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ABSTRACT
Berndt, Helmut, Fh.D.. Purdue University, June 1963- Estimation of 

Time-Varying Correlation Functions. Major Professor: George R. Cooper.

The need for estimating the auto- or crosscorrelation functions of 

nonstationary random processes frequently arises in communication and 

self-adaptive systems. In most situations only one sample function can 
he observed over finite time. It is the purpose of this work to estab­
lish a firm theoretical basis for such a measurement of time-varying cor­

relation functions, and the emphasis here is on suitable estimation pro­

cedures rather than specific measurement techniques.

Second order stochastic processes are used as a mathematical model. 

The minimum mean square error between a weighted time average and the 
true (ensemble average) correlation function is investigated. This pro­

cedure leads to an optimum weighting function which can be obtained nu­
merically under the Gaussian assumption. The results of such an analysis 

Justify the much simpler finite integration-time average as an estimate.
By employing a bilinear approximation in time t and delay t to the 

true correlation function, the mean value and variance of the simple 

finite-time average are found. A minimum upper bound on the mean square 

error is used as a criterion for an optimum observation time of such an 

estimate. Explicit results, however, require again the Gaussian assump­

tion.
These approaches are based mainly on a strict error analysis. A more 

direct approach, that leads to approximants which are random variables



■with unknown properties, is also outlined. The restrictions and diffi­
culties are discussed.

Examples to support the proposed estimation procedures are presented 

and explicit results appear mostly in graphical form.



CHAPTER 1 :

INTRODUCTION

With the rapid advances in space technology and automation, the 

design of time-varying systems such as space communication or observation 

and adaptive control systems became a great challenge to present day 

engineering. A statistical description of the unwantedrandom disturb­

ances was already essential for proper design of any modern, reliable, 

and efficient time-invariant system. In the time-varying case even more 
emphasis must be placed on the statistical parameters of the npndeter- 

ministic fluctuations, if the design problem is to be solved successful­
ly. The term '’random noise" is often used to describe such fluctuations 

and this terminology will be followed here.

The theory of describing random noise as a stochastic process based 
on the laws of probability theory has been well developed for the case 

of stationary random processes. It allows us to estimate the statisti­
cal parameters of the process which are of engineering interest [10] and 
there has been much emphasis in the late 1940’s and through the 1950’s 
on developing measuring devices for estimating correlation functions and 
spectral densities. The literature on these subjects is extensive, e.g., 

[2], [6], [25], to cite some of the earlier work, and applications in 
the design of time-invariant systems are numerous.

While, in general, an analysis of stationary random noise leads to 

satisfactory and sufficient results for the design of time-invariant
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systeins, the time-varying situation, "because of its dynamic nature/ re­

quires the consideration of nonstationary random processes* i.e., those 

whose probability laws change with time.
i£t present/ time-varying system design is still largely "based upon 

assumptions of specific noise characteristics, simply "because the analy­

sis of nonstationary stochastic processes and the estimation of their 

statistical parameters as time functions are not developed sufficiently 

to yield applicable results. It is hoped that this work might help fill 

this gap. In the general situation of nonstationary noise a much higher 

degree of difficulty is encountered than in the stationary case. A 

mathematical theory, when existing, is still fragmentary and limited to 

either specific classes of nonstationary stochastic processes or is. so 

general that it is not readily applied to develop practical measuring 

techniques for the estimation of desired statistical parameters.
For this reason, hardly any work has "been done in this area and 

we are also forced to limit ourselves to just a specific sub-class of 

nonstationary random processes or noise signals. Aside from technical 
requirements, we have to rely upon some mathematical properties of the 

stochastic processes considered in order to derive useful results. It 
is fortunate that the class of random processes chosen is large enough 

to include the most likely situations in communications or control 

systems.



CHAPTER 2

ESTIMATION PROBLEM

The need, for estimating the auto- or crosscorrelation functions of 

nonstationary random processes frequently arises in communication and 
self-adaptive systems. Among the statistical parameters of unwanted dis­

turbances, correlation functions are by far the most important quantity 

for design purposes, since they are necessary for system optimization, 

prediction and signal detection, signal-to-noise ratio, etc. [1] [20].

2.1 Problem Statement ' : :

An estimation of auto- qrcrosscorralation functions of nonstation­

ary random processes is desired. In most situations only one sample 

function of the process can be observed over a finite time interval,

Thus, the problem has to be considered under this technical requirement.

It is assumed that these correlation functions always exist, and 
this restriction corresponds to the mathematical assumption of a second 
order random process, i.e., One with finite second moments. The first 

moment, or mean value, of such a process is considered to be identically 
zero. The reason for this simplifying assumption is twofold. In many 

applications it is not necessary to know the mean value, or it is known
that the mean is zero because of physical or technical design features.

oIt follows, therefore, that the mean m (t) and variance d (t) of a
> . X ■' 1 ...

random process are here: ■ . - - n
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m (t) = E[x(t)] = 0, (2-1)x ■

d?(t) = E[x2(t)] < », (2-2)
«fCV

where E indicates the mathematical expectation. The autocorrelation

function may he denoted hy
^(t^tg) = E[x(tx) x(tg)], (2-3)

and, if two processes x(t) and y(t) are considered, there exist two 

crosscorrelation functions dependent on the time instants t^ and tg:
^(•bl^tg) = E[x(tx) y(tg)]; (2-4)

^yx^l'V = ^ty^) x(tg)]. (2-5)

The emphasis is on the estimation of autocorrelation functions. 

When permissible, however, the approach will he extended to include 

crosscorrelation functions. In this case the function symbol will he 

used without subscripts and the term correlation function refers to ei­

ther one or both types of correlation functions.

2.2 Definitions
From a technical viewpoint, it is desirable to introduce a delay 

variable T, t > 6, together with a single time variable t. This leads 
to two more definitions of correlation functions, and both will have to 

be used.

First, one defines
t = tv (2-6)

_ T = t-j-tg, (2-7)

such that the autocorrelation function becomes
R (t,T) = E[x(t) x(t-T)], (2-8)



and the erosseorrelation functions are
E (t,r) = E[x(t) y(t-T)]; (2-9)

IL-iVO = E[y(t) x(t-T)].. (2-1©)yA i, ^ ■ : . ,;-
This definition is advantageous, since in this form the correlation fane-

-5-

on past values of x(t)and

//

//

Sketch of aa autocorrelation function 7R, (t,,t„)
in t, and t„

However, autocorrelation functions possess the so-called Hermitian 
property [11] [22] -whose significance, in the ease of real-valued sto­
chastic processes, is symmetry in t^ and tg. This behavior is demonstra­

ted in figure 2-1 for an arbitrary autocorrelation function. It means 

that
^{^1,^) ^ l[x(ti) x(t2)] = E[x(t2) x(ti)] = \x(t2>t1)*. (2-11)

This property is. signifleant as well as useful and one would like to use



a notation that expresses it simply, while still using the delay variable 

t. Writing the autocorrelation function as

& (t,t) = E[x(t+|) x(t-|)],
XX

(2-12)
one has

R (t,-r) « S (t,-T) xxv 9 . xx 9 9
(2-13)

as the Hermitian property. In this second definition, the midpoint is

(2-1%). tl+t2 
t = —x ,

and the spacing is
T = VV (2-7)

as previously. For erosscorrelation functions such a definition has no

These different definitions are related by the following identities. 

They are written for the general case and apply to auto- as well as 

erosscorrelation functions. ,

^(t^tg) -■ aft-W - VV (2-15)

■*(t,t-T). = R(t,-r) = R(t-|,T) (2-16)

= R(t+|,r) = S(t,r) (2-17)

It would be desirable to use only one definition throughout this thesis. 
Unfortunately, however, R(t,t) offers some important notational advan­

tages, while R(t,t) is the more sensible definition of a correlation 

function from an engineering viewpoint. It is, therefore, in the inter­

est of a clearer presentation, to use both forms side by side. The 

transition from one definition to the other is easily achieved by the 
identities stated above. When possible, the use of R(t,r) is preferred.
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2,3 Reasonable Approxlmants

Based on the time-varying nature of the random process, other engi­

neering requirements arise. It has already "been stated that only one 

sample function is usually available for examination over a time interval 

1. therefore, any estimation scheme must be adapted to this restriction. 

Furthermore, the correlation function at any desired observation point to
should be known as soon after t as possible,

thus, it is assumed that a sample function x(t) - using the same 

symbol for the stochastic process as for a particular sample function - 
is given over an interval of at least length T (or the longest possible 

period © over which data can be obtained, T « ©), this interval con­

tains, in general, only past values including the observation point t, o
at the end of that time period. If the observation point is chosen to 

be in the middle of the observation interval, it will be denoted by 

Since t0 and 6 refer to an arbitrary time Origin inside or outside the 
interval, the frame of reference may easily be shifted to an interval 
[-T,0]. These assumptions and definitions are illustrated by figure 2-2.

