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ABSTRACT

Harrison, Robert Eugene, Ph.D., Purdue University, August, 1962. 

Electromagnetic Propagation Velocities in an Inhomogeneous or Random

Atmosphere. Major Professor George R. Cooper.
This thesis is concerned primarily with determination of sta­

tistics for the velocities of propagation of an electromagnetic wave 

in a dispersive medium. The velocities of propagation are discussed 
in terms of a plane travelling wave solution of Maxwell's equations 

obtained using the multiple Laplace transformation and complex inver­

sion integrals. The types of dispersion discussed correspond to v

magneto-ionic, electron displacement and polar resonances of the iono­

sphere and troposphere. The physical nature of the randomness of 
the dispersive index of refraction is derived from considerations of 

statistical turbulence theory. Expressions are then obtained for 

determining the mean, mean square and variance of the signal, group 
and phase velocity of an electromagnetic wave. .

It is proposed by S. M. Harris (IRE Trans. Vol. AP-9, No. 2, 

pp. 207-210, Mar., 1961) that the group velocity and phase velocity 
of an electromagnetic wave propagated in the ionosphere may be averaged 
to obtain a velocity estimate free of refraction to Within second 

order refractive effects. The basis for this procedure is that for 
an operating frequency considerably above the critical frequencies 

of the ionospheric medium, the group velocity is slightly less than 

the velocity of light.
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Introduction

Arnold Sammerfeld and Leon Brillomin (SGM 1, BRI l) first dis­

cussed the velocities of propagation of electromagnetic energy in a 
dispersive medium in lfl%» At that time, a controversy existed as to 

the validity of the statement ia Einstein’s theory that the velocity' 

of light could not he exceeded for electromagnetic wave propagation.

W. Wien had proposed that, since the group velocity in a dispersive 
medium can he infinite, a contradiction to Einstein’s theory existed. 

Sammerfeld was able to show hy means of a complex plane integration 

that solutions of Maxwell's equations were zero until the vacuum 

propagation time, equal to the distance from the source divided hy 
the velocity of light, had elapsed. In his dissertation under Sammer­

feld, Brillouin eeaapleted the wave equation solutions and obtained 
relations between the phase ant group velocities, and a new quantity 

representing the actual velocity of propagation of energy at the 
signal frequency. He eallet this quantity the signal velocity.

For many years after the controversy was settled, the results 

described above were mainly of academic interest and were mentioned 
in only a few texts on electromagnetic theory. -In particular, the 
nonfealistic character of the group velocity was seldom discussed.

The student obtains the impression that the physical velocity of 

propagation of a wave packet is the, group velocity without- a descrip­

tion of the restrictions ©f this approximation, la the past few years, 

interest in velocity measurements using electromagnetic energy has



revived interest in the original work of Sommerfeld and Brillouin 
with the result that the work is now available in English (BRI l).

In a recent article, S. M. Karris (HAH l) exploits the fact 

that in an ionospheric type of dispersive medium at an operating fre­

quency well above the frequency range of strong dispersive effects, the 

groap velocity is as much less as the phase velocity is greater than 

the velocity of light in vacuum to within second order refractive 
effects. He then proposes that simple averaging of the phase ant 

group velocities enables one to determine the vacuum velocity of the 

wave independent of the dispersive effects of the medium.
fhe problem is then suggested that one may desire to relate the 

various velocities in other types of''dispersive media than the iono- 

shere and perfom compensation for the dispersive effects at operating 
frequencies within the dispersive range* Also ©he desires to know 

the mean value and variance of the Velocity measurements in an inhomo­

geneous or random medium which may be dispersive. Shis thesis proposes 
a method of analysis for obtaining answers to these aspects of the 
problem.

In Chapter B, the theory of refractive compensation proposed by 
Karris is reviewed, and the pertinent results of his work are derived 

and discussed. Some of the work of Brillouin and Sommerfeld, who first 

discussed the nature of propagation velocities in a dispersive medium 

is considered briefly*
In Chapter 3, the steady-state response equations of media such 

as are encountered in the atmosphere are derived, fhe equations for 

the dielectric constant of a magneto-ionic medium are obtained and 

discussed. Assuming a certain mode of propagation, the formula for

- 2 -



the complex refractiveindex function for Steady-state propagation of 

a sine wave in a magneto-ionic medium is obtained for use in develop­

ment of the thesis. This equation is typical for a propagation 
situation in the ionosphere. Following this treatment for ah ionized 

medium a derivation is given for the complex refractive index function 
for non-polar and polar molecules. This equation is descriptive of the 
dispersive nature of the troposphere. The relations of this chapter 

are obtained using classical-mechanical models of linear oscillators.

A brief survey is given of the changes required in the equations of 

the complex refractive function for a quantum-mechanical analysis of 

dispersion^
In Chap, k, a technique for solving Maxwell's equations using

the multiple Laplace transformation and inversion integrals is 
presented. The solution of Maxwell’s equations for a plane wave is a 
simple and useful example which is employed throughout the report.

The multiple Laplace transform applied to partial differential 
equations consists of transforming with respect to each positional 
coordinate as well as time, and seeking the solution of the resulting 

algebraic equations in a sequence of inversions. The partial differ­
ential equation may be transformed if the coordinate system is 

separable..
Initial and boundary conditions are introduced as their trans­

forms; and it is not necessary to assume the form of the solution. It 

is shown that the characteristic impedance of the medium must neces­

sarily relate the electric field strength and magnetic intensity 

vectors in order to obtain a nontrivial or travelling wave solution 
(th® standing wave solution is a special case not discussed). It is
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also shown that expressions for the phase and group velocity, may he 

obtained simply by imposing invariance conditions ©a the phase or 

amplitude of the envelope of the propagated wave and solving the 

resulting equations for the velocity. Complete and detailed solutions 
of wave equations by the multiple Laplace transform for a plane wave 

solution are given and the author feels that this is a contribution 
whic& may have instructional value. The conditions for a travelling 

wave,, use of initial and boundary conditions, application of invariance 
methods for derivation of,group and phase.velocity expressions, and ■ 

rigorous incorporation of dispersion characteristics are felt to-be 
contribution in techniques of solution of wave equations. The 

advantage of the Laplace transform in permitting easy adaptation to 

spectral formulations has long been recognized and is exploited in the 
thesis. The Laplace transform solution also expedites rigorous derivation 

of quantities such as the characteristic impedance and dielectric 

constant of complex media.
Maxwell’s equations for a dispersive medium are formulated using 

the equation for the complex refractive index functions of the iono­

sphere and troposphere. The solution for propagation of a plane wave 
in a dispersive medium is gives in terms of a complex inversion 

integral. The integration"'©f this integral is considered in detail, . 
and due to the irrational nature of the exponential kernel, it is 

necessary to obtain approximate solutions by replacing the original 

contour integration with integration on contours pissing over, saddle- 
points of the exponent of the kernel. The manner in which the saddle- 

points depend on the time of propagation and the running time variable 

is'discussed along with the.effects of saddlepoint. location upon the ■'



- 5 -

characteristics of the -wave.
At this point the concept of signal velocity as defined by 

Brillouin is introduced and expressions obtained for the signal 
velocities for the magneto-ionic, electron displacement and polar 

resonances of atmospheric media. The methods for evaluation are 
indicated with means for Obtaining necessary constants for other 

types of molecular resonances. The refraction compensation scheme 
of Harris is now discussed in terms of its extension to regions of 

dispersion and constitutes a contribution to this theory.
In Chap. 5, a review is given of the theory of statistical 

turbulence as it applies to the randomness of the tropospheric 

refractive index. The physical nature of the turbulence is discussed 

as it affects the density of distribution of molecular species. 
Expressions are then derived for the mean square values, mean value, 
and the variance of the various velocities of propagation in terms of 
the refractive index spectral density functions. The latter results 

are the primary contribution of the thesis.
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Review of Pertinent Literature

In a recent paper by Harris (HA! 1) it is proposed to obtainan 

estimate of the true velocity of a wave propagated through a spheri­
cally stratified ionosphere "by calculation of the arithmetic average? 

of the phase and group velocities of the wave. In the analysis of 

the problem by that author, repeated in brief form below/ it is 
shown that this estimate is accurate to within second-order refrac­

tive effects. The possibility of generalizing the compensation of 
refractive effects for other media, and conditions in the media was 

considered and is treated in this thesis.

The complex refractive index of a region populated with free 
electrons is given by the Appleton-Hartree equation (MIT l) . For 

frequencies well above the cyclotron frequency tOQ of the ions, we 
may write ■ '. ' ’'

n^ = (l-ttF/wP)., (2.1)

where co is the angular frequency of the incident radiation. The
phase velocity v of a wave propagated on a path ST may be expressed■■ P
in terms of the refractive index as

v = e/n (2.2)

where a is the index of refraction on the path and c is the velocity 

of propagation of the radiation in free space. The vacuum phase range 

of the path ST is proportional to the total phase shift and, assuming 

2st radians phase shift per vacuum wavelength, is given by
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R_( <0 ) = ct - fT m
vs

(a) )ds, (2.3)

■where ds is &n element of peth length and is defined as the phase

time delay. R^( o>) is also known as the electrical length. It is well 

known (BOR 1, Section 3-3) that the integral (2.3) is an extremal by 

Fermat's principle.
The value of ca?/c*>2 is approximately 0.01 or smaller at the fre­

quency range considered by Harris. Consequently a power series expan­

sion fora is valid, thus
n(<o) = ^UCO^/W2

* 1- W^/20)2- 1/8 ((O^/fcA) -.. .

from which we have, substituting this result into (2.3)*
P’S pT k pH j,

R (co.) » / ds - (i/2£02)/ 0)o2(x,y,z,)ds-(l/8 M ) / Wo (x,y,z)ds (2.4)
P Jq J s
In the integral relation (2.3), n(«) is & function of the coordinates 
of the path. In the Integral relations of (2.4), this dependence is 

bom by o>0(x,y,z).
The integral of ds over the path ST is the true, or geometrical 

length of the path Rc, that is,

£ ds = R„ (2.5)

Thus, from (2.4) electrical length of the path becomes

p _ p A __ C w"** <2 IL e e eP 0 <£T <0
(?•«).

where

A * (1/2) f 0) 2(x,y,z)ds
Js 0

(2.7)
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and

piC --=(1/8)J (x,y,z)ds (2.8)

It- may be shown (BOB 3, Sect. 1*3) and will be discussed in later 

sections, that the delay time of a group or wave packet is given by

tg = [9g(r)/8c«)]_ (2-9)

where Co is the mean frequency of the wave group and g(f) expresses 

the variation of the phase for a wave packet of the form

V(r,t) = Re
(A a))

(?v«-6«>g»(rllaw; (2.10)

An explicit method for obtaining the group delay is developed in 

Section IV. The phase is expressed as a function of the mean frequency 

approximately as follows
g(r) - co t (2.1l)

where t^, the phase delay, is associated with the mean frequency Co 

Applying (2.9) to (2.11), and since tp = R^c, we have from (2.4) that

tg = d(co t^)/dco = (lfyj* ds +(l/2c<WQ2(x,y, z)ds

+(3/8000^)1 OJ^x^zJds (2.12)

The group range R is given byg

R = ct g S

/iij1 /iij>
~J ds +(l/Za)2)J cdo2(x,y,z)ds +(3/8 w )J^ (0o^(x,ytz)d8, 

2* R0 + A/o> 2 +3C/W * (2.13) 

From (2.6) and (2.13) the arithmetic average of the group and phase 

measurements is then
R=(K+R)/2 = Ro+ C/*\ (2.1*0
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so that the average ■will he free of the first- order, (l/cw), refraction 
tern. Harris considers other effects in the ionosphere such as magneto- 
ionic effects which, because they add a conductivity effect, require am 

imaginary component in the index of refraction. ®he expression for the 
index them has both even and odd components, and the expansion involves 
the odd powers of l/ch as well. It cannot be expected that these will 

cancel, since the cancellation noted above is due to the evenness of 
the index of refraction when it can be considered to be a real function.

