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ABSTRACT

Johnson, Carroll D., Ph. D., Purdue University, August, 1965.

Singular Solutions in Problems of Optimal Control, Major Professor:

John E. Gibson,

The contribution of this thesis is the somewhat general analysis, of 

singular solutions which arise in problems of optimal control and the 

development of certain analytical procedures for detecting and calculating 

singular solutions.

She basic optimal control problem considered in this study is the 

task of choosing a control u(t) which will a) transfer the state of a 

system, described by the a first order ordinary differential equations,

" f^x^, ,,, , t, u) (x 1, «*«, n) (l)

from seme prescribed initial state to some prescribed final (terminal) 

state and b) simultaneously minimize (with respect to the control u) 

an index of performance J of the form

■ T
J[u] = J fQ{xlS> .,,, xm, t, u)dt (2)

It is assumed that the allowable values, of the control .u may be 

constrained to lie in some set U.

The conventional mathematical techniques presently being used in 

optimal control theory are discussed. It is shown that for a certain 

class of optimal control problems, which are characterized by the control 

u appearing linearly in the system state equations (l) and the integrand



of the index of performance (2), the optimal control u*(t) is found 
(formally) to he of the "bang-bang" type

u*(t)
A if F(t) > 0

B if F(t) < 0

In (3), A and B are, respectively, the upper and lower hounds on the ad­

missible control u and F(t) is a certain function of time which is called 

the switching function. When the switching function becomes identically 

zero over a finite time interval the conventional mathematical 'techniques 

fail to yield any information about the desired optimal control. The 

solution in this ease is said to he "singular" and the corresponding

control is termed •"'singular control". •
■ , ■

The nature of singular solutions is beinginvestigated in detail and the 

apparent failure of the conventional mathematical techniques has been shown to 

be due to the fact that singular optimal controls lie in the interior 
(rather than on the boundary) of the admissible set U. The concept of 

a singular control surface in the system state space was introduced and is

used to examine the geometry of singular solutions. Seme mathematical
■ ■ ■. . .

properties of the singular control surface are being derived and a backward

tracing scheme is used to aid in establishing the role of singular sub-
. ■

arcs in the solution of optimal control problems. It is being shown that the 
singular control u*(t) can be obtained from the condition F(t) •» © and . 

in seme cases can be synthesized as a function of the system .state 

variables.
The proposed techniques for solving optimal control problems with 

singular solutions can be illustrated by means of four examples which are 

worked out in detail.



Chapter 1

INTRODUCTION

1.1. The Problem of Optimal Control

The control of processes hy means of automatic sensing and regulating 

devices has "been one of the most active areas in recent scientific research. 

The original applications of automatic control techniques were primarily 

concerned with replacing human effort by more reliable and less expensive 

machine effort. Recently, interest has centered around the possibility of 

designing autcmatic control systems which will perform their operations in 

an optimum manner with respect to some given figure of merits As a result,
4

a new approach to automatic control has emerged, the Theory of Optimal 

Control. ' '

The basic problem of optimal control may be stated as follows: Given

a plant (process) described by the set of differential equations

, . . ., x^, t, u) (i = 1, *)
(1.1)

determine a control u*(t) that will transfer the plant (l. l) from some

prescribed initial condition

(tQ « starting time) 

(i n)
(1.2)

to seme prescribed terminal (final) condition

*i(T) * xiT (T = terminal time)
(1.5)

(i = 1



2

and simultaneously minimize an index of performance (figure of merit) 

given by
T

J[u] »J f^(xj,.,. t, u)dt . (1.4)

v,

In (l«l) the x^ are state variables, the variables (position, velocity, 

temperature, etc.) required to specify the state or condition of the plant, 

and u is the control effort (force, voltage, etc.) by which the state of 

the plant may be changed. Some processes may permit simultaneous applica­

tion of several different control efforts. In this thesis, primary concern 

is devoted to processes -with a single control variable, fhe independent 

variable t is usually time. In general, some of the initial and terminal 

conditions (1.2), (l.5) (and possible t and/or T) may be unspecified a 

priori. The index of performance (l«4) represents the measure of goodness 

for the solution of the task of transferring the plant (l.l) from condition . 

(1.2) to condition (1.3). Physically, (1.4) may represent such quantities 

as cost, time expended, energy expended, accumulated error, etc. In some 

processes, it is desired to maximize a certain index of performance. In 

this ease (1.4) is selected as the negative of the quantity to be maximized.

The problem ©f optimal control as described above may be considerably 

complicated by certain physical requirements. First, the control effort u 

is usually bounded or constrained s® that only certain finite values of u 

are allowed. The set from which allowable values of u may be selected is 

denoted by U, and the notation

U € TJ (l. 5)

represents the condition that u is contained in the set U. Further compli­



cations arise when the set U varies with time and/or the x^ Another 

factor which may complicate the problem of optimal control is hounded state

variablesj i.e., the specification that certain of the state variables 

should not exceed given values X^. The bounds X^ may, in general, depend 

on time and possibly other state variables. Finally, the f^ in (1.1) may 

be discontinuous with respect to one or more of the arguments x^, t, and u. 

In this study only one of the factors listed above, the ease of bounded 

control u e U in which U is constant, is considered.

1.2. Techniques for Solving the Problem of Optimal 

Control

The problem of optimal control outlined above differs from problems 

of maximization and minimization in the ordinary calculus in that the de­

sired solution u*(t) is a function rather than a set of numbers. There are 

several mathematical techniques which can be used to determine optimal 

functions. The basic notions of the older and more widely known techniques 

are outlined below. The newer techniques, developed within the last decade 

are then presented in some detail.

1.2,1. The Classical Calculus of Variations

The problem of determining optimal functions was investigated by 

Lagrange and others in the latter part of the 18th eentury. Their results 

led to the formulation of a new branch of mathematics called the '"Calculus 

of Variations”. In its classical form, the calculus of variations can be 

applied only to those problems in which the control u(t) and the state 

variables x^(t) are unconstrained and in which the (i =0, 1, ..., n) in 

(l.l) and (1.4) possess continuous partial derivatives (in all arguments) up 

to and including those of the third order. •



Basically, in the calculus of variations (as well as in the other 

techniques to he discussed) one seeks to characterize the optimal function 

by means of certain necessary (hut usually not sufficient) conditions. In 

the classical ealculus of variations, the most important necessary condi­
tions for the problem"*- (l.l)-(l.k) are! the Euler equations, the Weierstrass- 

Erdmana corner condition, and the necessary condition of Weierstrass.

The Euler equations which must be satisfied by the optimal solution

are

d=i, (1-6)

and

!=» ti.7)

where
S » fG + ^ - \) (i =1, ..., n) (1.8)

The = X>^(t) in (1.8) are referred to as Lagrange multipliers and must be 

deteimined from (1.6).

The Weierstrass-Erdmann corner condition states that at corners of the 

optimal trajectory x^(t) (i =1, n) the quantities dG/du, and 

(G - have well defined one sided limits that are equal.

The necessary condition of Weierstrass requires that for all 

u £ u*

as
1

the
In the classical calculus of variations this problem is referred to 
"problem of Bolza" [lj»
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-)X-Vl^0 (L9)
at every point along the optimal trajectory x^(t). In (1.9)# the hars 

denote quantities which are not associated with the optimal trajectory.
A complete discussion of the necessary conditions given above (and also 
other necessary conditions) can be found in [1], [2],

1.2.2. Extensions of the Classical Calculus of Variations

Valentine [5] has proposed a method by which the classical calculus 
of variations can be used to solve the problem (l.l)-(l.4) with bounded 

control u e U where U = U(t, x, u). In this case, the constraint on the 

control is written as

R(x^,... ,xa, t, u) > 0 (1.10)

and a new (real) control variable z is defined as

h2 = Bfej., ..., xn, t, u) (z(t0) = 0) (1.11)

Equation (l.ll) can now be treated as an additional state variable equation 

and appended to the set (1.1). With the new state variable (l.ll) added to 

(l.l), the © in (1.8) becomes

© = fQ +^\L(fj. -£,.)+>(R - fc2) (ji.<0) (1.12)

resulting in the additional Euler equation

■&(sf)*0 (:u:L3)
In (I.I2), n = i^(t) is a non-positive undetermined multiplier. With the



addition of (l.ll), the Weierstrass-Erimann corner condition requires that
3iGfor the optimal solution the quantities dG/dz and (@ - x^ - i have 

•well defined one sided limits that are equal. The necessary condition of 
Weierstrass (1*9) is not effected by the additional equation (l. ll). A

thorough treatment of the method of Valentine applied to the problem of 

Bolza can be found in [2], Miele [4] has proposed another technique by which 

the problem (l»3)»(l.4) with bounded control can be solved by the classical 

calculus of variations. Miele's method, however, is restricted to control 

constraints of the form '

B < u*(t) < A ..(iLlfc)

where A and B are constants*. ■: r

1* 2* 3* lynamic Programming

In 1957, Bellman [5] introduced a somewhat different approach to 

the problem of optimal control. Using his Principle of Optimality, Bellman 

derived a functional equation which can be used t® solve, in a discrete 

manner, a large class of optimal control problems. More recently, it has 

been shown [6J that Bellman's recurrence equation is a finite difference 

version of the classical Hamilton-Jacobi partial differential equation. A 

treatment of Dynamic Programming theory for the problem (l. l)-(l.4) Is 

given below. This presentation differs somewhat from that originally given

by Bellman.

It has been mentioned previously that some of the initial and terminal 

conditions (X.t), (X.3) may he unspecified a priori. This condition may be 

generalized by replacing the conditions (1.2), (l.3) with the requirements 

that the equations



•••’ xno> V ■ 0 (3-15)
and

•••; xnip f) ** 0 (l«l6)

be satisfied at the initial and terminal conditions respectively. Equations

(1.15) and (l.l6) represent hypersurfaces in the (n + l) dimensional (x, t) 

space. Thus, the desired optimal trajectory x^(t) (i ■'» 1, ..., n) in this 

space is required to hare its initial and terminal points lying on the hyper- 

surfaces (1,15), (1.16). For this reason, (1.15) and (l. l6) are referred to 

as initial and terminal "manifolds". It is remarked that in some eases, the 

initial and/or terminal manifolds may he defined by a set of equationsof 

the type (1.15) or (l. 16), With the introduction of initial and terminal 

manifolds, the basic problem of optimal control to be considered in this in-

restigation can be described as the problem ©f transferring the statO of the 

plant (l.l) frem the initial manifold (1,15) to the terminal manifold (l. 16) 

and simultaneously minimizing (1.4).

It vill be assumed in the following that an optimal solution does 

exist for the problem being considered. Furthermore, it will be assumed 

that if the given initial and/or terminal conditions are varied over some 

region R in the (x, t) space, an optimal solution exists for each set'of 

initial, and terminal conditions in R.

Consider the problem of minimizing (1.4) for a fixed terminal manifold 

(1.16) and variable initial conditions

W - *10

X (t ) = Xxr cr n o
to

(1.1?)



in the region R of the (x, t) space. Under the assumptions given above, it 

should he possible to assign to every initial point (l»17) in R a unique

number representing the minimum value of the index of performance (1.4) 

(corresponding to the plant (l.l)). This value of min J[u] associated 

with any arbitrary point (x, t ) in R is a property of the point (x , t ) 

and will be denoted by V. Thus

T
V(x. ,...,x ,t ) «min / f (x-,...,x ,t,u)dt (l.l8)

xq u q tisU ox n
t "■ ■ o

where the integral is evaluated between any arbitrary initial point (1.17)
and the fixed terminal manifold (l.l6). The locus of points (1,17) in R 

which have the same value for V will form an "isovee" eontour as shown

in Figure 1,1, Rote that the two dimensional coordinate system of 
Figure 1.1 is used to represent the n + 1 dimensional (x, t) space. Xf 

the initial manifold (1.15) is now superimposed on Figure 1.1, a graphic 

representation of the optimization problem is obtained as shown in Figure
1.2, Rote that from the definition of V(xa_0,.,.>xno,to), the addition of 

the initial manifold (1.15) to Figure 1,1 does not alter the shape or value

of the field of isovee contours. That is, the initial manifold simply res­

tricts the allowable set of starting points in Figure 1.1.

Referring to Figure 1,2, the original optimization problem can nOW be 

described geometrically as the problem of joining the tj and I manifolds 

with a line (trajectory) (subject to the conditions (1.1) and (l. 5))such 

that the value of (1,4) computed along that trajectory is less than the 

value of (l»4) computed along any other trajectory joining T) and | and 

compatible with (l.l) and (1,5). From the definition of | and V, the isovee



ISOVEE CONTOURS 
-V=C

REGION OF INTEREST R

TERMINAL
MANIFOLD

Figure 1.1. Isovee Contours and Terminal Manifold 
in the x-t Space

INITIAL “V. 
MANIFOLD

Figure 1.2. Initial Manifold and Optimal Trajectory 
in the x-t Space



ocontour V = 0 must coincide with at least a portion of the terminal mani­

fold | as shown in Figure 1*2. Clearly, the optimal starting point 

(x_,...,x f t ) for this problem is the point A* shown in Figure 1,2, 

Further, the minimum value of the index of performance for this problem 

is the value V* of the isovee contour whieh passes through point it The 

actual form of the optimal trajectory which starts at A* and joins | is not 

evident from Figure 1.2. However, it is possible, from Figure 1.2, to 

state a fundamental property of the optimal trajectory;

Fundamental Property of the Optimal Trajectory

The optimal trajectory K* joining tj and | has the property 

that at any intermediate point E = (x^*, ..., x^*, t) along K* 

the value of (1.4) computed from A* to E (along K*) must satisfy

,the relation,. •
E
ff (x-,».»,x . t, u)dt 1 «.V»(^--V(E) (1.
j o i n ! p .
A* . . • - - -

If there is only one optimal trajectory between f] and | (i.e., 
if the solution to the problem is unique) then for any other 

path K 1 1C* starting at A* and joining | (and compatible with 

(1.1) and (1.5))the following inequality is satisfied at every

point E' on K
E*

J fo(X;L,.,.,xn, t, u) dt | > V*(A*$ - Y(E’) (1.
A* K - .

2This assumes, that V is not defined as the minimum value of same 
function i|r ©f the coordinates x^, t. If Y = mig ^(x^Cl), then Y can
he zero only at points where \|r = ©. (However, Y need not he zero at all 
points where ty ® ©).



Hie quantities V(E), andV(E’) in (L.19) and (l,20) are

the values of the isovee contours passing through the points 

A, E# and E* respectively.

She proof of (l. 19) and (1.20) follows immediately fro® the definition 
and assumed uniqueness of the optimal trajectory K*. Equations (1,19) and 

(l»20) expressthe fundamental property of optimal trajectories for the 1

optimization problem being considered. Prom Figure 1,2 and the rather 

obvious statement of fact represented by (I.19) and (l.20), the theory of 

Dynamic Programming and Pontryagin's Maximum Principle will be derived. It 

may be noted that relations (1.19) and (1.20) are quite similar to the 
relations between entropy and the integral J for reversible and non- 

reversible thermodynamic processes. This similarity is not entirely super­

ficial, .

