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ABSTRACT

Median filters are a special class of ranked order filters used for smoothing 

signals. These filters have achieved- success in speech processing, image process

ing, and other impulsive noise environments where linear filters have proven 

inadequate. Although the implementation of a median filter requires only a sim

ple digital operation, its properties are not easily analyzed. Even so, a number 

of properties have been exhibited in the literature.

In this thesis, a new tool, known as threshold decomposition,^ introduced 

for the analysis and implementation of median type filters. This decomposition 

of multi-level signals into sets of binary signals has ted to significant theoretical 

and practical breakthroughs in the area of median filters. A preliminary dis

cussion on using the threshold decomposition as an algorithm for a fast and 

parallel VLSI Circuit implementation of ranked filters is also presented*

In addition, the theory is developed both for determining the number of 

signals which are invariant to arbitrary window width median filters when any 

number of quantization levels are allowed and for counting or estimating the 

number of passes required to produce a root- i.e. invariant signal, for binary sig

nals. Finally, the analog median filter is defined and proposed for analysis of 

the standard discrete median filter in cases with a large sample size or when 

the associated statistics would be simpler in the continuum.



CHAPTER 1 
INTRODUCTION

The purpose of most communication systems is the successful transmission 
of information. Even when the information is perfectly received some filtering 
may be necessary to prepare the signal for additional processing or to enhance 
the signal for human interpretation. Examples of applications where 
enhancement and noise free processing can occur include image processing and 
pattern recognition. It is more often the case, however, that some random 
element known as noise influences the correct reception of the signal. In order 
to design a “better” communication system, it is necessary to define an 
appropriate measure of error and a Statistical niodel for the noisy system. This 
mathematical model is then used to determine the optimal technique for 
filtering the received signal. Frequently, it is too difficult or impossible to 
optimize over all possible techniques and so attention is restricted to finding 
the optimal technique within a class of filters. The filters in thfis more 
restrictive class should have some common mathematical^properties which 
simplify the analysis necessary to design optimal filters within the class.

The class of linear functions has many properties which simplify the 
analysis necessary to design filters- This has alloweda rich theory for the 
design and implementation of optimal linear filters to be developed. An 
operator |>(*) is said to be linear if £(aX+bY) = a*£(X) + b*7„(Y) fox any real 
numbers a and h and inputs X and Y. This is known as the superposition

property. From this we see that if X — a^Xj, then £(X) can be calculated by

finding ai£(Xj) and summing over all i. At first this ttiay seem an incredible 
increase in computation, however, by proper selection of the decomposition of

X into ajXj a reduction in total computationscan sometimes be achieved.

This is true whenever the £(Xi)' s are very easy to compute relative to £(X).

Exploitation of the superposition property has led to the development of 
many mathematical tools which simplify the description and design of linear 
filters. For instance, a linear system can he represented as the convolution of
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the input signal with the impulse response of the system. This representation 
can also be transformed to other domains. Fourier transform techniques are 
effective for designing filters when the “true” signal and the noise are spectrally 
separate. In short, the design and characterization of linear filters are well 
developed areas.

As expected, however, the best linear filter which can be designed for the 
mathematical model is not always the optimal filter for the model or for the 
application. Reasons for this Sack of optimality include incorrect noise models, 
changing noise environments, and applications where the linear filter 
assumption is not appropriate. The underlying problem is that when most 
models are made simple enough to calculate optimal filtering procedures, they 
become inadequate approximations to the situation being modeled. In 
addition, there is the possibility of changing noise characteristics. When this 
occurs, even an optimal linear filter may be unable to adapt to the different 
noise when implemented. In short, many applications are not well modeled by 
linear systems', or require some type of robustness-that is, the ability to perform 
well under various noise conditions. .

Demonstration of additional weaknesses of linear filters requires a more 
precise definition of “filtering” and the object to be filtered. For the purpose of 
this thesis, a filter is defined by, sliding a window across an input signal. At 
each position of the window the filter output is determined by some 
mathematical function operating exclusively on the values in the window. An 
example where the function is linear and is applied to a discrete time signal is 
provided in Figure 1.1. For this example, a constant window width of five 
values and the averaging operation, which is linear, define the filter.

Any other function could have been chosen but this simple averaging filter 
shows some of the shortcomings of linear filters. In image processing, linear 
filters tend to lengthen ramps, change step functions to ramps, and be sensitive 
to impulsive type noise [l]. This results in filtered images which appear blurred 
and unsharp. The “desired” output shown in Figure 1.1 is based on what the 
human eye prefers to see in images and the intuitive notion that statistical 
outliers should be discarded as bad information. This shows that other filters 
are needed. An important question is how to find them, since removal of the 
linear constraint causes great difficulty.

Perhaps the easiest approach to developing a filter with the intuitive 
properties described in the preceding paragraph is to start with a simple filter, 
analyze its weaknesses, and then propose modifications which will give the 
desired properties. For simplicity we select the averaging filter as the building
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block. As was noted before, the averaging operation is an ineffective filter for 
impulsive type noise and for signals with sharp edges. The underlying 
mathematical reason for these sensitivities is that the arithmetic mean of N 
points can be completely controlled by just one of the values in the sample.

Let X = N
Xs denote the average of Xlr..,XN, then solving for X1? we have 

i—!
_ N

X,=NX-EXi
i=2

Therefore if X2, . . . ,XN are given we can find an Xj using the preceding
- ■ ■ _ l N . ■ • _
equation such that X = — Xj for any desired X. One method used to

^ i=i
stabilize the arithmetic average is to eliminate from the summation the 
extreme values-that is, the values which are very large or small compared to 

..the rest of the sample. To accomplish this it is necessary to rank the X/ s.
A specific algorithm for stabilizing the estimate of the mean is the alpha 

trimmed mean [2], denoted by X^ and defined by ■
■ | N-faN]

X“ = N^2-[aN] i=|S] + lX(i)

where [•] denotes the greatest integer function, ®<a<0.5, and X^, . . . ,X(Nj 
are the ordered values of the sample Xj, . . . ,Xj^. That is, the sample is 
reordered from smallest to largest and labeled X^ through X^y As an 
example, consider the. case where N is five and the sample is {-1,3,28,2,8}, then 
X(1)=-l, X(2) = 2, X(3|=3, Xw=8, and X(5)=28. Filtering is done by 
performing this ranking operation at each position of the window and then 
taking the average of the middle most values as determined by alpha. We note 
that alpha equal to zero is simply an averaging filter. If alpha is a half and N 
is odd, say N=2n + 1, then we have the other extreme case where the averaging 
operation is eliminated and the output of the trimmed estimator Xo5 equals 
X(ri-H) which is known as the median of the sample.

The median is well known as the minimum absolute error estimate and is 
even the maximum likelihood estimate of the mean for the two sided 
exponential process [3]. It is also a robust nonparametric estimate of the 
median for distributions which are symmetrically distributed about their 
medians [4j. An example of this is the problem of estimating the median of a 
Cauchy distribution from a set of independent, identically distributed (i.i.d.) 
samples. In this example, the mean of the underlying distribution is undefined 
and the arithmetic average as an estimate is, as expected, totally unstable.



The sample median is an alternative estimate for the center of the distribution. 
Motivated by these statistical properties of the median operator, Tukey[5,6] 
proposed the median as a robust sliding window filter which would reduce the 
effects of statistical outliers while smoothing "si^als'r-'-'.'0e^pite.;the known 
properties of the median Us an estimator, the mathematicsnecessary to analyze 
the effects of median filters on realistic signals are not simple extensions to the 
existing theory [1-llj. Output distributions of median filters canb-e nontrivial 
to derive and difficult to comprehend [7].

Even tffpugk the underlying theory is not well developed, the median 
filter’s use as a practical filter has increased because it is easy to implement and 
appears to work well in many applications. As an introduction to the 
properties of the median operator, we note that a window width five median 
filter gives the desired results for an image processing filter as shown in Figure 
1.1. Specifically, the median filter with an appropriate window width, for this 
example window width five, removes impulses but allows edges and ramps to 
pass unchanged Signals which do not change when median filtered are known 
as root signals of the filter. Because of these properties, an effective use of 
median filters has been the reduction of high frequency and impulsive noise in 
digital images without the extensive blurring and edge destruction associated 
with linear filters [1]. Figure 1.2 demonstrates the effectiveness of the median 
filter in a particular real image whiere linear filters failed. Other applications 
include the smoothing of noisy pitch contours in speecli signals and data 
compression using the root signal properties combined with a block truncation 
coding (0TO) technique [8-10]. Several fast algorithms for implementing the 
median filter [9,11,12], make it an even more appealing tool for signal 
processing applications. :

The implementation of a Standard median filter requires a simple nonlinear 
digital operation. To begin, take a sampled signal of length L; across this 
signal slide a window that spans 2nd" 1 points. The filter output at each 
window position is given the same position as the sample at the center of the 
window and is set equal to the median value of the 2n + l signal sampies in the 
window. Start up and end effects are accounted for by appending n samples to 
both the beginning and the end of the sequence. The front appended samples 
are given the value of the first signal sample; similarly, the rear appended 
samples receive the value of the last sample of the signal. In Figure 1.3 we 
preseht sU example where a median filter of window width five, n =2, is applied 
to t signs! with three levels. The output is given for each pass of the median 
filter until a root signal is reached. It has been shown that any signal can be 
filtered to a root in a finite number of passes [13]. Summarizing, the basic idea



6

Figure 1.2
Median filtered output of a laser imaging systems



is to rank the samples in the window and select the median value as the filter 
output.

• • t tf • Original Signal
• • •
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Figure 1.3
Convergence ol $ median filter to a, root signal-

Although the algorithm is simple, the analysis and design of median filters 
is difficult because they are nonlinear. As was noted before, the median of the 
let this set as {-1+0,3+0,22 + 6,-
1 +3,6 + 2} we note that median{rl,3,22,_i)6} equals 3 and median{0,0,6,3,2} 
equals 2 but their sum is 5 not 3. This means, of course, that the superposition 
property and all the results implied by this property do not hold. The elegant 
techniques for calculating the response of a linear filter by decomposing input 
signals into sets of simpler signals, analyzing the response of the filter to these
siiriple signals, and then adding these individual responses together to obtain
the total response of the system cannot be use<^ ^ insure maior
point wis not overlooked, Tukey [5], even referred to the median filter as the
‘‘nohebperposable filter”. The complicated nnlnre of rnhlNe^ S^^^ and the 
lack of a superposition property have made this filter difficult to analyze and to 
design- Even though there is no general superposition property, any technique 
for decomposing input signals into sets of simpler signals which can be 
separately median filtered and then recombined wpuld be significant in 
simplifying the analysis of median filters.
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In this thesis, a special type of superposition is shown to hold for median 
filters. Using a particular decomposition of the input signal known as the 
threshold decomposition, the output of the filter can be determined by 
separately filtering each of the decomposed signals and then adding their 
resulting outputs. This powerful new tool allows problems in the analysis and 
the implementation of median filters for arbitrary level signals to be reduced to 
the equivalent problems for binary signals. Since the effects of median filters 
on binary signals are well understood, this technique has theoretical, practical, 
and intuitive benefits. ■

The theoretical analysis of the threshold decomposition technique is 
presented in Chapter 2, It is also shown that this decomposition-superposition 
scheme is also valid for a general class of multidimensional ranked order 
operators as well as for any linear filter. Because some of the proofs are 
similar, several specific proofs are relegated to the Appendices. The 
mathematics of the decomposition also lends itself to an extremely parallel, 
versatile, and fast algorithm for the VLSI implementation of the median filter. 
Chapter 3 is devoted to describing this important result of the decomposition.

In addition to the threshold decomposition for median type filters, several 
results on the root properties and convergence rates of median filters are also 
given. These can be found in Chapters 4 and 5. In Chapter 6, the analog 
median filter is defined and proposed for analysis of the standard discrete 
median filter in cases with a large sample size or when the associated statistics 
would be simpler in the continuum.



We assume that the input signal is a discrete sequence of length L which 
takes on the value a(m) at position m, l<m<L. For each m, a(m) is quantized 
to one of the k values 0,l,...,k-l. Because every countable set of real numbers 
can be mapped in an order preserving manner onto the integers, there is no loss 
of generality. In addition, this representation is appropriate because most 
sighabprocessing tasks are now performed by digital computers.

The threshold decomposition is a technique for reducing a signal with k
possible levels to a set 
will show that this decomposition allows a superposition property for the 
nonlinear class of ranked order filters. Define the level i threshold

t m to be
1 ,if a(m)>i

to(m) = 0 ,if a(m)<i
(2.1)

with l<m<L and l<i<k-l. An example of this decomposition is given in

Figure 2.1. Note that because a(m) = £ t^m), the threshold decomposition is

a valid technique for breaking inputs to linear filters into binary signals for 
separate filtering. The output of the linear filter applied directly to the input 
process {a(m)} can be obtained by summing the filter output from all the 
{t(j(m)}. This is simply the superposition property of linear filters. In the next 
section, this decomposition is proven to induce a superposition property for 
median filters as well.
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Let ys(m) be the output at position m of a standard median filter with 
window width 2n + l applied to the input sequence a(m). Applying the 
Standard median filter to the thresholded values (t^m)} gives another set of
binary sequences

xs'(m) — median to(m-n), >, • , to(m), . . . ,t£

where start uj) and end effects are accounted for by repeating the first or last 
value of the signal as described in the Introduction* The relation of the binary 
valued, median filtered threshold sequence to the output ys(m) of the median 
filter applied to the original k-level signal is provided by
Lemma 2.2.1: There exists a mapping f(‘) froro the set of binary median 
filtered sequences xj(m), l<i<k~l to the signal space of k-leveled signals such
that ys(m) = f(Xs(m), l<i<k-l )*
Proof by construction: Define 1(A) to be the indicator function of the event A,

I
I ,if A is true
0 ,if A is false

Examine the output of one filter pass on the 
decomposition sequence at any position m, l<m^L

xs'(m) = median! t|(m-n), . . . ,t^(m), . . . ,t<{(m+n)

level i threshold

1 ,if £ *o(m +i) > n +1
j=-n •

0 ,if £ td(m+j) < n
j=~n v

£td(in+j) > n + 1 
. j=~n
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= I At least n + 1 elements in t^m h), . • • »t®(ini”n) equal 1

At least n + 1 elements in , a(m+n) are > i (2.5)

By Equation (2.5) we see immediately that if xsp(m) - 1, then for at least n + 1 
positions in the window the signal value a(j), m-n<j<m+n, is greater than or 
equal to p. But this implies that at least n + 1 a(j)’s in the window are greater 
than or equal to q for all q < P- That is, x’(m) = 1, l<q<P- This gives us
the first property of the threshold decomposition.
Property 2.2: If xsp(m)'-. = '1 then x^m) = 1 for l<q<p.
We can now describe a mapping to the y’s from the x’s. For any m such that 
l<m<L,:we have .. .-v v:.T

yg(m) ^ median{a(m~n), . . • , a(m), . • . , a(m +n)}

= max{0; i : At least n + 1 a* s in window are > i) [

= max{0, .1:1(At least n + 1 afs in window are > i) = l} 

The combination of Equations (2.5) and (2.6) yields

ys(m) max .0, i: Xg(m) — 1

(2.6)

and by Property 2.2 of the decomposition

V Yslin); - &*(m):, ■ (2.7)

□; :'"'V......... - : . ■. ; 'v .

