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ABSTRACT

Berndt, Helmut, Ph.D., Purdue University, June 1963,_ EstimatiQn of

Time-Varying C¢rrelation'3unction§. Major Professor: GeOrgé R. Cooper.

Thé need for estimating the auto- or crosscofrelation functions of
nonstationary random‘ﬁrocesses fre@uently afises-in communication and
- self-adaptive systems. In mostasituations only one sé@ple function can
be observed over finite timef It is the purposerof this work to estab-
lish a firm theoretical basis_for such a measurement of time?varying cor-
relation functions, and the emphasis here is on suitable estimation pro-
cedures rather than specific measurement technigues.

Second order stochastic processes are used as a mathematical modél,
The minimum mean square error betwéen‘a welghted time average and the
true (enseMble average) correlation functién ig investigated. This pro-
ceduré leads to an optimum'weighting fuﬁction which can be obtained nﬁ—
merically under the Gaussian‘assum?tion. The results of such an aﬁalysis
justify the much simpler finite integration-time avérage as an estimate.

By employing a bilinear approximaiion in time t and delay 1 to the
tiue correlation function, the mean value and variaﬁce of the simple
finite-time average are found. A minimum upper bound on the mean square
error is used as & ériterion for an optimum,dbsérvation time ‘of such an
estimate. Explieit results, however, require again the.Gaussian assump-
tion.

These approaches are based mainly on a strict error analysis. A more

direct approach, that leads to approximants which are rendom varisables



"'xi"’

with unknown properties, is also outlined. The restrictions and diffi~
culties are discussed.
Examples to support the propcsed estimation procedures are presented

and explicit results appear mostly in graphical form,



CHAPTER 1 .

'INTRODUCTION

Wlth the rapld advances in space technology and automation,‘the
vdeslgn of time-varylng systems such as space communlcatlon or observetion»
and adaptlve control systems became a great challenge to present day
englneerlng. A statlstlcal descrlptlon of the unwanted random dlsturb-
ances was already essentlal for proper deslgn of any modern, reliable,
and-efflclent‘tlme-invarlant system. In the time—varylng case even more
emphasis mast be placed on~the’statlstical parameters of the nondeter~
minlstlc fluctuatlons, 1f the des1gn problem is to be solved auccessfulw
1y. The term random noise is often used to descrlbe such fluctuatlons
and thls termlnology w1ll be followed here. | vv

' The theory of descrlblng random noise as a stochastlc process based

on the laws of probablllty theory has been well developed for the case
of statlonary random processes. ‘It allows us to estlmate the statlstl-
cal parameters of the process whlch are of englneerlng interest [lO] and
there has_been'much emphasis7in.the late 1940 s and through the 1950's
on developing.measurlng devices-for estlmatlng correlatlon functlons and
spectral densities. The literature on these subjects is extensive, e.g.,
2], [6], [25], to cite some of the earlierbwork, and applications in
the design of tine-invariant systems are numerous.

While, in general, an analysis of stationary random noise leads to

satisfactory and sufficient results for the design of time-invariant



-2-

systems; the time-varying situation, because of its dynamic nature, re-
quires the consideration of nonstationery rendom processes, i.e., those
whose probebility laws change with time.

At present, time-varying system design is still largely based upon
assumptions of specific noise characteristlcs, simply because the analy-
sis of nonstationary stochastic processes and the estlmation of their
statlstical parameters as time functions are not developed sufficiently
to yield appllcable results. It is hoped that this work mlght help fill
this gap. In the general situatlon of nonstatlonary noise & much higher
degree of dlfflculty is encountered than in the statlonary case. ‘A,
mathematical theory, when ex1st1ng, 1s still fragmentary and limited to
either speclfic classes of nonstationary stochastic processes or is. so
general that it is not readily applled to develop practical measurlng
techniques for the estimation of desired statistical parameters.‘

For this reason, hardly any work has been done in this area and
we are also forced to limit ourselves to Just a spec1f1c sub-class of
nonstatlonary random processes or noise s1gnals Aside from technical
requlrements, we‘have to rely upon some mathematlcal properties of the
stochastic processes considered in order to derive useful results. It
is fortunate that the class of random processes chosen is large enough
»to include the most likely situations 1n communicatlons or control

systems.



” ESTTMATION PROBLEM
The need for estlmstlng the auto- or crosscorrelatlon functlons of
nonststlonary,random'processes frequently arlses in communication and.n
» self—adéptive sYstems.;‘Among the statistical-parameters‘of'unwanﬁed'dis-
tufbances, correlation functiOns sre’bycfar the most important quantity |
‘for design’ purposes, since they are necessary for system optimization,

vpredlction and s1gnal detection, 51gna1-to—n01se ratlo, etc. [l] [20]

- 2.1 Problem Statement . oo

An estimstion of sutoF‘or"croSScorrelation*funcﬁions-of'nonstationw
ary rendom pfocessescis'desired(-'In most.sithations only one sample:
function of the proceSS‘csn benooserved OVer'éifinite timevinterval
Thus, the problem has to be consldered under this technlcal requlrement
| It is assumed that these correlatlon functlons always ex1st, and
- this restrlctlon corresponds to the mathematlcal assumptlon of a second
_order random process, 1 e., one w1th finlte second moments,- The flrst
moment, or mean ‘value, of such a process is con81dered to be identlcally
zero. The reason for this simplifying assumptlon is twofold In many
appllcations 1t is not necessary to know the mean value, or 1t is known
that the mean is zero because of physical or technical design_features.

It follows, therefore, that”thelmean.mx(s) and_vagisnce'oi(t) of &

random process are here:
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i}

m (t) = E[x(t)] = o, o (z-1)

di(t)

E[x°(t)] < =, (2-2)
where E indicates the mathematicalwexpectation. The‘aut0correlatibn
function may ‘be denoted by

Rty ty ) - E[x(t ) x(t noo . (@3)
and; if two pro;esses x(t) and y(t) are cons1dereé ch;re e#istvtwo

crosscorrelatlon functlons dependent on the time 1nstants tl and tz

Elx(t,) y(t s (@)

By ltasty) =
'Ryx(tl,tz)!»%.-E[Y(#l)l(.tz)]-A- - (z-5)
The emphasis is on the éSfimatién of ‘autocorrelation functions.
When,permissible, however, the approach-wiil be extended to ipcludg
crosscorrelation functions. In this'éa#é the‘funcéioﬁ éymbol will be
used w1thout subscrlpts and the term correlatlon function refers to ei-

ther one or both types of correlatlon functlons

2.2 Defihi”tions B

From & technical viewpoint, it is desirable to introduce a deiay
variable T, T > 0, together with & single’timé.variéble t. This leads
£0 two more definitions of dorrelatidn functions, and both will have to
" be used.

First;,; one defines : - R

t=1t

such that the sutocorrelation function becomes

R (60) = Blx(t) x(6-0)l, o (2-B)
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. end the crosscorrelatlon functlons are

il

Rm(’c,'r) E[x(t) y(t—r)l,* o (zr9)
Ro(:7) = Ely(t) x(t-7)].. (2-10)
This definition is advantageous, since in this form the correlation fune-

tions depend only on past valueS‘cf‘x(%)”and,Y(t)u

Roltita)

B . Figure 2 l _ '
Sketch ‘of an aut@correlaﬁlon function R (tl,t )

. Showing the - -symmetry’ in t and tz

Hawever, autocorrelatlon functiéns éossess the so—called Hermitian
preperty [ll] [22] wh@se s1gnlficance, 1n the case of real—valued sto~
chgst;c processes, %sisymmgtry ig t, gnd toe . Thlsvbehav10r 1s demonstra~
- ted in figure 2-1 for an arbitrary autocqrrelapion function. It means
that | | | | | o |

(tl,t ) = E[x(t ) x(t )] = Elx(t, )x(t )] ® (t '-I)Q_ (2-11)

.. This property is; significant as,wellzasiuseful and one would like to use



.—6-v'

a notation that expresses it simply, while still using the delay variable

7. Writing the autocorrelation funetion as

1

B (6,7) = Blx(t+5) x(¢-5)],  (e12)

one has

"

I T e R S )

as the Hermitian property. In this second definition, the midpoint is

£+t | |
t = 12, Z, " . (2--1’-!—)

and the spacing is .

Pt (2-7)
as previously. For crossgérfélatién’funcﬁiohs such a definition has no
’pgrticuldr significangeﬁ: | |

These différentvdefinitions.are related'bj the following identities.
They are written for tﬁe'generél»casejgnd épply to auto- as well as

crosscorrelation functions. : \

‘ - ~ tl+t2 .
®(t,t,) = R(t,t-t,) = ROF, -t,) (2-15)
| w(t,8-t) = R(t,7) - B(s-%,7) (2-16)
B(t45,6-3) = R(eg,1) = R(e,T) (2-17)

It would be desirable to use. only one definition throughout this thesis.
Unfortunately, however, R(t,7) offers some important notational advan-
tages, while’R(t,T)’is the more sensible definition of a correlation
function from an engineering viewpoint. It 'is, therefore, in the intér—
est of a clearer presentation, to use both forms side by side. The
transition.ffom one‘definition to the other is easily achieved by the

identities stated above. When possible, the use of’R(t,r) is preferred.



2,3‘Reasonable Approximants

Based on the time-varying nature of the random process, other engi-
neering requirements. arise. It has already been stated that only one
sample function is usually available for examination over a time interval
" T. Therefore, any estimation scheme must be adapted to this restriction.
Furthermore, the correlation function af any desired observation point to
should be known as soon after t_ as possible.
| Thus, it is assumed that a sample function x(t) - using the same

symbol}for the stochasticvpfoéess as for a particﬁlar sample funetion -
| is giveh over aﬁ interval of at léast length T (or the longeét possible -
peried @ over whlch data can be obtalned T << 8). Thls 1nterval con=-
tains, in general only past values including the observatlon point t
- at the end of that,time'period9 If the observation_point is chosen to
be in the middlevof the,observation interval, it wiilfbe denoted by eoe
Since t_ and 90 refer to an-arbitrarf time origin inside or outside the
intervai,»the frame of reference may easily be shifted to an interval.
[-T,0]. These assumptions and definitions are illustréted>by figure 2-2.

The problem, as stated, is to estimate'RXX(to,r) from past values
of x(t). Clearly, the only reasonable operations which can be performed
on this data result in some sort.of time average within the given inter-
val of observatlon {h]

While avoidlng any dlscu551on of ergodic propertles (121 [13] ‘and
specific classes of nonstatlonary second order procesSes [3] [17], the
ergodic éituation,valthough invelid for the general nonstationary case, -
suggests approximants for the desired correlation functien Rxx(t,f)‘which

are of the form,
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t
0

R (t,,7,T) =-3§ f x(t) x(t-7) at, | (2-18) -
L t -T -
(0]

evaluated at tb; see figure 2-2. Equation (2-18) can also be written:
&p (t .1.1) = & . o (zm19)
Rt nt) = [store) storor) a6 (229)

=T
o

of :

- |REFERENCE -
T TIME

SAMPLE FUNCTION x(t) |

W e et ta0

e,

CTIME t

¥y .