Since the trajectory K which the system follows between tj and g is 
determined by the control variable u(t), (1.19) and (l,20) may be re­

stated as follows:

For optimal control u(t) = u*(t) (K = K*)

¥*(xi0, ..., xnQ, t0) - V(3Cl*,...,xb*, t) - 

t
- J' xn*> tf u*)dt Z 0 (1.21)

■ V ■ ' ■'
(tQ < t < T)

and for non-optimal control u(t) j? u*(t) (K 7 K*)



V#^L©,*“>Xn0, *) *

O
- J *£*!»■ •••> V %t u)dt < ® (1.22)

Q (t < t < t)o —
where (x. , .,,, x v, t ) is the optimal starting point A oa V 

and (x-,*, x^*, t) is a point on the optimal path K*.
A typical plot of (l.2l) and (1.22) versus time is shown in Figure 1.3.

"5Mote that at t = t both curves in--Figure 1„3 coincide, and frcaa the de-o
finition of &*,¥*, and T neither curve can ever enter the region 

t- -i > 0. Also, fort < t < T, the non-optimal (dotted)?* - V - f dt•O-

curve in Figure 1.3 must always lie entirely below the optimal (solid) 

curve. Mote also, the slope of (1.22) &»• Figure 1.3 can never he positive. 

The optimal curve in Figure 1. 3 Is thus characterized by the fact that 

along K*
t

,tQ) - T(xl*,...,xn*,t) -J f^(x1*,...,xn*,t,u*)dt l 0
±0 (1.23)

(t < t < T)

Adt v*Kc »2L. no*

and furthermore^ at any point along the optimal trajectory K* we must have

3 ^If the non-optimal trajectory K begins at ary point other than A,
then in Figure 1.3 the curve for (1.22) will be below (l.2l) at all 
times. In any case, (1.19), (1.2®), (l.2l) and (1.22) are always sa­
tisfied.
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<*<,5
1
>8

BY DEFINITION OF V, NEITHER CURVE
CAN ENTER THIS REGION

EQUATION (1.21) -*) „ *
/ U = U (K*K )

■

£ ^ ' }T T* i

EQUATION (1.22) -w*^ (£^* !
■ ■ ■• - ! ■:

- I

. U € U

■

Figure 1.5. Plot of Equations (1.21) and (1.-22) as
Functions of Time



mas
U€U dt

t
- J fQ(*!*,« • • >\*> *> «*)fr (1.2k)

(t < t < T.)

The quantity V*(x^G,...,x^o,tQ) corresponds to the value of the isovee 

contour -which passes through the optimal starting point A on v Thus, 

V*(x^G,...,xaQ#t0) is a constant with respect to time,, Also, hy the chain 

rule for differentiation

ffl
dt \ + -- n

(1.25)

Thus, (1.24) he comes (omitting the arguments)

max 
u®W L

M <0f ." It - *i " a? k_ - fnE 0 - © (1.26)

(t < t < T) 
© — *-

However, since ? is not a function of u explicitly, then oY/at is ex­

plicitly independent of u„ Therefore, (l.t6) can he rewritten

^ = max
^ tieff gL . . . gL-1 SET *x  VET \

X - a
k - f ©

(1.27)

(t < t < T)' © —■ -
where



Equation (l. 27) is a form of the well known Hamilton-Jacobi partial dif­

ferential equation [7], and is often referred to as Bellman’s functional 

equation [8], The dynamic programming method for solving the optimization 

problem formulated above is essentially a step-by-step (finite difference) 

technique for solving (l. 27). Thus, if x^, t, and dv/chc^ for a certain 

point on & are known (or assumed) then (1.27) can be used to determine 
u* (and thereby ciY/St) over a small time interval At. By this means, using 

(l.l), (I.27) may be numerically integrated. The main difficulty of this 

method is determining an initial set of values x^, t, bl/bx^ to start the 

numerical integration.

Equation (1,27) msy also be solved (in principle) by the analytic 

techniques of partial differential equations. The solution 

T «. ?(x^, ...., x , t) of (l.27) by ordinary methods of partial differential 

equations may require rather involved "pieced solution" techniques if the 

right side of (1.27)is not differentiable at u = u* or if u = u* lies

on the boundary of the admissible set U. In such a case, the pieced 
solutions for Y should join if V(x^, ..., x^, t) is continuous. It is re­

marked that for many practical problems, V is continuous in the (x, t) 

space. On the other hand, if the right side of (l. 27) is continuously 

differentiable at u = u* and u* is not on the boundary of U then by

setting

8 dv .
- -

n o - 0 (1.28)

in (1.27) and using ordinary theory of maxima and minima, the optimal 

control
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“ •••> lb V V *) (1,29)

can be obtained. Then, (l.29) can he substituted into (1.27) to obtain 

the Hamilton-Jaeobi equation in the more common, form

where

. dv t. v + + f — oVSt +:5£*i + +5r\ + fo“°

X1*,..,,Xa*,t,U*(^~, g~, 3^*, ..., Xn*, tj
■ - N .1 & ^

(1.30)

(x s 1, «.., n)

xX1 > x *,t,u* n ' '
'a?

m
V'*

It is seen that (l. 30) will be a first order (usually nonlinear) partial 

differential equation explicitly independent of V and the control term u. 

After the solution Y » V(x^*, xn*, t) of (l.30) is obtained, the 

optimal control in the form

u = u*(x^*, ..., x^*, t) (l.3l)

ean be obtained from (1.29). Equation (l. 31) can then be expressed entirely 

as a function of time by substituting (I.51) into (l.l) and solving for the 
x^ as functions of time. This latter step yields the pre-programmed (or 

’’open loop”) control u » u*(t). In most cases, however, it is more de­

sirable to leave the control in the "closed loop" form of (1.31). Note that 

t will not appear in (l. 31) if all 3ci, fQ, and IF are explicitly independent

of time.



Although the functional equation (1.27;) is the primary working 
“tool" of the Dynamic Programming method, several other important relations 

can he developed freon (1.27) and Figure 1.2. These additional relations, 

developed below, form the basis of Pontriagin's Maximum Principle.

1.2A. Characteristics of the Hamilton-Jacobi Equation 

Prom (l.27)> it is seen that for u = u*(t)

bY . bY
,X1 *1 + fo

u=n*

Hote that (1. 32) holds even when the right side of (1.27) is not differen­

tiable with respect to u at u = u* or when u* is on the boundary of U. 

Equation (1.52) implies that the following illation is satisfied along the 

optimal trajectory K*

/
■*0 U

E + iL.?r + +§5L V + f
St + + *** +5T 'n + cx n

dt - 0 (1.33)

From (1.27), letting u m u*(t) (t •< t< T) the plant equations are 

obtained in the form

axf* 3>(|r)

dt (i — 1, «..j n) (1.3^)

These equations should, of course, coincide with (l.l). From the fact that 

V » VCx^, , xn, t) it is clear that

bY bY
OX. OX. X X

X •ir t) (1.35)♦ e ♦ }



The total time derivative of (1,35) Is then

a fa
dt \dx7 + kn (1.36)

However, from (1.27)# when u = u* 

d^Y dY ,; 'l dV dY b2? ^fo5q5S"-.S£ .S£.-*l555£- *** ” \ i^T “ ^ (3L37)

where it has been assumed that the admissible set U is not a function of 

x^ (i.e., U f TJ(x)). It can be seen that when tJ = l(x) equation (1.37) 

will contain additional terns. low, if T « Y(x^,...,x ,t) has continuous 

mixed second partial derivatives with respect to all x^ and t then

and

cTcfcT ~ Sx.w... 
1 3 t)

jfa d2?
dx^It ” dtdx.^

If the conditions (l. 38) hold, then (1.37) can be written

Aav 3ii
dtdx^ dx^ dx^ " *1 dx, dx_.

dY ^n d®Y ^fo
• 6 « •* *V "" ■' .. m X l"*"M ■ mmdxw dx. n dx„dx. dx. n x n 1 i

(1,38)

(1.39)

Substituting (l.39) in (1.36) gives

d for
dt vSxjT/j^ dY5S£S£

dV dfo
dx dx. ** dx. n 1 1

(1.40)

Equation (l. 40) tells how d?/dxi varies with time along an optimal tra­

jectory K* continuous mixed second partial derivatives of Y

with respect to all x^ and t along the optimal trajectory K*). Equations 

(1.34) and (1.40) are called the "equations of the characteristic strips"



for the Hamilton-Jacobi equation (l. 30).

Since bv/bt = d¥/c*t(x^,... ,x^, t) then, assuming (l.38) holds,

_d_
dt I + X1 StlxT

Along K* it is seen from (1.27) that

+ 3cn

is
St2

dv . aV
s~sr • srsr

&

Substituting (l. 42) in (l.4l) yields

(l. 41)

(l» 42)

d fbv\ bV hkl
ST.

N,y bk bfd¥ n _ o
bx W ~ It” n

(1.45)

Equation (1.43) tells how bv/bt varies along the optimal trajectory K*.
Note that although (1.40) and (1.43) are total derivatives, only partial 

derivatives appear on the right hand side. From (1.43) it can be seen that 

if alli^, .f ' and U are explicitly independent of time then along K*

el(i) = 0 (tG<t<T) (1.44)

and thus

I = c (c = constant) (1.45)
,K* (t < t < t)

Equations (1.44) and (1.45) apply for either T » free or T = fixed. From 

the definition of ¥, it can be seen that ¥ will be an explicit function of 

time when any f , or U is an explicit function of time, when f contains 

additive constants, and when the terminal time T is fixed. If f is fixed,



tut neither x.., f , or ¥ are explicit functions of time then (1.45) applies 

so that ¥ must he linear in t and of the form

V| == vfx^ ..., xQ) + e t (1.46)

■ ' K*
f sflxed

The relationship revealed by (1.46) has led to some Interesting-results 

in connection with optimization problems which have a fixed terminal 

time [9]. Ihen ¥ depends explicitly on time (as for example in (1.46)), 

the isovee contours when viewed in the x-space will appear to move with *. 

time. In the (x, t) spaee, however, they will remain fixed. If I is 

free, neither f@, or ¥ are explicit fractions of time, and f does not 

contain additive constants, then ¥ will not depend on t explicitly, and 

the e in (1.45) becomes zero. Thus

- G (t < t < T) (1.4?)
K* . 0 “
T=free

Equation (1.47) implies that the isovee surfaces are "parallel" to the 

t-axis of the x, t spaee. When (1.45) or (l.47) holds, then along K*

(1.50) has the first integral

§^*1 + •” +S^Xi» + fo = c (1-48)

where C ^ 0 or C = 0 depending on whether (1.45) or (1.47) is applicable,

1.2.5. Terminal Conditions for the Optimal 

Trajectory K*

The given problem specifications require that the optimal tra­
jectory K* should terminate somewhere on the terminal manifold (l.l6). The



particular point B*on £ at which K* will actually terminate is, of course, 

unknown a priori. It is possible, however, to derive some necessary con­
ditions which the optimal terminal point B*on £ must satisfy.

It has been remarked earlier that except in the special case when

¥ = min f(x.(T), T) at least a portion of the ¥ «* © contour must coincide 
ueU x

with £, This portion may be only a point, line, etc. (or several isolated 

points, lines, etc.) or possibly the entire £ manifold. From the definition 
of ¥, it is clear that B*must lie on a portion Of £ for which ¥ = 0. In 

the most general case, it is possible that l) B*may lie at the end (or edge) 

of £ or, 2) the ¥ = © contour may have a discontinuous gradient or £ may 

have a corner at Bi In either of these cases, the optimal terminal point B 

is characterized by the fact that any small (allowable) displacement 

(dxA, dT) along (tangent to) the £ manifold must yield d¥ > © or, since 

¥= ¥(xj.,;.v,*^,t

d¥
St dT + dx■■a.

dxn > © (1.49)
at _*B on

If the ¥ = O eontour coincides with a finite portion of £ and the ¥ = 0 

contour and £ do not have corners, and if B does not lie on the edge ©t 

£, then any small displacements (dx.^, dT) tangent to the £ manifold must 

yield d¥ = 0 so that (l.49) becomes

d¥
dt dT d¥ ,+ S[axi

at B on £
(1.5©)

It should be emphasized that the quantities dx^, dT In (1,49) and (l.5©) are 

not governed by (l.l) but rather are small arbitrary displacements tangent
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t© | at B, In words, (l. 50) states that at the optimal terminal point I* 

on | the gradient of ¥ (77, ) should Be perpendicular to the f manifold.u
It is seen that any contour V = constant which happens to be tangent to | 

will satisfy (1.50) so that (l. 50) is only a necessary condition. 

Actually, (l. 50) is not even a necessary condition unless the above men­

tioned conditions leading to (l.50) are satisfied. For the special ease
in which V-® min f(x. (t), -f), a small ehange in the coordinates x.(t), 5 

ueXJ ■■■■■;. ■
will not necessarily yield d¥ * 0. In this case, the optimal terminal
point B*is characterized by

dV £ 0
at B ©a |

(1.51)

Suppose that (1.5©) does apply, and let | be given in the form

^IT “ *1

X2f = \ (k < n)

Then, dx^ j « 0, (i = 1, ..., k) and (1.5®) becomes

dT + .dx - + ... + §2- dx
dxk+l ^+1 ^ a 0

at B^ on |

(1.52)

for arbitrary values of dx^+^, ..., dx^, dT. Since 

arbitrary, (l.52) implies that

.., dx are 9 m

(j =» k+l, n) (l»55)
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Also, if T = free, then dT I £ 0 so that from (l. 52) 
. ■ 1 I

dV
5t

i
o (3U54)

Note, that in contrast to (1.47), (1.54) applies even when seme xj[, fQ, or

W depend ont explicitly.:'-a
When T = fixed, (l. 52) does not yield any information about . 

However, fro® the definition of V, when T = fixed then ?(x^, x^, T) *> 0

for all allowable values of X^, ..., x^ at T. The reverse statement for xiT

fixed is not necessarily true since x^ need nob be strictly increasing like 
time. Thus, if xiT = fixed (i - 1, ..., k) andT = free, then 

v(x1T, ..., x^, x^^, •..> is nobheeessarilyizere for any
allowable (x^^ T, ..., x^ In other words, if f = fixed, and the
problem begins at some point on £ then the problem must immediately end at 

that same point on §. But, if T .*» free and the problem begins at seme 

point on | the optimal trajectory K* may leave and return at some later time

to some other point on £.
When (l. 5l) applies, the terminal values of civ/dt and dv/clx^ are not 

necessarily zero even though $ and may be free. -In this case

av.STX
(1.55)



1.2,6. Initial Conditions for the Optimal 

Trajectory K*

It has been remarked earlier that la general tie starting point 

for tie problem may not be completely fixed but instead may be required to 

lie on some initial manifold (1.15). Tie optimum starting point A*on 7} is 

characterized by the fact that no other point on tj lies on an isovee contour

of lower value. As in the case of the terminal manifold there may, in
£general, be a corner in the tj manifold at A or in the isovee eontour V* 

which passes through Af Also, the point A*may lie on the edge of the rj 

manifold. In such a ease, the optimal starting point if satisfies the 

necessary condition dY > © for any arbitrary (allowable) displacement (dx^, 

dtQ) tangent to % Or,

It dt + ©
OV , dx

m n > 0 (1.56)
at A on fj

ft ■ &If the Y* eontour and t| are “smooth” at the optimal point A, and A is not 

on the edge of tj then any arbitrary displacement (dx^, dt@) tangent to rj 

must yield dY = 0. Thus (l. 56) becomes

dt- + ©
at A on 7)

(1.57).

