence of motion requests so a3
" to program the manipulator to enter the comply when the obstacle in encountered. Lines 43 through 50,
we make sure that the limit have actually been met, otherwise the motion toward P2 is canceled as well
as the task. In the normal case, lines 52 and 53 bring the arm back above the surface. The same
guarded motion is then performed toward P1, but now the motion in comply serve mode is performed
toward P5 where the edge of the surface is expected to be .found. The termination of this last motion is
also checked at lines 66 through 6. A preload force in the Z direction is applied for ail motions to make
sure that the contact is maintained. ' v

2) In this second example the manipulator is programmed for the task of turmng a crapk. Two
. compliant directions are required in this operation. Durmg compliant motion, the foo! frame rotates
so as to keep a constant orientation thh respect to the crank handle. We: define the compliant directions
with respect to this frame. A grasp position is also defined: to allow for some clearance The task will
turn the crank a given number of times. One turn is programmed to last 4 seconds.

1 #include "reccl.h”

.2 ginclude "umac.h”
3 #include "hand.h”

4
.85 int turns;
6" ‘
7 pumatask()
8 o : r _ . v
9 TRSF_PTR z, e, shaft, handle, apro, grasp, rotpx, rotnx;
10 POS_PTR get, away; ' ’
11~ POS_PIR turn;
12 ’ int pxfn(), nxfn(};
13 int q; '
14 L .
15 rotpx = newtrans("ROTPX”, pxfn});
16 rotnx = newtrans(”ROTNX", nxfn);
17 © gz = gentr_trst(”2”, 0., 0., 864.);
18 e = gentr trsl(”E” , 0. , 0. , 170.);
19 , shaft gentr_trsl(”SHAFT”, -200., 500., 600.);
20 ' shaf§->¢n’= varb; ‘ : o ‘
21 handle = gentr_trsl(”HANDLE”, 0., 0., 50.);
22 apro = gentr_trsl(”APRO”, -50., 0., G.); ’
23 grasp = gentr_rpy(”GRASP”, 0., 0., 0., 0., 190., 0.);
24 : ' : . .
25 get = makeposition(: .
26 "GET”, z, t6, e, EQ, shaft, handle, grasp, TL, e);
27 S - . o
28 away = makeposition(o _
29 . "AWAY”, z, t6, e, BQ, shaft, handle, grasp, apro, TL, e};
30 ! v | e 3 v . . ‘
31 S turn = makeposition(C : o
32 »TURN”, z, t6, e, EQ, shaft, rotpx, handle, rotnx, grasp, TL, rk
33 - . : ' : :
34 setvel (300, 300);
35 - move(away); '
36 OPEN; o
37 if ('teach(shaft get)) {
38 _ move (away) ;
39 . move(park};
40 - ‘return;

- 84 =

42 shaft->fn = const;
43 . " optimize(turn};
44 U turms = 45
45 , vwaitfor(compieted)
46 - CLOSE; -
o 47 "~ _comply (”fx fz 7, 0., 0.);

. 48 . movecast(turn 200, 4000 = turms);
49 -~ lock{”fx fz ”}); : '
50 " move(get); o
51 waitfor{turn- >end)

52 . OPEN; , |

83 dlstance(”dx” ~30)

54 - ~ move(get);
55 - setvei(200 50);
56 © setmod{'j’);

57 move (park);

58} |

59 '

60 pxfa(t)

61 TRSF_PTR t;

62 { R . ' |
63 » Rot(t, xunit, goalpos->scal * 360 * turns);
64) ‘ 0 S0 : ‘ _ e
65
66 nxfo(t)

67 TRSF_PTR t;
68 { | o '
69 : Rot{t, xunit, - goalpos->scal * 360 ¢ turns);

The manipulator is first moved to a safe position away from obstacles. Lines 37 to 41, the manual
teach mode built in RCCL is called. This teach mode makes use of the update function to record a
position. That is why the transform SHAFT is first declared as a vard transform. Once this transform is
taught, its type can be changed, line 42, and the position TURN optimized line 43. Gripper actions are
obtained as usual.- Once these preliminary operations are performed, the turning motion can begin. It is
obtained in terms of a functionally defined motion, line 48, executed in comply servo mode. The duration
of the motion is the number of turns times four seconds. Care has been taken line 32, such that the com-
_pliance frame is properly. specified. '

- 85 -

3) The third example illustrates the peg in a hole insertion task. The strategy consists of moving
toward the expected location of the hole with a small approach angle. Even with a poor position accu-
racy the end of the peg will enter the hole with a high degree of confidence. As soon as a collision
occurs, the manipulator is programmed to go in comply mode in the Z direction with a preload force in
the same direction. While complying, the peg is rotated so as to be aligned with the axis of the hole.
The manipulator is then programmed to comply in the normal directions of the hole axis and a motion
inside the hole is immediately started. The presence of a small chamfer helps the peg not to slip off the
initic] insertion position. The force in Z is also limited since the insertion may jam due to a misalign-
ment. The fit is not very tight, and we can expect that a portion of the peg is inserted before the jam
occurs. A sequence of four accommodation rotating moticns using update, allows the manipulator to
“fecl” the walls of the hole and to record a correct alignment. In a final effort, the peg is inserted all the
way. Finally, the peg is pulled out with no difficalty since the alignment has been corrected. The
moment when the task becomes unconstrained is detected by monitoring the differential motions.

1
2
3
4

o

10
11
12
13
14
i5
18

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
48
47
48
49
56
51
52

53

5
6
7.
8

- 86 -

#include ”rcc!.ﬁ”
#include "umac.h”
#inciude "hand. h”

pumatask()
{ , v - . .
TRSF_PIR z, e, peg, hole, roty, bottom, zngle;
POS PIR aliga, in, touch; :
int g; »

z = gent? t?si{”Z”, 0., 0., 864.};

e = gentr _trsi(”"E” , 0. , 0. , 140.};

peg = gentr_trsl{"PBG”, 0., 0., 10.);

hole = gentr trsi{"HOLE”, -50., 4580., 500.);
hole->fn = varb;

boitom = gentr_trsi{”BCﬁTf%F, 6., 0., -20.);

roty = gentr_rot{”ROTY”, €., C., 0., yenit, 180.};

angle = gentr_rot{"ANGLE”, 0., 0., 0., yunit,

align = makeposition{

"ALIGN", 2z, t6, e, peg, EQ, hoEe roty, TL, peg);

touch = makeposition(

"TOUCH”, z, t6, e, peg, EQ, hole, angle, roty, TL, peg};

in = makeposition(

»"IN”, z, t6, e, peg, EQ, hole, bottom, roty, TL, peg);.

setvel (300, 50);

move{align); .

if ('teach(hoie align}) {
' setvel (300, 50);

distance{”dz”, -100.};
move{align);

setmod{’'j’);
move {park);
return;

setmod(’c'};
setvel (100, 100);

dis%aﬁée(”dz”, -10.};
' move {touch};

QUERY(q);
if (¢ == 'n"}){
‘setvel (300, 100};
setmod{’j’});
move {park);
‘ re&urn;

54

- 87 -

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74

15

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

103 .

104
105
106
107
108

©109

- 88

setvel (4, 7);
distance{”dz”, -4.};
’ move {touch};

Pimit{"fz”, 5.);
distance{”dz” 5.
move{tou

comply(”fzi, 15.);
move (align};
lock(7f27);

comply(”fx fy*, 8., 0.);

Pimit(”fz", 20.
move (in};

|

update(hole, in};

Pimit{”fz tx”
distance(”rx

40., 10.

2.);

move (in});

~update(hole,
limit(”fz tx”
distance{"rx”
move(

R}
4

.

bOQ*

.);

update{hole, in);

Timit("fz ty
dnstance(
move(l

)

update(hoie,'in);

fimié("fz ty”,
distance(”ry

46., 10.
”r, '2');

‘move({in);

updaﬂe(hoie, in);

Vimi ¢ (7 fz”, 20.
distance{"dz",

move(in);

timit(”dx dy”
move{align});
lock{”fx fy”};

setyel(so, 50);
distance{”dz”, -50.);
move{align};

setvei(SGO, 50} ;
setmod{"'j"};
move {park);

)

10.);

1.0, 1.}

10.

- 89 -

The beginning of this task is quite similar to the previous example and also makes use of the
manuza! teach mode to record an approximate initial positiphﬂ Lines 44 and 45, the manipulator moves
to an approach position and a chance is given to the user to cancel the task. Line 57 to 63, an approach
motion and a purposely over shooting motion is programmed in order to obtain the initial phase of the
insertion process. While complying and exerting a preloading force the peg is rotated, lines 65 to 67, to
the aligned position. The first insertion attempt is performed line 70 and 71. Lines 70 to 91, are pro-
grammed the accommodation motions using update to record the successive alignments. The final phase
of the insertion process is performed lines at 93 to 96. The peg is then pulled out of the hole, while mon-
itoring the differential motions signaling that the motion becomes unconstrained. The peg is then taken

away lines 102 to 104.

- 90 -

4} The last example demonstrates how compliant degrees of freedom can be accumulated as con-
straints are met. The manipulator is programmed to detect the walls of a corner and to record the posi-
tion of the corner. The program then uses this position information to move the manipulator next to the

corner within a very small distance.

1 #inélﬂde "recl . h”
2 finclude "umac.h”

3

pumatask()

. TRSF_PIR z, e, peg, corner, roty;

POS_PTR pcor;

int q;

z = gentr_trsi{”2”, 0., 0., 864.);
e = gentr trsi("E” , 0., 0. | 140.);
peg = gentr_trsl{"PRG", 0., O., 10.};
corner = gentr_trsl(”CORNER”, -50., 500., 550.};
corner->fan = varb; . -

roty = gentr_rot{("ROTY”,2 0., 0., 0., yunit, 180.);

 pcor = makeposition{

"POOR”, z, t6, e, peg, EQ, corner, roty, TL, peg);

setvel (300, 50);
move({pcor);

if (!teach(corner, pcor)) {
‘ ~setvel (300, 50);

“setmod(’j’);
move{park);
‘return,;

setmod (¢’ };
setvel (160, 100);

distance(”dz”, -50.);
' move (pcor};

QUERY(a);

if (¢ == "0’} { o
setvel (300, 100);
setmod('}');
move (park);
. return;

}
“move(pcor);

setvel (5, 20);

- 91 -

46

47 limit(”fz”, 20.);

48 distance(”dz”, 10.};

49 - _ move (pcor);

50 comply(”fz”, 10.);

51 timit("fy”, 15.});

52 distance(”dy”, -10.);

53 S move (pcor});

54 comply(”fy”, -10.);

55 : update{corner, pcor);
56 | Limit ("fx”, 25.);

57 ‘ ' distance(”dx”, 10.);
58 : ' move(pcor};
59 lock("fz fy”});

60 setvel (50, 50);

61 , distance(”dx dy dz”, -10., 10., -50.);:
62 move (pcor);

63 - ‘

64 setvel {300, 50);

65 _ setmod('j’);

66 meve (park); ’

67 distance(”dx dy dz”, -10., 10., -50.};
68 move (pcor);

69 setmod{’c’); -

70 setvel (50, 50);

71 » distance(”dx dy dz”, -1., 1., -1
72 move (pcor); _
73 distance(”dx dy dz”, -10., 10., -50.);
74 ' ’ move (pcor}; :

75 setvel {300, 50);

76 setmod{'j"); '

77 move {park);

78}

Again the preliminary phase is quite similar to the previous example. The approximate location of
~the corner is taught by an operator and a chance is also given, line 32 to 43, to cancel the task. The
reader may notice that in this example, the corner is oriented in such a way that approaching it
corresponds to positive displacements in the X and Z directions, and a negative one in the Y direction.
The manipulator approaches the first wall of the corner moving along the Z direction, lines 48 and 49,
and enters the first comply mode, line 50, before moving to the next wall. The same process is repeated
for the Y and Z directions. In each case a preload force is exerted in the appropriate direction in order to
maintain contact with the walls. The last accommodation motion, line 58; is associated to a call to
update so as to record the final position. Two compliance degrees of freedom are accumulated and the
manipulator is brought back to position servo mode line 59. The peg is then taken away, lines 60 to 62.
Before going back to the recorded position, the arm is moved at high velocity to the PARK position.

- 92 -

‘8. Structurﬁng Programs

We shall attempt in this section to show how higher level primitives can be written in term of
RCCL functions. We shall make use of the macro processing facilities to define in a few lines some
manipulator language statcments often encountered. A primitive insert based on a bare bone version of
the insertion task explained earlier is described. This insert primitive, newly defined is used in a repeti-
tive task. Each loop the manipulator moves to a ‘get’ position where a feeder conveys pegs to be
inserted on an assembly. The holes locations are stored on file and may have been taught in a previous
operation or obtained from a CAD/CAM system. The loop synchronizes with the {eeder’s actions via an
" external variable : »

#mclude Treel.h”

:E
2 finclude "umac.h”

"3 #include “hand.h”

5 gdefine AWAYZ(p, 1) {distance(”dz”, - (i)}; move(p);}
6 define OVERSHOOTZ(p, 1)} {distance{"dz", (1)); move(p);}
.7 $define FAST - . setvel (300, 300.);

8 #define SLON setvel (50, 50.);

9 ' #define CAUTIOUS ' setvel (7, 7);

11 /= ,

12 * do one 1nsertion

13 |

14 :

15 insert(z,,gri'p,v peg, hole, depth, ang)
16 TRSF PTR z, grip, peg, hole; ‘
17 real depth, ang; R

18 { ,
19 ' TRSF_P1IR bottom, angle, roty;
20 .. POS_PIR align, in, touch; :
21 S
22 bot tom = gentr_trsl{”BOTTOM”, 0., 0., -depth);
25 angle = gentr_rot(”ANGLE”, 0., 0., 0., yunit, ang);
24 o roty = gentr. rot(”ROTY”, 0., 0., 0., yunit, 180.);
ot . | : :
S 26) align = makeposition(_ _ :
27 "ALIGN”, z, t6, grip, peg, EQ, hole, angle, roty, TL, peg);
28 o , . »
29 “touch = makeposxtlon(: ‘ ‘
30 - "TOUCH”, z, t6, grip, peg, EQ, hole angle, roty, TL, peg});
31 : ‘
32 ' in = makeposition(:
33 v "IN”, 'z, t6, grip, peg, EQ, hole, bottom, roty, TL, peg);

38
36
37
38
39
40
41
42
43
41

18
47
483

- 49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

- 03 -

setmod{’'¢’);

FAST

AWAYZ (touch, 10.)
CAUTIOUS

AWAYZ (touch, 4.)
Vimit("fz”, 25.);
OVERSHOOTZ(touch, 5.)
comply(~fz”, 15.);
- move(align);
lock(”1z2”);

comply("fx fy”, 0., 0.);
update{hole, in};
Limit(”f2”, 20.);

OVERSHOOTZ (in,
lock(”fx fy”);

SLOW |
AWAYZ (align, 50.)

‘waitfor{in->end)

OPEN

move{there};
waitfor(completed);
freepos{align);
freepos(in);
freepos{touch});
freetrans{bottom};
freetrans(angle);.
freetrans{roty};
return;

10.};

66
67

68

69
70
71
72
73

74

75

76

77

78

79
80
81
82
83

- 84

85
.86
87
88
89

90

91
92
93
94

95 -

96
97
98

99

1006
101
102
103
104
105
106
107
108
109

110
111
112

113

/*

* monitors feeder

*/

#define PARTS . I
#define EMPTY' 2

monfeeder ()

{ o
' if (feedersensor == PARTS) {
: "nextmove = YES;
CLOSE
y .
if (feedersensor == EMPTY) {
‘parts = 0;
}
}
/e |
¥ Do inmsertions

int parts = YES;

{

pumatask()

TRSF PR 1z, e; ﬁssy,‘h,'feeder, grasp, pegs;

POS_PTR get;

z gentr{);
e = gentr();.
assy = gentr();

grasp = gentr(});

feeder = gentr{};

pegs = gentr{); :
h = newtrans(”H”, hold);

get = makeposition{”GET”, z, t6, e, EQ,

while{parts) {
move(get);
evalfo{monfeeder);
"setime (200, 10000);
move(get);
gettr(h, file);

[* base frame =/

[+ end eflector */

[+ assembly */

|+ gasp pos *[

/+ feeder *f

/* peg rel. e */

/* h rel. to assy ¥/

feeder, grasp, TL, e};

insert{z, e, pegs, b, 20., 15.); .

- 95 -

Conveyors are expensive, and rugged objects could be thrown from place to place. We shall see
here how a ‘throw’ primitive (seldom found in regular robot Q;fég;gmming languages) can be easily writ-
ten. In order to obtain a maximum acceleration, we shall program a sequence of motions that only uses
the transition part. This example is only given as an illustration because the dynamic qualitics of the

Puma manipulator proved to be not quite sufficient.

ot et
RO et OO R T T WD e

[

RO bt b bt bk o pmd ed
O W =IO W

[ST ST SOl o
> O b =

[3-
<

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

- 46

47
48
49
50

- 51
- 52

53

- 96 -

#include "rccl. b’
#include "hand.h”
#include “umac.h”

real when;

#define MAXACC - .015

/* to open the gripper =/

J+ mm/ms2 #/

throw{v0)
VECT PTR v0;

{

int openat{};

real Tx = (12. # v0->x) / MAXACC; [+
real Ty = {12. = v0->y) [/ MAXACC; /*
real Tz = {12. * v0->z} [MAXACC; /*
int T = ((FABS(Tx) > (Ty)} , [
, ? ((FABS(Tx) > FABS(Tz})
? Tx : Tez) /*
((FABS(Ty) > FABS{Tz))
? Ty : Tz},
real dx, dy, dz;
stop(0);
setmod{'¢c’});
dx = Tx = v0->x [2.;
dy = Ty *» vo->y [2.;
dz = Tz * v0->2 [2.;
distance(”dx dy dz”, -dx, -dy, -dz};

setime(T / 2, T});
move(there}; /* back up */
when = .90;
evalfn(openat);
distance(”dx dy dz”, 2.
setime{(T / 2, T);

move (there);

/* before the end
* dx, 2..

/* move as fast as

setime(T / 2, T}; /* come back
move (there); '
stop(0);

return,

openat{) /* opens the gripper at a given moment %/

{

if (goalpos->scal >= when) {
- OPEN

* dy, 2.

compufe

the acceleration
t imes

and pick up

the longest one

/# open the gripper just */

«/

 dz);
possible */

+/

- 97 -

54

55 pumatask()

56 {

57 TRSF _PTR b0, grip;

58 POS_PTR po0;

59 ~ VECT vel;

60 int q;

61 _

62 grip = gentr_trsl{"GRIP", 0., 0., 170.);

63 b0 = gentr_rot(”B0”, 400., 150., 700., yunit, 45.%;

64 . ,

65 p0 = makeposition{”P0”, t6, grip, EQ, b0, TL ,grip);

66 , : .

67 QUERY(q)

68 CLOSE |

69 setconf(”d”); [* elbow down, like the Great Di Maggio * [
70 setime(100, 3000);

71 move (p0}; /* move above the shoulder %/
72 vel.x = ;

73 vel.y = .0;

74 vel.z = .6; . [+ m/s at 45 degrees, see BO x [
75 '
76 throw{&vel);

77 |

78 setmod{’j’); / [+ back to park */

79 setconf{”u”); [+ elbow up [/

80 setime (100, 3000);

81 move {park);

g2}

The acceleration times , lines 14 to 21, and thé magnitudes, lines 27 to 29, are derived from the
coefficients of the quartic polynomial functions used to generate the transitions [2]. The segment times
are exactly twice the accelerations times.

- 98 -

g, Limitations

g.1. Force Control ,

In the case of the Puma manipulator, the implementation of force control suffers a aumber a limita-
tions due to the simplicity of the implemented method. Force measurements are obtained by monitoring
the motor currents. Coulomb friction terms, ai the joint level, have Leen experimently measured {8
When the velocity of a joint is small or null, these terius are irrelevant and cannot be used to improve
the accuracy of the control. When the afm if to stop on force, this is of little importance since the joints
likely to provide the guarded motion are moving. Nevertheless, this fact has to be kept in mind. Grav-
ity loadings have also been experimently measured. Experiments have shown that although the mass of
an object carried by the manipulator could be measured, the accuracy is not sufficient and is likely to
cause offiset errors for the gravity loadings. The function massls has been implemented to get around
this.

~ Force specifications possess an estimated accuracy of approximately 10 Newton in most of the work
space. This is preity close to the load capabilities of the manipulator, therefore extreme prudence is
recommanded. Despite this lack of accuracy, the tasks using force control explained in this document all
run with a good reliability. _
When the manipulater transitions from comply serve mode to position servo mode, a glitch often
occurs and is as noticeable as the velocity is high and the load important. It is usually harmless, and

correspond to the position servo correcting the first setpoint.

Compliance in a given direction is obtained by selecting the joints most suitable to provide the
desired effects [2]. The joint selection method is simplified. It does not take into account the translation
part the fool frame. This means that in comply servo mode, force specifications will always match the
inner joints{1, 2, 3} and torques specifications the wrist joints (4, 5, 6). Although the method is reliable
aud simple, it suffers the drawback that no remote center of compliance can be specified. Time con-
straints have prevented further work on this points, and any centributions are welcome.

9.2, Machine Errors.

When the robot task is running in real time, the process is locked into core memory and the inter-
rupt function of the system as well as the user’s background functions are rurm at very high priority in
kernel mode. Any system call {(machine trap), will crash the system {(beware of the prints). The same
problem occurs for any machine error like a bad memory reference of 2 floating point exception in any
part of the process. Some debugging tools are provided as explained later.

$.3. Process Size

When the real time proceéss is run, it is locked into core memory and the virtual memory system
desactivated. Therefore, the process canuot grow it's allocated region. Dynamic allocation is performed
within 2 preallocated memory area. The system calls like ‘malloc’ are replaced by alternative functions
[6]. A set a macros : . : : '

#define malloc malloc | : ‘ ' -
#define free free | ‘

#define realloc realloc_1.

#define calloc calloc_I

#definpe cfree cfree |

allows the user to safely write :
p = malioc{20);

This causes a more annoying problem when it comes to opening files. Files can be opened only
when the real time channel is closed. However, the user can always code :

- 99 -

" move(p);
stop{200);
waitfor(completed};
release(”opening files”});
fdi = creat(...

fd2 = open(...

startup();
move(...);

The process is temporally put back in n_ormai mode by the function release [6], and file ‘opens’ can take
place. The function startup will resume real time execution by the depressing the ARM POWER but-
ton when requested by the system. Failing to follow the procedure will also cause a system crash.

9.4. Sample

The sample period is normally 28 ms. It can be set to 14 via the function sample 2nd whesn not
needed, the sample period can be reset to 28 ms. Changing the sample period can cause a slight glitch.
If the velocity if the manipulator is small, the glitch is negligible. For example the for loop of the exam-
ple section 7.3 can be coded : ' ‘ :

32 for {; ;
33 setvel {400, 300);
34 move(get);
35 move (pl);
stop(0);
36 _ setvel (100, 100);
37 sample(15);
38 move (p2);
stop(0);
39 sample(30]}; ' o :
40 printf{{”more ?”); QUERY(q); if (g == 'n’) break;
41 } -

If the user’s background functions take to much time to execute, the behavior of the real time
interface no always easy to predict. In the best cases, it causes a crash of the superviser program running
in the LSI-11. The arm power is immediately turned off, and nothing annoying happens. The superviser
is restarted and everything comes back to normal. It seems that when the user’s functions processing
time is slightly too long, the VAX still accepts interrupts, but stacks them and this quickly causes a sys-
tem crash. Finally, if the interrupt code is very long {an infinite loop, for example), the system is totally
blocked and a manual boot is necessary. ' ‘

8.5. Large Rotations.

For a reason that has not been yet determined, some motion transitions involving large rotations do
not behave quite correctly. ' ' :

10. The Planner and Play Program

In order to write and debug the first draft of manipulator programs, a special library is provided.
This library has exactly the same entry points as the regular library, but replaces the interrupt code with
a loop. Exactly the same programs can by run.and tested. The synchronization features are simulated
so that everything happens in the same order as in the real time version. The user is advised to run the
programs in this mode before actual execution. The resulting sequence of points can be dumped onto file
for execution by the play program [6]. Trajectories can be also stored and displayed on the terminal by a
special program called dsp. ’ :

- 100 -

When programs with guarded motions are rum in this fashion, the conditions will never be met,
unless special simulation monitoring functioas are written. When programs include comply statements,
the comply mode is simulated as follow : the compliant joints are selected according to the geometry of
the task and are aftiﬁciaﬂy frozen as if the resuiting forces would keep them immobile. The accommoda-
tion motions compensation feature being still activated, it may produce {uany but mezaningful trajec-
tories. Tracking with external information can produce various resulis according to the situation at
hand. Nevertheless it is very useful to test shead manipulator programs. All branches must be tested
because manipulator control is essentially programming with side eflects. it is always useful to ‘play’ the
resulting trajectories in free space to get an idea of what is going to happen.

- 101 -

11. Progrem Options

Programs can be run with a number of options :

v This option allows the user to specify the printing of information. A file called ‘@@.out’ is created
in the current directory. It contains informations about what the system understood of the calls to
makeposition. A record will be printed for each move request. For the planning version only, 2
record will be printed by the trajectory generator at the time the request is executed, for example
the beginning of the file ‘@@.out’ for the camera guided task Section 7.1.is : ’

makeposition, pos "LOOK” 7 T6 E = EXPECT

optim, initial equation : T6 = -7 EXPECT -E

optim, final equation : T6 = _TEMP1 -E

| »COORD™: “TOOL”: -E ”POS”: _TEMP1

makeposition, pos "GET” T6 E = COORD CAM O

optim, initial equation : ~ 'T6 = OOORD(k) CAM O(h) -E

optim, final equation : T6 = COORD(h) CAM O(h) -E
"COORD” : COORD(h) CAM »TOOL”: -E "P0S”: O(h)

makeposition, pos . TPUT” Z T6 E = DROP

optim, initial equation : T6 = -Z DROP -E

optim, final equation : T6 = _TEMP2 -E

»COORD” ; "TOOL”: -E ”POS”: _TEMP2

request LOOK mode j acct 56 sgt 0 velt 200 velr 100
conf upd : smpl O mass 0.000000 :

PARK -1 28 j 84 84 280 28
force 00 0 0 0 0 0 O
cply 00000000
dst 00000O0GCO

: exd 060000000

LOOK -1 336 j 56 56 2660 28
force 00 0 0 0.0 00
cply 00000000
dst ©000000O00
exd 00000000

- 102 =

reqﬁeSt CGET mode j acct 56 sgt O velt 200 velr 100
conf upd : smpl O mass 0.000000

 dist dz : -30 - v

requeét_GET mode j acct 56 sgt O velt 200 velr 100
econf upd : smpl O mass 0.000000

request STOP mode j acct 0 sgt 28 velt 200 velr 100
conf upd : smpl O mass 0.000000 '

request GET mode j acct 56 sgt 0 velt 200 velr 100
conf upd : smpl O mass 0.000000
dist dz : -30 - ‘

o -
Qo

GET -1 3024 j 56 56 1568 2
" force. 006 000 0 0O
cply 000060000
dst: 00000000

exd 0400 30000

GET -1 4592 j 56 56 280 28
force 00 0.0 0 ¢ 00
cply 000000200
dst 00000000
exd 00000000
GET -1 4872 j 56 56 140 28
: force 00 0 00 00O
cply 00000000
dst 00 00 GO0O0COC
000000

exd - 00

- 103 -

request PUT mode j acct 56 sgt O velt 200 velr 100
conf upd : smpl 0 mass 0.000000

GET -1 5012 j 56 56 280 28
force 00 0 0 0 000
cply 000006000
dst - 00 000000
exd 04 00 -30 000

"PUT -1 5292 j 56 56 2492 28
force 00 0 0 0 0 GO
cply 00000000
dst 00 0 0 0000
exd 00000000

PUT -1 7784 j 56 56 112 28
force 00 0 0 0 0 0 C
cply 00000000
dst 006006000
exd 00 0 0 000G

request LOOK mode j acct 56 sgt 0 velt 200 velr 100
conf upd : smpl 0 mass 0.000000

Etc

The equations are printed, then their canonized form before and after optimization.v Transforms
are marked according to their type : varb (v}, hold (h), functional (s). The optimization premulti-
plications generate the ¢ TEMPx' names. For each request all the parameters are printed, for

example :

request LOOK mode | acct 56 sgt O velt 200 velr 100

conf upd : smpl O mass 0.000000 :

means : position ‘LOCK’, mode ‘joint’, acceleration time 56 ms, segment time is O that is : will be
computed at execution time, current velocities are 200 mm/s and 100 deg/s, no configuration
change required, no transform to update, no sample time change, current mass of object is 0. kg.

The trajectory generator prints in a compact format the specification at the beginning of each
motion {planning version only) :

GET -1 5012 j 56 56 280 28
force 00 0 0 0 0 0 C
cply 000000060
dst 00060000
exd 04 00 -3000¢0

means : previous motion terminated ‘OK’ (-1), time is 5012 ms, mode is ‘joint’, accelerations times ;
first transition is 56, second 56, segment time is 280, time increment is 28. No force limit, no com-

ply, no differential motion stop, distance is -30 mm in Z direction. For the records ‘force’, ‘cpy’, /
‘dst’, and ‘exd’, the first number is an octal code {00 for no specification, translation or forces': 01
for X, 02 for Y, 04 for Z, rotations or torques : 10 for X, 20 for Y, 40 for Z, and the combinations :

01, 03, 05, 06, etc ...};
If the the option “-vv’ as very verbose is given, the values of the transforms created by the ‘gentr...
style function is also printed.

- 104 -

This option correspords to the global flag prints_out. This Bag can be turned on or off the text of
the programs themselves :

.prm*s cut = YES;
po =makep031t10n(2)s
pl = makeposition{...};

move(p0};
move{pl};
prints_out = NO;
The information is printed to the fpi file pointer :
FILE #*fp1;

This file pointer is initialized to the ‘stderr’ file pointer. When the flag prints_out is set to a non
zero value, the makeposition and move messages go to the terminal Wher the option ‘-v’ is
specified, the file ‘Q@.out’ is created and fpi points to it, and the messages are stored on the file.
One can use this feature for any purposes, for example : .

pumatask()

{
TRSF_PIR
POS_PTR

prints_out = NO;
p = makeposition{...};

move(p);
fprintf(fpi, "bia bla”);

If the task is run without option -v’, "bla bla” goes on ‘stderr’ file, if the task is run with option ‘-
v', "bla bla” goes into ‘@@.out’.

This is the ‘graphic’ option (planing version only). The setpoints are stored in the files ‘../g/fl.out’,

*../g/i2.0ut’, one for each joint. When displayed with the program dsp a character ‘J’ stands for
joint mode straight part, ‘T’ for joint mode transition, ‘E’ for first poin¢ of joint mode transition,
‘C' for a Cartesian mode straight part, ‘H' for Cartesian transition, and V' for first point of Carte-
sian transition. In order to use this option, the user is required to have a ‘graphic’ directory ‘../g’
at the same level in the file tree hierarchy as the current directory. This will avmd having the
current directory constantly clustered with junk files.

This is the ‘data’ option (planning version only), when specified, the system creates the file ‘@.out’
in the current directory that will contain one line per setpoint according to the following format :

POS M time tseg j1 j2 j3 j4 j5 j6 sel

Where ‘POS’ is the name of the goal position, ‘M’ is the mode {(J,- T, E, C ,V Hj as described
above, ‘j1'...'j6" are the joint angles in range coordinate [6], and ‘sel’ an octal value showing which
joint are complying in comply mode (0 no joint, 01 for joint 1, 02 for joint 2, 04 for jOlm 3, 10 for
joint 4, 20 for joint 5, 40 for jomt 6, 3 for joint 1 and 2, etc.).

- 105 ~

a This option when set, causes the joint angles to be output in solution coordinates [6]. It serves for
option ‘d’ and ‘g’ ' ' ‘

k This option when set, causes the values of 76 to be printed in lieu of the joint angles. For the
option ‘g’ twelve files (fl.out ... f12.0ut) are created, the values of the vectors ‘p’, ‘n’, ‘o', and ‘a’;
For the option ‘d’ the format becomes : '

POS M time tseg px py Pz BRX Dy DNz O0X 0y Oz dx ay az

It serves for option ‘d’ and ‘g’.

e This option causes the file ‘@@@.out’ to be created in the current directory (planing version only).
The file contains the sequence of encoder values suitable to be used by the play program [6].

Dname This option specifies the file ‘name’ as a data base of transforms. Can be used in association with
the teach mode (see below).

This option corresponds to the global file descriptor fddb initialized to “-1’. When the option ‘-
Dname’ is specified, fddb describes the file ‘name’. If the file ‘name’ does not exit the user is

prompt as :
pame does’'nt exit, create. ? (y/n}

Answer as appropriate.

b This option turns off the force control features (brute option). In the case of the planning version,
no simulated joint accommodation will occur. In the case of the real time version, it allows us to

test the manipulator programs free of obstacles.
This option corresponds to the global flag force_ct! which is turn off by the ‘-b’ option. The flag
can be turned on or off in the text of the programs.

- 106 -

12. Teaching
The teach mode is activated by a cali to the teach function :

teach{trans, pos)
TRSF PIR trans;
POS_PIR pos;

The $each function gives control to the user on the manipulator motions. When the teach mode'begins,
the following message appears on the terminal :

teach mode V1.0, transform TRANS, position POS
! i |

a simple command line language allows the user to move the manipulator around. When the desired
position is obtained, the ¢ransform ‘TRANS’ can be solved for the position equation POS’ for the
current value of T6. This is obtained on user’s command by a call to updste. Once the position is
recorded, the manipulator can be moved elsewhere. Upon exit of the leach mode, if no position have

been recorded the user is prompted as :

nothing taught, exit ? (y/n)

If ‘n’ is answered, the feach mode is not exited, if ‘y’ is answered the ieach mode exits and the teach
function return the value ‘NO’. When a transform has been recorded, upon exit the function teach
returns the value ‘YES’. Even if a transform has been recorded, teach can be forced to return ‘NO’ by
typing a ‘q!". Applications of this have been shown in section 7. If successive records are made, only the
last one is taken into account. ‘

When a data base file has been specified, the teach mode behaves differently. The transform to be
taught is searched in the data base under its name, if found, the function teach directly uses the value
and immgdiately exits returning ‘YES’, update is then not called. If the transform cannot be found in
the data base, teach enter the regular manual mode. The user can record the transform value and save
it on the data base. If no data base has been specified the user is informed of that fact. A data base edi-
tor {see below) can be used for off-line maintenance.

The interactive commands are displayed when a ‘?" mark is typed. By convention, the lower case

XL, YL T characters stand for translations or forces, and the upper case ‘X', ‘Y’, ‘Z’ stand for rotations
of moments : ‘

These commands are executed one per‘line:

<return> interrupt arm motion

q quit

q! - quit, ignore not recorded

r o record transform

p o display current settings

s . save transform on data base

1 R toggle force momitor
v <t o> "~ set velocities
m <> set mass of object

? : this message

. These commands cumuiate: B

o : ' - .open hand

¢ » close hand »
w < [y]2 [X[Y]T> <> ‘move world coordinates
t <x/y/z/X/Y[/Z> <k> . move tool coordinates
e <x[y[z/X[Y]I> <k> change too! transform
f <x/y/

2 [X[Y[1> <k> set force limits

- 107 -

‘Messages from the system can be :

no data base specified
nothing recorded
_ stopped or force

>> stopped
next to limit{s)
not so fast
A teach session can be obtained by rﬁnning the program :

#include "rccl.h”
#include "umac.h”

pumatask()

{ .
TRSF PIR z, e , b0;

POS_PIR pG;

gentr_trs!(”2”, 0., 0., 864.);

gentr_trsl(”E” , 0. , 0. , 170.); » S
b0 = gentr_rot(”B0”, 600. , -200., 800., yunit, 180.);
b0->fn = varb; . _ ’

p0 = makeposition(”P0” , z, t6, e, EQ, b0, TL, e);

setmod(’c’);

setvel (300, 100);
move(p0);

while (teach{(b0, p0)) .

setvel (300, 100});
move({park};

The session can 'look‘ like :

- 108 -

$ a.out -Ddata

data does’'nt exit, create ? (y/n} vy

gettr : BO not found

teach mode V1.0, transform BO, position PO
?p .

T6: ' -

©.1.000 -0.000 -0.000 600.001

-0.000 '1.000 0.000 -200.000

© 0.000 0.000 -1.000 106.000
- . .)

