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abstract

anAn algorithm has been designed to construct the CSG model of an 

object from its 2D orthographic projections. The method proposed uses 

a top-down approach in which the existence of some 3D primitive (e.g. 

CUBE) is assumed and then different views are searched for appropri

ate elements to prove the assumption .The algorithm is applied to some 

examples and the results are demonstrated. A second algorithm has 

also been designed to implement the automatic input of line drawings. 

The drawings are first digitized using a high resolution scanner. After 

some preprocessing, the algorithm is applied to the image in order .to 

extract the relevant graphical elements, such as arcs and circles. Two 

examples are also demonstrated.



CHAPTER ONE

1.1 INTRODUCTION

The process of automatic manufacturing of mechanical parts is 

currently of great importance in industry and is a field that challenges 

researchers in many areas of engineering and computer science. This 

process has several levels, from input to a solid modeler to production 

of an NC or CNC (computerized numerical control) part program. One 

would like to be able to make an engineering drawing showing projec

tions on an electronic board, using the methods developed by genera

tions of engineers, and then have the part program generated [PR2]. 

Obviously once the engineering drawing of a certain design is created, 

the information present in the drawing has to be conveyed to the NC 

machine, possibly in the form of an explicit 3D data structure. This 

process, which is nothing but the conversion of one form of representa

tion of information to another,-can be broken up into two parts: 1

1 Creation of a 2D data structure of graphical elements such as 

straight lines and arcs from the line drawing. After this step, the 

information present in the engineering drawing is stored in a com

puter where it can be accessed and manipulated by appropriate

algorithms.
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2 Interpretation and reconstruction of the 3D representation of the 

part from the 2D data structure. After this step, the object is 

represented in some form of solid model, and can be stored in an 

appropriate database.

For the first part, two systems, manual and automatic are proposed 

and these are discussed in Chapter three. The second part is treated in 

Chapter two. in which ah approach for the reconstruction process is 

suggested and compared to previous work on the subject. An introduc

tion to the rules governing engineering drawings is given in the next 

section. This is followed by a discussion on representations for rigid 

solids and an explanation of the method used in this work which is the 

Constructive Solid Geometry.

1.2 FUNDAMENTALS OF ENGINEERING DRAWINGS

Engineering drawing is a graphic language that is used universally 

by design engineers and engineering technologist to describe the shape 

and size of structures and mechanisms. It has developed through the 

centuries, much as have various spoken and written languages, until at 

the present time its fundamental principles are understood by trained 

persons [LUZ]. Three dimensional objects are represented in engineer

ing drawings by two to six two-dimensional orthogonal views. Figure 1.1 

contains the American standard arrangement for the six principal views 

[WEL],: When prepar’ing an engineering drawing, a shape description
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TOP VIEW

FRONT VIEW

RIGHT 
SIDE VIEW

LEFT 
SIDE VIEW

rearview

BOTTOM VIEW

Figure 1.1 Arrangement for the six principal views
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method called orthographic or parallel projection is used. The ortho

graphic geometry governing this method has the following properties 

[HAR]:

Rule 1 - The lines of sight for any two adjacent views are perpendicular. 

Rule 2 - Every point of the object in one view is aligned on a parallel 

directly opposite the corresponding point in any adjacent view.

■ Rule 3 - The distance between any two points on the object measured

along the parallels is the same in all related views.

’ Rule 4 - A line can only appear as a line or a point, a point being the end 

view of a line.

As shown in figure 1.2 [LUZ], a visible or invisible (dashed) line may 

represent either the intersection of two surfaces, the edge view of a 

surface, or it may be the limiting element of a surface. The full circle 

in the front view may he considered as the edge view of the cylindrical 

surface of the hole. In the side view, the top line, representing the con

tour element of the cylindrical surface, indicates the limits for the sur

face and therefore can be thought of as being a surface limit line.

Rule 5 - Every face can appear only as an edge or as a figure of similar 

configuration. More precisely, when a surface is parallel to a plane of 

projection, it will appear in true size in the view on the plane of projec

tion to which it is parallel. When it is perpendicular to the plane of pro

jection, it will project as a line in the view. And finally when it is posi

tioned at an angle, it will appear foreshortened. See figure 1.3.



Contour element of hole

Edge view of surface A
/^-Contour element of 

v/ X. cylindrical surface Bview of
surface C

Edge view of r 
cylindrical surface BN

Edge view of
horizontal
surface

Edge view of Line _qt intersection
cylindrical surface of hole of two surfaces

Figure ! .2 The meaning of a line
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Figure 1.3 Projections of a surface



From the orthographic geometry it is apparent that each view con

tributes information not in the other views and that to understand the 

object portrayed by the orthographic view, the information in one view 

must be used in a coordinated way with the other views.

1.3 SOLID GEOMETRY REPRESENTATION

1.3.1 A LIST OF RELATED FIELDS

The problem of representing mechanical components requires 

talents from such fields as data structures, logic and algorithms, 

artificial intelligence, programming languages, numerical control, 

metal cutting, and operations research [WOO]. Before discussing the 

advantages and disadvantages of CSC, a general discussion on represen

tation schemes and their properties is in order.

1.3.2 PROPEmmS OF REPRESENTATION SCHEMES

A representation scheme is a relation between (abstract) solids and 

representations. There are several methods for constructing complete 

representations of solids and some of them are: Constructive Solid 

Geometry; Sweeping and Boundary Representation. In general, 

representation schemes have four formal properties and they are as 

follows [REQ],

1. Domain: The domain of a representation scheme Characterizes the 

descriptive power of the scheme.



2. Validity: The range of a representation scheme is the set of represen

tations which are valid. Validity is an important property because it 

ensures the integrity of databases, in that databases should not contain 

symbol structures which correspond to nonsense objects.

3. Completeness: A representation is complete if it corresponds to a 

single object, that is, there are no ambiguities. This is the most impor

tant formal characteristic of representation schemes. It is crucial 

when there is a wide range of applications to be supported by a practi

cal modeling system, and especially when the range of applications is 

not known [VOE].

4. Uniqueness: The representation o an object is unique if it is the only 

possible representation of that object in that particular scheme. 

Representational uniqueness is important for assessing the equality of 

objects in automatic planning algorithms and numerically controlled 

(NC) machine tools. Representations which are both complete and 

unique are highly desirable. However, most representation schemes, 

are nonunique for at least two reasons.

Substructures in a representation may be permuted.

V Distinct representations may correspond to differently positional

but congruent copies of a single geometric entity.

An example of representation schemes that are complete but not 

unique are CSG. In the next section we study these schemes in more

detail.



1.3.3 CONSTRUCTIVE SOI ID GEOMETRY

Constructive Solid Geometry connotes a family of schemes for 

representing rigid solids as Boolean, constructions or combinations of 

solid components via the regularized set operators, mainly Union (+), 

Intersection (&) and Difference (-) [REQ], These operators are demon

strated in figure 1.4 . CSG representations are ordered binary trees. 

Nonterminal nodes represent operators, which may be either rigid 

motions or regularized union, intersection or difference, terminal nodes 

are either primitive leaves which represent subsets of E3 1 or transfor

mation leaves which contain the defining arguments of rigid motions.

The semantics of CSG-tree representation is clear (figure 1.5): Each 

subtree that is not a transformation leaf represents a set resulting 

from applying the indicated motional/combinational operators to the 

sets represented by the primitive leaves. Schemes whose primitives are 

bounded are called "CSG based on bounded primitives , or simply CSG 

when no confusion is likely to arise, while schemes possessing 

unbounded primitives are called "CSG based on general half spaces'. 

We consider only CSG schemes whose primitives arc bounded. Tn fact, 

the main advantage in using primitive volumes in the description pro

cess is that the object constructed is always bounded and finite, since 

the primitives are [WOO]. / /

When the primitive solids of a CSG scheme are bounded and hence 

are r-sets 1 2, the algebraic properties of r-sets guarantee that any CSG 

tree is a valid representation of an r-set if the primitive leaves are

1 Three dimensional Kuclidean space.
2 r-sets are subsets of E3 that are bounded, closed, regular and seinianalylie.



UNION

Figure 1.4 The meaning of different operators
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u* TRANSLATE

PI P2 P2 AX

Figure 1.5 The semantics of CSG-tree representation
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valid. This guaranteed validity of CSG schemes based on solid primi

tives applies only to schemes in which the combinational operators are 

general regularized set operators which may be applied to any objects 

in the domain of the representation schemes.

Overall the benefits of CSG are [ROT] :

The model represents a true solid with volume.

- Curved as well as planer surfaces bound the solids.

The combined operators are remarkably effective for modeling 

solid artifacts, particularlymechanical parts.

In addition, experience has showed that humans can easily create 

CSG representations of certain classes of objects such as mechanical 

parts [REQ].
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CHAPTER TWO

AUTOMATIC RECONSTRUCTION OF AN OBJECT 

FROM ITS 2D ORTHOGRAPHIC PROJECTIONS

2.1 INTRODUCTION

The purpose of this chapter is to discuss the problem of obtaining 

the 3D representation pf an object from its 2D projections. Compara

tively little work has been done on line drawing interpretation in the 

context of geometry definition. This work has mainly considered the 

class of polyhedra ([LAF],[LIA],[HAR],[PR1]) Results have also been 

obtained on curved objects with uniform thickness ([ALD1],[ALD2]), and 

on objects with less restrictions [SAK], In the following section, some of 

the previous algorithms are briefly described. Sections 2.3 - 2.4 present 

a different approach to solving the reconstruction problem.

2.2 PREVIOUS WORK DONE

2.2.1 POLYHEDRA AS THE CLASS OF OBJECTS

In the paper by PREISS [PRlJ.the emphasis for the interpretation 

of 2D drawings is on the connectedness properties, The approach used 

is similar to the approach in the theorem proving programs that have
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the following general principles:

(a) -Existence of data representing the current state.

(b) - Rules by which all possible future states can be evaluated.

(c)-A definition of legal final states.

The algorithm goes as follows:

- Find the possible coordinates of each vertex. Two of the three coordi

nates are available in each view. Using the other views, set up a list of

possible third coordinates.

- Identify the projected faces given by closed paths of solid lines in each

view. ' ’ :

- Interpret the prbjected faces by identifying its vertices from an 

ordered depth first search.

- Interpret the dashed lines.

- Assemble the body using a technique from scene analysis programs.

The algorithm is not very hard to follow. However, the part about 

the interpretation of dashed lines is ambiguous. There is a possibility of 

modifying the process in order to be able to treat curved surfaces.

In the paper by Haralick and Queeney [HAR],the problem is treated 

as three consistent labeling problems. A set of rules are defined accord

ing to the properties of polyhedra. Some of the rules are as follows:

(a) - Every point of the Object in one view is aligned on a parallel directly

opposite the corresponding point in any adjacent view.

(b) - A line can only appear as a line or a point, a point being an end view

'offline..-/'.' ■ ■ •



(c) - Every face can appear only as an edge or as a figure of similar 

configuration.

(d) - No two contiguous faces can lie in the same plane.

. The algorithm is similar to the previous one:

- Find the set of V(x,y,z) eligible to be vertices.

- Find the set of visible surfaces for each view.

- Find the interpretation of the surfaces denoted by three or more ver

tices according to some rules.

- Make sure the interpretations are consistent.

Steps a,c,d are consistent labeling problems and are solved using a 

tree search. The main drawback of the algorithm is that there is no 

mention of any treatment of hidden lines. Therefore the object is always 

viewed from an angle where there arc no hidden lines, an assumption 

that is nol very practical. i/;.
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The main distinction of the algorithm by B.Aldefeld [ALD1],[ALD2], 

from the previous methods is that it is able to interpret curved objects 

as well as plane faced, polyhedra. The interpretation process has two 

parts. In the local part, objects are recognized by their individual pat

terns, irrespective of any possible global inconsistencies. Therefore 

several sets of candidates including spurious ones are generated. The 

second part which is the global interpretation step, Lakes care of 

finding the subset of real objects among the candidates and of recogniz

ing whether each elementary object is a solid or a cavity. The algorithm 

is rather complicated and includes heuristic searching ■ and matching.



Also the data structure used for representing the final 3D object is not 

specified, although it is said that the representation is volume oriented.

2.3 A NEW APPROACH FOR SOLVING THE RECONSTRUCTION PROBLEM

In this work, a top-down interpretation approach has been used. 

This means that the existence of a certain 3D primitive (cube, cylinder, 

cone) is assumed and then the views are searched in order to find the 

necessary 2D primitives that justify the assumption. If the assumption 

is justified then the 2D primitives are used in order to obtain the attri

butes needed for the 3D representation. This assumption has also been 

extended to some combinations of 3D primitives, namely corners and 

■lugs.. .

The following section explains the reconstruction algorithm in more

detail. Each subsection is devoted to the interpretation 

elements mentioned above.

of one of the

2.4 THE ALGORITHM

2.4.1 EXPLANATION

A block diagram of the algorithm is shown in figure 2.1. In the fol

lowing subsections, each step of the interpretation process is discussed 

arid then briefly illustrated in algorithmic form. For more detail on the 

algorithm, the reader should refer to the programs included in the 

appendix; n



Figure 2.1 General block diagram of algorithm 1

Output

results

Apply 
corner 

routine structure

organizeApply cube

rout me

reorganize
input
data

Apply cone

routine

Apply lug

rout me

Apply
cylinder
routine
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2,4.2 CYLINDER

The planes of projection in an engineering drawing are usually 

selected so that in case of the existence of a cylinder, the axis would be 

perpendicular to one of the planes. Therefore the projection of the 

cylinder in that view is a circle. The projection in the other views is two 

parallel lines. These lines might or might not match 1 and they may be 

solid or dotted depending on the mode of the cylinder (solid or cavity) 

and the objects surrounding it.

The above facts make the cylinder the easiest primitive to detect. 

The views are searched for circles and if one or more are found, the 

other views are searched for the above mentioned lines. In order to 

represent a cylinder uniquely the following are needed:

- The radius which is just the radius of the circle detected in one of the 

views. :

- The length which is given by the length of the lines in the correspond

ing views.

- The orientation of the axis of the cylinder which is also available from 

the view of the circle.

The routine goes as follows:

FOR view = l ,3 DO : ^
n = number of circles in this view;
FORI - l,n DO

find the horizontal and vertical extremities on circlei;
use the coordinates of the extreme points to find corresponding

1 Two lines are said to match when they are equal in length and direction.



lines in the other views;
IEm any view no such line is found 7/YA7V 

GO TO END;
find the best candidate among the lines found;
output the cylinder;

END’
END;

It should be noted that when the parallel lines can not be found, 

then we definitely do not have a cylinder. In this case the circle found 

earlier corresponds to some conical object. This is discussed in the next 

subsection.

2.4.3 CONE

In mechanical objects, there are cases where we encounter parts 

that have a conical shape. A whole cone however is very seldom encoun

tered, therefore we do not need bother with teaching our system to 

recognize it. More often we have a part that looks like a cone whose top 

has been cutoff. This part has the following representation in a three 

view engineering drawing:

- In one of the views we have two concentric circles. The larger one 

is the projection of the base of the cone, and the smaller one is where 

the original cone has been cut.

- In the other two views we have an identical four sided figure which 

has the following properties : of the opposing sides, two of them are 

parallel but with different lengths. The other two are equal in length. It 

should also be mentioned that the class of objects considered requires 

that the parallel sides be either horizontal or vertical. As a convention, 

the larger of these parallel lines will be called ’base’ and the slanted 

sides will be called ’arms’.

19



In terms of C.S.G., the conical object described above can be 

represented as a combination of a cone and cylinder, i.e.

OBJECT = CONE - CYLINDER

Therefore the following information has to be extracted from the draw

ings:

- The coordinates of the center and the radius of the circle represent

ing the base of the cone. ,

- The height and orientation of the original cone.

- The coordinates of the center and the radius of the circle represent

ing the cylinder.

- The height and orientation of the cylinder.

Once two concentric Circles have been found in a view, we search 

an adjacent view for the base line. There may be more than one candi

date but the right one has to be connected to two slanted and' equal 

lines , i.e. the arms. Once the arms are found, we have enough evidence 

that the object is conical and we also have all the information needed 

for representing it. For example, the height of the cone, h, can be cal

culated if we have the length of the base line and the angle teta that 

the arm makes with the base:

2h = baselength x tan(teta)

The routine goes as follows:

20

FOR view - 1,3 DO
n = number of circles in this view; FORi =. l,n-l DO
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FOR] = i+l,n DO
//’center_£>f_circlej ='centehjof^circlej THEN :. '

find the horizontal and vertical extremities on the larger 
circle;
use the coordinates of the extreme points obtained above
to find the base line;
use the base to find the arms;
check to make sure the circles are the projection of a cone; 
output the cone;

END;
END;

/ END;
END; '

An example of a simple object that contains a conical part and its 

CSG representation as a result of using the above algorithm is illus

trated in figure 2.2

2.4.4 CUBE

The process of recognizing a cube is more complex than previous 

primitives because of a high degree of freedom in its 2D representation. 

A complete and isolated cube has 4 perpendicular lines in the form of a 

rectangle or a square as projection on each view plane. However, when 

other objects are combined with the cube, many of these lines are 

either totally missing or only partly visible. The cube algorithm expects 

to find a horizontal line connected to two vertical lines that match in 

the first view. If these elements are found, then the rules of engineering 

drawings require that two parallel lines corresponding to the cube be 

present in view 2 and view 3 each. One problem that arises here is that 

iiibre than two lines may be found in those views (two or more lines may 

be concatenated in the same direction) and it is not always obvious 

which line is the projection of the cube. One way to solve this problem is
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(cone! - cylinderl) + cylinders 
+ cylinders - cylinderH

Figure 2.2 Example of an object with a conical part
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to give priorities to certain configurations of lines. For example con

sider the simple object of figure 2.3. Lines a, b, and c have been found 

in view 1 and a search for corresponding lines in views 2 and 3 has 

resulted in lines bl, b2, cl, and c2 in view 3 and al, a2 in view 2. All of 

these lines are candidates for the third dimension of the cube. Priority 

is given to view 2 because it contains only two lines. However the lines 

al and a2 do not match, so there is still some uncertainty, In this case 

line al is chosen because it is at an extreme location in view 2. That is

it has the lowest y coordinate among the lines in view 2.

The algorithm is not limited to complete cubes only. Cubical frus

tums can also be detected. In this case we have two slanted lines con

nected to a horizontal line. The process of finding the third; dimension 

of the frustum is the same as explained above. However, the represen

tation of a frustum in terms of CSG is more complex than the represen

tation of a simple cube. This problem is more thoroughly discussed in 

the next subsection.

The routine goes as follows:

REPEAT
find a horizontal line;
find two lines that are connected to the ends of the above line;
IF the lines match OR the lines are slanted and equal in length 
THEN

look for lines in views 2 and 3 that are candidates for the projec
tion of the cube in those views, using the coordinates of the lines 
above;
choose the best candidates;
IF the lines match THEN 

output a cube;
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uieu 1

Figure 2.3 Simple cubical object



ELSE ;v:
using the angles and the length of the slanted lines, find the 
dimensions and position of the frustum; 
output a frustum;

■ END; /V.
/.' END> V ;>y ::

UNTIL no more horizontal lines;

2.4.5 LUGS

Objects classified as lugs are those objects that have a cylindrical 

part in union with a cubical part. These objects are very common in 

mechanical parts. Their front view representation in 21) drawings is an 

arc connected to two line segments at its ends. The lines could be 

either parallel or not and the whole object can have infinite possible 

rotations. However 4 major configurations are very common in 

engineering drawings and they are shown in figure 2.4.

Since all four configurations can occur in any of the three views, we 

have a total of 12 possible cases to consider. In each case the following

jThe radius of the cylinder.

_The thickness of the cylinder.

__The origin of the cube.

_The x,y,z dimensions of the cube.

In order to render the representation of the partial cylinder 

independent of the cube that is attached to it, it is a better idea to have 

the output as (CYI.1 - CUBEl) + CUBE2 instead of CYL1 + CUBE2, 

where CUBE1 is a cube that intersects the cylinder in a manner to have 

the desired half cylinder as a result, and CUBES is the cube that
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Figure 2.4 The major orientations of lugs
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completes the representation of the lug.

Most of the information mentioned above is available in the view in 

which tfie curve appears. However the thickness of the cylinder (and 

the cube) has to be found from another view. One way to go about 

finding this thickness is to use the fact that the midpoint on the arc 

should map into a line in another view and that this line will be unique 

because of the class of objects considered. Therefore once the arc has 

been located, the coordinates of the midpoint on its body can be calcu

lated and depending on the view in which the arc resides, and the orien

tation of the arc, we can determine which view should be searched for 

the line segment in question. After this step, the cylinder can be 

defined uniquely.

The problem of outputting the cubical part of the lug can be more 

complicated especially if the line segments connected to the endpoints 

of the arc are not parallel. In this case the cube in question will be a 

combination of three cubes. The relation between the three cubes is 

demonstrated in figure 2.5. As it can be seen from the figure, the infor

mation that needs to be extracted is the angle beta and the coordinates 

of the origin of cube C. The x,y,z dimensions of the cube have to be 

obtained with regard to the view we are in. The x,y,z dimensions of 

cubes A and B are not important as long as the cubes cover the volume 

that is to be extracted from cube C. Cube A and B are defined with 

respect to cube C using homogeneous transformation conventions. In 

order to ease the output process all rotations and translations involved 

in defining cubes A and B are done with respect to the origin of cube C 

and then the result of the combination of A,B,C is moved to its



cube c result

Figure 2.5 Combination of cubes to make a frustum
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appropriate location. That is we define local coordinates with origin 

(0,0,0) at the origin of cube C and after subtracting A and B from C we 

move the result to the global coordinates of the origin of C.