The problem, as stated, is to estimate R^t^r) from past values 
of x(t)» Clearly, the only reasonable operations which can be performed 

on this data result in Some sort of time average within the given inter­
val of observation [4],

While avoiding any discussion of ergodie properties [12] (13] and
specific classes of nonstationary second order processes [3] [IT], the

ergodic situation, although invalid for the general honstationary case,

suggests approximants for the desired correlation function R (t,T) whichxx .
are of the form,
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®R (t ,x,T) = | fx(t) x(t-T) dt, (2-18)
XX O 4- \J

t -T

gee figure 2-2. Equation (2-18) can also be writtenevaluated at t

- T -

REFERENCE
TIME

7 »

TIMEt

Figure 2-2
Given sample function x(t)

Ihe observation interval T way possibly be determined to be some opti­

mum value T so that a specific error criterion is satisfied, 
o

For R (t ,t) the following approximant would be appropriate; 
xx o

•a§- (t >1) xx o

to
i x(t-g) dt
t -T O
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This form is suggested "by eq. (2-12), hut violates the assumption that 

only past values are available for the estimation, where t is thepre- 
sent. Either § ■ (tyf)> whicl} also depends on future values, is estimated

XX

only at t -5 instead of t- ,;or the restrictions on the observation inter-
Q 4 O

val must be relaxed. It is precisely for this reason that the form 
R (t,t) is preferred technically. Yet, when it becomes necessary to use 

(t,T), the observation interval of length T will be shifted to the re- 
gion [-T+|,|j and the time tQ+| might then be regarded as the present. 

TMs difference in definitions will be understood. Equation (2-20) can 

also be written
^(t0>T,T) . | Jx(m^) ^ (2-2i)

■ -T
The assumption of such approximant s is a reasonable extension from 

the ergodic case to the slowly time-varying case. Yet, without antici­

pating certain results, such an approximant has to be considered as too 
specific. A more general approach can be taken, by multiplying the inte­
grand of (2-19) by an appropriate weighting function h(t,T), where T is

now a parameter, and the following estimate formed!
0

aRxx(to,T,h) = Jh(t,T) x(t+tQ) x(t+tQ-T) dt (2-22)
-00

The approximant (2-19) is the special case in which, for example,

h(t,T) = |(u(t-T) - u(t)], (2-23)

with
r 1 for t > 0,u(t) = 4 (2-24)
4 0 for t < 0.

In this particular situation, h(t,T) is the finite-time integrator and
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is referred to as the uniform weighting function h^(t,T). An expression

variables appear in the limits of integration. The main objective is, 

however, to weight the values of the single sample function in such a way 
over T that the desired ensemble average at tQ, over all sample functions, 

is best resembled hy this weighted time average.

2.4 Error Considerations
With an emphasis on estimation procedures which are suitable for 

practical measuring techniques, the behavior of the mean and of the vari­

ance of the approximant are of interest. In particular, the mean square 
error of the approximant is most important. In the stationary situation 
the mean of an approximant according to (2-19) is the true value. There­

fore, the variance and mean square error are identical and they vanish 

for T -» 00 [10]. Here, however, T should be as short as possible, in 
general, since the mean of (2-19) yields a time averaged autocorrelation 

function in the nonstationary situation. The mean Value of the more gen­
eral approximant (2-22) is

analogous to (2-22) could, of course, be formed from ^®xx(t, t , T ) ■>

One of the advantages of such an approximant'is that none of the

0
h(t,T) R^t+t^T) dt, (2-25)

and the variance is

4 = E[X*(to’T'*‘» ^tVc<VT,h)]

0 0
h(ta,T) h(VT) 4(VVVt) ■fttb 4ta (3'26)

12

-00
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2where U „(t ,t. ,t ,t) stands for the fourth mixed moments
JLX. cl D O

4c(WVt) = sWvV x(VVt) x(Vto) x(Wt)]
(2-27)

Since the mean is not the true value, the variance differs from the 

mean square error of the estimate. The latter is given by

s2(R,aR) = E (Kxx(Vt) - \x(Vr’h»2

0 0
h(VT) h(VT) 4c(VVVt) dtb dta

■ o
- z*yJ~0’x) y‘V> at

(2-28)

A constraint forcing the mean of the estimate to Tpe the true value, eq. 
(2-25), would impose a restriction on h(t,T) as well as on R (t,ir) which 

is too strong. Hence, only a minimization of the mean square error 
s2(R,aR) can he employed to arrive at an optimum weighting function.
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CHAPTER 3

OPTIMUM WEIGHTING FUNCTION

In this chapter, the best or optimum estimate with respect to the 

tut tv!myrm mean square error criterion will "be considered. The mean square 

error of an approximant to the desired correlation function was previ­
ously defined. Standard minimization techniques lead to a condition for 

an optimum, weighting function.

2.1 Integral Equation for the Optimum Weighting Function
From the definition of the mean square error, eq. (2-28), of an

approximant according to eq. (2-22), the following relationship can he

obtained by taking the first variation:
0 0 .

6s(a,ait)y2 f

' 0 (3-3)
-aiCV*?. jfav^VVVO **

In deriving (3-l), use was made of the symmetry of the fourth mixed mo­

ment with respect to t and t, . Setting the first variation to zero8* D
yields the desired condition for the minimum mean square error.

» 0
0 0

0.. 2 4tb
-CO

R (-fc ,T} R (t +*fc >T) xxv V * xxv a o> /

(3-2)
at
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Since the integral (3-2) has to vanish for all 5h(t ,T), the
Si

itself must vanish; thus

■■ 0 ' .
yT) ^vw*) att • sSx(vr) yvvtJ'°> (3-3)

-OQ

for all t , t e (-»,0).8» Si
The h(ta,T) which satisfies this first order integral equation of

Fredholm type is the optimum weighting function h (t ,T) for time t and
. 0 O

lag t, and it is the one which minimizes the mean square error.

3.3 numerical Solution of the Integral Equation
This linear integral equation for h(t&,T) is indeed very similar to 

the Wiener - Hopf equation [11] in prediction theory. Unfortunately, the 

various elegant methods for a direct solution of this equation cannot he 

applied in this nonstationary situation. Of course, a solution in series 

form, in terms of the eigenvalues and eigenfunctions of the kernel, is 
always possible [8]. The condition, that correlation functions as well 

as the fourth mixed moment are pf integrahle square, is implied in the 

basic definitions. However, finding these characteristic functions and 
values imposes difficulties. Numerical iteration schemes [15] have to he 
applied and certain problems of accuracy and convergence arise. An imme­
diate, approximate numerical solution is much more feasible.

The method chosen is that of undetermined coefficients or collocation 
[15]. The weighting function h(t ) = h(t ,T) is approximated by3- ■ 61 . •

(3-h)
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where the (t ) are n suitably chosen functions. The coefficients a, 

could he determined from a set of linear equations, if the integration in 

(3-3) is replaced hy a weighted sum. But instead of attempting a collo­

cation at specific points, the a. are evaluated in sUch a manner that the 

resulting weighting function is a least square approximation to the true 

solution. The reasons for this approach and its advantages for numerical
analysis are numerous [16]. Hence, the unknown coefficients a^ satisfying 

the least square error criterion,

-<» , -00 k=l

have to he found [ 15-]. Standard.minimization procedures lead to n inte­

gral equations. jEy using a numerical integration scheme, a system of n 

linear algebraic equations can he solved instead. Matrix notation makes 

this approach well suited for the use of digital computer methods in or­

der to proceed to an actual, least square solution, of the integral equa­
tion (3-3)-

This numerical solution procedure was programmed for an IBM 7090 
computer. As a matter of convenience in evaluating and handling the var­
ious matrices, an observation interval [Q,T] with positive tame: was used 

instead of [-T,0] as in the theoretical considerations of this thesis.

It is for this reason that tables and figures dealing with optimum 
weighting functions h(t ) have a positive time scale for t and the oh- 

nervation point is at the beginning of the interval. Replacing t_ by

-t brings the figures and tables into agreement with the theory. Since 61
the tables were printed directly by the computer, it would have introduced



a certain degree of ambiguity to present the illustrations differently. 

3.3 Assumptions and Tests

In order to proceed to explicit results, it is not only necessary 

to choose autocorrelation functions of interest, hut the corresponding 

fourth product moment must he known. Only for a Gaussian stochastic pro­
cess is the knowledge of the autocorrelation function sufficient and in 

that case the fourth mixed moment is given hy

. + VVVVV EXx(V'VT'V'tt>)

' Wl) w,J-

It is an important property of autocorrelation functions that there 

is always a Gaussian process having the same autocorrelation function as 

the process under consideration [22], Then it is possible to obtain re­
sults for h(t ) by substituting the equivalent Gaussian process. From

a

U comparison with information theoretical concepts, it is felt that this 
procedure may lead, in general, to an upper bound on the mean square 

error. But neither a sufficient proof nor a counter example to this con­
jecture has teen found.

For the series expansion to the weighting function, eq. (3-t), the 
first 10 orthonormal Laguerre functions were used after extensive tests 
with the following stationary autocorrelation functions!

R-Jt) = e“alTI (3-6)

J^(f) = e~^TLcos x (3-7)

These Laguerre functions.are an orthonormalized version of the Laguerre

-15-
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polynomials. Their important properties and the numerical expressions 
(from Oth through 9th order) are given explicitly in appendix B.

In a stationary situation, e.g., the cases above, one would expect 

a finite time integrator for the optimum weighting function, i.e., uni­
form weight, at first sight, However, it can be shown that such a solu­
tion does not satisfy the integral equation (3-t) for any finite T (ex­
cept in degenerate eases), Only an infinite integration time leads to 

the familiar result. Actual optimum weighting functions, which were ob­
tained numerically for (3-6), are given in figures 3~1 and 3-2« These 

graphs are sealed differently to demonstrate better the differences and 
fluctuations caused by different choices for 1/7, the time constant of 
the Laguerre functions (see appendix B). Tables, together with a graph­

ical representation of h(t ), may also be found in appendix C. The op- 

timum weighting function for (3-6) is given in table and figure C-2 for 

the best choice of 7. The same results for the stationary correlation 
function (3-7) appear in table and figure C-3. These graphs show sig­
nificant increases in h(t ) at the beginning and at the end of the chosen9*
observation interval. For different T the behavior is essentially the 
same, if the series expansion for h(t ) is chosen appropriately. Un- 

fortunately, the weighting function is not so accurately determined in 
these interesting regions of the interval as it is in the center. This 

situation is due to the numerical integration method and the possible 

error cannot be eliminated.
It should also be emphasized, that the choice of “appropriate" func­

tions in the assumed expansion of h(t ), eq,. (S-^)* is a difficult one. 