1.000 0.000 0.000 0.000

0.000 1.000 ©.000. 0.060

0.000 0.000 1.000 170.000

veloc ¢ lOO r:10 i ' ' .
1 2 3 4 5 6

- po force limit

mass of object : 0.00000C kg

v 3067 . :
2wx200 wz -300 wY10

” .

>> stopped
not so fast
?wz 200

71

?p

T6:

-0.985 0.000 J0.171 826.436°
-0.000 .000 6.000 -200.000
0.171 0.060 -0.985 6.044

[l

.000 0.000 6.000 6.000

1
'0.000 1.000 0.000 0.000
. 0.000 6.000 1.000 170.000
‘veloc ¢:30 r:7 T : .
w___l _______________ 2. __ . 3_ N _ .) -8
Torce Timits :fx 0.06 fy 0.00 fz 0.00 fX 0.06 {Y 0.00 fZ 0.00
mass of object : 0.000000 kg o , o ’
?7£x20 Y5 ‘ '
*wz-30
stopped om force '
?p
T6 :

" 0.985 0.000 -0.171 826.436
-0.000 000 0.000 -200.000
0.171 0.000 -0.985 16.013

(=

E: .
1.000 0.000 0.000 6.000"
0.000 1.000 0.000 - 0.000
0.000 0.000 1.000 170.000
veloc ¢:30 r:7 » o » : v v
T U S 3 4 , 5 . 6

Torce limits :fx 20.00 fy 0.00 “fz 0.00 X 0.60 fY 5.00 fZ 0.00
mass of object : 0.000000 kg ' ' ‘ . S ’

~ 109 -

The feach mode uses its own position equatidn to moy\}"é" thé arm around. The tool transform is
preset to a 170 mm translation in the Z direction, but can be changed. The messages “not so fast” or
"next to limit(s)” do not appear when the condition occurs, but when the next command is typed. The
‘¢’ command prints the current values of T6, E, velocities, the relative position of the joints in their
range, the current force limits when toggled on, and the current mass of object.

- 110 =

13. Summary

13.1. Error Messages
An RCCL internal error, causes a message {0 be printed and an exit of the process for the planning
version. When run in real time mode, the process does not exit but the arm power is turned off and the
process is put to sleep, this is to allow the user to ‘break’ the program and take advantage of the
automatic home position retura [6]. If the error occur at the level of the real time interface, we refer the
“reader to [6] for 2 determination of the error. If the error is 2 RCCL error condition, the messages can
be :

»position "POS” : transform not initialized - makeposition” : one of tke transform pointer is
‘NULL’. '

”position "POS” : missing t6 or tool - makeposition” : bad position equations structure.
”position "POS” : missing rhs - makeposition” : bad position equation structure.

" position "POS”, transform "TRANS” : pos functionaily defined - makeposition” : the POS part of
the canonized equation cannot be a moving frame.

”posiﬁon »POS” : pos cannot seriously be t6 - makeposition” : the POS part is equal to T6 due to
a bad choice of the TOOL part. ' :

»giveup” : The function giveup has been called, a message follows.
bad spec. - limit” : wrong directions specifications.

»”bad force spec. - comply” : wrong vdirectious specifications.

»bad force spec. - Iock’; : ditto.

”bad distance s'péc. - distance” : ditto.

»conf must change in joint mode” : the current motion mode is not correct for a configuration
change.

"invalid updaté transform type” : the involved transform must be of type vard. -

»could’nt find updatable transform” : a transform has been required to be updated but does not
belong to the specified equation. .

7alloc err” : motion queue saturated.

"mem. alloc error” : no more dynamic memory aliccation space.

- 111 -

»Limit ‘time’” : a joint limit occurred at time ‘time’, the p;l_'ogram does not exit and tries to recover
by stopping and getting a new motion from the queue. (plalf_x'ning version oaly).

”joint(s) li‘m'iﬁt” ‘: an unrecoverable joint limit occurred. (p!énning version o‘niy).‘

"glitch ‘time”; 13 _veldcity disgontiﬁuity occﬁrréd at tﬁmé ‘time’ (planniﬂg_ Versio;, iny), :
jam” : unexpected behavior of the queue managemenﬁ, should never occur.

”cannot unit vector” : the unit function has ‘been required to unip .a‘; zero magnitude vector.

»Write io error”, ”write io error”, "close io error” : an ifo error occurred while writing data (plan-
ning version only}. ' ' : ' '

»xx# could’nt queue at ‘time”, this message may occasionally appear, but it never did so far.

Note .
The user can use the function giveup to cause 2 task cancellation :

giveup(message, level});

The first argument is a string, the second argument tells if the error condition occur in a back-
ground function (level 0) or in the user process (level 1), for example : ' -

pumatask()

{

evalfn(moni_tor)';
move(p); -
while (goalpos: == p) {

it (big_mess) { :
giveup{”cannot do that”, 1};

}.
monitor{})
{

if (not_good) { _
giveup("wrong data”, 0);
) v

The error message would be :

- 112 -

cannot do that
giveup

or

Wrong data
giveup

13.2{ Functions, Global Vabriabies, and Macros |
~ Tollows a brief description of the RCCL function library :

-
{ ,

Dictionary of the terms

“ax : x element of ‘a’ vector of a transform (reav!)i.

ay: y eiement of ‘2’ vector of a transform (real).

az: eléﬁlen‘tj‘of ‘a’. vector of a transform {real).

bool : aﬁ iniégérue'xpressidn evaluating to D or nbn zero.

code : an infeger expression (OK LIMIT ONF OND‘pvredeﬁned).;

‘ cbnf ‘2 st'ring ,at méét éne of the I’ ¢ ‘u’ ‘d’ ‘" ‘n’ characters and * .
i : DIFF_PTR, a‘pomtéxvto_a DIFF structure.

du‘s i a st?ing of the form "fx ty”, "te”, .., fér force and dist‘anc_e‘ sbecs.’
eve . an even_t; count. |

force : FOR‘CE_PTR? a .pointe.r tc; a FORCE stmcture. A

| _ fp IF: a UNI‘X file pointer *FILE (stdout, ’sitd_err‘v...). :

func : pointer to a function.

level : an inﬁeger expression eva‘luating‘td 0 (intenppt) or 1 {user).
Tist :‘ a list of ‘rans)l‘orm pointers _(TRSF_P’I;R).Séparated by commas.
msg : 2 sﬁriﬁg. |

mode : the character ‘j’ or ‘c’.

- 113 -

name : a :;tring.

ox : x element of ‘o’ vector of a transform (real).

oy : y element of ‘o’ vector of a transform (zeal). .

0z: 1 elemen‘t of ‘o’ vector of a tr;msform (real).

period : an integer expression in milliseconds.

phi : an angle in degrées (real).v

pos : a pointer to a position structure ’(POS__PT‘R)'.

pphi : a pointer to a angle in degrees (*real).

- ppsi : a pointer to‘ a angle in’ degrees (*real).

“psi: an angle in degrees (rea,l)L

pthe : a pointer tb a angle in degrees (*real).

px: X element of ‘p" vector of a trax;sl‘orm in.lﬁillimeteré ('real).
py : Yy element of ‘ip’ vector of a t;ansfon;m in millimeters (r'eal).'
pz : 1 element of ‘p’ vector of a ;rénsform in millimeters (real).k
rotvel : a rotational ?elo;city in degrees per second (int).

tacc : an acceleration time in milliseconds (int).

the : an angle in degrees (real).

time : a time in milliseconds (int).

trans : a pointer to a transform structure (TRSF_PTR).
transvel ; a translational velocity in millimeters per second (int).

values : a list of specifications in millimeters, degrees, Newtons, or Newton-meters.

vect : pointer to a vector structure (VECT_PTR).

-y

- 114 -

- Dencrlption of Functlons, Variablen, and Macroe V

Note : if pis pomter, *p is what is polnted to. functrons names are marked T, varrables names ‘v’

!macros names ‘m’.

: assigndiff(dxffl, diﬁ?) copy *dlﬂ'2 into *diff1, return drﬂ'l
‘assignforce(forcel forceZ) copy *forc‘eamto *forcel return forcel

' a’s's'ilgnt’r(transl, trans2) : copy'.y'*vtrans2.into *transl, return transli.

’ assignr/ec‘t(vectﬁ; vect2) : copyv*veth into *vectl return vectlb

'completed H srgnaled when motron queue goes empty and the arm is evaiuatrng fast pos;;tron
_v »(event) ‘ :

1

: compiy(dirs, values) : specxfy comphance for subsequent requests
‘ .const() does nothmg but typrﬁes a transform as constant (TRFN)

» v croas(vec'til9 vectz, vect3) 3 compute in *vectl cross product of *vect2 and *vect3, return vectl

df to tr(trans, diﬂ') bullds dlﬂerentlal transform *trans out of drﬁerentral motron *drﬂ' return
trans o . : S :

) ::dgtord m H read only (real) convert from degrees to radlans what is multrphed by

s ,difftr(diﬁ‘l, diff2, trans) t transforms drﬂ'erentlal motlon *dnﬂ'Z mto dnﬁerentral motron «diff1, wrth
a frame drﬂ‘erent:al relatlonshlp *trans return drﬁ'l ' v .

fdlstance(dnrs, values) 3 mternally changes the posrtron expressed in too! frame
o dot(vectl, vect2) g return (real) the dot product of *vectl and *vect?.
_eul(trans, phi, theta, psi) set the rotatlonal part of *trans from Euler. angles, return trans.

..’eulm(trans, phi, the, psi) H multrphes *trans by a- rotatlon expressed wrth Euler angles returns '
. trans .

| eVal’fn(fﬁnc")": causes the function ‘*func to be evaluated for next motion’requeSt.'f
" ':force ctl : turns on/oﬂ" force co_ntroi features. (boo). o

‘forcetr(forcel, forcez, trans) transform generahzed forces *forceZ mto generahzed forces
._,*forcel w1th a frame dlﬂ'erentral relatronshrp #trams, return forcel

fp! 2 information file pointer (*FILE).

freepos(pos) : returns to the memory pool the storage allocated for building a positions equation
ring structure. , .

gensym() : return a pointer to an always different string (_TEMP1, _TEMP?, ...).

gentr_eul{name, px, py, P%, phi, theta, psi) : make a constant transforms out of a ‘p’ vector
and Euler angles, return a trans. ' :

gentr__pao(name, PX, DY, P%, 8X, &Y, 3&; 0X, OY, oz} : make 2 constant transforms out of a ‘p’

[P ¢

vector and ‘a’, ‘0’ vectors, return a trans.

gentr_rot{name; px, pY, P%, vect, theta) : make a constant transform out of a ‘p’ vector and 2
rotation of theta degrees around *vect, return a trans. '

gentr_’rpy(na.me, px, pY; Pz, phi, theta, psl) : make a constant transforms out of a ‘p’ vector
and roll, pitch, yaw angles. return a trans. '

gentr_trsi{name, px; p¥, pz) : make a constant transforms out of a ‘p’ vector and 2 unit rota-
tion, return a trans.

giveup(msg, level) : cancel 2 task, and print msg when broken.

goalpos : a read only (POS_PTR), equal to the position pointer of the equation currently
evaluated. : :

hdpoe : a write only (skort), hand position information.
here : a read only (TRSF_PTR), equal to T6 at segment termination.
hold() : does nothing but typifies a transform as to be held {TRFN).

invert(transl, trans2) s store in *transi the inverse of #trans2, transl and trans2 different, return
transl.

invertinp(trans) : stores in *trans the inverse of *trans, return trans.

36 : a read only {(JNTS_PTR), the current desired joint setpoint in range coordinétes.

3d ¢ a read only (JNTS_PTR), the desired differential joint setpoint.

lastpos : a read only (POS_PTR), equal to the position pdinter of the last evaluated equation.

limit{dirs, values) s trigger force or differential motion monitoring for the next motion request.

- 116 -

lock(dii-s) 2 bring back the arm in position servo mode for the specified directions..

makepositxon(name, list EQ, Bist, TL trans) build 2 posmon equation ring structure, returns
a pos.

movev(pos) t enter a motion request toward '?. bositidﬁ described by pos in the rﬁotioﬁ queue.
niovecart(pv(.)s, tace, time_) : do setm’ad("c’); setime(tace, time); move(p).

| fnoVe‘éonf(pos, tace, tir_ne, ¢onf) : do s;etconf(con'f); setmod(’j’)# setime(tace, time); m'dve(p).
movejnts(pos, tgcé, ‘time) s do «s,etmod(’j’);' éetimé(;acc,. time); mofg(p}.—*

newtram(name, fuhc) : a_llocate sfoa‘a'ge for a #trans, attach it to function *func, return a trans.

nextmove : a wnte only - code when set, causes the current ‘motion interruption and the value
returned in the correspondmg position. structure ﬁeld code :

‘ r;;)ai;oeul(pphi, pthe, ppsl, trans) denve the Euier angles from *trans.
| noatorpy(pphi, pthe, ppsi trans) der;ve the roll pitch yaw angles kfrom *trans..
’bptimize(pos) s optimize 2 positionequa’tion ring structufe.

park s a read only (POS PTR) the park posmon

pi msa read oniy approxnmatnon of the number pi (real)

pi_bz;m : arrea‘d énly approximation of "t‘.he n'umbe'i;-pi]Z (real).

, pitz_ﬁr:n : a‘ read onﬁ vén‘approxi‘:r:riatit.)x‘l éf the numbefpi#é’ (re:;l).
pri'!»ntd(dvii’f, fp) : p’rri,p.‘t *diff on %ile b#ifp.

. printe(trani,';fp)} : print *trans ‘onv»ﬁlé:.*fb' (Eulér'angle‘s).

: 'printm(fo;ce, 'fpb)’ :‘ print *f‘oil'_"ce,on‘ fjle,_ *fp. :

p?intr(trans, fp} print *trans on file *fp (n oa p) B

printrn(trans, fp) printf *trans on file *fp (name noap, Euler rpy)

prints_iout 3 causes ’prints when set. (bool).

- 117 -

pxinty(trans, fp) ¢ print *trans on file *fp (Eﬁler angles).

rdtodg_m : a read only (real}, convert from radians to degrees what is multiplied by.
release{msg) : closes real time channel.

requestnb : read only (int), the number of not served moﬁon requests.

rest : a read only (TRSF_PTR), T6 at the park position.

rot({trans, vect, theta) : set the rotation part of #trans from a rotation around *vect, of angle
theta, returns trans, :

rotm(trans, vect, theta) : multiplies *trans by a rotations made out of a rotation around *vect,
of angle theta, return trans. :

rpy(trans, phi, the, psi) : set the rotation part of #trans from a rotations of roll pitch an yaw
angles, return frans.

rpym{trans, phi, the, psi) : multiplies *trans by a rotation of roll pitch and yaw angles, return
trans.

rtime s an (int), the time spend since the last reset, in milliseconds.

sample(period) : change the sample rate, next motion request.

setconf(conf) : change the arm configuration next motion request.

setime(tace, time) : set the acceleration and segment time next motion requést.
setmod{mode) : set the motion mode, next motion request.

getvel(tranevei, rotvel) : set the translational an rotational velocities, next motion request.
startup() : start real time channel.

stop(time) : repeat last motion request, during time.

strsave(string) s copies string in allocated storage and return pointer to it.

suspendfg() : put foreground process to sleep for 1/10 of a second.

takerot(transl, trans2) : copy ‘n’ ‘o’ ‘a’ vectors of *trans2 into *transi, return transl.

- 118 -

taketrsl(transi, trans2) : copy ‘p’ vector of #trans? into *transl, return transl.
t6 : read only (TRSF_PTR),‘ the current desired value of T6.

teach(trans, pos) t enters manual teack mode, may update *trans, using pos, returz user’s exit
style. : ‘

there : a (POS_PTR) such as move(there) stops the arm.
timeincrement : a read only {int}, the current sample time.
tr_to_df(diff, trans) s make *diff out 3 differential transform *trans, returns diff.

tpmult{transl, trans, trans3) : multiply *trans2 by strans3, and store the result in distinct
#transl, return transl.

trmﬂithp(traﬂsl, trans2) ¢ multiply #transl by *transZ, and store the result in *tramsl, return
transl. ‘ '

trmultiﬁv(transl, trans2) : maltiply #trans! by inverse of *trams2, and store the result in
*transl, return transl.

trsi{trans, px; pYy; pe) s sets the translation part of *trans from p vector, return trans.
trslm(trane, px, py‘,v pz) ¢ multiply *trans by a transiation from p vector, return trans.
unit{vectl, veet2) s store in *vectl, the unit magnitude vector, collinear with vectZ, return vectl.

unitr : a read only (TRSF_PTR), the unit transform.

update(trans, pos) : solve *trans in equation *pos, for the value of T6 at the end of the execution
of the subsequent motion request. ‘

vaof{trans, ax, 8y, 88, OX; O¥; oz) ¢ set rotation part of #trans from elements of non necessarily
orthogonal vectors, return trans. ' -

vaom(trans, ax, &Y, az, OX, 0¥, oz) : multiply *trans by a rotation from elements of non neces-
sarily orthogonal vectors, return trans.

varb() : does nothing but typifies a transform as to be variable (TRFN).
waltas{bool) : evaluates bool every 1 /10 of a second and proceed if exp is not 0.

waltfor{eve) ¢ increment eve, test eve every 1/10 of a second, proceed if eve drops to 0.

- 119 -

v . xunit : a read only (VECT_PTR), the X unit vector.
v yunit : a read only (VECT_PTR), the Y unit vector.

v zunit : a read only (VECT_PTR), the Z unit vector.

13.3. Undocumeted Library Entry Points

The following list is a set of undocumented entry points of the basic RCCL library that may cause
link conflicts. The labels always end with a recognizable suffix. The user must keep in mind that the
entry points of the real time control library are still available, but should normally be used only for read-

ing analog to digital conversions, for example.

- 120 -

Functions

assignjs_mn
checkstate_n
dequeue _n
diffjnts _n
drivefn_n
enpgueue n
focpyc_m
fojnts_n
fopar_un
getobsj m
getobst _n
gravioad n
jacobD_n
jacobl_nm
jacobT _n
jns_to_tr_m
jnsend_nm
newposition_n
newterm_n ’
polycpye nm
polyjnts_n
polypar_n
select_n
setpar_n
seétpoint _n
shifttr_n
solveconf_m
solved_n
solvedo_n
solvei_n

- solveio_n
t2jnts_n
t2par_n
tr_to_jns_m

Variables

armk_c
iobf _n
motionreq_n
mqueue_Rn
opsw_n
sncs_d

13.4. Include Files v

‘rcckh

This file includes all the necessary ingredients for writing programs that will link with the RCCL
jibrary : s ' ‘ .

reclh

#ihciude <stdio.h>
#include <math.h>

#define YES 1

#define NO. Q0
#define UNDEF 2
#define OK - -1
#define LIMIT -2
fdefine ONF -3
fdefine OND -4

#define PIB2
#define Pl
#define PIT2 ‘
#define RADTODEG

#define DEGTORAD

#define SMALL

#define EQ

#define TL

#define malloc malloe_1
#define free free_l
#define realloc realloc_1
#define calloc calloc_1
#define cfree cfree_l

- 121 =

..............

normal path segment termination code */

................

................

/*
/* ran into a limit, arm stopped
/* terminated on force v
/* terminated on differential motion
1.57079632679489660 [+ pi [2
3.14159265358979320 [* pi
6.28318530717958650 - [+ pi = 2
57.29577951308232100 [+ 180 | pi
0.01745329251094330 [+ pi [180 , ,
/* considered as small
[/* ths = rhs
/*# tool =

....................

*/)
*/
,*/_

- 122 -

: reclh
I+ -

* RCCL typedefs

* / ‘

typedef int bool;
typedef float real;
typedef int event;

typedefvstrdtt vector {
| real X, y, z;
\ VECT, *VECT PIR; »

typedef int(* TRFN})(};

typedef struct transform {
char *name;
TRFN fo;
VECT n, o0, 3, P;
int timeval;

} TRSF, *IRSF_PIR;

typedef struct jns {
char *conf; : : :
. , "real thil, th2, th3, th4, thb, thé; ’
} "INTS, +JNTS_PIR;

typedef struct posit {

o o "~ char *name;
int code; .
real scal;

, .. -event end;

} POS, *POS_PTR; ‘

typedef struct force {
. VECT f, m;
} FORCE, *FORCE_PIR;

jtypédef.struct diff {
} S VECT ¢, r;.
} DIFF,'*DJFF_PTR;

/z

reclh

* RCCL functlons

+/

extern POS_PIR makeposition();

exterr TRSF_PTR newtrans(

extern

extern

extern

extern

gentr rot
gentr_eul
gentr_rpy
gentr_ pao
gentr_trs
assigntr(
taketrsl{
takerot (),
trmult (),
trmultinp(),-
trmul tinv(),
invert(},
invertinp(),
trsi{),
vao
“rot(

)
)
eul ()
)

— e N o S, i

rpy
trsi

v aom(
1 otm(
eulm(
(
o_

?

Tpym

()
);
);
)y
)
df-to_t

r{);

DIFF PTR assigndifi(),

tr_to df()
dlﬂtr()

FORCE_PTR assngnforce()

forcetr(};

VECT_PTR éssignyect(),

real

cross(),
unit(};

dot();

- 123 -

extern int

‘poatorp

reckh

const(},
hold{),
varb(},
optimize(),
printd(),
printm(},
freepos(),
starsup(),
suspendfg(),
giveup(),
release()
setmod(),
)

Vimit(),

~comply(),

lock(},

distance(),

move (),

stop(),
noatoeul

)
),

printr(

- 124 -

- 125 -

reclh
. .
¢+ varisbles
*f
extern JNTS PIR j6, /* current joint range values %/
jd; [+ current joint increments %/
exteras TRSF_PIR t6, [* current T6 «/
here, ' /% equals T6 each end of segment*/
‘rest, B /* T6 park position % [
wnitr; [* unit transform : */

extern VECT_PIR

xunit,

X upit vector

yunit, /* Y unit vector s/
zunit; J* Z unit vector «f
extern POS_PIR lastpos,; [* last evaluated position [
goalpos, [+ current evaluated position [
there, /¢ such as t6 = here [
park; /* such as t6 = rest +/
extern event completed; /* queue empty */
extern FILE *{pi; [+ info file pointer [
extern bool prints_out, /* info prints switch £/
force_ctl; /* force control switch * [
extern imt fddb; [+ data base file descriptor x/
exterm int rtime, /* current time since reset % [
timeincrement, [* current samplie period * |
requestnb, /* number of requests in queue [
nextmove, /* motion interruption fiag [
terminate; /* im rtc * [
extern real pi_m, : /* math constants ‘ [
pib2 _m,
pit2 m,
dgtord_m,
rdtodg_m;
extern short hdpos; /* hand control information x/

#idefine waitas(predicate) {while(!(predicate})) suspendfg();}
{++(event);\

#define waitfor(event)
whilte(event > 0) suspendig();}

" jtdefine
#define
#define
F#define
#define
#define

#define

fdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
fdefine
#define
#define
fdefine
fdefine

Fdefine
#define
#define

#define
#define
fdefine

fidefine
fdefine

kine.h

recl.h

Assigntr
Taketrsli
Takerot
Trmult
Trmultinp
Trmultinv
Invert
Invertinp
Trsl

Vao

Rot

Bul

Rpy

Trsim
Vaom
Rotm
Eulm
Rpym

Assigndiff
Df to_tr

Tr to_df
Assignforce

Forcetr
Difits

Assignvect
Cross
Unit

movecart(p, ta2,
movejnts(p, ta,
moveconf{p, ta,

freetrams(t)
freeposition{p)

- 126 -

{ Jassigntr
{ Jtaketrsl
{ Jtakerot
{(void)trmult
{void)trmultinp
{(void)trmultiny
{(void}invert
()
()
{)
()
(

void
void
void

void)invertinp
void)trsl
void}ivac
voidjrot
void)eul

vaom

{

{)
(v01d)rotm
{)

{ j

(void)assigndiﬁ
(void)df_to_tr
(void)tr to_df
{void)assignforce
(void)forcetr
(void)difitr

(voéd)asaigﬁvéct
{void)cross
(voidjunit

ts) . {setmod{’c’); setime(ta, ts); move(p);}

ts) ~{setmod('j’}; setime(ta, ts); move(p);}

ts, c¢f}) {setconf(cf); setmod(’j’); setime(ta, ts}; move
{free{(char *)t}); ¢t = NULL;}
{freepos(p}; p = NULL;}

This file describes the items related to the kinematics of the considered manipulator. That is why,
if vou are using the Puma 600, the name '"PUMA’ must be #defined somehow. The macros updates the
jacobian coefficients, they can be ignored and are listed here for completeness only. The external entries
may be of some importance.

- 127 -

kine.h
#ifdef PUMA
#define ELBOW DEG 01 [/* elbow degeneracy
#define ALIGN_DEG 02 ' /* T6 in X Z Jt 1 plan
#define WRIST_DEG 03 /* wrist degeneracy

typedef struct kindyn { :
real a2, a3, d3, d4, d32, 432, aa3d4, edaadad;
real cp21, c¢p3i, cp32, cp50;

} KINDYN, *KINDYN_PIR;

typedef struct sincos {

' real c1, s1, ¢2, s2, ¢c23, 823, ¢3, 83, c4, s4, ¢35, 85, ¢6, s6;
real dix, dly, dlz, rix, rlz, d2x, d2y, d2z, d3x, d3y, d3z;
real h; v
TRSF u$;

} SNCS, *SNCS_PTR;

- 128 -

o kine.h
*
* Macro updates. coef of Jacob from the sim cos

*/

#define GETH)
A

sncs_d.h = sncs d.c2 * armk_c.a2 +4
spes d $23 =% armk c.d4 +\
smcs “d.c23 # armk_c-a3;\

}
#deﬁng UPDJ\
A

-

snes_d.h » sncs_d.s4 -\

armk_c.d3 * smcs_d. ¢23 * sncs_d.c4d;\

sncs_d.s23 * armk_¢.d3;\ :
sncs d h #+ smes d.c4 + armk_c.d3 * sncs d ¢23 * sncs_d.s4;"
-sncs_d.523 * smcs_d.c4;\

sncs_d.s23 % sncs d.s4; \

armk_c.a2 % sncs d.s3 * sncs_d.c4; \

sncs _d.dlx

sncs_d.dly
sncs_d.dlz
spes_d.rlx
sncs_d.rlz
sncs_d.d2x

1T A T 1R VO O |

sncs_d.d2y armk_c.a2 % spcs “d.e3;)\
- snes_d.d2z -armk_c.22 ¥ spes_d.s3 * sncs_d.s4;\
smcs_d.d3x = sncs d.c4 * armk_c.d4; \
sncs_d.d3y armk _c.a3;\
sncs_d.d3z -sncs_d.s4 * armk_c.d4;\

}

#define GETUS\
(\ |
x = sncs_d.c5 * sncs_d c6;

.y = sncs_d.s5 # sncs d cﬁ,
7z =

\

\
snes_d.s6;\

\

\

sncs_d.ub.
spcs_d.ud.
“smes_d.ud.
‘sncs_d.ub.
~sncs_d.ud.
sncs _d.ud.
snes_d.ub.
snes d.ub.
sncs_d.ud.

.x= -smes_d.c5 * snes_d.s6;
_d.s5 * sncs d s6;
= gncs_d.c8;\

x = sncs_d.s5;\

.y= -snes_d.eb;\

z

PO OO D BEBE
s
i
%
wr
=]
[}
w
o

|
#endif

#ifdef STAN

“typedef struct kinmdyn {
real d2, d22; .‘

| KINDYN, *KINDYN_PTR;

typedef struct sincos { ' :
: real cl, si, c2, s2, d3, c4, s4, c5, s5, c6, s6;
real dix, dly, dlz, rix, rly, riz, d2x, d2y, d2z, r2x, r2y, r2z,
- d3x, d3y, d3z, rdx, r4y,; o .
} SNCS, *SNCS_PIR; : '

- 129 -

kinekh
#define UPDJ\

A\

reall

k1 = sncs_d.c4 * smes_d.c5,\

k2 = sncs_d s4 * sncs_d.c5,\

k3 = snes _d.c4 » sncs_d.s5,\

k4 = sncs_d.s2 * sncs_d.d3,)\

k5 = k1 s sncs_d.c6,\

k6 = sncs_d.s4 * sncs_d.c6,\

k7 = k5 - sncs_d.s4 * sncs_d.s6,\

k8 = k2 * sncs d.c6 + smcs_d.c4 ¥ sncs_d.s6,}
k9 = k1 * sncs d.s6 + k6, \~

k10= - k2 * sncs d.s6 + sncs_d.c4 ¢ sncs d c6,\
k11= k5 + k6,\

k12= sncs_d.s4 * sncs_d.s5,\
k13= sncs_d.s5 * sncs_d.c6,)\
ki14= sncs_d.s5 * snes “d.s6;\
sncs_d.dlx = (-armk_c. L2 o+

sncs_d.c2 * k7 - smes_d.s2 * k13) +\

' k4 * k8);\ ,
sncs_d.d2x = sncs_d.d3 * k7;\
sncs_d.d3x. = -k13;\ . ‘ ,
snes d.dly = (-armk_c.d2 * (- sncs_d.c2 * k9 + smcs_d.s2 * k14) +\
' k4 = k10);\ ' ‘
sncs_d.d2y = -sncs_d.d3 = k11;)
snes d.d3y = ki4;\
sncs_d.dlz = (-armk_c.d2 # (sncs_d.c2 = k3 + smes_d.s2 # smcs_d.c5) +\
k4 * kK12);\
sncs_d.d2z = snes_d.d3 * k3;)\
sncs_d.d3z = snes_d.c5;)\
snmecs _d.rix = (-sncs_d.s2 * k7 - smes_d.c2 * ki3);\
sncs_d.r2x = k8;\
sncs_d.r4x = -k13;\
sncs d.rly = (snes_d.s2 * k9 + sncs_d.c2 * k14);\
smcs_d.r2y = k10;\ ‘
sncs_d.rdy = k14;\
sncs d.rlz = (-sncs_d.s2 * k3 + sncs_d.c2 * sncs_d.c5);)\
sncs d.r2z = k12;)\

#endif

extern
extern

extern

extern

!

extern

extern.

The variable armk_¢ contains all the arm coastants :

KINDYN armk_c; -

SNCS

JNTS -
JNTS

JNTS.

JNTS

kine.h -

smes_d;

‘jeal ¢

jmin_c;

“jrng_c;.

jmxy _c;

/¢

arm kinematic and dyramic */
constants */

current sin cos, jacob coefl */

and U5 matrix _ «f
restvposition joint rangé +f
‘angﬂes range oﬁ'set values «f
maximum joint range values x/

max joint velocities *f

link parameters, and gravity joint loads.

The variable sncs_d contains 2 set of variable kinematic parameters updated at sample time intervals :
joint angles sines and cosines, the terms of 3 by 3 upper left Jacobian submatrix, computed in link 4, and
" the matrix U5. The variable Jeal_c is the joint angle values at the ‘park’ position, in radians. The vari-
able jmin_c is the set of angle offsets used to map joint angles expressed in solution coordinate frame [-n
,+7] onto joint angles expressed in range coordinates [0, range]. The variable jrng_c is the set of joint
ranges in radians. ‘The variable jmxv_c is the set of admissible velocities in radians per second.

which.h

Includingfhis_ﬁ]e is equivalent to #define PUMA for now.

‘ fdefine

#ifdef
#define
F#define
#define
fHelse

#ifdef
#define
#define
F#else

#endif
#endif

hand.h

Macros to operate the pneumatic gripper.

PUMA

PUMA

which.h

ARMIYPE 1
NJOINTS 6

VAL11

STAN

. [/* current system setting [
/* for the interface’ ’ * /

ARMIYPE 2
NJOINTS 6

not rich enough

/* for the hardware clock %/

- 131 -

hand.h
#define CLOSE hdpos = "o’ 7 /% close pneumatic gripper *f
#define OPEN hdpos = ’¢’; [* open pneumatic 'gripper *f

umae.h
This file defines some useful macros that are self explanatory. The dangerous side effects of macros
must be kept in mind, for example :

FABS (dot(vect})
will call dot twice !

umac.h

#define SINCOS(s, c, a} {s = sin{a); ¢ = cos{a);}

#define FABS(3a) ({({a) <0.) ? -(a) : (2))
#define ABS(a) (((a) <0) ? -(a) : (a)) |
#define ROUND(a) ((a - {double){int)a >= .5) ? (int)a + 1 : (int)a)
F#define TEE%MiO(z}; do {errno = 0; z; pause();} while (errmo == EINIR);
#define GETCHAR(c) while {(c¢ = getchar()} == "~ \
o= e [[e ="\
#define QUERY(c) p;inzf(” (v/n) ”); \\
GETCHAR(¢) ; \
} white {c I= "y’ && ¢ != 'n’); \
{int v; \
if ({v = getchar(}) != "\n’) \

(void) ungetc(v, stdin);}

exiod.h
This file describes the bit definition of the ‘exio’ field of the how structure of the real time inter-

face [6].

F#define
fdefine
#defince
fdefine
#define
H#define

fdefine

#define
#define
#define
#define
Fdefine
fdefine
f#deline
#define
fdefine
#define
#define
#define

exiod.h

EXTERNO
EXTERN1
EXTERN2
EXTERN3
EXTERN4
EXTERNS
EXTERNG
EXTERN?
ARMPWR
OFFL
RUN
RESTART
HNDOH
HNDCH
EXTRA4
EXTRAO
EXTRAL
EXTRA2
EXTRA3

01
02

04

010
020
040
0100
0200
0400
01000
02000
(4000
61000
02000
04000
010000
020000
040000
0100000

-. 132 -

external input/output
bit definitions

high power onjfofl bit

(high/low}

external low signal to stop the arm

front
fromnt

spare
spare

. spare

spare
spare

panel switch
panel switch

1/O bit (not
1/O bit (not
/0 bit {mot
1/O bit {not

- run bit
- restart
ciose pneumatic hand/release
open puneumatic hand/release
output bit {mot wired)

wired
wired
wired
wired

)
)
)
)

iow

bit low
(high/iow)

(high/low)

-~ 133 -

14. Transform Dats Base

A very simple data base system is implemented. Transforms are stored under their names as set in
the ‘name’ field of the “TRSF’ structure. From the programming point of view the following functions
can be called :

maketdb{name)
char *name;

savetr{trans, fd)
TRSF_PTR trans;
int fd;

gettr(trans, fd)
TRSF _PIR trams;
int fd;

remtr(name, fd)
char *name;
int fd;

dumpdb (fd, v)
int fd;
bool v;

compact (name)
char *n;

The function maketdb creates an empty transform data base and returns the corresponding file
descriptor. This function cannot be called, when the real time chanzel is opened, this is the purpose of
the option “D’. The function savetr stores a transform under its mame io the data base. If the

transform already exits the user is prompt :

change ? (y/n)

if 'y’ is answered, the value ‘1’ is returned otherwise ‘0" is returped. The function gettr retrieves a
transform and sets its value. The value ‘0’ is returned, when the transform is found, ‘-2’ if not. Both
functions print an informative message on ‘stderr’ at the time the action is performed. The function
remtr removes a transform from the data base. The value ‘0’ is returned, when the transform is found,
.2’ if not. The function dumpdb dumps the contents of the data base described by the first argument
on the ‘stdout’ file. The second argument, when non zero, specifies a ‘verbose’ dump. The function
compact compacts the data base, and permits to save some file space if the data base as been exten-
sively used. This function should not be called from manipulator programs.)