The routine goes as follows:

FOR view = 1,3 DO
n = number of arcs in this view;
FOR i = 1 , n DO

find the midpoint of arCj;
using the coordinates of the midpoint, find a line that is the pro
jection of the half cylinder in a secondary view; 
using the line just fund and arc^ output a cylinder; 
using the endpoints of arci( find the dimensions and position of 
the cube to be subtracted from the cylinder; 
output a cube;
IF the endpoints of arCj are not connected THEN 

find two fines that are connected to the endpoints;
JF the lines match THEN 

output a cube;
ELSE IF the fines are slanted and equal in length THEN 

output a frustum;
END;

END;
END;

END;

It should be noted that after each iteration of the lug algorithm, 

the input data is reorganized as a preprocessing for the cube algo

rithm.
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2.4 6 CORNERS.

Mechanical parts in many cases have round instead of sharp 

corners and this simple difference makes the interpretation and 

representation of them more complex. As an example let us consider 

the case where a cubical object has three sharp corners and one round 

corner as shown in figure 2.6. In terms of CSG schemes, the above 

object can be represented as follows:

(( CUBE A - CUBE B ) + CYLINDER C )

where the location of CUBE B and CYLINDER C is at the round corner of 

CUBE A and their thickness is the same as that of CUBE A. It is easy to 

see that without the rounding effect, the representation of the object 

would have simply been CUBE A.

For every round corner, the radius and center of the arc give us 

the radius, one of the centers of the cylinder and the x and y dimen

sions of the cube. The origin of the cube .however, depends on the posi

tion of the arc. For example, suppose the horizontal line connected to 

the arc is LINE1 and the vertical line connected to the arc is LINE2. 

Then we have the following for the x and y coordinates of the origin of 

the cube , cube_orig:

Case A:

cube_orig(x) =LINE2(P0INT2(x))1 

cube_£>rig(y) = LINE2(P0INT2(y))

1 LINEm(POINTn(x)) means the x coordinate of the n endpoint of LINE m.
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cylinder C

Figure 3.8 CSG construction of cube with round corner

v' H
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Case B:
cube_orig(x) = LlNEl(P0INT2(x)) 

eube_orig(y) = UNE2(P0INT2(y))

Case C:
cube_Drig(x) = LINE2(P0INTl(x)) 
cube_Drig(y) =LINEl(POINTl(y))

Case 1):
cube_orig(x) = LINEl(P0INT2(x)) 

cube_orig(y) = LINEl(P0lNT2(y))

The last information needed for the representation of CUBE B and 

CYLINDER C is their third dimension, that is the z dimension of the 

cube which is the same as the thickness of the cylinder. One way to go 

about finding this information, call it zl, is to search the other two 

views. However, the same conditions and ambiguities that existed in the 

cube interpretation process exist here. That is, there may be more than 

one candidate for zl and a set of criterions has to be designed. In addi

tion, the original cube will eventually go through the process of 

interpretation and its z dimension which is the same quantity that we 

are looking for will be available. So instead of trying to find zl at this 

point, a better and faster solution is to mark the cube and cylinder 

representations as incomplete and then complete them later when zl 

becomes available.

Finally, because of the requirements that the cube interpretation 

algorithm has, the round corners should all be replaced by sharp 

corners' Therefore, once the round corners have been processed, LINE1 

and LINE2 should be extended to meet at a 90 degrees angle. After this

step, the corner algorithm is done.



33

The routine goes as follows:

FOR view ~ 1,3 DO
n = number of arcs in this view;
FOR \ = \,n DO

IF arCj belongs to a round corner THEN
determine which of the four possible cases has occurred;
using the center, radius and endpoints of arCj, find the
dimensions and position of the cube and cylinder;
mark the cube and cylinder just obtained as incomplete and
store them so that they can be accessed later when the
appropriate information is available;
transform the round corner into a sharp corner;

END;
. END;
END; ;

An example that demonstrates a lug and corners is shown in figure

2.7.

2.5 A COMPARISON BETWEEN THIS WORK AND PREVIOUS WORKS

In general there are three main differences between this 2DJ3D 

reconstruction algorithm and the ones suggested by other researchers:

CLASS OF OBJECTS

Many authors have designed algorithms that deal with polyhedra 

only. This condition seriously constrains the scope and usefulness of 

their work since in the real world most mechanical parts contain some 

cylindrical or conical part. Other authors, however, have come up with 

ways to interpret curved faces too. The class of objects considered in
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Figure 2.7 Example of a lug and round corners
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this work is a subclass of the one considered by Aldefeld 

([ALDl],[ALD2]j, which is the uniform thickness objects. These objects 

generally have a plane base with arbitrary contour and a uniform thick

ness in the direction perpendicular to the base [ALD2]. Another con

straint on the domain of the objects treated is that the curves appear

ing in the drawings should be either a circle or an arc belonging to a 

circle. This does not in general limit the domain of objects very much.

PROPOSED APPROACH

The method used in this work is like a "top-down" approach. That is 

the existence of a certain goal object (cube, lug,...) is assumed and then 

the different views are searched for primitives in order to find proof for 

the assumption. In the process of proof finding, the attributes needed 

to represent the object in terms of C.S.G. are extracted. The disadvan

tage of this approach is its lack of generality. However, adding more 

power to this algorithm, that is, making it capable of treating more 

complex objects does not require a major effort. This might be the case 

for previous polyhedra oriented algorithms because once curves are 

introduced in a drawing, the concept of vertex matching used in some 

previous approaches looses its significance. The advantage of this 

approach is that it is easier to have a volume oriented representation 

because the primitives used in this kind of modeling (e.g. cubes in CSG) 

are found and defined independently. In addition, the algorithm is rela

tively fast compared to some of the previous algorithms, when they are 

applied to similar line drawings.
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FINAL REPRESENTATION

The output of this algorithm is the C.S.G. representation of the 

object depicted in the three orthogonal views. The most important 

advantage of this representation is that it is directly compatible with a 

C.A.D. system that uses Constructive Solid Geometry to represent 

objects that are stored m its data base. Other advantages of this 

volume oriented representation over the ones used previously are the 

lack of ambiguity (which is possible in wire frame representation) and 

boundedness of the object (which is not always guaranteed in surface 

oriented representations).

2.6 EXAMPLES

2.6.1 DATA INPUT

In order to examine the function of the algorithm, a few examples 

have been implemented using a manual input routine from the termi

nal. The conventions for inputing each 2D primitive is as follows: The 

first two entities to be entered are the TYPE (LINE = 1, CIRCLE '= 2, ARC 

= 3) and the MODE (solid = 1, dashed = 0). Then, depending on TYPE the 

following entities are entered:

Py i =1,2; j - 1,2. This is the jth coordinate of the ith endpoint.

Cj i = 1,2. This is the ith coordinate of the center.

POS This flag takes values from 1 to 4 depending on the position of the 

ARC with respect to its center.
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RAD This is the radius of the CIRCLE. V

Therefore a LINE is defined as follows:

A CIRCLE is defined as follows:

■^■'■■4 MODE Cj C2 R^:;: v;.,v;;

And an ARC is defined as follows:

3 MODE Fn Pig P21 PggJPGS ;

on the view. In

view 1 the first coordinate is X, in view 2 it is Y, and in view 3 it is Z. The

first line in the input list contains one digit which is the error margin. 

This is the error allowed when two coordinates arc matched. That is, if 

the difference between two coordinates is smaller than this number, 

then the coordinates arc said to be equal. This error margin is espe

cially needed for the automatic input explained in Chapter 3. The views 

are entered in order and they arc separated by -1. Finally, the order in 

which the primitives in a certain view arc entered is not important.

The output of the algorithm is a list of primitives separated by 

union (+) and difference (-) operators. All the primitives reside in a glo

bal coordinate system. Parentheses are used to separate different 

groups of primitives that have to be combined together. The result of 

the operation on the primitives in the parentheses is then added to the 

list. Those primitives that are not combi ned with Other primitives in 

parentheses can be added or subtracted from the list globally. A MOVE 

operator is used when it becomes necessary to have the operation on
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the primitives done locally and the result to be transferred to some glo

bal coordinates. These global coordinates are indicated by the MOVE 

operator.

For each primitive, a 3x4 matrix is printed which contains the 

information needed for the dimensions and the position of that primi

tive in the global coordinate system. The rows of the matrix correspond 

to the X, Y and Z axis. For the CUBE, the first column contains the three 

coordinates of one of the vertices. This point is called the origin of the 

CUBE. The second column contains the length of the cube in all three 

directions. The third and fourth columns correspond to the translation 

and rotation information. The concepts of translation and rotation are 

taken from the method of homogeneous transformations which is used 

in robotics and computer vision [PAUL]. For an example refer to the 

output of Example 2, In the case of CUBE 5, we have nonzero entries in 

columns 3 and 4. They should be interpreted as follows: translate the 

cube in the positive X direction 12 units. Then rotate the cube about 

the Z axis 29.743 degrees in the positive direction (using the right hand 

rule). For the CYLINDER and CONE, the first two columns are similar to 

the CUBE. The origin in the case of CYLINDER is the center of one of the 

Circles (top or bottom). For the CONE, the origin is the center of the 

base circle. The radius is given in the third column and the rest of the 

entries are always zero.

2.6.3 SAMPLE EXECUTIONS

The algorithm has been implemented in "C" language on a Digital 

Equipment Corporation VAX 11/780 minicomputer under the UNIX
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operating system. The following pages contain three sample executions 

of the algorithm. The line drawings are shown in figures 2.8, 2.9 and 

2.10. Following each drawing there is the list of input primitives and the 

result of the execution. The meanings of the input and output lists are 

explained in Sections 2.6.1 and 2.6.2. Since the input is manual, an 

error margin of 1 unit is adequate because of the high accuracy of the 

coordinates entered.



Figure 2.8 Example 1
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INPUT UST FOR example 1

1'
3 1 8 15 16 15 , 2 ■ 12 15
3 i 2 ■: 12 2 16 4 2 14 1
3 i 2 4 2 & 4 2 6
3 1 22 12 : 22 16 3 22 14
3 1 . 22 ■ 4. 22 8 3 22 6
3 1 4 : 4■■■:'' 5 0 10 5 1 V
3 20 1 19 0 10 19 1
2 i ■' s'- 114 ■ i-vi':;
2 22 ; 14 .5 •.
'2 . i /. 2 6 15'../..'-.. 1 /■:.:/
2 . i 22 6 .5 4: ;
1 l ■ 4. . 20 8 20
1 i 16 20 20 20
1 i 20 20 20 16 .
1 ■ i 20 16 4 20 12 ,
1 i 20 12 20 : 8 4:
1 i 20 8 20 4 . '■
1: i : 20 ■ 4 20 v 1
1 i 19 0 5 4'0'4'44
1 i ■ i 4 " 4
1 l 4 4; 4 8 ; 4-. 1
1 14 : 4 8 1 12
1 i 4 12 4 16
i. i 4 ' : 16 4 20
i. i 11 9.5> 13 9.5
i . 1 - 11 ■ .5 13 .5 .. ,/ .4
l ^ 1 11 .5 ■ 11 '4 9.5 4
l 1 13 .5 13 9.5
i 0 11 5.75 13 5.75
i 0 11 ^ 4.25 : 13 1 4,25. -.1
i 1 8 15 B 20
l ' 1.. 16 . 15 16 20
i 1 . 2 16 4 16 ■
i 1 2 12 4 - 12
l i: 20 ■ 16 , 22 16
l i 20 12 :/ 22 12
l i . 2 4 4 4 4'

l- i 2 8 4 8
1 i : 20 4 ' 22 4
1
-1

. i 20 8 22 8

3 i 3 10.6^ 7 10.6 3 5 8.
2 i 5 8.5 / .75 . . 4 '//

1 i 20 0 20 7
1 i 20 7 9.5 : 7 4

,1 i 9.5 . 7 .5 7 4,4
1 i .5 7 ■ 0 7

<40'
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1 1 0 7 0 0 
1 1 0 0 4 0 
1 1 4 0 8 0
1: i 6 0 12 0
1 i 12 0 16 0
1 l 16 0 20 0
1 i 16 0 16 3
1 i 12 0 12 3
1 i 16 3 12 3
1 i .5 7 3 10.6
1 l 9.5 7 7 10.6
1 0 11 0 11 7 .
1 0 13. £> 0 13.5 3
1 0 14.e> 0 14.5 3
1 0 5.5 0 5 . 5 3
1 0 6.5 0 6 . 5 3
-1
1 1 0 0 0 4
1 1 O'. 4 ' 0 8
1 1 0 8 0 16 .
1 1 0 16 0 20
1. 1 0 20 0 . 24 .
1 1 0 24 3 24
1 i 3 24 3 20
1 l 3 20 7 20
1 i 7 20 7 16
1 i 7 16 7 . 13
i i 7 13 ii 13
i i 11 13 ii ii.
i l 11 ' 11 7 11
l l 7 11 7 8
i 1; 7 8 7 4
i 1 7 4 3 4
i 1 3 4 3 0
l 1 3 0 0 0
i 1 0 4 3 4
i 1 0 8 7 8
i 1 0 16 7 16
i .. 1 0 20 3 20
i .. 1 7 11 7 13
i 0 0 1.5 3 ,1.5
i 0 0 2.5 3 2.5
1 0 o 21. 5 . i3 21.5
i 0 0 22. 5 :■!3 22.5
l 0 7.75 11 7,75
1 0 9, 25 11 9.25 13
-1
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OUTPUT LIST FOR EXAMPLE 1

+ (CYLINDER7 - CUBE2) + CUBE3 + (CYLINDERS - CUBE4)
+ CUBES + (CYLINDERS - CUBE6) + CUBE7 
+ (CYLINDER10 - CUBES) + CUBE9 
+ (CYLINDER11 - CUBE10)
+ MOVE (11,00,0.50,7.00)((CUBE11 - CUBE12) - CUBE13)
+ ((((CUBE!6 - CUBE14) + CYLINDER!2) - CUBE15) + CYLINDER13)
- CYLINDER! - CYLINDER2 - CYLINDERS
- CYLINDER4 - CYLINDER5 - CYLINDER6 - CUBE!

CYLINDER7
2.000 0.000 2.000 o.ooo

14.000 0.000 0.000 O.OOO
0.000 3.000 0.000 0.000

CUBE2
2.000 4.000 0.000 0.000

10.000 8.000 0.000 0.000
0.000 3.000 0.000 0.000

CUBES
2.000 2.000 0.000 0.000

12.000 4.000 0.000 0.000
0.000 3.000 0.000 0.000

CYLINDERS
2.000 0.000 2.000 0.000
6.000 0.000 0.000 0.000
0.000 3.000 0.000 0,000

CUBE4
2.000 4.000 0.000 0.000
2.000 8.000 0.000 0.000 
0,000 3.000 0.000 0.000

CUBED
2.000 2.000 0.000 O.OOO
4.000 4.000 0.000 0.000
0.000 3.000 0.000 0.000

CYLINDER9
22.000 0.000 2.000 0.000
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14.000 0.000 0.000 0:000
0.000 3.000 0.000 0.000

CUBES
18.000 4.000 0.000 0.000
10.000 8.000 0.000 0000
0.000 V 3. OOO 0.000 0.000

■ CUBE?-
20.000 2.000 0.000 0.000
12.000 4.000 0.000 0.000
0.000 3,000 0.000 0000

CYLINDER! 0
22,000 0.000 2.000 0.000
6.000 0.000 6.000 0.000
0.060 3.000 0.000 0.000

CUBE8
18.000 4.000 0.000 0.000
2.000 8.000 0.000 0.000
0.000 3.000 0.000 0.000

. CUBE9 ~
20.000 2.000 0.000 0.000
4.000 4:000;/ 0.000 0.000
0.000 3.000 : 0.000 0.000

CYLINDER!1
11.000 2.000 2.900 0.000
5.000 0.000 0.000 0.000
8.500 : 0.000 0.000 0.000

CUBE10
11.000 2.000 0.000 0.000
0.100 9.800 ■ 0.000 0.000
4.800 5.800 0.000 0.000

CUBE11
0.000 2.000 0.000 0.000
0.000 ; 9.000 0.000 0.000
0.000 3.600 0.000 0.000

CUBE112
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0.000 18.000 0.000 
0.000 18,000 0.000
0.000 18.000 0.000

CUBE13
0,000 18.000 0.000
0.000 18:000 9.000
0.000 18.000 0.000

CUBE16
4.000 16.000 0.000 
0.000 20.000 0.000 
0.000 7.000 0.000

CUBE14
4.000 1.000 0.000 
0.000 1.000 0,000 
0.000 7.000 0.000

CYLINDER12
5.000 0.000 1.000
1.000 0.000 0.000
0.000 7.000 0.000

CUBE15
19.000 1.000 0.000 
0.000 . 000 0.000 
0.000 7.000 0.000

CYLINDER'3
19.000 0.000 1.000
1.000 0,000 0.000
0.000 7.000 0.000

CYLINDER!
3.000 0.000 0.500 

14.000 0.000 0.000 
0.000 3.000 0.000

CYLINDERS
32.000 0.000 0.500
14.000 0.000 0.000
0.000 3.000 0.000

55.221
0.000
0.000

34.779 
0.000 
0.000

0.000 
0.000 
0.000

0.000 
0.000 
0.000

0.000 
0.000 
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000
0.000
0.000

0.000 
0.000 
0.000
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CYLINDER3
2.000 0.000 0.500 0.000
6.000 0.000 0.000 0.000
0.000 3.000 0.000 0.000

CYLINDER4
22.000 0.000 0.500 0.000
6.000 0.000 0.000 0.000
0.000 3.000 0.000 0.000

CYLINDERS
11.000 2.000 0.750 0.000
5.000 0.000 0.000 0.000
B. 500 0.000 0, 000 0.000

CYLINDER6
12.000 0.000 4.000 0.000
15.000 0.000 0.000 0.000
0.000 7.000 0.000 o.oop

CUBE1
8.000 8.000 0,000 0.000

15.000 5.000 0.000 0.000
0.000 7.000 0.000 0,000
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Figure 2.9 Example 2



INPUT UST FOR EXAMPLE 2

48

1
3 1 8 11 12 11
2 1 10 14 . 1-
1 1 8 11 4 4 ....
1 1 4 4 0 4
1 T 0 4 0 0 .
1 1 . 0 0 20 0
1 1 20 0 20 4
1 1 20 4 16 4
1 l 16 4 12 11
1 l 12 11 8 11
1 . l 4 4 16 4
1 0 1 0 1 4
1 0 3 0 3 4
1 , 0 17 0 1 17: ,4
1
-1

0 19 0 19. 4

1 1 18 8 18. 4
1 1 . 18 4 ■ 11 4
1 1 11 4 11 5
1 1 11 5 4: 5
1 i 4/ 5 4 .. 0
1. i 4 0 0 0
1 i 0 0 0 .12
1 i 0 12 : ,4 12 .
1 l 4 12 4 7
1 i 4 ■ 7 11- 7 .
1 i 11 7 11 8
1 i 11 8 18 8
1 i 11 5 11 7
1 : i 4 5 4 7
1 0 ,4 1 0 1
1 0 4 3 0 3
1 0 4 9 0 9
1 0 4 11 0 11
1 0 15 4 15' 8
1
-1

0 13 4 13 8

2 1 2 2 1
2 1 2 18 1
2 ; i . 10 2 1
2 i- 10 18 1
1 i 0 0 0 20
1 l 0 20 12, 20
1 ■ l 12 20 12 0
1 -i 12 0 0 0
1 i 5 4 , 5 16
1 l 5 16 7 16

14
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OUTPUT UST FOR EXAMPLE 2

+' (CYLINDERS - CUBEl) + CUBE2
+ MOVE (4.00,4.00,5.00)((CUBE3 - CUBE4) - CXJBE5)
- CYLINDER1 - CYLINDER2 - CYLINDER3
- CYLINDER4 - CYLINDER5

CYLINDER6
10.000 0.000 3.606 0.000
14.000 0:000 0.000 0.000
4.000 4.000 0.000 0.000

CUBEl
4.394 11.211 0.000 0.000
3.769 7.211 0.000 0.000
4.000 4.000 0.000 0.000

CUBE2
0.000 20.000 0.000 0.000
0.000 4.000 O.OOO 0.000
0000 12.000: 0.000 0.000

CUBE3
0.000 12.000 0.000 0.000

•0.00.0 7.000 0.000 0,000
0.000 2.000 0.000 0.000

CUBE4
0.000 24.000 0.000 0.000 
0.000 24.000 \ 0.000 0.000 
0.000 24.000 0.000 60.257

CUBE5
0.000 24.000 
0.000 24.000, 
0.000 24.000

CYLINDER1
10.000, 0.000
14.000 0.000
4.000 4.000

12.000 0.000
0.000 0.000
0.000 29.743

1.000 0.000
0.000 0.000
0.000 0.000
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. CYLINDERS
2.000 0.000
0.000 4.000
2.000 0.000

CYLINDER3
18.000 0.000
0.000 4.000
2.000 0.000

CYLINDER4 
2■000 0.000
0.000 4.000

10.000 0.000

CYLINDER5
18.000 0.000
0.000 4.000

10.000 0.000

1.000 0.000
0.000 o.000
0.000 0.000

1•000 o.000 
0.000 0.000 
0.000 0.000

1.000 0,000
0.000 0.000
0.000 o.000

1.000 0.000
0.000 0.000
0.000 o.000
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Figure 2.10 Example 3



