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ABSTRACT

edran ﬁlters are a spemal class of ranked order ﬁlters used for smoothmg

alsi These ﬁlters have achleved su(cess in speech processmg, 1mage process- ’

o ,lng,' and other 1mpuls1ve noise en\nonments where lme]r ﬁlters have prox en-
',1nadequate Although the 1mplementatlon of a med1an ﬁlter reqmres onlv a slm- ‘
ple dlgltal operatlon 1ts propertles are. not easllv analyzed Even 50, & number

R Mf_of propertles have been e\hlblted in the hterature S

In thrs thesls a new tool known as threshold decompos1t1on 1s lntroduced i

.for the analys1s and 1rnplementat10n of med1an type ﬁlters Thls decomposltlon

of rnult1 level 51gnals 1nto sets of blnary srgnals has led to. srgnlﬁcant theoretlcal-' i

and practmal breakthroughs in the area of medlan ﬁlters A prellmlnarv dlS—

':_ cussron on \1s1ng the threshold decompos1t10n as an. algorlthm for a l'ast and

! parallel VLSI crrcmt 1mplementat10n of ranked ﬁlters 1s also presented

In addmon the theory is developed both for determmlng the number of.

s1gnals whlch are 1nvarlant to. arb1trary w1ndow w1dth med1an ﬁlters when any. |

. 'number of quantlzatlon levels are. allowed and . for countmg or estlmatlng the'.; o

number of passes requ1red to produce a root-z e. 1nvar1ant s1gnal for blnary s1g- »

: j.nals F1nally, the analog medlan filter is deﬁned and proposed for analys1s ofv :

the standard dlscrete medlan ﬁlter 1n cases w1th a large sample 51ze or when

the asso.'ated stat1st1cs would be s1mpler in the contlnuum




e CHAPTERl RO I
,INTRODUCTION R

b'pattern recognltlon It 1s more woften the case, however, that some random’

j felement known as noise mﬁuences the correct receptlon of the srgnal In order_ﬁ ’

to desrgn a “better commumcatlon system it s necessary to deﬁne an
~ appropriate measure of error. and a statlstlcal model for the noisy system Thls'. R
o mathematlcal: model 1s then used to determme the optlmal technlque for

ﬁlterlngt the recelved srgnal Frequently, it is- too dlfﬁcult or 1mpossrble to
”_optlmlze over all poss1ble technlques and SO attentlon is- restrlcted to ﬁndlng

A -"the optrmal technlque w1th1n a class of ﬁlters The filters “in- thls ‘more - b_
restrlctlve class should have some common mathematlcal propertles whrch— L

: slmpllfy the analysrs necessary to’ de31gn optlmal ﬁlters w1th1n the class

The class of linear functlons has many propertles whlch srmphfy the.

analysrs necessary to desrgn ﬁlters " This has allowed a I'ICh theory for the

» desrgn and 1mplementat10n of optlmal hnear ﬁlters to be developed An o
_’,‘operator I,( ) is said to be linear if I,(aX+bY) -—aI,(X) + b: I,( ) for any real

numbers a and b and lnputs X and Y Thls is known as the superposrtlon.»_'-_',

B property From thrs we see that 1f X= Z a Xl, then I,( ) can be ‘calculated by:
. REIEE

ﬁndlng 3 I,( ) and summlng over all L At ‘ﬁrst thls may seem an mcredlble R

“lncrease ln computatlon, however by proper selectlon of the decomposrtlon of, '

" X mto Z alX a reductlon in total computatlons can sometlmes be achleved '
L Thls is. true whenever the L(X )' s are very easy to compute relatlve to I,(X)

Explortatlon of the superpos1t10n property has led to the development of .‘




the input signal with the impulse response of the system. This representation
can also be transformed to other domains. Fourier transform techniques are
“effective for designing filters when the “true” signal and the noise are spectrally
separate. In short, the design and charactemzatxea of linear filters are well
“developed areas. |

As expected, however, the best linear filter whlch can be designed for the
mathematical model is not always the optimal filter for the model or for the
application. Reasons for this lack of optimality include incorrect noise models,
changing noise environments, and applications where the linear filter
assumption is not appropriate. The underlying problem is that when most
models are made simple enough to calculate optimal filtering procedures, they
become inadequate approximations to the situation being modeled. In
addition, there is the possibility of changing noise characteristics. When this
occurs, even an optimal linear filter may be unable to adapt to the different
noise when lmplemented In short many applications are not well modeled by
linear systems or require some type of robustness-that is, the ability to perform
well under various noise conditions.

Demonstration of additional weaknesses of lmear filters requires a more
precise definition of “‘filtering” and the object to be filtered. For the purpose of
 this thesis, a filter is defined by sliding a wmdow across an input. signal. At
each position of the window the filter output is determined by some
mathematxcal function operating exclusively on the values in the window. An
example where the function is linear and is apphed to a discrete time signal is
provided in Figure 1.1. For thlS example, a constant window width of five
* values and the averaging operatxon, which is linear, define the filter.

Any other function could have been chosen but this simple averaging filter
shows some of the shortcomings of linear filters. In image processing, linear
filters tend to lengthen ramps, change step functions to ramps, and be sensitive
to impulsive type noise [1]. This results in filtered images which appear blurred
and unsharp. The “desired” output shown in Figure 1.1 is based on what the
human eye prefers to see in images and the intuitive notion that statistical
outliers should be discarded as bad mforrnatlon ‘This shows that other filters
are needed. An 1mportant question is how to find them since removal of the
hneaz' constralnt causes great difficulty. '

Perhaps the easmst approach to developing a filter with the intuitive
- properties described in the preceding paragraph is to start with a simple filter,
analyze its weaknesses, and then propose. modifications which will give the
de51red propertles For. sunpllc1ty we select the averaging filter as the bu1ld1ng
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block. As was noted before, the averaging operation is an ineffective filter for
impulsive type noise and for signals with sharp edges. The underlying
mathematical reason for these semsitivities is that the arithmetic mean of N
points can be completely controlled by just one of the values in the sample.

D e I
Let X = L 3 X; denote the average of Xj,..., Xy, then solving for X, we have
| NS .
X, =NX-51X;
' i=2
Therefore if X,, ...,Xy are given we can find an X, using the preceding

o . . N _

equation such that XZE%VX» for any desired X. One method used to
i=1

stabilize the arithmetic average is to eliminate from the summation the

" extreme values-that is, the values which are very large or small compared to
_the rest of the sample. To accomplish this it is necessary to rank the Xj's.

A specific aigorithm for stabilizing the estimate of the mean is the alpha
trimmed mean [2], denoted by X, and defined by

1 NN
X, = X
- N-2+[eN] [o%}-}-n 4
where [ denotes the greatest integer function, 0<a<0.5, and X( - XN
are the ordered values of the sample X,,...,Xy. That is, the sample is

reordered from smallest to largest and labeled X;) through Xy As an

example, consider the case where N is five and the sample is {-1,3,28,2,8}, then

KXy =1 Xy =2, X =3, X4 =8, and X =28. Filtering is done by
performing this ranking operation at each position of the window and then
taking the average of the middle most values as determined by alpha. We note
that alpha equal to zero is simply an averaging filter. If alpha is a half and N
is odd, say N=2n+ 1, then we have the other extreme case where the averaging

“operation is eliminated and the output of the trimmed esmmator Xo.5 equals
Xy 41y which is known as the median of the sample.

The median is well known as the minimum absolute error estimate and is
even the maximum likelihood estimate of the mean for the two sided
exponential process [3]. It is also a robust nonparametric estimate of the
median for distributions which are symmetriéaliy distributed about their
medians [4].. An example of this is the problem of estimating the median of a
Cauchy distribution from a set of independent, identically distributed (i.i.d.)
samples. In this example, the mean of the underlying distribution is undefined
and the arithmetic average as an estimate is, as expected, totally unstable.



jThe sample medlan is an alternatrve estlmate for the center of the d15tr1but10n
- Motivated by these statrstlcal propertres of the medran operator, _Tukey 5, 6]

proposed. the medlan as a robust shdlng window ﬁlter whlch would reduce the'r_ "

*effects of - statistical outhers whlle smoothlng s1gnals Desprte the known'

‘propertles of the medlan as an estlmator the mathematlcs necessary to analyzeg '
~ the effects of medlan filters on reallstlc srgnals are not srmple extensrons to the
exrstlng theory [1 -11]. Output dlstrlbutlons of medlan ﬁlters can b.e nontrlvlal
to derlve and drfﬁcult to comprehend [7] “ |

: Even though the underlymg theory is not well developed the medlan_

ﬁlter s use as a practlcal ﬁlter has lncreased because it is easy to 1mplement ‘and” '
appears to work well in many appllcatlons “As an 1ntroduct10n to the
propertles of the medran operator, we ‘note that a w1ndow width five medlan,'_f

filter gives the desrred results for an 1mage processmg ﬁlter as. shown in Frgure-' Lo N

1 1. Spec1ﬁca‘ly, the medlan ﬁlter w1th an approprlate w1ndow wrdth for thls
example window width ﬁve removes 1mpulses but allows edges. and ramps to .
pass unchanged ‘Signals which do not change when median ﬁltered are known_’
as root signals -of the ﬁlter Because of these propertles an eﬁ'ectlve use of
median filters has been the reductlon of high frequency and 1mpulsrve noise in

‘dlgltal 1mages w1thout the extenswe blurrlng and edge destructlon assocrated_'
~ with linear filters [1] Flgure 1. 2 demonstrates the effectiveness of the median

filter in a partlcular real image where hnear ﬁlters failed.” Other- apphcatlons _ -
include the smoothmg of noisy pitch contours in - speech srgnals and data

compressron using. the root signal properties. combined with a block truncatlon'
coding (BTC) technlque [8—10] Several fast’ algorlthms for lmplementlng the
: medlan filter {9,11 12] make 1t an even more appeahng tool for srgnal
‘processrng apphcatrons L ‘ C LT
The 1mplementat10n of a standard medlan ﬁlter requlres a srmple nonhnearﬂ
dlgltal operatlon To begrn take a sampled srgnal of length L; across this
signal slide a window. that spans 2n+1 points. The filter output at each
window posrtron is' given the same p051t10n as the sample at the center of the
‘w1ndow and is set equal to the median value of the 2n+1 srgnal samples in the
“window.. Start up and end effects are accounted for by appendlng n samples to
both the begmnmg and the end of- the sequence. The front appended samples- :
are given . the value of the first srgnal sample; srmllarly, the rear appended‘
" samples receive the value of .the last sample of the signal.- In Figure 1.3 we
'vpresent an example where a median filter of window width ﬁve n=2, is applred_"_
to a srgnal with three levels. The output is given for each pass of the medlan
iﬁlter untrl a root SIgnal is reached. It has been shown that any srgnal can be
ﬁltered to a root in a finite number of passes (13].. Summarlzmg, the basic idea _'



o oo Figure 12 e o
© Median fitered output of a luser imaging system.



s to rank the samples in the wmdow and select the medlan value as the ﬁlter
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Lt Flgure 1. 3 RN -
Convergence of a medlan filter to a root sxgnal

Although the algorlthm is 51mple the analysm and desrgn of medlan ﬁlters‘ '
is dlfﬁcult because they are nonlmear ‘As was noted before, the medlan of the
| 'set of values {132828} is 3. Rewrltlng this set as {- 1+0, 3+0, 22+6-'
l+3 6+2} we note that median{- 1,3,22,-1,6} equals 3 and median{0,0,6,3,2}
'equals 2 but their sum is 5 not 3. This means, of course, that the superposmou
| property and all the results implied by this property do not hold The elegant
. technlques fof ‘calculating the response of a linear filter by decomposmg input
srgnals into- sets of simpler signals, analyzmg ‘the response of the ﬁlter to these
' 51mple 51gnals, and then adding.these individual responses - together to obtam
the total response of the system cannot be used To insure that this major

pomt was not overlooked, Tukey [5], even referred to the median filter as the o

“nonsuperposable ﬁlter The cornphcated nature of ranl\ed statlstlcs and the
~lack of a superposmon property have made this’ ﬁlter dxlﬁcult to analyze and to
desrgn Even though there is no general superposmon property, any techmque

. for decomposmg input- sxgnals into sets of simpler signals which can be

" separately - median filtered and then recombmed would be 51gn1ﬁcant in
srmpllfylng the analy51s of medlan ﬁlters



In this thesis, a special 'type of superposition is shown to hold for median
filters. Using a particular decomposition of the input signal known as the
" threshold decomposition, the output of the filter can be determined by
“separately filtering each of the. decomposed signals and then adding their
resulting outputs. This powerful new tool allows problems in the analysis and
the implementation of median filters for arbitrary level signals to be reduced to
~ the equivalent problems for binary signals. Since the effects of median filters
on binary signals are well understood, this technique has theoretical, practical,
and intuitive benefits.

The theoretical analysis of the threshold decomposition technique is
presented in Chapter 2. It is also shown that this decomposition-superposition
scheme is also valid for a general class of multidimensional ranked order
operators as well as for any linear filter. Because some of the proofs are
similar, several specific proofs are relegated to the Appendices. The
mathematics of the decomposition also lends itself to an extremely parallel,
versatile, and fast algorithm for the VLSI implementation of the median filter.
Chapter 3 is devoted to describing this impor‘t:mt result of the decomposition.

Tn addition to the threshold decomposition for median type filters, several
results on the root properties and convergence rates of median filters are also
given. These can be found in Chapters 4 and 5. In Chapter 8, the analog .
median flter is defined and proposed for analysis of the standard discrete
median filter in cases with a large sample size or when the associated statistics
would be simpler in the continuum. '



CHAPTER 2
THE THRESHOLD DECOMPOSITION

2.1 Deﬁmtlon of the Decomposntlon

We assume that the mput signal is a dlscrete sequence of length L wh1ch

;takes on the value a(m ) at pos1tlon m, 1<m<L. For each m, a(m ) is quantlzed - .

_-to one of the k values 0,1,...k-1. Because every countable set of real numbers "

‘:,can ‘be mapped in an order preserv1ng manner onto the 1ntegers there is no: loss o

of generahty In addition, this representation is approprlate because most
51gnal processrng tasks are now performed by digital computers. ’ :
 The threshold decomposmon is a technlque for reducing a s1gnal with - k-

‘ poss1ble levels to a set of k-1 binary sequences without loss of 1nformatlon We
~ will show that thls decomposition allows a superposition. property for the

" ponlinear class of ranked order ﬁlters Define the -level i threshold

- decomposition of the original signal at point'm to be
B T if a(m)>i - N
o t°'(m). = 0" Jif a(m)<i (2.1)

; ,w1th 1<m<L and 1<1<k—1 An example of this decomposrtlon is glven in
'Flgure 2.1. Note that because a(m Z td(m), the threshold décomposition is

a valld technique for breakmg 1nputs to linear filters mto binary s1gnals for.
separate filtering. - The output of the linear filter applied directly to the input

process {a(m)} can be obtained by summing the filter output from all the
{td(m)}. This is simply the superposition property of linear filters. In the next -

: - section,- this decompOSItlon is- proven to induce a superposrtlon property for"'i'
medlan ﬁlters as well v
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2 2 Medlan Flltermg by Threshold Decomposxtron S s

Let ys( ) be the output at posxtlon m of a standard medlan ﬁlter w1th‘ =
wmdow wxdth 2n+1 apprled to the 1nput sequence a(m) Applylng “the
“standard median ﬁlter to the thresholded values {to(m)} glves another set of
.«_‘éblnary sequences o : o i :

sl = 'n;;m{ t;,(m—n) R ) (2-2)57'»‘, B

.where start up and end-effects are accounted for by repeatlng the ﬁrst or last

-value»ol' the 31gnal as descrlbed in the Introductlon The relation of the bmary

~ value d, median ﬁltered threshold sequence to the output_ ys(m) of the medlan' '
vﬁlter apphed to the orlgtnal k—level s1gnal is prov1ded by ' ' e

Lemma 2.2.1; There ex1sts a mapplng f(-) from the set of blnary med1an )

L ‘ﬁltered sequences X4 ( ), 1€i<k-1 to the 51gnal space of k-leveled sngnals such SR o
' "that ys( m) = (xg i(m), 1<1<k— ). ‘ RS S '

Proof by constructzon Deﬁne I(A) to be the 1nd1cator functlon of the event A, -

zthat Bt e S
{1 itAistme
I(A) “0 1f Ais false

Examlne the output of one ﬁlter pass on the bmary level i threshold_ "

. »decompos1t10n sequence at any p051t10n m, l<m<L
~xi(m) = me.diian{.,t:&(m—n), ot m ) @23)

5

1f E to m-l-]) > n+l

]——n‘

o lf Z td( m+])