In manipulator programs, use the file descriptor fddb as argument for the data base fuactions. All
these functions return ‘-1’ if something goes wrong. The messages are :

- 134 -

informative messages

savebr : NAME created : DATE
savetr : NAME changed at DATE
savetr : NAME added at DATE
gettr : NAME last change DATE
gettr : NAME not found

rembtr : NAME removed

remtr : NAME not found

dump : NUMBER entries

| Frrors messages are
read error on data base file
write error on data base file
seek error on data base file
can't duplicate dats base file
could’nt un!ink
bad magic number v
could’nt creat transform data base file
open error on data base fiie
search error ,
data base file saturated

A data base editor called edb aliows the user to maintain transforms files. The user can modify ag
active transform with patches or multiplications The active transform can also be read from the data
base, renamed, or reset to the unity transform. Transforms can be added to, changed in, or removed
from the data base. All combinations are thus allowed. When a ‘break’ is typed at the terminal the fol-
lowing message is printed : :

These commands are executed one per line:

q quit and save file
ql quit and do not save
d|v]} : dump data base [verbose]
n <name> - use transform 'name’
s , save active transform
n <name> rename azctive transform
: show active transform
r <name> remove transform 'name’ from file
i invert active tramsform
pt x y 2 patch a translation x y z
p <X/Y/I> a patch a rotation a around X, Y, or 2 axis

pa x y z x y z patch a rotation defined by a and o vectors
pe phi the psi patch a rotation from Euler angles
‘ pr phi the psi patch a rotation from roll pitch aad yaw angles
These commands are cumulative: :

mt Xy % multiply by tramslation x y 2

m <X/Y[I> a multiply by rotation a2 around X, Y, or Z axis
ma x y ¢ xy z multiply by rotation defined by a and o vectors
me phi the psi multiply by rotation from Euler angles
mr phi the psi multiply by rotation from roll pitch and yaw angles

- 135 -

15. Details

15.1. Complle

Nothing special about compilations, use UNIX’s ce¢ command. In order to be able to include the
declaration files independently from the directory they may have been be stored in, a possibility is to
define a shell variable, ‘recl’ say, in your .login or .profile files as

recl="-1/bfrecel/h” - for sh users
set rccl=(-I/bfrcci/h) for csh users

15.2. Link
Your code must be linked with four libraries :

rccl.a The real time version basic library
dbot.a The data base library

rtc.a The real time channel

libom. a system new math library

One may conveniently expand the ‘rccl’ shell variable :

reci="-1/bfrccl/h [bf/rccl/l[rcecl.a /b/i’ccl/l/dbot.a /b/rcéi/l/rtc.a - lnm”
set rccl=(-1/b/rcci/h [bfrcel/l[/rccl.a [bfrect/l/dbot.a /bfrecel/l/rtc.a -lnm)

Such that you can type :
$ cc myprog.c $rccl

In order to get the planning version, just set 2 shell variable, ‘plan’ say :

plan="-1/bjrccl/h /bf/recl/1/rccl.plan [bfrccl/1[/dbot.a [bfrcecl/l/rtc.a -lom”
set plan=(-1/bf/recl/h [bfrccl/l/rccl.plan /bfrccl/t/dbot.a [bfrccl/l/rtc.a -lnm)

and type :
$ cc myprog.c $plan

15.3, Lint
Linting programs proves to be very useful, set a shell variable, ‘rlint’ say :

r!'int=”«l/b/rccl/hb-v /b/rcci/1/1Yib-rccl [bfrccl/V/1lib-dbot /b/rccl/!/ilib-rtc”
set rlint={-I/b/rccl/h -v [bfrcel/1/1lib-rccl [bfreccl/l/I1ib-dbot RYAXTRVAVARRL

and type :

$ lint myprog.c $rlint

The Hlib-rcel, llib-dbot, Hib-rtc files contain the descriptions of the functions compiled and stored in the
corresponding libraries.

i5.4. Run
Type :
$ a.out [-options]
once the channel has been set up and the arm calibratéd. The options can be cumulated after ‘-’ (except
the ‘D’ option}) : :
$ a.out -b -v -e -d -g -k -Ddata

is equivalent to

© - 136 -

$ a.out -byedgk -Ddata
You will gét, the programs calib, mkenc, play, dl ,edd, and dsp if the ‘path’ of your shell leads to the
right directory : - ‘

PA’I'H=$PA’I’H:/b/rccl/é , | ‘Hoir sh users)
export PATH '

set path={$path [bfrcclfs} {for csh users)

16. The display program.

The dsp program uses the terminal in pseudo graphic mode like a page editor. The user’s terminal
must possess screen’ addressing capabilities (see termcap{5}}. The user’s session environment shell vari-
able TERM must be set to the corresponding terminal {adm3a, adm5, vt100, etc..). By default, the dsp
program reads files of the form : :

.. [/g/file.out
The display of this ‘ﬁle is obtained by typing :
$ dsp file: ' ’
If no argument is given, the user is p_rompied.

. The program displays files that are a sequence of numbers of type double. The program also looks
for a file of the form : - : '

..[/g/t . out : | ,

that must be a sequence of same length of numbers of type int. If the file ‘t.out’ has the proper length,
these numbers will appear in the left column of the display. The program also looks for a file of the form

..]8]c .out'nl

that must be 2 sequence of characters. These characters will be used for the display on the basis of a one
to one correspondence. If the character file is not found, dsp uses a ‘#’. The pseudo graphic display is
tilted of 90 degrees to provide a maximum resolution. (low on the left, hight on the right, instead of the -
usual bottom/top). If you do not like the idea of the ”../g” directory place in your shell’s environment :

CGRAPHDIR="the directory you like”

“but the planning !ibiary assume that the ”../8” directory exists. The program is interactive and the help
message is : :

+/s/1[u/d]g[b]b

+- [+

D ®w =R ETFTmp <D.a P .

b ! <space> file <space> :

Type any charact

- 137 -

[f/alv][p/af+-n]?

his message
,-]digits <space> :
quit

position display
velocity display
acceleration display
forward one page
backward one page
half page forward
half page backward
down one line

up one line

redraw

scale

back to prompt

er to continue

direct addressing

show another file

- 138 -

17. References

15}

l6]

8]

9]

Kernighan ,B. K., "The C Programming Language”, Prentice-Hall, 1978.

Palxl, R.P, "Robot Manipulators: Mathematics, Programming, and C'omml”, MIT Press 1981.
Hayward V., ”Introduction to RCCL : A Robot Control dod Library”, TR-EE 83-43, October 1983.

"High Speed QBUS-UNIBUS Interface”, Engineering Drawings, School of EE, Purdue University,
Nov. 1963. .

Flsher W. D, ”The Modification oi" 2 Robotic Manipulator and Dlgataﬁ Controﬂer to Incorperate
Both Force and Possition Control”, MSEE Thesis, Purdue University, M’ay 1981.

Hayward V., "Robot Real Time Control User’s Manual”, TR-EE 83-42, October 1983.

Paul, R. P., Shimano, B. E., Mayer , E. G, ”Kinematic Control Equations for Simple Manipula-
tor , IEEE Transactlons on Systems Man, and Cybernetlcs Vol SMC-11, No 6, June 1981.

Zhang, H., Paul,_ R._‘ P., ”Determination of Simplified Dynamncs of Puma Mampulator , Purdue
University. ’ ' ' '

“Paul, R. P., Rong Ma, Zhang H., ”The Dynamics of the Puma Mampuiator The International

Journal of Robotic Research, (to be published).

(Revised 8/83)

- MINIMUM DISTANCE COLLISION-FREE PATH PLANNING E
FOR INDUSTRIAL ROBOTS WITH A PRISMATIC JOINT*

J. Y. S. Luh and C. E. Campbell
School of Electrical Engineering
Purdne 'University

"~ West Lafayette, Indiane 47907

~ Abstract |

A collision«free path 1s a path which an industrial robot can p—hysica’lfly ’take' -n/hﬂ"e." '
_travehng from one location to another 1n an environment contarmng obstacles Usually -
the obstacles are expanded to compensate ‘the body wxdth of the robot. For robotsf
with a prlsmatlc joint, whlch allows only a translatlonal motlon along 1ts axis, addl-
trona,l problems created by the long boom are handled by means of pseudo obstacles
which are generated by real obstacle’s edges and faces. The envrronment is then

modlﬁed by the 1nclu51on of pseudo obstacles which contribute to the forbidden reglons

‘Thls process aliows the robot itself again to be represented by a point spemfyrng the =

location of its end effector in space. An algorithm for. determining the shortest drstance '
collision-Iree path given a sequence of edges to be traversed has been developed for the '

case of stationary obstacles.

* Supported by NSF Gran’ts-DAR (APR) 77-14533 and MEA-8119884. |

- 140 -

L INTRODUC’TION

Industrlal robots are computer-controlled mechanical mampulators which perform.
| tasxs for 1ndustr1al applications. One of the essential operations in all the aSSIgned
tasks involves the physrcal motion of the mampulator whose end effector travels from a
‘known mltlal posttron and orientation to a specified goal position and onentatron In
. reality, the workspace of the robot is not free from obstacles such as ﬁxtures mecham~ |
cal parts, etc., so that a colhslon may result 1f the robot moves freely w1thout any gui-
dance. lf however, the positions and orlentations of all the obstacles are known for the
entire tlme interval of operation, it is possxble to plan a collrsxon-free path, if one exists,
for the robot to travel along while performing 1ts ta.sk

The subject of collision-{ree path plannmg is relatlvely new. Wlthln the past five
years, only a handful of people have been actively working on this subject. -Among
them are Pxeper (1] and Widdoes: [2] who used planes cylinders, and spheres to
represent obstacles (ob]ects) The use of spheres has an advantage of avoiding the
orientation problem However the free space that is occupled by parts of the spheres is
wasted l’or planmng purposes In addrtron the intersection functlons are often non-
linear involving square roots or transcendental functions. Udupa [3], Lozano-Perez and
- Wesley [4], and Lozano—Perez [5,8], and Brooks [7] adopted the polyhedra as the models
which result in linear mtersectlon functlons But the orientation problem must be han--
dled with care. Udupa discretized the space 1»nto cells w‘hlch were labelled free if not
occupied by obstacles and objects. Lists of free cells are joined together to form a
collislon-l'ree'path To allow for arbitrary orientation, the obstacles’ expansions over-
compensate which reduce the number and/or size of the free cells avallable for path
plannmg Lozano-Perez descrlbed hnked polyhedra using swept volumes The rotation
range is then d1v1ded into a ﬁmte number of slices. Brooks adopts the idea of generale
ized cones [8] whrch_are equivalent to swe‘pt volumes. Free space is then represented as

‘otrerlapping generalized‘cones.' ,

- 141 -

In the methods described above, some determine the free space inside which the
point robot may move freely without collisions with Obstacles‘, while others determine
the forbidden region so that a collision-free path may be traced along the boundaries of
the region. This paper adopts the second approach to the pro‘blem which involves
objects and obstacles that interact with a robot which has a p‘rismatic"f link,usuch as the
Stanford manipulator {9]. The prismatic joint, however, creates additional problems.
As usual, the objects and obstacles are approximated by enc.losing polyhedra. The
manipulator is represented by a point; in 'pérticu'iar, the point at the tip of the end
effector. Its real body width is’combensated for by expanding the polyhédral obstacles
[3-6]. Methods of constructing the expanded polyhedra are given in these references. If
the point robot enters into the eXpanded polyhedra, a collision will then occur. Now
since thev prismatic joint of the manipulator has a long boom, it creates two pseudo obs-
tacles: one by the restriction that the front of the boom reniziin free of collision and the
othel"bby any confinement of the rear of the boom due to obstacles. The pseudo obsta-
cle is not a physical iject but a regiOﬁ of shadow in the workspace. However, when
the point robot enters into the pseudo obstacle, a collision between the bdom and a
polyhedral obstaéle occurs somewhere along its length. Thus the pseudo obstacles
together with the expanded polyhedra form the forbidden regions that the point robot
must stay away to avoid collisions. ‘The discussion begins with 2~dimensionai problems

with stationary objects and obstacles, and is then extended to 3-dimensional problems.

The joint that allows only a translational motion along its axis is conventionally called the prismatic
joint. The sliding link of the joint is called the prismatic link. The terminology ‘was introduced by J.
Denavitt and R. S. Hartenberg in their paper entitled, “A Kinematic Notation for Lower-Pair Mechan-
isms Based on Matrices,” ASME Transactions {Vol. 77): Journal of {prl_ied' Mechanics, Vol. 22, June

1955, pp. 215-221.

R YA

’_,II PSEUDO OBS TAC'LES OF STANF ORD MANIPULA TOR

A Stanford manrpulator is shown in Frgure 1 whlch conSISts of a platform a plllar
a long boom and a forearm wrth a wrlst and a gripper. A 2-d1men51onal space will be
con51dered first. . Refer to Flgure 2(a) and () for a relatrve locatlon between a polygo-
| ‘nal object and the boom. It is seen that at the front end of the boom there is a pseudo
: obstacle the shaded area in F 1gure 2(b), whrch is created by the geometrical

ﬂconﬁguratrons of the polygonal object and the robot boom and thelr relative locations.

- “The pseudo obstacle is completely determrned by three parameters d, 8, and 5. These

three parameters can be determlned as follows Extend the boom towards the polygo--.
f',nal object and locate the two vertrces whrch he farthest from the boom prvot and that
: the boom can touch one at the left and one at the right. Connect these two corners by
‘a stralght line, and d is the dxstance from the line to the boom prvot Also connect the
two corners to the boom prvot by straight hnes 0, and f, are the angles between these
‘two lines, and d.. Intuitively, the ex1stence of the pseudo obstacle depends on the condr-
| tion that d < L, where L 1s the length of the boom Frnally, the forbrdden region at
the front end of the boorn is- the union of the pseudo obstacle and the. polygonal object.
Using. thrs approach the problem assocrated with hrdden lines of obstacles is avoided.
In some rndustrral robots such as Ummate 2100G of Unlmatron Inc., the rear of the
boom is concealed in 1ts housrng Obvrously the rear of the boom is of no. concern as

long as, the body of its housmg is . compensated for However some other robots, such

o as the Stanford manrpulator have the entire booms exposed openly w1thout covers, and

addltronal care must be exercrsed as follows If a polygonal obstacle is close to the rear
of the boom another pseudo obstacle is created by the restrlctlons 1mposed by requrr—”
- ing that the rear of the boom remain free of colhslon Refer to Figure 2(), where the
| rear end rests agalnst an. edge of the polygonal ob)ect If the edge is long enough then, : '
by shdlng the rear end agalnst the edge, the front end traces a water-drop-hke ﬁgure

" The “drop” forms a pseudo obstacle at the front of the boom rn the sense that

- .1_4'37_'

whenevér the point robot enters into the “'dr.op-”- ‘2 collision someWhere along the__rear
end occurs Thus the pseudo obstacle outhnes an addltlonal forbldden reglon R
The “drop may be descnbed in terms of- two consta,nts L and h and two vari-
“ables z and u, as _shown in Flgure 2(c) where L is the length of the boom and h the dlS-
tance from the boomvpivot _'to the edge o}f ‘the polygonval ob]ect F rom the figure: 1t is
seen -tha_t . o o o | | -
i =L/(a?+h%)"2 for z z_jhi | e Y
' whlch leads to a relatlon between z and ‘u

22 = hL /[u2+L2-z2+h2+2u(L2—z2)1/2] z > h a I ¢ |

To construct a polygon that encloses the drop, as shown ,in'Fig'ure 3, first the tengent o
functlon is determlned | |

' jfl hL(Lz—-zz 1/2/[ahLz—(L2—z2)1/2(2+h2 S5 T

The polygonal enclosure has three deﬁmng po1nts the top where the tangent is horxzon«.
tal, the side where u ha,s its extreme value and the cusp at the bottom | |

'Ijg ‘,a *‘ 0,u—0,z— L, and d’z/du—-» 0.

Side dz/du = oo o that |
. ‘ | ahLz - ‘(L‘2_Z2)lﬁ/2(32 +h2)3/2 =0 ' | . - Lo - (4)
‘which leads to | | | |
u= h_[(Lf/h)z/?#,-, wpre --(5) |
It L < h then u becomes lmaglnary whlch unplles that the “drop does not

ex1st since the rear. of the boom is. not able to touch the edge of the polygonal

object.

- 144 -

" Cusp u —0,z— h,a% — (L>h? so that
| dz/du = -»h,/(]L‘Z—h?)l/‘2

‘ whichdeécrib’es the slope of the tangent to the left of the cusp.

The polygonal enclosure of the “‘drop” wastes some free space but preserves polyg-

onal deécri’ptions- of the forbidden region. The amount of waste may be computed as -

follows. From Figure 4, it is seen that the area of enclosure is

A, = [2(L-z) + (2h)]| u]
“where z, = h[i +vl uiv /‘(Lz‘hz)l/z] |
The area of the “drop”, however, is'

.Ad 2 {(1- h/z) L?‘—-zz)‘/zdz

Let 7 = L/h then the ratio

As _ Pr/2 (=) = Psin H1/7) = 2lnfy + (47-1) 1172
,Ae [2 7__1 (‘)/3_1 3/2 ,YE_, ﬂ/?] [/3_1]3/2

(7)

(10)

and A4/A, — 7/4 = 0.785 as v — oo. It should be noticed that the ratio depends on ¥

only. A few values were cbmpute’d”and' tabulated below:

¥ = 1001 50 10.0 10 10° 10°

Ag/A, = 08584 08148 08080 0.7982 0.7908 0.7871

Thus the efﬁcxency of the 2- dlmensmnal enclosure of the ‘‘drop” varies from 78.5% to

- 145 -

near 85.84%. |

If the edge of the confining polygonal obstacle at the rear of the boom is short
enough, then the forbidden region ‘‘drop” is clipped or deformed as shown in Figure
5{a) and (b) respectively. For the first case, the clipped polygon can be determined
once @ is determined. In the second case, the deformed “drop” can be modified by clip-
ping and is contiguous to another clipped drop due to the second edge if 3 is known.
For simplicity, the original polygonal forbidden region is used in clipping to avoid addi-
tional computati‘on although some free space is wasted.

If the 2-dimensional polygonal enclosure of the “drop"b is rotatéd about the z-axis,
a cylinder capped by a circular disk on the top and a cone at the bottom results as
shown in Figure 6(a). To retain the 3-dimensional pseudo obstacle in the form of a
polyhedron, another enclosure must be further developed. First the cylindrical section
is modelled by an n-faceted polyhedral pillar which encloses the cylinder. Refer to Fig-
ure 6(b) in which

R = | u] /cos(x/n) | (11)

Then, in the Cartesian coordinates as shown in the figure, the n vertices of the n-
faceted polygon of the pillar at the top are located at (R cos kx/n, R sin kr/n, L) for k
= 0,1,...,n-1; while those at the lower end of the pillar are located at (R cos kx/n, R sin

kr/n, z,). The cusp point is situated at (0,0,h).

- 146 -

1r. SH OR TES T PA TH AMONG AN ORDERED SET OF C‘H ORDS

It is known that a shortest colhsxon—free path for a pornt robot in an envrronment
composed of polyhedral obstacles in 2- dimensional workspace conslsts of line secrments
connectrng an ordered set of vertlces of some of these obstacles [4,5]. To determine the
shortest path in'a 3—d1men51onal workspace conSIder an ordered set of N chords which
repreSent the edges of polygonai forbldden regrons as shown in F igure 7, where A; and
B; are the two end points of chord i for i = 1,;, N Then, any ‘point on chord 1 can
be represented ‘by

P, = o(A-B)) +B for e < o; < L ' (12)

i |

 Thus (P{~P;-1) (;E, Pioy) is the distance' squaredfbetween two points on two adjacent

'chords (adjacent in terms of the sequence to be traversed) where () = transpos‘e of ().

Let Ky % BE o (19
- ‘ . =2 G

be the totaldistance squared from P; to Py ... to’ ;BN Since the initial starting location
~and the termmal goal location is known, o and ay are glven ‘Thus rmnumzlng J with
respect to o for i =23,.,N-1is equivalent to finding the shortest path. Thls is a sim-
ple quadratlc programmxng problem with N varrables and N constraints, which can be
solved by a number of known methods .ne of them is the symmetric variant
approach which is a generahzatlon of the srmplex for linear programming [10, p. 270].
~ In this method the number of prrmal basic variables is not always equal to N, but may
vary from N to 2N [10, P 274} The asymmetrlc method [10 p. 280} by Dantzig [11],
and later 1ndependently by van de Panne [12] does not have the parametric varlatlon
of the 1ncom1ng variable. Instead this variable enters the basis as soon as it is assigned
a nonzero. value. Consequently the nonstandard tableaux occur. Graves. [13] and
Lemke [14 15] propose a parametrlc method whrch is' the generahzatlon of Dantzlgs

self-dual parametrrc method for hnear programmlng (10, p. 310]. The dlﬁ'erence is that

- 147 -

Graves' approach is equivalent to the symmetric variant of the self-dual parametric
method while Lemke's is to the asymmetric variant scheme. ‘Et is known [10, p. 279]
that the symmetric variant approach converges in no more than (2N)’f/(N!)? steps. The
asymmetric method, however, does not make any use of the existing symmetry so that
the computational effort is increased [10, p. 320]. In the following, an iterative algo-
rithm is presented which converges in no more than (N-2)(N~1)/2 iterations, which is
much less than (2N)!/(N!)® iterations.

From (12) one obtains

PP = of(A7By) — o (A 7Bj-) + BBy (14)

Let C; = A;-B;, D; = ByB;y, and ()’ be the transpose of (), then

(PiPi) (Bj=Pio) + (B4 By) (By+ 7By

= 202C; C; + 204C; [(~4-1 G +Dy) = (541G 41 T Dy 41l - (19)

so that

N
81/0a; = 3[22@5"&—1)' (P;=P;-1)1/8e;
J:

= 40:C; C; + 2C; [(~2i-1Ci-y 7D3) = (@541Ci 41 +Di 4+ 1)] (16)
and
921/9ad = 4C/ G | . RN bty

Since for i=2,3,...,N-1, C; = A;-B; # 0. Then 82J/0a? > 0. Let {o'} be the solution
set to 8J/0c; = 0, i.e., {e;'} satisfies

~(AB) (A~ Bi-oity H2ArBy) (AByey

L8 -

~ArBY (A ¢ Bivdaer = (B 2B T B) (AB) . (18)

for i = 2,3,...,N-1. Hence {;'} yields a minimum J. System (18) yields a system of
(N-2) equations with (N-2) unknown a;”’s. The system is a tri-banded structure which
is easy to solve. However, since the constraints 0 < o; < 1 are not imposed in equa-
tion (18), the solution may be infeasible. To convert the infeasible solution to a feasible
solution, suppose that among the o;'s, at least one oy is such that oy & [0,1]. Let &

be the value indicating the intersection of a path at edge k. Then

Nepag, .. 6y -« - ON-DON) > Hapas, ..o, 0p, oo, ON-1ON) (19)

By (15), one may express J as

=aai2+bqi+c

where the parameters a, b and ¢ do not contain any terms of ;. Thus 8J/8e; =0

yields
af = -b/(2a)
so that
J* = J({e}) = -b¥/{4a) + ¢
NOV‘/‘
Hopad, . . . &0 poy) = 3 = 2l +bag+e = [-b%/(da) +¢
= ald; +b/(2a)]?
= a[é—oy'* 2 0
. since a = 2@_{@ > 0. Now J* is fixed, thus Jap,a, . o & - . -, aN-pay) decreases

as !dk-ak‘l decreases. Based on this property, &; is set to zero if a;' is less than zero,

or set to onme if greater than one. An iterative algorithm for obtaining a feasible

ug - :

“solution is then developed In the algorlthm agt 1s wrrtten as o; for, srmphclty Essen—

trally, the procedure starts wrth solvmg the system equatlon (18) lf the solutron s

_ 1nfeasrble, then choose one e of the a;'s that is not in the range [0, 1] but it is closest to
the startrng edge Set th1s a; to its closest allowable extreme value (1 e, erther zero or
~one) temporarrly, then d1v1de the remaining o;'s 1nto two groups and solve equatron
(18) again for them. Now 1f there are lnfeasrble o;'s whlch are even closer to the 1n1t1al
edge than before, then repeat the procedure. for all the a;'s that were computed during
thrs 1teratron Otherwrse only the second group is re-lterated The procedure repeats' !

until all the feasrble aj's are obtalned The detalled algorlthm is as follows

Step 1. St I:j1 and J = L
o L }_Nr | 1‘” | TR
Step 2. Solve {18) for {ozi}, and {ax} Here {0‘1} = empty’ ‘qﬁ itv>u -

Step 3. Collect all those a;'s such that o; é [0,1]. Among these aj's, ﬁnd the smallest |

: ,landcallltk ie., ﬁndk—mlnlforalﬁ[()l]

Step 4. | ':lf {a l o <0 Yo > 1} = ¢, (1 é., 1f no dlsallowed oy ex1sts) stop the pro-

cess and output the feasrble solutlon Otherw1se contrnue
Step 5. If ak < 0 set ay = =o0. It ok > 1, set a, = = 1. Contlnue :

 Step 6. vak<lsetI—k GotoStep2 IR
Elserfk>lset.l=lthenl-—k GotoStep2

The convergence proof of the algorithm is shown in the next se,ction;;g Using th"e
algorlthm, a feasrble- solution may be obtarned in no more than Jry iterations.
Usually, the solutlon w1ll be found in fewer than N steps. A FORTRAN program has

been written for the implemeitation. Usrng numerieal examples the feasrble solutrons

produced from the program agree with those that were computed from the Powell’

- 150 -
improved Davidon-Fletcher-Powell method [16].

IV. CONVERGENCE OF THE ALGORITHM

To‘sho‘w vth've*cb‘hvergénce of the élgorithm, let I, J, and k, be the values of indices
I, J and k, }r’espectivei}:f, abihe n-tﬁ iteration. . Initially let Iy = 1 and J; = 1 according
to .Step 1; Since Ij=1 < Jy+1, then in Step 2 one obtains {ai}}gjl = ¢ and
I;+1 <i<N-L 'T‘hlus by Step 3, mini = k¢ > I prbv_vided ko exists. From Step 6,
one obtains J; =, and Ilb = kg so that | - |

h<l (20

For n=1, one obtains ;fromv Step‘ 2 that J;+1 <i<I~1 and [;+1 gli < N-1
but i #1,. 'HQwever, k, =mihi for o; & [0,1] so that, if k; exists then either
J1'+ 1<k g.il—i orf;+1 < k; £ N-L . . | |
{a) J;+1 5 k; < I;~1. This implies 31 <k <l Now Step 6 yields I, =k, so

that

L<I - | - (21)
and

Jy <k o | | (22)

'In‘equality (21) implies that the value of I is decreasing. But the value of J is not

altered, i.e.

Hence combine (22) and (23) to yield

L<L (24)

-_’]5‘]-

(b) Il-l-l < kx < N-1. Thls lmphes kl > Il, and Step 6 ylelds J2 = Il and Iq = k.
The second equality 1mphes ’ -

L>L)

thxch means that the Value of I is lncreasmg Comblmng the first equality of .
case (b), Le., Jg = Il, and (20) ylelds |

>4 e

i.e.7 the value of J is mcreasmg Agam combmmga the ﬁrst equallty and. {(25)

.ylelds ‘ '
<k e

Thus, in elther case, Jo < Iy v o })

By mductlon one obtalns J, <I for n= 12 . in gener,éi. Now Siép’ 2)riei'ds
JF1 < i < I-1and I, +1 <i < N—-l but i #1,. If k, = min.i exists then either
J+1< k < I =1, or I +1 < k, < N-l Follow the same reasomng descnbed above

one can conclude that

(a)‘For the _éas'é of Jn +1 < kn < I,-1, _n‘—'—1,2_,..,‘.
Lt <L (decrea‘sing in I)
- e =0 (no change in J)

RS < I (J is the. lower bound of I)

(b) For the case of In.,., < k < N—l n= 1,.,.,
| L >k (mcreasmg in I

Il > (increasing in J)

- 152 -

Jos1 <Ipsp (Tis the lower bound of I)

SITUATION A

..If at the n-th iteration, the value of k is such that I, +1 < k, < N~1, then J,, the
value lof J at n-th iteration,,must increase at léa.st'by one to become J 4;. In general,
if during the process of ‘iterations beginning from n~£h ‘iteration, the value of k falls in
the in‘tevrval [[+1, N-1] in any “(N*J;-E.) iterations, then the value of J must increase at
least by (N-J,—1), so that the minimum possible value for J will be
J.+(N-J,-1) = N-1. Since J is the lower bound of I, e, J < I the minimum possi-
,Blg value for the corrésponding I will be .‘N. Consequeﬁtly at the immediate next itera-
tion, the two largest possible sets are {a 5! = {07 and {033 = {a;}§!. Since
thé largest possible value fof Iat th time is N, both sets are empty so that the itera-

tion process is-terminated.

SITUATION B

If at " the n—th ite:ation, however, the value of the k is such that
J,+1 <k, < I.—1, then the valﬁe of J does not change so that J +; = J,. But [, the
value of I at n-th iteration, must decrease at least by one to become I, ;. Now the
highest possible value for I, is N. Beginning at the n-th iteration, it is possible to have
a maximum of (N-J,~1) consecutive iterations‘ (including n-th iteration) such that at
~each one of them the value of k falls in the interval [J+1, I-1]. The reason is that at
all 'these consecutive iterations, the value of J remains the same so that
J =1, = e = Jn+N_1__i. But the value of I decreases at least by one at each
iteration so t‘hvat at the end of the consecutive iterations, the I, +n-j-; has a maximum

possible value of N—(N-J,-1) :Jn+_1., At the immediately \following iteration,

- 153 -

supposing the value of k also falls in the interval [J-+1,I-1]. Then

Jaan-y, = - =J, and max. IMN_J. =1k Whieh is a contradiction to
o . max.] -1 _ 3 ,
Joen-1, < lyen-y,. Let e =n+N-J~1. Since {oi}i 417 =Aeglyler = o, the value

of k for that iteration, if it existe, must fall in the interval [H’l; N-1].

These two situations.may alternate to yield a longest convergent process as fol-
lows. At the very begihning, I, = Jp =150 that {a;}j?4 = {g}d is empty and Situa-
tion A applies. Now min.J; = 2 and the longest possibility is that Situation B applies
at the .following (N-min.J;—1) = (N-3) consecutive iterations. This is followed by
Situation A again which yields a minimum value of 3 for J. Now Situation B applies at
the next (N—min.J=1) = (N—4) consecutive iterations, etc. As shown before, Situation
A cannot apply more than (N?J()‘J;) = (N-2) times during the entire iterative process.

Thus the total number of iterations is [L+(N-3)] + [1+(N-4)] + -

' N-2 . L
+ [1+{(N-3-{N-2-1})] = 3 i = (N=-2)(N-1)/2. Thus the iterative algorithm con-

=1

verges in at most (N—2)(N—-1)/2 iterations. -

V. SUMMARY

It was shown that for robots with a prismatie joint, such as joint 3 of the Stanford
manipulator, the ,beom’s length may be compensated for by two pseudo obstacles for
every edge of the objects when the robot ié, in the usual sense, represented by a ‘point‘
One of the pseudo-obstacles is due to the front end of the boom, and the other is due
to the rear end. An algorithm has been developed for the computation of the shortest

feasible collision-free path for the robot for the case of stationary obstacles.

REFERENCES - ‘ o , |
" [1] Pieper, D. C., The Kinematics of Manipulators Under Computer Control, ARPA
_ Order No. 957, Stanford University, 1988.. R :
[2] Widdoes, C., A Heuristic Collision Avoider for the Stanford Robot Arm, C.S. Memo
227, Stanford University, 1974. -~ = EEE - (
[3] Udupa, S. M,, Collision Detection and Avoidance in Computer Controlled Manipula-
~tors, Ph.D. Thesis, California Institute of Technology, 1977. ‘

[4] Lozano-Perez, T. and M. A. Wesley, An Algorithm for Planninng'ollisa’on-Free

Paths Among Polyhedral Obstacles, Communications of the ACM, Vol. 22, No. 10,
-+ October 1979, pp. 560-570. . o '
" [5] “Lozano-Perez; T.,” “Automatic Planning ‘of Manipulator Transfer ‘Movements,”
- IEEE Transactions on Systems, Man, and Cybernetics, Vol. 11, No. 10, October
1981, pp. 681-698. S o | _,

8] =~--- , Spatial Planning: A Configuration Space Approach, IEEE Transactions on
" Computers, Vol. 32, No. 2, February 1983, pp. 108-120. - N v
7] Brooks, R. A., Solving the F ind-Path Problem by Good Representation of Free
" Space, Proc. AAAI 2nd Annual National Conference on Artificial Intelligence,
~ “August 18-20, 1982, Pittsburgh, Penn., pp. 381-386. I
* [8] * Binford, T. O., “Visual Perception by Computer,” Presented at the [EEE Systems
"~ Science and Cybernetics Conference, December 1971, Miami, Florida. : -
[9] Scheinman, V. D., Design of a Computer Controlled Manipulator, Al Memo No. 92,

 Artificial Intelligence Laboratory, Stanford University, June 1969. .~
~ [10] Van de Panne, C., Methods for Linear and Quadratic Programming, North-Holland

' Publishing Co:, 1975. .~ s
(11] Dantzig, G. B., Linear Programming and ‘Extensions, Princeton University Press,
[12] Van de Panne, C., A Non-artificial Simplex Method for Quadratic Programming,

Report 22, International Center for Management Science, Rotterdam, 1962.
[13] Graves, R. L., “A Principal Pivoting Simplex Algorithm for Linear and Quadratie
Programming,” Operations Research, Vol. 15, 1967, pp. 482-494. -

[14] Lemke, C. E., “Bimatrix Equilibrium Points and Mathematical Programming,”

" Management Science, Vol. 11, 1965, pp. 681-689. - S

”:[15]_-:-’--'--',» “On' Complementary Pivot Theory,” in Mathematics of the Decision Sci-

_ical Society, Providence, Rhode Island, 1968. -

" ences, Part 1, edited by G. B. Dantzig and A. F. Veinott, Jr., American Mathemat-

"[16] Powell, M.JD., “A Survey of Numerical Methods for 'U:n‘consetrainred' Optimiza-
~tion,” SIAM Review, Vol. 12, No. 1, January 1970, pp. 79-97. - :

Figure 1. . Stanford

o

Man‘ipulator .

- g6l -

"Water-drop"
Pseudo
Obstacle

Poiygbnalv
Obstacle

(c)

Figure 2.

U

Robot Boom
.'//' -
LT ~)
S e
P d " - s /

— e

-~ Polygonal "~ -7 _~

. < < Obstacle /7
. —~ - /,//

_ Polygonal Pivot

" Obstacle

Pseudo
Obstacle

Robot Boom

_ Forbidden _
Region ' (b)

Pseudo Obstacles and Forbidden Regions.

Defining Points

Tangents

Figure 3. ‘Defining Points
Tangent of the
"Water-drop''.

7)(

Figure 4. Enclosure of the
' ”Water—drop”«

Clipped
"Water-drop"

Obstac!js’

(a)

Deformed ,
""Water-drop"

}
gonal
Obstacled

(b)

Figure 5. Clipped and Deformed "Water-drop',

e,

e e

o X
(a)
Ly
/
‘ . /' n=6
4 . : : . .
' & Figure 7. Collision-path Among Ordered Set of Edges.
{ S o . :
x T /l R L g
/ R
N 7
u

(b)

' {Revised 8/83) . :
REAL-TIME 3-D VISEON BY OFF-SHELF SYSTEM WITH .
MULTI»CAMERAS FOR ROBOTEC COLLISION AVOIDANCE

" J.Y.S.Lub and J. A Klaasem
School of Electrical Engineering
Purdue University _

West Lafayette, IN 47907

ABSTRACT
A three-dimensional vision system for on.ﬁline operation that aids a2 collision | _'
“avoidance system for an industrial robot is developed. | Because of thel real-time reiquire-.
ment, the process that locates and describes the obstacles must be fast.” To satisfy:' the
safety requlrement the obstacle model should always contam the physrcal obstacle
entirely. This cond1t10n leads to the boundmg box descrrptlon of the obstacle whrch is
simple for the computer to process | | o
The 1mage processmg is performed by a Machine lntelhgence Corporatron VS-iOO
machine vision system. The control and ‘object perception is performed by the -
developed software on 3 host Dlgrtal Equrpment Corporatron VAX 11/780 Computer .
A.lso the commumcatlon with the robot collision avoidance program occurs on the VAX
11/780. v | |
| ‘The resultant system outputs a ﬁle of the locatlons and boundlng descrlptlons for '
each object found. When the system is properly calibrated, the boundmg descrrptlons
'alwa.ys completely envelop the obstacle. The respoase time is data—dependent When-
using two cameras and processed on UNlX time sharmg mode the average response
time will be less than two seconds if eight or less ob_yects are present When usmg all
three cameras, the average response time will be less than four seconds 1f exght or less

objects are pr‘eser_rt.