When (1.57) does apply, then for every xiQ which is completely free at

t = t the condition ix. 4- © holds so that • © io '

Sy

n

If the initial time tQ is free, them (1.57) implies
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= 0 (l. 59)

n

ggw ! •
When t is fixed, (l.57) yields no information about rr . However, for

0 015 ' TJ
the special ease where all x±, fQ, and U are explicitly independent of 

time then, from (l<* i4-5

Since the criteria for the optimal initial point A on n and the optimal ter­

minal point B*on | are similar, equations (l.56) and (l. 57) are equivalent 

to (l.^9) and (1.5©). lor this reason, the remarks below (l. 5©) ala© apply 

to equations (l*56) and (l.5?)» Equations (1.5©) and (1.57) are semetimes 

referred to as the trahsversality conditions [1, pg. 162] at tj and | .. The 

conditions under which (l. 5©) and (1.57) do not apply are apparently not 

often encountered and therefore (l. 5©) and (1.57) are usually assumed (until 

proven otherwise) to be necessary conditions for the optimal trajectory K*.

1.2.7. Pontryagin* s Maximum Principle

In 1958, the Hussian mathematician, 1. S. Pontryagin and Ms co- 

workers: Y. ©. Boltyanskii and 1. V. Gamkrelidze introduced a new technique 

for solving the general optimal control problem [10]. This technique, 

known as the Maximum Principle, can be derived by several methods [11],

[12]. The presentation given below is based on the MisoveeM concept in­

troduced previously.
The optimization technique based on Pontryagin's Maximum Principle (PMP) 

is essentially a refomhlation of the optimization theory given above. In



the FMP technique, a new "independent” coordinate p.^ (i * 1, ,««, n) is
kintroduced into the problem by defining

_ A dV (l.6l)

Motivation for introducing this auxiliary coordinate follows from a similar 

technique used by Sir W. R- Hamilton (in 183^) for solving problems in what

is now called Classical Mechanics [7J. For his dynamical systems, Hamilton 
introduced, by means of a contact (Legendre) transformation, an auxiliary

coordinate p defined by

where

L a®. Lagrangian function (the analog of fQ in (l.4)) 

q^ = generalized coordinates of the system,

If (l.6l) is substituted into (l.27), the Hamilton-Jacobi equation 

becomes

= max 
ueU

4* 090 + p k *n n (1,63)

In IMP, the bracket on the right side of (1.63) is called the Hamiltonian 
H so that

In essence, this changes the "basis” of the coordinate system from 
(x,t) to (p,x,t)o There are several ways one could define p., (l„ 6l) 
being the most convenient for optimization problems. 1



H(p,x,t,u) - Pjfcj. + ... +P^ - fQ 

With this definition, (I.63) becomes

H*(p,x,t,u*(p,x,t))

(l. 6k)

(1.65)

H*(p,x,t,u*(p,x,t)) 5? max p,3c. + P„3c - n n (l .66)

where
H* = H with u replaced by theoptimal control u* = U*(p>x,t). 

Equation (1,66) is the "basic equation used in PMP and it is seen to be 
equivalent to the Hamilton-Jacobi equation (1.27). With the two changes 

in notation [(l.6l) and (1.64)], the relations derived in the previous 

analysis can be converted into the corresponding relations used in PMP. 

For instance, if (l.66) is continuously differentiable at u «* u* and u* 

is not on the boundary of U, then as in (1.28) the optimal control is de­

termined from

dH
5u u=u*

which, by (1.29), will yield

(1.67)

U* = U*(p, X, t) (1.68)

From (I.55) is obtained the relation
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t
/

to

I*

From (l. 34) and (X.40), the so-called canonical equations [11] of PMP are 

obtained as

dx
dt

dH*(p,x,t,u*)

K*

dt"
K*

dxi U U(x) (1.71)

The p. defined in (l.6l) are referred to as "adjoint" or "costate" va-JL
riables and are equivalent to the negative of the Lagrange multiplier func­

tion ^ used in the Classical Calculus of Tariations (see (1.8)). In this 

connection (l. 71) corresponds to the Euler equations (l. 6). The solutions 

xi “ ^ P± - P±(t) of (1.70) and (1. 71) are actually the character­
istics (characteristic strips) of the Hamilton-Jaeobi equation [see (1.34) 

and (1.40)]. This result shows the interrelation between Dynamic Programming 

and the Maximum Principle. Dynamic Programming may be viewed as a numerical 

method for solving the Hamilton-Jaeobi equation and the Maximum Principle 

as a method for determining the characteristic strips of the Hamilton- 

Jaeobi equation. From (l. 43) the relation between the total and partial 

time derivatives of I are

dt dt ~ (1.72)
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■where u* is as given in 

(1.T2) that the x±, 

the (p,x,t) space.

(1.68). It should he noted in (1.7©)* (l.7l), and 

and t are treated as independent coordinates in

If all x., f , and U are explicitly independent of time then, from 1/ o
(1.45), along K*

(e = constant)
H*(p,x,t,n*(p,x,t)) « c . (l*73)

t <t < T 0 — —

which holds for either fa fixed or f = free. If, in addition, T a free 

and f does not contain additive constants then (1.73) hecanes (following 

the reasoning of (1*47))

H*(p>x,t,n*(p,x,t)) ^ © (tQ < b < •®) . (1.74)

When (1.73) or (1.74) holds, then (following (1.48)), (1.66) has the first 

integral ' ■

+ + p x n n - f (©a constant) (1.75)
K*

Combining (1.49) (l. 50), and (l. 56) (1. 57), the PMP versions of the trans- 

versality conditions are obtained as

H* df - p. p_n n > 0
at B on |

and

I* dt - p- © 1 - P„ n n > ©
at A on tj

(1.77)



where (dx^, dT) and (dx.^, dtQ) are arbitrary (allowable) displacements 

tangent to the § and t) manifolds respectively. The conditions under which 

equality holds in (1.7^5 and (l. 77) are the same as discussed for (l.50) 
and (l. 57)* As mentioned previously, it is common practice to assume (until 

proven otherwise) that equality holds in (1.76) and (1,77). From (1. 53) 

and (1. 58) it is seen that for each which is completely free at t = T 

(or t = tc) the corresponding pA are given as [assuming (I. 5I) is not 

applicable]

P, (t = T)

© (t = t ) 
©

Also, if T (or tQ) are completely free, then from (l. 54-) and (l. 59)

1* I =0 
i

(T = free)

(1.79)
H* | = © (t = free)

o

When V = min i|r(x (T),T) then (l. 78) and (l. 79) do not apply at | because
ue©

(l.5@) is replaced by (1.51). In this ease, (1.55) is used to obtain

S'
>xi (1.80)

H* (l.8l)



The "basic optimal control problem formulated previously is solved by
the IMP technique as follows:

a) Using (l.l) and (1.4), form the Hamiltonian I as given in (1.64).

b) Consider H in (1.64) as a function of u, and determine the

u* = u*(p,x,t) which maximizes H. If (I.67) is applicable, this

maximization process is straightforward. Otherwise, it may be 
necessary to "inspect" (l,64) for various values of (x^, p^, t).

e) Substitute u* = u*(p,x,t) into (1,64) to obtain I*, 

d) Obtain the canonical equations (l,70) and (1.7X).

e) Integrate the canonical equations from t0 to T to determine

x. = x.(t) and p. = p.(t). This latter step is difficult since
X 1 X X'

(from (I.75) through (l.8l) only seme of the initial and terminal 

conditions for .(i»7P) and (l. 71) are known a priori. Thus, trial

and error techniques are usually required to determine the unknown

ho’ ho’ % “a pii’ hs>- T-
f) Substitute x^ = x (t) and = p^(t) into u* = u*(p,x,t) to 

obtain u* = u*(t) the "open loop" control.

g) Alternately, attempt to obtain the "closed loop" control u* = u*(x)

by eliminating the parameter t between the equations p^ « p^(t}

and x. = x. (t) obtained in ,(e)» 
x x

1.5. Research Objectives

The analytical techniques outlined in the previous article constitute 

the primary methods of analysis presently used in optimal control theory. 

Each of these methods has been successfully applied to a large variety of 

optimal control problems. There is, however, a certain class of optimal



control prdblems (this certain class is a sub-class of the general problem 

considered in the previous article) for which all the methods given above 

break down. This special class of problems is characterized by the fact 

that the control u enters the plant equations (l,l) and index of performance 

integrand (1.4) in a linear manner. That is, the plant equations (l.l) and 

index of performance (1,4) are of the form

^i ~ "*■ 11 ^(x^,. * 58 1# ••■ft

T r=/ * dt

Hereafter, an optimization problem characterized by (l. 82) and (1.83) will 

be called a Linear Optimization Problem (LOP). An existence theorem for 

this class of problems has been given by Lee and Markus [13]*

When the methods given above are used to determine the optimal control 

for a LOP, the formal solution for u(t) appears as (see Chapter 2)

( A if P(t) > 0
(1.84)

B if F(t) < ©

where A and 1 are respectively the upper and lower bounds on the control 

u, and P(t) is a certain function of time called the "switching function". > 

However, it is characteristic of the solutions to LOP that the switching 

function F(t) sometimes beecmes identically zero over some finite time in­

terval. In such a ease, (1,84) fails to yield any information concerning 

the optimal control. Those LOP in which P(t) becomes identically zero over



some finite time interval have "been referred to as "singular" [14], [15]* 
"degenerate" [16], "not normal" [IT]# and "ambiguous" [18]. Althou# the 

existence of singular solutions in the calculus of variations has "been re­

cognized for seme time [1], apparentlylittle is known about the general 

nature of such solutions.

Ehe primary objective of the research discussed in this report is to 

examine, from a general point of view, singular solutions in LQP,and to 

develop analytic procedures which may he useful in detecting and calcula­

ting singular solutions. The techniques developed are illustrated hy 

several detailed examples.



LINEAR OPTIMIZATION PROBLEMS AND SINGULAR SOLUTIONS

2. 1. Formal Solution of LOP by Conventional Methods

In order to establish that the optimal control u*(t) for a LOP is 

(formally) of the form (l. 84), it is instructive to consider the solution 

to the general LOP (1*82), (1.85) as obtained by the various methods given 

in Chapter 1. When the control is unbounded, the solution to a LOP will 

involve infinite values of the control. For this reason, the formulation 

of a LOP should always be accompanied by constraints on the control u(t). 

Hereafter, it will be assumed that the control :«.• is constrained by the 

relation

B < u(t) < A (A >B) (2.1)

where A and B are real constants.

In order to apply the classical calculus of variations to the general 

LOP (1.82), (1.83) with the constraint (2.1) one may employ the device of 

Talent ine described in Chapter 1. In this case, the constraint (2.1) can 

be put into the form (l. 10) by writing

R - (A - u)(u - B) > 0 (2.2)

The auxiliary control variable z is then defined from (l,H) to be

I = V(A - u)(u ~ B) * (2.3)

Substituting (1.82), (1.83), and (2.3) int© (1.12), the function 0 for a 

LOP becomes
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§ = gc/xl'* * * >■xn,t ^ + u Vxl'* * * * V1^

+ Z'N
i«3L

gi(xL,,..,xn,t) + u hi(x1,...,xa,t;) - .%t

+ V- (A - u)(u - B) - z.2 (2.4)

The Euler equations for (2.4) are, from (1.6)# (1.7) and

d^ 8g dh r-i
3T '-5^; - n ^i'L + " (2.5)

hQ +y ^ h^ + (i [a . 2u + b] m. 0

<5=1
(2.6)

(2-7)

■where n(t) < 0. It can "be shown [2], that at terminal time

n h i - 0 (2.8)
1 t=T .

and therefore (2.7) and the continuity requirement for n(t) *z(t) requires

n(t) *z(t) 2 © (t0 < t < T) (2.9)

If n is not zero, then (2.3) an$ (2.9) imply

(A - u)(u - B) = 0 (2.10)

Using the faet that A > B and n < 0, it is seen that (2.6) and (2.10) can
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only fee satisfied fey

(A if j F. (t) > 0
. . (2.n)

B if: Fx(t) < 0

> ‘ ; i«l .

When F^(t) - 0 in (2.12) tben (2.6) said (2.9) can only fee satisfied

fey

Kt) ; 0 (2.13)

In this case, (2.4) feecomes

a
- i»l I- ■

a^,t); - Sc3 (2.14)

and the neeessary condition of Weierstrass (1.9) degenerates to the trivial 
identity 0 = 0. Thus, when F^(t) » © the necessary condition of Weierstrass 

also fails to yield any information about the optimal control u*(t).

The Dynamic Programming method for solving the general LOP (l. 82), 
(1.85) consists of solving (1.27) in a discrete manner. Substituting (1.82) 
and (1.83) into (1.27) the functional equation of dynamic programming is

vr = max dt ueU - eo(x1,...;,XB>ty - u

n I
~L ST +uhi(V*,'Vt)
i=l 1

(2.15)



It is clear that for any given values of x^, and t, (2,15) is

maximized with respect to the control u by choosing

u#(t) (A if: Fg(t) > 0

B if: Fg(t) <0
(2.16)

where

n
8v ,ST hi (2.17)

i=l

However, when Fg(t) - 0 then (2.15) becomes explicitly independent of u and

(2.16) [like (2. H)3 fails to yield any information concerning the optimal 

control.

The solution of the general MP (1,82), (£.83) by Pbntryagin’s Maximum 

Principle involves maximizing the Hamiltonian function H(l.64). Thus, 

substituting (1.82) and (1.85) into (1.6k) yields

H = ^ pi gi(x1,... ,xa,t) + u ^(xj^,... ,xn,t
i=l L

- gQ(x1,,,.. ,xfl,t) - u ho(x1,... ,xa,t) (2.18)

From (2.18), it is clear that the Hamiltonian is maximized by selecting

u*(t)

where

A if: F_(t) > 0
3

B if: F,(t) < 0 
5

(2.19)



n
F3(t) ^ - hQ pt ^ (2.20)

i=l

When F^(t) - 0, the Hamiltonian (2.18) becomes explicitly independent of 

the control u and (2.19) fails to yield any information concerning the 

optimal control. She relationship between and is evident

from comparison of (2.12), (2.17), and (2.20). Controls of the form (2.11),

(2.16), and (2.19) are commonly referred to as "bang-bang" controls. She 

term £\(t) in (2.1l), (2.16) and (2.19) is called the "switching 

function".

Equations (2.ll), (2.16), and (2.19) verify that for the singular 
condition F(t) - 0, formal solutions of I0P by conventional methods fail 

to yield any information about the desired optimal control. However, it 

will be shown below that the control u(t) which maintains the singular 

condition F(t) - 0 may satisfy certain necessary conditions for an optimal 

control. For this purpose, the Maximum Principle is used to reexamine in 

detail the general LOP formulated above. ^

2.2. She Maximum Principle and Linear Optimization Problems

She general LOP formulated above permits the variable t (time) to 

appear explicitly in the system equations (I.82) and the integrand of 

the index of performance (1.83). However, if an auxiliary state variable 

xa+*^ is defined as

Vi'* (2-21>

3»

or



fcn+1 »i (a. 12)

then (2.2l) can he substituted into (X.82), (1.83), [and (2.22) can he 

appended to the set (l.82) ], so that (1.82) and (I.83) hecome explicitly 

independent of time. Panther, if the terminal time f is explicitly fixed, 

then (2.2l) and (2.22) can be used to convert the problem to one 'with a 

free terminal time and with the additional required boundary condition

Xn+1(T) T (2.23)

To simplify the index notation, it will be assumed in the following that 

whenever the auxiliary state variable (2.21) is used it will be included in 

the n original system equations.

