
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

7-1-1984

Automatic Construction of CSG Representation
from Orthographic Projections
Namdar Saleh
Purdue University

K. S. Fu
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Saleh, Namdar and Fu, K. S., "Automatic Construction of CSG Representation from Orthographic Projections" (1984). Department of
Electrical and Computer Engineering Technical Reports. Paper 524.
https://docs.lib.purdue.edu/ecetr/524

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F524&utm_medium=PDF&utm_campaign=PDFCoverPages

Namdar Saleh
K. S. Fu

TR-EE 84-24
July 1984

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

AUTOMATIC CONSTRUCTION OF CSG REPRESENTATION

FROM ORTHOGRAPHIC PROJECTIONS

Namdar Saleh and K. S. Fu

TR-EE 84-24
July 1984

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

This work was supported by the NSF Grant ECS 81-19886. The work was
also supported in part by CIDMAC, a research Unit of Purdue University
sponsored by Purdue, Cincinnati Milicron Corporation, Control Data
Corporation, Cummins Engine Company, Ransburg Corporation and TRW.

4. Tit.le and Suht it1-c

7. A ut hor(s)

9. Performing Organization Name and Address

Purdue University .
" School of Electrical Engineering
West Lafayette, Indiana 47907

B i 6 L io G R A P H! C D AT A
SHEEf

•iv-.-.Kc p;->rt'\ No.

TR-EE 84-24
! 3.'‘Acc i p ient ’ s A cc c ss\ on N t

AUTOMATIC CONSTRUCTION OF CSG REPRESENTATION FROM
.ORTHOGRAPHIC PROJECTIONS

T5. Report. Date

July 1984

Namdar Saleh and K. S, Fu

6.

8. -Performing Organization Kept
. .No.,'

10. ICojcct ./Task/Work Unit. No.

11. Contract/Orant 'No.'.

ECS. 81-19886 .

1 2. S.pohs or i ng 0rgan iy. at ioh -N atrit• and Addre ss •

National Science Foundation
Washington, D.C. 20550

13. Type of Report & Period
Covered

Technical
i 14..

15. Supplementary Notes

16. Abstracts

An algorithm has been designed to construct the CSG model of an object
from its 2D orthographic projections. The method proposed uses a top-down
approach in which the existence of some 3D primitive (e.g. CUBE) is assumed
and then different views are searched for appropriate elements to prove the
assumption. The algorithm is applied to some examples and the results are
demonstrated. A second algorithm has also been designed to implement the
automatic input of line drawings. The drawings are first digitized using a
high resolution scanner. After some preprocessing, the algorithm is applied

... to the: image in order to extract the relevant graphical elements, such as
arcs and circles. Two examples are also demonstrated.

17. Key Words and Document Analysis. !7a. Descriptors

17b. Idcntif icrs.'Opcn-l'nded Terms

17c. COS All Pie Id/Croup

18. Av niialdlitv Statement 19. Security (.lass (Phis
Report)

UNCI .A SSI PI PD
2'0. S c c u r 11 y (1 ass (T h i r

.1 Ps ge
.. UN(I. A SSPP1 P,D

21. No. of Pages.

. 165
22. Price

KORM N TIS-:Vr» (REV. 3-7.’.) THIS FORM MAY BP RPPRODUCPP
USCOMM-DC 14952-P72

iv

TABLE OF CONTENTS

■ Page

LIST OF FIGURES:...,„,„......,,,,,,,,,,...............„,„,,vii

\-ABST^CTv;^.u;.-y.^,.;;L..';^.^....... ix

CHAPTER ONE - ENGINEERING DRAWING AND GEOMETRIC
; n modeling fundamentals......,,,7...i,

1.1 Introduction........................,,,,,,,,,................................... 1
1.3 Fundamentals of Eng ine e ring Dr awing s , 3
1.3 Splid Geometry Representation '..........7

1.3.1 Alist of related fields......,,,,,..........................7
1.3.3 Properties of representation schemes............... 7
1.3.3 Constructive Solid Geometry...9

CHAPTER TWO - AUTOMATIC RECONSTRUCTION OF AN OBJECT
FROM ITS 3D ORTHOGRAPHIC PROJECTIONS 13

3.1 Introduction... 13
3.3 Previous work done,.........,,...,13

3.3.1 Polyhedra as the class of objects 13
3.3.3 Objects withUniform thickness..,.,..,........:..... ..,.,.....,...,..,15

3.3 A new approach for solving the reconstruction
problem 16

3.4 The algorithm...................................... --16
3.4.1 Explanation............:16
3.4.3 Cylinder,.,,.. ,,,,,,,,,,,.18
3.4.3 Cone,,,,,,,,,,.,,,,,,,,,,,,,.,•,••••• 19
3.4.4 Cube ,,,,31
3.4.5 Lugs -,25
3.4.6 Corners.,...................................,,,,.....,,,,...... 30

3.5 A comparison between this work

and previous works
2.6 Examples................36

2.6; 1
2.6.2 Output conventions v...:.:.....^37
2.6.3 Sample

2.7 Performance analysis....,.........^...............,...-.........-.•••••••••• "•••••37

CHAPTER THREE - MANUAL AND AUTOMATIC INPUT
OF LINE DRAWINGS V-.---60

3.1 Introduction:.. • •• • • • • •• • • • •
3.2 Manual inputsytem..............................
3.3 Automatic input system................................

3.3.1 Image digitization and preprocessing ...
3.3.2 . Digital straight lines......... :.C.......L........
3.3.3 Digited arcs

3.4 The algorithm. v..............V..........,....,........
3.5 Examples............................
3.6 Pe rf ormanc e analysis................:...........,....;....

CHAPTER FOUR - CONCLUSION AND FUTURE RESEARCH .97

4,2 Future research98

references 99

appendix-:;. .A.'.;..:..

.60
.............................. 61
.............................. 62
.............................. 62

64
65:

................... 67
70^

-.94

LIST OF TABLES

Table

a. 1 Time analysis for Examples T, 2 & 3

3.1 Time analysis for Examples 4 & 5

Vll

LIST OF FIGURES

Figure

T. 1 Arrangement for the six principal views .a........................... • • • •

1.2 The meaning of a line

1.3 Projections of a surface—

1.4 The meaning of different operators............... • v *• *•:• • • • • •

2.1

2.2 Example of an object with a conical part.

2 3 Simple eubicaTobject....................................

2.4 The major orientations of lugs......:................. • • ■ • •.

2.5

2.6 cornei

2.7 Example of a lug and round corners

2.8 Example l.........................

2.9 Example 2.......................... .--r•••••■;•"•••••.•.••• •••••'

2; 10 Example 3•......... . • • • • • • • • • re•;■••••••....." ■ • ‘'■ •

3.1 Automatic input system.......

3.2 Imperfect digitization of a straight line • • • • .• ■

..3

.5

..6

10

11

17

22

24

26

28

.31

.34

.40

.47

52

63

.66

yin .
Figure \ ■ .Page

3.3 Example 4..f......72

3.4 Digital image of view 1 of Example 4 . • -1-■...•....• • • -73

3.5 Digital image of view 2 of Example 4 74

3.6 Digital image of view 3 of Example 4 ;.....75

3.7 View 1 of Example 4 after preprocessing

3.8 View 2 of Example 4 after preprocessing

3.9 View 3 of Example 4 after preprocessing

3.10 Example 5:.....< • • •.................... ...••• • • • • • • •:•

3.11 Digital image of view 1 of Example '5i.„.5...

3U2; Digital image of view 2 of.Example 5..

■ 3.13; Digital image of view 3 of Example 5.....

3.15 View 2 of Example 5 after preprocessing

83

84

85

86

87

88

3.16 1 89

abstract

anAn algorithm has been designed to construct the CSG model of an

object from its 2D orthographic projections. The method proposed uses

a top-down approach in which the existence of some 3D primitive (e.g.

CUBE) is assumed and then different views are searched for appropri

ate elements to prove the assumption .The algorithm is applied to some

examples and the results are demonstrated. A second algorithm has

also been designed to implement the automatic input of line drawings.

The drawings are first digitized using a high resolution scanner. After

some preprocessing, the algorithm is applied to the image in order .to

extract the relevant graphical elements, such as arcs and circles. Two

examples are also demonstrated.

CHAPTER ONE

1.1 INTRODUCTION

The process of automatic manufacturing of mechanical parts is

currently of great importance in industry and is a field that challenges

researchers in many areas of engineering and computer science. This

process has several levels, from input to a solid modeler to production

of an NC or CNC (computerized numerical control) part program. One

would like to be able to make an engineering drawing showing projec

tions on an electronic board, using the methods developed by genera

tions of engineers, and then have the part program generated [PR2].

Obviously once the engineering drawing of a certain design is created,

the information present in the drawing has to be conveyed to the NC

machine, possibly in the form of an explicit 3D data structure. This

process, which is nothing but the conversion of one form of representa

tion of information to another,-can be broken up into two parts: 1

1 Creation of a 2D data structure of graphical elements such as

straight lines and arcs from the line drawing. After this step, the

information present in the engineering drawing is stored in a com

puter where it can be accessed and manipulated by appropriate

algorithms.

2

2 Interpretation and reconstruction of the 3D representation of the

part from the 2D data structure. After this step, the object is

represented in some form of solid model, and can be stored in an

appropriate database.

For the first part, two systems, manual and automatic are proposed

and these are discussed in Chapter three. The second part is treated in

Chapter two. in which ah approach for the reconstruction process is

suggested and compared to previous work on the subject. An introduc

tion to the rules governing engineering drawings is given in the next

section. This is followed by a discussion on representations for rigid

solids and an explanation of the method used in this work which is the

Constructive Solid Geometry.

1.2 FUNDAMENTALS OF ENGINEERING DRAWINGS

Engineering drawing is a graphic language that is used universally

by design engineers and engineering technologist to describe the shape

and size of structures and mechanisms. It has developed through the

centuries, much as have various spoken and written languages, until at

the present time its fundamental principles are understood by trained

persons [LUZ]. Three dimensional objects are represented in engineer

ing drawings by two to six two-dimensional orthogonal views. Figure 1.1

contains the American standard arrangement for the six principal views

[WEL],: When prepar’ing an engineering drawing, a shape description

3

TOP VIEW

FRONT VIEW

RIGHT
SIDE VIEW

LEFT
SIDE VIEW

rearview

BOTTOM VIEW

Figure 1.1 Arrangement for the six principal views

4

method called orthographic or parallel projection is used. The ortho

graphic geometry governing this method has the following properties

[HAR]:

Rule 1 - The lines of sight for any two adjacent views are perpendicular.

Rule 2 - Every point of the object in one view is aligned on a parallel

directly opposite the corresponding point in any adjacent view.

■ Rule 3 - The distance between any two points on the object measured

along the parallels is the same in all related views.

’ Rule 4 - A line can only appear as a line or a point, a point being the end

view of a line.

As shown in figure 1.2 [LUZ], a visible or invisible (dashed) line may

represent either the intersection of two surfaces, the edge view of a

surface, or it may be the limiting element of a surface. The full circle

in the front view may he considered as the edge view of the cylindrical

surface of the hole. In the side view, the top line, representing the con

tour element of the cylindrical surface, indicates the limits for the sur

face and therefore can be thought of as being a surface limit line.

Rule 5 - Every face can appear only as an edge or as a figure of similar

configuration. More precisely, when a surface is parallel to a plane of

projection, it will appear in true size in the view on the plane of projec

tion to which it is parallel. When it is perpendicular to the plane of pro

jection, it will project as a line in the view. And finally when it is posi

tioned at an angle, it will appear foreshortened. See figure 1.3.

Contour element of hole

Edge view of surface A
/^-Contour element of

v/ X. cylindrical surface Bview of
surface C

Edge view of r
cylindrical surface BN

Edge view of
horizontal
surface

Edge view of Line _qt intersection
cylindrical surface of hole of two surfaces

Figure ! .2 The meaning of a line

SURFACE A" r-::.

surface d

Figure 1.3 Projections of a surface

From the orthographic geometry it is apparent that each view con

tributes information not in the other views and that to understand the

object portrayed by the orthographic view, the information in one view

must be used in a coordinated way with the other views.

1.3 SOLID GEOMETRY REPRESENTATION

1.3.1 A LIST OF RELATED FIELDS

The problem of representing mechanical components requires

talents from such fields as data structures, logic and algorithms,

artificial intelligence, programming languages, numerical control,

metal cutting, and operations research [WOO]. Before discussing the

advantages and disadvantages of CSC, a general discussion on represen

tation schemes and their properties is in order.

1.3.2 PROPEmmS OF REPRESENTATION SCHEMES

A representation scheme is a relation between (abstract) solids and

representations. There are several methods for constructing complete

representations of solids and some of them are: Constructive Solid

Geometry; Sweeping and Boundary Representation. In general,

representation schemes have four formal properties and they are as

follows [REQ],

1. Domain: The domain of a representation scheme Characterizes the

descriptive power of the scheme.

2. Validity: The range of a representation scheme is the set of represen

tations which are valid. Validity is an important property because it

ensures the integrity of databases, in that databases should not contain

symbol structures which correspond to nonsense objects.

3. Completeness: A representation is complete if it corresponds to a

single object, that is, there are no ambiguities. This is the most impor

tant formal characteristic of representation schemes. It is crucial

when there is a wide range of applications to be supported by a practi

cal modeling system, and especially when the range of applications is

not known [VOE].

4. Uniqueness: The representation o an object is unique if it is the only

possible representation of that object in that particular scheme.

Representational uniqueness is important for assessing the equality of

objects in automatic planning algorithms and numerically controlled

(NC) machine tools. Representations which are both complete and

unique are highly desirable. However, most representation schemes,

are nonunique for at least two reasons.

Substructures in a representation may be permuted.

V Distinct representations may correspond to differently positional

but congruent copies of a single geometric entity.

An example of representation schemes that are complete but not

unique are CSG. In the next section we study these schemes in more

detail.

1.3.3 CONSTRUCTIVE SOI ID GEOMETRY

Constructive Solid Geometry connotes a family of schemes for

representing rigid solids as Boolean, constructions or combinations of

solid components via the regularized set operators, mainly Union (+),

Intersection (&) and Difference (-) [REQ], These operators are demon

strated in figure 1.4 . CSG representations are ordered binary trees.

Nonterminal nodes represent operators, which may be either rigid

motions or regularized union, intersection or difference, terminal nodes

are either primitive leaves which represent subsets of E3 1 or transfor

mation leaves which contain the defining arguments of rigid motions.

The semantics of CSG-tree representation is clear (figure 1.5): Each

subtree that is not a transformation leaf represents a set resulting

from applying the indicated motional/combinational operators to the

sets represented by the primitive leaves. Schemes whose primitives are

bounded are called "CSG based on bounded primitives , or simply CSG

when no confusion is likely to arise, while schemes possessing

unbounded primitives are called "CSG based on general half spaces'.

We consider only CSG schemes whose primitives arc bounded. Tn fact,

the main advantage in using primitive volumes in the description pro

cess is that the object constructed is always bounded and finite, since

the primitives are [WOO]. / /

When the primitive solids of a CSG scheme are bounded and hence

are r-sets 1 2, the algebraic properties of r-sets guarantee that any CSG

tree is a valid representation of an r-set if the primitive leaves are

1 Three dimensional Kuclidean space.
2 r-sets are subsets of E3 that are bounded, closed, regular and seinianalylie.

UNION

Figure 1.4 The meaning of different operators

11

u* TRANSLATE

PI P2 P2 AX

Figure 1.5 The semantics of CSG-tree representation

12

valid. This guaranteed validity of CSG schemes based on solid primi

tives applies only to schemes in which the combinational operators are

general regularized set operators which may be applied to any objects

in the domain of the representation schemes.

Overall the benefits of CSG are [ROT] :

The model represents a true solid with volume.

- Curved as well as planer surfaces bound the solids.

The combined operators are remarkably effective for modeling

solid artifacts, particularlymechanical parts.

In addition, experience has showed that humans can easily create

CSG representations of certain classes of objects such as mechanical

parts [REQ].

13

CHAPTER TWO

AUTOMATIC RECONSTRUCTION OF AN OBJECT

FROM ITS 2D ORTHOGRAPHIC PROJECTIONS

2.1 INTRODUCTION

The purpose of this chapter is to discuss the problem of obtaining

the 3D representation pf an object from its 2D projections. Compara

tively little work has been done on line drawing interpretation in the

context of geometry definition. This work has mainly considered the

class of polyhedra ([LAF],[LIA],[HAR],[PR1]) Results have also been

obtained on curved objects with uniform thickness ([ALD1],[ALD2]), and

on objects with less restrictions [SAK], In the following section, some of

the previous algorithms are briefly described. Sections 2.3 - 2.4 present

a different approach to solving the reconstruction problem.

2.2 PREVIOUS WORK DONE

2.2.1 POLYHEDRA AS THE CLASS OF OBJECTS

In the paper by PREISS [PRlJ.the emphasis for the interpretation

of 2D drawings is on the connectedness properties, The approach used

is similar to the approach in the theorem proving programs that have

14

the following general principles:

(a) -Existence of data representing the current state.

(b) - Rules by which all possible future states can be evaluated.

(c)-A definition of legal final states.

The algorithm goes as follows:

- Find the possible coordinates of each vertex. Two of the three coordi

nates are available in each view. Using the other views, set up a list of

possible third coordinates.

- Identify the projected faces given by closed paths of solid lines in each

view. ' ’ :

- Interpret the prbjected faces by identifying its vertices from an

ordered depth first search.

- Interpret the dashed lines.

- Assemble the body using a technique from scene analysis programs.

The algorithm is not very hard to follow. However, the part about

the interpretation of dashed lines is ambiguous. There is a possibility of

modifying the process in order to be able to treat curved surfaces.

In the paper by Haralick and Queeney [HAR],the problem is treated

as three consistent labeling problems. A set of rules are defined accord

ing to the properties of polyhedra. Some of the rules are as follows:

(a) - Every point of the Object in one view is aligned on a parallel directly

opposite the corresponding point in any adjacent view.

(b) - A line can only appear as a line or a point, a point being an end view

'offline..-/'.' ■ ■ •

(c) - Every face can appear only as an edge or as a figure of similar

configuration.

(d) - No two contiguous faces can lie in the same plane.

. The algorithm is similar to the previous one:

- Find the set of V(x,y,z) eligible to be vertices.

- Find the set of visible surfaces for each view.

- Find the interpretation of the surfaces denoted by three or more ver

tices according to some rules.

- Make sure the interpretations are consistent.

Steps a,c,d are consistent labeling problems and are solved using a

tree search. The main drawback of the algorithm is that there is no

mention of any treatment of hidden lines. Therefore the object is always

viewed from an angle where there arc no hidden lines, an assumption

that is nol very practical. i/;.

15

The main distinction of the algorithm by B.Aldefeld [ALD1],[ALD2],

from the previous methods is that it is able to interpret curved objects

as well as plane faced, polyhedra. The interpretation process has two

parts. In the local part, objects are recognized by their individual pat

terns, irrespective of any possible global inconsistencies. Therefore

several sets of candidates including spurious ones are generated. The

second part which is the global interpretation step, Lakes care of

finding the subset of real objects among the candidates and of recogniz

ing whether each elementary object is a solid or a cavity. The algorithm

is rather complicated and includes heuristic searching ■ and matching.

Also the data structure used for representing the final 3D object is not

specified, although it is said that the representation is volume oriented.

2.3 A NEW APPROACH FOR SOLVING THE RECONSTRUCTION PROBLEM

In this work, a top-down interpretation approach has been used.

This means that the existence of a certain 3D primitive (cube, cylinder,

cone) is assumed and then the views are searched in order to find the

necessary 2D primitives that justify the assumption. If the assumption

is justified then the 2D primitives are used in order to obtain the attri

butes needed for the 3D representation. This assumption has also been

extended to some combinations of 3D primitives, namely corners and

■lugs.. .

The following section explains the reconstruction algorithm in more

detail. Each subsection is devoted to the interpretation

elements mentioned above.

of one of the

2.4 THE ALGORITHM

2.4.1 EXPLANATION

A block diagram of the algorithm is shown in figure 2.1. In the fol

lowing subsections, each step of the interpretation process is discussed

arid then briefly illustrated in algorithmic form. For more detail on the

algorithm, the reader should refer to the programs included in the

appendix; n

Figure 2.1 General block diagram of algorithm 1

Output

results

Apply
corner

routine structure

organizeApply cube

rout me

reorganize
input
data

Apply cone

routine

Apply lug

rout me

Apply
cylinder
routine

18

2,4.2 CYLINDER

The planes of projection in an engineering drawing are usually

selected so that in case of the existence of a cylinder, the axis would be

perpendicular to one of the planes. Therefore the projection of the

cylinder in that view is a circle. The projection in the other views is two

parallel lines. These lines might or might not match 1 and they may be

solid or dotted depending on the mode of the cylinder (solid or cavity)

and the objects surrounding it.

The above facts make the cylinder the easiest primitive to detect.

The views are searched for circles and if one or more are found, the

other views are searched for the above mentioned lines. In order to

represent a cylinder uniquely the following are needed:

- The radius which is just the radius of the circle detected in one of the

views. :

- The length which is given by the length of the lines in the correspond

ing views.

- The orientation of the axis of the cylinder which is also available from

the view of the circle.

The routine goes as follows:

FOR view = l ,3 DO : ^
n = number of circles in this view;
FORI - l,n DO

find the horizontal and vertical extremities on circlei;
use the coordinates of the extreme points to find corresponding

1 Two lines are said to match when they are equal in length and direction.

lines in the other views;
IEm any view no such line is found 7/YA7V

GO TO END;
find the best candidate among the lines found;
output the cylinder;

END’
END;

It should be noted that when the parallel lines can not be found,

then we definitely do not have a cylinder. In this case the circle found

earlier corresponds to some conical object. This is discussed in the next

subsection.

2.4.3 CONE

In mechanical objects, there are cases where we encounter parts

that have a conical shape. A whole cone however is very seldom encoun

tered, therefore we do not need bother with teaching our system to

recognize it. More often we have a part that looks like a cone whose top

has been cutoff. This part has the following representation in a three

view engineering drawing:

- In one of the views we have two concentric circles. The larger one

is the projection of the base of the cone, and the smaller one is where

the original cone has been cut.