Supported by NSF Grant MEA-8119884, and Bethlehem Steel Corporattou Equrpmeut
, Grant-m-Ard for Education, -

S- 160 - . v

1 INTRODUCTION |

Customarlly the industrial robots are defined as computer controlled mechanlcal
mampulators used in industrial apphcatlons [1] n the usual robot tasks, practlcally all
involve some mampulatron requrrlng the travel of the end effectors from their initial
positions and orientations to the- specrﬁed goal posrtlons and orrentatlons However
_.there are fixtures, mechamcal parts, ‘ete. m the worl;c-;space of the root. Thus collls.iohs
..between the rob_ot and the obstacles. rrlay occur unless'som‘e gu'ida’hce for traveling is
provided.‘ | E | | | o |

A conventional approach of safe tralreling is to turn off the}power end stop e,ll the

actions whenever such an obStacle standing in the robot’s path is detectedQ In doing so,
no possible accident of ‘coll'is‘ion will ever voccur. But, by stopping the motion of the
o robot its throughput and hence the prodﬂuctivity lsvreduced. A.lternati've_ly'-one- may
maneuver the robot to travel around the obstacles The problem however, is compli-
cated since no a»prlorl knowledge about obstacles is a.ssumed In addltlon they may.
appear[m the robot’s -path..unexpectedly. Consequently maneuvering - an mdustrlal
robot to' avoid a collision tvith obstacles in real time involves not only- the fast obstacle
detection and descrrptlon but also fast decision making. | ‘ |

To. ensure the safety requirement the descriptive model of the obstacle should
- always enclose the physical ob]ect entirely. Srnce the description of the obstacle mus_t
~ be processed through the corrlxputer,l it is desirable to avoid any complic-a,tedr model. As
' the objective is to prevent collision, a detailed descriptioh- of the obstacle is not neces-
sary. A simple rnodel which satisfies these conditions is a bounding box as depicted in
Figure 1. When the Cartesian coordinates are defined to be parallel with .the edges of |
the box,‘iit can. be described- by the lower (minimum value) ahd‘ upper (maximum
: vslue) boufnds of the obstacle on the three axes. | | |
To solve the detectlon problem the use of sensors 1s unav01dable For practical

reasons, noncontact sensors are . preferred To sunpllfy the experunentatlon passrve

- 161 -

systems that determlne the range by. means of multlple cameras are consxdered "The
binary 1mage processing is chosen to shorten the executxon tlme. From the pubhshed '
literature, it is found that the vision system developed at SRI Internatlonal satlsﬁes the '
needs [2]. This technlcal approach is now commercxahzed At least two manuﬁ'acturers
viz. Machine Intelhgence Corporatlon of California and Automatix of Massachusetts
have marketed vision systems which adopt and i 1mprove the SRI Internatxonal"s scheme

~ The machine vision system is a passive system, and the camera sxmply detects the
reflected radlatlon from the envxronment To determine the ranges of the objects, the
passive system requires multlple cameras [3] For this project, the obJect perceptlon of
its 2-d1men51onal pro_)ectlon for each camera is done via the Machme Knteihgence Cor— :
poration (MIC) VS-100 vision system. The Sensors are General Electric TNo22OO solid-
state automation cameras, which contain charge-injection-device sensors [4,5_]. The pix-
els are spaced as squares whose centers are '0.0018 inch apart, and are.practicaﬂ.y con;
tiguous in the 128 by 1.28 array. The frame time is 17,688 pixel ﬁti}mes, which is user
selectable‘ fr_om 0.20 milliseconds to 1.43 microseconds. Thns, frame ratescoul_d be
above 2000 per minute ;I‘he spectral response of the TN-2200 reveals that the sen_sor is B
twice as sensitive to infrared 51gnals as to. v1olets and blues. r |

Wlthln the MIC system, the contiguous reglons from connect1v1ty analysxs [6] of
run-length encoded data [7] are identified and organized into data structures of essen-

tial features [8]. These features are analyzed such that location, orlentatxon and recogs,

nition data can be commumcated to an external computer. The features utlhzed o

thls pro;ect ‘were the location of the centroids, the maximum X and y values and the
mmlmum x and y values of each reglon, where x and y are the coordmates of the 2~_
dimensional ujnage of each camera. Typxcal processmg tlme of the MIC system 1s‘

‘shown in Figure 2 [9].

- 162 -

I THE EXPERIMENTAL SYSTEM
| Passwe machme systems, unfortunately, need to correiate the prxels of each cam-
era to the plxels of the other cameras [m M] Then, the intersection of the rays, that
’ the prxels represent is found by geometrlc relatxons For thrs project, three cameras
are used. The perceptrons of whether the regions of each camera correspond to a real
obgect, and the location and (iescrxptxon of the posslbie object7 are performed by the
con_trolling software. e o -

The functions to be controlled arethreshold a&justment, camera parameter initiali-
| zation, picture taking, and data communication. The control of the three cameras to
be used is handied through the MIC system which is in: turn ‘controlled by a DEC VAX
'11/780 computer. The VAX 11/780 interacts with the user and the MIC VS-IO() to ,'
select a threshold ‘and the camera parameters ‘The VAX 11/780 also instructs when
the MIC system should take a p1cture how to process it, and what results to send back.
© The essential response contalns the Eocatlon of the centroid and a description of the
boundxng box for each object found, in the coordmates system of the work-space ThlS. _
information 1s output to a ﬁle whlch is accessable by the robot’s collision avoidance
program. Flgure 3 shows a block diagram.of the information -flow of the_overall
scheme. | ‘ | _ | v) |

The har&Ware link from the VAX 11/780 to the MIC VS-100 vision system eonsists
of a UNIBUS, DR1i-C interface, two 40-pin parallel cables, and a DRV11 interface to
the LSI-11 of the MIC VS-100 vision syStem. T'he VAX 11/780 uses the UNIX operat-
ing system [12] All of the controlling software and 'commu}nication interfacing has_been
written_in the:'C»programming_ language [13]. | .

| lFigurevév shows the environmental arrangement of the project. It provides a.;v.vo'rk.-‘ '

spac.e of six feet thigh in ,an area of eight feet square. It is embracedr by black wall-
panels. There .are two eameras (Camera #;0 and #1) mounted horizontally and one

camer,a.(C.amerab' #2) mounted on the ceiling. They are ortnogonally mounted with

- 163 =

each camera five feet away from the center of the work-space The celhng is nine feet
high with standard celhng hghtmg "To unprove the hghtmg, a 75-watt ﬁoor lamp is
added. '

QES ‘

. COMPUTATION OF 3-D LOCATION FROM CAMERA I

As seen in Flgure 5, the orthogonality of the center lines of the cameras is eésen-
tial. These three lines form a coordinate system (X,y,z) in such a manner- that the posx-
tive x, v and z axes point towards, respectively, Cameras #0, #1 and #2* and are nor-
mal to- thelr correspondlng unage coordinates (x], Yihj = 0,1,2 If the three ‘axes do
not intersect at one point, transformation of one axis is requlred to form the coordmate
system. - In any case, system (X,y,z) is: as&gned as the camera coordmates If the coor-
_dinate system of the 3-D work-space, as seen from co’oirdma;tes (x,¥, z) is different. from‘
(x,y,2) itself, a coordinate transformation, which involves a trans}atxon and. rotatxons
(1], is requlred when computing the 3—D location of the ob]ect from its ca,mera 1mages» :
For simplicity, coordmate system (x,y, z) is assumed to align with the coordinates of the

work.-space.

Scaling Factor of the ‘Lens

The scaling factor is needed in computing the 3-D location. As usua.l the scaling

factor of the lens is defined as the ratio of the ob_ject size to the object dlstance from -

“the lens which is the same as 5 the ratio of the i unage size to the focal length To deter-
mine the scaling factor experimentally, first the width of view on t‘he plane perpendict.x-'
lar to the lens axis, and the dista.nce from the lens to the plane are obta.i'ne»d bhysicallf _
with a measuring tape (see Flgure 6). Then the sca.hng factor may be computed by the." 'I
method of the ieast-squares-ﬁt For the 4.8 mm c-mount lenses used m the expen— _
ments, thirty pairs of data are read. The lea,stasqualfesfﬁt,c0mputatxon ylelds_ a scaling

factor of 1.264 with a standard deviation of 0.0103. Using the published data by the

s 164 -

camera manufscturer [4], an linear interpolation results in a scaling factor of 1.23835..
" There is a 2% error between the, two values of scaling factor. F or the reported experi-

ment, the 1ast-s(1uaresoﬁt value is used.

3-D Location Form‘uias When Using Two Cameras |

" When two cameras see an object in the 3D work-space, each has a two-
dime‘nsxonal image. The goal is to derive formulas that compute the location of the
vobject in the 'space baseci on the two images. In the following, Cameras #0 and #1,
which are mounted orthogonally in ba horizontal plane, are considere&. Formulas can be
modified " by exchanging appropriate irnage ‘coordinate variables for combinations
1nvolv1ng the vertically mounted camera.

Refer to Fi igure 5. From the object s point of view Camera #j has an image of the
object with an image coordinates (x j,yj), j =0,1. The origins of the image coordmates'
are user defined }by positioning a cu‘rsor in each image at a pixel corresponding to a
. ph‘ysical point which may not be the center of the im‘age frame (microsensor). Transla-
“tions may be required to shift the origins of coordinates (xj, yJ) to rest on the axes of
the work-space coordinates (x,y,z). -For simplicity, let the origins of coordinates (xg,¥)
and (x,,y,) be resting on X and y axes i-espectively. Then the correspondence between
the image and Vthe work-space coordinates are: Image coordinatesr ~ Woi'k-space coordi-
nates Xo ™ y, Yo ~ TZ; X3 ~ X, yl ~=z. A point q in the work-space can be defined
by a vector g = { x,qy,qz) in the coordinates of that space. Supposing the point has
~ images in Cameras #0 and #1. These images are described in terms of pixels (pyq,Py0)
and (pxhpyX) in: the image frames: (microsensors) of Cameras #0 and #1 respectively.
How can g be computed from the two images? |

‘ F ori = x,y z and j = 0,1, let Qu be the 1-th component of vector g from Ca.mera.

H# svp‘omt of view. Then for,Camera,#O.

- 165 -

Q,o/(Width of view) = —p,o/(pixel width) W

where the negative sign.comes from the correspondence between yoi‘and.v'v-;z ais‘ indicated
in the precedmg paragraph Let d be the object distance from Camera #3, =0,1.

Along the x- axes, the object distance from Camera #0is (dg — qx) Thus from (1)

on(qx)/(w1dth of v1ew) Q}zol(scallng factor)r
= ~pyoldy ~ q)/(pixel width) (@)

- Let N

Vy —pyj(scahng factor)/(pixel width) o | | FERRAN s C(3)
where the pixel width varies with different cameras,_‘ and is 128 forv GE TN-22;00 in
 either coordinate, then one ebtaiﬁs from (2): | | o o

Qa0 ’-—"-"%_'_J(do‘-»hﬁx) B e s (4)
Likewise,

| Qxl =—xf(d1—qy) N o ., | : .v . . (6)
Qo =xildo=a) N (/
: where

= px](scahng factor)/(pixel wxdth)v' S o ‘(8).

Equatlons (4) throﬂg‘h (7) give one relation for each of the x,v and y ‘componehts of q;
“but two relatlons for 2 component one from each of the two cameras To solve, let

aad

- 166 -

&=Qo (10)
Then solvrng equatrons (6) (7) ()and (lO) yrelds

n % “'xll"fdl + xgdo)/(1 + XoX1) by Camera #1 B ‘ (11)

gy = xg(de + X7/ + 1, xl) by Camera- 0 (12)
 Consequently, ’from_ (4); (5), (11) and (12),

o “Yo(do + x{dp)/(1 + xgx{) by Camera #0 N
%= Yr(“‘di"l' xgdg)/(1 + xgx{) . by Camera #1 (13)

Now lpul Ji plxel w1dth) < 1 As long as the maximum value of the ratio is less than
| fthe inverse of the scahng factor, the maximum magmtudes of xo and xl are less than 1

'by (8) 50 that the denomlnator of (11) (12) and (13) cannot be zero. These three equa-

~tions are the locatlon formulas for the case of using Cameras #0 and #1.

- >3-D>Locatxon Formulas When Usmg Three Cameras | o
Although the locatxon of the pomt q in the 3-D work—space can be deterrmned by
_using two cameras, ‘some of the hidden free space may not be detected as illustrated by
~an experunental example in Sectron VI Wastrng free. space is not desirable because it
restrrcts the maneuver of the robot. This leads to the use of three cameras.
Agam refer to Flgure 5, an added unage coordmate system (x,¥) is for the verti-
. cally mounted Camera #2. 'The correspondencev between this system and the work-
vspace coordrnates are: Tmage coordmates ~ Work-space coordmates X9 ~X, ¥ ~ Y.
Since three orthogonally mounted cameras are used each component of point q is

vxewed by two cameras:

X - component viewedb by Camera #1 & #2 = Q,; &£Q,,
y - component viewed by Cameras #0 & #2 N Qyo & Qy2 -
z - component viewed by Cameras #0 & #1 — Q.0 & Q,; .

where Q;, is the i-th component of vector g from Camera #2's point of view, i = xy.
Now the vo_bject distance from Camera #0 has two values: (dg — Q) and (dg — Qy),
which has an average value of [do = (Qq1 + Qy2)/2]. Thus, for the case of using three

cameras, equation (4) is modified as:

Quo = ~¥5lds = (et + Q) mo o (149
Likewise, eQﬁations. (5), (6) and (7) are modiﬁed as, respectively, 7
. p co Y D ’ S
Qu =-v1|d — (Qpo + Qp2)/2 v o o (15)
CQu T = (Qu + Qu)/2) T ¢ L) I
Qyo :'Xt;{do" (Qur T sz)/ZE o o -
'The remaining two relations are derived in :‘a similar manner as: | .
Q= x|~ @ + Q)2 |)
Qe =vile-@orew

where dz is the object distance from Camera #2; x5 and y; are defiied in a similar
manner as in equation (3) with appropriate pixel imagevs in Camer'a; #2. Equations (14)

through (19} can be written in a matrix from as:

- 168 -

-2 0 x{ ;X; 0 0] lg, x;d, @
0 2 0 0 x5 Xz| |Q] xng
Xo X 2 0 0 0} |Qp xodg
0 0 0 -2 yi vi| Qe % i
y& yg 0 0 =2 of |Qm| lygds
0 o yiyr o =2 (% vidy

Z

t
(

which has the i’olloWing sohi}_tion:

(xgdo=2dg)(~vgys T2x¢) + (2d; +ysdo)xgye +4) %

8 + 2x3¥5-2y{¥2 T 2XoX{~X{VoYz XoX2¥1

.Qxl = X;

(yid, +2dy)(xgxs +4) + (x7d +2do)l(—xe¥{ +2¥¢)

’ B *
Qx?".xﬁ ‘ o kgt % k88 B__ G B ¥
1 8 T 2x5y4—2y Y2 T2XoX X[YeY2 X0 X2Y1

1 (x3d5=2d0)(4-y1y3) + (2d; Tysdo)(x3y-2x{)
% &

8+ 25(5‘y5~2yfy2’+2x6x{4xfygy§-xex2yl

B

(yd,+2dy)(xgxs +4) + (x7d; +2dg)(~xgy ¢ +2¥5)

8 + 2x3yg—2¥ 1y T2XgX|"X{¥g¥2 X¢X2¥1

(xgde—2dg)(4-y1ys) + (2d; +y2da)(xsy1—2x{)
8 + 2x3yg-2y1ys +2XgX{—X{yoYz XoXs¥1

L dragcyeys H2xg) + (2d) Fysdyixys +4)
Qu =i ' '

8 +v2x2*yg—'2yfyg'+2X5Xff;x:f3’5)’§‘x5x2’3’f

F inally

(20)

(22)

(23)

(24)

(25)

(298)

~169 -

| B vv Qxl byv Camera #1, -
U

= Q.o by Camera #2,
{Qy0 by Camera #0, |
= 1Qy2 by Camera #2, (28) -
Qo by Camera #0, e
% = {Qu by Camera #1, (29)

Under the same condltlon stated for the case of usmg two cameras, the deuommators of .
(21) through (26) cannot be zero. These six equatlons together thh (27) through (29)

are the 3-D location formulas for the case of usmg three cameras

IV. EFFECT OF NONLINEAR LENSES

The Comsicar 48 mm is a wide--ang'le" uonlinear lens which"‘is' used ‘in the cameras
~ for the experiments to view the entire work-s"pacevat a cloge di‘s‘tauce "-’.Wide-an’gle
lenses expand the image at the center of the lens and compress the 1mage at the perlm-v

eter, whlch mtroduces drstortlons that must be corrected and callbrated

Model for Nonlmear Lenses

| The model for uouhnear lenses can be determmed by Ieast-squares-ﬁt of experi-
| _mental data Because the 1mage functlon of a physrcal object should be symmetncal
‘about the center of the lens, the location of the center of the lens m the phy51cal plane
is unportant This pro;ectlou of the lens center in' the physrcal plane had- to be
estunated for the purpose of constructlng a model. Fll’St a square ohject that almost v
| _ﬁlled the 1mage was placed in front of the camera. The edges of the ob]ect were
: ahgned to be parallel with the edges of the lmage frame (mlcrosensor) The corners of
the oobject were compressed at the corners. by the nonhnearlty of the leus Then, the

.pomts at whlch the drstortlon was at a rmmmum along each of the four 1mage edges ‘

- 170 -

were recorded. The intersection of the up-down and left-right lines through these 'four
points was calculated. The location. in the physical plane that corresponded to the
.pixe'l'at the point of this intersection was used as the projectibn of the lens center.

- As shown in Figﬁre 7, thére are four salient points in the image in Camera #j, viz.
origin of the manually é.ssignéd image coordinates (x;, y;), centers of the lens and the
imége frame (microsensor), and the point of interest. They are related by the vectors

o _
. = , .».‘_’ , an .
& %) R U% = Py

as indicated in Figure 7. Since the model of the distortion effects must be symmetrical

about the CGﬁter of the lens, no even power terms must exist in the distortion model.

Let p"j = Bj 5 The chosen model is of the form,

adjusted radlus = A (image radl_us) + B(lmagevvradius), o (30}

where =
' : . , 1/2
image radius = E(px_) (py) E , and

‘A and B = constants yet to be determined.

The distortion data for the Comsicar 4.8mm- lens was obtained with a measuring
tape as in the case of obtaining the scaling factor data. Light and black backgrounds
with contrasting objects were both used. At ﬁrst:,, points were only taken along an axis
of an u:nage But, to acéumtely represent the extreme effects at the corners of the
image, points were also taken near the corners and aﬂong the edges of the image.
Again, the data wa,s‘ recorded over many'diﬂ'erent sessions, to allow for the effects of
slightly different operatmg conditions to be averaged into the data The least-squares-

fit to the data of 44 pomts ylelds A = 3.506 x 1075 and B = 0. 87007

- _1‘71‘ -

The a,d]usted values of px and py, whlch would; be the values of px and py if a
linear lens were used so that no dlstortlon would exist, can now be computed as

adjusted p;
sin 4

- djsted radig) [] |
adjusted p)', = {adjus ed ra lus) . | R (31..)7

wheré
6 = tan"(p,/p,)

However, th«e;trigo'n'o,rn:etric functions are slow, increase error due to r‘ound{dﬁ', and
require double precisicn floating point variables. A faster computation can be ‘ach_i'eved
by using the .followin'g formula:

7

adjusted p, _ adjusted radius Px

~ ladjusted p;, - image radius p;
, ’2 2 | P;: : S o
= e+ opp| B F e

Error Due to Misslignment of Centers of Lens and Emage

The distortion effect caused by the nonlinear lens yields the followmg observatlon

Points approachmg the perlmeter of the lens image are mcreasmgly sensmve to errors

in this Iocatlon During experimentation with GE TN-2200 camera, the locatlon of the
lens center on an image moved in a circle of radius three plxels when the lens was
rotated inside the case of its mount. This occurrence demonstrates that the lens center
may not coincide with the image center. If the mlcrosensor in a camera is further away'
from the lens, a larger radius would resuit.

To illustrate the error caused by the misalignment, consider an example of using;
two cameras which are dg =d; =38 inches anay' from the_ origin of the work-s‘.p'aée_‘ '

(see Figuré 5), with q. =q, =¢q, =15 inches. This value is chosen because it

- 172 -

corresponds to the pixel close to the p.erime‘i;er of the lens image, whick is more sensi-
tive to errors. With the 4.8 mm nonlinear lenses, the scaling factor for either camera is
1.264. The pixel width for GE TN-2200 camera is 128. If the lens center in each cam-
era is perfectly aligned with the center of image frame (microsensor), i.e., if ; = 0, the
image pixels are (peo,Pyo) = (63,~63) and (p,;,py1) = (—63,~63). These values may be
obtained by either experiments or computation as follows. By equations (4) through
(7}, (9), énd (10), one obtains ‘x: = 5/?", X; =¥ =¥, = -“5/7. Using (3} and (8) to
yield adjusted p,q = 72.333, adjusted p,; = adjusted p,; = adjusted pyo = -72.333.
Although these values are at the outside of the image field which do not physically
exist, they are the adjusted pixels in equation (32). The solution of (32), however,
yields the answer (p,o,Dyo) = (63,-63) which is close to the corner (64,-64). Similarly ,
one obtains {pxl,pyi) = (-63,-63).

Supposing these pixels are read from the experimenté and one wishes to determine
~ the 3-D loeation of the point g from the pixels. By (32), one obtains the adjusted pixels
(Pxo:Pyo) = (72:35,~72,35) and (pey,Pyi) = (~72.35,~72.35). By (8}, one computes
X¢ = 0.71446, yg = x; =y; = ~0.71446. Finally one uses two-camera location formu-
las (11), (12) and (13) to determine q, = q, = 15 inches and q, (by Camera #0) = qz
(by Camera #1} = 15 inches. It is seen that no distortion error has occurred.

Now supposing the lens center in each camera does not align with the center of
image frame (microsensor). Now the adjusted p; is the pixel values in the image frame

(microsensor} corresponding to the point of interest as if a linear lens were used so that

there were no distortion caused by the lens nonlinearity. Thus, if A; # 0 is introduced,

the adjusted ng now becomes (adjusted le + A For N = E_Q}, the

270 =0

adjusted jS ' now has the values: “adjusted p,, = 72.333 =2 = 70.333 and adjusted
S A0

pyo = adjusted py; = adjusted p,; = ~72.333 —2 = —74.333,” so that (32) yields:

i3 _.’

- A B . R » . o
L I |
- |-7a.333) T [3000% 107 (pxo + pyO) + esroo*zJ i DR
. "7_4,3733 = 3'506 Xv 10’; _' v(pxl + vpyl) + 087007 : N B (34)

. These two equatlons are nonhnear but the symmetry in (34) suggests that Px1 = pyl to_
, yleld | | | | SR

705.,'1'2,(0.01 px1)3'+ 87.007' (0.01 pyy) + 74.333';'0

~ On solvmg, one obtams when rounded oﬁ' to the nearest mteger, (px,,pyl) = (64 *64).
However, two variables are coupied in equatlon (33) which makes it dlﬂicult to solve Itv‘-

~ may be solved by 1terat1ve procedure For this equation, the answer is; after rouuded‘

off to integers, (pxo,pyo) -(62, -64). It is seen that when the lens. centers for each cam- -

era is oﬁ' set at (-2, 2), the image plxels near the perimeter are shrfted from (63 <63) to-
(62 -84) for Camera #0 and from (-63,-63) to (-64,- 64) for Camera #1 Now usmg the“
adjusted pixels values and equatrons (11), (12) and (13) and followmg the same pro- |

cedure as before, one computes g, = = 16 mches qy =14 mches qz (by Camera

#0) = 14 45 rnches, and qz (by Camera #1) =16.09 mches But physrcallyv o

py = p‘ =p, =15 inches. Thus a maxunum error of {16. 09—15)/(w1dth of rewew)

4. 11%, is mtroduced by 1gnormg the mrsahgnment

CompenSation for in)istortion' | |

In reahty, plxel values Pu for i=x,y and j =0,1,2, ar‘eobtained‘ fro’m”the ‘MIC -
vision system once an object is v1ewed They are modlﬁed to compensate the appropr1~
_ ate oﬂ'—set of Iens»centers Equatlon (32) is then apphed for each] to determlne the
correspondmg adJusted pU These computed values are modrﬁed agaln to remove the

oﬁ”—set compensatlon Fmally, dependmg on erther two of three cameras are used the_

- 174 -

3-D location formulas, equations (11) through (13), or (21) through (29) are invoked to
compute the oEject in work-space,. qy for k = x,y,2, as viewed from different cameras.

Now q is déﬁn’éd in 3-D WOrk-space {x ,y,ibi) whose relative location with respect to
the center of image frame (microsensor) is predetermmed Refer to Figure 7, f; and);
are determined, and (p; + ;) are produced by the version system. Thus from the
adjusteid | (R; + f;), the physical location of g can be determined. Now
(o +) = (=) + (G +) so that

, Adjusted (-+ f) =~ adjusted (;=) a&gusted (_ﬁ_j + N) | (35)

@

By mcorporatmg the relation between 3-D work-space coordinates {x,y,z) and the
assigned image coordmates (x j,yj), the adjusted (p; + f) is ‘then used in the 3-D loca-

tion formulas to determine g.

Eerative Aﬁg@rithm for Caﬁibrﬁﬁ;ing Eocatioﬁ of E;éns Centérs

Insﬁead of using estimat.;ion‘ procedure déséribed earliér the off-set of the lens
center may be determined by a combmatlon of an experiment and an iterative compu-
tation using equation (32) The process is tedlous and time consuming. Fortunately it
has to be done bnly once for each set-up.v

To start the procedure, an object is placed in the work-space whose coordinate has
already béen_ chosen. The values of q,, q, and q, as well as d,, d; and d; are then phy-
sically mea.sixred. Here it is assumed that all three cameras will be used. For the case
of using only two cameras, the modification Qf the following procedure is straightfor-
' wvar_d. | | |

Initially the lens;‘center of each camera is assumed to align with its corresponding
c_eﬁter of image frame perfecﬂy. One then c'omputes‘» the values of py for i=x,y and
j=0,1,2 using the steps shown in the pr;evious example. The_«éorr%pondiﬁg adjusted

pij's are then ‘computed via equation (32); call them p_lj Finally, (21) through (29). are

- 175

used td 'compute qk‘forvk:x,y, z. 'Notethat for the case of using three Cameras'; there -
‘are two computed values for each qk - |
In realrty, the lens center of each ‘camera may not ahgn w1th zts correspondlng

center of image frame.(mlcrosensor) But ‘the cameras produce the values of plJ

images, from WhICh the-adjusted pij's are also computed via (32) and are called plj
Now compare the srx computed qi's w1th the three physrcally measured qi's. I the
dlﬁ'erence for a Qk 1s larger than a prespecrﬁed value ¢, then the correspondlng pu

corrected by a: value 6, 1e the lens center is corrected by a value 6 on the basrs of

'ad]usted pu Otherw1se the correction process continues: for the next qk The direc-

tion of correctlon is gulded by the manner how p11 is deviated from pu When a lens_
center shlfts in a positive (or negative) dlrectlon along an axis, the correspondrng coor-
dinate in the 1mage of the same physical pomt moves in a negatlve (orposrtlve) dlrec-
tion. When all dlﬁ'erences are w1th1n the specxﬁed ¢, then ¢ is d1v1ded by cr and 6§ by C2)
‘where ¢, and ¢y are prespecrﬁed p051t1ve constants’ that are greater than 1. The 1tera-
tive- process then repeats untrl § is not greater than a pos1t1ve constant DMAX Thus '
the lens centers which are determlned at the “adjusted” level, are precrse to’ the value‘*
- of DMAX. The value of DMAX was set to 0. 0001 dur1ng 1n1t1al experrmentatlon, but
was 1ncreased to. 0 001 for later experxments to speed up the callbratlon wrthout seri-
ously reduclng the precrslon Note that although the stop condrtlon rs controlled by
DMAX, the comparlson is done w1th the physrcal measured values of qy's. Thls permrts
a manual judgment on the reahstlcally allowable errors. The:rnltlal values forme' and 6
were determined by trial and lerror, and were large and con‘servative ‘Based on the
functlonal relations deﬁned by equatlons (11). through (13), (21) through (29) and (32).
heurlstlcally set c2 =¢;; and ¢, =2 1s preferably used in the experlments '

Although the convergence of the nteratlve procedure is ‘not avallable the process

does not converge only when Pij 's Jdlﬁer from th,err theoretlca_l values by a large amoun_t. :

- 176 -

To avord the entrapment in an 1nﬁn1te loop caused by this srtuatlon the 1terat1ve pro-
- cess is termmated if the number of 1terat10ns exceeds the value IMAX This value is

 setto 2x10§. | ~ | |

| ".Since: thev distortion is most'pronounced at the edges of the image correspOnding to

the perrmeter of the lens pomts that appear near - the edges will produce a more rehable\

result The cahbratlon should be performed with as many sets of pomts as possrble

l

 The resulta_nt lens center oﬁ’-_»set from each cahbrated pomt,,l.e., the dlﬁ"erence between
pN{j and the ﬁnal p{;;”are aiteraged. This avera‘ged value is added to all the adjusted pij’s

‘during the operation performed later to compensate the distortion.

V. DETECTION, LOCATION AND DESCRIPTION OF OBSTACLES
| ’Oncewthe camer-as have observed the scene and the 3—D"location formulas are
v apphed to compute the sizes of objects, the task of conducting a search for obstacles is
reﬁdy to start. A.n mltlal approach is to dmde the work—space into volume cells which
are formed by the window grids from each camera. Each cell would elther be empty or
v.contaln an obstructwe object. However, 1f one takes the full advantage of the camera
| resolutron and employs 128x128= 16384 wmdow grids for GE ‘TN-2200 cameras, there
will be '2,0‘97',,152_\(olume cells Even usmg the wmdow size of two prxels square,
| v64x6"4x64=26»2 144 volu"meﬁ cells are required. It mvolves not only a large size of
‘ memory storage but also a long processing tlme to- describe and then to 1nform the
-robot about the obstacles Thus a. dlﬁ'erent approach for the task is de51rable

" There are three separate problems wrthln this task The ﬁrst problem is the deter- -
mlnatlon if the obstacles-ex-rst The second is the estlmatlon of the locations of the
:existing obstacles And the thrrd lnvolves extractrng useful lnformatlon to form a
descrrptron of the obstacles The constrarnts are tlme aceuracy, and a meaningful

descrlptlon whrch serves as an mput to the COlllSlOIl avordance program _

Z 977 -

The method presented in thivsv paper requirés each camera pr0ceesing one ‘image,
with the MIC vision system retdining information on vall the regions of each camera}in_'
its memory Also, some simultaneous processmg is performed on the LSI-11 of the MIC
vision system and the host DEC VAYX 11/780. The host computer can wrrte the MIC
vision system a command to.take and process a picture. Then, since the image process-
ing time of the MIC vision system is often more than 100 ’mse'c., the host computer can
do some work before read'ingthe response from the MIC system' The length of saved
trme cannot be accurately measured However the total' time consumed by this
method whlch is called the search algorlthm in the followmg, is relatlvely short.” The
method mainly relies on sets of srxvnumbers furnished by the MIC vision system. They :
are X-min, .j‘c-max,' x-centroid‘,xy-min; y-m’ax, and y-centroid for each “blob * found by

the camera.

Determmatron oi’ Existence and Location

A_{ter the pictures are taken and the fea.tures ad]usted the search algorrthm Cross-
checks the centrord’s of the reglons of each camera with that of the regions of the other
cameras. In the followmg, the set of six numbers for each *blob * mentrohed above are
assumed to be the adjusted values so that the distortions and oﬁ'—set errors have already ‘
been compensated. Recall that the 3-D ioca.tlon formulas yleld two values for one or all |
coordinate values, depending on whether two or three cameras are used; If the '
diflerence between the 'tivo centroid values, of each coordinate, is less thana pre‘scrihed
constant e, an object is determined to exist. For cohvenience, the con‘st:‘m;t e vis called
‘the “‘error margin.” Let w; be the width of view of Camera #j, then the error margin is

chosen to be

- 178 -

(cgmax(wl,wz) if along x-direction
e = {cgmax({wg,wy) if along y-direction - (38)

cgmax{wg,w;) if along z-direction

where cg is a prescribed percentile fraction. The value of ¢z is determined by trial and
error.. For the experiments described in the paper, the value between 3% and 5% is
used. A smaller search error ;nay introduce the output with some actual objects omit-
ted, and a larger value may introduce the output of objects that do not exist.

The location of the existing object’s centroid is estimated to be the average of the
calculated centroid coordinatef; values based on those that are furnished by the MIC sys-

tem.

Extraction of Desc?iﬁatiom

The description of an obstacle must be a worst case bounding description, i.e., the
bounding geometry that ez?closes _ﬁ;he entire obstacle. But the features of each region of
the MIC VS-100 vision system ‘rest/rict the bounding description. From the maximum
and minimum x and y coordinate values for each region, a worst case bounding rec-
tangular solid with sides ‘paraHeK to the axis planes can be constructed. Then, the
minimum, centroid, and maximum values of each three dimensional coordinate are out-
" put to a file to be read by the collision avoidance program.

First, the worst case adjusted coordinates from the distorted images are calculated.
This feature adjustment processing is performed simultaneously while the MIC VS-100
is processing the mext picture. The distortion effects are most apparent at the extreme
radius values, i.e., corresponding'to edges of the image or perimeter of the lens. Thus,
which quadirant_fof the assigned image coordinate (x;,y;) for j=0,1,2 the centroid isl in
determines which pairs of bminix.ﬁum and maximum values should be used to calculate

the adjusted worst case minimum and maximum values. Figure &(a) indicates which

’ - 179_

palrs are used in whlch duadrants Tlns determmatron of the worst case values is onlyn_
necessary for plctures taken through a nonhnear lehs. e |

Now, the' plctures have been taken and the features adjusted. If the':centroids-ol»
set of regions are determlned to ongmate from the same ob]ect the worst case three
dimensional coordrnates at the corners of the rectangular solid are caleulated. Frgure
8(b) shows the scheme used to label the boundlng box points. Due to the perspectrve
qualities of any lens, the points on a side of the box will not be on a plane. The worst
case values of vthe -calculated boundrng pornts coordinates are used'to describe the box.
Figure 9(a) "indicatesv which values"from each' camera are used to determine the three-
dimensional coordlnates of the boundmg box | | |

Remember that the xmax value from camera #O is a worst case value in the posi-
tive y-direction. However the xmax value from camera. #1 is a worst case value in the"
negative x- drrectron A max1mum X or y value from the cameras does not always com-
~ cide with a maximum posrtlve value in the three—dxmensronal space Thus the three- ,
dlmenswnal coordinates of each boundlng poxnt are determlned w1th the mputs from
each camera as in Flgure 9(a). Then the worst case coordmates of each side ol' the
bounding volume are dete'rm‘ined The a.ss‘-umptlon'that the cameras are basrcally'on-. "
’ orthogonal axis eliminates two pomts on each plane as worst case: candrdates for the
common coordmate Figure 9(b) deplcts which pornts are used to determrne the worst
" case value for each coordrnate Thls ehmmatron of two candrdates is done to conserve
cpu time. ‘ |

F urther s1mphﬁcat10n can be made in the two camera srtuatron The removal of

~camera #2 causes the vertlcal edges of the box to be parallel with the z—axrs Thus

less coordlnate calculatlons are requrred

<180 -

V1. SYSTEM OPERATIONS

~ The overall 3-D visidn system 'consists of three software programs in additibn to
~ the sbftware that operates the MIC VS-100 vision system. They are the Interface Pro-
tocol, the Interprocessor Communications Device Driver, and the Monitor‘ and real-time
Search Program. These software programs as well as the real-time operation speed and

accuracy of the output information are presented as follows.

Software Programs

The-iﬁterface protocél is provided by the Machine Intelligence Corporation. The
' DRVHv and DRM{C hardware allow each machine to generétef two kinds of interrupts
‘in the other machine. It may assert CSRO to cause an “interrupt A” (INTA) or CSR1

to cause an “interrupt B” (INTB). There are 32 data lines, 16 in each direction. To
send a one-word message, it is neceésary to load that word into thevs‘ending machine’s
output register, thven to signél the other machine with 'INE.TA. or INTB. In the MIC
software, INTA is generally used for control and status messages, and INTB is used for
data ready or data received. | _

The Device Dx;i_v'er connects the DEC VAX 11/780 to the MIC VS-100, and allows
the MIC vis-ion' system'to be driven by tile VAX. The Device Driver written for this
projeét did not use interrupts. The CSRO and CSE1 hold their bits until turned off.

The Monitor and Search Pfogram include all the functions to be processed that are

described in this paper.