The general conditions for such cancellation will be considered in more
]

detail below.

The restriction of the compensation scheme proposed by Harris to 

an operating frequency well above the reasomace band of the medium 

peimits use of the particular functional forms given above for the phase 

characteristic. In the study to he presented, the subject of the effect 

of resonances of the medium is considered in detail, and more general 
conditions for obtaining compensation developed. In general, any 
material medium may exhibit resonances, and hence refractive compen­

sation may be considered for media other than the ionosphere.
The properties of the group and phase velocity as a function of 

frequency was studied for optical media by Sommerfeld and Irillouim 
in Iflt (HI 2). Brilloaim motes that the group velocity differs 

from the actual velocity with which the signal propagates, and, in 
the range of the resonances of the medium, the group velocity is 

eq.ual to the signal velocity only for certain frequencies. The 

nonphysical nature of the group velocity is quite evident in the 
resonance region. The signal and phase (Boppler) velocities are 

the only quantities which may be of use in a general compensation
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scheme. It is apparent from the work of Sommerfeld and Brillouin that 

other schemes than the arithmetic averaging of phase and group velocity 

may be used at operating frequencies Closer to the resonance band.

, In the following discussion, the nature of resonances of the medium 

is first determined. The resonances are related to the physical 

properties of the material comprising the medium, and in the case of 

magneto-ionic effects, to the direction of propagation with respect to 

the magnetic field. Transforms of the wave equations are employed

throughout in order to facilitate discussion of random effects in the

medium.



CHAPTER 3

Phase and Absorption Characteristics of Media in Steady State 
3-1 Magneto-ionic and Collision Absorption of the Ionosphere

¥e shall consider characteristics of the ionosphere and tropo­

sphere as they affect propagation of an electromagnetic wave. The 

difference between these two media is due to the concentration of 
ionized versus un-ionized varieties of material comprising the media. 

Consider first (JOR 1, Sec. I7.O3) the ionospheric region which is a 

dielectric region containing free electrons and ions. In the absence 

of these free charges the constants of this region would be essentially 

those of free space, that is e =€v , /*=/Uv , and <r - 0, where sv 
and are the free space values of the dielectric constant and 

permeability, and tr is the conductivity of the medium. As the electro­

magnetic wave passes, the charges have imparted to them an oscillatory 
motion that absorbs seme of the incident energy which they reradiate 

as a source.
For an analysis of the ionosphere we consider an ion or electron 

density of N ions or electrons per cubic meter. If E is the field 
strength in volts per meter of the electromagnetic wave, the force 
on the charged particle having a charge q. will be «jE. For an effective 

damping due to collisions of R v, the equation of motion for the particle 

.will be
qE » m(dv/dt) + R v ( 3*1)

where m is the mass of the particle, v is the velocity, and R is an©



/»-::iZy- y ■ .

effective frictional resistance. The actual average frictional force 
due to collisions is given by mvi>, where mv is the aveiage momentum lost 

lost on collision and V is the frequency of collision. Thus
IT=mj». (3*Z)

For a sinusoidal variation of the field strength with time, i. e.,
E = EoeJ"^ ■ (3.3)

the velocity of the jarticle is of the fom v - vQe^ ^^ (3-!0

where ■
vQ = Eoq/(Re+jft)m), (3-5)

Now the current density for a flux of such ions is expressed by
i = Nqv, . (3*6)

where N is the number of charges per unit volume. The current density 

is also sinusoidal frcan (3.4), i. e.,

If. ioeJwt = |EoN(f

Or - , -

*6 •[^e/^Wt.2))- j« [Eo!^^e%2»,2)]_

Substituting from (3*2)
io ^Jn^vMtJ 2-H»2)] - 5°> i?0N42Mv^+«2)};. (3*7).'

For these sinusoidal fields, Maxwell’s equation for the electromotive 

force may be written

curl % = jW6A^o : .
« j«>evEo [l-%2/€ ^m(^2+«J2 )] + Ne2VE0/a(u2+®2)

= . (3.8)
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where the dielectric constant of the medium relative to vacuum is
er - l-Nf2/evm(y2+«2) (3-9)

and the conductivity of the medium is

cr = It2#V). (3-10)
We note that for a given frequency, the conductance <y is maximum 

when w etuals the collision frequency y . The presence of the charged 

partieles reduces the dielectric constant helow that of free space and 
reults in a conductivity that is maximxim at the collision fretueney.

The extent of the effect is a function of the collision frequency and 

the density of the particles.

The presence of the Barth's magnetic field couples the motion of 

the charged-particles along coordinates transverse to the direction 

of the magnetic field. Consider the simplified case of a constant 

magnetic field Bq aligned along the positive axis of propagation. The 

non-relativistic vector equation for the Lorentz force on the ions or 

electrons may he equated to the mechanical forces,
F * q(l4-vXSo) = m(dv/dt) + S t. (3-H)

We are assuming that

where h is the unit vector along the axis of propagation (the z-axis), 

hence
3^=© (3.13)

Again assume the incident field is of constant amplitude and frequency, 

then the velocity will also he sinusoidal since the equation of motion 

(3•11) is linear. Then
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The

■ .tot v - v e° ■

iponents of Eq. (3*11) may he written

Erac + -%Bo - ”/'14 Vox/’

Boy - voA - >V B''« 4 VojA

Eoa= W* Voz + KVQJ

Equations (3.15) and (3.16) contain only terms in the velocity 
components in the transverse plane and may he solved simultaneously 

for .these,’--.-thus ' 'V'
2_ 2._ 2 .2 2v"'yox " L'lEpx(Be4 oyBoV[(,lV4V-" my 4 (3'18)

and
2_ 2.^ 2 ,.2 2>v = fqE (R + jo>m) - q2E B l/[( q2B2+R2- 0) m ) +23«mRe] 

oy l1 oy e ox oY l o e ^

For a gehejjal orientation of the magnetic field,the velocities along

each axis may contain terms of each type.
If the effect of the collisions can he neglected (R. *» 0), it isc

seen that the expressions reduce to
vox - D"("/»>s0X*b0iv;i / [b02-“2(-/ '2

and
Toy * tBo2-“>2

There is a resonant frequency at
w0 = Bo(q/m)

From Jordan (JQR l), assuming the earth's magnetic field intensity is
h p0.5 gauss (0.5x10- wehers/m and q/m for the electron is 1.77x10II



coulambs/kg, the resonantor gyrofrequency is 1.4 Mcps for electronsand 

800cps for the hydrogen ion. The effect of the collision frequency 
(and thus B ) upon the gyrofrequency is to broaden the response and to 

lower it slightly, in the usual warmer for the damping term of the 

characteristic equation for a linear system, The effect of such a 
resonant frequency upon radiation incident upon the ionosphere is to 

cause absorption at this frequency. (Emission due to excited quantum 
states is discussed briefly at the close of the chapter.) It is well 

established for daytime propagation that a broad absorption band does 

exist in the ionosphere with a center frequency in the neighborhood 

of 1400.kcps (JOB 1> MIT l).

Equations (3.2O), (3.21I, (3.22 > may be substituted into (3-6) 

to obtain an expression for thecomponents of the current density, 

assuming the charge is the electronic charge e, thus

t ■* E Me/jw(m/e) (3*25 >

For a region having such a current density, Maxwell's equation for 
current density expressed in rectangular cartesian coordinates is

; =urtH' sox "Vox : ; (3'26)

^V1 * V +W :: :' (3'27)
■ : : (3.28)

Assuming sinusoidal variations, we replace EoX, EQy, Eq;£ in (3-33), 

(3.24), (3.25) by EQX/jW , , and , respectively, and
substitute the results into (3.26), (3.27), and (3.28), obtaining



CU***S ^-vfeci — 'S|."

cuxrt - [e^iCeeg-a^ 3j [^ 3| fee ^ ^. 30)

If we define the critical angular frequency of the conducting medium as

<0Q - / Ne2/€vm' (3.32)

we may .’Write

curl H « e0 E - Je3 E :.V■x ■ 2 OX w

curl_H
*

= e_ E + ,3 e„ E2 oy ox
curl H z 11 1

 : Eoz
•where ;.

€^ €^1^0) ; ■ (3.36a)

(3.37a)

(3.38a)
The relative dieleetric constants are then

:; *vl = i-co2c/io2 (3.36b)

■■■,-■ .^2 = 1 -<^/(^2-%z) (3.37b)..

Thus .there are three distinct dielectric constants e^.

and The presence of the magnetic field has caused themedium 

to exhibit different responses with respect to the propagation direction 

The effect along the axis is contained in the term, and it is this 
frequency dependence which is utilized by Harris (HAB l) in deriving 

his refraction compensation scheme described in Chapter 2. We shall



also typify the resonance characteristics of ionospheric propagation 

hy anequation of this form in the following sections.
If the collision damping effects cannot he Ignored, we have upon 

substituting (3.18) into (3*6)

iox = Jo>/[()+2^

Since the principle absorption is due to the motion Of electrons, 
q = e, the electron charge. Also from (3-2)> (3*22), {3*32)

R ** mi>

■ ~ » B e/m ...<*>o O '

s Ne^/e m,
c' ■ ■■ ' v :;.':

so that, as a function of co,

iQXH = V°c ( [(»+jw)Eox(^)+«0Eoy(^)] / [

= ev^[(y+^) Eox(w)+%Eoy(a))]/ [(^+3%) (Jw0)] (3*39)

Whereas the ionosphere exhibits effects principally due to the 

response of free electrons to the incident radiation, such charged 

particles are of ■ negligible importance to propagation phenomena in the 
troposphere. This is due to the fact that those electrons and ions 
that are formed hy high energy collisions in the lower altitudes quickly 

recombine due to the much lower mean free path. However dispersive 
effects still exist in media that do not contain such free charged 

particles. These are due to the interaction of the electromagnetic 

wave with the electronic charges of nonpolar and polar molecules.
Such effects are of minor importance in the ionOsphere. The following 

section considers the response to electromagnetic waves of a medium 

containing only polar and nonpolar molecules.
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3.2 Elementary Theory of Absorption in a Medium Consisting of Honpolar
and Polar Molecules

When a dielectric is placed in an electric field it acquires 

surfaces charges on its faces, proportional to the strength of the 

field. These surface charges contribute to the field just as do any 

other charges which ©ay he applied by external means . Our theory 
.shall treat, all charges in..like manner for.- their ..effect upon the ' 

medium. In applying MaXwellts equations to the dielectric, it shall 
be considered different from free space only due to the presence of 

these polarizable electrons. The polarization charge must be produced 

in the originally uncharged dielectric by the motion of positive 
charges in the direction of the applied field and of the negatiire 

charges in the opposite direction, depending upon the relative 

mobilities.
We shall consider the interaction of the electric field upon the

-A.medixSa by expressing the flux densities B and B as the sum of two 
terns (BOR l). Of these, one is taken to be the vacuum field and one 

is regarded as arising from the influence of matter. One is thus 
lead to the introduction of two new vectors for describing the effects 
of matters the electric polarization P and the magnetic polarization 
or magnetizationit. Relations involving P and M replace the usual 

material relations of Maxwell’s eqjiationss • ■

-B «/<it
The use of $ amd M results in a more direct physical meaning of the 

interaction. Thus an electromagnetic field produces in a given volume 

element of medium an amount of polarization proportional to the field.



