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ABSTRACT

Johnson, Carroll D., Ph. D., Purdue University, August, 1963.

Singular Solutions in Problems of Optimal Control. Major Professor:
Jdohn E. Gibson.

The c@nﬁribution of this thesis is the somewhat general analysis of
siﬁgular-solutions Whiéhvarise invprdblems of opmiﬁal control and the
development of certain analytical procedures for detecting and calculating
singular solutions.

The basic_opfimal controlﬂprdblem»ebnsidéred in this study is the
task of choosing a control u(t) which will a) transfer the state efzé

system, described by the n first order ordinary differential equations,

ki = fi(xl, caey Xn, t, u) (i = l, ses g n) (l)

from some prescribed'initial state to some prescribed final (terminal)
state and b) simultaneously minimize {with respect to the control w)
an index of performance J of the form

T _
J[u] =f £ (%, ey x, u)dt - (2)

B
7]
-0

It is assumed that the allowable velues of the control u may be
constrained to iie in. some sét U, |

The conventional mathematical techniques presently being used in :
optimal control theory are discussed. It is shown that for a certain
class of optimal control problems, which are characterized by the control

u appearing linearly in the system state equations (1) and the integrand



' viii

of the index of performance (2), the optimal control w¥(t) is found

(formally) to be of the "bang-bang" type

: ‘A if F(t) >0 o o
.'u*(t) =€ — - (3)
“ B if F(t) <0

In (3), A and B are, réspectively, the upper and lower bounds on the ad~
‘missible control u and F(t) is a certain function of time which is called
the switching‘functione‘>When the switching function becomes identically
Zero ovér a finite time interval the conveﬁtional méthematieal techniéﬁes

fail to yiéld any information about the desired optimal con‘cfole The
solution in this case is said to be "singular" and.thé’correspoﬁding
control is termed "singular'coﬁtrol"

6(\/; /\i\,(

The nature of singular solutions is 1nvest1gated in detall and the
gf ol /;(z}#a

apparent failure of the conventlonal mathemaﬁlcal techniques_is shown to
be due to the fact that singular optlmal controls 11e in the 1nter10r_‘
(rather than on the boundary) of the admissible set U. The concept of

a singular control surface in the system state space%ziglntroduced and is
used. to examlne the geometry of 31ngular solutions. Some mathematical |
properties of the singular control surface afiuézrlved and a baekward
tracing scheme is used to gid in establishing the role of singular sub-
arcs in the solutlon of optimel control problems; It iéfggown that the
singular control u¥*(t) can be obtained from the condition F(t) = 0 and e
in some cases cen fe synthesized as a function of the system‘state

variables.

P

The proposed technlques for solving optimal control prdblems with 5
a3, B ]WMO'!L% o
singular solutions are illustrated by means of four examples which are d

worked out in detail.



Chapfer 1

INTRODUCTION

1.1l. The Problem of Optimal Control

The control of processes byv means of gutomatic sénsing and regulating
devices has been one of the most active ai'eas in recent scientifiec reéeérch.
The "‘origir‘lal applicationé of‘aut@natic control techniques were primarily I
concerned with replacing hmnan effort by more reliable and less expensive :
machine effort. ;: Récently, interest has centered around the possibility"gf'
designing automatic contfoi systems which will perform their‘operatiégs in
~an optimum manner with respect to some given figure of merit. As a result,  '
a new approach to : automatic cc;mtro,l has eﬁerged, the Theory ofOpt:.mal L |
Control. | | ' | I

‘The basic problem of optimal cqhtr:ol may be stated as follo'wsi _Givéi_l'

a plant (process) described by the set of differemtial equations

fci' = fi(xl., eooy Xn, t,u) (i = l’ 0.02 n) -
(. == |
, dat
determine a control u¥(t) that will trensfer the plant (1.1) from ‘some
prescribed initial condition |
xi(t c)) =% ~ (to = starting t;l.me.) (1.2)'
(i =l, evoy n) o
to some prescribed terminal (final) condition
Xi(T) = Xm ‘ (T = terminal time) o
| | (1.3)
= l, se0 g Il) -

(1




and simultaneously minimize an index of performance (figure of merit)

given by
.T ‘ 7
J[u] ;f fo(xl,.”,;cnﬂ, t, u)at . (Z_L,h)

t
o

In (L.1) the x, are state variables, the variables (position, velocity,
temperature, ete.) required teo speeify the state Oriconditien of theeplant,>.
and u is the control effort (force, voltage,.eﬁc.) by which the state_of

the plant may be changed. Some processes may perﬁif simulteneous applica-
tion of several different control efforts. In this thesis, primary concernl'
is devoted td‘ﬁrocessesvwith a single control varisble. The independent
variable t is ﬁéually.timec Inegeneral, same of the initial and terminal
conditions (1.2), (3.3) (end possible t, and/oﬁ T) may be unSpecified a
priori.. The index of ﬁeffOrmance (1.4) represente the measuré*of”goédnese

~ for the solution of the task of trensferring the plant (1l.1) from conditien )
(lea)vto condition (1.3). Physically, (L.4) mey represent such gnenﬁiﬁies
as cost, time expehdea, energy expended, accumulated error, etceb’ln,some"
processes, it is desired to maximize a certain index of performance. In
this case (1.4) is selected as the negative of the quantity to;bé'maximized.

" The problem of optimal control as described ebove may be ‘considersbly
complicated by certain physical requii-ements° First, the control effort u B
is usually'bounded or coﬁstrained so that only certain finite values of u
are allowed. The set from which allowable values of u mey be selected is

denoted by U, and the notation

uel (1;5)

represents the condition that uvis contained in the set U. Further compli-



cations arise when the set U varies with time and/or the Xye Another
factor which may complicate the problem of optimal control is bounded state
variab;es; i.e., the specifiéation that certain of the state variables xi
shou;d not e#ceed given values’Xi¢‘ The bounds Xi may, in general, depend
on time and possibly other state variables. Finally, the fi in (l.l) may
be discontinuéus with respect fo one or more of the arguments X5 t, and u.
In thls study only one of the factors listed above, the case of bounded

control u € U in whlch U is constant, is considered.

1.2 Techniques for Solving the Problem of Optimal
Control |

The problem . of optimal control outlined above differs from problems
of maximizetion and minimization in the érdinary calculus in'that the de;
sired solution u*(t) is a function rather then a set of numbers. AThere are
several mathematicai»techniﬁﬁes which can be used tc determine optimal
functions. The basic notions of the older and more widely known techniques
are outlined below. The never techniqueé, developed within the last decade

are then presented in some detail.

l.2.1. The Classical Calculus of Variations

The problem of determining optimal functions was investigated by
Lagrange and others in the latter part of the 18th century. Their results
led to the formulation of a new branch of mathematics called the "Calculus
of Variations”. In its classical form, the calculus of variations cen be
appliéd only to those pr@blems in which the control u(t) and fhe state
variables xi(t) are unconstrained end in which the f; (i=0,1, ..., n) in
(1.1) and (L.4) possess continuous partial derivatives (in all arguments) up

to and including those of the third order.



~ Basically, in the calculus of variations (as well as in the other
techniques to be discussed) one seeks to characterize ﬁhe optimal function
by means of certain necesséry (but ﬁsﬁally not sufficient) conditions. In
the classical calculus of variétions, the most importsnt ﬁeceSéary condi;) -
tions for the prdbleml (1.1)=(1.%4) are: the Euler equations, the Weierstrass-
Erdmann corner condition, and the'necessary condition of Weierstrass.

The Euler equations which must be satisfied by the optimal solution

a%(%%) =§;, (=1, ee, n) L @e

and | |
g% -0 (1.7)
where | | | | -
¢l + Z n(g - %) (L=1, ..., n) @

The ki = hi(t) in (1.8) are referred to as Lagrange multipliers and must be
determined from (1.6). |

The Wéierstfaés#Erdmann‘corner condition states that at éorners of the
optimal trajectory xi(t) (1 =1, ..., n) the quantities aG/Bki? dG/du, and
(¢ ; iﬁ gg;) have well defined one sided limits that are equél.

The necessary condition of Welerstrass requires that for all §£ # ki

U # u¥

lIn the'claséical calculus of variations this problem is referred to
as the "problem of Bolza" [1].



a(t, xl,;.., xl,...,x , U, A ) - G(t, Xyseee s % Scl,...,xn, uk, A )

Z(x- 5-—>o_ @)
at every point along the optimal trajectory xi(t). In (1.9), the bars
denote Quantities which are not associated Witii 'i;he 6p’cimalmt:ajeé’cory‘

A camplete discussion of the VneceSSary cbnditiens given above (and also

other necessa:ry conditions) can be fou.nd in [1], [2]

1. 2, 2. Extensions of the Class:.cal Calculus of Varlatlons

Va..en’c:.ne [5] has proposed a me’chod. by Wh:.eh. ‘the class:l.cal calculus
of varia’cmns can be used to solve the pro’blem (l.l) (l.lt ) with bounded
»control uel where U= U(t, x, u) In th,is ,eas_e ’ vthe constraint ,on the
" control is written as |

R(xpyeeesxy, tyu) 20 (1.10)
~ and a new (real) control variable z is defined as
n

% ‘-_- R(Xl’ ‘-'ooo‘, X ’ vt, u) X . (Z(to) = 0) (lnll) »
» Equa.’clon (l. ll) can now be treated as an additional state variable equation
and a.ppended to the set (1L.1). With the new state varisble (l.ll) added to
(1.1), the G in (1.8) becames |

6=ty 4) Mg -3:)+u(R-22) k<o)  (L12)
resulting in the additional Euler equat:.en

In (L.12), u = p(t) is = noneposi’cive undetermined multiplier. With the



addition of (1.11), the Weierstrass-Erdmann corner cendition requires that
for the optimal solution the quantities 3G/d% and (G - %; %—G; - % 55) have
well defined one sided limits that are equal. The necessary condition of
‘Weierstrass (L.9) is not effected by the additional equation (L.11). A
' thorough treatment of the method of Valentine applied to the problem of
Bolza can be found in [2]. Miele [4] has proposed another technique by which
the problem (L.1}(L.4) with ,’bounde_d_‘contrel‘ean be solved by_ the clessical o
caleuius of variatione; Miele's method, however s is restricted to comtrol
_constre.ints of the ‘form | | | |

B < w(t) <A | ()
_ whefe A and B are eons;tants;

1.2.3. Dynamic Prggrémh‘ing

In 1957,' Bellman [5] intreduced a somewhat different approach to
the problem of optlmal control, Using his Principle of Optimelity, Bellmean
derived a fu.ncticanal equatlon which can be used t@ solve » in 8 discrete
manner, a large class of @ptimal vcontrol problems, -More recently, it has
been ghown [6] that Bellman s recurrence equation is ‘& finite dlfference
version ef the classical Hammlton»Jacobi part:.al d:.fferential equation, A
treatment of Bynamie Progremming theory for the problem (1.1)-(1l.4) is
given belov. This presentation differs scmewhat from ‘that origina';ily.‘giten
by Bellman. | |
_ - It has been mentioned prekusly that some of the initial and terminal
conditions (1.2), (1.3) may be unspecified & priori, This condition may be
'geﬁeralized by :;epiaciﬁg the conditions (.1.2) » '(1.3) with the requirements

that the equations -



Tl(xlo, vsey Xno, to) = O L (1015)

g(xlT’ cecs Xoms T) =0 . (1016)

be satisfied at the initial and terminal conditions respectively. Equa.tians
(1.15) and (1.16) represent hypersurfaces in the (n + 1) dimensional (x, t)
| space. Thus, thé desired optimal trajectory xi(t) (i=121,...,n) _.iﬁ 't':hiér
space‘is required té have its initial end terminsl points lying on the hyper-
surfaces (1.15), (1L.16). For this reason, (1. 15) and. (1.16) are referred to
 as initial and terminal "menifolds", It is remarked that irij some cases, the |
initial and/or terminal manifoldé may be defined by a set of équé%ioﬁélof
the type (1.15) or (L.16). With the introduction of initial and terminal
« manivfoldcs s the basic ﬁro‘blem of 6§timal control ’co"be cénsidered in this in-
vestigaﬁiori caﬁ be described .as‘ the éfbblem of transferfiag the sta‘be;»'of"the
.plant (l.l) from the 1n3.tial manifold (1. 15) to the terminal manifold (1.16)
and simultaneously mln:.mlzing (l.h) | | | |
It 'w1ll be assumed in the following that an optimal solution does

exist for the problem being cons:i.d.ered.0 Furthermore , it Will be assumed
‘that if "the give:r; initial and/or terminal céndi'bions are véfied éve:é' some -
vzl'egi'on R in the (x, t) spacé , an optimal solution exists for each sef:"of':"'
initiel end terminal conditicns in R

| Consider the problem of minimizing (L.4) for a fixed terminal manifold

(1.16) end varisble initial conditions

X(to)—_-xli.a

: (1.17)

x(t)=xno 4
t =%

o) o



in the region R of the (x, t) space. Under the assumptions given above, it

éhou.‘l.d be possible to assign to every initial point (1,17) in R a unique
number representing the minimum value of the index o:f' performance (1.4)
(corresponding to the plemt (1.1)). This value of min J [u] associatedﬂ.
with eny arbitrary point (x , b ) in R is a property of . the point (x 5, % )
and will be denoted by V. Thus

T : .
V(x 107+ 9% ort,) = min f fo(xi,..o,xn,t,u)dt - (1.18)
. uel % . . .
: ° .
where the :‘.ritegral is évaluated. betweén any arbitrary initisl point. (.17)
and 't'heA Fixed terminal menifold (1. 16). - The locus of points (1.17) in R -
which heve the same velue for V will form en “isovee" contour as.ﬂéhown
in Figure l.1l. Note that 'the two dimensional éoordiné,te system of |
Fisure l.L is uséd t0 represent vthe n+l dimensioné]_. (x, t) Space.. It
the initiel memifold (1.15) is now superimposed on Figﬁré 1.1, a graphic
representation of the 'optiﬁization problem is o;o‘cained as shown in Figﬁre
1.2. N‘o*te that from the definition of V(xlo,... o X o,t ), the eddition of
the '.'.ni'bial manifold (1.15) to Figure l.l does not alter the shape ‘or value
of the field of isovee comtours. That is, the initial menifold simply res-
tricts the alloweble set of sfarting points in Figure 1.1l.
Referring to Figure 1,2, the original op’cim.ization. problem can now be
described gecmetricelly as the problem of Joining the 0 end § manifolds
with a line (trajectory) (subject to the conditions (L.1) and (1-5)) sich
that the value of (l.4) computed along thet trajectory is less then the
value of (L.U4) computed elong eny othér fréjectory joining 1 end & and
compatible with (i.l) and (1.5). -From the definition of & and V, the isovee
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contour V = 0O must2

coincide with at least a portion of the terminal mandi-
fold ¢ as shown in f‘igure 1.2. Clearly, the optimal starting point
(xlo,”o X 5 ) for this pro‘blem is the point & shown in Figure l.2¢
Further, the minimum value ‘of the index of perfomem.ce for this problem
is the value V¥ of the isovee contéur which passes through point & The
actual form of mthe_ op'_timal trajectory which starts at Iy and joing ¢ is not
evident from Figure 1.2. However, it is poési'b.le , from Figﬁre 1.2, to
state a fﬁndmental property of the optimal trajectory:

Fundamental ‘Propert;y of jthe Optimal Trajectory

The optimal trajectory K¥* joining n and £ has the property
 that at any intermediate po:m'b E= (xl s vons K% t) along K*
the value of (l.h) computed frcm Ao B (along K*) must satlsfy

.the relatlen
E

f £ (xl,“o,xn, t, u)dt !K* = v*(&) - V(E) _ (1.19)
A‘k - .. P .

If there is only one optimal trajectory between 7 and & (i.e. »
if the solu‘bionb to the problem is unique) then for any other
path K 7 k* starting at A*and joining ¢ (emd compatible with
(1.1) end (15)) the following inequelity is satisfied at every
poimﬁ E'on K |
Ef
f £ (g y0ee %5 By ) dti >v*(A’5 V(E“) o (L.20)

3k

A

2This assumes, that V is not defined a fi the minimum value of some
function ¥ of the coordinates x,, t. IfV = mi% \y(x (T), T) then V can
be zero cnly at points where ¢ = 0. (Howe'ver, v need not be zero at all
points where V¥ = )

10



The quantities V*(&), V(E), and V(E') in (L.19) and (1.20) are

the values of thé isovee contoursﬂ paésing “ throﬁgh thé poifrbs

A’f, E, and E' respectively.