In loose terms, the function f(*) stacks the binary signals Xg(m) on top of 
one another starting with i=l. The value of the output at position m is then



the highest level at position in in the stack at which a one appears.
ThP function f(‘) constructed above is shown to be the inverse of the 

threshold decoiiiposit ion by -
Lemma 2.2.2: The binarysequences ts*(m), l<m<L, andl<i<k~l, obtained 
By thresholding ys(m), l^mfCL, are identical to the binary sequences xs(m), 
i<rn<L, and l<i<k^l, from Lemma 12.1.

Jiih) -
1 ,if ys(rii)>i 
0 , else

Using Equation (2.7) from the proof of Lemma 2.2.1, we obtain

tj(m)

k-l '
E
q=l

i $ f}x^(m)Si

0

■J.. ■'/■■■

Property 2.2 allows a reduction to the following

s(m) -
1 ,ifxj(m) = 1 

0 ,<

zz x 1/■-' As

□
The above results show how one pass of a medianfilter over the input 

signal is equivalent to first thresholding the signal then filtering each threshold 
sequence and finally reconstructing the output using the function f( ). This 
operation can clearly be repeated for each pass of the median filter until a root 
signal is obtained. A simple inductive argument shows that because the 
decomposition and superposition are inverses, the intermediate reconstructions 
can be omitted. ;

Tiieorem 2.2> /■The ro'ot-''si^al'-/associated'; with'a’'window- width 2n +1 median 
filter can be obtained by thresholding the original signal, filtering the resulting 
binary signals to roots, and then mapping these binary roots back to the k-level 
root signal usihg the function f(*) constructed in Lemma 2.2.1.

Ah exaihple Of this technique applied to a three level signal with a window 
width five median filter is given in Figure 2.2. The same results are obtained 
as when the filter was applied directly to the signal-see Figure 1.3.
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Median filtering by threshold decomposition.
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This result provides a new tool lor both the im|)lem^nl;ation and the 
analysis of the median filtering operation applied to arbitrary level signals. An 
important and surprising consequence of this Theorem is that the 
reconstruction function f(*) is a linear operator-the arithmetic suih. This linear 
superposition function seems out of place with the nonlinear median operator. 
Perhaps even more surprising is that this same technique is valid for a general 
class of ranked Order operators. We begin the description of this more general 
class by showing that the decomposition is valid for recursive median filters.

Recursive median filtering [14] is a modification of the standard process in 
VVhich the center sample is replaced by the computed median before the 
window is shifted to the next point. Therefore, the n left most samples in a 
window are computed medians. If {a(m)} is the input sequence to the filter, 
1 <m<L, then letting yr(m) be the output of the window width 2n + l recursive 
median filter, we have

yr(m) = median{yr(m-n),...,yr(m-l),a(m),...,yr(m+n)} (2.9)

Figure 2.3 illustrates the results of applying a wihdoiV width five recursive 
median filter to the same signal used for the standard filter example of Figure
1.3. :".yyy /y-y v y y ;■ ,.y;y y'y^ v:';-■ /yyy /

• • • • > 0rigin^l ^ignsalyy.

y-;.hq:> y;; #■ • o.»Un; ;-y
; i iii i i i i i i i i i i i -j 'y -

■" Pass fine
V V;.y -y ■ 2n+l=5

yyyyy-\y ■-•■<»yy y y. yy.y y y:■
I I 1 I I I I 1 I I t i I I I ]

Figure 2.3
iConvergence of a recursive median filter to a root.

Note that only one pass was required to reach a root with this recursive median 
filter. Also, for this signal the root of the recursive filter is different from the 
root of the standard filter.
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Recursive median filters are known to have different properties than 
standard median filters [14]. For instance, the output after one pass of a 
recursive median filter is always invariant to additional passes of the same 
filter- i.e., it is a root. As was shown by■ the examples, .this root may not 
equal the standard median filter root for the same signal. Furthermore, the 
output of a recursive median filter is affected not only by the window size but 
also by the direction the window slides across the signal. If a decomposition 
and superposition algorithm similar to Theorem 2.2 can be found for recursive 
median filters we could compare this modified filter with the standard filter by 
analyzing the simpler binary signal case.. This is important when evaluating 
whether the recursive or the standard median filter is appropriate for a specific 
application. In addition, the validity of the threshold decomposition would 
reduce many problems in the analysis of recursive median filters to their 
corresponding binary problem. In Figure 2.4 the threshold decomposition 
technique is used to filter our test signal with a window width five recursive 
median filter. The output is identical to the results obtained when filtering the 
signal directly-see Figure 2.3. In the following Theorem a property analogous 
to the result-of the preceding section is given for recursive median filters.
Theorem 2.3: The root signal associated with a window width 2n + l recursive 
median filter can be obtained by thresholding the original signal, applying the 
recursive median filter to the resulting binary signals, and then mapping these 
binary roots back to the k4evel root signal using the function f(-) constructed 
in Lemma 2.2.1 of the preceding.section.

The proof of this theorem is lengthy. It is developed as a series of 
properties for recursive median filters. To avoid complicated details it is found 
in Appendix A. The inductive parts of this proof can be eliminated by showing 
that the threshold decomposition is valid for a more general class of filters 
which contains the recursive filter as a special case.

Another reason for relegating the proof to the Appendices is that it is also 
a simple consequence of a much more general theorem. This theorem 
demonstrates that the decomposition and superposition properties of 
thresholding are valid for general multidimensional ranked order operators. Its 
proof is found in the next section. Because the threshold decomposition and 
the superposition are inverses, we can represent recursive filters as cascades of 
simpler filters. This is done for the recursive median case as an example in 
section 2.5.: • ' ■ . ■ .
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2.4 Multidimensional Ranked Order Operations
Modifications to the standard type ranked filter described above have been 

proposed in the literature [2,14-16]. In this paper we are particularly interested 
in filters where the output rank parameter r can change as the window slides 
across the signal. We say that these filters have an adaptive rank parameter; 
when the window is centered on the m’th position in the input signal, the 
output rank is r(m). In other words, the rank parameter r is a sequence r(m), 
l<m<L.

So that our results will hold for multidimensional input signals we also 
allow the window shape to change with position. When the filter output 
position is m, l<m<L, we let w(m) denote the set of positions which are to be 
considered in the window. This technique for representing higher dimensions 
with pointers of a single dimension is demonstrated by the examples in the 
next section. . :

For convenience let N(m) be the window size of the filter when it is at 
position m; that is, the number of positions included in the window w(m). Let 
the m’th output of this position dependent window shape and ranked order 
filter applied to an input signal a(m), l<m<L, be denoted by <^(a,m). Then 
by, definition . A

0£(a,m) = the r(m)th largest element of a(p): p€w(m) (2.10)

To provide a concrete example of the use of the parameters N(m), r(m) 
and. w(m) in the definition of a filtering operation, consider the standard 
median filter. A standard median filter [13] has a constant window size of 
N(m) equal to 2n + l, where n is any fixed integer. Its output rank parameter 
does not vary with position, so that r(m) =n + l. The definition of the 
window sequence w(m) would be straightforward - 2n + l consecutive points 
centered about the current window position m -- if it were not for the start up 
and end effects associated with finite length signals. To account for the start 
up effects, the first point is repeated n times at the beginning of the signal so 
that a symmetric window is defined for each of the first n points in the signal 
[13], A similar procedure is followed at the end of the signal, the last point is 
repeated n times. In order to account for these end effects we can define w(m) 
as
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w
(1,,.,,1,2,.;.,Hi,...,m+n) ,if l<m<n 
(in-n,...,m,...,m + n) ,if n<m<L<-n
(m-n,..,,m,...,L-l,L,...,L ) ,if L-n<m<L

Any standard median filter can be described using the window shape sequence 
in Equation (2.11). We can generalize tp standard ranked filters by changing 
the output rank parameter r(m) to any constant r, 1 < r < 2n E l.

This notation defines a very/ general class of ranked order filters. For 
instance, multidiinensidnal ranked filters with any shape window are in this 
class. This includes the square and cross window median filters used for image 
processing [1,7]. By using a combination of two filters applied in series, 
separable ranked filters can also be described. In the next section we show how 
these and other filters can be implemented and analyzed with the threshold 
decomposition. In Section 5, we show how recursive filters in any dimension 
can be described with this notation.

As before, assume that the input signal is a discrete sequence of length L 
which takes on the value a(m) at position m, l<m<L, and that for each m, 
a(m) is quantized to one of the k integer values 0,l,...,k~l. Let dw(a,m)be the 
output at position m of a rank r(m) and window shape w(m) filter applied to 
thh input sequence a(m). The window shape is allowed to change with 
position. The results of the following analysis are therefore valid in 
multidimensional applications. For convenience, let N(m) denote the number 
of positions in the window w(m). The filter at position m can be written as

p^(a,m) — the r(in)th largest element of a(p): p e w(m) (2-12)

Define the threshold decomposition of the original signal at position m to 
be the set of binary sequences

i ,ifa(m) >v
0 ,if a(m) < i

iyith l<m<k and l<i<k-l. Applying the ranked filter to these thresholded 
values gives another set of binary sequences

* i <

= the largest element of v t^p); p 6 w (2.

Appendix B is devoted to the development of three properties of filters 
with position dependent window shapes and ranks. These three properties
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directly to a superposition principal for generalized rank filters. Because the 
derivations are similar to the standard median filter proofs, they are left in the 
Appendices.

The relation of the binary valued, ranked order filtered threshold 
sequences to the output of the filter applied to original k-level signal is 
provided by
Property B.2: There exists a mapping f(*) from the set of filtered threshold 
decomposed sequences ^^(tg,m), 1^-i^k-l to the signal space of k-leveled 
signals such that

' i=l

The above results show how one pass of a generalized rank filter over the 
input signal is equivalent to first thresholding the signal then filtering each 
threshold sequence and finally reconstructing the output using the addition 
function f(*). This operation can clearly be repeated for a series of generalized 
ranked filters. A simple inductive argument based on the fact that f(*) and the 
decomposition are inverse operations between the binary and k level signals 
shows that the intermediate reconstructions can be omitted. These results are 
summarized in
Theorem 2.4: The output of a series of ranked order filters with position 
dependent window shapes applied to a k-level input signal is identical to the 
superposition, using the function f(*), of the filtered threshold decomposition of
the input signal.

This result provides a new tool for both the implementation and the 
analysis of the ranked order filtering operations applied to arbitrary level 
signals. Two important applications of this result are the simple representation 
of recursive ranked operators and separable image processing algorithms as 
cascades of <j> filters. A separable image processing algorithm is one in which 
processing is done row by row and then column by column. In the next section 
this technique is demonstrated for two popular filters; the recursive median 
and the separable median filters. Comparison of this technique with the 
complexity of the direct proof, found in Appendix A, shows that even though 
the proof for the > filters was direct, the results can be used to show that the
decomposition is valid for much more involved filtering schemes.



2.5 Ile^iirsive and Sfeparable fttedian JFilteira
In this section we demonstrate how several different filters can be put into 

the form of ranked Order Operators with position dependent window shapes and 
ranks. Two popular filters were selected: recursive median filters and separable 
rrSfian filters for images. By Theorem 2^4, any filter which has a general 
ranked order filter representation can be implemented or analyzed using the 
threshold decomposition technique.

It is shown directly, in Appendix A, that the threshold decomposition 
technique is valid for recursive median filters. However, using the results of the 
previous section, we present an alternate proof by showing that recursive 
median filters are included in the class of ranked Ofder operators with position
dependent window shapes. To do this we need a bank of filters. Each filter in 
the bank is a median filter. That is, it calculates the median of the values that 
are specified to be in the window. The window, however, changes shapes with 
position and is also different for each filter. Let w4(m) be the set of positions in 
the window at position m of tlm signal for filter t in the bank of filters, 
1 <m<L and 1 <t<L. These filters are applied sequentially to the entire iuput 
signal with t=l the first and t=L the final filter in the bank. The following 
definition of these windows results in a bank of filters whose combined effect is
equivalent to a recursive median filter of window width 2n + l.

w — <

(l,...,l,2,...,m,...,m+n) ,if l<m = t<n 
(m—n,...,m,.,.,m4n) ;if n^ m^t ^L—n
(m-n,...,m,...,L-l,L,...,L ) ,if L-n < m -1 < L 
(m) 'v, if'm. 5* t,.

Essentially, the signal is passed unless m=t. For the case m=t, the median of 
the nearest 2h + l points is calculated. Because Of the preceding filters in the 
bank, the n points with indices less than m are computed medians. This bank 
of filters shows that recursive median filters have the threshold decomposition 
property^ By Property B.3 of the Appendices or the r^ults of Section 2i2> we
know that the intermediate reconstructions can be eliminated and the recursive
filter cah be implemented directly on the binary threshold sequences.

Another popular median-type filter is the separable filter used fpr image 
processing [7]. This filter is actually a combination of several filters. Suppose 
we have an image which has M rows and L columns, and is represented by the 
sequence a(i,j), l^i^L and 1 ^j^M. With a separable filter, each row is 
median filtered as a separate signal then the output is filtered column by
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column in the same manner. We can represent this as a sequence of median 
filters with constant window width 2n + l but position dependent window 
shapes wt(m), l<t<2L, where wfc(m) equals

[(t,l),...,(t,I),(t,2),...,(t,m),...,(t,m4-n)] ift<L;l<m<n
[(t,m-n)r..,(t,m),,..,(t,m+n)] if t<L; n<m<L~n
[ (t,m—n),...,(t,m),...,(t,L—l),(t,L),...,(t,L) j if t<L; L~n<m<L
[(l,t-L),...,(l,t-L),(2,t-L),...,(m + n,t-L)j if t>L; l<m<n
[(m-n,t~L),..>,(m5t-L),...,(m + n,t-L)] if t>L;n<m<L~n
[(■m-n,t-L),...,(L-l,t-L),(L,t-L),...,(L,t-L)] if t>L;L-n<m<L .

Just as two dimensions were used in the above example, the position dependent 
window shape allows for the implementation of ranked order filters in arbitrary 
dimensions.

The threshold decomposition has now been shown to hold for arbitrary 
dimensioned ranked order operators with position dependent window shapes 
and adaptive ranks. One ranked type filter not included in this class is the 
alpha trimmed filter which was discussed in the Introduction. In the next 
section, the special superposition property is shown to hold for weighted rank 
filters. The alpha trimmed filter is used as an example for this class of filters.

2.6; Weighted Rank.Filters
For ranked order filtering the output is a value in the window as 

determined by its associated rank among the other values. A generalization of 
this concept is to average a weighted combination of the ranked values in the 
window. Associate with each ranked value in the window w(m) a weight. We 
define the filter output y(m) by

N(m) . . ' .. , . x
y(m) = E hj^i(a,m) : (2-15)
■■■ ■' j=i ' ■■■'.

NJm)
2] hj'the jf th largest element of { a(p), p £w(m)}
j-k .

The only restriction placed on the weights hj is that they be finite. Obviously 
the ranked order or <j> filter is a special case where hj is 1 for j equal the rank 
r(m) and 0 otherwise. The following reconstruction principle is for weighted 
rank filters is shown directly •



Theorem 2.6: One pass of a weighted rank filter with position dependent 
window shape is equivalent to the f(*) reconstruction of the filtered threshold 
decomposed sequences.
Proof: As in the previous section, let a(m), l<nr<L, be the input signal and let 
t.^(m) be the threshold decomposition of the input signal. Begin by applying 
the reconstruction function tqrthe filtered threshold decomposed sequences.
For any fixed m,

J N(m) VvU' ■’ k-1 N(m)
f
tm ; : J i=l i=l ; V ■ :; C ,

N(m), i k-1 . .