. j——n.;_

]__n-u

{ > to m+J) > n-l-l o ,» - ,‘ (24) o



12
= I{ At least n+1 ,elerrleuts in t&(m—n), . L ',té(m_'j"n’) }equal 1 } o

= 1{ At least n+1 elements in a(m-n), . . ., a(m+n) are > } - (29)

By Equatlon (2 5) we see unmedlately that 1f' xp(m)' =1, then for at least n+l

~_positions in the wmdow the signal value .a(j), m-p<j<m-+n, is greater than or N

jequal to p.- But. thxs 1mphes that at least n+1 afj)’s in the window are greater‘
- than or equal to' q for all q<p ‘That is, xq(m) =1, 1<q<p Thls glves us
 the first property of the threshold. decomposrtlon o S
-Proper’ty 2.2: If xP(m) = 1 then x“( ) =1for 1<q<p
- We can now describe a mappmg to the y 's frorn the X s For any m such that
' -1<m<L we have . S ‘

ys( )___ medlan{a(m—n) ’ a(m) . a(m +n)} ‘
C R mc];X{O l At lea,St n+1 a, -} ln wuldow are > l}

| = ‘max {0 i: I(At least n+l a’s in wmdow are > 1) l} (2.6) |
T he combmation of Equatwns (2. 5) and (2 6) ylelds

yym) = m{0x(m) =1} B R T

e '_and by Property 2 2 of the decomposmon

'_ In loose terms the funotlon f( ) stacks the bmary SIgnals x‘(m) on top of
'one another startlng w1th 1—1 The value of the output at p051tlon m is theu s




s

the hlghest level at pos1t10n m in the stack at whlch a ‘one appears

" The functlon f(*) constructed above is shown to be the inverse ot' the

'threshold decomposrtron by

VLemma 2. 2.2 “The blnary sequences t‘(m) 1<m<L and 1<1<k—1 obtained ) o

| by thresholding y(m m), 1<m<L are identical to the bmary sequences X, (m) o
1<m<L and 1<1<k—1 from Lemma 2.2. 1 ’ S o

. Proqf - R v
’ 1 1f ys(m)>1

0 else ‘

PRI 08 S
il 3_1 1f qu
0 _',jelse

. P;rober'ty?é a'_llews a reducti‘en‘ to ’tli‘erfolletuing k

W = lo e Al e (28
= xi(m)

o

The above results show how one pass of a medlan ﬁlter over the 1nput

signal is equlvalent to ﬁrst thresholdlng the srgnal then ﬁlterlng each threshold.__ -
‘sequence and finally reconstructlng the output using . the function f(*). Thls it
operation can clearly be repeated for each pass of the median filter until a root .
‘signal is obtained. A simple inductive argument ‘shows - that because the -

}decomposxtlon and superposrtlon are 1nverses the 1ntermed1ate reconstructlons
can be omltted ‘ S e

Theorem 2.2. The root signal associated. w1th a w1ndow width "n+1 rnedlan .'

g filter can be obtained by thresholdlng the original srgnal ﬁlterlng the resultlng_- .

binary srgnals to roots, and then mapping these binary roots back to the k—level.
root 51gnal using the function f( ) constructed in Lemma 2.2.1. '

An example of thls technlque applied to a three level srgnal w1th a wmdow_ '

width five me
a8 when the ﬁlter was” applled dlrectly to the srgnal-see Flgure L. 3

inie:,

ian- ﬁlter is ‘given in Flgure 272. The same results are obtarned
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Thrs result prov1des a new tool for both the 1mplementatlon and" the.

o ,analy51s of the median ﬁltermg operatlon apphed to arbitrary level signals. An

R ,1mportant and " surprlsmg ‘consequence . of - thlS Theorem | is-'- that = the
o reconstructlon functlon f( ) is a linear operator—the arlthmetlc sum “This hnear '
. superposmon functlon seems . out ‘of place with the nonhnear medlan ‘operator.
Perhaps even more surprising is that this same technlque is valid for a general
, class of ranked order operators. We begln the description- of this more- general—

’ class by showrng that the decomposmon is vahd for recurswe medlan ﬁlters

2 3 ecal] sxve Frltermg by Threshold Decomposntlon

Recurswe medran ﬁltermg [14] is a. modlﬁcatlon of the standard process in -

} which ‘the center sample is replaced by the computed medlan before the

~ window is shlfted to the next pornt T herefore, the 0 left most samples in alb-

, lwmdow are computed medians. It {a(m)} is the input sequence to the filter,

1 <m<L then lettlng y,(m) be the output of the w1ndow w1dth 2n+l recurswe" o
_medlan ﬁlter, we have L i _ S S

Yr(m) medran{y,(m n) ,yr(m-" )() ,y,(m-l-n)} . | (2 g).}i,l

' Flgure 23 1llustrates the results of applylng a w1ndow w1dth ﬁve recurswe-‘. -

: medlan ﬁlter to the same s1gnal used for the standard ﬁlter example of Flgure

.@;5;‘; ,fl yé»; : .Origihal'éignailzp,*

S ess ' Pass One
eee eie s ee ien ‘2n+1=5
‘ S TIE I (Root)

R TN N S N N e O .-1'51:' IR __'--‘-'f 1

: , Flgure 2.3 :
Convergence of a recurswe medlan ﬁlter to a root

' ,Note that only one pass ‘was requlred to reach a root w1th thlS recursrve medlan .

N . ‘root of the standard ﬁlter

. Also, for this srgnal the root of the recurswe ﬁlter is- dlﬁ’erent from the ‘ :
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Recurswe median ﬁlters are known to have different properties than
‘standard median filters [14]. For instance, the output after one pass of a
recursive median filter is always invariant to additional passes of the same
filter-— i.e., it is a root. As was shown by the examples, . this root may not
equal the standard median ﬁlter root for the same signal. Furthermore, the
output of a recursive median filter is affected not only by the window size but
also by the direction the window slides across the signal. If a decomposition
and superposition algorithm similar to Theorem 2.2 can be found for recursive
median filters we could compare this modified filter with the standard filter by
analyzing the simpler binary signal case. This is important when evaluating
whether the recursive or the standard median filter is appropriate for a specific
application. In- addition, the validity of the threshold decomposition would
reduce many problems in the analysis of recursive median filters to their
corresponding binary problem. In Figure 2.4 the threshold decomposition
technique is used to filter our test signal with a window width five recursive
median filter. The output is identical to the results’ obtained when filtering the
signal directly-see Figure 2.3. In the following Theorem a ‘property analogous
to the resuit of the preceding sectlon 1s given for recursive median filters.

Theorem 2.3: The root signal assoclated with a window width 2n +1 recursive
median ﬁlter can be obtained by thresholding the ongmal signal, applying the
recursive medaan filter to the resulting binary 51gnals and then mapping these

bmary roots back to the k-level root signal using the function f(<) constructed
in Lemma 2.2.1 of the precedmg section.

The proof of this theorem is lengthy. It is (developed as a series of
properties for recursive median filters. To avoid complicated details it is found
in Appendix A. The inductive parts of this proof can be eliminated by showing
that the threshold decomposition is valid for a more general class of filters

which contains the recurswe filter as a special case.

‘Another reason for relegating the proof to the Appendlces is that it is also
a- simple -consequence -of ‘a much ‘more. general theorem. This theorem
demonstrates ~ that the decomposition ~ and - superposition properties. of
- thresholding are valid for general multidimensional ranked order operators. Its
proof is found in the next section. Because the threshold decomposition and
the superposntlon are inverses, we can represent recursive filters as cascades of
simpler filters. This is done for the recursive median case as an example in
section 2.5.
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2.4 Multidimensional Ranked Order Operdtions

‘Modifications to the standard type ranked filter described above have been
proposed in the literature [2,14-16]. In this paper we are particularly interested
in filters where the output rank parameter r can change as the window slides
across the signal. We say that these filters have an adaptive rank parameter:
“when the window is centered on the m’th position in the input signal, the
output rank is r(m). In other words, the rank parameter r is a sequence r(m),
- 1<m<L. ’ '

So that our results will hold for multidimensional input signals we also
allow the window shape to change with position. When the filter output
position is m, 1<m<L, we let w(m) denote the set of positions which are to be
considered in the window. This technique for representing higher dimensions
_with pointers of a single dimension is demonstrated by the examples in the
next section. ‘ e e » ‘ |

For conv_énience let N(m) be the window size of the filter when it is at
‘position m; that is, the number of positions included in the window w(m). Let
the m'th output of this position dependent window shape and ranked order
filter applied to an input signal a(m), 1<m<L, be denoted by ¢;(a,m). Then
by. definition ' - S ’ = :

defa,m) = the r(m)th largest element of i a(p): p € w(m) } (2.10)

To provide a concrete example of the use of the parameters N(m), r(m)
and w(m) in the definition of a filtering operation, consider the standard
median filter. A standard median filter [13] has a constant window size of
N(m) equal to 2n+1, where n is any fixed integer. Its output rank parameter
does not vary with position, so that r(m) =n+1. The definition of the
window sequence w(m) would be straightforward -- 2n+1 consecutive points
centered about the current window position m -- if it were not for the start up
and end eﬁects associated with finite length 51gnals To account for the start
up effects, the first point is repeated n times at the beginning of the signal so
that a symmetrxc window is defined for each of the first n points in the signal
[13]. A similar procedure is followed at the end of the signal, the last point is
repeated n times. In ovrde_i"to account for these end effects we can define w(m)
as



'.'»(1*'12’.;.,m,..,,‘ﬁj;+n')‘» flgmea
{ (m-n,..m,.,m+n) ~ifa<m<L-n . (211}
(m—n, wL-LL,..L) -i‘fL—'n<m<Lj,r B

Any standard medlan ﬁlter can be descrlbed using the wmdow shape sequence ‘
in Equatlon (2 11). We can generalize to standard ranked filters by changmg'
the output rank parameter r( ) to ‘any. constant r,1 <r < on+1." '

~This notatlon ‘defines a very general class of ranked order ﬁlters For
, mstance multrdlmenswnal ranked ﬁlters with any shape wmdow are in this
<class Thls mcludes the square and cross window medlan ﬁlters used for 1rnage .
processmg [1 7]. By using a ‘combination of two ﬁlters apphed in series,
| separable ranked ﬁlters can also be descrlbed In the next sectlon we show how
~ these and’ other filters can be lmplemented and analyzed w1th the threshold
decomposltlon In Sectlon 5, we show how recursive ﬁlters m any dlmensron
can be described with this notation. e :

As before, ‘assume that the 1nput srgnal is a dlscrete sequence of length L .

which takes on the value a(m) at- -position m, 1<m<L, and that for each m,
a( m) is quantlzed to one of the k integer values O 1,.. k—-l Let ¢ (a m) be the
;output at posrtlon m of a rank r(m) and w1ndow shape w( ) ﬁlter apphed to
“the 1nput sequence a(m). The w1ndow shape is allowed to. change with
posrtlon The results of the followmg analysrs are therefore valid in
multldlmensronal apphcatlons For convenience, let. N( ) denote the number
of p051t1ons in the w1ndow w( m). The filter at position m can be wrltten as

. ¢w(a m) = the r(m )th largest element of [ a(p)pEw(m) ] | _(2.‘12)
v Deﬁne the thl'eshold decompOSItlon of the orrgmal s1gnal at pos1t10n m to
be the set of bmary sequences , ‘ : :
S __",.1fa( )>1i1

_tO(m)__'i 0 .,ifa(m) <i o

“‘w1th 1<m<L and 1<1<k—1 Applymg the’ ranked ﬁlter to these thresholded
- 'values glves another set of blnary sequences ' ~

:('2.13) |

-¢;'(tg,im‘) = the r(m)th' largestelementof{ tg,(i‘ii)\):,p,ew'(m) } C(2.14)

: Appendlx B is devoted to the development of three propertles of filters
_ W1th posmon dependent w1ndow shapes and ranks These three propertles lead
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directly to a superposition principal for generalized rank filters. Because the
derivations are similar to the standard median filter proofs, they are left in the
Appendices. '

The relation of the binary valued, ranked order filtered threshold
sequences to the output of the filter applied to original k-level signal is
provided by

Property B. ge There exists a mappmg f(+) from the set of filtered threshold
decomposed sequences $I(td,m), 1<i<k-1 to the signal space of k-leveled
signals such that

pr{a,m) = [(¢5{td,m), 1<i<k-1)

i
k
Z; to,

The above results show how one pass of a gerier_alized rank filter over the
input signal is equivalent to first thresholding the signal then filtering each
threshold sequence and finally reconstructing the output using the addition
function f{*). This operation can clearly be repeated for a series of generalized
ranked filters. A simple inductive argument based on the fact that f(*) and the
decomposition are inverse operations between the binary and k level signals
shows that the intermediate reconstructions can be omitted. These results are
summarized in ' - ‘

Theorem 2.4: The output of a series of ranked order filters with position
‘dependent window shapes applied to a k-level input signal is identical to the
superposition, using the function f(*), of the filtered threshold decomposition of
the input signal.

This result provides a new tool for both the implementation and the
analysis of the ranked order filtering operations applied to arbitrary level
signals. Two important applications of this result are the simple representation
of recursive ranked operators and separable image processing algorithms as
cascades of ¢ filters. A separable image processing algorithm is one in which
processing is done row by row and then column by column. In the next section
this technique is demonstrated for two popular filters: the recursive median
and the separable median filters.. Comparison of this technique with the
complexity of the direct proof, found in Appendix A, shows that even though
the proof for the ¢ filters was direct, the results can be used to show that the
decomposition is valid for much more involved filtering schemes.
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2 5 Recurswe and Separa.ble Medlan Fllters

In this sectlon we demonstrate how several dlﬁerent ﬁlters can be put mto‘_f -

» the' form of ranked order operators with p051t10n dependent w1ndow shapes and

‘ ranks Two popular filters were selected: Tecursive medlan filters and separable. Lo
median filters for images. By Theorem 2.4, -any ﬁlter whlch has a general'_. o
ranked order filter representatlon can be 1mplemented or analyzed usmg the' AR

threshold decomposmon technique. -

It is shown dlrectly, in Appendrx A ‘that the tbreshold decomposrtlon
techmque is vahd for recursive median filters. However using the results of the
prevrous section, we present an alternate proof by showing that - recurswe
‘median filters are included in the class of ranked order operators with posltlon
| "dependent wmdow shapes. To do this we need a bank of filters. Each filter in

the bank is a median filter. That is, it calculates the medlan of the values that
~are specrﬁed to be in the window:. The window, however, changes shapes w1th o

position and is also dlﬁerent for each filter. Let w”(m) be the set of posrtrons in

‘the window at posrtlon m of the s1gnal for filter t in the bank of filters,
1<m<L and 1<t<L. These ﬁlters are applied sequentlally to the. entlre 1nput'--'.f _
signal with t=1 the ﬁrst and t=L- the final filter in.the bank. ‘The followmg_._. N

'»deﬁmtlon of these wmdows results in a bank of ﬁlters whose comblned effect is
‘ equlvalent to a recursive medlan ﬁlter of w1ndow w1dth 2n+1 '

O r‘n+n)-’k_1f1<m—t<n
SR _‘ (m—n, m+n) hE 1fn<m-—t<L-n
W™ =1 (m-n,..,m,. k1L, L) fL-n<m=t<L
(m) R "1fm¢t ’
A , : :

| - Essentlally, the srgnal is passed unless m=t. For the case m= =t, the medlan of
the nearest 2n-+1 points is- calculated. Because of the precedrng ﬁlters in the

bank, the n points with 1nd1ces less than m are computed medians. This bank

‘, of ﬁlters shows that -recursive median filters have the threshold decomposmon

. 'property By Property B.3 of the Appendlces or the results of ‘Section 2.2, we .

know that the 1ntermed1ate reconstructlons can be ehmlnated and the recurswe’
-ﬁlter can be 1mplemented dlrectly on the blnary threshold sequences '

" Another popular median-type ﬁlter is the separable ﬁlter used for lmage: S

processing [7] This filter is actually a combination of several filters. - Suppose”'.'

we have an 1mage which has M rows and L columns, and is represented by the o
sequence _a( ij), 1<1<L and 1<j<M. With a separable filter, ‘each row is :

median ﬁltered as a separate srgnal then the output is: ﬁltered column by
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colimn ‘in the same manner. We can represent this as a sequence of median

filters with constant window width 2n+1 but position dependent window

shapes w'(m), 1<t<2L, where w'(m) equals
[(£,1),.+-,(8,1),(£,2),...,(t,m},...,(t,m +n) ] if t<L;1<m<n

[(t,m=n),....(t,m),...,(t, m +0)] if t<L;n<m<L-n

(t, m-n) S(t,m),. (6, L1, (8, E),.. (L) ] if t<L;L-n<m<L

(1,t-L),...,(L,t=L),(2t-L),..,(m +n,t-L})] il t>L;I<m<n

(m—n,t—L),...,(m,t=L},...,(m +n,t-L)] if t>L;n<m<L-n

m—n i‘r-L) SL=1-L),(L t=L),...(Lt-L)] if t>L;L-n<m<L

Just as two dimensions were used in the above example the position dependent

window shape allows for the implementation of ranked order filters in arbitrary
dimensions.