Laguerre functions were found to be more advantageous than others because
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TIME ta

Figure 3~1

Optimum weighting function for

zO.2

TIME td

Figure

Optimum, weighting function for = e *T' and J = 0.7, 0.8, 0,9



of the special property that they lead to simple physically realisable 

networks which have the corresponding weighting function as their impulse 
response [21], The number of terms necessary in eq» (3-4) and the time 

constant l/y of the chosen Laguerre functions are critical as may be seen 
from figure 3-1. For an interval, T = 5 (in some relative time scale) 

and 51 equally spaced points, the first 10 Laguerre functions were suf­

ficient in all investigated cases. Their time constants should be cho­

sen approximately equal to the time constant which determines the decay 
of the autocorrelation function. A ratio of 5/4 seems to be optimum, but 

equal time constants lead also to a close approximation to the true op­

timum weighting function. This can be seen easily in figure 3-2 where 
7 = 0.7, 0.8, or 0,9 while the ti?ae constant of the correlation function 
is unity. 0nly the enlarged scale in comparison to figure 3-1 reveals 
the differences. Figure 3-1 shows an extremely unfitting choice in 7=
2.0 while a longer time constant, 7 = ©.5, is less critical.

-18-

Based upon these tests with stationary correlation functions, three 
classes of nonstatiOnary correlation functions were considered 
essentially the Gaussian assumption).

*1 -am for t < A (3-8)

(b) Rxx(t,T) =
r -(t-|) + a-] e „-a t 3-9)

(0) = f cos(2t-r) + cos t
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These time-varying correlation functions showing (a) linear, (b) ex­
ponential, and (c) periodic time dependence were used to evaluate optimum

weighting functions for a wide variety of different parameter choices. 
Characteristic results for cases (a) and (c) with 51 points over T = 5

are given in the tables and illustrations in appendix G. fables and fig­
ures C-4 through, C-9 are some examples of optimum weighting functions to 

(3-8) for A = 10 and different tQ spaced over a whole observation inter­
val f = 5* Other parameter choices show the same general behavior. Also 
(3~9)> case (b), leads to quite similar optimum weighting functions and 

specific examples have been omitted. Examples for case (c), eq.. '(3-10), 
are given in tables and figures C-10 through C-l4. While the first ex­
amples, case (a), are characteristic of the usual behavior of h(t ), the 

latter, case (e), show a more diversive character. However, the min

difference lies in larger gain variations and fluctuations.
The examples for case (c) are of special interest. Note that the 

periodic correlation function (3-10), evaluated for t = 0, vanishes at 

odd multiples of g, t = it, but has a maximum at even multiples of 
5, t = nit, (n = 1, 2, fhe weighting function reflects this perio­

dicity. See, e.g., figure C-10 for tQ = 0 and compare it with figure 
C-13 at tQ = 3. The gain changes over one period are considerable, but 
the weighting function itself also shows large oscillations.

As might be concluded from the preceding statements, the computer 
program, which was used to evaluate h(t ), was written for a maximum of 

51 points over the closed observation interval. The mayirmirn number of

terms in the series expansion to the weighting function is 10. These 

limitations are mainly of an economical nature. This program uses 30,527
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10
TIME t,

(d) T= 20 (51 POINTS)

(c) T=15 (51 POINTS)

TIME ta

figure 3-3

Optimum weighting function for case (a) with A = 20 
and for four different values ©f the observation time T



out of the 32,768 (=2^) core memory locations of an IBM 7090. It 

takes on the average 0.44 minutes to evaluate the and h(t0), if the 

assumed autocorrelation function is not too complicated. The solution 

can he carried out for any desired t, hut it was examined only for some 
small values of the delay variable. The fluctuations in h(t ) for these 

values of r were found to be small. In general, t = 0 was used and all 
examples presented in appendix C are calculated with this value of t.

Figure 3-3 might serve as an example of what happens, if one de­

mands too much of such a specific computer setup. It is for this reason 
that the results presented in this thesis should be regarded as a first 

study of optimum weighting functions and further numerical investigations 
should be encouraged. In figure 3-3 "optimum" weighting functions are 

shown, when the observation interval T is increased from 5 up to 20 with­
out increasing the number of points or terms in the series expansion.
Case (a) is chosen for this demonstration.

-21-

3.5 Discussion and Conclusions

Certainly the investigation of only three cases, even if they are 
chosen to resemble a wide variety of possible situations, is insufficient 

to arrive at final conclusions. Furthermore, the limited amount of nu­

merical analysis constitutes only a preliminary study when compared with 

the scope of the possibilities. However, most of the least square ap­
proximations to the optimum weighting function seem to indicate that a 

uniform weight, i.e., finite time integrator - as in the stationary sit­
uation - does not appear to be "too bad", if the observation interval is 

relatively short. Thus, an approximant according to eq. (2-I9) is well



justified and will "be considered more closely.
Tn making use of the method discussed in this chapter for an actual 

estimation scheme, the estimateor approximant with the optimum weight-

-22-

x(t-t)

Antocorrelator for the minimum mean square error estimate 
using an optimum weighting function

0 ■ ■ ■; . .
^l^Cto^tjh) = jTho(t?T) x(t+t0) x(t+to-r) at, (3"11)

■' -oo
is Known instantaneously at tQ, if hQ(t,T) can he pre-determined. This 

estimate has the minimum mean square error. The measuring procedure 
which would apply is outlined in the block diagram of figure 3-t.
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CHAPTER 4

OPTIMUM OBSERVATION TIME

The estimation method of the preceding chapter is based solely on 

a minimization of the mean square error. It was noted that this analysis 

does not rule out the use of a finite time integrator as a weighting 

function. As a matter of fact, the mean and variance of the general es­
timate, eq. (2-22), can only be found after the weighting function is 
determined numerically. For the finite integration time approximant, 
eg.. (2-19) or eq. (2-21), these statistical parameters can be determined 

directly and only under a few restrictive assumptions. While this type 

of approximant is not optimum with respect to minimizing the actual mean 

square error, a different criterion can be formulated by finding a mini­
mum on the upper bound on the mean square error of the estimate. Thus, 

an optimum observation time can be obtained, Such a quantity suggested 
itself already in the early discussions of chapter 2.

4.1 Bilinear Approximation

It is a classical problem in approximation theory to approximate a

function of two variables by products of functions of a single variable
[14] [23]. This bilinear approximation, when applied to correlation

functions, is a least square approximation of the form,
n

H(t,r) * ^*ix(t) ri2(T), (4-1)

i=l
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and'it can be shorn, if a' increases -without limit, that

n
E(t,T) = l.i.m. Yrn(t) r.2(t). (4-2)

.. ' V ;

The bilinear approximation is here applied, to an autocorrelation 
function in the definition of eq^ (2-12) in order that the symmetry con­
dition may he given entirely as a condition on the functions ri2(T). 
Crosscorrelation functions can he handled either way*

A bilinear approximation with n terms involves the solution of a 
system of 2n linear integral equations [14]. For the purpose of this
analysis, it may be assumed that the functions r^(t) and r^2(T), (i = 

1, 2, .**, n), both forming orthogonal systems [23], have been found.
Various methods are known for solving these integral equations in prac­

tice [7] *
The whole analysis presented in this chapter is based upon the pos­

sibility of separating the dependence of a time-varying correlation 

function on t from the dependence on t in some functional form. Consid­

erable simplifications arise, if an approximation by just one produet 
term is sufficient or correct. It is also important to note that the
bilinear approximation is unique [14]

4.2 Ixpeeted Value of the Estimate
The mean value of an approximant according to eq. (2-21) can be 

determined with the use of a bilinear approximation. It is here that 
the definition of R(t,r) proves advantageous.

If - and this is the only restrictive assumption - a Taylor series
expansion exists for the r^ (t), (i = 1, 2, n), in the neighborhood
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of an observation point tQ such that

k=0
where the Taylor coefficients are given by

(<t-3)

rW(t)
_ ll N o' 

ik k! '

then correlation functions can he approximated hy

r12(T)-
n mV_ '* ' '* 

ittlkcO
Truncation after the first m terms yields the usual truncation error 
Equation (h-5) gives, at the observation point itself,

n

■' i=l
if all constant factors are included in the r (t), (i = 1, 2, ..n).

Since the functions r.^Ct) are only of integrable square, like the 

correlation function itself, they do not necessarily possess a Taylor 
series expansion for all t. Thus, eq. (h-3) imposes a restriction on 
the problem exceeding the basic definitions. However, in the practical 
situation, this requirement hardly matters. The likelihood of encount­
ering a case where , (h-3) does not hold is fairly small. In any lumped 

circuit, for instance, all derivatives in (if-h) will always exist and 

the series expansion is possible for a.11 t.
It follows from the definitions of correlation function approxi- 

mants in the case of uniform weight, eqs. ('2-19) and (2-2l), that the
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expectation of the approximant to $(t >t) becomes* in accordance with

eq. (2-25)*
0

E[aR(t *t,T)] = ± / R(t+t *x) dt*
T

(4-7)
-T

Row the following approximation can he obtained with eq. (4-5) for

t = 0: o
0 n m

aik tk ri2W 4tEfaI(tG*T*T)] * | J
-T 1=11=0

Integrating on the right hand side of (4-8) yields

n m k
E[ R(to/T*T)] » ^ Xaik,>£l“ ri2^

(4-8)

i=l k=0

* R(tQ,T) +
n m (4-9)

(-if*ik k+1 ri2 Or)
i=l k=l

In this form the second double summation term is seen to be the mean 
value of the estimation error or the bias.