Each volume element beccmes the source of a new secondary or scattered
-A*wavelet whose strength is related in a simple way to P amd M. All 

the secondary wavelets combine with the incident field and with each 
other to form the total field. Instead of the relations (3-^0),

(3.^1), we shall how describe the interaction of natter and field by 

mesas of the relations
= e E+ P ■ (3*^2)

V ■ .

t = jjji + % ^3*k3)

where ey and ^ are the dielectric constant and permeability of vacuum.

P amd M vanish in a vacuum and therefore represent the influence of 

the matter. One regards matter as composed of interacting particles 

embedded in the vacuum, producing fields which have large local vari­

ations in the interior of the matter. This internal field is modified 

by any field which is applied externally, and the properties of the 

matter are then derived by averaging over the whole field within it.
As long as the region over which the average is taken is large compared 

with the linear dimensions of the particles the electromagnetic 
properties of each can be represented as those of an electric and magnetic 

dipole. The secondary fields are then just the retarded fields of these 

dipoles. It is assumed then that
P «= j?E (3-^)

; M = #H (3*^5)

The factor Y) is called the electric susceptibility and X the magnetic 

susceptibility, where from (3.^0)* (3*^2), and C3*^3)^ these

quantities are related to the dielectric constant and the magneti?
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permeability by
; ■ ■« =%+ ? (3^6)

■:(3-^T)

It is necessary to distinguish between the effective fields. S' 

or H?, acting on a molecule and the mean or observed field, E or H, 

obtained by averaging over a region which contains a great number of 

molecules. The difference between the two fields is due to the gaps 

between the molecules and depends on the number of molecules per unit 
volume.

To estimate the difference E' > E between the effective field
-A**. .E* and mean field 1, consider a particular molecule centered within 

a sphere-of radius large compared to its linear dimensions* Following 
Slater and Frank (SLA. l), we replace the effects of the external fields 

by the polarization on this sphere. We may calculate the force at 
the center of the sphere using the system of induced charges on the 
surface of the sphere. The surface density of induced charge on a 
spherical ring at an angle 0 to the direction of the field is PcosQ.

2The area of the ring is 2mR sin 6 d0. The charge on the ring is there-

fore 2-jfcFR sin 0 cosQ d0. This charge produces a field at the center 

of the sphere whose component parallel to E is

=|2jtFR2cos20sin5]/[4it^2l}d0 (3.48)

The total charge on the spherical surface produces a field at the 

center equal to



- 21 > ■' ^v-

ff(p/2e )/ cos2esln0de = (P/B^) (3*^9)

It has "been shown that the force exerted upon the central molecule 
"by other molecules within the sphere is zero (BOR l). The total field 

within the sphere, which is the effective field acting on the central 

molecule, is obtained by adding to this the mean field E, given by
-;::r^ :: ;V'e*-:f ’^3^

If we now assume that the molecule is a dipole with one electronic 
charge, the force on the electron is eE*. When the electron undergoes 

displacement x due to polarization of the, applied field, the restoring 

force is .Ta3c,\ Therefore/:i V ; ..:,;.
■+•ef*> 0 ■ (3*51)

..and--;. ‘v;7/ .7
- 1 c eE'/a (3.52)

The dipole moment so induced is :V-7 :

ex - e

The quantity e /a is called the mean polarizahility ot of the molecule. 

It expresses the proportionality between the applied field and the 
electric dipole mcment. The total electric moment per unit volume

is.';. • 7. '7
P e . Up a ISRXB

Eliminating between (3.5O and (3-5*0, the dielectric susceptibility

v-'Oov/S j - (3.55)

Substituting for y from (3-1-7), we obtain the following expression for 

:the;dielectric constant.



(3*56)€ = ev + lbc/[i-(iofi/3€v)] 

or, solving for oC, we obtain the Lorenz-Lorentz relation (mks system), 

using e = ereY, -
<* = B^e^-1)/!^!) (3.57)

where e_ is the dielectric constant of the medium relative to vacuum.r ,
oFinally employing Maxwell !s relation a" = e^£^, or n = ®r for non­

magnetic media
0C= 3ev(n2-l)/l(n2+2) (3-58)

In order to determine the dependence of the polarization and the 

refractive index of nonpolar molecules upon the frequency of the field 
we must find the displacement ‘r of each charged particle from its equi­

librium position. We assume that each electron is acted on by the r ■ ; '-V,
Lorentz force F L

F » e(l’+vXl) (3.5f )

where e is the charge of the electron and v is its velocity. It will 
be assumed that|vlis small compared to the velocity of light. The 

following derivation assumes a very elementary model for the inter­
action.of the .charged particle upon'its force center and neglects 
cpantm-meehanical effects. Even so, the result is useful for describing 
the principle nature of dispersion. We shall assume that an electron 
behaves as if it were bound to an equilibrium position by a quasi­

elastic restoring force -qrwherer is the..displacement, and that the
' «damping force due to collisions is gr. The equation of motion is then

•* 9 ^
mr + gr+ fr= el’ (3.6®)

If to is the angular frequency of the Incident field,



E* » I* er'A8t (3.61)

The displacement is also harmonic and the steady state solution is

f = ^7(m(a)^-<iJE)-da>g] (3-62)

where the natural frequency
(0Q = /q/a" (3.63)

laeh electron, contributes to the polarization a moment p = er. The 

contributions of the motions of the heavy nuclei are neglected, since 

their displacements are several orders of magnitude below r. Assuming 

also that there is only one effective electron in a molecule with 

resonant frequency coQ, the total polarization P is

- 23 -

PVlp = lef = le2!*/® (3-64)

where N is the number of molecules per unit volume. P = !«, , there­

fore

Noe = Ne2/[m(co2-co2)-Ja^g (3*65)

so that lot is a complex quantity related to the index of refraction 

by (3.so that

(Hot/36T) * (n2-l)/(n2+2) (3-66)

The behavior of lot is shown in Figure 3-1- Between the region of the 

maxima is the region u>2 of anomalous dispersion.
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Dispersion of a lonpolar Gas Showing Anomalous Dispersion

We have so far considered that the resonating''molecule has only- 

one resonant frequency. In general there will he many resonant frequen 
eies even in sysianes with the same kind of molecules. A more 

expression, neglecting damping and the motion of the nuclei, is
' t ,, 2 - .J - (W-iyu**?) - ( z [vK-®2)]

where Ih. is the number of electrons corresponding to the resonant
'■ ■ v ' • ■ .■ : vyl . r ; ■■

frequency eo^. For gases, the index of refraction is approximately 
unity, and we my rewrite'.(3.67) in -the. form

Al-'-(*.c</ev) - (Ne2/evm) Z (3.

For polar molecules, it .is necessary f©; account for the .energy

absorbed in -the angular orientation of the molecule, as the polarity



' ■ - 25 - ' .

of the field reverses. Debye (DEB l) considers the analysis of this 

case in detail. For the present purposes, some simplification is 

permissible. The following analysis of the effect of a permanent 

polarization in the molecule is adapted from the presentation of 
Loeb (LOE l). .

Certain molecules, such as water, have permanent dipoles present, 

and their dielectric constant is composed of two types of action.

There is the usual oscillatory separation of the charges by the field 
as analyzed above. Also because the fixed dipoles in the molecules 

are oriented in all directions because of thermal agitation, they suffer 

torques as they tend to align themselves with the electrical field.

This torque is temperature dependent because the alignment is being 

continually destroyed by the random impacts of neighboring molecules 

under thermal agitation. But, on the average, there is a resultant 

component of these dipoles in the field and they act to increase the 

dielectric, strength of the material, or, contribute to the polariz­
ability of the molecules. Since the action expressed by the Lorenz- 
Lorentz law involves linear coordinates and the present effect involves 
angular coordinates, they are additive in the sense of energies, and 
maybe analyzed separately. Accordingly 'the present analysis will 
be solely concerned with the effect of permanent electric dipoles 
upon the dielectric constant, the effects of displacement frequencies 

having been considered above.
Assuming the molecule as a whole is uncharged, the potential 

energy is given by

» -P*E :
* - pE cos 0 (3.69)

u
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where 0 is the angle between the dipole moment p and the electric 
field strength E. Thus the number of molecules which have a potential 
energy u in the field is given "by the Maxwell-Boltzmann law (LOE l)

A«-(u/Kr)40 = A«(»B,:088)/Kr4a (3-70)
Where k is Boltzmann's constant ? T is the absolute temperature, and 

dQ represents the element of volume surrounding the point where the 

potential energy is u. The average moment "p" of the dipole in the 

field i8 given hy

-u: OS (pEcos0/kTdQ (3?

The elementary volume dQ « 2itsin0 d0. Making the substitutions 

£ = cos By and x = pE/kT, (3-72) becomes
‘+1x5

dfe
1

(3-,72)

which integrates to the Langevin function

By dividing through by eX-e“X the following asymptotic expansion 

results which is good for large values of xs

L(x) = 1 - (l/x) + 2e"2* + ... (3-71*)
Powers of x and exponents of x in the expansion for this function are 

negative and it is seen that this function approaches unity as a 
saturation value at very high fields. For the weak fields of our 

concern we may use the approximations

or even only



27 -

L(x) = x/3- (3-75)

p/p = pE/3kT? (3-76)

C 3-77)

■which is thecontributionof a permanent dipole to the measureable

polarizability. A unit volume contains N polar molecules. Hence the

polarization for a unit volume is

Np = Np2E/3kT (3-78)

and the general expression for magnitude of the molecular polarizability 
of polar molecules of gases is then, including the effect given in (3-6*0

P> (Ne2E)/ [m («2- co2)-jwg] + (Np2E)/(3M?)

. ; ( eh ){[(e2)/[m((02-c^)-«)fflgl]+ PZ/3^] . (3.79)
The frequency response of the dipole population must also be considered. 