Flgure 2-2

Given sample function x(t)

The observetion interval T may possibly be determined to bé some opti-'
mum value T s0 that a specific error crlterion is satlsfled.
For R (t ,'r) the follom.ng approx1mant would be approprlate.

t
0

| jaﬁxg(#omff-‘_) -3 f x(t+3) x(‘t-g)'dt'. - '(zﬁ-zo)_

t -T
o
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This formvis‘suggested‘by eq. (2-12), but violates the assumption that
| only past-values are availableffor the‘estiﬁation, Where-tdiisfthe!preq
vsent,l Either'ﬁxx(t,w),”whichraISO depehds-on future values, is estimated
Qaly atto;%rinstead of té, or the‘restrictiOﬁs on the Qbservatioh’inter- |

" val must be relakéd.”'It is’precisely far-this:reasoﬁ“that the form |

Rxx(t,T) is'preferredttechnically, Yet, when it‘becameSEnecessary to use

. ,ﬁxx(:t,r),' the "cbse‘r\_’ration interval of length T mr be shifted to the re-

gion3[;T+I I]-and the tiﬁe t +g ﬁight then be regarded as the‘present.

_ Thls dlfference in deflnltlons w1ll be understood° 'Eéuatica (2-26)’can
‘alsc be wrltten , | o
‘ 4 R 0 . . - L L

R (t ,T,T) == f (t+t +-) x(t+t --) at. (2-21)

. _T ) ’

The. assﬁmptlon of such approx1mants 1s a reasonable exten51on from

' the ergodlc case to the slowly timevvarylng case., Yet, Without antlcl-

pating certaln results, such an approx1mant has to be considered as too

speclflc A more general approach can be taken, by multiplying the inte-
~grand of (2—19) by an approprlate welghting function h(t T), Where T is

now a parameter, and the follow1ng estlmate formed*

a3xx(to,7:h) = fh(t,T) X(t+‘c§) x(t+to-';) at (2-22)

The appraximant'(z—lQ) is the speclal case in which, for example,

h(t,T) = -[u(m') - u(t)], ) C (2-23)
with | o |
1 fort>0,
-u(t) = { L (2-24)
0 for t < 0.

In this particular situetion, h(t,T)‘is the finite-time integrator and
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ig referred to as the uniform weighting function hu(t,T).~ An expression
snalogous to (2-22) could, of course, be formed.fram»aﬁgx(t,T,T).

One of the ;Y?antages of such anvapproximant‘ie that none of the

variables appear in the limits of integration. The main objective is,
however, to weight the values of the single sample function in such a way
over T that the desired ensemble average at to,'over all sample functions,

- is best resembled by this weighted time average.’

2. h Error cansideratlons

With an emphasis on estimati@n procedures vwhich are sultablevfor
practlcal measuring techniques, the behavior of the mean and of the vari-
ance of the approximant are of interest, In particular, the mean square
error of the approximant is mos¥% 1mportant In the stationary situation
the mean of an approximant accordlng to (2 19) is the true value. There-
fore, the varlance and mean square error are 1dent1cal and they vanlsh
for T [lO] Here, however, T should be as short as p0531ble, in
general,‘51nce the mean of (2-19) yields a tlme averaged autocorrelatlon
function in the nonstationary 51tuation. The mean value of the more gen-

eral approximant (2 22) is
. o ,
E[aRn(‘bo,T,h)]r' fh('t,T); Rxx,(t"'to:":) ed-»t)‘. ) (2"25)

-t

and the variance is

B2 2cap
E[ann(to,r,h)] - B[R (t,,7,h)]

Q.
1l

I

f f h(t ;1) h(tb,T)q L@lik('ta,ft;o,to,'r)'dtb at, (2-26)

[fh(t T) R (t+’c 0! T) dt:\z

| =00



o =11~
where p (t b’ ,T) stands for the fourth mixed moment:

| bl (ta,tb, t ,1) = E{x(t *t ) x(t_+t -r) x(t ) x(t, 6 -7)]

| - (2-27).
Since the mean is not the true value, the variance differs from the

mean square error ofvthe estimate, 'The latter is given by

[u% (£ - o (e ]

‘H

sZ(R,aB)

M

ffh(ta,T) h( ,T) u (t ,r) at, dt,
) % ‘ - : (2-28)

-»-”aRxx(to,r) f h(t,T) Rm(two,vv_) dt

* Ry lim).
A constraint fofcing the mean of fhe estimate to be the true value, eq}
(2-25), wOuld_imposé.é‘resfiictionvqﬁ h(t,T) as well. as on Rxx(t,r):which
is too strong.‘ Henéeé only a minimizatidn;bf the mean square érrOr o |

sz(R?aR)‘can be employed to arrive at an optimum weighting function.
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CHAPTER 3

OPTIMUM WEIGHTING FUNCTION |
In this chapter, the best or optimum estimate w1th respect. to the
minimum mean square error cm‘berlon will be conslder_'ed. The mean square
error of an approﬁmnt to the"‘de_sir‘e&-mrre'l'ation function was previ-
- oiisly defined. Standard mlnlmization techmques lead to a condltlon for

an optimum welghtlng funct:x.on.

3.1 Integral Equation for the Optimm Weighting Function

From the d.eflm.’clon of the mean square error, eq. (2-28) , of an
'apprommaqnt according to eq.. (2-22) , the follow:,ng relatlonshlp can be

obtained by taking the first variation:

.00 o . . ‘ |
&s (R, aR) =2 f f .§h _(:té' ,T ) h (-tb’ T) '4;‘30{( t’a: tb: to',' 1‘) dtb dﬁ; ,
-.Z,R#x.(to 5T) f 5hv(ta;_T'.) RXX( ta + to’_?) dt& ,

In deriving ( 3--1) s use. was ma.d.e of the symmetry of the fourth mixed mo-
ment with‘ respect to ta and. t‘b' Betting the first variation to zero
yields the desired conditién for the minimum me,,ah, square error.
8s(R,%R) = |
» 0 0 o |
0 =2 [onte,m | [nle,m (e, b,5,0) @y
. )

=03

(3-2)
- Rm(to,'r) Rxx(t a-i-to,'c)] at
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Since the 1ntegral (3—2) has to vanish for all Bh(t >T), the 1ntegrand
lltself must vanish; thus |

fh'(tb,”m) ! (ta tb t ,'r) at, = R (t, ,r) R (t *t, ,r) =0,  (3-3)

forallt,t e(-ooO)
The h(t ,T) whlch satisfles thls flrst order 1ntegral equation of
"Fredholm type is the optimum welghtlng function h (t ,T) for time t and

lag T, and it 15 the one Whlch mlnlmlzes the mean. square error

‘3,2'therical Solutionfof the'lnteggal'Equation'

This llnear 1ntegra1 equatlon for h(t T) is 1ndeed very similar to
the Wlener - Hopf equation [ll] 1n predlctlon theory Unfortunately, the
v various elegant methods for 2 dlrect solutlon of thls equatlon cannot be l
fﬁapplled in this. nonstatlonary 51tuatlon ‘0f course, a solution 1n series
| form,. in terms of the elgenvalues and eigenfunctions of the kernel, is |
v_always p0351ble [8] The condltlon, that correlatlon functions as Well
as the fourth mlxed mqment are of 1ntegrable square, is 1mplied in the
basic deflnltlons. ‘However, findlng these characterlstlc functlons and
values 1mposes d;fflcultles Numerical 1terat10n schemes [15] have to be
applled and certaln prdblems of accuracy and convergence arlse. An inme-
dlate, approxlmate numerlcal solution is much more feasible. |

The method chosen is that of undetermlned coefficlents or collocatlon

[15]. The weighting functlon h(t )~— h(t ,T) is approx1mated by

uw~z%%w," W)
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where the @k(ta) are'h~suitebly chosen functions. The coefficients ak
could be determined from a set of linear equations, if the integration in
(3-3) is replaced by a welghted sum. But instead of attempting a collo-
catlon at specific points, the ak are evaluated in such & manner that the
resulting weightlng functlon is a least square approx;mation to the true
-solution. The reasons for this approach and its advantages for numerlcal
Aanalysis are numerous [l6] Hence, the unknown coefflclents ak satlsfylng

the least square error crlterlon,

f[f Zak o, p (t ,t.b, ,1:) dtb R, (to,'r) R (¢ +to,*r)]zdt ’
~have . to be found [151 Standard mlnlmlzatlon procedures lead ton 1nte—
gral.equations.» By using a numerical 1ntegrat10n scheme,- a system of n
- linear a._].ge'braieequa’ciqns‘can be .s_oJ;red instead. Matrix notation‘makes
“this apprdach”well sujted forvthefuse'of digital computer methods in or-
‘der to proceed to an actual, least square solution. of the 1ntegral equa—
tion (3-3). |

This numerical solution procedure was programmed for an IBM 7090
computer. As a matter of convenience-in evaluating and handling the var-
ious matriCes,-angdbservatioh intervel [0,T] with positive time was used
instead of [-T,0] as in the theoretical considerations of this-thesis.
It is for this reason that tables end figures dealing with optimum
weighting functieneeh(ta)zhave a positive time scale for t_ and the ob-
servation point is at the beginnihg of the interval. Replacing ta by
-ta brings the figures and tebles inte agreement with the theory. -Since

the tables were printed directly by the computer, it would have introduced
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a certain degree of ambiguity to present the illustrations differently.

3. 3 Assumptlons and Tests

In order to proceed to expi101t results, 1t is not only necessary
to choose autocorrelatlon functions of 1nterest, but the corresponding
,'fourth-product moment must be known. Only for & Gau551an stochastlc pro;
cess is the knowledge of the autocorrelatlon function sufflclent and in

| that case the fourth mlxed moment is given by

nﬁp((ta’tb’té’_’;) = R (t +t0:'r) R (t'b+t :T)

+

R (t et t ) R (b +t -8 -5) (3f5)

+R (1:a o,t ~t+1) R (t_ T, b o).

It is an important property of autocorrelatlon functlons that there
| is always a Gaus51an process havlng the samevautocorrelation function as
‘ the process under con51deratlon {22} 'Then it:is:pQSSibie to Obtain re- -
sults for h(t ) by substltuting the equivalent Gaussian process. From
a comparison with 1nformat10n theoretlcal concepts, lt 1s felt that this
procedure may lead, in general to an upper bound on the mean square
error. But neither a sufflc;ent proof nor a counter example to this con-
jecture nas been foand; | . .

Fbr the series expansion to the welghtlng functlon, eq. (3-&), the
first 10 orthonormal Laguerre functlons were used after extens1ve tests

with the following stationary*antocorrelaﬁion functions:

Rl(T) = e-alrl,' B . (3-6)
-al ]

Rz(t)': e cos T - R - (3-7)

' These Laguerre functions. are an orthonormalized version of the Leguerre
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polynomials{ Their important properties.and'the.numerical expressions
(from Oth through 9th order) are given expllcitly in appendix B.