The estimation point 0q in the middle of the observation interval 
may lead to a smaller error term in the mean value of the approximant. 
A Taylor series expansion is here made around 0Q such that

l/2 n^: ja
E[ R(0^*T*I)] « rp

1?

klkt r Wat
i=l k=0 
n m
1+ ) bifefk ri2(t) dt (4-10)

i=l k=l 
n u

* Rf0 *t) + © b.
,2k

i=l k=l
i2k 22k ri2(-TT)*



where the Taylor coefficients in this expansion are denoted hy b^, and

if m is even; 

if m is odd.
(4-11)

This expression contains only even powers of T in the mean estimation
'/ . pV'error. Each term is also smaller by a factor 2 than in (4-9). However 

the Taylor series expansion is made at a different point and a direct 

comparison of the bias terms is not possible.
With eqs. (4-2) and (4-3) the exact form of (4-9) and (4-10) can 

be deduced in the same fashion. jPor instance (4-9) would become

,t) + l.i.m.

n- Op i=l k=l
(4.12)

4.3 An Upper Bound on the Variance and the Mean Square Error of the

Estimate
For the variance of the approximant at t , eg.. (2-2l) yields in 

analogy to eg. (2-26),

■' (4-13)

The mean square error of the estimate, on the other hand, becomes

s2(S,^l) = d? + | E[aR(tQ,T,T)3 - I(to,T) ^ , (4-l4)
V- 2

An upper bound on d« which occurs for t = 0 can be found in the Gaussian 
case. It is derived in appendix A under some simplifying assumptions.

If the same reasoning is applied in this situation, which whs previously 

used in section 3.3, then this upper bound might be substituted into eq.



(4-14). Equation! A-5) constitutes: this 'bound which reads in this case;

■'<£ <| f ^(t0A).ax
R -CO

This assumption, together with eq. (4-l4), leads to the following con­

jectured hound on the mean square error of the approximant, evaluated 

at t :
00

B2(fi,a6) < I t0,x) ax
•■GO

k+J rn n m m
+ ; ; ; ; aik ajf (k^I)(i+l) rI2

(4-16)

rj2
i=l j*=l k=l i=l

The corresponding expression for 0Q is:

s2(e,®I) <| / f(eQ^) ax
00

2 r«2,
(4-17)

n n
+ -4i ^ ^I°i2k (2k+l)(2i+l)22Ck+ij ri2W;rj2

Equations (4-l6) and (4-17) depend only on the observation point and the 

observation interval length T. They can, therefore, be utilized to de­

fine an optimum observation time whieh minimizes the maximum of this 

mean square error.

b.0. b

4.4 Condition for the Optimum Observation Time

The conjectured maximum of the mean square error, as expressed by 
the right hand side of (4-16) oi* (4-17), may be denoted by q (I, I) . 

This error is minimized with respect to the observation time T for
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q.2(R,aR) = 0, (4-18)

subject to the constraint that

^q2^) >0. (V19)

It should he emphasized that this criterion can only he applied when 

T is expected to he small enough, such that the truncation of the Taylor 
series does not eliminate significant higher order terms in (4-16) or 
(4-17). This situation has to he kept in mind together with the Gaussian 

assumption. Unfortunately, a mathematically more satisfying criterion 
than (4-16) or (4-17) cannot he constructed easily. Examples indicate 

that a minimization of q (R, R) yields also fairly large values of this 

optimum interval Tq which are hardly affected hy a choice of m.

With this criterion for the optimum observation time T , the actual 
condition, which follows from (4-18), becomes;

n n m mIX X

i=l j=l k=l 4=1
(4-20)

2 9, "Equation (4-20) is the minimum condition on q (R, r) for t . The corre­

sponding expression for an observation point 6T is:
n n

9 0-t-l J °
r.oioir..

/ / / / ..... ■"!i h 4 4 J (2k+i)(2i+i)2‘
(4-21)

These conditions are polynomials in T of at least third order in (4-20)

hut of fifth order in (4-21) since m > 1,

Considerable simplifications occur when the Taylor expansion can he 

truncated after the second term. If the observation point fs '9 , the
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optimum observation time in this case is simply

If, furthermore
R(t/r) » rx(t) r2(x),

then

(4-22)

(4-23)

(4-24)

where p(0o,t) is the normalized correlation function (^] for the midpoint 

observation time, These expressions are presented for 0Q, since they are 
less complicated in this case.

The aspects of actually finding the optimum observation time as de­
fined in the preceding section will be illustrated on three simple exam­
ples where a bilinear approximation is not even necessary.

The optimum observation time Tq in the case of a correlation func­
tion varying linearly with time, case (a), as well ns for a quadratic, . 

ease (b), and a periodic time dependence, case (c), will be discussed.

(a) For a correlationfunction like the autocorrelation function 

(3-8) which depends linearly on time,

S(t,r) (4-25)
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a finite optimum observation time cannot be found for 0q. Ibis situa­

tion arises because

E[a$(eo,T,'F)]
T/2

1
T 1 -

T/2
0 1 o

t+S -7 
___2
A

_-am

-at ; e 1 1 cL-^

(i»-26)

- 5(60,t).

In this specific case the expected value of the estimate is equal to the 

true value as in the stationary situation. But this result is only due 

to the position of the integration interval with respect to the estima­
tion point 0q. By using eq. (^-9) the result, would be

-a te dt

-a
i

(k-27)

and a finite optimum observation time exists in this case, where the es­

timation point is at the end of the interval. The value for T can be; . : O '
evaluated explicitly using (h-20). The first approach leads consequent­

ly to a variance of a measurement which would vanish as T «®. How- 
ever, for finite T , the variance of a measurement is not zero, but has 

a minimum upper bound.
(b) For a slightly more complex situation than in the first exam­

ple, one might choose:
S(t,T)«(l+c1t+-c/)e^W; (4-28)

The expectation of the time average estimate is here at the midpoint 0q



of the observation interval;

E[aR(eo,T, T) ^ e-<*H
o'T' 12 e (4-29)

The optimum observation time is given by
09

T

1
- -f® Fthe^ym.^

o | 2 J “ v''o''v' fLc2 i .
(4-30)

Rote that for c, = 0 and c - 0.01a the chosen correlation function 
-X M

changes roughly 1# over a time interval l/a. This numerical example

14.85
a

For this optimum observation time the upper bound for the bias, denoted 
by e2(R,aR) becomes

2e; ■ ~2
12

0. (4-32)

With this value, the total rms error becomes ca* 41$. This example is 

indeed very specific, but it indicates that itis difficult to obtain a 
good correlation function estimate, i.e., one with a small mean square 
error* Yet here the correlation function- varies slowly with time.

(c) A correlation function of the type
S(t,r) - cosat r?(-T), (4-33)

where r_(t) can be a simple exponential as in the previous- examples, but 

does not need to be specified, will be considered. Jn this last ease 

different approximate solutions for Tq will be carried through. A com­

parison with an exact solution for Tq is also possible.
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The expectation of the estimate at dQ by integration, without 
Taylor series expansion, is:

2cosa0 r«(t)E[^(eQ,T,T)3 =----aj--” sin|T (4-34)

Integration, after expanding cos(at-W£0o) in its series representation,

E[aR(9 ,t,T)] > cosae r (t) V^ ^ (4-35)
: ° I 2 22* (2k+l)!

Both equations, (4-34) and (4-35), are of course identical as can easily 

he verified. The condition for the optimum observation time is here

2cos ado

with

0, (4-36)

I 2 2 22 / cos a9Q rg(X) dX. = 2? cos a6Q. (4-37)
• -CO

Truncating after the first 5 terms leads to the following 13th order 

polynomial in T

The coefficients in this polynomial are numerically, according to eq.
(4-36),

= 6.94444466x10"-^,

A^ = -2.60416678x10"^,



‘ A_ = 4.23693800x10"^ ’ -
y
A^ = -4.l2642l87xicf8,

^3 = 2;,t^35695Bx1O_;L0.

<«« -*12 The 15 order terra, would have a coefficient = -1.29120581x10 .

And the next higher terras have coefficients A^, = 4=28109688x10
A19 = -9.48077679*10"l8, and = l .19706777xl0"20.

A standard numerical solution for the first positive., real root of
(A-38) yields values for the optimum observation time T as given in

V

table 4-1 for different values of cc and p. The notation in this table 
correspoiids to the rules for FORTRAN statements as given in table 0-1.

In this particular example, an exact solution for T can also be 
carried through, since the error terra in (4-35) can te rewritten as

2 /k a... 2 * 2e (R, R) = cos a$Q r2 2_
a%

asin|T (4-4o)

A numerical solution for the same sets of parameters as reported in 
table 4-1 gave values of T^which coincide sufficientlywell with the 
solutions of (4-38). In both cases the numerical results were obtained 

by successive iterations. The differences in the resulting Tq were al­

ways less than

4.6 Mscussion and Ooncluslons
The examples of the preceding section should have elucidated the 

problems which are encountered in this approach. For simplicity, the 

observation point in the middle of the interval was preferred in the lat

The whole approach in finding;an optimum observation time eould be



ALPHA

0 • 1 00

0*100

1.000

1.000

TABLE 4-1
VALUES FOR THE OPT IMUM OBSERVATION T I ME

BETA/2.0 TERMS IN OPTIMUM
POLYNOMIAL OBSERVATION

1.000 05 40.5620
09 40.5660

10.000 05 76.8419
09 '; 78.8409

1 .000 ' 05 4.0560
09 4.0560

10.000 ■ 05 • • 7.8840
09 7.8342

TIME



carried out without particular reference to either auto- or crosscorre­

lation functions, hut this was only possible since references could he 

made to the earlier developments. The optimum weighting function ap­

proach is also applicable to crosscorrelation functions and the basic 

integral equation can be rewritten for that case simply by dropping the 

subscripts.