The proof of (1.19) end (1.20) follows immediately from the definition

and assumed uniqueness of the opt:‘uﬁal trajectory K*. Equations (1. 19)_ and

(1.20) express the fundemental property of optimal trajectories for tﬁe

optimization pro‘blem being considered. From Figure 1.2 and the rather

obvious statement of fact represented by (1.19) and (1.20), the theoﬁ'éf
Dynanmic Prog:éa’mxning and anfi'-yagin'é Maximum Pi'incipie will be derivéd. It
mey be noted that relations (.l. 19) and (1.20) are quite similar to the
relations between entropy and the ‘ integi'a.l / %Q- for révérsible énd Iion-
reversible thermddynamic prvocesses’. This similarity is not entirely super-
ficial. ' | |
Since the frajectory K which the system foilows befween N and & is
determined by the confrol varisble u(t), (1.19) and (1.20) may be re-;_
stated as follows: | | o R

For optimal comtrol u(t) = u¥(t) (X = K%)

V*(xlo, ceey Xno, to) - V(xl*,...,xn*, t) -

eu/‘ £ lx % ooy X * & u*)at = 0 (1.21)

and for non-optimal control u(t) F u¥(t) (K £ K*)
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V%(xlo,.nd,xnjo, to) had V(xl,earnv"xn’ t) -

t
-;/‘ E(%ys ooy X5 by wldt <0  (L22)

t : .
° (¢, <t <T)

where (Xle’ ooy X s tO) is the optimal starting point A ori‘ n
‘end (x%, ..o, x %, t) 15 a point on the optimal path KX,
A ty'picaliplét of (L. 21) and (1.22) versus time is shown in é_‘igure 1. 3.
Note thst ab = t_ both curves in-Figure 1.3 coincide,” and from the de-
finition of K¥, V¥, and V neither curve can ever enter the region _

t. . ‘ _ _
[V* -V -f fo' dt:l >0, Also, for.to <t < 7T, the non-optimal (dotted)

- 0 SR : - :
curve in Figure 1.3 must always lie entirely below the optimal (solid)

curve. Note also, the slope of (1.22) in Figure 1.3 cen never be positive.

The optimal curve in Figure 1.3 is thus characterized by the fact that |

along K¥*
- ' t - L
d ' -
I [v*(xlo"“ ’Xno’to) - ‘V(xl*,.”‘,xn*,’c) -f fo(xl*3°¢. ,xn*,t,u*_)dt] =0
o

(1.23)
(t.éf'tST) . .

and furthermore, at eny point along the optimal trajectory K¥ we must have

3If the non-optimal trajectory K begins at any point other than. A’:
then in Figure 1.3 the curve for (1.22) will be below (1.21) at all
times, In any case, (1.19), (1.20), (1.21) and (1.22) are always sa-
tisfied. ‘ ; - o
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BY DEFINITION OF V, NEITHER CURVE
CAN ENTER THIS REGION

~ EQUATION (1.21) P

" EQUATION (I. az) "\..,ar\ & ,,k

. Figure L.3. Plot of Equations (1 21) end (1. 22) e
B i S - Functions of" Time R L



: da ' , .
L P - ¥ % 1) -
ﬁzﬁ = [V‘(xla,...,xm,fc@) 'V(:::L poee sy )

- f fo(xl*,..,,xn*,' t, u*)d’s] = | S (1.2k)

) (1-,Q <t <T)

The quantity V*(xl PETRY ,xng,t) corresponds to the value of the isovee
‘eontour which pésses through tﬁe optimal starting point A en 7. Thus s
V*(xlo,... ’Xno’tc\) is & constent with respect to time. Also, by the chain

rule for differentistion

%%(xl,.,.-,xn,t) zg%-'-% kl"""""'%‘z%_kﬁ - (L.25)
] Bl » n o
Thus, (L. 2&) becames '(ldnitting the arguments)
| W W, v, ]- : .
nax - - - “* coe ™ X - f - @ ’ . (1‘26)
uw[@a 55 S %7 o) - R
(to <t<T)

However, since V is not a function of u explicitly, then OV/dt is ex- 3

plicitly independent of w. Therefore, (1.26) can be rewrittén

(b, <t <T)
where | »
V = V(xp 5000 5%, %)
%, = :E'i(xl,u-,xn;ht: u) '(:1 =1y ees, B)
£, = fo(xl’”"xﬁ’ ty u} : |

b
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Equation (1.27) is a form of the well known Hemilton-Jacobi partial é.if;
ferential equation [7], and is often referred to as Bellman's functional
equation [8]. Thed:ynam:.c programming method for solving the optimization
problem formulated above is :es:senfia]ly a step-by-step (finite difference)

technique for solving (1.27). Thus, if x., t, and av/a:é for a certain

i
point on K¥ are known (er assumed) then (1.27) can be used to determine

w* (and. thereby 8\7/515) over s small time interval At. By this means, using
}’ (l.l) ’ (l. 2‘7) may be mnnemcally integrated, The main difficvlty of this
method is determining a.n mit:.a.l set of values xi, by aV/axi to start the
mmerical in‘begratien. | :

. Equation (1. 27) ma& also be ‘solved. (m prinelple) by the analytic
techn::.ques of partial dlfferentla,l equations.  The selu‘b:l.on _ » |
vV ‘V(xl, ooy X t) of (1.27) by erdmary methods of partml dlfferential
equa‘bions may requ:z.re rather involved pleced solutien techniques :Lf the
right side of (1.27) is a0t differentiable at u = u¥ or if u = u* 1lies
on. the beundary of the aﬁmizssib‘ie eet U | In‘ such ax case,. ’the pieced _ |
solutions for V should jom if v(x 13 vees x n? t) 1s cont:.nuous. I’c is re-; ‘
- marked that for many practlcal problems » Vis ccntinuous in the (=, t)
space. On the other hand, if the r:Lght side of (1.27) is continuously’
differentiable at u = = uk and u¥* is not on the boundary of U then by

setting » ,
3 [ av . . ' )
5;; [" g;z]': kl - o000 - g‘}z‘; kn - fQJ : G . | (lo QS)
- in (1.27) and using ordinary theory of maxima and minima, the optimel

: control \
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| (v oW \ |
u* = u* <$['1", ...,.5-;(;’ .‘X.'l, ece 9 Xn, t) - " (1029)
can be obtained. Then, (1.29) can be substituted into (1.27) to obtain |

the Hamilton-Jacobi equation ‘in the more common. form

A S '
gb— +:§-€5cl+... +§x—n3cn +-fo =0 | (1030) -

e (X W |
551 = fi [Xl*,-oo’xn*,t,u* &‘i‘, cee ,‘53’:‘:&" Xl*, ecey Xn*, t)}'

(i = l', oo;, n)

e ' v ¥ S |
# fo = f@ [xl*’ crey Xn*,t,u* <E‘, vouy &“-’ xl*, seay xn*,t>]
. 'éi‘ ‘ ’
It is seen that (1.30) will be a first order (usually nonlinear) partial
differential equation explicitly independent of V and the control temm u.
After the soluﬁidn V = V(xl*, coes x %, t) of (1.30) is obtained, the
optimel contrd in the form ‘ ' ‘ '

u = u*(xl*, ooy X ¥, 8) - (1.31)

can be obtained from (1.29). Equation (1. 31) can then be expressed entirely
as a function of time by substituting (1.31) imto (L.1) end solving for the

. %,

"open loop") control u = u*(t)., In most cases, however, it is more de-

as functions of time. This latter step y:ieldsvthe ﬁre;programned (or

sirsble to leave the comtrol in the "closed loop" form of (1.31). Note that
t will not appear in (1.31) if all %;, f,, and U are explicitly independent -

of time.
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Mthough the functional equation (1.27) is the primary working
"tool" of the Dyham_ic Programming method, several other important relations
can be developed from (1.27) and Figure 1.2, These additional relations,

developed below, form the ba;sis'of Pontriegin's Maximum Principle,

l.2.4. Characteristics of the Hamilton-Jacobi Equation

From (11,27), ‘it is seen that for u = u¥(t)

av av . R
xl xl + 90“0 ‘l“g;c-n-scn + fol

11
O

(1.32)
u=u¥ ' ;
Note that (1.32) hold.sv even when the right side of (1.27) is not differen-
‘ tisble with respect fo_u a'E v = u¥ or when u¥ is on the 'bound.ary of U,
' Equation (1.32) implies that the following relstion is satisfied along the
| optimal trajec‘vvbbfyy K% o | |
f [gz i 5c1+...+§-—5c +f]dt’:'o ,, '__’(1_.33')
% -
Fran (1.27), letting u = u*(t) (t o StS T) the plant equations are

obtained in the form

-—d-;-t-,— = ( v (i = l, seo0 9y n) (l‘ 3h')
| az.’ -

These equations should, of course, coincide with (1.1). From the fact that

V= V(xl, cees X t) it is clear that

‘%’; gy—(x,...,x,t) ‘ ' - (1. 35)
1 1 . ) ,



The total time derivative of (-1.55) is then

AN %y B A

axi - a’caxi 3:1 5::15 oo F n-Ex.nS xi' - g‘_ 36_);
However, from (1.27), when u = u¥ | | |
Ao w K, Py s, A%
Bxiat axl Bx l 9% 5::1 _ axn axi n Bxiaxn axi

where it has been assumed that the admissible set U is not a function of
%4 ‘(i.e. » U#U(x)). It can be seen that when U = U(x) equation (L.37)
will contain additional terms. Now, if V = V(xl,... ;xl;l,t) has continuous.

nmixed second partial derivatives with respect to all Xy and t then

Br oy

0%.0X.  OX.O%, _

L 1 :
and ‘ o ' o (1.38)
Fv 3% .

axiat . ataxi

If the conditions (1.38) hold, then (1.37) can be written

B 5"1 s W M, By ¥ (L.39)
3, < TS %, A S, 53:‘; 5, " %n 5%, T %, -

Substituting (1.39) in (1.36) gives

% % of
1 oV n 0 e
( - 5“1 W, T %, %, (.%0)

Equation (1.40) tells how bV/bxi varies with time along an optimal tra-
| Jjectory K¥ (asémningvcon‘cinuous mixed second partial derivatives of V
with respect to all x, and t along the optimal tfajectory K¥*). Equations

(L.34) and (1.40) are called the "equations of the characteristic strips"

18



for the Hamilton-Jacobi equation (l. 30).

Since BV/Bt = 3V/5t(x1,... )X t) then, assuming (l. 58) holds,

5— 32‘, lgbévx:-l-"' +k 5%;2_ (1.41)

| Along K* it is seen :E‘rom (1.27) that
}A ' a3t | |
aav v azv %, aav o (1.12)

| atz_ | _b‘xl Bt ":  “5t§xl. e ax ot " n Jtox "Bt

. Substituting (1.42) in (LA1) yields

g_._& T=,--av“ Fy oy By A (H)
LY R T R A 430

"Equatlon (l. 43) tells how. BV/Bt varies along the eptlma.l traject@ry K*
Note that although (1. hO) and (l. l+3) are total derivatives , only partlal
derwatives appear on the right hand side. From (1. 11-3) »it can be seen that

if all %, » f and U are expl:.citly independent of time then a.long K*

1
@( > ’ & <t<w »g n "_ (L. 44)
g{-l =e  (c= cv'enstant)v | (1.15)
Kaﬁ (t < t < T)

, Equations (L.44) and (1.45) app]y for either T = free or T = fixed. From
the definition of V, it can be seen that V will be an explic:.t function of
time when any %, 59 iy o F U is an explicit functien of t:.me ’ when f contains

:ad.dlt;we constants ’ and when the terminal time T is fixed. It T is fixed,

19
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but neither. xi

80 that V must be linear in t and of the form

» £,5 or U are explicit functions of time then (1.45) applies

Vv = V(x]-’ cesy xn) + e t ‘ (10}"‘6)
T=fixed

~ The relationship revealed by (1.46) has 1ed to some iﬁteresting ‘res'ﬁltsf :
in eonhectionvwith'eptimiza'cvién' preblelgs which have a fixe&- terminal.

| t.’uﬁe (9. When' v d.epeﬁd:s‘ explicitly on time (as for | example in (L.46)),
the »ieovee cdﬁteurs when viewed in the x-»spacev will appear to inox;e with
time. In the (x, t) space R hevever, they will remam fized, If T is
_free, neither % 49 £ o’ er U are explicit functions of t:.me , and f does not
contaln addi’cive constants s then V will not depend on t explicitly, aml .

the ¢ in (l.lts) beccmes zerc, Thus

oV
9t

s
©

~ (t <t<T) - (1.uT)
K* - ° o . S
‘P=free

 Equation (1.47) implies that the isovee surfaces are "parallel" to the
t-axis of the :i, t space. When (1.45) or (1.47) holds, then along K*

(1. 30) has the first integral
Sci‘-i-;..'+%‘£—3c '+f‘=‘c | (l.h8)

vhere C # 0 or C = 0 depending on whether (l. ’-!-5) or (1. lﬂ) is applica.ble.

1.2.5. Terminal C@nditions fer the Optimal

Traject@ry K*

The given problem specificatmns require tha.t the optima.l tra-

' jec'l:ory K* should termina‘ce somewhere on the terminal manifeld (l. 16) The |



particular point B on ¢ at which K¥ will actually terminate is, of course,
unknown & priori.,. It is possible ,'_however, to derive some necessary -con=
ditions which the optimal‘terminal point Bon ¢ must satisfy.

It has been remarked earlier that except in the specisl case when
v 2 min \y(x (T), T) at least a portion of the V = O contour must con.nclde
wfr:i;’chmo‘?.J ‘This portion may be only a point, line, ete. (or several isolated
points, J..ines' , ete. ) or pos‘sibly '_the‘entvire £ manifold. From the definition
of V, it is ciear that 'B*must’ lie on a portion of § for vhich V = 0. In
the most general case, it is possi'ble ‘that 1) B'mey lie at the end (or edge) '
of ¢ or, 2) the V. = 0 contour may have a dlscontinuous gradient or g nay |
‘have a corner at :B? In. ei’cher of these -cases, the optimal terminal point B
is character:.zed by the fact that any small (allowable) d:.splacement
(d.x s dT) along (tangen'b to) the & manifold must yield 4V > O or, since

v =v(x l,...,xn,t)

W >V

g-am xl<3x1+,...,+ax dx, : >0  (L49)
n . .

at B*_on g

If the V = O contour coincides with a finite portion of ¢ and the V=0
- contour and & do not have cornei's, and if bB*vdoes not li‘e on the Iedg:é of

3 then_ any small displacements (d.xi ’ aT) ta-rigent to the & manifold‘ mus"c‘

yield dV = O so that (1.49) becomes

v
3t

v
%

]
(]

ar + dxl+,., +5-—dx (1.50)

atBong

Tt should be emphasized that the quantities dx,, 4T in (1L.49) and (1.50) are

i}
not governed by (1.1) but rather are small arbitrary displacements tangent
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to & at Bf In words, (1.50) states that at the optimal terminal point B
on ¢ the gradient of V (v t,x') should be perpendicular to the ¢ manifold.
It is' seen that any contour V = constant which happens to be tangent to ¢
will satisfy (l;"SO) so that (1.50) is only a necessary condition,
Actually, (1.50) is not even a necessary condition unless the sbove 'meﬁé' “
tioned conditioms leading to (1.50) are satisfied. For the special.ease'
in which V £ min xy(xi(T), T), a small chenge in the coordinates xi(i)_, T
will not necegzgrily vyiéld dV = 0. In this case s the optimal termix_lél
point B'is characterized by | |
av =g¥ QT+%I&1+°" +g~§£—_'-‘dxn >0 - (5)
_ o v 1 at B on g

Suppose that (1.50) does apply, end let & be given in the form

ip = %
X =b

£ : ar 2 (k < n)
Xep = Py

Then, dx, =0, (i=1, ..., k) and (1.50) becomes
1 g \ T

(1.52)

]
(=

oY oV AV
g_E d.T +§-_—=Jfk+l d.'xk._'_l + e00 + 8‘}'{‘;; d.xni

at B'on 3
for arbitrary values oj‘ d'xk+l’ veey dxn, dT. Since dxk REILEY dxn_are_
arbitrary, (1.52) implies that '

» g_z—: =0 ' (tj :-'k."‘l, seay n) (1.53)

dlg



Also, if T = free, then dT| # O so that fram (1.52)
’ ; : v /-

o e

Note , tha.t in contrast to (l. ’47) s (l. 514-) applies even when some % i’ £, or
”U depend on: t expllcitly f n e
| When T = fixed, (1. 52) does net yield any information abeut 'a"'
Hewever, :E‘rem the definition ef V, when T = fixed then V(xl, cres x_ » T) =0
: for all allewable values of xl, ceny X, e.t T. The reverse statement for x, i
| 'fixed is ne’c necessarily true since xi need net be strictly increasing like
time. Thus, i:E‘ X;

iT
‘V(xlT, vens ka, Xk+l T’ weey X T’ T) is not necessar:.ly zere Zor any

:E‘ixed. (1 = 1, Juey k) and '.13 :E‘ree, then

~allowa.’ble (xk +l T’ ievy x o7 T) In other verds, if T = :fixed and the
’ »problem begins a.t seme point on g then the preblem must inmledn.ately end at
that same peint on g Bu'l; s i:f.' T = free and the problem ‘beg:.ns s,t some "
| point on g the optimal traaectery K* lea.ve and. return a’c some la.ter time
to same other point on E. Ll | | .
When (1. 51) applies , the teminal values ef av/at and Bv/ax are not

necessarily zero even though T and x. may: be free. A‘Irn'this ease

(1.55)

23
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1.2.6. Initisl Conditions for the Optimal

Trajectory K¥

It has beén remarked earlier that in general the starting point
for the problem may not be completely fixed but instead may be required tQ'
lie on some initial manifold (1.15). The optimum starting poin"cv Aon n is
| chara-cterized by the fact that no dther point on n. lies -on an isovee con.'bour‘
of lower value. As in the case of the temn.nal manifold there may, in
general, be a corner in the n manif@ld at Aor in the isovee contour V¥
whn.ch passes thr@ugh Ar AlS@, the point A may lie on the eé,ge of the q
vaam.fold, ‘ In such a ca.se » the @pt:.mal star‘bing p@:.nt A sa’clsfies the o
necessary condition dvV > 0 f@r any arbitrary (a‘llewable) displacement (dx

dt ) tangent to 1. or,

%lv‘dt +rdj§l+ooo "'5'_&}: : >0 " (1'56)

at A on 1 ’
If the V¥ contour and n are “smooth" at the optimal point A’; and A'is not
on the edge of 1 then amy srbitrary displacement (dxi y dt») tangent to 4 -
must yield dV = 0. Thus {1.56) becemes |

BV . __; ' &v F | =
-g.gd.‘b+@x1+”o +_§:§;an o : (1057?_

at A*'on 4

When (L.57) does apply, then fer every x. which is vccmpletely,free at

io
t = t_ the condition dx, # O holds so that

_ o (158)

If the initial time ¢/ is free, them (1.57) implies



v o SR
vl Y N , - . (1.59)

When to is fixed, (1.57) yields no information asbout %% . However, for
the special case where all Sci » fc" and U are explicitly independent of
time then, from (L.45)

V.