INPUT LEST FOR EXAMPLE 3

1
1 1 .15 6 .15 0
1 1 .15 0 6 0
1 1 6 0 28 0
1 1 26 0 33 .85 0
1 1 33. 85 0 33.85
1 1 33. 85 6 28 6
1 1 26 6 28 4
1 1 28 ' 4 24 4
1 1 24 4 22 . 14-
1 1 22 14 12 14
1 1 12 14 10 ; 4
1 1 10 4 6 4
1 1 6 4 6 6
1 1 6 6 6 .15
1 1 6 4 6 0
1 1 28 4 28 0
1 1 10 4 24 4
1 0 2 6 2 0
1 0 4 6 4 O'
1 0 30 6 30 0
1 0 32 6 32 0
1 0 15 4 ' 15 14
1 0 19 4 19 14
-1
1 1 14 4. 4 2
1 1 4 2- 4 0
1 1 4 0 0 0
1 1 0 0 0 4 ..
1 1 0 4 0 14
1 1 0 14 0 18
1 1 0 18 4 18
1 1 4 18 4 16
1 1 4 16 14 14
1 . 1 14 14 14 4
1 1 6 14 6 4 .
1 1 6 4 4 4
1 1 4 4 0 4
1 1 0 14 4 14
1 .1 4 14 6 14
1 1 4 2 4 4
1 1 4 14 4 16 .
1 0 14 7 4 7
1 0 H 1 1 4 . 1:
1 0 6 8 0 8
1 0 6 10 0 10
1 0 4 2 4 16
-1
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z 1 9 17 2
2 1 9 17 5
2 1 9 17 7
2 1. 9 3 1
2 1 9 31 1
3 1 6 2 12 2 4 9
3 1 6 32 12 32 3
1 1 4 6 6 2
1 1 12 2 14 6
1 1 4 28 6 32
1 1 12 32 14 28
1 1 0 6 4 6
1 1 4 6 14 6
1 1 14 6 18 6
1 1 18 6 18 28
1 1 IB 28 14 28
1 1 14 28 4 28
1 1 4 28 0 28
1 1 0 28 0 6
-1

3.5
9 30.5



55

+ (C0NE1 - CYLINDER!) + (CYLINDER5 - CUBEl)
+ MCJVE( 2.00,0.00, A . 00) ((CUBE2 - CUBES) - CUBE4)
+ (CYLINDER6 - CUBES)
+ MOVE (20.00,0.00,4.00) ((CUBE6 - CUBE7) - CUBE8) 
+ CUBE9 - CYLINDER2 - CYLINDERS - CYLINDER4

CONEl
17.000 0.000 7.ooo 0.000
4.000 35.000 0.000 0,000
9.000 0.000 0.000 0.000

CYLINDER!
17.000 0.000 5.000 0.000
14.000 35.000 0.000 0.000
9.000 0.000 0.000 0.000

CYLINDERS
3.500 0.000 3.354 0.000 
0.000 6.000 0.000 0.000
9.000 0.000 0.000 0 000

' ' CUBEl
2.000 6.708 0.000 0.000 
0.000 6.000 0.000 0.000 
2.646 12.708 0.000 0.000

CUBES
0.000 4.000 0.000 0.000 
0.000 6.000 0.000 0.000 
0.000 10.000 0.000 0.000

CUBES
0.000 20,000 4.000 0.000
0.000 20.000 0.000 206.566
0.000 20.000 0.000 0.000

CUBE4
0.000 20.000 4.000 0.000 
0.000 20,000 0.000 -116.566 
0.000 20.000 10.000 0.000
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CYLINDER6
30..500 0..000 3,,354 0

0.,000 6.,000 0,,000 0
9, 000 O'. 000 0,, 000 0

CUBE5
35.292 6.708 0.000 0
0.000 6.000 0.000 0
2.646 12.708 0.000 0

CUBE6
0.000 4.000 0.000 0
0.000 . 6.000 0,000 0
0.000 10.000 0.000 0

GUBE7
0.000 20.000 0.000 0
0.000 20.000 0.000 63
0.000 20.000 0.000 0

CUBE8
0.000 20.000 0.000 0
0.000 20.000 0.000 26
0.000 20.000 10.000 0

CUBE9
6.000 22.000 0.000 0
0.000 4.000 0.000 0
0.000 IB.000 0.000 0

CYLINDER2 
17.000 0.000 2.000 0
4.000 10.000 0.000 0
9,000 0.000 0. 000 0

CYLINDER3
3.000 0.000 1.000 0
0.000 6.000 0.000 0
9.000 0.000 o.ooo 0

CYLINDER4
31.000 0.000 1.000 0
0.000 6.000 0.000 0
9.000 0.000 0.000 0

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000 

. 434 

.000

.000 

. 566 
000

000
.000
000

000
000
000

000
000
000

000
000
000
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2.7 PERFORMANCE ANALYSIS

Table 2.1 contains the CPU time needed for the construction of the 

CSG model of the examples in Section 2.6.3. This time is obviously 

affected by the complexity of the object. Complex parts have compli

cated line drawings in their projections. These drawings in turn have a 

large number of graphical elements which causes a larger search list 

for each view. A second important factor is the type of graphical ele

ments. For example, for each horizontal line present in view 1, all 

three views are searched at least twice for other lines in the cube rou

tine. On the other hand the absence of horizontal lines in view 1 causes 

the cube routine to terminate after only one scan through the primi

tives of that view.

The precision of the input data, which is expected in a manual sys

tem, causes the 3D model of the object to be very accurate. That is, 

there are no errors in the position coordinates and the dimensions of 

the 3D primitives, For instance, in the output of Example 3, CON El 

CYLINDER 1 results in the accurate representation of the conical object 

whose projections are seen in figure 2.10.

Another characteristic of the output model is that in general all of 

the holes present in the input object are represented in terms of 3D 

primitives that are subtracted globally from the rest of the object. For 

this reason, these primitives appear at the end of the output list. This is 

demonstrated in Example 1 where the last 7 primitives correspond to

the holes present in the object of figure 2.8.

U should he noted that m the final model of the object,.the absolute 

position of the various primitives is not important. We are concerned 

mainly with the dimensions and the relative position of the primitives
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TABLE 2.1: Time analysis for Examples 1, 2 & 3

CPU TIME (see)

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

1.4 .7 .9
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with respect to each other. Therefore, the origin of the global coordi

nate system can be chosen quite arbitrarily.



CHAPTER THREE

3.1 INTRODUCTION

As explained previously, the input to the reconstruction algorithm 

is the type of primitives found in each view, along with all the informa

tion needed to uniquely define those primitives. More clearly, there are 

three; different primitives possible in our line drawings and they are a 

straight LINE, a CIRCLE and an ARC. For these three elements the 

nffnimum information needed is as follows.

LINE: The coordinates of the two endpoints and the mode (solid or

cavit)'). \

CIRCLE: The coordinates of the center, the radius and the mode.

ARC: The coordinates of the two endpoints, the coordinates of the

In the following sections, two different input systems are proposed. 

Because of the requirements for speed and automation, more emphasis 

is put on the automatic system. ,
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3.2 MANUAL INPUT SYSTEM

A manual input system can be designed as follows: the drawings are 

placed on a digitizing tablet such as a TEKTRONIX 4954. Using the cur

sor , the operator then points to points of interest and presses the but

ton on the cursor. Each time the button is pressed, the (x,y) coordi

nates of that point are recorded. The operator is also required to 

interact with an input routine that asks simple questions like the type 

and the mode of the primitive to be entered next. Depending on the 

type of the primitive, the routine expects two (for LINE and CIRCLE) or

three (for ARC) points to be entered using the cursor.

The advantage of this process is its accuracy. The error involved in 

entering the position of a point is negligible when compared to the size 

of the drawings. Another advantage is that dashed lines and curves are 

entered just as easily as solid lines and curves are. The disadvantage of 

this method, however, is that it needs the involvement of an operator 

and in the case of very complex drawings, the process becomes rather 

tedious. One way to improve this method is by using the fact that each 

primitive, except CIRCLE, is connected to at least two other primitives. 

Therefore, we pan have a rule that requires that the last point entered 

for a primitive be also the first point for the next primitive unless oth

erwise indicated. If this convention is followed, the number of points to 

be entered can be cut to almost a half, depending on the drawing.



An alternate method of obtaining the information needed by the 

reconstruction algorithm is to digitize the drawings and then extract 

the primitives and their attributes from the digital picture. A block 

diagram of such a system is shown in figure 3.1. The advantage of this 

method is of course lack of operator involvement and speed. In an ideal 

system, the drawing is put under the camera and is digitized. The 

resulting data is stored in a file and an image processing algorithm is 

applied to it. The output of the algorithm is then fed into the recon

struction routine as explained previously.

There are several problems to be overcome with the kind of system 

described above. In order to obtain, a good image, the lighting should 

be controlled so that we can avoid unnecessary bright and dark spots. 

Resolution can also be a problem. Since the reconstruction algorithm 

relies heavily on coordinate matching, it is imperative that the scanner 

produces an image with adequate resolution. There are also other 

difficulties related to scanning such as noise and distortion, but in a 

controlled environment, it can be assumed that the above mentioned 

problems are minimal. It is then safe to assume that using adequate 

measures when scanning the picture and also some preprocessing (e.g. 

thinning and thresholding), a binary picture can be obtained in which 

each dark (value = 1) pixel in general has at most two dark 4_neighbors 

unless it is at the intersection of two primitives. The importance of this 

condition will be seen later when the curve following algorithm is



discussed. Before proposing a method to extract the needed informa

tion from such a picture, a review of rules governing ideal digital 

straight lines is adequate.

3.3.2 DIGITAL STRAIGHT LINES

In a digital picture, a neighbor means any of the eight horizontal, 

vertical, or diagonal neighbors of the pixel. A digital arc, S, is a con

nected set of lattice points all but two of which have exactly two neigh

bors in S. Let p,q be points of the digital picture subset S, and let pq 

denote the (real) line segment between p and q. We say that pq lies near 

S if, for any (real) point (x,y) of pq, there exists a lattice point (i,j) of S 

such that

max[abs(i - x),abs(j - y)] <1

We say that S has the so called chord property if, for every p,q in S, the 

chord pq lies near S. Rosenfeld [ROS] has shown that the digitization of 

a line segment is a digital arc and has the chord property. In addition, 

if a digital arc has the chbrd property, it is the digitization of a straight 

line segment. Using the above theorems, Rosenfeld comes up with a 

number of useful regularity properties of digitized straight lines. 

Defining a run to be a collection of consecutive l’s in the same direc

tion, the rules are as follows;

1- The runs in a digital arc have at most two directions, differing by 45 

degrees, and for one of these directions, the run length must be 1.

2- The runs can have only two lengths, which are consecutive integers.

3- One of the run lengths can occur only once at a time.
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4- For the run length that occurs in runs. these runs can themselves

have only two lengths, which are consecutive integers;

The above rules apply only when we have a perfect digitization of 

thin lines; In practice, the characteristics of an imperfect scanner have 

to be held into consideration. In case of straight lines with horizontal or 

vertical slopes, the result of perfect digitization and thinning.is ope row

er colurnn/of ccrteecutive dark pixels:' However, rrsr.,: ' real 

scanner can be different as shown in figure 3.2. The break shown in the 

figure can happen more than once, and it can be in both left and right 

directions. A good algorithm should be able to handle this kind of dis

tortion.

3.3.3 DIGITAL ARCS

A digital arc can be detected in a picture by using the fact that the 

curvature along the arc should be a nonzero constant witbiri spine error 

margin. One Way to find the curvature is to use an algorithm similar to 

the one by Freeman and Davis [FRE1].

In their corner finding algorithm,; Freeman and Davis detect the 

curvature of a chain coded curve by scanning the chain with a moving 

line segment which connects the end points of a sequence oi links. As 

the line segment moves from one chain node to the next, the angular 

differences between successive segment positions are used as a 

smoothed measure of local curvature along the chain; Using this 

method, the start and end points of an arc can be detected with rela

tively good accuracy. rt
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Figure 3.2 Imperfect digitization of a straight line



3.4 THE ALGORITHM

Air algorithm using the results of the previous section has been ; 

designed arid is illustrated at the end of this section, A brief description . '

follows:'''''','.;

After the image has been preprocessed, it is scanned from left to 

right, top to bottom. Once a pixel with value I is reached the curve is 

followed and chain coded [FRE2],[FRE3], The criterion for following the 

curve is to check the 4 neighbors first and then the other neighbors of 

the pixel. This way, priority is given to the 4 neighbors, it is also 

guaranteed that all the neighbors of the pixel are covered (unless the 

pixel is at an intersection). After passing each pixel, its value is turned 

from 1 to 2 in order to indicate that it has already been covered. This 

guarantees that the same curve will not be traced again. The other 

advantage of this procedure will become obvious later. The curve follow

ing procedure stops when no more neighbors with value equal to 1 can ; 

be found. At this point three cases are possible:

1- CLOSED CURVE

If the last pixel covered has as neighbor the start point of the 

chain, it means that we have a closed curve which is possibly a combi

nation of straight line segments and arcs. In order to extract horizontal 

and vertical line segments, the difference array is calculated as follows 

for each link in the chain:

diffj = linki+1 - link*

Horizontal and vertical lines are characterized by consecutive zeroes in 

the difference array. The minimum number of zeroes needed in order 

to ensure the presence of a straight line depends on the size of the
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image. The problem of breaks in the straight line as mentioned in sec

tion 3.3.2 can be handled by realizing that such breaks are character

ized by two consecutive nonzero elements with opposite signs in the 

difference array. Except for the latter case, a nonzero element in the 

array means that the end of a vertical/horizontai line is reached.

Slanted lines and arcs both give nonzero values in the difference 

array. In order to obtain the start and end points of a slanted line or an 

arc, the local curvature is calculated for each pixel and summed up. If 

at any point the sum starts to rise above some threshold, then that is 

the start point of an arc. Somewhere along the line this value stops 

increasing and remains constant. That is the endpoint of the arc. 

Finally, where ever the sum is relatively constant, it is assumed that 

the curve is a straight line.

In case no straight lines can be found in the closed curve, the cuive 

is assumed to be a circle. The radius and the approximate center can 

be calculated by solving the equation of the circle using three points on 

its perimeter.

2- DASHED LINE

If the last pixel covered has only one nonzero neighbor, then we 

have encountered a dashed line. The procedure for following a dashed 

line can be rather complex unless a few assumptions are made. For 

example if it is assumed that the dashed lines are either horizontal or 

vertical and with a relatively short length (so that breaks do not occur), 

the end of the dashed line can be found by just moving in the previous 

direction until a pixel with value equal to 2 is found. This proceduie also 

decreases the possibility of error in case the thinning algorithm has



failed to totally thin the dashed lines. It should be noted that if the 

dashed lines are too short, they might be mistaken for noise and there

fore ignored by the curve following routine.

3- OPEN CURVE

Finally, if the last pixel has two dr more neighbors with values equal 

to two, then we have an open curve. This curve is the combination of 

one or more straight lines that can be extracted by using a similar 

method as for closed curves.

The algorithm goes as follows:

BEGIN: , :
scan the image;
IF no pixels with value equal to one is found THEN 

:: EXIT;

■ else . . . / .■
| follow curve and chain code it until end condition is met. Cnange 

: ! : the value of each pixel on the curve from 1 to 2;
END " : : / : ■ ■: ■■■ ■'
IF the last pixel on the curve has as neighbor the first pixel on the
curve THEN

/* It is a closed curve */

- JF there are no straight lines THEN 
/* It is a circle */
find the center and radius of the circle; 
output a circle;
GO TO BEGIN;

ELSE 7 ;Vv -':-
output the lines;

END . : -
IF there are no breaks between the lines THEN

GO TO BEGIN;
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ELSE /* There are arcs or slanted lines between the previous lines
7. ■ */

find the position of the arc or slanted line or both using the cur
vature function;
IF there is an arc THEN

find its endpoints and center; 
output an arc;

END
IF there is a line THEN 

find its endpoints; 
output a line;

END
GO TO BEGIN 

END 
END
ELSE IF the last pixel has a 2 neighbor THEN

/* It is the combination of one or more straight lines */ 
extract the lines using the difference array; 
output the lines;

ELSE
/* It is a dashed line■*/'
proceed in the last direction in the chain code to find the endpoint 
of the dashed line; 
output the dashed line;

END
GO TO BEGIN 

END
3.5 EXAMPLES ;

The algorithm described in section 3.4 has been implemented in 

"C" language on a Digital Equipment Corporation VAX 11/780 minicom

puter under the Berkeley 4.2 UNIX operating system. The drawings 

shown in figures 3.3 and 3.10 were photographed and the negatives were 

digitized using an 0PTR0NIX P1000 drum scanner with a 100 micron 

resolution. The resulting images were 300 X 300 pixels of 8 bits each. 

The images were eventually reduced to 200 x 200 pixels by cutting out- 

the edges of the picture that did not contain any drawings. These are
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shown in figures 3,4 through 3.6 and figures 3.11 through 3,13. An 

appropriate threshold was then found in order to separate the drawings 

from the background. The original picture was then transformed into a 

binary image using this threshold. Because of the high resolution of the 

scanner, the resulting lines are in general more than one pixel thick. 

This may cause ambiguities for the curve following routine and there

fore a thinning algorithm is applied to the thresholded image in order 

to eliminate this problem. In general, the amount of noise in the pic

ture after thresholding is small because of the considerations made 

during digitization (e.g. uniform lighting). In addition, the algorithm, has 

a limited capability to distinguish between noise and elements belong

ing to the drawings. This is discussed later in this chapter. The results 

of the above preprocessing are shown in figures 3.7 through 3.9 and 3.14 

through 3.16. The algorithm explained in Section 3.4 was applied to 

these images separately. The coordinates of the primitives found in 

each picture were shifted appropriately in order to make the three 

views compatible. This is necessary because the reconstruction algo

rithm relies on a global coordinate system for matching appropriate 

primitives together, as explained in Chapter 2. The output of the algo

rithm is the list of primitives found in each view. The conventions used 

to describe the primitives are the same as in Chapter 2. This list of 

primitives was then fed into the reconstruction algorithm and the 3D 

representation of the object was obtained. These are shown in the fol

lowing pages. For a complete explanation of the meanings of the input 

and output lists, the reader should refer to Sections 2.6.1 and 2.6.2.
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VIEW 1 VIEW 2

I
VIEWS

Figure 3.3 Example 4
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Figure 3.4 Digital image of view 1 of Example 4
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Figure 3.6 Digital image of view 3 of Example 4
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Figure 3 8 Vi
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PRIMITIVES EXTRACTED FROM VIEW 1

11 29.0 148.0 27.0 29.0

1 1 27.0 29.0 0.0 28.0

1 1 0.0 28.0 1.0 0.0

1 1 1,0 0.0 174.0 1.0

1 1 174.0 1.0 173.0 29.0

11 173.0 29.0 146.0 30.0

1 1 146.0 30.0 145.0 145.0

3 1 145.0 145.0 29.0 148.0 1 88.1 136.0

2 1 85.82 160.57 15.05

1 1 30.0 29.0 145.0 29.0
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PRIMITIVES EXTRACTED FROM VIEW 2

1 1 29.0 52.0 28.0 0.0

11 28.0 0.00.0 1.0

1 1 0,0 1.0 1,0 157.0

1 1 1.0 157.0 29.0 156.0

1 1 29,0 156.0 30.0 102.0

I 1 30.0 102.0 195.0 101.0

II 195.0 101.0 194.0 53.0

1 1 194.0 53.0 29.0 52.0

10 176.0 76.0 176.0 101.0

I 0 147.0 69.0 147.0 101,0

II 29.0 55.0 29.0 101.0
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PRIMITIVES EXTRACTED FROM VI EW 3

I 1 155.0 1.0 154.0 176.0

II 154.0 176.0 0.0 175.0

1 1 0.0 175.0 1.0 0.0

11 1.0 0.0 155.0 1.0

11 101.0 30.0 100.0 147.0

1 1 100.0 147.0 53.0 146.0

11 53.0 146.0 53.0 39.0

11 53.0 39.0 101.0 30.0

10 53.0 103.0 100.0 103.0

10 63.0 73.0 100.0 73.0



THE OUTPUT OF THE RECONSTRUCTION ALGORITHM
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+ (CYLINDERS - CUBE1)
+ CURE2 + CUBE3 - CYLINDERl

CYLINDERS
88.100 0.000 57.607 0.000

136.000 0.000 0.000 0.000
53.000 48.010 0.000 0,000

CUBE1
-28.607 231.315 0.000 0.000
32.785 115.215 0.000 0.000
52.990 40.010 0.000 0.000

CUBE2
29.000 116.000 0.000 0.000
28.983 119.017 0.000 0.000
52.990 48.010 0.000 0.000

CUBES
0.000 173:000 0.000 0.000
0.000 28.018 0.000 0.000
1.000 154.003 0.000 0.000

CYLINDERl
85.820 0.000 15.050 0.000

160.570 0.000 0.000 0.000
83.000 37.000 0.000 0.000
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VIEW 1 VIEW 2

VIEWS

Figure 3.10 Example 5



84



Figure 3.12 Digital image of view 2 of Example 5
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Figure 3.14 View 1 of Example 5 after preprocessing
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1- 1 0,0 260 2.0 0.0

1 1 2.0 0.0 154.0 j;0

; i; i:;"'i.54.o; ■ 1.0 153.0 2?.o

3 1 76.4 80.4

1 1 153.0 27.0 97.0 102.0 ’

■ 1 1: i 52.0 98.0 0 ■ 0 26.0 ■ ' ’;■. : ::;?V ■■

2 1 80.18 80.59 18.60 .J V-/

1 0 7.0 28.0 151.0 27.0
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1 1 106.0 87.0 27.0 87.0

1 1 27.0 87.0 25.0 0.0 .1

1 1 25.0 0.0 0.0 1.0

; 1 1 0.0 1.0 1.0 115.0 ■ :

1 1 1.0 115.0 61.0 116.0

1 1 61.0 116.0 62.0 142.0 ;

1 1 62.0 142.0; ;98.0 141.0

1 1 98.0 141.0 99.0 115.0

1 1 109.0 113.0 108.0 87.0 1

1 1 99.0 115.0 109.0 11.3.0

1 1 96.0 li5.0 62.0 115.0 1



m

11 1.0 0.0 109.0 1.0

1 1 109.0 1.0 110,0 59 ./O'

' 1 1 110;0 59.0 137.0: 60.0 /

^ 11 137.0 60.0 138.0 96.0 /

I 1 136.0 96.0 109.0 97.0

1 1 1 109.0 97.0 108.0 154.0

///I; 1 108.0 154.0 0.0 153.0

II 0.0 153.0 1.0 0.0

1 ■ ■ HI 82.0 ■ ■ 1.0 '82.0 153.0'

1 1. 109.0 60.0 109.0 95.0
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+ CYLINDER1 + (CYLINDER2 - CUBEl) + MOVE (0.00,26.00,87.00)((CUBE2 
- CUBE3) - CUEE4) + CUBES

CYLINDER!
60.180 0.000 18.600 0.000
80.590 0 000 0.000 0.000

110.000 27.019 0.000 0.000

CYLINDER2 .
76.400 0.000 29.848 0.000
80.400 0.000 0.000 0.000
87.000 26.019 0.000 0.000

CUBEl
22.152 104.697 0.000 0.000 
38.303 59.697 V 0.000 0.000 
86.981 26.019 0.000 0.000

CUBE2 ■
0.000 153.000 0.000 0.000 
0.000 76.000 0.000 0.000 
0.000 26.019 0.000 0.000

CUBES
0.000 306.000 0.000 0.000 
0.000 306.000 0.000 0.000 
0.000 306.000 0.000 54.164

CUBE4
0.000 306.000 153.000 0.000 
0.000 306.000 0.000 0.000 
0.000 306.000 0.000 35.836

CUBES
2.000 152.000 0.000 0.000
0.000 26.077 0.000 0.000
1.000 108.005 0.000 0.000
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3.6 PERFORMANCE ANALYSIS

The CPU time heeded for extracting the primitives from each view 

using the automatic input algorithm is demonstrated in Table 3.1. As it 

was expected, the processing time for Example 5 is longer than the 

time for Example 4. This is due to the fact that the images of Example 4 

Contained less distortion and hoise as explained previously. In general, 

the factors that play important roles in determining the CPU time are 

the image size, number of primitives and the amount of noise. Each 

time a curve of length less than 5 pixels is detected, it is considered to 

be noise. Thisnumber is dependent on the size and type of the drawings 

in the image and should be supplied to the algorithm. For our case, 

considering the length of the dashed lines, a minimum length of 5 pixels 

turns out to be very appropriate.