- In the other two views we have an identical four sided figure which

has the following properties : of the opposing sides, two of them are

parallel but with different lengths. The other two are equal in length. It

should also be mentioned that the class of objects considered requires

that the parallel sides be either horizontal or vertical. As a convention,

the larger of these parallel lines will be called ’base’ and the slanted

sides will be called ’arms’.

19

In terms of C.S.G., the conical object described above can be

represented as a combination of a cone and cylinder, i.e.

OBJECT = CONE - CYLINDER

Therefore the following information has to be extracted from the draw

ings:

- The coordinates of the center and the radius of the circle represent

ing the base of the cone. ,

- The height and orientation of the original cone.

- The coordinates of the center and the radius of the circle represent

ing the cylinder.

- The height and orientation of the cylinder.

Once two concentric Circles have been found in a view, we search

an adjacent view for the base line. There may be more than one candi

date but the right one has to be connected to two slanted and' equal

lines , i.e. the arms. Once the arms are found, we have enough evidence

that the object is conical and we also have all the information needed

for representing it. For example, the height of the cone, h, can be cal

culated if we have the length of the base line and the angle teta that

the arm makes with the base:

2h = baselength x tan(teta)

The routine goes as follows:

20

FOR view - 1,3 DO
n = number of circles in this view; FORi =. l,n-l DO

21 '

FOR] = i+l,n DO
//’center_£>f_circlej ='centehjof^circlej THEN :. '

find the horizontal and vertical extremities on the larger
circle;
use the coordinates of the extreme points obtained above
to find the base line;
use the base to find the arms;
check to make sure the circles are the projection of a cone;
output the cone;

END;
END;

/ END;
END; '

An example of a simple object that contains a conical part and its

CSG representation as a result of using the above algorithm is illus

trated in figure 2.2

2.4.4 CUBE

The process of recognizing a cube is more complex than previous

primitives because of a high degree of freedom in its 2D representation.

A complete and isolated cube has 4 perpendicular lines in the form of a

rectangle or a square as projection on each view plane. However, when

other objects are combined with the cube, many of these lines are

either totally missing or only partly visible. The cube algorithm expects

to find a horizontal line connected to two vertical lines that match in

the first view. If these elements are found, then the rules of engineering

drawings require that two parallel lines corresponding to the cube be

present in view 2 and view 3 each. One problem that arises here is that

iiibre than two lines may be found in those views (two or more lines may

be concatenated in the same direction) and it is not always obvious

which line is the projection of the cube. One way to solve this problem is

22

(cone! - cylinderl) + cylinders
+ cylinders - cylinderH

Figure 2.2 Example of an object with a conical part

23 '

to give priorities to certain configurations of lines. For example con

sider the simple object of figure 2.3. Lines a, b, and c have been found

in view 1 and a search for corresponding lines in views 2 and 3 has

resulted in lines bl, b2, cl, and c2 in view 3 and al, a2 in view 2. All of

these lines are candidates for the third dimension of the cube. Priority

is given to view 2 because it contains only two lines. However the lines

al and a2 do not match, so there is still some uncertainty, In this case

line al is chosen because it is at an extreme location in view 2. That is

it has the lowest y coordinate among the lines in view 2.

The algorithm is not limited to complete cubes only. Cubical frus

tums can also be detected. In this case we have two slanted lines con

nected to a horizontal line. The process of finding the third; dimension

of the frustum is the same as explained above. However, the represen

tation of a frustum in terms of CSG is more complex than the represen

tation of a simple cube. This problem is more thoroughly discussed in

the next subsection.

The routine goes as follows:

REPEAT
find a horizontal line;
find two lines that are connected to the ends of the above line;
IF the lines match OR the lines are slanted and equal in length
THEN

look for lines in views 2 and 3 that are candidates for the projec
tion of the cube in those views, using the coordinates of the lines
above;
choose the best candidates;
IF the lines match THEN

output a cube;

24

uieu 1

Figure 2.3 Simple cubical object

ELSE ;v:
using the angles and the length of the slanted lines, find the
dimensions and position of the frustum;
output a frustum;

■ END; /V.
/.' END> V ;>y ::

UNTIL no more horizontal lines;

2.4.5 LUGS

Objects classified as lugs are those objects that have a cylindrical

part in union with a cubical part. These objects are very common in

mechanical parts. Their front view representation in 21) drawings is an

arc connected to two line segments at its ends. The lines could be

either parallel or not and the whole object can have infinite possible

rotations. However 4 major configurations are very common in

engineering drawings and they are shown in figure 2.4.

Since all four configurations can occur in any of the three views, we

have a total of 12 possible cases to consider. In each case the following

jThe radius of the cylinder.

_The thickness of the cylinder.

__The origin of the cube.

_The x,y,z dimensions of the cube.

In order to render the representation of the partial cylinder

independent of the cube that is attached to it, it is a better idea to have

the output as (CYI.1 - CUBEl) + CUBE2 instead of CYL1 + CUBE2,

where CUBE1 is a cube that intersects the cylinder in a manner to have

the desired half cylinder as a result, and CUBES is the cube that

26

Figure 2.4 The major orientations of lugs

■ ' 27 ■

completes the representation of the lug.

Most of the information mentioned above is available in the view in

which tfie curve appears. However the thickness of the cylinder (and

the cube) has to be found from another view. One way to go about

finding this thickness is to use the fact that the midpoint on the arc

should map into a line in another view and that this line will be unique

because of the class of objects considered. Therefore once the arc has

been located, the coordinates of the midpoint on its body can be calcu

lated and depending on the view in which the arc resides, and the orien

tation of the arc, we can determine which view should be searched for

the line segment in question. After this step, the cylinder can be

defined uniquely.

The problem of outputting the cubical part of the lug can be more

complicated especially if the line segments connected to the endpoints

of the arc are not parallel. In this case the cube in question will be a

combination of three cubes. The relation between the three cubes is

demonstrated in figure 2.5. As it can be seen from the figure, the infor

mation that needs to be extracted is the angle beta and the coordinates

of the origin of cube C. The x,y,z dimensions of the cube have to be

obtained with regard to the view we are in. The x,y,z dimensions of

cubes A and B are not important as long as the cubes cover the volume

that is to be extracted from cube C. Cube A and B are defined with

respect to cube C using homogeneous transformation conventions. In

order to ease the output process all rotations and translations involved

in defining cubes A and B are done with respect to the origin of cube C

and then the result of the combination of A,B,C is moved to its

cube c result

Figure 2.5 Combination of cubes to make a frustum

29 . : V. .. , .

appropriate location. That is we define local coordinates with origin

(0,0,0) at the origin of cube C and after subtracting A and B from C we

move the result to the global coordinates of the origin of C.

The routine goes as follows:

FOR view = 1,3 DO
n = number of arcs in this view;
FOR i = 1 , n DO

find the midpoint of arCj;
using the coordinates of the midpoint, find a line that is the pro
jection of the half cylinder in a secondary view;
using the line just fund and arc^ output a cylinder;
using the endpoints of arci(find the dimensions and position of
the cube to be subtracted from the cylinder;
output a cube;
IF the endpoints of arCj are not connected THEN

find two fines that are connected to the endpoints;
JF the lines match THEN

output a cube;
ELSE IF the fines are slanted and equal in length THEN

output a frustum;
END;

END;
END;

END;

It should be noted that after each iteration of the lug algorithm,

the input data is reorganized as a preprocessing for the cube algo

rithm.

30

2.4 6 CORNERS.

Mechanical parts in many cases have round instead of sharp

corners and this simple difference makes the interpretation and

representation of them more complex. As an example let us consider

the case where a cubical object has three sharp corners and one round

corner as shown in figure 2.6. In terms of CSG schemes, the above

object can be represented as follows:

((CUBE A - CUBE B) + CYLINDER C)

where the location of CUBE B and CYLINDER C is at the round corner of

CUBE A and their thickness is the same as that of CUBE A. It is easy to

see that without the rounding effect, the representation of the object

would have simply been CUBE A.

For every round corner, the radius and center of the arc give us

the radius, one of the centers of the cylinder and the x and y dimen

sions of the cube. The origin of the cube .however, depends on the posi

tion of the arc. For example, suppose the horizontal line connected to

the arc is LINE1 and the vertical line connected to the arc is LINE2.

Then we have the following for the x and y coordinates of the origin of

the cube , cube_orig:

Case A:

cube_orig(x) =LINE2(P0INT2(x))1

cube_£>rig(y) = LINE2(P0INT2(y))

1 LINEm(POINTn(x)) means the x coordinate of the n endpoint of LINE m.

31

cylinder C

Figure 3.8 CSG construction of cube with round corner

v' H

32

Case B:
cube_orig(x) = LlNEl(P0INT2(x))

eube_orig(y) = UNE2(P0INT2(y))

Case C:
cube_Drig(x) = LINE2(P0INTl(x))
cube_Drig(y) =LINEl(POINTl(y))

Case 1):
cube_orig(x) = LINEl(P0INT2(x))

cube_orig(y) = LINEl(P0lNT2(y))

The last information needed for the representation of CUBE B and

CYLINDER C is their third dimension, that is the z dimension of the

cube which is the same as the thickness of the cylinder. One way to go

about finding this information, call it zl, is to search the other two

views. However, the same conditions and ambiguities that existed in the

cube interpretation process exist here. That is, there may be more than

one candidate for zl and a set of criterions has to be designed. In addi

tion, the original cube will eventually go through the process of

interpretation and its z dimension which is the same quantity that we

are looking for will be available. So instead of trying to find zl at this

point, a better and faster solution is to mark the cube and cylinder

representations as incomplete and then complete them later when zl

becomes available.

Finally, because of the requirements that the cube interpretation

algorithm has, the round corners should all be replaced by sharp

corners' Therefore, once the round corners have been processed, LINE1

and LINE2 should be extended to meet at a 90 degrees angle. After this

step, the corner algorithm is done.

33

The routine goes as follows:

FOR view ~ 1,3 DO
n = number of arcs in this view;
FOR \ = \,n DO

IF arCj belongs to a round corner THEN
determine which of the four possible cases has occurred;
using the center, radius and endpoints of arCj, find the
dimensions and position of the cube and cylinder;
mark the cube and cylinder just obtained as incomplete and
store them so that they can be accessed later when the
appropriate information is available;
transform the round corner into a sharp corner;

END;
. END;
END; ;

An example that demonstrates a lug and corners is shown in figure

2.7.

2.5 A COMPARISON BETWEEN THIS WORK AND PREVIOUS WORKS

In general there are three main differences between this 2DJ3D

reconstruction algorithm and the ones suggested by other researchers:

CLASS OF OBJECTS

Many authors have designed algorithms that deal with polyhedra

only. This condition seriously constrains the scope and usefulness of

their work since in the real world most mechanical parts contain some

cylindrical or conical part. Other authors, however, have come up with

ways to interpret curved faces too. The class of objects considered in

34

Figure 2.7 Example of a lug and round corners

35

this work is a subclass of the one considered by Aldefeld

([ALDl],[ALD2]j, which is the uniform thickness objects. These objects

generally have a plane base with arbitrary contour and a uniform thick

ness in the direction perpendicular to the base [ALD2]. Another con

straint on the domain of the objects treated is that the curves appear

ing in the drawings should be either a circle or an arc belonging to a

circle. This does not in general limit the domain of objects very much.

PROPOSED APPROACH

The method used in this work is like a "top-down" approach. That is

the existence of a certain goal object (cube, lug,...) is assumed and then

the different views are searched for primitives in order to find proof for

the assumption. In the process of proof finding, the attributes needed

to represent the object in terms of C.S.G. are extracted. The disadvan

tage of this approach is its lack of generality. However, adding more

power to this algorithm, that is, making it capable of treating more

complex objects does not require a major effort. This might be the case

for previous polyhedra oriented algorithms because once curves are

introduced in a drawing, the concept of vertex matching used in some

previous approaches looses its significance. The advantage of this

approach is that it is easier to have a volume oriented representation

because the primitives used in this kind of modeling (e.g. cubes in CSG)

are found and defined independently. In addition, the algorithm is rela

tively fast compared to some of the previous algorithms, when they are

applied to similar line drawings.

36

FINAL REPRESENTATION

The output of this algorithm is the C.S.G. representation of the

object depicted in the three orthogonal views. The most important

advantage of this representation is that it is directly compatible with a

C.A.D. system that uses Constructive Solid Geometry to represent

objects that are stored m its data base. Other advantages of this

volume oriented representation over the ones used previously are the

lack of ambiguity (which is possible in wire frame representation) and

boundedness of the object (which is not always guaranteed in surface

oriented representations).

2.6 EXAMPLES

2.6.1 DATA INPUT

In order to examine the function of the algorithm, a few examples

have been implemented using a manual input routine from the termi

nal. The conventions for inputing each 2D primitive is as follows: The

first two entities to be entered are the TYPE (LINE = 1, CIRCLE '= 2, ARC

= 3) and the MODE (solid = 1, dashed = 0). Then, depending on TYPE the

following entities are entered:

Py i =1,2; j - 1,2. This is the jth coordinate of the ith endpoint.

Cj i = 1,2. This is the ith coordinate of the center.

POS This flag takes values from 1 to 4 depending on the position of the

ARC with respect to its center.

; ... L. 37 \ -\V- .V.,/'

RAD This is the radius of the CIRCLE. V

Therefore a LINE is defined as follows:

A CIRCLE is defined as follows:

■^■'■■4 MODE Cj C2 R^:;: v;.,v;;

And an ARC is defined as follows:

3 MODE Fn Pig P21 PggJPGS ;

on the view. In

view 1 the first coordinate is X, in view 2 it is Y, and in view 3 it is Z. The

first line in the input list contains one digit which is the error margin.

This is the error allowed when two coordinates arc matched. That is, if

the difference between two coordinates is smaller than this number,

then the coordinates arc said to be equal. This error margin is espe

cially needed for the automatic input explained in Chapter 3. The views

are entered in order and they arc separated by -1. Finally, the order in

which the primitives in a certain view arc entered is not important.

The output of the algorithm is a list of primitives separated by

union (+) and difference (-) operators. All the primitives reside in a glo

bal coordinate system. Parentheses are used to separate different

groups of primitives that have to be combined together. The result of

the operation on the primitives in the parentheses is then added to the

list. Those primitives that are not combi ned with Other primitives in

parentheses can be added or subtracted from the list globally. A MOVE

operator is used when it becomes necessary to have the operation on

. 30'

the primitives done locally and the result to be transferred to some glo

bal coordinates. These global coordinates are indicated by the MOVE

operator.

For each primitive, a 3x4 matrix is printed which contains the

information needed for the dimensions and the position of that primi

tive in the global coordinate system. The rows of the matrix correspond

to the X, Y and Z axis. For the CUBE, the first column contains the three

coordinates of one of the vertices. This point is called the origin of the

CUBE. The second column contains the length of the cube in all three

directions. The third and fourth columns correspond to the translation

and rotation information. The concepts of translation and rotation are

taken from the method of homogeneous transformations which is used

in robotics and computer vision [PAUL]. For an example refer to the

output of Example 2, In the case of CUBE 5, we have nonzero entries in

columns 3 and 4. They should be interpreted as follows: translate the

cube in the positive X direction 12 units. Then rotate the cube about

the Z axis 29.743 degrees in the positive direction (using the right hand

rule). For the CYLINDER and CONE, the first two columns are similar to

the CUBE. The origin in the case of CYLINDER is the center of one of the

Circles (top or bottom). For the CONE, the origin is the center of the

base circle. The radius is given in the third column and the rest of the

entries are always zero.

2.6.3 SAMPLE EXECUTIONS

The algorithm has been implemented in "C" language on a Digital

Equipment Corporation VAX 11/780 minicomputer under the UNIX

39

operating system. The following pages contain three sample executions

of the algorithm. The line drawings are shown in figures 2.8, 2.9 and

2.10. Following each drawing there is the list of input primitives and the

result of the execution. The meanings of the input and output lists are

explained in Sections 2.6.1 and 2.6.2. Since the input is manual, an

error margin of 1 unit is adequate because of the high accuracy of the

coordinates entered.

Figure 2.8 Example 1

41

INPUT UST FOR example 1

1'
3 1 8 15 16 15 , 2 ■ 12 15
3 i 2 ■: 12 2 16 4 2 14 1
3 i 2 4 2 & 4 2 6
3 1 22 12 : 22 16 3 22 14
3 1 . 22 ■ 4. 22 8 3 22 6
3 1 4 : 4■■■:'' 5 0 10 5 1 V
3 20 1 19 0 10 19 1
2 i ■' s'- 114 ■ i-vi':;
2 22 ; 14 .5 •.
'2 . i /. 2 6 15'../..'-.. 1 /■:.:/
2 . i 22 6 .5 4: ;
1 l ■ 4. . 20 8 20
1 i 16 20 20 20
1 i 20 20 20 16 .
1 ■ i 20 16 4 20 12 ,
1 i 20 12 20 : 8 4:
1 i 20 8 20 4 . '■
1: i : 20 ■ 4 20 v 1
1 i 19 0 5 4'0'4'44
1 i ■ i 4 " 4
1 l 4 4; 4 8 ; 4-. 1
1 14 : 4 8 1 12
1 i 4 12 4 16
i. i 4 ' : 16 4 20
i. i 11 9.5> 13 9.5
i . 1 - 11 ■ .5 13 .5 .. ,/ .4
l ^ 1 11 .5 ■ 11 '4 9.5 4
l 1 13 .5 13 9.5
i 0 11 5.75 13 5.75
i 0 11 ^ 4.25 : 13 1 4,25. -.1
i 1 8 15 B 20
l ' 1.. 16 . 15 16 20
i 1 . 2 16 4 16 ■
i 1 2 12 4 - 12
l i: 20 ■ 16 , 22 16
l i 20 12 :/ 22 12
l i . 2 4 4 4 4'

l- i 2 8 4 8
1 i : 20 4 ' 22 4
1
-1

. i 20 8 22 8

3 i 3 10.6^ 7 10.6 3 5 8.
2 i 5 8.5 / .75 . . 4 '//

1 i 20 0 20 7
1 i 20 7 9.5 : 7 4

,1 i 9.5 . 7 .5 7 4,4
1 i .5 7 ■ 0 7

<40'

42

1 1 0 7 0 0
1 1 0 0 4 0
1 1 4 0 8 0
1: i 6 0 12 0
1 i 12 0 16 0
1 l 16 0 20 0
1 i 16 0 16 3
1 i 12 0 12 3
1 i 16 3 12 3
1 i .5 7 3 10.6
1 l 9.5 7 7 10.6
1 0 11 0 11 7 .
1 0 13. £> 0 13.5 3
1 0 14.e> 0 14.5 3
1 0 5.5 0 5 . 5 3
1 0 6.5 0 6 . 5 3
-1
1 1 0 0 0 4
1 1 O'. 4 ' 0 8
1 1 0 8 0 16 .
1 1 0 16 0 20
1. 1 0 20 0 . 24 .
1 1 0 24 3 24
1 i 3 24 3 20
1 l 3 20 7 20
1 i 7 20 7 16
1 i 7 16 7 . 13
i i 7 13 ii 13
i i 11 13 ii ii.
i l 11 ' 11 7 11
l l 7 11 7 8
i 1; 7 8 7 4
i 1 7 4 3 4
i 1 3 4 3 0
l 1 3 0 0 0
i 1 0 4 3 4
i 1 0 8 7 8
i 1 0 16 7 16
i .. 1 0 20 3 20
i .. 1 7 11 7 13
i 0 0 1.5 3 ,1.5
i 0 0 2.5 3 2.5
1 0 o 21. 5 . i3 21.5
i 0 0 22. 5 :■!3 22.5
l 0 7.75 11 7,75
1 0 9, 25 11 9.25 13
-1

43

OUTPUT LIST FOR EXAMPLE 1

+ (CYLINDER7 - CUBE2) + CUBE3 + (CYLINDERS - CUBE4)
+ CUBES + (CYLINDERS - CUBE6) + CUBE7
+ (CYLINDER10 - CUBES) + CUBE9
+ (CYLINDER11 - CUBE10)
+ MOVE (11,00,0.50,7.00)((CUBE11 - CUBE12) - CUBE13)
+ ((((CUBE!6 - CUBE14) + CYLINDER!2) - CUBE15) + CYLINDER13)
- CYLINDER! - CYLINDER2 - CYLINDERS
- CYLINDER4 - CYLINDER5 - CYLINDER6 - CUBE!