',gl'n"fﬁ-g_'- | _:(1.60)

S:.nce the er:.ter:.a for the opt:.mal initial po:.n't A on n and the optimal ter-
m:.na.l point B on £ are smilar, equatlons (l. 56) and (1.57) are equivalent
%o (1. !+9) and (.1. 50) Fer this reason, the remarks below (1.50) also apply
%o equations (1. 56) and (1. 57) Equatlons (1. 50) and (1.57) are semetimes

re:ﬁ‘erred to as the transversala.ty conditlons [l, pg. 162] at n and € . The

cond:.tions ‘under which (1. 50) and (l. 57) do ‘not apply are apparently not
often encountered and therefore (1 50) and (l. 57 ) are usually assumed (until

proven otherwise) to.be necessary conditions for 'bhe optimal traaectory K¥%,

2.7 Pontr’yaﬁln s Max:l.mum Pr:.nc:.ple

In 1958, the Russia:n mathemat1c1an, L.. S. Pontryag:m and his co-
workers V, G. Boltynsk:.:. and R. V. Gamkrel:.dze introduced a new technlque
for solving the genera.l optimal control problem [10]. This techm.que s
known as the Maximum Prlnciple s can be derived by several methods [ax],

[12]. The presentation given below is based on the "i-sovee" concept in-
troduced previously.
‘The optimization technique based on Pentryagln s Maximum Principle (PMP)

is essentially a re:f.‘ormula’cion of the optimization thecry given sbove. In

25
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the PMP technique, a new "independent” coordinate 1 (1= l, cesy n) is

1n‘i:.roduce<3.)+ into the problem by defining
A oV

Motivation for in’croducing thisv auiiliary coordinate follows from a similar
technique used by S8ir W. R, Hamilton (in 1834 ) for solving problems in what
is now called Class:.ca:]. Mechanics [T]. - For his dynamical systems, Hamllton
~introduced, by means of a contact (L’egendre) transformation, an suxiliary

" coordinate p defined by

é a TRL e o : s
where - } .
L = Legrangian fu:iction (the analog'of fov‘in (1.4))
q; = generalized coordinates of the system. |
If (1.61) is substituted into (1. 27), the Hemilton-Jacobi equation
becomes | _,
‘%}{-:max lxl+“.+pfc - £ (1.63)
. uel o .

In PMP, the bracket on the right side of (1.63) is called the Hamiltonian

H so that

“In essence, this changes the "basis" of the coordinate system from
(x,t) to (p,x,t). There are several ways one could define P;» (1.61)
belng the most conwvenient for op’clmization problems.

26
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‘With this definition, (1.63) becomes

| H*(S.”J'C:t;ﬁ*(;?)x’t))_-"‘* %‘% _ ‘ | L (1e 65)
H*(px t u*(pxt)) -—mex DKy Foees +p5c . o {(1.66)
’ ey | fcl B

::',where BN o | | o s ] »

| | H* = H with u repla,ced by the optimal control u* = u*(p,x,'b)

| Equat:.on (1.66) is the basic equatien used in PMP and :Lt 1s seen “to. be

' equlvalent te the Hamn.lton-Jacobi equatian (l. 27) With 'l:.he t changes -
in notation [(1.61) and (1. 6’+)], the relatiens d.erived in the previous
vana.];ysis can. be converted mto the correspcnding relatlons used in PMP
For instance , i (l. 66) is continuously differentiable at u = u* and u*
 is not on the boundary of U, ‘then as in (1. 28) the @ptimal eomrol is de-

» 'termined frem

A - o
gear =0 1.6
Pl T e
which, by (1.29), will yield

From (1. 3'3)‘is' obtained the_relati'on

27
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%
f‘[g* - py¥y S Pk, + fe]d’t =0 (1.69)

From (1. 5’+) and (l.hO), the so-called canonical squations [ll] of PMP are

o'btained as

aj{ ‘ .

B _ OH*(p,x,t,u¥ »

1 I e | - 10)
K* *

Byl 2mGatu) £ u(x) - (1 'ri)

at Coox - ' )
K*

The p; de:ﬁ'ined in (L 61) are referred to as "aia;jeint" or costate va~

riables and. are equivalen'b to the negatlve of the La,grange mult:.pln.er ftmc-
tion )\'i useé. in the Classlcal Calculus of Varla’clons (see (1. 8)) In this
connectlon (l."(l) correspends to the Euler equations (L6) The solutlons '
X =X, (t) and pi =D (t) of (,l, 7’0) and (1. 71) are actually the charac‘cer-
isties (characterls'bic strips) of the Hamilt-Jacebi equation [see (1. 5’+),

and (1.%0)1. ‘I‘h:a.s result shows the interrelatn.on be'bween Dynsmic Programmingﬁ,

and the Max:.mmn Principle. Dynamic Programming msy be viewed as a numerical
 method for solving the Hamilton-Jacobi equation and the Maximm Principle
as a methéd for determining the characteiisfic strips of the Haniilton-
Jacobi equation. From (1. ua) the relation between the total and partial

t:l.me derivatives of H are

am * % oy :
dH_ (PsX-gt’u ) BH X,t U.n . ' ‘ (1.72)

at - . 9t
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where u* is as given in (1.68). It should be noted in (1.70), (1.71), and

(1.72) thet the p;, x

i’ and t are treated as ndepgndent coordinates 1n

the (ﬁ,x,t)~épace; | |
If all x,, 2, and U ere explicitly independent of bime then, from

(1.45),. along- K*

e - (c = constant) N
H*(p,x,‘c.-u*(p,x,t)) =c . : 2 (1. 73)
t, <t <T S

”which holds for either 7= fixed. or T = free, If, in addition, T = frée

o and £, does not contain additrve constants “then (1073) becames (following

1,the reasaning Qf (l~h7))

H*(p;x,t,'u%(p,x,,ﬂ)'>v;5,: st (L)

“Wnen (L.73) or (L. 7&)_11;31&5 ; ‘then (folloving (1.48)), (1.66) nas the first

- integral,"

i}
(]

k + '.". + ann"' f

pl‘l (c = constant)'_v (1675)

K*
Combining (1.h9) (1.50), and (1.56) (1.57), the PMP versions of the trans-

’ versality conditions are obtained as

H*dT-pldxl-..o»—p ax >0 o (1.76)

tat B on §

and

* - - -
H_ dto P dxl e B, &x,

>0 (2.77)
at Afon i) ’

29



where' ( ' dT) and (dxi, at ) are arbitrary (allowable) displacemen'ts |
tangent w the & and L] ma.nifolds respectively. The cditwns under which
equallty h@lds in (l. 76) and (L.77) are the seme as dn.scussed for (1. 50)
and (l. 57). As mentloned ;prev:Lously, it is comon practn.ce to assune (until
proven o‘cherwise) that equal:.ty holds in (l. 76) and (L, 77). From (1. 53)
and (1.58) 1t 1s seen that for each x, vhich is coupletely free st t =T

(or t =t ) the correspendlng p, are g:.ven as [assumlng (l. 51) is not

applicable]
P, =0 (t=1)
g | |
(1.78)
p . _ ]
i = (t =% @)
0 ﬂ .
Also, if T _(@r to) are completely free, then fram (1. 54) and (2.59)
H*I =0 (T = free) . | |
S | @)
H* I =0 (to = free) : ‘
S ) ‘

When V 2 min \lr(:x (T),T) then (1.78) and (1.79) do not apply at ¢ because
uel
(l. 59) is replaced by (1.51). In this casve, (L. 55) is used to obta:.n

0oLl SRR |
P ~"'5¥7 | '(1'80_)

Y
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‘The basic optimal control’ problem-fomvla‘ceci previously is solved by
the EMP technique as fbllows: v
‘a) Using (1.1) and (L.4), form the Hemiltonian H as given in (& 611)
-vb) Cons:Lder H in (L 6h) as a fxmction of u, and determine 'bhe
u¥ = u¥(p,x,t) which maxim:Lzes H If (1.67) is applicable, thls
_' maximizatio‘n process is straightferw’ar& Otherwise s it may be
necessary to "inspect" (l.6h) for various values of (xi, » t)
¢) Substitute w* = w¥(p,x,t) into (1.64) to obtain H, o
a) ,Obtam the canoniéél equations (1.70) and (1.72). '"
e} E In’cegrate the canonlcal equations from t to ‘co determine
'xi'= xi(t){and r, =1pi(t). This latter step is difficult since
(from (i.?5)’£hrough;(1.8;) only some of the initial end terninel
conditions for (1.70) and (l. TL) are known a priox;i.' Thus, trial
and error techniques.“ are ‘usua.lly required to determine the unknown

P ,t andp T

- tie? T 1T’ X:.T’
T) Subétitute xl- x, (t) and dp; = pi(t) into u¥ = u*(p,x,t) to
" obtain u¥ = u*(t) the "open loop" comtrol. ' F o
g) Alternately, attempt to obtain the “closed loop" comtrol u* = _u*(x)
by eliminating the parameter t between the equations p; = pi(t)" o

end x; = xi(t) obtained in (e).

1.3 Res_éarch Objectives

The analytical techniques outlined in the previous article conmstitute
the primary methods of analysis presenfly used in optimal 'cohtrol theory.
Each of these methods has been successfully applled to a 1a.rge varlety of

optlmal ccmtrol prc:»’lo.'.l.em,s° There is, ho'wever s 8 certa:.n class of optimal
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control pro"blem's. (this certain class is a sub;clas_svpfthe general problem -
-considered in the 'previous ,article) for which all the methods given' above
break down. This special class. of problems is characterized by the fact
that the control u enters the plant equations (1. l) and ind.ek of performance
integrand (1.%) in a linear mamner. That is 5 ‘che plan’c equations (l.l) and

index of performa.nce (1. h-) are of the form

k= 8 (xeeeyx,8) +u hi(.xl"“,,xn:t) (=1, .., m) (2.82)
. | J-Fu] ,=‘/. [80(15‘]_)"093511,13) +u -hé(xl,,., ,xn,t)] dt — (1. 83)
Hereafter, an optimization problem characterized by (1.82) end (1.83) will
“be called a Linéar Optimization Problem (1oP). An existence theorem for
this class of problems has been given by Lee and Markus [13].
When 'bhe methods glven above are used to determine the optimal con'brol

for a LOP, the formal solution for u(t) appears as (see Chapter 2)

o (a ir F@)>o0 ' |
w(t) = S (1.84)
S B if F(s) <o _ :
where A and B are respectively the upper and lower hounds on the control |
u, and F(t) is a certain function of time called the "switching function". »
However, it is characteristié ‘of the solutions: to LGP vt’hat ‘the switching |
function F(t) sometimes becemes identicslly zero over some finite time in-
terval. In such a case, (1. 84) fails ’co yield. any infoma‘blon cencerning

the- cptlmal control. Those L@P in which F(t) becomes 1dentically zZero over
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some finite time interval have been referred to #s Msingular® [14], [15],
"jegenerate" [16], "not normal" [17], and ‘“arqbiguous" [181. Aithougﬁ the
existence of singular séluti'oné in th_e calculus of va.riations has been re-
cognized for some tn.me [l] » appa.rently little is known about the general
‘nature of such solutions, |

The primary obgective of the research discussed in this report is to
examine , from a general po:.nt of v1ew, singular solutions in MP, and to
develop a.naly'big proqedures whlch may be useful in detecting and ca.lc_:ula-
ting s:|.ngular solu;tiéns_.v “The téchniqﬁes";developed a,re illustrated by

seversl detailed examples.
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Chapter 2

LINEAR OPTIMIZATION PROBLEMS AND ‘SINGULAR SOLUTIONS

2.».1. Formal Solut:.on o:E‘ LOP by Convent:.onal Methods

 n order $o establish that the optlmal control u*(t) for a LOP is -
(formally) of the :f:‘onn (1. 84) » it is 1nstruct:|.ve to cons:.der the solutlon
to the general LOP (l. 82) ’ (l, 83) as obtalned by the various methods glven :
in Chapter L When the control is un'bounded, the solutlen to a LOP w:u.ll
inveolve infm:.te values of the control. For th:.s reason, the formulation
of & LOP should alwa;ys be accompanled by. constramts on the control u(t)
Hereafter, it will be assumed that the control_u is constramed. by the

relation
B< u(t) <A (A>8B) - (2.1)
where A and B are real constants.
In order to apply the classical calculus of variations to the general
LOP (1.82), (1.83) with the constraint (2.1) one may employ the device of

Valeﬁtine‘describéd in Chapter 1. In this case » Tthe constraint (2.1) can

be put into the form (1.10) by writing
=(A=-u)(u=-3B8)>0 o - (2.2)

The auxiliary control varisble z is then defined from (1.11) to be

= VY& - w)(a - 3) ' (2.5)

Substituting (1.82), (1.85), and (2.5) into (1.12), the function @ for a

IOP becomes
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G = BO(X]_:"_. ’xn:t) +u ho(xlvﬂyxn:t)‘ |

0 | )
+ Z [g (xl,...,x ,t) +uh (xl,...,x ,t) - l:l

ib=l ' ‘ o o o
+u[(A-u)(u-B)-'z£:| S ()

The Euler equa;tiéns fér (@4) are, from (1.6), ('1:'.'7);7@& (1._3.3),

.Zti uaxo z B—-ﬂ-+u§-41] o " _‘.(-2‘5)

i
v'J
' h +Z A, R, +P~[A 2u+B:| =® S }(2.6)
1 &;?2>f°' . y:,v,“g(&v
vhere p(t) <O, Tt cen be 'shownb'[z],vtha‘c;‘ a-‘c'téi'minal time |
B D T )
and therefore (2.7) and the coni:inuity requirement for u(t) z(t) requiresi ‘
we)BE) S0 (s st sT) | (2.9)
If p is not zero, then (2.3) and (2, 9_) a"mply
(A-u)(u-B) =0 : , (2.10) |

Using the fact that A >B and B <0, 1t is. seen that (2.6) and, (2.10) can



be satisfied by

A if: F.(t) >0
w(t) = 1

~

| (2.11)

B oifr R(t)<o

vhere _ _ : o

R) = -5 Z M By - (2.12)

When T, (t) 20 1n (2.11), (2.12) then (2.6) and (2.9) can only be satisfied
by . o ' : B L -, . - T N - - X L

w(t¢) S o | R C (213)

| In this case, (2.4) becomes

@ = go(x;seees%,,t) *Z M l:gi(xl’”"xn’t) - s‘i:l - (2ak)
and the necess-ar’y‘ conditién of Weierstrass (1.9) degenerates to the trivial
identity O = 0. Thus; when F,(t) I O the ‘hecessary condition of Welerstrass
also fails to yield any information sbout the optimal control w*(t). - °

The Dynamic Programming method for solving the general LOP (1.82),
(1.83) ‘consists éf solving (1.27) in a discrete manner. Substi'bﬁt'ingw(l.»&)f _
‘end (1.83) into (1.27) the funetional equation of dynamic programming ivs o

v

St = ﬁzijc [- go(xly. ees%56) = wh (%000, ,t)

{
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It is clear that for any given values of % Bv/ax , end t, (2.15) is
‘ma.x:unlzed with respect to the control u by choosing

() = { R >0 (2.16)
D B if: Fg(t)<0 . .

where
FQ(‘b) E - ho -Z &: ‘hi | - (2.17)
e T _ : .

However, when F (t) Z 0 then (2. 15) becomes expllc:ltly independen’c of u and
(2. 16) [l:.ke (2.11)] fails to yield any informstion concerning the optlmal
control. ‘

The solut:.on of the general LOP (1.82) , (1. 83) by Pontryagin's Maximum

Pr:.nclple 1nvolves meximizing the Hamiltonla.n funct:l.on H(1. 64) Thus,
substituting (1. 82) and (1.83) into (1. 64) yields |

n

5)

1 [gi(xl,... ,xn,t) +u h.i(x_l_”‘f ,xn,t:l
i | | | .

- go(xl,...,xn,‘t) -u ho(xl,... ,xﬁ,t) (2.18)

From (2.18) s 1t is clear that the Hemiltonian is maximized by selecting

u*(t) = [A o FB(t-) >0. | (2.»19)

B if: Fa(t)<0

where .



n
'F3<:t?%-‘h +Z 'P‘i-hil A 'ge.eo?'