[
[
[
it

“The threshold decomposition has now been shown to hold for arbitrary
dimensioned ranked order operators with position dependent window shapes
and adaptive ranks. One ranked type filter not included in this class is the
alpha trimmed filker which was discussed in the Introduction. In the next
section, the special superposition property is shown to hold for weighted rank
filters. The alpha trimmed filter is used as an example for this class of filters.

2.8 Weighted Rank Filters

For ranked order filtering the output is a value in the window as
determined by its associated rank among the other values. A generalization of
this concept is to average a weighted combination of the ranked values in the
window. Associate with each ranked value in the window w{m) a weight. We
define the filter output y(m) by '

© Nm) . o -
y(m} = 37 hyg{am) - | S | (2.15)
a = . - ; , , !

{; h;the j' th largest element of { a(p) pEw( )}

=t :
The only restriction placed on the weights h; is that they be finite. Obviously
the ranked order or ¢ filter is a special case where h; is 1 for j equal the rank
r(m) and O otherwise. The following reconstruction principle is for weighted
rank filters is shown directly



‘ Theorem 2.6: One pass of a welghted rank ﬁlter w1th posxt1on dependent'_

wmdow shape is equlvalent to the f() reconstructlon of the ﬁltered threshold,_

, decomposed sequences

_ Proof As in the prev1ous section, let a( ), 1<m<L be the 1nput 51gnal and let |

( } be the threshold decomp051t10n of the input signal. Begm by applymg,_"-' . |
the reconstruction function to. the ﬁltered threshold decomposed sequences _. .

F.oranyﬁxedm, L LR |
[ i) by to,m)} { lj b; ¢J to, )] o (zae)

S ' | l=l s ‘ l

{:‘ { Z‘P’ lo’ } . i

v by Property B 2 see elther Appendlx B or Sectlon 2. 4 we have o

{ {; : ¢w to, ] é: N ¢w am) o (217) .- . :

1—1

El T
‘ Usmg the threshold decomp031t10n for cascaded welghted ﬁlters may ‘not
'~ be efﬁcrent "This is because the advantage of the decomp051t10n is that it
leaves blnary srgnals for the majorlty of the operatlons With welghted filters
operatmg on blnary filters we are not guaranteed a binary output. ‘Because of
‘the increasing number of possible levels there is no equlvalence between the
~filtered. threshold decomposed signals and the binary . threshold decomposed
ﬁltered signals. That is, the function f(*) and the decomposntxon are not
~ inverses whenever the ﬁlter creates a level whlch is not one- of the orlgmal»

' ilevels chosen for thresholdlng o : ‘

3 The result contamed in Theorem 2 6 is stlll of mterest though smce 1t L
. allows the threshold decomposmon to be used on filters which are cascades of

_' rank filters followed by a single welghted rank ﬁlter ‘This greatly mmphﬁes the
1mplementat10n of these filters, which are essentlally nonhnear edge preservmg,' :

1mpulse suppressmg ﬁlters followed by a type of hnear smoother

- - The ﬁnal type of ﬁlter that ‘we exhibit here is the. alpha trlmmed mean
-~ filter.- Tr1mrned filters are an 1mplementat1on of - the intuitive notion  that

r statlstlcal outhers should not be used in computatlons In each wmdow -
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position, the samples are ranked and a specified number of the smallest and
largest values are eliminated from consideration before a statistic is calculated.
Here the statistic being estimated is the mean. The relationship between alpha
trimmed filters and median filters has been discussed in the literature [10]. By
" demonstrating that alpha trimmed mean filters are members of the class of
weighted ranked order operations discussed in the previous section, the
threshold decomposition technique can be used for their analysis and
implementation. ’

Let y,{m) be the output of an alpha trimmed mean filter at position m,
1<m<L. Ther by definition,

N(m) .
yo(m) = 3 hifam)
j=1 |

where

' 1 ' . . :
e N ) 884 N(m)~a
(N{m}—2a} < )< ( )

j 0 ifj < aorj > N{mj-a
Because the number of small samples and large samples which were removed
from the calculation are equal this is known as symmetric alpha trimmed. This
technique is purported to give a more stable estimate of the mean than a direct

average.

2.7 Summary of Results

The threshold decomposition and the set of binary signals perform the
same function for ranked order filters that superposition and sinusoids perform
for linear filters — they allow complex problems to be decomposed into simpler
problems. This has very fortunate practical and theoretical consequences.

On the practical side, the decomposition has an impottant impact on the
- implementation of ranked order filters. It shows that a ranked order filter for a
multi-level signal is simply a parallel connection of filters for binary signals.
Furthermore, since the output of the ranked filter for a binary signal is found
by counting the number of ones in the window and comparing the result to a
threshold, these filters are trivial to implement -- complicated ranking is no
longer needed. The possibility of VLSI implementation is apparent and will be
elaborated on in the next chapter. ' -
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On the theoretlcal 51de the decomp051tlon shows that the analysns of the

raﬁked order filter's effects on multi-level SIgnals is reduced to the much»

SImpler analy51s of binary SIgnals It is now clear that any of the propertles s

" which were hrmted to binary signals can now be extended in a. stralghtforward
_fashlon to multi-level signals. Also, the difficult task of comparmg dlfferent "
ranked order operators is now reduced to the blnary signal domam S

These theoretlcal results should improve our understa.ndmg of the behav1or' -

of these ﬁlters The practical results should lead to the use of- these filters in

many new real tlme signal processmg a.pphcatlons partlcularly real tlme 1mage o

' processmg



-~ CHAPTER3
VLSI IMPLEMENTATION . -

The threshold decomposrtlon technlque presented in Chapter 2 allows any,
ranked order filter to be 1mplemented as a parallel connectlon of blnary ranl\ed.. ‘
'order ﬁlters Although this technique is not an effective software algor1thm for
~a multi- -purpose computer the parallelism of the algorlthm and the srmphcrty
: of each of the parallel sections . is amenable to VLSI 1mplementatlon [17]

Because the ‘actual ﬁlterlng is done at the. binary SIgnal level this desrgn 1s~_ :

- extremely fast and versatrle In addition, the actual layout can be modlﬁed in

~a straight forward manner to allow hardware 1mplementatlon of a broad class_ -

of ranked filters. .

~ The purpose of this chapter is to show how the threshold decomposrtlon '
'algorlthm can be used to desrgn a VLSI circuit for’ medlan ﬁlterlng whlch is
' versatlle, ,fast, and extremely parallel The exact nature of the :
ﬂplmplementatlon including the algorlthms for decomposrtlon and superposrtron .

are not included. The chip is described as an information system not in terms

of its gate or devrce level 1mplementatlon In Section 3.1 previous algorithms

for fast median ﬁlterlng are described and referenced. This is followed by the

threshold decomposition algorithm. Then in Section 3.3 a novel technlque is
presented for the interconnection of medlan filter chips to increase the number
-~ of bltS in the input sequence. These techniques are presented for medlan ﬁlters
~ but can easrly be extended to general ranked ﬁlters SR

3. 1 Prevnous Algornthms

Several fast algorlthms exist for the 1mplementatlon of median ﬁlters on

' 'multl-purpose digital computers [9, 11,12). Using our standard notation, an
‘input sequence {a(m)} is mapped to an output sequence {y( )} by a wrndow
w1dth 2n +1 median filter when _ - i » v '

| v‘y(m) medlan{a(m- n),.. .,a(m),...,a(m +n)}

The brute force 1mplementat10n is to rank the values at each pos1t1on of the
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wmdow and select the median value as the filter output -Because the window
' sequentlally slides across the mput sequence, 2 significant’ reduction in
‘computation is obtained by inserting the next input value into the already
ranked set of values from the previous window and dropping the value which
has - shlfted to a position outside the window. "This means that, after
mltlaluation of the pointers for the first window position, only one value need
be ordered at each of the Wlndow positions. Whenever the input signal takes
- on some set of values which is known before processing, say the k integers 0 to
k-1, the algorithm can be made even faster by using bin sorts [12]. Because
these techniques maintain a set of pointers to the ranked values ‘they are
' 'known as histogram algorithms. ‘ ' -

An algorithm purported to be faster than the hlstogram technlque was |
presented by Ataman, el. al. [11] Speed is obtained in this technique by doing
- as much of the rankmg as possible on individual bits of the input words. This -

B algorlthm is, in fact, a spec1al application of the threshold decompOSItlon'

technique.. The srgnal is partltloned only at the levels between bits mstead of
at all levels. The results are glued together by recomblmng these bit by bit
operatlons mto a complete word. A similar recombination technlque can be
found in Sectlon 3.3 for mterconnectmg ﬁlter chlps o o

As can be seen in the preceding discussion, the threshold decomposmon is.
useful in analyzmg fast ranked. filtering techniques. Because of the large
number of binary sequences necessary to represent the input signal, the
- threshold decomposrtlon algorithm is not recommended for software
1mpiementatlon on a multi-purpose computer. For example, eight bits would

‘require 255 binary median filter sequences. The benefits of having this large :

number of binary filters operatmg s1multaneously is reahzed in hardware,‘
however, where thls translates to a. very parallel and fast de51gn Past
- hardware ranking lmplementatlons were based on compare and swap
algonthms [18] This new technique eliminates the rankmg operatlon from the
' 1mp1ementatlon of the filter. The resultlng design is more versatile and allows
a significant’ savmgs in time when modlﬁcatlons to the filtering operatlon are
- needed. This, of course, translates into an -enormous reductlon in the cost of :
i'abrlcatlng other chlps for ranked order operatlons -



3 2 Implementatlon of the Threshold De°°mposnt lon S ,?; N

Let the lnput srgnal be {a(m )}, _taklng on the Values of the k. mtegers from _ =
0 to k-1. The output of a wmdow width on+1 median ﬁlter applred to {a(m )} -

ilS denoted by {y( )} Flnally, the threshold decomposmon of the 1nput srgnal' 3 =

“into bmary sequences is gwen by

: 1 ., 1, 1f a(m) >1
' ‘.t:(‘m) 0 else -

: The ﬁow graph of thls ﬁltermg system can be seen lIl Flgure 3 1 The basrc.n
1dea 15 to decompose an lnput sequence into a set of blnary sequences ﬁlter the»ﬁ
bi afy sequences 1nd1v1dually, and then combme the blnary outputs for the,.

- many level ﬁlter output

, The decompos1t10n and superposmon operatlons are easrer to 1mplement B
"than they appear For instance, the superposrtlon need not be a full adder.
: Thls reductron in complexity is- accomphshed by correctly arranglng the bit-
~ slices so that all the slices ‘necessary to calculate spe01ﬁc output blts are
'fgrouped together 19, Dlscussmn' of these characterlstws : of h =

g :'1mplementat10n is delayed untrl after Chlp constructlon

The remamlng part of the algorlthm 1s the blnary medxan ﬁlter Let |
x(m) medlan{t rn-n) t'(m+n)} S SRR (3 1) |
i be the blnary output of a wrndow w1dth 2n+1 medlan ﬁlter applled to the

_,_t‘level i threshold sequence Because these are blna,ry Values the me dlan can be v~

| :rewrltten usrng ‘the 1nd1cator functlon 1(). ‘

.

\
N t"—'ﬂl_lAt least n+l of t"s equal 1]
=I Z a(m+p)>n+1
: “;’Lp__n'- . L

»tThls means the blnary median ﬁlter can be rmplemented w1th an adder and a
'comparator-no ranking- algorlthm is necessary. A system dragram of this

hE :_-addlng circuit can be seen in Flgure 3.2. This. deSIgn is  easily modified for

‘ dlﬁ'erent wrndow widths, that is, different n. A more. appropriate VLSI circuit
"conﬁguratmn for the binary medlan filter whlch uses 3. shift. reglster and'

L _"ma]orlty loglc decoder can be seen 1n Flgure 3. 3
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Armed with algorithms for the decomposition, the binary median filter,
and the superposition operation, we are ready to explain why this is such a
versatile design. A simple modification to a 2n+1 median filter will enable it
to do 2n-1, or smaller, median fltering as well. Let z(m) be the output of a
window width 2n-1 binary median filter, then ' |

z(m)zii (!i‘l) ti(m-%«p);;ﬂ} | N | | (3.2)

p=—(n~1)

:1{ (E) ti(m+p) +0+12n+1}
p=—(a-1}

which is a window width 2n+1 median filter with cne value in the window
fixed at 1 and another value fixed at 0. This can be realized in hardware using
the circuit of Figure 3.4 and setting pins A and B to 0 and 1, respectively.
This, of course, can be extended to do any window width median filter which is
smaller than 2n+1.

With a slight modification, setting the values A and B asymmetrically to 0
or 1, certain ranked filters which are not medians can also be obtained using
the same median decoder. In hardware, this can be accomplished by using pin
inputs and having the window width control pins turn latches to these inputs
on and off. ' o '

The same results can be obtained by externally modifying the input
sequence to the median filter chip. For example, the sequence R

£(1),0,1, t4(2),...,t(2r) ,0,1, t{2n + 1),... | (3.3)

as ap input to a window width 2n-+1 median filter would ‘_produ_ce a coded
version of the window width 2n-1 median filter. Using our previous notation,
the output sequence would be

2(1),G,G,2(2),...,2(20) ,G,G, z{2n +1),...

where G denotes the garbage bits to be thrown away. When multiple passes
are performed, the garbage bits must be replaced after each pass with the 0,1
configuration of Equation (3.3). With multi-level signals, the 0’s and 1's would
become the minimum and maximum allowed values, respectively. The
hardware implementation is obviously better because it requires no external
modification to the input sequence. In fact the user cannot tell that the same
decoder is being used for both filters.

Many applications of median filters require repeated filter passes.
Frequently the signal is filtered until it is invariant to additional passes of the
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alm+n) Shlft Reglster
1 an—-1 2n 2n+1 ) |
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’ ' e e yiad if P=1
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Multlple window width implementation. |



33

" filter- i.e. a root. From the previous chapter, we know that the threshold
~decomposition and its associated reconstruction function are inverses-that is,
~ we can do repeated filter passes at the binary level. The system modifications
necessary to implement this multi-pass strategy can be seen in Figure 3.5. In
terms of the design of the chip, all that is required is repeated median filter
stages at the binary level. It remains an extremely parallel and fast design.

In the past, recursive median filters were used because inputs are
guaranteed to converge to roots after only one pass of the filter [14]. It is
worth noting that the recursive filter, because the threshold property holds, can
be implemented using a design technique similar to the one just described for
the standard median filter. Figure 3.6 demonstrates the necessary
modifications to the binary filtering levels when implementing the recursive
filter. As before, a systems type diagram and a shift register with a decoder
are presented to explam the function of the hardware.

‘The d;escrlptlon of this new design techmque for lmplementlng medlan
filters in VLSI is now complete. With a simple binary median decoder, many
window width median filters and several different ranked filters can be pin
programmed. The design, because of its parallelism, is easily modified. The
final advantage is an increase in speed accomplished by doing repeated filter
passes at the binary level before recomstruction. Future ideas for hardware
1mplemematlon include combining the threshold decomposmon with an analog
to digital (A/D) converter. This provides an increase in speed because many
A/D’s use a type of threshold counter w1th a comparator to do the conversion
to dxgltal

3.3 hterconnectwn of Mednan Falter Chips

A final problem in the design of a chip is the number of bits to be used for
the input and output data words. Whatever is finally decided, it is certain that
there will. be some apphcatlon which- requlres additional accuracy and
consequently larger size data words. In this section, an algonthm for increasing
the word size by connectmg median ﬁlter chlps of smaller word size together is
presented This is done for an increase of one bit, extensions to additional bits
are stranght forward. In addition, because this techmque is another application
“of the threshold decomposmon it is presented with only a brief explanation.