System Tnitialization

In using the 3-D viéion system within a real-time robot énvironment, the Monitor
is first used to init"ia,lize»tlie parameters and possibly run a few test searches. Then, all
the current parameters are written to a data file. As the robot needs more current

information, it calls a real-time Search Program. The real-time Search Program inputs

- 181 -

the system parameters, conducts a search for objects, outputs the results, and returns
to the calling program. The Monitor and real-time Search Program cannot run simul-
taneously. However if the real-time Search Program is not running, the Momtor can
be reentered to adJust some parameters \ o »

To operate the 3-D vision system; first ioad the‘M!CvVS-vIOO machine vision system
with the ﬁles on tape. Then enter the “SYSTEM SETUP” mode v1a the light pen con-
‘ trol and ‘use the “DISPLAY CAMERA IMAGE” and “SELECT CA.MERA” commands
to align the cameras along orthogonal axes. For example, place small ob;ects. along an
axis anci move the carnera:-positions until the objects apnear as one object. 'O‘ne may
also have to adjust the threshold of each camera.. 7 L | | ‘

| Next enter the- “SWITCHES” command via hght pen control And turn the |
“EXTERNAL-COMPUTER-CONTROL” switch on. Return to, the I\/HC logo b‘ys |

selecting the “QUIT” commands . L |
| On the DEC VAX 11/780 execute the vision system Monrtor program Enitlahze
each parameter as the M‘omtor asks for its value. Put a small object at the origin of =
the camera coordmate frame This will b.e used to select tlie corresponding loeation~"
w1thin each 1mage The distance values will have to be measured by hand. Use the
unit of measure that one desires the output to be i in. And enter what lens is on each
camera.

Next is the optlonal lens center cahbratlon Choose some points to cahbrate the
lens center locations. One must place obJects at known Iocations in the camera coordi-
nates. Then center tne cursor over the corr&ponding locations in each image.

Now that the systenn has been initialized, try a few Sample searches."' Two features
~added to the Monitor allow the user to control the amount of noise Whiie ;dec‘reasingthe |
threshold level (increasing the 'sensor sensitivity) The user can adjust' the minimum
area of a region that is con51dered a ‘blob’ This can ‘be used to have the MIC VS-100

ehminate multl-pix el noise, or to allow the VS-100 to be sens1t1ve to very small objects .

fi- 182 -

Adjust this parameter if desired. " Also, the user can establish a window around an
‘active’ region of the image. All data outside this region is ignored by the MIC VS-10G.
This allows a noisy ed“ge of thé image to be removed {rom any processing. The use of
active windows also reduces the amount of time used by the MIC VS-100 to process a
noisy picture. Hit the ‘d’ command to store any ﬁew window values.

After exiting the Monitor, the Search Program can be called to conduct a search
:for obj?ecstsg Uniegs the VS-100 has been turned off, the parameter file can be used to

initialize the system parameters if the Monitor is reentered.

Speed of Resl-Time Operation
There are three independent parameters that affect the speed of the search algo-
rithm. The first is the time to process an image within the MIC VS-100 vision system.
This time is data-dependent. It can range from 100 milliseconds to one second. Both
larger numbers of pixels turned on and more individual regions found within an image
- contribute td longer image processing times. The second component is the time -to |
transfer data between the LSI-11 of the MIC VS-100 and the host DEC VAX 11-780.
However, in this project, this interface has been refined to the point that the time
involved can be ignored. The thirdvparameter is the cpu time used by the host DEC
VAX 11/780. This is also data-dependent. Thé larger the number of regions found per
camera, the more time the nested loops that check all possibilities consume. And the
‘more objects found, the more worst case boundary calculations‘ that have to be per—
formed. Thus, as more objects enter the work-space, the longer the time before the
search routine will output the file of objects found.
| Also, the search using three cameras is longer than the search using two cameras._,.
This is because the three-camera search has an extra image to process, many more pos-
sible combinations of régions to check, and three-dimensional ﬁocation formulas that are

more time-consuming. Figure 10 shows the VAX 11/780 cpu times and the total

- 183 -

elapsed times of the search programs. The data contains values for both the two cam-
era and the three camera search algorithms. Also; the data spans values from no
objects to eight objects in thé work-space. As a reference, tﬁe objects were arranged
such that when n objects were found, each image contained n regions. Sometimes, a
camera will see regions that do not correspond to objects in the work-space. And some-
times a camera will see one region that corresponds-to more than one object behind
another. This problem may be eliminated by using an additional camera as demon-

strated by an illustrative example shown later.

Precisiozi of Output

The precision of the program’s results depends upon two items: the resolution of
the image sensors used, and the accuracy of the initializations performed. The resolu-
tion of the semsors affects both the accuracy of the initialization procedure and the
accuracy of the features calculated during an object search.

During the initialization of the system parameters while using the Monitor, a cur- B
sor is used to choose the pixel in each image which represents the origin of the assigned
image coordinates. A small object is used to represent this point in space. Figure 11
depicts four situations where the resolution of the object’s image will introduce initiali-
zfation» errors. In each situation, the actuai centroid location is not 6ne of the pixel
centers which must be chosen. The integer value representing a specific pixel will intro-
duce error. | |

Aﬂoﬁ-her problem of this scheme is that the bounding regions may overlap. ‘F igure
12 depicts a situation wher§ this overlap may occur. To describe a larger bounding box
would introduce much more wasted space. And to describe the single complex region
contained within both boxes would slow the response of the search and greatly increase

the complexity of the computation of the output.

- 184 -

NoneExisﬁng Objects

To restore the 3-D environment based on the images from two cameras with the
scheme presented in the paper, false scene including non-existing objects may result for
some environmental arrangement. As an illustration, consider a scene of four objects as
éhowu in F:igure 4. Fér the purpose of explanation, they are labelled A, B, C, and D as
shown in Figure 13. Their physical locations with respect to two horizontal cameras
are so érrahged that Camera #@ only sees A, C, and D with B hidden behind C; while
‘Camera #1 only sees D, C, and B with A hidden behind C. The Search Program found
five objects as indicated in F-igure 14. Figure 15 shows the output giving the locations
and descriptions of the five objects in reference to the work-space coordinates defined in
Figure 16. It gives one more object than physically in existence. Note that in Figure

15, the output data are arranged in the following format:

x-min ~ x-centroid x-max
y-min y-ceniroid y-max

z-min z-centroid z-max

A brief explanation of the situation is that Camera #0 sees three objects A, C, and D
along three rays 0A, 0C, and @, respectively, where 0A is the ray from Camera #0 to
object A, etc. Eikewvise, Camera #1 sees three objects D, C, and B along three rays
1D, 1C, and 1B, respectively. Now, ray 0D intersects 1D at D. Ray 0C intersects 1C
at C and 1B at B. However, Ray OA intersects IC at A but intersects 1B at an ima-
- ginary point which yields a non-existing object. The phenomenon of the ﬁon-existing
object, however, may be eliminated if the image of the vertical Camera #2 is incor-
porated. As shown in Figure 17, Camera #2 found four regions and the output gives

the locations and descriptions of the four objects.

- 185 -

VII. CONCLUSIONS

A 3-D vision system using the Machine Intelligence Corporation VS-100 system has
been developed for robotic collision avoidance. As shown in Figure 16, the search pro-
gram will take leés than two seconds to determine eight objects or less whﬂe using two
cameras, and less than four seconds while using three cameras. However, the total
elapsed time is data-dependent. The program could return in one second if no objects
are pfesent. Also, note that the DEC VAX 11/780 was in UNIX “normal mode”, with
three other users in time sharing, during the collection of the data. If the search pro-
gram is called when the DEC VAX 11/780 is in “real-time mode” with no system loads
or other processes running, the response time will be reduced.

The use of three cameras is preferred since otherwise nén-existing objects may be
found by the program. However, the perception error of d‘etecting objects that do not
exist is more favorable than not to detect objects that do exist, for the purpose of colli-
sion avoidance. The bounding description will often waste the space surrounding an
object. But, for the same purpose, the inclusion of extra space in the boundary is
favorable to not including a part of an obj‘ect. Also, the user of the output must be
aware that the output descriptions may overlap in the three-dimensional space. |

Again, the accuracy of the scheme is dependent on the accuracy of the initializa-
tions performed and the resolution of the sensor. The user affects the accuracy of the
scheme by the accuracy of the lens models used, the orthogonality of the camera set-up,
the accuracy of the distance measurements, and the accuracy of the cursor positions
chosen during the system initialization. As for any vision system, choosing the correct

threshold for each camera and properly adjusting the lighting are also important.

£

ACKNOWLEDGEMENT

The authors wish to acknowledge that George Goble wrote the Interprocessor

Communications Device Driver program.

13.

- 186 -

REFERENCES
‘1. Luh, J. Y. S, “An Anatomy of Industrial Robots and Their Controls,” IEEE
" Transactions on Automatic Control, Vol. 28, No. 2, February 1983, pp. 133-153.
2. Nitzan, D., C. Rosen, et al., Machine Intelligence Research Applied to Industrial
Automation, SRI International 9th Report, Menlo Park, California, August 1979.
3. .Nevé,tia,, R., Machine Perception, Prentice Hall, 1982, pp. 158-167.
4. TN-2200/ 2201 Solid-State Automation Camera, Literature EHM-I.?;OS/ 5000,
- Optoelectronic Systems Operations, General Electric, Syracuse, New York.
*5. Ballard, D. H. and C. M. Brown, Compuler Vision, Prentice Hall, 1882, p. 50.
8. Rosenfeld, A., “ConnectWIty in Dlgltal Pictures,” Journal of ACM, Vol. 17, Januo
. ary 1970, pp. 146-170. |
7. Agm G. J., “Computer VlSlon Systems for Industnal Inspection and Assembly,”
~ Computer (IEEE Computer Soclety) Vol. 13, May 1980, pp. 11-20.
| VS-100 Machine Vision System Reference Manual, Version 1.33, Machme Intelh— |
gence Corporatlon Suunyvale, California, 1980. o
Gleason, G. J. and G J. Agin, “The Vision Module Sets Its- Slght on Sensor-
Controlled Manipulation and Inspection,” Robotics Today, Winter 1680-1981, pp.
. 36-40. o - : |
10. Yakimovsky, T. and R. 'Cunningham,, “A System for Extracting Three-
Dimensional Measurements from a Stereo Pair of TV Cameras,” Computer Graph-
~ics and Image Processmg (Joumal) Vol. 7, No. 2, Academic Press, Aprii 1978, pp.
195-210. . 4 o v
ii. Tho‘mpson A., “Camera Geometry for Robot V1s1on Robotlcs Age, Vol. 3, No. 2
March/April 1981 PP- 20-27. ~
12. UNIX sze-Sharmg S’ystem UND(Progmmmer s Manual 7th Edition, Bell Tele-
~ phone Laboratorles, Inc., 1979 , : -
Kermgham B. W. and D M thchle, The C Programmmg Language, Prentice

‘Hall, 1978.

3

3

- 188 -

OPERATEON PROCESSHNG TIMES

General Operation. Proc&smg Time Measured Processing Time

'Read in the image and process it
o Using software run length

encoding :

484 ms + 0.97 mq/segmen& ‘ 583 ms
- o Using hardware run length : :

encoding ‘

267 ms + 0.53 ms/segment ' 321 ms

Connectivity analysis
66 ms + 1.8 ms/segment + 3.3

2

ms/blob _ : 270 ms
Perimeter accumulation o

0.86 ms/segment + 2.3 ms/blob L 102 ms
Accumulation of second moments

2.3 ms/segment . 235ms
Perimeter and radius calculation

5.2 ms/segment . ! 500 ms

Note: Blob = connected component

Figure 2. Oper‘atioh Processing Times for MIC VS-100 Vision System.

- 189 -

VAX 11/780

e COLLISTON

L CAVOIDANCE . S -
™1 . PROGRAM . [

<mOoEmXE

VISION SYSTEM
 PROGRAM
egpmenmee OBJECT - PERCEPTION
~ } USER INTERFACE, [

 AND CONTROL - . §

¥

. _ MIC VS-100
DISPLAY

(IMAGE PROCESSING)

:4“—— C . | . | ¢lv'a-’>"’\-- .

LIGHT PEN

Figure 3. Schematic Diagram for the Overall Vision System

Figure 4.: Environmental Arrangement for Experiments.

- 061

L 2 - Camera #2.
(Image coordinates .- B SR
from camers #2) ¢

(BER)

.; -

sl (Image
coordinates
. camera #1) "1V

?(Image_COprdinatés
. from camera #0)

. Pigure §

- Camera Orientations

l"ﬁ‘ S = : T Disténce B §ms1
! | o -
b

: |

- Camera

- 26l -

7/

4 R
width

&

7Ny

-

Figure 6. Measurements for Determining Camera Scaling Factor

Point of
Interest

Center of Lens

Center of
Image Frame

Origin of J
Assigned Image
Coordinates

Figure 7. Four Salient Points in Image in Camera #j

~ 194 -

4 Yj

,1 . : I | . ' ' 'max,' ax)
(‘xm‘lnéy'max) | 1 - (x wym

) ’;‘ B v @. — -) C.
(xmaxyymln),_ (xmin,ymin)

v

":(xmax,ymax) .‘(xmin.ymak)
e o s .

N NS | - | I
(xmin,ymin) -~ . R | (xmax,ymin)

| Figure 8{a)
Worst Case Pairs within a Distorted Emvage

o~ 195 -

: Aﬂ' Camera #2 o

i ‘lCamérai #1 :

Figure 8(b) .

. Thé Bounding Box

- 196 -

Bounding Camera #0 Camera #1 Camera #2
point features features features
number

{see Fig. 8) Xg Yo X3 Yy Xg Yo
0 xent yent xent yent xent yent
1 xmin | ymax | xmin | ymax | xmax | ymax
2 xmax | ymax | Xmin | ymax | Xxmax | ymin
3 xmax | ymin | Xmin | ymin | Xmax | ymin
4 xmin | ymin | Xmin | ymin | Xmax | ymax
5 xmin | ymin | Xxmax | ymin | Xmin | ymax
6 Xxmax | ymin | Xmax | ymin | xmin | ymin
7 Xmax | ymax | Xmax | ymax .| Xmin- | ymin
8 Xmin | ymax | Xmax | ymax | Xmin | ymax

(a) Bounding Box Information

Worst Case Coordinate
of the bounding box

Candidate Points from the
bounding box (see Figure 8)

Xxmin
¥max

ymin

ymax
- zmin
Zmax

6 and 8
1and 3

4 and 8 -

3and 7
-2 and 8
3 ard 5

(b} Bounding Box Coordinates

Figure 9. Construction of Bounding Box

Number . Vax cputime || Total elapsed time
| Objects || 2 Cameras- ,3-Ca.vmeras |l 2 Cameras | 3 Cameras
0 || 00417 | 00485 || 0743 | 1163
1 || 00500 | 00750 0950 | 1.381
2 0.0733 01284 || 1155 | . 1.675
-3 0.0883 | 0.1750 1.295 | 1.832
4 0.1150 | 02600 || 1400 |} 1.979
5 - 0.1583 | 0.3800 || 1.543. . | -2.301
6 0.1683 0.5383. || 1694 | 2995
7 0.1933 07500 |l L718 | 3157
8 0;2017 Loots || 1907 | 3342 3

Notes: These values. are the averages of ten samples The data was obtamed when
there were three other users on the Vax, causing a load average of 1. 5 to 4.5. The Vax
~ cpu time data is only accurate to 1/60th of a second. The total elapsed time data was
"»measured with a stop wa.tch after 10 calis to ‘the sea.rch routme and measured to

: 1/ 100th of a second.

‘Figure 10. System Execution Times

o

TETTTY

o

x 4 I L
4
p .

L ©
< ., i

Figure 11

Pixel Selection Errors

- 199 -

. .
.g®ses e s see
2%

' Figure 12

Boundary Description Overlap

: "Figurv'e 16. - wov'r'v'k—space Coordinates -and thie Four Obj éctsi_

Description of Bounding Boxes for‘Four>ObjeCts Found

Figpre 17.

- 202 -

LAGRANGIAN FORMULATION OF ROBOT DYNAMICS
WITH DUAL-NUMBER TRANSFORMATION :
FOR COMPUTATIONAL SMPLE‘ICATEON

- J.Y.S. Luh and Y.L. Gu
School of Electrical Engineering
" Purdue University

West Lafayette, Indiana 47907

ABSTRACT

Among a va.rlety of formulatlons of robot dynamlcs the Lagramgmn ‘equatlon
yields an insight of the robot behavior ‘but suffers from the excessive computational
‘complenty‘ The dual-number tr\ansforma,tlon‘ 15 ca._pable of transforming velocities from
one ‘coordina‘te’ frame to another. By inéorporga‘tin‘g dﬁai—numb?er ’tran'sformatiaon into
the Lagrangmn equatxon it‘is possnble to apply the differential operator du‘ectiy so that

the computation of the Jomt torques/forces of the robot is sz.mphﬁed

I INTRODUCTION
The industrial robots are computer controlléd mechanical manipulatoré used in
industrial applications They have serial link mechamsms whose dynamlc behavior can

be descrlbed by equatlons in Lagrangian formulatlon as: : v
B - SRR - ,
=z, 1=12..n. o . : 1

where g; = generalized coordinates

L = L{qy,...,.95,4y,..,95) = Liagrangian ,

*Smppbri’?d b\/ NSE Grant MEA _ 8179884‘

- 204 -

= generalized forcing function .

The generalized coordinate q; represents the displacement of joint i. The Lagrangian is
also defined as L = K - P where K and P are, respectively, the kinetic energy and
potential energy of the system. By appiyﬁng the Lagrangian equation to a robot with n

joints (or {n+1) links), one obtains [1,2]:

n Yy X n ‘- & ﬁ n + e
7= %0 Dy + Jdat T 3 Dyl 30 X Dipga D (2)
=1 =1 i=1 k=1
j=k
“where
a o
Dij - E Tr[UpJ ‘gp(Upi}] _ (3)
p=max(i,j)
' n 7 o :
Dy = 3 Tr{Upu J(Up)] (4)
p=max{ijk)
']
)¢3 'A, n)
D=~ 3 m Uyt)
S pE o ‘
Tr = trace operator,
(Y = traﬁspose of (),
7= input generalized force for joint i,
m, = mass of link p,
Py = a vector describing the center of mass of link p with respect to p-th coordinate
system,

g = [O, 0, 9.8 m/sec?, 0] is a gravitational acceleration vector at a sea level base,

v—205 ""

J. = inertia matrix for link p,

oy — {(TJ hQ (TR, forpi,

UP5'= an R (¢ otherwrse A _' - : | (6)
sre [T "j"‘)Q,; (TE) Qe (TEy), frp2k>j,
Upi = 3q3qk = (T3)Qk(Té‘l)Q,(), frpzizk, (0
PR N o, otherwise,
(o -100)
10 00 it joint j is rotational,
0000 . |
Qj = < (8)
{20 20 it joint j is translational,
Tk= 4 x4 matrrx whlch transforms any vector expressed in k-th coordmate system B

i

to the sa.me vector expressed in J th coordmate system

g = generahzed coordmate (1 e. Jomt dlsplacement)

‘For each Jomt i, the requlred torque or force is divided into five: groups 4s shown rn ‘

(2). The first group represents the contrlbutlon from mertlas of all the 3onnts “The

second term represents the inertia ‘torque of the actuator of jomt 1. The thxrd ‘and
fourth groups in (2) are the contnbutlons i’rom, respectlvely, the centrlfuga!.' term and
~ the Corrohs force Whhe the last term is resulted from the gravrtatlonal acceleratlon
‘Whether equation (2) is. utlhzed to solve forward dynamlcs problem for analysrs and
sxmulatlon (e, solve for qjs and their tlme»denVatlves for grven 7's), or to solve |
inverse dynamlcs problem for contro! of tobots (1 e solve for .'s for deSIred gj's and :

their derrvatlves) ‘one must compute the coefﬁcrents Du’ D ik and D that are deﬁned by v

- 206 -

(3), (4) and (5) respectively. The computation of these terms is, unforiunately, very
complicated and time ,consumi'ng. It involves an evaluation of thousands of - tri-
gonometrical terms [3]. Obviously it is no’l a simple computa'tional task especially when
the pomtton-dependent and omentation-dependent parameters cliange as the robot

moves. Therefore it warrants the effort of searching for methods of simplifying the

computation

Eﬁicient algorlthms for. computing 7, have been developed by various authors dur-
ingvthe past three years. Luh, Walker and Paul [4 [4] computed the joint forces/torques
" based on the Newton-Euler bformulation' Walker and Orin 15 fextended the approach
to compute the joint accelerations which were then used in the sunulation of the robot
control scheme. Hollerbach [6] developed recursive algorithms based on the Lagrangian
formulation which were shown to be equivalent to the Newton-Euler method [7].
‘Recently Kane and Levinson [8] used specialized formulation for specific robots, while
Featherstone [9] approached the problem differently by using artwulated-body inertias.
All the methods mentloned above’ are very efficient in producing numencal sclutions.
However, they will yield very little insight views of the dynamical behavior of the
robot. To vanalyze the dynamics of the robot for full understanding and aiding in
designing new robots, 1t is desirable to simplify the computation of the coefficients Dy,

D;;x and D; and then deal with the dill'erential equation (2} directly.

There are three known app,roaches of simplification; viz. geOmetric/nnmeric, com-
posite, and differential transformation. BejczylS' geometric/‘nnmeric'evaluation [10,11]
deala with the nature of joints whether it is revolute or prismatic. Thus the 4 by 4
homogeneous transforination matrices Tjk ‘in (6), (7) and (8) can be simplified in
advance. Since many elements in the matrices are zeros, the resﬁlting expressions for
D;, D;; and Dy, are less complicated {10, M] - The composite technlque by Luh and Lin

[12] involves the comparison of all the terms in Newton-Euler formulation of the

- 207 -

dynamic equ.a,tion [4] in a computer. Some of the terms may be eiimimated under vari-
ous criteria. The remaining tefms are then rearramged in a Lagrangian formulation.
The upshot is a computer output of a simplified equation in symbolic form. Paul’s
differential transformation [2] which converts 8T [/dq;, the partial derivative of the
homogeneous transformation matrices, into the matrix product of the transformation
and a differential matrix which reduces Dj; to a mﬁch simpler form. However, the term
Djjx contains a second order partial derivative 62’1‘5’/(6% dqy) which was not simplified
until recently by Bejczy and Lee [13]. Their approach is to apply the differential opera-
tor used by Paul, successively at the appropriate link-to-link coordinate &ransforma_;
tions. An alternative approach is to adopt the dual-number algebra and screw calculus
in the énalysis instead of the homogeneous transforvmation. |
" In screw calculus [14,15], a vector may be represented by either six real numbers,
or th:ee dual numbers. The' associated coordinate transformation matrices perférm line
transformations, which is different from the point transformation by homogeneous
transformation. In robotics, this approach has been investigated by Pennock and Yang
[18], and Featherstone [9]. As shown by Rooney [17], the dual—nﬁmber representation is
most concise, while the real 6 by 6 matrix repr%enta&ion(contains redundant coxﬁ-
ponents since not all conditions that form the matrix are independent. The size of the
6 by 6 matrix gives an intuitive impression of excessive computational burden. Yet the
dynamical analyses are done by the real 6 by 6 matrix representation in [9] and [16]

because it is not feasible to express the inertia directly in dual-numbers.

This paper presents a method of expressing the kinetic energy of the'system.‘in
terms of dual-number transformations so that the analysis of the dynamics ixsing dual-
number algebra is possible. The method is different from the momentum approach by
Yang [18]. Because of the property of line transformation, the dual-number tré,ﬁsforf-
mation may deal with dual-velocity vectors. Thus the differential transformation in the

kinetic energy term yields only the first order partial derivatives in Dy so that Paul’s

- 208 -

~ simplification approach [2] applies. Although there is no first order partial derivatives

in D;; in the dual-number representation, the computation of Dy is still simpler than
that by Paul’s simplified represent&tién [2]. The computational efficiency of the dual-
number representation is exhibited by comparing the numbers of required multiplica-
tions and additions for computing the joint torques/forces 7 fOE;' all n joints, with those
nﬁmbex:’s required when the direct homogeneous tramsformation [1], and Paul’s

simplified homogeneous transformation (2] methods are applied.

II. MOVING RIGID BODY AND KINETIC ENERGY

" Consider a moving rigid body L; with its center of mass at point G;, and an arbi-
trary point at 03 upon which a coordinate system (x;, ¥;, %) is éttached as shown in
Figure 1. The radius vector from 0O; to G; is denoted by ¢;. Let v; and wj be, respec-
tively, the linear and angular velocity of coordinate system (%;, ¥;, 3;) with reference to
the base coordinates (%, ¥,, %). Then the linear velocity of the center of _mé,ss Gj is.
[18,18]:

ve TV tuwxe | ()
where x denotes the cross-product. The kinetic energy of the moving body Ljis
j

o1 ,)
K. = ‘é’(mj‘%”gjvcj + wj JGJM‘]) (10)

where m; is the mass of the body L;, Jg; the 3 by 3 inertia matrix of the body about its

center of mass in (x;, Vo, B,), and {) the transpose of {). Let

» ij @ —Czj Cyj
[
€ = oy and C;=ley; 0 —¢y == (11)
c o
¥4 - o
j Cyj Cx O

be the antisymmetric matrix whose components are the combinations of those of ¢;.

Then

- 209 -

Cj wj -* w] X C) (12)
Combine (8}, (10) and (12) to yield
R | ' |
KJ:E[(vv +2va)+w(§GJ-§-mCC) w;) | (13)
In‘App?'endix_ A, it is shown that |

where J; is the mertla matnx of the same body L about the ongm of coordmates {x;,

Vi 2;) in (xo, Yo, Z,)- Thus (13) can be wntten as

K= Slmv]v; + 20 C) + uj J]wj] SR (15)

for simplicity. When the numerical values of J; are needed for computation, however,

it is more convenient to compute them from, (14) since Jg; can be obtained directly.

M. KINETIC ENERGY OF THE ROBOT

Consider an industrial robot having (a+1) links among which link 0 is bolted on
the p}atform. For j = 1,2,...,n, let link j be represented by the rigid body L; deécfibed
in Section II. Then e’qua’tien (15} reep:resents th_e ki-netie energy of link j. The total

kinetic energy of the robot can be expressed as:

K = 1 jn N

-»521[vv +2va)+wJJle] i (16)
J:

Let A-‘ be a3 by 3 rotatlon matrlx which projects any vector w1th reference to

_(xj, Yir %) coordmate system onto (-1, ¥j-1, 1_1) system. Smce A_l is an orthonor«-

'mal matrix, then - |

R (Aij_v—:l);zl = ‘_(A“ o= | = { AJ— h

it

In addition,

- 210 -,

A= AJAZ AL
Thus equation (16). may be written as:-

K=~ % [my{(APv)) (Apv) + 3(Aw) (APCADALY)}

+ (Afw)) (APTANALW) " (17)

To simplify the notation, let |
(dj‘ = Ai"wj' ' . (18)

be the linear and angular veloéities of link j, respectively, projected onto their own
coordmate system (x;, ¥;, J) Likewise, let

G = APGAL, I = APLAL, (19')

then C/ and 3; are, reSpeétively, the radius and inertia matrices of link j about their
center of mass referred to their ow_nvcoordinates (x;, ¥, %) Asa resuit, equation (17)
_can be written as: ‘

| =é' % (m Uy Vv + 2w,)ci"."i'} + (@) 3w (20)

.j=

- IV. KINETIC ENERGY IN TERMS OF DUAL-NUMBER
TRAN SFORMATION

The kinetic energy of the robot given in (20) can also be expressed in terms of
dual-number transformat‘ion. 1t is intended to éhow that the dlial-number representa-
“tion of the robot dynamicsb leads to a simplified coﬁlputation of the coefﬁcienﬁs D;; and
Dy of the Lagrangian d_ynaxﬂical eq‘uétion 2). |

| Dual-Number Transformation

o 2” B

| The d;ué,l-humber"a}gebra’ has been' extended?f fo the ve‘ctorr" and Vrnabtrb:c ealculus
[14,15]. The basic operatlons or the dual—vectors and dual—matnces are sxmﬁar to those
in the complex vanable algebra In thls paper, physical quantltles such as d}.sp};ace-
ments, velocmes etc. are represented by duaE—vectors while the ceordmates %mnsforma-
tions are represented by dual-matrices. The dual-vectors are line vectors {17}, which is
different frdm the usual vector of a point. The dt‘xal-,mat'rices are line transform.atiqns‘
WEich transform lines in the space to other lines. The line trans’forgmation; is efficient in
spatial geometry and kinematics [17] since lines such as axes of rotation and paths of
traveling arise né;t’uraliy. 2 o |

Accerdiﬁg. to the »Pfiﬁciple of Ttansferenée (19], the dual—nu.m'b‘ell'; elgebraie opera;,-

tions are the same .as‘those’dt" ordinary real number a’lgebra-b}_f 'xf'eplavc»ing real bnu;mbers
bj’ dual numbers. The dual-number transformation (or matrix) is deﬁned based on the
following Obselj‘v_atioﬁ.‘ Coneider_ the standard defining relatienship 'betwéen coordinate.
Vfr_m‘aeks'of two adjacent links of an indust‘rial rébot, as shown in Figure 2, 'giveni in 2, p.

“rotate about lz.‘:‘ (axis), an angle 6,;

translate along Z,-1, 3 distance A;

translate along rotatedvxn_'l = x, (axis), a length an;

rotate about %, the twist angle a,.”

The homogeneous transformation that describes these four steps is

eb, —~s6, 0 0]j1 0 0 Ol 00 2| 6 0
 ds8, 8, 0 0lio 1.0 oflo 10 0[l0 ca, ~se, O
Ti=lo o 1 ofjoo1allor ol ca, O} (21)
| 0 0 0 1ffo 00 1//600 1 6 1}

where ¢, = cos §,, sf, =sin f,, ete. for abbreviation. Note that the first two

matrices represeﬁt'v'& rotation about and a translation aldh'g the same axis, hence they

are commutable. The transiormation TP, transforms any 4-dimensional vector with
reference to the n-th link coordinate frame to the n-Ist link coordinate frame. To
apply the dual-number algebra to the robot kinematics, one defines a dual-displacement

- scalar

g, =8, + el . (22)

“in which, as mentioned above, 8, and A, are displacements with reference to the same
axis; and ¢ is the dual unit having the property ¢ = 0 [M»i@}. In & way, 6, describes
the displacements of a “'screw” after it is turned, which gives rise to the name of “cal-
culus of screws”. .Likewise one defines

&, = a, T e, | (23)

The dual-number transformation that describes the four steps is given by [16,19]:

ch, —s@n Gy1l 0 0 c@n —s@mc&n sb sa,
AP, =isB, b, 0]10 ca, -sd,{= s, clca, —cbsa, (24)
¢ 0 1ji0 s&, i, 0 sa, el

It is seen that A", is orthonormal so that

’

Ay =(AL) = A | (25)

For computational purposes, one may use the trigonometric identities sin (x +y)=sin x
cos y + cos x sin y and cos (x+y} = cos x cos y - sin X sin y, the dual-number pro-
perty ¢2=0, and the Taylor's expansion [14,19] to obtain

sb, = s, + eyl , ch, = ch, — eA,sb,
and , : (26)

s&, = sa, + eajca, , &y = ca, ~ €agsa, ,

By substituting (22), (23)'afnd (26} into (24), and then performing some algebraic

- 213 -

manipulations, one obtains

Al =RI, + fsx?—x | A B 1)

where

Ash ~Acfea+ashsa Achsa+asfea]
Acl —Asbeca—aclsa Asfsa—acfea | (28)
0 acq —asq

cf —sbea shsa
R, = |s6 cleca —chscx
0 so ca

, Sp

a-

1:

in which 0, a, A and a stand for 0, o, &, and a,, respective.ly, for simplicity. Obvis
ous R is a pure rotation operator which is orthonormal so that RV = (RAY,
whi;le Spo ;is a singular matrix since its determinant equals zero. |
Pr;perties of Dual-Nuinber Transformation

Since A:_l deseribes th_e»sar_nev “four stéps” as Txﬁ‘_# does, then Aj is a dual-number
transformation which transforms ény dual-vector with refereiice to (x;, ¥;, %) coordi-
nate fr"-‘a«ﬁie to thé same dual-vector with reference to (% ¥; #) coordiniate frame. By
i

(27) and (28),
A} =R} + e ‘ | (29)

and the transition property holds for AJ such that

(‘ - _ - -~ ° = P +l a i 5 2 P v
(A = A} = ATV AT AL, | (30)

Combining (25) and (27) yields an identity matrix:

I=[(Ri) + e8] R + S]]

= (RI) (R)) + €[(S1) (R)) + (R} (S])]

which leads to

RIV(R)) =1, o (3

and

- 214 -

(53 () + (RIf(8) = O | (33)

Equation: (32) implies that R} is orthonormal which is in agreement with (28). Since
(Aji)' = AJ and (Rji)' = RJ, then (Sji)’, =8, But(@f)’ # (Sf)’i since Sji is singular and
'Sji # Sjk&i in general. However, by equation (33}, one obtaius: v

si = (8l =-RY SjR)Y (34)

Since Rf =I = A/ = R{ + ¢S}, then

i

si=0 o | (35)

which is expected since Sg_lv'is singu‘lat Finally, (R} + ¢§)) = Aij =.§Lik§,f;
=(RF+eSK) (R) +eS) = RFR] + (R*S{ +SFR}) so that: |
Ri = RFR] and Si = R¥S] + SkRj (36)

Equations (29) through (36) summarize the essential propertieé of the dual-

transformation.

Kinetic Energy of the Robot
The dual-displacement §; ='9jv+eAj is a dual-vector where 6; is the angular dis-

placement vector about a specific axis while 4; is the linear displacement vector along

the same axis. In industrial robots, link j either rotates about z;_;-axis, or travels along

that axis. The magnitudes of the displacements are measured from their own reference

points. Thus the dual-»diéplacement of link j with reference to (%;-y, ¥j-1, %;-1) is:

0

0

§ = (Fedy) 10

(37)

Especially,

- 215 -

o o ﬁj]' for revolate joint

%o o et for prismatic joint , _' . (38)

where §; and A; are the third components of vectors 6, and b, respectively. Let

A

¥, =W v, j =120, o - (39)

be the dual-velocity of link j with reference to coordinates‘(xj,‘ ¥ 2;). It relates to q} _
by [186]: |

s o 212 40 Ajla |
HEAG AT, : - (40)

with ' -‘-“sb@ since link O is stationary. The first term in (40} comes fﬁ'om the dual-
' velocity.éj with reference to z;_;-axis, Whi‘le the second term is the contribution of the
dual-velocity of link (j-1) with reference to coordinates (x;;, yj'__-j,b ij_i). Apply the
recursive relation (40) repeatedly, one obtains .

;i H"‘i O

Substituting (27) and (37) into (41) yields

R (! B ,.
w= DR B+ e 3 [(SL) 6 + R A] o (42)
=l 1 i=1 11
Compare (42) with (39) to obtain |
. v. NI 0 . .]
wi =3 (RL,) 6 o v* = 3 (SLy B + J (43)
i=1 i=1 -

By combining (20) and (43), the total kinetic energy of the robot becomes

= é‘ g ;{00 1] (g Si,6 + RL lA] é (Si-1) b + (Riy) Ay)) (]3

i=1 k=1

216

| L
+ 2m;[0 0 1] (t Ri,6C; i [(Si-) 6 + (Bi-g) &) ?
i=1 k=1 i
; o @ |
+(00 1) (3 RL I ¥ (RE8) o)) (44)
i=1 _ k=1 1
For i, j=1,2,3, let D = [Dy] be an arbitrary 3 by 3 matrix; and let .
| o N)
Try(D) = [00 1]D [0} = Dy = Try{D) (45)
i .
Conse@uentiy, (44) can be written as
. i ﬁ , v _
- ‘é- E E ;xkﬁ 9k + ankg A‘k + kaA Ak} . (46)

j=1 i=1 k=1

where

Ejp = TrfRL (R] + 2my mR (CH(SiL)] + miTeslSLy(SE)]
Fi = 2my{TrofRE G (R + Trg[(R 1)
Gy = myTrg[RET] N (47)

" Equations (46) and (47) indicate the main difference between the expressions of kinetic
energy in terms of dual-number transformation ahd hqmogeneous transformation. The
homogeneous transformation T transfbrms point vectors. If a point’is described wifh
reference to (x;, ¥;, 2;), then the position of the point in base coordinates is the point

vector preémnitiplied' by Ti. The velocity of the point in base coordinates will contain

terms of E 8T‘/6q1)(dqi/dt) Consequently the kinetic energy of the robot is [2, p
. i=i) . o

167]:

- 217 -

k=13 my kﬁ (6T3/00) (5T /00 aal (49)
=1 j=1k=

ot

which includes the partial derivatives of T!. When K is substituted into equation (1)
to form the Lagréngian equation, its time derivative yields terms of second order par-
tial derivatives 5’2Tg/(3qk5qj), which causes difficulties in simplifying the computation.
The dual-nunmber transformation, however, performs line transforms [18, 17] which
transforms velocity vector deseribed with reference to one coordinate system directly to
another coordinate system. Thus no derivaﬁives of the dual-number transformation
appear in the ekpres'si‘on for the kinetic energy, as indicated in equations {48) and (47).
As shown in the next section, when the kinetic energy K is placed in the Lagrangﬁan
equations, the time derivative of K yields only the first order partial derivatives of the

dual-number transformation so that Paul's simplification procedure [2] applies.