Autocorrelator for the optimum observation time estimate

This second approach, based on the conclusion that a finite time 
integrator is also a reasonable approximant, refers, for mathematical 
reasons, to $(t,*r). This.makes a direct comparison with the optimum 

weighting function approach difficult, since the results can only be ob 

tained by numerical methods,

The approximant using the optimum observation time is, in the auto 

correlation ease, the estimates
0
rx(t+to+|) x(t+to-|) dt (k-ki)

o '"'L-To
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The block diagram of figure 4-1 shows an autocorrelator which could 
perform the measurement (4-4l). The difference in the definition of 

the estimate can easily be seen by comparing figure 4-1 with figure 

3-4.
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FURTHER POSSIBILITIES AHD CQUCLUSIOHS
' ' • /

The preceding discussions and results are "based on error analyses 

which involve-'the true value. The mean and variance of the estimates 

are considered, since they are deterministic quantities. leithey an op­

timum weighting function nor an optimum observation time can be deter­

mined without knowledge or certain assumptions about the true value. 

This method might be termed indirect, and it would be very desirable to 
find also a more direct approach to this estimation problem.

5vl grospects of a Different Approach
There are certain possibilities in the direction of a direct ap­

proach. However, the major difficulties are quite severe. First, an 

error analysis of such an approximant is almost impossible because of 
the high degree of complexity . But, even if an engineering mind might 

be willing to accept this as a fact and rely on actual measurements and 
experiments, a second difficulty arises. The pure existence of such an 

appfoximaht cannot be guaranteed.
One method which is closely related to the preceding discussions 

and for which at least one range of possible application has been found 

will be discussed briefly. There are also certain possibilities for an 

extension of this approach.
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$.2 Ccmipafisen of y-lependence
All correlation functions can "be approximated in a 'bilinear fashion 

which separates the time from the delay dependence. Than it must be pos­

sible to base an estimation method on a comparison of either the t- or 

t-dependent functions with the corresponding dependence of a reference 

function. ;

Such a reference for a t-comparison is readily found in a quantity 
which might be called the mean correlation function, defined as

;■ 0 . .

E@(t,t) = | jTR(t,r) dt, (5-1)

*0
where @ is a large, but finite averaging time, in general the largest 

possible observation time, ®» T. Mean correlation functions ape used 

often in the Russian literature [5], where the problems of their measure­
ment are discussed [18]. Since a mean correlation function depends only 
on ® and t, the functions r^2(t) can be determined from R^t,?) because 

of the uniqueness of the bilinear approximation.

Then a correlation function estimate could be constructed from the 

mean correlation function Tpy comparing the t-dependence. The block dia­
gram of figure Jj>-1 might serve as an illustration for such an estimation 
scheme.

Unfortunately, the existence of a better estimate than Rg)(t,r) can­

not be established for the general case as indicated earlier. However, 
in the case of a random process termed by Silverman [24] as "locally sta­

tionary", a simple comparison method can be applied and some examples 
have been constructed for which a good approximant to R(t,x) could be 

obtained.
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Autocorrelator comparing the t-dependence of the mean 
autocorrelation function with an approximation to the true 

value in order to determine a letter estimate at t
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It is felt that further investigations in this area might reveal a 

mathematically acceptable estimation procedure-which possesses some gen­

erality.

5.3 General Conclusions

The estimation of time-varying correlation functions from a single 

sample function has "been considered. A weighted finite time-average over 

this data has "been proposed as a reasonable approximant to the desired 

correlation functions.

Minimizing the mean square error of this approximant has led to an 

optimum weighting function. This analysis has shown, that even in the 
ergodic case, the simple finite time average is not optimum with respect 

to a minimum mean square error criterion. More surprising, however, is 

the similarity between weighting functions in the stationary and non- 

stationary situation. Aside from a rather specific example, this has 

led to the conclusion that, while not optimum with regard to this cri­

terion, a finite time average is not unreasonable.

Ey making a bilinear approximation to the desired correlation func­

tion - in a slightly different definition - the mean value of a finite 
time-average approximant has been found, A conjectured upper bound on 
the variance has also been established. A minimization of this maximum 
squared error has been used as a convenient criterion for an optimum ob­
servation time. However, some examples have indicated that this simpli­

fied approach may lead to relatively large rms errors.

Explicit results have only been obtained essentially by making the 

assumption of a nonstationary Gaussian process. It is felt that a
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removal of this restriction would he the most valuable extension of this 

work. The criteria and equations which have been derived are valid for 

non-Gaussian processes as well.
Furthermore, additional numerical investigations - especially of 

optimum weighting functions - should he encouraged. The results present­

ed here are only representative examples out of a large number which have 

been considered. But the study of certain classes of correlation func­

tions may well lead to certain patterns in. the optimum weighting func­

tions which were not observed in this first investigation.

These approaches to the estimation problem have been based on a 

strict error analysis. A more direct approach, which would lead to ap- 

proximants which are random variables with unknown properties, has been 

outlined, too. The restrictions and difficulties are discussed.
Examples to support the proposed estimation procedures have been 

included for all eases and explicit results appear mostly in graphical

form.
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APPENDIX A

UPPER BOUND OF THE VARIANCE OF AN APPROXIMANT TO 
CORRELATION FUNCTIONS IN THE GAUSSIAN CASE 

An upper bound on the variance of an autocorrelation function meas 
urement can easily be derived for a stationary Gaussian process [19]„
An extension of this result to the nonstationary situation is not only-

possible, but based upon a rather simple argument.
If an approximant with uniform weight, eq. (2-19), is considered, 

the variance (2-26) becomes with (2-23)

0 0
1 r /\2

xxryj
-T -T

0
R (t+t ,t) dt xx' o

-T (A-l)
Equation (A-l) yields for a nonstationary Gaussian process with (3-5); 

0 0
J _ i.
R “ T2

-T -T
R (t +t ,t -t ) R (t +t -T, t -t, ) xx' a o' a To' xx a o ’ a b'

+ R (t +t ,t -t.+t) R (t +t -T, t -t,-t) xx a o' a b xx' a o * a b 7

(A-2)

dt, dt b a

It is now assumed that the observation interval can be made small 
enough, such that the time average of the autocorrelation function over 

T does not differ appreciably from the true value at tQ. Then, by ana­
logy to the stationary case, eq. (A-2) can be approximated by

0 0



An upper "bound on the variance may he obtained, if % is small com­
pared to I, but T is large compared to the significant duration of the 
autocorrelation function* With X = t -t, , relation (A~3) can then be

St D

simplified as follows:
0 X

R f2 -i -i 
. T 0

0 -m
f

- f (i-J-1)f J K T 1
-f

R2 (t ,X> + R (t ,X+t) E (t ,X“T>
xxv o xx er 7 xx^ o* 7

I2 (t ,x) + R (t ,X+t) R (t ,X-t)
xx' o' 1 xxv o' . xx' o'-

^xx^o'3^ + Rxx^to'X+T^ Rxx<-VX~t)

dt dX a

dt, dX b

dX

From this form the desired upper bound can be obtained [19]

T
"'R - T
£ < = r |1 -1!11 Ib^A) + ax

-T
T

< T
-T

H^(to,x) ax + J IrJ^x*-!) B^(t8,x-T)| ax
-T

(A-4)

4*1_4<vx) *• U-5)

In deriving this final result, use was made of the Schwarz inequality 

and the condition that an autocorrelation function, is of, integrable

square over the infinite interval*



APPENDIX B

DAGUERRE FUNCTIONS

Among the sets of orthonormal functions which can he derived from

the classical orthogonal polynomials, functions of Daguerre type have 
an interesting property. She electrical network corresponding to such 

a set is much simpler than for other standard orthonormal functions and 
orthogonal polynomials [21].