Suppose a four bit median filter ch1p with the desired window width is
available, but the apphcatlon necessitates a five bit processor. The solution is
accomplished using the threshold technique seen in Figure 3.7. The input
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A" signal i's]th.réshblldgd‘, using 'éxgtve‘a:rﬁa,‘l,blogji_c',:at the most slgmﬁcant bit (MSB) :
‘The first chip is used to filter the lo.‘wer‘foui"bits{whenf't,he signal is less than 2%

~ and sees 2°—1, all I's, when the input is not less than 2°. The second chip is - |

~used to process the four lower bits when the signal is greater or equal to 2° and
~ sees all zeroes when the input is smaller than this level.  Another chip is needed

to filter the MSB of the input signal. This system m

v gihtains the proper order

and rank of the input sequence as the values move thrbugh;'the?médian‘ filter -

- chips. The five bit output is determined by latching onto the appropriate four

| lowvé_"r» bits as ',se‘;l.ectledb by the sutput of the MSB filter. When the MSB output
is a one-the higher t!ire‘shol'd,chip’ca,-lrrives the correct lower four bits and- the
Oter vv‘.ro:cesscj’r has all onés as its output. When the MSB output is a zero the
low éﬁr“:thresho'lﬁd chlpcarnes the cori'éct lower four bits a.n_d ithé" other prdééssof E
has all zeroes for output. B SR

3.4 Summary of Results

: Asm 'Ché.'lr)ter' 2, the':‘t.hreshbld «,.decompoéition is :Slll.(.)WI_l: to be a powerful.'

. new tool. It can be ‘applied in the 'analjfsis of ranked filters or, as shown in this
'cha'pte'ri, it can be used_ to des_igh a fast VLSI circuit for ranked filter -
- implementation. Other techniques presented in this,'cﬁap'ter'_inCIG‘ded methods -
for modifying the window width and rank of the filter without extreme design

: ‘ tion technique for’ increasing'Word size-ié also an .

»’I’inpdiﬁcation’s;r The interconnec
important. practical result.
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- CHAPTER 4 :
ROOT PROPERTIES OF MEDIAN FILTERS |

‘ 4.1 State Description for the Root Signal Set

One of the most significant properties of median filters is that a signal

- invariant to further median filtering is obtained after only a finite number of

passes of the filter. This is true for any input signal. The discovery of this

property [13] has 'led‘- to a much greater understanding of why the median filter

has been a successful signal processing tool. - R
For instance, the edge preserving and impulse removing bé‘hav‘iorf of the

window width 2n+1 median filter can be given precise definition.

1)A constant neighborhood is at least n+1 consecutive identically valued
points. - : '\ S o
" 2)An edge is a monotonic region between two constant neighborhoods of
different value. The connecting monotonic region cannot contain any constant
neighborhood. ‘ - I |

3)A root signal is a sequence which is invariant to the median filter.

Theorem 4.1: Given a length L, k valued sequence to be median filtered
with a 2n-1 window, a necessary and sufficient condition for the signal to be -
invariant under median filtering is that the appended signal consist only of
constant neighborhoods and edges. ’ - o

Theorem 4.2: Upon successive median filter window passes, any nonroot
signal will become a root after a maximum of (L—2)/2 for L even and (L—1)/2
for L odd, successive filterings. This bound is exact for window width three
flters. For larger window widths the bound is known to be of order L/n [20].
Also, any nonroot signal cannot repeat, and the first point to change value on
any pass of ‘the filter window will remain constant upon ‘successive window
~ passes.

The existence of a set of root signals leads to many natural questions.
The first is the size of the set of roots for any window width filter - this is
answered in this chapter. The second is the average number of passes needed
to teach 4 root, which is addressed in the following chapter.
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A state model describing the tree structure of the root signal set was
“proposed by Arce and Gallagher [9]. The use of trees provides an intuitively
pleasing approach to defining the states of the model. However, when the
signal takes on several quantization levels it is not feasible to draw trees for
" even relatively short signals. In the next section, we develop a general state
~ description for the root signal set without using trees. Our model is

unrestricted in terms of filter window widths and number of signal quantization
" levels. The result is a complete and exact system of equations for finding the
number of root signals associated with any median filter.

We begin our state model with a signal of length one having k possible
levels. At each iteration a new ter‘mv is appended to the sequence. If this
longer signal is a root we remain in the root state system, otherwise we leave to
~ the absorbing state of nonroots. That is, once a signal contains a nonroot
section, adding additional values to the end cannot make the signal a root.
 The value of a state at iteration L-1 is the number of root signals of length L

- which currently satisfy that .part;cular state's conditions. Summing over all
states at some iteration gives the number of roots associated with the filter for
the specified window width, number of quantization levels, and signal length.
In this manner a system of linear equations is developed to describe the number
of root signals from a sequence with a fixed, but arbitrary, number of levels.
‘We first derive results for ﬁltefs with window width three and then make
gxtensions to accommodate larger window sizes.

4.2 Window Width Three Filters

Suppose our signals take on k values, which we choose to be the integers
from zero to k-1. When noninteger, discrete values are involved we map them
into our model by using the rank minus one of each value. For window width
three filters, the states of our system are ‘defined in terms of the last two bits of
the signal. If the values of the last two terms of the signal are identical we say
that we are in a static state. When the signal value is i, we label the static
state as Sy {i+1), 0<i<k-1, where L is the current length of the signal.
Similarly, when there is a change of level from j to i, we say that we are in a
» transitional state. For j<i the transition is upward and we call the state Up(i),
1<i<k-1. And finally, j>iis a downward transition and is labeled Dy (k=~1-i),
i1<k-1-i<k-1. We now have all our states specified.

By ﬁndmg a relationship between the states associated with 51gnals of
length L +1 and those of length L, we can recursively generate the state values
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for. arbltrary lengths glven the approprlate initial condltlon Frorn thls we sum
~over all states associated with the desired length to get the number of p0551ble"'
_root signals. Recall that this partlcular approach is restrlcted to window width
three median filters: Larger windows will be handled in a 51m11ar manner, but :
require more memory in the states than the two bits of this model

- The advantage of these state definitions is that the recursive relatlonshlps
can be written down by 1nspectlon Each equation in this system specifies the
_number of Toot signals which are in the particular s ‘states and the number of
ways a new bit can be added whlle remalmng m the root space We have the
static states o RS T ' '
o S (1) +DL(k-') R ‘,if;~i=1

i) = LS Dy U 2kl ()
I ‘s(k)+UL(k—) =k

' and the trans1t10nal states

L SL(l) e 1f1— N
--UL+»1(') = | S (a2
o ESL +EUL 1f2<1<k— | P

r=1-

‘w‘ithv , - |
R -7 3 IO Jfi=1 .
DLy =k B (4.3)
B DV A )+"Z.DL(T)- ,'if 2;<_i5'k‘1 o '
"k-x+l =l v : _ _
The 1n1t1al condltlons of the system are spemﬁed by S,(i )-— 1, for i=1,....k and
' Ul(l) =D,(i) =0, for i=1,.. k-1 Defining - the number of roots to a k levelf
51gnal of length L to be Rk(L) we have :
ESL )+ E (UL(d) +DL( ), o (4.4)

i=1
, As an example consider : the “case of binary sig-na;ls'.',» \'Each- state is
" associated with the last two root signal bits by : o
S(1) 00 00 S(2)ooll
U(1) o001 D(1)oo10
Because the number of levels is spe01ﬁed and small we can solve exphcxtly for
: R(L+1) ly usmg the 1dent1t1es listed above, we arrive at

(45)
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RL +1) = Sp4+4(1) + S, +1(2) + Up 44(1) + Dy 4+4(1) |
| = 2-8y (1) + 2-5(2) + Uy(1) + Dy(1)
= RYL) + SLm + 5:,(2) | (4.6)
=R*L}+ SH(l) + SH@) + UL_l(lj + Dy, (1)

= R¥(L) + R¥L-1)

This resulting recursive equation checks with the derivation for arbitrary
window width median filters applied to binary signals found in Arce and
Gallagher [9].

As we increase the number of levels in the signal, the system of equations
becomes more complex. Therefore, solving the system analytically, although
straight forward as in the binary case above, would be tedious. Due to the
method of labeling the states, this model lends itself to computer solution. It is
worth noting that a reduction in the number of states can be achieved by
exploiting the symmetry of the system. By the inherent tree structure of the
signals, monotonic increasing edges have a symmetric monotonic decreasing
- edge. The number of roots in transitional states Ui(i) and Dy (i) are therefore
equal for any i. The static states can be reduced in a similar manner with
Sy (i) = Sy(k+1-i) for i=1,...,m. Where m is k/2 for k even and (k-1)/2 for k
odd. In the special case of k odd we have one asymmetric state corresponding
to Sy((k+1)/2). Perhaps these symmetries are better displayed by the
following associations, ‘

(1) 00 01 e D(1) 00 (k=1)(k-2)
U(2) 00 02, 12 —— D(2) oo (k-1)(k=3), (k-2)(k=3)
U(8) 00 03, 13, 23 e D(3) 00 (k=1)(k4),...(k=3)(k~4) (47)

Ulk~1) 50 0(k=1),....(k=2)(k=1) —— D(k-1) o0 (k-1)0,...,10
for static states : ' o
S(1) o0 00 : ——  S(k) oo (k—1)(k—1)
5(2) o0 11 «—— S{k—1) co(k—2)(k-2) -
, ; : (4.8)
S{m) oo (m=1)(m~1) +— S(k—=m+1)oo (k—m)(k—mj
and when k is odd we have the asymmetric state S(m+1) = A(1) oo (m)(m),
where m would be (k-1)/2. The computer programs used in generating Table
4.1 utilize these symmetries.



o The 1dent1t1es for the reduced system can be obtamed by restrlctlng states" N
,_,to the  set of S(l) ,..,m- and U(i), k-1 and A1) for k- odd.
~ Occurrences of the other sta.tes in the controlhng equatrons 18 removed by
- replacément w1th its symmetrlc state from the set of allowable states. “The- “

,ﬁnal system of equatrons for wmdow width three ﬁlters apphed to k-level .

. sequences is for k even and m= k/ 2: * ' '

4

:fM-.A‘. n
ot

',’l‘

1_ .r-r

S0+ £ 50 +§JUL ' »ir»m'+!~1§ifs*k+~1, 2
—k“l+1 S R R

m'a.}

-
i

: _‘_-.Sm( i = SL(x) + UL(k—n) +UL(1— ) iresicm 419

R(L) *—2’ZUL(1 ) +2- ZSL R Tt L
and for k odd w1th m= (k-l)/22 _ : _ e

S ZSL 0170 1f2<1<mf
U@ =4 m Bt oo (4a2)
ST »ESL-(P):*' A1) T",.'Z‘UL(T) S ,ifai;mi‘:"l L

- ZSL +AL( )+ E 8.(0) +"'z_UL;(r)*_,ifm+2gi-§k—1~
At B = T

N SL(1)+UL(k—1) S ti=L
o SL““ sL(x) + Uulkei) + Uyfi=1). ifesism

'» AR( L ,_’,_2' ZUL' )+2 ZSL +AL( ) ’(4_1’5)"”

»It is also posmble to express many of the above relatlonshlps in recurswe form |

. . CODSldel‘ for example the case where k is, odd

(4.13)? R
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UL .4.1“("3) = UL +l(k“‘2) + UL(k"‘2) + SL(2) - (416)

The recursive nature of these equations and the previouély described reductions
by symmetry were used to generate the root counting results presented in
Table 4.1.

, Table 4.1
Number of window width three roots.

Length : : Number of Levels
n 2 3 4 5 & 7 8
i 2 3 4 5 b 7 8
2 © 4 ? 16 25 36 49 &4
3 6 17 36 65 106 1461 a32
4 10 37 94 195 354 B95 232
5 16 77 236 567 1168 2163 3704
& 26 163 602 1673 3886 7973 - 14932
7 42 343 1328 49417 12890 29325 60112
8 &8 723 3882 144535 42744 107777 241718
9 1101523 9858 42479 141688 395929 971416
i0

178 3209 25038 124851 469726 1454643 3904290

We conclude that this system provides a solution to counting the number of
roots of a window width three median filter for signals with an arbitrary
~ number of levels. Due to their definitions, the states have a physical meaning
in terms of the bits they represent. As we increase the window width, the state
definitions will continue to rely on the value of the final bits of the root
sequence. -

4..5 Arbitrary Wmdow Wndth Filters

Fxtendmg the results of the previous section to larger wmdow widths
involves increasing the memory of the state system. Suppose the median filter
uses a window of 2n+1 points. Then by definition, a constant neighborhood is
at least n+1 consecutive identically valued points. For filters of window width
three n+1 was two, our state model definitions were based on the last two
values of the signal, and the state transition equations were a result of
Theorem 4.1. The general window size state model requires information about
the final n+1 values of the signal and Theorem 4.1 can agam be invoked for
the transition equatlons ’
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Begln w1th a srgnal which can take on the values of the k mtegers from
“zéro to k-1. In order to stay in a root region the last n+1 bits of the signal
‘ must e1ther be monotone or constant. The static states are associated w1th
constant nelghborhoods and the trans1t10nal states w1th edges If the last n+1
| b1ts are monotone Or constant with values ap 8gy - -y an+11 then we define

our states as follows ' " : A ,
; Statzc State: We say the L-length Signal is - in : static- state
S (1+1) 0<i<k-1, if and only if a; = an+1 =i e ' R
: , Transztzonal States: An L- length 51gnal is in an upward transmonal state
vUL(J 1) 1<J<n 1<1<k—1 if and only if 3n+1—,<3n+2—, =ag4; =i That is,

n+1_j is less than 1 and the bits follomng an.H_J have value i. -Similarly for
monotone decreasmg ay, a4 - - < 41, We say the 51gnal is in - downward
‘ trans1t10nal state - Dii, 1) ‘ l<]<n 1<1<k— 1f ~ and » only ~if

n+1-1>a'n+2—1 : n+1 —'k 1_1 ’ o : o
‘In the tran51t10nal states UL(] i) and DL(] 1) we call j the: delay parameter For
w1ndow width three filters; n=1 and ] takes only one value, reducmg our state
deﬁnltlons to those found in the prev1ous section. ‘ o

As an example con51der the three level 51gnal w1th a ﬁlter of wmdow W1dth
seven, i.e., k=3 and n= =3. Suppose the last four bits of some root sequence of
length L-1 are 0111. The s1gnal is therefore currently in state Up,(3, 1). Note
that the delay parameter spec1ﬁes the length of the constant region at the end
'of the length n+1 sequence. Examlmng the results of addlng dlﬁerent values
to make thls a length L sequence we see that a2 appended to the end puts the
, s1gnal in state UL(l ") while a 1 as the new bit moves the s1gnal into static
state St.(2 ). Note that when a 0is added to the signal of length L- Lit creates
a nonroot region, 01110 whlch moves the s1gnal 1nto an absorblng state outsrde _
the root space : ‘

Us1ng their deﬁnltlons the recursive relatlonsh1ps among the states can be -
wr1tten down by 1nspect10n " We have the static states ~

SL(1 )+DL(Il k-1) 1 & £ | |
Sp+1(1) = { Spi) + Up(n,i-1) + Dy (nk—i) ,if2<i<k-1 ~ (417)
Sy(k) +Up(mk-1)  ifi=k ,

- and the transitional states B
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'SL(l) ifj=1,i=1
Upari) =4 150 + 5 DU ifj=12<i<k-1  (418)
r=1 oozl q=i
U(-1i) q if 2<i<n,1<i<k-1
with
'SL(k) | ifj=1,i=1
Dy i) = 4 isL(k-g-x—r) + s iDL(q,r') ifj=1,2<i<k-1  (4.19)
r=} r=fq=1
Dy (j-1,i) q | if 2<j<n, 1<i<k-1

The initial conditions of the system are specified by Sl(i) =1, for i=1,...,k and
U,(j,i) = D4(j,i} =0, for all i and j. As before the number of roots to a k-level
signal of length L is defined to be RXL), and we have

' k k21 n
RKL) = 15,00 + 3 33(Upii) + Dy (i) (4.20)
i=1 i=1 j=1 ‘

This specifies the system of state equations'necesséry_ to compute the
number of roots for signals of arbitrary length and number of levels. Again,
closed form analytic solutions can be obtained by specifying the values of k and
n. However these computations are not only tedious but also must be repeated
whenever the number of levels or the filter window width is changed.
Computer solution is easily accomplished and the results are provided in Table
4.2. We again note that both symmetries between upward and downward
fransition states and tree structure symmetries among the static states can be
exploited to reduce the amount of computation.
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, Table 42 » . - N
Number of arbltrary w1ndow w1dth roots L

" Number oF Levels "Qr

‘ W?Qdﬂm, - : Number oF Roots For L lengtﬁ,Sighéi€¥ , R
Width 1 LiI,.‘12 3 ’4;,’“51 v& 7 B8 .9 410

16 26 4z 68 110 178
12 - 18 26 38 56 82
10 ‘14 ﬂor» 29 - .52
10j,j1ﬂ,,;14 18 24 32
10 12 .14 16 20 26 .
10 12 14 . 16 1B 22