In a stationary 31tuatlon, e.g., the cases above, one would expect
‘a finite time 1ntegrator for the optlmnm welghtlng functlon, i.e., uni-
form welght, at flrst s1ght. However, it can be shown that sueh‘e solu-
tion does not satlsfy the integral equation (3~ h) for any finite T (ex-
cept in'degenerate cases). OnLy an 1nf;nite 1ntegration tlme leads to
the familiar result. Actual optimum weighting functions, which were ob-
tained numerically for (3*6), are given in figures 3-1 and 3-2. These
graphs are scaled differently to demonstrate better the differences and
fluctuations caused by dlfferent choices for 1/7, the tlme constant of
the Laguerre functlons (see appendlx B) Tables, together with a graph-

ical representation of h(t ), may also be found in appendix C. The op-

‘tlmum welghting function for (3-6) is given in table and flgure 6-2 for
the best choice of ¥. The same results for the statlonary correlatlon
funcfion (3-7) apﬁear in table and flgure 6—3.' These graphs ShOW’Slg-
nlflcant increases in h(t ) at the beglnnlng and at the end of the chosen
observation interval. For different T the behav1or is. essentlally the
same,'if the series expansion for h(ta)-ls chosen appropriately. Un-
fortunately, theoweighting function is‘not so accurately determined in
these interesting regions‘of the interval.as it;is in the center. This
situation is due to the numerical infegration method and the possible
- error cannot be eliminated. o |

It should also be emphasized, that the choice of appropriate func-
tions in the assumed expansion of h(ta),,eqf (3-4), is a difficult one. |

Laguerre functions were found to be more advantageous than others because
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of the special}préperty that;they lead to simple physically realizable
networkéiﬁhich,ﬁa§evthe correéponding wéighting funétibn as their impulse
respohée”[2i]. The‘nﬁmberléfﬂterms necessary in eq. (3-4) and the time
consténf l/fﬁofithe chéseﬁ.Laguérre functions are cfi%icél és may be seen
from figure"3?l. 'Fbr an‘interval, T = 5 (in some relétive fime,scale)
and 51 equally spaced p01nts, the first 10 Laguerre functions were suf-
ficient in all 1nvest1gated.cases. Thelr time constants should be cho-
sen approxxmately equal to the tlme constant which determlnes the decay
of the autocorrelation function. A ratio Of S/h seems to. be optlmum, but
equal'time ¢ohstants lead also tb a close approx1matlon to-the true op-
timum Welghtlng function. ThlS can be seen easily in flgure 3-2 where

7 = O 7, 0.8, or 0.9 while the time constant of the correlation function
is unity. Only the énlarged scale in comparison to figure 3~-1 reveals
the differences. Figure 3—l‘shbws>an extreﬁelyvuhfitting choice in 7 =

2.0 while a longer time constant, 7 #‘0,5, is less critical.

3.4 Examples

Based upon these tests with'stationaryvcorrelation functions; three
classes of nonstationary»correlation functions were considered (making

essentially the Gaussian assumption).

(a) Rxx(t37> =(1- —zgl e—a|r| , for t < A (3-8)
- - -(t-%) A glq

0) R mn=|e |l (3-9)

() R (40) -3 [cos(zt-f) +eos 1| @l (3-10)
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These'time~varyiﬁg correlation functions showing (a) linear, (b) ex-
ponential, and (c) periodic time dependence were used to evaluate optimum
welghting functions for a.wlde variety of different parameter choices.
Characteristic resultsvfor cases (a) and (c) with 51 points over T = 5
are given_ih the tables,and illustrations in apﬁendix.c. vTables and fig-
ures C-4 through'0-9 are some‘examples of optimumlweighting functions to
(3-8) fcr'A.= 10 and different t spaced over a whole observation inter~
val T =>5. Other parameter ch01ces show the same general behavior. Also
(3-9), case (b), leads to qulte 51m11ar optimum welghtlng functions and
specific examples have been omitted. Examples for case (c), eq. (3-10),
are givenvin tables and figures C-10 thrcugh C-14. While the first ex-
amples, casel(a),-are'characteristic of the usual behavior of h(ta), the
latter, case (c), show a mpre dlver51ve character. However, the main
dlfference lies in larger gain varlatlons and fluctaatlons

The examples for case (c) are of spec1al interest. Note that the

periodic correlation function (3-10), evaluated for T = O, vanishes at

odd multiples of g, t = 2n;l n, but has a maximum at even multlples of
g, t=nn, (n=1, 2, ...). The welghtlng_functlon reflects this perio~

dicity. See, e.g., figure C-10 for tov= O and campare,it_with figure
C-13 at to = 3. The gain changes over one period are considerable, but
the weighting function»itself‘also shows large oscillations.

As might be concluded from the preceding statements, the computer
program,‘which'was-used to evaluate h(ta), was written for & maximum of
>51 points over the closed observation interval. The maximum number of
terms in the series expansion to the weighting function is 10. These

limitations are mainly of an economical nature. This program uses 30,527
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out of the‘32,768 (= 215) core memory iocetions of an IBM 7090. It
takes on the average 0.4l minutes to evaluate the a, and h(ta), if the
assumed amtocorrelation functien is not too complicated. The solution
~can be carried out for any desired T, but it was exemined only for some
small values of the delay vafi&ble, The fluctuations in h(ta) for these
values of T were found to be small. In general, T = O was used and all
- examples presented in appendix C,are eelcu;ated with this value of .
'Figure 3-3 might-serve as an example.of'what happens, if one de-
’mands too much of such a. speclfic computer setup. It is‘for this reason
that the results presented in thls the81s should be regarded as a first
i'study of optimum weightlng functlons and further numerlcal 1nvest1gatlons
should be encouraged. In figure 3-3 "optimm" weighting functions are
showh, when the observation intervel T is inereased frem S up to 20 with-
out increasing the number of_pdints br:terms in’the series expansion.

~ Case (a) is chosen for this demonstration.

3:5 Discussion anq;Qenclusions

" Certainly the investigationvof only three cases, even if they are
chosenth'resemble a wide variety of possible situations, is insufficient
to arrive at final cenclusiens. Furthermore, the limited amount of nu-
merical analysis constitutes only a preliminary study when compared with
- the scopeaef the possibilities. Hoﬁever, most of'the least square ap~-
prox1mat10ns to the optlmnm weighting funetion seem to 1nd1cate that a
uniform welght, i.e., finite txme 1ntegrator - as in the stationary sit~
uation - does not appear to be "too bad", if the observation interval is

relatively short, Thus, an approximant according to eq. (2-19) is well
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justified and will be considered more closely.
_ In meking use of the method discussed in ‘this chapter for an actual
" estimation scheme, the estimate or approximent with the optimum weight-

ing function,

e e o
=Pl “Ryxlton. h)

Jo—of

Fmgure 3_)+

Autocorrelator for the mlnrmum mean . square error estlmate
‘using an optimum weighting function

. 0 - e
e .
,‘ Rm(to,_r,h) = f ho(8,T) x(+t,) x(b+t -7) at, (3-11)
-0
' is known instantaneously at‘to, if ho(t,T) can be pre-deterﬁined. This
‘estimate has the minimum mean square errqr. The measuring procedure

which would apply is outlined in the block diagram of figure 3-4.
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CHAPTER L4

OPTIMUM OBSERVATION TIME

. The estimation method of the preceding chapter‘ié based éoiely.on :
a minimization of the mean square error.. Iﬁ was noted that this énaiysis
does not rule out the use of a finite time integrator as a weighting
function. As a matter of fact, the mean and varlance of the general es-
timate, eq. (2-22), can only be found after the welghtlng fUnctlon is |
V determlned_numerlcally. For the flnlte integration time approx1mant,
eq. (2-19) or eg. (2-21), these statistical parameters can be determined
directly and only under a few restrictive assumptions. While this‘type
of approximant is not optimum with respect to minimizing the actual‘mean
square error, a different criterion can be formulafediby finding a mini-
mum on the upper bound on the mean square error éf theyestiméte. ‘Thﬁs,
an optimum observation time can be thained, Buch a quantity éuggested

itself already in the early discussions of chapter 2.

4.1 Bilinear Approximation

It is a classical problem in approximation theory to approximate g
function of two variables by products of functions of a single variable
[14] [23]. This bilinear approximation, when applied to correlation

functions, is a least square approximation of the form,

n
Ko,0)e ) () =), (k1)

i=1
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and it can be shown, if n increases without limit, that

n

(6,7) = Loim. ) = (6) 2,00, (s-2)

n-so !
i=1

‘The bilinear approximation is here applied to an autocorrelation
function in the definition of eq. (2—12) iﬁ order thaf the symmetry con-
dition may'be‘givéh'entirely as a condition on the fuhctiohs'riz(r)@
Crosscorrelation functions can be handled either way. | |

A bilinear'ajproximation with_n terms involVes the solution of a'
system of 2n 1inear intégral equations [14]. TFor the purpose of this
analysis, it may be assumed that the functions r.l(t) and r, 2('t), (1=
1, 2, e, . n), both forming orthogonal systems [23], have been found.
Various methods are,known for solving these 1ntegral.equatlons 1n_prgc-
tice [7]. -

Tﬁé whole analysis presentedﬂin this chapter is based upon the¥pos-
si£ility'of separating the depéndénce of é time;varying correlation‘
function on t frqm'thefdependence on T in some functional form. Consid—
ereble simplifications arise, if an approximation by jﬁSt one préduct
term is sufficient or correct. It is also important to note that the

bilinear approximation is unique [1k4].

4.2 Expected Value of the Estimate

The mean value of an appfoximahf according to eq. (2521)‘éan'be
determined’with'the use of a bilinear'agproximation. It is,ﬁere that
the definition of R(t,7) proves advantageous. | |

If - and this ié the only restrictive assumption - a Taylor series

expension exists for the ril(t)’ (i =1, 2, +.., n), in the neighborhood
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of an observation point t, such that
v, () =) & (-t ) (4-3)
il ik o 2 ) ‘. }
- k=0 ‘ . E _ 1 .

where the Taylor coefficients are given by

(k)(t ) :
Sy = T Geb):
then correlation functions can'be apprbximated by
x -
K(t,7) » ZZ W68 (e ()

A1=1k=0 "

Truncation after the first m terms- yields the ﬁsualftruncation error.

Equation (4-5) gives, at the observation point itself,

R(’c ;) » Zr @ o C(46)
4 - -

if all constant factors are included in the Ty (T), (1 =1, 2, ., m).
Slnce the functions r (t) are only of integrable square, like the
correlatlon functlon.ltself, they”dp not necessarlly possess a Taylor
'series expansion fqr,all t. Thus, eq. (4v3) imposesva restriétion on
the‘prdblem exceeding the basis definitisnss Howevér, in the practiecal
situation, this requirement hsrdly matters. The likelihood of encount-
eringba case where (4-3) does not hold is fairl& sﬁall. invsny lumped
circuit, for instanse, sll*derivatives in (4-4) will always exist and
the»series.expansion.is possible for all t. |
i It follows ffam the’definitions of correlation function approxi-

ments in the case of uhiform,wéight, eqs. (2-19) and (2-21), that the
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expectation of the approximant to ﬁ(to,r) becomes, in accordance with

eq. (2-25),
0 ,
E[aﬁ(to:T:T)] ='{:]£‘3' fﬁ(t'*’to)"r) dt, . ' (4-7)
-T

Now the following epproximation can be obtained with eg. (4-5) for

t = 0: o '
o N
O n m . ' »
a, 1 : k
B, o] = 3 [ ) ) eyt n,(n) a (4-8)
-T °'= =i . " .
Integrating on the right hand side of (4-8) yields:
n m ‘
an ) > .
E["R(t,,7,T)] = >: zalk Tl riz(T>
i=1 k=0

- % m
= R(t,7) + /., Z 1k k-l-l riz(")
i=1 k=1

In this form the second double summation temm is seen»to be the mean
value of the estimation error or ﬁhe bias.