When the system equations (l. 82) and index of performance (I.83) are 

explicitly independent of time and terminal time is free, then from (1.7*0 

the optimal value of the Hamiltonian is (noting the assumption (2.1))

H*(p,x,u*(p,x)) - 0 (t < t < T) (2.24)

Since 1* * max H(p,x,u), equation (2.24) indicates that at every instant of 
ueU .

time along an optimal trajectory no portion of the curve representing the 
instantaneous plot of H vs. u (u e U) can lie in the upper half plane 

H > ®. Further, if an optimal control exists, then there must be at least 

one point u* (u* e U) at which the eurve 1 vs. u touches the H = 0 axis. 

Since (2.24) is a necessary condition for an optimal control the Maximum 

Principle may be stated as follows:

Statement 1

If it has been established that H* ~ © them any control u* 

which satisfies the relation



H(u*) * max H(u) - 0 (t < t < T), v
. .. .... ueU ... .. ~ .... 0 ~ ~ ,

and the boundary conditions of the problem, is a candidate for the 

optimal control.

Controls which satisfy the necessary condition of Statement 1 will he 

ealled "extremal controls". The trajectory produced by a system subjected 

to extremal control will he called an "extremal path". In general, if an 

optimal control is known to exist and it is possible to prove that there is 

only one extremal control then that (unique) control is optimal. If (1.82) 

and (I.83) are linear in the dependent variables and separable in the 

control variable [i.e., h. « h.(t), (i = 0, 1, ..., n) in (1.82), (1.83)] 

then satisfying the Maximum Principle is both a necessary and sufficient 

condition for the optimal control [l8j. In this case, the Maximum Principle 

may be stated:

Statement 2

If (1.82) and (1.83) are linear in the dependent variables 

and separable in the control variable and if it has been estab­

lished that H* « ® then any control which satisfies the relation

H(u*) »sf max H(u) - 0 (t < t < T),
- uec . ■. 0 “

and the boundary conditions of the problem, is an optimal control.

If (2. Si) and (2.22) are used to make (l, 82) and (l. 83) explicitly 

independent of time then from (1.64) the Hamiltonian for the general I«0P 

is

H(p,x,u) « I(p,x) + u F(p,x) (2.25)

40
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5■where

I(p,x) = - go + P-^g^ + ... + Vs,
F(p,x) = - hQ + p^h^ + ... + pBh

% - %<=%/* ”»sn)

= ^(x^,..«,x^) (i “ ■©> 1* ••• t n)

and, from (I..71),

apj ; 3E*(p,x,ix*)
dt - ox. (1 = i, »»», n)

If (2.23) is used to make the terminal time free then the optimal value 

(2.25 5 is ' ■

(2.26) 

of

I(p,x) + U* F(p,x)

(t < t < f) ■
O rr,Ti

In (2.27) it is understood that the arguments of I and F are p(t) and x(t). 

According to Statement 1, any control u* which satisfies (2.27) and the 

"boundary conditions of the problem is an extremal control. In general, 

there are three controls which could satisfy (2.27):

1) The control

Uj*(t) ^ © (2.28)

if it is compatible with (2.19) and if it will satisfy
F(t) 1 ©, i(t) : 0.

=* max
11/rtT

l(p,x) + u F(p,x) - 0

Hote that F^ in (2.19)# (2.20) is the same as F in (2.25).



2) Any control ug*(t) which will satisfy

l(t) = - u2*(t) F(t) [l(t), F(t) 1 0] (2.29)

Hote that for the particular hounded control | u*(t) | < M,

(2.19) and (2.29) require l(t) = - M J F(t) | or

I(t) < 0 (M > 0) (2.50)

3) Any control u^*(t) which will satisfy

I(t) 3 F(t) 3 © (l < u^*(t) < A) (2.31)

The particular conditions for which u^*, and u^* will satisfy 

Statement 1 are illustrated in Figure 2.1. The control u^*(t) 3 © cor­

responds to zero control effort. The control

u2*(t) = - (2.32)

must correspond to switching between maximum and minimum control effort 
as given by (2.19)* During this type of control l(t) and F(t) must vanish 

simultaneously at each switch. Note that the control vLj*(-t) is actually 

a special case of the u^* control where either A or B (or both) become 

zero, as in problems with control energy (fuel) constraints. The control 

u^* which satisfies l(t) 3 F(t) 3 0, also satisfies the relation (see 

(1.67))

§“•(*> P> u) 3 0 (2.35)

and usually corresponds to continuously variable control effort in the 

interior of the admissible set U. The condition l(t) 3 F(t) - 0 corres-
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ponds to the singular condition described previously. It is seen, there­

fore, that singular control (u^*) satisfies the necessary condition (2.2?) 

and may constitute a sub-arc of an extremal control.

In addition to satisfying (2.27)> an. optimal control must satisfy 

the specified initial and terminal values of the system state variables. 

However, it is generally impossible to satisfy these required boundary

conditions by exclusive use of either u^*, u^*, . In this ease, the

optimal control for a LOP, if it exists, must consist of seme combination

(sequence of sub-ares) of the u^*, ug*, and u^* controls which satisfies

the required state variable boundary conditions. She selection of this

optimal sequence is complicated by the fact that, in general, there may be 

several different combinations of these sub-arcs which satisfy the physical 

boundary conditions of the problem.

The results given above indicate that the optimal control for a LOP 
will, in general, consist of a combination of bang-bang type control (2.19) 
and singular control (2.3l). Therefore, in order to compute the optimal 

control for a LOP one must determine the followings
1) Is singular control admissible as a candidate for the optimal 

control? That is, is it possible for the singular condition 

P(t) ^ ® to occur?

2) low may the bang-bang and singular control sub-ares be com­

bined in order to satisfy necessary conditions for the optimal 

control?

3) What is the functional form of the singular control?

4) Which of the possible combinations ©f extremal controls is 

actually the optimal control? This latter question includes



the question of whether a singular extremal control sub?-are 

does in fact appear in the optimal control.

Some techniques which may be helpful in answering these questions are dis­

cussed in Chapter 3*



Chapter 3

THE NATURE OF SINGULAR SOLUTIONS AND 
COMPUTATIONAL TECHNIQUES.

3»1* Necessary Conditions for Pieced Extremal Paths

It has "been shorn in the previous chapter that, in general, the 

optimal control for a LOP will consist of both hang-bang (u^*, u2*) and 

singular (u^*) sub-arcs pieced together so as to satisfy the given initial 

and terminal conditions of the state variables. However, in addition to 

satisfying the physical constraints of the problem, an optimal control 

must satisfy certain other requirements. These additional requirements 

serve to reduce the number of pieced extremal paths whieh may be candidates 

for the optimal control.

The fundamental requirement of an optimal control for a LOP is that

the Maximum Principle (2.27) be satisfied at all times t < t < T. Thus.
o *— — 7

the continuity property^ of H*{t) as indicated in (2.2?) prevents any 

changes in the control u as long as P(t) / 0. For instance, if it can be 

established that F(t) does not change sign in a particular region Q of the 

n-dimensional x-space then it can be concluded that the optimal control in 

the region Q must be either u*(t) - A or u*(t) - B.

Another requirement which must be satisfied by the optimal control is 

the specified initial and terminal values PjH0) and p^(T) of certain of 

the adjoint variables. As shorn in Chapter 1, the required values of

46

If seme of the state variables x. are bounded, or if g. or h,
(i * 0, 1, ..., n) in (l.8g), (1.83) do not possess continuous partial 
derivatives with respect to x. and t then H* might not be continuous 
[11], [19]. 1 .



Pi(tQ) and p±(T) are determined from the transversal!ty conditions (l. ?6) 

and (1.77) and the given boundary conditions ©f the state variables, The

requirement that the transversality conditions be satisfied is especially 

useful in singular control problems since this necessary condition often 

provides the only information concerning if, when, and how singular control 

sub-ares should be Joined with bang-bang sub-ares. Application of this 

technique is demonstrated in Example k.2 of Chapter 4.

la seme problems, either the physical constraints or mathematical

requirements will not allow certain of the controls u^*, u^* and u^*. For

instance, it may be found that in order to have the singular condition

l(t) ^ 'P(tr) 5 ® all the adjoint variables p^t) (i =1, ..., n) must be 

identically zero. From (2.27), this condition implies that the integrand 

of the index of performance (1.85) is identically zero

g0(xi(t), xa(t)) + u(t) h^Ct), xa(t)) 5 ® (3.1)

If, for a particular problem, the condition (3.I) is known to be physically 

impossible then it may be concluded that a singular control sub-arc is 

not allowable.

3.2. The Singular Control Surface

The study of MP in which singular solutions appear is simplified if 

it is possible t© determine a surface S in the x-spaee which represents the 

condition

l(p(t), x(t)) 2 © 

F(p(t), x(t)) : 0
(3.2)

That is, if the condition (3.2) can be reduced to a relation



Sfe^t.), ..., xn(t)) z° (3.5)

•which defines a surface (hypersurface) in the n-dimensional x-space. The 

ability to express S as a function of state variables alone depends on the 

number of independent relations which can be obtained by taking successive 

time derivatives of (3.2) using the system equations (l.82) and the adjoint 

equations (2.26)0 General expressions for S in the case of first and second 

order systems (1.82) and for a particular elass of third order systems, are 

given in Appendix I. In Example 4*4 of Chapter 4, a particular class of 

LOP is examined and general expressions for S are obtained for the n u order 

system. For seme higher order systems (n > 3) it may be impossible to eli­

minate all the from the expression for Si The surface S does not exist 

if (3®2) leads to vaeuous or impossible conditions. In particular, if 

(3.2) implies 'p^(t) © (i = 1, ..., n) then S exists only if (3. l) can be

satisfied.

The surface S will be called the "singular control surface" since the 

state variable trajectory corresponding to singular control u^* must lie 

on this surface. For this reason, only those regions of S corresponding

to B < u* < A are considered. The surfaceS is also the "singular control
” 3 ”

switching boundary" since any point in the state space which is not on S 

must be associated with bang-bang control. A typical singular control 

surface is shown in Figure 3,1... For higher order systems, it is convenient 

to construct projections of the hypersurfaee S on various state variable 

planes. In sane cases, a suitable coordinate transformation of the x-space 

may allow the hypersurfaee S to project into a surface of lower dimension.
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In [SO] this technique is used to transforms a particular class of S feyper- 

surfaces into lines.

It is mot unusual for S to fee a multi-sheet surface in tfee state 

space. In this ease there may fee several distinct singular control tra­

jectories each corresponding to a different singular control function u^*. 

The. given boundary conditions for tfee problem help determine if and when 

each sheet of S may fee used in tfee optimal control sequence. It should 

fee noted, however, that tfee existence and location of the surface S is not 

dependent upon tfee particular boundary conditions of tfee problem.

With tfee S surface constructed in tfee state space, it is relatively 

easy to fill in tfee region around S with state variable trajectories cor­

responding to bang-bang control (g.19). The resulting field or network of 

extremal paths provides a clear picture of all possible optimal control 

sequences. From such a representation (see Fig. 4.2), it may be seen that 

tfee singular control trajectory is a compaction or locus of many extremal 

paths.

3« 3« Characteristics of tfee Singular Control Surface

For tfee general 1©P (l.8g) tfee index of performance (1,83) may fee 

written in terms of the lamiltoaian (2.25) as

T
■Jfc] - i(p^ u)dt + px + a®® + p^ (%k)

t©

Equation (3.4), is a line integral in tfee n + 1 dimensional x-t space. In 

general, (3.4) will depend m tfee path of integration if the term 1 is an 

explicit function ©f u. However, if H in (3*4) is explicitly independent of



u, then the necessary and sufficient conditions that (3.4) "be independent 

of path in a simply connected region R of the x-t space are [1, p. 91]

SPi ap*
(t, X € l) (3.5)

In the Maximum Principle formulation, the conditions (3*5) are automatically 

satisfied -when the p^ = p^(t) are computed from the adjoint equations (l. 7l)« 

Furthermore, on the singular control surface S, the Hamiltonian H* is ex­

plicitly independent of u. fhus, the singular control surface S is 

characterized by the fact that the index of performance (l. 83) is formally 

independent of path for all paths contained in the surface S. In particular, 

when the integrand of the index of performance is positive definite, the S

surface(s) will include all surfaces H on which that integrand is idemti- 
7cally zero.

The "exact differential11 nature of J[u] on S can be demonstrated by 

expressing the index of performance (1.85) directly as a line integral in 
the x-spaee. For simplicity, it will be assumed that (2,21) has been used 

to make (I.82) and (I.83) explicitly independent of time. In the ease of a 

second order LOP, (1,82) and (l. 83) became

*1 “Si(vxa> +u Vv
(5.6)

^This follows from the fact that in suCha case the N surfaces must 
contain optimal paths for at least some initial and terminal conditions.



Substituting (3.6) int® (3.7) the index of performance (3*7) can be written 
as (emitting the arguments)

’ X2! -/■
**>'*20

She integral (3.8) is a line integral in the x^ » xg plane and will be in­

dependent of path in the region where [1, pgo 91]

a /fo-a - a /%h0 - ViV (, 9)^ Wh2/ ®2V ^1 W^S * «2V (5*9)

It is remarked that (3.9) is precisely the necessary Euler equation for mi­
nimizing the integral (3*®) without side constraints [1], Performing the 

indicated differentiations in (3*9)> the region in which (3.8) is independent 

of path is found to be given by the expression

(goh2 - Vs) (**1 3^ ' % 5^ + h. 5^ + \ <|") *

(®i“o - h.v ^-®l + hi .5^+ h2 sy+
/ \ / 8h &h 8g 8g \

(3-10)

Comparison of (3*10) with (A. 9) [in Appendix I] shows that (3*10) does coin­

cide with the general expression for the singular control surface S of the

«oh2 g2ho
* ®2hl-

%hc
g.h_ - al 2

W** (3-8)



LOP (3*6), (3.7). I» the ease of higher order L0P, it may he more difficult 

to find the equivalent x-space line integral corresponding to a given index 

of performance (l. 83), However, as shown in Appendix II, all multi-dimen- 

sional line integrals of the form (5.8) with differential side constraints 

of the form (1,82) ean he transformed into a unique LOP integral of the form

The denominator terms in the integrand of (3.8) must he non-zero in

order that the previous analysis he valid. This denominator term can he 

written as the functional determinant

*t hi 

% %2
f 0 (3.11)

Comparing (3.6) and (3.1l) it can he seen that (3* 111 is the determinant of

the elements of the right hand sides of the system equations with the 

control term u omitted. The physical significance of requiring (3«ll) to 

he nonzero can he seen by writing (3.8) in the form

uhx
% + u h„

If the determinant (3.11) is zero, then (3« 12) reduces to

y
*2 ■ V*l’ V

(3.32)

(3.13)

The trajectory represented hy (3.13) is seen to he completely independent of 

the control u. Thus, when the functional determinant (3.U) becomes zero, 

the system (3.6) beemes uncontrollable [21] with respect to u.