One weakness of the algorithm can be the processing of short 

dashed lines. In some cases it might be difficult to differentiate between 

the start Of a dashed line and noise. However once the start of such 

lines is detected, the length of the remaining dashes is not important. 

Therefore the possibility of the occurence of such a situation is rather 

smalF Problems niight also Occur when the drawing contains both 

Short lines ahd long arcs. In this case, the minimum length requirement 

for a line has to be set relatively low. Then the arc might contain a seg

ment that is long enough to qualify as a line and an error will happen.

A comparison between the results of the manual and automatic 

primitive extraction processes shows that the latter is much faster (as 

expected) but less accurate. It is obvious that the manual input pro

cess will take more than a few minutes and therefore as far as speed is



TABLE 3,1: Time analysis for Examples 4 & 5

CPU TIME (sec)

EXAMPLE 4 EXAMPLES

Vicvvl ViewS View3 Viewl ViewS ViewS

li.o 7.6 9.7 2S.5 12.0 22.7



concerned there is no match. However the automatic process lacks the 

precision of the manual system Which was demonstrated in the previous 

chapter. For instance in Example 4, the endpoints of the arc should 

have the same vertical (Y) coordinate. As it can be seen from the 

results, the values are different (145.0 and 148.0). The reason behind 

this lack of accuracy is the fact that the presentation of the line draw

ings Was transformed from the original analog form into a digital form 

and therefore some error is introduced. This error justifies the intro

duction of ah error tolerance as discussed in section 2.6.1. A conse

quence of this kind of error is that the final model might not be as 

accurate as before However, given the size of the drawings and the 

final model, the problem is not very significant.

■■r'.V, ' i't:



CHAPTER POUR 

CONCLUSION AND FUTURE RESEARCH

4.1 CONCLUSION

In this work, the problem of automatic CSG construction from line 

drawings was studied and two algorithms (i.e. input and construction) 

were proposed in an attempt to demonstrate the feasibility of such a 

system. The results from Chapter 2 show the feasibility of an algorithm 

that constructs the 3D model of an object from its 2D orthographic pro

jections. However, certain assumptions have to be made about the 

characteristics of the object, that is, a certain class should be defined. 

Once the algorithm is designed, more complex examples can be used in 

order to upgrade the power of the routines and therefore expand the

boundaries of the initial class.

The results obtained from the automatic extraction of primitives 

from the digitized line drawings were better than expected. This was

possible partly because the digitization process was done in a relatively 

controlled environment. That is, thin line drawings were photographed 

against a uniform back light and the negatives were digitized Using a 

high resolution scanner. As for the algorithm, it was designed to be able 

to treat digital straight lines even when they do not follow the rules 

listed in section 3.3.2.



The combination Of the above algorithms enables us to achieve with 

some limitations, the goal set at the beginning of this report, which is 

the desire to transform the information available in the form of 3 ortho

graphic view line drawings into a form directly compatible with an NC 

machine;

4.2 FOTUEE research

So far, the algorithms designed in order to construct a 3D model of 

an object from its 2D projections have been limited to certain classes of 

objects. There still remains the considerable challenge of designing a 

system general enough to handle any kind of objects. This ideal system 

would certainly require some limited interaction with a human operator 

in order to overcome the ambiguity caused by the complexity of certain

line drawings.

■l ":. :•



REFERENCES



REFERENCES

[ALD1] Aldefeld.B., “On Automatic Recognition of 3D Structures from 
2D Repesentations”, Computer Aided Design, vol. 15, no. 2, 
pp59-64, MARCH 1983.

[ALD2] Aldefeld.B., “Automatic 3D Reconstruction from. 2D Geometric 
Part Description”, Proc. Conf. on Computer Vision and Pat
tern Recognition, JUNE 1983.

[FRE1] Freeman,H. and Davis,L.S., “A Corner' Finding Algorithm for 
Chain-Coded Curves”, IEEE Trans, Comput. 26, 1977, 297-303

[FRE2] Freeman,H., “Computer Processing of Line Drawing Images”, 
Computing Surveys, vol.6, pp.57-97, Mar. 1974.

[FRE3] Freeman,H., “On the Encoding of Arbitrary Geometric
Corrfigu rations,’’ IRE Trans. Electron. Comput., vol. EC-10, pp. 
260-268, June 1961.

[HAR] Haralick.R.M. and Quceney.D., “Understanding Engineering
Drawings”, Computer Graphics arid Image Processing, vol.20, 
pp244-258, 1982

[LAF] Lafue.G., “A Theorem Prover for recognizing 2D Representa
tions of 3D Objects,” Proc. I FTP TC-5 Working Conf. A1 & CAD, 
Grenoble, France, March 17-19, 1978, pp. 391-401.

[L1A] Liardet.M.,Holmes,G.& Rosenthal,D., “Input to CAD
Systems :Two Practical Examples ”, Proc. IFIP TC-5 Working 
Conf. AI & CAD, Grenoble, France, March 17-19, 1978, pp. 403-
414. . '■

[LUZ] Luzadder.W., Fundamentals of Engineering Drawing,
PRENTICE-HALL, Englewood Cliffs, N.J. 1965.

[PAUL] Paul.R.P., Robot Manipulators, Mathematics, I^rogramming 
and Control, MIT Press, Cambridge, Mass. 1981.

[PR1] Preiss.K., “Algorithms for Automatic Conversion of 3-view 
Drawing of a Plane Faced Part to the 3D Representation”,



100

Computer Industry, vol. 12, pp 133-139, 1981.

Preiss.K. and Kaplansky.E., “Solving CAD/CAM Problems by 
Heuristic Programming", Computers in Mechanical Engineer
ing, Sep. 1983.

[REQ] Requicha.A A.G., “Representations for Rigid Solids: Theory, 
Methods, and Systems”, Computing Surveys, vbl. 12, no. 4, 
Dec. 1980.

[ROS] Rosenfeld.A., “Digital Straight Line Segments”, IEEE Trans.
Compmt. 23; 1974i 1264-1269. ^

[ROT] Roth,S D , “Ray Casting for Modeling Solids”, Computer Graph
ics and Image Processing, pp. 109-144, ACADEMIC PRESS,

■' v;l982.y;:;

[SAK] Sakurai.il. and Gossard.D., “Solid Model Input Through Ortho
graphic Yiews”, Computer Graphics, vo\. 17, no. 3, July 1983.

[VOE] Req:uicha,A. A; G; and Voeicker.H.B., “An Introduction To 
Geometric Modeling and Its Applications In Mechanical Design 
and Production”, Advances in Information Systems Science, 
ed. by Julius T. Tou, Vol. 8, PLENUM PRESS.NewYork, 1981.

[WEL] Wellman,B., Technical Descriptive Geometry, McGRAW-HILL,
New York, 1957. ;

[WOO] WooiT.C., “Progress.in Shape Modeling”, Computer, Dec. 1977.



APPENDIX



101

APPENDIX

The following pages contain the implementation of the algorithms 

explained in Chapters 2 and 3 in the "C" Language.



/* ALGORITHM 1 ♦/

^include <stdic,li>
#include <nath.li>

/♦
Define

*/
utility constants

#deflne X 1
^define Y 2
^define Z 3
^define vT i
^define V2 - 2
^define V3 3
#define MAXSIZE 10
^define TRUE 1
#deflne FALSE ’ 0
#deflne BASE 1000
#define LEG 15000

/♦ '
Define

♦/
code Lor primitive type

#define LINE 1
^define . CIRCLE 2

#deflne ARC 3
^define . CUBE 1
#deflne CYLINDER 2
#define CONE ■ 3

/♦
Define

*/

code for drawing mode

fdefme DASHED 0

^define SOLID 1

/♦
General representat

V
j on of a two

struct PRIM l 
. int USE; 

int TYPE; 
int MODE; 
float P0INT1[3]; 
float POINT.?[3]; 
float CENTER[2]; 
float LEN—RAD; 
struct PRIM ♦NEXT; 

j;
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■ /;♦ "

General representation of a three dimensional primitive
■■ */■ .

struct PR I M3 \ 
int TYPE; 
int NUM; 
int MODE; 
int MOVE; 
int FLAG; 
float ATR[3][4]; 
struct PRIMS «NEXT;

/*
Global variables 

V

int T;
FILE ♦fp, *fopen(); .
struct PRIM *ViEW[4]; . 
struct PRIMS *0_PTR, ♦LJPTR;

Functions returning lion integers
*/

struct PRIM ,*getbase() .; 
struct PRIM *gethead() ; 
struct PRIM *ufuni (). i 
struct PRIM *prmtch() ; 
struct.. PRIM *rratehl() ; 
struct PRIM ♦flndl ine() ; 
struct PRIM ♦do_line() ; 
struct PRIM ♦do—arcO ; 
struct PRIM *do„circle() ; 
struct PRIM *talloc(); 
struet PRIMS ♦getnode(); 
float angle();

^ *#$#****# *♦♦#♦.$♦*♦*■***♦■♦'* + * s ♦#♦*#*♦***♦*♦*♦♦■ *
MAW()

In the main function, the 1 i st of primi t ives 
is read frem the file "in", and the 2D data 
structure is setup. Then the various routines 
are called and the results are printed out
*9 ******«*«'*#$♦♦*. **■#*♦**■***♦**«♦♦**#****♦****♦#/

mainQ
f-,’;':: ■'' ;

struct PRIM *old_ptr , ♦new_ptr ; 
int p,v; '

fp - fopen("in" ,"r



if (fp = NULL) exit(0); 
fscanf (fp, "%dt",&T);

for (v = 1;v < 4;v++)\ 
old_ptr=-0;

/* read primitive type and process accordingly ♦/ 

while(l)J
fscanf(fp,"%d",&p); 
if (p<0) 

break; 
swi tch(p) [

case LINE:
new_ptr = do_iine(v); 

break;

case ARC:
new_ptr = do_arc(v); 
break;

case CIRCLE:
new_ptr■= do_cire] e (v); 
break;

default:
printf("Input. errorO); 
new_ptr =0; 

j /♦ end of switch */
, if (old_ptr “ 0)\

old_ptr = new_ptr;
■ VIEWTv]=new_ptr;

i
else {

old^Dtr->NEXT = new_ptr; 
old_ptr = new_ptr,

i
] Z* end of while(l) */ 

if (old_ptr != 0)
old_ptr^>NEXT' = 0;/* last print Live points to 0 */ 

5 /* end of for */
/♦ The 2d data structure has been initialized */
/♦Start processing ♦/ 

for(v=l;v<4;t++){
Cone(v);

]
for (v=l; v<4; V+4-)

Cylinder(v); 
for(v=l;v<4;y++)

/♦ process corners */

104
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Corner();
/* process cubes */■ 
Cube();

/•♦ output the final result V 
out_res();

] /* end of rmin */

D0-LINE(.) .

This function creates a node using talloc() 
and initializes it by asking the operator for 
the different attributes. of a LINE,

s t rue t PR IM * do_l i ne (v)

int v;
i

struct PRIM *talloc(),*ptr; 
int . i, j ,mn; 
float xl, y 1, x2, y2, d, dim;

i =- v; /♦ i and j are the coordinate system ♦/ 
j = (v % 3) 1;

ptr = talioc(); /* get new node V 

/* Ini tialization of the node V

ptr-xJSE ;-.0; ptr,->TYPE = 1.;
.. f scanf ( fp ,."%d" , &rn) ;

ptr->MGDE f m; 
f scanf ( fp , "%,f " ,&xl) ; fscanf (fp, "%f'L&yl); 
f scanf (fp ,. "%f" ,&x2) ; f scanf (fp, "%f" , &y2) ; 

/* enter the points in order V 
if (((xl-x2) > T) || ((yl~y2; > T )) j' 

dum= xl; xl - x2; 
x2 = dim; dun = y t; 
y 1 =. y2; y2 = dun;

! :

p t. r - >P01 NT 1 [ 1 ] = x 1; ptr“>P0INTl[2j = yl; 
ptr->P0INI2[l] = x2; ptr->P0INT2[2] - y2;

/* calculate and enter the length V

d = (_x]-x2)*(xl-x2) • + (y?-y2) ♦(yl’-y2); 
;ptr->LER_RAD - sqrt ((double) d);

return(ptr);

/.**♦♦ •***•*♦♦♦* <■. i

I)0_CIRCLE()
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This function creates a node using tallocQ 
and initializes.it by asking the operator for 
the different attributes of a .CIRCLE,.
*♦♦**♦♦*♦♦♦♦'**♦***♦♦♦*♦♦*♦*♦* ♦ *. ********** *-♦ * * /
struct PRIM *do_c:ircle(v)

iiit v;
f

struct PRIM *tai loc(), *ptr.; 
int i, j ,nt 
float xl,y1,rad;

i. = v; /* i and j are the coordinate system ♦/ 
j = (v % 3) 1;

ptr = tallocf); , /♦ get new node */

/* Initialization of the node */

ptr->USE = 0; ptr->TYPE = 2; 
f scanf (fp, "%d" ,Mi) ; ptr->MDDE = m; 
fscanf (fpP!%f" ,&xl) ; fscanf (.fp, "%f '',&yl);

. - ptr->CENTER[0] = xl; ptr->CENTER[1] =.'yl; 
fscanf (fp, , &rad.) ; 
ptr->LEN_RAD = rad; 

return(pt^);
i .
/*********************************************

DO_ARC()

This function creates a node using talloc() 
and 'initializes it by asking' t.he operator ‘ ror 
the different attributes of an ARC.
**♦*♦♦♦*♦♦♦*♦**.♦♦*♦*#*♦** * >■ ? ******* ♦ *,* * * * *■* * * /
struct PRIM *do_arc(v)

int v;
i r ;

struct PRIM *tal l.oc() . *ptr ;
.int i, j ,rri.n;
float xl,yl,x2,y2,rad,dum;

i = v; /* i and j are the coordinate system V 
j = (v % 3) + 1;

ptr ~ talloc(); /* get new liode */

/* Initialization of the node V

ptr->USE = 0; ptr->TYPE = 3.; 
fscanf (fp, "%d" ,Mn) ; ptr->MDDE = m; 
f scanf (fp,”%f " ,&xl) ; f scanf (fp, ff%f " , &yl); 
fscanf (f p, r,%f " ;&x2) ; f scanf (fp,"%f", &y£); 
f scanf (fp, "%d" ,&n);
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. ptr->POINTl[0] - n; ptr->P0iNT2[0] = n;
/* enter the points in order */ 
if (xl > x2 | | yl > y2 ) j- 

dun = xl; xl = x2; 
x2 = durn; dun = yl; 
yl y.2\ y2 - durn;

ptr->P0INTl[1].= xl; ptr->P0lNTl[2] = yl; 
ptr->P0INT2[ 1]. - x2; pt.r->P0INT2[2] = y2; 
fscanf(fp,"%f" ,&x1); f scanf.(fp, "%f" , &y!); 
ptr->CENTER[0] =;xl; ptr->CENTER[1] = yl;

/♦ calculate the radius of the arc */
rad = (xl-x2) *(xl-x2) '+ (yl-y2) *(yl-y2); 
ptr->LEN_RAD = sqrt((double) rad);

return(ptr);

This function allocates storage for 2d primitives

struct PRIM •♦talToc.f.) . •

\
char *cal 1 oc();

return((struct PRIM *) calIoc(l,sizeoT(struct PRIM))),

This function 'al locates storage for. 3d primitives

struct . PR I M3 *getnode()
\ .. . .

char *cal 1 oc();
^.struct PRIM3 *ptr;. 

static int count = 1;

ptr = (struct PRIM3 *) calloc(l,sizeof(struct PRIM3));
/* Initialize the output pointer if. this is the first access V 

if (count =~ 1)|
0_PTR = ptr;
0—PTR“>TYPE - 0;
ptr = (struct PRIM3 *) calloc(1,sizeof(struct PRIMS)) 
0-_PTR->NEXT = .ptr;
L_PTR =: ptr; .

• i . ■■■ ■■■;'. ■ • ■

count 4-+; 
return(ptr);

TALL0C0

GETNODEQ

EQ()
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Function Equal.. T is the error imrgin (Threshold).

EQ(x,y)

float x,y;
>

if(tabs(x - y) < T) 
return(l); 

return(O);

/♦♦♦*♦***<<
NEQ()

Fun c t ion ."Not E qu a 1 ■

NEQ(x.y)

float x,y;

if(fabs(x - y) > T) 
return(l); 

return(O);

UFUN3Q

Find two lines that share the given coordinates 
If they have the same si ope,merge them together.

ufun3(col,co2,view)

float ool,co2; 
int view;

int sco,dco;
float 0011,0012,0021,0022;
struct PRIM *ptr,*dum, *iinel,*11062,*nptr;

ptr =0;
while((1inel=findline(view,col,co2,ptr))!=NULL)} 

ptr =1inel; 
if (linel->USE = 'Q)j

whi le ((1 ine2=find.l lne(view, col, eo2, ptr )) ! -NULL) { 
ptr = line2; 
if (Iine2->USE — 0)[

coll = 1ine1->P0INTI[1]; 
col2 = 1ine1->P0INT1[2]; 
co21 = 1ine1->P0INT2[1]; 
co22 = 1inel->P0INT2[2];
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if(EQ(coll,co21)) sco = .1; ■ 
el se

if(EQ(col2,co22)) sco = 2; 
else

return(O);

■if(NEQ(1ine2->P0INTl[sco],1ine2->P0INT2[sco])) return(O); 
dco (sco ~ 1) ? 2 ; 1;
if (EQ( l inel->POINTI [dco], 1 ine2->P0INT2[dco])) [ 

coll = 1ine2->P0INTl[1]; 
col2 = 1 ine2- >F0 INT-1 [ 2 ]; 
co21 = 1inei->P0INT2[ 1 ]; 
co22 = linel->P0INT2[2];

else {
co21 = 1ine2->P0INT2[l]; 
co22 =■ Tine2->P0I'NT2[2]; 

j
/♦ The lines have the same slope.

Create a third line that can -replace the above two

nptr = talloc(); 
nptr->USE ~ 0; 
nptr->TYPE - LINE; 
nptr->MODE = SQLUD; 
nptr->POINTl[1] = coll; 
nptr->P0iNT2[1} = co21; 
nptr->POINT'l [2] = co!2; 
np t r - >P01 NT 2 [ 2 ] = eo22;,
nptr- >LEN-RAD = 1 i ne. 1 - >LENJRAD + 1 i ne 2 - >LENJRAB;

dim = VIEW[view] ;
VIEW’[view] = nptr; 
nptr->NEXT =■ dun;

/* Delete the original two lines */

delete(1inet,view) ; delete(1ine2,view); 
return(l);
]/* end of second if V 

}/* end of second while */ 
j/* end of. first .if .*/ 

j/* end of first while ♦/ 
returii(G);

y ««**♦*** r* * «♦ * t:# * * *:# *♦****♦♦♦*♦#*♦********: *
■’ OUT-CUBE () ,

Add a cube to the 3d data structure
• ♦•**♦**•♦*♦*♦****■**•/
out_cube(buf,sign,flag,move)

float buf[3][4];



int sign,flag ,move ;

static int i = 1; 
int j,k;
struct PRIM3 *ptr;

ptr - getnodeQ; ptr->TYPE - CUBE; 
ptr->NUM = i-H-; ptr->M0DE = sign; 
ptr->M0VE = noove; ptr->FLAG = flag;

for (i ~ 0;j < 3;j4-f){
for(k = 0;k < 4;k++)

ptr->ATR[j][k] = buf[j][k];
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L_PTR->NEXT = ptr; 
L_PTR = ptr; 
ptr->NEXT =0; 
return;

► ****■*♦♦***»
OUT-CYLQ

Add a cylinder to the 3d data structure

out_cy 1 (buf, s i gn, flag)

float buf[3][4]; 
int sign,flag;

static int i = 1; 
int j,k;
struct PRIM3 *ptr;

ptr = getnodeQ; ptr->TYPE = CYLINDER; 
ptr->NUM = i-H-; pt.r->M0DE = sign; 
ptr->FLAG = flag;

for{j = 0;j < 3;j++){
for(k = 0;k < 4;k++)

ptr->ATR[j][k] = buf[j][k];

L_PTR->NSXT ” ptr; 
LJPTR = ptr; 
ptr->NEXT = 0; 
return;

DELETE()

Remove the given element from the input
data structure.
******* i- ********v3
delete (ptr, view)
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struct PRIM *ptr; 
int view;
! ' ' '

struct PRIM ♦ptrl ,.*ptr2;

ptrl = VIEW[ view] ;. , 
if (ptrl = ptr) {

VIEVVlview] = ptr->NEXT; 
return; .