" The estimation point 60 in the middle of the observation interval
may lead to a smaller error term in the mean value of the apprbximanto

A Taeylor series expansion is here made around ev such that

: : n - m
E[° R(e ST, T)] = = f Z Zblk t (r) dt
-T/2 i=1 k=0
/2

-T/2 1=1° k=l

N . -l T2k
= R(6,7) + Z Dok 2k 12("7)’
| B (2Xk+1)
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.where the Taylor coefficients in this expansion are denoted by by and

: o % ~if m is even, o o .
" {xﬁ-ﬂl‘ | o (be11)
: --—2— if m-is odd, ‘

This expreés:.on contalns only even powers of T:in the mean estlmatlon
- error. Eac:h term is also smaller by 2 factor 22 'l:ha.n in (4—9) However, |
the  Taylor semes expans-:,on, 1s‘made at a di;t‘;ferent point and a dlr'ecf
" comparison of the bias terms is ho‘b pbési’ble. | |

| Wl'bh eqs, (u-z) and (4-3) the exact :E‘orm of (u-g) and. (h-lo) can

'be deduced in the same fashlon. For 1n,stance (h-9) would 'become

. o e , ol p e . o o
_E[an(t ,-:,T)] = R(t ,1) + 1.1i.m. Z Z 1k k+l v, (T) - (4-12)
. B = 1= o

k. 3 An Upper Bou.nd on the Var:.ance and, the Mean gquare Error of the
Estlmate | ‘
. For the varlance of +the a.pproximant at t_, eq. (2-21) ylelds in

analogy to eq. (2- 26), ,
o; - E[°% (t ,'r,l‘)] - E {aﬁ(t ,r,T)] - (%-13)

The mean square error of the estimate, on the other hand, ,b:e_c;omes‘

. . : , ’ o 2 ‘ Co .
s2(%, %) - o’i . {E[a’R(to,TfT)] - R(to,'r)} Y (T

. |
An upper bound on dﬁ which occurs for T s = 0 can be found in the Gauss:Lan

case,. It is der:.ved in sppendix A under some snnpllfylng assumptions.
Ir the same reasoning is ‘applied. in this situation, which ‘was previously

used in section 3.3, then-this‘upper; bound might be su'bStituted'into eq.
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(4-14). Equation (A-5) constitutes this bound which reads in this case:

E<t [Fona ()
TS0

This assumptlon s together with eq_. (h—ll&) > leads to the follow:.ng con~
‘jectured 'bound. on the mean square error of the approx:.mant evaluated

at to"

#(8,°%) < £ f e o

-00,

(u-16)

rlz(O) rJZ(O)

:'(h¥l7)

) ii 208
22 Ej Pizk "ges (2k+l)(2£+l)22(k+£) 12(0)r32(0)

J=L k=1 £

. Bquations (%-16) and (1}-17) depend only on the o'bservatlon point and the
o'bservatlon 1nterval length T. They can, therefore » 'be utilized to de-
fine an optimum observation time which minimizes the ‘meximum of this

mean square error.

Ll '-Condition _for the Optimum Obsewation Time

The conaectured maximum of the mean square error, as expressed by
the right hand s:.de of (4-16) or (4—17), may be denoted by ¢ (R R)

This er:tjor is mlm.mlzed with respect to the observation time T for. .
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E-T- q (R) R) = O) o (}'l"‘18)
subject to the’constraint'that
: '—é-:qz(ﬁ,aﬁ) >0. ' (4-19)
i | o .‘

It should be éﬁphasized that thié griterion'can only be applied when
| T is expected to be small enough, such that the truncation of-the Taylor -
_series does not ellmlnate 51gn1f1cant hlgher order terms in (4-16) or

(4-17). ThlS situation has to be kept in mind together with the Gaussian
éssumétion. Unfortunately, a“mathematically more’satisfying criterion
.than,(h-l6) or (4=17) cannot be-cpngtructed easilf.‘ Examples indicate
that évminimization vaqz(ﬁ,aﬁ) yields,als§ fairly large values of this
qutimumxinterVal Td which are hardly affected by a choice of m.
;’With‘this c;iterion for the optimum dbsefvation‘time TO,.the_actual

condition, which follows from (4-18), becomes:

4, & &z X (x+)r. . (0)r, (0) R |
Z Z Z %1k %32 " (TS ()L f #(o_1)an =
i=1 j=1 k=1 £=1 o | % ooy
‘ -20

Equation (4-20) is the minimum condition on qz'(ﬁ,aﬁ) for b Ti'le_ corre-
sponding expression for an obServation'pointﬂeo is:
nn | - . L e
i=1 j=1 k=1 ﬁ—l ( 7 -0
: ‘ ' - (k-21)
These condltlons are polynomials in T of at least third order in (u-zo)

but of fifth order in (4-21) since m > 1.
Considerable simplifications occur when the Taylor expansion can be

truncatedbaftef the second term. If the observation point is 90, the
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optimum cbservation time in this’case,is;simply

m

o n -
5 szrl(x)rmal'
. 1:1 j:l -;-00 3
T, = i85 aaaaceaaaca et (4-22)
| ZZ% . 12(')1' <o>
B o o
'If,:fﬁrthérmore.d _ o
H(t,1) = v (8) T, (r), - S (w23)

then

where 5(66,1) is the'nofmalized’c¢rrélation”funétion;[QI”for the midpoint
:dbserVaﬁion,time;"These expressions are presented for'eé;’sincé‘ﬁhey'are

less complicated in this case.

';AQS'ExémpleSQ

The aspects of actually finding tﬁe 6pﬁimum.observation time as de-
~»vfinéd..i‘nbthef preceding‘sectionAWill be illustrated.cn three simple exam-
- ples where a bilinearrépproximation is not even neéessary.q

- The optimum obseryation tiqe TQJin thebgase of a correlation funec-
tion‘varying'iinearly'with time, case”(a), as Well'as'forﬁa quadratic,
case (b), and a‘periodic time dspendénce; case (c), will bébdiséussed;

(a) be~a'correlétionffunctioh like the autacorrelation function

(3-8) which depends linearly on time; -
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a finite optimum observation time cannot be found for 600 This situa-

tion arises because

| T/2 .
E[aﬁ(eo,T,.T)] =v;].'I_.‘_ f l:l-' "K‘g] e—alTI at
, | -tz T o
7]
i S (i-26)
= ﬁ(e ,T),

In thls spec1f1c case the expected value of the estimate is equal to the
true value as in the statlonary 51tuat10n. But thls result is only due
to the position of the integration interval with respect te the estima—

tion point 6_. By using eq. (4-9) the result would be

0 ‘
. t+t
L L9 :'alTI
T Jf [l ey ] e dat

TE{?ﬁ(téyT:T)]

(4-27)

L B -t
R(tO,T) - 'é'E e 1‘|. |?

and a finite optlmum dbservatlon tlme exists in thls case, where the es-
tlmatlon p01nt is at the end of the 1nterval The value for T can be
evaluated exp11c1tly u51ng (h-ZO) The first approach leads consequent-
ly to a variance of a measurement whlch would vanish as T > w0, How-
ever, for flnlte Ty the variance of a measurement is not zero, but has
a minimum upper bound. }

(b) For a slightly more complex situation than in the first exam-

ple, one might choose°

R(t T) (1 +c

lt * e, t ) ”“lfl | - ._(u~28)”

The.expectation of_the time.average estimate is here at the midpoint-@o
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of the observation interval:

gl
2

BT <Ko, ¢ S el )

The optimum observetion time is given by

v 1 ,
15 :
Do ‘
2 .
Note that for ¢y = 0 and c2 = O.OL:Z the chosen correlation funetion

changes roughly 1% over a time in&erval»lﬁd. This numerical example

yields
{1___}5 HE A - (&_31)

For this‘optimum‘dbservation time the‘ﬁpper bound. for the bias, denoted

by e (R, 2R) becomes

N aw 2 ) ‘
(R R) [ ] ] T“ = 0. 03366 o (-32)

With this value, the total Tms error becomes - ca,. hl% This example is

indeed very specific, but it 1nd1cates that it is difficult to obtain a

good correlation functiqn estimate, i.e{, one with'a small mean Square

error. 'Yet:here the correlation function varies slowly with time.
7(c)‘A‘eorrelation function of the type '

ﬁ(tgr) = cosat TZ(T)’ , ,.,;‘ h , (u,33)

where rz(f) can be a simple exponential as in the previous examples, but
does not need to be specified, will be considered. In this last case
- different appr0ximaté:solutioqs for-To will be cayried through. A com-

- parison with an exact solution for mo is-élse,pbssiblé.
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The expectation of the estimate at‘eo by integration, without
Taylor series expansion, is: '

5 - zeosad_ r,(t) ' ‘ .
B0, 00 = ——p—— etmfr  (k34)

2
Integration; after:expanding coéﬁztﬂzed) ih its series representation,
yields: | | |

)k Zk TZK

E[ %R(o ,T;T)] = cosze r, () j{:( = ~ (4~35)

(2k+l)'

Both equati@ns,‘(hé3h) and (h;35),‘are'bf‘course identical as cén.easiiy
be verified..Thevcondition for the optimum’observétion time is here.

o) 00 -

| v (k+£)+1 . |
' cos? o 21 K+l 2(1<:+£)(sz)2 -2r] =0, (4-36
cos qQO [  (.) ;g; ;g;( v? 2(k+£)(2k+l) (2£+1),v ?f]l, ( -3 )»

with
: g co : : ) :
I AT - A - PRI .2 o ‘
2 fcos ago rz(‘l)'d)‘ = 27 eos aeo’ : (4"37) s

Truncating after the first 5 terms leads to the following 13 order

‘ polynomial in T

Al3(oz'l‘)13 + A.Ll(aT) + Ay (ar)? + A7(aT)7 + A (ozT)5 ’ o,’
where c 3 | (4*38)
p=—l—. . (439)

‘,rg(o)‘ L o (.‘_3

- The coefficients in this polynomial are numerically, accOrding to eq.
(4-36), L |
- Ao = 6.94uMh66x1073,

5
o, = -2.6016678:0™,
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6
2

2
i

- 4.23693800x10

). 12642187x10°C,

i

Ay
o
12

The l5th order term would have a coefficient Ai5 = =1.29120581x10 -
And the next higher terms have coefficients A17 = h,28109688x10—15,

Ay - -9.48077679510"*%, ana by = 119706777107

| 2.74356958:1072.