It should be emphasized that because of the line transformation property of the
2 ~
dual-number transformation, using it in the terms of potential energy does not have

any advantages.

V. LAGRANGIAN EQUATION IN TERMS OF DUAL-NUMBER
TRANSFORMATION '

The potential energy of the robot is given by

P =3 mgrj (49)

where m; is the total mass of link j, F;, is the position vector describing the center of
mass of link j with reference to base coordinates, and g is the gravitational acceleran
tion vector at a sea level base and equal to [0, 0, 8.8 m/secz].‘ The Lagrangian equation
is given by (1) in which L = K - P, q; is the generalized coordinate, and r is the gen-

eralized forcing function. For the robots,

- 218 -

6, , if link i is revolute ,

% = 1A, if link i is prismatic (50)

is the displacement of link i, and 7, represents either the torque or the force depending

on whether link i is revolute or prismatic.

Revoluie Link

If link { is revolute, then qp = 8. Now

o i b OB o, OFy G ;
%) é- Jzz} i% k=1 a f%;k B ¥ @‘;Fk Ai
n
LT gy e (51)
and
&=1s % (B + By + Fiid] (52

Note that in (51) and (52), the first summations start from j={ instead of 1 because

Ejiks Fjik, Gy are independent of & while éj is independent of ée, forj < (. Let

®' i E}l@ + Ejﬁ | (53)
Then, by {11), (45) and {47),
&y; = Q{Trginé.ﬁ;(m_n’ + myTry[RL,C(S)-) ~ SL,C(R],)]
+ myTrglS1(8]-)) | (54)

Substitute (53) into {52) and then take the time derivative of % to yield
4

- 219 -

d , oL 1o J
—_ (2 = +
dt (@99) 9 J% i% {q)‘l@l@l FMIAJ
184 & 9%y 0%y; | Oy - Oy
+ = I g6 + + BA, +
9 J% Z% e [&ek ik (a&k agx) &k BA Aék] (55)

Finally, by (1), (51) and (55), the external torque of revolute link § becomes

3 E"“
il.Mz
W N

[@jeiéi + Fypid] 1
i

i & O®y; O 0%y | OFy OFjy
- 8., + + |
2§§§ @Lk(mk 36, %W%

(56)

If all the n links are revolute, such as Unimate PUMA 560 robots, then A, is zero for all
i so that (58) reduces to

B N E S TN I Ry -, 3E,lk) .
" §5:1 e j% éﬁ k‘-‘-‘l(08y 399 i Z mg 0 | > 57)

Since in (57), the computation is independent of the order of summation so that (57)

can be rewritten as
n .e n
n =3 Dyt + 3 3 Dyubiy + Dy

“where

- 220 -

(0% OBy

i [
Dy =5 X 80
T2 i 9 36 (60)
D=3 m 61
% zg 56 Fjo . (61)

for robots having revolute links only.
Prismati¢ Link |

If link ¢ is prismatic, then g = Ay; and the Lagrangian formulation of the exter-
nal force for that link is

= AL, Ol
Podt gAg LY

(62)

The explicit expression for (62) can be derived in a similar manner as that for the revo-
lute link. Thus the explicit expression is the same as (56) except that the roles of 8

and A, are interchanged. Thus,

1 @& j .
T =5 0 ds

9, 0A, Ol B
oF., OE .
jid jik b .
- 8.6,] + £
5o, oay .E 8 Gy T (63)

gives the external force for the prismatic link {, where

‘Eﬁ i = Gy T Gy

:- 221 -
= 2mTry(REY)) o ' B o ' (64)

VI DIFFE;RENTM OPERATORS OF DUAL-NUMBER
TRANSFORMATION FOR SIMPLIFICATION

In [2, p.v 172] differential operators of hbmogjeneous transformations are introduced
to simply the computation of coefficients in the ‘Lagrangian equation. Likewisé,
differential operators of dual-number transformation in dual-vector space may __a!sp be
~ introduced for the same purpose. Let qu'be; a differential displacement (rotation or
translation) of link k. Let é:jk represent the dual-number differential coo;rdina.tle-,
- transformation of (xy, ¥y, 2,) with reference to ('xj; §’j, zj).v Then the total diﬁ';erehtia,l _-

change of dual-number transformation Aij is -

dAij = 2 ' Aijéjkqu fori<i. . (6%)
k=i+1 » L
On the other hand,
dAl = 3 (0A}/dq)da, | (66)
k=it ‘
Combine {65) and (66) to yield | ‘ |
6Aii/aqk = Aijéjk fOl‘ E ‘< k S j ’)) . (67)

Since q is t-h'e‘ displacement of liﬁk k Withvreferencebtov (Xr-1y Vi1 kz’k_l), i.e‘.,._ eithe.f_ '
about or along thebzg_l-axis, then (BAij/qu) represents the differential éhange of .A%ij
with reference to (xy_;, ¥x_1, 3x—y)- But Aj = AF¥TA{_, and moving links k déés not
affect link i'fot i1 < k. Thus ‘
3A;j/3qk: Aikfigg_; Ai-& for‘i <kg] , | (.:68,)' .

By (67) and (68) one obtains

- 222 -

A _ ar <A k— ;Ak P
3¢ = (A A oAl
— 2 k-18k 3] . . . :
- AJ 5k'1A -1 fori < k S] (69}

Equation (68) may be used to determine the numerical value of @é‘_i by setting 1 =
k-1 and j = k. Thatis
Ak — adk ik VW
3, = (BAL/09)(Ac) (70)

since A, is orthonormal and AF] =1 Now (24) and (26) give

o Ak P . .
Ap = 60y (71)
where
-~ A ?)
09k -s@k Og Cﬁk—EAksgk _Sgk—EAkcgk G
@k‘: S@k Cék g1 = Sgk+€Ak09k cgk—EAksgk 8 (72)
o o 1 0 0 1
and
b o o 1 0 0
Q = 10 cdy —sby | = |0 copeasoy TsopTeagcoy| ‘ (73)
0 sdy céy 0 soy tegcay Cop eSOy

Note that both €, and {2y are orthonormal. If link k is revolute, then g, = so that

(70) becomes

OE | = (0©/08)0 (O 1)

o -1 o
= El g O _ (74)
0 0 G o & - b

If link k is prismatic, then q = 4 so that

- 223 -

3y = (00,/00,)M (€,)

O -1 0
=e¢il 0 0
6 0 O

For convenience, let

ak — gk o gk

and
0 -1 ¢
é=1i1 0 O
0 0 O

Then

{5 , if link k is revolute ,

0, if link k is prismatic ,

g, if link k is revolute ,

’v.qu:g‘, , e
§ , if link k is prismatic ,

Now substituting (29) and (76) into (69) yields

(76)

§F + edf = (RF + SfTNE + Edf—g)(Rﬂ—l + eSE_x)
= Rjk;l-éllg—le—l + (RIIAERL, + SFSLRE,
+ R}SE, i) fork <.
By (78) aﬁd (79),' equzationv-(Sél) for k < j becomes

) RSUR]_,, |, if link k is revolute
6 = ' N

J 0 , if link k is prismtic ;

and

~ 224 -

SK16R{ + R}‘"‘&Sﬁ_l , if link k is revolute ,

, otherwise ;

d.k = _ . (83)
bORfTeRL, , if link k is prismtic ;
.Finaﬁy, substitute (%)and (76) into (67} to obtain
(0R{/0q,) + €(8Si/dq) = RiSK + ((Rjd} + SjgF)fori <k <j. (84)
i .
Consequently
, ER,J'&;,‘ Jfori<k<i,
eR}/0q = g | , (85)
: , otherwise ;
and
| Ridf +8j6F fori<k<i,
38i/0q =g B » (86)

Since q }equals either 8, or A, depending on whether link k is either revolute or

prismatic, then by (38), (82) (83), (85) and (86), (‘)nevo'btains, if link k is revolute:

. RI'RL, L fori<k <], .
8Rf/60k e | ~, otherwise ; | : (87)

, SKISR), + RF68), ,fori<k <j, |
083186, =g | (88)
‘ o -, otherwise ; -
and if link k is prismatic:

ORI/A, =0 S | (89)

 [Rewmi, ST
7fori<k§j? . ' o ' ' ‘
3SJ/8A1<_{0 ~, otherwise ; (go)

where § is given in 7).

VIIL. COEFFICIENTS OF LAGRANGEAN EQUATION IN EXPLICIT
FORMS |

The Légrangian equation for robot dynamics are given by equations (58), or (58) or
(63). Using either one of the equations to compute the external torque/force, one must
evaluate all the coeflicients which contain the first order partial derivatives of Ejix, Fjil;’

G ®y; and ¥y By (11), (34),'(‘45), (47), (53), (64) and (87) through (90), these par-

it

tial denvatlves for max(i,k) < { < j have explicit expressions as follows

OE;;./06) = Try[RE lé’Rf I.E"Rk“]
+ Tr:’,{Rf}'—'nﬁR}-an‘Rji_l],
- Tra[R,gf‘lasg_lcijji~l]‘
- Trsisxi:‘imé-l@-‘ﬁﬁ"‘]}
+ my {Trg[R wsg 1SE + T[St {6R)_, Sk
b ToRESLSH] + TRSERLSTY o)
| (Ni'”k/aﬂp =2 'I‘l'3[RI_1 I_R(JJ‘R;{-E + m]CJ‘SJk")} -

4 2 Try[R{OR_(3 ‘R“‘ + mCysi)]

206 -
+ 2 ijrsl(Ri'{—'xl‘fS)-x + Sﬁ'—‘lmg—x)(S}'Ef C/R{™]
'+.2.-:ij}'-5,{< 5sa- + sl-lmi-l)esf*“‘*- C;’R;‘-‘n (e
_3Fjiz;/f909 2 m; {Tl':;[R imd 1C’Rk 1] = Tfs[Rﬁ—xmi iC RH]

-+ Tr3[sl"l] + T"?.[R 1‘550’— Rk—l]

| + Tr3{R lsm_,s -i]} o o o (99)
| 3Gjik/‘9io9_;'-mi~T}3[R' SR S | | - (99)
Oy /06 = 28Gjik/809 o | oL (95)

aEnk/am =‘—2m-Tr3[R ,JR; lc ‘R“‘}

| \‘i: +m, {TT:z[Rrxmi IS k-l] + Tr3(R lmé-lsji}—l]} | - (96)

a(bjxk/aAe : {Tr:;[R lmi IC ‘R l—l] + Tr3[Rl—15RJ—1Cj#Rjk-;]}

<+ 2mj'{Tr3[m;-lsk‘l] + Tr3[R 15RJ 15‘"1]} - (97)
éF;;k/agse---? 2tﬁjTrg[Rf:'15129“-‘l‘} o R (o9
adjik/«?;ﬁ\v*;—‘io’ '5‘,‘1&»;} B : o - N (99)
-aﬁf,-ig/’ééwd:' IR o (100)

The grav1tatlonal term in the Lagrangxan equatlons (56) and (57) involve the partial
derwatwe a:-,o/aog, and in (63) involve 61']0/6Ag ‘These derivatives are evaluated

dn’ectly ‘with T

- 227 -

VI ILLUSTRATIVE EXAMPLE

The Stanford manipulator shown in Figure 3 is adopted as an example to illustrate
the use of formulas derived in the paper. The link parameters of the manipulator are

given in Table 1. It has seven links and six joints so that n=6. By {28), one obtains:

e

ety G —sb, ey O sty
R =10, 0 <6, R}=1s0, 0 —chy{ RS =1,
¢ -1 0 10 1 0
cd, 0 -—sb, cds 0 sbs cfy —sf O
Ri=1s, 0 cO0,| R = s O —cbs J RS = isf ¢ 01;
¢ -1 O 10 1 0 0 0 1
S 4 5 4
""S@a 0 ’”091 _392 0 0023 v ¢ -1 0

0 0 0 0 0 0 0 0 0

Using {36) one also obtains

_ 66’5096 —clzsby 565’
RS = [sfsc8g —sOss05 —cbs|, S5 =0
S@B 895 0

3

cO,c05c05-s6,505 —cOychssOs—sb,c0s chysds
R:? = 504095006’4”004805 —504005505'*’004(:&6 504805 ’ Sé& =0
—sfschy 58550 ¢l

~s0,c05c05—cO,s0 sO,chs505—ch ey —sb,50,
RS = RY, 8 = Qg | chyclscfg—shysty —chyclssfy—stycly clsfy |
0 ¢ 0

RS and SP can be obtained in a similar manper but are omitted here because their

lengthy expressions. Now applying (36) further to yield

- 228 -

B0 —s0, BBl eBy O —s0,
RS = |sO,c8y cby sfsfsp, RS = s, O by, R} = RS,
-sfy O cby 6 -1 O
~s8,00; —cfy —sb,s0 ~sf, 0 —cb,]
S = Ay |chucly —s8, chsds |, S5 = ABgledy 0 s, 85 =0.
6 o0 0 | 6 0 0 |

Sample Computation of Dy;
From the given link parameters shown in Table i, it is seen that fori > 4, 4; =0

so that Ai = A, = 0. Thus for § =i = 4, the first summation terin in (56) is the same

' 6
as the first summation term in {58} which gives Dy = %‘ 2 j44- 1O compute ©i447

‘onevmﬁst first compute
I3 = AP + m;C;C)AL = APJgAl + mj(ALCANALC A))

by (14) and (19). If the ofi-diagonal terms in the inertia matrices are ignored for simpli-

city, then one obtains

| ki, 0 .0
AIOJGJAé = ﬂ'l‘l 0 kj;'y h]
' 0 0 k?

jaz

for j = 1,2,...,6, where k;,, is the radius of g,‘yratidn txx” of link J about the origin of
coordinates (x;, yj, %), etc. Using (11) and the given data of center of mass in Table 1,

one computes:

' ., ga 0 1 0 -1 ¢
APCAl = b, EO 0 0|, APC,Al = b, 0 0
" -1 0 0 0 0 0

fori = 1,2,4, and j =.3,5,6, with “+” sign for by, by, by and bg, and “-” sign for b,
and by, Since S = 8 = 8§ =0, then (54) yields B, = 2Try[RFAJJq, +

~ 229 -

m,C,CHAR]] = 2mk} . Likewise, 5y = 2mg[(kd, fb'g)‘si’ses”-f- k2 c%0;] and
®644 - zmS[(kﬁxxc 06 + kﬁyy 296 + bz) 295 + kﬁzz 05] COﬂSéquently D«&é = m'ﬁkf%zyy
+ my[(kZ, + bRy + ko5l + mel(kdy oty + + k5% + bf)s%0; + kg,

Since link 3 is prismatic D33 must be computed from (63). Since § =i = 3, and

6 [
=3 j=3 - =3

Sample Computation of Dy,

. | .
For § =i =k =4, one obtains from (53), (56) and (91), Dy = -% 5

6 v : ‘ :
3@5;’44 iy /594 = f;? Z E;44/ 004 Now 6E444/394 = 2Tr5[R4I{R]. Since § has

all zeros in its third row, then 0E,,/88, = 0. For the same reason, OE;44/804 = 0 for

= 5,69 Thus D444 =0.
For { =5 and i = k = 4, one uses the same equations to obtain Ds,y = E E

(0;54/80, — OF;44/095). Now 8%s5,/80, = 2{Tr3[Rf6R§’J§'R§] + Try[R{ERIIIR)}

= 0, and 0®@gy = 2Tr,[RISRITSRS) =0, so that Dyyy = —:2?-' .E; OE;4,/00; =
J:

| (TRIRIRY + TrRIRIGRY) = imglkde +bI- Kiosfsels +
mg{(k§ %05 + k§,5%05 + bF — kd,)sb5c5}].
Sample Computation of Dy
Since g = [0 6 g] is the gravitational acceleration, then g rio = gh; where b; is
the z component of the position vector describing the center of mass of link j in coordi-
nates (X, ¥, &) From Figure 3, it is seen that b =f0,-by hy =4,
=0 + (83— Dbgledy, by = (}i + (A5~ by)CO, by =y + (&5 + bseds)edy —
bssbscd sy, and he = ¢, + ‘(Ag + bgefls)chy — bgsfycdysy. Thus oh,/00, = 0, ohs/08,

8 , .
= b5595504592, and 8h6/694 = b65655§4502 so that D4 = Z m]g 3?10/694
: j=4 :

- 230 -

2 m;g0h;/00, = g(m5b5+m6b)sof,s@s@z, Dj =.g(mgh.+ mgby) (s8¢0 + chscdyshy), and
j=4

Dy = 0.
Since 8h3/6‘A3 = Oh,/0l; = Dhg/dA; = Ohe/dls = cby, then for the prismtic

joint 3, Dy = (mg + my + my + mg)gcﬁg

VI, C@MPUTATKON&L C@MPLM’E‘Y AND COMPARISON

The complexity‘of computation is represented by the numbefs of multipﬁcations
“and additions required to compute all the coefficients Dy; and Dyix-
Method of Direct Homogeneous Transformation

The method of direct homogeneous tr#néformation refers to the computation of
the coefficients directly using (3), (4) and (5).
(a) Dy; v‘ ,} -
~ Since Tr[UpUj] = Tr(TE'QTEJ; (TL) (Q) (T35] and
o -1 .

X X X X 6 O X X X X

n - X X X X -1 0 0 0O =X X X X
Tm_xx'xx’Qm—OGO , d ¥ X X X
c 6 0 1 0 0 0 0 X x X

where x represents the numerical value of that element in the matrix, and it is not -
necessarily zero, then theb number of multiplications required in computing one trace
operatoris 3-2°4 + 34 4 +3+4+2 + 3-2 =102 and the number of additions
s3°1+4-+3:3°4+3:3-2+3-1+2=71L
~ (b) Dy

SinceTr[Ujkmﬁ A = THTE QTP QT L (T QT], the number of
multiplications in = computing one trace operator is 3- 2 2+3°2-°4
+3°4°4+34°2 +3-2 =—‘11 4, and the nﬁmber | of additions s
3+1°2 +3°1°4+393°4+3_°3"2+3°l +2=77.
(¢) Total Number

- 237 -

To compute all the input torques/forces for the robot having n moving links, one

must evaluate N; trace operators for Dy; and N, trace operators for Dy, where [4]

»y }ﬁi‘; ﬁ I =nn+1)%/4.

n n i
Ny=3 3 51 =a@+i)2nt1)/s, ad Ny =
. 3 =3 . . 1=1 j:l k=1 m=1}

i n

Consequently, the total numbers of multiplications and additions are:

Number of multiplications = 102N, + 114N, = 28‘%114 + gin® + 79%@2 + 1%n

Number of additions = 7IN; + 77N, = ig%n‘i + 62%113 + 545-11? + n%n

Method of Differential Operator Simplification

Paul’s differential operator simplification method applies to Dy; only.
(a) Dy;

.The simplification formula for Dy; is given by equation (6.79) of [2, p. 174]. Thus,
instead of evaluating the trace operator, one must compute

my[(P8) Kp(P6) + () (Pdy) + (°F,) (°d; x P + °d; x P5)]

Now each cross product involves six multiplications and three additions, thus to com-
pute ome such expression, one requires to perform (62 +1°3°3 +
3+3+6+6+3) =42 multiplications and (3-2+1°2-3 +
2+2+3+3+3+2+ 2)‘2 29 additions.
(b) Dypix

The parameters Dy;, is not simplified, and hence it requires 114 multiplications and
77 additions to compute one trace operator.

(¢) Total Number

For n input torques/forces, one must compute N; dot-product-cross-product

. ",
expressions and N? trace operators. Thus:

- 232 -

Number of multiplications = 42N; + 114N, = 28-%’314 + 7ind + 4@%—&2 + 7n

Number of additions = 20N, + 77N, = 19-nt + 48n=§~n$ + 33%112 + 4%21
Method of Dual-Number Trensformation
For the purpose of comparison, the expression having largest number of computa;

tional operations is used.

. (a) Dy

>

In (58) and (63), since either 61 =90, or AI =0, and @,; involves more computa-

tions than Fjy; does, then use &y, for evaluation. Now & is given by (54} in which

matrix Cj” has zeros along its principal diagonal. Thus to compute Py, it involves
(1-3°3+3 +3+(1°2°3+ 3)°2 =233 multiplications and (1°-2°3 + 2j
+ 2 + (L°1°3+ 2) 2+ 3 = 23 additions. |
(b) Dyix

By the similar_' reason, 89, /00y is used for evaluation. That partial derivative is
given by (92). In (92), & is defined by (77) which simplifies the computation. Thus in
computing the Try operator, each of R6R and R&S requires only the multiplication of
the third row of R§ with R or 8, i.e,, 1 * 2 °3 = 8 multiplications. Likewise, each of
CS and CR requires 3 * 2 * 1 = 6 multiplications. Hence to compute one §%¥;; /56 one
must compute (1+2-3+3°3-1 + 32 +3)-2 +{(1-2:-3-2
+3-2-1 + 3}-2 =90 multiplications and (1'E°‘3+3°é°1
+311+3+2)+2 +3+(1°1°3°2 +3+31°1+3+2)-2=71 addi-
tions. |

(¢} Total Number
For computing all n input torques/force, one is required to perform

33N; + 90N, = 22%114 -+ 56n% + 39n® + »S%n multiplications and

- 233 -

93N, + TIN, = 17-—2-:14 + 43%13 + zg—i;nz + B%n addition.

Table 2 summarizes the computational complexity of the three methods for com-

parison. It is seen that the dual-number approach requires less computations.

X, CONCLUSION

The Lagrangian formulation of dynamical equations for robots is inherently com-
plicated. The homogeneous transformation is a point transformation which operates on
the displacements. Using the homogeneous transformation in the Lagrangian equation
thus introduces second order partial derivatives. The dusl-number transformation,
however, is a line transformation which is extended to dual-vectors to represent veloci-
ties. When the dual-number transformation is adopted in the Lagrangian equation,
only the first order partial derivatives will appear. Thus the differential operaior can

be applied directly. As a result, the magnitude of computaﬁionaﬁ complexity is reduced.

REFERENCES

1. Bejezy, A. K., Robot Arm Dynamics and Conirol, Technical Memomndum 33-669,
Jet Propulsion Laboratory, February 1974. |

3. Paul, R. P., Robot Manipulators: Mathematics, Programming and Control, MIT
Press, 1981.

3. Luh, J. Y. S, “Conventional Controller Design for Industrial Robots - A
Tutorial,” IEEE Transactions on Systems, Man and Cybemeticsv, Vol. 13, No. 3,
May/June 1983, pp. 298-316.

4. ’Luh, J.Y.S., M. W. Walker and R. P. C. Paul, “On-Line Computationai Scheme
for Mecﬁanical Manipulators,” ASME Transactions, Journal of Dynamic Systems,

Measurement and Control, Vol. 102, No. 2, June 1980, pp. 69-76.

10.

11.

12.

Waker, M. W. and D. E. Orin, “Efficient Dynamic Computer Simulation of
Robotic Mechanisms,” ibid, Vol. 104, No. 3, September 1982, pp. 205-211.

Hollerbach, J. M., “A Recursive Lagrangian Formulation of Manipulator Dynam-
ics and a Cooperative Study of Dynamics Formulation Complexity,” IEEE Tran-
sactions on Systems, Man and Cybernetics, Vol. 10, No. 11, November 1980, Pp-
730-735.

Silver, W. M., “On the Equivalence of Lagrangian and Newton-Euler Dynamics
for Manipulators,” International Journal of Robotics Research, Vol. 1, No. 2,
Summer 1982, pp. 60-70.
Kane, T. R. and D. A. Levinson, ‘“The Use of Kane's Dynamical Equations in
Robotics,” International Journal of Robotics Research, Vol. 2, No. 3, Fall 1983,
pp- 3~21.

Featherstone, R., “The Calculation of Robot Dynamics Using Articulated-Body
Inertias,” International Journal of Robotics Research, Vol. 2, No. 1, Spring 1683,
pp. 13-30. |

Bejczy, A. K. and R. P. Paul, “Simplified Robot Arm Dynamics for Control”,
Proceedings of 20th IEEE Conference on Decision and Control, December 16-18,
1981, San Diego, California, pp. 261-262.

Bejezy, A. K., “Dynamic Analysis for Robot Arm Control,” Proceedings of 1983
American Control Conference, June 22-24, 1983, San Francisco, Célifornia, Pp-

503-504.

Luh, J. Y. S.» and C. S. Lin, “Automatic Generation of Dynamic Equations for
Mechanical Manipulators,” Proceedings of Joint Automatic Control Conference,

June 17-19, 1981, Charlottesville, Virginia, pp. TA-2D.

13.

14.

15.

16.

17.

18.

18.

20.

- 235 -

Bejczy, A. K. and S. Lee, “Robot Arm Dynamic Model Reduction for Control,”
Proceedings of 22nd IEEE Conference on Degision and Control, December 14-18,
1983, San Antonio, Texas, pp. 1466-1476.

Brand, L., Vector and Tensor Analysis, Wiley and Sons, 1948, chapter 2.
DimentSerg, F. M., The Serew Calculus and Its Applicalions in Mechanics,
Izdatel'stvo “Nauka”, Moskva 1965, English Translation by Foreign Technology
Division, WP-AFB Ohio, Part No. 680 983, April 1968. |
Pennock, G. R. énd A. T. Yang, “Dynamic Analysis of a Multi-Rigid-Body
Open-Chain System,” ASME Trans&ction;, Journa of Mechaﬁisms, Transmission,
and Automation Design, Vol. 105', No. 1, March 1983, pp. 28-34.

Rooney, J., “A Comparison of Representations of General Spatial Screw Displace-
ment,” Environment and Planning (England), Series B, Vol. 5, 1@78, pp. 45-88.
Yang, A. T., “Inertia Force Analysis of Spatial Mechanisms,” ASME Transac-
tions, Journal of Engineering for Industry, Vol. 23, No. 1, February 1971, ﬁp, 27-
33.

Yang, A. T., “Calculus of Screws,” in Basic of Design Theory, Edited by W. R.
Spillers, North-Holland Publishing Co./American Elsevier Publisbiné Co., 1974,
pp. 266-281.

Goldstein, H., Classical Mechanics, Addison-Wesley, 1959, p. 144.

- 236 - |

APPENDIX A - INERTIA ABOUT THE ORIGEN OF COORDINATES

.To compute the inertia matrix J; of the rigid body L.j about the origin O; of coor-
dinates (x;, ¥;, %) in (%, ¥, %), let &m; be the mass of the i-th particle of the body,
and r;; and 8;; the radius vectors from the origin Oj and the center of mass G;, respec-
tively, to Am; as shown in Figure 1. Then it is well known [20] that the angular

momentum referred to O~ is

h; —EAm [x () x £5)
=30 Am [{ry; * ryg)w; - (v wy)rsil (A1)

where “**” is the dot prodxict'. Since (®j; * 7;1) = (rji)'rji and (r}; wiley; = [?ji(rji)']wj
where () = transpose of (), (A.1) can be written as |

b = E Am)zﬁ!lﬁ r'i(rji)"]wj - (A.2)

in which I is the identity matrix, and rji(rji)?’ is the outer product matrix. But
by = Jjw;, hence

J; = % A [(r) rd - rlr)] - (A.3)

which is symmetric since rj(r;) is symmetnc From Figure 1, p; = s;; T ¢, so that
equation {A.3) can be written as:

I =3 om; [{s; + e;) (85 + eI — (s; +)z + e;) | . (A.4)
i

But G; is the center of mass so that %, Am;s; = 0. Hence equation (A.4) reduces to

i

JjZZAmi[)sl-%-cci—s -=cc)] (A.5)

Since the origin O; is arbitrarily assigned, equation (A.3) derived above is satisfied at

- 237 -

the center of mass G;, i.e.

I = >, Am [(s;i) 5T — i) |

Combine {A.5) and (A.6) to yield

3; = jG] | + m(@j @jﬁ - @j@j)

Refer to the definition of ¢; and G;, it Is seen that

2 O
, Cxj CXJEYJ CxjCs
C

¢
cigl = (e + oy +)k ,‘an& gj¢; CyiCxi Sy Cyi€
czjexj czjcyj C%

j

Thus é; e - cjtj' = CJC‘{ = Cj' C, and hence (A.7) becomes

(A7)

(A.8)

e

- 238 -~

Table 1. Link Parameters of Stanford Manipulator

e i

Center of Mass in

a; a; Cosaqa; S (Xiy Vis 55) .

-1 (9, by, 0)

(]
pnt

(O? “”bzy 9)
(0, o, .‘.‘b:z)

o o o
ot

{0, By @) e

@i@
[

(01 Gy b&)

[BN <
ot

(0, 0, bg)

Table 2. Comparison of Computational Complexity

NUMBER OF NUMBER OF

METHOD | MULTIPLICATIONS® - ADDITIONS®
Homogeneous

Transformation 28%{34 +91n% + 7902+ 10n 19%’@4 +@2-§-m3 + 54%}32 + M%n
Differential : ‘é) o
~ Simplification 28-f;n4+7m3+49«§n2+7m . m%ﬁﬂgﬁn%%%n?ﬂin
Dual-Number Zﬁin@+56'n3+39n2+5§-n 17~ 4+43%ng+29in2+3—n

2 2 4 & 4 &

*Computing all D;; and Dy for o joints.

- 240 =

R

Figure 1. Moving Rigid Body

Joint n . Join! nel

D 6. | -) 8ol

N . NG

Joint a-|

Link n+i

Lnknez S\

Figure 2. Link Parameters 8, A, ¢ and a

Figure 3., Stanford Manipulator with Joint Coordinates and Link Parameter

RTM (Robot Time and Motion) User Manual
Version 1.2

A.P. Robinson, H. Lechtman and S.Y. Nof

School of Industrial Engineering
Purdue University
West Lafayette, Indiana 47907

Research Memorandum No. 84-12
July 1984

This research was partially supported by the National science
Foundation under grant MEA-811988L. Any opinions, findings,
. and conclusions or recommendations in this publication are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

- 243 -

RTM (Robot Time and Motion) User Manual
Version 1.2
A.P. Robinson, H. Lechtman, and S.Y. Nof

Schoel of Industrial Engineering
Purdue University

1. INTRODUCTION

_ The RTM method is a means of estimating robot cycle times based on
information describing the robot's task, but without a need for
extensive programming., This method has been incorporated into a
software system which reads standardized input describing the task and
applies the RTM-method based 'on that input. This manual has been
prepared to explain the proper use of the RTM input language and how it
operates with the RTM prototype software. Currently, the system can
model both the Stanford Arm (SA) and the Cincinnati Milacron T-3.
(Additional RTM capabilities that have been researched, and examples of
applying RTM to other robot types are provided in the references [1=T7],
but are not included in the standard RTM software.) A commercial version
of RTM has also been developed [8, 9J. Discussions of the motion time
modeling mechanism, a detailed example of its application, and
experimental evaluation of RTM are presented in the appendix.

The manual is organized in the following manner.

Introduction
Explanation of RIM Elements
Overview of RTM Software
Overview of the Input Deck
Summary of Input Formats
~ Summary of Control Structures
Output Summary, and examples of Input and Corresponding Output
Distribution Sampling in RTM
Study of Automatic Interfacing between RTM and RCCL
Combining RTM with a robotic cell simulator (SINDECS-R)

® e ® 3

e

@

®

=0 O W R

O .
°

It should be emphasized that the main purpose of RTM is to provide the
foundatlon for a simple-to-use technique for practical robot work method
evaluation, and robot models comparison. While computational models of
individual work elements may occasionally be inaccurate, the RTM method
has proven quite accurate for complete task method analysis. Additional
subroutines for more robot models can be developed into the prototype
structure of RTM,

- 244 -

2. RTM ELEMENTS

A listing of @all RTM elements, their definitions, and their
required parameters 1is presented in Table 1. All elements are
applicable to the Stanford Arm. The "Stop on Position Error® and "Stop
on Force or Moment® elements cannot be applied to modeling the T3. Also
unused by the T3 modeler are the complex grasping elements GR2 and GR3.
The T3 does not posses these capabilities and the elements should not be
included in a T3 task description. Sensor elements can be added to both
robot types if sensors are available, as specified in Section 11.

3. SOFTWARE OVERVIEW

A diagram representing the RIM software. structure is shown in Table
2. The software can be thought of as three separate groups of
subroutines,

1. Input Routines
2. Run Routines

3. Modeling Routines

Input routines receive the input data and store it in standardized
formats and locations to be accessed by the run routines. The run
routines represent the RTM analyzer of Table 2. They index through the
motions of the task according to the control structures of the input
tasks. Modeling routines are called by the run routines when a motion
time is to be estimated.

Motion times for the T3 can be estimated in two ways. One way
accesses a table of reference times and interpolates linearly to
estimate moticn time based on motion length and velocity. The second
method utilizes eqguations which predict motion time based again on
motion length and velocity, but relying on the velocity control models
of T3. The Stanford Arm software possesses the second form of motion
time estimation. A summary of all current RTM input statements is
provided in Table 3.

4, INPUT DECK:

4.1 Card 13 Robot name and input type

Two characters signifying the robot name are specified in columns 1
and 2 [current available names include: T3 = Cincinnati Milacron T3 and
SA - Stanford Arml. If the robot is the T3 the users also must specify
input type. This type can be either 1 or 2 and is declared in the
fourth column, Input type 1is explained in a later section.

Table 1: RTM Symt sls and Elcments

Definition of Clemant

Element Poramclars

n-segment reach: Move un- |
lvadad manipulaior along &
path comprised of n s6g-

a-sagment move; Move objoct
along path comprised ol
sagmenis

n-segment orienlalion: Move
manipulaior mainly to rec-

sfop on position error

Bring the manipulator {o rest
immediaiely wilthout wsiting
1o nuil oul joinis errory

Bring the manipulaior 10 resi
within 8 specified posilion
error folerance

Siop on force or moment

Stop the manipulaior when
force conditions arp met
Siop the manipulator when
torqus conditions are mat
Stop the sanipulator when ei-
ther farque or {oice
condilicns are met
Siop the manipulalor when
touch conditions are met
Vision operation
Grazsp an objsc?
Simple grasp of object by
closing fingers
Grasp object whils cenlering
hand over it
Grasp object by closing one
fingar at 8 lime
Release object by opening

Process {ime delay when the
robo! is past of the process

Iigment No. Symnbol
i Rn
menis
2 M
3 ORn
rient
& SEi
4.4 SE1
4.2 SE2
5 SFi
5.1 SF%
5.2 SF2
5.3 SF3
5.4 SF4
8 Vi
7 GARI
7.3 GR1
7.2 GR2
7.3 GR3
8 RE
fingers
[+] ¥
L] D

fima delay when the robot is
wailing for & process com-
plation.

Displacemant {linear or
engulad) and veiocity
or

Path gaomelry and
velacity :

Error bound

Force, torque and fouch
valugs

Time function

Oistance fo close/open
flingers

Time fuaclion

Tims function

- 246 -

Tacle 2! General Struciure of the RT Analyzer

RTM Speécification
of a work-methad
for a given fobot model

Elemnent tables
for a given
roboi mode!

Various robot .
tables library

ATM
Analyzer

3

Performance Evaluation
of the specified method

Cosnpulaticnal §
Periormance
Models

for a given
robot moda!