■■■ r ■■
whiIe((ptr2 - ptr!->NEXT) != NULL){ 

if (ptr2 == ptr)j
ptrl->NEXT = ptr->NEXT; 
return;

I
,ptrl = ptr2;

l
/ *************************** h **************

0UT2Q

Outputs the three cubes needed to represent 
a si anted, cube. :
******* ******* * **. * * * *■* * * * V * * * * * *********** *****/

out2(legl,legS.ptr,view.pos)

struct PRIM ♦leg! _,..♦! eg2p*ptr; 
int vj ew.pos;

float cx,cj, .c- ,xl ,y] ; zl .rrax, teta; . 
float buf1[3][4],buf2[3][4],buf3[3][4]; 
float len; tco; •
float colrrax, coliiiin, cpSTiax, coSnin, durrt; 
i rut

for(i=0;i<3; i++)-f
for(j-0;j<4;j++)[

buf1[i][j] =0.Q; 
■_.buf2[i][ j ] = 0.0; 

bu“3[i][j] =0.0;

,teta = angle(leg1,view);
/♦get the third coordinate and length ♦/ 

len = ptr->LEN_RAD; . ;
. j = (EQ (pt r - >P0 INT 1 [ 1 ], p t r - >P01 NTS [ 1 ])) ? 2 ; 

tco = ptr->P0INTl[j];

/* get the maxinum and mininurii coordinates ♦/.

coImin = (1eg1->P01NT1 [ 1 ] < legl->P0INT2[1]) ?
legl->P0INTl[1] : legl->P0TNT2[1]; 

dum = (1 eg2->P0INT 1 [ 1 ] < leg2->P0INT2[l]) ? 
leg2">P0INTlf1].: Ieg2->P0INT2[1] ;
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colimn — (dim < colmin) ? dim : colmln; 
colrrnx = (legl->POINTl [ 1] > legl->P0INT2[1]) 

legl->POINTl[1] : leg 1->P0INT2[1]; 
dim = (leg2->P0INT.l [ 1 ] > Ieg2->P0INT2[1]) ?

leg2->P0INTl[l] : Ieg2->P0INT2[1] ; 
colmax — (dim > colmax) ? dim : colmax; 
coSmin = (!egl->POINTl[2] < legl~>P0INT2[2]) 

Iegl->P0INTl[2] . legl->P0INT2[2]; 
dim= (1 eg 2- >P01 NT 1 [ 2 ] < Ieg2->P0INT2[2]) ?

leg2->P0INTl[2] ; Ieg2->P0INT2[2] ; 
co2min = (dim < coSmin) ? dim : co2min; 
co2max = (]!egl->POINTl [2] > legl->P0INT2[2]) 

leg 1->PQINT1[2] : legl->P0INT2[2] ; 
dim= (leg2->P0INTl[2] > Ieg2->P0INT2[2]) ?

Ieg2->P0INT1[2] ; Ieg2->P0INT2[2] ; 
coSmax = (dim > co2nax) ? dim : co2rmx;

/* Depending on the view, use the above
information to find the attributes for the 
Cubes.•

/♦

if (view == l)j
swi tch(pos) \ 

case 1:
buf2[2][3] = teta; 
buf3[0][2] = colmax - colmin; 
buf3[2][3] = 90 - teta; 
break; 

case 3:
buf2[ 1] [2] = co2rmx - co2min; 
buf2[2][3] = - teta; 
buf3[2][3] =90 - teta; 
break; 

case 4:
buf2[0] [2] -- colmax -colmin; 
buf2[l][2] = co2max - coSimn; 
buF2[2][3] = 90 + teta; 
buf3[0][2] = colmax - colmin; 
buf3[2][3] = 180 - teta; 
break;

cx = colmin; xl = colmax - colmin;
cy - co2min; yl = co2max - coSnin;
cz = tco; zl = ien;

s
else if (view — 2) [ 

switch(pos) j 
case 1 :

buf2[0][3]. = - teta; 
buf3[2][2] = co2max - co2min; 
buf3[0][3] = teta - 90; 
break; ''
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ease 3;
■buf3’[l][2] = coimax ~ colmin; 
buf3[0][3] = teta;. 
buf2[Q][3] = 90 - teta; 
break; 

case 4:
buf2[2] [2] - cb2max -eo2min; 
buf2[1][2] = coimax - colmin; 
buf2[0][3] = - (90 + teta); 
buf3{2][2] - co&mx - co2min; 
buf3[0][3] = - (180 - teta); 
break; .

cy = colmin; yl - coimax - colmin; 
cz = coSmin; zl ~ co2nax - eo3rrin;

- ex - too; xl = len;

! ’ ■-
else if (view — 3) \ 

swi tch(pos) ' j
.'case .1: / ..

bnf2[1 j [3] = teta; 
buf3[0][2] = co2max co2min; 
buf3[1][2] ~ 90 - teta; 
break; 

case 3:
buf3[2][2] - coimax - colmin; 
buf3[1][3] - teta; 
buf2[1][3] = 90 - teta; ; 
break;; 

case 4:
buf 2[0] [2] = co2nax -eo2min; 
buf2[1][3] - 180 + texa; 
bnf3[0][2] -coSnax - eo2min, 
buf3[2] [2] = coimax - colmin; 
buf3[1][3] = - (90 + teta), 
break;

. " jV;/; . 'V; - ' ' . . ■' ■' - .V.

cz -colmin, zl = coimax - colmin; 
cx = co2mi,n; xl - co2nax ^ coSniii; 
cy t.co; yl ~ len; . ; .

i ; ' ■ v; ;f
max = (xl > yl). ? xl yl; 
max = (max > zl) .? max : si ;

buf 1 [0] [0] = cx; bufl[l][0] - cy; bufi[2][0} 
buf1[0][ 1] - xl; bufl[li[l] -yl; bufl[2][l]

/♦ .output the middle cube ♦/

out_cube(buf1,1,- 2, 1) ;

/ ♦ The ; dimensi ons of the -slanted cube. are . not

cz; 
zl;
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inportant as long as they cover the right area
/♦

buf2[0][ 1 ] = 2*max; buf2[l][l] = 2fimx; 
buf2[2][l] = 2*rrax; buf3[0][l] “ 2*rmx ; 
buf3[l] [ 1 ] = 2*rrax; buf3[2][l] - 2 *max ;

/♦Output the slanted cubes */

out_nube (buf'2 ,-1,1,0); 
out__cube (buf3, -1, 1,0);

return;

ANGLE ()

Find the angle that the line rmkes with the 
horizontal. Teta will be between 0 and 90 
degrees.

float angle(1tne,view)

struct PRIM * 1 ine ; 
int view;

int ver.hor; 
float de J x, dely, dim;

switch(view) j 
case Vl:

ver “ 2;.hor = 1; break; 
default:

ver = 1; hor = 2; break;
J ' ■*' . .

dely = ;fabs( l ine->P01NTl [ ver] - 1 i ne->P0fNT2[ver]) ; 
delx = f abs (i ine->POINTi[hor] - 1 ine~>POINT2[hor■] ) ;

if (delx 0) return(90= 0) ; 
el se \

dum = atan((double) (dely/delx)); 
dum = dim ♦ 180.0/3.1415; 
re turn (dum) ;

0U1LRES ()

Reorganize the 3d data structure if necessary 
and output the results .

out_res()

struct PRIMS *ptrl , ♦ptr2, *durn, *s_pt rl,, *s_ptr2, *s_ptr3.,. *s_ptr4;
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int i.count,j,k; 
float xm, ym, zrn;

. pr i nt f (THE RESULT 0); 
fp - fopen("res” , 'V');

'/* Send a11 single cavity cylinders and cubes to the end of the list

ptr2 '= 0_?TR; 
count - 0;
■dim = 0;
while ((ptrl - (ptr2->NEXT)) !=NULL)j

if ((ptrl->TYPE — CYLINDER || ptrl->TYPB = CUBE)&& 
ptrl->M0DE = -1 Me 
ptrl->FLAG =, 0){ 

if(ptrl— dum) break;
L_PTR->NEXT - ptrl;

,■ L_PTR = ptrl;
ptr2~>NEXT"= ptrl->NEXT;

. p.trl->NEXT = 0, 
dum = (count++) ? dim : ptrl;

- 1 ■
• . ...else

ptr2 ..= ptrl;
■ 1

/* See if any Cubes or Cylinders have to be updated V 

ptrl - OJPTR;
whiLe ((ptr2■= ptrl->NEXT) !-NULL)|

if (ptr2->TYPE — 0 M ptr2->FLAG > 40 && ptr2->FLAG < 50)
break;

ptrl = ptr2: .
i , r

'if ( ptr2 != NULL )j 
s.-ptrl- =• ..ptrl; 
s_ptr2 - -p.tr 2; 
ptj 1 = ptr2;, .
while ,((ptr:2 = ptrl->NEXT) != NULL) j

7 S v;„’*: >-11: ^--3- ' sac pirZ->FLAG == s _p t r 2 - >FLAG) j
s_ptr3‘ = ptrl • 7
s_ptr4 = ptr2; .7 
break;

t " . j '7 ■. ; V
■ ’ ptrl = ptr2;

. i ■ /!; 7 ■ .
■if ( ptr2 — NULL ) {

, fprintf (stderr /'Error in OUTJRES")'; 
exit(.l); .

)
s_ptr 1->NEXT. = s__ptr4;
S-ptr3->NT5XT. = s..ptr4->NEXT;

, s_ptr4->NEXT = s_ptr2->NEXT; . .
7 s_^)tr4->FLAG = s_ptr4->FLAG 7 50; .
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/* update the related cube(s) and cylinder(s) */

ptr 1 = s_ptr4; 
s_pt,r 1 =- ptr 1 ;
for(j = ptr1->FLAG;j<0;j++)\ 

ptrl .= ptrl->NEXT;
ptrl->ATR[2][l] = s_ptrl->ATR[2][l];’ 
ptrl->ATR[2][0] = s_ptrI->ATR[2][0];

/♦ Start printing, the 3D primitves out */

ptrl = 0-PTR;
printf ("0);
count =0;
while ((ptrl = ptrl->NEXT) != NULL){ 

if (ptrl->TYPE !=NULL)j
count++;
if. (ptrl->M0DE < 0) 

printf(" - ");
else if (ptrl->M0DE > 0)

. printf (" + ");
if (ptrl.->FLAG > 10 && p'trl->TYPE = CUBE). 

ptrl->FLAG. =' ptrru>FLAG - 50
if (ptr 1->M0VE, == 1)j

xm = ptr 1->ATR['Q] [0]; 
ym = ptr 1->ATR[ 1] [0] ; 
zm = ptr 1->ATR['2] [0]; 
for (j“0; j <3; j+4-)

ptr 1->ATR[ j'] [0] = 0;
pr i nt f (" JOVE (%5.2f, %5.2'f, %f>-. 2f)" , xm, ym, zm)

■ i •
for ((i = ptrl->FLAG);i<0;1++) 

printf ("(”)';■

swi tch(ptr1->TYPE) \ 
case CUBE;

printf(" CUBE"); 
fprintf(fp,"0CUBE"); 
break;

case CYLINDER:
printf(" CYLINDER"); 
fprintf(fp,"OCYLINDER"); 
break; 

case CONE:
printf("CONE"); 
fprintf(fp,"0C0NE"); 
break; 

default:
pr i nt f (" pr imi t i ve unknownO);

\
pr int f (" %d" , ptr 1 ->NUM); 
fprint f (fp, "%d0, pt r 1 - >NIM);
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for(i - ptrl->FLAG;i > 0;i--) 
printf (")")■; 

if (count = 5)j 
printf ("0); 
count =0;

i ;
f or* (j "0; j <3; j

for(k=0;k<4;k++)
fprintf(fp,"%10.3f"#ptrl->ATR[j][k]); 

fprintf (fp, "G);

printf("0);
i : '

CORNER

Find all the curved corners and save the 
information necessary to rebuild this part 
of the object with a combination of cubes 
and cylinders.
#'♦♦*».**** ♦ ♦ ******* * .*'♦* *.* * ♦* ♦ * *■* * *.*■♦ $*♦♦** ♦*/
Corner()

f
struct -PRIM. *bufl[MAXS IZE]*ptr 1, *pt,r2, *dim. *tmp;
int count, i , j , k , flag;
float ptl,pl2,p21,p22,rad,tem;
flo.at; te tal,teta2 j cube[3] [4], cy 1 [3] [4];

/♦•'Initialize the buffers to zero ♦/ 
for(i=0;i<3;i++)[

for(j~0;j<4;j++){
cube[i][j] = 0; 
cyl[i][j] -0;

./*-Get. al 1 . the curves. */
if ( (count. = get_curve(Vl, buff, ARC) ) '== NULL) return; 
for (k~0;k<count;.k++){ ; 

tap. = buff[k]
, , rad., = tup - ;>LEN_RAD,. ; . ; ,.... ......

. pi 1 = tnp->P0rNTi[l]; 
pi2 ■= tap->P0INTI [2]; 
p21 “ tnp->P0INT2[!l ]; . 
p.22 = . tnp - >P01NT2 [ 2 ]; 
i f,(tap->P.0INT.l [0] > 5) j>

/* Find the lines connected to the curve. */ 

. dun = 0;
ptrl = flndl ine (Vl, pi 1, pi 2: dun) ; 
if (ptrl' = NULL) i

fprintf(stderr,"Error in corner ,ptr 10);
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pt t2 = findl ine (Vl, p'21, p22, dum); 
if. (ptr2 = NULL)-

fprintf(stderr,"Error in corner,ptr20);

/* Make sure the lines are perpendicular *■/

tetal = angle(ptr1, Vl); 
teta2 = ang'le(ptr2, Vl); 
tetal = fabs(tetal - teta2); 
while(fabs(tetal -90.0) < 5.0) j

/* Initialize the buffers to zero */ 
for(i=0;i<3;i++){

for(j=0;j <4;j++)(
cube[i][i] =0;
cyl[i][jl = 0;

i
J
i. f (NEQ (p t. r 1 - >P0 INT1 [ 2 ] , pt r 1 - >P0 T NT2 [ 2 ])) j 

tnp -ptrl; ptrl = ptr2; pt.r2 = tmp;

tern = pll; pll = p21; p21 = tem;

tem = pl2; pl2 = p22; p22 = tem;

/* Using the p’s, find the location of the corner ♦/
/* Then, find the correct attributes for the Cube 

and Culinder */

if (pll < p21)J
if(pl2 > p22) j

Oube[0][0] - pll; eube[l][0] = p22; 
cyl[0][0] = pll; cy:|1J[0] = p22; 
flag -- 1;

I
else l

cube[0][0] - pll; cube[l][0] = p!2; 
cyl[°][Q] = pll; cyl[l][0j = pl2 + rad; 
flag -2;

' j
I •
else-if(pll■> p21)j 

if (pl2 > p22)\
cube[0][0] = p21; cube[1][0] - p22; 
cyl [0] [0] = p21 + rad; cyl-[l][0] = p22; 
flag = 3;

else |
cube[0][0] = p21; cube[l][0] - pl2; 
cyl[0][0] = p21 + rad;cyl[1][0] = p!2 + rad 
flag =4;

cuhe[0][1] — rad;
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eube[l][l] = rad; 
cyl[0][2] - rad;

switch (flag) [ 
case 1:

ptr1->P0INT2[1] — p2i; 
ptr2->P0INT2[2] .= pl2; 
break; 

case .2:
ptrl~>P0INT2[i] = p'21; 
ptr2->P0 LNTl[2] = pl2; 
break; 

case 3:
ptr1->P0INT1 [ 1] = .p2'l; 
ptr2->PQINT2[2]' ' = ■ pl2; 
break; 

case 4:
ptrl->P0TNTl [ 1] =: p21 ;

; £tr2~>P0iNTl[2] = p!2; .
break;

... ptrl->LEN_RAD - ptrl->IEN_RAD + rad; 
ptr2->LEN_RAD =■ ptr2->LEN__RAD + rad;

/♦ Adjust the flag for cube and cylinder so that it would 
be possible to .find -them, again */

flag = ((i n.t) ptrl) + ((int) ptr2);

/* Output the nodes */ ,

out_.cube(cube1, flag , 0) ; 
out—cyl (cyl , l.flag) ; 
break;

]/* end of while..?/ 
j/* end of, i f (corner ..) ♦/ 

j / .♦ end of for */

5 . <■ v ‘ .ft #***#*♦*♦***
UFTJN4(). .

See if any nodes in the 3D data structure
has to be modified. If so, return, the'- appropriate
number for flag ^ ,
* *t * * *.♦ **♦♦***♦« '♦ ♦ * ##♦♦♦*.***.*♦♦♦♦*'♦* *.* ♦♦**** /
ufun4(base, 1 eg 1,1eg2,head)

struct PRIM *base,*legl,*Ieg2,*head;
1 '■■■ ■ . ■. ... ■' " ■ '

i nt s 1, s2; s3, s4, flag, dim, f ound;
struct PRIM3 ?ptr , *ptr 1,■♦ptr2, *s_ptr 1, *s_ptr2;

sl~ ((int) base) + ((int) legl);
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s2 = ((int) base) + ((int) leg2); 
s3 = ((int) head) + ((int) leg!); 
s4 = ((int) head) + ((int) leg2);

ptrl = 0_PTR:; 
found = 0; 
flag = 0;
while ((ptr2 = ptrl->NEXT) !=NULL)[ 

dim • = ptr2->FLAG; ' ' ■ ' .
if (duro. •— si | j dnm ~s2 |1 dtn— s3 | | dnm = s4) ( 

if (flag--. = 0) J
s-ptrl = ptrl; 
s_ptr2 - ptr2;

!
ptr2->FLAG - 1; 
fomd++;

' j . ■; '■ . . v . ■ ■ . ■ ■
ptrl - ptr 2;

i
if (found'= 0) return(O); 
ptr = getnode’O; 
ptr->TYPE - 0; . 
ptr->FLAG = flag + 50; 
s__ptr 1 - >NEXT - ptr; 
ptr->NEXT = ;:5_ptr2; 
return(flag + 50);

***♦♦♦♦♦**♦
C0NE()

Find and output a.I 1 the cones.
****** ***************m
Cone (view)

*** ***/

int count, i, j ,nview, cord,mco, foundl;
float col 1, co.12.co21, co22,max,mjn,rraxl ,max2,rnir,1 ,min2■
float tetal,teta2,h;
struct PRIM *airnl, *am£, *circ]e[lQ] ;
struct PRIM ‘♦cl, *c2, ♦cand, Hop;

switch(view) j. 
case Vl;

nview = V3; cord = Z; mco = X; 
break; 

case V2:
nview - Vl; cord = X; mco = Y; 
break; 

case V3;
nview =■ Vl; cord = Y; mco = X; 
break;

/♦ Find all the Circles in this view */
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count .= get_curve (view, circle .CIRCLE); 
f or (i = 0;i < count - l;i++)j 

cl = circle[i]; 
for(j = i+1;j < count;j++)j 

c2 ~ ci'rcle[ j ];
if (EQ(c1->CENTER[0],c2->CENTSR[ 0 ]) && .