It

A standard humericél soiufion for the fifst_poéi£iﬁe, real root of -
l (h-38),yields ﬁalues forvthe-optimumidbservation time'T ‘as given in
‘,féble hél'fdf différehf‘values of a anij; The notatlon in this table
corresponds to the rules for E@RTRAN statements as glven in table C-1.

In this partlcular example, an exact solutlon for T can also be
carried through, since the error term in (h-35) can be reertten as

ez(ﬁ,aﬁ) = cosa® rz(T) ﬂ§+’siﬁ§T - i]?. | (M~MO)
. i o727 (al 2' ; 3

A:numerical solution fof thé.séme sets ofﬁpa}ameters'as reported in
table h—l'gaxe values of To:which-éoincide_sufficientlyVWell with the
solutions of (h~38). In both cases the numerical results were obtained
by succgssive’iterétions° The.differeéces’in thevfesulting TO were al-

vays less than 5%. |

4 6 Discussion and Conclusions

The examples of the precedlng sectlon should have elucidated the
prdblemsvwhichvare“encountered in this appr@ach;"Fbr simplicity, the
-observation point in the middle of the interval waé preferred in the lat-
ter examples. |

The whole approach in finding.an optimum observation time eould be
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"F"TASLE 4_1:

' VALUES FOR THE ORTIMUM OBSERVATION TIME

ALPHA ~ BETA/240 . 'TERMS IN . OPTIMUM
e  POLYNOMIAL . OBSERVATION

06100 ° 16000 o5 | 4045620

CTIME

09 - B 4005660

04100 104000 05 . 788419

09 . 7868439
14000 14000 05 440560
| | 09 440560

14000 104000 - 05 | , 748840

09 7.8842
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Q¢afried out without particular reference to either auto- or crosscorre-
:”lation functions, but thislwas only possible since referenceskcould.bef
made to the earlier developments. The optimum'weighting funqtion ap-
',prpach is also applicable to crosscorrelation functions and the basic
integral equation can be‘rewrittén for that case simply by dropping the

subscripts.

N R A
BN e R
A . xitort ol
s teTo ] .
R f;1fgfigure h-1

Autocorrelator for the optimum observatioh-time estimate

This second approach, based on the conclusion that a finite time
integrator is élsola reasonable éﬁproximant, reférs, for mathematical
reasons, to ﬁ(f,r)o This makes a direct comparison with the optimum
weighting function approach difficult, since the results can only be ob-
tained by numerical methods .

The approximant using tﬁe optimum observation time is, in the auto-

correlation case, the estimates
0
ey w1 lint 4T T )
. Rxx(t O,T_,To)— T f x("t:+to+2;) x(t+to 2), at (4-k0)
o}
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' ~ The block diagram of figure ﬁ-.l shows an autécor’relator which could‘
'berfo_rm the measu;'emén-t; (h-hl ). The 'difvfere‘nc‘:e in the definiti’oh of
v 'thé estimate can easily be seen by comparing'figxiré b1 with figure
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| FURTHER POSSTBILITIES AND CONCLUSIONS )
The preceding discuésions and i-es_ui’os- are bé.sed, on error analyses
which in'troive the true ifaluea The mean and veriance of the estimates
are considered, since they are deterministic guantities. I&Ieitht‘erian op-
timum welghting function nor an optimum observation time can be deter-
mined without knowledge or certain assumptions about the true ’value.,‘

This method might bé termed indiré_ct, and it viould be véry desireble to

- 'find also a more direct approach to this estimatlion problem.

5.1 Prospects. of a Different Approach

There are certain p_o'ssibilities in the 'diréction of a direct ap-
- proach. However, the ma,jor'difficultieslare Quite. severe. First, an
error analysis of such an approximant is almost impossib’le because of .
' the high degree of complexity. But, even if an ehgineering mind might
be: willing to 'ac'ce.g:t.' this &as a fact and rely on actual"asuremenjbs and
experiments, a second difficulty arises. The pure existence of such an
~ approximant cannot be ‘guaranteed.
"e method which is cldselyvrelated to the preceding discussions
- and fozf’ which at least one range of possible application has been found
will be 'discﬁs‘s‘eq b‘riefl.y. There are also certain poss.ibilities for an

~extension of this approach.



5.2 Comggrison;of 1-Dependence

Ali ccrrelationvfunctions can be apprcximated in a bilinear fashion
’which'separates the time from the delay dependence. Then it must be pos-
sible‘to’base an estimation methodlon,a'comparison of either the t- or
Tedependent functions,with»the co?respondigg dependence of a reference
fuhction.‘ : | | | | |

Buch a reference for a T-comparlsqn is readlly found in a quantlty
'whlch might be called the nmean correlatlon functlon, ‘defined as

-Ré(t':,'.r) -.-% fR('b,'t) at, ' | (5-1)

-®
where ® is & large,'but finite averaging time, in general the largest
- possible dbsefvation time, ®>> T. Mean correlation functlons are used
often in the Russian literature {5], where the problems of their measure-
" ment are discussed [l8].' Since a,mean correlation function depen@s only
. ohf@ and T,’thelfﬁnctions f{z(t):can be determined from E;TE?;T'because
of the uniqheness of'thevbiiineaf approximation.

Then & correlation function estlmate could be constructed from the
nean correlaticn function by comparing the t- dependence.' The block dia-
gram of figure 5—1 might serve as an illustration for such aﬁ esﬁimaﬁion
scheme.

Unfortunately, the existence'of a better estimate than ﬁ;(g:?? can-
not be established fcr the general,case as indicated'eariier.»‘However,
in the case of a random process.termed by Silverman [24] as ™ocally sta-
tionary”, e‘simple;COmparisQn method“can:be:eppliediand’some'examples
have been constructed for which a good approximent to R(t,t) could beb

dbtained.
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» ’x(‘vt)

' ] Rxxlg(t"‘): L‘ﬁ

B(t-0)

“x(t)

T St
COMPARISON

=

o fe—]

| sier)

bRxx(to,'C:To) S .

Figure 5-1

Autocorrelator combaring the t-dependence of the meen
autocorrelation furction with an approximation to the true
value in order to determine a better estimate at to
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It is felt that further investigations in this area might reveal a
“mathematically acceptable estimation procedure: which possesses some gen-

erality.

5.3 Generai Conclusions

The estlmatlon of time-varylng.correlatlon functlons frcm a single
: sample functlon has been cons1dered A welghted flnlte time—average over
thls data has been proposed as.a reasonable apprOXLmant to the des1red
correlatlon functlons° -

Minimizing the mean Square errervef'this eppfoximasﬁ has ledvto an
optlmum Welghtlng functlon This‘eﬁeljsis has sﬂovs, fﬁat eﬁen in the
ergodlc case, the 51mple flnlte tlme average is not optlmum with respect
:to a minlmum mean square error crlterlon° Mbre surprlslng, however, is
the 51mllar1ty between Welghtlng functlons in the statlonary and non-
stationary situat;on. A51de fram a rather spec1f1c example, this has
led to the cbnclusioﬁ that, whlle not optlmum with regard to thls cri~
terion, a finite time‘average is not unreasona'ble°

By making a bilinear approximation to the desired correlation func-
tion - in a slightly different definition - the mean value of a‘finite
time-average approximant has been found. A conjectured upper bound on
fhe variance has also been established. A minimization of this maximum
sguared error has been used as a convenient criterion for an optimum ob-
- servation time.. However, some examples have indicated that this simpli-
fied approach may lead to relatively large rms errors.

Explicit fesults have only beeh obfained essentially by making the

assumption of a nonstationary Gaussian process. It is felt that a
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removal of this restriction would be the most valuable extension of this
work. The ci'it"er‘iav and ‘equ.atio'ris which have béei’x deriwféd are véiid for
non-Gauséianv processes | as well,

Furthermore, additional numerical investigatioﬁs - especially of
optimum weighting functions - should be encéuraged; The resﬁlts present-
ed here are only represenfé.tive exampie:s out of a large n;meer ﬁrhich have
been considered. But the study of certain classes of cqrrelation func-
tions may well lead to certain patterns in the optimum welghting func-~
tions which were not'obse_rired in-this first ‘investigation.

These approaches to the eétimation problem havg»beén based on a
strict error anelysis. A more direct approaéh , which would lead to ap-
pfoximants which afe random vari_ableé with unknown properties, has been
outlined, too. The' restrictioﬁs.arid difficu_:l.tie‘s.varé ’discussed.

Examplves to suppo,rt the proposed estimation procedures have been
included for all cases and exﬁlicit i‘esﬁlts appear mo'stly in graphical

form.
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APPENDIX A

'UPPER BOUND ON THE VARIANCE OF AN APPROXTMANT TO
CORRELATION FUNCTIONS IN THE GAUSSIAN CASE
An upper bound on the variance of an autocorrelation function meas-
urement can easily be derived for a stationary Gaussian process [19] .,.
An extension of this result to the nonstationary situatioh is not only
possible, but based upon a rather simple argmnenﬁ(
If an approximent with uniform Weight s eq. (2-19), is considered,

the variance (2-26) becomes with (2-23)

0
2
1 : '
ff}.t (t 2t ty ,T) dt, at, - -—é- [fox(t+to,T) dtJ .
"T "T -T (A"l)
Equation (A-1) yields for a nonsta‘bionazy,Gaussian process with (3-5):

=l_ffl:3 (t+t t, t)R (t+t -1,t tb)

'am

(4-2)

+ Rxx(ta+to,_ta-tb+r) Rm(ta-i-to-'c,ta-tb-'r)} dt, dt_

It is now assumed that the observation interval can be made small
enough, such that the time average of the autocorrelation function over
T does not differ appreciably from the true value at t0° Then, by ana-

logy to the stationary case, eq. (A-2) can be approximated by

f f [R (8857t ) + Bep(bostg-ty+e) R?cx(to’ta-tb"?)]dtbdta'

~-T -7
(A-3)
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An upper bound on the variance may be obtained, if T is small com-
pared to T, but T is large compared +to the significant duration of the
autocorrelation function. With X = ta-tﬁ’ relation (A-3) can then be

simplified as follows:,

cg . Tl—z{ fo f [Rix(to,};) + Rm(tb,l+r)ﬁxx(té,}»~f)»1 at
] Sd b . |

: (a-4)
ff [R (-t x)+3 (t ,1+1)R (t }»-»»r)] at, o&}
0 ~T+)
. A
zéf(l '-})[R (t }L)+R (t l+T)R (t }m)}
s _ o
From this form the desired upper bound can be obtained {19]1:
oz<—f|l 2 lHR (t A) + R (b }\.+T)R (t, 1-:)[ a
T
-.]l;[ f R (tA) an + f E‘%@"&“"’ ’Rm(to,M),l d?»}
| i
f<t 7 (B2 & S (a-5)

In deriving this final result, use was made of the Schwarz inequality
and the condition that an autocorrelation function:is of integrable

square over the infinite interval.
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LAGUERRE FUNCTIONS |

Among the sets.of o?thénormél‘fﬁnctions ﬁhich:can be‘derived fréﬁ
the ciassical'ofthogonalbpolynomiais; fUnctidns Of'Laguérre type have
fén iﬁteresting»properﬁya Thé'electrical network'correSPCnding~to such
a set is much simpler than for other standard orthonormal functions and
orthogonal polynomlals [21].