CYLINDER7
2.000 0.000 2.000 o.ooo

14.000 0.000 0.000 O.OOO
0.000 3.000 0.000 0.000

CUBE2
2.000 4.000 0.000 0.000

10.000 8.000 0.000 0.000
0.000 3.000 0.000 0.000

CUBES
2.000 2.000 0.000 0.000

12.000 4.000 0.000 0.000
0.000 3.000 0.000 0.000

CYLINDERS
2.000 0.000 2.000 0.000
6.000 0.000 0.000 0.000
0.000 3.000 0.000 0,000

CUBE4
2.000 4.000 0.000 0.000
2.000 8.000 0.000 0.000
0,000 3.000 0.000 0.000

CUBED
2.000 2.000 0.000 O.OOO
4.000 4.000 0.000 0.000
0.000 3.000 0.000 0.000

CYLINDER9
22.000 0.000 2.000 0.000

44

14.000 0.000 0.000 0:000
0.000 3.000 0.000 0.000

CUBES
18.000 4.000 0.000 0.000
10.000 8.000 0.000 0000
0.000 V 3. OOO 0.000 0.000

■ CUBE?-
20.000 2.000 0.000 0.000
12.000 4.000 0.000 0.000
0.000 3,000 0.000 0000

CYLINDER! 0
22,000 0.000 2.000 0.000
6.000 0.000 6.000 0.000
0.060 3.000 0.000 0.000

CUBE8
18.000 4.000 0.000 0.000
2.000 8.000 0.000 0.000
0.000 3.000 0.000 0.000

. CUBE9 ~
20.000 2.000 0.000 0.000
4.000 4:000;/ 0.000 0.000
0.000 3.000 : 0.000 0.000

CYLINDER!1
11.000 2.000 2.900 0.000
5.000 0.000 0.000 0.000
8.500 : 0.000 0.000 0.000

CUBE10
11.000 2.000 0.000 0.000
0.100 9.800 ■ 0.000 0.000
4.800 5.800 0.000 0.000

CUBE11
0.000 2.000 0.000 0.000
0.000 ; 9.000 0.000 0.000
0.000 3.600 0.000 0.000

CUBE112

45

0.000 18.000 0.000
0.000 18,000 0.000
0.000 18.000 0.000

CUBE13
0,000 18.000 0.000
0.000 18:000 9.000
0.000 18.000 0.000

CUBE16
4.000 16.000 0.000
0.000 20.000 0.000
0.000 7.000 0.000

CUBE14
4.000 1.000 0.000
0.000 1.000 0,000
0.000 7.000 0.000

CYLINDER12
5.000 0.000 1.000
1.000 0.000 0.000
0.000 7.000 0.000

CUBE15
19.000 1.000 0.000
0.000 . 000 0.000
0.000 7.000 0.000

CYLINDER'3
19.000 0.000 1.000
1.000 0,000 0.000
0.000 7.000 0.000

CYLINDER!
3.000 0.000 0.500

14.000 0.000 0.000
0.000 3.000 0.000

CYLINDERS
32.000 0.000 0.500
14.000 0.000 0.000
0.000 3.000 0.000

55.221
0.000
0.000

34.779
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

46

CYLINDER3
2.000 0.000 0.500 0.000
6.000 0.000 0.000 0.000
0.000 3.000 0.000 0.000

CYLINDER4
22.000 0.000 0.500 0.000
6.000 0.000 0.000 0.000
0.000 3.000 0.000 0.000

CYLINDERS
11.000 2.000 0.750 0.000
5.000 0.000 0.000 0.000
B. 500 0.000 0, 000 0.000

CYLINDER6
12.000 0.000 4.000 0.000
15.000 0.000 0.000 0.000
0.000 7.000 0.000 o.oop

CUBE1
8.000 8.000 0,000 0.000

15.000 5.000 0.000 0.000
0.000 7.000 0.000 0,000

47

Figure 2.9 Example 2

INPUT UST FOR EXAMPLE 2

48

1
3 1 8 11 12 11
2 1 10 14 . 1-
1 1 8 11 4 4
1 1 4 4 0 4
1 T 0 4 0 0 .
1 1 . 0 0 20 0
1 1 20 0 20 4
1 1 20 4 16 4
1 l 16 4 12 11
1 l 12 11 8 11
1 . l 4 4 16 4
1 0 1 0 1 4
1 0 3 0 3 4
1 , 0 17 0 1 17: ,4
1
-1

0 19 0 19. 4

1 1 18 8 18. 4
1 1 . 18 4 ■ 11 4
1 1 11 4 11 5
1 1 11 5 4: 5
1 i 4/ 5 4 .. 0
1. i 4 0 0 0
1 i 0 0 0 .12
1 i 0 12 : ,4 12 .
1 l 4 12 4 7
1 i 4 ■ 7 11- 7 .
1 i 11 7 11 8
1 i 11 8 18 8
1 i 11 5 11 7
1 : i 4 5 4 7
1 0 ,4 1 0 1
1 0 4 3 0 3
1 0 4 9 0 9
1 0 4 11 0 11
1 0 15 4 15' 8
1
-1

0 13 4 13 8

2 1 2 2 1
2 1 2 18 1
2 ; i . 10 2 1
2 i- 10 18 1
1 i 0 0 0 20
1 l 0 20 12, 20
1 ■ l 12 20 12 0
1 -i 12 0 0 0
1 i 5 4 , 5 16
1 l 5 16 7 16

14

OOOOH-5-^!—

ph^OSOHJiphCII^pro, i—11 h£> ^ 05
CO -v2 ^ ^ ^ Ol

-<2 CD .00 CD ->2

CO CD t—* 05 h-A ^ .
(—^ i—^ hf^ 05 ^ hf^ h£*ro i *■ h^-

4*
CO

50

OUTPUT UST FOR EXAMPLE 2

+' (CYLINDERS - CUBEl) + CUBE2
+ MOVE (4.00,4.00,5.00)((CUBE3 - CUBE4) - CXJBE5)
- CYLINDER1 - CYLINDER2 - CYLINDER3
- CYLINDER4 - CYLINDER5

CYLINDER6
10.000 0.000 3.606 0.000
14.000 0:000 0.000 0.000
4.000 4.000 0.000 0.000

CUBEl
4.394 11.211 0.000 0.000
3.769 7.211 0.000 0.000
4.000 4.000 0.000 0.000

CUBE2
0.000 20.000 0.000 0.000
0.000 4.000 O.OOO 0.000
0000 12.000: 0.000 0.000

CUBE3
0.000 12.000 0.000 0.000

•0.00.0 7.000 0.000 0,000
0.000 2.000 0.000 0.000

CUBE4
0.000 24.000 0.000 0.000
0.000 24.000 \ 0.000 0.000
0.000 24.000 0.000 60.257

CUBE5
0.000 24.000
0.000 24.000,
0.000 24.000

CYLINDER1
10.000, 0.000
14.000 0.000
4.000 4.000

12.000 0.000
0.000 0.000
0.000 29.743

1.000 0.000
0.000 0.000
0.000 0.000

51

. CYLINDERS
2.000 0.000
0.000 4.000
2.000 0.000

CYLINDER3
18.000 0.000
0.000 4.000
2.000 0.000

CYLINDER4
2■000 0.000
0.000 4.000

10.000 0.000

CYLINDER5
18.000 0.000
0.000 4.000

10.000 0.000

1.000 0.000
0.000 o.000
0.000 0.000

1•000 o.000
0.000 0.000
0.000 0.000

1.000 0,000
0.000 0.000
0.000 o.000

1.000 0.000
0.000 0.000
0.000 o.000

52

Figure 2.10 Example 3

INPUT LEST FOR EXAMPLE 3

1
1 1 .15 6 .15 0
1 1 .15 0 6 0
1 1 6 0 28 0
1 1 26 0 33 .85 0
1 1 33. 85 0 33.85
1 1 33. 85 6 28 6
1 1 26 6 28 4
1 1 28 ' 4 24 4
1 1 24 4 22 . 14-
1 1 22 14 12 14
1 1 12 14 10 ; 4
1 1 10 4 6 4
1 1 6 4 6 6
1 1 6 6 6 .15
1 1 6 4 6 0
1 1 28 4 28 0
1 1 10 4 24 4
1 0 2 6 2 0
1 0 4 6 4 O'
1 0 30 6 30 0
1 0 32 6 32 0
1 0 15 4 ' 15 14
1 0 19 4 19 14
-1
1 1 14 4. 4 2
1 1 4 2- 4 0
1 1 4 0 0 0
1 1 0 0 0 4 ..
1 1 0 4 0 14
1 1 0 14 0 18
1 1 0 18 4 18
1 1 4 18 4 16
1 1 4 16 14 14
1 . 1 14 14 14 4
1 1 6 14 6 4 .
1 1 6 4 4 4
1 1 4 4 0 4
1 1 0 14 4 14
1 .1 4 14 6 14
1 1 4 2 4 4
1 1 4 14 4 16 .
1 0 14 7 4 7
1 0 H 1 1 4 . 1:
1 0 6 8 0 8
1 0 6 10 0 10
1 0 4 2 4 16
-1

54

z 1 9 17 2
2 1 9 17 5
2 1 9 17 7
2 1. 9 3 1
2 1 9 31 1
3 1 6 2 12 2 4 9
3 1 6 32 12 32 3
1 1 4 6 6 2
1 1 12 2 14 6
1 1 4 28 6 32
1 1 12 32 14 28
1 1 0 6 4 6
1 1 4 6 14 6
1 1 14 6 18 6
1 1 18 6 18 28
1 1 IB 28 14 28
1 1 14 28 4 28
1 1 4 28 0 28
1 1 0 28 0 6
-1

3.5
9 30.5

55

+ (C0NE1 - CYLINDER!) + (CYLINDER5 - CUBEl)
+ MCJVE(2.00,0.00, A . 00) ((CUBE2 - CUBES) - CUBE4)
+ (CYLINDER6 - CUBES)
+ MOVE (20.00,0.00,4.00) ((CUBE6 - CUBE7) - CUBE8)
+ CUBE9 - CYLINDER2 - CYLINDERS - CYLINDER4

CONEl
17.000 0.000 7.ooo 0.000
4.000 35.000 0.000 0,000
9.000 0.000 0.000 0.000

CYLINDER!
17.000 0.000 5.000 0.000
14.000 35.000 0.000 0.000
9.000 0.000 0.000 0.000

CYLINDERS
3.500 0.000 3.354 0.000
0.000 6.000 0.000 0.000
9.000 0.000 0.000 0 000

' ' CUBEl
2.000 6.708 0.000 0.000
0.000 6.000 0.000 0.000
2.646 12.708 0.000 0.000

CUBES
0.000 4.000 0.000 0.000
0.000 6.000 0.000 0.000
0.000 10.000 0.000 0.000

CUBES
0.000 20,000 4.000 0.000
0.000 20.000 0.000 206.566
0.000 20.000 0.000 0.000

CUBE4
0.000 20.000 4.000 0.000
0.000 20,000 0.000 -116.566
0.000 20.000 10.000 0.000

56

CYLINDER6
30..500 0..000 3,,354 0

0.,000 6.,000 0,,000 0
9, 000 O'. 000 0,, 000 0

CUBE5
35.292 6.708 0.000 0
0.000 6.000 0.000 0
2.646 12.708 0.000 0

CUBE6
0.000 4.000 0.000 0
0.000 . 6.000 0,000 0
0.000 10.000 0.000 0

GUBE7
0.000 20.000 0.000 0
0.000 20.000 0.000 63
0.000 20.000 0.000 0

CUBE8
0.000 20.000 0.000 0
0.000 20.000 0.000 26
0.000 20.000 10.000 0

CUBE9
6.000 22.000 0.000 0
0.000 4.000 0.000 0
0.000 IB.000 0.000 0

CYLINDER2
17.000 0.000 2.000 0
4.000 10.000 0.000 0
9,000 0.000 0. 000 0

CYLINDER3
3.000 0.000 1.000 0
0.000 6.000 0.000 0
9.000 0.000 o.ooo 0

CYLINDER4
31.000 0.000 1.000 0
0.000 6.000 0.000 0
9.000 0.000 0.000 0

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

. 434

.000

.000

. 566
000

000
.000
000

000
000
000

000
000
000

000
000
000

■ ■ '57

2.7 PERFORMANCE ANALYSIS

Table 2.1 contains the CPU time needed for the construction of the

CSG model of the examples in Section 2.6.3. This time is obviously

affected by the complexity of the object. Complex parts have compli

cated line drawings in their projections. These drawings in turn have a

large number of graphical elements which causes a larger search list

for each view. A second important factor is the type of graphical ele

ments. For example, for each horizontal line present in view 1, all

three views are searched at least twice for other lines in the cube rou

tine. On the other hand the absence of horizontal lines in view 1 causes

the cube routine to terminate after only one scan through the primi

tives of that view.

The precision of the input data, which is expected in a manual sys

tem, causes the 3D model of the object to be very accurate. That is,

there are no errors in the position coordinates and the dimensions of

the 3D primitives, For instance, in the output of Example 3, CON El

CYLINDER 1 results in the accurate representation of the conical object

whose projections are seen in figure 2.10.

Another characteristic of the output model is that in general all of

the holes present in the input object are represented in terms of 3D

primitives that are subtracted globally from the rest of the object. For

this reason, these primitives appear at the end of the output list. This is

demonstrated in Example 1 where the last 7 primitives correspond to

the holes present in the object of figure 2.8.

U should he noted that m the final model of the object,.the absolute

position of the various primitives is not important. We are concerned

mainly with the dimensions and the relative position of the primitives

58

TABLE 2.1: Time analysis for Examples 1, 2 & 3

CPU TIME (see)

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

1.4 .7 .9

59

with respect to each other. Therefore, the origin of the global coordi

nate system can be chosen quite arbitrarily.

CHAPTER THREE

3.1 INTRODUCTION

As explained previously, the input to the reconstruction algorithm

is the type of primitives found in each view, along with all the informa

tion needed to uniquely define those primitives. More clearly, there are

three; different primitives possible in our line drawings and they are a

straight LINE, a CIRCLE and an ARC. For these three elements the

nffnimum information needed is as follows.

LINE: The coordinates of the two endpoints and the mode (solid or

cavit)'). \

CIRCLE: The coordinates of the center, the radius and the mode.

ARC: The coordinates of the two endpoints, the coordinates of the

In the following sections, two different input systems are proposed.

Because of the requirements for speed and automation, more emphasis

is put on the automatic system. ,

61

3.2 MANUAL INPUT SYSTEM

A manual input system can be designed as follows: the drawings are

placed on a digitizing tablet such as a TEKTRONIX 4954. Using the cur

sor , the operator then points to points of interest and presses the but

ton on the cursor. Each time the button is pressed, the (x,y) coordi

nates of that point are recorded. The operator is also required to

interact with an input routine that asks simple questions like the type

and the mode of the primitive to be entered next. Depending on the

type of the primitive, the routine expects two (for LINE and CIRCLE) or

three (for ARC) points to be entered using the cursor.

The advantage of this process is its accuracy. The error involved in

entering the position of a point is negligible when compared to the size

of the drawings. Another advantage is that dashed lines and curves are

entered just as easily as solid lines and curves are. The disadvantage of

this method, however, is that it needs the involvement of an operator

and in the case of very complex drawings, the process becomes rather

tedious. One way to improve this method is by using the fact that each

primitive, except CIRCLE, is connected to at least two other primitives.

Therefore, we pan have a rule that requires that the last point entered

for a primitive be also the first point for the next primitive unless oth

erwise indicated. If this convention is followed, the number of points to

be entered can be cut to almost a half, depending on the drawing.

An alternate method of obtaining the information needed by the

reconstruction algorithm is to digitize the drawings and then extract

the primitives and their attributes from the digital picture. A block

diagram of such a system is shown in figure 3.1. The advantage of this

method is of course lack of operator involvement and speed. In an ideal

system, the drawing is put under the camera and is digitized. The

resulting data is stored in a file and an image processing algorithm is

applied to it. The output of the algorithm is then fed into the recon

struction routine as explained previously.

There are several problems to be overcome with the kind of system

described above. In order to obtain, a good image, the lighting should

be controlled so that we can avoid unnecessary bright and dark spots.

Resolution can also be a problem. Since the reconstruction algorithm

relies heavily on coordinate matching, it is imperative that the scanner

produces an image with adequate resolution. There are also other

difficulties related to scanning such as noise and distortion, but in a

controlled environment, it can be assumed that the above mentioned

problems are minimal. It is then safe to assume that using adequate

measures when scanning the picture and also some preprocessing (e.g.

thinning and thresholding), a binary picture can be obtained in which

each dark (value = 1) pixel in general has at most two dark 4_neighbors

unless it is at the intersection of two primitives. The importance of this

condition will be seen later when the curve following algorithm is

discussed. Before proposing a method to extract the needed informa

tion from such a picture, a review of rules governing ideal digital

straight lines is adequate.

3.3.2 DIGITAL STRAIGHT LINES

In a digital picture, a neighbor means any of the eight horizontal,

vertical, or diagonal neighbors of the pixel. A digital arc, S, is a con

nected set of lattice points all but two of which have exactly two neigh

bors in S. Let p,q be points of the digital picture subset S, and let pq

denote the (real) line segment between p and q. We say that pq lies near

S if, for any (real) point (x,y) of pq, there exists a lattice point (i,j) of S

such that

max[abs(i - x),abs(j - y)] <1

We say that S has the so called chord property if, for every p,q in S, the

chord pq lies near S. Rosenfeld [ROS] has shown that the digitization of

a line segment is a digital arc and has the chord property. In addition,

if a digital arc has the chbrd property, it is the digitization of a straight

line segment. Using the above theorems, Rosenfeld comes up with a

number of useful regularity properties of digitized straight lines.

Defining a run to be a collection of consecutive l’s in the same direc

tion, the rules are as follows;

1- The runs in a digital arc have at most two directions, differing by 45

degrees, and for one of these directions, the run length must be 1.

2- The runs can have only two lengths, which are consecutive integers.

3- One of the run lengths can occur only once at a time.

64

4- For the run length that occurs in runs. these runs can themselves

have only two lengths, which are consecutive integers;

The above rules apply only when we have a perfect digitization of

thin lines; In practice, the characteristics of an imperfect scanner have

to be held into consideration. In case of straight lines with horizontal or

vertical slopes, the result of perfect digitization and thinning.is ope row

er colurnn/of ccrteecutive dark pixels:' However, rrsr.,: ' real

scanner can be different as shown in figure 3.2. The break shown in the

figure can happen more than once, and it can be in both left and right

directions. A good algorithm should be able to handle this kind of dis

tortion.

3.3.3 DIGITAL ARCS

A digital arc can be detected in a picture by using the fact that the

curvature along the arc should be a nonzero constant witbiri spine error

margin. One Way to find the curvature is to use an algorithm similar to

the one by Freeman and Davis [FRE1].

In their corner finding algorithm,; Freeman and Davis detect the

curvature of a chain coded curve by scanning the chain with a moving

line segment which connects the end points of a sequence oi links. As

the line segment moves from one chain node to the next, the angular

differences between successive segment positions are used as a

smoothed measure of local curvature along the chain; Using this

method, the start and end points of an arc can be detected with rela

tively good accuracy. rt

66

1

1

1

1

1

1

1

1

1

1 l

l

■ 1

1

1

1

1

1

1

1

1

Figure 3.2 Imperfect digitization of a straight line

3.4 THE ALGORITHM

Air algorithm using the results of the previous section has been ;

designed arid is illustrated at the end of this section, A brief description . '

follows:'''''','.;

After the image has been preprocessed, it is scanned from left to

right, top to bottom. Once a pixel with value I is reached the curve is

followed and chain coded [FRE2],[FRE3], The criterion for following the

curve is to check the 4 neighbors first and then the other neighbors of

the pixel. This way, priority is given to the 4 neighbors, it is also

guaranteed that all the neighbors of the pixel are covered (unless the

pixel is at an intersection). After passing each pixel, its value is turned

from 1 to 2 in order to indicate that it has already been covered. This

guarantees that the same curve will not be traced again. The other

advantage of this procedure will become obvious later. The curve follow

ing procedure stops when no more neighbors with value equal to 1 can ;

be found. At this point three cases are possible:

1- CLOSED CURVE

If the last pixel covered has as neighbor the start point of the

chain, it means that we have a closed curve which is possibly a combi

nation of straight line segments and arcs. In order to extract horizontal

and vertical line segments, the difference array is calculated as follows

for each link in the chain:

diffj = linki+1 - link*

Horizontal and vertical lines are characterized by consecutive zeroes in

the difference array. The minimum number of zeroes needed in order

to ensure the presence of a straight line depends on the size of the

68

image. The problem of breaks in the straight line as mentioned in sec

tion 3.3.2 can be handled by realizing that such breaks are character

ized by two consecutive nonzero elements with opposite signs in the

difference array. Except for the latter case, a nonzero element in the

array means that the end of a vertical/horizontai line is reached.

Slanted lines and arcs both give nonzero values in the difference

array. In order to obtain the start and end points of a slanted line or an

arc, the local curvature is calculated for each pixel and summed up. If

at any point the sum starts to rise above some threshold, then that is

the start point of an arc. Somewhere along the line this value stops

increasing and remains constant. That is the endpoint of the arc.

Finally, where ever the sum is relatively constant, it is assumed that

the curve is a straight line.

In case no straight lines can be found in the closed curve, the cuive

is assumed to be a circle. The radius and the approximate center can

be calculated by solving the equation of the circle using three points on

its perimeter.

2- DASHED LINE

If the last pixel covered has only one nonzero neighbor, then we

have encountered a dashed line. The procedure for following a dashed

line can be rather complex unless a few assumptions are made. For

example if it is assumed that the dashed lines are either horizontal or

vertical and with a relatively short length (so that breaks do not occur),

the end of the dashed line can be found by just moving in the previous

direction until a pixel with value equal to 2 is found. This proceduie also

decreases the possibility of error in case the thinning algorithm has

failed to totally thin the dashed lines. It should be noted that if the

dashed lines are too short, they might be mistaken for noise and there

fore ignored by the curve following routine.

3- OPEN CURVE

Finally, if the last pixel has two dr more neighbors with values equal

to two, then we have an open curve. This curve is the combination of

one or more straight lines that can be extracted by using a similar

method as for closed curves.

The algorithm goes as follows:

BEGIN: , :
scan the image;
IF no pixels with value equal to one is found THEN

:: EXIT;

■ else . . . / .■
| follow curve and chain code it until end condition is met. Cnange

: ! : the value of each pixel on the curve from 1 to 2;
END " : : / : ■ ■: ■■■ ■'
IF the last pixel on the curve has as neighbor the first pixel on the
curve THEN

/* It is a closed curve */

- JF there are no straight lines THEN
/* It is a circle */
find the center and radius of the circle;
output a circle;
GO TO BEGIN;

ELSE 7 ;Vv -':-
output the lines;

END . : -
IF there are no breaks between the lines THEN

GO TO BEGIN;

70

ELSE /* There are arcs or slanted lines between the previous lines
7. ■ */

find the position of the arc or slanted line or both using the cur
vature function;
IF there is an arc THEN

find its endpoints and center;
output an arc;

END
IF there is a line THEN

find its endpoints;
output a line;

END
GO TO BEGIN

END
END
ELSE IF the last pixel has a 2 neighbor THEN

/* It is the combination of one or more straight lines */
extract the lines using the difference array;
output the lines;

ELSE
/* It is a dashed line■*/'
proceed in the last direction in the chain code to find the endpoint
of the dashed line;
output the dashed line;

END
GO TO BEGIN

END
3.5 EXAMPLES ;

The algorithm described in section 3.4 has been implemented in

"C" language on a Digital Equipment Corporation VAX 11/780 minicom

puter under the Berkeley 4.2 UNIX operating system. The drawings

shown in figures 3.3 and 3.10 were photographed and the negatives were

digitized using an 0PTR0NIX P1000 drum scanner with a 100 micron

resolution. The resulting images were 300 X 300 pixels of 8 bits each.

The images were eventually reduced to 200 x 200 pixels by cutting out-

the edges of the picture that did not contain any drawings. These are

71

shown in figures 3,4 through 3.6 and figures 3.11 through 3,13. An

appropriate threshold was then found in order to separate the drawings

from the background. The original picture was then transformed into a

binary image using this threshold. Because of the high resolution of the

scanner, the resulting lines are in general more than one pixel thick.