REXRUENE VA IR VU

STV 0 S N N S S

S L e
00000000, - ¥

Number of Levels: 3

 *w1ndow .‘Qgi'Numbéf‘d?vROQts for L~ieﬁ§th’si§§;1g<},f[f,
width L=t 2 3 4 5 & 7 .8 9 10

17. - 37 77 163 343 ;7ﬂ3 15 3,3”09
17 27 49 91 163A,”93, 531 959
17 27 39 63 107 181 297 485
17 27 39 53 . .79 125 =201 319

e
2
S
11
13
15
T3

17 - 27 39 53 &9 87 ‘117 167
17 27 3% 53 - 69 87 107 139
17 27 .39 83 69 87 107 429

AR AN AN AR ARARAN XY
RURIVRUBTIR R BV

3Number DF Levels ‘v4'g
v Nihd@m _?“$  Number of Roots for tplengtﬁnsignaig N
I R e 10

16 36 94 236 @Oﬂ 1528 3982 9858 wwkk
‘16 36 66 136 292 61” 1280 2690 5644
16 36 b6 108 192 364 702 1328 2434

3
3
7
9
11
17

16 36 b6 108 164 234 354 544 Q44

16 36 b4 108 164 236 326 436 596
16 36 b6 108 164 236 4326j5436 568

BN N R

10 12 14 160 18 20

17 27 39 53 69 - 97 145 223

16 36 66 1DB 164 264 454 812 1460

16 36 66 108 164 236 326 464 696
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CHAPTER 5 ,
NUMBER OF FILTER PASSES TO A ROOT

5 1 The Model

» The state model presented in the prevrous chapter is an e\(act and

complete solutlon to counting the number of roots for arbitrary level signals
and medlan ‘ilters of any window size. " That Is, the last chapter tells’ how
many roots, in this chapter we investigate the number of passes needed to
reach a root. Theorem 4.2, states that the maximum number of filter passes
for a fixed length signal is (L—2 /2 for L even and (L- 1)/2 for L odd. By
‘ decomposmg signals into root and nonroot regions, the number of filter ‘passes
‘necessary to reach a root is determined by the longest nonroot reglon This
result follows from the invariance of the root regions ,as noted by Arce and
Gallagher [9] and by applymg Theorem 4.2. Suppose the nonroot regions have
”lengths kl,kz, ... ,k, where kp, 1s the maximum, 1<m<n By Theorem 4.2,
we know that each of these sections will require either (k;~ 1)/2 or (k —2)/2
passes to become a root region. ‘Therefore, the largest number of passes is
requ1red by the section with length k. We would hke to model blnary srgnals
in terms of these different root and nonroot regions.

To keep the description of root and nonroot regions relatlvely simple to
" model, we restrict our attention to filters of window width three and binary
sequences. Flgure 5.1 demonstrates the technique for decomposing a signal into
root and nonroot regions. Recall that root regions, as described by Theorem 1
in the introduction, are areas of the signal that are 1nvar1ant to passes of the
'fmedlan filter. Note that in our example the longest nonroot region, containing -
6 bits of the 51gnal determines the number of filter passes necessary to reach a
root. Each nonroot section is a binary oscillation of some finite length. In our
example we say that the longest binary oscillation was of length 8. Where we
include one point for each of the constant neighborhoods because the signal is
still “oscillating” until it is in the adjacent root regions. The number of passes
to a root was (8-2 )/2 or 3. : ’

An appropriate model must generate blnary 51gnals such that the length of
the longest osc111at10n is known. Our approach is to use the familiar ‘‘success
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000011 - 0000 11 0000 111 (Root Section)
+ 0101 10 010101 10 (Non Root Section)

0000110101000010110101010000101ll (Complete Signal)

000011101000000111101010000001111 (Pass One)
000011110000000111110100000001111 (Pass Two)
000011110000000111111000000001111 (Pass Three, Root)

.Fig‘ure 5.1
Binary signal converging to a root.

cuns” model from the theory of stochastic processes. At each iteration of a
success runs model a Bernouilli experiment with probability p of success is
performed. If there have been i consecutive successes the stochastic process is
said to have value i. We relate the model to our signals by noting that there is
a one o one .correspondence between the length of the longest binary
oscillation in the signal and the maximal success run of the model. Specifically,
by leiting p be the probability that the next bit of the signal continues an
oscillation we can use the distribution of maximal runs for our computations.
Here a trial of the system corresponds to the addition of a bit to the signal. If
a4 success oceurs the mew bit is the complement of the current bit and if a
failure occurs the new bit has the same value as the current bit. Exact
expressions are not easily derived for the distribution of maximal runs. There
are, however, two cases. where we can arrive at some meaningful expressions.
The first case, p=1/2, is where all sequences are equally likely. We can treat
this as a deterministic problem and count the number of signals requiring k
passes to a root. In the second case, we approximate the probability that no
runs of length k occur and use this to generate identical results as in case one
as well as distributions and expected numbers of filter passes to a root for
0<p<l. We should note that there is a one to one correspondence between
binary oscillations in the signal space and “runs” in our Markov model.

5.2 Deterministic Case "

This is a combinatorial analysis of the number of signals of length L
requiring k median filter passes to a root. In terms of our probabilistic model
we would say that each bit assumes either value with equal probability and is
independent of the other bits. Equations are derived for the special case of
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k>L/2. An 1dent1ty, recursive on ' both L and k is developed allowrng a table o
-~ of results to be computed.. We begin with a few definitions. -
| 1) L is the length of the signal which is arbitrary, but fixed. -
- 2) nL(k), is the number of 51gnals of length L w1th longest brnary '
| oscillation (or run) of length k.- - » T SRR

3) 7rL( ) is the: number of L- length signals requlrlng i passes to a root

Recall that for a binary osc1llat10n of length k, the number of filter passes'
necessary to reach a root is (k-1)/2 for k odd and (k-2)/2 for k even. Therefore
if k is odd the nL(k-l-l) srgnals w1th longest bmary oscrllatlon of length. (k+1)
require the same number of passes ‘to a root as the nL(k) srgnals w1th longest:'-
osclllatlon of length k Thls 1mp11es that - :

,’forLeven ‘ ' ' R T S :
w’L(k) nL( k+2) + nL(2k+1) if ngs(L—'a)/z- o T (51

and for L odd v _ :
o _‘ L) ifk=(L-n/2 R
- ) = |y (k) 2 k+1) if 0<k<(L-3)/2 - (52)
~ Note that 7rL( ) is the number of root srgnals of length L for thls w1ndow w1dth ,
three medlan ﬁlter : : SR ‘ SRR
- In order to count the number of s1gnals of equal length requ1r1ng k ﬁlter o
- _passes to a root, ‘we want to solve for the np(k) as deﬁned prev1ously Flrst
“note that all oscrllatlons can be divided into two classes: o
) Butted Osczllatzon- the ﬁrst and/or last bit of the srgnal is a pomt m_'

'the oscrllatlon . |
2) Nested Oscillation- the osc1llat10n is termmated on both 31des by root_

reglons in the signal - f.e., it is not butted

Itk is greater than L/2 then these two classes partrtlon ‘the group of all

- L- length signals with' maximum blnary oscillation' of length k into two

 mutually exclusive sets. Let B (k) be defined as the number of signals with

maxrmum blnary oscxllatlon of length k and of the butted type. Similarly, let
NL( ) denote the number of 51gnals w1th maximum oscillation length k that are

nested. For k less than 'L/2, there can be more than one oscillation of length k

and consequently, the signal may not be uniquely deﬁned as nested or butted. -
_So we deﬁne by (k) to be the number of signals with a- maximum oscillation
'length of k where at least one of these oscillations of k bits includes the last bit

. of the 51gnal Then for L/2 < k<L, BL(k) is tw1ce by (k). Obvrously the k-

"length oscrllatlon in bL(k) can- termlnate on elther value of a bit." Also because -
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L-(k+1) < k we know that first L-(k+1) bits of the signal can take on all
permutations and the total sequence will still be included in by(k). Then,
including the special case of k=L we have

R Af k=L , '
bu(k) =} ifL/2<k<L - (5:3)
and |
[z k=L
Bullk) = otk rL/2<k <L (5.4)

For nested oscillations greater than half the signal length, k-+2 bits are fixed
(oscillation raust terminate within the signal), and this oscillation may assume
any position among the remaining L-(k +2) bits. Requiring the oscillation to
begin with a zero will decrease the number of possible signals by a factor of
two. The number of ways to place our specified k+2 bits among the remaining
L-{k+2) bits is L-(k+2)+1 choose 1. Because the oscillation length is greater
than half the signal length, all permutations of the L-(k +2) are acceptable in
keeping the maximum oscillation length at k. So for L/2 < k < L-1, |

k+2)+1

i EozL*(k +2) ‘ . ' (5.5)

’

_ EH
NL(k) =2
= (L-{k +2)+1)-2L*k-1

= (L-k-1)-2F751

because there can be no nested oscillation of lengths L or L-1, Ny (k) is zero for
k equal to L or L-1. Conclusion, for L/2 <k <L, - '

ny(k) = By(k)+N(k) | | (5.6)
2 - ifk=L
=4 4 Af k=L-1

oLk +1 4 (L—k~1)-2b7 k1 ifL/2 <k<L-1

The final special case to be considered before we construct our recursive
formula occurs when k is exactly half the signal length. Because by(L/2)
includes both the signals containing a pair of length L/2 oscillations, taking.
twice by (L/2) for By(L/2) would count these signals twice. Therefore,
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L
nfk

So for L even,

L 4

“L[%]zzz e %‘1]22 —g o e (89)

" This leaves the derivation of y(k) for k < L/2. Begin by sssuming the

' value of ny,_4(k) is known. There are exactly two ways to append 2 bit to the

right end of a signal of length L-1. ‘Therefore, ng(k) is apprqximétely equal to
twice ny,_ (k). If we can subtract off the cases where the appended bit creates

an oscillation- of length k+1 and add on the cases where a binary oscillation of

length k is created by the appended bit, we will have ny (k) specified. Recalling |

thaﬁ by_i(k) is the number of length L-1 signals with maximum binary
oscillatidn of length k butted to the right end of the signal, then we have by
ny(k) = 2emy k)~ bok) F byl (510) |

We previously specified bL(k)'fo'r k greater than or equal to L/2, leaving -

the case of k<L/2. Our approach is to begin with the number of possible

arrangements assuming the last k+1 bits are fixed and then subtract off the
sequences which have oscillations of length greater than k. A factor of two is
necessary because there are two ways to fix the k+1 bits. This is also why
by, +1)(k) has a coefficient of 1/2- R | : -

Ve i L-‘(k»}l)"L'(i+1) S S R B
cobglk) =2ey2h T 4 oy -+ y) Y2 by (511
SR ik oy



= QL—

K L-‘k:
=2 3 npgey(k) = by (k)

1

j=k+1

- 51

Note that whenever k is greater than L in ny(k), we assume the value of the

function is zero. Summarizing our equations:

bytk) = ¢

and

{

2

oLk
Lk

bk —by a(k) =20 Y npald
j:k+}

2

2

4

'ZL‘“kJ-"l + (L_k_i) gL-k-1

=41 1, 21

22 (1) 2% -2

20y, (k) = byy(k) + by_y(k=1)

2

if k=L
HL/2<k<L

f1<k<Lm

(5.12)

Af k= i

if k=L
if k=L-1
HL/2<k<L-1

(5.13)

if k=L/2

i 1<k<L/2
if k=1

Using the relationships between (k) and ny(j), as given in Equations
(5.1) and (5.2), we can recursively solve for the number of filter passes to a
root, as seen in Table 5.1. This technique, though exact for p=1/2, is not as
versatile as the approximation described in the next section.
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5.8 Sueeess Runs Model

~ Returning to the success runs model we find that an approximation to the
probability of no success runs of length r in n trials, which we will call Q_(r), is
developed in Feller [21, pp. 322-328]. To use this approximation we need the
“definition of “run” used in the derivation. We say that a sequence of n letters
S and F contains as many S-runs of length r as there are non-overlapping
unintei‘rupted blocks containing exactly r letters S each. For example,
SSSSFSSSSSSE contains three S runs of length 3 and also has five S runs of
length 2. Now suppose we generate our binary signals using the following
: procedure

1) Randomly select a startmg bit
2) Let the transition probabxhtles be Markov with |

p = Pr(B,+,=1| B,=0) = Pr(B,+,=0| B,=1) | (5.14)
q = Pr(B,+,=1| B,=1) :,PT(BAA}FO! B,=0)

=l-p |
where B; is the value of the signal at position j, 1<j<L-1.

3) After every bit perform a Bernouilli experiment with probability p of
success. Where success means an oscillation begins or continues and failure
means a constant neighborhood begins or continues. Here a run of successes is
an oscillation of the bits, which demonstrates the equivalence of “run” and
K ‘oscillation”. For a length L signal we need L-1 Bernouilli trials. ‘

Because we are now dealing with random sequences, we want the
probablhty of an L- -length signal requmng less than k passes of a median filter
of window width three to reach a root. Call this probability Fy(k). For
p=q=1/2, all sequences are equally probable and the same results are expected
as in the combinatorial analysis of ‘the preceding section. In order to use
Feller's result we require a relationship between Fp(k) and Q;_,(j). Assume
that L is odd then the maximum number of filter passes to a root is (L-1)/2.
Obviously Fy((L—1)/2) equals the probability that no run of length L-1 occurs
in the L-1 Bernouilli trials; i.e.;, Qp_;(L—1). Similarly,

L._._

=il

5 Pr(No success run of length > L-1-2)) (5.15)

Fy
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e e |

| L=l .

1 fj>—-

‘0 JJ>M2‘1

‘andforLeven -
lf] U 1, 2 [——2—'— 1] - (5.18)

1o - ‘ f —‘—"'l

1 g J> 2 -

;We now have the probablhty that less than k ﬁlter passes are sufﬁclent to

- reach a root in terms of the QL 1( ) The FL(k) may be used to calculate any

' desrred statlstlcs for the number of ﬁlter passes necessary to reach a root -
‘The approx1matlon for the QL 1( ) is easﬂy done by computer We use the‘
followmg approach ‘ : .
1) Let Xq = =1
: 2)Iterate w1th xm+1 =1 + q° pJ (
1 »3)Thls tends to some value X 7‘
. 1-p-x .1 |
TQQ() TFicioa B JREN
5) The absolute error is less than —2—11—_-1)—‘& i

5 jrqr@Fp) e
. »The results, as seen in Tables 5.2,3, and 4, match those prevrously derrved b)"

an-exact combmatorlal approach. But we now have addltlonal 1nformatlon for .
‘-51gnals where each bit is correlated with the precedlng blt As expected forp

)j t1

>

: ‘ tendlng to zero the probablllty of constant nelghborhoods tends to one. and the "

vexpected number of ﬁlter passes to a root goes to zero. Slmllarly, for p near

. onewe expect that on the average the 51gnal will require the maximum number
 of passes. to a root as spec1ﬁed by Theorem 4.2.

 This model for the signal space is used to estlmate the the number of ﬁlter
‘passes to a root for a chosen conﬁdence level. Ifiis the smallest 1nteger such
~that the probablhty of reaching a “root 51gnal in ior fewer passes is less than or
: equal to a then we say that i passes are necessary to be 100a percent» :
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. 620
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‘  Table 5.2
‘Distribution of signals with p=0.5.