The Laguerre functlons over the range (O ® ) in which we are inter-
ested are obtained by orthbnormallzatlon of the sequence

6 e gorn=0,1,2, ...  (81)

Jjust as the Laguerre polynomials are obtained by simply orthogonalizing

this sequence. The resulting set of functions,{Ln(t)} has the property:

? 1 ifm=n o
f L (t) L (t) at ={ ’ ' (B~2)

0 0 ifm + n

with [21]
| -1 -2
L (%) = [ S._LL 0 _&H_g_'_ S n(né%%ffg? (02

n(n-1)(n-2)(27)""3 . n-3
" T 3i(am3)! v

oo ¥ '(-1)‘1} &7t

Substitution of n = 0, 1, 2, ..., 9 leads to the first ten Laguerre

- e | ' (3-3)

functions which are:



Ly(t) =27
L (6) =2y
L,(t) =2y i
L(t) =vz7.
L,(t) =2y
Le(t) =2y,
L6(t) *""/_2;
L (+) =2y
Lg(t) = =27
B (t) =27

7t (B-4a)
_ T
27t - 1} e (B-Lp)
27548 - 4 yt + 1} e‘f° (B-ke)
%73t3 672t + 67t - 1} A (B-ka)
%f‘th - %7% + 1272t -,87t + 1} &7t (B-'lke)
% 77t - 130 7t 4 1*30 733 - 207242 + 107t - 1] e 7F
r , (B—hf)
1% A8 - 8555 4 10yt - 83° 733 + 3072t2
- 1 (B-kg)
- 127t + 1} e 7%
[315 -0 B0 - Bl 205
oyt (B-ln)
-1+27't +lh7t-l]e.
2 88 6L 77 112 6,6 224 5.5 . 140 W W
[315 TIASTE AT S As TV Ty 7’°( )
B-4i
- g—é—l‘- 733 4 s56y%t2 - 167t + 1] e 7t
' 9.9 4 88 32 7.7 112 66 L 168 5.5
[1073.57 AT A T A 7""(1”
v - B-4
- 847%5# + 112731:3 - 727' t + 18yt - l} e 7t v



APPENDIX C

SOME RESULTS FOR THE WEIGHTING FUNCTION h(t_) |

The numericél fesults;as obtained for n(t,) by solving the inte-
gral equation (3-3) on an IEM 7090 digital computer are given in this
appendix. The»comblete set of tables as obtained foi the stationary
test cases. is reproduced in order to show the small oscillations in
h(ta) with mofe signifiéant digits than a graphical representation al-
16ws, Nevertheless, the corresﬁonding graphs are added. For the non-
stationary situafion, the resulting wéighting functions are presented
for the examples discussed in section 3.4 where three groups of time-
varying autocorrelation fﬁnctidnés were.eonsidered° In this case,‘hoﬁ_
ever, only the a, (k =0, 1, 2, ..., 9), the ééefficients of the series
expansion of h(ta) ih Laguerre'functians,xare gi#en in table fqrm. The
optimum weighting functi6n itself is onlytpfésented grafhically.

A1l tables are reproduced as they ﬁefé prepared by the IBM 7090
"(including text and scale'aesignatidns for the figures). The program-
ming of the. problem was_done in FORTRAN and the resulting tableé follow
the output SPecifications of this prog?amming ianguage. Table C-1 de-
fines»all»appearing variables with respect to the usualvnbtation
throughout this thesis. The‘neceésary'mathematical statements andvnumf

~ ber format. (when different) are also defined in this table.



~50-

TABLE C~1

FORTRAN VARIABLESs STATEMENTSs AND EXPONENTIAL NUMBER FORMAT

H(TAY) - 1ﬂt&)
R o : R .Rxx(t)T)

T

o+

CaBST  |g|

ABSTAU . |q],

Cx+yY o x+y

X on% Y

ABSF (X)

R

%

CEXPFIX) . €
SINF(X) - sinx
COSF(X) = - cosx

 3.1560452E-01  3.1560452 x 107

| =6451150848 00  -6.5115054 x 10°
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. TABLE C-2

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION -MEASUREMENT

SOLVED FOR THE WEIGHTING FUNCTION H(TA) EXPANDED IN LAGUERRE
FUNCTIONS+ WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED -
TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT

R ='ExPF (=ABSTAU)
‘EVALUATED AT T1 = 04000 WITHIN THE OBSERVATION TIME INTERVAL

(TA = 0e000¢ s0e9 5s000)

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS L (K}
~HAVING AN INVERSE TIME CONSTANT OF ‘08000

A(O) = 301560452E~01 FOR L(O)
A(1) = 1e1946575E 00 FOR L (1)
A{2) = 4¢3682929E 00 FOR L(2)
A(3) = 9¢1514664E 00 FOR L (3)
A(4) = 140639068E 01 FOR L(4)
A(5) = 348835135E 00 FOR L (S)
A(6) =2 ~6e5115054E 00 FOR L (6}
A(7) = =140454051E 01 FOR L (7)
A(B) = =642928B140E 00 FOR L (8)
A(9) = «1e5144896E 00 FOR L({9)



-V ._..

 10-3€959220° 1 . ooocew

‘= H ey
7 10-32961920T = H - -0002%% - .= VY1 £v
. 20=39v06566°6 - = H . .000T*% - = V1 2y
. 20=3LL0B068°6 = H - ."0000°% = VL 134
- 20=361LLEO06%*6 - = H . = .0006°€C = Vi - ov
10=3099€000°1 - = H _ 0008°*E = Vi 6€
- 10-~3228€S10°1 = H ‘000L°E = VL. - 8€ .
- 10=362c62€0°1 = H 0009 = VL LE
10~310€8060°* 1 = H - 000S°€ = V1 -4
10~36100490°T = H 000%*E = Vi =1
10~3€EX1080° T = H - ooogee - = Vi ve
10=~38509680°1 = H 0002%€ = ¥Vl _EE-
10=3€£902S60°L = H oootee = VL 2€
10~3€24%960°*1 = H 0000*'€ = Vi 1€
10-30421v60°T = H 00062 = VL o€
10~-32625880°1 - = H 0008*2 - = V1 62
10~-3€2L6080°%1 = H 000L*2 . = VL. 82
10~38SGETL0T .. = H .0009%2 = V.l L2
T 10=312LS190°1 - = H L 0006%2 = VL. ez
10-3L892250°1T = H 0002 = vi s2
10-302LEPVO* L. = H 000€°2 = Vi ve
10-3989€8E0°T. = H - .0002*2 =Vl €2
10~3¥6L0G€0°1 = H . . 0001*2 =Vl ez
10=30%L¥PEO® 1 = H £ .0000°2 = yi 12
10=3C66L9€0°T = H - . 0006°1l . .= Vi 02:
10-3CTPLILOCL. = H -~  0008°1 = V1~ 61
10-3LSH2640°T = H ~ 000L°l = VL. 8t
10=3L06¥8G0°T . = H 0009°1 = V1 L1
10-3959.890¢1 = H 000S°*1. = Vil 91
10~328006L0°1 = H . 000wel = VL st
10-38266L80°1 = H . 000€E°1 = vl 228
10~3291E¥60° T = H 00021 = Vi €1
10=3BLIES60%T = = H 0001l = VL. 2t
10=-3101€260°1 = H . 0000°*1 = Vi 11
10=3PHS6080°T = H . 0006°0 = Vi o1
10=31196190°*1 = H 0008°0 = V. 6
10-3668€LE0*T = H 000L°0 = VL. -
10~306E0¥10°1 = H 0009°0 = ¥l L
10~3006EL00%1 = = H . 000S°0 - = Vi - 9
10=30448L¥0° 1 = H .000%°0 = VLo s
10-3581¢061°*1 = H 000E*0 = Vi v
10-31SE¥62S°T = H 0002*0 = VL - €.
10-39552022°2 = H 00010 ~ = V1 2
10~3229L01G°€ = H e0 = Vvl 1

(VL)W ¥Od4 SINTWVA ONILINSIY

LNIWIHNSYIW NOILONNS NOILVI3¥N0D0LNY NV J0 HOMNT IHVNOS NVIW
IHL ONIZIWINIW NOILVNDI TIVYOILNI 3HL 40 NO1LNTIOS ILVWIXOHddY
(Q3aNN1LNOD)
2-> 378vL

.ﬂNmL A




TABLE C~2
(CONT INUED)

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

RESULTING VALUES FOR H{TA}

45  TA 101436130E=01

= 44000 H o=
46 TA = 45000 M = 1e243B896E=01
a7 - TA = 46000 H = 137TB1I29E=01
48 TA = 47000 H = 1e5494442E-01
49 TA = 4 .8000 H = 1e7634870E«01
50 TA = 49000 H = 200236644E-01
= 540000 H = 2+3342182E=01

51 - TA

FIGURE C=2

GRAPHICAL REPRESENTATION OF HITA)

140

065

H{TA)
TIMES
0450

=0s5 . ]
0.0 1.0 - 2.0 ' 300 480 5¢0

TA TIMES 1000
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 TABLE C-3

'L”;AppnoxxMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING  THE
‘,prEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

'fSOLVED FOR THE WEIGHTING FUNCTION H(TA) EXPANDED IN LAGUERREE°:;

NQFUNCTIONS. WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED
7O BE GIVEN: av THE FOLLOWING FORTRAN STATEMENT : -

EXPF(-ABSTAU) ¥ COSF(TAU)

,NNEVALUATED AT Tl = 00000 WITHIN THE OBSERVATION TIME INTERVALNN-
ST , (TA = 000000:0000 50000) S :

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS L(K’
: HAVING AN INVERSE TIME CONSTANT OF - 048000 :

"A(oa, ”3.69057895 onf'Fon Loy =

e =
AG1) = 10542376SE 00 FOR L(1)
A(2) = 5.0628045E 00  FOR L(2)
. A(3) = Be6303000E 00 FOR L(3) -
. Afa) =  4.8661839E 00 FOR L(4)
. A(B) © ~9489106B0E 00 FOR L(5)
L A(6) = ~294410959E 01 FOR L(6)
UAU7) B ~2e44811445E 01 FOR L(7)
7 CA(B) ® =12508087E 01 FOR L(B)
'a;,A(9;,s

~2¢7490088E 00 FOR L)
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 TABLE C=-3
(CONTINUED)

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

RESULTING VALUES FOR H(TA)