When ‘FB(t) = 0, the Hamiltonian (2.18) becagnes. explicitly independent of
the control u and (2.19) fails to yieid any information concerning the
oﬁtimal control, The rélationship»betWeen N 8V/6xi » and p; is evident
from comparison of (2.12), (2.17), and ‘(2¢20). Controls of the form (2.11), -
(2.16), and (2.19) are camonly referred to as "bang-bang'; controls. “Th'e ,
tem Fy(t) in (2.11), (2.16) and (2.19) 1is called the "switching
f‘unctiono o | |

- Equatlons (2.11), (2.16) , and (2.19) verify that for the s:.ngular
cond:.t:n.on F(t) - O :E‘orme.l solutions of LOP by conventional methods fail
:to ya.eld any 1nforma:t10n about the desired op'l::.mal control. However, i’c
will be shown below that the con'trol u(t) wh:.ch meintains the singular

~ condition F(t) = ~ 0 may satisfy certain necessary conditions for an optimal
control, For this purpose, the Maximum'Prin‘ciple‘ is used to reexamine in

detail the genersl LOP formulated above,

2.2, The Meximum Principle and Linear Optimization Problems

The general LOP formulated above permits the varisble t (time) to -
appear explicitly in the system equations (1.82) and the integrand of |
the index of performance (1.83). However, if an auxiliary state variable

Xn +1 is defined as

u>

1 =t (2.21)

or



, 5‘_n+1 =1 | (e.ge)

then (2.21) can be substituted into (1.82), (1.83), [and (2.22) cen be
appended to the set (1.82)], so that (L.82) and (1.83) become explicitly
independent of time. Further, if the terminal time T is explicitly fixed,
then (2.21) and (2.22) caix be used to convért the problem to one with &

free qurmiiial time and with the additional required boundary condition

n+

x (1) = T (2.23)
To simpli:ﬁ‘y the index notation, it will be assumed in the following that
Whenefrex; the auxiliary sté,‘ce varisble ('2.21)’ is used it will be included in
bthe n original system equa‘bibns. | ;

Whén the system equations (1. 82)‘. ‘and index of performance (1.83) are
expiicitly independent of time and términal time is free, thenb frmn (l. 7h)

the optimal value of the Hamiltonien is (noting the asswmption (2.1))

BoawEa) 10 (g gisn (e

Since H* 2 max H(p,x,u), equation (2. o) indicates that at every instant of

uel . } . ‘ . S
time along an optimal trajectory no portion of the curve representing the

instentanecous plot of H vs. u (u € U) can lie in the upper half plane
H > 0. Fuarther, if an optimal control exists » then there must be at least
one point u* (u* e U) at which the curve H vs. u touches the H = 0 axis.
Since (2. 2&} is 5;4 necéssary condition for an optimal control the Maximum
Prineciple mé.y be stated as follows: |
Statement 1
If it has been established that H¥ E 0 then a.ny control u¥*

which satisfies the relation
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H(u*) = max H(u) ; ) (1:0 <t <T), N
B ued . ) . : :

. and the boundary conditions of the problem, is a candidate for the
optimal .control. |
Controls which satisfy the necessary condition of Statement 1 will be
called "extremel controls “:.. The trajectory produéed by a system subjected
to extremal control will be gaJ.‘Leé. an "e#trémal path", In genersl, if an

optimal control is known to exist and it is possible to prove that there is

only one extremal control then that (unique) control is optimal, If ('1. 82)

and (1.83) are linear in the dependent varisbles and separsble in the
control varisble [i.e., by =_hi(t),_ (1=0,1, .c., n) in (1.82), (1.85)1
then satisfying the Maximum Pi'inciple is both & necessé.ry aﬁd suffiéient
condition for the optimal control [18]. In this case, the Maximum Principle
may be stated: | |

Statement 2

If (1.82) and (l. 83) are lineav.r. in the dependent varisbles
and sepérablé in t}ie coﬁ'ﬁrol variable and'.if it has been estab=-

lished that H¥* ; O then any control which satisfies the relation

H(uw*) =mex H(u) 20 (¢, <t <T),
uet o : .

and the boundary conditions of the problem, is an optimal control.
If (2.21) and (2.22) are usedto make (1.82) and (1,83) explicitly
independént of time then from (1.64) the Héznilténian for the general ILOP

is

H(p,x,u) = I(p,x) + u'IF(pv,x) . | (2.25)

4.0n



where

A .
I(p,x) = - g, + plgl *oee + P8

F(p,x) = = by + Dby + oo + PR
8y = 8 (% ,0005x) |
n, = hi(xl,..o,xh)  (1=0,1, es., n)

and, fram (1.T1),

W ame(p,x,u¥) 4

at - OX,’

= i, 'o~o, n) : (2'26)
1 - . .

’ 'va (2.23) ’is used to meke the terminal time free then the optimal value of

(2.25)-ié
[I(p,x)m* R(p,%)] = mex [::(p,x)»rw(p,x)];o (e
A uel TP ‘ oL .
' (t <t<T)

In (2.27) it is understood that the 'érgtmehts of I and F are p(t) and #(t).
Accérding to Statement 1, any comtrol u¥ which‘satisfies (2.27) and the
boundsry conditions of the problem is a.n extremal control.“: In general,
there are three controls which could satisfy (2.27):

1) The control | ‘ -

wHe) T - (2.28)

if it is compat:.ble with (2. 19) and if it will sa'blsfy
F(t) 20 I(t) - 0,

Note that F in (2.19), (2.20) is the seme as F in (2.25).
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2) Any control ug*(t) which will satisfy
I(t) = - u¥t) F(t)  [I(s), () £ 0]

Note that for the particular bounded control | u*(t) | <m,
(2.19) and (2,29) require I(t) = - MZIF(t) | or
I(t) < 0 M > o)

" 3) Any control u3*(t) which will satisfy

W INDIo  (Bgurs) )

The partn.cular conditions for which ul*, u *, and u3 will sa,t:l.sfy

(2.29)

(2.30)

(2;31).

Statement 1 are illustrated in. F:Lgure 2.1, The control ul*(t) - 0 cor-

responds to zero control effort. The control

I(t

* = -
) (t) F(t

must correspond to sw:Ltch:Lng between maxmum and minimum control effort

(2.32)

as given by (2. 19) During thls type of control I(t) and F(t) must vanish

s:.multaneously at each switch. Note that the ‘controi ui*(t) is actually

a special case of the u2* control where either A or B (or both) become

zero, as in problems with control energy (fuel) constraints. The control

u, ¥ which satisfies I(t) = F(t) - 0, also satisfies the relation (see

3
| (1.67))

%%-(x,-py u)Zo

and usually corresponds to continuously variable control effort in the

(2.33)

interior of the admissible set U, The condition I(t) = F(t) E 0 corres-

k2
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ponds to the singular conditioﬁ described previously. It is seen, there=
fore, that singuler control‘(uB*) satisfies the necessary condition:(2,27)
and mey constitute a sub-arc of an extremal control. |
In_addition to safisfying (2.27), an optimal control must satisfy
the specified-inifial and terminal values of the system state‘variabies.
However, it'is genérally impossiblé to satisfy these required-boundary
conditions by exclusive use of either ul*, u, *, or u3 In this case, the.
optimal control for a LOP, if it exists, must con51st of seme combination |
(sequence of sub-arcs) of the ul*, u,*, and u5* controls which satisfies
the required state variable boundary condltlons‘ The selection of this
optimal sequence is complicated by the fact that, in general, there may be
several différent.cembinations of these éub-arcs Whiéh satisfy the physiéal
boundary conditieons of the problem.

: Thé resultélgifen gbove indicate that the optimal contrél for a i@P‘
will, in general, consist of a combination of bang»bahg type -control {2.19)
and singularicontrel (2.31). Therefore, in order to compute the optimal
control for a LOP one must determine the fellowing: |

1) 1Is singular control admissible as & candidate for the optimal
contrcl? That is, is it possible for the singular condition
F(t) = 0 to occur?

2) How may the bangwﬁamg and singular contrel sub-arcsbbe com=
bined in order to satisfy neééSsary'eonditions for the optimal
control? | ‘

3) What is fhe functional form of the singular céntrol?

4) Which of the possible combirations of extremal contfols‘is

actually the optimal contrel? This latter question includes



the question of whether a singular extremal control subrarc
does in fact appear in the optimal control.
Some techniques which may be helpful in answering these qﬁestions are dis-

cussed in Chapter 3.

5



Chapter 3

THE NATURE OF SINGULAR SOLUTIONS AND
~ COMPUTATIONAL TECHNIQUES

3.1. DNecessary Conditions for Pieced Extremal Paths

It has been shown in the previous chapter that, in genersl, the
optimal control for a LOvaill consist of both bang-~bang (ul*; u2*) and
singﬁlar (ua*) sub-arcs pieced together so as to satisfy the’giveﬁ'initial
and terminal)ceﬂditions of the state varisbles. However, in addition to
sétisfying the physical constraints of the problem, an optimal control
must satisfy certain other requireménts; These additional requirements
serve to reduce the number of pileced extremal ﬁaths which may be candidates
for the optimal centrol.

: The fundamental requirement of an optimal control for a LOP is that
the MaximumiPrinciple (2.27) be satisfied atiall times to <t<7T. Thus;
the continuity property6 of H*(t) as indicated in (2.27) prevents any
'chénges in the éontrol u as‘léng as F(t) £ 0. For insteance, if it can be
established that F(t) does not change sign in a particular region Q of the
n-dimensional x-space then it can be concluded that the optimal control in
the region Q must be either u*(t) = A or w*(%) - B.

Another requirement which must be satisfied by the optimal contrel is
the specified initiai and terminal values pi(to) and pi(T) of certain of

the adjoint variables. As shown in Chapter 1, the required values of

6If some of the state variables X, are bounded, or if g orh
(1 =0, 1, oo, n) in (1.82), (1.83) a5 not possess continuoiis partisl
derivatives with respect to Xy and t then E¥* might not be continuous

(111, (19
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pi(tg) and pi(T) are determinéd from the treansversality conditions (1.76)
and (1.77) end fhe given boundary conditions of the state varisbles. The
requirement that the transversality conditions be satisfied is especially
useful in singular control problems since this necessafy condition often
provides the only information concerning if, when, and how singular control
sub-grcs should be Jjoined with bang-bang sub-arecs., Application of this
‘technique is demonstrated in Exesmple 4.2 of Chapter k.

Iﬁ same problems, either the physical constraints or mathematical
requirements will not allow certain of the controls *’;ua* and u5*a For
instance, it may be found that in order to have the siﬁgulaf conditien
I{t) S»F(t) § 0 all the édjoint variables pi(t) (i =1, .o., n) must be
identically zero, From (2.27), this condition implies that the integrand

of the index of performance (1.83) is idemtically zero
g, (%, (%), a..,‘_xn('t)) rult) nlx(t), .o, x (t)) 20 (3.1)

If, for a particular problem, the condition (3.1) is known to be physically
impossible then it may be coacluded that a singular control sub-arc is

not allowsble.

3.2, The Singular Contrcl Surface

The study of LOP in which singﬁlar solutions appear is simplified if
it is possible to determine a surface S in the x-space which represents the

‘condition
I(p(t), x(¢)) =
F(p(t), x(t)) =

]
o

(3.2)
0

3

That is, if the comdition (3.2) can be reduced to a relation
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S(xy(t), +e0y x (8)) Z 0 (3.3)

ﬁhich defines a surface (hypersurface) in the n-dimensional x-space; The
.ability'fo exprésé S as a function of state variables alone depends on the
numbér of indepeﬁdent relations‘which can be obtained by £aking successive
time derivatives of (3.2) usiﬁg the system equations (1.82) and the adjoint
equations (2.26). General expressions for S in the case of first and second
order syétems (1.82) and f@rba particular class of third order systems, are
given‘in’Appendix i; In Example L.4 of Chapter 4, a particular class of
- LoP is examined and genérél expressions for S are obtained for the ﬁth order
systeme: For some higher order systems (n > 3) it mey be impossible to eli-
minaﬁe all the Pi from the expression.forcsr 'The surface S does not exist
if (502) leads to vaéuous or impossible conditions., In particulaf, if
(3.2) implies .pi_(t) =0 (i =1, ..., n) then S exists ¢n1y if (3,1) can be
satisfied. ' |

The surface S will be called thé "singular control surfaée" since the
state variable trajectorybcorresponding to singular control u3* must lie
on this surface. For this reason, only those regions of S corfesponding
to B < u3* < A are considered. The surface S is also the "singular contrpl
switching boundary" since any point in the state space which is not on S
must be associated with bang-bang control. A typical singular control
surface is shown in Figure 3.1l. For higher order systems, it is cenvenient
to construct projections of the hypersurface S on various state variable

planes. In some cases, a suitsble coordinate transformation of the x-space

may allow the hypersurface 8 to project into a surface of lower dimension.
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In [20] this technique is used to transform a particular class of 8 hyper- |
 surfaces into lines. h | o
It is n@fc unusual for 8 t be a multiwsheet surface in the state

SPace'e In this case there may be .se'_v“eral distinct singular control tra-
Jectories each corresponding to a different singular control function u3*,
The given boundary conditions for the prblem help determine if and when‘
each sheet of 8 may be used in the optimal control sequence. It should
be ne'bed, ‘however, that the existence and l@ca‘bi@n of the surface S 1s not
dependent upon the particular boundary conditiens of the pro“blemo

With .the 8 surface constructed in the state space, it is relatively
‘easy to Fill in the regionm gr@una s;ﬁith‘staxe variable traject@ries cor-
reepoﬁding to bangnbang control (2. 19) The resulfing field or metwork of
extremal pa‘che provide's a cleer ﬁicture ef all possible optimal control
sequences. | Frcm such s representation (see Fig, 4,2) , it may be .seen that
the singuiar eontrol trajectory is a cempaction or vloeus of many .extfemal
paths, " )

3.3. Characteristics of the Singular Control Surface

For the generai LOP (1.82) the index of performé.n.ce (1. 83) mey be
written in terms of the Hamiltonien (2,25) as '
\J[‘u] =] - H(p, x, u)d‘c.fpl %) +eeo + P dx ‘ (3.4)

t
o

. Equation (BA):_ is a line integral in the n + 1 dimensional x-t space. In
generalé. (3.,#) ‘will depend the path of integration if the term H is an

explicit function of u. However, if H in (3.4) is explicitly independent of



u, then the necessary and sufficient conditions that (3.4) be independent

of path in a simpiy'connec'ted region R of the x-t .spaée are (1, p. 91].

M opy

”'83:'; =5t
' (t, x € R) (3.5)
6pi apk ' - '

In the Ma‘:'vci‘mun'Prihciiple vfonnulation, the conditions (3 5) are automatically
satisfied when the p pi(t) are computed from the ad,joint equations (l.'?l)
Fur"thermore , on the s:Lngular control surface 8, the Hamiltonlan H¥* is ex=
pl:s.c:Ltl'y 1ndependent of o Thus , the singular control surface S is
: characterlzed. by the fact that the 1ndex of performance (1. 85) is formally
:Lnd.ependent ofpath for all pa‘chs contained in the surface 8. In particular,
‘when the integrand of »the 1ndex of perfomance is positive definite, the &
surface(s) Wiil include all.surfé,ces N oﬁ which that ihtegrand is identi-
~cally zero. 7 | | |

The "exact diff‘erentialﬂ"v ﬁature of J[u] on S can be demonstrated by
expressing bthe index of .performance (l. 83) directly as a line integral in
the x-space, For siﬁlplicity, it will be assumed thaf (2.2.1) has been used
to make (1.82) and’(l.‘83) explicitly independent of time. In the case of &

second order LOP, (1. 82) and (1.83) become

X = gl(xl, x2) +u hl(xi’ x2)
o ‘ | (3:6)
by = gy(xy, %) +u he(’fl’ xa_) N

Tmmis follows from the fact that in such & case the N surfaces must L
contain optimal paths for at least some initial and terminal conditions.
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Substituting (3.6) into (3. 7) 'bhe index of perfomance (5.7) cen be wrltten

as (qmitting the arguments)

X:LT’XQT
| 8ol = & | gh, - hl |
. 2 270 1l 0 ()
J[x p) x,] “"'f <"“""‘""‘""‘“—""O e >dX] + <_"'""""""‘“‘"' dX (5’8)
1 2 Y &1y = 85Ny, S \gghy - gehl |
1lo’ 720 : -

The integral (3‘8) is a llne integral in the Xl - x plane and will be in-

dependent of path in the region where [l, pge 91]

- (3.9)

d goh2 gaho - a & B, = goh%>

9%, \81hy gehl 1 \&fp ~ &y
It is remarkedvthat_(3;9) is precisely the necessary Euler equation for mi-
nimizing the integral (3.8) without side comstraints [l]; Performing the |
indicated differentistions in (3.9), the region in which (3.8) is independent

of path is found to be given by the expression -

(e - ) (or - 6 2y e 3y )
<%h o = l% :)<:%l & g;i'% hlygf" + h 3%2
<é2hl 2g17)<}gl - & §E= +h g;z + 1 é §§§>‘= Ou‘ - (3.10) e

Comparison of (3.10) with (4.9) [in Appendix I] shows that (3.10) does coin-

cide with the genersl expression for the singulaf control surface S of the



LOP (3.6), (3.7). 1In the case of higher order LOP, it may be more difficult
" to £ind the equivalént X=Space line integral corresponding to a given index
of performence (1.83). However, as shown in Appendix II, all myulti-dimen-
sional line integrals of the form (3.8) with differential side constraints
of the form (1.82) can be transformed into a unique LOP integrai of the form
(1.83). o

The'déndmiﬁatqr terms in the integrand'ofk(B.B) must be non=zero in
order that the previous analysis be valid. This deﬁaminator term can be

written as the functional determinant

# 0 | v» (3.11)

' Comparing (3.6) and (3.11) it can be seen that (3.11) is the determinant of
' the elements of the right hand sides of the system equations with the
~control term u omitted. The physical significance of requiring (3.11) to

be non-zero can be seen by writing (3.6) in the form

dxl gl +u hl

= . (3.12)
By By rulby o
If the determinant (3.11) is zero, then (3.12) reduces to
dx h. ( x )
1 VR % (3.13)

axy  Bylxy, %)
The trajectory represented by (3.13) is seen to be campletely independent of
the control u., Thus, when the functional determinant (3.11) becomes zero,

the system (3.6) becomes uncontrollable [21] with respect té U,
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‘Some further insight into the nature of singular solutions cén be
obtained fram the theory of curves of quickest descent., The isovee concept,

developed in Chapter 1, indieated that the relation

dV v

N | v, '
~fo_<_ E+5'££§cl+a.o+§—x;xn- (toStST) (3.14)

is satisfied along any' path between 1 and §. Further, the equality in (3.1k4)
is only satisfied when the (assumed un:.que) op'bima.l control u*(t) is used,

Thus (3.14) may be written

- f
max /min ST -2 = +1 (to_<_t5'l‘)  (5._15)

U.GU gt" Sx_l l+eec +§_‘ n

In (3. .15), the nmax operg.tion applies when for u ;4 u¥, the denominator is
positive and the min operation applies when, for u ;é w*, the denominator is .
negative. At each point:xi-('b) (i =1, cve, n) along an optimal trajectory
the relation (3.15) determines a (assumed unique) comtrol u¥. This u¥,

when substituted into the system equations (1.1), de termines a uniq_uewdi-‘-
rection ki(t) (i=1, oo, n) in the x = ¢ spaFe. The direction Sci(t)
determined by u* has been called, by Caratheodory, the "direction of quickest

descent” [22]. “For the general LOP (1.82), (1.83), equation (3.15) becomes

g -un .
max/min . 2 2 - +1 (3.16)
uel gy- gv t oeee +§—Z¥gu+u(g-:’a-hl+“. "'%X—hn) - .