~g{3) glb&) gi7) gi8) gi{9) g(10)

gi{d)
. 942
. 908 . 971
. 875 .954
.B43 . 938
. 813 . 922
783 . 906
.75% .89}
Probability
1 2
. 234
. 380
. 440 . 058
. 502 . 092
. 547 . 110
578 . 134 .
. 598 . 156
. 609 . 178
.614 . 198
L &14 238
. 609 . 236
. 601 | 254
. 591 .27%1 .
. 287

3

=

=2

14
C 34
80
- 184
418

926

4

2

6
14
34
80

184

g{k)=Pr{No success run of length k in n

E is the expected # of

filter passes to

. 985 ‘
.977 .992
. 949 . 988 . 996
. 961 . 984 994 993
. 953 .981 . 992 997 .999
of requiring i passes
3 4 5 & 7
.013
023
. 027 . 004
.033 . 006
. 039 .007 . 001
. 045 . 008 . 001
.051 . 010 . 002 . 000
.057 . 011 .002 . 000
062 . 013 . 002 . 000 . 000
.068 .014 . 003

. 001 . 000

requiring 1 passes

S =)

2

&
14
34

o n

trials>
a root
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. 490
©.. 343

168
. 118

. os8
.. 040
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Slgnal
Length

. 240 .
082

‘;0”8_

g{a)
T913

846

784
. 727
. 673
. 624
. 578
536
. 456

‘E_

087
. 134
. 224
. 287
347
. 402
. 454
. 503
.. 549
. 591
- 431
. 668
.703-
.738

Table 5.3
Dlstrlbutlon of signals w1th p—O 3

'g(k)—Pr{No success ‘run of

E is the expected #

length k in n trlals}
of Fllter passes to a rtoot

9(4) g(5) g(b)_g(?)—g(B) gi{9)y gil1d)

1. OO 1 OO 1 OO'

-7

. 000

000

g{3).
. 974
. 954 .992
. 935 . 986 .998
. 916 981 . 996 . 999 -
.898 . 975 .994 .999 1.00
880 . 969 .992 .998 1.00 1.00 .
. B&2 . 964 . 991 .998 . 999 1. 00 1.00
.84§A;?58,.939j;¢9?;ﬁ999
Probability of requiring i passes
0 1 -2 3 4 5 6
. 913 . 087 .
. 846 . 154 -
~..784 . 208 .008.
.. 727 .260 .014
. 673 . 307 .01% .001
. 624 . 351 .024 . 001
.'578 . 391 .029 . 002 .000
. 536 .428 .034 .002 .000 ,
496 .42 . 039 . 003 .000 .000
. 4460 . 492 .044 .003 000 .000
. 426 .521 . 049 .004 .000 .000 . 000
395 . 544 ..054 .004 .000 .000 .000
. 366 . 570 .059 . 004 .000 .000 .000
. 339 .. 591 .064'.005 . 000 . 000 . 000
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Table 5.4
Distribution of signals with p=0.7.

g(4) g(3) gil&) gi7) g(8) g(9) g{10)

gﬁk)=FriNm‘suctess run of

E is the expected # of filter passes to a Toot

. 948
. 929 . 963

. 910 . 950 .974

5

. 026
. 035
.G31
. 034
. 040
. 045

-

. 013
. 017
. 015
. 017

7

. 007
. 009

g{3
. 699
. 584 792
.44 | 697 . BG4 :
.3%2 .&13 . 791 . 897
280 ..53% .732 885 .927
.223 . 474 . 678 .815 . 899
178 417 . 628 . 774 . 871
141 (367 . 581 .740 . B44
Probability of requiring i passes
O i = 3 4
-, 019 . 981
014 | 986
.010 . 782 . 208
.007 . &6%0 . 303
005 608 . 284 . 103
.003 . 536 . 316 . 145
.00 472 340 . 134 052
.G02 L 416 0359 . 153 . 071
.001 . 366 .372 171 . 064
L0011 . 322 .38z .187 073
.001 . 284 . 387 . 202 .083
L0000 . 250 . 390 .21& . 092
L O00 L2200 L 390 . 228 . 100
000 193 . 387 . 240 . 109

length k¥ in n firialss



o 'conﬁdent of hav1ng a root. In Flgures 5 2 and 3 plots for several valucs of a
' are given for signals generated using two different- correlat1on values of p.

There'is a reduction from the maximum number of passes (512 -2)/2, to 32"

* passes with 95 percent confidence of a root when p=0.9 is the probablhty of .

nonroot reglons continuing. For the case of equally probable signals, p"O 5, we -
see that only six filter passes are requxred for 95 percent root conﬁdence when

_the signal length is less than or equal to 512. This i is a reductlon of 249 passes .
~from the maximum, which would have a confidence. of 100 percent These
exarnples 1nd1cate the p0551b1hty of reducing the number of filter passes from
the maximum while maxntalnmg a hlgh conﬁdence of reachlng a root.:

‘ ‘These results were derwed using blnary s1gnals and wmdow w1dth three o
- medlan filtets. Because of the threshold: decomposmon techmque presented in

Chapter 2, these results hold for arbltrary level 51gnals and w1ndow w1dth three. -

_’.medlan filters: lmrnedlately In addltlon using the fact that wxndow width -

three filters are slower to converge than median ﬁlters of larger wmdow w1dths

. [20],. we know that the results derived here are the ‘‘worst case” for any

- window w1dth filter apphed to 51gnals with multlple levels ThlS glves an upper
" bound on the number of passes to a root whlch guarantees at least some -
conﬁdence level. ' : :
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~ CHAPTERG6 ,
THE ANALOG MEDIAN FILTER

» When tandom signals are used as vinpu'tsi,‘ the LnOnlinear nature of the
median filter makes the output distributions difficult to. calculate and to
cofﬁpréhénd [7] The threshold - decomposition techniqueifor‘r'édu‘éing‘ multi-
- level signals to- binary signals does not reduce the statistical computation

involved. We need a simpler means of calculating'dr:approximating the output
distributions of median filters. The basic idea behind the threshold
' decomposition.--thaf of sliding a threshold through the various levels of a signal,
~ lends itself to extensions in the domain of many leveled signals. In fact we
might approach this problem by letting the number of allowable levels and the
support of the input functions go to the continuum. We call the filter
- associated with the median operator, where these input functions are allowed,
the analog median filter. In many cases this extension will make the analysis
‘ ‘simpler than for the standard median filter. Because the definition is bas‘ed on
- the threshold decomposition technique, howevei‘, the same u':nderlyi:ng structure
“is maintained in both filters. R SR

In this chapter, we define and present a preliminary analysis of the analog
- median filter. Specifically, in Section 6.2 we demonstrate that the discrete
median filter is equivalent to an analog median filter operating on a restricted
class of signals.; In the next section, the analog median filter is shown to be the
limiting case of the standard discrete median filter di_scussed in Section 6.1.' A

»random variable interpretation of the analog filter is given in Section 6.4.
Examples and Conclusions follow in the final sections of the chapter. '

| ‘8.1 Analog Median Filter Definition
_ We assume throughout this section that the input to the discrete median
filter is a sequence of length L which takes on the value a(m) at position m,
1<m<L. Let b(m) be the output at position m yof’a:'sta'ndard median filter
with window width 2n+1 applied to the input sequence a(m). Then by
*definition o o IR
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b{m) = median { a(m—-n),,..},a(m),..,,a(m+n) 3 , (6.1)
= max { i: At least n+1 of a(m-n),...,a{m +n} are > i }

= max { i: More than half of a(m—n),...,a(m +n) are = i} (6.2)
In a similar manner we might have shown
b{m) = min { i: More than half of a{m—n),...a(m+n)are <i}  (6.3)

Equations (6.2) and (6.3) are equivalent because there is an odd and finite
pumber of values in the rapking window. Later we will see that these
equations are equivalent only when the median is unique.

In the definition of the analog median filter, and in other definitions,
discussions, and proofs that follow, it is convenient to use the indicator
function of the event A which we define as

_J1 ifAistrue -
I(A) =1, else “ : | (6.4)

Also, the notation sup(<) and inf{*) will be used to denote the supremum and
infimum operations, respectively. ' -

For any appropriate definition, the analog filter that we propose should be
2 limiting case to the discrete filter. Later in the chapter we will discuss the
type of limit which applies. For now, we rely on our intuition for the following
definition. o '
Definition: We say that y(+) is the output of a analog median filter of window
width w applied to an input signal s(*) on the interval [c,d) if for almost every
tefe,d) ' '

y{t) = sup { r: More than half of s(7), 7€ [t—-%,t-&-%) are > r }

_ i+ w
=supyr: J Y I[s(r)>r] dr > o ; (6.5)
C ——

‘ 2
As in the discrete filter case,‘ end eflects are accounted for by repeating the
endpoint of the signal over an interval large enough to fill the window [13]. We
delay discussing the conditions on the function s(-) which guarantee the
existence of the integral in the definition of Equation (6.5) until the stochastic
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sectlon of the chapter We should note that another possi.h'lexd/.eﬁni-tion of the '
- analog medlan ﬁlter whlch would be analogous to Equation (6.3) of the discrete
filter is - . B

(66)

g Unhke the dlscrete ‘median filter case, see Equatlons (6 ") and ( ) in the
analog filter case yi(t) is not necessarlly equal to y(t): for all t. An approprrate-
compromise mlght be to-take the average of y,(t) and y(t ) to obtain the output
of the analog median- filter. ‘This additional computatlon seems- cumbersome- _

e -~ and usually’ unnecessary; we therefore resolve to define the output of the analog
~ median _filter by Equation (6.5): Hopefully this deﬁmtlon will allow us to go

‘back and forth between discrete and analog signals so that results whrch are
easier to obtaln in one 'domain can be transferred to. the other domaln

There are other equrvalent deﬁnltrons for the analog medlan filter. - As an
example of an alternatwe definition, assume that m(*) is a, measure such as the
"Lebesgue measure, deﬁned for sets of real numbers. If the measure of an

1nterval is its length and the measure of the sum- of d1s101nt sets is the sum of

the measures. of each set- we could use the followmg as the- deﬁnltron of a
: window width w analog median ﬁlter applled to the lnput signal s( ).

.>_—] ®7)

. r4

() —sup[r m{ s(r) > and t——"—.gr<t+;—;
End eﬁ‘ects are accounted for as in the. prev1ous deﬁnltlon This rneasure .
theoretic deﬁnrtlon can be easier to manipulate than the integral deﬁmtlon of
-Equation: (6.5). The proofs in the stochastic section of the chapte_rdemonstrate .
the utility of this definition. ' ST

6.2 Analog Fllter Representatlon of a Dlscrete Fllter

, Now that we have defined what is meant by. an analog ‘median filter,
“several propertles of these filters warrant discussion.  The two followrng'

" Properties result in a Theorem which shows that analog mednn filters when -

restricted to operate on a certam class of step functlons are equlvalent to
' discrete median filters. :

| Progerty 6.1: There ex1sts a functlon f( *) mapping an mterval on the real hne-
to a set of values such that the sampled: output of some analog medlan ﬁlter_
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applied to () equals the output of a window width 2n +1 discrete median filter
applied to the sequence of samples from f(-). =

Proof by construction: Assume we are trying to show the equivalence of the
sampled analog median filter output with the sequence b{(m). As before, b(m)
is the output of a window width 2n+1 discrete median filter applied to the
input sequence a{m), 1<m<L. Define the function f(} on the half open

interval [%,L + =) by the combination of step functions

L f{g) = m) I m‘-%,.g t < m+—é— ] | | .. (6.8)

3
||ME“ l\Qil—d
=N

1

The window width of an analog median filter whose sampled outpuf will equal
the sequence b(m) is needed to complete the proof. Denote the output of an
analog median filter with window width w equal to 2n+1 by y(t). Then

y(t) = sup rf 4 I[f >r]dr> — (6.9)

-2

o ‘s

A%

Ass\ime the samples are taken at the integers 1,2,....L. The sampled output of
the filter is then given by y(m) with 1<m<L, that is

y(m) ;——,sup r: f d I[f >r)dr > % ~ (6.10)
) m+n+,}— . i
=supjr THfn>rldr>nt+—
m—n—j; : 2
m+n o 1
=sup{r: Y, IHalp)>r]> n+§-

= sup { More than half of a(m—n),...,a{m +n) are > r}
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~ Which shows t,h:a‘t by sampling at the integers the two ﬁl‘t,ers aré’,equ.ivalent‘.

’ In fact, because the constant r‘e'gions are of‘.“minimu'rin length' one, this
sampling pattern can be shifted left or right by any arbitrary ¢, 0<e<1/2
without changing the output. . L :

roperty .6".,2; Using _the‘no.tatiion of the previous ’Prvoper'ty, for any real ¢ and

ntoger m such that 0<¢<1/2 and 1<mSL, we have equality among y(m=Ed).
y(m), and b(m). LR T e
" Proof: By Property 6:1 y(m) equals b(m) _for' m any integer 1<m<L. For
Y(m+e) we have R ‘ o o ‘

gm+e =supir [ o, Lft)zrldrzoty
‘ 3 ’ 'm+e—n—l~- 20
Fen—g o |
. . v‘ : B ‘ m+n - . ) " N . .. . .
Cy(m+e) =supqr Y Ta(p)>r] + ella(m +n+1)>1]
' p=m-n+1 ‘ S
+ (1=e)'1[a(m—n)2’r]'2; n+—})-} o (6.11)

- Let S denote the sum in Equation (6.11). If S>n +1 or S<n-1 then the

“values of the last two terms do not matter in the calculation of the supremum.‘

However, if S =n then the last two terms enter into the calculation and
- ‘Equation (6.11) reduces to ' o L ‘

y(m-+'e)'..#_§upr{.-r:,ve’I[av(»m‘#r»_i +1)>r] + (1—6)‘1.[a(m—-n)2‘r]: > %} (6.112)

" We note that because 0<e<1/2 the second term in Equation (6.12) determines
if the condition on the supremum is met. The first term can therefore be .
-~ ignored and we reduce Equation (6.11) to ' '
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 y{m+ej = sup { r: min Ia{p)>r] + (1—¢)-I{a(m—n)>r] > n+ i } (6.13)
: p=m-n+1 =
= sup{r: nin Ha{p)>1] + Ia{m—n)>1] > n+1}
p=m—n+l
m+n
= sup { I Ha{p)>r] > n+1
L p=mn
= y{m)

Shifting the sampling grid in the other direction we have the case for y(m—e)
which follows in a similar manner. ‘

\E! |

Summarizing the results of this section we have

Theorem 6.1: There exists a class of analog median filter input functions F
such that any input sequence {a{m)} to a discrete median filter has a
representative function f in F' and the output of the discrete filter applied to
{a{m)} has a ?epresentation in ' which is the result of an analog median filter
applied to f.

Proof: By Property 8.1 the output, sampled at the integers, of the analog
median filter applied to the constructed function is equal to the representative
discrete median filter output. By Property 6.2 we know that the output of the
analog median filter for this class of constructed input functions is itself a
member of the class. Therefore multiple passes are allowed and we have our
representative class of input functions ' by construction.

o '

The preceding Theorem extends any result for analog median filters to
diserete median filters. This is a new analysis tool which allows calculations
which are more simply done in the continuum to be extended for the discrete
case.

8.3 Analog Filter as Limit of Discrete Filter

In this section consider a window width w analog median filter applied to
the signal s{<) on the interval [c,d). By representing the signal s(*) as a



‘ - sequence of step functlons ‘we can dlscuss sufﬁcrent condltlons on the class of

- signals where the analog medran ﬁlter can be conSIdered as the llmltlng case of
‘the dlscrete medlan ﬁlter , . « :

Begln the approxrmatlon of the srgnal by samphng s( ) at c and then every :

“_'e unlts along the axis untll the interval [c,d) is covered. Note that € can be’ any

‘ -posmve real number. The followmg 1n1tlal approx1matlon to the slgnal s(*) can
be made ’ : : ' :

y ‘
Z c+m'e I[c+me <t<c+(m+1) el

where L is. the smallest 1nteger such that ¢ +(L +1) c is greater than d .

Decreasrng the value of € 1ncreases the. accuracy of the approx1mat10n By ,

~ cuttmg the constant reglons m half the followmg approx1mat10n is: obtalned 1n]
k 1terat10ns S : : .

,'._,.~L-2k”- | | ' ‘ '
o sk"l(t) =Y s s(c+mee2” k) I[c+m €27 -k < t < c+(m+1 '2 k] 614
oo m=0 o R , _
‘ K 1ncreases we can represent many dlﬁ'erent functlons to wrthrn an arbltrary
; -degree of accuracy So the class- of srgnals we are exammlng 1s restncted to
ions wh1ch can be represented as a convergmg sequence of step functlons '

That ls, for al'nost every t in [c,d) the representatron

k—»oo

is vahd Most texts on real functlons, see Royden (23] for example, show that (

the class of functions which can. be approximated by step functions is not"
_ restrlctlve«-at least for: functlons of englneerlng interest. - Any- measurable or’

’ contmuous function which is unbounded for at most a countable number of
, pomts can be represented arbitrarily closely by step functlons ‘
‘ As in the previous section we want . to relate the analog and the drscrete. ‘
filters. To do this we approximate the window width w by w ‘where w* equals
_ W'(1+2_k) Note that the sequence wh ¢ converges to w. If € is set- to w/2 then
4 window width w¥ filter applied to the approxrmatlon sk( ) is equlvalent to a
.~ window ‘width" 142k dlscrete medlan filter apphed to the sequence of pornts .
'k(m)where‘ . o _
) -ak'(m) = s(c+m'w2 (k“)) 0<m<L 2“ SRS ”-(6.16)
TlllS follows dlrectly from the results of the prev10us section "~ The
approx1mat10n sk( ) is d comblnatlon of step functlons w1th constant reglons of
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k

length w*2™% and the window width approximation w* is-an integer multiple of

this step width.