3¢2615209E~01

R ‘TA = Os H =
2 TA = 041000 H = 2.0228832E-~01
3 TA = 02000 H =  1e4106251E~01
4 TA = 03000 H = i 145572 3E~0Q1
85 “TA = 044000 H = 1e0605627E=~01
6 TA = 045000 H =  1¢0597920E~01
7 TA = 046000 H = 10914072E=01
-8 TA = 07000 H =  161295220E~01
9 TA = 048000 H = 11628366E=01
10 TA = 069000 H = 161877607E=01
11 TA = 10000 H = 1.2042161E=01
12 TA = 141000 H = 1 e2134430E-01
13 TA = 102000 H = 162168921E-01
14 " TA = 1.3000 H = 1 e2159879E=01
15 TA = 144000 H = 102118881E=01
16 : “TA = 1 «5000 H = 1205491 7E=~01
17 - TA m . 166000 H =  161973942E-01
18 TA = 17000 H = 1.1888569E~01
19 TA = 18000 H o= 1¢180260SE=01
20 TA = 149000 H = 1173C031E=~01
21 - TA = 2.0000 H =  161670527E-01
22 - TA m 21000 H = 101635199E~01
23 . TA m 242000 'H = 101624103E«01
24 TA m 243000 H 3 1:1644994E=01
28 - TA m= 244000 H= 11692141E-01
26 - TA ®m 245000 “H = 1s1765168E-01
27 @ TA = 26000 . H = 161858321E-013
28 " TA m . 27000 . H = 1e1952205E=01
29 TA 3 2.8000 H = 1 ¢2050961E~=01
- 30 . TA = 29000 " H.= . 1e2137356E-01
31 " TA = 30000 H = 1.2198181E=01
32 TA = 341000 H = 1:2230115E=01
a3 TA = - 302000 H = 12216406E=01
34 TA = 343000 H = 142163673E~01
-39  TA = 344000 " H o= 12066934E~01
36 TA = 345000 H = 1¢1925999E=-01
37 "~ TA =. 346000 H =  161751625E=01
38 - TA 8 367000 H = 1e1562127E=01
39  TA = 348000 H = 101376214E=-01
40 - TA = 349000 H = 1¢1211329€E-0}
41 , ‘TA = 40000 H = 1e1106860E~01
42 : TA = 441000 H = 11085289E-01
43 TA = 462000 " H = 141187846E-=01
44 TA = 443000 H a 1¢1446807E-01
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'TABLE C~3
{CONTINUED)

_  APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE
'_MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION ‘MEASUREMENT

RESULTING VALUES FOR H(TA)IV

161901 776E=01
1e2599736E=01
163567477E~01
1 ¢4847840E~01
106464587E«01
" 108442184E-01
240813426E~01

404000
445000
466000
447000 -
448000
449000
540000 -

45 S TA
<46 - TA
o470 o TA
.48 - TA
49 TA
50 . . TA

51 O TA

'IIIII]:IfII
[ T T T R I : |

FIGURE C-3

GRAPHICAL REPRESENTATION oF H(TA’

.:1’0 ;ﬁ

B a e a L
000 160 Be0 340 4e0 5.0

TA TIMES 14000



TABLE C=4
APPROXIMATE SOLUTION OF THE INTEGRAL EGQUATION NlNlMl‘21N¢ THE
MEAN SQUARE ERROR OF AN AUTOCGRRELATI_ON FUNC-'HON MEASUREMENT

'SOLVED FOR THE UEKGHT!NG FUNCTION H(TA’ EXPANDED IN LAGUERRE
FUNCTIONSs WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED
TO BE GXVEN BY THE FOLLOWING FORTRAN STATEMENT =~ - - :

" R-® tloU.ABSF((T+0.5‘TAU)/10-O )) * ExPF(-l.O’“ESF(TAU))

‘ EVALUAT&D AT T1 .= 0+000 WITHIN THE OBSERVATION TIME XNTERVAL
(TA = 0e4000¢ eoes 50000)

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTI0ONS L!K)
HAVING AN INVERSE TIME CONSTANT OF 190000

ACO) = 2.83571375-0!' Fon L(O)_
A1) = 12455B6SE. 00  FOR 1)
At2) = $Se5821312E 00 FOR L(2)
Al3) = 1e6234379E 01 FOR L13)
Afa) = 3e1756B14E 01 FOR L(4)
A(S) =  4e1316443E 01 FOR L(5)
A(6) = 34447354BE 01 FOR L(6)
ALT) ®  159156B0E€. 01 FOR L(7)
A(B) =  2¢1414945E 00 FOR L(8)
A(9) = -9.380S449E-01 FOR L(9)

FIGURE C=a

GRAPHICAL REPRESENTATION OF H(TA)

ioq - ; T . . . T

OeS

©owerayr B T ' E
Corimes PR . RNENEANE TH
" 1.00 i — ~a

~0es K : L] ‘ .
. Ce0 . fe0 240 - 3¢0 . 460 7 Be0

TA. TIMES 14000

TABLE C=5

APPRGXXMATE SOLUTION. OF THE INTEGRAL EQUATION MINIMIZING TH:

- MEAN SOUARE ERROR - OF ‘AN AUTOCORRELATIGN FUNCY‘VN MEASUQEHENT

SOLVED FOR THE WEIGHTXNG FUNCTIGN H(TA) EXPANDED iN LAGUERQ’

FUNCTIONS« WHEN THE TRUE AUTOCORRELATION FUNCTION 18 ASSUMED

TC BE GIVEN 8Y THE FOLLOUING FOQTRAN STAT:MENT

»R = (luO‘AESF((T+O.S*TAU)/;O-O ')) ’ :xPF(-lcO*ABSF(TAU))

EVALUATED AT T1 = loOOO WITHIN THE OBSERVAT]ON TIME )NTERV&L
S (TA = 0-0000 seer  Se000)

RESULTING COEFFICIENTS FOR THE LAGLEQQ- FuNCTlGN. Y )
‘HAVING AN- xNvERSE .XME CONSTANT OF 1.0000 ’

A(O) = 3-2&60424;-01 FER.LIC)
AC1) = [«SPI1035E GO FOR L1113}
. AL2) = .6+206121SE 00 FOR LI(2)-
TAL3). = 1e8401C6TE. 01  FOR L (3)
(Al&) = 2409971368 21 FOCR L&)
CAUS) =0 1e7683338E 010 FOR LIS}
ALST = 4496468258 00 FCR L (&)
A(T) B =6e02TE0S3E 00 FOR LT
A{8) = —=6+BBLBIPTE QO .FCR tL{B8Y.
=

AL9) =2¢4477375E 00 FOR L9}

FlGuRE C—S

GRAPHICAL RE’RESENAA IcN OF H(TA)

HiTA) - fortd - st R EABRERS
TIMES it - b :
1400 i i

) ;0’5 ] 1 - 111 ’li 1 ?Jix it
T0e0 . 1e0 2eo . 360 4.0 . 8.8

TA TIMES  [4000




'vfaaue c=6

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE -

MEAN SQUARE ERROR -OF ‘&N AUTOCORRELATXON FUNCTION MEASUREMENT

SOLVED FOR THE UEIGHT!NG FUNCTIDN HETA) EXPANDED IN "LAGUERRE |
FUNCTIONS » WHEN. THE TRUE AUTOCORRELATION FUNCTION 1S ASSUMED:
TO BE GIVEN BY THE FOLLOUIING FORTRAN - STATEMENT

R .= (3 oD—ABSF( (T+005*TAU 371060 3y ® EXPF (=1+0%ABSF(TAU))

EVALUATED AT F1 = 24000 WITHIN THE OBSERVATION TIME INTERVAL
- ’”ﬁ (TA = 04000+ ‘wses 5+000)

RESUI.TING COEFF!CIENTS FOR THE LAGUERRE FUNCTIONS, L(K)
HAVING AN INVERSE TIME CONSTANT OF 140000 - =~

”VHA(ON'=5”2044175745-04 FOR L(0)
TALTY) = 9s0095128E~01 FOR L(1)
A(2) = 37293214€ 00 FOR L(2)
AL3) = '9+56655TBE 00 FOR L(3)
AC4Y =01 | FOR L.(4)
A(S) = 1.7965023E 03 FOR L(S)
Af{6) = 1.17d2157E 01 FOR L(6)
AT =  2e6481322E 00 FOR L(7)
CALB) % =1e6595899E 00 - FOR L(8)

A(G;ul'-zobqeooazz 00 FOR L(9)

" FIGURE C=6 -

‘GRAPHICAL REPRESENTATION OF H(TA)

100 g

“iTa) |
TIMES
100 .

Q.0

—os BETEHEHETHEHRE T |
Gel : lgo . 200 40 400 5_60

 TATIMES 14000

TIMES  [EbE ‘ . : o 2 i Bk

TABLE C=7

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE

MEAN SOUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

: SOLVED FOR -THE 'WEIGHTING FUNCTION H(TA) EXPANDED IN LAGUERRE

FUNCTIONS ¢+ WHEN THE TRUE AUTOCORRELATION FUNCTION 1S ASSUMED
TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT

R & (1 60=ABSF (({T+0s5¥TAU) /1040 1) % EXPF (-1:0%ABSF (TAU))

EVALUATED AT T1 = S.ooo WITHIN THE OBSERVATION TINME INTERVEL
. ATA = 0e000+ sees Se000)

RESULTING COEFFlClENTS FOGR THE LAGUERRE FUNCTIONS L(K)
HAVING AN INVERSE TlME CONSTANT OF 1.000C

A(OTv= 1+$819326E-01 FOR L (0}
A(l) =  Se61097S8E~-01. FOR L(1l)
A(2) .= 206498452E 00 . FOR L(2)
A(3) = Be0942253E 00 FOR L(3)
A(4) = 146766138E 01 FOR L t4)
A(S) = 243060006E 01 FOR L(S)
Al6) = 240642213E 01 FOR L&)
RLT7)Y = 10677947E. .01 FOR L(7).
A(B) = 2.23752239E 00. FOR L(8)
A(9) = =3¢1312839E~-01 . FOR L(9)

" FIGURE C-1

GRAPHICAL REPRESENTATION OF H(TA)

D5

niTA) . BT et - 3 e

1,00 § " = NEEEEEEn

13
1
1

046

j-"OQS ahanoidninls - -
~ 0e0 . 140 240 3.0 4,0 © Se0

TA TIMES 1000

ﬂgg_



TABLE C+B

APPROXIMATE SOLUTION OF THE INTEGRAL . EGUATION MENIMIZING THE

MEAN SQUARE ERROR OF ‘AN AUTOCORRELATION FUNCTION MEASUREMENT

SOLVED FOR THE. wEIGHTING FUNCTION H{TAY EXPANDED IN LAGUERRE
FUNCTIONSs WHEN THE TRUE AUT OCORRELAT ION FUNCTION IS ASSUMED
TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT

R = (1mO—ABSF((TfOoS*TAU)/IO-O’v)) *. EXPF (= loO*ABSF(TAU))

EVALUATED AT T1.= 40000 WITHIN THEvOBSEQVATION TIME INTERVAL
) (TA = 060004 soea 54000

RESULT ING COEFFICIENTS FOR THE LAGUERRE FUNGTLCNS LK)
HAV-ING "AN INVERSE TIME. CONSTANT OF - 140000

A(O)
AL )

'1-09004305 -1 FOR L (03
“242359981E- 00, FOR L(123)

AC2) = =T7+5285708E 00 FOR .L(Z)

S AL3) = ~141562772E 01 FOR L(3).:
Al4) = —1e3751622E 00 FOR L(4)
A(S) = -2e6549732E 01 FOR L (5. -
A(6)Y = Se11162B3E 01 FOR L(6)