I ;=i :■ ,

by Property B.2, see either Appendix B or Section 2.4, we have

□
Using the threshold decomposition for cascaded weighted filters piny not 

fee efficient- This is because the advantage of the decomposition is that it 
ientes bihary signals 4br the majority of the operations. With Weighted filters 
operating on binary filters we are not guaranteed a binary output. Because of 
the increasing number of possible levels there is no equivalence between the 
filtered threshold decomposed signals and the binary threshold decomposed 
filtered signals That is, the function f(*) and the decomposition are not 
inverses whenever the filter creates a level which is not ope of the original 
levels choseii for thresholding.

Xhe result containeid in Theorem 2.6 is still of interest* though, since it 
allows the threshold decomposition to be used on fflters which are cascades of 
rank filters followed by a single weighted rank filter. This greatly simplifies the 
implementation of these filters, which are essentially nonlinear edge preserving, 
impulse Suppressing filters followed by a type of linear smoother.

; The final type of filter that we exhibit here is the alpha trimmed mean 
liter. Tt|nnhe<l filters are an implementation of the intuitive notion that 
statistical outliers should not be used in computations. In each window
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position, the samples are ranked and a specified number of the smallest and 
largest values are eliminated from consideration before a statistic is calculated. 
Here the statistic being estimated is the mean. The relationship between alpha 
trimmed filters and median filters has been discussed in the literature [10]. By 
demonstrating that alpha trimmed; mean filters are members of the class of 
weighted ranked order operations discussed in the previous section, the 
threshold decomposition technique can be used for their analysis and 
implementation.

Let ya(m) be the output of an alpha trimmed mean filter at position m, 
l<m<L. Then by definition,

Nfm)
ya(m) = £ hf^w(a>m)

j=i
where

1 ,if a < j < N(m)~a

hi =
:{N(m)—2a)
O'. ,if j < a or j > N(m)~o;

Because the number of small samples and large samples which were removed 
from the calculation are equal this is known as symmetric alpha trimmed. This 
technique is purported to give a more stable estimate of the mean than a direct 
average. . :

■ 2.7 Summary of Results
The threshold decomposition and the set of binary signals perform the 

same function for ranked order filters that superposition and sinusoids perform 
for linear filters ~ they allow complex problems to be decomposed into simpler 
problems. This has very fortunate practical and theoretical consequences.

On the practical side, the decomposition has an important impact on the 
implementation of ranked order filters. It shows that a ranked order filter for a 
multi-level signal is simply a parallel connection of filters for binary signals. 
Furthermore, since the output of the ranked filter for a binary signal is found 
by counting the number of ones in the window and comparing the result to a 
threshold, these filters are trivial to implement -- complicated ranking is no 
longer needed. The possibility of VLSI implementation is apparent and will be 
elaborated on in the next chapter.



On the theoretical side, the decomposition shows that the analysis of the 
ranked order filter’s effects on multi-level signals is reduce*! to the much 
simpler analysis of binary signals. It is now clear that any of the properties 
which were limited to binary signals can now be extended lb a straightforward 
fashion to multi-level signals. Also, the difficult task of comparing different 
ranked order operators is now reduced to the binary signal domain.

These theoretical results should improve our understanding of Ike behavior 
of these filters; The practical results should lead to the use of these filters in 
piany new real time signal processing applications, particularly real time image 

processing.



CHAPTER 3
VLSI

The threshold deeorhipOsition technique presented in Chapter 2 allows any 
|a|ito or(fer filter to beimplemented as a parallel connection of binary ranked 
order filters. Although this technique is not an effective software algorithm for 
a multipurpose ephiputer, the parallelism of the algorithm and the simplicity 
of each of the parallel sections i§ amenable to VLSI implementation [17]. 
Because the actual filtering is done at the binary signal level this design is 
extremely fast and versatile. In addition, the actual layout can be modified in 
a straight forward manner to allow hardware implementation of a broad class 
of ranked filters.

The purpose of this chapter is to show how the threshold decomposition 
algorithm can be used to design a VLSI circuit for median filtering which is 
versatile* fast, and extremely parallel The exact nature of the 
implernehtation, including the algorithms for decomposition and superposition, 
are not included. The chip is described as an information system not ip terms 
of its gate or device level implementation. In Section 3.1 previous algorithms 
for fast median filtering are described and referenced. This is followed by the 
threshold decomposition algorithm. Then in Section 3.3 a novel technique is 
presented for the interconnection of median filter chips to increase the number 
of bits in the input sequence. These techniques are presented for median filters 
but can easily be extended to general ranked filters.

3.1 Previous Algorithms
Several fast algorithms exist for the implementation of mediae filters on 

multi-purpose digital computers [9,11,12]. Using our standard notation, an 
input sequence {a(m)} is mapped to an output sequence {y(m)} by a window 
width 2n + l median filter when

y(m) = median{a(m-n),...,a(m),...,a(m+n)}

The brute force implementation is to rank the values at each position of the
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window and select the median value as the filter output. Because the window 
sequentially slides across the input sequence, a significant reduction in 
computation is obtained by inserting the next input value into the already 
ranked set of values from the previous window and dropping the value which 
has shifted to a position outside the window. This means that, after
initialization of the pointers for the first window position, only one value need
be ordered at each of the window positions. Whenever the input signal takes 
on some set of values which is known before processing, say the k integers 0 to 
k-1, the algorithm can be made even faster by using bin sorts [12]. Because 
these techniques maintain a set of pointers to the ranked values they are
known as histogram algorithms.

An algorithm purported to be faster than the histogram technique was 
presented by Ataman, el ai [11]. Speed is obtained in this technique by doing 
as much of the ranking as possible on individual bits of the input words. This 
algorithm is, In fact, a special application of the threshold decomposition 
technique. The signal is partitioned only at the levels between bits instead of 
at all levels; The results are glued together by recombining these bit by bit 
operations into a complete word. A similar recombination technique can be 
foundAn Section 3.3 forinterconnecting filter chips.

As can be seen in the preceding discussion, the threshold decomposition is
useful in analyzing fast ranked filtering techniques. Because of the large 
number of binary sequences necessary to represent the input signal, the 
threshold decomposition algorithm is not recommended for software 
implementation on a multi-purpose computer. For example, eight bits would 
require 255 binary median filter sequences. The benefits of having this large 
number of binary filters operating simultaneously is realized in hardware, 
however, where this translates to a very parallel and fast design. Past 
hardware ranking implementations were based on compare and swap 
algorithms [18]. This new technique eliminates the ranking operation from the 
implementation of tlie filter. The resulting design is more versatile and allows 
a significant savings in time when modifications to the filtering operation are 
needed. This, of course, translates into an enormous reduction in the cost of
fabricating other chips for ranked order operations.
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3.2 Implementation of the Threshold Decomposition
Let the input signal be {a(m)}/tafcmg on the values of the k integers from 

0 to k-1. The output of a window width 2n + l median filter applied to {a(m)} 
is dehpted by Finally, the threshold decomposition of the input signal
into binary sequences is given by

The flow graph of this filtering system can be seen in Figure 3.1. The basic 
idea is to decompose an input sequence into a set of binary sequences, filter the 
binary sequences individually, and then combine the binary outputs for the 
many level filter output.

The decomposition and superposition operations a,re easier to implement 
than they appeal. For ihstance, the superposition need not be a full adder. 
This reduction in complexity is accomplished by correctly arranging the bit 
slices so that all the slices necessary to calculate specific output bits are 
grouped together [10]. Discussion of these characteristics of the 
implementation is delayed until after chip construction.

The remaining part of the algorithm is the binary median filter. Let

x (m) = median {tflm-nb. • • ^‘(m+n)} (^4)

be the binary output of a window width 2n +1 median filter applied to the 
level i threshold Sequence. Because these are binary values, the median can be 

rewritten using the indicator function !(*)•
x(m) — l|median{t‘(m—n),...,t'(ni'bn)} =l]

= l| At least n +1 of t11 s equal 4 ]

-I g a(m+p)>n-j-l
P'=-n

rhis means the binary median filter can be implemented with an adder and a 
:omparator-no ranking algorithm is necessary. A system diagram of this 
adding circuit can be seen in Figure 3.2. This design is easily modified for 
different window widths, that is, different n. A more appropriate YLSI circuit 
configuration for the binary median filter which uses a shift register and 
majority logic decoder can be seen in Figure 3.3.



Figure 3.1
Threshold implementation of a median filter.
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Figure 3.2
Binary median filtering scheme

a<m>aCm+n)

Figure 3.3 '
Binary median filter algorithm in hardware

Decoder

Shift



31

Armed with algorithms for the decomposition, the binary median filter, 
and the superposition operation, we are ready to explain why this is such a 
versatile design. A simple modification to a 2n + l median filter will enable it 
to do 2n-l, or smaller, median filtering as well. Let z(m) be the output of a 
window width 2n-l binary median filter, then

which is a window width 2n +1 median filter with one value in the window 
fixed at 1 and another value fixed at 0. This can be realized in hardware using 
the circuit of Figure 3.4 and setting pins A and B to 0 and 1, respectively. 
This, of course, can be extended to do any window width median filter which is 
smaller than 2n + l.

With a slight modification, setting the values A and B asymmetrically to 0 
or 1, certain ranked filters which are not medians can also be obtained using 
the same median decoder. In hardware, this can be accomplished by using pin 
inputs and having the window width control pins turn latches to these inputs 
on and off. .

The same results can be obtained by externally modifying the input 
sequence to the median filter chip. For example, the sequence ' -

as an input to a window width 2n +1 median filter would produce a coded 
version of the window width 2n-l median filter. Using our previous notation, 
the output sequence would be

where G denotes the garbage bits to be thrown away. When multiple passes 
are performed, the garbage bits must be replaced after each pass with the 0,1 
configuration of Equation (3.3). With multi-level signals, the 0’s and l’s would 
become the minimum and maximum allowed values, respectively. The 
hardware implementation is obviously better because it requires no external 
modification to the input sequence. In fact the user cannot tell that the same 
decoder is being used for both filters.

Many applications of median filters require repeated filter passes. 
Frequently the signal is filtered until it is invariant to additional passes of the

■ ’(n—1) , •
z(m)=I\ t*(m + p) > n

p=-(n-l)
(3.2)

(n—1) .
ll ;t,(m' + p)+0+l>n + l

. ,p=-(n—1)‘

t'(l) ,0,1, ti(2),...,t'(2n) ,0,1, t'(2n +1) (3.3)

z(l) ,G,G,z(2),...,z(2n) ,G,G, z(2n +1),...
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Figure 3.4
Multiple window width implementation.
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filter- t.e. a root. From the previous chapter, we know that the threshold 
decomposition and its associated reconstruction function are inverses-that is, 
we can do repeated filter passes at the binary level. The system modifications 
necessary to implement this multi-pass strategy can be seen in Figure 3.5. In 
terms of the design of the chip, all that is required is repeated median filter 
stages at the binary level. It remains an extremely parallel and fast design.

In the past, recursive median filters were used, because inputs are 
guaranteed to converge to roots after only one pass of the filter [14]. It is 
worth noting that the recursive filter, because the threshold property holds, can 
be implemented using a design technique similar to the one just described for 
the standard median filter. Figure 3.6 demonstrates the necessary 
modifications to the binary filtering levels when implementing the recursive 
filter. As before, a systems type diagram and a shift register with a decoder 
are presented to explain the function of the hardware.

The description of this new design technique for implementing median 
filters in VLSI is now complete. With a simple binary median decoder, many 
window width median filters and several different ranked filters can be pin 
programmed. The design, because of its parallelism, is easily modified. The 
final advantage is an increase in speed accomplished by doing repeated filter 
passes at the binary level before reconstruction. Future ideas for hardware 
implementation include combining the threshold decomposition with an analog 
to digital (A/D) converter. This provides an increase in speed because many 
A/D’s use a type of threshold counter with a comparator to do the conversion 
to digital.

3.3 Interconnection of Median Filter Chips
A final problem in the design of a chip is the number of bits to be used for 

the input and output data words. Whatever is finally decided, it is certain that 
there will'-be some application which requires additional accuracy and 
consequently larger size data words. In this section, an algorithm for increasing 
the word size by connecting median filter chips of smaller word size together is 
presented. This is done for an increase of one bit, extensions to additional bits 
are straight forward. In addition, because this technique is another application 
of the threshold decomposition, it is presented with only a brief explanation.

Suppose a four bit median filter chip with the desired window width is 
available, but the application necessitates a five bit processor. The solution is 
accomplished using the threshold technique seen in Figure 3.7. The input
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signal is thresholded, using external logic, at the most significant bit (M b 
The first chip is used to filter the lower four bits when the signal is less a 
and sees 25- l, all I’s, when the input is not less than 25. The second chip is 
used to process the four lower bits when the signal is greater or equal to 2 and 
sees all zeroes when the input is smaller than this level. Another chip is needed 
to filter the MSB of the input signal. This system maintains the proper order 
and rank of the input sequence as the values move through the median filter 
chips. The five bit output is determined by latching onto the appropriate four 
lower bits as selected by the output of the MSB filter. When the MSB output 
is a one the higher threshold chip carries the correct lower four bits and the 
other processor has all ones as its output. When the MSB output is a zero the 
lower threshold chip carries the correct Iqwer four bits and the other processor 

has all zeroes for output.

3.4 Summary of Results
As in Chapter 2, the threshold decomposition is shown to be a powerful

new tool. It can be applied in the analysis of ranked filters or, as shown in this 
chapter, it can he used to design a fast VLSI circuit for ranked filter 
implementation. Other techniques presented in this chapter included methods 
for modifying the window width and rank of the filter without extreme design 
modifications, The interconnection technique for increasing word size is also an 
important practical result.
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CHAPTER 4
ROOT PROPERTIES OF MEDIAN FILTERS

4.1 State Description for the Root Signal Set
One of the most significant properties of median filters is that a signal 

invariant to further median filtering is obtained after only a finite number of 
passes of the filter. This is true for any input signal. The discovery of this 
property [13] has led to a much greater understanding of why the median filter
has been a Successful signal processing tool.

For instance, the edge preserving and impulse removing behavior of the 
window width 2n +1 median filter can be given precise definition.

1) A constant neighborhood is at least n + 1 consecutive identically valued

points.
2) An edge is a monotonic region between two constant neighborhoods of 

different value. The connecting monotonic region cannot contain any constant 
neighborhood.

3) A root signal is a sequence which is invariant to the median filter. 
Theorem 4.1: Given a length L, k valued sequence to be median filtered

with a 2n + l window, a necessary and sufficient condition for the signal to be 
invariant under median filtering is that the appended signal consist only of 
constant neighborhoods and edges.

Theorem 4-2: Upon successive median filter window passes, any nonroot 
signal will become a root after a maximum of (L~2)/2 for L even and (L~l)/2 
for L odd, successive filterings. This bound is exact for window width three 
filters. For larger window widths the bound is known to be of order L/n [20]. 
Also, any nonroot signal cannot repeat, and the first point to change value on 
any pass of the filter window will remain constant upon successive window

passes.
The existence of a set of root signals leads to many natural questions. 

The first is the size of the set of roots for any window width filter - this is 
answered in this chapter. The second is the average number of passes needed 
to reach h root, which is addressed in the following chapter.
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A state model describing the tree structure of the root signal set was 
proposed by Arce and Gallagher [9j. The use of trees provides an intuitively 
pleasing approach to defining the states of the model. However, when the 
signal takes on several quantization levels it is not feasible to draw trees for 
even relatively short signals. In the next section, we develop a general state 
description for the root signal set without using trees. Our mode! is 
unrestricted in terms of filter window widths and number of signal quantization 
levels. The result is a complete and exact system of equations for finding the 
number of root signals associated with any median filter.