There is a definite time required for the majority of the population 

of the disoriented molecules to return to their previous state of 
thermal equilibrium. Debye (DEB l) considers this situation in detail 

and characterizes .'the process by a simple exponential decay of the 

excited population. The complete expression, taking this relaxation 

time ihto account is then,
P> En{e2/[m(cD2-w2)-j<*>g] + (p2/3kT)/(l+jwc )] (3-80)

But from (3*5*0

NcCE
Hence

Net = N^e2/[m(i02-(02)^ jo)gi + p2/^cT(l+jft),t' (3.8I)

Pram
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(n2-l)/(n2+2) = (€r-l)/(€r+2) « Hof/3^
.» (K/3ev)^e2/[m(co2-(o2)-jcogJ

+ (p2/31cT)/(i+jcot)3 (3.82)

which is the final expression for the dielectric constant for polar 

molecules, including the effects of displacing charges linearly and 

changing the angular orientation of the electric dipole of the mole­

cule. Since the index of refraction for gases is near unity, i.e.,

n2 = € t » 1, ■ .

(N/36v){e2/[m(a)2-.(02)-o«g] + (p2/3fcT)/(l+j(U‘c)j (3.83)

For all possible states,
e^-lftJ (H/sy) Z j + [(hip2)/3kT(1+j<*>0]J.-

.. 1 '' ' 'C3.84)
In summary of the brief treatment above, it is seen that the 

frequency dependence of dielectrics may he represented by linear 
oscillator models which yield second or third order characteristic 

equations with constant coefficients for the cases of the ionosphere,
Eqs. (3.36), (3.37), (3.39), and nonpolar and polar dielectrics,
Eqs. (3.67), (3.68), and (3.84). According to Bom and Wolf (BOR 1.,
P- 97), the classical mechanical model is quite sucessfuJ. in predicting 
experiments and, in fact, the solution for a quantum mechanical model 

differs only in requiring an infinitude of virtual oscillators instead 

of a finite number, as was obtained above. However in the quantum 

mechanical model the weighting of the oscillators is such that only 

a finite number of the terms may need to be considered. We shall now 

consider briefly the differences due to quantum-meehanical considerations
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3.3 Brief Survey of Quantum-Mechanical Theory of Dispersion
In the quantum-mechanical theory of dispersion, there is a term 

of the form Of (3.65) associated with each possiblequantura transition 
in the molecule. The coefficient N is replaced with quantities known

as the oscillator strengths f associated with each resonance frequency- inn ■ ...
/by the formula

f = (2m© |r |^)/3h (3*85)
mn > mn 1 mn' 11 ■ '

in which © is the angular frequency associated withthe quantum

jump between the m and n levels and r is the matrix component■ mn
of the vector coordinates connecting these two states. There is also

a damping term associated with each quantum transitionj'yItta4)mri.
According to Condon (CON 1, Bart 6, Chapter 6)> there is a feature

of the quantum-mechanical theoretical formula of negative dispersion

that has no classical analog, in (3*85) it is assumed that the quantum
transition m-n is one corresponding to a jump from a lower to a higher

level, that is, an absorption. However, if the initial state m is an

excited state, then there will be a lower state n, for which the
associated quantum jump will be an emission. For this transition,
the frequency a) and hence the oscillator strength f . are considered stun Bin
negative. Hence the contribution of dispersion due to molecules in 
excited states is negative at frequencies associated with emission trans­
itions and subtracts from the total absorption.

If H is the total number of molecules in a unit volume and N

' * 'fellis the total nmber of molecules in the m quantum state, a partie- 
ular frequency will occur twice in the formula for ot , once positively 
as an absorption, and once negatively as an amission' f^qtxency./;~.The 

total contribution to oc is given by
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where the primeon the summation indicates that this sum is to he 

taken only for levels which are higher in energy than the m level.

The values of f^ may he determined hyexperiment. It turns out that 

only ceitain of these have appreciable strength in a given case, so 
that a firdte nuxiber of terms of the summation is sufficient. We shall 

assume that the details of determination of the coefficients may he 

settled from quantum-mechanical considerations, if necessary. How­

ever, we are most interested in the mathematical form of the resonance 

term and shs^i hse the classical-mechanical form for convenience.
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©HAPTEI k ■

Velocities of /Propagation

k.l Solutions of the Have for HondispersiveMedia
■ We shall establish certain results "basic to our discussion by 

considering solutions of the •wave equation for a linear medium obtained 

through the use of multiple Laplace transformations. The single appli­

cation of the Laplace transform to partial differential equations can 
he found in the presentations of several authors (see for example 
CHS 1, STR l). The application of the multiple Laplace transformation 

to partial differential equations is treated by van der Pol and Bremmer 
( POL l) who gives credit .' to Heaviside .. 'There , is also a ’suggestion ' 

of the existence of such methods in the promise of the second volume 
of Gardner and Barnes (GAR X, Preface and p. ft©). An

discussion of the details of the types of manipulations involved in

is . given by Estrin; .'and,.Higgins 

of single two-sided transforms is discussed 
by Truxal (TKH l) and van der Pol and Browner (POL l).

Theperforman.ee of waves in a linear medium is described, by 
Maxwell's equafions(mks'system of units)s

VXH = — + 3,
St

—A_ VB 
VXE =

St

t*.i)

V *B . p, CM)
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V • B = ©> (4.4)
together with the material relations

© = £ 1, (4.5)

and '■

B = J*% (4.6)
where vectorialqnantities are indicatedhy the arrow. We make the 

additional assumptions that there is no distributed charge and that
-Athe medium is non-conducting, hence ^0= 0, and 0 = 0, resp.

We shall first obtain solutions for a simplif iedmodel and coordi- 

nate system, the direction of propagation will he along the positive 

z-axls hy a transverse wavewhose components are given hy the equations
Ex = f(z,t) (4-7)

S„g(z,t) .(4.8)

where f and g are each Laplace-transformable with respect to t and z.
Applying equations (4.1), (4.2), (4.5), and (4.6) to -the components
Ex and H , we have

and

hi BE
—
~b z dt

■HE dH 
—-*1-?
"b z d t

(4.9)

(4.10)

Following Estrin and Higgins we define the single and multiple 

Laplace transforms of a function of two variables in the following 
Maher. $he Laplace transform of f(z,t) with respect to t is ,

\ [f(z,t)J
>00

F(z,s) =
•at.

f(zi,t) dt, (4.11)
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where we assume that f(z,t) is transformable if a real number y 
exists such that

' AT j - f T jlim/ e f(z,t) | dt < co . ^ (4.12)
T-*-«x/o

This single transform F(z,t) can be transformed again with respect 

to z by the relation
r fo° -rzF(r,s) = Lz|f(z,s)J «.J e f(z,s) dz ■: C^-3-3)

where again convergence of the integral is assumed in the sense equivaleat 

to (4,12). The multiple transform operations indicated are assumed to 
be interchangeable with respect to the order of transformation. That

is, the multiple operation
[fU.t)] -f. rz(

L L. z t
co -rz /00 -St e j e f(r,z)dt dz 
o Jo

(4.14)

may be written in either order, thus
fco -rz/bo -st f60 -st f00 —rz v

F(r,s) = | e I e f(z,t)dt dz - j e I e f(z,t)dz dt (4.15)
J O Jo Jo Jo

which implies that the integrand is uniformly convergent. The inversion

integral is given by

1 CT+d00 '■ ts r5+j® zr
f(z,t) « ——pi e I F(r,s)dr ds, Re s >y

(2jtj) Jy-joo J
andRe r)$. (4.16)

We now transform (4.9) and (4.10) with respect to both z and t, using 

(4.7) and (4.8). This operation is called simultaneous transformation, 
or transposition, by van der Pol and Brenmer (POL l). Thus

-rC (r,s) + G(,0,s) = sF (r,s) - F(r,+0) (4.1?)
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r F (r,s) - F (,0,s) = -/<s G (r,s) + /<G (r,+0) (4.18)

(Bold capital letters indicate double transforms, light capital letters
indicate single transforms). Solving (4.17) for © (r,s) and substituting 

into (4.18),
2r F (r,s)= F,(+0,s) + /MG(r,+0) + F(r,s) - f^f.F(r,+0) - —G(+0,s)

1* r r

or
(r2-€/fS2) F(r,s) = r j^F(+0,s) + /4G(r,+0)] -/A s £e F(r,+0) +G(+0,s)]

(4.20)

The initial conditions correspond to an unexcited medium at t = +0, i.e., 
f(z,+0) = E„(z,+0) = 0, g(z,+0) = H (z,+0) = 0. (4.21)

Hence
F(r,+0) = 0, G(r,+0) = 0. (4.22)

Now frcan (4.17) and (4.18),
r G(r,s) + € s F(r,s) <=■ eF(r,+0) + G(+0,s) (4.23)

r F(r,s) + fA s C(r,s) - F(+0,s) + yUG(r,+0). (4.24)

¥e shall be interested in solutions for which time and the z-coordinate 
are positive. Hence the frequency variable s and wave number variable 
r must also be positive from the definition of the Laplace transform 
of f(z,t), (4.15). Then the condition for a non-trivial solution is, 
from (4.23) and (4.24)

]U [©(r,s)J 2 - [F(r,s)]2 = 0
or

©(r,s) (4.25)
The quantities € and U have positive real parts in absorptive 
media and the square root is taken to be a positive quantity.
(4.25) constitutes a relation from which conditions on G(H ) or F(E„)y . . x



- 35 -

may he found if only one or the other is specified. has the
dimensions of an electrical impedance and is the characteristic impedance 

of the medium.
The sinusoid applied at the origin at time t= +0 is

f(+0,t) = E (+0,t) = E sincot (4.26)X o
Hence the Laplace transform of the forcing function defined hy (4.26)

is
F(+0,s) = Equ)/ (s2+o>2). (4.27)

From (4.25) the condition on H is given hy
G(+0,s) = ^EQa)/ (s2+t02) (4.28)

Substituting (4.22), (4,27), and (4.28) into (4.20), and solving for

F(r,s)
F(r,s) = E to/ (r-^e/T s) (s2+o>2). (4.29)

Taking the inverse transform with respect to z,
fejT z

F(z,s) = (l/2j) Eq e 1 l/(s+jco) + l/(s-jei>) (4.30)

The inverse transform with respect to t is,
■ f (a,t) = Eq sin (t~ ^eje? z) (4.31)

This equation indicates a wave travelling from the origin and arriving 
at time t = {e/T 2. The quantity l/jeJP has the dimensions of a velocity 

and is the velocity with which the wave propagates. The quantities e 
and jn , the dielectric constant^ permeability of the medium, respect­

ively, are related to the values ey, jUy for vacuum hy the relations

M“ Mv^> (4*32)

e = erev- (4.33)



The quantities and 6^ are the relative permeabilityand dielectric 

constant of the medium. We have the relation between ev and and 

the velocity of light c
: : °2=; -3T7-’ : .<*•■*>
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so that

a ju e 6 ,“r rv r v’

M y eY n

where n, the index of refraction of the medium is given by Maxwell's 

relation,
V- :.a ”/My € y' (^*36)

4. 2 Phase Velocity for a Nondispersive Medium

We shall now seek the condition for which the phase of the positive- 

going wave is constant. This may be accomplished by examining the con­

ditions under which the wave is totally invariant. Since the wave is 
sinusoidal, variation in amplitude is the result of variation of the 
phase argument. We therefore obtain,from considering invariance of 

the wave,a condition for invariance of phase. The total differential 

of the wave is
d J^Eq sin (t-^lT1 z)J = (4.37)

or

which is satisfied if

d [wtt-^/ju? z)l = 0, (4.39)

cos [wCt-^z)] | d £(o(t-\//*e’ z)J = 0, (4.38)
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or if

■whence from (4.31)

to (dt- v/yMfe dz) = 0,

dz _ 1 '
n p’ (4.40)

Since this is the condition for constant phase, is called the phase

velocity of the sinusoid. This is the velocity with which surfaces of 

constant phase are propagated, and as a concept, is discussed in many 
hooks on electromagnetic theory (see for example BOR 1 and JOR l). It 

has a precise meaning only for sinusoids of infinite extent.