EQ(cl->CENTER[1],c2->CENTER[1])){

imx-£o(cl, view.mco.&maxl ,&minl); 
max^co(c2, view,mco,&rrax2 ,&rmn2);

■'/* .find the lines representing the surfaces 
of the circles V

wax = (maxi > rmx2) ? maxi : max2; 
min “ (minl < min2) ? mini : rnin2; 
cand =0;
while ((cand = gethasefnview,cord,cand)) != NULL )\ 

i f (EQ(cand->P01NTl [mco] ,min)
m EQ(cand->P0INT2[mco] ,rrax)) j 
coll•= cand->P0INT1[1]; 
col2 .= cand->POINTl[2]; 
co21•= cand->P0INT2[1]; 
co22 = cand->P01NT2[2];

. .. a mil — Q; found 1 — FALSE;

. /♦ Find the arms V

while ((arml = hndline(nview, col 1,col2, 
ami])) ! = NULL) \ , 
tetal=angle(arml,nview);
if((tetal - 0.0) > 5.0 && (QO.O - tetai.) > 5.0) f 

arm2 = .0;
while {(arri-e = find! ine (nview, co21 , co22 Sams2)) .!= NUL1 

teta-2 - angle(arm2, nview); 
if(fabs(tetal-teta2)<5.0 

&&
EQ (arml - > LEX-RAD, a rm2 - >LEN_RAD)) j 

.. found! = TRUE; '
;. break;.

j/* end of while(arm2.. . .)*/

if(found! = TRUE) break;

]/* end of if feta */ 
j/* end of while(ann=. . .)*/

... if(found!.== TRUE) break;
']/* end of , i..f (cand=. . .■) */ 

j / ♦ end of whi 1 e (_cand=. . . ) */ 
if(found! "= TRUE)[

/♦ The aims are. fo-und ♦/..
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max = (maxi > rmx2) ? rmx2 ; maxi; 
min. = (mini < min2) ? minS : mini; 
top =0;
while ((top ~ getbase(nview* cord,top)) !- NULL){ 

if (EQ(top->POINTl [mco] ,min)
&& EQ(top->PQINT2[meo] ,imx)) 

break;
r

. if(top != NULL)j
h ='(cand->LENJRAD)*(tan(tetal * 3.1415 /180.0)) 
h = h/2;

/* Output a Cone */

out.4(cl , c2, cand, arml,h, view); 
a;rml->USE = LEG; arrh2->USE = LEG; .

i
i

j/* end of if (center 1 = center^)*/ 
j/* end of Tor(i)*/ 

j/* end of for(i)*/
1 .
/♦t♦*t«***$*♦♦♦««4♦♦♦$*£********t9 **********t*

0UT4()

Prepare the infonretion needed for ont_cone. 

out.4(c 1, c2,base, arml ,h, view)

struct PRIM' *el, *c2,*base,♦arml; 
float h; 
i.n 1: view;

(.

irit i, j ;
struct PRIM *tmp;
float buf 1 [3] [4] , buf2[3] [4] , duml•, dum2;

for (i = 0;i < 3;i++)j
for (j = 0;j < 4;J4+)j 

buf1 [ i ] [ j ] = 0; 
buf2[i][j] = 0;

if (cl->LEN_RAD < c2->LEN_RAD) 'j 
trip = cl; cl = c2; c2 = trip;

:!■

buf1[0][2] = cl->LEN_RAD; 
buf2[0][2] = c2->LEN_RAD;
duml = (EQ(‘anni->POINTl [ 1 ],base->POINTl [ 1 ])) ?

arml->PQINT2[ 1] : arml->PQINTl [ 1 ]: 
dun& = (EQ(arnfl->P0INTl[2] ,base->P0INTl [2])) ? 

arml->P0INT2[2i ; arml ->P0INTl[2];

/♦ Depending on the view, And the right attributes
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switch (view), i
CSLSC Vl

buf1[0][0] = ol->CENTER[0]; 
bufl[l][0] '= cl->CENTER[l]; 
buf![2]f 0] = base->P0INTl[l]; 
buf1[2][1] = (base->P0INTI[1] 

h : -h;
buf2[0][0]■= c2->CENTER[0]; 
buf2[l]l0l = c2->CENTER[l]; 

buf2[2][0] =. dunl; 
buf2[2][l] = bufl[2][l];

break; 
case V2:

bufl[l][0l = cl->CENTER[0]; 
buf!f2][0] = cl->CENTER[l]; 
buf1[0][0] = base->P0INTl[1];
buf 1 [0][ 1 ] ~ (base->POTNTl[l] 

h : -h;
. buf2[1][0] - c2->CENTER[0]; 

buf2[2j[0] = c2->CENTER[l]; 
buf2[0] [0] = dunl; 
buf2[0][l] - buf1[0j[l];

■ break; 
case V3; *

buf1[2][0] = cl->CENTER[Q]; 
buf1[0][0] = c!->CENTER[l]; 
Vuf1[11[0] = base->P0INTl[2]: 
buf1[l]l1] “ (base->P0INT1[2]

h ; - -h;.
bu'2|.2i[0] - c2->CENTER[0]; 
buf2[0][0j -- c2->CENTER[l] ; 
buf2[l][0'J = dun2; 
buf2[1][1] = buf1[1][1JI
break;

out—cone (buf 1,1, ^ 1);

/* Output the eyiinder to be extracted

.the Cone 
V

out-cyl(buf2,-1,1);

>■#**♦*»♦♦*’♦»******♦♦*
OUT-CONE ()

Add a cone to the 3d data structure
**,*******#♦«♦ ♦.****♦***•*♦♦♦♦* ♦■♦**♦*♦**♦*•*
out_cone(buf,signVhag)

float buf[3][4];

duml)

< duml)

< dum2)

f ran

* * *

* ♦ * */
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int sign,flag;

• static int i = 1; 
int j,k;
struct PR I M3 *ptr;

ptr = getnodeQ ; 
ptr->TYPE = CONE;. 
ptr->NUM = i++; 
ptr->MODE = sigir;.. 
ptr->FLAG = flag;

for (j =0;j <3;j++)I
forfk. = 0;k < 4;k++)

ptr->A7R[ j ] [kj ='buf[j][k];

L_PTR->NEXT = ptr; 
L_PTR =. ptr; 
ptr->NEXT =0; 
return;

GETJCUHVE..0

Find all curves of type "type" in VIEW[ vi ew_iiim] 
and store pointeis to them' in array buff.
Return the number of curves found.

get__curve (view_num, buff, type)

int view-nun, type, 
struct PRIM *buflfMAXSIZE] ;

struct PRIM. *ptr;/. 
int count;

/* initialize counter and pointer */

count = 0;
ptr = VIEWjvi ew_nun];

/♦ go through the list of primitives and find the curves *

while(ptr != NULL) \

if ((ptr->TYPE) — type) \ 
bufT[count++] - ptr;

ptr = ptr->NEXT;'

| ' '

return(count);

MAX_C0()
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Find the extreme points on the circle pointed 
to by ptr. Co_num specifies the coordinate
on which the points are to.be found.
**♦*♦«**********<<♦♦*.*♦♦♦****♦♦****♦**♦******$**/
irax_co (p t r, v i ew-riurn, co-jrim, imx, min)

struct PRIM *ptr; :
' tut co-nun, view._fnm; 

float - «max, *min; .
t ■” ■

int: i;
float radius;

radius = ptr->LEN__RAD;

/• Find out which, coordinates we are trying to match *./

if. (eo__mm. = viewjnm ) 
i=0;

else if (co_mum — ( (v i ev/_jium % 3) + 1))
1=1;

else [ /* The given coordinate is not in this view. V
■ printf ("-error in rrax_xoO) ; ... 
return(0);

' !
♦rrax ~ .(ptr->CENTrER[i ]) -{-radius; ■
♦min = (ptr->CENTER[i]) - radius;

• return;;

\/**$#*$$.* ♦**$*#** ******$** ********************
. . CYLINDERQ

Kind and output all. the Cylinders.
*'*♦*♦* ’?■•***$ ♦’**.♦♦■*♦*♦*.'*♦#* •<■***♦♦*/

Cy.l inder (view) 

tint view;

I ..
struct PRIM *circle[MAXSIZE], *ptr, ♦pptr ♦matchl () ; 
struct PRIM ♦v2_arml[5]1 ♦v^_arrre[5] , *v3_arml [5] , *v3_arm2[5] 
int vl,v2,col,eo2,i,i1,i2,i3,i4,count; 
float maxi .mini ,imx2,.min2:;

/♦ find the appropriate views and cooordinates for matching 

’ i f (view.—. - l)j
v1 = 3; v2 ~ 2; col = 1; co2 =2;

Vj '

else if (view == 2){
vl = 1; v2 = 3; col = 2; co2 = 3;

else j
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/* find all . the circles in this view */

count = get-jeurve (view, circl e,CIRCLE);

/* process each circle */

f or (i =0; i Ccount; i ++):j

nBX-joolcirclelij.view.col.&mxl.&minl); 
max_co (c i rc 1 e [ i ], vi ew, co2, &max2, <Sani n2);

/* try to find the matching lines */
11 = 0; 
pptr =0;
whi 1 e ((v2„arml [ 11 ]=rratchl (vl, col ,mi nl,pptr)) ! = NULL) { 

pptr = v2_arml[ i 14-+] ;
■' i

12 = 0; 

pptr =0;
whi le( (v£^rn£[i 2]nmtehl (vl, col,maxi,pptr)) !=NULL) [ 

pptr = v2^aml2[ i2+4-] ;

■ r
13 = 0; ' 
pptr = 0;
whi le((v3_erml [i3]=match1 (v2, co2,mir2,pptr)) ! -NULL) [ 

pptr - v3_arml [i3++];
} ’
14 =

: ■ PPtr “.0;
whi Ie( (v3_arm2[i4]=matchl(v2, coS.maxS,pptr)11 !=NULL)[ 

pptr = v3_armS[ i44-+] ;

/♦ Depending on the number of lines found in each case, 
find the best candidate for the third dimension of 
Cylinder

♦/

while(i2!=0 && i 1! =0 && i 3! =0 && i4!=0)f

if(12=1 && i 1=1 && i3=l && i4=1
if (match_J ines(v2_arml[0], v2_arm2[0]) =- TRUE) j 

out3(circle[i ], v2_arml[0], view, 0); 
break;

i
if (mateh_J ines (v3_arml [0], v3_jarm2[0]) = TRUE) j 

out3(circle[i ], v3_nrml[0] , view, 0); 
break;

if ( (ptr=mfunl (v2__amL![0], v2_armS[0], V2, Y)) 
out3(circle[i],ptr,view,0);

NULL)
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break;

if ((ptr^rfunl (v3_arml[0] , v3^amn2[0] ,V3,X)) != NULL)j
out3(circle[i],ptr,view.O);

break;

if ((ptr=pmatch(v2_amd[0],v2-iirne[0]1V2,Z)) 1-NULL)) 

out3(cirole[i],ptr,view.O);
break;.

i f ({ptr^pn»toh(v3Ljannl[0], v3_am£[0] ,V3,Z)) != NULL)! 

out3(eircle[i ],ptr,view,0) ; 
break;

s
]/* end of if (air of them = 1) ♦/

If only two lines ai e found in the first view 
then choose between them

else if(12=3 &&'ii=l)f
if (match J ines(v2_arml[0], v2_artr2[0]) = TRUE)j 

out3(circle[i ] , v2_arml[0] , view, 0);

,break; •

if (,(ptr=oifiJnl(v2_ami.l[0] ,v2_arnn8[0] .VS.T)) != NULL) ^

out3(circle[i],ptr,view.O);

. break;
:! f ((ptr=pnBtch(v2_arml[0] ,v2_am2[0], V2, Z) )! - NULL) | 

out3(circle[i],ptr,view.O);

break;

■ ■ S '
el se \

fprintf(stderr,"inpossible interpretationO); 

exit(1);
. f :5

]/* end of if(i2,i1 = 1) */

If only two lines are found in the second view 

then choose between them.

else i f (i3=l && i4=1) (
if (match-lines (v3_arml[0], v3_am£[0]) — TRUE) j 

out3(circle[i],v3_arml[0],view,0); 

break; •

i f ((ptr^ufunl(y3_arml[0], v3_arrr2[0] ,V3,X))!- NULL) j 
out3(circie[i],ptr, view.O);. 

break;

'i f ((ptr=prr)atch(v3—arml [0], v3_arrr2[0], V3, Z))! — NULtjj j 
o\it3(ci role [ i ], ptr, view, 0);
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. break; '
i
else{ ,

fprintf (stderr, "impossible. interpretationO) 
exit(1);

]/* end of if(i3,i4 = 1)♦/ 

else if (i 1=1) j
out3(c i rele [ i ] , v2_aT7nl [0] , view, 0) ; 
break;

\
else if (12=1)[

out3(circl e[i ], v2_arrrj2[0] . view, 0); 
break:

1 '
else if (13=1)\

out3(circle[i ], v3_arml[0], vi ew, 0) ; 
break;

else if(i4=1)[
out3(cirele[i ], v3_arrr2[0] , view, 0) ; 

. break;

else
break;

j/#' end of while() */ 
j/f End of for(i<count) */ 

return; '

0UT3();

This function findi? the necessary coordinates 
for the cylinder, using the pointers circle 
and ptr. The result is used by 0UT_£YL()
***************** ■** *** *i
out3(circle,ptr, view, flag)

struct PRIM *cirele,*ptr; 
int view, flag;

int sign, co, ii, j ;
float rad.buf|3][4],ol[4],len;

f or (i —0; i<3; S.+4-) [
for (j =0; j <4; j J

bui[i][j] = 0;

sign = (ptr->MDDE = SOLID) ? 1 : - 1; 
rad ' = circle- >LEN__RAD ;
co. = (EQ(ptr~>P0INTl [ 1 ] , ptr->P0INT2[ i ])) ? 2 : I;
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len = ptr->LEN_RAD;

■ /* Depending on. the view, find the right attributes 
for the Cylinder.

'
switch(vi ew) j 

case Vi :
ol[X] = circle->CENTER[0]; 
ol[Y] = circle->CENTER[l]; 
ol[Z] - ptr->POINTl[co]; 
buf[2][l] = len, 
break; 

case V2:
ol[X] = ptr->POINTl[co]; 
ol[Y] = circl e->CENTER[0] 
ol[Z] = circle->CENTER[l]; 
buf[0][l] == len; 
break; 

ease V3;
ol[X] = circle->CSNTER[1]; 
ol [V], - pt r - >P0 I NT 1 [ cp ] ;’•

' ,ol[Z] = circle- >CENTrER[ 0 ]. •;
buf[l][l] = len; 
break;

1 .
for(i—0;i<3;i++)

buf[i][0],= ol [i+1];

buf[0][2 ] ~ rad; 
out-xyl (buf . sign, flag); 
return;

r ■ -/amm******** ******************** *********
■ MATCHJLINES ()

Return 1 if the two lines pointed to by ptrl. & 
ptr2 have the same projection on the appropriate 
axis and are parallel. E.*se return 0.

Also return .0. if the pointers are the same.
*******#♦.♦->♦*♦*♦♦❖♦♦♦♦♦*♦**♦«♦♦**♦****♦**♦*♦*♦*/
match-J ines(ptrl ,plr2)

struct PRIM *.ptr i ,. *p tr2;

i
int co, dim;

if (ptrl == ptr2)
. return(O);

•■•/* find the appropriate coordinates to be compared *

if (NEQ(ptr l->P0Ilsrn f 11, ptr1->PQINT2[1]))]
. ' ,co, - 1 ; dum = 2,
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eisef
co = 2; dim = 1;

i
/f make sure the lines are either vertical or horizontal */

if ((NEQ(p tr 1 ->P0INT1 [durri],ptr 1 - >P0INT2[dim])) j|
(N0Q(ptr2->POINTI[dim],ptr2->P0INT2[dumj))) 

return(O);

f* check whether the two lines have the same projection 
on the above coordinate axis V

if (EQ( (ptrl->POINT'l[co]), (ptr2->P0rNTl [co])) &&
ECJ( (ptr l->P0INT2[co]), (ptr2->P0INT2[co]))) 
return( l).;

el se
returri(O);

i ‘
/♦♦*+****♦#♦** * ♦ * *♦**♦♦*♦**♦*♦*♦♦*♦**** t ***** * ■

MATCHl()

This function takes as input the view number, 
coordinate number and the coordinate to be 
matched. Looking in the list of primitives it 
finds a line whose endpoints have the input- 
coordinate. It then returns, a pointer to that 
line. .Else it returns. 0 .
*♦•**•***♦♦■*♦'**♦♦♦ ♦> * * ♦' i * « ♦ ’* * *"’*
struct PRIM *matchl (vi ew_rilm, co_num, co, prev_pt.r)

int vi ewmim, co_num; 
float co;
struct PRIM *prev_ptr;

f'
struct PRIM *pir; 
int i;

/♦ Find out which coordinates we are trying to match */

if (co_nim == view_num )
' . i=l;

else if (co_num == ((view_num % 3) + 1))
1=2;

else l /* The given coordinate is not in this view */ 
printf(” Error in matchl"); 
return(O);

' i .

/* Start searching the primitives for the appropriate match >/

if (prev_ptr != NULL)
ptr = prev_ptr->NEXT;
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else
ptr = VIEW[vlew_nim] ; /*’ view to be searched */

while (ptr !.= NULL). {

if ((ptr->TYPE) == LINE) {
if (EQ(ptr->POINTl[ij, co) && 

EQ(ptr->P0INT2[i],co)) 
break;

ptr == pt.r->NEXT; 
end of while *'/ 

return(ptr);

GFTBASF()

Find a solid line in view(view_nirn) which has 
the following property ;

POINTl[corj - P01NT2[cor]
*#*«••«****** *.♦*** ********** *’* <
stTUc.t PRIM *getbase(vi owjuti, co-mm, pp tr )

iTit vi ew_fiurn, co.. mm; 
struct PRIM *pptr; 
t

struct PRIM *ptr; 
int cor;

ptr - (pptr -- NULL) ? VIEW[ v:i ew_num] : pptr->NEXT; 
cor = (view-Jiim — co_nurn) ? 1 : 2; 
while(ptr != NULL)j .

V,.while(ptr->TYPE “LINE && ptr->USE != BASE) j

if (EQ(ptr->P0INT1 [cor], ptr->P0INT2[cor ])) 
return(ptr); 

else
break.; ...•

. . \ '■■■ ' ' . ■ ■■■■■■

ptr pt,r->NEXT;
j • .. ; ,'■

return(NULL);

GETHEAD()

This function finds a-line that is parallel 
with, the base and has the same length.

struct PRIM ♦gethead(base, leg, view-nun)

struct PRIM *base,*leg; 
int vi ew_num;



int i, j , co_mm;
float co 1, co2 . co3, duml , dum2, dum3 ; 
struct PRIM *ptr';

i = (view-rum = 1) ? 2 : 1;
j = (i = 1) ? 2 : 1;
co—mm = (view_mm == 3) ? 3 : 2;

col ~ base->POINTl[i]; co2 = base->P0INT2[ i ]; 
duml = leg->PQlNTl [ j ]; dum2 = 1eg->P0INT2[j]; 
dum3 = ba.se->P0INTl [ j ]; co3 = (EQ(duml, dum3)) ? dim2 : duml;

ptr = VIEW[ v:i ew_mni];
while ((ptr -- imtchl (view_num, cojiim, co3 ,ptr)) !-='NULL)f-- 

if (ptr->MODE = SOLID M ptr->USE != BASE)[ 
if ((EQ(ptr->POINT.l[i],col)

EQ(ptr->P0LNT2[i],co2))
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(EQ(ptr->P0INT2[i],col) &&
EQ(Ptr->POINTl[i],oo2)))

break;
i V

* , '. ■ ' '

return(ptr) ;
\/♦♦***♦*♦#***♦♦♦♦*♦♦**♦ ♦♦♦♦♦♦♦♦♦#'**♦**♦♦*♦♦*♦♦

CUBEf)

Find and output all the' remaining Cubes
+ * 4^ * 4^ * «'*#'** 4 ******* t ♦*«*♦*#*****♦** t ***»♦ /

Cube()

{■
•nt i_h, i_b, :i_l 3 : i__12, found, sign .flag; 
float col 1, co:l2, co2l , co22, durnl, dum2, dum, tetal, teta2; 
struct PRIM 4ptr, *pptr, *base, *head# *legl, ♦leg2;. 
struct PRIM *v2_aiml [5], ♦v2_arm2[5] , *v3_arml [5], *v3-arm2[5];

• ptr =0;

base = 0;

/.* Look for a horizontal line in view 1 */

while ((base--getbase(Vl, Y, base)) != NULL )j 
if(base->M0DE = SOLID)j

coll=base->P0INTl[1]; 
col2=base->P0INTl[2]; 
co2j=base->P0INTl,2[ 1 ]; 
co22=base->P0INT2[2];
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/♦Flag will be used to determine whether 
we have a cube or a frustum V

leg 1—0; 
found =0;
while ((legl - find] inefVl, coll, col2, 1 egl)) S =NULL) {

1eg2=0;
while ((leg2=fmdline(Vl,eo21,eo22,1eg2))

!-NULL){
1f (match_J ines(1egl,leg£) “ TRUE Me 
((legl->USE != Ieg2->USE) || (1 eg1->USE -= NULL)))■ j

/* It is a cube ♦/

found = TRUE; 
flag ~ 0; 
break;

1 ' ■
else i f (EQ(legl->L.EN__RADs leg£->LEN_RAD)

Me base ! - 1 egl ) \
duml = (EQ(legl->P0INTl[2], col2)) ? 
legl->PQINT2[2] : legl->P0INTl[2]; 
dunS = (EQ(]eg2->P0INTl[2],co22)) ? 
leg2->PdINT2[2] : 1 eg2->P0INTl [2]; 
i f (EQ(1 eg 1 - >LEN_RAD, 1 eg2- >LEN_RAD) Me 
EQ(duml ,dung) && NEQ(dumlcol 2) Me 
,legl~>USE.,— NULL &&.leg2->USE — NULL) { 

tetal = angle(legl, Vl); 
tetaS = angle(leg2, Vl);
if(EQ(tetal,teta2) Ml (tetal - 0.0) > 5.0 
&& (90 - tetal) > 5.0)j

/* We have a frustum */

found = TRUE; 
flag = 1; 
break;

if (found) 
break;

if (found)i
]egl->USE - ((int) base);
Ieg2->USE - ((int) base); 
head = gethead(base,legl,Vl);

/* Look for corresponding lines in the other views */

iJb ■= 0; 
pptr - 0;
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whi le((v2_aiml [i>J3]=matchl (V2, Y, col2,pptr)) != NULL)j 
pptr = v2_arml [ i_b++];

1 .
i—hi = 0; 
pptr “0;
durnl = legl->POINTl[2];
dim = (EQ(col2,duml)) ? legl->P0INT2[2] ; duml ; 
whi le( (v2_-arm2[ i_h]=rratchl (VP, Y, dim, pptr)) «-NULL)[ 

p-ntr ~ vS_jara&[ i_h++] ;
1
i_1-1 =0;
pptr = 0;
whi le( (v3_arml [i_J 1 ]=rmtchl (V3,X, col 1 ,ppt.r)) !=NULL)[ 

pptr = v3_arml [ i_J. 1++];
i ’ ,
i_13 = 0;
pptr =0;
whi le ((v3_arm2[ i,J 2]=matchi (V3,X, co21,pptr)) ! =NULL) \ 

pptr = v3_arn&[i_J2++] ;
);

/? Depending on the nurber of line^ found in each view, 
choose the? best candidate for the depth of the Cube, 
and outplit it.