We begin our state model with a signal of length one having k possible 
levels. At each iteration a new term is appended to the sequence. If this 
longer signal is a root we remain in the root state system, otherwise we leave to 
the absorbing state of nonroots. That is, once a signal contains a nonroot 
section, adding additional values to the end cannot make the signal a root. 
The value of a state at iteration L-l is the number of root signals of length L 
which currently satisfy that particular state’s conditions. Summing over all 
states at some iteration gives the number of roots associated with the filter for 
the specified window width, number of quantization levels, and signal length. 
In this manner a system of linear equations is developed to describe the number 
of root signals from a sequence with a fixed, but arbitrary, number of levels. 
We first derive results for filters with window width three and then make 
extensions to accommodate larger window sizes.

4.2 Window Width Three Filters

Suppose our signals take on k values, which we choose to be the integers 
from zero to k-1 When noninteger, discrete values are involved we map them 
into our model by using the rank minus one of each value. For window width 
three filters, the states of our system are defined in terms of the last two bits of 
the signal. If the values of the last two terms of the signal are identical we say 
that we are in a static state. When the signal value is i, we label the static 
state as SL(i+l), 0<i<k-l, where L is the current length of the signal. 
Similarly, when there is a change of level from j to i, we say that we are in a 
transitional state. For j<i the transition is upward and we call the state UL(i), 
l<i<k-l. And finally, ]>i is a downward transition and is labeled DT (k-l-i), 
l<k-l-i<k-l. We now have all our states specified.

By finding a relationship between the states associated with signals of 
length L + l and those of length L, we can recursively generate the state values



for arbitrary lengths given the appropriate initial condition. From this we sum 
over ail states associated with the desired length to get the number of possible 
root signals. Recall that this particular approach is restricted to window width
three median filters: Larger windows will be handled in a similar manner, but 
require more memory in the states than the two bits of this model.

The advantage of these state definitions is that the recursive relationships 
can be written down by inspection. Each equation in this system specifies the 
number of root signals which are in the particular states and the number of 
ways a new bit can be added while remaining in the root space. We have the

static states 

-Sl + iI

SL(!)-rDi,lk-II ,iti=l
S,(i| + DI,|k-i) + I'l li-ll .if 2<i<k-I 

SL|k| + V,.|k-ll ,ifi=k

(4.1)

and the transitional states

sL(i)
UL + i(i)

+
i-i

,if i—1 

,if 2<i^k-l
f=i r=l

with

Dt

,if i=l

E SL(r) + £DL(r) ,if 2<i<k-l
r=k-i + l r=l

The initial conditions of the system are specified by S^i) -1, for 1 l, ..,k and 
U1(i) =D1(i) =0, for i=l,...,k-l. Defining the number of roots to a k-level
signal of length L to be Rk(L), we have

Rl(L) - i;sL(i) + SIUlM+WM' (4-4)
i=l i=l

As an example, consider the case of binary signals. Each state is 
associated with the last two root signal bits by

S(l) oo00 S(2) oo 11 j(4:S)
U(l)oo01 D(l)obl.O ■;

Because the number of levels is specified and small we can solve explicitly for 
;L +1). By using the identities listed above, we arrive at
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R2(L +1) — SL + 1(1) + SL+I(2) + UL + 1(1) + Dl + 1(1)

= 2 * SL(1) + 2 • Sl(2) + UL(1) + Dl(1)

> R2(L) + Sl(1) + Sl(2) (4.6)

= 'R2(L) + Sl-^I) + Sl_j(2) + UL_j(l) +Dl_j(1)

= R2(L) + R2(L-1)

Xhis resulting recursive equation checks with the derivation for arbitrary 
window width median filters applied to binary signals found in Arce and 
Gallagher [9]. '

As we increase the number of levels in the signal, the system of equations 
becomes more complex. Therefore, solving the system analytically, although 
straight forward as in the binary case above, would be tedious. Due to the 
method of labeling the states, this model lends itself to computer solution. It is 
worth noting that a reduction in the number of states can be achieved by 
exploiting the symmetry of the system. By the inherent tree structure of the 
signals, monotonic increasing edges have a symmetric monotonic decreasing 
edge. The number of roots in transitional states Uj^i) and Dj^i) are therefore 
equal for any i. The static states can be reduced in a similar manner with 
SL(i) = SL(k + 1-i) for i = l,...,m. Where m is k/2 for k even and (k-l)/2 for k 
odd. In the special case of k odd we have one asymmetric state corresponding 
to SL((k + l)/2). Perhaps these symmetries are better displayed by the 
following associations,

U(l)oo01 D(l)oo(k-l)(k-2)
U(2) oo02, 12 . *■ D(2)oo(k-l)(k-3), (k-2)(k-3)
U(3) oo 03, 13, 23 -► ' D(3) oo (k-l)(k-4),...,(k-3)(k~4) (4.7)

U(.k-l) oo 0(k--l),...,(k-2)(k”l) <—> D(k-l) oo (k“l)0f...,10 
for static states: ' ; -

S(l) ooOO S(k)oo(k-l)(k-l)
S(2) oo 11 . '.S(k—1)oo(k—-2)(k—2):

(4.8)

S(ih)'oo(m-l)(m-l) t--► S(k-m+l) oo (k-m)(k-m)
and when k is odd we have the asymmetric state S(m + I) = A(l) oo(m)(m), 
where m would be (k-l)/2. The computer programs used in generating Table
4.1 utilize these symmetries.



can be obtained by restricting states 
to the set of S(i), i=l,...,m and U(i), i=l,...,k-l ^nd A(l) for k odd. 
Occurrences of the other states in the controlling equations is removed by 
replacement with its symmetric state from the set of allowable states. The 
final system of equations for window width three filters applied to k-levei
sequences is for k even and m=:k/2:

U:l + d

Sl(1)

rl + VC,.!r|
r = l r—1

,if i=l

,if 2<i<m

rh m i-1

>L + 1m =*

L(r)+ E SlW+ EW ,ifm + l<i<k-l
r=l ' r=k-i + l r=l ■

SL(1) + UL(k-l) ,if i= l
SL(i) + UL(k-i) + UL(i-l) ,if 2<i<m

k-1 m
R(L) = 2-£Ci,(i) + 2-ESi.(i)

:=1 ' i=l

and for k odd with m—(k-l)/2:

UUili) i

£.SlW + EUL(r)
r=i r=l

NJS,.ir) + AL(l) k VI L|r)
r—1 
m

,if i~l 

,if 2<i<m

,if
(4.12)

i-1

5L + :

m m ii
ESL(r) + AL(l) + E SL(r) + EUlW ,if Ui+2<i$k-i
r = l . . r=k-i + l ' .r — 1

sL(i) + Uidk-i) -if i=l

AL+ij.l) = Al(1) + 2-UL(m)

■ k-l m ':.
R(I>) = 2 • EUb(i) + 2 • ESL(i) ■ + Al(1)

It is also possible to express many of the above relationships in recursive form. 
Consider, for example, the case where k is odd,
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UL + 1(k-I) = UL + 1(k-2) + UL(k—2) + Sl(2) (4.16)

The recursive nature of these equations and the previously described reductions 
by symmetry were used to generate the root counting results presented in 
Table 4.1. ■

Table 4.1
Number of window width three roots.

Length Number of Levels
n 2 ■ 3 4 5 6 7 8

1 2 3 4 5 6 7 8
2 ' 4 9 16 25 36 49 64
3 6 17 36 65 106 161 232
4 10 37 94 195 356 595 932
5 16 77 236 567 1168 2163 3704
6 26 163 602. 1673 3886 7973 14932
7 42 343 ' 1528 4917 12890 29325 60112
8 68 723 3882 14455 42744 107777 241718
9 110 1523 9858 42479 141688 395929 971416
10 178 3209 25038 124851 469726 1454643 3904290

We conclude that this system provides a solution to counting the number of 
roots of a window width three median filter for signals with an arbitrary 
number of levels. Due to their definitions, the states have a physical meaning 
in terms of the bits they represent. As we increase the window width, the state 
definitions will continue to rely on the value of the final bits of the root 
sequence. ■■ ■

'■-4.3 Arbitrary Window "Width Filters
Extending the results of the previous section to larger window widths 

involves increasing the mehnory of the state system. Suppose the median filter 
uses a window of 2n + l points. Then by definition, a constant neighborhood is 
at least n + 1 consecutive identically valued points. For filters of window width 
three n + 1 was two, our state model definitions were based on the last two 
values of the signal, and the state transition equations were a result of 
Theorem 4.1. The general window size state model requires information about 
the final n + 1 values of the signal and Theorem 4.1 can again be invoked for 
the transition equations.
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Begin with a signal which can take on the values of the k integers from 
zero to k-1. In order to stay in a root region the last hf-i bits of the signal 
must either be monotone or constant. The static states are associated with 
coh^tatit iieighbbrhobds and the transitional states with edges, If the last h + 1 
bits are monotone or constant with values ax, a*, ... 7 an + 1, then we define 

our states as follows
Static: State: We say the L-length signal is iri static state

i +l), b<i<k-l, if and only if ar = an + 1 = i.
Ttaniiitiotidl States: An L-lengthsignalis in an upward transitional state 
l<jli i<i«k-l if and only if an + 1_j<an+2-j = an + 1 ■== i That is, 

a^+H is less than i and the j bits following an + H have value i. Similarly for 
monotone decreasing a*, a2, . . . , an + 1, we say the signal is in downward 
transitional state DL(j,i), l<j<n, l<i<k-l if and only if 

ari+i-j^ajj+^j ~ ^n+i ~ k . ■
In the transitibnal states UL(j,i) and I)L(j,i), we call j the delay parameter. For
winded width three filters; n -1 and j takes only one value, reducing our State 
definitions to those found in the previous section.

As ah exainple Consider the three level signal with a filter of window width 
seVen, i.e./k^? and n—3. Suppose the last four bits of some root sequence of 
length L-l are 0111 The signal is therefore currently in state UL1(3,1). Note 
that the delay parameter specifies tbe length of the constant region at the end 
of the length n +1 sequence. Examining the results of adding different values 
to make this a length L sequence we s^e that a 2 appended to the end puts the 
signal In state Uh( 1,2) while a 1 as the new bit moves the signal into static 
State Sb(2). Note that when a 0 is added to the signal of length L-l it creates 
a nonroot region, OHIO, which moves the signal into an absorbing state outside 
the root space.

ysing their definitions, the recursive relationships among the states can be 
written down by inspection. We have the static states

SL(i) + UL(n,i-l) + DL(n,k-i) ,if 2<i<k-i (4.17)

SL(k) + UL(n,k—1) -ifi=k
3L + i (i) =

and the transitional states



SL(1) ,if j = l,i=i

Ul + iOjI
i i~l n

ESlW+E EUL(q,r) ,if j = l,2<i<k-X
r = l r==l q=l ■

(4.18)

,if 2 <j < n, 1 < i< k—1

with

I>L + i(i4)

SL(kJ ,if j = 1, i—1

£SL(k + l-r)+£ SDL(q,r)'lif j = i;2<i<k-l (4.19)
r = l' r~! q=l

DL(j-l,i) ,if 2<j<n, l<i<k-l

The initial conditions of the system are specified by Sx(i) = 1, for i=l,...,k and 
IJjO,!) = Dj(j,i) = 0, for all i and j. As before the number of roots to a k-level 
signal of length L is defined to be Rk(L), and we have

Rk(L) = ESlO) + E E(ULa,i) + DlO.!)) (4.20)
i=l . i=l j=i

This specifies the system of state equations necessary to compute the 
number of roots for signals of arbitrary length and number of levels. Again, 
closed form analytic solutions can be obtained by specifying the values of k and 
n. However these computations are not only tedious but also must be repeated 
whenever the number of levels or the filter window width is changed. 
Computer solution is easily accomplished and the results are provided in Table 
4.2. We again note that both symmetries between upward and downward 
transition states and tree structure symmetries among the static states can be 
exploited to reduce the amount of computation.
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Table 4.2

Number of Levels:
Wind ow Number offloo*
Width II

4 2 . - 3 4
3 '' 2 4 10

, 2 4 6 §
' 7 ■ ':.2' ; .4 6 -I

-v- 2 4 6
ii 4 v: 6 8
13 2 4 6 ■ -8'
15 - 2 4 6 8
17 / 2 4 6 8

for L-length Signals
■ip.: 6 7 8 ■ io
16 26 42: . : -6S ■■ no 178
12 18 26 38 ■ 58' 82
10 14 20 23 ;::2i ■ 52
10 12 16 22 30 40
id 12 14 18 24 32
10 12 : 14 '■ 16 ■ ,v:2d' '■ 26
10 12 14 16 ■■ .18' . 22
10 12 14 16 13 20

Number* of Levels: 3
l4iridou> Number of Roots for L~length Signals
Width L-i ' 2 3 4 5 6 7: :: 9. 10

3 
5 

■ 7
-9'..
n
13
15
17

3 9 17 37 77
3 9 17 27 49
3
3 ■.

9
9

17
17

27
27

39
39

3 9 17 27 39
3 9 17 27 39
3 9 17 27 39
3 ■; 9 17 27 39

163 343 723 1533 3209
91 163 273 531 959
63 i<37 181 297 485
53 79 125 201 319
53 69 97 145 223
53 69 87 117 167
53 69 87 107 139
53 69 87 107 129

Norther of Levels: 4
Window Number of Roots for L-length Signals
Width L—1 2 3 4 5 6 7 8

3 4 16
5 4 16
7 4 16
9 4 16

11 4 16
13 4 16
IS - 4 16
17 4 16

36 94 236 602
36 66 136 292
36 66 108 192
36 66 108 164
36 66 108 164
36 66 108 164
36 66 108 164
36 66 108 164

1528 3882 9858 *■*** 
612 1230 2690 5644 
364 702 1328 2484
264 454 812 1460
236 354 564 944
236 326 464 696
236 326 436 596
236 326 436 568



CHAPTERS 
NUMBER OF FILTER PASSES TO A ROOT

5.1 The Model
The state model presented in the previous chapter is an exact and 

complete solution to counting the number of roots for arbitrary level signals 
and median filters of any window size, /that is, the last chapter tells how 
many roots;in this chapter we investigate the number of passes needed to 
reach a root. Theorem 4.2, states that the maximum number of filter passes 
for a fixed length signal is (L-2)/2 for L even and (L-l)/2 for L odd. By 
decomposing signals into root and nonroot regions, the number of filter passes 
necessary to reach a root is determined by the longest nonroot region. This 
result follows from the invariance of the root regions ,as. noted by Arce and 

/Gallagher [9], and by applying Theorem 4.2. Suppose the nonroot regions have 
lengths k1,k2, . ,kn where km is the maximum, l<m<n. By Theorem 4.2,
we know that each of these sections will require either (k-l)/2 or (k-2)/2 
passes to become a root region. Therefore, the largest number of passes is 
required by the section with length km. We would like to model binary signals
in terms of these different root and nonroot regions.