If we apply a time function
f(z,t) > Ex(+0,t)

at the origin at time t = +0, and express its transform as
F(+0,s) =■ E(s)

it follows from (4.20) and (4.25) that
F(r,s) = e(s) /(r+ s), (4.4l)

so that
- \JIJlTbz

F(z,s) = E(s) e (4.42)

Then, taking the inverse transform with respect to t,

z4(8)as. (4.1*3)

Under conditions of narrow bandwidth of the spectrum E(s) discussed

below, the solution is of the form
f(z,t) = E(t-z/v_),

©

where v is the velocity of propagation and depends upon E(s)v The 

velocity v associated with the narrow band spectrum E(s) is called



the velocity of the vave group E(s), or the group velocity.

4.3 Group Velocity for a Nondlsperaive Medium
We may write the transformed solution. (4.4l)'as. ; ■ ■

^r 1 u r 1 (4.44)

Where r^,, ri? <T, co are the real and imaginary parts of r and s, respec­

tively. Assuming now that the real parts, (T and rr, are zero (this

corresponds to steady state and vanishingly small change of the vave 
With distance), then (4,44) becomes

F( jr^ co) = E(dw)/ j(ri+ft) )

The inversion integral, now becomes a Fourier integral
, f®ja>(t-z/v )

£(z,t) =— I e p E(ui )do> (4.45)
. 2itJ-oo

where v^ « l/^Gyu' . Assume now that the spectral components of E(co ) 

are limited to the narrow hand Aco = ft)^- co^, so that (4.45) may he

.written
f l£0(t-z/v_)

e p E(w)dco

•ft) ■'

We further restrict the bandwidth so that A a) is much smaller in 

magnitude than the mean frequency ft) , that is,

(4.46)

Am _ “V^l ^ x (4.4?)
c0 ft) + ft)1 2

■ 2
It will now he convenient to define the wave number of the wave with 
frequency ft) . The wave number k gives the phase shift In radians 

per meter traveled in the medium, that is



k = o) /\

= nco/e (4.48b)

■where n is the index of refraction. Inserting (4.48a) into (4.46),

r j(cot- kz)f(2,t) = (l/2«) / e l(o>)dco (4.49)
v/Aco -

lor the index of refraction is a function of frequency, as was discussed' L*' • 1
in Chapter 3* So that

k « k(co)
For a suitable small frequency range we may expand k(00 ) in a Taylor’s 

series about the mean frequency to t

2.,k( co) ® k(co +5oo) - k(co) + 5tof &k(co )/dtol + (§w)
L to

which for sufficiently small Sco may be simplified to

co

„ -

k( to ) - k![ co )«5co [bk(co)/acol

pation (4.46) may now be expr*B8S&& as
j [ CO t - k( to )zj

£(z,t) *» 1f(z>t);e.

10

(4.5©)

(W5i)

C^.fs)

where

W(t,t) * (l/2it) j E(co )e
j { (to - to )t - [k( o> )-k( to )]z$

dco.

Inserting (4.51) into (4.53),

W(z, X)',
j f (to -to )t - Soo [bk( to)/dco]-4 

l( to) e dco.
(4.54)a to

The exponential factor ©f (4.52) represents the central frequency of 
the wave group (4.46). this frequency is called the carrier frequency 

©f an electrical ccmmieation system. The W(z,t) faetorls a slowly, 

varying modulation ©f the amplitude of the carrier having frequency 
components in the rang© to«» Fro® (4.48a) the phase velocity
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varies inversely with k(w) ana the propagation velocity is net equal 

for all frequency components. Consequently the shapeof the wave, 

which depends upon the phase of the various components, changes as 

the nave travels.
She exponential factor of (4.0) represents a sinusoidal factor 

of constant amplitude, therefore the factor W(z,t) propagates the 

shape of the wave group and is called the envelope. For Aw suffi­
ciently small, the product Jdk(co)/dcoj_z is essentially constant 

ant may he termed the propagation time t of the group, that is,
tg = [ak(^ )/Sco]a 2 (4.0)

We may solve for .the average velocity
----—, (4.56)_ z 1V tz__ m ___

CO CO

Shis derivation is essentially that given by lorn and Wolf (B©B l).

An alternate method of derivation of the group velocity may be given 

in terms of invariance conditions applied to the envelope. In (4.54),
&CO

From (4.51) we then have

f(z, t);
>[<Co ^k(co ) 

.3(0 _ z 0) litb
h k(w)
Sto co

(4.59)
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The factor "bearing the shape characteristics of the group is

E ft- —_ z , the envelope. We see that the argument of the 
1 boo loo -1

envelope depends only upon the independent variables z and t for a 
chosen center frequency. If we examine the condition for which the 

amplitude of the envelope is invariant, we will obtain an expression 

involving the propagation velocity of the group directly. This is 

true so long as the shape does not change. Points on the wavefront 

travel with the propagation velocity by definition. Proceeding with 

the condition for invariance of the envelope, we set the total differ­

ential equal to zero, thus

|E t1 3k( co)
dco

la'8] dtt ^ dz o
i>t dz (4.60)

or

dt 'iz . 0 
dco to

so that,
_ dz ^ 1

S at ^k(00) 1 * (^-6l)
dco ItO

which agrees with the previous result. The additional phase factor 
given in (4.59), exp jfto Sk(co)/dco -k(oo )j _ z, results from the lack

of symmentry of the onesided transform and the odd forcing function.
It shows that there is a phase shift of the carrier of the amount

0 = jo> dk(to )/boo ~k(co)^j- z radians (4.62)

over a path z meters long.



4.4 Solutions of the Wave Equation for DispersiveMedia--Ionosphere
The rectangular cartesian components of Maxwell's equations (4.1) 

and (4.2), are

curl__E = BE^/B y- 3E^/a z = - BBx/3 t (4.63)

curl E -v. y ; B E^a 2- BEz/3 x = - d E^/B t (4.64)

curl E = \ 2 S E^/9 X» BK/3 y = - BBz/B t (4.65)

curl xH ==>Hz/3 y- B ly/9 2 = ix+B D^d t ' (4.66)

curlyH = B r/a z- x = iy+9Dy/ d t (4.67)

eurl^H - a Hy/B x- 3 HJbj = 1+ 3 d t (4.68)

For our case, only E and H are nonzero, so that we have need forx y
only two of the above equations, (4.64) and (4.66). As shown in Chapter 

3, the dielectric constant is frequency dependent. The work of Chapter 

3 applies to steady state solutions for sinusoidal waves. For waves 
of more general types of time variation, it is necessary to express 
the dielectric constant as a time varying coefficient in Maxwell's 
equations. Rather than seek a solution of the wave equations in 
terms of the time variation, we shall utilize the expressions developed 

in Chapter 3 for the frequency variation of the dielectric constant. 
These expressions will find use as the equivalent Laplace transforms.
The differential equations (4.64) and (4.66) will he transformed and

solutions obtained by inversion of the transform.
Equation (4.66) may be rewritten as

- aHy(2,t)/a 2 = ix(2,t) + 3©x(2,t)/31. (4.69)

For the assumed nonzero wave components E , H , and alignment ofx y
magnetic field along the z-axis we have frcm (3 • 39) ^
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i (to) » e co2® Fto)/(£o2+))2-«;2+2ja)p )] 
oxv ' V c ox1' ° " ' o (4.70)

Now, the subscript "o" in the variables of(4.70)was used in Chap. 3 

in order to designate the amplitude of the components i and E which were 
assumed to have a sinusoidal time variation, i.e., from (3*3)>

. ' E = E eX ox

The assumption of sinusoidal solutions of a differential equation is 

equivalent to imposing conditions for the steady-state response, or 
mathematically speaking, obtaining the Fourier transform of the solution 

Further, the Fourier transform may be obtained from the Laplace 

transform by substituting j co for s. Since we have expressions for 
the Fourier transform of the Conduction current (4.70), we desire to

proceed in the reverse direction, i.e., to obtain the Laplace trans­

form from the Fourier transform. This we can do by the substitution 
of s for 7 s for -co , providing we can assume the initial con­

ditions of the Laplace transform are all identically zero.
In the case of the conduction current (4.70), we are assuming 

that the medium is initially at.rest, so that the latter restriction 
is satisfied. Hence we form the Laplace transform of the conduction 
current from (4.70) by the substitutions given above. The result is

Tx(r,s) = ev£0%(r,s) [(V+s)/(co 2+v2+s2+2%>s)] (4.71)

where the "o'1 subscript is now no longer necessary since the time 
variation of i(z,t) and E(z,t) is not restricted to sinusoids.

Taking the Laplace transform of (4.60) with respect to t and z , 

letting Ex = f, Hy = g, ■

-r€(r,s) + G(+0,s) = Ix(r,s) + s e T(r,s) - evF(r,+0). (4.72)
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Substituting from (4.71) and rearranging
2

r€(r,s) + s
€ v wc

s +2 y s+co + VL. ft
5” + € , 2, m2 v F(r,s) e vF(r,+0) + G(+0,s)

“ " p p- (4.73)
s +2Vs+o> +V6o

Now (4.64) may be rewritten as
3Ex(z,t)/3z = - JU J^Hy.(z,t)/3 t J (**-*7^)

Talcing the Laplace transform with respect to t and z, with notation
consistent with expressions above^ rearranging the order of terms,

rF(r,s) +yUsG(r,s) = F(+0, s) + /<G(r,+0) (4-75)

Now, since r and s are not identically zero, and the right hand members 

of (4.73) and (4.75) are arbitrary, the condition for a nontrivial 
solution of (4-73) and (4.75) requires that the determinant

G(r,s) ev °°c
p p 2s +2V S+OT+ V

+ 6 *(r,s)

- 0 (4.76)
F(r, s) /<6(r,s)

for the mode and medium that we have assumed. This condition yielded 

(4.25) in the case of a nondispersive medium and gave the familiar 
expression relating E and H by the characteristic impedance \j£//Ai 
of the medium. In the present case the characteristic impedance of 

the medium is modified by the damped resonance of the electrons and 
presence of the magnetic field. We therefore have from (4.76) a new 

relation which must exist between G(r,s) and'F(r,s) for nontrivial 

solutions,
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S2^n+ /
—Z (s) + s —————ev ° 9 9 9s +2 V s+u) + Vo

F(r,s)

“ [V- /<vsZo( s)] f(+0,s)

s2q.2(s) = s2( ev)Z^(s) + s [V c02/(s2+2 V s+ co^+ p2)|

2= e
3 „ 2 / 2, 2, x2v . 2s^+sS-Ps +(co + w + -jj )s+VCO o c c

2 2 2 |~, s(s +2 TP 8+ oo 4- V ) o

or

q(8)=
s(s2+2i) s+ ft)2+ V>2)

Bat YpP/Z^ - 1/c, and

„ / v / / \ /s2+2v s+ co2+ o>2+ S)2 
sfAyZ0{s) = (s/e) / o c

/ 2 2 2 V s’ +2\? s+ eo + v>, ■ o
We snay write (4.8l) in the form

[r-s^Z^s)] F(+0,s)
>,s) »

[r+sq(s)/cj [ r-sq.(s)/c]

r sq.(s)z/c -sq.(s)2i/c -i 
le +e F(+0,s)

^(s)/*)] [ e«4(»W=.e-«(»Wc] F{+o,s).

where
fs^+2 V s2+(a>2+co2+ \>2)s 

o c
s3+2v S2+( CO 2+ co2+ D2)s+ VU)2

■ ' o c ' c

(4.81)

(4.82a)

(4,82b)

(4.83)

7
(4.84)



Now £(z,t) is given by the inversion of (4.83). Even with considerable 

simplification the inversion of (4.83)may be quite complicated. The 

process may be illustrated by considering a much simplified case*
As sunning that the effects of collision damping arenegligible.