Some further insight into the nature of singular solutions can he 

obtained from the theory of curves of quickest descent, The isovee concept, 

developed in Chapter 1, indicated that the relation

f. < dV
s -5t , bY .+ 5£*i bY

K kn (t < t < T) 
o - . -

(3. HO

is satisfied along any path between ^ and 1, Further, the equality in (3,14)

is only satisfied when the (assumed unique) optimal control u*(t) is used, 

Thus (3,14) may be written

max/min
ueU

- f.
bY5t ST

XX

+ 1 (tc < t < T) (3.15)

In (3,15), the max operation applies when for u / u*, the denominator is 

positive and the min operation applies when, f or u / u*, the denominator is 

negative. At each point x^(t) (i = 1, ..., a) along an optimal trajectory 

the relation (3,15) determines a (assumed unique) control u*. This u*, 

when substituted into the system equations (l.l), determines a unique di­

rection Sc^t) (i =1, n) in the x - t space. The direction k^(t) •

determined by u* has been called, by Caratheodory, the "direction of quickest 

descent" [22], For the general LGF (l.82), (I.83), equation (3*15) becomes
f

max/min
ueU bY5t

7W—
gn - u h o o

bY ,W ,+ 5” + *“1 + "
- + 1 (3,18)

If (2.2l) is used to make l*(t) Z © Canid therefore S?/&t Z ©) then from 

(2,25) it is seen that during singular control, (3«l6) becomes (noting
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that = - 8v/8x^)

max/min
ueU

- g„ - u h~ o ©
- g - tthO 0

+ X (5.17)

It is clear from (3.17) that, during singular control, the direction of 

quickest descent is not uniquely defined.

In terms of the Hamiltom-Jacobi theory, the direction of quickest 

descent is determined hy the u* which maximizes equation (1.27). If an 

auxiliary coordinate xq is defined such that

g0(V"'xn} + u ho(V-"'xn) at (3.18)

then

*0 = + u h0(V’"'\)

It should he noted from the definition (l.l8) of V(x^,... ,xQ,t) that

o
+ 1

(3^19)

(3.20)

Using (3.19) and (3.20), the Hamilton-Jacobi equation (l.27) for the LOP 
(I.82), (1,83) becomes

max
ueU

dV . 8V .
- sr xo - SSE[ *1 "

8?
n n

I© (t < t < f) (3.21)

where it is assumed that (2.2l) has been used to make 8v/8t I 0. fhe terms 

8v/8x^ and (i = 0, 1, ..., n) in (3.2l) can be considered as vector 

components in the n + 1 dimensional x^ space. In this case, (3.21) can be



written as the inner product of the two vectors W and x~ x **

max < - V F , & > • • ©A, yt7 M -ue© x

Since VF is not a function of u, (3.22) "becomes
+* X

I VF I max 
1 Z x ' ueU

I x | cos © I Z ©ih

(3.22)

(3.23)

where © is the angle "between the vectors -VV and k in the two dimensional 

subspaee spanned by V?__ and k. From (3.2©) it is clear that IW„ I cannotX ^ X
"be zero. Also, the condition J x j * © implies the unlikely- condition that 

all x^(t) (i = 0, 1, ...,&) are constant. Thus, the solution of (3.23) 

which is of practical interest is

max(eos ©) - © (3.24)
ueU V

\ .

The condition (3.24) implies that the optimal control u* should "be selected 

so that the vector k is perpendicular to the vector VFX. Furthermore, 
(assuming uniqueness) any control u ^ u* should result in cos © < 0. The 

direction of quickest descent is thus seen to "be that direction x(t) 

which is tangent to an isovee eomtour in the a + 1 dimensional x^

(i = 0, 1, ..., n) space.

In the more general case in which u enters the system equations and 

index of performance in an arbitrary nonlinear manner, the vector x (for 

any fixed x) will, vary over a eone shaped bundle as u ranges ever the set H.

This cone, which will be called the "state velocity cone" is illustrated in

Figure 3.2 for n = 2. The term velocity refers, of course, to the time rate 

of change of the vector x(t), and has no relation with the physical velocity
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Figure 3.5. Flattened State Velocity Cone for a LOP



of the system, la the case of a LOP. the components of the vector x are,A# *
from (1.82)

£ = s0+Si + — +«tt + ufeo+6i + — +V O-

where

If “ j§i(xl>’0,'xn)

(i s 1^ o * • ^ 13.)
&i “ «i^xl,**0 #xn^

In (3»25) it is ■understood that the quantities g^ andh.^ (i = 0,1,,..,a) 
are vector components directed along the x± axis. It is clear from (3.25) 

that as the scalar u varies over the interval A, B the vector x win (for 

any fixed x) always lie in a fixed two dimensional plane. Further, this 

plane is determined solely "by the vector x. Thus, in the case of a LOP, 

the state velocity cone flattens out to a triangular element lying in a 

plane. The flattened state velocity cone for a LOP is illustrated (for 

the case n = 2) in Figure 3.3.
When F(t) - 0, the u* for a LOP is determined "by that unique x in the 

state velocity cone which is perpendicular to This situation is

illustrated in Figure 3.4. When the singular condition, F(t) I 0, occurs 

in a LOP, then the two dimensional plane which contains the flattened 

state velocity eone is perpendicular to the vector VV». In this case, 

any value of u will yield a vector k which is perpendicular to the vector 

VVx« This situation is illustrated in Figure 5.5. The singular control 

function u^f is defined as that control which will maintain the condition 

shown in Figure % 5.



Figure 3.4. Flattened State Velocity Cone for
P(t) l 0

Figure 3«5. Flattened State Velocity Cone for
F(t) - 0
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From the definition of S, it is clear that during singular control 

the two dimensional plane which contains the flattened state velocity cone 

must intersect or he tangent to the singular control surface.

It has been shown that the index of performance (1,83) is independent 

of path for all paths lying entirely on the surface S. This property alone, 

however, does not necessarily imply that a sub-arc of singular control will 

constitute part of the optimal control. There is apparently no general 

criteria by which one may determine a priori whether a singular control.sub­

arc (when it is allowable) will or will not constitute part of the optimal 

control. However, for certain classes of HOP (such as considered in Example 

4.4 of Chapter 4) it may be possible to establish, by special methods, 

somewhat general criteria for the optimality of singular solutions.

One factor which complicates the problem of determining optimality of 

singular sub-arcs is the fact that optimality may depend critically on the 

particular boundary conditions specified in the problem. That is, the ex­

tremal paths on S may only be locally optimum. In this ease, if the initial 

and terminal conditions lie on or near S, then motion along S may very well 

be optimum. But, if the initial and terminal conditions are not in the 

neighborhood of S then motion along B may cease, to be optimum.

The optimality of trajectories on S may also depend upon the allowable 

signs of the 3^. Consider for instance a second order MP (3.6) which when 
written in the form of (3.8) yields the line integral

(3.26)



The singular control surface (line) for (3.26) is determined from (3*10) to 
he

X2 SX1 (3*27)

It is assumed that the limits A and B oa u iri.ll allot? motion along (3.27)« 

Along Sj, the value of (3.26) is (formally) independent of path and given ■ 
hy

3 “ ^5 '^o - (3«t8)

The singular -control surface (3«27) is shown in the x^ - xg state plane 
©f Figure 3.6. It is easy to verify that, between the two points = 
x2@ = 0 and = xgr[, « + 1, the value of J computed along S is smaller 
than the value ©f 5 computed along the two neighboring paths x^ « x„ and 
x2 = Xl^ as s^0Wli ~Xl ®’iSure However, it is clear that a path a as
shown in Figure 3.6 can he chosen such that the value ©f (3.26) computed 
along a can he made as small as desired. Thus, the integral (3.26) does 
not areally possess a finite minimum when the signs of the increments dx^ and 
dXg are unrestricted. If, however, the signs .of dx^ and dx,g along the 
optimal path are restricted to he positive, then the allowable paths between 
x^Q * Xgo = © and = + 1 must lie in the square © < Xj < 1,
0 < Xg < 1 and in this case, the singular control trajectory S is indeed 
the optimal trajectory. In this example one can see why ordinary va­
riations taken about the path S (as classically used in deriving the Euler 
equations and the Weierstrass condition) will fail to detect paths such as 
a which yield lower values of J than does S.

The optimality of the singular extremal paths on S is. further compli­
cated by the restriction that B < u^* < A. That is, certain regions of
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Figure 3.6. Singular Control Surface for Equation
(5.26)



the S surface may contain optimal extremal paths which cannot he utilized 

because of the particular constraints on the magnitude of u*. In the more

caramon cases, these singular extremal paths cannot he utilized because they 

require a u^*(t) larger (or smaller) than the allowable values of u*. How­

ever, in seme eases the optimal singular extremal paths correspond to

B < u^*(t) < A and still they cannot be utilized because of the constraints 

on u*. Example 4, 2 in Chapter 4 illustrates this latter situation#

A necessary condition for a singular control sub-are to be optimal is

that the singular control condition F(t) - © should be attainable by 

optimal control, Shat is, the particular conditions on pi(t), and xi(t) 

required to make F(t) - © must be obtainable by starting on the initial 

manifold (l.l5), using u* as determined by (2,19); end satisfying the cano­
nical equations (l. 7©), (l»71) at all times. Since some of the initial

values p.(t ) are unknown a priori it would appear to be rather difficult 
1 o

to establish if the condition F(t) ^ © is reachable by optimal control,

Shis difficulty has been overcome by using a ‘'backward tracing" technique. 

She backward tracing procedure depends upon knowledge of the correct 

values of x±(t) and p±(t) for at least one point E on the unknown optimal 

trajectory, Shen, by solving the canonical equations (l.70), (l,7l) i» 

reverse time (with E considered as the initial condition), the Maximum 

Principle can be used to determine u*(- t) and thereby determine the op- 

timai trajectory between E and the xnxtial manifold (l, 15)° A similar 

technique can be used to extend K* from E to the terminal manifold |»

In the case of LOP with singular solutions, the values of Pi(t) cor­

responding to the surface S ean be determined frem (5.2). Shus, by 

starting at various points on S the backward tracing method may be used



to "flood" the x-spaee -with trajectories connecting i and tj.® Sheet tra­

jectories will he called "flood.paths". If this flooding technique re­

veals that q cannot he intersected by flood paths frcsa S than it can. be 

concluded that a singular sub-are is not optimal. The flood paths that do

connect S and t} are potential candidates for an optimal trajectory which

includes a singular suh-arc. Hood paths from S t© the terminal manifold

(i.l6) may he traced out in a similar manner. In either case, the required 

transversality conditions on p,(t ) and p.(T) help to reduce the number of
X © 1

flood paths whieh can he candidates for the optimal path. Some illustrations 

of flood paths are given in Figures 2 and h, 7 of Chapter h.

Hiis flooding technique, of course, does not settle the question of 

whether the candidate singular suh-ares so determined are in fact optimal. 

It does, however, reduce the number of candidate solutions to a small- number 

which can he individually compared 'by analytical or computer techniques.

The "best" of the extremal control sequences which use singular control can

then he compared with the "best" of the pure hang-hang extremal control 

sequences* In the eases in which tj and | are points in the x-space, the 

flooding technique may reveal the existence of only one flood path connecting 

'll, S and Thus, if singular control''is..optimal this particular flood path 

must he the optimal trajectory. The flooding technique may also he used to 

determine possible extremal paths when two or more singular control surfaces 

exist. In this ease, flood, paths connecting two singular control surfaces

' 8
This may he accomplished by analytical methods in some cases, hut 

computer solutions are usually required for most practical problems.



must "be compatible with the known values of p^(t) ©a each S surface.

The locus of points in the x-space at which the hang-hang switching 

function F [see (2.19)] changes sign form what is called the hang-hang 

switching boundaries (hypersurfaces), When singular control is optimal, 

the flooding technique described above win automatically determine (nume­

rically) these hang-hang switching boundaries. This latter application is 

demonstrated in Example ^.4 of Chapter i?-.

Vhca 'flooding technique described, above .will indicate how hang-hang 

extremal control (f.19) can. he used to reach the. singular control surface. 

However, motion along.a singular sub-arc ©a S is usually unstable with res-' 
peet to the hang-hang control law (2.19). 4hat is, the control law (2.19) 
will mot “chatter” along a singular path ©a S.^ In order to follow a 

singular sub-arc ©a S, the hang-hang control (§*19) must he replaced by the 

singular coatrol function u^*(t) which, in general, is a continuously 

variable control .1 < Uj*(t) < A.

3,%.. Synthesis of the Singular Control Function

The functional fora of the singular control u^* can be determined from 

the condition (3.2). That,is, equations (j.t), together with the canonical 

equations, will in general yield either algebraic or differential equations■ 

involving x±,p^. The solution.©f these equations will yield

— u^*(3^,.• • p*^, P^) (3«29)

If the expression S(^,...,xa) = © for the singular control surface can he

For this reason, ordinary computer searching methods may fail to de­
tect the presence of a singular sub-arc.



obtained, then by talcing one time derivative of S and substituting the 

system equations (1,82), the singular control function (3*29) can be ob­

tained as a function only of state variables

(3.30)

She control (5.29) can be substituted into the canonical equations (1.82) 

and (2.26) to obtain x^(t) and p^(t). Bythis means, u^* may be expressed 

entirely as a function of time. In some cases, however, it may be desirable

to leave u^* in the form (3.29) or (3*30)*

She above -technique for obtaining u^* in the form (3* 29) is demons­

trated in the examples of Chapter b.

3.5* Allowable Switching Direction Regions

It has been shown in 3*1 that in the ease of a IX)P the continuity re­

quirement of 1* prevents the control u* from changing value except at the 

instants where F(t) = 0. At the isolated points where F(t) .» 0 the 

control uf may change frcm u* = A to u* = 1 or from u* = B to u* = A. If 

F(t) ^ then u* may change from A or B to u^* or from u^* to A or B. The 

latter case, in which the control changes from bang-bang to singular and 

vice versa, has been discussed in the previous article. Some information 
concerning the nature of the isolated points where F(t) =?. 0 can be obtained 

by examining the sign of dF(t)/dt at the points where F(t) « 0.