To keep the description of root and nonroot regions relatively simple to 
model, we restrict our attention to filters of window width three and binary 
sequences. Figure 5.1 demonstrates the technique for decomposing a signal mto 
root and nonroot regions. Recall that root regions, as described by Theorem 1 
in the introduction, are areas of the signal that are invariant to passes of the 
median filter. Note that in our example the longest nonroot region, containing 
6 bits of the signal, determines the number of filter passes necessary to reach a 
root. Each nonroot section is a binary oscillation of some finite length. In our 
example we say that the longest binary oscillation was oflength 8. Where we 
include one point for each of the constant neighborhoods because the signal is 
still “oscillating” until it is in the adjacent root regions. The number of passes 

to a root vyas (8-2)/2 or 3.
An appropriate model must generate binary signals such that the length of 

the longest oscillation is known. Our approach is to use the familiar “success
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000011 0000 11 0000 111 (Root Section)
0101 10 010101 10 (Non Root Section)

000011010100001011010101000010111 (Complete Signal)

000011101000000111101010000001111 (Pass One) 
000011110000000111110100000001111 (Pass Two) 
000011110000000111111000000001111 (Pass Three, Root)

- FigureS.l
Binary signal converging to a root.

runs” model from the theory of stochastic processes. At each iteration of a 
success runs model a Bernoulli! experiment with probability p of success is 
performed. If there have been i consecutive successes the stochastic process is 
said to have value i. We relate the mode! to our signals by noting that there is 
a one to one correspondence between the length of the longest binary 
oscillation in the signal and the maximal success run of the model. Specifically, 
by letting p be the probability that the next bit of the signal continues an 
oscillation we can use the distribution of maximal runs for our computations. 
Here a trial of the system corresponds to the addition of a bit to the signal. If 
a success occurs the new bit is the complement of the current bit and if a 
failure occurs the new bit has the same value as the current bit. Exact 
expressions are not easily derived for the distribution of maximal runs. There 
are, however, two cases where we can arrive at some meaningful expressions. 
The first case, p = l/2, is where all sequences are equally likely. We can treat 
this as a deterministic problem and count the number of signals requiring k 
passes to a root. In the second case, we approximate the probability that no 
runs of length k occur and use this to generate identical results as in case one 
as well as distributions and expected numbers of filter passes to a root for 
0<p<l. We should note that there is a one to one correspondence between 
binary oscillations in the signal space and “runs” in our Markov model.

5.2 Deterministic Case
This is a combinatorial analysis of the number of signals of length L 

requiring k median filter passes to a root. In terms of our probabilistic model 
we would say that each bit assumes either value with equal probability and is 
independent of the other bits. Equations are derived for the special case of



k>L/2. An identity, recursive on both L and k, is developed allowing a table 
of results to be computed. We begin with a few definitions.

1) L is the length of the signal which is arbitrary, but fixed.
2) nt(k) is the number of signals of length L with longest binary 

oscillation (or run) of length k.
- 3> TTLti) is the number of L-length signals retiring i passes to a root

Recall that for a binary oscillation of length k, the numberof filter passes 
necessary to reach a root is (k-l)/2 for k odd and (k-2)/2 for k even. Therefore 
if k is odd, the nL(k + 1) signals with longest binary oscillation of length (k + 1) 
require the same number of passes to a root as the nL(k) signals with longest 
oscillation of length k- T|is implies that
for L even: . ;'v

7rL(k)=nL(2k + 2) + nL(2k + l) ,if 0<k<(L-2)/2 t5-1)

and for L odd*
: ; (n,.(M ; ■ ,i['k=(L-i)/2 ;; „2

^ | nL(2k + 2) + nL(2k + 1) ,if 0<k<(L-3)/2

fcjqte tfiat ttl(O) is the number of root signals of length L for this window width

three median filter-
In order to count the number of signals of equak length requiring k filter 

passes to a root, we want to solve for the nL(k) as defined previously. First 
note that all oscillations can be divided into two classes:

I.) Oscil/alfnfi- the first and/or last bit of the signal is a point in
the oscillation. ,

2) Nested Oscillation- the oscillation is terminated on both sides by root
regions in the signal - i.e., it is not butted.

If k is greater than L/2, then these two classes partition the group of all
L-length signals with maximum binary oscillation of length k into two
mutually exclusive sets. Let BL(k) be defined as the number of signals with 
maximum binary oscillation Qf length k and of the butted type, Similarly, let 
NL(k) denote the number of signals witfi making are
nested For k less than L/2, there can be more than one oscillation of length k 
and consequently, the signal may not be uniquely defined as nested or butted.
So we define b^k) to be the number of signals with a maximum oscillation 
length of k vvhete at least one Of these oscillations of k bits includes the last bit 
of the signal. Then for L/2 < k < L, BL(k) is twice bL(k). Obviously the k- 
length occillation in bL(k) can terminate on either value of a bit. Also, because
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L-(k+l) < k we know that first L-(k + l) bits of the signal can take on all 
permutations and the total sequence will still be included in bL(k). Then,
including the special case of k—L we have

bL(k)
2 ,if k=L 
2L-k ,if L/2 < k < L (5.3)

and

BL(k) =
2 ,if k=L
2L-k + i ,ifL/2<k<L (5.4)

For nested oscillations greater than half the signal length, k+2 bits are fixed 
(oscillation must terminate within the signal), and this oscillation may assume 
any position among the remaining L-(k+2) bits. Requiring the oscillation to 
begin with a zero will decrease the number of possible signals by a factor of 
two. The number of ways to place our specified k + 2 bits among the remaining 
L-(k +2) bits is L-(k + 2) + l choose 1. Because the oscillation length is greater 
than half the signal length, all permutations of the L-(k+2) are acceptable in 
keeping the maximum oscillation length at k. So for L/2 < k < L-l,

NL(k) =2
L-(k+2) + l

' 1
2L-(k+2) (5.5)

= (L~(k + 2) +1) • 2L~k_ 1

= (L-k-1) • 2L~k~r

because there can be no nested oscillation of lengths L or L-l, NL(k) is zero for 
k equal to L or L-l. Conclusion, For L/2 < k < L,

nL(k) =BL(k)+NL(k) (5.6)

2
4
2L-k + i + (L-k-l) •2L-k-1

,if k=L
,if k=L-l
,if L/2 <k< L-l

The final special case to be considered before we construct our recursive 
formula occurs when k is exactly half the signal length. Because bL(L/2) 
includes both the signals containing a pair of length L/2 oscillations, taking 
twice bL(L/2) for Bl(L/2) would count these signals twice. Therefore,
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This leaves the derivation of nL(k) for k < L/2. Begin by assuming the 
Of nL jlkj is known. There are exactly two ways to append a. bit to the 

right end of a signal of length L-l. Therefore, nL(k) is approximately equal to 
twice nt j(k) If we can subtract off the cases where the appended bit creates 
an oscillation of length k + 1 and add on the cases where a binary oscillation of 
length k is created by the appended bit, we will have nL(k) specified. Recalling 
that bL1(k) is the number of length L-l signals with maximum binary 
oscillation of length k butted to the right end of the signal, then we have by 

definition
nL(k) = 2 -n^k) - bL_x(k) + bL_t(k-l) <510)

We previously specified bL(k) for k greater than Or equal to L/2, leaving 
the case of k<L/2. Our approach is to begin with the number of possible
arrafigerhents assuming the last k+1 bits dre fixed and then subtract off the
sequences which have oscillations Of length greater than k. A factor of two as 
necessary because there are two ways to fix the k + 1 bits. /This is also why 
bL_(k + i)(k) has a coefficient of i/a

± 2♦. 2L-(k + 1^— V] )nL_(k + 1)(j) —1/2*t*L (k + i) 

j=k + i
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= 2L-k _ 2nL_k_|(k) - bL_k_j(k) 
j=k + l

Note that whenever k is greater than L in nL(k), we assume the .value of the 
function is zero. Summarizing our equations:

2 ,if k^L
2L-k ,if L/2 < k < L

bL(k) = L-k-1
2L-k-bL_u_,{k)-2- £ nL_k_,(j) ,if 1 < k < L/2

j=k + l
2 ,if k = l

and

nL(k) ~
gL-k-H + (L-k-1) • 2L_k_1

,if k=L
,if k=L-l
,if L/2 < k < L~T

■“ + 1 f 1
2 2 +• ( — — 1) *2 2 - 2

■ 2
,if k=L/2

2- nL_1(k)-bL_1(k) + bL_1(k—1) ,if 1 < k < L/2
2 ,if k=l

(5.12)

(5.13)

Using the relationships between 7rL(k) and nL(j), as given in Equations 
(5.1) and (5.2), we can recursively solve for the number of filter passes to a 
root, as seen in Table 5.1. This technique, though exact for p=1/2, is not as 
versatile as the approximation described in the next section.
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Table 5.1

n (L# k >
k=l

1 2
v 2 ■■■ . 2

3" -2.; 
4 2

.'5 ■ 2
■ 6 ■ ■: "§ 

'.2' ■■ .2 :■

b(L» k)
L ^ k—1

: i: ' 2
■' 2 . ■ 2

, J- . 2
4 . 2
5 2

■■■S'-' 2
— ■■7 ■ ■ ■. 2.

8 2

2 ' .4 3 ’ . . 4

0 0 0
2 : • ■ 0 0
4 2 ' 0
8 4 '2
14 10 ■ 4
24 22 io
40 46 24
66 94 §4

■ STA ■ 3 4

0 0 0
2 '• 0 0
2 . ■■ 2 , 0

. 4 ■ 2 . 2
b :;V4 2

10 8 4
16 14 8
26 ■ v 26; 16

5 - 8

o ‘ - o o o
o C) o 0
o 0 o o

'S' o
2 0 0 0

. 4 '",2V Qt; ■■ ■ ?10 . ,'4 '■ 2 ' v o
24 10 ' 4: .■;2. \

. .. -6; 7 8

O 0 0 0
0 0 0 0
0 0 0 0
o ooo
2 . ■ 0 0 0
2 ;£■' o
4 ■' 2 ■■■■ 2 0
8 4 2 2

L - k=0 ; 1
Number

■. 2
of Pal55#e to 

3 4
a Root

s . 6 ■ 7

1■"6 ' ■ 2 0 0 0 0 d 0 0
4 0 0 d 0 0 0 0

.

34
6 ■ 2 0 d 0 d 0 0
IQ 6 0 0 0 0 0 o

5 . 16 14 2 0 0 0 0 0
6 26 32 ' 6 0 0 0 0 0

07 ■ V 42 70 14 2 0 0 0
8 68 148 34 > 6 / 0 0 0 0
9 110 306 80 14 2 : 0 d

0
0

id ' iii. 624 182 34 6
14

0 0
ii ; 288 1258 406 80 ; / d 0
12
13

466 2514 892 184 34 6
14

d 0
754 4990 1936 416 80 o

14 1220 9852 4162 926 184 34 •: 6 d
15 1974 19368 8876 2038 416 80 14 2
16 3194 37944 18802 4444 928 184 34 6
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5.3 Success Runs Model
Returning to the success runs model we find that an approximation to the 

probability of no success runs of length r in n trials, which we will call Qn(r), is 
developed in Feller [21, pp. 322-328]. To use this approximation we need the 
definition of “run” used in the derivation. We say that a sequence of n letters 
S and F contains as many S-runs of length r as there are non-overlapping 
uninterrupted blocks containing exactly r letters S each. For example, 
SSSSFSSSSSSF contains three S runs of length 3 and also has five S runs of 
length 2. Now suppose we generate our binary signals using the following 
procedure.

1) Randomly select a starting bit
2) Let the transition probabilities be Markov with

p = Pr(Bn + 1 = l|Bn=0) ='Pr(Bn + 1=0|Bn=l)- (5.14)

q = Pr(Bn + 1 = l| Bn=l)-= Pr(Bn + j=0| Bn=Q)

= 1-p
where Bj is the value of the signal at position j, l<j<L-l.

3) After every bit perform a Bernouilli experiment with probability p of 
success. Where success means an oscillation begins or continues and failure 
means a constant neighborhood begins or continues. Here a run of successes is 
an oscillation of the bits, which demonstrates the equivalence of “run” and 
“oscillation”. For a length L signal we need L-l Bernouilli trials.

Because we are now dealing with random sequences, we want the 
probability of an L-length signal requiring less than k passes of a median filter 
of window width three to reach a root. Cali this probability FL(k). For 
p=q=l/2, all sequences are equally probable and the same results are expected 
as in the combinatorial analysis of the preceding section, In order to use 
Feller’s result we require a relationship between FL(k) and QL_1(j). Assume 
that L is odd then the maximum number of filter passes to a root is (L-l)/2. 
Obviously Fl((L~1)/2) equals the probability that no run of length L-l occurs 
in the L-l Bernouilli trials; t.e., Ql_j(L—1). Similarly,

Fl
L-l

2- ~j = Pr(No success run of length > L—1—2j) (5.15)



1 ' 

Ql-i(

0

,if j<0

-1-2JI ,if j-0,1,2,.;. L—1 -1

.. .. L-l .

and for L even

■U
L-2 .

0

-2-2j) ,if j =0,1,2,...,

■: • v L-2 .1

1-2 -1 (5.16)

We now have the probability that less than k filter passes are sufficient to 
reach a root in terms of the Ql-iU )- The FlOc) may he used to calculate any 
desired statistics for the number of filter passes necessary to reach a root.

The approximation for the QL-;(j) is easily done by computer. We use the 
following approach:

1) Let x0 = 1
2) Iterate with xm+i = 1 + q*Pj •(xni)J 

is tends to some value x
1 - p*x 1

\i'+i

(j + 1 - j*x)‘q xL + 1

5) The absolute error is less than 2• (j ~ 1)-P
- rq*(i +.p) u

The results, as seen in Tables 5.2,3, and 4, match those previously derived by 
an exact combinatorial approach. But we now have additional information for 
signalswhere each bit is correlated with the preceding bit. As expected, for p 
tending to zero the probability of constant neighborhoods tends to one and the 
expected number of filter passes to a root goes to zero. Similarly, for p near 
one we expect that on the average the signal will require the maximum number 
pf passes to a root as specified by Theorem 4.2.