Re = nn> - 0> or ■£> - 0, and

Zjs) =/!l(l + or

2_,2 s + wo

),

<l(s) - s |l + w|/(s2+CO^)]

F(+0,s)

in

Then

-[mZ(s)~}bz^F(z,t) = e Q F(+0,s) (4.85)

Now for p = 0

/y^s) = :■/*▼' [* + ^/(s^W2)]

2The quantity yUv =(l/c ), where c is the velocity of propagation

of electromagnetic radiation in vacuum. Therefore

yUvZ0( s) = (l/c)\jl+ a>2/(s2+CoV

As will be shown, the quantity under the square root sign determines 
the characteristics of propagation of thesignal f(+Q,t). In sub­

sequent discussions we shall have occasion to discuss the radicand 
in seme detail. It shall be designated as G((s) where



or CO *
<^(s) V / 1 + C

" v- ■ 2 : 2
s +(0

(Ik 86)

We rewrite (4.85) in terns of <X (s)>
. [«x (s)sz/<gF(+0.s)

F(z,t) es e (4.87)

The inverse transform with respect to t is given hy the inversion 

integral
, S |t- 0((s)z/cl ^

£(s,t) ** —_ e F(+0,s)ds (4.88)
. 2jcJ jy- joo ■ •

Y <( He 3
Consider now the evaluation of the contour integral (4.88).As 

s->-oo, <x(s)-*-l. Therefore, starting at s ='y- joo, if (t-z/c)

< o, the contour may he closed hy an infinite semi-circle to the 
right encircling the right-half s-plane. Since •y<Be(s), if there 

are no poles of F(+0,s) in the right-half plane, f(z,t) = 0. Thus 
at a point z in the medium the field is Zero for t^z/c. Hence

the velocity of the wave front cannot exceed the velocity of light c.
When (t-z/c)y o, the exponential factor -*-oo as s^-00 and hence the 

contour can he closed only in the negative half plane. The singu­
larities enclosed include poles of F(+0,s) in the left half s-plane 
and also the branch points of e D>“0<-(s) z/cl s Neglecting damping 

We write ck(s) in the foa

0<(s) =|
2, ..2, ,, 2 - + CO + u) o c

2 2 s + ft)”* o

(4.89)

where the positive root only is indicated “by an unsigned radical.



We see that
06 when s

OC(s) = 0 when e = +Ju <o + co

The location of the

the branch points are denoted by

,2\l/2

Figure 4.1
Baths, of Integration in the s-ELane for Equation (4.88)
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The double lines connecting a, to tv, a to b represent the branch 

cuts. Crossing a hranch cut so that a single "branch point is encircled 
results in a change of sign of the integral. This, source of ambiguity 

is avoidable by devising an integration contour which does not cross 

over the branch cuts, and thus branch points are encircled in pairs 

with no resultant sign change. Along the branch cuts the path of 

■tile contour may be so arranged that the branches a,re traversed as 

if the function were single-valued. The details of branch point 
integration are discussed in deta.il in Morse and Feshbach (MOR 1,

Section t- .t) . As the equivalence of single-valued branches we use 

a contour such as shown in Pig. 4-.1. The path of integration for 

(k.88), which follows the imaginary axis from 7"-joo to y'+joo, v 
is closed by an infinite, 'semicircle to the left. It may now be 

deformed in any manner on the cut plane without altering the value 

of the integral, provided only that in the process of deformation 
the contour does not exclude the poles of F(+Q,s) Or cross either 

of the branch cuts. The path may be shrunk to the form indicated 
in Fig. 4.2a, where it is assumed in the discussion of phase velocity 
in the present case that f(+0,t) is a sinusoid and hence F(+0,s) 

has a pair of poles on the «)cb axis at +jcd. The contributions 

arising from a passage back and forth along the straight lines connecting 
each of the encircling contours cancel each other since there are 

no singularities enclosed. Consequently Eq.. (k.88) reduces to four

integrals about the closed contours C^Cg, C3, and as shown

in Fig. V.2b. The integrals around the poles of F(+0,s) over contours 

0o and C_ may be evaluated at once by summing the residues. We may
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(a)
Figure 4.2

Final Baths of Integration of Equation (4.88)

represent their contribution as

- firf.i J C

r. (s) i [ t- --- 2 J F(40, s )ds

The remaining two integrals around contours and surrounding 
the branch cuts my be represented by

(4.90)

f23U,t) i L s rt- oc.(s} t*,~)
P F(,0,s)ds

2«4JC2+C3 (4.91)

•where t = z/c, the vacuum propagation time. Riysically, the com- 3? ■
ponents of f(z, t) resulting from integration around and

represent the forced response of the medium to the incident radiation 
at the origin f(+0,t). The components fg^z^t) represent the free

or transient response of the charges of the medium at the natural

frequencies C0Q and ix>c-
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It is shown in the Appendix that the solution for the positive 
traveling wave is of the form

f(z,t) = Eo J sin 60[t-\|l+. CO.
~r~i

“o+“2

+ —^COS6) (t-t )
.2 2 1 0 p
G) -a>:

CO
cAt-t ) toftj (($&■ 3)(t-t_)2

c p + -c
l6to

.P- e P
192to?

o p
2!t

3(t-tp)y

2t

w8t^ /(coi+t1+-i5a)2t2( t-1 )3
c p |v o p . o pv p'

3840) 48t

(I8w^+7J)

Ifrt l

+ sinw (t-t )o p

r b co c

(8w?t2+15) (t-t )
+___ o p • +.

P
co6t3 /3co(t-t y 
cp J o p'

16to 192wo o
2 \ 2!

(3coV+l) (t-tp)

2«0 t o p 2a) t ' o p
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>=*5 .'"oV (t_tP)3

38^ 48t*
o p

(•MHfa <ooV (t-y2
l6tp

^ (8^§fl8i^>yi5) (t-y

l6t?
P

(8wW-15)
^ ° S ■ -V ;

: o.P
+ ... ? (4.92)

The first term is the steady state and the succeeding terms are those 
of the transient. It may he noted that all hut the first transient

term contains a factor of (t-t )• Up to the time it takes the wave
P

to propagate a distance z in vacuum, the field is zero. At time t = t^,

the response is still zero to the first order in't as it can he

seen hy using the small angle approximation on the steady state term 
and hy expanding the radical. Thus for time slightly greater than

V
sin <0 [t- ((0 h/( <0%-•* Z)’;p] /l+ (» fal-J)

^ £0 (t-t ) + )/2(«2-^)
-p# v' o p'

■which, combined with the first transient term yields
■£.(*, t)».(EyajwCt-tJ, t ® t +5t p p
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Thus for a very small initial instant, after the 'wave would have reached

the point % in vacuum, the response in the medium grows linearly from

zero. Quantitative discussion ©f the transient in subsequent instants

depends upon the plasma frequencies £0 and co and the distance % ande o
is better indicated hy an asymptotic form of the series solution 

below.

After decay of the transient the steady state response prevails. 

The phase velocity may be derived as w done previously, and is

~' (M3)
1 •+

The complex nature of the wave transient after t = t cannotP
be visualized fr«m the solution given, in (4.92)/ but by the use of 

asymptotic relations and approximation techniques it is possible 

to determine certain characteristic features ®f the response.

For very small values ©f time in' excess ©f the vacuum propagation 

time t. we may apply; the initial value theorem (see the Appendix)

to obtain as the response ia the instants ©f time for which t is

slightly greater than t ,P

lim f {%,- 
t->0

E o) /2(t-t, L/2
P

2 \W t ©P

/2co“t (t-tj\l c p p

where is the first order Bessel function of the first kind. A

plot ©f If. (4.f4J is' presented in the Appendix in Fig. A.2, Iti \ "
can be seea from this that the response is a growing oscillation. 

The spacing of the zeros is. that of the first order Bessel function
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having an increasing argument given in (4.94). The oscillations 

decrease in frequency with time at this particular epoch of the 
response. The frequency approaches the critical frequency of the 
electrons. The response given in (4.94) is eventually damped and 

is replaced by that of succeeding epochs which will be described 

below. This first part of the response which arrives with velocity 

of light is called the first forerunner or precursor of the signal

(bri 2),. ;
Tor the response for times much in excess of the vacuum prop­

agation time, it is necessary to consider details of integration 

of the contour integral using approximate methods. We note that 
the exponential kernel of (4.88) has the form

st (t/t -o( (s))
K(s,t ,t/t ) = e P P

In general o((s) is complex and therefore the exponent has both real 

and imaginary parts which vary with s,t and If the real part

is zero, we may use the approximate method known as the method of 

stationary phase (BRI 2). If both real and imaginary parts are 

presentees in our case, the method of steepest descents may be 
employed (MOR l).

The oscillations of the integrand due to the imaginary part 

of the exponent of the kernel cause the algebraic sign and magnitude 
of the integrand to fluctuate as the path of integration is traversed 

in the s-plane. For a given absolute value of the kernel, the con­

vergence of the integral is affected adversely by oscillations in 

sign. However the oscillations are a function of the contour of 

integration. Since the contour may be chosen anywhere to the right
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©f ike real-fart of the ®xp®aeat ©f the kernel, there is the possibility 

that.the integral my be made to converge rapidly to the greatest part 
of its -mime is a relatively 'short, path.’ The -mime of the 

determined ©a such a pith would .then be takes as the 

value.®f the.integral. If necessary Or feasible the pith of inte­

gration nay be el©s@4 in a vicinity where the absolute value of the 
kernel is very small, relatively speaking, aat where ©soillatioas 

4m:e t© traversiag the r«£miag:part of the eeatoar .thus have m«aii 
■effect*

It is apparent that the best pith t® eh®#is is ©ae'where the 

rate of-;change with respect to pith length is maximum and at the' 
shae time oscillations of the 'kernel are ssinisiiged or held to a 

aaiaimttm over this ''port’ioa of th©' path. Fre®. the theory ©f.functions 

©f a @©splex variable^ah analytic function possesses neither true 

maxim ©r ssiaim' but li^heUd^exhibits' miaiaaax' or satilepoliits. At-- 

this® points, due-to'the: orthogonal character ©f the real and i®a 

parts ©f the analytic function, the lines along' which the function 
changes at a uaxisua. rat® are; also lines along "which, the rate ©f 
©hang® of phase angle is »©r<® and hence are' lines ©f constant pha 
It is thus possible t© its® a line of mxisfiaat descent as the d< 
pth of integration. Whereas a line .of MaxiMa ascent coaneets thfe 

Mgh points ©tf the function., such as poles, a line ©f maxirnma descent 

connects the lew points or valleys of the function. Kies© lines 

cross orthogonally at saddlepoiats. Sine© the original ii 

is presw&ed. convergent, the pith slang the riige line, ©r 

aaxiwm ascent causes the integral to b©e©ae infinite at the 

and. thms cannot be the' required. pith, a®'path of iaieji
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leads from one valley region of negatively infinite values for the 

complex exponent to another valley region of negatively infinite 

values, see Fig. 4.3.