She Daguerre functions over the range (0y») in which we are inter™

ested are obtained by orthonormalization of the sequence

(yt)^ e”^ for n = 0, 1, 2, ... (B-l)

Just as the Daguerre polynomials are obtained by simply orthogonalizing 
this sequence. The resulting set of functions [D (t)} has the propertyn

00 1/la(t) L„(t) « -{

0

if m = n 
0 if m £ n

(B-2)

with [21]

l(t) = 427n
(2X)nn(2j'f~x .n-1 , n(n-l)(2y)n~g ,n-2
n;

\n-l
n-TjT 2!(n-2)I

n-2

n(n™l)(n-2)(2y)n~3 ^n-3 
3 *(n“3)* 4- - (B-3)

... + (-1)n -7t

Substitution of n = 0, 1, 2, ..., 9 leads to the first ten Daguerre
functions which ares
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L0(t)

lx(t)

I^ft)

L3(t)

H<t)

L5(t)
M*)

L7(t)

Lg(t)

t9(t)

..-Err e'7t (B-4&)

= sfiy 

= s/ir 

= -s/iy

= J27 

= ‘J2y

= n^27

=

271 - 1 -7t

272t2 - 4 7t + 1 

it A3 . ^2.2

-7t

7‘%-J - 67“t + 67t - 1

16
3

-7t

I rV - ^ r V + izrV + 1 -7t

iL 7V . m r\> + Jjfi r3t3 . 20r2t2 +
A? 3 3
,1 A6 .1^+5

(B-4&)

(B-4e)

'715

. . 4 4 80 2 25 7^ + 107 t - y 7'■t-3■•■ + 2 2

127t + 1
_L 7Tt7 „ 28 6 6 28 5t5 _ 2© AA + iM 73t3 315 7 45 7 A + 5 7 t 3 7 t 3 7

. 2 2 427 t + - 1 ~7t

2 „8.8 64 7.7 112 6.6 224 5.5 . l40 3,4 “ 7 t - 315 7 t + -jy 7 t -|jr t + — 7 t
224 3, 3 ^ 2,2Y~ 7T + 567 t - + 1 -7%

ig-~ ^9 _ 4 78t8 + H r7t7 jjg 76t6 + 1§§- ^5
L10.715

AH 3t3 -
35

2,2t +
15

-7t (B-4j)



appendix q
SOME RESULTS FOR THE WEIGHTING JUNCTION h(t )

B*
She numerical resists as obtained for h(t ) by solving the inte-

s»
gral equation (3-3) on an IBM 7O9O digital computer are given in this 
appendix. The complete set of tables as obtained for the stationary- 

test cases is reproduced in order to show thesmall oscillations in 
h(ta) with more significant digits than a graphical representation al­

lows. Nevertheless, the corresponding graphs are added, for the non­

stationary situation, the resulting weighting functions are presented 

for the examples discussed in section 3.4 where three groups of time- 
varying autocorrelation functions were considered. In this case, how­
ever, only the a^, (k = ©, 1, 2, ...,9), the coefficients of the series 
expansion of h(t ) in Laguerre functions, are given in table form. The 

optimum weighting function itself is only presented graphically.

All tables are reproduced as they were prepared by the IBM 7O9O 
(including text and scale designations for the figures). The program­

ming of the problem was done in FORTRAN and the resulting tables follow 
the output specifications of this programming language. Table C-l de­

fines all appearing variables with respect to the usual notation 
throughout this thesis. The necessary mathematical statements and num­
ber format (when different) are also defined in this table.
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TABLE C-l
FORTRAN VARIABLES* STATEMENTS* AND EXPONENTIAL NUMBER FORMAT

H <TA) »< V
R - Wt''r)
T t . ■
ABST |t|
TAU '■ "V T ■ ■
ABSTAU M
T1
LOO
A OO

X = Y K It

X '■+ -Y;': /; X + y
X - Y ' x - y

X * Y xy
X / Y : *y
X ** Y . x*

ABSF(X) |x|

EXPFCX) ex

SINFiX) sin x
COSF tX) cos X

3«15604S2E^01
-6•S1I5054E 00

3.1560452 X io"1
^.5115054 X 10°
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TABLE C-2

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE 
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

SOLVED FOR THE WEIGHTING FUNCTION H (T A ) EXPANDED IN LAGUERRE 
FUNCTIONS* WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED 
TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT
R * EXPF (-ABSTAU)

EVALUATED AT T1 a 0*000 WITHIN THE OBSERVATION TIME INTERVAL
(TA * 0*000* **•♦ 5*000)

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS L(K) 
HAVING AN INVERSE TIME CONSTANT OF 0*8000

A(0) * 3*1560452E—01 FOR L(0)
A(1) » 1*1946575E 00 FOR L(1)
A(2> a 4.3682929E 00 FOR L<2)
A(3) « 9*1514664E 00 FOR LC3)
A(4) a i•0659068E 01 FOR L(4)
A(5) » 3.8835135E 00 FOR L(5>
A(6) » -6*5115054E 00 FOR L<6>
A(7) a -1•0454051E 01 FOR L < 7)
A(8) a -6*2928140E 00 FOR L <8 I 
A(9) a — 1•5144896E 00 FOR L<9)
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TABLE C—2 

(CONTINUED)

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE 

MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

RESULTING VALUES FOR H (T A )

45 TA 33 4*4000 H ££ - 1 *1436130E—01

46 TA SB ' 4*5000 H £S 1® 2438896E—01

47 TA ss 4*6000 ■ H St 1«3776I29E~01

48 TA s 4*7000 H S3 1*5494442E~01

49 TA S3 4*8000 ‘ H Xt 1*7634870E-0i

50 TA S3 ’ 4*9000 H ass 2.0236644E-01

51 TA xs- 5*0000 H ' 33 2«3342182E-01

FIGURE C—2

GRAPHICAL REPRESENTATION OF H(TA J
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T ABLE ■C~.3V.;;:

/approximate solution of the integral equation minimizing THE
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

SOLVED FOR THE WEIGHTING FUNCTION H(TA) EXPANDED IN LAGUERRE 
FUNCTIONS• WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED 
TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT
R a EXPFI-ABSTAU) * COSFITAU)

EVALUATED AT T1 « 0*000 WITHIN THE OBSERVATION TIME INTERVAL
CTA a 0*000* •••« 5*000)

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS L IK ) 
HAVING AN INVERSE TIME CONSTANT OF 0*8000

A10 ) ■S 3*6905789E-•01 FOR LIO)
AID 1 *5423765E 00 FOR L ( 1 )
A (2) a 5*0628045E 00 FOR LI 2)
AO) a 8.6303000E 00 FOR L (3)
A (4) ■a 4*8661839E 00 FOR L <4 )
A <s> a -9.8910680E 00 FOR LIS)
A 16) a —2*4410959E 01 FOR LI6)
Alt) a —2*4411445E 01 FOR LIT)
A (8) ' w' -1 .2508087E 01 FOR LIB)
A19 ) ® **2*7490088E 00 FOR L 19)
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TABLE C-3 
(CONTINUED)

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE 
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

RESULTING VALUES FOR H (T A )
I : TA S o. H B . 3.2615209E-01
2 TA 8 0*1000 H B. \ 2«0228832E“01
3 ; TA a - 0*2000 H ' S3 ; 1*4106251E—G1
4 TA s" 0*3000 H S 1•1455713E-01
5 TA •s 0*4000 H S3 1*0605627E“01
6 TA s 0*5000 H S 1*0597920E-01
7 : ■ TA s 0*6000 H S' - 1 *0914072E-01
8 TA s 0.7000 H B 1*129522OE“OI
9 TA s' 0*8000 H a 1.1628366E-01
10 TA B 0*9000 H B ' 1.1877607E-01
11 TA s ’ 1.0000 H ffi 1*2042161E-01
12 TA S ' 1*1000 H s l*2134430E~01
13 TA B . 1*2000 H S3 1.2168921E-01
14 TA 1*3000 H B 1.2159879E-01
15 TA 1*4000 H SB 1*21188Q1E-01
16 TA 1.5000 H 8 1*2054917E-01
17 TA 1*6000 H 8 . 1*1973942E“0i
18 TA 1.7000 H S 1 *1888569E-01
19 TA 1*8000 H s - 1 *1802605E-*01
20 TA 1*9000 H ts 1*1730031E-Ql
21 TA . a 2*0000 H a 1.ISTOSETE-Ol
22 TA 2*1000 H m 1 *1635i99E“>01
23 TA s : 2*2000 H 3 1•S624103E-01
24 TA 2*3000 H » 1*1644994E»01
25 TA 2*4000 H B 1*1692141E“01
26 TA 2*5000 H 3 1•1765168E-01
27 TA 2*6000 H a 1*185532IE-01
28 TA 2*7000 H 1.1952205E-01
29 TA 2*8000 H 8 l•2050961E-01
30 TA 2*9000 H 1•2137356E-01
31 TA m 3*0000 H 1*2198181E«01
32 TA 3*1000 H 1«2230115E-01
33 TA 3*2000 H B 1*2216406E-01
34 TA 3*3000 H 8 1.2163673E-01
35 TA 3*4000 H 1.2066934E-01
36 TA 3*5000 M 1*1925999E-01
37 TA 3*6000 M 1 V175S625E-0I
38 TA 3*7000 H 1•1562127E—01
39 TA B 3*8000 H 1*1376214E-01
40 TA 3*9000 H 1*1211329E-01
41 TA a 4.0000 H S 1.1106860E-0I
42 TA 4*1000 H is 1•1085289E-01
43 TA a 4*2000 H 1*1187846E-01
44 TA m ' 4*3000 H a~ l.1446807E-01
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t.able C**3
(CONTINUED)

^approximate solution of the integral equation minimizing the
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

RESULTING VALUES FOR H(TA)
45 ■; TA = 4*4000
46 ■ TA w ' 4*5000
47 TA = 4*6000
48"'- .TA. .** / . 4*7000
49 TA * 4*8000
SO:;;:,- v--y-v‘-TA 4*9000

T A 5*0000

H = 1.190I776E-01 
H ■ 1•2599T36E—01 
H ® 1*3567477E«01 
H = 1•4847840E-01 
H .a I •6464587E-01 
H a 1•8442184E-01 
H « 2.0813426E-01

F I GURE C-3 ;, V"
GRAPHICAL REPRESENTATION OF H<TA)

H <TA) 
TIMES 
0*50

TA TIMES 1*000



TABLE C-4
APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE 
MEAN SQUARE ERROR OF AN AUTOCORRELAT1 ON FUNCTl ON MEASUREMENT

SOLVED FOR THE WEIGHTING FUNCTION HITA*) EXPANDED IN LAGUERRE 
FUNCTIONS# WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED 
TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT
R * <1«0~ABSF C CT+0»S»TAU)/'10*0 )) « EXPF C-l «0*ABSF CTAU) )
EVALUATED AT TI * 0»Q00 WITHIN THE OBSERVATION TIME INTERVAL 