This model for the signal space is used to estimate the the number of filter 
passes to a root for a chosen confidence level. If i is the smallest integer such 
that the probability of reaching a root signal in i or fewer passes is less than or 
equul to a then, \ye say that i passes are necessary to be 100 a percent
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Table 5.2.
Distribution of signals with p=0.5.

g(1) g;(2) g < 3) g<4> g<5> g<6> g<7> g(3) g<9) g<10)n
2 , 147 . 766
3 . 077 . 620 . 885
4 . 041 . 502 . 314
5 . 022 . 406
6. . Oil . 328
7 . 006 . 266 . 633
8 . 003 .215 . 582
9 . 002 . 174
10 . 001 . 141

748
688

535
492

942
908 . 971
875 . 954 . 985 '
843 . 938 . 977 . 992 
813 . 922 . 969 . 988 . 996 
783 . 906 .961 . 984 . 994 
755 . 891 . 953 . 981 . 992

998
997 999

Signal
Length

Probability of requiring i passes 
1 2 3 4 5 6 7

3 . . 234 . 766 . 234
■ 4 . 380 . 620 . 380

5 ' ' . 557 . 502 . 440 . 058
6 . 686 . 406 . 502 . 092
7 . 812 . 328 . 547 . 110 . 015
8 . 914 . 266 . 579 . 134 023
9 1. 007 . 215 . 598 . 156 . 027 . 004

i o 1. 088 ,174 . 609 . 178 . 033 . 006
ii 1. 160 . 141 . 614 . 198 . 039 . 007 . 001
12 1.225' . 114 . 614 . 218 . 045 . 008 . 001
13 1. 283 . 092 . 609 . 236 . 051 . 010 . 002 . 000
14 1. 336 . 074 . 601 . 254 . 057 . Oil .002 . 000
15 1. 385 . 060 . 591 . 271 , 062 . 013 . 002 . 000 . 000
16 1. 431 . 049 . 579 . 2S7 . 068 . 014 .003 .001 .000

gna 1 Number of 5 ignals requiring i passes
*n§ t b E 0 1 2 3 4 5 6

3 ■ . 234 6 2
4 • . 380 10 6
5 . 557 16 14 2
6 . 686 26 32 6
7 . 812 42 70 14 2
8 . 914 68 148 34 6
9 1. 007 110 306 SO 14 2

10 1. 088 178 624 182 34 6
11 ' 1. 160 288 1258 406 80 14 2
12 ' 1. 225 466 2514 892 184 34 6
13 1. 283 754 4990 1936 416 80 14 2
14 1. 336 1220 9852 4162 926 184 34 6

q(U) =Pr-CMo success run of length k in n trials!-
E is the expectedI # of filter passes to a root



Table 5.3
Distribution of signals with p —0.3.

n g(1) g(2) g <3) g(4) g<5) g<6) g<7> g(3) 9<7> g<10)
2 . 490 : 913
3 . 343 846 . 974
4 .240 784 . 954 .992
5 168 727 . 935 . 986 . 998
6 .118 . 673 . 916 . 981 - 996 -.99.9
i .082 .624 . 898 . 975 . 994 . 999 1. 00
8 058 . 573 . 880 .969 .992 .998 1.00 1.00 ^
<§ 040 536 . 862 . 964 . 991 . 998 . 999 1. 00 1. 00

10 ’02S .496 .845 .958 .989 .997 .999 1.00 1.00 1.00

Signal Probability of requiring i passes
Lengtb 8 0 1 K? 3 4 5 6 7

3 ; 087 . 913 : 087
4 154 846 . 154
5 . 224 . 784 . 208 . 008
6 . 287 727 . 260 014
7 . 347 673 • 307 . 0l9 . 001
8 402 .624 .351 . 024 . 001
9 .454 . 578 . 391 i 029 . 002 . 000

10 . 503 . 536 .428 .034 •002 000
11 549 496 . 462 . 039 . 003 . 000 000
12 591 . 460 . 492 . 044 . 003 . 000 000
13 . 831 . 426 . 521 . 049 . 004 . 000 . 000 000
14 668 . 395 . 546 . 054 . 004 . 000 . 000 000
15 703 366 570 . 059 004 . 000 . 000 000 . 000
16 i 736 . 339 . 59r . 064 . 005 • 000 000 r000 . 000

n (k )=Pr-CNo success run of length k in n trials}
E is the expected # of filter passes to a root
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Table 5.4
Distribution of signals with p =0.7.

n g(i> g(2) g < 3) g <4) g<5> g(6) g <7) g <S> g(9) g <10)
2 . 000 . 019 .
3 .000 . 014 . 693
4 . 000 . 010 . 556 . 792 •
5 . 000 . 007 . 442 . 697 . 854
6 . 000 . 005 . 352 . 613 . 791 . 897
7 . 000 . 003 . 280 . 539 .732 . 855 . 927
8 . 000 . 002 . 223 . 474 . 678 . 815 . 899 . 948
9 .000 .002 .178 .417 .628 . 776 . 871 .929 .963

10 . 000 . 001 . 141 . 367 . 581 . 740 . 844 . 910 . 950 . 974

Signal Probability of requiring i passes
ngth E 0 i 2 3 4 5 6 7

3 . 981 . 019 . 981
4 . 986 .014 . 986
5 1. 199 . 010 . 782 , 208
6 1. 297 . 007 . 690 . 303
7 1. 485 . 005 , 608 . 284 . 103
8 7 1. 603 . 003 . 536 . 316 . 145
9 1. 761 . 002 . 472 . 340 . 134 . 052

10 1. 876 . 002 . 416 . 359 . 153 . 071
11 . 2. 008 . 001 . 366 . 372 . 171 . 064 . 026
12 2. 115 . 001 . 322 . 382 . 187 073 . 035
13 2. 228 . 001 . 284 . 387 . 202 . 083 . 031 013
14 2. 325 . coo . 250 . 390 . 216 . 092 . 036 . 017
15 2. 422 ■ . 000 . 220 .390 . 228 . 100 . 040 . 015 . 007
16 2. 510 . 000 . 193 . . 387 . 240 . 109 . 045 . 017 . 009

q < k > =-PriNo success run o.f length k in n trial^>
E is. the expected # of filter passes to a root



confident bf having a root. In Figures 5.2 and 3, plots for several values of a 
are given for signals generated using two different correlation values of p. 
There is a reduction from the maximum number of passes, (512-2)/2, to 32 
passes with 95 percent confidence of a root when p =0.9 is the probability of 
nonroot regions continuing. For the case of equally probable signals, p=0.5, we 
see that only six filter passes are required for 95 percent root confidence when 
the signal length is less than or equal to 512. This is a reduction of 249 passes 
from the maximum, which would have a confidence of 100 percent. These 
examples indicate the possibility of reducing the number of filter passes from 
the maximum while maintaining a high confidence of reaching a root.

These results were derived using binary signals and window width three 
median filters. Because of the threshold decomposition technique presented in 
Chapter 2, these results hold for arbitrary level signals and window width three 
median filters immediately. In addition, using the fact that window width 
three filters are slower to converge than median filters of larger window widths 
[20], we know that the results derived here are the uworst case” for any 
window width filter applied to signals with multiple levels. This gives an upper 
bound on the number of passes to a root Which guarantees, at least, some 
confidence level.
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Root confidence of 85%
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CHAPTER 6
THE ANALOG MEDIAN FILTER

When random signals are used as inputs, the nonlinear nature of the 
mediaii Biter makes the output distributions difficult to calculate and to 
comprehend [?]. The threshold decomposition technique for reducing multi
level signals to binary Signals does not reduce the statistical computation 
involved We heed a simpler means of calculating or approximating the output 
distributions of median filters. The basic idea behind the threshold 
decompositioh-that of sliding a threshold through the Various levels of a. signal, 
lends itself to extensions in the domain of many leveled signals. In act 
might approach this problem by letting the number of allowable levels and the 
support of the input functions go to the continuum. We call the filter 
associated with the median operator, where these input functions are allowed, 
the analog median filter. In many cases this extension will make tlm analysis 
simpler than for the standard median filter. Because thedefimtion is based on 
the threshold decomposition technique, however, the same underlying structure 
is maintained in both filters.

In this chapter, we define and present a preliminary analysis of the analog 
median filter- Specifically, in Section 6.2 we demonstrate .that the discrete 
median filter is equivalent to an analog median filter operating on a restncte 
class of signals ;-. In the next section, the analog median filter is shown to be the 
limiting case of the standard discrete median filter discussed in Section 6.1. A 
random variable interpretation of the analog filter is given in Section 6.4. 
Examples and Conclusions follow in the final sections of the chapter.

6.1 Analog Median Filter Definition 
We assume throughout this section that the input to the discrete median 

«ter is a sequence of length L which takes on the value a(m) at positron m, 
l<m<L. Let b(m) be the output at position m of a standard median niter 
wdth window Width > + 1 applied to the input sequence a(m). Then by 

definition
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b(m) = median { a(m—n),...,a(m),...,a(m+n) } (6.1)

= max { i: At least n + 1 of a(m-n),...,a(m4-n) are > i }

= max { i: More than half of a(m-n),...,a(m + n) are > i } (6.2)

In a similar manner we might have shown

b(m) - min { i: More than half of a(m-n),...,a(m + n) are < i } (6.3)

Equations (6.2) and (6.3) are equivalent because there is an odd and finite 
number of values in the ranking window. Later we will see that these 
equations are equivalent only when the median is unique.

In the definition of the analog median filter, and in other definitions, 
discussions, and proofs that follow, it is convenient to use the indicator 
function of the event A which we define as

1(A) =
1 ,if A is true 
0 ,else

(6.4)

Also, the notation sup(°) and inf(*) will be used to denote the supremum and 
infimum operations, respectively.

For any appropriate definition, the analog filter that we propose should be 
a limiting case to the discrete filter. Later in the chapter we will discuss the 
type of limit which applies. For now, we rely on our intuition for the following
definition.
Definition: We say that y(*) is the output of a analog median filter of window 
width w applied to an input signal s(«) on the interval [c,d) if for almost every
t€fc,d)

w w ■ x >y(t) sup { r: More than.half of s(r),rG + —) are > r }

= sup -I
t+ f

I[ s(r)>r] dr > y (6.5)

As in the discrete filter case* end effects are accounted for by repeating the 
endpoint-of the signal over an interval large enough to fill the window [13]. We 
delay discussing the conditions on the function s(-) which guarantee the 
existence of the integral in the definition of Equation (6.5) until the stochastic



63

section of the chapter. We should note that another possible definition of the 
analog median filter which would be analogous to Equation (6.3) of the discrete
filter is

yi(t) - inf
t+f

-T

r:/'/ IIs(r)<rJ 4r > |- (6.6)

Unlike the discrete median filter case, see Equations (6.2) and (6.3), in the 
anhlogvilte case yM is not necessarily equal to y(t) for all t. An appropna e 
compromise might be to take the average of y,(t) and y(t) to obtain the on pu 
of the analog median filter. This additional computation seems cumbersome 
and; usually unnecessary;, we therefore resolve fro define the. output of the analog
median filter by Equation (6.5h Hopefully this definition will allow us to go
back and forth between discrete and analog signals so that results which are 
easier to obtain in one domain can be transferred to the other domain.

There are other equivalent definitions for the analog median filter. As an
example «ie.
Lebesgue measure, defined for sets of real numbers. If the measure of an 
interval is its length and the measure of the sum of disjoint sets is the sum of 
the measures of each set we could use the following as the definition of a

■ » . /i i . 1 • T' a J.1 ^ ^ ^ li t Cl#V •

w , w ■
<

^ w ...
r: m ■>: s(r) > r and t— < r < t. + y — 27 SUP

End effects are accounted for as in the previous definition. This measure 
theoretic definition can be easier to manipulate than the integral definition of 
Equation (6.5). The proofs in the stochastic section of the chapter demonstra e 
the utility of this definition.

" 6.2 Analog Filter Representation of a Discrete Filter
Now that ive have defined what is meant by an analog median filter, 

several properties of, these filters warrant discussion. The two following 
Properties result in a Theorem which shows that analog median fitters when 
restricted to operate on a certain class of step functions are equivalent to 
discrete median filters.
f?»^peid>y There; exists a function f(*) mapping an interval on the real line 
to a set of values such that the sampled output of some analog median filter
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applied to f(*) equals the output of a window width 2n + l discrete median filter 
applied to the sequence of samples from f(‘).
Proof by construction: Assume we are trying to show the equivalence of the 
sampled analog median filter output with the sequence b(m). As before, b(m) 
is the output of a window width 2n + l discrete median filter applied to the 
input sequence a(m), l<m<L. Define the function f(*) on the half open

The window width of an analog median filter whose sampled output will equal 
the sequence b(m) is needed to complete the proof. Denote the output of an 
analog median filter with window width w equal to 2n + l by y(t). Then

Assume the samples are taken at the integers 1,2,...,L. The sampled output of

(6.8)

(6.9)

the filter is then given by y(m) with l<m<L, that is

(6.10)

m + n +
I[ f(r)>r ] dr > nd~= sup j r: j' - 1 m-n-“

— sup r:
m+n 1
E l[a(p)>r|>n + -

=: sup { More than half of a(m-n),...,a(m + n) are > r}



Which shows that by sampling at the integers the two filters are equivalent.

In fact, because the constant regions are of minimum length ^one this 
sampling pattern can he shifted left or right by any arbitrary <■ 0<r<l/2 

without changing the output.
Property 6.2l Using the notation of the previous Property for any reaU and
integer m such that 0<e<: i/2 and lSm$L, we have equality among y(m±f),

y(m), and b(m). .' -T ■ ' :v
Proof: By Property 6:1 y(m) equals b(m) for m; any integer l<m<L. For

y(m + c) we have

y(m-N) — sup r: /
t + c +n + I[ f(r)>r]dr > n-^-

m + e-n~ —

y(m +e) — sup r: I[a(p)>r] + fl[a(m+n + l)>
p=m~n + 1

+ (l-e)*I[a(m-n)>r] > n + - (6.11)

Let S denote the sum in Equation (6,11). If S>n + 1 or S^n-1 then the 
alues of the last two terms do not matter in the calculation of the supp-nro . 
lowever, if S = n then the last two terms enter into the calculation a

Equation (6.11) reduces to

y(m + e) — sup r: e-I|a(m+h + l)>rl + 11-. l-Iialm-n!>rl > (6.12)

Ve note that because 0<e< 1/2, the second term in Equation (6.121 determines
Him condition on the supremum is met. The first term can therefore be 

wf> reduce Eauatiott (6.11) to
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„ m + n 1
y(m + e) = sup | r: I[a(p)>r] + (l-e)"I[a(m-n)>r] > n + —

. p^m-n + 1 “
(6.13)

= sup
m + n

r: Yj I[a(p)>r] + I[a(m-n)>r] > n + 1
p—m-n +1

— sup
m + n

r: S' Ifa(P)>rl > n + I
p =.m-n

= yM

Shifting the sampling grid in the other direction we have the case for y(m-e) 
which follows in a similar manner.
□
Summarizing the results of this section we have
Theorem 6.1: There exists a class of analog median filter input functions f 
such that any input sequence {a(m)} to a discrete median filter has a 
representative function f in p' and the output of the discrete filter applied to 
(a(m)} has a representation in p' which is the result of an analog median filter 
applied to f.
Proof: By Property 6.1 the output, sampled at the integers, of the analog 
median filter applied to the constructed function is equal to the representative 
discrete median filter output. By Property 6.2 we know that the output of the 
analog median filter for this class of constructed input functions is itself a 
member of the class. Therefore multiple passes are allowed and we have our 
representative class of input functions p'by construction.
□

The preceding Theorem extends any result for analog median filters to 
discrete median filters. This is a new analysis tool which allows calculations 
which are more simply done in the continuum to be extended for the discrete
case. -

6.3 Analog Filter as Limit of Discrete Filter
In this section consider a window width w analog median filter applied to 

the signal s(-) on the interval [c,d). By representing the signal s(-) as a
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sequence of step functions, we can discuss sufficient conditions on the class of 
signals where the analog median filter can he considered as the limiting case of 
the discrete median filter.

Begin the approximation of the signal by sampling s(r) at c and then every 
e units along the axis until the interval [c.d) is covered. Note th^ f eaj! be any 
positive real number. The following initial approximation to the signal s(-) can

be made

si|t) = s(c+m*t)*I[c+m*e < t < c + (m + l)*e]

#here L is the smallest integer shch that c +(L + l)*e is greater than d.
Decreasing the value of e increases the accuracy of the approximation. By 

cutting the constant regions in half, the following approximation is obtained in
k iterations ;

sk + i(t) = I^lls(c + In»€.2-k)-ilc^m'r2^ < t < c + (m + l)*e*2“k] (6.14)
m=0

As k increases we can represent many different functions to within an arbitrary 
degree of accuracy. So the class of signals we are examining is restricted to 
functions which can be represented as a converging sequence of step functions. 
That is, for aliiiosit every t in [c,d) the representation

s(t) — lim Sk(t) ^
k—''CO •

y valid. Most texts on real functions, see Royden [23] for example, show that 
the class of functions which can be approximated by step functions is not 
restrictive-at least for functions of engineering interest.Any.measurable or 
continuous function which is unbounded for at most a countable number o 
points can be represented arbitrarily closely by step functions.