Line of
Level
LineSteepestDescent

Line of 
Ascent

+37 +

Level
Line

Figure 4.3
Contour Plot of the Exponent of the Kernel K(s,V,t/tp)

If in Fig. 4.3, curve ah represents the line of ascent along which 

the real part of the exponent Increases from the saddlepoint as 
fast as possible, and curve cd represents the line of steepest descent 

nng which the exponent decreases from the saddlepoint at maximum 

rate, then curve cd is the desired path of integration.
We shall now derive a general formula for the first term in 

the asymptotic expansion for f (z,t). Let the contour integral he

represented by
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£(z,t) « (1/2itj) / e p F(+G,s)ds (4.95)
Js

la "the neighborhood of the saddlepolnt at s = sq ve may represeat

the exponent of the exponential kernel w(s) hy a Baylor's series

w(s) - tKso) + (s-s@) v'(80) + (l/2») (b-s0)B wn(s0) +...

Sisc6 wb are at a s&ddl ©point of w(s)* 1$ ^ (s ) = 0* Thcref©re
©

= w(sQ) + {x/2.1) (s-s/ w"(so) +... 

fhe approximation for the integral 'becomes

fCE^t) a (l/gljj) e/. F(+0,s)ds

. c.W fa tn(s-sn)2 v"(s„>/2!
/2ttj) I ep 0 F(+0,s)4s

where the path, is taken im the direction, of the original eomtOTr^ 
say frosx e t© 4* M©ir w( s) takes ©xx large ixegatiTe values at the 

extremities of the path ©f steepest descent^ s© that the fM&ixtity

[(®-sQ)S w"(soJ] /a.* < 0.
Furthermore as either t or t in the expoaent takes on large values 

the exponent ‘becomes a larger negative number and the convergence 

©a the integral on the path ©f steepest descent is even more pro­

nounced. If the'path is sufficiently short dm© to the effect of 

these factors on the convergence;, then F(+©,s) is relatively constant 

and may he factored outside ©f the integral. We therefore write 

the integral ia the form
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f(z,t) = (\/ N,r(s0)i t w(s 
=, p 0>/2*)/

JG

a-ts2/2
p dS,

where

S2 » |(s-sG)2>rrC»0)|, ' ■

and ’
as = j ■yj'\*n(*0)\' ds

For sufficiently large t or t, the integrand will effectively
Jtr

become zero outside the range in which the Taylor's series for w(s) 

is valid. We may then replace the contour integral by a real integral 
over the range - oo to +oo . The direction of integration on the path 

is chosen to he consistent with the direction of the original contour. 
For these conditions the approximate value of the integral is then

f(z/t) /fwN(sJ/2^Tf [eV(So)p(+o,so)] /2 (4-96)

¥e note that in this method the rfoase of f(s) on the path of inte­
gration is taken to he the phase of f(sQ).

In order to obtain the rest of the terms of the asymptotic 
expansion, we shall use a different expansion than that of (4.94)

(MOB l). Let
f(s) = f(so) -|2. (4.97)

Since the phase of f(s) is that of f(sQ), then % is real. The

integral now becomes

f(z,t) « [ V(so)
e F(+0, s) (ds/d|) d|r
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■fef(s) P 00 -t ^ ^
f (z,t) - [ F(+0,S )e 5 ° /Ssj] / e 5 (ds/d£) di

° 7-w (4.98)

We now compute ds/d| by inverting the power series for f(s), (MGR l),

(ds/dw) = z' a, % , (4*99)
B = 0

Where

« (l/a!) (ta/dsa) [ (s-so)/g(s)^] n+1 (4.100)

and
CO

I = g(s) = 21 (a ./n) (s-so)a (4.101)
n * 1

We may now investigate the response of the medium after the 

instant of arrival of the first part of the wave transient at t = tP
as given in (4.^J4). From (4.86) we have the square of the complex 

refractive index function

OC2(s) » 1 +£0^ [l/(s2+co®)]

with singalarities located in the complex plane as shown in Fig.
4.2. The factor w(s) of the exponent of the exponential kernel 

is of the form
w(s) = s [t/t -ct(s)] (4.102)

Jr

We now investigate w(s) for the location of saddlepoints, that is 

where dw(s)/ds = 0. Taking derivatives,
[dw(s)/dsl = t/t -cx(s) -s [dOC(s)/ds^ (4.103)

ir

[d\~(s)/ds23 * - [docCsJ/ds"] ~s [d2o((s)/ds2]

For oL (s) as given above

(4,104)
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dot(s)/ds « - £sa#.. £(s2+a;2 (!<•. 105)

and

d2oC(s)/ds2

For exact determination of the location of the saddlepoints, Eq.

approach is not the one employed here, since there are other more 
simple methods which may "be employed to trace the loci of the saddle-

It is possible to solve the equivalent of the Subject algebraic 

equation by a combination of computational and graphical techniques. 
There is still a substantial amount of labor required in this 

procedure, but it has the feature not afforded by the pure compu­
tational method that the topology and the motion of the saddlepoints 
is more easily visualized. This method first requires a plot of 
the contours of the real and imaginary parts of o((s) on the complex 

plane. Computational and erossplotting techniques are employed 
for this step. A plot results such as given in Fig. 4.4. Eq. 
(4.101) is now employed to compute the real part of w(s) for a 

chosen value of t/t . The contour plot made as a result of this 

step resembles Fig. 4,3 ih the neighborhood of the saddlepoint.

■While this method does enhance the understanding of the motion of

algebraic equation Is of fourth degree, and in general the roots 

 

are all complex, ©lis projected task is therefore not a light one, 

and is one best accomplished with computational facilities. This

points as a function of t/t.
P
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mtm
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the saddlepoints, and like the computational method yields results 
which may "be made arbitrarily more accurate, it is still quite 

lengthycompared to the following more approximate method.

It is learned through experience with the plots of the graphical 

method just described that the locations of the saddlepoints for 

which there is the greatest change in contour values are those 
closest to the singularities of o((s). This immediately suggests 

an approximate method since only factors associated with the singu­

larity of a function of a complex variable change rapidly in neigh­

borhood of the singularity. The motion of a saddlepoint near a 

singularity may then be traced by studying the behavior of an incre­

ment in s for the condition that the first derivative must be zero. 

This procedure will now be applied to the problem at hand,

We have ■
oC(s> «' [ 1 (s2+a>2)] 1/2

= ' [C8a+wV©^' / (s^o)2)]1/2 •

with singularities located at s = + and s + j^o,

Near s ~ + j-co^yo<.(s) is an even function of s. Because of this 

symmetry we shall deal only with the upper half plane in this 

discussionf let
s'<* re^0 (.4.107)

■ Then
0((s)[l + W?/ (r2eJ20+ «2)] 1/2.

Now for r very small, we have
«(») -
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ami. then
w(s) = s j^t/t^ -ot(s)J

= • ft/tj -d+<“e/“o)l/2]

so that
dv/ds » [t/tf -d+O) J/co J)1/2]^

We have thorn that a sa&dlepoint or inflection point for Which 

dw(s)/ds = 0 is located at t/t ® (l-*-Uy®f (0%)^®. Since d2w/&s2 = §
Jp w w

this is an inflection point rather than a saddlepoint. Therefore 

this point does not locate the summit across which the path of inte­

gration mast pass-
We next consider r faite large and since our approximation 

technique is being employed to reduce algebraic complexity, we 
consider only the predominant term for the other extreme for which

rV2@»2, so that

c*(s) (l+ co^/r^e'

We now consider two cases, first the case for which |co2 | > [r2e

Then
<X(s) ^ (o r _1e

c

and’ -
w(s) » re^(t/t - co

P G

= Ct/t^) re^f-CO0,

dw « (t/t ) e dr + j(t/t^)re d©
so that
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For a saddlepoint, dw = 0, so that

(t/tp) e j0(dr^jde) - 0 

which yields the conditions,
dr/r = -«j0

or.- ;

and
Q= oo; since t/tp *= 1.

The result, r « +oo, is incompatible with the original premise of

j to 2| >|r2| . The indication however that r is always quite large 

is consistent between cases. In the ’’vicinity” of +j A)Q we have 

left the case of jr^e-20| >C02. Then

*(s).*s'(l+ ^/r2eJ2V^

72 1 + (l/2)co2r “2e“'320 
c

Therefore
w(s) = reJ0 [ (t/tp) -l-(l/2 coVV^20]

- (t/tp-l) re*30 -(l/2)(0^r'Vje 

For a saddlepoint, dw = 0, hence
|(t/tp-l) eJ6+ coV2eJ29/2] di+t1r [(t/tp~l) eJ0+ G>V2e" J0/2] d0

from which we obtain the conditions
dr/r =-«Jd0

re*30 = s = C
or



where C is a constant independent of r and 9, and

p-1) -

The final fora for s is
(^.108)

where the positive root is chosen consistent with the direction 
of the contour of integration. We note from this, that for t/t^ =1,

the saddlepoints are located at + oo on the real axis. Siaee ©nr 

solution given in is exact for this case, it is not necessary
to obtain an approximate solution by the saddlepoint method.

From (k.lO$) it is indicated that the location of the saddle- 

points approach zero as t/t^-^co. This result is due to the incomplete

nature of our approximation since we are considering the effect of 
only one singularity at a time. We next assume s = j o> + re^0,

and since d(s) is an even function of s we -need only to consider 

only the upper half plane. We have then

<* ( s ) - Cl+CO2/AJS0)l/2 
©

This result is identical to the preceding case, so that we may

near <300 are on the real axis between + 00 and 0. o —*
We now let s * j(co ®+co2)'J'/2 +

© c re° to locate the approximate path

of saddlepoints near this singularity. We have
(Acd**!/* - *•*-*#• 1/2
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First consider the case for which |j(Cb ®+Co’f)^W^| >lr^e^2®| .
I o o 1

Then

oC, (s) ~ 1/ [l+( j oo/E) v

and therefore

* “ [3« “S> eSl/2+reJ03 [ Vy & < »t«# e-J*Ari/*.J*/a/<oe ]

r. i+ co o c
WV/ye/a/ioJ.