If (2.21) is used to meke H¥(t) -'-: 0 (end therefore dV/dt = 0) then from

(2.25) it is seen that during singular control, (3.16) becomes (noting

Sk
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that pi‘% - 3v/ax,)

-8, -uh 1
max/min = -on | = + 1 (3.17)
uet go o] .
It is clear from (3.17) that s Guring singular control, the direction of
quickest descent is not uniquely defined. ‘

In terms of the Hamilton-Jacobi theory, the direction of quickest
descent is determined by the u¥* which maximizes equation (1.27). If an

auxiliary coordinate x o is defined such that

-b .
xo(t) %f [go(xl,... ,xn) +u ho»(xl,... ,xn):] at (3.18)
to '
then
:‘xo = go(Xl’.o ° ,xn) +u ho(Xl,. X ,Xn) (5' 19)

Tt should be noted from the definition (1.18) of V(xl,.,. ,xn,’c) that
= l (5"20)

Using (3.19) and (3.20), the Hamilton-Jacobi equation (1.27) for the LOP

(1.82), (1.83) becomes

o . _V_ . _ . |-
ﬁ;axu['&;"‘o'&le"" " X nj]:O (tost<T)  (321)

where it is assumed that (2.21) has been used to make dV/dt = 0. The terms
BV/bxi and %, (1 =0, 1, «ov, n) in (3.21) can be considered as vector

components in the n + 1 dimensional Xi space. In this case, (3.21) can be



written as the inner prociuct of the two vectors gvx and 3‘;’

uel

Since YV, is not a function of u, (3.22) becames

uel’

|yvx§ ma.g:ﬁ)::" cos O:l =0 ; (3.23)

where 6 ‘is the angle between the vectors -yvx and ::5 in the two dimensional
subspace spanned by ¥V, and X, From (3.20) it is clear that IYVX.I cannot
be zero. Also, the condition |%| = O implies the unlikely condition that
all x,(t) (1 =0, 1, ..., n) are constant. Thus, the solution of (3.23)

which is of practical interest is

i
(]

mex(cos @) =
uel.
' \
The c?nd.ition (3.24) implies that the optimal econtrol u¥ should be selected -
so that the vector Xk is perpehdicular to the vector va _Furthefmor_e ;. |
(asswming uniqueness) any control u £ u* should result in cos © < O, The
direction of qu:lckest descent is thus seen to be that direction. x(‘c)
which is tangent to an isovee contour in the n + 1 dimensional x;
(1 =0, 1, «o., n) space.
In the more géneral case in which u enters the system equations and
index of performance in an arbitra.ry nonlinesr mé.nher , the vector ‘55 (for
any fixed gg) will vary over a cone shaped bundle as v ranges over 'thé set U,
This cone, which will be called the “state ‘}eldcity cone" is illustrated in
Figure 3.2 for n = 2. The temm velécitj refers, of course, to the time rate

of chenge of the vector x(t), and has no relation with the physical velocity

max < - YV, % > =0 : .(3-22).

(3.24)
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 of the system. In the case of a LOP, the components of the vector X are,

from (1.82)
%=§0*§l+aa. +§n+u(g’o.+§l+ooq +‘13.n) (5,25)

where
g1 = Balrpeeeom)
(1 = 0, 1, evu, »n) ‘.

b, = gi(xl,..o ,xn)

In (3.25) it is understood that the quantities g and b, (i =0,1,...,n)
are veeter components directed along the x, axis, It is clear from (3.25)
that as the vscala'r u varies over the interval A, B the vector %k will (for
any fixed ;5) always lie in a fixed two dimensional plane, Further; this
Pplane is determined solely by the vector -’:'zso Thus, in the case of a IOP,
the state velocity cone flattens out to s triangular element lying in e.
plane. The flattened state velocity cone for a LOP is 1llustrated (for
the case n = 2) in Figure 3.3., o
When P(t) E 0, the u¥ for a IOP is determined by that unique X in the
state velocitjf cone Whieh’is perpendicular to V. This situation is
illustrated in Figure 5.#. When the singu.lar condition, F(t) = 0, occurs
in a LGP then the two dimensienal plane Whlch centalns the flattened
state velocity cone is perpendicular to the vector VVn. In th:Ls case,
any velue of u will yield a vector & which is perpendicular to the vector
V'V‘ . This situation is illustrated in Figure 3¢5, The singular control
f‘unctlon uj* is defined as that control wh:.ch will maintain the condition

shown in Figure 3. 50
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From the definition of S, it is clear that during singular control
the two dimensional plane which contains the flattened state velocity cone
must interséct or be tangent to the singularrcontrol_surface.

It has been shown that the index of performance (1.83) is independent
of path for all paths lying entirely on the surface S. This property alone, 
however, does not necessarily imply that a sub-arc of singular control will
constitute part'of the optimal control. There is apparently no general
criteria by which one may determine a priori whether a singular control sube-
arc (when it is sallowsble) will or will not constitute part of the optimal
control. However, for certain classes of LOP (such as considered in Example

4.4 of Chapter 4) it may be possible to establish, by special methods,
somewhat general criteria for the optimality of singular solutions..

One factor which complicates the problem of determining optimality of
singular sub-arcs is the fact that optimality may depend critically on the
particular boundsry conditions specified in the problem. That is, the ex-
tremal paths on S may only be locally optimum. In this case, if the imitiai
and terminal conditions lie on or near S; then motion along S may very well
be optimum. Bubt, if the initial and terminal conditions are not in the
neighborhood of S then motion along S may cease to be optimum.

The optimality of trajectories on S may alse depend upon the allowable
signs of the %,. Comsider for instance a second order LOP (3.6) which when

written in the form of (3.8) yields the line integral

2K =l
x;mal

or .
e o ' ’ 2 : -
J[xl, x2] = J[ X, %y 0%+ XyX, X, (3.26)
x10=0

x20=0
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The singular control surface (line) for (3.26) is determined from (3.10) to

be

St x, =x 2 | (3.27)

It is assumed thet the limits A and B on u will allow motion along (3.27).
Along S, the value of (3.26) is (formally) independent of path and given

by

J = 5/5 (xlo - Xyp) (5°28)

The singular comtrol surface (3.27) is shown in the X =% state plane
of Figure 3.6, It is easy to verify that, between the two points Xq, =
XQ@ = a;a@ X]_T = _XET = + 1, the value of J ccmputed aleng S is smaller
than the value of J computed aléng the two neighbéring paths xg = Xq and.
Xy = xf as shown in Figure 3.6. However, it 1s clear that a path o as
shown in Figure 3.6 can be chosen such that the value of (3.26) computed
along @ can be made as small as desired. Thus , the ’integfal (3. 26)' does
not really possess & finite minimum when the signs ‘@f the increments dﬁ_ and
dx, are unrestricted, If, however, the signs of dx, and d:x:2 along the
optimal path are restricted to be positive, then the allowsble paths between
%10 = Foo = 0 and XiT = Xom =+ i must lie in the sguare 0<% <3,
< %, £ 1 end in this case, the singular comtrol trajectory 8 is indeed
the optimal ﬁraject‘@r;,ro In this example one can see why ordinary va-
riations teken sbout the path S (as classically used in deriving the Euler
equations and the Weierstrass condition) will feil to detect paths such as
o which yield lower values of J than does 8

The opbimality of the singular extremal paths on 8 is further compli-

cated by the restrictiom that B < u5* < A, That is, certain regioms of



PR S
Figure 3,6, Singular Control Surface ftor}Equati_on, |

(3.26)
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the S surface may eontain optzmal extremal paths which cannet be utillzed
because of the particular constraints on the megnitude of u¥, In the more
common cases , these singular extremal paths cannot be utillzed becsuse they
requ:ire a %*(t) larger (or smaller) than the alloweble values of u*, How-
ever, in some. cases the opt:.mal s:Lng1ﬂ.ar extremal paths correspond to
B < u5*(t) < A a.nd. s’ca.ll they cannot be utilized beca.use of the constraints
. on u* Example ’+.2 in Chapter h illustrates this 1a’cter situation. »
L A necessary cdltion for a singular contrcl sub~arec to be optimal is
'_'bhat the singu.lar contr@l cond:.tlon F(t) -0 should be attainable by
| ‘optlma.l centrol. ’I'hat 15, the particula.r conditions on pi(t) , end X, (t)
required to make F(t) - o must be. obtamable by starting on the initial
- manifold (l. 15), using u¥ as determn.ned by (2:19), and satisfying the cano-
nical equatwns (1. 'TO), (1. L) at all times. Smce some of the - initial
 yalues pi(t ) are unknown. a prieri 11: would appear to be rather difﬁcult
to es’ca‘blish 1:E' the ccnditien F(t) = 0 is reachable by eptimal control,
This diffleulty has been mrerccme by using a “‘backward tracing" technigue.
The backward tracing procedure depends upon knowledge of the correct. |
values of xi(t) and p; (t) for at least one point E on the unknown eptimal; |
trajectory. Then, by s.civing the canénical equations (1.70), (3.71) in
reverse time - (with E considered as the initial condition), ’che Maxmma
Principle can be used to determine u¥*(- t) and t.here'by dete:mine the op~
timal 'brajectery K* between E and the 1n1tla.l manifold (1.15). A similar
technique can be useél to extend K¥ from E to the temlnal menifold £, |
In the case of LOP with singular ‘sc__)lutiiens, the values of pi(’c) cor=
responding to the siai'face S can 'be determined from (3.2). Thus, 15y

starting at ‘various points on S the’ backward tracing me’&hod nay be used
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to "flood" the x-space with trajectories commeeting S and n.‘ - These tra-
jectories will be called “flood paths". If this flooding vteehnique res
veals that 0 cennot be intersected by flood pa'ﬁhs from S than it can be |
concluded that a singular sub~arc is not optimal. The flood paths that do
connect 8 and % are potential candidates for am optimal trajectory which
includes & singular sub-arc, Flood paths fram § to the terminal menifold
‘(l; 16) may be traced out in a similar manner, In either .case » the required
trensversality conditions on »pi(te)' and pi(T) help to reduce the number of .

| flood paths which can bé eandidateé for the optml path. : ‘Some illustrations
of flood paths are given in Figures 4.2 and 4.7 of Chapter"h.

This flooding technique, of course, dees not se’ctle the question of
whether the candidate singular sub-ares so determined are in fact optimal.
Tt does, however, reduce the mumber of cendidate solutions to & small mumber
vhich can be Vindividually compared by ’anaﬂytical' or computer techniques,

The "best" of the extremal control sequences which use singular control can |
"bh’eri be compared with the "pest” of the pure bang-bang extremal control ”
sequenices, In the cases in which % and & are points in the. x=space, the
‘flaoding techmique may reveal the existence of enly one  Flood path connecting
M, S and & Thus, if singular contrél is optimal this particular flood iaath
must be the optimal 'bra.g’ee:‘c}tzs:r;yo The flooding technique may also be used to
determine possible éx‘bremal paths vher two or more singular control surfaces

exist., In this case ’ flo0d, paths comnecting twe singular comtrol surfaces

8 . : : _
This may 'be accomplished by analytical me‘bhods in seme cases, but
computer solutions are usual:!\v required for most pra.ctical problems,
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must be con}patible with the known values of pi(t) on each S surface.

. The locus of pqi_:ﬁts i;; the x-space at which the bang-bang sﬁi’cahi |
funétien F [sé‘er (é. 19)] changes sign form what is called the bang-bang
switching béunﬁdafies} {hypersurfaces), When sinéular control is optiﬁal, :
the flooding technigue described sbove will awtomatically determine (sume-
rical‘].y) these ‘bang-bang switehing ‘boundaries, This latter applieation is' :
. d.emenstra’ced in Exsmple 4.4 of Chapter b, '

, The flooding technlque descrl‘bed gbove will indicate how ‘bang»‘bang 7
extremal c@ﬁ‘tr@l (Qo 19) can be used to reach the singular contrel surface.
However, méti@n aion_g.é. singular sub-arc on S is usually unstable with reg-

pect to the bang~bang control law (‘2..19).‘ That is, the control law (2.19)
will not "chatter” along a singulsr ﬁath on 8.0 In order to f@llow a
singular sub=arc on 8, t.he 'bang-‘bang control (2. 19) must be replaced 'by ‘che

3
varlable control B < u.B*(t) < Ao

-singular control func‘bmﬁ u *(t) whlch, in general, is & continuously

3 4. Synthesn.s of the Smgu..ar Contrel Function

The functional :E‘or.m of the singular control u3* can be determined from
the condition (3.2). That is , equations (3.2) » ‘together with the cenlcal
equations, will in general yield either algebram or differential equatwna

involving %*,,' Xy Pye The so;.u’@ion of these equations will yield
u5 v—j*(xl»m» , P:v cors pn) _' | (3;29)

If the expressn.on S(xl,o.. 2%, )'- 0. for the s:mgala:r control surfa,ce can be

9 i
For this reason, ordinary computer searching methods may fall to de-

tect the presence of a singular sub-arc.



obtained, then by teking one time derivative of S and 'substituting the
system equations (1.82), ‘the ‘singular control function (5. 29) can be ob-
tained as & function only of state varigbles
¥ = * ' a '
%‘- u3 (ﬁ’o s ,Xn) , (3‘ 30)

The control (3.29) can be substituted‘into the canonical equations (L.82)
and (2.26) to obtain X, (t) and pi(t) By this means, u3* may be expressed
entirely as a functlon of tme. : In some cases, however, it may be desirable
to leave u3* in the form (3.29) or (3. 30)

'~ 'The gbove technique for o'bta.lning w.* in the form (3. 29) is demons-

3.
tra’ced in the examples of Chapter 4.