<TA ss 0»000« t«M 5*000)
RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS LCK)

having an inverse time constant of i»ooop
A CO > * 2*8357137E-01 FOR L CO)
ACI) * 1.2465865E 00 FOR LCi)
AC2) * 5.5822322E 00 FOR L(2)
A(3) * 2*6234379E 01 FOR L (3 )
A (4 2 * 3.1756814E 01 FOR LC4)
ACS) > 4.I316443E 01 FOR LC5)
A(6) * 3•4473548E 01 FOR LC6)
A(71 * 1•591S680E 01 FOR LC7)
ACS) * 2*141494SE 00 FOR LC8)
A C9) * -9*340S449E-01 FOR L(9 >

FIGURE C-4
GRAPHICAL REPRESENTATION OF H(TA)

HCTA ) 
TIMES 
1*00

0.0

0.0 3.0 5.0
TA TIMES 1*000

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE 
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

.... TABLE C-5

SOLVED FOR THE WEIGHTING FUNCTION H(TA> EXPANDED IN LAGUERRE 
FUNCTIONS. WHFn THE TRUE AUTOCORRELATiON FUNCTION is assumed 
TO BE GIVEN BY The FOLLOWING FORTRAN STATEMENT

R * (1.0—ABSF C(T+0.5*TAU1/Jp.0 )> * EXPF(-1.0+ A&SF CTAu>)
EVALUATED AT Tl « l.000 WITHIN THE OBSERVATION T1ME INTERVAL 

(TA * OyOGCU.. ...... : 5.000)

RESULT ING COEFF I C -I.ENTS: FOR THE LAGuERR E F uNC T 1 ONS L : K : 
HAVING AN INVERSE TIME CONSTANT OF 1.0000

A C O ) s 3*2460424EV0i FOR L C01 .t
AC 1) s I.59I1035E CO FOR L I i2

. A C2) s 6• 2061 21 5E 00 FOR L(2) ••
A C3) > T.4401C67E 01 FOR l» 5 3) V
A «4 ) * 2.C997I36E 01 FOR L <4 )
AC5) * 1.7683338E 01 FCR L <S )
AC6) * 4.9646825E 00' FOR l (6)
A(7) c -6.0276093E 00 F0« U l 7 >
A(8) « -6*SS18397E 00 FOR L18)
A C 9) * -2.4477375E 00 FOR L (9)

FIGURE C-5 '

GRAPHICAL REPRESENTATION of h C TA}

ry~n'

HCTA > 
TIME S 1 *00

"Ft

TA TIMES 1.000



APPROXIMATE SQLUT I ON OF THE INTEGRAL EQUATION MINIMIZING THE 
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

SOLVED FOR THE WTEI GHTI nG FUNCTI ON «CTA) EXPANDED IN LA GUERRE 
FUNCTIONS♦ WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED 
TO 8E GIVEN BY; THE FOLLOWING FORTRAN STATEMENT
R * II *0->ABSF ft T 4*0 • 5*T A U )/10 *0 ).) EXPp 1-1 *0* ABSF IT AU ) 1
evaluated at ti f 2*000 within the observation time interval 

tTA * 0*000. "**,*'• 5*000)
RESULTING COEFFICIENTS FOR THE LA GUERRE FUNCTIONS L<K> 

HAVING AN INVERSE TIME CONSTANT OF 1*0000
A<0> * 2*4417574E-0I FOR LCO)
ACT) « 9*0095128E-01 FOR L(l)
A12) * 3*72932146 00 FOR LC2)
A(3) - 9.5665578E 00 FOR L<3)
A (4) 630587IE 01 FOR L<4)
AC5I « ~i*7965Q23E 01 FOR L(5)
AC6) * I.IT^EISTE 01 FOR L(6)
ACT) * 2*6481322E 00 FOR L(7)
ACS) * -1*6595899E 00 FOR L<8)
A (9 >. »' —1 *09090S2E 00 FOR L (9)

" FIGURE C-6 ;
GRAPHICAL REPRESENTATION OF HCTA)

'• -TABLE C<-6

TIMES1 mOO

2*0 3*0
TA TIMES I#000

3.0

TABLE C-7
APPROX1MATE SOLUTION OF THE INTEGRAL EQUATION MINI MIZ1NG THE
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

SOLVED FOR THE WEIGHTING FUNCTION 'HITA) EXPANDED IN LAGUEPRE
FUNCTIONS. WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED
TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT
R k C 1 * 0-ABSF < « T+0* 5*T AU ) /1 0 • 0 ) ) * EXPF (— 1 .0* ABSF (TAu) >
EVALUATED AT Ti * 3*000 WITHIN THE OBSERVATION TiN£ INTERVAL 

(TA * 0.000. »..« 5*000)
RESULTING COEFFICIENTS FOR THE LAGUEPRE FUNCTIONS L(X) 

HAVING AN INVERSE TIME CONSTANT OF 1.0000

: A(01- l.9819326E-01 FOR L<0>
A<1)> 5.61097S6E-01 FOR L(1)
A(2) - 2*6«984S2E 00 FOR L(2>
A(3> « 8.0942253E 00 FOR LC3>
A(4) « 1*6766 13BE 01 FOR 1(4)
A(5) * 2.3060006E 01 FOR L(5)
A(6) * 2.0642213E 01 FOR L(6)
A(7) * l.0677947E 01 FOR L(7)
A<8) * 2^2375239E 00 FOR L<8)
A191 « -3.1312859E-01 FOR L(9)

FIGURE C-7
graphical Representation of hcta>

times
1 .00

0.6

3.00.0
1 .000



approximate solution of the integral,equation minimizing the 
MEAN SQUARE ERROR OF AN AUTO^ORRELAT tQNV FUNCT ION MEASUREMENT

SOLVED FOR THE WE IGHTING FUNCTLON H(TA) EXPANDED IN LAGUERRE 
FUNCTIONS* WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED 
TO BE GIVEN; BY THE FOLLOWING FORTRAN STATEMENT

r - (i » O-ABSF C ( T+O • 5‘^T AU )/l 0 *0 ) ) . * EXPF ( -1 • O^ABSF (TAU ) )

EVALUATED AT Tl = 4*00 0 ' WITHIN THE OBSERVATION TIME INTERVAL 
(TA = 0 *000 * • • •> 5*000),

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS LCK) 
HAVING AN INVERSE TIME- CONSTANT OF 1*0000

A(0) * -1*0900430E —01 FOR L(0 )
Ad) = -2.2359981E 00 FOR LC1) ■
A(2) = -7.52S570BE 00 FOR L(2)
AC3) . = -1.*1562772E 01 FOR L(3)
A(4) = -1*3751622E 00 F0R.L(4)
A(5) - 2.6549732E 01 FOR L(5)
A ( 6 ) - 5*11162B3E 01 FOR L ( 6.).

. A(7) = 4*8310114E.01■ FOR L (7 )
A(87 = 2*4706B32E 01 FOR L(B)
A (9 ) = 5.5821851 E, 00 FOR L (9 >

■ ''TABLE., c-b

. FIGURE C-8

-GRAPHICAL REPRESENTATION OF H (TA )

0*5

H (TA )
TIMES

0*0 ’

>0*5. .5*0, ;1*,0 3* 0

TA, TIMES .1*0:00

APPROXI MATE SOLUTI ON OF THE INTEGRAL EQUATION M INIMIZING THE 
MEAN SQUARE. ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

TABLE C—9

SOLVED' FOR THE WE IGHTING FUNCTION H(TA) EXPANDED IN LAGUERRE 
FUNCTIONS * WHEN THE 'TRUE AUTOCORRELATION FUNCTION IS ASSUMED' 
TO BE GIVEN BY THE FOLLOWING FORTRAN.STATEMENT

R = (1 •O-ABSF( (T+0.5*TAU)/l0 *0 >) * EXPF(-1•0*ABSF(TAU) )

EVALUATED AT Tl = 5.000 WITHIN THE OBSERVATION TIME INTERVAL 
(TA = . 0.000* • *•« 5*000)

RESULT 1NG COEFFICIENTS FOR THE LAGUERRE FUNCTIONS LCK) 
HAVING AN INVERSE TIME CONSTANT OF 1.0000

A(0 ) = 1.7553805E-01 FOR L ( 0 )
A(l) = 2 *61.2 0 89 9.E — 01 FOR L ( 1 )
A (2) = 1•1382175E 00 FOR L(2)
A. (3) = 3.3505098E 00 FOR L(3>
A(4) = 6•9447904E 00 . FOR L(4 >
A(5 ) = 9*501557IE 00 FOR L(5>
A(6) = 8*4809418E 00 FOR L(6)
A(7) = 4.365391 IE 00 FOR L(7)
A(8) = 9*2593682E-01 FOR L(8)
A (9) ■* -1*2034984E — 0i . FOR L(9) S

vnvo
. , FIGURE C—9

GRAPH1 CAL REPRESENTATION OF H ( TA )

H (TA )TIMES
0.0

4.02.0

TA TIMES 1*000



-V <. TABLEI C—: 1:0

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE 
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

SOLVED FOR THE WEIGHTING FUNCTION H(TA) EXPANDED IN LAGUERRE 
FUNCTIONS* WHEN THE TRUE AUTQGORRELATI ON . FLINCT I ON IS ASSUMED 
TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT

R = 0.5*EXPF(-ABSTAU)*(COSF(2•0*T+TAU>+COSF(TAU))

EVALUATED AT T1 «= 0*000 WITHIN THE OBSERVATION TIME INTERVAL 
(TA = 0*000* •••« 5*000)

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS L(K) 
HAVING AN INVERSE TIME CONSTANT OF 0*8000