Various robot
" models Nbrary

°

R

Table 3. Summary of RIM sustem’s statements

et AR A RS & X

Statement Type Statement Structure
1. Sub-task title SUBT, (no.), (¢itle), (comment}
2. REPEAT control card REP, no.of first ,TO, no.of last , ho.@ime§ s Scompent)
.) opevation cperation te repeat
3. PARALLEL control card PAR: no.of €irst ,TO, no.of last + Ccomment)
opevration operation
4. Conditional brancting IF,(conditiOﬂ'nam@.coﬁditicﬂ.value§>,GOTG,foperation ne.
‘ ’ : subtask number
S. Control transfer €T, operation ne. . (comment)
subtask ne,
&. ' Movement elemenis
(Rn, Mri, ORn))
8. Position {Joints parameters)
initializatian " (operation no. J(R.T. M. symboll, (comment)
b. By end—point of (ve]ocitg).(Joints'paramet@rs)
segments) . :
ov: €. By displacement (operation no.), (R. T. M. symbol), é~Angular s {velocityld, (displacement)
: D-Linear
"7. All other R.T.M. elements (operation no.).(R.T.H.sgmboi),(operation garameter?.(:oé&en%)
8. END Carg END
?.

CONDITION initialization COND

&
(condition named,set of initial values 3
END

can be generated vrandomly

- b2 -

- 248 -

Examples: SA
T3 1
T3 2

4,2 Card 2: Task title

80 character limit - no format required.

4,3 Cards 3 - N: RIM Motion Descriptors

If the robot is the Stanford Arm or the T3 with input type 1, the
first card of this section [card 3 of the standard lnput deck] is
used. to spe01fy the robots initial position.

4.4 Final Card: END

End is written in the first three columns of the 1last card to
specify the last card of the input deck.

5. RTM ELEMENT INPUT FORMATS:

For analysis of T3 tasks, RIM allows two means to convey motion
length data to the program. Only M, R, and OR elements are affected by

. this distinetion. SA input allows only one format.

5,1 I3 Input Format Type 1:

With this input type motion length 1is determined Dby -changes in
World Coordinates. World coordinates specify an end effecter position
with X,Y,Z translation coordinates, and D,E,R rotation coordinates, all
relative to the robot base.

Motion card format is as foliows:

[serial #] [b]l [motion type] [# of segments]
{velocity, X, ¥, Z,D,E,R] user comment

where:

- 249 -

Serial number - an integer number assigned to this move.
Serial numbers are assigned by the users to
all task elements.

b - one or more blanks

Motion type - M = move arm with loaded gripper
R = reach for object with unloaded gripper
OR = orient the gripper [loaded or unloaded]

of segments - -~ the number of linear segments through which the
f robot moves before coming to a complete stop.
Velocity and coordinate cards must be specified

for each segment.

User comment: - free format. Must begin in column 50 and end before
' or at column 79.
Velocity - the velocity assigned to this motion. For the T3

this must be 1, 2, 5, 10, 20, 30, 40, or 50 ips.

When using this input type 'the first card of the motion des-
criptor section must hold six values representing the robot's initial
position. '

An éxample of type 1 input is shown in Figure 1.

5.2 13 Input Format Type 2:

With this input type motion lengths are simply specified in 1inches
{or degrees) with no reguard to relative locatlon in the robot's work
~area. The format is as follows:

{serial #] [b] [motion type] [# of segments)
[b] {velocity, motion lengthl

Ttems have the same definition as in type 1 input. [Motion length
is a real number specifying motion distance in inches (if motion type is
M or R) or angle of rotation in degrees (for motion type OR). If a user
comment is required an asterisk must be placed in column 80 of the above
card. The next card must contain only a user comment, beginning in
column 50 and ending at or before column 79.

An example of type 2 input 1is shown in Figuré 24

- 250 -

L)

simulation of loeding and unloading & lathe
40, 13, -23. 15, 180,0, 0
1 ovd

10, 60, 33, 2%, 90, 33, C
& Te

3 vl

9. 65, 48, ~29, 90, 35, 0

4 gy} o

2 vl

5, 65, 37, ~20, 90,35, 0

b oervl

10, 30, 22, ~20, 20, 3% —90
7 w) ’

10, & 23, a0 20, 3%, -70
8 re

¥ d 4. 78

10 mi

2,74, P6, —26, 70, 39, ~90
11 gv!

12 4 42.78

33 i

5, 74, $6, 20, 90, 35, =90
14 ovl

10, /4, 36, -20, 90, 33, 90
10 mi

2,34, itb, ~26, 90, 33, 90
i v 137 ’

17 »ve

U omi

5, &9, 23 =26, 70, 33, 90
19 yvd '
20 md

10, 7% 10, —26, 2, 035, 90
21 oy}

10, U3, 12, ~26, 90, 39, 0
22 wmd

2,63, 12, ~29, 90, 35. 0
23 d 1. 94

24 ye

29 vi

5, 7. 7. ~29, 90. 33, 0
2& il

10,10, 13, -23. 19, 180, 0, 0
wnd

go to bar stock

apen fingevrs of tool #2
lowerT fingers over bav stock

grasp the bar stoch
raise in two siayesd

move while rotating

move to front ef laths

open fingers of tool 1

wait for lathe cover to apen
enter: bring fingevs over party
grasp the processed part
wait for chuck to open

raise part

rotate grigppar 18O degrees
loweyr arm

wait For chuck to close
releate bar stoch

maove out of lathe

close fingers of teol #2
move to intermediate point

rotate gripper while moving
move ta part disposal

wait for release signal
release finiehed part

raise up

raturn to start position

3

Figure 1 - Input type 1 for the T

3

?

- 251

turning centers — load/unioad and guaging with double gripper
1 %401

oy

& R

o

o

inj

[}

gy
‘mi

4

2, 102
0. 97. 2
d §4&.7
0, 28. 7

7
U d 1646 6
9

mi #0,1.0

10 wi 20,7.0

13

19

20
21

22a?

prae)

24

ovd 50,90.0

wl
Y]

d
ve

wl 20,228

d

wi 30,70.0

' &, 10,3 Cra 2. 0

v

20.7.0

1,1.0

006. O

00. ¢

d (10: 0

vl
]

mi 20, 20. 0

mi

'™
acd

3 4.0

3,4.0

20,40

vreach for dar stock part

grasp i1t identify by diometer

ralse the pavi

move part to vequived maching
wait for machine cover %o open

move %o part in machine

grasp finished part (2Ind grip)

wait for chuck to retract
remove finished pavrt
maove out of machine

flip gripper

move back inte machine

place new part in machine
wait for chuck to hold part
ralesse part

move out of machine
wait for cover to close

move to gusging station
place part in guuge
volease part

guaging cycle

grasp guaped part

move to depart from guage

move to finished part exit

place part on axit vaeck
release finished part

ralse arm

3

Figure 2 - Input type 2 for the T

°

*

"

#*

o502

5.3 General T3 Input:

Inputs not affected by the ch01ce of'input type are Grasp, Release,

Deiay, and Vision., Formats are as foll,us'

‘QreSR,

~[Seria1'#] Ib] [GR]J 4 ' -i; . A user-comment

gripper closing is simulated

»Release. .

serial #1 [b1 [RE] D ~ user comment

» gripper opening is Simulated

Time Delay.,

: Delay.

(serial #] [b] {11 [b] [delay time in tmu]

add given time to the total task time, where the ;
robot is actively involved in processing. '

[serial #] [b] [D] [b] [delay time in tmu] - user'egmmenti':'

add a gliven time to the total task time, where the
robot 13 waiting for process completion.

Vision.

[serial #] (bl [VI] {b] [vision cycle time] : user eomment

a value representing a vision eycle time
is added to the total task time .

All user comments must begin in column 50 and end at or before

_'column 9.

5.4 SA Motion Input.

1.

2.

Motions of the stanford arm can be described to the program in

three ways.

‘vThe user can specify a three component vector f describing the
direction in which the motion is performed. This input type is

useful for one segment moves and reaghes..
The motion s six component endpoint location (in world coordinates)
ean' be specified. Thﬁs input type is d for orient motions and

- 253 -

 moves which combine either a move or a reach with an orient.
3. The motions departure and approach vectors can be specified, in
addition to the motion's end point, to fully specify a 3 segment
motion. o

A1l three types of input use a single format which is as follows:

‘[Serial #][b][motetype][# of segments}{b][specgtime][k ¥,2,D,E,R1[#]

(XY, Z] (x,¥,2} - N , fuser comment]
Where:
Serial # - ~as before

b | , vav'as before

Motion type - M move with loaded gripper
: R reach with unloaded gripper
OR orient loaded or unloaded gripper

of segments - « number of segments of this move., Limited to
o either 1 or 3 for the standard arm.

Specified time =~ the tlme9 specified by the user, that this motion
: should take, This is the SA‘%s velocity control
mechanism. If this value is zero, the SA will
. operate at its maximum velocity.

X,¥,Z,D,E,R ~ use only X,¥,Z if input type one is used.
Input all six values if type two 1s used.

LA : - .asterisk placed in column eighty if comment
is to follow on next card. This can be omitted
if there 1is no comment.

XY, 2,X,Y,2 : - departuré,and”appfoach vectors. These can be
’ omitted if input type three is not used. -

User comment* - user comment beginning after column 50

5.5 General SA input:

All other .RTM elements fbr the Stanford arm have at most one
parameter. " GR1 and RE elements have length as their parameter. T, V,
D, and GR2 have their operation time as a parameter. SE1, SE2, and SF
have no parameter. The input format for these elements is: '

- 254 -
[sérial #1 [b] [element typel [b] [operaticn paramever] [commenit]

whereé:

Serial number and b are as before. Element typé and operation
parameter- are defined above: And comment is a user commént which begins
after column fifty. An example of SA input 1is shown in Figure 3

6. CONTROL STRUCTURES:

In addition to mction by motion input RTM #116ws Vvarious ldgicél
input striuctures to permit more versatile task descrlptlons. These &ré:

1; Repeat

2; Parallel

3& Goto .

b, Ir (eondition) gote

Formats are given bélow:
6.1 Repeat:

‘Repeat a Set of instructions (serial numbers I through J) a given
(N) number of timés. Format is as follows: :

[REP] [bJ [I] [b] [TOJ b} [J] [bl [N] Eb] [TIMES)

Where:
b = blank
I , " &« the serial number of the first element of the
: " repeat Bloek
J - the serial humber of the last element of the
repeat bléck
N o = the number of times the block is to be repeated

The REP card should directly proceed input statement I,
6.2 Parailel:‘

’ Perform 1nstructions I through d in parallel. The - time recorded

for . the parallel block will be that of the longest operation in the
block. Format is as follows: . .

- 255 -

%]
bring pin back to place

20. 7L, 31,2 5, 90,90, 0

1 vl 0,19 435,32 353,3.1,139,90.0
0, 0,4 -3,-1.4

o §‘&:)

gvid 0.3

‘m: 0,0,0.1

i

&L

P

md (0,28 2.29.68,2.7,90,90.0
-1, -4,4,0,0.3

7 sul?

8 mi 0,0,0:1

o w

P wf
10 ve 0.379
enud

go to pin
stop there
grasp it

release pin from place

go above pin store iecation
stop there

enter pin into hole
swtop when enteved inte placte
releane piu

Figure 3 - Input for the Stanford Arm

- 256 -

(PAR] [b] [I] (b] [TO] [b] [J]

Where:
I ' - the serial number of the first elémenﬁ of the
parallel block ‘
J ' = the serial number of the last element of the
‘ paralle}vblock :
6. 3 Goto.

Change the logical flow of the program. Format is as follows:

[GOTO] [b] [goto descriptor]
, | . :

Where:

goto descriptor - can either be an element serial numbek,'
' a subtask, or the end of the program (END)

' ’6.-,‘,4 hiy (conditio;n) '-S,ciat.o:

, ‘Take various paths throughout the - program based on preSpecified
condltion valaes. Format is:as follows: I

{IF] [b] () [b] (Cond ID] [b] {.comparator.]

. [b) {Cond value] [)1 [b] (GOTO]
[goto descr]

Where:
Cond ID - a prespecified conditional identifier (see
, later section)
comparator - a standard Fortran comparator
’ : ’ [pEQo gNg.p »LEo .GE, +LT. ,GTo 1
Cond Value - a value previously assigned to the Cond 10)
Goto. descr - goto desefiptorv—e as above (included on the

same line as the»IF statement)

6.5 Condltional identifiers and values.

‘Conditional 1dent1fiers and values must be declared near the
beginning of the input deek, directly after the Task Title. Format is
" as follows: : :

- 257 -

[#COND] - : :
[COND ID#1] [b] [CONDVAL#11,CONDVAL#12;.0000.CONDVAL#IN]
[COND ID#2] [bl [CONDVAL#21,CONDVAL#22,¢:....,.CONDVAL#2M]

a

(COND ID#J1 [b] [CONDVAL#J1,CONDVAL#J2,.e..c..CONDVAL#SP]
[®END] :

The number of condition values declared for a single condition ID
must be equal o the number of times that condition is going to be
examined (tested) during the program (or N,M;and P do not have to be
equal). Condition values are used sequentially, in other words the
first time COND ID#1 is examined it will have the value of CONDVAL#11,
the second time it is examined it will have the value of CONDVAL#12, and
so forth. If conditions are not being used in an application the entire
condition declaration section can be omitted. ’

6,6 Subtasks:

A subtask is a set of motions which can be thought of as being
complete and distinct from the entire task being examined. They are
generally more applicable to robots with sensory inputs and
decision/branch capabilities. Subtasks in RTM are analogous to Fortran
statement‘labelso These labels can be accessed by GOTO and . IF(cond)
GOTO statements. Examples of &all - control structures are given in

Figure 4.

7. OUTPUT STRUCTURE

RTM generally supplies a line of output for each input element.
Included in the standard‘output line for the T=3 is:

Serial Number

Element Type

Number of Segments

Motion Length in Inches (or degrees)
Motion Velocity in Inches per Second
Motion Time in TMU (see below)

User Comment

RTM Comment

" e e

XNV EWN =
°

©

Control structure output frequently incites BRTM comments which
explain the execution. This output 1is best explained through the
example outputs of Figures 5, 6, and 8. These figures correspond to the
"input of Figures 1, 2, and 4.

L
demonstration of contrel structures =~ sort and pallietize

rcund

- 258 -

nopavt 0.1,.0,0, 4,1

novep 0.0,0, 4

#end

subtld

1

2 gv!

vi

10,4.0

3 .mi 90,15.0

“if (nupart
4 ml 30,.35.0

2 ml 1,100

1) gote 5uh$2

rep & to 73 times

)

7

mi

mi

8 mil

9

10 a a4,30.4.0,a,1G:.2. 0

11 ve

mi

5.0

L, 9.0

G, 10. 0

90, 15. 0

12 vi 20,3.0

13 ! 30,30.0

if {uoraep

goite subtl

sub s’
} ta 2

pav

1

2

3

4
)

&

if (norep
goto subtl

mi

or’ 50, 180.0

mZ 2, 30,9 0,8, 5. 2.0

ve

v

i

end

0. 60. 0

30, 3.0

b0, 58. 0

. eq.

. 8q:

1} goto and

1) gqgn end

move to part on feeder
grasp part

raise part

movabto’part type 1 washer

insert part inte washar

scrubvpert yith mujtiple
up «nd down mo;iun;
raise out of washer
mave to type 4 pp}lp@

lower part to pallet in 2 sag
release pard

ralse arm

return- to feeder

move to type 2 pallet
and inverg casting .

lower part to pallet irn 2 segs
releases part

raise arm

return to feeder

Figure 4 ~ Examples of RTM Control Siructures

2

*

#

&

k-2

control cevrial rim

covd no.

[AE

13

4
13

16

sysbol

ori
ve

ri

vl
[-13)
£ 1)

re

mi

gvi

L2
orl

al

re

@l

motion
length

L[in3

?¢. O
31. 39

180. 00
4. &7

39,12

- 259 -

simulation of leading and unloading & lathe

motion gperation
velocisy tima

Cipe Leaud
10.00 97.3%
.3
j 9.00 42.9
.3
3. 00 450. 4
10. 00 97. 4
10. O 97.9
.3
42.8
2. 00 9.1
.3
42.2
S. 00 42. 9
10. 00 184. 7
2. 00 586. 8
13.7
.3
5. 00 205.3

Figure 5

ysor remment

coasent

go t8 bar stock

apon Pingevs of tool 82
iower Pingers over bav stock
groop the bar steck

raise

move while rotating

move to front of lathe

spen Pingsers of tool %i

wait Por lathe cover <o span
sntor: bring teol ovar part
prasy the pracessaed pert
wa}t for chuck to open

reiae pars

rotate gripper 1BO degress
lowey arm

wait Por chuck %o close
release bar otack

apva out of lethe

control . serial
card no.

.19

20

21

22

23
24
295

26

the total time for the task is.

Tim motion motion cperation- user commant © com@ment
symbol length. velocity time : : i
Einl Cipsd- Ltmul
ari R<h cloge fingers of tool 42
al . 81.00 10. 00 ea8. 7 ﬁoye %o intermediate point
ol 90..00 16:00' 97..4 rotate gripper while @oving r‘\)
ol 3.00 2 00 5i.8 move to part disposal g
[21,9 wai;c for release signal !
e < i release finished part
" 5. 00 5. 00 37. 9 raise up
38 39. 66 10. 06 120. 2 return to start position :
2028.3 [tmul = . 73.0 [secd = 1.2 fwind ‘!‘

Figure 5 (continued)

centrel seriel

fa T

motion

the tosmorrew %o0)

turning centers = loss/unleoad end guaging with double gripper

eperstion

ootion vser Tomment conment
~cord no. syabol length velority time
. find Liped femuld
1 ri 4. 10 5.00 32.9° reach for ber stock part
2 el .3 gresp 3t: identify by diseeter
3 et vmzc‘) 5.00 66.8 vaise the pert '
& ol §7.20 30.00 4100. i aove pati to veguired oachine
11 4 11(_:.;‘? . wait For mathine cover tc epen
I3 3] 28.70 20 00 50.0 sove to part in macline 1
7 g‘l;'l .3 grasp 'ﬁnish;d pert (2nd grip)d N
-] [166. & wait for chuck to retract 2
9 [33 1.00 20.00 i:._a remove finished part R » [}
19 (33 7.00 20.00 2.3 move out of aschine
11 orl 0. 00 0. 0O 7.6 ¢lip gripper
12 »1 7.00 .20.00 22.2 move back inte machine
13 [28 .00 1.00 37.9 .place new p.a.rt in machine.
14 ¢ . 100.0 uaif for chuck t‘o kold port
19 re . release part :
16 ai 22.80 20.060 45.8 wove out of macthine
7] 100.0 @woit for cover to close
318 al 70. 60 a0. 00 7%.0 msove to gueging stetion

Figure &

|
|

contrel serial Ttm motion motion pperation user comment

v comment
“gard no. symbol length wvelocity time
Lind: Lipsd Ltmul
19 m2 7. 00. 10..00 37.9 place part in guage
20 re 3 release part:
21 d- 80.0- guaéing cycle
22 gri 3 grasp guaged pamrt
23 mi 4: 00 5. 00 32.4 move . %0 dep%r%:#rom)guage
24 mi’ 20 00" é0.00J . -37;9» move to Gdnishea-paft,e#it
25 oy 400 . 5.00 32.4 place. part on.exit; rack. L
24 re’ k . .3 release finished: part: $;
27 mi 4. 00 20. 00 17.0 raise arm:
the total time fer the task is 1210.7 [tmb] = A43:4 Lsecld = .7 Iminl

Figure 6 (continued)

-control serial rim . mﬁtion
cas g no. symbol length
£in3d
i r3 16. 01
2 se2
3 gri . 50
4 ml 1. 00
=] st
& m3 i8. 07
7 se2
8 mi 1.00
9 &
10 re

the ¢otal time for the task

.37

bring pin back to place

comment

move instruction

change instruction

ge above pin store location move instruction

change instruction

operation user comment

time

Ltmuld

40. 3 go o pin

22.0 stop there
6.3 grasp it

. B8.0 release pin from place
7.0

36. 3

éE.O stop there

- B0 enter pin into hole
7.0 stop when entered into place
5.9 release pin

1462 4 ftmu] = 5.8 [secd =

.1 Iminl

T T e i Gk vn e e e G A Orn e e e s 4 e G G P i i W U o 2 8 e e oty S AN A K T O e 0 G e A P e S S St S e AR S U AR e i e e S S e o A LAY o Sh M A o S e o e

- £9¢ -

subtask number 2

the tomorrow- topl

demonstration of control structures « sort anu palletize

Figure 8

vp and down motions

cantrol sarial rte sotion @otion operation USET comment toanenf
.cavd fno. symbol. length velecity time
finl Tipsd Ttould
1 »1 4. 00 19. 00" 21.2 @ove. Lo part on feeder
oy .3 grosp part
al 158D 50 0 22.3 roise part
it 3¢ tnopavt . eg. ‘2. 00)
90 to ‘the start of subtask @ 2
‘the cond valup = O o do not go
-4 al 3%. 00 ::aoob /2.9 ®ove 0 part type 1 washer
9 [-3} 10.00 - 3.00 287. %9 ‘insert part Snte washer
rep) repest from & $v 7 3 tymes
& K 2. 00 $.00° 37.9 SETUd part with aultiple » .
7 o1 3. 00 S. 00 37.9

= %9¢ -

_control serial rtm . motion motion
-card no. symbol length wvelocity
‘ £inl Lipsd
227.%
8 et 10. 060 30. 00
9 ‘@l .. 1500 50.00
107 . a2 ~ 6.00 . 30 00
ii. . re : v
12 r1 5.00 20 00
13 1 30.00 50.00
if '
goto - ’ . o
the totel time of the subtesk is 702.9

operation

time

.22,

12.

17.

2b.

Ltmud

® O W oWw W

yser comment B " comment

one vepeat cycle time
total repeat time
vaise out of washer
move to type 1 pallet
lower pa%t to péllet in 2 segs
relezse part '
raiﬁe erm

rTeturn to feeder

i (novep . eq. .00
go to end of task
the cond value = © so do not go

go to the starl of subtask & 1
25.3 (sec]

Figure 8 (cont.)

- §9¢ -

number 5

subtask
control serial rim motion motien operation user comment comment
card no. symbol length welocity time
' Linl Cipsld Ctmuld
i ri 4.0D 10. 00 21. 2 move %o part en feeder
2 grlv .3 grasp part
<} mi i5. 00 ‘B0. 00 22. 3 raisas part

if

the total time of the.

subtashk is

spybtask number 2
control serial Ptm motion
card no. symbol length
£inl
par
1 mi &0. 00
2 ori 1890. 00

1¢ {nopart .eq. 1. 00)
g0 to the start of subtask & 2
the cond value = 1. 00 se ge

43.8 [tmyd = 1.6 Lsecl

motion pperation. user comment comment
velocity time
Tipsl Ctmul
activities 1 %o 2 performed in paraslel
50..00 43. 9 move to type 2 pallet
50. 00 4%. 0 and invert casting
45.0 the operation ¢ime is thet of-

activity # 2 ,the largest activity

Figure 8 (cont.)

- 99¢ -

control gerial Ttm motion = motion

operation user comment comment i
card no. symbol length wvelocity time :
Cinl Lipel Ltmul
3 [:¥=4 7.00 30. 00 8 3 lower part to pallet in 2 segs
4 re 2 release part :
s 1 5. 00 30.00 17.0 vraise arm |
6 ri 55.00 = 50.00 40.7 - veturn to feeder ,
if if {norep .eq. 100
g5 to end of task .
the cond value = 0 so0 do nect go
goto . . ge to the start of subtask § ¢
the total time of the subtaesk is £11.5 Ltmuld =. 4.0 [sec]
subtesk number 1
control serial rtm motion motion speration user comment comment
card no. symbol length wvelocity ‘time
Lind Cipsd Ctmul
i i . 4.00 10. 00 212 move to part on feeder
2 gri .) .3 grasp part
3 mi 15 00 %0.00 . . 22. 3 raise part
if 1f {(nopart .eq. 1. 00)
go to the start of subtask & 2
the cond value = O 56 do not go
4 mi 35.00 30.00 az. S move to part type 1 washer

Figure 8 (cont.)

-..9¢ -

control serial Tim motion motion ~ operation vser comment comment

card no. symbol length wvelocity time
. £inl Lips? Etmul :
5 ml “10. 00 1. 00 a87.9 insert part into washér
Tep ‘ . repeat from 4 to .7 altimes
&' ml VS.OO' 5. 00 37.9 scrub part with multiple
7 ml 5. 00 9. 00 37.9 up,anp ﬁownbmotions
75.8 one vepeat cycle time
227.5 ’ _ total vepeat time
=] mi 10. CO 30. 00 22. 3 raise out of washer
9 ml 15.-00 50. 00 22. 3 -move %o type & pallet
10 m2 &: 00 30. 00 12. 5 " lower part to pallet in 2 segs
11 re ‘ .3 releéase part
12 ri 5.00 - 20.00 17.0 raise arm
13 1 30.00 50.00 26.8 retuwrn to feeder
ir ‘ ' ' it (novep .eq. 1. ©0)
go to end of task
the cond value = O so do not go
goto : . ‘go. to the start of subtask # 1
the fotal time of the subtask is 702.9 Limul}) = 25 3 [secl o

Figure 8 (cont;)

- 89¢ =

subtask . number t
. control gerial TEm » mptinﬁ motien ‘operation' user eomment commeﬁt
cavrd no. symbpl lemgth velocity time '
Linl Cipsl Ctmul
1 ri 4. 00 10.09 21.2 move to part on feeder
2 ’ géx grasp part
3 mi 1%5. 00 50.06 22.3 raise p;ft
i ;G tnopart . eq. i.00)
‘go to the start of subtask & 2
the cond valve = 0 s0 do not go
4 mi 35.00 30.00 42. 5 move to part type 1 washer
S @i i0.00 1.00 287;9 ingert part inte washer
rep repeat from & to 7 3 times
& ml 5. 00 5. 00 37.9 sc;ub part with multiple
7 ml 5. 00 . 060 37.9 up ‘and down motions
75. 8 one repeat cycle time
227. 5 total repeat time
8 mi 10.00° 30.00 22.3 raise out of washer
Q mi 15. 00 50. 00 22.3 move %o type i pallet
10 2 6. 00 30. 00 12.9 lower part te pallet in 2 segs
i Te .3 release part
12 1 5. 00 20. 00 17. 0 raise avm
13 ri 30. 00 50. 00 26.8 return to feeder
i i1# {norep . eq. .00}
go to end of task
the cond value = 1.060 s0 go

- 69¢ -

.4 Eminl

702 9 Ltmuld = 295 3 Lsecd

the total time of the subtask is
1.4 I{minl

the total time for the task»is 2263. 9 Ltmul =

Figure 8 (cont.)

- 0L2 -

- 271 =

Stanford Arm output is similar to T3 output except that motion
velocity is not included. An example of SA output i3 shown in Figure 7.
This output corresponds to the input of Figure 3.

The time for the total task is summed at the end of the output.
The sum is presented in TMU (Time Motion Units; 1 TMU = 0,036 Sec),

seconds, and minutes.

8. RTM'S DISTRIBUTION SAMPLING CAPABILITIES

8.1 Introduction

The capability of sampling from distributions to define parameters
previously input as constants by the user has been added to a new
version of RTM. This capability makes RTM a more effective modeler of
‘robotic tasks. A task where this capability would be realistic would
be, for instance, one in which the robot waits for parts arriving along
a. conveyor at random intervals. After a part arrives the robot would
escort it through its processing. The distributions available, the
syntax and some examples of their use are explained in this section.

8.2 Available Distributions

The distributions currently available are listed in Table 4. They
include the uniform, normal, triangular, and exponential distributions.
These were judged to be the most important in the modeling of robotic
tasks, and were included in this probabilistic extension of RTM for that
reason, These distributions may be sampled to define the variables
listed in Table 5. These variables include:

i. length of a delay;
2. distance the arm is to move;

3. number of times a block of RTM primitives is %o be
repeated, and

4, sequential conditional values for a given conditional

identifier.

The above constitute all the situations for which distribution
sampling would be practical for RIM.

8.3 Distribution Declaration Syntax

Distributidns and their parameters are specified before'any motion
primitives are input, and proceed specification of conditional
identifiers. The specification format is as follows:

SDIST #, typeﬂ.parametérs

- 272 -

e e e e et m o - — R
Distrizution Required Parancters

1. Uniform ﬁ” minimum and maximum bouvdaries
2. Normal(N) mear and standard deviation
3. Triangular (T) minimum, mode. and Mmaximum

4 Exponential (E) mean

Table L Probability Distributions Applied by RTM

o . '
RTM variaebles for which distribution
samplings can be substituted:

i

2.

Time of delay for the RTM ocperatives T. U, and Vi.
Distance of & vreach (R), move (M), or an Urientation
(OR3J. Note this is only aspplicable to type & RTH
input,uwvhere velocity and distance are specified.

The number of times s repeat block is to be performed

The sequential values representing a conditional
identifier.

-t e ettt st

- 274 -

wheres

: -~ The distribution identification number.
It is assigned and referenced by the
user later in the input to specify
which distribution should be sampled.

type - A 3ingle capital letter specifying

distribution type. N denotes Normal, E
denotes Exponential, U denotes Uniform,
and T denotes Triangular.

Parameters - as required by the distribution type in
.. the order shown in Table 4. Parameters
should be separated by commas, .

8.4 Substituting Samples for Constants

- For cases one through three of Table 5, distributions are accessed
by the user specifying “D#" (# 1is the identification number of the
requested distribution) in place of the ‘motion, time, or repeat
parameter. » ' : .

For example:
T D4

would use a sample from distribution four as the time to be delayed.
M1 10,D3 |

would use a sample from distribution three as the motion length of the
one segment move, 10 specifies the motion velocity. :

REP 3 T0 7 D2 TIMES

would sample distributiontwo9 round the sample to the nearest integér,
and repeat instructions 3 through 7 that number of times.

Case four of Table 5 is handled differently. When not wusing the
distribution sampling capabilities, the user specifies a conditional
identifier, followed by the list of sequential values that identifier is
to take on when examined. Using the distribution sampling capability,
the user can now generate that list of sequential values by wusing the

following format:

CONDID #D¥#,numval

- 275 =

where:

CONDID - is.thé conditionai identifier (as before)

~ 1s the identification number of the
distribution to be sampled.

numval | = is the number of conditional values to

generate., The distribution will be sampled
this many time and sach sampling will be
rounded to the nearest integer.

Note that when RTM expects an integer, the sample from the

 ‘distribution is rounded to the nearest integer. This occurs in the case

Qf block repetition definition, and conditional value generation,

8.5 Examgle

An example of the use of distribution sampling with RTM is shown in
Figure 9. Three distributions are declared. The first is normal with a
mean of ten and a standard deviation of three. The second is uniform
with a minimum of thirty, and a maximum of fifty. The third is uniform
- With a minimum of sixty and a maximum of ninety., :

The first distributlon is used to determine the number of times the
block of primitives from serial number 1 to serial number 29 is
repeated. The second distribution determines the amount . of t¢ime the
robot ‘waits before a part arrives (input instruction #1). The third
distribution is used to determine the cycle time of the gauging device
{input instruction #22), :

The output from this example is shown in Figure 10, The sample of
distribution 1 yielded a value of 8 when rounded to the nearest integer.
Thus, the block of primitives 1is repeated 8 times. The sample of
- distribution 2 returned a value of 42.7, thus the robot waits 42,7 TMU
before the part arrives., The sample of distribution 3 returned a value
of -68.3, which is the time it takes for the gauging cycle to complete.

9. STUDY OF AUTOMATIC INTERFACING BETWEEN RTM AND RCCL

9.1 Introduction

RTM (Robot Time and Motion) is a software system which estimates
the time a robot takes to perform work motlons, as described above. Its
input describes the points in space through which the robot moves and
the actions performed at some of these locations (eg. close gripper).
One objective of RTM 1s to allow the user to optimize the motions of a
given task (ie. minimize the cycle time) without requiring actual
operation of the robot. A current limitation of RTM 1is that after
describing . the task to the simulator and optimizing it, the user must

.~ 276

L@

$divi 1:m. 10..3.
Bdivtl 2 4,230,950
sdint 3x w6090,

turning centers = load/unload and guaging wikh double gr:ppar

Tep 1 to 29 di tim@s
1od d
2 vl W41

2
<UL
A @l 53102

“ml 40, 97. 2

3
64 1167
7 wi 30,287

8 y»i

% g Ibb &

10 mi 20,1.0

11 mi 20,7.0
12 ovr! 30.%0.0.
13 m) 20,.7.0

14 m) 3.1.0

15 ¢ 300.0

16 ve

1 ¥4 m.! 30» 22.8

i d 100.0
1% m§ 30,70.0

20 m:* 8,10, 5. 0» @, 2,20
#28 ve

22 d 43

23 4v)

4 m) 5. 4.0

25 mi 20,200

26 w3 3,4.0

27 ve
28 wi 20.4.0

29 vi 30,37,
erid

Figure 9

wait for part to arvive

reach for bar steck part

grasp it: identify by diamaﬁer

raise the part

move part to requ;red machine
wait for machine cover to open

move to part in machine

grasp finished part (2nd grip?

wait for chuck to vetract
remove finished part

move out of machine

fiip gripper

move back into maching
place new part in machihe
wait for churk te hold pari
relvase parvi.

move out of machine
wait for cover to close

move to guaging station
pluce part in gusge
ralease part

guayging cycle

grasp gueged part

move to depart frum guage

mave to finished part exit

place part anrelit vack
ralease finished pavt

T@libe arm

*

&

*

*

contrel
cavrd

Tep

sevial
no.

o 9 O N O W W N e

.

13
i4

1%

16

17

Tim
symbol

rl

T gri

mi

mi

(33

gri

m

mi

orl

mi

mxv.

ml

the ¢omorvow tool

turning tenters - locad/unload and gusging‘with gouble gripper

Motion motion operation user caomment comment
length wvelecity time
€inl Cips3d Ctmul
repest from 1 %o 29 8 times
) 42.7 wait for part to arrive
4..10 5. 00 32.9 reach for bar stock part
.3 grasp it: identify by diameter
10. 20 5. 00 6.8 rvaise the part
>97.20 30. 00 100.1 move part to required machine
116.7 wait for machine,éover to open
20.70 2000 50. 0 move to part in machine
‘.3 grasp finished part (2nd grip)
164. 6 wsit for chuck to retract
1.C0 20.00 1.5 remove finished part
7.C0 20. 00 >22.3 move out e¢f machine
0. 00 50. 00 | 27. 6 Flip grippgr
7.¢0 j20.00 ‘ 22. 3 move back into machine
1. 00 1.00 37.9 place new part in machine
100. ¢ wait for chuck %o hold part
.3 velease part
22. 80 20. 00 41.8 . wove ouvt of machine

Figurs 10

- Lle -

control serial
card o,

18
12
20
21
22
23
24
25
26
27
23

29

rim
symbol

4
‘@l
a2
re
d
.gri
a1
-3 2
‘@i
re
[: 3}

1

motion motion
length wvelocity
£ind Lipsd

70. 00 30. 00

7.00 10. 00

4. 00 5. 00
20. 00 20. 00
4. 00 5. 00

4. 00 20. 00

27. 00 30. 00

the total time for the task is

Figure 10 (cont.)

operation

user comment: comment
time
Cemul
100.0 wait for cover %o close
75.0 move to guaging station
37.% place part in guage
‘ .3 release part
68.3 guaging cycle
.3 grasp guaged part
32.4 move to depart from guaye
37.9 ﬁgveito finished part exit
32. 4 place part on exit rTack
.3 release Pinished part
17.0 Taize . arm
35, 1 return to input conveyor
1276. 8 ene rebeat cycle time
10214. 5 total rg»éat time
102145 [¥mul = 367.7 Lsecd = 6.1 mind

- gle -

- 279 -

again describe the motions to the robot control language, thereby
 unnecessarily repeating some input information. It is the purpose of
this section to outline a data translator which will modify the RTM task
deseription into actual robot control instructions. The feasibility and
requirements for such translation are studied, but no program has . been
developed based on the results of this study. The robot control
language used is described below. o .

9.2 RCCL

RCCL, a Robot Control ®C¥ Library, is a library of data
manipulation and robotic execution functions. These functions can be
called by a user's program to manipulate a robotic arm. Basic wuse of
the 1library entails manipulation of homogeneous transformations to
represent points in space the robot 1is to reach. The capacity 1is
provide by the 1library for the storing and manipulation cof these
transforms, as well as generation of robot arm position by solving
transform equations. Background in homogeneous transforms and their
nanlpulatlon is offered in Paul [10]. A complete discussion of RCCL and
a user's manual are presented by Hayward in [11, 12, and 131,

A simple example of the use of RCCL, taken from Hayward's manual
{131 is shown in Figure 11. The variables to be used are first
declared, two as transforms (t and e} and one as a position (p0). The
two transforms are then initialized with the gentr_ statements. The
position variable is then set to correspond to the solution for the t6é
component of the transform equation t%té=b. The first move c¢all
instructs the robot to move to position p0. The second move call
instructs the robot to move to a system-kept position, called park.