345, Allowab.le Switehing Diree‘qj.on Regg'.ens_

I'E has been shown in 3.1 that in the 'eaee of a LOP the eont.inuity- re-
quireﬁent of H* prevents the control u¥ frcm ehenging value exce.pt at. the
instents where F(t) = 0. At the isolated peints where P(t) = O the
control u‘{* mey change from u¥ = A to u* = B or from u* B to u¥* = A. If
F(’c) <o, ‘then u* may change from A or B to u3* or from u.j* to A or B. The
la:b‘ter case, in which the control changes from bang-bang to singular and
vice versa, has been discussed in the previous srticle. Some information
coneerniﬁg the nature of the isolated points where F(t) = 0 can be eb{;ained

by exemining the sign of dF(t)/dt at the points where F(t) = '

If the LOP under considei‘ation ﬁas been suiltebly augtﬁented so that
H*(t) = -0 then et the isolated points where F(t) = O the condition I('b)

must ‘also be satisfied. Consider the expressicm
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% ( >IF(‘b)=Q = Sgﬁ‘ﬂxl,...xn, pj_,....,p‘n?‘ (351)
I(t)=0

obteined from "(1.82) s (é.‘25 ) and (2'. 26), If o =+ 1ina certain region P
of the x-p space then :Lt is clear tha.t the control u¥(t) can only switch

g from u*(t) B to u*(t) = A3 in P, Likewise , ife = = ‘1 in a certain regiou ”
W of the x-p space then the eontrel u.*(t) can only sw:r:bch from u¥(t) =

to u*(t):.s in N If dF(t)/dt = 0 in (3. 31) then ¢ will be defined as

a(o) S - (5.52)

In the regions Z ef the X-p space where o = 0 the eentrol may switch
from either (a.) A to B, (b) B to A, (¢) AorB to u3 , (a) from u5* +0
A or B er, there may be no switch at all ~ The conditions o - +l, ¢ = -l
end ¢ = O are illustrated in Figure 3.7, The conditions ¢ - +1, o =»;-l
and ¢ = 0 can be used to diVlde the X=p. space into P, N, and 2 regions.
Sinee the allewa'ble directien in which u‘*(t) can switch is completely
_ specified m the P and N regions, this informatien can be used to test and
eliminate many of ’che possible sequences of ba.ng-bang extremal paths., -’For
instance, it is clea.r ‘that: onl'y one consecutive switch is allewed in each
~of the P and' N regions. _ These allowasble switching direction regions re-
_present :a,ne'bher ‘necessary (bui: not. 'suffieient) ~eondition. for theooptimal
control. For instance, the eondition g = +l'in 8 region P of the x~p
space is not suff:u.cient te conclude that the optimal. eontrel nust sw:.tch
in that region., In some cases, the function @ in (3.31) can be expressed ,
solely as a functin of the state‘_variables X0 This cendition is es=

pecially usem since the P, N, and Z regions cen then be constructed in
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the x-space, Application of this concept of Aa.llowable switehiﬁg direction
vregions is illustrated in the examples of Chapter L and also in [23] It

is remarked that a semewha.t similar techn:lque has been used by M:Lele [211-]

3060 M:Lele s Fle'bhed

o Miele [Eh] has examined a par‘blcular cla.ssv of LOP (l. 82), (1. 85) in
which (l. 83) may be Wri'bten as &’ l:.ne :.ntegral in a plue. That is s where
| (1.83) may be w:.tten in the form (3.8) In this case, the singular control
: surfa.ce 8 beccmes a llne :Ln the plane and sufficlent cond:.t:n.ons for opti-
‘"mall’oy of. & smgular sub-arc mey. be establlshed. (under certain conditions)
'by us:.ng Green 's theorem. , Applicatlon of Milele s method is semewha.t o
limited, hewever, ‘because of certa:m restrlctlons which must be imposed on
| the l:me integr’alv‘ to be minimized. - The most mporta.nt restriction is that
the initial point A*ana ‘Ehe terminal point Bof the line integral (3.8) must
be a.bselutely flxed a priori. Another restrict:.en is that the aJJ.owable
paths of :.ntegratlon must be contained. in 8 closed., f:.nite region Q of the
.pla.ne, The bound.ary of must be known a priori and the (fixed) :Lnitial
end terminal po;nts’A* a.nd B'must lie on this boundary. If the above res-
trictiens are ee:tisfied, and if S divides @ into two regions ¢ = +1 and

¢ = -1 [0 defined by (3.31)] and if A'and B'have a certain orientation with
. respect ",bo S then Miele hae ’bshewn. (by somevhat formal argmnents) fha_t the
singular sub-arc is eptimal. Conversely, if ¢ has the same sign on both
sides of ‘8 then, under certain conditions, the singular sub-arc can be
showa to. be nonéoptﬁnel In spite' ef the limitations, Miele's method
has praven quite useful in certain opt:mizatien problems in fllght mechanics.

The importance of the restr:.ction that A and B should be fixed points is
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v 11lustrated in Exemple 4,2 of Chepter 4. In that example, the terminal -
point B depends on the peth of integration and purely formal application

of Miele's method leads to an ineorrect amswer.

3.7 IOP with Multiverisble Control

The class of LOP ‘considered so far have been characterized by having
~‘enly one (scalar) control varisble, A more genersl élass of LOP would be
one in which the system equations (1.82) and index of performance (L.83)

are of the form

r : .
g{i' = gi(ﬁ’o oe ’Xn,t) ""zuj hij(xl,e °» ,Xn’t) to (i = ly ‘oew g n) - (30 33)
o J[u] -':f [go(}gl’qoc ,Xn’t) +Zuj hgj(xl,oc ® ,Xn,'b)] d.t (3. Bl")
% IR A | | | -

The study of LOP with multiveriable control uy (J ‘=1, ves, T) is rather
cauplex and is n‘E a.n objective of this thesis. The formulation given
below is only intexz;ded to demonstrate the fact that singular solutions
may also cecur in with multivarisble control.,

The Bemiltoniem (1.64) for the LOP (3.33), (3.34) is (omitting the

 arguments)

H:plgl + eoo ulfpngn -go.+»u1 13lbll+p2 11‘21+...o +pn hnl,- h@l_J +
| = B N
tUp | Py By PR Mgy teee B B, - bt

o | | A

+ U ‘pl‘hlr +p2 her*”' +pn hnr 'hor .

(3.35)
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The Maximum Prmc:.ple requires that the Hami.ltoman (3. 35) ghould be maximum

d

with respect to all u, € U (j = l, coes r) Thus, ‘the optimal controls
for the LOP (3.33) (3‘%) are glven 'by e

j '
’Aj ir T, (t) >0

ey =13, .., r) - (3.36)
.;‘“3 | if F (t) < : '

wheré‘Aj*éﬁd:Bj;afes réépeétively,.thevuppereana lower bounds on the
control u, and i e i |

S g A Sodan e U e
RIEERT +p2‘1.12J R +3;>n th hej‘ o (3.'37)
Equations (3.36) and (3.37) indicete that in the case of LOP with multi-
variable céntgéi;'ﬁjaa(jz; 1, «es5°T), the singular condition Fy(t) 0

may occur in ome or-more of the controls u 5
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SOME EXAMPLES OF SINGULAR SOLUTIONS IN LINEAR :
OPTIMIZATION PROBLEM$ ’ ’

The following examples demonstrate the teohniQu‘es developed in the
previous ehapters for analyz:.ng l:l.near optimiza.tion problems with singular
solutions. ' The fq.rst two examples are taken frcm the :t‘ield of flight
mechanics, s &R area in Wh:.ch LOP are frequently encountered. The remaining
examples are representatlve of the LOP that arise in modern problems of |

automatio control.

Exemple 4.1, Goddard's Problem

- One of ‘the classic problems in rocketry is the problem of determining
a thrust program which will maximize the height ach:l._evecl by a verties.l
sounding rocket; Goddard- {25] sts 7@;.5 's.f: the first te- suggest that an
optimum thrust program shoula exist :Jfor‘tﬁi's:j problem_sbut he was unable to
obtain a rigorous 'mathems,tical soluti‘o:;.':‘ ,'.['t;;e'..mos:t. col.nplet‘e' solution to
Godd.ar?l's problem hes been giveﬁ by Tsien a.ndEvans [26], using the classical
Calculus of Variations. | — o

The solution to Goddard's problem. involves a singular sub-arc along
which the thrust is varied contixmously. This partieular solution was one
of the first examples to demonstrate “the practical :meortance of singular
sub=arcs in variational problems. | _’

The vertical sounding rocket to be considered}’inthis example is‘
assumed to be described by the nohlinear,x non-autonomous dynamical equation

A ‘% o ox 2

: dv dm : :
m(t) gz +eg + Cp "*'-2—*-—— + m(t) g=0 | th.l?



where -
- x = vertieal height of rocket [x(t =0) =0]

v = sbsolute velocity of rocket [v(t = 0) =

]

drag coefficient (assumed pos:.'blve ccnstant)

b
L]

cross-sectional area of rocket

-2
°e
f

air density (e@ and @ are assumed posi'bi#e constants)

v’inStan'baneéﬁé" mass of rocket [m(t = 0) =

B
. ”~
ct.
~

il

m
]

aecelerati@n of gra:v:Lty (assmned pos:.tive constan‘c)
. e = veloaity of exhaust. gas W:L'bh respect to rocket. (asswned
v ¢p051‘bive constant),

To simplify equation (lhl) , the following ccmstants are defined

. dmA
cdts-u(t)

£

D

(k.2)

nb

 The state varisbles ‘Xi are defined as
nex

XE = ‘V | ‘ | . ()4'95)

x5 = m(t)

Using (4,2) and (4.3), equation (4.1) can be written in the form of (1.82)

‘as

. - 2/, ut) -
=g uu3 (x5(0) = 0) (4o k)
% = o v_.(c>0)



- The problem te be considered may be stated as follows: terrdine the thrust -

control u(t) which will maximize the ver’cical height (x ) attained by the

rocket (’-&.h-) with the constraints

o u(ic), <w (= constent) (k.5)
f ~u(t) at<b . (b > 0) : - (4.6)
vhere T is the time corresponding to xl = (xl) - -The time T is assumed

free, The constralnts (l!-.5)-and. (4.6) ;'epreser;t, reSpeetiVely, -1imitations"
on the megnitude of thrust and amount ‘of fuel. The fuel constraint is in-
@orpofated inté, the ﬁi?bblem by Writing (4.6) as | |
XS(T) . g 3
"f —-idt < e

Equation (4.7) vin.;plies- an ':I_.nequality constraint on the state variable x3

‘%(T)é[mo-%] | | o (4.8)

where m_ = initial mass of recket (mQ > %). The index of performance to
be minimized is o |
J[u] %"f - %, at : A (%.9)

)

Using (4.4) and (4. 9) the Hemiltonien (J,.61+)'is Writteﬁ,

3

' 1 . _ P :
H=p %, - B, I:g + & ; 7 (xe)a} + Xy U [;{-— _ -ci] (4.10)

Th



The adjoint equations are obtained from (1.7L) as

s ake 2
b = +op B8« - 1 (4. 11)
Py == Py TP X, e .
-k e xl (x ,)2 + u¥
P, =p -
3 2 . (2%)2
Since T and XQ(T) are frée , the transversality comdition (1.76) reqﬁires
(1) =0
et | (4.12)
B*%(T) = 0

The coordinate = xl(T) is the quantity to be minimized, Thus from (1.80)

the terminal value éf.pl must ’be’
p(T) =+ 1 N . (k.13)

Sinee H is explicitly indépendent of t, the last of (4.12) implies [see
()]
B*(t) = | - (k. 24)

From (2.19) and (4.10), the optimal control w*(t) is

w if: ;?(t)>

w(t) =  (4.15)

) if: F(t) <0

where

5
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Following the procedure of (3.2), the test for a 51ngular solution is
carried eut by setting

LI
o

1(6) = uwzuﬂ~@f
(b17)

7(s) é 7(s) - _F(t) =

where

I%xve@l‘}.ﬁ» 1?».1,2' [g+-1-{—§-—-——(x2')2]& , Q.:Ls}_

Thus

=1
[ -
O
mx
N
1

+
]
N
+
xlb
W

YN
n
P
L

H.
it
()
E
o
3
+
'—l
N
t B
<1
m’d
o
=1
5
113
L

Uﬂ,\;ﬂ KD

Foo =

o

The simulteneocus solution of (4.19) yields the expression for the singular

control surface S

(u, 19)
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-0X.
S X, =
3 8c

(x2)2 (;c2 +c) (4. 20)

By teking one time derivative of (4.20) and substituting (4.4), the

gingular control u5* is obtained as

) noaxl ; o B(XQ)Q + 8e %y * be® + %[(xe)h' + 2@(::2)5 + c2(xg?2]
uE*-ke (x.) —=- T R ~

. : 2 ' : (xe) +he x, +2¢
R (k.21)

The allowsble switching direction regions are determined by using (3.31)
and (4.19) to obtain ' - |
,v ._ .

ke T2
F1) 2 M (‘?2) Gy r ) (4.22)

o = sgn | &(p,

Since ¥ S min (-x,(T)) and p, & - 3v/3x, it is clear that whenever an in-
uel

crease in x'l.('b) will cause sn increase in xl(T), the pl(t) will be positive.

In this problem, an increase in xl(t) always feduces' the serodynamic drag
. conxy
by reducing the air density (J@e . .Since this is the only manner in which

axy

jectory K¥* the value of pl(t) is always positive, 10 The denominator of ‘

affects the problem it can be concluded that along the optimal tra-

(4,22) is always positive from the definition of x,, g, and k. Thus - ‘
. 32 &5

10 : '

This technique of cbtaining signum informatien from the physical
interpretation of the adjoint variables can be quite useful as demons-
trated in the present example, See also, [27] and [28].

7



(4.22) reduces to

o ‘= sgn l:-x3 + E ‘Z‘c (xe?g gxa + c):l QL. 23)

Comparing (4.20) and (4.23) it 1s seen that the singular control surface

S divides the xl - X, = x?s‘caté space into two regions

- ke 2 :
6 =+ 1 where Xy <= (XQ) (x2 +e)
and
o =V- 1 vhere x >]-§—e-;-——'(x )2 (x. + e) (k.24)
. 3 ge N _2 2 .

Since the initial’conditionb xl(o) = x2(0) = 0, x3(0) =m is in the
¢ = - 1 region it is clear that the initial value of u* must be u*(0) = .
In fact, if u¥(0) = O then, because o = -1, the Mexcimrm Principlé will
not allow .swi#ching to u¥* = w at any time and the ‘rocket will never get
off the ground. 4 v
From physical vconsidera.ti’ons. it is unlikely that the maxiﬁm height
can be. acvhieved.b without t'xsing‘all afrailable fuel. Thus, since u*(0) = u
and only one switch is allowed in the ¢ = = 1 i'egion the optimalmlcoxjitrol
in the ¢ = - 1 region must be u*(t) = u as long as x5(t) >m - %. How~-
ever, if the system trajectory énters the ¢ = + 1 region'with u¥ = L
then no further changes in the control are allowed. The allowa.’éle cam- -
binations of extremal sub-arcs are therefore limited to a small mumber
whi.ch can be réadily coampared by computer solution. By this means it is

found that the optimal solution which satisfies the required boundary

conditions (4.12) end (k.13) is w*(t) = w until § is reached and then



singular control u3* along S wntil x5 (t) = me‘- % The final sub-arec

is a coasting sub-arc.u¥* = ¢ along the plame x (t) = m - E. The maximum

c
height is eb'baine' when X, (T) =0, The @p‘bimal ‘trajectory in the

X - x x3 state space is shown in Figure k.1, Further discussion of
the performance »@ptimization of vertical sounding rqekets is given in [29].
Examﬁ e b2,

In the previous example ’ the opt:mal c@mtrel includea a singular sub-
are Whleh caused. the system ‘hrajectery to foll@w slong 8 for as long as
physically pussi'ble, Many problems with singular selutions are character-
ized by 't.he :E‘ac’o that the optms.l solution utilizes singular control as
much 88 p@ss:.’ble. ‘In the present example, which is taken from [15], the
' eptim'ai solution reqnires the system trajectory to leave the S sp:face ab
& certedn point even thﬁgh continued motion along S does not vielate any
physical corastrain‘tso - N

“The system 'b@ be considered is & ccnsiderably s:n.mpllle.e& model of the

vertical sounding rocket afv Example 4.1, The rocket is assume& to be

described by the dynemical equation

g;; + k(v)2 +g=u (4.25)

where k and g afre positive c@nstssrbs , u is the eentr@l:vaj,riable , and v is

veloeity.  Berkovitz [361 has used this equation to represent a constant

mass, constant weight sourding ro'cket moving in & comstant density at-

mosphere, .F@llewing (4.3), the state varieble equstions for (4.25) are

written ’ ; -
% = (0 =0)
5?.

N | (4. 26)
.—.»k(x )2-g+u (:xa(@).r-@) . .
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The control u is bounded and given as

Win S u(t) <w o (umax_ >U 0 > 0) (k. 27)
(u bnc? Woin = constant )
A fuel comstraint reguires that
T
f uwdbt <b (b > 0) (4.28)

@

where T is the termimal time for the problem. In this problem, T will be
defined as “burnout time®, the instemt at which (4.28) first becomes an
equality, Thus, T is explici’cly free but is implicitiy defined by

,T :
f wdt =b (4.29)

()

The eonstraint (4.28) is incorporated into the problem of defining

% |
x5(t) %f u at (4. 30)
i5(t) = ult)

and specifying

x. (0) =
> (k. 31)
x5(‘33’) =b ,

The index of performence to be minimiZed is
_ T
Jul] = - f N at

R o o
or | (4. 32)
Ju] = - '1(53) :
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That is, it is desired to maximize the height x; at burnout.

The Hemiltonian is written
CH = (p + L)%, + py(-k(x,)? - 8) + ulp, +P5) (k. 33)

The adjoint equations are, from (1.71)

b =0 ' . ‘(pl = eo,ritst'ant)

i)e = . (pl + 1) + 2P2 k X2 (ll-o Bh')
= 0 . = " -

b3 gp5 constant?

From the trahsversality conditions the terminal values of the adjoint

varisbles are

= e nle) 22 (4.35)
py(T) = 0 S
-and, from (L. 7Th), |
| | ‘H*(tS E:o" - v (k. 36)
The Hemiltonian (%.33) can thus be written
H = I(p, x) +u F(p, x) (4. 37)

where

» A .
I(p, x) < 2x, - py(k(x,)® + &)

The test for a singular solution is carried out by applying the conditions

(3.2) to obtain

82



I=0 P, (k(x,)

+ g) E 2%

L3

IZ0 =ull-p kx)Io
| (4.38)
F:O$p2=— .