If the LOP under consideration has been suitably augmented so that 

H*(t) ^ 0 then at the isolated points where F(t) = 0 the condition l(t) = 0 

must also be satisfied. Consider the expression
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>•* *2^, «■ • » ^Pjj) (5« Jl)

obtained from (I.82), (2.25) and (2.26). If o = + 1 in a certain region P 
of the x-p space then it is clear that the control u*(t) can only switch 

£t€8E s? B to u*(t) ~ A in P® Iiikowis©^ if cf 1. in s certEin rogion 
I of the x-p space then the control u*(t) eau only switch from u*(t) » A 

to in 1. If dF(t)/dt = © in (3.3l) then o will be defined as

c(o) -I © (3.32)

In the regions Z of the x-p space where a «*. © the control may switch 
from either (a) A to B, (b) B to A, (c) A or B to (d) frcm u^* to

A or B or, there may be no switch at all. She conditions a = +1, c = -1 

and a = © are illustrated in Figure 5.7. The conditions o = +1, cr « -1 

and a - 0 can be used to divide the x-p space into P, N, and Z regions. 
Since the allowable direction in which u*(t) can switch is completely 

specified in the F and I regions, this information can be used to test and 

eliminate many of the possible sequences of bang-bang extremal paths. For 

instance, it is clear that only one consecutive switch is allowed in each 

of the P and I regions. These allowable switching direction regions re­

present another necessary (but not sufficient) condition.forthe-optimal 

control. For instance, the condition c = +1 in a region P of the x-p 

spaee is not sufficient to conclude that the optimal control must switch 

in that region. In seme eases, the function 0 in (5.31) ean be expressed 

solely as a function of the state variables x^ This condition is es­

pecially useful since the P, H, and Z regions can then be constructed in



U SWITCHES FROM U = B TO U = AU SWITCHES FROM U • A TO U «B

U SWITCHES FROM U * A TO U = U U SWITCHES FROM U»A TO U-B

A (NO SWITCH)

Figure 3.7. Conditions for Allowable Switching
Directions



the x-spaee, Application of this concept ©f allowable switching direction 

regions is illustrated in the examples of Chapter h and also in [23]• It 

is remarked that a somewhat similar technique has been used by Miele [2^].

3.6. Miele1 s Method
Miele [gl}-] has examined a particular class of LOP (l.8g), (l. 83) in 

which (I.83) may he -written as a line integral in a plane* Shat is, where 

(I.83) may he written in the form (5.8). In this case, the singular control 

surface S he canes aline in the plane and sufficient conditions for opti­
mality of a singular sub-arc may he established (under certain conditions) 

hy using Green's theorem. Application of Milele’s method is somewhat 

limited, however, because of certain restrictions which must he imposed on 

the •Hwg integral to he minimized. The most important restriction is that 
the initial point A*and the terminal point B*of the line integral (3-8) must 

he absolutely fixed a priori. Another restriction is that the allowable 

paths of integration must he contained in a closed, finite region ft of the 

plane. The boundary of ft must he known a priori and the (fixed) initial 

and terminal points A* and B*must lie on this boundary. If the above res­

trictions are satisfied, and if S divides ft into two regions 0 * +1 and 
o « -1 [0 defined by (3.3l) 3 and if A* and B*have a certain orientation with 
respect to S then Miele has shown (hy somewhat formal arguments) that the 

singular sub-arc is optimal. Conversely, if 0 has the same sign on both 
sides of S then, under certain conditions, the singular sub-arc can he 
shown to he non-optimal. In spite: of the limitations, Miele*s method 

has proven quite useful in certain optimization problems in flight mechanics 

The importance of the restriction that if and B* should he fixed points is
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illustrated in Example 4.2 of Chapter k. In that example, the terminal 
£

point B depends on the path of integration and purely formal application 

of Miele's method leads to an incorrect answer.

3*?• LOP with Multivariable Control

She class of LOP considered so far have heen characterized by having 

only one (scalar) control variable. A more general class of LOP would he 

one in which the system equations (1.82) and index of performance (l. 83)

(3.33) 

(3-5*0

She study of L©P with multivariable eontrol u. (j '« 1, ..., r) is rather 

complex and is not an objective of this thesis, fhe formulation given 

below is only intended to demonstrate the fact that singular solutions 

may also oeeur in LOP with multivariable control.

fhe Hamiltonian (l. 64) for the LOP (3. 33), (3-3*0 is (emitting the

are of the form

r
— g1(x^,..-.>sja>t) 4*uj h^j(x^,e.. ,x^,t} (i «* 1, i.», n)

• . JhL ' ...
Tr r -1

J[u] J' g^(x^,...,xa,t) u^. h^(x^,...,x^,t)

' j=l
dt

H = p^ + ... + to' +\ Plhll + I,2h2l + *“ + So. - V

.+ P1 h12 + P2 fe2g + «»' + Pn hn2 “ h,02

+ u SX + p2 h2r * — + pn V - h.r
(3*35)



The Maximum Principle requires that the Hamiltonian (3° 35) should he maximum

with respect to all u^ e XL (j = 1, r). Thus, the optimal controls

u. for the LOP (3,33)(3»3^) 'are^giren"by 
0

u
A if P (t) > ®
J tJ

Bj if P^(t) < ©
(J 1, • •» , r) (3.36)

where A^ and are, respectively, the upper and lower hounds on the

©omtroi: u. arid 
J

= P1 hlj + p2 h2j + 0,0 + Pa hnJ " \ (3.37)

Equations (3.36) and (3*37) indicate that in the case: of LOB with multi­

variable control, (1 = 1, ..I> r), the singular condition F^(t) - © 

may occur in one or more of the controls tu0



Chapter k

SOME EXAMPLES OF SINGULAR SOLUTIONS IN LINEAR 
OPTIMIZATION PROBLEMS

The following examples demonstrate the techniques developed in the 

previous chapters for analysing linear optimization problems with singular 

solutions. The first two examples are taken from the field of flight 

mechanics, an area in which LOP are frequently encountered. The remaining 

examples are representative of the LOP that arise in modern problems of 

automatic control.

Example 4.1. Goddard's Problem

One of the classic problems in rocketry is the problem of determining 

a thrust program which will maximize the height achieved by a vertical 

sounding rocket. Goddard [25] was one of the first to suggest that an 

optimum thrust program should exist for this problem but he was unable to 

obtain a rigorous mathematical solution. The most complete solution to 

Goddard's problem has been given by Tsien and Evans [26], using the classical 

Calculus of Variations.

The solution to Goddard's problem involves a singular sub-arc along 

which the thrust is varied continuously. This particular solution was one 

of the first examples to demonstrate the practical importance of singular 

sub-arcs in variational problems.

The vertical sounding rocket to be considered in this example is

assumed to be described by the nonlinear, non-autoncmous dynamical equation
-ax 2



where
x = vertical height of rocket [x(t = ©) = G] 

v = absolute velocity of rocket [v(t = ©.) » 0]

C0 = drag coefficient (assumed positive constant) 

A = cross-sectional area of rocket

= air density and © are assumed positive

m(t) = instantaneous mass of rocket [m(t = ©) = mQ]

g = acceleration of gravity (assumed positive constant) 

e = velocity of exhaust gas with respect to rocket 

positive constant).

f© simplify equation (4.1), the following constants are defined

A

© h© g

ihe state variables x. are defined asx

Smr
x^ = m(t)

(4- a 5

(4.3)

Using (4.2) and (4.3), equation (4.1) ean be written in the form of (1.82)

*1 "*2

“ - « (xg(©) * 0) 

(e > ©)

(4.4)



The problem to be considered may be stated, as follows: Determine the thrust
control u(t) which will maximize the vertical height (x_) attained by the^ 1 max
rocket (4.4) with the constraints

0 < u(t) < um (um ^ constant) (4.-5)
T

u(t) dt < b (b > 0) (h-.6)
o

Trtiere T is the ti^ corresponding to ^ 

free. The constraints (4. J>) and (4.6) represent, respectively, limitations 

on the magnitude of thrust and amount of fuel. The fuel constraint is in­

corporated into the problem by writing (4.6) as

= (^i).max The time T is assumed

-/ dx_ ,
i (^.7)

Equation (4.7) Implies an inequality constraint on the state variable x^

x5(T)>|m0-^j (4.8)

where m .« initial mass of rocket (m > —). The index of performance to o o c
be minimized is

A
JluJ = J - :*2* (4.9)

Using (4.4) and (4.9) the Hamiltonian (1.64) is written



The adjoint equations are obtained from-(1*73.) as

-cex-
• . Ske ■ /„ \2P1 * " %....xT” (x2}

k a•**1
ps - - Pi + 2pa x, -aX^ - 1

(4.11)

% = p2
-he * (Xg) ■ + u*

:.(*5>

Since T and xq(t) are free, the transTrersality conditio
Gk

Pg(®)';- ®

H*(T) » ©

requires

(4.12)

Thus from (l. 8©)

(4.13)

Since 1 is explicitly independent of. t, the last of (4.12) implies [see 

(1.74)]

H*(t) - © (4.14)

The coordinate - x^T) is the quantity to fee minimized, 

the terminal value of p^ must fee

P^T) * + 1

From (2.19) and (4.1©), the optimal control u*(t) is

u*(t)
u if; F(t) > ©
m

k © if; F(t) < 0
(4.15)

where
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p(t) % -§• - (4*16)
5

Following the procedure of (3.2), the test for a singular solution is 

carried out hy setting

l(t) = l(t) = l(t) 

F(t) « F(t) = F(t)

where

(^. XT)

1 “ X2^P1 + ^ (4.18)

X Z 0 =5* xg(p^ + l) ^ Pg g + k e
. J ■■■

']

I - ©

F - ©

t(Pl + 1)

5* : h
*3 " 0

u V*2 kQ H
(4.19)

F - © £ («i + i)
5 (xp*

^2 +

fhe simultaneous solution of (4.19) yields the expression for the singular 

control surface S
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-axi
' ■«'.V.Vr-^V0? '

By taking one time derivative of {k*20) and substituting (4® 4) the 

singule^ control is obtained as

(k.m)

*>
;♦ » k © Ug)"

8 in3(xf )8 4- 8c xg + 4e2 +1[(xgr + gefcgP + Q*(*g)*]

(Xg)2 + 4c Xg + 2c2

(4.

The allowable switching direction regions are determined by using (3.31) 

and (4*19) to obtain

0 ® sgn + 1) h.
ke (y (\+ G)

-cot, 2x^[g x^ + k e (xg) 3
(4,22)

Since Y = min (-x^(t)) and = 
usU

it is clear that whenever an in­

crease in x^(t) will cause an increase in x^($), the p-^(t) win he positive. 

In this problem, an increase in x^(t) always reduces the aerodynamic drag

by reducing the air density p^e • Since this is the only manner in which 

dx- affects the problem it can be concluded that along the optimal tra- 

Rectory K* the value of p1(t) is always positive, The denominator of 

(4.22) is always positive from the definition of Xy g, and k. Thus

This technique of obtaining signum information from the physical 
interpretation of the adjoint variables can be quite useful as demons­
trated in the present example. See also, [273 and [283,



(4.22) reduces to

0 m sga (x2)2 (xg + c) (4.23)

Comparing (4.20) and (4.23) it is seen that the singular control surface 

S divides the x^ - xg - x- state space into two regions

o * + 1 where x? < (xg)2 (xg + e)

and

Of where x_ > 3
k e

ge •:(x2r (x2 + e) (4.24)

Since the initial condition x^(0) = x2(o) « 0, x^(0) = mQ is in the 

cr = - 1 region it is clear that the initial value of u* must he u*(0) « um. 

In fact, if u*(©) = © then, because cr I the Maximum Principle will 

not allow switching to u* = um at any time and the rocket will never get 

off the ground.

Fran physical considerations it is unlikely that the maximum height

can he achieved without using all available fuel. Thus, since u*(0) * um

and only one switch is allowed in the cr = - 1 region the optimal control

in the c s - 1 region must he u*(t) - u as long as x,(t) > m - How-
« m 5 o c

everf if the system trajectory enters the <j = + 1 region with i# » nm
then no further changes in the control are allowed. The allowable com­

binations of extremal sub-arcs are therefore limited to a gnmi 1 number 

which can be readily eempared by computer solution. By ‘this means it is 

found that the optimal solution which satisfies the required boundary

conditions (4.12) and (4.13) is u*(t) = u until S is reached and then
m
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singular control u^* along S until x^(t) « m@ - \ The final sub-arc 

is a coasting sub-arc u* = 0 along the plane x^(t) ^ - “. The maximum

height is obtained -when x_(s) « ©,. The optimal trajectory in the
cL

- Xg - x^ state space is shown in Figure 4.1. Further discussion of 

the perfonnaii.ee optimization of vertical sounding rockets is given in

: la the previous, example/ the optimal control included a singular sub­

arc which caused ..the system, trajectory to follow along S. for as long as 

physically possible* Many problems with singular .solutions are character­

ized by the fact that the optimal solution utilizes singular control as 

much as possible. In the present example^ which is taken frem [15J* the 

optimal solution requires the system trajectory to leave the & surface at 

a certain .point even though continued motion along. 3 does mot violate any 

physical constraints.

The system to be considered is a considerably simplified model of the 

vertical sounding rocket of Example 4.1. The rocket is assumed to be 

described by the dynamical equation

:fr + k(v)0 + g « u (4.25)

where k and g are positive constants^, u is the control variable, and v is 

velocity, lerksvitz [5©] has used this equation to represent a constant 

mass, constant weight sounding rocket moving in a constant density at­

mosphere. Following (4.3)* the state variable equations for (4.25) &re

(x1(©) - ©)

3L - g + u (xa(@). ©)
(4.i€)

written



Figure 4. X. Singular Control Surface for 
Example 4,1



The control u is bounded and given as

umin - "(t) S u,max
(u > u . > ©5' max. man
<W umln ■ MESt,“rt>

(4. *7)

fuel constraint rcfaires that

T

I -
dt < b (h > o) (4.28)

©

where f is the terminal time for the problem. In this problem^, f will be 

defined as turnout time”, the instant at which (4.28) first becomes an 

equality. Thus,, T is explicitly free but is implicitly defined by

f
u dt = b (4.29)

©

The constraint (4.28) is incorporated into the problem of defining

x5(t) u
o

S^(t) « u(t)

dt. (4.50)

aat specifying

■ §

» b
(4.51)

The index of performance to be minimized is
T

or

J[n]

J[u] ■«

xg dt



Shat is, it is desired to maximize the height x^ at turnout.

She Hamiltonian is written

H = (p1 + l)x2 + p2(-k(x2)2 - g) + u(p2 + p5) (4.33)

She adjoint equations are, from (l.7l)

= © (p^ = constant)

l>2 = “ (p-L + 1) + 2pg k xg (4.34)

• 0 . (p^ = constant)

From the transfersality conditions the terminal values of the adjoint 

variables are

■ - + 1 (.*. p^t) 11)
Pgto - © : (4.35)

and, from (1.74),

(4.3^)

She Hamiltonian (4.33) can thus he written

H - I(p, x) + u F(p, x) (4.37)

where

I(p, x) = - P2(k(x2)2 + g)
F(p, x) = p2 + p^

She test for a singular solution is carried out by applying the conditions 

(3.2) to obtain
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I Z © pg(k(xg)2 + g) ^ 2xg 

I Z 0 =# u(l - p2 k xg) J @

F - 0 «* - P,

F 0 ; - 1p2 ” k x„ 2

(458)

She singular control surface is obtained from simultaneous solution ©f 

(4.38)

S: xg .» (i*e, , xg = constant) (4.59)

The singular control is obtained from (4.26) and (459)

xl* == + 2g (i,e.,Uj* = constant) (4 4))

Along S the adjoint variables are, from (458)

pl = +1

1 (44L)

Pj = YSV

The allowable switching direction regions (5«5l) are determined from 

(458)
-g + kCxg)2” 

. g + k(xg)2_ (442)



Froa (4.42) it is clear that only one consecutive switch of the control 

is allowed in the regions above and below the singular control surface S

in the x^ - Xg - x^ state space. Thus, the allowable combinations of 

extremal paths are limited to a small number which earn be compared by

computer solution. By this means it is determined that, if < 2g < 

umax* 'fche required terminal conditions (4,35) cannot be satisfied by 

exclusive bang-bang extremal control

u*(t) 0

/
umax

*
umin

if F(t) > © 

if F(t) < O
(4.43)

®ais result serves to indicate that a singular extremal sub-arc will enter 

into the optimal control sequence. However, since (4,35) is not compatible 

with the singular conditions (4.4l), the problem solution cannot end 

(t = T) with the system trajectory on S. The flooding technique can now

be used to fill the x^ - Xg 

i. For this purpose, the system and adjoint equations (4.26) and (4.34) 

are solved in forward and reverse time (v = ± t) starting at various 

points on 8 and using (4»4l) to compute the initial conditions of the 

adjoint variables. A portion of the field of flood paths (on both sides 

of S) is shown in the x^-Xg state plane of Figure 4.2. By this means it 

is determined that the optimal control sequence is: l) u* = u until S 

is reached, 2) u* * 2g (singular control) along S until the '’line" x^ = m 

is reached, 3) v* = until x^ = b (at which time the problem ends). 