A7) = 4+8310114E 01 "FOR. L (7).
A(B) = 2e4706832E 01 . FOR L (8)
A(9) 5 5e5821851E 00  FOR L (91

_ FIGURE C-8&

_GRAPHICAL REPRESENTATION OF H(TA)

HITA)Y
TIMES . |
1400

it |
1
i
|

=0s5. ' k ' . - - o e
00 - 1«0 - . 260 . JeQ ] 440 SeQ

TA TIMES' 12000

TABLE C-9

APPROXIMATE SOLUTION OF THE INTEGRAL "EQUATION MINIMIZING THE
MEAN SOUAQE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

SOLVED FOR THE WEIGHTING FUNCTION H(TA) EXFANDED IN LAGUERRE
FUNCTIONS v WHEN THE TRUE AUTOCORRELATION FUNCTION 1S ASSUMED

' TO BE GIVEN: BY THE -FOLLOWING FORTRAN . STATEMENT

R = (1.0~ABSF((T+O¢5*TAU)/10-O )) * EXPF (~1+0%ABSF(TAU))

EVALUATED AT Tl = 54000 WITHIN THE OBSERVATION TIME INTERVAL
. (TA = 0.4000+ sees 5000

RESULTING;COEFFTCIENTS,FOR THE LAGUERRE FUNCTIONS L (K}
HAVING AN INVERSE TIME CONSTANT OF . 10000

1 7553805E~01  FOR L (0)

A(O) =

A1} = 2e6120899E-01  FOR Lt1)
"A(2) = 1e1382175E 00 FOR L(2)
“A(3) =. 3e3505098E 00 "FOR L (3}
At4) .= 6+9447904E 00  FOR L(4)
A(5) = 95015571E 00 . FOR L(5)
A(6) = - B8e4809418E 00 FOR L (6)
A(7) = 4e3653911E- 00 FOR L(7)
AtB) = 9.2593682E-01 FOR L (8)
A(9) = =1+2034984E-01 FOR L(9)

FIGURE C~9

GRAPHICAL - REPRESENTATION OF H(TA)

H(TAY - v +- :
Times Bk nE NG RN : > N
100 = ;

LE .

’-vOo5 . '_ . _. - X . - !
00 - 7 10O 200 . 360 . 40 Sel

TA TIMES 14000

=BG -



APPROX IMAT

R'=

EVALUATED AT T1 = 0-000 wlTHl

'-A(O).é' 40 9277425E=01
KLy

LUAC3)

E.TABLE c- ~1G-

DOLUTION OF THE INTEGRA EQUATION MI IMIZING TFHE,
MEAN. SQUARE ERROR*OF AN

VAUTOC RELATION FUNCTION MEASUREMENT

;(TA _uo.ooo.

'vIME CONSTANT OF O‘BOOOV

FOR' L(oT'

2e7126286E-01""
1.92405885’90,~Fop
‘-7.52345415]60-;EOR
vl o5TOSIALE. .01 FOR .
g-1.79985355,0r,fﬁbn

K21

A4}
KOSy

AL6) = =B e4tBZBOEEE 700, "FOR .

AT 16621083 00... FOR L

ALB) =. . 2e3025208E 00, FOR L(E
SFOR™ L

ALS) = TsE8525869E%

FIGURE C 5O -

,GRAPHXCALAREPRESENTATION OFFH(TA).‘

M(TAS ]

TA TIMES 14000

T{R‘:*OmE*EXPF(9,

TABLE C-ll

ijAPPROXIMATE SOLUTION OF STHE INTEGRAL EQUATKON MXNXMIZING THE -
COMEAN:: SQUA E ERROR OF AN AUTOCORRELATION FUNCTKON MEASUREMENT

'SOLVED FOR THE WEIGHTlNG FUNCTION H(TA) EXPANDED IN LAGUERRE‘Y
FUNCTIONS% WHEN THE TRUE - AUTOCORRELATION FUNCTKON 18 ASSUMED'
:3TO BE GIVEN BY. THE e LOWING FORTRAN STATEMENT

BSTAU)*(COSFLZ@O*T+TAU)+COSF(TAU))‘

EVALUATED AT Tl _1-000 WAITHIN' THE OBSERVATION TIME INTERVAL
(TA uO-OOOv .t 5-000)"

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS LK)
HAVING AN INVERSE TIME CONSTANT oF 0.8000 :

'VA(O).‘

: 1e4601677E=01 FOR L(O)“
AL

-2%0613372E-01 . FOR L (1)

AL 2) 46 0S3O71LLE~OL. "FOR L (2
A3 3426641858E~01.. FOR. L3 ) -
) 98 FOR L(&4) - s
5): 018 FOR.L(5) :
AG6D ~3.43522630E~01 . ‘FOR LA&)

249529682E=01 . FOR L.(7)

20.2433019E=01 . FOR L (8)

 ALG) = =1 eR2TETTIE~CL “FOR L(9),
FIGURE C=11

GRAPHICAL. REPRESENTATIONOF -H{TA)

-()9m



TABLE C~-12 .

'—APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION. MINIMIZING THE'
_MEAN SOUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

‘TSOLVED FOR THE WEIGHTING FUNCTION W(TA) EXPANDED IN LAGUERRE

FUNCTIONS » WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED»_

”TO BE GIVEN .BY THE FOLLOWING FORTRAN STATEMENT
R = -S*EXPF(-ABSTAU)*(COSF(2-0*T+TAU)+C05F(TAU))

EVALUATED AT TI: = 2000 ‘WITHIN THE OBSERVATION TIME INTERVAL
Co : s (TA = 00004 eees 54000

RESULT ING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS L (K)
MAVING AN INVERSE TIME ‘CONSTANT" OF 08000

ALO)

= 6+2119632E-0) - FOR L(O)
CA(L) = =2e3774191E-01 FOR L (1)
‘A(2) = 4e1788879E-01 FOR L(2)
CA(3). = 1e2730863E 00 FOR L (33
A4y = 1e93BB16BE 00  FOR L(4)
CA(Sy =  6e8B296146E=01 .FOR L(5)
Al6) = =2+4919308E Q0  FOR L(6)
A(7) = =2.423B864E 00 FOR LI(7Y
A(B) = =1+1652991E~01 'FOR L(8)
AL9) =

9-16728155~01 FOR L (9}

FIGURE C=12

.GRAPHICAL REPRESENTATION OF H(TA)

HITAS
TIMES . 1
2400 i

=0e5

TA TIMES 16000

TABLE C-13

APPROXIMATE 'SOLUTION .OF THE INTEGRAL EQUATION MINIMIZING THE
MEAN SQUARE ERROR OF . AN AUTOCORRELATION FUNCTION MEASUREMENT

SOLVED FOR THéwWELGHTING‘FUNCTfON MITA) EXPANDED IN LAGUERRE -

FUNCTIONS+ WHEN THE TRUE AUTQCORRELATION FUNCTION 15 ASSUMED
TO_BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT

'R = 0.+S*EXPF (~ABSTAU)* (COSF (260¥T+TAU)+COSF (TAU) )

EVALUATED AT Tk = 3-000 WITHIN. THE OBSERVATION TIME INTERVAL_

{TA = 0000+ esess 54000}

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS L (K)
HAVING AN _ INVERSE TIME CONSTANT OF 08000

A(Q) = S5e4687141E-01 FOR L0}
A(l1) = 38548B26E-01  FOR L(1)
A(2) = =9¢305Z2193E-01 FOR L(2)}
A(3} = -38180895E 00 FOR L(3)
Al4) = «945489272E 00 FOR L (4}
A(S) = =10919385E 01 FOR L(5)
Al6) ‘= 23088270E-01 FOR L (&)
A(7) = 12791865E 01 FOR L(7)
A(B) = 12756815E 01 FOR L(8)
CA(9) = 441060761E 00 FOR L(9)

FIGURE C=-13

GRAPHICAL REPRESENTATION OF H(TA)
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RNt TABLE'Cpra

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATIONYMINIMIZING THE

MEAN. SQUARE ERROR oF AN LAUTOCORRELAT ION. FUNCTION MEASUREMENT»

SOLVED. FOR THE WEIGHTING FUNCTION H(TA) EXPANDED IN LAGUERRE

FUNCTIONSs WHEN.THE "TRIUE AUTOCORRELATION FUNCTION IS. ASSUMED

TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT

R = OoS*EXPFG—ABSTAUT*ICOSFLZJO*T+TAU)+COSF(TAU1)

EVALUATED AT TI'F 4.000 WlTHlN THE OBSERVATION TIME [NTERVAL

TR = 0.0000 L] S5+ 0009

RESULTING CDEFFICIENTS FOR THE - LAGUERRE FUNCTIONS LK)
HAVING AN.: INVERSE TIME CONSTANT. OF 0-8000

AtOY

= k3.32049695-o1 FOR L0}

AlLT) = ‘1eB7662SBE 00 FOR L{1)
A(2) =  S5e4674563E 00 . FOR L2
A(3) = 11200368E 01 - FOR L {(3)
AC4) = 1e3234342E 01 FOR L (4)
A(S) = - 5e6046904E 00 FOR LSV
A(6) = ~642998371E 00 FOR L(6)"
“A(7) ‘= -1e1488023E 01 FOR L(7)
“A(B) = -7+872}4B7E 00 FOR L(8)

A(S) -243531046E 00 FOR L(9) .

FLGURE C=14

GRAPHICAL'REPRESENTATION OF  H(TA)

JHiTAY
TIMES
1000

060 " 1e0 - 26D 380 440 Be0
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TABLE C-15

APRROXIMATEYSOLUTPONfOF THE INTEGRALVEGUATION MINEMIZING THE'

MEAN SQUARE ERROR :0F AN AUTCCORRELATION FUNCTION MEASUREMENT

 SOLVED FOR THE WEIGHTING FUNCTION H{TA) EXPANDED IN LAGUERRE
(FUNCTIONS+ WHEN THE TRUE AUTOCORRELATION FUNCTION 1S ASSUMED

TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT

R = OoS*EXPF(~ABSTAU)*(COSF(2.0*T+TAU)*COSF(TAUT)

“EVALUATED AT T1'= 5-000 WITHIN TRHE OBSERVATION TIME INIERVAL

(TA 0+000 sees 5.000)

RESULTING COEFFICIENTS FOR THE.- LAGUERR: FUNCTIONS L (K)
HAVING. AN INVERSE TIME CONSTANT OF 08000 =

A(O)‘=’ 3.34054235 oz» FOR L (0}
Al1) ‘= =3+7556396E-01 FOR L1}
A(2). = ~4+5662506E-01 * FOR L(2)
A(3) '5-=13123676E.00 . FOR L{3)

C A4y = ~1e5819117E 00 - FOR' L (4)
TAES) = =1+5657655E 00 [ FOR L'(5)
ALEY = —Be6T767368E~01. . FOR L (&)
A7) = 4e1061714E-01 FOR L{(7)
A(8) = 1s1430570E 00 - FOR .L(8)
BA(9) =

6:45601937E-01 FOR L(9%)

FIGURE C=15

GRAPHICAL 'REPRESENTATION OF H(TA)
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