This may cause ambiguities for the curve following routine and there

fore a thinning algorithm is applied to the thresholded image in order

to eliminate this problem. In general, the amount of noise in the pic

ture after thresholding is small because of the considerations made

during digitization (e.g. uniform lighting). In addition, the algorithm, has

a limited capability to distinguish between noise and elements belong

ing to the drawings. This is discussed later in this chapter. The results

of the above preprocessing are shown in figures 3.7 through 3.9 and 3.14

through 3.16. The algorithm explained in Section 3.4 was applied to

these images separately. The coordinates of the primitives found in

each picture were shifted appropriately in order to make the three

views compatible. This is necessary because the reconstruction algo

rithm relies on a global coordinate system for matching appropriate

primitives together, as explained in Chapter 2. The output of the algo

rithm is the list of primitives found in each view. The conventions used

to describe the primitives are the same as in Chapter 2. This list of

primitives was then fed into the reconstruction algorithm and the 3D

representation of the object was obtained. These are shown in the fol

lowing pages. For a complete explanation of the meanings of the input

and output lists, the reader should refer to Sections 2.6.1 and 2.6.2.

72

VIEW 1 VIEW 2

I
VIEWS

Figure 3.3 Example 4

73

Figure 3.4 Digital image of view 1 of Example 4

74

Figure 3.6 Digital image of view 3 of Example 4

76

Figure 3 8 Vi

78

79

PRIMITIVES EXTRACTED FROM VIEW 1

11 29.0 148.0 27.0 29.0

1 1 27.0 29.0 0.0 28.0

1 1 0.0 28.0 1.0 0.0

1 1 1,0 0.0 174.0 1.0

1 1 174.0 1.0 173.0 29.0

11 173.0 29.0 146.0 30.0

1 1 146.0 30.0 145.0 145.0

3 1 145.0 145.0 29.0 148.0 1 88.1 136.0

2 1 85.82 160.57 15.05

1 1 30.0 29.0 145.0 29.0

80

PRIMITIVES EXTRACTED FROM VIEW 2

1 1 29.0 52.0 28.0 0.0

11 28.0 0.00.0 1.0

1 1 0,0 1.0 1,0 157.0

1 1 1.0 157.0 29.0 156.0

1 1 29,0 156.0 30.0 102.0

I 1 30.0 102.0 195.0 101.0

II 195.0 101.0 194.0 53.0

1 1 194.0 53.0 29.0 52.0

10 176.0 76.0 176.0 101.0

I 0 147.0 69.0 147.0 101,0

II 29.0 55.0 29.0 101.0

81

PRIMITIVES EXTRACTED FROM VI EW 3

I 1 155.0 1.0 154.0 176.0

II 154.0 176.0 0.0 175.0

1 1 0.0 175.0 1.0 0.0

11 1.0 0.0 155.0 1.0

11 101.0 30.0 100.0 147.0

1 1 100.0 147.0 53.0 146.0

11 53.0 146.0 53.0 39.0

11 53.0 39.0 101.0 30.0

10 53.0 103.0 100.0 103.0

10 63.0 73.0 100.0 73.0

THE OUTPUT OF THE RECONSTRUCTION ALGORITHM

82

+ (CYLINDERS - CUBE1)
+ CURE2 + CUBE3 - CYLINDERl

CYLINDERS
88.100 0.000 57.607 0.000

136.000 0.000 0.000 0.000
53.000 48.010 0.000 0,000

CUBE1
-28.607 231.315 0.000 0.000
32.785 115.215 0.000 0.000
52.990 40.010 0.000 0.000

CUBE2
29.000 116.000 0.000 0.000
28.983 119.017 0.000 0.000
52.990 48.010 0.000 0.000

CUBES
0.000 173:000 0.000 0.000
0.000 28.018 0.000 0.000
1.000 154.003 0.000 0.000

CYLINDERl
85.820 0.000 15.050 0.000

160.570 0.000 0.000 0.000
83.000 37.000 0.000 0.000

83

VIEW 1 VIEW 2

VIEWS

Figure 3.10 Example 5

84

Figure 3.12 Digital image of view 2 of Example 5

86

87

Figure 3.14 View 1 of Example 5 after preprocessing

88

§uissaoojdaa<J ja^.g aiduiexg jo g AaiA 91 g aonSy

90

1- 1 0,0 260 2.0 0.0

1 1 2.0 0.0 154.0 j;0

; i; i:;"'i.54.o; ■ 1.0 153.0 2?.o

3 1 76.4 80.4

1 1 153.0 27.0 97.0 102.0 ’

■ 1 1: i 52.0 98.0 0 ■ 0 26.0 ■ ' ’;■. : ::;?V ■■

2 1 80.18 80.59 18.60 .J V-/

1 0 7.0 28.0 151.0 27.0

91

1 1 106.0 87.0 27.0 87.0

1 1 27.0 87.0 25.0 0.0 .1

1 1 25.0 0.0 0.0 1.0

; 1 1 0.0 1.0 1.0 115.0 ■ :

1 1 1.0 115.0 61.0 116.0

1 1 61.0 116.0 62.0 142.0 ;

1 1 62.0 142.0; ;98.0 141.0

1 1 98.0 141.0 99.0 115.0

1 1 109.0 113.0 108.0 87.0 1

1 1 99.0 115.0 109.0 11.3.0

1 1 96.0 li5.0 62.0 115.0 1

m

11 1.0 0.0 109.0 1.0

1 1 109.0 1.0 110,0 59 ./O'

' 1 1 110;0 59.0 137.0: 60.0 /

^ 11 137.0 60.0 138.0 96.0 /

I 1 136.0 96.0 109.0 97.0

1 1 1 109.0 97.0 108.0 154.0

///I; 1 108.0 154.0 0.0 153.0

II 0.0 153.0 1.0 0.0

1 ■ ■ HI 82.0 ■ ■ 1.0 '82.0 153.0'

1 1. 109.0 60.0 109.0 95.0

93

+ CYLINDER1 + (CYLINDER2 - CUBEl) + MOVE (0.00,26.00,87.00)((CUBE2
- CUBE3) - CUEE4) + CUBES

CYLINDER!
60.180 0.000 18.600 0.000
80.590 0 000 0.000 0.000

110.000 27.019 0.000 0.000

CYLINDER2 .
76.400 0.000 29.848 0.000
80.400 0.000 0.000 0.000
87.000 26.019 0.000 0.000

CUBEl
22.152 104.697 0.000 0.000
38.303 59.697 V 0.000 0.000
86.981 26.019 0.000 0.000

CUBE2 ■
0.000 153.000 0.000 0.000
0.000 76.000 0.000 0.000
0.000 26.019 0.000 0.000

CUBES
0.000 306.000 0.000 0.000
0.000 306.000 0.000 0.000
0.000 306.000 0.000 54.164

CUBE4
0.000 306.000 153.000 0.000
0.000 306.000 0.000 0.000
0.000 306.000 0.000 35.836

CUBES
2.000 152.000 0.000 0.000
0.000 26.077 0.000 0.000
1.000 108.005 0.000 0.000

94

3.6 PERFORMANCE ANALYSIS

The CPU time heeded for extracting the primitives from each view

using the automatic input algorithm is demonstrated in Table 3.1. As it

was expected, the processing time for Example 5 is longer than the

time for Example 4. This is due to the fact that the images of Example 4

Contained less distortion and hoise as explained previously. In general,

the factors that play important roles in determining the CPU time are

the image size, number of primitives and the amount of noise. Each

time a curve of length less than 5 pixels is detected, it is considered to

be noise. Thisnumber is dependent on the size and type of the drawings

in the image and should be supplied to the algorithm. For our case,

considering the length of the dashed lines, a minimum length of 5 pixels

turns out to be very appropriate.

One weakness of the algorithm can be the processing of short

dashed lines. In some cases it might be difficult to differentiate between

the start Of a dashed line and noise. However once the start of such

lines is detected, the length of the remaining dashes is not important.

Therefore the possibility of the occurence of such a situation is rather

smalF Problems niight also Occur when the drawing contains both

Short lines ahd long arcs. In this case, the minimum length requirement

for a line has to be set relatively low. Then the arc might contain a seg

ment that is long enough to qualify as a line and an error will happen.

A comparison between the results of the manual and automatic

primitive extraction processes shows that the latter is much faster (as

expected) but less accurate. It is obvious that the manual input pro

cess will take more than a few minutes and therefore as far as speed is

TABLE 3,1: Time analysis for Examples 4 & 5

CPU TIME (sec)

EXAMPLE 4 EXAMPLES

Vicvvl ViewS View3 Viewl ViewS ViewS

li.o 7.6 9.7 2S.5 12.0 22.7

concerned there is no match. However the automatic process lacks the

precision of the manual system Which was demonstrated in the previous

chapter. For instance in Example 4, the endpoints of the arc should

have the same vertical (Y) coordinate. As it can be seen from the

results, the values are different (145.0 and 148.0). The reason behind

this lack of accuracy is the fact that the presentation of the line draw

ings Was transformed from the original analog form into a digital form

and therefore some error is introduced. This error justifies the intro

duction of ah error tolerance as discussed in section 2.6.1. A conse

quence of this kind of error is that the final model might not be as

accurate as before However, given the size of the drawings and the

final model, the problem is not very significant.

■■r'.V, ' i't:

CHAPTER POUR

CONCLUSION AND FUTURE RESEARCH

4.1 CONCLUSION

In this work, the problem of automatic CSG construction from line

drawings was studied and two algorithms (i.e. input and construction)

were proposed in an attempt to demonstrate the feasibility of such a

system. The results from Chapter 2 show the feasibility of an algorithm

that constructs the 3D model of an object from its 2D orthographic pro

jections. However, certain assumptions have to be made about the

characteristics of the object, that is, a certain class should be defined.

Once the algorithm is designed, more complex examples can be used in

order to upgrade the power of the routines and therefore expand the

boundaries of the initial class.

The results obtained from the automatic extraction of primitives

from the digitized line drawings were better than expected. This was

possible partly because the digitization process was done in a relatively

controlled environment. That is, thin line drawings were photographed

against a uniform back light and the negatives were digitized Using a

high resolution scanner. As for the algorithm, it was designed to be able

to treat digital straight lines even when they do not follow the rules

listed in section 3.3.2.

The combination Of the above algorithms enables us to achieve with

some limitations, the goal set at the beginning of this report, which is

the desire to transform the information available in the form of 3 ortho

graphic view line drawings into a form directly compatible with an NC

machine;

4.2 FOTUEE research

So far, the algorithms designed in order to construct a 3D model of

an object from its 2D projections have been limited to certain classes of

objects. There still remains the considerable challenge of designing a

system general enough to handle any kind of objects. This ideal system

would certainly require some limited interaction with a human operator

in order to overcome the ambiguity caused by the complexity of certain

line drawings.

■l ":. :•

REFERENCES

REFERENCES

[ALD1] Aldefeld.B., “On Automatic Recognition of 3D Structures from
2D Repesentations”, Computer Aided Design, vol. 15, no. 2,
pp59-64, MARCH 1983.

[ALD2] Aldefeld.B., “Automatic 3D Reconstruction from. 2D Geometric
Part Description”, Proc. Conf. on Computer Vision and Pat
tern Recognition, JUNE 1983.

[FRE1] Freeman,H. and Davis,L.S., “A Corner' Finding Algorithm for
Chain-Coded Curves”, IEEE Trans, Comput. 26, 1977, 297-303

[FRE2] Freeman,H., “Computer Processing of Line Drawing Images”,
Computing Surveys, vol.6, pp.57-97, Mar. 1974.

[FRE3] Freeman,H., “On the Encoding of Arbitrary Geometric
Corrfigu rations,’’ IRE Trans. Electron. Comput., vol. EC-10, pp.
260-268, June 1961.

[HAR] Haralick.R.M. and Quceney.D., “Understanding Engineering
Drawings”, Computer Graphics arid Image Processing, vol.20,
pp244-258, 1982

[LAF] Lafue.G., “A Theorem Prover for recognizing 2D Representa
tions of 3D Objects,” Proc. I FTP TC-5 Working Conf. A1 & CAD,
Grenoble, France, March 17-19, 1978, pp. 391-401.

[L1A] Liardet.M.,Holmes,G.& Rosenthal,D., “Input to CAD
Systems :Two Practical Examples ”, Proc. IFIP TC-5 Working
Conf. AI & CAD, Grenoble, France, March 17-19, 1978, pp. 403-
414. . '■

[LUZ] Luzadder.W., Fundamentals of Engineering Drawing,
PRENTICE-HALL, Englewood Cliffs, N.J. 1965.

[PAUL] Paul.R.P., Robot Manipulators, Mathematics, I^rogramming
and Control, MIT Press, Cambridge, Mass. 1981.

[PR1] Preiss.K., “Algorithms for Automatic Conversion of 3-view
Drawing of a Plane Faced Part to the 3D Representation”,

100

Computer Industry, vol. 12, pp 133-139, 1981.

Preiss.K. and Kaplansky.E., “Solving CAD/CAM Problems by
Heuristic Programming", Computers in Mechanical Engineer
ing, Sep. 1983.

[REQ] Requicha.A A.G., “Representations for Rigid Solids: Theory,
Methods, and Systems”, Computing Surveys, vbl. 12, no. 4,
Dec. 1980.

[ROS] Rosenfeld.A., “Digital Straight Line Segments”, IEEE Trans.
Compmt. 23; 1974i 1264-1269. ^

[ROT] Roth,S D , “Ray Casting for Modeling Solids”, Computer Graph
ics and Image Processing, pp. 109-144, ACADEMIC PRESS,

■' v;l982.y;:;

[SAK] Sakurai.il. and Gossard.D., “Solid Model Input Through Ortho
graphic Yiews”, Computer Graphics, vo\. 17, no. 3, July 1983.

[VOE] Req:uicha,A. A; G; and Voeicker.H.B., “An Introduction To
Geometric Modeling and Its Applications In Mechanical Design
and Production”, Advances in Information Systems Science,
ed. by Julius T. Tou, Vol. 8, PLENUM PRESS.NewYork, 1981.

[WEL] Wellman,B., Technical Descriptive Geometry, McGRAW-HILL,
New York, 1957. ;

[WOO] WooiT.C., “Progress.in Shape Modeling”, Computer, Dec. 1977.

APPENDIX

101

APPENDIX

The following pages contain the implementation of the algorithms

explained in Chapters 2 and 3 in the "C" Language.

/* ALGORITHM 1 ♦/

^include <stdic,li>
#include <nath.li>

/♦
Define

*/
utility constants

#deflne X 1
^define Y 2
^define Z 3
^define vT i
^define V2 - 2
^define V3 3
#define MAXSIZE 10
^define TRUE 1
#deflne FALSE ’ 0
#deflne BASE 1000
#define LEG 15000

/♦ '
Define

♦/
code Lor primitive type

#define LINE 1
^define . CIRCLE 2

#deflne ARC 3
^define . CUBE 1
#deflne CYLINDER 2
#define CONE ■ 3

/♦
Define

*/

code for drawing mode

fdefme DASHED 0

^define SOLID 1

/♦
General representat

V
j on of a two

struct PRIM l
. int USE;

int TYPE;
int MODE;
float P0INT1[3];
float POINT.?[3];
float CENTER[2];
float LEN—RAD;
struct PRIM ♦NEXT;

j;

103

■ /;♦ "

General representation of a three dimensional primitive
■■ */■ .

struct PR I M3 \
int TYPE;
int NUM;
int MODE;
int MOVE;
int FLAG;
float ATR[3][4];
struct PRIMS «NEXT;

/*
Global variables

V

int T;
FILE ♦fp, *fopen(); .
struct PRIM *ViEW[4]; .
struct PRIMS *0_PTR, ♦LJPTR;

Functions returning lion integers
*/

struct PRIM ,*getbase() .;
struct PRIM *gethead() ;
struct PRIM *ufuni (). i
struct PRIM *prmtch() ;
struct.. PRIM *rratehl() ;
struct PRIM ♦flndl ine() ;
struct PRIM ♦do_line() ;
struct PRIM ♦do—arcO ;
struct PRIM *do„circle() ;
struct PRIM *talloc();
struet PRIMS ♦getnode();
float angle();

^ *#$#****# *♦♦#♦.$♦*♦*■***♦■♦'* + * s ♦#♦*#*♦***♦*♦*♦♦■ *
MAW()

In the main function, the 1 i st of primi t ives
is read frem the file "in", and the 2D data
structure is setup. Then the various routines
are called and the results are printed out
*9 ******«*«'*#$♦♦*. **■#*♦**■***♦**«♦♦**#****♦****♦#/

mainQ
f-,’;':: ■'' ;

struct PRIM *old_ptr , ♦new_ptr ;
int p,v; '

fp - fopen("in" ,"r

if (fp = NULL) exit(0);
fscanf (fp, "%dt",&T);

for (v = 1;v < 4;v++)\
old_ptr=-0;

/* read primitive type and process accordingly ♦/

while(l)J
fscanf(fp,"%d",&p);
if (p<0)

break;
swi tch(p) [

case LINE:
new_ptr = do_iine(v);

break;

case ARC:
new_ptr = do_arc(v);
break;

case CIRCLE:
new_ptr■= do_cire] e (v);
break;

default:
printf("Input. errorO);
new_ptr =0;

j /♦ end of switch */
, if (old_ptr “ 0)\

old_ptr = new_ptr;
■ VIEWTv]=new_ptr;

i
else {

old^Dtr->NEXT = new_ptr;
old_ptr = new_ptr,

i
] Z* end of while(l) */

if (old_ptr != 0)
old_ptr^>NEXT' = 0;/* last print Live points to 0 */

5 /* end of for */
/♦ The 2d data structure has been initialized */
/♦Start processing ♦/

for(v=l;v<4;t++){
Cone(v);

]
for (v=l; v<4; V+4-)

Cylinder(v);
for(v=l;v<4;y++)

/♦ process corners */

104

105

Corner();
/* process cubes */■
Cube();

/•♦ output the final result V
out_res();

] /* end of rmin */

D0-LINE(.) .

This function creates a node using talloc()
and initializes it by asking the operator for
the different attributes. of a LINE,

s t rue t PR IM * do_l i ne (v)

int v;
i

struct PRIM *talloc(),*ptr;
int . i, j ,mn;
float xl, y 1, x2, y2, d, dim;

i =- v; /♦ i and j are the coordinate system ♦/
j = (v % 3) 1;

ptr = talioc(); /* get new node V

/* Ini tialization of the node V

ptr-xJSE ;-.0; ptr,->TYPE = 1.;
.. f scanf (fp ,."%d" , &rn) ;

ptr->MGDE f m;
f scanf (fp , "%,f " ,&xl) ; fscanf (fp, "%f'L&yl);
f scanf (fp ,. "%f" ,&x2) ; f scanf (fp, "%f" , &y2) ;

/* enter the points in order V
if (((xl-x2) > T) || ((yl~y2; > T)) j'

dum= xl; xl - x2;
x2 = dim; dun = y t;
y 1 =. y2; y2 = dun;

! :

p t. r - >P01 NT 1 [1] = x 1; ptr“>P0INTl[2j = yl;
ptr->P0INI2[l] = x2; ptr->P0INT2[2] - y2;

/* calculate and enter the length V

d = (_x]-x2)*(xl-x2) • + (y?-y2) ♦(yl’-y2);
;ptr->LER_RAD - sqrt ((double) d);

return(ptr);

/.**♦♦ •***•*♦♦♦* <■. i

I)0_CIRCLE()

106

This function creates a node using tallocQ
and initializes.it by asking the operator for
the different attributes of a .CIRCLE,.
*♦♦**♦♦*♦♦♦♦'**♦***♦♦♦*♦♦*♦*♦* ♦ *. ********** *-♦ * * /
struct PRIM *do_c:ircle(v)

iiit v;
f

struct PRIM *tai loc(), *ptr.;
int i, j ,nt
float xl,y1,rad;

i. = v; /* i and j are the coordinate system ♦/
j = (v % 3) 1;

ptr = tallocf); , /♦ get new node */

/* Initialization of the node */

ptr->USE = 0; ptr->TYPE = 2;
f scanf (fp, "%d" ,Mi) ; ptr->MDDE = m;
fscanf (fpP!%f" ,&xl) ; fscanf (.fp, "%f '',&yl);

. - ptr->CENTER[0] = xl; ptr->CENTER[1] =.'yl;
fscanf (fp, , &rad.) ;
ptr->LEN_RAD = rad;

return(pt^);
i .
/***

DO_ARC()

This function creates a node using talloc()
and 'initializes it by asking' t.he operator ‘ ror
the different attributes of an ARC.
♦*♦♦♦*♦♦♦*♦.♦♦*♦*#*♦** * >■ ? ******* ♦ *,* * * * *■* * * /
struct PRIM *do_arc(v)

int v;
i r ;

struct PRIM *tal l.oc() . *ptr ;
.int i, j ,rri.n;
float xl,yl,x2,y2,rad,dum;

i = v; /* i and j are the coordinate system V
j = (v % 3) + 1;

ptr ~ talloc(); /* get new liode */

/* Initialization of the node V

ptr->USE = 0; ptr->TYPE = 3.;
fscanf (fp, "%d" ,Mn) ; ptr->MDDE = m;
f scanf (fp,”%f " ,&xl) ; f scanf (fp, ff%f " , &yl);
fscanf (f p, r,%f " ;&x2) ; f scanf (fp,"%f", &y£);
f scanf (fp, "%d" ,&n);

107

. ptr->POINTl[0] - n; ptr->P0iNT2[0] = n;
/* enter the points in order */
if (xl > x2 | | yl > y2) j-

dun = xl; xl = x2;
x2 = durn; dun = yl;
yl y.2\ y2 - durn;

ptr->P0INTl[1].= xl; ptr->P0lNTl[2] = yl;
ptr->P0INT2[1]. - x2; pt.r->P0INT2[2] = y2;
fscanf(fp,"%f" ,&x1); f scanf.(fp, "%f" , &y!);
ptr->CENTER[0] =;xl; ptr->CENTER[1] = yl;

/♦ calculate the radius of the arc */
rad = (xl-x2) *(xl-x2) '+ (yl-y2) *(yl-y2);
ptr->LEN_RAD = sqrt((double) rad);

return(ptr);

This function allocates storage for 2d primitives

struct PRIM •♦talToc.f.) . •

\
char *cal 1 oc();

return((struct PRIM *) calIoc(l,sizeoT(struct PRIM))),

This function 'al locates storage for. 3d primitives

struct . PR I M3 *getnode()
\

char *cal 1 oc();
^.struct PRIM3 *ptr;.

static int count = 1;

ptr = (struct PRIM3 *) calloc(l,sizeof(struct PRIM3));
/* Initialize the output pointer if. this is the first access V

if (count =~ 1)|
0_PTR = ptr;
0—PTR“>TYPE - 0;
ptr = (struct PRIM3 *) calloc(1,sizeof(struct PRIMS))
0-_PTR->NEXT = .ptr;
L_PTR =: ptr; .