, - This example is intended to show the general structure of an RCCL
vprograma The reader is directed to Hayward's "RCCL User's Manual® {13]
for any actual working knowledge of the llbraryo

9.3 RTM Primitive's Link to RCCL

The RTM input language consists of ten primitive operators. These

are shown in Table 1, As can be seen, some operators describe motion,
(M, R, and OR), some describe actions (SF, SE, GR, aund RE), and some
describe extraneous processing for which the robot must be delayed (D,
‘T, and VI). To modify this input into RCCL compatible input, a system
must output the RCCL instructions which would perform the same
operations. Table 6 shows each RTM operator translated into eguivalent
RCCL commands. It should be noted here that RCCL, as an actual control
program, is a much more detailed descriptor of tasks than is the input
“language of RTM. Thus, while the RCCL translation of the RTM input will
perform the required tasks, it is by no means the most graceful way to
accomplish the task using RCCL.

- 280~

RTM desérigtar RCCL equi?albut

Trenslation and orientation motions:

R e=gentr_trsl{0. ,0. . toul lengihl;
© b=gentr_trel{"b": x,y,2;

Mi : p=makeposition(®p¥, th, e, EQ, b: TL, €
movel{nl; . .
stepl{0i

OR1 i as above put

b=gentr_vpyl{"b”, .y, 2:dr e, 1)

fn : fordi=l; A<ens +¢1} L

) b=gentr_tris{"b", x. 3,4. i-2. 1)

Mn) p=makeposition({“p”, t&, e, LQ:. b, TLyw))
move {(pl; : ’

Ffrecposipli
freetransibl;
b
stop(0);

ORn . : as above hut:)
: b=genty_rpyl{®e™, x. 3, y. 3, 2. 3, ¢. 3,€. 1,71, 1)

‘parameters x. Yo 2, 4., @, and T come from positiun
description in world coardinates. toel lenuth must

be assumed or input in later phase. I¢ input is in
displacement—-velocity formatl, direction information
must bhe gained externally. RCCL does not distinguish
between a 7teach with an unloaded end effector (inl? and
@ move with a loaded end effector (Mn).

Tuble 6 RCCL Equivalents of RTM Primitive Operators

- 281 -

~ Stop on force. tovrque, both

SF1 stop on force limit(“fdiv™, fovced;
movel{pl;
5F2 stop on torgue limit{"¢divr®, torque*);
i movelipl;
SF3 stop on either Timit{“fair”, “tdiv?®, force, tovrque),
force or torque movel{pl;
SF4 stop. on . touch Timiv{"Fu®, PFyT N EaT, 1, 8,30
{same as stop on . moevelipi;

force with low
threshold)

fdir = #xz, fy, ovr £z meamihg force in x,» y, or 2 dirveciion
tdir = %, ty, or tz meaning torgue in %, Yy, or z diveciion
foerce 1s specified in newtons. %orque is specified in
newbon-meters.

Delay. time delay, and wvision:

D gtopl{delay timel:
T " 8%
Vl n 1]

Stop command follows a move command. Delay time.
is specified in milliseconds. ' '

Gripper actions:

GR . . . move{p);
waitfor(p ~> end);
CLOSE;

RE ‘ . daovelp)i
waitfor(p -2 eud)ds
GHEN;

Hi'gh level} g’r.ﬁ,’pper actions cannot be modeled.

i i 20 s i A A L1 S U e e e i o e - -

Teble 6 (cont.)

- 282 -

3
© 2 ginturn turhing centers — loadsunload and guaging with double gripper

Hd
$d
d
L
ne
no
#e
By

ist 8,9.0 1.
ist 2.m.80..22. .
iwi 3»1n.50. .10
wrd

porid 48,95

Tep 0.,0.0:.0:1

nd

il

172 4.1

&2
if

avs
Giopart .eq. 1) gote subt2

3w 0102

4
]
é
7
8
?
10

12
i3
i4
i%
ié

17
18

23
24
25

26
27
28
if
ge

mi 0. 97. 2

d-116.7

mi 50, 28. 7
gyl
d 166. &
mi. 0. 1.0
mi 20.7.0
eri 90. 90. 0
my 20,7.0
al 1,3.0
d 100.0
ye .
mi 20.22.8

d 190.0
mi 30,70.0

a? @ 10.5.0,2:2: 2.0
e

¢ d2

wed

mi 5, 4.0

Wl 20,20.0

wl 5. 4.0

ve '
4 10,4.0

i 30, 62.
(uorep .eq. O) goto subtl
te end

Figure 11}

reach Por bar stock parg

‘grasp it identify by dramséter

vraise the type 1 part

move part to first cinture

wait for cimturn cover to open

move to part in ciaturn

‘grasp finished pavi (2And grip}

wait for collet to vetract
rﬁmové fininhed paft

move eut of cinturn

£lip gripper

move back into cinturn

place new purt in cinturn
wait for cellet to hold pard

release pavi

move out of cintuwrn
wait for cover te tlose

move to @uagsng stotion

place part in guaye

C guaging cyele

grasp guaged pavid

move to deparl from gusge

@move to finished part disposal

place part on disposal vack
velease Finished pavt

TRAIGS HVM

-

&

-

*

24

-4

subis
i mi 5,10 2

@ ml 30, 36.2

&

<L B Now

10
11

12
13

end

¢ §id 7
mi &0, 28. 7

gl

d t&b. b
mi i’G, 1.0
mi 20.7.0

ovd 3G,90.0

wi 28,7.0
m) 1,1.0
4 $00.0

L o4

s 20,22. 9

d 100.0
wl 30.,885.0

m® @, 10, 9. 0, 5, 2 2.0
re

d d3

peed .

mi 3.4.0

wl 20.20.0

mi F4. 0

ve
vi 10,40

vl 30,70.

(nerep . eq. O} goto subtl

- 283 -

Figure 11. continued

vaise the type & part

move part te second cinturn

wait for cinturn cover to open

move to pert in cinturn

gracp finished part (2nd grip)

wait for collet to Tatract
remnvelfiniﬁhed part

move out of cinturn

flip gripper

meve back into cinturn

place hew.part in cinturn
wait for collet to holg part
releasse part

move out of cinturn
wait for cover te close

meve to guaging stotion
pluca part in guage

pusging cycle
gracp guaged part

move to depari from guage

move to finished part dispeosal

place part on disposal rack
relesse finished pavrt

raise ars

return to feeder

&

-3

k-3

#

&

- 284 -

9.4 RTM Contrcl Link to RCCL

In addition to primitive operators, RIM. allows ~some task control
commands, as shown in Table 7. These control commands allow the user to
define Repeat blocks, which are collections of primitives repeated a
number of times; Parallel blocks, which are a collection of primitives
performed simultaneously, and Conditicnal Branching. The translatlon of

the control commands to RCCL is shown in Table 8.
9.5 EXample

" An example translation of RTM input ‘to RCCL input .is shown in
Figures 12 and 13. (The RIM input is shown in Figure 12, the RCCL
translation is shown in Figure 13.) For easy comparison of the two,
distances of the RIM input have been kept in inches in the RCCL
translation. An actual RCCL program would require these distances to be
specified 1in millimeters. Delay tlmesg however, have been translated
from TMU (time measurement units of RTM) into milliseconds. A number of
observations can be made from this example, First it can be seen that
the translating program must examine the entire RTM input deck before
translating any of it., ~This first pass is to count the number of
positions for which RCCL requires transform and position pointers to be.
declared. A second pass is required in order to actually generate th
RCCL ‘input. Second, the robot's tool length and the zero point of its
world coordinates (e and 2z transforms of Figure 13) must be assumed
according to rcbot type. This can be easily accomplished since robot
type is specified in the first 1line of the RTM input. Third, this
_example assumes that the dual gripper commands OPEN1, OPENZ, CLOSE1; and
CLOSE2, can be incorporated into RCCL. Finally, it can be seen that the
stop(0) commands following all move statements (shown in the translation
table, Table 6, have been mostly omitted from the example translation.
This 1is because the robot is not required to come to a complete stop
uniess an action needs to be performed at the point. Omitting these
stops will allow the robot to move through the specified points without
stopping, rather than stopping at each intermediate point.

9,6 Discussion

The example shows that given the detailed type of RTM input, it - is
relatively easy to translate RIM input into RCCL commands. The input
shown represents points by their world coordinates, and no elements were
included in the RTM input which could not be modeled with RCCL.

A second type of RIM input, for -which the wuser only supplies
distance moved and does not specify world coordinates, cannot be
effectively translated. The translating program, upcon receiving this
type of input, could conceivably prompt the user for the direction
he/she wished the robot to move (+X, =X, +¥,...). The resultant RCCL
program would maneuver the robot dlrectlon—byodlrectlon in order to
reach the specified point., For example a move of 10 inches 1in the «x
direction, =15 inches in the y, and 3 in the z would require three
separate move segments rather than a single move to the destination

Control Operator

REFP(eat)

PaAaRiallel)

IF (condition) GOTO

- 285 -

Repeat & set of
primatives a given
number of times.

Perform a set of
primatives simultanecusly

Branch to various points
in the task based on stutue
of condition.

Teble T RTM Control Operatoré

i
simulation of
40, 14, =23. 15, 180, 0,0

1 wvd

10, 60, 38, -29, 90, 35. 0

2 ve

3 vl

5, &5, 38, -29. 90. 35. 0

4 gvd

5 vl!

5, 69, 47, =20, 90. 35, 0

6 orl

10, 408, 22, -20. 90, 35, -90
7 ml !

10, 6%, 23, -26. 90, 33, -90

g re

v 4 a2, 78

L0 i

2, 78: 16, =26, 90, 35, =90
231 gl

120 ¢ 42.78

12 wd

5, 74, 26, -20, 90, 35, -0
iq wyvi

£0. 74, 36, =20, 90, 35, 90
i9 mi :
21 34, 6, =26, 90, 35, 90
16 ¢ 43.7

17 ve

18 wmi :

5, 67, 2’3, ~26, 0. 3%, 90
1% gv)

L0 mi
10,72, 10, =26, 9, 039, 90
21 uvd

10, U3, 12, -26, 90, 35,0
22wl

2,63, 12, -29, 90, 35, 0
23 d i’ 94

4 ve

% v

5. 7%,%.-29,90.35: 0

20 md

10,40, 13, -23. 15, 180. 0. 0
end

- 286 -

loasding and unloading a lsthe

Figure 12: Sample RTM Task

go to bar clock

open fingers of tool #2
lower fingers over bar stock

grasp the bar stock
raise in two stages

move while vrotating

move to Pront of lathe

epen fingers of tescl 81§

walt for lathe cover to open
enter:
grasp the procacssed part
wait Fovr chuck to opezn
raise part

rotate gribpar 18O degress
lower arm

wait for chuchk to close
release bar stock

muve out of lathe

close Ffingevrs OFf tool #2
move to intermediate point

rotate gripper while meving
move to part dispossl

wait for release signel
release finished part

reise up

return to start position

bring #ingers over part

- 287 =

t3tack ()

{
trsf pty 2,2 b0, b1, b2, b3 b4 b5, 8O, 7,08, b9, b0, b1, DI DID B4

pos_ptr pO.pl,p2,p3.p4, p3. pb. p7. 8, p7. p10. pLL, pli plild. plas

e=gentr_trsl{¥e®”, 0.,0.,10.)
z=gentr_trsl(®z%,0.,0.,800.

bO=gentr_rpy(*b0”, 40. .43, ,-23. 15, 180.,0..0.);
bl=gentr_rpy{"bi®. 60..,3%. ,-29. ,90.,35 .0.)
b2=gentr_trel("b2", 65.,38. , —29. };
b3=gentr_tvsl{"v3", 65.,37.,-20.);
bd=gentr_vpyg{"b4", 38.,22. , ~20. ., 90. : 35. , -50. };
b3=gentr_trils{”"pd", 69.,23. ,-26. };
bé=gentr_trsl{"b&”, 74. ,26. ,-26.);
b7=gentr_trsl(®u7%, 74.,36. , -20. };
bB=gentr_rpy{*b8", 74., 35., -20. ., 90.,35.,9C.);
bP=gentr_trsl(*b9", 34, ,26. ,-26.);
blO=gentr_trsl("pi0%, 69. ,23.,-24.);
bil=genter_tvrsl{"nili*, 72 ,10.,-2&.);
biZ=gentr_rpy("bi2%.83.,123.,-26..90.,35. .,0.);
bi3=gentr_trsl{"bi3",83.,12 ,-29.);
bid=genty_trsl("bid”, 79.,9. ,-29.);

pO=makeposition("pO®, 1, t&: &, EQ. b0, TL, &)
pl=makeposition(”pl”., z, t& . EQ, b1, TL, e);
pa=makeposition("p2%, 1, tb, €, EQ, b2, TL, &)
pi=makeposition("p3”, 2, td, e, Q. b3, TL. e}
pid=makepasition(®p4", z, th, . EQ. b4, T, &) ;
pi=makeposition{“p5”, z, t&, €. EQ, b5, TL, ¢);
pobHumakeposition(¥psd”, z, 16, €, EQ, bbb, TL, &)
p7=makeposition{”p7”, 2, t4, e, EQ, b7, TL, &);
p8=makeposition(®p8", z,t6, 8, EQ, b8, Thoe);
pY=makeposition{"p?”, 2z, t&: e, EQ, bQ, TL, &)
pi0=makeposition{“piO"”, z, té&, e, EQ, b10, TL. e);
. pli=makeposition(“pii™, z,%&, e, EQ, b11,TL, e);
pli=makeposition{”pi2", z, t6, e, EQ, b12, TL, &)
p13=makeposition(“pi3*, z.t&, e, EQ. 13, TL, &);
pld=makeposition(“pi4™, z, t6, e, EQ, bi14, TL, &)

Figure 13: RCCL translation of sample RIM task

setmod(c);
setvel (10, 10);
move{p0);
move {pil;

288 =«

waitfori{pl-2end);

OPENZI
setvel (3, 5);
move (p2);

waitfor(p2-2end};

CLOSEZ;

move (p3J);
setvel (10, 103;
move(pd);
move(pd);

waitfor{p3-Dend);

OPEN1

stop (1330.)s -
setvel (2, 2);
-move(pbdl;

waitfori{pb—-2end);

CLOSEL;

stop (1530,),
setvel (5, 5);
maove(p7);
setvel (10, 10);
move (pBl;
setvel (2, 2);
move (p?);
stop (3500. ¥
OPENZ2;
setvel (5, 3);
move(pl10);
cLgsga,

move (pll);
move (plad;
swtvel (2, 2)
move(pi13);
stop(780. ¥,
OPENMT
setvel (3, 8)
move(pldi);
setvel (10, 10};
move(p0);

Figure 13 (cont.)

/4
/%
e
/¥

/%

/¥

/%

/%
/&

/¥
/%

VA

Ve
/%

/%
/%
/&
/%
VL]
/%
VLl
Ve]
Va
Ve
/#
VA
/%

/%

set cartesian mode #/

set velooity #/

move Lo initial position &/
go to bar stuck =/

ogen fingers of tool %2 &/
lower fingers over bar stock #7

grasp the bar stock &7/
raise. bar stock #/

move while rotating &/
move to front of lathe &/

open fingrs of;toullﬁi %/

walt Ffor lathe cover to open ¥/
enter: bring fingers over part #/
grasp the processed part &/

wait for chuck to open =/

raise part &/

rotate gripper 180 degreés #/
lower arm #/°

wait for chuck to close #/
release bar stock %/

move cut of lathe #/

close fingers of tuool # &/
move to intermediate point %/
ratete gripper while moving =/
move to part disposal %/

wait for release siynal &/
release finished part «/
Tralse up #/

return to start position #/

- 289 -

RTM statments

REP (sernol) TO (dernoR) N Timss

RCCL egquivalend

for ¢i=0 3 4 < N-d 3 e+i) £
RCCL equivaelents of
I perimatives numbered
sernnl throsugh sernol

ELERECHADEE IEL T BSRRSSIS B WL D@D &

PAR (sernol) TO (sernc2)

B GG QDD NS

IF (condition) GOTO (goto descriptor)

movel{p) {(serial number 1)
secondary action to be performed
in parellel

waitfor{ p -2 e¢ndls

commoent: only applicable to
an action pevormed in parallel
with & move.

BRI TWES W

@ SRouELQ s

if {condition) (
statements to he executed
¥
if {not condition) {
alternative statements

L4

comment: problems here sorting
out gotos

GO AAE B MR L i N A ARV R G S S S AT FEBL ILD RSB RI

O I S R S

Teble 8: RCCL Equivalents of RTM Control Commands

- 290 =

point. Tnis restriction is a major drawback of a RIM to RCCL
translation system, since this second type of RTM input is the easier of
the two to use. ’ ‘ ' '

A second point to comment on is the free use of position and
transform pointers in the example of Figure 13. In the pointef
declaration section, all pointers wWere reserved as permanent parts of
the memory. RCCL permits the user to temporarily assign memory to a
point which is not needed throughout the entire program. . This memory
can be reallocated to another point later in the program. This feature
can keep the memory requirements at a reasonable level and prevent the
storing of unnecessary positions and transforms. . For any large RTM
program, the use of this feature is recommended.

9.7 Shortcomings
As mentioned before, not all RCCL capabilities can be implemented
from RTM information. These include:
1, Distinguishing between-joint and cartesian motions
2. Interaéting with a moving‘éonveyor

3, Complying or exerting a force in one or more directions

4, Integrating with sensors

An example of an RCCL program which could not have been generated
from an RTM input deck is shown in Figure 14 along with a step by step
explanation of the RCCL input. The example and the explanation are both
taken from ([13]. Such input could not be requested by an RTM input
translation because the RCCL input 1) requires both cartesian and
jointed motions, and 2) requires the robot te interface with a moving

conveyor,
9.8 Conclusion
Through the examples presented, oné can see that while RTM input

"~ can be translated into a runable RCCL program, the use of such a
translation program will severely limit the user's RCCL capabilities.

10, COMBINING RTM AND SINDECS~R TO MODEL ROBOT WORK CELLS

10. 1 Introduction

We have found that RIM and a robotic work cell simulator called
SINDECS-R combine well to accurately model robotic work cells. This
section briefly describes SINDECS-R, and points out how RTM can be wused
to generate some of SINDECS-R's -input parameters. An example of
combining RTM and SINDECS-R is then shown. Finally, some research

- 291 -

1} The st exsmple defines {wo locations that differ by position asd oricptalion. The two posi-
tions ase described with sespect to & moving frame in world vovsdieates. A loop causes a motion back
and festh from one position to tbe other. The Gaal motion trauslates aluag the Y axia,

Finclude “reecl.b”

i
2
3 pumstssk(]

4 4 :

3 TRSF PTR 2, ¢ ,; b, pal, paZ, cosv;
8 POS_PIR p0, pti, pi2;

7 int convia{);

8

int §;
9 .
30 conv = newirans{"CONV™ convla}l;
11 z = gents_teaf("2°, @., 0., 854.};
12 e = geats _tssl{"E° , €. , 0. , 176.);
13 b = gentr_rot{"B", 600. , -500., 686., yunit, 186.};
14 pal = geatr_eni{"PA}” |, 30., §., 50., 0., 20., 6.4;
15 ps2 = gents ew){"PA2® , -30., 6., 30., 8., -20., 8.);
16
17 pl = makeponition{"PG” , 2z, ¢6, ¢, B3, b, ThL, e});
i8 pel =makeposition{"PT1", 2, 6, ¢, BQ, conv, b, pal, TL, e};
19 pi2 = mskepositien{"PT2%, 2, t8, e, BQ, conv, b, pa2, TL, e);
20
23 selvel (300, 503,
22 setmod{ ‘¢’);
23 setime(300, O};
24 move {pl};
25 for {i = 0; 8 < 4; +i) {
26 R moveczst{ptl, 100, 100G};
27 mevecart{pt2, 106, 1000};
28
29 setmod{°j°};
ao _move{park}:
ar }
32

33 convin{t]
54 THSF_PIR ¢;

38 { -
36 t->p.y += 5.3
31}

Line I includes the necessary RCCL deciarations. Line 3 deserves & commest : when using ¢he puma
manipulutos, the RCCL libsary calls the function ‘pumatask’ az the task to be executed. Defese calling
the ‘pumatusk’ function, the system pesform some initiafizations. When the fuaction setusns, os you
might expect, the system performs 8 ‘waitfos{cbinpleled) before concluding and exiting. Liae 5-aad 8,
allocates transform and position pointess a3 ueeded by the task. Line 7 declares the name ‘convia’ 25 8
pointer to a function that describes the moving coordinate frame, and fine 8 zlocates 3 counter variable.
Line 10, zHucates 2 functionslly defined tsansform attached to ‘convin’. Lines 11 through 15, allecate
and initislize teansforing os described earlier. The Z transform sets » frame 28 the base of the manipula-
tor. The E and B trausforms are the ol transform and 2 Jocation with respect 1o the simulated con-
veyor. Note that the I transform contains a 180 degree rotation around the Y axis such as the Z disec-
tion of frame described by B points desaward {relstively to CONV snd Z}. The transforms PAL and
PA2 define two locations with respect o the frame described by B.

Figure 1k

- 292 -

Lines '175 18, and 19 set up the position equations as described earlier.

Line 21 scts the velocity to 300 millimeters per seconds and 50 degrees per second and the motion
mode is sct to Carfesian mode on live 22, The esll to selime on lice 23, containing 2 null segment time,
and specifies a 3/10 of a second acceleration time when reaching PO to allow for 2 sufficiently long traasi-
tion time because the uext moties occurs with respect to a moving frame {the system has po means Lo
pow how fast it is goirg te move). The ‘for’ loop, lines 25 Lo 28, causes eight move reguests to be
entered in the quege. The eight motions are performed is 1 second each with 2 1/10 of a second transi-
tion time ¥ specified by the macro movecart. Lioe 29 sets the mode to joint because the arm is Lo per-
form a lurge motion and the path the tool frame is going to follow is of ne concera. Line 30 is the last
motion request to the ‘park’ position.

The function *convin’, lines 33 to 37, starts being evaluated when the first motion 10 “PTI" begins
and during the seven subsequent motions. The background function attached to-the teansform is called
by the systewn with one argument puinter, @ pointer to the transform it is attached to. This permits us
to witte functions ndopendantly from the actaad trancfurm they are sltachied (60 Siive sewlibns

e A v s UL s b daancdiegn the vy ol ke ry slesnent, ol $he prrsition veclor
feore oy b e pproenestoely GEE welincetesed B b Brecieed by 3 anillino fees s b T8 infliser unils
i i ,F' R . Vi T i i [7 T E I PRPIRY R RV PPS Wiy
Coarsderes Dhe Bt dhne heomnaagnlet e nnea b Efg, ths pntinn de the eeault of o ”’W"-’i“;‘"!’*ﬂ ‘f!f

;ixe Curlesian motion frum PO toward PTY and the motion due to the 1noving coordinate {rame,
This example introduce the frst method for generating funciionally defined motion by = periodie

increment of a static varizble (hese a traosform element).

Figure 14 (cont.) . .

projects in which these two systems have been applied are discussed,

10,2 SINDECS-R

SINDECS=R simulates a number of robots working in a cell. Stations
of the work cell can model NC machines, assembly, or other operations.
When tending NC machines the robot(s) act only as materials handling
devices, delivering parts and loading machines when necessary. When
tending assembly or other operations, the robot(s) may be required to be
present throughout some or all of a part's processing. The program
simulates the operation of the defined cell under user selected flow
control strategies. It generates performance data on the cell which
includes production rates, machine utilizations, and robot utilizations.

Input to the simulator consists of the number of wmachines or
stations, definition of part types and their processes, definition of
robot motion times between stations, definition of the times the robot
takes to unload and reload machines, and the user's choice of rules to
be applied to sclve the flow control decisions that have to be made
during the cell's operation. Further details about SINDECS-R can be
found in [1i4, 151, .

10.3 RTM and- SINDECS-R

RTM can be used to generate the robot motion times that are
regquired by SINDECS-=R's input. After spatielly defining the locations
of stations in the cell, RTM can generate the motion times the robot
would require to move parts the distances described in the the spatial
arrangement. RTM can alsc be used tc¢ determine. the times the robot
should take to unload and reload the stations. This requires the user
to determine the motions necessary to perform the unlcad and/or -relcad
at a station, and generate the times to perform these motions using RTM.

0.4 Example

Suppose a work station has the spatial layout shown in Figure 15.
4 single robot tends the stations, and acts as a materials handling
device transporting parts throughout the cell. The RTM output of the
analysis of motion times within the cell is shown in Figure 16. The
comment of each primitive’s output denotes which stations this motion
time is to be applied to. It should be pointed ocut here that station
number zero denotes the input and output station of the cell, It is
assumed that parts enter and leave the system at this station.

Figure 17 shows the oubput of the RTM analysis to determine the
times for individual unload and reload of the machines. In SINDECS-R,
unload time is the time the robol requires to remove a completed part
from a machine. This time 18 used when no parts are waiting in the
machine's queue. Reload time is the time required to remove a completed
part from a machine and load the machine with an unprocessed part from
its queue. ’

- 294 -

1/0

M5
M 4
M 2 | M3
R = Robot
M = Machine

1/0 = Input/Output

Figure 15

move .times between stations

control gerial rim motion motien aperation vser comment comment
card no. ~ symbol length wvelocity time
Cinl fips Ctmul)
i mi 24. 00 36. 60 32. 4 0 -1
2 -3 : 84.00 30. 00 . 87.9 0 -2
3 @i 96. 00 30. 00 93. 0 0 -2
4 (3 72. 00 30. 00 76.8 -4
5 mi 24. 00 30. 00 32. 4 0.~ 5
& ol 24. 00 30. 04 32. 4 1 -0
7 mi 72. 00 30. 00 76.8 1 -2
8 w1 84.00 30.00 87.9 1 -3
9 ml 72.00 30.00 76. 8 1 - 4
10 - ml 36. 00 30 00 43. 5 1 -5
11 mi B4. 00 30. 00 87.9 2a-~-0
12 ‘ml 72. 00 30. 00 . 76.8 a -1
13 ml 48. 00 30. 00 54. 6 2 -3
14‘ (3 72. 00 30. 00 76.8 2 - 4
i @i B84. 00 30. 00 ‘ 87.9 e -9
i6 mi Gé. 00 30. 00 99. 0 3-0
17 @l 84. 00 » 30. 00 87.% 3 -3
18 @1 43.00 3000 54. 6 3-2

Figure 16

- §6¢ -

control serial Ttm motion mction pperation user comment comment

card no symbol lenyth wvelocity time i
find fipsd Citmul !
19 mi 48.00 30 00 54 6 3 -4 ’
20 m1 84. 00 30. 00 87.9 3 -9
21 mi 72. 00 ﬁ0.00 76. 8 4 -0
22 i 72. 00 30. 00 76.8 4 - 1
23 mi 72. 00 30. 00 76.8 4 - 2
24 ml £8. 00 20. 00 o4. 6 4 -3
2% ml 60. 00 30. 00 69.7 4 -5
26 m1 25 00 30. 00 33.3 5 -0
27 mi 35.CO 30. 00 43. 9 5~ 1
2e ml 83.00 30. 00) 87.9 5 -2
29 mi 84. 00 30.00 87.9 9 -3
3% mi £0D. 00 3¢C. 00 65.7 5 - 4
the total time for the task is 2082. % [tmul = 75.0 fsecl = 1.2 fminl
From-to move times -~ rtm output
Figure 16 (cont.}

- 96¢ -

t3 2 ' ;
unload *imn o cie ile e taut L cragae r '

A - ~-~ 4 -
Lor? asaryma,ng y0nen, =

reach intc oecrire

oonel '
“rasr ooa2rt

3 4.0 woit f b .
X or chri.

4 m1 2,2, ek to cren

S @1 40,98.0 pull part oft chuck]

moye t machine
erd cut ot rachine

Unloze tire = rtr $nput

the tomorrow ool

unload time — double gripper

i
N
O
-3
control serial rtm motion motion ‘aperation user comment comment :
card no. symbhol length wvelocity time
Einl Lips3 Ctmul
1 ra 28. 00 £0. 00 16. 4 reach into machine
2 gril .3 grasp part
3 d ‘ - 4.0 wait for chuck to open
4 mi 2. 00 2. 00 37.9 remove part Ffrom chuck
S ml z28. 00 40. 00 2%. & move out of machine
the total time for the task is 88. 2 [tmul = 3.2 (sec)] = .3 Leminl

Figure 17 Unload time -~ rtm output

neo.

of machine types=

part type 1
process ¥ 1
‘vﬂ scTap)=
p(rework)=

p¢ gond)=

_operation

process % 2
pé scrap)=
p{ rework)=
p(good =

aperation

process ¥ 3
pe scvrap)=
p(rework)=
p(good)=

operation

1
2
3

S

..m@mu,

N¢)
. 10000
. 20000
machine process time
4, 30. 00
[4]
. (&)
1. 00000
machine proczss time
a. 120,00
1. 75. 00
. 20000
. 10000
. 70000
machine process time
1. 40, 00
3. 80. 00
2

§10. 00

Figure 18

pi{returning to this
station Pov vework)

1. 00

plreturning to this
station for rewerk)

&
[&]

shﬁweCﬂzwzw te this
station for vework)

. CC
.10
.10

- 299 -

part type &

process ® &

’p(scvap)= 4]
p{ reworhi= [+
p{ gooed)= 1. 00000
operation machine process time pireturning to this
' station fov vework)
1 4, 40. 00 : 1]
2 a. 90. 00 [4]

part type 3

praocess % 1

pt scrap = [4]
p(reawori)= [¢]
pl good)= &. ON00
operation machine process time plreterning tu this
: : station for rework)
b 2. i00.00)
rabot 1
0 1.17 3.16 3.% .76 1.17 4]
1,87 0 & 76 316 2.7 1.37 (4]
R2is 2786 0 1.9 2.76 3. 16 [+
3. 08 3146 1.946 2 1.96 316 [¢]
L6 276 2.76 1.96 o 2 38 [¢]
1.8% 1.3%6 3.16 3.i16 2 36 o o
{ [v] [} [e] 0 o] [¢]
stulion unload reload
0 3. 20 14. 20
§ 3. 20 14. 20
at 3. 20 4. 20
N 3. 20 14. 20
A 3. 20 14. 20
) 3.

20 14. 20

Figure 18 continued

- 300 -

retults of sindecs—r analysis

production rate for this system = 1. 200 pieces per hour

standard deviation = 2.871

production rates by part type

prod rate std dev
part 1 . 480 1. 907
part 2 . %00 1. 702
part 3 . 320 1. 076

average time in system = 451. 079 minutes

standard devietion = 04. 488

"aversge time in system by part type

ave time std dev
part 1 445, 862 b7, 16
part 2 519. 486 204, 1%
part 3 373. 392 D3 017
qQuality rates
rate std dev
SCT AR . 080 . 800
rework (4] O
good 1. 200 2,871

Figure 18 continued

- 301 =

e i s S v S o b e e e e e it e

server utilization measures

tape vun stats

machine SETVET standard
type utilization deviation
-1 . 3060 . 458
2 . B854 . 351
3 . B53 . 354
4 . &84 . 465
ke ‘Oéé 248

machine occupation stats

machine server standard
type util;zation deviation
1 . 352 . 478
2 i. 000 O
3 i. 000 0
4 . 925 nes
5 . 0Bl ‘ . 273

robot utilzation statistics

serial robot standard
number utilization deviation

i . 725 : . 44é

Figure 18 continued

L L

- 302 -

These robot motion times are supplied by a user to SINDECS-=R. The
SINDECS-R input is not shown here. Thé cutput of the simulator is shown
in Figure 18. The three part types represent the three distinet types
of parts which were produced in this robotic cell.

Note here that any fictitious robot motion times could have been
supplied to SINDECS~R. The use of RTM to estimate these times merely
makes the. simulation more realistic in its depiction of cell
performance. ’

10.5 Research Combining RTM and SINDECS~R

The combination of RTM and SINDECS-R has been used for a number of
research topics since the development of SINDECS-R in 1983. One
application was in a comparative analysis of a robeot in a cell wusing a
double gripper to one using a single gripper. The motion times of parts
between stations was the same in either case, but the RTM~generated
reload times distinguished the two cases. The robot with the double
gripper could simultaneously manipulate the part being unloaded and the
fresh part being loaded into the machine. The robot with the single
gripper could only manipulate one part at a time [15].

A similar study was performed comparing a robotic cell applying
vision to one with touch sensing. RTM was wused in this case to
determine the inter-station motion times [15]1. '

RTM and SINDECS-R were also used to examine the performance of an
operating system whose purpose 1is fo coordinate multiple robots in a
cell. RTM was used to generate the motion times between stations. A
modified version of SINDECS-R was used to generate performance
information of a cell with dynamic avoidance capability collision to one
with no possibility of collision.

Another investigation has combined RTM and SINDECS~R to model a
single 'machine station with tool changing capabilities. The cell was
modeled with the robo%f changing tools, using times generated by RTM, to
automatic toel changing by a dedicated tool changing mechanism.

References

1. Paul, R.P. and Nof, S.Y., "Human and Robot Task Performance®,
presentation at the International Symp. on Computer Vision and
Sensor Based Robots, Warren, Michigan, WNovember 1978. Appeared as
a book chapter in Computer Vision and Sensor Based Robots, G.G.
Dodd and R, Lothar (Eds.), Plenum Press, New York, 1979, Also
published in a revised version under the title "Work Methods
Measurement - A Comparison Between Robot and Human Task
Performance', Int. J. of Production Research, Vol. 17, No. 3, 1979,

pp. 277-=303.

7.

10.

1.

12,

13.

ILR

- 303 -

Nof, S.Y, and Paul, R.P., "A Method for Advanced Planning of
Assembly by Robots®, Proc. of Autofact West, Anaheim, California,
November 1980.

Lechtman, H., "Robot Performance Models Based on the R.T.M.
Method®, unpublished M.S. Thesis, School of Industrial Engineering,
Purdue University, West Lafayette, Indiana, May 1981.

Nof, S.Y¥. and Lechtman, H., "Robot Time and Motion®, Industrial

Engineering, April 1982, pp. 38-48.

Nof, S.Y. and Lechtman, H., "Now It's Time for Rate Fixing for
Robots"”, The Industrial Robot ;- June 1982, pp. 106=116.

Lechtman, H. and Nof, S.Y., %“Performance Time Models for Robot
Point Operations®, Int. J. of Production Research, Vol. 2i, No. 3,

1983.

jNof S.Y., "Robot Ergonomics: Optimizing Robot Work", chapter in

the Handbook of Industrial Robotics, S. Y Nof, Editor, John Wiley
and Sons, New York, 1985.

Hershey, R.L., Leztz, A.M. and Nof, S.Y¥Y., %“Computer Methods for
Predicting Robot Performance®, Proc. of Autofact 5, Detroit,
Michigan, November 1983, pp. 3.9-16. ' :

Hershey, R.L., 'Leztz, A4.M. and Nbfe' S.Y¥., "Predicting Robot

» Performance with ROFAC, A Decision Making Aid", Proc. of IIE Conf.,

Toronto, Canada, November 1983.

Paul, R.P., “Robot Manipulators: Matheméticsv Programming, and
Control®, MIT Press, 1981. ‘

Hayward, V., "Introduction to RCCL: & Robot Control ‘cf Library®,
TR~EE83-%3, School of Electrical Engineering, Purdue University,
West Lafayette, Indiana, October 1983.

ﬂayward V., "Robot Real Time Control User's Manual®, TRaEEBB»ﬂé,
October 1983 . , :

Hayward, V.Q "RCCL User's Manual", TR-EE83- ; October 1983.
Robihsonﬁ A.P, and Nofg SaYgg #SINDECS~R: A Simulator for Robotic

Cell Activities™, Proc. Winter Simulation Conference, Arlington,
Virginia, December 19839 PP. 350»355»

ﬁobinson, A.P., T"Principles for Robot Work Design', Unpublished |

M.S. Thesis, School of Industrial Engineering, Purdue University,
West Lafayette, Indiana, August 198h.

	Purdue University
	Purdue e-Pubs
	7-1-1984

	Advanced Industrial Robot Control Systems
	Richard P. Paul
	J. Y. S. Luh
	S. Y. Nof
	Y. Hayward

	tmp.1542052450.pdf.jHdm8