This gives us the description of analog median filters as the limiting case
—of discrete filters. Letting k go to infinity, we have an infinite window width
for the discrete filter but the signal length has also become infinite. This
demonstrates that, for the restricted class of signals which can be represented
arbitrarily closely by step functions, many results from discrete median filters
~ apply to analog median filters. The technique of eXpIOItlng this equivalence is
~ demonstrated in the following two examples.

By observation we mlght have noted that signals which are composed of
monotonic regions connected by constant regions of minimum length w/2 are
invariant to passes of an analog median filter of window width w. We call
‘these signals roots of the filter. This descriptive property of root signals can be
shown directly in a manner analogous to previous discrete median filter proofs,
see  [13], or it can be considered as an immediate extension by using the
.tAechnique prespnted in this section. That is, for any k we know that ak(m)
must be composed of monotonic regions connected by constant regions. of
minimum length 9k“1 4+ 1. In terms of the corresponding analog filter this
minimum length i is w/2. ' A ’ :

As another example COIlSldel' the problem of calculatmg the maximum
number of filter passes necessary to reach a root for an analog median filter.
This problem is extremely difficult to solve in the analog case; it is not obvious
that the filter output even converges to a root in a finite number of passes.
However it is known that a discrete median filter of window width 2n+1
applied to a signal of length L is reduced to a root in no more than order L /n
passes of the filter [20]. In our discrete filter approximation, the signal length
is 2% and the window width is 1+2K For large k, the ratio tends to the
constant L, which is finite. In fact L is approximately 2(d- /w Extending
these notions to the continuum we conclude - :
Property 8.3: For the restricted class of signals which can be represented
arbitrarily closely by step functions, the output of an analog median filter of
window. width w applied to a function with support no larger than [c,d)
converges to a root in a finite number of passes which is bounded by 2(d-c)/w.

Other properties of the analog filter can be shown by extending known
results for discrete filters in a similar manner. This technique is important in
developing the intuition necessary to use the analog filter for the derivation of
practxcal results.
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6. 4 Stochastlc Interpretatlon of the Fllter

The purpose of this section is to describe the various random and
stochastic interpretations of the analog median filter. We begm by showing
“that an analog median filter applied to a deterministic functlon f() at point ¢t 1s
vequlvalent to calculatmg the medlan of the distribution of a random varlable

,. Z(t)=f(X( )), where X(t) is uniformly dlstrlbuted on [t__é— t+— 5 ) To obtam-v -
‘the entlre output of the ﬁlter we allow t to range.over the support of f(- ). The
vﬁnal random 1nterpretatlon ‘which we present is for the case of a stochastlc--

- process as’ the input to the analog median filter. Necessary condltlons for the
ex1stence of filter output dlstrlbutlons are discussed.

Theorem 62 The output y(t) © of an analog median ﬁlter applled to a
measurablevfunctlon‘f() equals the medlan of the distribution of the random

v‘ar‘iable’ Z(t ):f(X( )), where X(t ) is umformly dlstrlbuted on [t—E— t+— )

: 'Proof First note that the medlan of -a dlstrlbutron is not always. uniquely
defined. We avoid dlscrepancles w1th our ﬁlter deﬁnltlon by always usmg the

largest value a such that |

tﬂzm<dﬁ=HZmZa)2§4' R _(6wl
as the medlan of the distribution which we denote as ao( ). Note that P(+) is
~ the assocmted probablhty measure, S0 we can wrlte - :

|  alt) = sup {os P(Z ()_;a-)z,—i} R  (818)
 Expanding P(Z(t) > a) we have | Ll
P(Z(t)2e) = P(f(X(t))2a)
| =P( I[f(X(t))>a] =1)

e —Emﬂm(()>ﬂ) e
. where Exgy) denotes the expected value with respect to the random variable -
- X(t). Because X(t) is uniformly dlstrlbuted over an mterval of length w, the '
| expectat1on reduces to- - o

CP(Z(H)2 =-—f Hf >a1w | 7't”rqvf(&my 

Combmlng the results of Equatlons (6. 18) and (6 20) we have -
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coft) =sup { o = [ T {0020l dx 2 ) (6.21)

!
¥}
ol

=

e,
Q

.

= y(t)

where y(t) is the output at position t of an analbg median filter applied to a
deterministic function f{).
3

Theorem 6.2 gives a more intuitive interpretation to the nature of the
analog median transformation operating on deterministic functions. The
usefulness of this interpretation depends on one's familiarity with random
variables. Assuming a familiarity, the next step would be to allow stochastic
inputs to the filler. In order to proceed in our analysis of random inputs we
must first define what is meant by a stochastic process and then determine
what class of processes are allowable as inputs to the filter. The following
definitions and theorems on stochastic processes are from Doob [24].

We define a stochastic process as any family of random variables
{x(t,w), teT}. For any fixed t€T, x(t,w) is a random variable and is therefore
measurable with respect to w. For a fixed w, we call the resulting function of ¢t
a sample function of the process. Applying a window width w analog median
filter to the stochastic input x({t,w) results in y(t,w) where

s+ =
ytw) =suptr [ Ix(rw)>r]dr> nia
p 2
-2
=sup{rm{r: x(rw)>rT, rE[t—%,H—%)} ;>_-‘—;- (8.22)

Where the subscript { on my denotes Lebesgue measure and is used to
distinguish it from the measure m(*) associated with the probability space. In
the definition of a stochastic process no restrictions had been placed on the “t”
properties of the function. Our first restriction is to set T equal to some finite



':lnterval From Equatlon (6. "2) it -is obvious that in order for the analog
" median filter to make sense the process must be measurable with respect to the
set of all half open 1ntervals of length w with mldpomt in the interval T. A~
process . satrsfymg this condition is called “measurable. Speciﬁ'cally,' the .

stochastic process {x(t w), tET} is called measurable if the parameter set T is

_,Lebesgue measurable and. if x(t,w) defines a function measurable in the pairof
variables (t w). The ‘importance of the measurablhty of the: lnput stochastic
process is demonstrated by the followmg Property o E _ -
-.Property 6.4: The output dlstrlbutlon of an analog median ﬁlter apphed to
- stochastic process. x(t, w) exists. if and only if x(t, w) is a. rneasurable process. '
Proof Let. y(t w) denote the output of the wmdow w1dth W ﬁlter ‘Then

y(tw) = sup{r my {1' x(fw)>r Te[t——— t+—- 3 ) } 2 5 ] - (6.23)
For convemence let A(r ¢ w‘) be the set of all’ 7 1n 'the mterval* lt”l;‘jst -I--g—) euch
,that x(t w) 18 greater than or equal to r.: That is, R

| A(r t, w) = {1' x(r, )>r TE[t--— t+ 2 )} . (624)

HWe should note that A(r t w) is a Lebesgue measurable set l'or any t or r - if and' ‘
only if x(t w) is a measurable process. Substltutmg this mto Equatlon (6 23) o

¥t w)» = sup {r: my [A(r t w)] > — } | ?:i’v ; (6 25). |

| The proof is easﬂy done by 1nvest1gat1ng the functlon G( ) where G( ) equals |
the probablllty that ¥t w) is greater than or equal to 7 If G( ) exrsts we have ‘

G(7) = P( (tw)>7)
_P(sup[r mq{A(rtw)}>-—]>f7 (626)

By noting that A(r ¢ ,w) is a subset of Aly,t,w) for any T > ~.and using the order -
-of the mequahtles we can eliminate the supremum from Equation:(6:26).

Gy =P (m«{A(mw)}>—)»
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LA (6.27)

m(my (73 x(7) 2 % 7€+ )} 2

2 2

This set of equalities imply that G(v) exists if and only if x{t,w) is measurable
with respect to the Lebesgue measure my(*) and the probability measure m(*).
“This result for G(*) extends directly for the distribution function of y(t,w).

o ' ' :
This Property establishes the necessary and sufficient conditions on the input
process which guarantee the existence of the output distribution. We would
like to remain in the class of measurable processes even for repeated passes of
the continuous filter. By the previous Property, this would guarantee output
“distributions for any countable number of filter passes. To do this we firet
- show that

Property 8.5: The stochastic output of an analog median filter is measurable
- with respect to its parameter space if and only if the input process is
measma‘ble

Proof: Let y(t,) denote the output of a window w1dth w analog median filter
applied to a stochastic process x(t,w). To show that the output is a measurable
function in t, it is sufficient to show that T' = {t: y(t,w) >~} is a measurable
set for any real v. Expanding I' we have

T = {ey(te) 27}

= {t:sup[r:mg{ﬂx(r,w) Zr,rE[h—%,t-&-%)} > %—] 27}

Because of the order of the ineq@alities we can eliminate the supremum in a
manner similar to the proof of Property 6.4. ' ‘ '

=By D

v | €

T = {t:m,ﬁ{r:x(nw) > T€E [t—%&,t+§-)} 2

where

B(t) -;mq{r x(rw)>'7,r€[t—-—— b+ )y

-

Equation (6.28) has reduced the problem to showing that B(t) is a measurable
function. It is in fact easier to show the strlcter condition  that B(t) is
continuous in t. For any e>0 we have



L _mg{ r: x(rw) > 7,76 [t+ t+e+ )U[t—— t+ 3 ) lt"%,t+e——‘2‘—'-)}
'By the propertles of the Lebesgue measure thls equals ‘ L

B(t+e) = mq{r x(rw)>q, re[t+ t+e+ ) )} ;J

. +B(t) mq{r x(rw)>fy,r€ 2

* Because the i

| ”besgue measure of an 1nterval 1s 1ts length we have the follow1ng :

o set of mequahtles '

B(t+e) > B(t)
Btte) < < B(t) +

Whlch 1mphes that - |Bt+e B(t)| <e for ‘any e>0 Therefore B(t) ls'- L

contmuous and necessarlly a measurable functlon o
Comblmng Propertles 6 4 and 6 5 we have the followmg el -
’Theorem 8.3: The output of ‘an - analog medlan ﬁlter s - a"‘.‘rmeasurable’ S
stochastlc process if and only 1f the 1nput process 1s measurable o o
‘ Property 6.4 implies that in order -to have the existence of output
v dlStl'll)llthIlS of the analog. filter we must have a- measurable mput process., By

‘the above Theorein, if we start w1th a measurable input process, we w1ll always :
- obtain measurable processes as. output. This allows multiple ﬁlter passes to be
'performed w1thout destroylng the measurabﬂlty of the process. :

- 8. 5 Examples and Dlscusswn

" The propertles of the Dirac delta function make it a popular test mput for

| hnear systems. In fact,. lmear systems are often characterlzed by . thelr response-'

to this - impulsive 1nput One property of the analog ‘median filter is that its -
1mpulse response does not completely characterize its performance We do the

" analysis for the purpose of comparison with the responses of the more common
class of linear filters. Let 6(t) denote the: Dlrac delta functlon whlch is deﬁnedb

by the two properties ,
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0 ,t#0

[otydat =1 and &t) =) o, y=0 (6.29)

~ In anticipation of the result, we might note that the discrete median filter
performs well in the elimination of additive impulsive noise. The notion that
the analog median filter should have no response to a delta function is stated
and proven in the following

Property 6.6: The response of a window w1dth w analog median filter to a

" Dirac delta input is identically zero.
Proof: Using the theory of generahsed functions [25] we represent the delta
function as the limit of a series of functions which integrate to one and
converge to have both desired properties. For this proof the simplest of these
functio.ns is ‘
i<t < |

n 2n- « ,
X0 =g ke | o (6.30)

Obviously the two defining properties of the Dirac delta hold because for any n

=00 ‘OO

] - 0 t#0
fX" t)dt =1 and 8(t) = Tim X,(t) = t=0

Applying a continuous medlan filter with window width w to X, (t) we obtain
Yalt ) where ' ’ ‘

Yn(-t):wp' rJ 1{xn(t)(r)2r]dr2%

If w<2/n then

-1 1

f —<<t<—

, n .’l 2n <t< 2n
yalt) = 0 ,else

and if w>2/n then y,(t) equals zero for all t. “Obviously for any w>0 there
exists an N>>0 such that for all n>N we have w > 2/n. This implies that ¥alt)
is zero for all n>N and for this representation of the delta function we have an
identically zero output of the analog median filter.

0
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It is not surpnsrng that the analog medlan ﬁlter does not respond to
' 1mpulswe inputs. The main purpose ‘of demonstrating the precedlng property_’
is to show’ that this hnear technlque 1s 1neﬁ'ect1ve in the total charactenzatlon' '

‘ ,of the analog medlan ﬁlter

As another example of how classrc llnear techmques fail to completely
characterlze the medlan filter, we examine the response of the filter to
s1nusordal mputs Begm by fixing W, the wrndow ‘width, and call the output of
the - analog filter y(t). Let s(*) ‘be the smusordal ‘input’ of ‘the form
s(t) = sm(27rt/ A)s where A denotes the wavelength of the test 31gnal N

For hnear systems, the superpos1t1on property - allows the ﬁlterlng of -
31gnals whlch are comprlsed of sums. of simple 31gnals to be done by ﬁlterrngv'
-the 1nd1v1dual srmple s1gnals and then recomblnmg using addltron to obtam the
_ output So T thls example, we would calculate the eﬁect of ﬁltermg a
smusord of wavelength A and then let '\ range over’ the class of wavelengths _
necessary to represent the lnput signal using Fourier technlques As has been
noted before, linear techniques cannot be used to. obtain the set of simple-
srgnals allowrng an additive superp051t10n operator. Now we use the analog :
median filter to demonstrate why frequency representatlons of the response of
the medlan filter are drfﬁcult to interpret. We begm with three restrlctlons on o
“Aandt whlch make the calculations less tedious. -

:C’ase 1: 4= )\k/2 k =0, £1, £2,... By the symmetry ‘of s(* )"We know that
' for thls restrlcted set_of time values we have sttt = "S(t—T) It is easy to
- show that the output of the analog medlan filter y(t). will be zero at these -
pomts Thrs set of points is precrsely the set where s(t) is also zero. We '
* conclude that for smusordal 1nputs, the zero crossings. are 1nvar1ant to analog
median ﬁltermg _ : : : : o
Case 20w = k\ k=12, Whenever the window W1dth w of the’ ﬁlter is an
integer multlple of the wavelength of the sinusoidal input, a complete cycle of
‘the input will always be in the window of the filter for-any time posrtlon That
- ils, because s(t) = sm(27rtk/w) and by the per1od101ty of the sine functlon, we
~have for allt :

e
T2

y(t) =supir S I[sin(27rl(r/'w) >rldr Z,‘L;’_ 1

S A
2

o e

: ‘We conclude that the analog median filter has no response to s1nusords with
w/k In terms of the frequency of the sinusoid we have 1 u = 1/)\ = k/w as
the class of frequencres w1th an 1dent1cally zero, response o :
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Case 8: \>w>0. This case is simple because we obtain a root after only one
pass of the filter. In addition, the root is simply a “clipped” version of the
input. This can be seen in Figure 6.1. Analytically we have

4 =USU g 2
yit) = sin| 27t/ | ’ ,else

Sin{”(_z_kgl "‘f‘)} ( 2k+1))\m\g_<t_<(2k+l)x+}1
| (6.32)

where k = 0, &1, £2,... From this we see that the filter is clipping the tops of
the sinusoid to constant regions of width w/2. Therefore y(t) is a root to the
analog median filter of window width w. This is a well behaved response in
that the nonconstant monotonic regions are identical to the input sinusoid.

If we consider the transformation of the filter as being from a single
frequency signal to some cutput signal y(t). Then we immediately note that,
because of the constant regions, the transformation spreads the output over the
entire spectrum. This means that the sinusoidal response curve, because the
no_rm’alizéd output energy is plotted in terms of the input wavelength, may be a
misleading description of the filtering phehomenon. As an example, in Figures
8.2 and 6.3 we plot the response of the analog median filter to these sinusoidal
signals in terms of the output energy normalized by the input energy. It is
important to remember that the output energy is spread over the spectrum
even though it is the result of filtering an input which contains only one
frequency. '

‘This analysis has allowed us to calculate analytically the sinusoidal
response of the filter for A\>w>0. For smaller. wavelengths the structure of the
input sinusoid Is destroyed making the analysis significantly more complicated
and therefore it' will not be presented here. Instead rtefer to the sinusoidal
response ~ plots in ~the Figures. These plots were calculated using ~the
approximation techniques presented earlier in this chapter. The zeros and
other predicted behavior from the previous three cases can be verified. Note
that, as expected, as X becomes much greater than w the energy ratio tends to
one.