As in the previous section we want to relate the analogy and the discrete 
filters. To do this we approximate the window width w by w- where w equa s 
w(l + 2_k) Note that the sequence wk converges to w. If f is set to w/2 then 
a window width wk filter applied to the approximation sk(-) is equivalent to a 
window width 1 + 2k discrete median filter applied to the sequence of points

ak(in), where
ak(m) = s(c + m*w2_lk + 1^) ,0<m<L*2k (6.16)

This follows directly from the c-sub- of iho previous section. The 
iippKiiiiation sH‘) is a combination of step functions With constant regions o
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length w2-k and the window width approximation wk is an integer multiple of 
this step width.

This gives us the description of analog median Alters as the limiting case 
of discrete filters. Letting k go to infinity, we have an infinite window width 
for the discrete filter but the signal length has also become infinite. This 
demonstrates that, for the restricted class of signals which can be represented 
arbitrarily closely by step functions, many results from discrete median filters 
apply to analog median filters. The technique of exploiting this equivalence is 
demonstrated in the following two examples.

By observation we might have noted that signals which are composed of 
monotonic regions connected by constant regions of minimum length w/2 are 
invariant to passes of an analog median filter of window width w. We call 
these signals roots of the filter. This descriptive property of root signals can be 
shown directly in a manner analogous to previous discrete median filter proofs, 
see [13], or it can be considered as an immediate extension by using the 
technique presented in this section. That is, for any k we know that ak(m) 
must be composed of monotonic regions connected by constant regions of 
minimum length 2k~1 + 1. In terms of the corresponding analog filter this 
minimum length is w/2.

As another example, consider the problem of calculating the maximum 
number of filter passes necessary to reach a root for an analog median filter. 
This problem is extremely difficult to solve in the analog case; it is not obvious 
that the filter output even converges to a root in a finite number of passes. 
However it is known that a discrete median filter of window width 2n + l 
applied to a signal of length L is reduced to a root in no more than order L/n 
passes of the filter [20]. In our discrete filter approximation, the signal length 
is L*2k and the window width is l + 2k. For large k, the ratio tends to the 
constant L, which is finite. In fact L is approximately 2(d-c)/w. Extending 
these notions to the continuum we conclude
Property 6.3: For the restricted class of signals which can be represented 
arbitrarily closely by step functions, the output of an analog median filter of 
window width w applied to a function with support no larger than [c,d) 
converges to a root in a finite number of passes which is bounded by 2(d-c)/w.

Other properties of the analog filter can be shown by extending known 
results for discrete filters in a similar manner. This technique is important in 
developing the intuition necessary to use the analog filter for the derivation of 
practical results.



6.4 stochastic Interpretation of the Filter 
The purpose of this section is to describe the various random and

stochastic interpretations of the analog median filter We ^
that an analog median Alter applied to a deterministic function «•) at point t 
equivalent to calculating the median of the distribution of a random variable 

j), where X(t) is uniformly distributed on It-^.td-ej-). To obtain

the entire output of the Biter we allow t to range over the support of t( ). _
final random interpretation which we present is for the c^e of a sto^aste
process as the input to the analog median filter. Necessary conditions for the 

existence of filter output distributions are discussed.
Theorem 6.2: the output y|t) of an analog median filter applied to a 
measurable function !{■) equals the median of the distribution ofethe^random
variable Z(t)=f(X(t)), where X(t) is uniformly distributed on It : % , t+ 2 )•

Proof; First note that the median of a distribution is not always uniquely 
defined. We avoid discrepancies with our filter definition by a ways using e
largest value Qt such that

< a) — >o) > -1 (6.17)

as the median of the distribution which we denote as a0(t). Note that 1*1*1 is
the associated probability measure. So we can write

o0|.| = sup 1 a: 1*1 Z(li > a ) > .J ! ID1*’

Expanding P(Z(t) > a) we have

■'’■.-j" z(t)

= P(I[f(X(t)) > a] = 1)

^lisjt,|i:f(X(UI>a'! (6.19)
Where EvIt, denotes the expected value with respect to the random variable 
X(t). Because XI.) is uniformly distributed over an interval of length w, the 

expectation reduces to

t+ TP(Z(t)>o)=^ / „ IIf(x)>a]dx
. / ' . 1 2 ■■■■■ '

Hombinine the results of Equations (6.18) and (6.20)
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a0{t) = sup { a: — / I[f(x)>a] dx > — }w t_ *
(6.21)

t + ? w— sup { cn: j I(f(x) > a] dx > —- }
t-—

= y(t)

where y(t) is the output at position t of an analog median filter applied to a 
deterministic function f(*).

Theorem 6.2 gives a more intuitive interpretation to the nature of the 
analog median transformation operating on deterministic functions. The 
usefulness of this interpretation depends on one’s familiarity with random 
variables. Assuming a familiarity, the next step would be to allow stochastic 
inputs to the filter. In order to proceed in our analysis of random inputs we 
must first define what is meant by a stochastic process and then determine 
what class of processes are allowable as inputs to the filter. The following 
definitions and theorems on stochastic processes are from Doob [24].

We define a stochastic process as any family of random variables 
{x(t,u>), t£T}. For any fixed t£T, x(t,w) is a random variable and is therefore 
measurable with respect to u. For a fixed oj, we call the resulting function of t 
a sample function of the process. Applying a window width w analog median 
filter to the stochastic input x(t,w) results in y(t,w) where

Where the subscript 0 on mf denotes Lebesgue measure and is used to 
distinguish it from the measure m(-) associated with the probability space. In 
the definition of a stochastic process no restrictions had been placed on the “t” 
properties of the function. Our first restriction is to set T equal to some finite

□

wy(t,c^) — sup r: J I[x(r,w) > r j dr >
W 2

= sup I r: m? { r: x(r,w) > r, r£[t —, t + ^ ^ (6.22)



interval. From Equation (6.22) it is obvious that in order for the analog 
median filter to make sense the process must be measurable with respect to the 
set of alf half open intervals of length w with midpoint in the interval T. A 
process satisfying this condition is called measurable. Specifically, ( e 
stochastic process {x(t,c), t£T} is called measurable \i the parameter set T is 
Lebesgue measurable and if xM defines a function measurable in the pair of 
variables (t,h)). The importance of the measurability of the input stochastic 
process is demonstrated by the following Property.
Property 6.4: The output distribution of an analog median filter applied to 
stochastic process x(t,w) exists if and only if x(t,*) is a measurable process. 
Proof: Let y(t,w) denote the output of the window width w filter. Then

■=f sup
W W \ 1 ^ w

r: mf {r:x(T,w)>r, T£\t-j,t + —) } >~ (6.23)

For convenience let A(r,t,u>) be the set of all r in the interval |t ™■ ,t + ™ ) such

that x(t,a)j is greater than or equal to r. That is,

A(r,t,w) = { r:x(r,w) > r, rG[t—

We should note that A(r,t,u;) is a Lebesgue measurable set for any t or r if and 
only if x(t,u>) is a measurable process. Substituting this into Equation (6.23)

- (6.25)y(t,u;) “ sup { r: m{ |A(r,t,ch)] > — }

The proof is easily done by investigating the function G(-) where 6(7) equals 
the probability that y(t,w) is greater than or equal to 7. If G{7) exists we have

:Gh) =P(yM>7)

(6.26)= P (sup [ r: m{ { A(r,t,w) } > ^ 1 — ^ )

By noting that Alr.t.-'l is.a subset of A(l,t,«) for any r > 7 and using the order 
of the inequalities, we can eliminate the supremum from Equation (6.26).
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= m( mp { r: x(r,u/) > 7, rG [t~ ^ 2 ^ “ 2 ^ (6-27)

This set of equalities imply that G(7) exists if and only if x(t,u;) is measurable 
with respect to the Lebesgue measure mp(') and the probability measure m(*). 
This result for G(*) extends directly for the distribution function of y(t,w).
□
This Property establishes the necessary and sufficient conditions on the input 
process which guarantee the existence of the output distribution. We would 
like to remain in the class of measurable processes even for repeated passes of 
the continuous filter. By the previous Property, this would guarantee output 
distributions for any countable number of filter passes. To do this we first 
show- that
Property 6.5s The stochastic output of an analog median filter is measurable 
with respect to its parameter space if and only if the input process is 
measurable. -
Proof: Let y(t,w) denote the output of a window width w analog median filter 
applied to a stochastic process x(t,u>). To show that the output is a measurable 
function in t, it is sufficient to show that T = {t: y(t,w) > 7} is a measurable 
set for any real 7. Expanding T we have

r = {t: y(t,w) > 7 }

= | t:sup [r:mf { r:x(r,o;) > r, [t--^-,t + —) } > ^ ]>7

Because of the order of the inequalities we can eliminate the supremum in a 
manner similar to the proof of Property 6.4.

r = t: m$ { t: x(r,cj) > 7, t£ [t“—-,t + “) } > “

= {t:B(t)>|-} (6.28)

where ■ ■ ‘

B(t) = mf{ r:x(r,w) > 7, (t-—-,t + -^-) }

Equation (6.28) has reduced the problem to showing that B(t) is a measurable 
function. It is in fact easier to show the stricter condition that B(t) is 
continuous in t. For any e>0, we have
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=• ;tn(|^.T:x(r,.w)-;>7j7G{t+£: ^ ^ + 6 + 2 ' ’

= rdf { r: x(t,o)) > 7, r€ [t + ~,t + c + ^ ~ ^~"1F ^

By the properties of the Lebesgue measure this equals
w , , _Wv \ ■

. ■ B(t + e) = m({r:x(r,w) >l, r£\t +—^+^ 2 ' '

"';r r \y , W x ^
- -.4-B(f4- mf{y::xfr,u;) > (

Because the Lebesgue measure of an interval is its length we have the following

set of laecpiaiiti^.
it(t+t| B: B(t) -e
B(t + e) < B(t) + e \ :

Which implies that | B(t+e)-B(t) | < e for any <>0. Therefore B(t) is 
Continuous and necessarily a measurable function.
□ ■: '■. ..■ :. =r;;'.'■■■■'.■■■; . -"'-V-
Combining Properties 6.4 and 6.5 We have the following
Theorem 6.3; The output of an analog median filter is a measurabe 
stochastic process if and only if the input process is measurable.

Property 6.4 implies that in order to have the existence of output 
distributions of the analog filter we must have a measurable input process. By 
the above Theorem, if we start with a measurable input process, we will always 
obtain measurable processes as output. This allows multiple filter passes to be 
performed without destroying the measurability of the process.

6*5 Examples and Discussion
The properties of the Dirac delta function make it a popular test input for 

inear systems. In fact, linear systems are often characterized by theirresponse 
o this impulsive input. One property of the analog median filter is that its 
mpulse response does not completely characterize its performance. We do the 
analysis for the purpose of comparison with the responses of the more common 
dass of linear filters. Let <5(t) denote the Dirac delta function which is defined

)V the two properties
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OO

J <5(t) dt = 1 and <S(t) =
-oo

In anticipation of the result, we might note that the discrete median filter 
performs well in the elimination of additive impulsive noise. The notion that 
the analog median filter should have no response to a delta function is stated
and proven in the following
Property 6.6; The response of a window width w analog median filter to a 
Dirac delta input is identically zero.
Proof: Using the theory of generalised functions [25], we represent the delta 
function as the limit of a series of functions which integrate to one and 
converge to have both desired properties. For this proof the simplest of these 
functions is

0 ,t#Q 
co ,t=0

xn(t)

n ,if < t <-£-
2n 2n

0 ,else
(6.30)

Obviously the two defining properties of the Dirac delta hold because for any n
OO

f Xn(t) dt “ 1 and <5(t) - lim Xn(t) =
J . n-*oo. -oo

0 ,t*0
oo ,t —0

Applying a continuous median filter with window width w to Xn(t) we obtain 
yn(t) where

y„(t) = sup
W

r: / I[Xn(t)(r) >r]dr> —

If w < 2/n then

Ynl1) “

n ,if~-<t<~ 
2n 2n

0 ,else

and if w > 2/n then yn(t)‘ equals zero for all t. Obviously for any w>0 there 
exists an N>0 such that for all n>N we have w > 2/n. This implies that yn(t) 
is zero for all n>N and for this representation of the delta function we have an 
identically zero output of the analog median filter.
□



. • „ ,w the analog median filter does not respond to 
• l- iS m to^ of demonstrate the preceding property
SSrM ttJLar te^ue is ineffective ip the total ch—at,on

qpthe analogjnedian ®’^r'. ^ classic linear techniques fail to comp,etely
As another example of ine the response of the filter to

characterize the ^window width, and call the output of

sin(2rrt/X)- where X denole* the wavelength of the tes. sig
"1 r„ .«-»sr, raj
signals which jp comprised of -urns of slnlj’" J a,|,|jti„„ „|,,ain the

necessary to represent the input slgna using
noted before, linear techniques . be " « „se the anaLg

signals allowing “ ^Ttmiu^ncy representations of the response of
^dtn ffSr^cnlt to interpret: We begin with three restrictions on

x and .* ±r 16 B^thTsymmetry Of S(-) Wc knoW that
Case 1: t - Xk/2, k 0, ’ ft+ r\ == -s(t-rV. It is easy to
for this restricted set of time values m b 6 0 at these
show that the output of the analog medm,> ^ ^

zero crossings are invariant to analog

median filtering _ whenever the window width w of the fflter is an
SS#-* '-fnsthdot

have for all t

y(t) = sup

t+ W

r: / l[sin(2«kr/w) > r] dr >
W
9

w
’ 2

= 0 (6.31)

We conclude that the analog median Alter has no response t^stousoids with
llZlk. In terms of the frequency of the sinusoid we have n - !/X - k/w as 

the class of frequencies with an identically zero response.
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Case 3: \>w>0, This case is simple because we obtain a root after only one 
pass of the filter. In addition, the root is simply a “clipped” version of the 
input. This can be seen in Figure 6.1. Analytically we have

y(t)

sin 4
2k + l

sm[2jrt/\ ] ,else (6.32)

where k = 0, ±1, ±2,... From this we see that the filter is clipping the tops of 
the sinusoid to constant regions of width w/2. Therefore y(t) is a root to the 
analog median filter of window width w. This is a well behaved response in 
that the nonconstant monotonic regions are identical to the input sinusoid.

If we consider the transformation of the filter as being from a single 
frequency signal to some output signal y(t). Then we immediately note that, 
because of the constant regions, the transformation spreads the output over the 
entire spectrum. This means that the sinusoidal response curve, because the 
normalized output energy is plotted in terms of the input wavelength, may be a 
misleading description of the filtering phenomenon. As an example, in Figures
8.2 and 6.3 we plot the response of the analog median filter to these sinusoidal 
signals in terms of the output energy normalized by the input energy. It is 
important to remember that the output energy is spread over the spectrum 
even though it is the result of filtering an input which contains only one
frequency.

This analysis has allowed us to calculate analytically the sinusoidal 
response of the filter for X>w>0. For smaller wavelengths the structure of the 
input sinusoid is destroyed making the analysis significantly more complicated 
and therefore it will not be presented here. Instead refer to the sinusoidal 
response plots in the Figures. These plots were calculated using the 
approximation techniques presented earlier in this chapter. The zeros and 
other predicted behavior from the previous three cases can be verified. Note 
that, as expected, as X becomes much greater than w the energy ratio tends to
one.