]
=

Fz0 =>p, -5

 The singular control surface is obtained from simultaneous solution of

(4.38)

- s: x. =8/ (i.e., x, = constant) (4.39)

> 2
The singuler comtrol is obtained from (4.26) and (k.39)
u3* =+ 2g (i.e., u3* = constant) (4. 40)

Along S the adjoint varisbles are, from (k4.38)

pl =+ 1
) 1
P, = (4. k1)
2 YFE : _ _
-1
Py =TT,
Vg k

The allowable sﬁitching direction regibns (3.31) are determined fram

(4.38)

(4. h2)
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From (4.42) it is clear that only one consecutive switch of the control
is allowed”in the regions above and bélow‘tﬁe‘singular coﬁtrol surface S
in the X = %y - x5 state space. Thus, the allqwable combinations of

- egtremal paths are limited to a small number which can be compared by
computer solution. By this means it is_determined that, if Yoin < 2g <
Wy the required terminal conditions (4.35) cannot be satisfied By
exclusive bang-bang extremal centrol B

w o ifr ®(t) >0
- max : v .
u*(t) = : (h’oh‘E)
S Win if F(t) <o R

‘This resﬁlt serves to indicate ﬁhat a singulér extremal sub-arc will enter
into the optimal‘coﬁtrol sequence. However, since (4.35) is not compatible
with the singular conditions (4.41), the problem solution cannét;end

(t:= T) with the system trajectory on S, . The flooding technique can now
be used to £111 the X - x2~'.x3 staﬁe space with flood paths‘flowing from
S, For this purpose, the system and adjoint equations (4.26) and (A4, 3k4)
are solved im forward and reverse time (7 = f t) starting at various
points on S and using (4.41) to compute the_iniﬁial conditions of the
adjeint varishles, A portién of the field’of flood paths (Qm both sides
ef_S) ie shown in the Kq =%y state plane of Figure 4.2. By this means it
is détermined taat the optimal control seqpénce is: 1) u* = Uoox until S

is reached, 2) u* = 2g (singular control) along S until the "line" X; = m

is reached, 3) u¥ = Uy WELL X5 = b (at which time the problem ends).
The value of m depends upon the values of k, g, b, and Woin® The optimal
trajectory end the flatﬁened’stéte velocity cone are shown in the Xy = X,

- x5 state space in Figure 4. 3.



85

Upn<2g< Uniax

Figure k.2,

Portion of Fleld of Flood Paths for Exemple h 2
(Flood Paths Leaving 8 Not Shown )



~ Figure 4.3. Singular Control
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If vy . < 2g then, from (k.42), the optimel comtrol must be ex-
clusively bang-bang with no more than one switch. The switching time is
again determined by the required terminal conditions (1),

Tt should be noted that for the optimal controlsdescfibed gbove,
the Heamiltonissn H¥* will experience & jump at t = T. This does not violate
the ccmtiﬁuity ;vreéuirementv for ¥ since in problems of this type, [i.e., T
gefined implicitly by (%.29)1, tﬁe continuity of H¥ is only requ.iréd over
the intervel 0 <t < T, ' —

I, in this example, it is desired to maximize the burnout veloeity
rather than the burnout height then a similar amalysis will show that no
singular control surface exists and the optimal control is u¥ E U’

The problem of maximizing burncut velocity has been considered by '

Berkovitz [30] and Kalman [31].

Example k.3,

A problem in swbomatic control which has received considerable atten-
~tion is the problem of “time optimal control”. That is, the problem of
transferring a system bétweem giveﬁ initial and terminal states in minimum
time. La Salle [17] has shown that for linesr systems, time optimal
control can elwsys be achieved by a bang-bang coubtrol sequence. The pre-
sent example, which is teken from- [32] , dememstrates that for nonlinear
systems the time optimel coutrol might not include any bang-bang sub=-arcs
at all but instead may comsist eantirely of smgxﬁ.ar contbrol.

Consider a nonlinesr system described by the state varisble

equations
% =x12 - ,xlz X, u
. A (4.43)
k, == %, + U ‘
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where the control u is bounded and given bas

lu(e) | < 1 | (i)

Tt should be noted that x, #3:1 in (4.43).
The problem is to transfer the 'systém.(ll-. 43) from the initial con-

dition
xloz-l-i ) Epy =0 ‘ (4.45)
’_co_ the terminal 'candition
C Xgp =2 X.m =0 | (4.46)

in minimum elapsed time., Thus

" v _ |
JIlul =M/R lat (4. 47)
5 . .

The Heﬁiltonian is written
g = pl(xig i x12 X, u): v+vp2(- %y + 1) - l- | : (4.48)

and the adjeint equations are

: = - > s
by =y ( - 2% +2x x, u¥)
o T (4.49)
= ¥
iaa Py X u.; + »pa‘ : .
Since the problem is to minimize the elapsed time T = to, it is seen from
(1.73) end (1.79) that
m*(t) = 0 (4. 50)

The singulér control surface is determined from the conditions (3. 2) where
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I(X, P)=Plx12"P2X2-l

F(x, ) = B, = B x,° %, (- 51}
Thus
st x°x, =0 - (4. 52)
From (%.52) , the singular control surface for this problem has two
branches - | |
o Sl: X = 0o
| (4.53)
By %, 20 v

The singular 'v'c‘:ontrorl for each branch of S is determined from (4.43) and
(h53) |

T
. Sl° u3* _.;{2
‘ (lo 5%)

Because of the comstraint (4.4k4) on u the S, surface (1line) must be trun-
cated as shown in Figure L.k, 'Ii'he‘ singular sub-arc Sl has no significance
in this problem because of the particular initial and temminal points
(k.45) and (4. 46) which have been specified. It is clear from Fig. b4
howefvér,- that the singular submarc 82 conne ¢bs the speecified initial and
terminal points and thus qualifies as an extremal control. The allowable

switching direction regions are determined from (3._ 31_)

I ‘ o )
. gn[l - (xe)z] o (v 55,)




, - ;Sz*u?’:o |
o | - 2 3 X
-\
5 S
-2

Figure 4, 4. Singular Cbntr_ol Surface for Exemple k4.3
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It is clear from (4.55) that only one consecutive switch of the control is
allowed in each of the Aregions 0 < Xg <1, and - L < XE < 0, The possible
bang-bang extremal controls can be determined by tracing, from the given
initial and terminal points, the system trajectories corresponding to

u(t) = + 1 and u(t) = - L. By this means, using both forward and reverse
timé s it is determined that the only possible bang-bang extremal controls
are ‘t}':ias'e shown in Figure 4.5. It is seen from Figure 4.5 that the 'bang-;
bang extremal sub-arcs are n0t c0mpatib1e with the allowsble switching
direction regionso Therefore the time optimal comtrol for this problem must

be exclusively singular control along 82

w(6) T 0 O (hs6)

Examgle ol
Singular solutions usually arise in those LOP in which the system
equations (1.82) sndfor the integrand of the index of performance (1.83)
are nonlinear iﬁ the Xgo Because of this nonlinear character, it is W
usually difficult to esteblish (by anelyticel means) general conclusions
about the optimelity of singular solutions which apﬁear in a given class
of LOP,
In this example, a particular class of nth order LOP are considered
in which
a) the system equations (1.82) are linear in the state variables
Xy and separable [e.g., hi = constant] in the comtrol wvariable
and
b) the integrand of the index of performance (1,83) is a positive

semi-definite quadratic form in the x, with hg = 0,
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Figure 4.5, Bang-Bang and Singular Extremal Paths
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The initial conditions on all the individual x, are considered given and
the specified terminal-éonditian is Xy =Xy =eee =K, = 0. TFor this par-
ticular class of nth order LOP it is possible to draw somewhat general
conclusions concerning the optimaiity of the singular sclutions which
appear. The material in this example is a condensed version of [20];

The system equations and index of performence for this particular

class of LOP are of the form

(i =l, soay ll) v

o ¥y tuby (aij’ b, = constant) (4. 57)

. = By Ko F ees + &,
R & M R i

(j = l‘, co sy n)

N Fae (1, 3 =1, «vs)p 1)
Ju] =f <§Zqu X, xj> a _ (4. 58)
’ o ' (qij = constant)

It is assumed thét the qnadraiicifdrm in (4,58) is positive semi-definite.

The control is comstrained by the relation
lu(t) ] < 2 0<t<T (%.59)

The initisl eonditibns xi(ﬁ) (1 =1, .{.,'ﬁ) are assumed to be. individually
specified and the desired terminal state is assumed to be the origin
xl(T) = KE(T) = geo = xn(T) = 0, The terminal time T is assumed free,

It is sssumed that the system (4.57) is comtrollable [20] so that

the vectors>

b, &b, .., &- D (4. 60)

are linearly independent. In (h.60) the quantities g and b are defined as

the matrix of coefficients of (4.57). Thus,
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' all B - e aJ-n ‘
2% . | : . (461)
anl .“,. ann
by
b 2 : (4.62)
bn

When the ‘system (4.57) is controllsble it can be shown [20] y [33], that

there is no loss of generality in assuming (4.57) is of the phase variable

form
3:1 =%,
3:2 = x§ |
: (4.63)
5:n--ll. = ¥
Scn = a, X) + 8, %, +v.“ +anjxn+u
(ai = constant)
and that (4.58) is of the diagonal form
T
J[u] =f -;—‘ (ql xlg + 4, x22 oo t @ xn?)d'b (4. 64)
el

((,1:L = constant > 0)

The Hemiltonian for the system (4.63), (4.64) is



H=p X, +B, Xy kees ¥ Dy o % + pn(al Xy +oeee *oay xﬂ)
1 2 : 2 : g
- 2 (ql X5+ eee v QX ) +u P, (4.65)

and the adjoint eguations are

3
P
}

=8y Pyt X

By = - ?1 TP THL
. ' _ (4.66)

Py =-Ppa -, Pty %
From (1.74), it is seen £ham for this problem
m(t) =0  (0<t<T) | (4.67)
The optimal conﬁrol u* is, from (4.65),
u#(t) = sgn p (t) | (L.68)

unless the singular condition pn(t) = 0 oceurs. The test for a singular

solution is carried out by applying the conditions (3.2) vhere

IT=py Xy teen D 3 % + pn(al Xy toees + B xn)
1 2 2
-5 (ay %"+ een +gy X ) (1.69)
F=p (L. 70)

The condition F(t) = F(t) = F (t) = ... = O together with the adjoint

equations (4.66) yields the linear differential equation
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e(n-l) _ 2(n~2) R 2(n—5) 25

T B ) e *'5(;:5')'" e PR g s

+ ("l)n'l q.l Xl

The characteristic equation of (h;?l) is
. 2(n-1) 2(n=2) +2(n-3) n-2 2
A - N - - A
%, -1 R N eve + (-2) L)

n=-1

()t =0 | | (4. 72)

l
It is clear that the 2(n-1) eigenvalues of (k.72) occur in pairs
o,
as an equation of (n - 1) order in the A, It will be assumed hereafter

- ﬁm)e Thus, although (h.??) is. of order 2(n~l), it can be treated

‘that q >‘0,b>qn >0 and that the‘(n;l) eigenﬁalﬁes A, are distinct. The
assumption‘ql > 0 assures that (4«72)ﬂ§oes-notvpossess Zero or pure
imaginafy roots of the form M =1 w (i =1/:f, w = real), The assumption
q, > 0 assures that (4.72) is of degree 2(n-1) and thus possesses

2(n-1) roots. ' ‘

Under the assumptions given gbove, the solution to (4. 71) cen be

written
Mt PR A t wh
_ 1 2 n-l1l 1
Xl = 01 e 4 92 e + 'fé + gn-l e + On e +
At A %
2 n-1l » .
+ gn+l e + s &‘ + 92 (n*l) e (h‘o 73)

where the Oj are constants of integration. The expression for the singular
control surface S(xl,,w,,xn);= 0 is simply a first integral of (4.63)

corresponding to the condition (4.73). It is assumed that the terms in
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(4.73) are grouped so that the first (n-1) terms on the right correspond
to thé hm having negative real parts. Thén, (ha75).can be considered as the
gum of two parts; a stable part |

T SR A

t
- 1 2 - n=-1l
X, =0 e” +0,e" +.. 4 I (4. 74)
and an unstable part
Mot A% ’ , 5 VR
: _ 1 2 , ' n-1
}L_L = gn ,e + 9n+le + coe + g?(n"l) ()4'0 75)

Each of the solutions (4.74) and (4.75) will furnish a :E‘irstixsd:egraa.”t.l“1
S(xl,aag,xn) = O'for (4.63). TFor the particular boundary conditions con~
sidered in this'example; only-the'first integral corresponding to (4.74)
is of interest_[eo]e.

The first integral of (4.63) corresponding to (4.T4) is given by

the linear expression

St Xy + €y Xy +oeee + O XK =0 (4.76)

1% " % %2
which defines an (n-1) dimensional hyperplane passing through the origin

of the x-space., The éi (1 =21, esuy n) in (4. 76) are determined from the

set of (n-1) equations

2 n=l _
A T e¢0v0 A =
+ e M+ e AT+ + e M o

€ F G TSN

e P N W can B

1 F SN T %N n 2
(4. 77)

P - . .
. . .
L] e

2
: n=-1
3>\'n-l+ s w0 + cnhn"'l = 0

ey + CQLn-1”+ ¢

llHowever, these are not the only pogsibilities, in generai. For spe-
cified terminsl states other than the origin, some of the other possible
 first integrals of (L.73) may be of interest.



It may be noted from (k.77) that one of the c; may be chosen arbitrarily.
The singular control functlon us* corresponding to the 31ngular control
surface (4.76) is obtained by taking one time derivative of (4.76) and

substituting (h 63) Thus the singular control in state variable feedback

form is -
‘ a.C_ + Co° 8,0 + C.N\ | ac +c N\
* = - g Xy - 2n L X - 2n. 2 X m ouey = am o nel x
u3" 1 . y 2 ) ) ch n

| (4.78)
The assumption q1‘> 0, g, >0 assures that gll# 0, ¢, % 0. It is in-
teresting'to note that the singular control (4,78) effectively cancels
out all the ex1st1ng feedback terms on the rlght of (4.63) and leaves the

system (h 63) in the new linear form.

xl_ = xg.
x2 = x5 | |
- - (4. 79)
xnwl = xn
5{ ‘ B2 e (" (s} X - c X - eee = X )
n cn 172 273 nwl

The values of the adjoint variables Py corresponding to points on the
singular control sﬁrface.s can be determined by setting

=p, =%, =... 2 0in (4.66) and substitﬁting (k.79). By this
‘means, the p; can be dgtermined as unique linear combinations of the

state variables Xyy eves Xy

i

—~
o'
[

= constant)

J=1 i3

n .
(i 'l, L] n) ’
=Z by X5 S - (k. 80)
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From the relation (h.76), Xn on the singular hypersurface can be expressed
as a linear function ef"the'xi (1 =1, 0oy n-1)
1

X, é ;; (-cl Xy = Cy Xy moese = Cg Xn-l) (k. 81)

By means of (4.81), the singular control (4.78) and the adjoint veriables
| v(h 89) nay be expressed as linear functions ef Kyp seey Xy qe It is re-
marked however, +that the substltution of (h 81) into (4,78 ) may yield a
singu.arvcontpol which is unstable. Thatzis, a control whieh_causes the
- system trajecﬁory'to diverge frem, rether than follcw, S{j The singular
control defined by (k. 78) w1ll ‘be real-valued if all complex A occur in
conjugate pairs. This is assured if the g, (1 =1y veey n) in (h.éh)
are all real-valued.- In.partlcular, lf-ql =y =eee = QT + 1 then the
ﬁn in (b 7h) are the stable rootseef.the'equatian‘

Z2(n-1) _p2(0-2) [ 52(0-3) (P B2 ()t a0 (n82)
Setting

| r'e A2 o (+.83)

in (4.82), and multiplying (L,82) by the factor (r + 1) it is seen that

'k qla '
r él:(- 1)n:| - - ' (4. 84)

. . Thus, the (n - 1) roots rj ere’simplyvthe n reetsvpf.(-v-l)n less the one
artificially introduced root r = = 1. Graphically, the n roots of (4.8%)
lie evenly spaced on the unit cirecle of the Argand diagfam [34] es shovn

in Figure 4.6-a. The desired 2(n - 1) roots hj’ - Aj are therefore given
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by
.
oY (e A-)

where. the ry are given_‘“by (4,84). It :;s vg;tear-frm (4. Sh) and (h; 85) that
the \42A_(n -1) ;‘éo’;s 7\.j s - 7\_5 alsé lie onv.the unit circlev ofthev Arga,nd
d.liagram.é.nd all ‘cvorAnplexr }“j appe.av,rblin conjugate .pairé as'.sliown in Figﬁre
h6-‘b.ﬁv‘ | . | o o

In [20], it is shownl? that i:he. value of the iné.ex of i)érfoi'mahce
(L, 61&) f@r any ar‘bitrary path x: (t) s sees X (t) ’between any two points o

and B on 8 is glven by

- B | I |
_ 1 e 2 e 2y
J[u) —-‘f 5 (ql;;l + 4%, | + cee F QX )at
o B o L , _
: : 2 4v
f [ (c Xy ok CX, +ees t ‘cnxn) dt] at. :(lhv%‘)
o o : : ' -
where X X, = 0 is the expression for 8 given by (4.76) and V is the

value of min J[u] for paths on 8. It may be recalled from art. 3. 3 that
V is an exact differenﬁial for all paths 1yi_f1g eﬁtirely on 8. Since the
desired terminal point Xqp = 'XQT = ... = Xop = 0is a point on 8 it is
clear from (4.86) that, when thev.i'estriction (4.59) is absent, the |
singular sub-arcs on S are éﬁric‘cly optimal with respect to all other
paths between any giveﬁ .painfc q. € S and thé b‘rigir; xl = XE = .. = x# = 0,
\']i?hg'n,‘ thevbvalue ‘V(q) =‘”V(sxl,.'.. »X. n‘). corresponding to any pbint @ on § is

e proof of (4.86), given in [éO],’ is due to W. M. Wonhem
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h=2 ' n‘,.3v>’ . h=6
(b) - |
Roots of (4.85)

Pigure k4.6. Roots of Equations (4.84) and (4.85) on the
Argend Disgram :
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the optimal (minimum) velue of J{u].