• i . ■■■ ■■■;'. ■ • ■

count 4-+;
return(ptr);

TALL0C0

GETNODEQ

EQ()

108

Function Equal.. T is the error imrgin (Threshold).

EQ(x,y)

float x,y;
>

if(tabs(x - y) < T)
return(l);

return(O);

/♦♦♦*♦***<<
NEQ()

Fun c t ion ."Not E qu a 1 ■

NEQ(x.y)

float x,y;

if(fabs(x - y) > T)
return(l);

return(O);

UFUN3Q

Find two lines that share the given coordinates
If they have the same si ope,merge them together.

ufun3(col,co2,view)

float ool,co2;
int view;

int sco,dco;
float 0011,0012,0021,0022;
struct PRIM *ptr,*dum, *iinel,*11062,*nptr;

ptr =0;
while((1inel=findline(view,col,co2,ptr))!=NULL)}

ptr =1inel;
if (linel->USE = 'Q)j

whi le ((1 ine2=find.l lne(view, col, eo2, ptr)) ! -NULL) {
ptr = line2;
if (Iine2->USE — 0)[

coll = 1ine1->P0INTI[1];
col2 = 1ine1->P0INT1[2];
co21 = 1ine1->P0INT2[1];
co22 = 1inel->P0INT2[2];

109

if(EQ(coll,co21)) sco = .1; ■
el se

if(EQ(col2,co22)) sco = 2;
else

return(O);

■if(NEQ(1ine2->P0INTl[sco],1ine2->P0INT2[sco])) return(O);
dco (sco ~ 1) ? 2 ; 1;
if (EQ(l inel->POINTI [dco], 1 ine2->P0INT2[dco])) [

coll = 1ine2->P0INTl[1];
col2 = 1 ine2- >F0 INT-1 [2];
co21 = 1inei->P0INT2[1];
co22 = linel->P0INT2[2];

else {
co21 = 1ine2->P0INT2[l];
co22 =■ Tine2->P0I'NT2[2];

j
/♦ The lines have the same slope.

Create a third line that can -replace the above two

nptr = talloc();
nptr->USE ~ 0;
nptr->TYPE - LINE;
nptr->MODE = SQLUD;
nptr->POINTl[1] = coll;
nptr->P0iNT2[1} = co21;
nptr->POINT'l [2] = co!2;
np t r - >P01 NT 2 [2] = eo22;,
nptr- >LEN-RAD = 1 i ne. 1 - >LENJRAD + 1 i ne 2 - >LENJRAB;

dim = VIEW[view] ;
VIEW’[view] = nptr;
nptr->NEXT =■ dun;

/* Delete the original two lines */

delete(1inet,view) ; delete(1ine2,view);
return(l);
]/* end of second if V

}/* end of second while */
j/* end of. first .if .*/

j/* end of first while ♦/
returii(G);

y ««**♦*** r* * «♦ * t:# * * *:# *♦****♦♦♦*♦#*♦********: *
■’ OUT-CUBE () ,

Add a cube to the 3d data structure
• ♦•**♦**•♦*♦*♦****■**•/
out_cube(buf,sign,flag,move)

float buf[3][4];

int sign,flag ,move ;

static int i = 1;
int j,k;
struct PRIM3 *ptr;

ptr - getnodeQ; ptr->TYPE - CUBE;
ptr->NUM = i-H-; ptr->M0DE = sign;
ptr->M0VE = noove; ptr->FLAG = flag;

for (i ~ 0;j < 3;j4-f){
for(k = 0;k < 4;k++)

ptr->ATR[j][k] = buf[j][k];

110

L_PTR->NEXT = ptr;
L_PTR = ptr;
ptr->NEXT =0;
return;

► ****■*♦♦***»
OUT-CYLQ

Add a cylinder to the 3d data structure

out_cy 1 (buf, s i gn, flag)

float buf[3][4];
int sign,flag;

static int i = 1;
int j,k;
struct PRIM3 *ptr;

ptr = getnodeQ; ptr->TYPE = CYLINDER;
ptr->NUM = i-H-; pt.r->M0DE = sign;
ptr->FLAG = flag;

for{j = 0;j < 3;j++){
for(k = 0;k < 4;k++)

ptr->ATR[j][k] = buf[j][k];

L_PTR->NSXT ” ptr;
LJPTR = ptr;
ptr->NEXT = 0;
return;

DELETE()

Remove the given element from the input
data structure.
******* i- ********v3
delete (ptr, view)

Ill

struct PRIM *ptr;
int view;
! ' ' '

struct PRIM ♦ptrl ,.*ptr2;

ptrl = VIEW[view] ;. ,
if (ptrl = ptr) {

VIEVVlview] = ptr->NEXT;
return; .

■■■ r ■■
whiIe((ptr2 - ptr!->NEXT) != NULL){

if (ptr2 == ptr)j
ptrl->NEXT = ptr->NEXT;
return;

I
,ptrl = ptr2;

l
/ *************************** h **************

0UT2Q

Outputs the three cubes needed to represent
a si anted, cube. :
******* ******* * **. * * * *■* * * * V * * * * * *********** *****/

out2(legl,legS.ptr,view.pos)

struct PRIM ♦leg! _,..♦! eg2p*ptr;
int vj ew.pos;

float cx,cj, .c- ,xl ,y] ; zl .rrax, teta; .
float buf1[3][4],buf2[3][4],buf3[3][4];
float len; tco; •
float colrrax, coliiiin, cpSTiax, coSnin, durrt;
i rut

for(i=0;i<3; i++)-f
for(j-0;j<4;j++)[

buf1[i][j] =0.Q;
■_.buf2[i][j] = 0.0;

bu“3[i][j] =0.0;

,teta = angle(leg1,view);
/♦get the third coordinate and length ♦/

len = ptr->LEN_RAD; . ;
. j = (EQ (pt r - >P0 INT 1 [1], p t r - >P01 NTS [1])) ? 2 ;

tco = ptr->P0INTl[j];

/* get the maxinum and mininurii coordinates ♦/.

coImin = (1eg1->P01NT1 [1] < legl->P0INT2[1]) ?
legl->P0INTl[1] : legl->P0TNT2[1];

dum = (1 eg2->P0INT 1 [1] < leg2->P0INT2[l]) ?
leg2">P0INTlf1].: Ieg2->P0INT2[1] ;

112

colimn — (dim < colmin) ? dim : colmln;
colrrnx = (legl->POINTl [1] > legl->P0INT2[1])

legl->POINTl[1] : leg 1->P0INT2[1];
dim = (leg2->P0INT.l [1] > Ieg2->P0INT2[1]) ?

leg2->P0INTl[l] : Ieg2->P0INT2[1] ;
colmax — (dim > colmax) ? dim : colmax;
coSmin = (!egl->POINTl[2] < legl~>P0INT2[2])

Iegl->P0INTl[2] . legl->P0INT2[2];
dim= (1 eg 2- >P01 NT 1 [2] < Ieg2->P0INT2[2]) ?

leg2->P0INTl[2] ; Ieg2->P0INT2[2] ;
co2min = (dim < coSmin) ? dim : co2min;
co2max = (]!egl->POINTl [2] > legl->P0INT2[2])

leg 1->PQINT1[2] : legl->P0INT2[2] ;
dim= (leg2->P0INTl[2] > Ieg2->P0INT2[2]) ?

Ieg2->P0INT1[2] ; Ieg2->P0INT2[2] ;
coSmax = (dim > co2nax) ? dim : co2rmx;

/* Depending on the view, use the above
information to find the attributes for the
Cubes.•

/♦

if (view == l)j
swi tch(pos) \

case 1:
buf2[2][3] = teta;
buf3[0][2] = colmax - colmin;
buf3[2][3] = 90 - teta;
break;

case 3:
buf2[1] [2] = co2rmx - co2min;
buf2[2][3] = - teta;
buf3[2][3] =90 - teta;
break;

case 4:
buf2[0] [2] -- colmax -colmin;
buf2[l][2] = co2max - coSimn;
buF2[2][3] = 90 + teta;
buf3[0][2] = colmax - colmin;
buf3[2][3] = 180 - teta;
break;

cx = colmin; xl = colmax - colmin;
cy - co2min; yl = co2max - coSnin;
cz = tco; zl = ien;

s
else if (view — 2) [

switch(pos) j
case 1 :

buf2[0][3]. = - teta;
buf3[2][2] = co2max - co2min;
buf3[0][3] = teta - 90;
break; ''

113

ease 3;
■buf3’[l][2] = coimax ~ colmin;
buf3[0][3] = teta;.
buf2[Q][3] = 90 - teta;
break;

case 4:
buf2[2] [2] - cb2max -eo2min;
buf2[1][2] = coimax - colmin;
buf2[0][3] = - (90 + teta);
buf3{2][2] - co&mx - co2min;
buf3[0][3] = - (180 - teta);
break; .

cy = colmin; yl - coimax - colmin;
cz = coSmin; zl ~ co2nax - eo3rrin;

- ex - too; xl = len;

! ’ ■-
else if (view — 3) \

swi tch(pos) ' j
.'case .1: / ..

bnf2[1 j [3] = teta;
buf3[0][2] = co2max co2min;
buf3[1][2] ~ 90 - teta;
break;

case 3:
buf3[2][2] - coimax - colmin;
buf3[1][3] - teta;
buf2[1][3] = 90 - teta; ;
break;;

case 4:
buf 2[0] [2] = co2nax -eo2min;
buf2[1][3] - 180 + texa;
bnf3[0][2] -coSnax - eo2min,
buf3[2] [2] = coimax - colmin;
buf3[1][3] = - (90 + teta),
break;

. " jV;/; . 'V; - ' ' . . ■' ■' - .V.

cz -colmin, zl = coimax - colmin;
cx = co2mi,n; xl - co2nax ^ coSniii;
cy t.co; yl ~ len; . ; .

i ; ' ■ v; ;f
max = (xl > yl). ? xl yl;
max = (max > zl) .? max : si ;

buf 1 [0] [0] = cx; bufl[l][0] - cy; bufi[2][0}
buf1[0][1] - xl; bufl[li[l] -yl; bufl[2][l]

/♦ .output the middle cube ♦/

out_cube(buf1,1,- 2, 1) ;

/ ♦ The ; dimensi ons of the -slanted cube. are . not

cz;
zl;

114

inportant as long as they cover the right area
/♦

buf2[0][1] = 2*max; buf2[l][l] = 2fimx;
buf2[2][l] = 2*rrax; buf3[0][l] “ 2*rmx ;
buf3[l] [1] = 2*rrax; buf3[2][l] - 2 *max ;

/♦Output the slanted cubes */

out_nube (buf'2 ,-1,1,0);
out__cube (buf3, -1, 1,0);

return;

ANGLE ()

Find the angle that the line rmkes with the
horizontal. Teta will be between 0 and 90
degrees.

float angle(1tne,view)

struct PRIM * 1 ine ;
int view;

int ver.hor;
float de J x, dely, dim;

switch(view) j
case Vl:

ver “ 2;.hor = 1; break;
default:

ver = 1; hor = 2; break;
J ' ■*' . .

dely = ;fabs(l ine->P01NTl [ver] - 1 i ne->P0fNT2[ver]) ;
delx = f abs (i ine->POINTi[hor] - 1 ine~>POINT2[hor■]) ;

if (delx 0) return(90= 0) ;
el se \

dum = atan((double) (dely/delx));
dum = dim ♦ 180.0/3.1415;
re turn (dum) ;

0U1LRES ()

Reorganize the 3d data structure if necessary
and output the results .

out_res()

struct PRIMS *ptrl , ♦ptr2, *durn, *s_pt rl,, *s_ptr2, *s_ptr3.,. *s_ptr4;

115

int i.count,j,k;
float xm, ym, zrn;

. pr i nt f (THE RESULT 0);
fp - fopen("res” , 'V');

'/* Send a11 single cavity cylinders and cubes to the end of the list

ptr2 '= 0_?TR;
count - 0;
■dim = 0;
while ((ptrl - (ptr2->NEXT)) !=NULL)j

if ((ptrl->TYPE — CYLINDER || ptrl->TYPB = CUBE)&&
ptrl->M0DE = -1 Me
ptrl->FLAG =, 0){

if(ptrl— dum) break;
L_PTR->NEXT - ptrl;

,■ L_PTR = ptrl;
ptr2~>NEXT"= ptrl->NEXT;

. p.trl->NEXT = 0,
dum = (count++) ? dim : ptrl;

- 1 ■
•else

ptr2 ..= ptrl;
■ 1

/* See if any Cubes or Cylinders have to be updated V

ptrl - OJPTR;
whiLe ((ptr2■= ptrl->NEXT) !-NULL)|

if (ptr2->TYPE — 0 M ptr2->FLAG > 40 && ptr2->FLAG < 50)
break;

ptrl = ptr2: .
i , r

'if (ptr2 != NULL)j
s.-ptrl- =• ..ptrl;
s_ptr2 - -p.tr 2;
ptj 1 = ptr2;, .
while ,((ptr:2 = ptrl->NEXT) != NULL) j

7 S v;„’*: >-11: ^--3- ' sac pirZ->FLAG == s _p t r 2 - >FLAG) j
s_ptr3‘ = ptrl • 7
s_ptr4 = ptr2; .7
break;

t " . j '7 ■. ; V
■ ’ ptrl = ptr2;

. i ■ /!; 7 ■ .
■if (ptr2 — NULL) {

, fprintf (stderr /'Error in OUTJRES")';
exit(.l); .

)
s_ptr 1->NEXT. = s__ptr4;
S-ptr3->NT5XT. = s..ptr4->NEXT;

, s_ptr4->NEXT = s_ptr2->NEXT; . .
7 s_^)tr4->FLAG = s_ptr4->FLAG 7 50; .

s : 116 .

/* update the related cube(s) and cylinder(s) */

ptr 1 = s_ptr4;
s_pt,r 1 =- ptr 1 ;
for(j = ptr1->FLAG;j<0;j++)\

ptrl .= ptrl->NEXT;
ptrl->ATR[2][l] = s_ptrl->ATR[2][l];’
ptrl->ATR[2][0] = s_ptrI->ATR[2][0];

/♦ Start printing, the 3D primitves out */

ptrl = 0-PTR;
printf ("0);
count =0;
while ((ptrl = ptrl->NEXT) != NULL){

if (ptrl->TYPE !=NULL)j
count++;
if. (ptrl->M0DE < 0)

printf(" - ");
else if (ptrl->M0DE > 0)

. printf (" + ");
if (ptrl.->FLAG > 10 && p'trl->TYPE = CUBE).

ptrl->FLAG. =' ptrru>FLAG - 50
if (ptr 1->M0VE, == 1)j

xm = ptr 1->ATR['Q] [0];
ym = ptr 1->ATR[1] [0] ;
zm = ptr 1->ATR['2] [0];
for (j“0; j <3; j+4-)

ptr 1->ATR[j'] [0] = 0;
pr i nt f (" JOVE (%5.2f, %5.2'f, %f>-. 2f)" , xm, ym, zm)

■ i •
for ((i = ptrl->FLAG);i<0;1++)

printf ("(”)';■

swi tch(ptr1->TYPE) \
case CUBE;

printf(" CUBE");
fprintf(fp,"0CUBE");
break;

case CYLINDER:
printf(" CYLINDER");
fprintf(fp,"OCYLINDER");
break;

case CONE:
printf("CONE");
fprintf(fp,"0C0NE");
break;

default:
pr i nt f (" pr imi t i ve unknownO);

\
pr int f (" %d" , ptr 1 ->NUM);
fprint f (fp, "%d0, pt r 1 - >NIM);

117

for(i - ptrl->FLAG;i > 0;i--)
printf (")")■;

if (count = 5)j
printf ("0);
count =0;

i ;
f or* (j "0; j <3; j

for(k=0;k<4;k++)
fprintf(fp,"%10.3f"#ptrl->ATR[j][k]);

fprintf (fp, "G);

printf("0);
i : '

CORNER

Find all the curved corners and save the
information necessary to rebuild this part
of the object with a combination of cubes
and cylinders.
#'♦♦*».**** ♦ ♦ ******* * .*'♦* *.* * ♦* ♦ * *■* * *.*■♦ $*♦♦** ♦*/
Corner()

f
struct -PRIM. *bufl[MAXS IZE]*ptr 1, *pt,r2, *dim. *tmp;
int count, i , j , k , flag;
float ptl,pl2,p21,p22,rad,tem;
flo.at; te tal,teta2 j cube[3] [4], cy 1 [3] [4];

/♦•'Initialize the buffers to zero ♦/
for(i=0;i<3;i++)[

for(j~0;j<4;j++){
cube[i][j] = 0;
cyl[i][j] -0;

./*-Get. al 1 . the curves. */
if ((count. = get_curve(Vl, buff, ARC)) '== NULL) return;
for (k~0;k<count;.k++){ ;

tap. = buff[k]
, , rad., = tup - ;>LEN_RAD,. ; . ; ,....

. pi 1 = tnp->P0rNTi[l];
pi2 ■= tap->P0INTI [2];
p21 “ tnp->P0INT2[!l]; .
p.22 = . tnp - >P01NT2 [2];
i f,(tap->P.0INT.l [0] > 5) j>

/* Find the lines connected to the curve. */

. dun = 0;
ptrl = flndl ine (Vl, pi 1, pi 2: dun) ;
if (ptrl' = NULL) i

fprintf(stderr,"Error in corner ,ptr 10);

118

pt t2 = findl ine (Vl, p'21, p22, dum);
if. (ptr2 = NULL)-

fprintf(stderr,"Error in corner,ptr20);

/* Make sure the lines are perpendicular *■/

tetal = angle(ptr1, Vl);
teta2 = ang'le(ptr2, Vl);
tetal = fabs(tetal - teta2);
while(fabs(tetal -90.0) < 5.0) j

/* Initialize the buffers to zero */
for(i=0;i<3;i++){

for(j=0;j <4;j++)(
cube[i][i] =0;
cyl[i][jl = 0;

i
J
i. f (NEQ (p t. r 1 - >P0 INT1 [2] , pt r 1 - >P0 T NT2 [2])) j

tnp -ptrl; ptrl = ptr2; pt.r2 = tmp;

tern = pll; pll = p21; p21 = tem;

tem = pl2; pl2 = p22; p22 = tem;

/* Using the p’s, find the location of the corner ♦/
/* Then, find the correct attributes for the Cube

and Culinder */

if (pll < p21)J
if(pl2 > p22) j

Oube[0][0] - pll; eube[l][0] = p22;
cyl[0][0] = pll; cy:|1J[0] = p22;
flag -- 1;

I
else l

cube[0][0] - pll; cube[l][0] = p!2;
cyl[°][Q] = pll; cyl[l][0j = pl2 + rad;
flag -2;

' j
I •
else-if(pll■> p21)j

if (pl2 > p22)\
cube[0][0] = p21; cube[1][0] - p22;
cyl [0] [0] = p21 + rad; cyl-[l][0] = p22;
flag = 3;

else |
cube[0][0] = p21; cube[l][0] - pl2;
cyl[0][0] = p21 + rad;cyl[1][0] = p!2 + rad
flag =4;

cuhe[0][1] — rad;

119

eube[l][l] = rad;
cyl[0][2] - rad;

switch (flag) [
case 1:

ptr1->P0INT2[1] — p2i;
ptr2->P0INT2[2] .= pl2;
break;

case .2:
ptrl~>P0INT2[i] = p'21;
ptr2->P0 LNTl[2] = pl2;
break;

case 3:
ptr1->P0INT1 [1] = .p2'l;
ptr2->PQINT2[2]' ' = ■ pl2;
break;

case 4:
ptrl->P0TNTl [1] =: p21 ;

; £tr2~>P0iNTl[2] = p!2; .
break;

... ptrl->LEN_RAD - ptrl->IEN_RAD + rad;
ptr2->LEN_RAD =■ ptr2->LEN__RAD + rad;

/♦ Adjust the flag for cube and cylinder so that it would
be possible to .find -them, again */

flag = ((i n.t) ptrl) + ((int) ptr2);

/* Output the nodes */ ,

out_.cube(cube1, flag , 0) ;
out—cyl (cyl , l.flag) ;
break;

]/* end of while..?/
j/* end of, i f (corner ..) ♦/

j / .♦ end of for */

5 . <■ v ‘ .ft #***#*♦*♦***
UFTJN4(). .