The value of m depends upon the values of Te, g, b, and u^ . The optimal 

trajectory and the flattened state velocity cone are shown in the x» - x0 

- x^ state space in Figure 4.3.

- Xj state space with flood paths flowing from
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Figure 4.2. Portion of Field of Flood Paths for Example 4.2 
(Flood Paths Leaving S Not Shown)
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Figure 4.3. Singular Control Surface for Example 4.2
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If u < 2g then, from (4.42), the optimal control must he ex-J316LX
clusively hang-hang with no more than one switch. The switching time is 
again determined hy the required terminal conditions (4.4l).

It should he noted that for the optimal controls described above, 
the Hamiltonian H* will experience a jump at t = T» This does not violate 
the continuity;requirement, for H* since in problems of this type, [i.e., T 
defined implicitly hy (4.29)], the continuity of » is only required over 
the interval 0 < t < T.

If in this example, it is desired t® maximize the burnout velocity 
rather than the burnout height then a similar analysis will show that no 
singular control surface exists and the optimal control is u* - 
The problem of maximizing burnout velocity has been considered by 
Berhovits [JO] and Kalman [Jl].

Example 4.5»

A problem is automatic control which has received considerable atten­
tion is the problem of “time optimal control”. That is, the problem, of 
transferring a system between given initial, and terminal states in minimum 
time. La SaHe [17] has shows that for linear systems, time optimal 
control can always be achieved by a bang-bang control sequence. The pre­
sent example, which is taken from [J2], demonstrates that for nonlinear 
systems the. time optimal control might not include any bang-bang sub-ares 
at ail but instead may consist entirely of singular control.

Consider a nonlinear system described by the state variable
equations

. 2 2" *i " xi xa u

X2 = “ X2 + U
(4.43)



where the control u is bounded and given as

|u(t) | < 1 (4.44)

It should he noted that Xg / x^ in (4.45).

The problem is to transfer the system (4.43) from the initial con­

dition

xl0 = + 1 - *2o=® (4.45)

to the teiminal condition

xai “ 0 (4.46)

in minimum elapsed time. Thus

J[u] ** J 1 dt (4.47)

The Hamiltonian is written

H - p^x^2 - x2 x2 u) + pg(- x2 + u) - 1 (4.48)

and the adjoint equations are

I>1 = J^C - ^ ^ Xg u*)

*2 - *1 *1. u* + '2
(4.49)

Since the problem is to minimize the elapsed time T - t , it is seen from 
(1,73) and (1.79) that

H*(t) = 0 (4.5©)

The singular control surface is determined from the conditions (3.2) where
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l(x, p) = P1 Xj® - P2 xg - 1 
F(x, p) - P2 ~*i*l *2 ■

Thus

S: x* Xg — 0

From. (4.52), the singular control surface for this problem has two 

branches

(4.51)

(4.52)

sl: \.Z 0
(4.53)

She singular control for each "branch of S is determined from (4.43) and 

(k.53)

(4.5^)

S2: V"0

Because ©f the constraint (4,44) on u the surface (line) must he trun­

cated as shown in. Figure 4,4, The singular sub-arc has no significance 

in this problem hecause ©f the particular initial and terminal points 

(4,45) and (4.46) which have been specified. It is clear from Fig. 4.4 

however, that the singular suh-arc Sg conne ebs the specified initial and 

terminal points and thus qualifies as an extremal control. The allowable 

switching direction regions are determined from (3«3l)

a « sgh (4.35)
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Figure 4.4. Singular Control Surface for Example 4.5



It is clear from (4.55) that only one consecutive switch of the control is
allowed in each of the regions Q < x^ < 1, and - 1 < Xg < The possible

bang-bang extremal controls can he determined by tracings from the given 

initial and terminal points* the system trajectories corresponding to 

u(t) - + 1 and u(t) - - 1. By this means* using both forward and reverse 

time* it is determined that the only possible bang-bang extremal controls 

are those shown in Figure 4.5* It.is seen from Figure 4.5 that the bang- 

bang extremal sub-ares are not compatible with the allowable switching 

direction regions. Therefore the time optimal control for this problem must 

be exclusively singular control along Sg

u*(t) - 0 (4.56)

Example 4.4.

Singular solutions usually arise in those LOP ia which the system 

equations (1,82) and/or the integrand of the index of performance (l. 85) 

are nonlinear in the x^. Because of this nonlinear character* it is 

usually difficult to establish (by analytical means) general conclusions 

about the optimality of singular solutions which appear is a given class 

©f LOP.

In this example* a particular class of n order LOP are considered 

in which
a) the system equations (l.8g) are linear ia the state variables 

xi and separable [e.g.* lu - constant] in the control variable 

and

b) the integrand of the index of performance (l. 85) is a positive 

semi-definite quadratic form in the with hQ = 0.
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Figure 1|-. 5* Bang-Bang and Singular Extremal Paths
for Example 4.3



The initial conditions on all the individual x^ are considered given and 

the specified terminal condition is x*^ = x^ = ... * For this par-

ticular class of n order LOP it is possible to draw somewhat general 

conclusions concerning the optimality of the singular solutions which 

appear. The material in this example is a condensed version of [to].

The system equations and index of performance for this particular 

class of LOP are of the form

(i s 1# •»* f a)
&i = x1 + .. . + &±n %n + u (a^, ^ * constant) Ok 57)

(j “-11 •»«> &)

T

o

(ij J ® 1> * • * $ h) 

(q^ «» constant)
Ok 58)

It is assumed that the quadratic form in (4.58) is positive semi-definite. 

The control is constrained by the relation

| u(t) | < 1 © < t < T Ok 59)

The initial conditions x±(0) (i =1, ..., n) are assumed to be individually 

specified and the desired terminal state is assumed to be the origin 

x^(f) - xg(T) = ... = x^(t) = 0. The terminal time T is assumed free.

It is assumed that the system (Ik 57) Is controllable [SO] so that 

the vectors

b, ab, ; a*1”^ b (4.6©)

are linearly independent. In (4.60) the quantities a and b are defined as 

the matrix of coefficients of (4.57). Thus,



a A
a,11 In

ahi ann

(4,61)

bn

(4.62)

When the system (4.57) is controllable it can be shown [20], [33], that 

there is no loss of generality in assuming (4.57) is of the phase variable 

form

X1 = *2
*2 =x3

kh-1

n

« X

\ =i + a2 *2 +

(4.63)

+ a x + u n n

and that (4.58) is of the diagonal form

T

(ai = constant)

Jtuj =J 2 <1l V + + •" + «n xn2>dt (4.S4)

(q^ = constant > 0)

The Hamiltonian for the system (4.65), (4.64) is
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H - xs + p2 x5 + ••• + pn-l \ + pn(al *1 + •" + an

'I K1!2 + "• + \ Xn2) +upn ' ' (4'65)

and the adjoint equations are

A - - *1- Pn + A ^

h = - P1 “ S Pn + % *8

pn " pn-l an pn + Sa xn

(ii.. 66)

From (1.74), it is seen that for this problem

B*(t) z © (© < t < ^5 (4.67)

The optimal control u* is, from (4.65),

u*-(t) = ®ga P^t) (^.68)

unless the singular condition p^(t) - G occurs. The test for a singular 

solution is carried out 'by applying the conditions (3.2) i&ere

1 " Pi x2 + — + pn-l xn + pn(al X1 + — + an xn)

- | (<3i xl£ + »«• + Sa Xn2^ (^69)

P - P,n (4. 70)

The condition F(t) = F(t) » F (t) = ... <* 0 together with the adjoint 

equations (4.66) yields the linear differential equation



$ e •

^(b-1)^ d2^-2>Xl a2(n-5)Xi
%. fl+2(n-l) “ %i-l ^.2(a-2) + Va “t2(n-3) " + (1)

+ (-l)*1"1 q1 x1 = 0 (it. 71)

The characteristic equation of (4.71) is

+ (-1)n~2

+ (-if"1 qx.« 0 (4.72)

It is clear that the 2(n-l) eigenvalues of (4.72) occur in pairs

(^m> ” \i)* ®itis, although (4.72) is of order 2(n-l), it can he treated

as an equation of (n - l) order in the k2. It will he assumed hereafter

that q^ > 0, q^ > 0 and that the (n-l) eigenvalues ^ are distinct. The 

assumption q^ > 0 assures that (4.72) does not possess zero or pure 

imaginary roots of the form = i w (i =Y3C, w = real). The assumption 

> 0 assures that (4,72) is of degree 2(n-l) and thus possesses 

2(n-l) roots. -

Under the assumptions given above, the solution to (4.7l) can he

written
\t ^ t

x. = © e + .©- e * +1 1 2
,t ■ ~\t+ © t e • + © e 1 +

n-1 n

®n+l e
"X2t

+ ©,2(n-l)
-X t . n-1 (4*73)

where the ©. are constants of integration. The expression for the singular 
d

control surface S(x^,.„,>x ■) = 0 is simply a first integral of (4,63) 

corresponding to the condition (4.73). It is assumed that the terms in



(4.75) are grouped so that the first (n-l) terns ©a the right correspond 

to the X having negative real parts, Then, (4*75) eaa he considered as the351
sum of two parts; a stable part

X t X t X t
= ®1 e 1 +S2e +- +Sn-le"' (4-7l,)

and an unstable part

*1 © e■ n .
-X^t

© ,,e n+1 + ©2(n-l)
-X t n-l (4.75)

uEach of the solutions (4,74) and (4,75) will furnish a first integral 

S(x„,...,x) = 0 for (4.63). For the particular boundary conditions eon- 
sidered in this example, only the first integral corresponding to (4.74) 

is of interest [20],

fhe first integral of (4,63) corresponding to (4*74) is given by

the linear expression

S; c1 xx + cg Xg. + ... + em xa « 0 (4.76)

which defines an (n-l) dimensional hyperplane passing through the origin 

of the x-spaGe.;: The ei (i * 1, ..., a) in (4.76) are determined from the

set of (n-l) equations
•v \ B x n-l Ael + c2K1 + c3 1 + • + CA " 0

. \ 2 . . \ n-l ael + + e3 2 •** + caV “ 0
(4.77)

cl + T + C..X 1 + «*»2 n-l 5 n-l + e. % n-l. Ap *5n n-l ©

^"However, these are not the only possibilities, in general. For spe­
cified terminal states other than the origin, some of the other possible 
first integrals of (4.75) may be of interest.



It may be noted from (4.77) that one of the may he chosen arbitrarily. 

The singular control function u^* corresponding to the singular control 

surface (4.76) is obtained by taking one time derivative of (4. 76) and 

substituting (4.63). Thus the singular control in state variable feedback 

form is

s* = - a.1 ,:i -
Vn + C1

n
•3SL Vn + cg

n

’Sr C 4- C -|n n n~l
n n

(4.78)
The assumption q.^ > 0, q^ > 0 assures that c^ / 0, c^ ^ 0, It is in­

teresting to note that the singular control (4.78) effectively cancels

out all the existing feedback terms on the right of (4.63) and leaves the 

system .(4/63) in the new linear form

X1 = x2

x2 = x3

xn~l =xn

\ - r (- el x2 - c2 x3 C , X )n-1 n'

(4.79)

The values of the adjoint variables corresponding to points on the 

singular control surface S can be determined by setting 

Pn = t>n = Pn = ... 2 0 in (4*66) and substituting (4.79)* By this 

means, the can be determined as unique linear combinations of the 

state variables x^, •*., . x

n

j=l

(i =1, , n)

constant)
(4.80).



From the relation (4.76), x^ on the singular hypersurface can "be expressed 

as a linear function of the xi (i =1, ..., n-l)

By means of (4.8l), the singular control (4.78) and the adjoint variables

(4.80) may be expressed as linear functions of x^, xj)-l* ^ Is re"
marked, however, that the substitution of (4.8l) into (4.78) may yield a 

singular control which is unstable. Shat is, a control which causes the 

system trajectory to diverge from, rather than follow, S, Hie singular 

control defined by (4.78) will be real-valued if all complex X occult in 
conjugate pairs. Shis is assured if the (i = 1, n) in (4.84) 

are aH real-valued. In particular, if q^ = = ... = q^ ® + 1 then the

k in (4.74) are the stable roots of the equation

artificially introduced root r = - 1. Graphically, the n roots of (4.84) 

lie evenly spaced on the unit circle of the Argand diagram [34] as shown

(4.8l)

xs(n-!) _ X2(n-S) + xs(n-3) . + („i)n“2X2 + (-if"1 = 0 (4.82)

Setting

(4.83)

in (4.82), and multiplying (4.82) by the factor (r + l) it is seen that

r 1-l/a
r (- l)n (4.84)

Shus, the (n-l) roots r. are simply the a roots of (- l)n less the one
J



Q - i, ..., n-l)
(If, 85)X3 “+ ^

(rj * - l)

where the r^ are given by (4,84). It is clear from (4.8h-) and (4,85) that 

the 2(n - l) roots L - also lie on the unit circle of the Argand
d d

diagram and all complex 4. appear in conjugate pairs as shown in Figure
d

4,6-b.
■ 12In [20], it is shown that the value of the index of performance 

(4,64) for any arbitrary path x^(t), ..., x (t) between any two points a 

and P on S is given by

P
Jtu] - / f ^qlXl^ + q2X22 + *** + Vn^dt

a

P r
r 1 / \2 dV~J 2 (C1X1 + C2X2 + ** • + Vn^ ” dt

a
dt (4.86)

ft
where 2 c.x. = 0 is the expression for S given by (4. J6) and V is the i 1 1
value of min J[u] for paths on S. It may be recalled from art. 3.3 that 

V is an exact differential for all paths lying entirely on S. Since the

desired terminal point x^T X2T 35 * * » xnT = is a point on S it is
clear from (4,86) that, when the restriction (4.59) is absent, the

singular sub-ares on S are strictly optimal with respect to all other

paths between any given point a € S and the origin x^ = x^ = .,, = x^ = 0. 

Then, the value V(a) = V(x^,...,xn) corresponding to any point a on S is

12,The proof of (4.86), given in is due to ¥. M. Wonham
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(a)
Roots of (4.84)

Roots of (4,85)

Figure 4.6. Roots of Equations (4.84) and (4.85) on the
Argand Diagram



the optimal (minimum) value of J[uj.