6.6 Summary of Results
The foundation of the theory necessary to use the analog median filter to 

model discrete problems and to attack the difficult statistics involved with 
ranked operations is presented. This is a new concept for the analysis of 
median filters. Even though this is an introduction to the filter, its use as a
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tool for analytic proofs is demonstrated along with the foundation for 
statistical interpretations. The necessary and sufficient conditions for the 
existence of output distributions of multiple analog Biter passes is an important 
result. The practical uses are demonstrated by the intuitive results which can 
be derived by treating the filter as an entity in itself and then mapping to e 
discrete domain for comparison with the already popular discrete median filter.
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Input

Figure 6.1
Clipping effect of analog median filter
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Figure 6.2
Sinusoidal response with w < X < 5w.
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Sinusox da1 Response

! ®S3t ,.*85 «733 ,B13
Wavelength in Window Width Unit

Figure 6*3 
Sinusoidal response with < X < w
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CONCLUSIONS

The threshold decomposition and the set of binary signals perform the 
same function for ranked order filters that superposition and sinusoids perform 
for linear fiftets tffey allow complex problems tobedecomposedmto simpler 
problems. This has very fortunate practical and theoretical consequences.

On the practical side, the decomposition has an important impact on the 
implementation of ranked order filters. It shows that a ranked order filter for a 
multi-level signal is simply a parallel connection of filters for binary signals 
Furthermore, since the output of the ranked filter for a binary signal is found 
by counting the number of ones in the windOyr and comparing the result to a 
threshcild, these Alters are trivial to implement ~ complicated ranking is no 
longer needed. The possibility of VLSI implementation is apparent.

On the theoretical side, the decomposition stiows that the analysis of the 
ranked order filter’s effects on multi-level signals is reduced to the much 
simpler analysis of binary signals. It is now clear that many of the properties 
which were limited to binary signals can now be extended m a straightforward 
fashion to multi-level signals. Also, the difficult task of comparing different 
ranked order operators is now reduced to the binary signal domain.

The convergence of binary signals to roots is analyzed for deterministic 
and random sequences. For arbitrary signallevels,. a direct technique for 
explicit solution to the number of roots of a median filter with arbitrary 
window width is developed. Using the symmetric tree structure of the signal 
space we.introduce a faster technique for analytic and computer solution.

The analog median filter is defined and proposed for analysis of the 
standard discrete median filter in cases with a large sample size or when the 
associated statistics would be simpler in the continuum. Discrete filters are 
shown to be a subclass of analog filters. Also, an equivalence among analog 
filters and limits of discrete filters is established. Finally, several stochastic 
interpretations of the analog median filter are presented including necessary 
and sufficient conditions on input processes which guarantee the existence of
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output distributions for multiple passes of the analog median filter.
These theoretical results should improve our understanding of the behavior 

of these filters. The practical results should lead to the use of these filters in 
many new real time signal processing applications, particularly real time image 
processing.
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Appendix A
Recursive Median Filtering

lit this Appendix, the following Theorem, a property analogous to 
Thedreni ? 2, is ptO¥?p for recursive rnediap filtefs-
Theorem A: The root signal associated with a window width 2n + l recursive
median filter can be obtained by thresholding the original signal, applying the
recursive median filter to the resulting binary signals, and then mapping these 
binary roots back to the k-level root signal using the addition function f(*).

The proof of this theorem is best presented as a series of properties for 
recursive median filters. Throughout this section of the paper let yr(m) denote 
the output at position m of a recursive median filter with window width 2n + l 
moving left to right across the input sequence a(m). Define the level i 
threshold decomposition of the original signal at position ip fo be

t<km)
1 ,if a(m) > i 
0 ,if a(m) < i

(A. 1)

with l<m<L and l<i<k-l. Recursive median filtering the thresholded
values gives another binary sequence

= median x‘(m-n),...,x;(m-l),ti(m), . . . ,t«l(m + n)

Property AA: yr(l) = f( x-(l), l<i<k-l ) = E xr(l)
That is, the reconstruction function, f(-), works for the first point in the input 
signal. Note that a similar property holds at the last point of the signal when 
a recursive median filter moving from right to left across the signal is used. 
Proof: To start the filter at. position one, N points of value a(l) are appended 
to the beginning of the signal. The output of the recursive filter at position

■ one is
y (1) = median(a.(l), . . • , a(l),a(2), . . . ,a(n))
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= a(l)

= £ 4(1) (A-3)
i=l

The level i threshold decomposition sequences recursively median filtered at 
position m are given by xr‘(m). So at position one, after appending n points, we 
have

xr‘(l) — median t‘(l),..., t‘(l), t‘(2),..., ta(n)

= tj(l) (A.4)

Substituting Equation (A.4) into Equation (A.3), we obtain

yr(l) = Exr(l)
i=l

= f xr'(l), 1 < i < k~l (A.5)

Which shows that the function !(*) for the standard median filter will also 
reconstruct the recursive median filtered threshold values at position one of the 
signal.
a
Property A.2: If xrp(m) = 1 then x q(m) = 1, l<q<p, l<m<L.
If the recursively filtered binary sequences were stacked according to threshold 
value, then the interpretation of this property is that a one occurring at some 
level implies all the binary sequences of smaller threshold levels are also one.
Proof by induction: We first note that by Property A.l this claim is true at 
position one of the signal. If assuming that the property holds at positions one 
through m-1 implies that it is valid at position m, we then know by induction 
that it holds for any position of the signal. So assume that m is fixed and 
x p(n) = 1 implies xq(n) = 1 for all q such that l<q<p and l<n<m~l. If for 
some n between one and m-1 we know that xrp(n) = 0 then we cannot say 
whether xrq(n) is 0 or 1 for l<q<p. That is, xp(n) —0 implies that 
xrq(n) > xp(n) = 0 for any l<q<p. In other words the number of ones in the 
sequence xrp(m-n),...,xrp(m-l) can only stay the same or increase as the 
parameter p is decreased to q, l<q<p. This allows us to conclude that if
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1- xrp(m)

= median' xp(m-n), . . . ,xrp(m l),t|(m), . . • ,t(f(m + n)

then

1 ~ median' xrq(m-n), . . . ,xrq(m-l),t^m), . . - , t(F(m-bn) j| (A.«)

Similarlv bv the d<ifinitidii of the threshdld decoiripbsitibn7 we know that

tjf(ii) = 1 implies that t<?(h) — 1 for l<q<p and l<n<L. Therefore, the

numl>ef of ones in the window cannot decrease wh<jh we replace t^(n) with

t0q(n) in Equation (A.6). This leads to

1 = median' xq(m-n), ... ,xq(m-l),tol(m), . . . ,t0q(m+n)

= xrq(m)

for l<q<p. Summarizing, Property A.2 holds at position in whenever it holds 
for positions one throhgh ra-1. But, as was noted at the beginning of the proof, 
Property A.2 always holds at position one of the signal. By induction on m,
the proof of Property A.2 is complete.
□;
Property A.3; If the first m-1 positions of the signal can be successfully 
decomposed and reconstructed for a recursive median filter, then xr(n) - 1 if
and only if yr(n)>i, l<n<m 1- That is, if

yr(n) - f x‘(n), 1 < i <k-l

for all n such that 1 < n< m-1 where m is any fix ed integer from two to the 
signal length L, then x‘(n) = 1 if and only if y»>i, l<n<m-l.
Proof: Begin the proof by thresholding the recursively filtered values 
yr(n) for 1 < n < m-1. This gives for each i a sequence t,!(n), where
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1 ,if yr(n) >i / ■
‘r'(“)=lo .else |A'81

Using the assumptions of this property given in Equation (A.7), we obtain

t;(n)
1 ,if E xrq(R) > i

q=i
0 ■ ,else

Now. invoking Property. A.2, the previous equation reduces to 
f 1 ,if x.’tn) = 1

‘r1W = |o .else (A'9)

Combining Equations (A.8) and (A.9), we have xr'(n) = 1 if and only if
yr(n) > i, 1 < n < m-1.
□
This result is similar to Lemma 2 for standard median filters. However, it is 
important to note that we assumed the decomposition worked for the first m-1
positions.
Property A*4s If the first m-1 positions of the signal can be successfully 
decomposed and reconstructed for a recursive median filter then so can the 
m’th position.
Proof: First note that because the same hypothesis is used, any results from the 
proof of Property A.3 can be used in this proof. Examine the recursively 
filtered binary sequences at position m

xr‘(m) — median xr'(m-n), . . . , x^m-l), t<j(m), . . . , t,J(m +n) (A. 10)

*

1 ,if y]xr‘(m-n) + gt()(m + n) > n + 1

0 ,if £xr‘(m-n) + V] t^(m + n) < n +1 
n=l n=0
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.= I ^Xr(m-n) + £to(m + n) > n + 1
n = l n=0

= Lj EXr(m_I1) > n
+i-Eto(«i+n)

n=0

= L
n .

At least n + l~E to(m + n) elements in
n=0

xr'(m-n), . . . , xr‘(m-l) equal one

Now using Property A.3 we can change the filtered threshold values in the 
argument of the indicator function to the filtered values of the original signal 
denoted by the y/ s.

xr'(m) - I At least n + l- Eto(m + n) elements in
n=0

yT(m-n), . . . , yr(m-l) are > i

The analysis of the filtered version of the original signal follows

yr(m) = median yr(m-n), . . . ,yr(m-l), a(m), . . . ,a(m + n)

(A.11)

(A. 12)
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= max I 0, i: At least n + 1 of yr(m-*n), . . . , a(m + n) are > i

Using the threshold decomposition, we know that the number of 
a(m), . . . , a(m+n) which are greater than or equal to i is given by

Property A.4 states that if the threshold decomposition and reconstruction 
works for the first m-1 positions of the signal then it works for the m’th 
position. Using Property A. 1 we know the function f(*) always works for 
recursive filters at position one of the signal. Therefore the combination of 
these two properties provides an inductive proof that the threshold 
decomposition technique using recursive filters works at any position of the 
signal. The proof of Theorem A is complete.

E to(m+n) , Therefore,
H

yr(m) = maxi 0, i : At least n + l~E t^(m + n) elements in 
I n =0

n

yr(m~l) are > i

yr(m-n), . . . , yr(m-l) are > i ) - 1 - (A.13)

and by Equation (A.ll), we have

Using Property A.2 we convert this to a sum

yr(m) - Exr(ni)
k-i

f| x^m), 1 < i < k-1

□
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Since recursive median filters converge in one pass, the algorithm 
introduced in the preceding theorem has many practical advantages over the 
algorithm using the standard median filter. A simple parallel architecture with 
one binary recursive median filter preceded by a threshold device may be used 
for each level.

We note here that a simple modification of the proof of Theorem A shows 
that the same results hold if we substitute any n’th order operation for the 
median operation. Thus, fast implementations and analytically useful 
decompositions exist for these filters a? well.
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Appendix B
Multidimensional Ranked Order Operations

Assume, as always, that the input signal is a discrete sequence of length L 
which takes on the value a(m) at position m, l<m<L, and that for each m, 
a(rn) is quantized to one of the k integer values 1. Let </>w(a,m) be the
output at position m of a rank r(m) and window shape w(m) filter applied to 
the input sequence a(m). The window shape is allowed to change with 
position. The results of the following analysis are therefore valid in 
multidimensional applications. For convenience, let N(m) denote the number 
of positions in the window w(m). The filter at position m can be written as

<^(a,m) = the r(m)th largest element of a(p): p€w(m) (B.l)

Define the threshold decomposition of the original signal at position m to 
be the set of binary sequences

t(j(m)
1 ,if a(m) > i 
0 ,if a(m) < i

(B.2)

with l<m<L and l<i<k-L Applying the ranked filter to these thresholded 
values gives another set of binary sequences

0'(t,j,m) = the r(m)th largest element of t(5(p): p€w(m) (B3)

The remainder of this Appendix is devoted to the development of three 
properties of filters with position dependent window shapes and ranks. These 
three properties lead directly to a superposition principal for generalized rank
filters.

In the following proofs it is often convenient to use the indicator function
of the event A, which is given by
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!
1 ,if A is true
0 ,if A is false

The following property, although easily shown, allows the filtered binary 
sequences to be specified at all threshold levels by knowing the highest 
threshold level at which a one occurs.
Property B.1: If ^(t^m) — 1 then 0^(t^,m) — 1, l<q<i-
That is, if the filtered threshold value is one at level i, then it is one for all
levels less than i.
Proof: First examine the output of the filter applied to the threshold 
decomposition of the input signal. For any fixed i, l<i<k~T,

<^(t<j,m) = the r(m)th largest element of t<j(p): pGw(m)

,if at least N(m) + l-r(m) of (t^(p): p€w(m)) equal one 
,if at least r(m) of (to(p): p£w(m)) equal zero

= I; at least N(m) + l-r(m) of (t<J(p): pGw(m)) equal one (B.4)

Which by the definition of threshold decomposition, see Equation (B.2), 
becomes

= Ij at least N(m) + l-r(m) of (a.(p): p€w(m)) are > i

Using Equation (B.5) we know that if

1 '=
then ,

1 = ij at least N(m) + U-r(m) of (a(p): p£w(m)) are > i ' 

which implies for any q less than or equal to i

1 = II at least N(m) + l-r(m) of (a(p): pEw(m)) are > q

(B.5)
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= <f>l{t§,m)

□
The relation of the binary valued, ranked order filtered threshold 

sequences to the output of the filter applied to original k-level signal is 
provided by
Property B.2; There exists a mapping f( •) from the set of filtered threshold 
decomposed sequences tf;(tj,m), l<i<k-l to the signal space of k-leveled 
signals such that <^(a,m) — f(</,w(^o>m)> ^ — ^
Proof by construction:

<^(a,m) = the r(m)th largest element of a(p): pGw(m)

= max 0,i: At least N(m) + l-r(m) of (a(p): pGw(m)) are > i

= max 0,i:I(At least N(m) + l-r(m) of (a(p): p € w(m)) are > i)-l

Combining Equations (B.5) and (B.6)

(B.6)

(a,m) = max Q,i: >w(to»m)' - 1

which by Property B.l implies

K( a,m) = S^w(^,m) 
i=l

(B.7)

= f(^(t‘,m), l<i<k-l)

□
Any rank value can be obtained by summing the corresponding threshold 

decomposed rank values over ail possible threshold levels. In loose terms, the 
function f( •) stacks the binary signals <^(t,J,m) on top of one another starting 
with i=l. The value of the output at position m is then the highest level at 
position m in the stack at which a one appears.

The function f(*) constructed above is shown to he the inverse of the 
threshold decomposition by



95

Property B.3: The binary sequences tj(m), l<m<L, and l<i<k-l, obtained 
by thresholding <^(a,m), l<m<L, are identical to the filtered threshold values 
of the original signal <(t<j,m), l<m<L, and l<i<k-l, (see Property B.2).
Proof:

ti(m)
1 ,if 0w(a>m) > 1 
0 ,if <^(a,m) < i

Using Equation (B.7) from the proof of Property B.2, we obtain

t|(m)

k-l
1 ,if ^(t0q,m) > i 

q=l
0 ,else

by Property ;B.l

t|(m) -
1

0

,if ^(t^mj - 1 

,else

=

□
The above results show how one pass of a generalized rank filter over the 

input signal is equivalent to first thresholding the signal then filtering each 
threshold sequence and finally reconstructing the output using the function 
f{ *). This operation can clearly be repeated for a series of generalized ranked 
filters. A simple inductive argument based on the fact that f( *) and the 
decomposition are inverse operations between the binary and k level signals 
shows that the intermediate reconstructions can be omitted. These results are 
summarized in
Theorem B: The output of a series of ranked order filters with position 
dependent window shapes applied to a k-level input signal is identical to the 
superposition, using the function f( •), of the filtered threshold decomposition of 
the input signal.

This result provides a new tool for both the implementation and the 
analysis of the ranked oreder filtering operations applied to arbitrary level 
signals. Examples of this technique applied to recursive median, separable 
median, and weighted rank filters are given in Chapter 2 of this Thesis.
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