See if any nodes in the 3D data structure
has to be modified. If so, return, the'- appropriate
number for flag ^ ,
* *t * * *.♦ **♦♦***♦« '♦ ♦ * ##♦♦♦*.***.*♦♦♦♦*'♦* *.* ♦♦**** /
ufun4(base, 1 eg 1,1eg2,head)

struct PRIM *base,*legl,*Ieg2,*head;
1 '■■■ ■ . ■. ... ■' " ■ '

i nt s 1, s2; s3, s4, flag, dim, f ound;
struct PRIM3 ?ptr , *ptr 1,■♦ptr2, *s_ptr 1, *s_ptr2;

sl~ ((int) base) + ((int) legl);

120

s2 = ((int) base) + ((int) leg2);
s3 = ((int) head) + ((int) leg!);
s4 = ((int) head) + ((int) leg2);

ptrl = 0_PTR:;
found = 0;
flag = 0;
while ((ptr2 = ptrl->NEXT) !=NULL)[

dim • = ptr2->FLAG; ' ' ■ ' .
if (duro. •— si | j dnm ~s2 |1 dtn— s3 | | dnm = s4) (

if (flag--. = 0) J
s-ptrl = ptrl;
s_ptr2 - ptr2;

!
ptr2->FLAG - 1;
fomd++;

' j . ■; '■ . . v . ■ ■ . ■ ■
ptrl - ptr 2;

i
if (found'= 0) return(O);
ptr = getnode’O;
ptr->TYPE - 0; .
ptr->FLAG = flag + 50;
s__ptr 1 - >NEXT - ptr;
ptr->NEXT = ;:5_ptr2;
return(flag + 50);

***♦♦♦♦♦**♦
C0NE()

Find and output a.I 1 the cones.
****** ***************m
Cone (view)

*** ***/

int count, i, j ,nview, cord,mco, foundl;
float col 1, co.12.co21, co22,max,mjn,rraxl ,max2,rnir,1 ,min2■
float tetal,teta2,h;
struct PRIM *airnl, *am£, *circ]e[lQ] ;
struct PRIM ‘♦cl, *c2, ♦cand, Hop;

switch(view) j.
case Vl;

nview = V3; cord = Z; mco = X;
break;

case V2:
nview - Vl; cord = X; mco = Y;
break;

case V3;
nview =■ Vl; cord = Y; mco = X;
break;

/♦ Find all the Circles in this view */

121

count .= get_curve (view, circle .CIRCLE);
f or (i = 0;i < count - l;i++)j

cl = circle[i];
for(j = i+1;j < count;j++)j

c2 ~ ci'rcle[j];
if (EQ(c1->CENTER[0],c2->CENTSR[0]) && .

EQ(cl->CENTER[1],c2->CENTER[1])){

imx-£o(cl, view.mco.&maxl ,&minl);
max^co(c2, view,mco,&rrax2 ,&rmn2);

■'/* .find the lines representing the surfaces
of the circles V

wax = (maxi > rmx2) ? maxi : max2;
min “ (minl < min2) ? mini : rnin2;
cand =0;
while ((cand = gethasefnview,cord,cand)) != NULL)\

i f (EQ(cand->P01NTl [mco] ,min)
m EQ(cand->P0INT2[mco] ,rrax)) j
coll•= cand->P0INT1[1];
col2 .= cand->POINTl[2];
co21•= cand->P0INT2[1];
co22 = cand->P01NT2[2];

. .. a mil — Q; found 1 — FALSE;

. /♦ Find the arms V

while ((arml = hndline(nview, col 1,col2,
ami])) ! = NULL) \ ,
tetal=angle(arml,nview);
if((tetal - 0.0) > 5.0 && (QO.O - tetai.) > 5.0) f

arm2 = .0;
while {(arri-e = find! ine (nview, co21 , co22 Sams2)) .!= NUL1

teta-2 - angle(arm2, nview);
if(fabs(tetal-teta2)<5.0

&&
EQ (arml - > LEX-RAD, a rm2 - >LEN_RAD)) j

.. found! = TRUE; '
;. break;.

j/* end of while(arm2.. . .)*/

if(found! = TRUE) break;

]/* end of if feta */
j/* end of while(ann=. . .)*/

... if(found!.== TRUE) break;
']/* end of , i..f (cand=. . .■) */

j / ♦ end of whi 1 e (_cand=. . .) */
if(found! "= TRUE)[

/♦ The aims are. fo-und ♦/..

122

max = (maxi > rmx2) ? rmx2 ; maxi;
min. = (mini < min2) ? minS : mini;
top =0;
while ((top ~ getbase(nview* cord,top)) !- NULL){

if (EQ(top->POINTl [mco] ,min)
&& EQ(top->PQINT2[meo] ,imx))

break;
r

. if(top != NULL)j
h ='(cand->LENJRAD)*(tan(tetal * 3.1415 /180.0))
h = h/2;

/* Output a Cone */

out.4(cl , c2, cand, arml,h, view);
a;rml->USE = LEG; arrh2->USE = LEG; .

i
i

j/* end of if (center 1 = center^)*/
j/* end of Tor(i)*/

j/* end of for(i)*/
1 .
/♦t♦*t«***$*♦♦♦««4♦♦♦$*£********t9 **********t*

0UT4()

Prepare the infonretion needed for ont_cone.

out.4(c 1, c2,base, arml ,h, view)

struct PRIM' *el, *c2,*base,♦arml;
float h;
i.n 1: view;

(.

irit i, j ;
struct PRIM *tmp;
float buf 1 [3] [4] , buf2[3] [4] , duml•, dum2;

for (i = 0;i < 3;i++)j
for (j = 0;j < 4;J4+)j

buf1 [i] [j] = 0;
buf2[i][j] = 0;

if (cl->LEN_RAD < c2->LEN_RAD) 'j
trip = cl; cl = c2; c2 = trip;

:!■

buf1[0][2] = cl->LEN_RAD;
buf2[0][2] = c2->LEN_RAD;
duml = (EQ(‘anni->POINTl [1],base->POINTl [1])) ?

arml->PQINT2[1] : arml->PQINTl [1]:
dun& = (EQ(arnfl->P0INTl[2] ,base->P0INTl [2])) ?

arml->P0INT2[2i ; arml ->P0INTl[2];

/♦ Depending on the view, And the right attributes

for the Cone using the above info.

switch (view), i
CSLSC Vl

buf1[0][0] = ol->CENTER[0];
bufl[l][0] '= cl->CENTER[l];
buf![2]f 0] = base->P0INTl[l];
buf1[2][1] = (base->P0INTI[1]

h : -h;
buf2[0][0]■= c2->CENTER[0];
buf2[l]l0l = c2->CENTER[l];

buf2[2][0] =. dunl;
buf2[2][l] = bufl[2][l];

break;
case V2:

bufl[l][0l = cl->CENTER[0];
buf!f2][0] = cl->CENTER[l];
buf1[0][0] = base->P0INTl[1];
buf 1 [0][1] ~ (base->POTNTl[l]

h : -h;
. buf2[1][0] - c2->CENTER[0];

buf2[2j[0] = c2->CENTER[l];
buf2[0] [0] = dunl;
buf2[0][l] - buf1[0j[l];

■ break;
case V3; *

buf1[2][0] = cl->CENTER[Q];
buf1[0][0] = c!->CENTER[l];
Vuf1[11[0] = base->P0INTl[2]:
buf1[l]l1] “ (base->P0INT1[2]

h ; - -h;.
bu'2|.2i[0] - c2->CENTER[0];
buf2[0][0j -- c2->CENTER[l] ;
buf2[l][0'J = dun2;
buf2[1][1] = buf1[1][1JI
break;

out—cone (buf 1,1, ^ 1);

/* Output the eyiinder to be extracted

.the Cone
V

out-cyl(buf2,-1,1);

>■#**♦*»♦♦*’♦»******♦♦*
OUT-CONE ()

Add a cone to the 3d data structure
,*****#♦«♦ ♦.****♦***•*♦♦♦♦* ♦■♦**♦*♦**♦*•*
out_cone(buf,signVhag)

float buf[3][4];

duml)

< duml)

< dum2)

f ran

* * *

* ♦ * */

124

int sign,flag;

• static int i = 1;
int j,k;
struct PR I M3 *ptr;

ptr = getnodeQ ;
ptr->TYPE = CONE;.
ptr->NUM = i++;
ptr->MODE = sigir;..
ptr->FLAG = flag;

for (j =0;j <3;j++)I
forfk. = 0;k < 4;k++)

ptr->A7R[j] [kj ='buf[j][k];

L_PTR->NEXT = ptr;
L_PTR =. ptr;
ptr->NEXT =0;
return;

GETJCUHVE..0

Find all curves of type "type" in VIEW[vi ew_iiim]
and store pointeis to them' in array buff.
Return the number of curves found.

get__curve (view_num, buff, type)

int view-nun, type,
struct PRIM *buflfMAXSIZE] ;

struct PRIM. *ptr;/.
int count;

/* initialize counter and pointer */

count = 0;
ptr = VIEWjvi ew_nun];

/♦ go through the list of primitives and find the curves *

while(ptr != NULL) \

if ((ptr->TYPE) — type) \
bufT[count++] - ptr;

ptr = ptr->NEXT;'

| ' '

return(count);

MAX_C0()

125

Find the extreme points on the circle pointed
to by ptr. Co_num specifies the coordinate
on which the points are to.be found.
♦*♦«********<<♦♦*.*♦♦♦****♦♦****♦**♦******$**/
irax_co (p t r, v i ew-riurn, co-jrim, imx, min)

struct PRIM *ptr; :
' tut co-nun, view._fnm;

float - «max, *min; .
t ■” ■

int: i;
float radius;

radius = ptr->LEN__RAD;

/• Find out which, coordinates we are trying to match *./

if. (eo__mm. = viewjnm)
i=0;

else if (co_mum — ((v i ev/_jium % 3) + 1))
1=1;

else [/* The given coordinate is not in this view. V
■ printf ("-error in rrax_xoO) ; ...
return(0);

' !
♦rrax ~ .(ptr->CENTrER[i]) -{-radius; ■
♦min = (ptr->CENTER[i]) - radius;

• return;;

\/**$#*$$.* ♦**$*#** ******$** ********************
. . CYLINDERQ

Kind and output all. the Cylinders.
'♦*♦* ’?■•***$ ♦’**.♦♦■*♦*♦*.'*♦#* •<■***♦♦*/

Cy.l inder (view)

tint view;

I ..
struct PRIM *circle[MAXSIZE], *ptr, ♦pptr ♦matchl () ;
struct PRIM ♦v2_arml[5]1 ♦v^_arrre[5] , *v3_arml [5] , *v3_arm2[5]
int vl,v2,col,eo2,i,i1,i2,i3,i4,count;
float maxi .mini ,imx2,.min2:;

/♦ find the appropriate views and cooordinates for matching

’ i f (view.—. - l)j
v1 = 3; v2 ~ 2; col = 1; co2 =2;

Vj '

else if (view == 2){
vl = 1; v2 = 3; col = 2; co2 = 3;

else j

?v1 =: 2; v2 = 1; col =3; co2 = 1;

126

/* find all . the circles in this view */

count = get-jeurve (view, circl e,CIRCLE);

/* process each circle */

f or (i =0; i Ccount; i ++):j

nBX-joolcirclelij.view.col.&mxl.&minl);
max_co (c i rc 1 e [i], vi ew, co2, &max2, <Sani n2);

/* try to find the matching lines */
11 = 0;
pptr =0;
whi 1 e ((v2„arml [11]=rratchl (vl, col ,mi nl,pptr)) ! = NULL) {

pptr = v2_arml[i 14-+] ;
■' i

12 = 0;

pptr =0;
whi le((v£^rn£[i 2]nmtehl (vl, col,maxi,pptr)) !=NULL) [

pptr = v2^aml2[i2+4-] ;

■ r
13 = 0; '
pptr = 0;
whi le((v3_erml [i3]=match1 (v2, co2,mir2,pptr)) ! -NULL) [

pptr - v3_arml [i3++];
} ’
14 =

: ■ PPtr “.0;
whi Ie((v3_arm2[i4]=matchl(v2, coS.maxS,pptr)11 !=NULL)[

pptr = v3_armS[i44-+] ;

/♦ Depending on the number of lines found in each case,
find the best candidate for the third dimension of
Cylinder

♦/

while(i2!=0 && i 1! =0 && i 3! =0 && i4!=0)f

if(12=1 && i 1=1 && i3=l && i4=1
if (match_J ines(v2_arml[0], v2_arm2[0]) =- TRUE) j

out3(circle[i], v2_arml[0], view, 0);
break;

i
if (mateh_J ines (v3_arml [0], v3_jarm2[0]) = TRUE) j

out3(circle[i], v3_nrml[0] , view, 0);
break;

if ((ptr=mfunl (v2__amL![0], v2_armS[0], V2, Y))
out3(circle[i],ptr,view,0);

NULL)

• 127

break;

if ((ptr^rfunl (v3_arml[0] , v3^amn2[0] ,V3,X)) != NULL)j
out3(circle[i],ptr,view.O);

break;

if ((ptr=pmatch(v2_amd[0],v2-iirne[0]1V2,Z)) 1-NULL))

out3(cirole[i],ptr,view.O);
break;.

i f ({ptr^pn»toh(v3Ljannl[0], v3_am£[0] ,V3,Z)) != NULL)!

out3(eircle[i],ptr,view,0) ;
break;

s
]/* end of if (air of them = 1) ♦/

If only two lines ai e found in the first view
then choose between them

else if(12=3 &&'ii=l)f
if (match J ines(v2_arml[0], v2_artr2[0]) = TRUE)j

out3(circle[i] , v2_arml[0] , view, 0);

,break; •

if (,(ptr=oifiJnl(v2_ami.l[0] ,v2_arnn8[0] .VS.T)) != NULL) ^

out3(circle[i],ptr,view.O);

. break;
:! f ((ptr=pnBtch(v2_arml[0] ,v2_am2[0], V2, Z))! - NULL) |

out3(circle[i],ptr,view.O);

break;

■ ■ S '
el se \

fprintf(stderr,"inpossible interpretationO);

exit(1);
. f :5

]/* end of if(i2,i1 = 1) */

If only two lines are found in the second view

then choose between them.

else i f (i3=l && i4=1) (
if (match-lines (v3_arml[0], v3_am£[0]) — TRUE) j

out3(circle[i],v3_arml[0],view,0);

break; •

i f ((ptr^ufunl(y3_arml[0], v3_arrr2[0] ,V3,X))!- NULL) j
out3(circie[i],ptr, view.O);.

break;

'i f ((ptr=prr)atch(v3—arml [0], v3_arrr2[0], V3, Z))! — NULtjj j
o\it3(ci role [i], ptr, view, 0);

128

. break; '
i
else{ ,

fprintf (stderr, "impossible. interpretationO)
exit(1);

]/* end of if(i3,i4 = 1)♦/

else if (i 1=1) j
out3(c i rele [i] , v2_aT7nl [0] , view, 0) ;
break;

\
else if (12=1)[

out3(circl e[i], v2_arrrj2[0] . view, 0);
break:

1 '
else if (13=1)\

out3(circle[i], v3_arml[0], vi ew, 0) ;
break;

else if(i4=1)[
out3(cirele[i], v3_arrr2[0] , view, 0) ;

. break;

else
break;

j/#' end of while() */
j/f End of for(i<count) */

return; '

0UT3();

This function findi? the necessary coordinates
for the cylinder, using the pointers circle
and ptr. The result is used by 0UT_£YL()
***************** ■** *** *i
out3(circle,ptr, view, flag)

struct PRIM *cirele,*ptr;
int view, flag;

int sign, co, ii, j ;
float rad.buf|3][4],ol[4],len;

f or (i —0; i<3; S.+4-) [
for (j =0; j <4; j J

bui[i][j] = 0;

sign = (ptr->MDDE = SOLID) ? 1 : - 1;
rad ' = circle- >LEN__RAD ;
co. = (EQ(ptr~>P0INTl [1] , ptr->P0INT2[i])) ? 2 : I;

129

len = ptr->LEN_RAD;

■ /* Depending on. the view, find the right attributes
for the Cylinder.

'
switch(vi ew) j

case Vi :
ol[X] = circle->CENTER[0];
ol[Y] = circle->CENTER[l];
ol[Z] - ptr->POINTl[co];
buf[2][l] = len,
break;

case V2:
ol[X] = ptr->POINTl[co];
ol[Y] = circl e->CENTER[0]
ol[Z] = circle->CENTER[l];
buf[0][l] == len;
break;

ease V3;
ol[X] = circle->CSNTER[1];
ol [V], - pt r - >P0 I NT 1 [cp] ;’•

' ,ol[Z] = circle- >CENTrER[0]. •;
buf[l][l] = len;
break;

1 .
for(i—0;i<3;i++)

buf[i][0],= ol [i+1];

buf[0][2] ~ rad;
out-xyl (buf . sign, flag);
return;

r ■ -/amm******** ******************** *********
■ MATCHJLINES ()

Return 1 if the two lines pointed to by ptrl. &
ptr2 have the same projection on the appropriate
axis and are parallel. E.*se return 0.

Also return .0. if the pointers are the same.
*******#♦.♦->♦*♦*♦♦❖♦♦♦♦♦*♦**♦«♦♦**♦****♦**♦*♦*♦*/
match-J ines(ptrl ,plr2)

struct PRIM *.ptr i ,. *p tr2;

i
int co, dim;

if (ptrl == ptr2)
. return(O);

•■•/* find the appropriate coordinates to be compared *

if (NEQ(ptr l->P0Ilsrn f 11, ptr1->PQINT2[1]))]
. ' ,co, - 1 ; dum = 2,

130

eisef
co = 2; dim = 1;

i
/f make sure the lines are either vertical or horizontal */

if ((NEQ(p tr 1 ->P0INT1 [durri],ptr 1 - >P0INT2[dim])) j|
(N0Q(ptr2->POINTI[dim],ptr2->P0INT2[dumj)))

return(O);

f* check whether the two lines have the same projection
on the above coordinate axis V

if (EQ((ptrl->POINT'l[co]), (ptr2->P0rNTl [co])) &&
ECJ((ptr l->P0INT2[co]), (ptr2->P0INT2[co])))
return(l).;

el se
returri(O);

i ‘
/♦♦*+****♦#♦** * ♦ * *♦**♦♦*♦**♦*♦*♦♦*♦**** t ***** * ■

MATCHl()

This function takes as input the view number,
coordinate number and the coordinate to be
matched. Looking in the list of primitives it
finds a line whose endpoints have the input-
coordinate. It then returns, a pointer to that
line. .Else it returns. 0 .
*♦•**•***♦♦■*♦'**♦♦♦ ♦> * * ♦' i * « ♦ ’* * *"’*
struct PRIM *matchl (vi ew_rilm, co_num, co, prev_pt.r)

int vi ewmim, co_num;
float co;
struct PRIM *prev_ptr;

f'
struct PRIM *pir;
int i;

/♦ Find out which coordinates we are trying to match */

if (co_nim == view_num)
' . i=l;

else if (co_num == ((view_num % 3) + 1))
1=2;

else l /* The given coordinate is not in this view */
printf(” Error in matchl");
return(O);

' i .

/* Start searching the primitives for the appropriate match >/

if (prev_ptr != NULL)
ptr = prev_ptr->NEXT;

131

else
ptr = VIEW[vlew_nim] ; /*’ view to be searched */

while (ptr !.= NULL). {

if ((ptr->TYPE) == LINE) {
if (EQ(ptr->POINTl[ij, co) &&

EQ(ptr->P0INT2[i],co))
break;

ptr == pt.r->NEXT;
end of while *'/

return(ptr);

GFTBASF()

Find a solid line in view(view_nirn) which has
the following property ;

POINTl[corj - P01NT2[cor]
#«••«****** *.♦*** ********** *’* <
stTUc.t PRIM *getbase(vi owjuti, co-mm, pp tr)

iTit vi ew_fiurn, co.. mm;
struct PRIM *pptr;
t

struct PRIM *ptr;
int cor;

ptr - (pptr -- NULL) ? VIEW[v:i ew_num] : pptr->NEXT;
cor = (view-Jiim — co_nurn) ? 1 : 2;
while(ptr != NULL)j .

V,.while(ptr->TYPE “LINE && ptr->USE != BASE) j

if (EQ(ptr->P0INT1 [cor], ptr->P0INT2[cor]))
return(ptr);

else
break.; ...•

. . \ '■■■ ' ' . ■ ■■■■■■

ptr pt,r->NEXT;
j • .. ; ,'■

return(NULL);

GETHEAD()

This function finds a-line that is parallel
with, the base and has the same length.

struct PRIM ♦gethead(base, leg, view-nun)

struct PRIM *base,*leg;
int vi ew_num;

int i, j , co_mm;
float co 1, co2 . co3, duml , dum2, dum3 ;
struct PRIM *ptr';

i = (view-rum = 1) ? 2 : 1;
j = (i = 1) ? 2 : 1;
co—mm = (view_mm == 3) ? 3 : 2;

col ~ base->POINTl[i]; co2 = base->P0INT2[i];
duml = leg->PQlNTl [j]; dum2 = 1eg->P0INT2[j];
dum3 = ba.se->P0INTl [j]; co3 = (EQ(duml, dum3)) ? dim2 : duml;

ptr = VIEW[v:i ew_mni];
while ((ptr -- imtchl (view_num, cojiim, co3 ,ptr)) !-='NULL)f--

if (ptr->MODE = SOLID M ptr->USE != BASE)[
if ((EQ(ptr->POINT.l[i],col)

EQ(ptr->P0LNT2[i],co2))

132

(EQ(ptr->P0INT2[i],col) &&
EQ(Ptr->POINTl[i],oo2)))

break;
i V

* , '. ■ ' '

return(ptr) ;
\/♦♦***♦*♦#***♦♦♦♦*♦♦**♦ ♦♦♦♦♦♦♦♦♦#'**♦**♦♦*♦♦*♦♦

CUBEf)

Find and output all the' remaining Cubes
+ * 4^ * 4^ * «'*#'** 4 ******* t ♦*«*♦*#*****♦** t ***»♦ /

Cube()

{■
•nt i_h, i_b, :i_l 3 : i__12, found, sign .flag;
float col 1, co:l2, co2l , co22, durnl, dum2, dum, tetal, teta2;
struct PRIM 4ptr, *pptr, *base, *head# *legl, ♦leg2;.
struct PRIM *v2_aiml [5], ♦v2_arm2[5] , *v3_arml [5], *v3-arm2[5];

• ptr =0;

base = 0;

/.* Look for a horizontal line in view 1 */

while ((base--getbase(Vl, Y, base)) != NULL)j
if(base->M0DE = SOLID)j

coll=base->P0INTl[1];
col2=base->P0INTl[2];
co2j=base->P0INTl,2[1];
co22=base->P0INT2[2];

133

/♦Flag will be used to determine whether
we have a cube or a frustum V

leg 1—0;
found =0;
while ((legl - find] inefVl, coll, col2, 1 egl)) S =NULL) {

1eg2=0;
while ((leg2=fmdline(Vl,eo21,eo22,1eg2))

!-NULL){
1f (match_J ines(1egl,leg£) “ TRUE Me
((legl->USE != Ieg2->USE) || (1 eg1->USE -= NULL)))■ j

/* It is a cube ♦/

found = TRUE;
flag ~ 0;
break;

1 ' ■
else i f (EQ(legl->L.EN__RADs leg£->LEN_RAD)

Me base ! - 1 egl) \
duml = (EQ(legl->P0INTl[2], col2)) ?
legl->PQINT2[2] : legl->P0INTl[2];
dunS = (EQ(]eg2->P0INTl[2],co22)) ?
leg2->PdINT2[2] : 1 eg2->P0INTl [2];
i f (EQ(1 eg 1 - >LEN_RAD, 1 eg2- >LEN_RAD) Me
EQ(duml ,dung) && NEQ(dumlcol 2) Me
,legl~>USE.,— NULL &&.leg2->USE — NULL) {

tetal = angle(legl, Vl);
tetaS = angle(leg2, Vl);
if(EQ(tetal,teta2) Ml (tetal - 0.0) > 5.0
&& (90 - tetal) > 5.0)j

/* We have a frustum */

found = TRUE;
flag = 1;
break;

if (found)
break;

if (found)i
]egl->USE - ((int) base);
Ieg2->USE - ((int) base);
head = gethead(base,legl,Vl);

/* Look for corresponding lines in the other views */

iJb ■= 0;
pptr - 0;

134

whi le((v2_aiml [i>J3]=matchl (V2, Y, col2,pptr)) != NULL)j
pptr = v2_arml [i_b++];

1 .
i—hi = 0;
pptr “0;
durnl = legl->POINTl[2];
dim = (EQ(col2,duml)) ? legl->P0INT2[2] ; duml ;
whi le((v2_-arm2[i_h]=rratchl (VP, Y, dim, pptr)) «-NULL)[

p-ntr ~ vS_jara&[i_h++] ;
1
i_1-1 =0;
pptr = 0;
whi le((v3_arml [i_J 1]=rmtchl (V3,X, col 1 ,ppt.r)) !=NULL)[

pptr = v3_arml [i_J. 1++];
i ’ ,
i_13 = 0;
pptr =0;
whi le ((v3_arm2[i,J 2]=matchi (V3,X, co21,pptr)) ! =NULL) \

pptr = v3_arn&[i_J2++] ;
);

/? Depending on the nurber of line^ found in each view,
choose the? best candidate for the depth of the Cube,
and outplit it.