When the control constraint (4.59) is introduced, the points a 

corresponding to j u^*(t) | < 1 will lie in a strip S of S, The ex­

pressions for the boundaries of S are determined by setting u = i 1 in
(4.78) . In order that the. previously derived expressions V(a) (for 

points in S) remain equal to min J[u] it is necessary that the singular 
trajectory (which starts at a point a in S) remain in S at all times. In 

[20] it is shown that the region R in which the above condition is satis­
fied is an (n - l)-dimensional convex subset of the strip S. If at

t = t^ a bang-bang extremal arc should intersect R, then the optimal 
control for t^ < t < T is singular control u^* as given by (4.78). Since

(4.79) is linear, it is seen that T = 00 when the optimal control sequence 

includes a singular sub-arc.

From (4»8o), the p^ (i = 1, n) are known for all points of

the optimal paths on R. Thus, the flooding technique of art. 3* 3 may be 
used to trace out (in backward time) the optimal bang-bang sub-arcs which 

lead to R. By this means, the optimal bang-bang switching boundaries 
(hypersurfaces) in the x-space may be determined,

The form of (4.78) suggests that a suitable linear transformation of 

the x-space may permit the S hyperplane vto project into a surface of lower 

dimension. In [20] this technique is employed with the result that 

(under certain conditions) both the singular control hyperplane S and the 
bang-bang switching hypersurfaces, corresponding to an n^*1 order system, 

can be studied as lines and curves in a two-dimensional coordinate system,
15As a concrete e'xample of the problem discussed above j consider the

15■'Taken from [20].



system

*1

3L = u f
| XL | <1

(4.87)

with
X .

J[u] = J \ (x* + xaa)df

o

T = free

JCS0 - glTCB

X1T >*2T =®
p

Fran (4.72) the X are determined from X -1 = 0 so that

X = i 1
The are determined from (4.77) (setting ^ = - l)

C1 = C2

(4.88)

(4.89)

(4.90)

Choosing = + 1, the singular control surface S is detemined from 

(4.76)

S: + Xg = 0
and the singular control function u^* is obtained from (4.78)

U^ = -Xg

(4.91)

(4.92)

From the constraint | u j < 1, the S surface (line) mast he truncated at 

| * | =1. The region R and the neighboring field of optimal bang-bang 

sub-arcs (flood paths) are shown in the x^ - Xg state plant in Figure 4.7* 

The optimal bang-bang switching boundaries, determined by the flooding



technique, are shown in Figure 4.8.

It should he noted that, following (4.86), the index of performance

(4.88) can he written in the form

T
| (xx + xg)a dt + | Xi2(°) (4.93)

o
It is clear from (4,93) that the minimum of J[u] occurs when

xx(t) - - x2(t)

which defines the singular control trajectory. Thus, on B (4.93) 

becomes

min J[u]
B

1 X 2
2 1 (4.94)

The nature of the S, S and B regions is perhaps more clearly seen hy 

considering a third order example. Consider, for instance, the system 
(triple integrator)

, ,V“V. -
Xg = x3 (4.95)

x5 = u | u(t) I < 1

with
T

JU] | (X;L2 + x22 + x52)dt (4.96)

o
T = free

xlo#x2o,X3o 85 giVen (arbitrary)
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Figure 4. ?. Field of Optimal Trajectories Near Origin for Second
Order System of Example 4.4

BANG-BANG
SWITCHING
BOUNDARY

Figure 4.8. Optimal Bang-Bang Switching Boundaries for Second
Order System ;: of Example 4.4
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Using (Ik95), the index of performance (4.96) can he written in the

form

T
J[u] « J | (xx +n/5 x2 + x?)2 dt X;l2(0) + xn(0) xo(0) xo2(0)lv ' 2V ' ' 2 2

(4.97)

It is clear from (4.97) that the 2-dimensional hyperplane S is given hy 

the expression

3: x^+^Xj+Xjsfl (4.98)

Mid that the singular paths on S yield J[u] an absolute minimum. 

The singular control function u^* is

U3* = " x2 “ x3 (4.99)

Setting u^* a ± 1 in (4.99) the boundaries of S are obtained as the

lines
x2 = - 1 - n/”3 (u = + l)

Xg = + 1 - (u = - l)
(4.100)

on the plane S.
On S, the optimal (singular) trajectories are given by

Xi=e-0.5/5t 9. a'J0-5t + 0, e+J0- 5t
4- d

(4.101)

so that during singular control, the original third-order system is 

equivalent to the second order system

d2x.

dt

dx^
dt" 1 "1+ n/~3 XT1 + x. 0



The boundaries of the subset B of S are formed by the two trajectories 

(4.101) which are tangent to the two lines (4.100),

On R, the pi are given by

Px » +/3 X,

p2 “ x3 

p5 - 6

(4.103)

The singular control surface S, the strip and the region 1 of 

optimal singular trajectories are shown in the x^ - - x^ state space

of Figure 4.'9»

Points on the bang-bang switching surface which connects with R eaa 

be obtained by using (4.103) as initial conditions and integrating the 
system and adjoint equations in reverse time (starting at various points 

on l). The locus of points where p^(t) = 0 determines the bang-bang 

switching surface.
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Figure 4.9. Regions S, S, and R for the Third Order
System of Example 4.4



Chapter 5

SUMMARY AID CONCLUSIONS

5.1. Summary

The study of optimal control problems has received considerable 

attention in recent times. Several mathematical techniques have been 

used to examine problems of optimal control, the three most Important 

being; the classical Calculus of Variations (with extensions), Dynamic 

Programming, and the Maximum Principle, Each of these techniques has 

been discussed, and their close relationship pointed out.

It has been shown that for a certain class of optimal control problems 

the mathematical techniques given above sometimes fail (formally) to yield 

any information about the desired optimal control. This particular class 

of optimal control problems is characterized by the control appearing 

linearly in the state equations and index of performance. A problem of 

this type has been called a "linear optimization problem" (LOP).

Usually, the optimal control for a LOP is of the bang-bang type 

(u*= u ©r u* = u . ) and the above mathematical techniques yield this 

solution quite readily. The apparent failure of these techniques, in the 

case of certain LOP, has been shorn to be caused by optimal controls which 

are not of the bang-bang type at all times. The mathematical form of the 

solution t© LOP cannot explicitly define the optimal control when it is . 

not bang-bang. Optimal controls (for LOP) which are not of the bang-bang 

type are called "singular controls", and the corresponding solutions are 

called "singular solutions".

It has been shown that singular solutions are characterized by the 

bang-bang switching | function becoming identically zero. This character­



istic allows the construction of a surface S in the x-space (or x, 

p-space) -which is the locus of all singular paths. The control u*(x, p) 

whieh maintains the singular condition can he obtained from the ex­

pression for S. A scheme involving the backward time solution of the ca­

nonical equations has been used to help establish the role of singular 

sub-arcs in the solution of LOP. It has been shown that the physical 

realizability of singular control conditions is not sufficient to es­

tablish the optimality of singular control.

Several examples with varying degree of complexity have been worked 

in detail to illustrate the proposed techniques for solving LOP with 

singular solutions.

5.2. Suggestions for Further Work

The methods given in this report are primarily intended for analy­

tical studies of optimal controls for LOP. There is, at present, a 

large amount of effort being directed toward the study of optimal control 

processes by means of numerical searching methods employing digital com­

puters [35], [36]. The detection of singular controls by such methods 

has received very little attention, and further work in this area would 

seem to be of practical importance [37 ]«

In general, the optimality of singular solutions is difficult to 

establish except by actual numerical comparison. The developnent of 

analytical techniques to determine the optimality of singular solutions 

would be an important contribution.

This study has been primarily concerned with LOP having one control 

variable (with constant constraints). The study of LOP having multi- 

variable control (with variable constraints on the controls) would seem 

appropriate in view of the present trends in optimal control theory.
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Appendix X

GENERAL EXPRESSIONS FOR THE SINGULAR 
CONTROL SURFACE S

The General First Order LOP
In the case of a general first order LOP, the system equations (l. 82') 

and index of perfomance (1,83) are

(A. l)

(A. 2)

The singular control conditions (3.2) are then given hy

*T" + u h.

T r
gQ(Xi) Vu h^) dt

1 : 0 =* pa - s0 ; 0

F - Q =» p.h. - h - 0 - fl 1 o -

I - 0 => u

F - 0 =»

Pi
^g1 -

'1 3x^ %. ®1 3x^ ~

3hl'> 4ho . ^o"
1 3^ ’ *1^ (A, 3)

It may he noted that when u / 0, the expressions for I and F are not in­

dependent.^ The simultaneous solution of (A. 3) yields the following ex-

14,This is true for any order LOP of the form (l. 82), (l. 83).



115

pression for S.

Sj h^
dh,

1
^1
,xi- (A. 4)

The general expression for the singular control function u^* can 

be obtained by taking the time derivative of (A. 4) and substituting 

(A*!). The result is

"5
§i
h.

(A. 5)

If a singular solution does not exist for a particular first order LOP
then (A. 4) will degenerate to vacuous or impossible conditions. For 

instance, if gQ' »1, and h - = 0 (i.e., for time optimal control) then 

(A,4) reduces to 0 = © and no singular solutions exist. It is clear 

frcm (A* 4) and (A. 5) that when singular solutions do appear in first 
order LOP they correspond to the trajectory x^(t) ^constant.

The ©eneral Second Order LOP
In the case of a general second order LOP, the system equations 

(I.82) and index of performance (1,85) are

*1 " &L<V x2> + u Vv x2)

k2 - x2} + U VV V
T r

J[u]
o •-

x2) + * x2) dt

(A.6)

(A. 7)

(A, 8)

The expressions for I, I, F, and F are obtained in the same manner as 

for the first order LOP and their simultaneous solution yields the follow-C
ing expression for S,



US

3! 1 %*S - hofc2

' higo

*t&L •

dh_ ahl
+ 1X1

^S1
+ h2

a%\
®1 ■ % sr 

2
aV

%5^- ®2 5^ + hx + h2 V +

Oh®i 5^ • aho
®2 + hl

<^o
+ *2

8go\
5^' (A. 9)

The general expression for the singular control function u^* can 
he obtained by tailing the total time derivative of (A, 9) and substituting 

(A.6) and (A.T)» The resulting expression is rather long and is not 

given here.

A Particular Third Order LOP

Consider the particular class of third order 10P having the phase 

variable form

*1 = xs

x2 =X3

= g(xlf x2> x?) + u h(Xl, x2, x?)

with the index of performance
TJ[u] = J g^x^ Xj)dt

(A. 10) 

(A. 11) 

(A. 12)

(A. 13)

Following the sane procedure as above, the results are: 
a) If

^2gc

3x *
t 0

then



u_* =3

S> . 5 Sg° aV , ,a*8®
xg * Xg §x^ Sx^ X2 kx^dx^

iV
- X.

b2z

„A
g ix^

(A. 14)

h) If

d2g„

then

Sl *0
aso 2 ^2go ^ s©

x2 Sxg + xi 5x^§x^ + X2X3 Sx^Xj



Appendix II

TRANSFORMATION OF MULTIDIMENSIONAL LINE INTEGRALS
INTO LOP

Consider the problem of minimizing (or maximizing) the ordinary 

multidimensional line integral in the (x^,,,.,xn) space

b
J = f^(x^^«• • ^x^)dx^ + fgCx^...,xn)dxg + ... + f^(x^j»• • jX^)<3x^

a
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According to the classical Calculus of Variations, a necessary condition 

for the integral (A<> 16) to be a minimum (or maximum) is that Euler’s 

equation (1.6) should be satisfied. Thus, if (say) x^ is chosen as the
*1 Cindependent variable ■ in (A.l6) then the Euler equations for (A.16)

where

SE^-'S£

ax.

(i — 2, 3, «»., n)
( 4 JL'j'* “ dx^

(A. IT)

dx
8afl + ft^ + ,t + f n

"n dx^

Expanding (A. 17), the Euler equations become

(A. 18)

15
The choice of the x. which will be the independent variable is 

somewhat arbitrary. The only requirement is that the chosen should 
be strictly increasing along the optimal path.

I



• * ♦ 4-5x^/ \ix~ §2^/ $Xj
/bf. bt

+ m dxn « ©V.^ ' V ^
(i s .2, 3, • . • f 21}

(A. 19)

The (n - l) equations (A. 19) can be satisfied if

(i ** 2,3j» * • #22.) 
(4 ** lj>2>* *• #n)

bf. bti

It is clear that the solutions (A.20) do not involve any arbitrary

constants and therefore the rigid trajectory defined by (A.20) cannot be 

made to pass through arbitrary points a and b in the x-spaee. .la the 

Calculus of Variations, the solutions (A*20) are known as degenerate 
solutions to the Euler equations. It is well known that line integrals 

of the form (A. 16) will become independent of path when the integrand be­
comes an exact differential. She degenerate Euler equations (A. 20) are 
recognized as the necessary and sufficient conditions that (A. l£) be 

independent of path in a simply connected region of the x-spaee [1, pg. 
91]. thus, if the equations (A. 2©) define a surface B in the x-spaee, 

then the integral (A. 16) will be independent of path for all paths lying 

entirely on S.
Consider now, the problem of minimizing the integral (A. 16) under 

the additional constraints that the differentials (i = 1, n)

must satisfy the following parametric relations along the optimal tra-

dx.
2* ♦ (i * 1,*•.,n)

(A. 21)



where u * u(cr) can he chosen arbitrarily subject to u e U and er is a 

parameter which is monotonie increasing along the optimal trajectory. 
Substituting the parametric constraint equations (A.2l) into (A,16), 
the integral to he minimized can he written as

The problem of minimizing (A. 22) subject to the constraints (A. 21) is 

recognized as the general LOP (l.82)> (1.83).

She rigid trajectories defined by the degenerate Euler equations 
(A.20) represent candidates for unconstrained optimal trajectories which 
minimize the integral (A,16). Thus, when the singular condition occurs 

during the optimization of the (constrained) LOP (A.21), (A. 22) it 
implies that the particular trajectory being followed simultaneously 
satisfies necessary conditions for both constrained and unconstrained 

optimal trajectories. The surface of exact differential defined by 
(A. 20) is the singular control surface S corresponding to the singular 

condition (3«2). Since the Euler equations (A.20) are necessary con­

ditions for the optimal trajectory it is dear that if the integral 
(A, 16) has a finite minimum then the unconstrained optimal trajectory 

must be given by (A.20) (i.e., it must be singular). It is entirely

a
where

n °a



possible, however, that (A. 20) win define a trajectcry(s) even whea 
the integral (A. 16) has no finite minimum, for unconstrained trajectories. 

When the specified boundary conditions a, and b do not lie on the sur­
face (A.2©) then, siaee Euler*s equations cannot be satisfied, an un­

constrained optimal trajectory does not exist. However, when the 
constraints (A. 21) are imposed, the integral (A.16) may very well have 

a finite minimum and in this case the singular trajectories defined by 
(A.2©) may constitute part of the constrained optimal trajectory.

Every line integral of the type (A.16) with the constraints (A. 21} 
can be easily transformed to the form (A. 22). Erem this, it would appear 

that the Euler equations (A.20) should furnish a convenient method for
j

obtaining the expression for S in LOP. However, when the integral 
(A*22) is given first, the reverse transformation from (A.22) to (A»l£) 
is unique only in the case of first and second order 1©P.
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