V

whiie(i_h!=0 &&.i_b!=0 && i_il!=0 M: i 1S! =0) j

if (i_h=l && i__b=l Me i_] 1=1 Me x_12>=1) j'
if (match-J ines(v2_arrnl [0] v2_arm2[0]) TRUE) j 

sign = cavity(v2_arml [0]);
out. (base; 1 eg 1, .1 eg2, head, v2_amil [0] , si g n. flag); 
break;

i
i f (match-J ines (v3_arml [0], v3_jarm2[0]) == TRUE) \ 

sign = cavity(v3_arml[0]) ;
out (base, legl, leg2,head, v3_arml[0] , sign, flag) ; 
break;

1 :
if ((ptr=nfunl (v2_arml [G], v2_arm2[0] , V2,Y) ) != NULL) j 

sign = cavity(pt.r);
out (base, 1 egl, leg2, head, ptr, sign, flag) ; 
break;

]
if ((ptr=ufunl (v3_arml [0], v3_arm2[0] . V3,X)) != NULL) { 

sign = cavity(ptr);
out (base, legl, Leg2, head, ptr . sign, flag) ; 
break; i

i f ((pt r~prmtch (v2_a.rm1 [0], v2_arm2 [ 0], V2, Z)) ! = NULL) j 
sign = cavity(ptr);
out(base,leg!,leg2.head,ptr,sign,flag); 
break; :

; i
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if ( (ptr=pratch(v3_amil [0], v3_arm2[0], V3, Z)) != NULL)’ 
sign - cavity(ptr) ;
out(base,legl,leg2,head,ptr,sign,flag); 
break;

' i- . ' ■■ . ■'
]/* end of if(all of .them = 1) */

.else i f (i_h—1 &8e i-Jb=l) j

■/* If only two lines are found in-view 2 
give priority to them

V

i f (match-J i nes (v2_arml [0], v2_arrr£[0]) = TRUE) j 
sign = cavity(v2-^aiml [0]);
out (base, legl, leg2,head, v2_arml[0], sign, flag); 
break; 

j
i f (fptr=ufunl (v2__arml[0], v2_ja:ron2[03, V2, Y))! = NULL) j 

sign = cavity(ptr);
out (base,. leg 1,leg2,head,ptr,sign,flag); 
break;

\
■i f ((ptr=prmtch(v2_arml [0], v2_uirm2[0] , V2, Z))! = NULL) { 

sign = cavil y(ptr);
out (base,legl,leg2,head,ptr,sign,flag);

. break;
’ i

elsej ;
fprintf(stderr," impossible interpretationO); 
exit(1);

i
j/* end of if(i_h,i_h = 1) */

else if(i4l=:1 && i_J2=l){"..

/* If only two lines are found in view 3 
give priority to them 

*/ ;

i f (match—! ines(v3_nrm1 f 0] , v3 _arm2[0] ) = TRUE) { 
sign = cavity(v3_arml [0]);
out (base, legl, leg2,head, v3__arml[0] . sign, flag); 
break;,

j ' - . . .
if ((ptr=ufiml (v3_arml [0], v3_arm2[0] ,V3,X)) != NULL) {

sign = cavit.y(ptr); .
out(base,legl,leg2,head,ptr,sign,flag);
break;,

■ i '
i f ((p t r=pmat ch (v3_a rml [ 0 ], v3_nm2 [ 0] , V3, Z))1 NULL) [ 

sign ..= cavity(ptr);
out(bese, leg 1,1 eg2,head,ptr, sign,flag) ; 
break;.
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f.pri'ntf (stderr , "impossible interpretst'ionO) ; 
exit(1);
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]/* end of i f (i_J 1, i_J 2 ~ 1) */

else i f (i__b=1)
sign = . cavity(v2—arml [0]).;
out (base, legl, leg2,head, v2_arml[0]. sign, hag) ; 
break;

I ' ■ ■
else if (i_h=l) \ .

sign = cavity(v2__arm2[0]) ;
out (base, legl, leg2,head, v2_arm2[Q] .sign, flag); 
break;

else i f (i_11=T) [
sign = cavity(v3_arml [0]);
one(base,1 eg 1,1eg2,head,v3_arml [0],sign,hag); 
break;

else.if(i_12==1)j
sign = cavi ty(v3.j&rm2[ 0 J);
out (base,legl,leg2‘, head,v3_arm2[0],sign,hag); 
break;

else •
break;

}/* end of while(it is a- cube) */ 
j/♦ end of if(found) */

base->USE - BASE; 
l/* end of while (base. . , .) */

OUT ()

This function finds the coordinates of the cube 
frem its input, argument's. The results are used 
by but-cube'()
**********
out (base, legl, leg2,head,pt.r , sign,hag)

struct PRIM *base, *legl, *1 eg2, *head, *ptr; 
int sign,hag;

hoax buf[3][4]: 
int cor,i,j;

if (flag == l)j

/*• It. is a frustum */
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out2(leg!,ieg2,ptr,Vl,l); 
return;.

for(i=0;i<3:i++)
for(j=0;j<4;j++)

.buf [i][j] ~

flag - uf un4(base , 1 egl, leg2 .head); .
cor =r (EQ(ptr >?0INT1 [ I] ,ptr->P0INT2[1])) ? 2": 1

buf[0][0] = base->P0INTI[1];
"buf[1][0] = (EQ(base->P0INTl[2],legl->P0INT2[2])) 

legl->P0INTl[2] ; base->P0INTl[2]; . 
buf[2][0] = ptr->P0INTl[cor];

buf|0][ll = base->P0INT2[1] - base->POINTl[l]; 
buf[l][l] = 1egi->LEN_SAD; 
buf[2][1] - ptr->LEKJRAD;

out_cube(buf, sign,flag , 0) ; 
return;

PMATCH():

Partially match two lines and return the result, 
(ptr or FALSE).. . .

>**/
struct PRIM *prmtch( 1 ine1, 1 ine2:, vi evuium, couiim)

struct PRIM *1 inel , M ine2; 
i n t v i ew_num, c

int i ;
float duml, durn3, col 1, col2, co21, co22;

i =v (view_jrum = co_nim) ? 1 : 2;
col l = 11 ne 1 - >P01NT 1 [ i ]; c o 12 = 1 inel->P0INT2[i ] ,
co21 ;= line2->P0INTl[i]; co22 - 1ine2->P0INT2[i];

if (col 1 <— co21 .&& col2 >= co22) f
return (.1 i nel );

else if (co21 <= coll Me co22 >= col2) { 
return(1ine2);

j '
else

. return(FALSE);

UFUNl ()

This function'checks to see whether any of the 
given-lines are.at' an extreme position in the



given view.
♦ *♦*♦*****♦**«**************♦*************♦♦♦♦♦/

struct PRIM *uf uni (ptrl ,ptr2, view-Jium, co^ium).

struct PRIM *ptr1,*ptr£; 
int vi.ew_mm, co._nuni;

int cor;
float nBx.imn, cmax, anin, cl, c2; 
struct PRIM %iaxptr, *minptr, *ptr ;

cor = (view_joum = cojran) ? 1 ; 2;
min = 1000. C; rmx "0.0;
minptr = 0; rraxptr = 0;
ptr = VIEW[ v:i ewjum];
while (ptr !-- NULL) \

if (ptr">TYPE = LINE &&
EQ(ptr->POINTl[cor],ptr->P0INT2[cor])){ 

rnaxptr = (ptr->POINTl[cor] > rmx) ? ptr ; rmxptr 
minptr = (ptr->P0INTl[cor] < min) ? ptr : minptr

• i -
ptr = ptr->NEXT;

i .
cmax - rmxptr->P0INTl[cor] ■ anin = mi npt.r->P0INTl [cor ]; 
cl'= ptrl->POiNTl[cor]; c2 = ptr2->P0INTl[cor];

if (EQ(cl,crmx) || EQ(c!,cmin)) 
return(ptr1);

else if (EQ(e2,cmax) M EQ(c2,crmn)) 
return(ptr2);

else
return(NULL);

j
/ f *« ********* t **?*?***« ****** ***.* + ♦♦♦***** *

. ’ . CAVITYQ

Return the mode of the input line. .
*♦****♦**********>;**«*************:****♦*♦♦*****/
cavity(line) 

struct PRIM ♦line;
J

return(1 ine->M0DE) ;
]
/*»****?***♦ ************«.**««*****«* + ****,{,****

UFUN2()

Finds the two lines (legl & leg2) connected to 
the two endpoints of the semicircle.
#***$♦******+«****♦«♦♦*♦*♦********it***********/
ufun2(senL_circ , view,plegl,pleg2)

struct PRIM *sem_cire ,♦( *plegl), ♦( *pleg2); 
int view; .

138
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int i;
float co11,co12,cq21,cg22; 
struct PRIM *ppl,*pp2;

coil = sermxurc*->POINTl [1 ]; eo12 '= sem_circ->POINT.l [2]; 
co21 = sern_ci rc->P0INT2[1]; co22 = sern_circ->PQINT2[2];

/* i is the coordinate that is the s^me in POINT1 & POINTS. */ 
if(EQ(col1,co21))

.; 1 = 1; 
else"..

1=2;
. PP1 — 0;

whi lef ( ( *plegl) = findl ine(view, coll, col2,ppl)) !=NULL ){ 
ppl = (♦plegl); pp2 - 0;
whi le(( (*pleg2) = findline(view,co21,co28.pp2)) != NULL)[ 

pp2 = (*pleg2);
if(EQ( (*p]egl)->P0INTl[1]*(*pleg2)->P0INTl[i]) '

5Q((*plegl)->P0INT2[i],(*Pleg2)->P0INT2[i])) 
return;

else if(EQ'((*plegl)->POINT2[i],(*pleg2)->POINTl[i]) && 
EQ((*p 1 eg 1) - >P0T.NT1 [.i ], (»p 1 eg2) ->POINT2 [ i ])) 

return;
■'■•■!■■■■■

5
pr i nt f (”*'.1 egs not found for senli ci rc 1 eO) ; 
return;

FINDLINE()

*♦♦*♦*♦♦♦ '

Finds a I ine in the given view -that has an 
endpoint with the given coordinates.

t *.« * » * * * * * # « * <

struct PRIM *findliue(view,col,eo2,pptr)

int view; 
float col i co2; 
struct PRIM *pptr;

\ . .■
struct PRIM *ptr;

ptr = (pptr. == .NULL) ? VIEWjview] : pptr->NEXT; 
while (ptr != NULL) j .

if (pt r - >TYPE == L INE && ptr - >MQDE.’ == SOL ID) j
if ((EQ(ptr->P0INTl[1],col) && EQ(ptr->P0INTl[2],co2))

(EQ(ptr->P0INT2[1], col) &&. EQ(ptr->P0INT2[2],co2)))

return(ptr);

s
ptr = ptr->NEXT;.

i :
•return(ptr);
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/ * * * * *♦ *♦****♦♦*♦ * ***************************

/LUGQ

Find, and output all 1 the lugs
♦'*♦**♦***♦*♦****« ******* *****♦♦«*♦♦***♦*♦♦****♦/
Lug (view)

iht view;

\
int xi, xj, count, found, i, sign, flagl, flag2, pos;
float ci ,cj,rad,col 1,co!2,co21,co22,col,co2;
float tetal,teta2;
struct PRIM -*buff[MAXSIZE] , *ptr , *tmp, *pptr, *Iegl, *leg2, *dum

/* Get all the curves */

count = get^rurve(view,buff, ARC);
. if (count == NULL) . return;
for (i=0;i<eount;j++)j 

tnp = buff] i ]; 
if (tup->FGINTI[0] < 5)j 

rad = tnp~>LEN_RAD; 
coll = tmp->POINTl[l]: 
colS = trrp->POINTl [2]; 
co2J = tmp->P0INT2[1]; 
coSS = tmp->P0INT2[2]; 
legl “ 0); leg2 = 0;

/* Find the coordinates of c which is 
the midpoint on the curve . xi is 
the coordinate that is not the same 
in POINT 1 & POINTS

♦/

xi = (EQ( tmp->PQINTl[1], tmp->P0rNT2[1 ])) ? 2 ' 1;
xj ~ (xi = 1) ? 2 : 1;
c i = tup->CENTER[xi - 1 ] ; 
i f (vi ew ! = V3) \

if(tnp->POINTl[0] = l" | | trip - >P01 .NT 1 f 0 ] = 3 ) 
cj = tnp->CENTER[xj -1] + rad; 

else
cj = trrp->CENTER[xj -1] - rad;

\
else j

i f (trip->P0 INTI [0] == 1 ]| tup->P0INTl [0] = 4 ) 
cj = tnp->CENTER[xj--1] • - rad; 

else
cj = tnp->CENTER[xj-1] + rad;

i
pptr = 0; ptr = 0;

/* Depending on the view and position of the 
Lug,.find its depth from a secondary view */
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swi tch(view-) j 
case Vl:

i f (xi=l)
pt.r=matchl (V2, Y, cj , pptr) ; 

else
ptr~ratchl (V3,X, cj ,pptr); 

break;

case V2:
i-f (xi==l)

ptr=mat chi (V3, Z, c j., pp tr) ;
. else

pt r=matchl (Vl, Y, c j , pptr); 
break; .

case V3:
i'f(xi—1)

ptr=match1 (Vl ,X, cj ; pptr) ; . 
else

pt ■'•snatch 1 (V2, Z, c j , pptr) ;

1
i f .( ptT ■= NULL) \

fprintf(stderr,"Error in DO-LUG"); 
exit(1);

/* output the cylinder */

flag 1 - (ptr->MODE; — SOLID) ? -1 : 0; 
out 3 (Imp, p t r, v i ew, flag 1) ;

/♦.output, ‘.he-cube to-be subtracted if necessary*/

i. f (flag 1 — - 1)
out 1 (Imp, 1 eg 1, pt r, vi ew, -1,1);

/* if the endpoints are connected, 
go to the next ARC */

.dum = VIEWj vi ew]; 
found - FALSE; 
while (dum ! = NULL) j .

if.(dumr>TYPE — ’ LINE)'j
i f ((EQ (dum->P0 INTI[1],col 1) M EQ (dum->P0 INTI[2],co22)) && 

(EQ(dum->P01NT2[1], co21) &8e EQ(dum->P0INT2[2],co22)))j 
found = TRUE; . 
break;

dum = dum- >NEXT;

i
if (found —' FALSE){

/♦ The endpoints are not connected
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find the lines connected to them
V

nfim2(trnp, v i e w, & 1 e g 1, &1 eg2) ; 
if (rratch_l ines(legl, leg2) = TRUE) {

/* output the cube */

sign = (ptr->MGDE = SOLID.) ? 1 : -1;. 
out 1(tup,legl,ptr,view,sign,0) ;
(legl->USE) = LEG; ' (Ieg2->USE) - LEG;

.(ptr->USE)-f+;
5
else if (EQ(1 eg1->LEN_RAD, 1 eg2->LEN_RAD)) { 

teta.1 - angle (legl, view) ; 
t.eta2 ' = ang 1 e (1 eg2, vi ew) ; 
i f (EQ(te-tal, teta2)) [

pos = tmp->P0INTl [0] ;
outS(legl,leg2,ptr,view, pos);
(leg 1 ->USE) - LEG;

(Ieg2->USE) = LEG;
(ptr->U5E)++;

/* Use ufun3 to create new lines in this view */

col = (EQ(coll ,legi->P0IKTl[.l])) ?
1 egl ->P0INT2[ l] : I egl->PQINTl [ 1] ; 

co2 - (EQ(col2.1 eg 1->P0INTI[2])) ?
legl ->P0INT2[2] ; 1egl->PQINTl[21; 

u.f un3(col , co2, vi ew) ;

col = (EQ(co21,1eg2->P0LNTl[1])} ?
1 eg2->P0INT2[ 1 ] : 1 eg2->P0TNTl [ 1 ] ; 

co2 - (EQ(co22,1eg2->P0INTl[2])) ?
Ieg2->P0INT2[2] : 1eg2->P0INTl[2]; 

ufun3(col,co2,vi ew);

return;

/♦♦♦****#♦• ♦♦*♦**♦**♦♦**♦*♦♦*** *.♦*♦•♦**♦♦**♦#♦
OUT1()

Output the cube to be subtracted from a cylinder 
in order to have a half a cylinder
+**♦****♦*♦**♦*♦♦**♦*♦♦♦♦*♦♦♦*♦♦♦♦♦*♦♦*♦♦♦♦♦♦*♦/
out 1 (cyl, leg,ptr, view, sign,flag)

struct PRIM *cyl, *ptr, *1 eg ; 
int vi ew, sign,flag ;
i.
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float coll, co 12, co?/1, co22, buf [3] | 4] , len; 
float a[4], b[4]. c[4] , e [4] , rad; 
int i,j;

f or(i=0;i<3;i
for(j=0;j <4;j++)

buf[i][j] =0.0; 
col1 - cyl->P0INT1[i]; 
col 2 = cyl->P0INTl[2]; 
co21 = cyl->P0INT2[l].; 
co22 = cyl->P0INT2[2]; 
if(sign = 1)j

len = leg - >LEN._.RAD; 
rad = 0;

1
else i f (flag = 1) \

len = 2#(cv1->LEN_RAD); 
rad. " cyl->LEM_jRAD;

!
else if (sign — -.1 '&& flag — 0)\

. . . len - leg->LEN__RAD.i 
rad = 0;

/♦Depending on the position and view of the Lug 
use the above info to find the coordinates 
of the. cubical part of the lug */

/♦ cyl->P0INTl.[0] gives us the position of
.the Lug. We- have four possible positions */

swi f eh(view) \ 
case Vl:

/* The Lug is in View 1 */

if(cy1 ->P0INT1[0]—' 1)i 
a[X] = coli - rad: 
a|Y] = col 2;

■ a[zr - ptr->P0INT2[2]; 
b[X] ~ co21 + rad; 
e|Y| - a|Y| - len;

I
else if(cyl->P0INTi[0] — 2) j 

n[Xj =..co"ll - rad; 
a[Y] = col2 + len; 
a[Z] - ptr->P0INT2[2]; 
b[X] = co21 + rad; 
e|Y] - col2;

!
else if(cyl->P01NTl[0] = 3)j . 

a[X] ~ co21 - len; 
afY] = co22 + rad; 
a[Z] = ptr->P0INT2[l];
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b[X] = coll; 
c[YJ = co12 - rad;

elsef
a[X] = col1; 
a[Y] = co22 4- rad; 
a[Z] = ptr->P0INT2[1]; 
b[X] = a[X] + len; 
c[Y] = col2 - rad;

I
e[Z] = a[Z] - ptr->LEN_RAD; 
break;

case VS;:

/* The Tjiig is i n Vi ew 2 */

i f (’ey 1 ’->P0 INT1 [ 0]=1)
a[XJ = ptr->P0INTl[1]; 
a fYJ '= col 1 ; 
a[Z] = eo22 + rad; 
b[X] = ptr->P0LNT2[1]; 
c[Y] = a[Y] - len; 
e[Z] = coIS - rad;

els*e i f (cy 1 ->P0INTl [0] -- 2) \ 
a[X] = ptr->P0INTl[1]; 
a[Y] - coil + len; 
a[Zj = co22 4- rad; 
b[X] = ptr->P0INT2[1]; 
c [ Yj = coll; 
e[Z] = co12 - rad;

i
elsie i f (cyI->P0INTl [0] = 3) { 

a[X] - ptr->P01NTl[2]; 
a[Y] = co21 4- rad: 
a[Z] = co22; 
b[X] = p t r->P01NTS [2]; 
c[Y] = coll - rad; 
e[Z] = co!2 - len;

el s*e l
a[X] = ptr->P0INTl[1]; 
a[Y| = co21 4- rad; 
a[Z] = co22 4- len; 
b[X] = ptr->P0INT2.[2]; 
c[Y] = coll - rad; 
e[Z] ~ col2;

break; 

case V3;:

/ * The Lug i s' i n Vi ew 3 */
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if (cyl->POINTl[0.]=l) j 
a[X] = co12 - rad i 
a[Y] - ptr->P0INT2[1]; 
a[Z] = coll + len;. 
b[X] “ co22 + rad; 
c[Y] = ptr->POINTl[l]; 
c\7:\ = coll;

i . ..
else if(cyl->POINTl[0] = 2}{ 

a[Xj = co!2 - rad; 
a[Y] - ptr->P0INT2[l]; 
a[Z] - coll; 
b[X] = co22 + rad; 
c[Y] '■= ptr->POINTl[l]; 
e[Z] =' coll - len;

else j.f(cyl->P0INTl[0] = 3)f 
afX] - col2 - len; 
a[Y] - ptr->P0INT2[2]; 
a[Z] > co21 + rad; 
b[X] = col2; 
c[Y] = ptr->POINTl [2] ; 
e[Z] = coll - rad;

1' . 
else}

a[X] = col2;
a[Y] ■= ptr->P0INT2[2];
a[Z]. =; co21 .+. rad;

’ b|X| = a[X] + len;
c[Y] - , ptr->P0INTl[2];
e[Z] - coll - rad,

/* The following is always true. ♦/

c[X] = a[X]; c[Z] - a[Zj;

buf[0][0] = cjXi; buffi][0] = c[Y];
~h[X] -

cuUlJlU- aL^.- c[Yj; =uf{:2]|l] -
c f X ]; 
c[Z] c[Z]

out_cube(buf,sign,flag,0);
return;
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/♦ ALGORITHMS */

#include <stdio.h>
^include <math.h>

/♦
GLOBAL VARIABLES

♦/

int. pic[2Q0] [200], XO, YQ, ZO, VIEVf; 
float angle();

MIN

In main, the picture is scanned. If any curve 
is found, it is followed and chain coded.
Then it is determined which routine should 
be called in order to process the curve.

rmin()

int i, j , cham[ 1000], di f [ 1000] , 1 ines f 50] [2] . n, code , count ; 
int f ound, start_X start.Jf, end_X, end._Y, 1 ink, nl l nk; 
int k,kl .k2, *pt.r ,pix, dist; 
extern int pic[][200],VIEW.XO,Y0,ZD;
FILE *fp,*fopen();

/* Read view number and the values by which the .picture should be 
shifted to obtain-a. global- coordinate system. */

scanf ("%d'!, &VTEW) ; scanf ("%d" .-AXO) ; 
scanf ("%d",&Y0) ; scanf ("%d” , &Z0) ;

fp = fopen("murage","r") ; 
i f (fp = NULL) . . 

exit(1);
ptr = (&picf 0][0]);

/♦ Read in picture into the 2D array pic */■

whi3 e((pix = getc(fp)) != EOF)J 
♦ptr = pix; ptr-H-;

?5
start.X ■= 0; .start_Y = 0; 

begin;
link — 7;' found = 0;

/* Look for a pixel with value - 1 */

for(i = 0;i < 200;i++)j
for(j = 0;j < 200;j++)j 

if(pic[jl[j] != 1) 
continue;
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e 1 se j
found - 1; break;

i ■
; 1 ■

if(found = 1) break;

i
i f (S found) exit(O); /* DONE */ 
start_X.= j; slartJf - i ; k = 0;

/♦ Follow and chain code the curve */

whi1e(i < 200 Me j < 200)i '
if((nlink = getnbor(i,j,1 ink,1)) < 0) 

break;
chai n[k++] - nl ink; 1 i;nk = nl ink;
pic[i][J] ~
i = i + dely(nlink); 
j = j + delx(nlink);

i
pic[i][j]. = 2; 
n = k; chain[k] - -1;

/♦ See if- it is no i se V

if(n < 5) goto begin; 
nl ink - gethbor( i , j , 1 ink, 2) ; 
i f . (nl-i nk = -1)

/*. ft is a dotted line.*/

. doll ine(startJC, start-Y, i ,j , link) ; 
goto oegjn;

i
i■ = i -!- dely (nl i nk); , 
j - j 4- delx(ni ink);
if ( (abs(i-siart_Y)<2) &&, (abs (j-star t_X)<2).) »

/♦ CLOSED LOOP ♦/ • '

for(i ~ 0;i < n-1;i++)
dif[i] =chain[i+l] - chain[ij; 

di f[i ] = chain[0] - chain[n-l]; 
di f[n] =8;
count = getlines(dif,iines.n), 
if (count Q)\

Z* It is a circle. */

do_circle(chain, start_X, start_U , ii);
. goto begin;. .