- 6.6 Summary of Results

The foundation of the theory necessary to use the ’ahalog median filter to
model discrete problems and to attack the difficult statistics involved with
ranked operations is presented. This is a new concept for the analysis of
median filters. Even though this is an introduction to the filter, its use as a
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tool for analytic proofs is demonstrated alohg with the foundation for
statistical interpretations. The necessary and sufficient conditions for the
existence of output distributions of multiple analog filter passes is an important
result. The practical uses are demonstrated by the intuitive results which can
be derived by treating the filter as an entity in itself and then mapping to the
discrete domain for comparison with the already popular discrete median filter.
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* Clipping effect of analog median filter.
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CHAP _ER 7
CONCLUSIONS

cl:mposmon and the_set of blnary SIgnals perform thev
super ‘tlon and smusoxds perform_ »

for linéar filt -‘they allo‘
oblems Thls has very fortunate practlcal and theoretlcal consequences

On the practlcal 51de, the decomposmon has dn lmportant 1mpact on the '
unplementatlon of. ranked order filters. . It shows that a ranked order filter for a
ultl-level 51gnal 1s 51mply a parallel connection of ﬁlters for binary ‘signals.
Furthermore since the output of the ranked filter. for a binary SIgnal is found
vby countlng the number of ones in the wmdow and comparlng the result to.a
threshold these ﬁlters are. tr1v1al to 1mplement - comphcated rankmg 1s no
longer needed The p0351b111ty of VLSI 1mplementat1on 1s apparent ‘

On the theoretlcal 51de the decomposmon shows that the analy515 of the
ranked order filter’s effects - on multr—level signals is. reduced to the much
si‘ bler analysrs of blnary srgnals It is now clear that many of the propertles
whlch were hmlted to blnary srgnals can now be extended m a stralghtforward’
fashlon to multl-level signals. Also, the difficult task of comparing different
- ranked order operators is now reduced to the blnary srgnal domaln

‘ The convergence of blnary signals to roots is analyzed for determiniStic }
3 and random sequences. For arbitrary signal . ‘levels, a direct technique for -
exphclt solutlon to the number of roots of a median filter with arbitrary

- window w1dth is developed Using the symmetric tree structure of the sxgnal

) space we. mtroduce a faster technique for analytlc and. computer solutlon

- The analog median filter is defined and proposed for analys1s of the
standard discrete median filter in cases with. a large sarnple size or when the
associated statistics would be 51mpler in the continuum. -Discrete filters are
‘shown to be a subclass of analog filters. Also, an equivalence among analog
: ﬁlters‘ and limits of dlscrete filters is. estabhshed Finally, several stochastic
2 tatlons of the analog medlan ﬁlter are’ presented 1nclud1ng necessary

and sufﬁc1ent condltlons on 1nput processes whlch guarantee the- ex1stence of
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output distributions for multiple passes of the analog median filter.

‘These theoretical results should improve our understanding of the behavior
of these filters. The practical results should lead to the use of these filters in
many new real time signal processing applications, particularly real time image
processing.
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_ Appendix A ‘
ReCursiVe Medi‘anj Filtering

In ‘this" Appendix; . the following - Theorerr'r a ’pr-'otp_erty'”s'analogou_s‘:to
Theorem 2 2 is proven for recurs1ve medlan filters. o S

Theorem A The root signal assocrated wrth a wmdow width 2n+1 recurswe -

medlan ﬁlter ¢an be obtamed by thresholdmg the orlglnal signal, applymg the
recursive medlan filter to the resulting binary signals, and then mapping these
binary roots back to the k- level root signal using the addltlon function f(*).

} The proof of this theorem is best presented as a series of propertles for
recursive median filters. Throughout this section of the paper let y.(m) denote
the output at position m of a recursive median filter w1th wmdow wrdth on+1
moving left to right across the input sequence a(m) Define the level i
threshold decomp051t10n of the original signal at posmon m to be
_ 11 JAf a(m) > 1
' to(m) —lo jif a( ) <i

w1th 1<m<L and 1<1<k—' Recursrve medlan ﬁlterlng the thresholded -
values gives another binary sequence - :

(A1)

'axé(m)=median{i&(m-n),...;sc‘( 1),tg(m), . to(m+n)] @A)

Property A.l: y,(l) = f( ( ), 1<i<k-1) Z
i=1

That 1s, the reconstruction function, f(*), works for the first point in the input
51gnal Note that a similar property holds at the last pomt of the signal when
a recursive ‘median filter moving from right to left across the signal is used.

- Proof: To start the filter at position one, N points of value a(1) are appended
to the beglnmng ‘of the signal." The output of the recursive filter at position

one is

y1) = median (a(1), - - ,a(1)al2), . .- a(n))
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=y | (4.3)

The level i threshold decomposition sequences recursively median filtered at
position m are given by x(m}. So at position one, after appending n points, we
kave ' '

x (1) = mediang ti(1),..., t3(1), t4(2),..., ta(n)

- Substituting Equation (A.4) into Equation (A.3), we obtain
k-1

y1) = Sxi(1)

izt
= s’g xgu)-,_ 1<i<k-1 } - (A5)

Which shows that the function f(+) for the standard median filter will also
reconstruct the recursive median filtered threshold values at position one of the
signal. ‘

a

Property A.2: I xP(m) = 1 then x{(m) = 1, 1<q<p, 1<m<L.

If the recursively filtered binary sequences were stacked according to threshold
value, then the interpretation of this property is that a one occurring at some
level implies all the binary sequences of smaller threshold levels are also one.
FProof by induction: We first note that by Property A.l this claim is true at
position one of the signal. If assuming that the property holds at positions one
through m-1 implies that it is valid at position m, we then know by induction
that it holds for any position of the signal. So assume that m is fixed and
xP(n) = 1 implies x}(n) = 1 for all q such that 1<q<p and !<n<m—1. If for
some n between one and m-1 we know that xP(n) = 0 then we cannot say
whether x3(n) is 0 or 1 for 1<q<p. That is, xP(n}) =0 kimplies that
xXn} > xP(n) = 0 for any 1<q<p. In other words the number of ones in the
sequence xP(m—n),...,xP(m—1) can only stay the same or increase as the
parameter p is decreased to q, 1<q<p. This allows us to conclude that if



 L=x(m)

. | : medlan{ xrp(I’I‘i"n) XP(m— )t&( ) .. ,td’(m+n) } v
TR | o

1 = nledla;n'[xq(m*-n) . .b x‘l(m—l-) td’(m) ,t(f’(m+n) ] - (A6) :

1larly by the deﬁnltlon of the threshold decomposrtxon we know that
tf(n) = 1 impli

number of ones in - the wlndow cannot decrease when we replace t(l’( n) wrth }
tg(n) in Equatlon (A.6). This leads to - ' '

1 ’=_m'edian[fx,q(m—.n), oo xM(m1) tg(m), - ,‘té‘(m+n) ]

= x}(m)

jfor 1<q<p Summarxzmg, Property A 2 holds at posmon m whenever it holds
g for posmons one through m-1.. But, as was noted at the begmnlng of the proof, .
Property A.2 always holds at position one of the 51gnal By mductlon on m,

‘the proof of Property A2is complete L :

l:l | | |
Property A.3: If the ﬁrst m-l posmons of the . 51gnal can'be "sneciess'fully
‘decomposed and reconstructed for a recursive median . ﬁlter then X ( )=11if
and only 1f ¥(n n)>i, 1<n<m—1.. That is, if ' . R

y{m) = f{ x,‘(n),':l <i gk—r]

= an(n ] - S : Lol e (A7) :
- for all n.such: tha,t 1<n<m—1 where m is any fixed: 1nteger from two to- the

mgnal length L, then x im) =1 if and only if y(n)>1, 1<n<m-1.

- Proof: Begin _the proof by thresholdlng the recurswely ﬁltered values‘
'y,( ) for 1<n< m—l This gives for each i a sequence ti(n ) where - '

' that to n) =1 for 1<q<p and. 1<n<L; Therefore, the
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1 Lify(n)>i

tri(n)‘ 6 else (A.8)
Using the assumptions of this property given in Equation A7), we obtain
k=1
v Y xMn)>i
; . Lo q:i
t(n) = 0  ,else
Now. invokmg Property A.2, the pr‘evioﬁs equation reduces to
o j itxim) =1
t,"l(n) “ 1o ,else - (A-9)

Combining Equations (A.8) and (A.9), we have x/(n) =1 if and only if
vi{n)>i,1<n<m1. | - |

o ’ .

This result is similar to Lemma 2 for standard median filters. However, it is
important to note that we assumed the decomposition worked for the first m-1
posztions

Property A.4: If the first m-1 positions of the signal can be successfully
decomposed and reconstructed for a recursive median filter then so can the

m'th position.
Proof: First note that because the same hypothesis is used any results from the

proof of Property A.3 can be used in thls proof Examine the recursively

filtered binary sequences at position m

xi(m) = median{ xi(m=n), . .., x}(m~1), té(m)? ..., t4(m+n) { (A.10)

1 1f Vx‘(m—n ) + Et0m+n)>n+l'

n=1 n=0

0 if zxg(m—n) + ztg(m+n) <n+1
n=1 ‘n=0 _




= I[ zn:x,i(m—n) + zn:t(i,(m-*-n) >n+1 }

n=1 n=0

= I{ anxg(m‘ﬂ) 2 ntl- ita(m+n) ]

:. n=1 ) n=0

, .
= I{ At least n+1- ) tg(m +n) elements in
n=0

x{(m-n), . .., xi(m—1) equal one

n=0

. n . i
x}(m) = Ii At least n +1— Y to(m +n) elements in ’

V(m-n), ..., y(m=1) are >1i ]

The analysis of the filtered version of the original signal follows

y.(m) = median{ y(m-n), ...,y (m-1), a(m), ... ,a(m+n)

Now using Property A.3 we can change the filtered threshold values in the
argument of the indicator function to the filtered values of the original signal
denoted by the y/'s. :

(A.11)

(A.12)



= maxg 0,i: At least n+1 of y(m—n}, ..., a(m+n) are >i

Using the threshold decomposition, we know that the number of
a{m), ..., a(m+n) which are greater than or equal to i is given by

En: ty(m-+n) . Therefore,
=0

no.
y4im) = ma,x{ 0, i: At least n+1—% tj(m+n) elements in
: n=0

Yr(m—n)i SRR yr(m*l) are > 1 }

y.(m) = max{ 0, i:I( At least n+1~- 3] tg(m+n) elements in

n=0
y{m-n), ..., y(m=-1) ai‘e >1 )‘—_— 1 ] (A.13)
and by Equ.ation {(A.11), we have .
y'i.(n%) = n;lax{"(),v i:xj(m) =1 }
Using Pmpefty A2 we convert this -t(v) a sum

' k-1 |
yoAm) = 3 xy(m)

i=1

0

Property A.4 states that if the threshold decomposition and reconstruction
works for the first m-1 positions of the signal then it works for the m’th
nosition. Using Property A.1 we know the function f(*) always works for
recursive filters at position one of the signal. Therefore the combination of
these two properties provides an inductive proof that the threshold
decomposition technique using recursive filters works at any position of the
signal. The proof of Theorem A is complete.




Since recursive median filters converge in one pass, the algorithm
introduced in the preceding theorem has many practical advantages over the
algorlthm using the standard median filter. A simple parallel architecture ‘with
one binary recursive median filter preceded by a threshold device may be used
for each level.

_ We note here that a simple modification of the. proof of Theorem A shows
that the same results hold if we substitute any n’th order operation for the
median operatlon Thus, fast 1mplementa,t,‘;ons and analytically useful '
decomposmons exist for these ﬁlters as well B



: Appendix B
Multidimensional Ranked Order Operations

Assume, as always, that the input signal is a discrete sequence of length L
which takes on the value a(m) at position m, 1<m<L, and that for each m,
a(m) is quantized to one of the k integer values 0,1,....k—1. Let ¢5(a,m) be the
output at po‘si'tion m of a rank r(m) and window shape w(m) filter applied to
the input sequence a(m). The window shape is allowed to change with
position. The results of the following analysis are therefore valid in
multidimensional applications. For convenience, let N(m) denote the number
of positions in the window w(m). The filter at position m can be written as

¢I(a,m) = the r(m)th largést element of § a(p): p € w(m) (B.1)

Define the threshold decomposition of the original signal at position m to
be the set of binary sequences ‘

{1 if a(m) > i

0 ,fam)<i (B-2)

to(m) =

with 1<m<L and 1<i<k-1. Applying the ranked filter to these thresholded
values gives another set of binary sequences

¢L(td,m) = the r(m)th largest element of [ td(p): p € w(m) ] (B.3)

The remainder of this Appendix is devoted to the development of three
properties of filters with position dependent window shapes and ranks. These
three properties lead directly to a superposition principal for generalized rank
filters. '

" In the following proofs it is often convenient to use the indicator function
of the event A, which is given by
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R Al A is true
A) =10 ifAis false

The following property, although easily shown, allows’the filtered binary
sequences to be specified at all threshold levels by knowing the highest
threshold level at which a one occurs.

Property B.L: If ¢I(td,m) = I then ¢}(tdm) = 1, 1<q<i
That is, if the filtered threshold value is one at level i, then it is one for all
levels less than 1.

Proof: First examine the output of the filter applied to the threshold
decomposition of the input signal. For any fixed i, 1<i<k-1,

$I(td,m) = the r{m)th largest element of l to(p): pEw(m) }

11 Jif at least N(m)+1-r{m) of {t}(p): p € w(m)) equal one

0 ,if at least r{m) of (t}(p): p € w(m)) equal zero

= I{ at least N(m)+ 1—r(m) of (t{(p): p € w(m)) equal ohe } (B.4)

Which by the definition of threshold - decomposition, see Equation (B.2),

becomes
= I{ at least N(mj}+ 1—r(m) of (a(p): p € w(m)) are > i } (B.5)

Using Equation (B.5) we know that if
| 1= ¢y(te,m)
then

1= I%E at ieast N(m) + 1~r(m) of‘(a(p): pye w(m)) are > i ]

which implies for any q less than or equal to i

1 - I{ at leals’t N(m) +1ff(m) of (a(p): lpr(m)) are > q ]




The relation of the binary valued, ranked order filtered threshold
sequences to the output of the filter applied to original k-level signal is
provided by ; '

Property B.2: There exists a mapping f(+) from the set of filtered threshold
- decomposed ' sequences qﬁv’v(té,m), 1<i<k-1 to the signal space of k-leveled
signals such that ¢%(a,m) = f(¢y(tg,m), 1<i<k-1). ‘

Proof by construction:

¢I(a,m) = the r(m)th largest element of { a(p): p € w(m) }
= ma.x{ 0,i: At least N(m)+1-r(m) of (a(p): pE€w(m)) are > 1 ]

E max{ 0.(A lesst N{m)+1-(m) of (alp): p € w(m) are > i/=1 ] (B5)
Combining’ Equations (B.5) and (B.6)
silam) = maxl 0 gi(thm) = 1 ]

which by Property B.1 implies

S |
ula,m) = Y @y(tom) (B.7)
i=1

= f(p5(td,m), 1<i<k=1)

O

Any rank value can be obtained by summing the corresponding threshold
decomposed rank values over all possible threshold levels. In loose terms, the
function f(+) stacks the binary signals ¢I(td,m) on top of one another starting
with i=1. The value of the output at position m is then the highest level at
position m in the stack at which a one appears.

The function f(*) constructed above is shown to be the inverse of the
threshold decomposition by .
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Property B.Zi;» The binary sequences t{(m), 1<m<L, and 1<i<k-1, obtained
by thresholding ¢y(a,m), 1<m<L, are identical to the filtered threshold values
of the original signal ¢%(t{,m), 1<m<L, and 1<i<k-1, (see Property B.2).

Proof:

1 if g5{a,m) > i
0 Lif¢pl{am) < i

Using Equation (B.7) from the proof of Property B.2, we obtain

k-1 :

1 Y oltgm) > i
. ; qzl
ti(m) = 0 ,else

by Property B.1
1 if ¢iftem) = 1

0 Lelse

= pIftim)
]

The above results show how one pass of a generalized rank filter over the
input signal is equivalent to first thresholding the signal then filtering each
threshold sequence and finally reconstructing the output using the function
f(+). This operation can clearly be repeated for a series of generalized ranked
filters. A simple inductive argument based on the fact that f(+) and the
decomposition are inverse operations between the binary and k level signals
shows that the intermediate reconstructions can be omitted. These results are
summarized in

"Theorem B: The output of a series of ranked order filters with position
dependent window shapes applied to a k-level input signal is identical to the
superposition, using the function {( ), of the filtered threshold decomposition -of
the input signal. '

This result provides-a new tool for both the implementation and the
analysis of ‘the ranked oreder filtering operations applied to arbitrary level
signals. Examples of this technique applied to recursive median, separable
median, and weighted rank filters are given in Chapter 2 of this Thesis.
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