V

whiie(i_h!=0 &&.i_b!=0 && i_il!=0 M: i 1S! =0) j

if (i_h=l && i__b=l Me i_] 1=1 Me x_12>=1) j'
if (match-J ines(v2_arrnl [0] v2_arm2[0]) TRUE) j

sign = cavity(v2_arml [0]);
out. (base; 1 eg 1, .1 eg2, head, v2_amil [0] , si g n. flag);
break;

i
i f (match-J ines (v3_arml [0], v3_jarm2[0]) == TRUE) \

sign = cavity(v3_arml[0]) ;
out (base, legl, leg2,head, v3_arml[0] , sign, flag) ;
break;

1 :
if ((ptr=nfunl (v2_arml [G], v2_arm2[0] , V2,Y)) != NULL) j

sign = cavity(pt.r);
out (base, 1 egl, leg2, head, ptr, sign, flag) ;
break;

]
if ((ptr=ufunl (v3_arml [0], v3_arm2[0] . V3,X)) != NULL) {

sign = cavity(ptr);
out (base, legl, Leg2, head, ptr . sign, flag) ;
break; i

i f ((pt r~prmtch (v2_a.rm1 [0], v2_arm2 [0], V2, Z)) ! = NULL) j
sign = cavity(ptr);
out(base,leg!,leg2.head,ptr,sign,flag);
break; :

; i

135

if ((ptr=pratch(v3_amil [0], v3_arm2[0], V3, Z)) != NULL)’
sign - cavity(ptr) ;
out(base,legl,leg2,head,ptr,sign,flag);
break;

' i- . ' ■■ . ■'
]/* end of if(all of .them = 1) */

.else i f (i_h—1 &8e i-Jb=l) j

■/* If only two lines are found in-view 2
give priority to them

V

i f (match-J i nes (v2_arml [0], v2_arrr£[0]) = TRUE) j
sign = cavity(v2-^aiml [0]);
out (base, legl, leg2,head, v2_arml[0], sign, flag);
break;

j
i f (fptr=ufunl (v2__arml[0], v2_ja:ron2[03, V2, Y))! = NULL) j

sign = cavity(ptr);
out (base,. leg 1,leg2,head,ptr,sign,flag);
break;

\
■i f ((ptr=prmtch(v2_arml [0], v2_uirm2[0] , V2, Z))! = NULL) {

sign = cavil y(ptr);
out (base,legl,leg2,head,ptr,sign,flag);

. break;
’ i

elsej ;
fprintf(stderr," impossible interpretationO);
exit(1);

i
j/* end of if(i_h,i_h = 1) */

else if(i4l=:1 && i_J2=l){"..

/* If only two lines are found in view 3
give priority to them

*/ ;

i f (match—! ines(v3_nrm1 f 0] , v3 _arm2[0]) = TRUE) {
sign = cavity(v3_arml [0]);
out (base, legl, leg2,head, v3__arml[0] . sign, flag);
break;,

j ' - . . .
if ((ptr=ufiml (v3_arml [0], v3_arm2[0] ,V3,X)) != NULL) {

sign = cavit.y(ptr); .
out(base,legl,leg2,head,ptr,sign,flag);
break;,

■ i '
i f ((p t r=pmat ch (v3_a rml [0], v3_nm2 [0] , V3, Z))1 NULL) [

sign ..= cavity(ptr);
out(bese, leg 1,1 eg2,head,ptr, sign,flag) ;
break;.

else'j
f.pri'ntf (stderr , "impossible interpretst'ionO) ;
exit(1);

136

]/* end of i f (i_J 1, i_J 2 ~ 1) */

else i f (i__b=1)
sign = . cavity(v2—arml [0]).;
out (base, legl, leg2,head, v2_arml[0]. sign, hag) ;
break;

I ' ■ ■
else if (i_h=l) \ .

sign = cavity(v2__arm2[0]) ;
out (base, legl, leg2,head, v2_arm2[Q] .sign, flag);
break;

else i f (i_11=T) [
sign = cavity(v3_arml [0]);
one(base,1 eg 1,1eg2,head,v3_arml [0],sign,hag);
break;

else.if(i_12==1)j
sign = cavi ty(v3.j&rm2[0 J);
out (base,legl,leg2‘, head,v3_arm2[0],sign,hag);
break;

else •
break;

}/* end of while(it is a- cube) */
j/♦ end of if(found) */

base->USE - BASE;
l/* end of while (base. . , .) */

OUT ()

This function finds the coordinates of the cube
frem its input, argument's. The results are used
by but-cube'()

out (base, legl, leg2,head,pt.r , sign,hag)

struct PRIM *base, *legl, *1 eg2, *head, *ptr;
int sign,hag;

hoax buf[3][4]:
int cor,i,j;

if (flag == l)j

/*• It. is a frustum */

13?

out2(leg!,ieg2,ptr,Vl,l);
return;.

for(i=0;i<3:i++)
for(j=0;j<4;j++)

.buf [i][j] ~

flag - uf un4(base , 1 egl, leg2 .head); .
cor =r (EQ(ptr >?0INT1 [I] ,ptr->P0INT2[1])) ? 2": 1

buf[0][0] = base->P0INTI[1];
"buf[1][0] = (EQ(base->P0INTl[2],legl->P0INT2[2]))

legl->P0INTl[2] ; base->P0INTl[2]; .
buf[2][0] = ptr->P0INTl[cor];

buf|0][ll = base->P0INT2[1] - base->POINTl[l];
buf[l][l] = 1egi->LEN_SAD;
buf[2][1] - ptr->LEKJRAD;

out_cube(buf, sign,flag , 0) ;
return;

PMATCH():

Partially match two lines and return the result,
(ptr or FALSE).. . .

>**/
struct PRIM *prmtch(1 ine1, 1 ine2:, vi evuium, couiim)

struct PRIM *1 inel , M ine2;
i n t v i ew_num, c

int i ;
float duml, durn3, col 1, col2, co21, co22;

i =v (view_jrum = co_nim) ? 1 : 2;
col l = 11 ne 1 - >P01NT 1 [i]; c o 12 = 1 inel->P0INT2[i] ,
co21 ;= line2->P0INTl[i]; co22 - 1ine2->P0INT2[i];

if (col 1 <— co21 .&& col2 >= co22) f
return (.1 i nel);

else if (co21 <= coll Me co22 >= col2) {
return(1ine2);

j '
else

. return(FALSE);

UFUNl ()

This function'checks to see whether any of the
given-lines are.at' an extreme position in the

given view.
♦ *♦*♦*****♦**«**************♦*************♦♦♦♦♦/

struct PRIM *uf uni (ptrl ,ptr2, view-Jium, co^ium).

struct PRIM *ptr1,*ptr£;
int vi.ew_mm, co._nuni;

int cor;
float nBx.imn, cmax, anin, cl, c2;
struct PRIM %iaxptr, *minptr, *ptr ;

cor = (view_joum = cojran) ? 1 ; 2;
min = 1000. C; rmx "0.0;
minptr = 0; rraxptr = 0;
ptr = VIEW[v:i ewjum];
while (ptr !-- NULL) \

if (ptr">TYPE = LINE &&
EQ(ptr->POINTl[cor],ptr->P0INT2[cor])){

rnaxptr = (ptr->POINTl[cor] > rmx) ? ptr ; rmxptr
minptr = (ptr->P0INTl[cor] < min) ? ptr : minptr

• i -
ptr = ptr->NEXT;

i .
cmax - rmxptr->P0INTl[cor] ■ anin = mi npt.r->P0INTl [cor];
cl'= ptrl->POiNTl[cor]; c2 = ptr2->P0INTl[cor];

if (EQ(cl,crmx) || EQ(c!,cmin))
return(ptr1);

else if (EQ(e2,cmax) M EQ(c2,crmn))
return(ptr2);

else
return(NULL);

j
/ f *« ********* t **?*?***« ****** ***.* + ♦♦♦***** *

. ’ . CAVITYQ

Return the mode of the input line. .
*♦****♦**********>;**«*************:****♦*♦♦*****/
cavity(line)

struct PRIM ♦line;
J

return(1 ine->M0DE) ;
]
/*»****?***♦ ************«.**««*****«* + ****,{,****

UFUN2()

Finds the two lines (legl & leg2) connected to
the two endpoints of the semicircle.
#***$♦******+«****♦«♦♦*♦*♦********it***********/
ufun2(senL_circ , view,plegl,pleg2)

struct PRIM *sem_cire ,♦(*plegl), ♦(*pleg2);
int view; .

138

139

int i;
float co11,co12,cq21,cg22;
struct PRIM *ppl,*pp2;

coil = sermxurc*->POINTl [1]; eo12 '= sem_circ->POINT.l [2];
co21 = sern_ci rc->P0INT2[1]; co22 = sern_circ->PQINT2[2];

/* i is the coordinate that is the s^me in POINT1 & POINTS. */
if(EQ(col1,co21))

.; 1 = 1;
else"..

1=2;
. PP1 — 0;

whi lef ((*plegl) = findl ine(view, coll, col2,ppl)) !=NULL){
ppl = (♦plegl); pp2 - 0;
whi le(((*pleg2) = findline(view,co21,co28.pp2)) != NULL)[

pp2 = (*pleg2);
if(EQ((*p]egl)->P0INTl[1]*(*pleg2)->P0INTl[i]) '

5Q((*plegl)->P0INT2[i],(*Pleg2)->P0INT2[i]))
return;

else if(EQ'((*plegl)->POINT2[i],(*pleg2)->POINTl[i]) &&
EQ((*p 1 eg 1) - >P0T.NT1 [.i], (»p 1 eg2) ->POINT2 [i]))

return;
■'■•■!■■■■■

5
pr i nt f (”*'.1 egs not found for senli ci rc 1 eO) ;
return;

FINDLINE()

♦♦♦*♦♦♦ '

Finds a I ine in the given view -that has an
endpoint with the given coordinates.

t *.« * » * * * * * # « * <

struct PRIM *findliue(view,col,eo2,pptr)

int view;
float col i co2;
struct PRIM *pptr;

\ . .■
struct PRIM *ptr;

ptr = (pptr. == .NULL) ? VIEWjview] : pptr->NEXT;
while (ptr != NULL) j .

if (pt r - >TYPE == L INE && ptr - >MQDE.’ == SOL ID) j
if ((EQ(ptr->P0INTl[1],col) && EQ(ptr->P0INTl[2],co2))

(EQ(ptr->P0INT2[1], col) &&. EQ(ptr->P0INT2[2],co2)))

return(ptr);

s
ptr = ptr->NEXT;.

i :
•return(ptr);

1.40

/ * * * * *♦ *♦****♦♦*♦ * ***************************

/LUGQ

Find, and output all 1 the lugs
♦'*♦**♦***♦*♦****« ******* *****♦♦«*♦♦***♦*♦♦****♦/
Lug (view)

iht view;

\
int xi, xj, count, found, i, sign, flagl, flag2, pos;
float ci ,cj,rad,col 1,co!2,co21,co22,col,co2;
float tetal,teta2;
struct PRIM -*buff[MAXSIZE] , *ptr , *tmp, *pptr, *Iegl, *leg2, *dum

/* Get all the curves */

count = get^rurve(view,buff, ARC);
. if (count == NULL) . return;
for (i=0;i<eount;j++)j

tnp = buff] i];
if (tup->FGINTI[0] < 5)j

rad = tnp~>LEN_RAD;
coll = tmp->POINTl[l]:
colS = trrp->POINTl [2];
co2J = tmp->P0INT2[1];
coSS = tmp->P0INT2[2];
legl “ 0); leg2 = 0;

/* Find the coordinates of c which is
the midpoint on the curve . xi is
the coordinate that is not the same
in POINT 1 & POINTS

♦/

xi = (EQ(tmp->PQINTl[1], tmp->P0rNT2[1])) ? 2 ' 1;
xj ~ (xi = 1) ? 2 : 1;
c i = tup->CENTER[xi - 1] ;
i f (vi ew ! = V3) \

if(tnp->POINTl[0] = l" | | trip - >P01 .NT 1 f 0] = 3)
cj = tnp->CENTER[xj -1] + rad;

else
cj = trrp->CENTER[xj -1] - rad;

\
else j

i f (trip->P0 INTI [0] == 1]| tup->P0INTl [0] = 4)
cj = tnp->CENTER[xj--1] • - rad;

else
cj = tnp->CENTER[xj-1] + rad;

i
pptr = 0; ptr = 0;

/* Depending on the view and position of the
Lug,.find its depth from a secondary view */

141

swi tch(view-) j
case Vl:

i f (xi=l)
pt.r=matchl (V2, Y, cj , pptr) ;

else
ptr~ratchl (V3,X, cj ,pptr);

break;

case V2:
i-f (xi==l)

ptr=mat chi (V3, Z, c j., pp tr) ;
. else

pt r=matchl (Vl, Y, c j , pptr);
break; .

case V3:
i'f(xi—1)

ptr=match1 (Vl ,X, cj ; pptr) ; .
else

pt ■'•snatch 1 (V2, Z, c j , pptr) ;

1
i f .(ptT ■= NULL) \

fprintf(stderr,"Error in DO-LUG");
exit(1);

/* output the cylinder */

flag 1 - (ptr->MODE; — SOLID) ? -1 : 0;
out 3 (Imp, p t r, v i ew, flag 1) ;

/♦.output, ‘.he-cube to-be subtracted if necessary*/

i. f (flag 1 — - 1)
out 1 (Imp, 1 eg 1, pt r, vi ew, -1,1);

/* if the endpoints are connected,
go to the next ARC */

.dum = VIEWj vi ew];
found - FALSE;
while (dum ! = NULL) j .

if.(dumr>TYPE — ’ LINE)'j
i f ((EQ (dum->P0 INTI[1],col 1) M EQ (dum->P0 INTI[2],co22)) &&

(EQ(dum->P01NT2[1], co21) &8e EQ(dum->P0INT2[2],co22)))j
found = TRUE; .
break;

dum = dum- >NEXT;

i
if (found —' FALSE){

/♦ The endpoints are not connected

142

find the lines connected to them
V

nfim2(trnp, v i e w, & 1 e g 1, &1 eg2) ;
if (rratch_l ines(legl, leg2) = TRUE) {

/* output the cube */

sign = (ptr->MGDE = SOLID.) ? 1 : -1;.
out 1(tup,legl,ptr,view,sign,0) ;
(legl->USE) = LEG; ' (Ieg2->USE) - LEG;

.(ptr->USE)-f+;
5
else if (EQ(1 eg1->LEN_RAD, 1 eg2->LEN_RAD)) {

teta.1 - angle (legl, view) ;
t.eta2 ' = ang 1 e (1 eg2, vi ew) ;
i f (EQ(te-tal, teta2)) [

pos = tmp->P0INTl [0] ;
outS(legl,leg2,ptr,view, pos);
(leg 1 ->USE) - LEG;

(Ieg2->USE) = LEG;
(ptr->U5E)++;

/* Use ufun3 to create new lines in this view */

col = (EQ(coll ,legi->P0IKTl[.l])) ?
1 egl ->P0INT2[l] : I egl->PQINTl [1] ;

co2 - (EQ(col2.1 eg 1->P0INTI[2])) ?
legl ->P0INT2[2] ; 1egl->PQINTl[21;

u.f un3(col , co2, vi ew) ;

col = (EQ(co21,1eg2->P0LNTl[1])} ?
1 eg2->P0INT2[1] : 1 eg2->P0TNTl [1] ;

co2 - (EQ(co22,1eg2->P0INTl[2])) ?
Ieg2->P0INT2[2] : 1eg2->P0INTl[2];

ufun3(col,co2,vi ew);

return;

/♦♦♦****#♦• ♦♦*♦**♦**♦♦**♦*♦♦*** *.♦*♦•♦**♦♦**♦#♦
OUT1()

Output the cube to be subtracted from a cylinder
in order to have a half a cylinder
+**♦****♦*♦**♦*♦♦**♦*♦♦♦♦*♦♦♦*♦♦♦♦♦*♦♦*♦♦♦♦♦♦*♦/
out 1 (cyl, leg,ptr, view, sign,flag)

struct PRIM *cyl, *ptr, *1 eg ;
int vi ew, sign,flag ;
i.

143

float coll, co 12, co?/1, co22, buf [3] | 4] , len;
float a[4], b[4]. c[4] , e [4] , rad;
int i,j;

f or(i=0;i<3;i
for(j=0;j <4;j++)

buf[i][j] =0.0;
col1 - cyl->P0INT1[i];
col 2 = cyl->P0INTl[2];
co21 = cyl->P0INT2[l].;
co22 = cyl->P0INT2[2];
if(sign = 1)j

len = leg - >LEN._.RAD;
rad = 0;

1
else i f (flag = 1) \

len = 2#(cv1->LEN_RAD);
rad. " cyl->LEM_jRAD;

!
else if (sign — -.1 '&& flag — 0)\

. . . len - leg->LEN__RAD.i
rad = 0;

/♦Depending on the position and view of the Lug
use the above info to find the coordinates
of the. cubical part of the lug */

/♦ cyl->P0INTl.[0] gives us the position of
.the Lug. We- have four possible positions */

swi f eh(view) \
case Vl:

/* The Lug is in View 1 */

if(cy1 ->P0INT1[0]—' 1)i
a[X] = coli - rad:
a|Y] = col 2;

■ a[zr - ptr->P0INT2[2];
b[X] ~ co21 + rad;
e|Y| - a|Y| - len;

I
else if(cyl->P0INTi[0] — 2) j

n[Xj =..co"ll - rad;
a[Y] = col2 + len;
a[Z] - ptr->P0INT2[2];
b[X] = co21 + rad;
e|Y] - col2;

!
else if(cyl->P01NTl[0] = 3)j .

a[X] ~ co21 - len;
afY] = co22 + rad;
a[Z] = ptr->P0INT2[l];

144

b[X] = coll;
c[YJ = co12 - rad;

elsef
a[X] = col1;
a[Y] = co22 4- rad;
a[Z] = ptr->P0INT2[1];
b[X] = a[X] + len;
c[Y] = col2 - rad;

I
e[Z] = a[Z] - ptr->LEN_RAD;
break;

case VS;:

/* The Tjiig is i n Vi ew 2 */

i f (’ey 1 ’->P0 INT1 [0]=1)
a[XJ = ptr->P0INTl[1];
a fYJ '= col 1 ;
a[Z] = eo22 + rad;
b[X] = ptr->P0LNT2[1];
c[Y] = a[Y] - len;
e[Z] = coIS - rad;

els*e i f (cy 1 ->P0INTl [0] -- 2) \
a[X] = ptr->P0INTl[1];
a[Y] - coil + len;
a[Zj = co22 4- rad;
b[X] = ptr->P0INT2[1];
c [Yj = coll;
e[Z] = co12 - rad;

i
elsie i f (cyI->P0INTl [0] = 3) {

a[X] - ptr->P01NTl[2];
a[Y] = co21 4- rad:
a[Z] = co22;
b[X] = p t r->P01NTS [2];
c[Y] = coll - rad;
e[Z] = co!2 - len;

el s*e l
a[X] = ptr->P0INTl[1];
a[Y| = co21 4- rad;
a[Z] = co22 4- len;
b[X] = ptr->P0INT2.[2];
c[Y] = coll - rad;
e[Z] ~ col2;

break;

case V3;:

/ * The Lug i s' i n Vi ew 3 */

145

if (cyl->POINTl[0.]=l) j
a[X] = co12 - rad i
a[Y] - ptr->P0INT2[1];
a[Z] = coll + len;.
b[X] “ co22 + rad;
c[Y] = ptr->POINTl[l];
c\7:\ = coll;

i . ..
else if(cyl->POINTl[0] = 2}{

a[Xj = co!2 - rad;
a[Y] - ptr->P0INT2[l];
a[Z] - coll;
b[X] = co22 + rad;
c[Y] '■= ptr->POINTl[l];
e[Z] =' coll - len;

else j.f(cyl->P0INTl[0] = 3)f
afX] - col2 - len;
a[Y] - ptr->P0INT2[2];
a[Z] > co21 + rad;
b[X] = col2;
c[Y] = ptr->POINTl [2] ;
e[Z] = coll - rad;

1' .
else}

a[X] = col2;
a[Y] ■= ptr->P0INT2[2];
a[Z]. =; co21 .+. rad;

’ b|X| = a[X] + len;
c[Y] - , ptr->P0INTl[2];
e[Z] - coll - rad,

/* The following is always true. ♦/

c[X] = a[X]; c[Z] - a[Zj;

buf[0][0] = cjXi; buffi][0] = c[Y];
~h[X] -

cuUlJlU- aL^.- c[Yj; =uf{:2]|l] -
c f X];
c[Z] c[Z]

out_cube(buf,sign,flag,0);
return;

146

/♦ ALGORITHMS */

#include <stdio.h>
^include <math.h>

/♦
GLOBAL VARIABLES

♦/

int. pic[2Q0] [200], XO, YQ, ZO, VIEVf;
float angle();

MIN

In main, the picture is scanned. If any curve
is found, it is followed and chain coded.
Then it is determined which routine should
be called in order to process the curve.

rmin()

int i, j , cham[1000], di f [1000] , 1 ines f 50] [2] . n, code , count ;
int f ound, start_X start.Jf, end_X, end._Y, 1 ink, nl l nk;
int k,kl .k2, *pt.r ,pix, dist;
extern int pic[][200],VIEW.XO,Y0,ZD;
FILE *fp,*fopen();

/* Read view number and the values by which the .picture should be
shifted to obtain-a. global- coordinate system. */

scanf ("%d'!, &VTEW) ; scanf ("%d" .-AXO) ;
scanf ("%d",&Y0) ; scanf ("%d” , &Z0) ;

fp = fopen("murage","r") ;
i f (fp = NULL) . .

exit(1);
ptr = (&picf 0][0]);

/♦ Read in picture into the 2D array pic */■

whi3 e((pix = getc(fp)) != EOF)J
♦ptr = pix; ptr-H-;

?5
start.X ■= 0; .start_Y = 0;

begin;
link — 7;' found = 0;

/* Look for a pixel with value - 1 */

for(i = 0;i < 200;i++)j
for(j = 0;j < 200;j++)j

if(pic[jl[j] != 1)
continue;

147 "

e 1 se j
found - 1; break;

i ■
; 1 ■

if(found = 1) break;

i
i f (S found) exit(O); /* DONE */
start_X.= j; slartJf - i ; k = 0;

/♦ Follow and chain code the curve */

whi1e(i < 200 Me j < 200)i '
if((nlink = getnbor(i,j,1 ink,1)) < 0)

break;
chai n[k++] - nl ink; 1 i;nk = nl ink;
pic[i][J] ~
i = i + dely(nlink);
j = j + delx(nlink);

i
pic[i][j]. = 2;
n = k; chain[k] - -1;

/♦ See if- it is no i se V

if(n < 5) goto begin;
nl ink - gethbor(i , j , 1 ink, 2) ;
i f . (nl-i nk = -1)

/*. ft is a dotted line.*/

. doll ine(startJC, start-Y, i ,j , link) ;
goto oegjn;

i
i■ = i -!- dely (nl i nk); ,
j - j 4- delx(ni ink);
if ((abs(i-siart_Y)<2) &&, (abs (j-star t_X)<2).) »

/♦ CLOSED LOOP ♦/ • '

for(i ~ 0;i < n-1;i++)
dif[i] =chain[i+l] - chain[ij;

di f[i] = chain[0] - chain[n-l];
di f[n] =8;
count = getlines(dif,iines.n),
if (count Q)\

Z* It is a circle. */

do_circle(chain, start_X, start_U , ii);
. goto begin;. .