4.9277425E-01 FOR L(0)
2*7126286E—01 FOR L(l)

-1.9240588E 00 FOR L(2)
—7 *5234541E 00 FOR L(3) -
*“1* 5705344 E 01 ;F OR L (4 ) : . •;'v
“1•7998555E 01 FOR L(5)
-6*482'8066E 00 FOR LC6)
•■i . 6621P83E ' 00 FOR L ( 7.),:
• 3• 30.252-08E 00- FOR L(8>
7.8525869E—01 FOR L-(9)

• : A C 1 ) •= .
A.<

/■"■ A (3 )•
; ';.vAT,4.) - ;

A (5 ) = 
.A ( 6 ) =
A (7)
A (.8 )

GRAPHICAL REPRESENTATION OF H(TA)

TA TIMES T*000

TABLE C-ll

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE 
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

SOLVED FOR THE WEIGHTING FUNCTION H(TA) EXPANDED IN LAGUERRE 
FUNCTIONS* WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED 
TO BE GIVEN BY THE. FOLLOWING FORTRAN STATEMENT

-R = 0.5*EXPF<-ABSTAU)*<COSF(2*Q*T+TAU)+COSF<TAu))
EVALUATED AT TT./'F 1-4000 W.iTH1 N THE OBSERVATION 11 ME I NTERVAL . ; "/ V

(TA - 0.000* • ••* 5*000)

RESULT ING P0EFEl,C;i^;N'ts4EPR::THE ..LAGUERRE;PuNCTTCNS; L (K ) :
VHAVTNG'^.N TNVERSE; TTME■ . CONSTANT/ OF:' 6*800o’ ;v-.

. A(O). - . I o4601877E-01: FOR■ L (0 )
A(l) = 2*0613372E—01 FOR Ld)
A (. 2 ) = 4i* 053971 I E01 FOR L ( 2 )
A (3 ) 3*2641 85SE401 FOR L < 3 )

' A <4 ) = ̂ 5*98661 04E02 /. FOR L (4 )
; A ( 5 > = -5 • 1,126018E-Q1 ■ FOR L C 5 )
A (61: =- “3*3522630E-01 . FOR L (6 ) 

•, A <7> •* " 2 • 9529682E —0.1 FOR L ( 7 ) 
AlS'l:,:£;®:2433pT9E“0T\ • FOR L (8 ) 

■ : A {9 ) s- •“1*;2276771E—01 FOR L (9 )

FIGURE C-l l

m01
GRAPHICAL REPRESENTATI ON OF HI TA;)



APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION. MINI MIZI NG- THE 
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

... - TABLE C-12 .

SOLVED FOR THE WEIGHTING FUNCTION H(TA) EXPANDED IN LAGUERRE 
' FUNCT IONSt WHEN THE TRUE AUTOCORRELATI ON FUNCTI ON IS ASSUMED 

TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT

R. = 0.5*EXPF (^AB ST AU >*.(CQSF (2.0*T+TAU)+CQSF ( TAU > >

.EVALUATED AT Tl = 2.000 WITHIN THE OBSERVATION TIME INTERVAL 
(TA = 0 • 0 00 « •••♦ 5 • 00 0 )

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS L(K) 
HAVING AN INVERSE TIME CONSTANT OF . 0.8000

A(0 > = 6*2119632E-01 FOR L(0>
A(1 ) = —2 *3774191 E—01 FOR L <i )
A(2> = 4 •1788879E—0T FOR L(2)
A (3) - 1 •2730.863E 00 FOR L (31
A(4) ■= I•9388168E 00 FOR L(4 >
A(5 > = 6.8296146E^0T FOR L(5)

. A(6) =-2.4919308E 00 FOR L(6>
. A(7) = -2.4238864E QO FOR L(7)
A(8) = -1 • 1.65299 1E-0T FOR L(8>
A (9) = 9.1672815E-01 FOR L(9)

FIGURE C—.12

.GRAPHICAL REPRESENTATION OF H(TA)

1.0

H (TA )
TIMES
2.00 .

b.o o

4 « 0. 3,9 0

1 oOOOTA TIMES

TABLE C—13

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE 
MEAN SQUARE ERROR OF AN AUTOCORRELATION FUNCTION MEASUREMENT

SOLVED FOR THE. WEIGHTING FUNCTION H(TA > EXPANDED IN LAGUERRE 
FUNCTIONS. WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED 
TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT

* R s; 0..5*EXPF (-ABSTAU )* ( CO'SF (2 ®0*T+TAU ) +COSF ( TAU ) )

EVALUATED AT Tl = 3.000 WITHIN THE OBSERVATION TIME INTERVAL. 
.. (TA = 0.00.0 ♦ •••« 5.000)

RESULTING COEFFICIENTS FOR THE LAGUERRE FUNCTIONS L(K) 
HAVING AN.INVERSE TIME CONSTANT OF 0.8000

A (0 ) = 5 • 4687141E — 0 1 FOR L (0 )
Ad > = 3 • 854 8826E —0 1. FOR L ( 1 )
A ( 2 > -9.3052193E-01 FOR L (2 >
A (3) = . -3.8180895E 00 FOR L ( 3 >
A (4 > .= -9.5489272E 00 FOR L (4 >
A (5 ) = -1.0919385E 01 FOR L (5)
A (6) : = 2.3088270E—01 FOR L (6 >
A (7) = 1 .2791 865E 01. FOR L (7 )
A 18) ■ =' 1 .2756815E 01 FOR L( 8 )
A (9) = 4.1060761E 00 FOR L (9 )

FIGURE C—13

GRAPHICAL REPRESENTATION OF H(TA)

1 .0

0.5

H (TA ) 
TIMES 
2 6V 0 ■

0 © 0

-0*5
OoO loO 2 ®0 .- 3«0 4 o 0 5.0

TA TIMES 1.000



• table. ;cWi-a

APPROXIMATE SOLUTION OF THE INTEGRAL EQUATION MINIMIZING THE
MEAN SQUARE ERROR of; AN vAUT^C0RRELAT mNo;FUNCTI^N-MEASUREMEHt

SOLVED FOR THE WE I GATING EUnOTION H.< tA > EXPANDED I N LAGUERRE
FUNCTIONS * WHEN-THE: TRUE AUTOCORRELATION FUNCTI ON I S ASSUMED .
TO BE; GIVEN BY THE FOLLOWING. FORTRAN STATEMENT ;

R -; 0 • 5*EXPF C — ABST AU j?* C COSF ( 2<*0*T +TAU ) H-COSF ( TAU ) )

EVALUATED AT T1 = 4 *000 W ITH I N THE OBSERVAT ION TIME INTERVAL ; ;
(TA * 0.000* • • • * 5.000)

RESULTING CO.EFFtCIENTS FOR T HE > LAGUERRE FUNG T IONS L ( K) :
HAVING AN INVERSE TIME CONSTANT. OF 0*8000

■ A CO )
A C 1 )

' A<2>A (3)
A (4 >

. A {5 )A (6)
A (7)
A (8)

' A (9)

■' FIGURE C-14 '

GRAPHICAL REPRESENTATION. OF H (TA )

3.3204969E-01 
1.5766258E 00 
5.4674563E 00 
1•1200 368E 01 
1o3234342E 01 
5 •» -6Q 4 6 904 E QO 

“6.29983.7 IE 00 
-1•1488Q23E 01 
-7.8721487E 00 
- 2 •3531046E 00

F OR L COT 
• FOR LCD 
FOR L C 2) 
FOR L C 3 > 

. FOR L (4 ) 
FOR L(5) 
FOR L C 61 
FOR L C 7 ) 
FOR L C 8 > 
FOR;L C9 >

H (TA ) 
TI MES 

.1 o 00

TA TIMES IV 0.00

TABLE C-15

THE INTEGRAL EQUATION MINIMIZING THE 
MEAN SQUARE ERROR OF AN AUTOCORRELATI ON FUNCTION MEASUREMENT

, SOLVED FOR T HE WE 1 GH TIN 0 FUNCTION H(T A) EXPANDED IN LAGUERRE 
FUNCTIONS. WHEN THE TRUE AUTOCORRELATION FUNCTION IS ASSUMED ■ 
TO BE GIVEN BY THE FOLLOWING FORTRAN STATEMENT

. R = . 0.5*EXPF (-ABSTAU )* (.C0SFC 2.0*T+TAU ).+.COSF ( TAU> ) .

; ;SVALUATED ^T^Tl'-= S^OOO WITH IN THE- .OBSERVATION TIME INTERVAL 
.(TA = 0..000. • . . * 5.000 ) .

RESULTING COEFF I C I E N T S FOR THE LAGUERRE FUNCTIONS L (K.)
.. HAVING AN INVERSE TIME CONSTANT OF 0.6000

- A (0) = 3 • 3405423E—01 FOR LCO >
A(1 J = -3.7556396E-01 FOR LCD 
A ( 2 ). = —4• 5662 506E — 01 ' FOR L ( 2 } ■ .
A ( 3) = r->l • 3123676E 00 . FOR LT3)

^ : A -C4 ) - “1.58191 17E 00 FOR L (4 )
A(5) ••= -1.5657655E 00 FOR L (5 ) .
A(6) = -8.6767368E-01 FOR L(6)
A{7) . = 4.1061714E-01 FOR L(7 > .
A (8) = . 1 o’l 430 570 E 00 FOR. L (8 I
A(9) = 6.5601937E-01 FOR L(9)

FIGURE C —15

GRAPHI CAL ;REPRESENTAT I ON OF H C TA)

H C TA ) TIMES 
:.1«0 0

TA TIMES 1.000
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