When the control constraint (k.59) is introduced, the points ¢
corresponding to {ua*(t) | < 1 will lie in a strip S of S. The ex-
pressions for the boundaries of S are determined by setting u = ¥ 1 4in
(4.78). 1In order that the previously derived expressions V(a) (for
points in S) remain equal to min J[u] it is necessary that the singular
trajectory {(which starts at a poinﬁ o in S) remain in S at all times.. In
[20] it is shown that the region R in which the above condition is satis-
fied is an (n - 1)-dimensional convex subset of the strip S. If at
t = tl a bang~bang extremal arc should intersect R, then the optimal
control for t, £t < T is singular control u5* as given by (h.78). Since
(¥i79) is linear, it is seen that T = @ When}the optimal control sequence
includes a singular sub-arc.

From (4.80), the 1 (i =1, ..., n) are known for all points of
the optimal paths on R. Thus, the flooding technique of art. 3.3 may be
used to trace out (in backward time) the optimal'bangAbang sub-ércs which
lead to R. By this means, the optimal bang-bang switching boundaries
(hypersurfaces) in the stpace'may be determined.

The form of (4.76) suggests that a suitable linear transformation of
the x_spaée may permit the S hyperplane\to project into a surface of lower
dimension. In [20] this techunique is employed with the result that
(under certain conditions) both the singular control hyperplaﬁe S and the
bangmbang'switching hypersurfaces, corresponding to an nth order systemn,

can be studied as lines and curves in a two-dimensional coordinate system.

i3

_As a concrete example ™~ of the problem discussed above; consider the

lBTaken from [2C].
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system .
& =% :
. -~ (4.87)
3:2 =u ju] <12 :
with v
N o -
| ,;“"_“,J'[u] ..f 5 (xl * %, Jat | (4. 88)
v A _ A
T = free
Xy 09 \xe o giv‘en
Hyp =%y =0
From (k. 72) the A are determined from M - 1 = 0 so that
The ¢, are determined from (k. T7) (setting A o==1)
cl = c2 | o . . (’-l-. 90)
Choosing ¢, =+ 1, the singular control surface S is determined from
(4. 76)
8 x) +x, = 0 | : (4.91)
and the siar' control function u3* is obtained from (%.78)
¥ = . C . . .
u5..; x2 | (h..92)

From the constraint | u | < 1, the 8 ‘surf»acve (line) must be truncated at

| %, | =1. The region R end the neighboring field of optimal bang-bang
sub-arces (flood paths) are shown in the xi - %, state plant in Figure 4. 7.
The optimal bang-bang switching boundaries, determined by the flooding



technique, are shown in Figure 4.8.
It should be noted that, following (h 86) , jthe index of performance

(k4 88) can be written in the form
. » T B .

. 1 2 ;
I[u] =f ACRENALEYE B ORI )

o
It is clear from (4.93) that "’c)heﬂminimiml of J[u] occurs when .
x (‘G) = - %, (t)
which deflnes the singular ‘control tragectorm Thus, on R (L. 93)

‘becomes

‘;'mir} sl =2x%0) | (o)

The nature of the S, S and R regions is perhaps mere clearly seen by
considering a third ‘order example. C-Qns:.der,- for 1nstance , the system

- (triple integrator)

% o
XQ = XB . ] : (,-l'o 95)
3c3 =u | u(t) | <1
with
T ) _ .
[ 1.2 2, 2.
~J[u] -j 5 (x, Xy kX )at | | (. 96)
o : '
T 's free
X, ,xéo ,-x50 = given '(‘arbitrary‘)

=% =X, =0

Xyp = Fpp = Xap
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BANG - BANG
SWITCHING -
” . BOUNDARY:

 Figure 4.7. Field of Optimal Tra,]ectorles Near Origin i‘or Second
- R ‘Order System of Exemple L.k
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Figure 4.8. Optimal Bang-Bang Switching Boundaries for Second
, Order System of Exsmple 4.4 -



Using (4.95), the index of performance (4. 96) can be written in the

form

T
J[u] :J[ é;

© (4. 97)

[ o

- 2 2/my N3 2
(xl +~f3 X, + XB) at + X (0) + xlgo) x2(0) + 5 %, (o)
It is clear from (4.97) that the 2-dimensional hyperplane S is given by

the expression

S: %y N Xy + % =}0 ' (4. 98)

and that the singular paths on 8 yield J[u] an absolute minimum.

The singular control function u3* is

u

3* = - X2 - ’\/—5 X3 ’ (h" 99)

Setting u,* = & 1 in (4.99) the boundaries of S are obtained as the

3.
lines
,x2=-1-~f3x3 (u =+1)
7 (4. 100)
XQ =+ 1 -3 x5 C(u=-1)
on the plane S.
On S, the optimal (singular) trajectories are given by
X, = e"o"5k‘[~3 tlg, 73050 g o*I0-5t (4.101)
o 1 1 2
so that during singular control, the original third-order system is
equivalent to the second order system
2
d x dx
1 1
=+ ex =0 | (4.102)

at™ .

10¢
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The boundaries of the subset R of § are formed by the two trajectories
(4.101) which are tangent to the two lines (4.100).

On R, the p; are given by

P, = 2%, +3 x,
Py = %y (4,103)
Py = 0

The'singular control surface S, the strip §, and the region R of
| optimal singﬂlar trajectqiies are shown in the Xy - x2 - x3 state space
~of Figure 4. 9. | |
Peints'on the béng-bang switching surface which conneg¢ts with R can
be obtained by using (4.103) as initiel conditions and integrating the
system and adjeiat equations in reverse time (starting at various points
on R). The locus of points where éa(t) =0 détermines_the bang-bang

switching surface.



108

~ Figure 4.9, Regions S, S, and R for the Third‘.AOi"der
System of Example L. L -
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Chapter 5

SUMMARY AND CONCLUSIONS

5. 1 S‘unung.__rz

| i The stﬁdy 6f optimal_control problems has received considersble.
'attehtion in reeent times¢ Several mathematical techniques have been

used to examine problems of optimal control the three most important

being; the cla351cal Caloulus of Varlatlons (with exten51ons), Dynamic
Programmlng, and the Maxlmum Principle. Each of these techalques has

been discasbed, and theirvelose relationship peinted out.

It has been shown that for a certain class of optimal control problems
the mathematical techniques given above soﬁetimes fail (formally) té yield
\vany information about the desired optimal control. Thls partlcular class
of @ptimal control problems is characterized by the control sppearing
linéarly in the state equations and index of performance. A problem of
this type has been called a "linear optimization problem” (LOP).

| Usualily, the optimal control for a LOP is of the bang-bang type

(v¥= uﬁax or u*"-u ) and the above mathematical techniques yleld this
saiution guite reaa;lg. The apparent failure of these techniques, in the
case of certain LOP, has been shown to be caused by optimal controls which
are not of the bang~bang type at all times. The mathematical form of the
“solution to LOP cannot explicitly define the‘optiﬁal control when it is
not bang~bang. Optimal conmtrols (for LOP) which are not of the bang-bang
type arve called "singular controls", and the corresponding solutions are
called "singular solutions".

;'It has been shown that singulsr solutions are eharacterized by the

banngangAswitchingéfunctien becoming identically zero. This character~
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istic allows the construction of a surface S in the x-space (or x,
p-space) which is the locus of all singular paths, The eontrol u*(x, )
which maintains the singular condition can be cbtained from the ex- h
pression for S. A scheme involving the backward time solution of. the ca=
nonical equations has been used to help establish the ro'leu of singular
sub~arcs in the solution of LOP.. It has been shown that the physical
realizability of singularic'ontrol conditions is hot.sufﬁ'cient to es~
tablish thei optimality of éingular control.

Several examples with vafying degree _of complexity have been irorked
in detall to illustrate the proposed techniques for sdlving LOP with

singular solutions.

5.2. Suggestions for Further Work

The methods given in this report are primerily intended for analy-
tical studies of optimal controls for LOP. There is, at present, a
large amount of effort being directed toward the study of op‘liimal control
processes by means of mmerical searching methods em‘p‘loying digital com- j
puters [35], [36]. The detection of singular controls by such methéds
has received very little attention, and further work in this area would
seem to be of practical importance [37].

In general, the optimaiity of singular solutions is difficult to
establish except by actual numerical comparisén. The development of
snalytical techniques to determine ﬁhe optimalify' of singular solutions
would be an im;portaxit contribution. |

This study has been primarily concerned with LOP having one control
varigble (with‘ constant comstraints). The study of LOE having multi-
variable control (with variable constraints on the controls) would seem

appropriate in view of thé present trends in optimal control theory.
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Appendix 1

GENERAL EXPRESSIONS FOR THE SINGULAR -
CONTROL SURFACE S

The General First Order LOP

In the case of a general first order LOP ; the system equations (l. 82)

‘and index of perfermance (ZL. 85) are

11

v?"i"=»s1<x1>'+v'h1<:a) ST BNV
- Jlul =f .[gb(xl) +uh°(xl)]dt e - (a2)

-0

The singular- control conditions (3.2) are th’ei; g:‘Lv’ber'l, by

»I,SO'=>".°181*80~0

F§o=>pl‘h1-h -0

- a v, dg,].

1:6 = P1<hlax >+gla 15—':0

.. ag oy dh 'Bgo”_

FI0 = e < 5" SRR o F (8.5)

It may be noted that when u # O, the expressions for I and F are not in-

éle}epénden‘l:° ™ Mne simultancous solution of (A.3) yields the following ex~

Wrnis 15 true for any order LOP of the form (1. 82) , (1.83).
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pression for S.

S h < 81;1 > <g1§_ 1'§‘g}') 0 Q“M

The general expression for the singular control function u3* can

be obtained by teking the time derivative of (A.4) and substituting

~ {A.1). The result is

' 1
RS E w (4.5)
If a singular solution does not exist for a particular first order LOP
then (A.4) will degénerate to vacuous or impossible conditions. TFor
instence, if g, =1, and h =0 (i.e., for time optimal control) then
(A.4) reduces to O = 0 and no singular solutions exist. It is ciear

from (A.%4) and (A.5) that when singular solutions do appear in first

~order LOP'they corréspond to the trajectory xl(t) E constant.

The General Second Order LOP

In the case of a general second order LOP, the system equations

(1.82) and index of performance (1.83) are

% = gl(xl, xe) +u hl(xl? xe} (A.6)
&2 ='g2(xl, xe) +u he(xl’ XE) ( (A.7)

. , "

J[u] =f [go(xl, x,) +uh (x, xg)] at (A.8)
. o - | o

The expressions for I, I, F, and F are obtained in the same manner as

for the first order LOP and their simultaneous solution yields the follow-

ing expression for S.



' ahl‘ , ahl agl agl
8: <goh2 - h°g2> <- &y 5;{-1-:— 8, 5;{-; +hy 5—— + by 3_-

oh og, Bg
2 2 A
- 1g>< g1 g2§"'+h1§—+ 5%,

_ - o e h Bho Bg Bg
<g2hl - h281> < glazjj TE R r *h r (8.9)

The general expres31on for the singular control funetion uB* can
be dbtalned by taklng the total time derlvatlve of (A.9) and substituting
(A.6) and (A.T) - The resulting expression is rather long and is not

ngen here.

A Particuler Third Order LOP
Consider the particular class of third order LOP having the phase

variagble form

xo=x,  (a.10)
%, = Xs (A.11)
ky = g(xy, Xps Xz ) + u h(xy, %, xj) | (A.:Le)

with the index of performance
T

.» J[u] =f g (xl’ , x Jat ' (A.13)

o]
Following the same procedure as above, the results‘are:

a) If

then .
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2 2 2
-§2+féag°+ag°-x ago - X, Bgo 'ga"gg
) X, %, ij axe 2 a;;lax5 3 5;:28::3 - dx (o 14)
} a?go _
h — 5
8::3
b) If
| 2
&
ox,2
3
‘then
- ' Bgo ago 2 aago ang
St gq-x5‘§§-x2§%+x2 &-1&;4-:;2){5&;3;{;&0 (A.15)
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Appendix II

TRANSFORMATION OF MULTIDIMENSIONAL LINE INTEGRALS
INTO LOP ‘
Consider the problem of minimizing (or maximizing) the ordinary
multidimensional line integral in the (xi,. .o ,xn)_ spacé
b

J =f fl(xl,... ’xn)dxl vf fa(xl,...,xn)d.x2 4 oeee + fn(xl,...’.,xn)dxn

a

(A.16)

According to the classical Calculus of Variations » @& necessary condition
for the integral (A.16) to be a minimum (or maximum) is that Euler's
equation (1.6) should be satis’fied.' Thus, if (svay)'xl is chosen as the

‘independent varisble™’ in (A.16) then the Euler equations for (A.16)

are
a (%) _% (=23 .0y m)
1 . -dxl ,
where
'dxe ax, (4.18)
G=f +L, =+ .40 + £ == A, L
1 2 dxl nd.x:L

Expanding (A.17), the Buler equations become

15
The choice of the X, which will be the independent variable is
somevhat arbitrary. The only requirement is that the Xy chosen should
be strictly increasing along the optimal path.
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fi afl » af Bf dX2 af .
g}q-&: + é——- —-—+ou +<X ) d.X (A.l9)

(i =2, 3y couy n)

The (n - l) equations (A. 19) cen be satisfied if

df, of (1 = 2,35000,0)
. =3;:1 o (A.20)
j i . (J —12,090,’1)

It is clear that the solutions (A.20) do not involve eny arbitrary
constants and therefore the rigid trajectory defined by (A.20) cannot be
made to pass thr_'ough arbitrary points a and b in the x—sﬁace. In the
Calculus of Variations, the solutions (A.20) are known as degenerate
solutions to the Euler equations, It is well knom that line integrals
of the form (A.16) will become independent of path when the integrand be-
comes en exact differential. The degenerate Euler equations (A.20) are
recognized as the necessary and sufficlent conditions that (a. 16) “be
independent of path in a simply connected region of the x-space tl, PL.
91]. Thus, if the equations (A.20) define a surfece S in the x-épaee )
then the integral (A.16) will be independent of path for all paths lying
entirely on S, .

C@nsider now, the problem of minimizing the integral (A.16) under
the additional constraints that the differemtials &x; (i =1, ceo, B)
must satisfy fhe following parametric relations along the optimal tra;

jeétory

ax,
T = 8y (%ypeees®, ) +uh(xl,n-,x) (i = 1,...,n)
| (A.2l)
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where u = u(o) can be chosen arbitrarily subject to uelUand o is a
parameter wﬁiéh is monotonic increésing aleng,the~qptimal‘trajectory.
Substituting the‘parametric constraint equations (A.21) into (A.16),
the integral to be minimized can be written as ' “

G’=G‘.b

Il = [ [go(xl,,.. )+ ho(xl,...,xn)] a (a.22)

o=g
8

where

up

go fi g1A+ bes + fn gn ‘

>

’ho“"flhl”?t'»wov"f‘_fnhn o » -

The problem of minimizing (A.22) subject to the comstraints (A.21) is
recognized as the general LOP (1.82), (1.83).

The rigid trajectories defined by the degenerate Euler equations
(A.20) represent candidates fér unconstrained optimal trajectories which
minimize the integral (4.16), Thus, when the singular condition oceurs
during ﬁhe optimization of the (constrained) LOP (A. 21), (A.22) it
implies that the particular trajeectory being followed simﬁltaneously
satisfies necessary conditions for both constrained and unconstrained
optimal trajectories. The surface of ekaét differential defined by
(A.20) is the singular control surface S corresponding to the singular
condition (3.2). Since the Euler equations (A4.20) are necessary con-
diﬁions for the optimal trajectory it is clear that if the integral
(A.16) has a finite minimum fhen the unconstrained optimal trajectory

must be given by {(A.20) (i.e., it must be singular). It is entirely
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possible, however, that (A.20) will define a trajectory(s) even vwhen
the integxfal (A.16) has no fiﬁite minimum for vncenstrﬁinéd trajectories.
When the speeified 'bcundary conditions a, and b do not lie on the surs
face (A.20) then, since Euler's equations canno£ be satisfied, an wn-
censtrained optimal trajectory does not exist. However, when the
constraints (A.21) are imposed, the integral (A.16) may very well have
a finite minimum and in this case the singula:c; trajectories é.efined by
(A.20) msy comstitute part of the constraimed.@pt:imal tra,jee‘tory.v

Bvery lime integral éf the type (A.16) with the constraints (A.21)
‘cam be ‘easily‘ tré:ésfemed to the form (A.22). Frem this, it would appéar
that ﬁhe Evlér éqﬁations (A.20) should furnish a convenient method for
obtaining the expression for § in LOP., - Hewever;‘ when the integral
(4.22) is given First ,‘ the reverse transfomatim fram (A.22) to (£.16)

is unique only in the case of first and second order LCP,
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