V
/* find the coordinates of the lines and output them *

. do._l ines(chai n, n, 1 j p.*s; stas tar L_Y, count) ;

148

/♦see whether there, is anything else
besides straight lines'*/

found = 0; j = count - 1;
for(i■= 0; i < count - l;i++)j

if(1ines[i][1] — 1ine s[i+1][0])
continue;

e 1 se j-
found = 1; j ~ i ;

\
i '•
if(1ines[0j[0] != 1ines[count-1][1})\

found =1; j = count - 1;
i. .
if(found == 0)

/* Nothing but straight lines in this chain */.

goto begin;
kl ■= lines[j][l]; k2 = Jines[(j+1)%count][0];
if (k2 < kl)

di st = k2 +■ n 4- 1 -kl;
else

. di s.t - k2 - kl;
i f (dist < 25)\

/♦ This- is a short line*/-

lines[0][0] - kl; lines|0][l] = k2; count - 1
do_J i nes (chai.n,n, 1 ines , star t._X, start_Y, count}
goto begin;

}

/* An arc or a slanted line lies between kl & k2 V

segment (chain, n.kl,k2, start_X, startJif7').-,
goto begin;

I
/♦ If not a closed loop or a dotted line V-
/* Assume one or more straight lines */
for(i - l;i < h-l;i++)

dif [i j = chain[i4-l] - chain[i j;
di f [i] = 8; dif [0] = 8;
count = get!ines(dif,1ines;n);
if (count -= 0)

fprintf(stderr," ERROR 0);
else

. do«J ines(chai ii.n f 1,1 ines, s tart_X, s LartJ, count.):;
goto begin;

D0_LINES()

Find the coordinates of the lines using the

149

array 1ines[][ij
♦♦♦♦♦*** ♦ #**/•

do_J ines (chain, n, 1 ines , xO, y0, count)

int chain[],n,lines[][2],xO,yO,count;

i
int i'.kllk2,plxJp2x,ply,p2y;

f or (i = 0 ; i < count; i++) \
kl - 1ines[i][P];
k2 = 1ines[i][1];
findco(chain,n.,xO,yO,kl ,&plx,&p 1 y) ;
findco (chai n, n, xO, yO, k2,&p2x, &p2-y) ;

■ oiit-J i ne(plx, ply ,p2x ,p2y, 1) ;

i
return;

D0_XIRCL‘t()

Find the center and radius of, the circle

do—c i rcle (cliain, xO, yO, n)

int chain[],xO,yQ,n;

f . ■ .■ . •
int count, kl ,1<2, k3, x[3], y[3], i ;
Boat av_ox, av_oy, ox, oy , av__rad, rad, de 1 x, dely ,

count ” 0; kl = 0, av_ox - 0; av_oy 0; ay_rad - 0;

whi 1 e(1..) {
k2 = (kl - 10)%n; ;
k3 = (kl + 20)%n;
findco(chai n., n. xO, yO, kl, &x [0] , &y [0]);
findco (cha in,n,xO,yO;k2, &x [1] ,&y[1]) ;
'■findc o (cha in, n, y0, y0; k3. &x [2], &y [2]);

' get cent or (.x.. y&ox, &oy);
if(ox > 0.0)5

riv_jox = av. .ox + ox;
ay_oy = av_joy + oy;
conn

‘ i
if(k3 < kl) break;
hi = k3 + 5;

' ■ I, -.. ■
ox = av_ox /((float) count);
oy - av_oy /((float) count);

/* find the radius */
for(i - 0; i < 3;i++)l

delx -'((-float) x[i] - ox) * ((float) x[i] - ox);
dely - ((float) y[i] - oy) ♦ ((float) y[i] - oy);
av ..rad — av_rad + ^ cj r - ((doab ley (delx dely)) (

150

rad = avjad / 3.0;
_ont_jc i r c 1 e (ox, oy, r ad);
return;

/♦****
‘D0_ARC0

Find the coordinates and the position
of the arc

do_ar c (cha in-, n, k 1, k2, xO, yO)

int chain[] ,n,kl l!k2.lxO,yO;

float av_ox, ox, av_oy, oy,
int x[3]',y[3] .count, i ,p]x,p2x,ply,p2y,cx,cy,pos,k

findco(chai7i, in, xO, y0, kl , &p lx, &p 1 y) ;
findco(chain, ia, xO, yO, k2,&p2x, &p2y) ;

/* Need to know bow many links between kl k2 ♦/
if (k2 > kl)

count. = k2 - kl;
else

count = k2 + n + 1 - k.l ;
/* find out position of arc */

k = (kl + (count/2))%n;
findco(chain, ia,xO,yO, k,&cx,&cy) ;
i f (abs(p.lx - pSx) < 6) {/* vertical ♦/

if(cx < plx)
pos ~4;

else
nos - 3;

i
elsej /* horizontal.-'*/

if(cy > ply)
pos = 1;

else
pos “ 2;

r
/* Estimate the coordinates of the center */

av„jox = 0; a=v_oy = 0;
k = (kl _ + ■ (count/4))%n;
x[l] = cx; y![1] - cy;
x[2] = plx; y[2] = ply;
for(i " 0; i < 2; i++) j

while(.l) l
findco(chain,n,xO,yO,k,&x[0] ,&y[0]);
get center(x,y,&ox,&oy);
if(ox >0.0) break;
k =- (k + 1) %n;

. ifCk =k2)j.’-

printf("det. = 0fr);
exit(1);

]

151

1
av—ox - av_jox 4- ox,
av_oy = av_oy +■ oy;
k = (kl + (3♦count /4))%n;
x[2] = p2x, y[2] ='p2y;

\ •
ox - av—ox/2.0;
oy = av-oy/2.0;

out—arc(plx,ply,p2x,p2y,ox,oy,pos);

return;

»**«♦* * * +■ * *'* $ ♦ * ♦ ♦

D0TLINE0

Follow a dotted line and find its? endpoints

dotl ine(x0,yO,'ii., j j . link)

.int xO,yO ,ii ,j j■1 ink :

i nt i, j , nl i nk, end-x, end._y;
extern int pie[][200];

-j =• jji.'i = i.i;
wh.i 1 e ((i < 200) && (j < 200))$

if((nlink = getribor(i,j,1 ink.2)) !
*

pic[i][j] - (pic[i].[j] — .d ? 2 :

j =. i + de!y(link) ;
j = j + delx(lirik);

i ■ .
pic[i][j] - 2;

end-x = j; end_y = i;
out J i ne (xO, yO, end_x, end ..y , 0);

/***♦♦< >***♦♦**♦*<
r:NDC0()

Given the chain array and the.coordinates
of the start of the chain, find the
coordinates of the pixel corresponding
to t
* ♦ **

be .chain 1 ink k.

findco (cha i n, n, xO, y 0, k, px, py)

int chain[],n,xO,yO,k,*px,*py;
t

int kl, i ,X, Y;

kl - (k + l)%n.i
X 0; Y - 0; _

152

f or (i = 0; i <k 1; i ++) j
X - X + delx(chain[i]);
Y = Y 4- dely (chain[i]);

1
*px = xO + X;
*py = yO 4- Y;

return;

GETCENTER()

Using the coordinates of three points on the.
circle or arc, find an est.iirate for the
coordinates of the center.

getcenter(x,y.pox,poy)

int x[J,y[|;
float *pox, *poy:

i
float x02,xl2,x22!y02,y12,y22;
float a, b,c,ri,det'(,det2,det3;

x02 = x[0] * X[0]; xl2 = x[l] » x[l]; x22 = x|2| ♦ x[2];
y02 = y[0] * y[0]; yl2 = y[l] * y[l]; v22 = y[2] ♦ y[2];

/* for ox */

a — xQ2 - xl2 4- y02 - yl2;
b - 2 * (y[0] - y[l]);
e ~ x02 - x22 + y02 - y22;
d = 2 ♦ (y[0] - y{2]):
detl = (a * d) - (b * c);

a “ 2 * (x[0 j - xf1]);
b - a (y[0] - y [1]);
c ~ 2 * (x[0] - x[2]);
d = 2 ♦ (y[o| - y[2j);
det2 = (a * d) - (b ♦ c);
if(det2 = 0)j

♦pox = - 1;
return;

i

/♦ for oy */
a = 2 ♦ (x[0j - x[l]);
fc = *02 - xl.2 + y02 - yl2:
c = 2 ♦ (x[0] - x[2]);
d = x02 - ±22 + y02 - y22;
det3 = (a ♦ d) - (b ♦ c):

♦pox = detl / det2;
♦poy = det.3 / dot2;

153

return;

GETNBORQ

Scan the neighbors of picji][j],in a
counter clockwise direction, 4 neighbors
first, If any with value equal to pix is
found, return the link code. Else return -1

getnbor(i,j,1 ink,pix)

int i., j, 1 ink,pix;

i
i nt .nlink, dim, k, ni, nj. , i 1, j !; i 2, j 2;
extern int pic[][200];

til ink = (link -4- f>) % 8;
if ((dim = niink % 2) != 0) nlink = (nlink 4 1) % 8;

/* check 4 neighbors */
for(k = 0;k < 3,k44){

, mi i, ;+ deiy.(nlink);
■nj n j + delx(nlink); '
if((ni<200) Me (ni>0) && (nj<20Q) Me (nj>0))S

i f... (pic[ni] [nj] ” pix)}
’ ' if (nl ink != .1 i nk pix =“ 1 && (1 ink ~ 0 \ |

link .” 2 |j link == 4 | | link “ 6))\
i i — i -f- defy (1 i nk) ;

■j 1 = j 4 delx(link);
i 2 ~ ni 4 dely(-u-l ink).;
j 2 = nj 4 delx(nlink);
i r(pic[i 1](j 1] — 1. && pic[i 2]! j2] !“ I)

nlink “ 1 ink; '
pic[ni][nj] ==-2;

return(nlink);
} • ", ; .

j ■
. nl ink --(nlink 4 2) % 8;

i
ill ink = (1 ink 4 5) % 8;
if (durn ■== 0) nlink = (nl ink 4 1) % 8;
for(k — 0; k < 4-;;k44).j .

ni.= i 4 dely(nlink);
nj = j 4 delx(mlink);
i f ((ni<200) Me (ni>0) Me; (nj<200) Me (nj>0))j

if (pic [ni][nj] = pix)
■ return(nlink);

. .5 •:
nlink ='(nlink 4 2) % 8;

. 1 ■ ■■ . ' ■ . ■ '
return(;l);

j '' • ■

154

/ ♦ $■♦ * * 4 * * ♦ * * * ♦ * ♦ * 4 ♦
GETLINES’O

Find all horizontaI ,and vertica1 1ine s nsing
the difference array.

► <■♦***♦* A
get 1 ines(dif,1ines,n)

int dif[],lines[][2],n;

int i, k,-k2, di st, firstk, count;

i -- 0; count = 0;
k .= scanfdi f, 0, 1, n);
firstk = - 1;
whi 1 e(k ! = firstk) \

if(count = 0)j
firstk ~ k; count-H-;

k2 - scan(dif.k;1,n);
ii (k2 < k)

dist = k2 + n + t -k;
else

di st '= k2 - k;
if (disc > 25) [

11 ne s [i] [0] — k;
lines [i-H-][1] = k2;

.1
k = k2;

return(i);

/* ♦♦ i
SOANQ

Scan the d i f ar ray i n the direction dir, f ron
position start. If a nonzero entry is found
return its position. Also take care of
nonzero entries due to distortion.

S' * * * /

scanfdif,start,dir,n)

int start,dir,n,dif[];

r
int i,k,dum, save[3],count,save_i;

i = start + dir;
if ((start = 0) (dir = -1))

i = n - 1 ;
else if ((start' == n-1) && (dir =- 1))

i = 0;
k = start; count - 0;
whi1e (1)[

k = k + dir;

\ 155

if (k < 0)
i = k + n;

else .
i = k%n;

if(diffij != 0)(/* make sure it is not distortion */
if(dif[i] =- 8) return(i);
dim — - dif[i];
k = k + dir;
if (k < 0)

i = k + n;
else.

i = k%n;
if (dif [i] != dun)

break;
if(count == 0) save_J = i;
save [count4-4-] = -dun;
if(count > l)j .

i f (save[0] — save [!]■')■'
return(save_J) ;

count =0;

^etunn.Ci);

•K 4m*
SEGMENT ()

Using’ the curvature function, segment the
array into lines and arcs.

segment (chai ti ,_ n, k 1 , k2, xO, yO)

int chai n[], , kl rk2, xO. y0.;

int i , j , s, durn[700] , count, 1 ines[50] [2] ,.kkl, kk2;
float teta, tetal., tetaS, del , totdel [700] ;

j •= 1; dunf 0] = chsinfkj]; i = kl ;
y.n - \-.t

i - (1 1) % n;
dum(j-H-] - chain[i] ;

i
count — j; s -- 1 f>;
for(j - 0: j < count+1; j ++){

teta = angle(dim, j,s,count);
teta = (teta < -90.0) ? teta + 380.0 : teta;
tetal = ang1e(dun, j-3,s,count) ;
teta2 - angle(dun, j4-3, s, count) ;
del,- teta2 - tetal;
if (del < -180) del = del 4- 360.0;
else if (del > 180) del = del - 360.0;
totdel[j] = (j < 20) ? 0 ;totdel[j-l] 4-del;

156

j = 20;
whi le(totdel|[j++] < 50);
if (j < 35) j /• It is only an ARC * /

do__arc (chain, n, kl, k2, xO, yO) ,
■ return;

kkl = (kl 4- J) %n;
l ines[0] [0] -- kl; lines[Q][l] = kkl;
i = 0;
whil e(j < count -5 Me i < 4). j '

if((totiel[j+5] - totdel[j]) < 10)
i-R’;

i++;
j = j - s; /* take into account the lead */
kk2 = (kl 4- |) %n;
do_arc(chain: ,n,kkl,kk2,xO,yO);
1 ines[1] [G] ~ kk2; lines[l][lj = k2;
do„I ines(ehain;n. J ines , xO, yO, 2) ;

ANGLE ()

Given that point A corresponds to chain[j] and
point B corresponds to ehain[j -s] , find the
angle that the 1 ivie AB makes with the horizontal

float ang 1 e (cha i n, j , s, n)

int j , s, n, chain]/];

int i,k;
float X,Y,teta;

X = 0;
Y = 0;
j ' = j % n;
for (k = j -s+jI ; k < j+1; k++) {

i = (k<0) ? k + n : k;
X = X 4- delx(chain[i]) ;
Y = Y 4- dely (chain[i]) ; ..

s .
teta - Gtan2ff--Y,X);
return(teta ^180.0/3.1415);

0UT_L1NE() ;

Output a line

out_Jine(plx,ply,p2x,p2y >npde)

int p1x,p2x,p.?y,p2v /mode;

157

extern int VIEW.XO,YO,ZO;
float pi 1 ,p!2, p21,p22;

swl tch(VIEW) [
case 1 :

/* shift elements to XO,YO */
p]2 = piy - YO; p22 = p2y - YO;
pll = plx ~ XO; p21 = p2x - XO;

/* reverse with respect to x axis */
pl2 = 200 - pl2; p22 = 200 - p22; '
break;

case 2:
/* shift elements to YO. ZO */

pll - ply - YO; p21 = p‘2y - YO;
pl2 - plx - ZO; p22 = p2x - ZO;

/* reverse with respect to z axis */
pll ~ 200 - pll; p21 =' 200 - p21;
break;

case 3:
/♦.shift elements to XQ,Z0 V

pll = ply - ZO; p21 =.p2y - ZO;
pi2 - plx - XO; p22 = p2x - XO;
break;

3
)

printf("1 %d %5.1f %5. If %5.If %5.IfO.mode,pl1,pl2,p21,p22)

OUT_CIRCLE();

Outpui a circle

out^jc ircle(oxi oy, rad)

float ox, oy, rad;

float ol, o2;
extern int VIEW.XO, Y0,Z0;

swi tch(VIEW) f
case 1:

/* shift e1ements to XO,YO. ♦/
01 - ox - XO; o2 = oy - Y0;

/* reverse with respect to x axis. V
02 =• 200 - o2;
break;

case 2;
/* shir t elements toYO.ZO V .

ol = oy - YO; o2 - ox - ZO;
/* reverse with respect to z axis */

ol = 200 - ol;
break-;

158

case 3:
/* shift elenaents to XO.ZO */

ol = oy - ZO; o2 = ox - XO;
break;

pr int f ("2 1 SS5.2f %5.2f %5.2f0, ol, o2, rad) ;

OUT_ARC (),

Output an arc

out_arc(pix,ply,p2x,p2y«ox,oy,pos)

int plx,p2x,ply,pJ3y,pos;
float ox,oy;

float pi 1,pl2,p2I,p22,ol,o2;
extern int VlEW’JX0IY0JZ0;

swi tch(VIEW’) {;
case 1;

/* shift elenr^nts to X0:Y0 */
pl2 = ply - YO; p22 = p2y - YO;
pi 1 = plx - XO; p21 = p2x - XO;
01 = ox - XO; o2 = oy - YO;

/* reverse with respect to x axis */
pi2 = 200 - pl2; p22 =200 - p22;
02 = 200 - o,2;
break;

case 2;
/*■ shift elenaents to Y0,Z0 */

pll = ply - Y0; p21 = p2y - Y0;
p12 = plx - Z0; p22 = p2x - Z0;
ol = oy - Y0; o2 = ox - Z0;

/* reverse with respect to z axis */
pll =200 - pll; p21 = 200 - p2l;
ol = 200 - ol;
break;

case 3:
/* shift el ament s to X0.. Z0 ♦,/

pll = ply - Z0; p21 = p2y - Z0;
pi2 = nix - X0; p22 = p2x - X0;
ol = oy - Z0; o2 = o2 - X0;
break;

i f (VIEW ! = 3) [
i f (pos — i)

pos =2;
else if(pos == 2)

pos = 1;
i
printf("3 1 5S5.1f %5.if %5. If %5.1f ",p]1,p!2,p21,d22)

159

printf ("%d %5. If %5. IfO.pos.o] ,.o2) ;

DET.X()

Return the displacement in the horizontal
direction due to the chain link "code"

delx(code)

int code;

swi tch(code){
case 0: return(l);
case 1: return(l);
case 7: return(1);
case 2: return(O);
case 6: return(O);
case 3; return(-1),
case 4; return(-l),
case 5: return(~l);
default:.

prsniff" Unknown codeO);
return(O);

r* *********

DELY()

Return the displacement in the vertical
direction due to the chain link "code"
********♦*♦**♦♦♦♦♦♦***♦*♦♦**♦*♦***+*******♦*/
deiy(code)

int code;

switoh(code){
case 1 return(-1)
case 2 return(-1)
case 3 return(-1)
case 0 return(Q);
case 4 return(O);
case h rcturn(1),
case 6 re turn(1),
case 7 return(1);
default.:

pnntf (" Unknown codeO);
return(0);

	Purdue University
	Purdue e-Pubs
	7-1-1984

	Automatic Construction of CSG Representation from Orthographic Projections
	Namdar Saleh
	K. S. Fu

	tmp.1542052450.pdf.gooKR