V
/* find the coordinates of the lines and output them * 

. do._l ines(chai n, n, 1 j p.*s; stas tar L_Y, count) ;
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/♦see whether there, is anything else 
besides straight lines'*/

found = 0; j = count - 1; 
for(i■= 0; i < count - l;i++)j

if(1ines[i][1] — 1ine s[i+1][0]) 
continue;

e 1 se j-
found = 1; j ~ i ;

\
i '•
if(1ines[0j[0] != 1ines[count-1][1})\ 

found =1; j = count - 1;
i. .
if(found == 0)

/* Nothing but straight lines in this chain */. 

goto begin;
kl ■= lines[j][l]; k2 = Jines[(j+1)%count][0]; 
if (k2 < kl)

di st = k2 +■ n 4- 1 -kl;
else

. di s.t - k2 - kl; 
i f (dist < 25)\

/♦ This- is a short line*/-

lines[0][0] - kl; lines|0][l] = k2; count - 1 
do_J i nes (chai.n,n, 1 ines , star t._X, start_Y, count} 
goto begin;

}

/* An arc or a slanted line lies between kl & k2 V

segment (chain, n.kl,k2, start_X, startJif7').-, 
goto begin;

I
/♦ If not a closed loop or a dotted line V- 
/* Assume one or more straight lines */ 
for(i - l;i < h-l;i++)

dif [i j = chain[i4-l] - chain[i j; 
di f [i] = 8; dif [0] = 8; 
count = get!ines(dif,1ines;n); 
if (count -= 0)

fprintf(stderr," ERROR 0);
else

. do«J ines(chai ii.n f 1,1 ines, s tart_X, s LartJ, count.):; 
goto begin;

D0_LINES()

Find the coordinates of the lines using the
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array 1ines[][ ij
♦♦♦♦♦*** ♦ #**/•

do_J ines (chain, n, 1 ines , xO, y0, count)

int chain[],n,lines[][2],xO,yO,count;

i
int i'.kllk2,plxJp2x,ply,p2y;

f or (i = 0 ; i < count; i++) \ 
kl - 1ines[i][P]; 
k2 = 1ines[i][1];
findco(chain,n.,xO,yO,kl ,&plx,&p 1 y) ; 
findco (chai n, n, xO, yO, k2,&p2x, &p2-y) ; 

■ oiit-J i ne(plx, ply ,p2x ,p2y, 1) ;

i
return;

D0_XIRCL‘t()

Find the center and radius of, the circle 

do—c i rcle (cliain, xO, yO, n)

int chain[],xO,yQ,n;

f . ■ .■ . •
int count, kl ,1<2, k3, x[3], y[3], i ;
Boat av_ox, av_oy, ox, oy , av__rad, rad, de 1 x, dely ,

count ” 0; kl = 0, av_ox - 0; av_oy 0; ay_rad - 0; 

whi 1 e( 1..) {
k2 = (kl - 10)%n; ;
k3 = (kl + 20)%n;
findco(chai n., n. xO, yO, kl, &x [0] , &y [0]); 
findco (cha in,n,xO,yO;k2, &x [1] ,&y[ 1 ] ) ;
'■findc o (cha in, n, y0, y0; k3. &x [ 2], &y [ 2 ]);

' get cent or (.x.. y&ox, &oy); 
if(ox > 0.0)5

riv_jox = av. .ox + ox;
ay_oy = av_joy + oy;
conn

‘ i
if(k3 < kl) break; 
hi = k3 + 5;

' ■ I, -.. ■
ox = av_ox /((float) count); 
oy - av_oy /((float) count);

/* find the radius */
for(i - 0; i < 3;i++)l

delx -'((-float) x[i] - ox) * ((float) x[i] - ox); 
dely - ((float) y[i] - oy) ♦ ((float) y[i] - oy); 
av ..rad — av_rad + ^ cj r - ((doab ley (delx dely)) (
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rad = avjad / 3.0; 
_ont_jc i r c 1 e (ox, oy, r ad); 
return;

/♦****
‘D0_ARC0

Find the coordinates and the position 
of the arc

do_ar c (cha in-, n, k 1, k2, xO, yO)

int chain[] ,n,kl l!k2.lxO,yO;

float av_ox, ox, av_oy, oy,
int x[3]',y[3] .count, i ,p]x,p2x,ply,p2y,cx,cy,pos,k

findco(chai7i, in, xO, y0, kl , &p lx, &p 1 y) ; 
findco(chain, ia, xO, yO, k2,&p2x, &p2y) ;

/* Need to know bow many links between kl k2 ♦/ 
if (k2 > kl)

count. = k2 - kl;
else

count = k2 + n + 1 - k.l ;
/* find out position of arc */ 

k = (kl + (count/2))%n; 
findco(chain, ia,xO,yO, k,&cx,&cy) ; 
i f (abs(p.lx - pSx) < 6) {/* vertical ♦/ 

if(cx < plx) 
pos ~4;

else
nos - 3;

i
elsej /* horizontal.-'*/ 

if(cy > ply) 
pos = 1;

else
pos “ 2; 

r
/* Estimate the coordinates of the center */ 

av„jox = 0; a=v_oy = 0; 
k = (kl _ + ■ (count/4))%n; 
x[l] = cx; y![ 1] - cy; 
x[2] = plx; y[2] = ply; 
for(i " 0; i < 2; i++) j 

while(.l) l
findco(chain,n,xO,yO,k,&x[0] ,&y[0]); 
get center(x,y,&ox,&oy); 
if(ox >0.0) break; 
k =- (k + 1) %n;

. ifCk =k2)j.’-

printf("det. = 0fr); 
exit(1);

]
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1
av—ox - av_jox 4- ox, 
av_oy = av_oy +■ oy; 
k = (kl + (3♦count /4) )%n; 
x[2] = p2x, y[2] ='p2y;

\ •
ox - av—ox/2.0; 
oy = av-oy/2.0;

out—arc(plx,ply,p2x,p2y,ox,oy,pos); 

return;

»**«♦* * * +■ * *'* $ ♦ * ♦ ♦

D0TLINE0

Follow a dotted line and find its? endpoints

dotl ine(x0,yO,'ii., j j . link) 

.int xO,yO ,ii ,j j■1 ink :

i nt i, j , nl i nk, end-x, end._y; 
extern int pie[][200];

-j =• jji.'i = i.i;
wh.i 1 e ( (i < 200) && (j < 200))$

if((nlink = getribor(i,j,1 ink.2)) ! 
*

pic[i][j] - (pic[i].[j] — .d ? 2 :

j =. i + de!y(link) ; 
j = j + delx(lirik);

i ■ .
pic[i][j] - 2; 

end-x = j; end_y = i; 
out J i ne (xO, yO, end_x, end ..y , 0);

/***♦♦< >***♦♦**♦*<
r:NDC0()

Given the chain array and the.coordinates 
of the start of the chain, find the 
coordinates of the pixel corresponding
to t
* ♦ **

be .chain 1 ink k.

findco (cha i n, n, xO, y 0, k, px, py)

int chain[],n,xO,yO,k,*px,*py;
t

int kl, i ,X, Y;

kl - (k + l)%n.i
X 0; Y - 0; _
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f or (i = 0; i <k 1; i ++) j
X - X + delx(chain[i]); 
Y = Y 4- dely (chain[ i ]);

1
*px = xO + X;
*py = yO 4- Y;

return;

GETCENTER()

Using the coordinates of three points on the. 
circle or arc, find an est.iirate for the 
coordinates of the center.

getcenter(x,y.pox,poy)

int x[J,y[ |; 
float *pox, *poy:

i
float x02,xl2,x22!y02,y12,y22; 
float a, b,c,ri,det'( ,det2,det3;

x02 = x[0] * X[0]; xl2 = x[l] » x[l]; x22 = x|2| ♦ x[2]; 
y02 = y[0] * y[0]; yl2 = y[l] * y[l]; v22 = y[2] ♦ y[2];

/* for ox */

a — xQ2 - xl2 4- y02 - yl2; 
b - 2 * (y[0] - y[l]); 
e ~ x02 - x22 + y02 - y22;
d = 2 ♦ (y[0] - y{2]):
detl = (a * d) - (b * c);

a “ 2 * (x[0 j - xf1]); 
b - a (y[0] - y [ 1 ]);
c ~ 2 * (x[0] - x[2]); 
d = 2 ♦ (y[o| - y[2j); 
det2 = (a * d) - (b ♦ c); 
if(det2 = 0)j 

♦pox = - 1; 
return;

i

/♦ for oy */ 
a = 2 ♦ (x[0j - x[l]); 
fc = *02 - xl.2 + y02 - yl2: 
c = 2 ♦ (x[0] - x[2]); 
d = x02 - ±22 + y02 - y22; 
det3 = (a ♦ d) - (b ♦ c):

♦pox = detl / det2;
♦poy = det.3 / dot2;



153

return;

GETNBORQ

Scan the neighbors of picji][j],in a 
counter clockwise direction, 4 neighbors 
first, If any with value equal to pix is 
found, return the link code. Else return -1

getnbor(i,j,1 ink,pix)

int i., j, 1 ink,pix;

i
i nt .nlink, dim, k, ni, nj. , i 1, j !; i 2, j 2; 
extern int pic[][200];

til ink = (link -4- f>) % 8;
if ((dim = niink % 2) != 0) nlink = (nlink 4 1) % 8;

/* check 4 neighbors */
for(k = 0;k < 3,k44){

, mi i, ;+ deiy.(nlink);
■nj n j + delx(nlink); '
if((ni<200) Me (ni>0) && (nj<20Q) Me (nj>0))S 

i f... (pic[ni ] [nj ] ” pix)}
’ ' if (nl ink != .1 i nk pix =“ 1 && (1 ink ~ 0 \ |

link .” 2 |j link == 4 | | link “ 6))\ 
i i — i -f- defy (1 i nk) ;

■j 1 = j 4 delx(link); 
i 2 ~ ni 4 dely(-u-l ink).; 
j 2 = nj 4 delx(nlink);
i r(pic[ i 1 ]( j 1] — 1. && pic[i 2]! j2] !“ I) 

nlink “ 1 ink; ' 
pic[ni][nj] ==-2;

return(nlink);
} • ", ; .

j ■
. nl ink --(nlink 4 2) % 8;

i
ill ink = (1 ink 4 5) % 8; 
if (durn ■== 0) nlink = (nl ink 4 1) % 8; 
for(k — 0; k < 4-;;k44).j .

ni.= i 4 dely(nlink); 
nj = j 4 delx(mlink);
i f ((ni<200) Me (ni>0) Me; (nj<200) Me (nj>0))j 

if (pic [ni][nj] = pix)
■ return(nlink);

. .5 •:
nlink ='(nlink 4 2) % 8;

. 1 ■ ■■ . ' ■ . ■ '
return(;l);

j '' • ■
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/ ♦ $■♦ * * 4 * * ♦ * * * ♦ * ♦ * 4 ♦
GETLINES’O

Find all horizontaI ,and vertica1 1ine s nsing 
the difference array.

► <■♦***♦* A
get 1 ines(dif,1ines,n) 

int dif[],lines[][2],n;

int i, k,-k2, di st, firstk, count;

i -- 0; count = 0; 
k .= scanfdi f, 0, 1, n); 
firstk = - 1; 
whi 1 e(k ! = firstk) \

if(count = 0)j
firstk ~ k; count-H-;

k2 - scan(dif.k;1,n); 
ii (k2 < k)

dist = k2 + n + t -k;
else

di st '= k2 - k; 
if (disc > 25) [

11 ne s [ i ] [ 0 ] — k; 
lines [i-H-][1] = k2;

.1
k = k2;

return(i);

/* ♦♦ i
SOANQ

Scan the d i f ar ray i n the direction dir, f ron 
position start. If a nonzero entry is found 
return its position. Also take care of 
nonzero entries due to distortion.

S' * * * /

scanfdif,start,dir,n) 

int start,dir,n,dif[];

r
int i,k,dum, save[3],count,save_i;

i = start + dir;
if ((start = 0) (dir = -1)) 

i = n - 1 ;
else if ((start' == n-1) && (dir =- 1)) 

i = 0;
k = start; count - 0;
whi1e (1)[

k = k + dir;
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if (k < 0)
i = k + n; 

else .
i = k%n;

if(diffij != 0)( /* make sure it is not distortion */ 
if(dif[i] =- 8) return(i); 
dim — - dif[i]; 
k = k + dir; 
if (k < 0)

i = k + n;
else.

i = k%n;
if (dif [i] != dun) 

break;
if(count == 0) save_J = i; 
save [count4-4-] = -dun; 
if(count > l)j .

i f (save[0] — save [!]■')■' 
return(save_J ) ; 

count =0;

^etunn.Ci);

•K 4m*
SEGMENT ()

Using’ the curvature function, segment the 
array into lines and arcs.

segment (chai ti ,_ n, k 1 , k2, xO, yO)

int chai n[ ], , kl rk2, xO. y0.;

int i , j , s, durn[700] , count, 1 ines[50] [2] ,.kkl, kk2; 
float teta, tetal., tetaS, del , totdel [700] ;

j •= 1; dunf 0] = chsinfkj]; i = kl ; 
y.n - \-.t

i - (1 1) % n;
dum(j-H-] - chain[ i ] ;

i
count — j; s -- 1 f>; 
for(j - 0: j < count+1; j ++){

teta = angle(dim, j,s,count);
teta = (teta < -90.0) ? teta + 380.0 : teta;
tetal = ang1e(dun, j-3,s,count) ;
teta2 - angle(dun, j4-3, s, count) ;
del,- teta2 - tetal;
if (del < -180) del = del 4- 360.0;
else if (del > 180) del = del - 360.0;
totdel[j] = (j < 20) ? 0 ;totdel[j-l] 4-del;
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j = 20;
whi le(totdel|[ j++] < 50); 
if (j < 35) j /• It is only an ARC * / 

do__arc (chain, n, kl, k2, xO, yO) ,
■ return;

kkl = (kl 4- J) %n;
l ines[0] [0] -- kl; lines[Q][l] = kkl;
i = 0;
whil e(j < count -5 Me i < 4). j '

if((totiel[j+5] - totdel[j]) < 10) 
i-R’;

i++;
j = j - s; /* take into account the lead */ 
kk2 = (kl 4- |) %n; 
do_arc(chain: ,n,kkl,kk2,xO,yO);
1 ines[ 1 ] [G] ~ kk2; lines[l][lj = k2; 
do„I ines(ehain;n. J ines , xO, yO, 2) ;

ANGLE ()

Given that point A corresponds to chain[j] and 
point B corresponds to ehain[ j -s] , find the 
angle that the 1 ivie AB makes with the horizontal

float ang 1 e (cha i n, j , s, n)

int j , s, n, chain]/];

int i,k; 
float X,Y,teta;

X = 0;
Y = 0; 
j ' = j % n;
for (k = j -s+jI ; k < j+1; k++) { 

i = (k<0) ? k + n : k;
X = X 4- delx(chain[ i ] ) ;
Y = Y 4- dely (chain[ i ] ) ; ..

s .
teta - Gtan2ff--Y,X); 
return(teta ^180.0/3.1415);

0UT_L1NE() ;

Output a line

out_Jine(plx,ply,p2x,p2y >npde)

int p1x,p2x,p.?y,p2v /mode;
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extern int VIEW.XO,YO,ZO; 
float pi 1 ,p!2, p21,p22;

swl tch(VIEW) [ 
case 1 :

/* shift elements to XO,YO */
p]2 = piy - YO; p22 = p2y - YO;
pll = plx ~ XO; p21 = p2x - XO;

/* reverse with respect to x axis */
pl2 = 200 - pl2; p22 = 200 - p22; ' 
break; 

case 2:
/* shift elements to YO. ZO */

pll - ply - YO; p21 = p‘2y - YO;
pl2 - plx - ZO; p22 = p2x - ZO;

/* reverse with respect to z axis */
pll ~ 200 - pll; p21 =' 200 - p21; 
break; 

case 3:
/♦.shift elements to XQ,Z0 V

pll = ply - ZO; p21 =.p2y - ZO;
pi2 - plx - XO; p22 = p2x - XO;
break;

3
)

printf("1 %d %5.1f %5. If %5.If %5.IfO.mode,pl1,pl2,p21,p22)

OUT_CIRCLE();

Outpui a circle 

out^jc ircle(oxi oy, rad) 

float ox, oy, rad;

float ol, o2;
extern int VIEW.XO, Y0,Z0;

swi tch(VIEW) f 
case 1:

/* shift e1ements to XO,YO. ♦/
01 - ox - XO; o2 = oy - Y0; 

/* reverse with respect to x axis. V
02 =• 200 - o2; 
break;

case 2;
/* shir t elements toYO.ZO V .

ol = oy - YO; o2 - ox - ZO; 
/* reverse with respect to z axis */ 

ol = 200 - ol; 
break-;
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case 3:
/* shift elenaents to XO.ZO */

ol = oy - ZO; o2 = ox - XO; 
break;

pr int f ("2 1 SS5.2f %5.2f %5.2f0, ol, o2, rad) ;

OUT_ARC ( ),

Output an arc

out_arc(pix,ply,p2x,p2y«ox,oy,pos)

int plx,p2x,ply,pJ3y,pos; 
float ox,oy;

float pi 1,pl2,p2I,p22,ol,o2; 
extern int VlEW’JX0IY0JZ0;

swi tch(VIEW’) {; 
case 1;

/* shift elenr^nts to X0:Y0 */
pl2 = ply - YO; p22 = p2y - YO; 
pi 1 = plx - XO; p21 = p2x - XO;
01 = ox - XO; o2 = oy - YO;

/* reverse with respect to x axis */
pi2 = 200 - pl2; p22 =200 - p22;
02 = 200 - o,2; 
break;

case 2;
/*■ shift elenaents to Y0,Z0 */

pll = ply - Y0; p21 = p2y - Y0;
p12 = plx - Z0; p22 = p2x - Z0;
ol = oy - Y0; o2 = ox - Z0;

/* reverse with respect to z axis */
pll =200 - pll; p21 = 200 - p2l; 
ol = 200 - ol; 
break; 

case 3:
/* shift el ament s to X0.. Z0 ♦,/

pll = ply - Z0; p21 = p2y - Z0;
pi2 = nix - X0; p22 = p2x - X0;
ol = oy - Z0; o2 = o2 - X0; 
break;

i f (VIEW ! = 3) [
i f (pos — i) 

pos =2;
else if(pos == 2) 

pos = 1;
i
printf("3 1 5S5.1f %5.if %5. If %5.1f ",p]1,p!2,p21,d22)
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printf ("%d %5. If %5. IfO.pos.o] ,.o2) ;

DET.X()

Return the displacement in the horizontal 
direction due to the chain link "code"

delx(code) 

int code;

swi tch(code){
case 0: return(l); 
case 1: return(l); 
case 7: return(1); 
case 2: return(O); 
case 6: return(O); 
case 3; return(-1), 
case 4; return(-l), 
case 5: return(~l); 
default:.

prsniff" Unknown codeO); 
return(O);

r* *********

DELY()

Return the displacement in the vertical 
direction due to the chain link "code"
********♦*♦**♦♦♦♦♦♦***♦*♦♦**♦*♦***+*******♦*/
deiy(code)

int code;

switoh(code){
case 1 return(-1)
case 2 return(-1)
case 3 return(-1)
case 0 return(Q);
case 4 return(O);
case h rcturn(1),
case 6 re turn(1),
case 7 return(1);
default.:

pnntf (" Unknown codeO); 
return(0);
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