Taking the derivative and solving yields the requirement that r

he infinite, "which is in contradiction to the hypothesis for this
1

case. We are thus led to considering a ease for which r may be 
large. Allowing such a condition results in obtaining the func­

tional variation for r. let

< |rV20|

Then
«.(.)» [rV20/(rV2e-<o2)]1/2 

= [(l/mVV129^

Wow require that
|(oW32*t> 1-
' c

We have

^{s) * j w/V10

and
z . 2 2-+ ft) (a) + co cv © c
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Then for a sadeLLepoint, dv = 0, and
[- ‘>«(‘>*+»J)VVVi»* Ct/tf)eJ9] (4r*jras) . 0 ■,

which yields the result

». * {t/\+(^.i©9)

as the location of the predominant saddlepoint. Finally consider 

the ease for ‘which

2 ■e I < i*

We have

ot (s) ^ 1 + to 2r-2e~^20/2
.....C ■

a&t

tr ^o+Wc)V +re 3T t/Vl-too2r-ae-^9/2]

From dw = 0, we have the condition

(t/t-l) r3©*33® +(co2/2) re'30 +ju 2( <y2+ a2)1/2 = ©. 
r c c o c

For' re' very large the approximate roots of this equation are

S1 - re39 -[wpU2+ s>2)1',2/(V'tp-l)]

s,=|;U2(<02+«:
& i- e o (

p-l)J 1/3e^rt/2,

and

V 1/3^

0nly the second of these locations is along the positive imaginary

axis and hence will contribute most to the response.

We may now summarize our observations concerning the location

of the saddlepoints. When the operating frequency is in the vicinity

of the origin ©r near or less than s * , the location Of the0
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saddlepoint is given "by

ss = + H/\^2(t/V^
'■ f 2 2When the operating frequency is near s = Jl&J Q+W c

(4.110)

the location

of the saddlepoints is given "by
* f/\'y .1«»X.>I/2

. 2 2\l/2Then when the operating frequency is "beyond s = jC60 o+t0c^ > 

the location of the saddlepoint is given approximately "by

We shall now discuss the characteristics of the transient 
response of the medium in terms of the motion of the saddlepoints 

and the frequency range. From (4.93) "the first term of the asymp­

totic expansion for the response is given "by

f(z,t) “ ■ \.Vlv,rts0')l /2«tp F(+0,so)e P ° J/z:

or

f(z,t) - A(so)e
Vo tvV

We note that
A(so) = /Fw" {so) ( /2«tp’ F(+0,sq)/2

is an amplitude factor dependent upon time through the location of 

the saddlepoint sQ. From the discussion above there are three

frequency ranges in which the apparent motion of the saddlepoints 

differ somewhat with respect to t/tp. In general each frequency

range sees the saddlepoint in the same proper direction "but due to 

the nature of the approximations used for discussing the location
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of the saddlepoints, the exact locations and weighting are not equal. 

For the range Q^co^coq, the sad&lepoint starts in from + 90 at

t/t = 1 and approaches 0 as t/t -?o0 . Then (4.108) takes the p P
form

t Gi [ )1 /\j2(t/t -l)'
fU,t) * A(s )e s oL * ■ * V s >

o

which to t/t))l "becomes

•f(a,t) « A(s )e ® G
t f^y- «(■») Vyt1 ] / /r

4.g The Signal and (group felocltles

It will he recalled from (4.94) that at t/t = 1, the responseP
"begins with a very small high frequency oscillation' and grows 
steadily in amplitude with a decrease in frequency. As t/t

becomes larger, the response given by (4.113) grows as a simple

exponential since the exponent is real. If there had been damping 
included.in the complex refractive index function, the initial 
oscillatory response would begin to be lamped at this point. The 
remaining part of the response is given by additional, terms in the 
asymptotoe expansion of (4.99). Ihile mathematical evaluation 

of the inversion of the power series gives in (4.99).. Is- quite

involved, a good understanding of the overall result may be obtained 

by referring to Fig. 4.5 shewing contours of w(s) ©a the complex
gplane. Since at the poles of o( (s), w(s) becomes +©o, the lines 

of steepest descent pass from one pole ©f 0( (s), over the saddle- 

point to the other' pole. ©n Fig. 4.5 .we see that as the sadCLepoint 
moves inward toward the origin with increasing t/t , the integration
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imaginary axis. Therefore as the path ccoaes into proximity with

Operating Frequency 
,3 co '/ Saddlepoint

Motion of Saddlepoint with Increasing Time

Figure
Relation of Integration Rath to Signal Velocity

having the frequency of the signal or operating frequency. The
growth of the signal is quite rapid as the contour approaches the
origin in the limit, as can be determined by the dependence of the
saddlepoint location upon the time t. At a particular time the
signal has grown to an arbitrary fraction of final value. This
is the arrival time t . The distance z and the arrival time mays
be related by a velocity called the signal velocity v . for whichs
an expression may be obtained as follows. The function w(s)



0

is defined by
«(«)“' <*(»)]

The condition for a saddlepoint is
dw(s)/ds e t [t/t - o((s) -sdof (s)/dsj »

or since t » z/e,P '
a/t s e/£c<(s) + sdo((s)/4sJ 

Sow the actual velocity of propagation of the signal.to the point 
z is z/t. If at a time t the .signal las attained detectable pro­

portions and is considered to have arrived, we may.define the 

associated velocity as the signal velocity v• ' S
vg = z/tg = ©/[<*( g) + sdo((s)/tsJ = g (4.13.4)

s

•where sg is the position of the saddlepoint at time tg. The quantity

c/[sdoc(s)/ds] is known as the group velocity (B01 1, Section 1.3), 

and was discussed earlier. It is apparent from (4114} that, depen­
ding upon the relative sizes of «x(s), doc(s)/ds, and the detecting 

level for the signal, the signal velocity may be significantly 

different from the group velocity.

©ar discussion of the effects of saddlepoiat motion upon v0
may mm be carried ©at for each frequency range using the equations 

for the pith ©f the saddepoint® derived above. . The general effect

in each range may be' eeaputed with no difference ia. technique from
' . :■ . ■! . 1 . ■

that given above. We. lave established the key result that there 

may be a significant difference between the velocity with which a 

signal is propagated ant the group velocity. This effect varies 

with the operating frefueney relative to the critical frequencies.



Figure h.6 presents a plot (1RI 2) shewing variation of these three 

types of velocity with operating frequency. The relative ordinates 
of the actual curves vary in a given choice of critical frequencies, 
detection level, and form of o(. (s), which itself depends (at least 

in determination of the location of the zeros) upon the propagation 

mode. , General features ecannon to the. curves are noted. - In' .partic­

ular the group velocity is equal to either the phase or signal . 

velocity-at their respective maxim, ■ . ■
She.basis for the compensation method proposed by Harris (HAR l) 

is mow evident. For frequencies such above the critical frequency,

lati© of Telocity of 
light to Signal, Group, 

or fhase Telocity

fhase Telocitygelations Between

in a Dispersive Medium (BHI 2)



the group velociy is very nearly equal to the signal velocity, and 
in addition, is approximately as much less than the velocity of 

light as the phase velocity is greater. We note that this relation 

does not exist at frequencies near the critical frequency. However 

if two or more propagation links nay he used, many other schemes 

are apparent, such as using other weights than simple averaging 

of group and phase velocity. Propagation velocities at other, 

frequencies may also he ccmhined with certain weights to effect 

compensation for dispersion. However effects not studied here, 

such as the averaging of signals received over slightly different 
paths hy the aperture of an antenna, adds variations which require 

a transverse dimension for their specification and analysis.
Referring to (4.85^ complete discussion of the velocity effects 

including collision damping requires discussion of the singularities
s t+q.(s)t_ s t-f(s)t

©f e p F(+Q,s), e p F(+Q,s), etc. 'Hie task

heccm.es much more formidable than the previous case because (Ik34-) 

and the defining relation for q(s), (4-.82a) contain a cubic factor 
which cam only be studied numerically. She discriminant of the 
cubic factor in (4-.82) and (4.84-) is not a perfect -square. Thus 

factors of the cubic equation can not be indicated (®IC l) in a 

■way that expedites a general discussion of the saddlepoints for any 
of the exponential kernels involving f(s). It would appear that 

a numerical integration would be the most expedient means for studying 
solutions of (4.85)• la general there are more saddlepoints than 

in the previous ease. The contribution of the integration over each 

saddlepoint must be summed. At some operating frequencies the tran­

sient is more complex than indicated above, there being additional
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predominant parts in the transient as the saddlepoints approach 

the critical frequencies of the exponential kernel.
We shall now consider "briefly the nature of propagation in 

the troposphere in which the resonances of polar and nonpolar mole­

cules determine the critical frequencies. -

4,6 Solutions of the Wave Equation for Dispersive Media--Troposphere 

As discussed in Chap. 3, we consider the tropospheric medium 

to consist only of nonconducting nonpolar and polar molecules. 

Maxwell's general current density equation including polarization 

effects is -
"S/ x H = 3B/ 3 t + i + ip (4.115)

where “i is the current density due to conduction processes in the

medium and i is the displacement current density which accounts3?
for polarization. The polarization P is a charge density due to
the shift of charges and reorientation of molecules in the medium.
The displacement current density is then (SLA 1, Section 170)>

i = 'bt/'dt (4.116)P
Since the medium is assumed nonconducting, i = 0, and Maxwell's 

current density equation "becomes .
VxH= 3"t>/"3 t + 5 P/ 3 t

Prom (3.80), neglecting collision damping, the polarization is 
expressed as a function of the frequency of an applied steady state 

■«&> *i co *helectric wave E* 1 eu in the formo

P(w) = E(co )W [e /m(to^-co2) + p2/3kT(l+jcO'c)‘] (4.117)

This may "be converted to the equivalent Laplace transform "by the
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substitution s = j , assuming the medium is devoid of waves at 
t = +0. Semee

P(s) = E(s)l £ e2/m(s2+ (o^) + p2/3kT(l+ST )] ,

or
f(s) - [l(s)l/3taaT<l (mp2s2+3ra^ eVmp2w2+3kTe2)/(s+l/'e ) (s2-ko2)

(if. 118)

The component ©f Sfawell's efuatioa is rectangular coordinates which 
is monger© for the transverse wave under consideration is

- 3Sz/d % - Gt >Ex/ & t + > 3?x/a t (4.119)

Taking multiple Laplace transform.,s with the notation of (4-7) and (4.8)
-*r®(r,s) + §(+®,s) = € sF(r,s) - F(r,+0) +sP (r,s) -P (r,+0)v v * x (4.120)

From (4.118)
1? (r,s) - pF(r?s)l/3kmT‘C 3 (mp2s2+ 3kTt e2s+mp2+ SkTe2)/(s+l/€ ) (s2+to2)e

(4.121)

Substituting (4.121) into (4.120) and using the initial conditions 
that the medium is at rest, i.e., both F(r,+0) and P (r,+@) areX
zero, we have upon rearranging t
r®(r,s) + s [e +Ip(s)/3kmTtlF(r, s) = G(,0,s) +€ F(r,+0) + P (r,+0)

u Y v x (4.122a)

where

p(s) = (mp2s2+3kTte2s+ap2£o2+3kTe2)/(e+l/t ) (s2+co2) (4.122h) 

Also from (4.75)

zF(r,s) + yUs©(r,s) = F(+0, s) + jU G(r,+©) (4.123)

Since r,8 ^ 0, and ©(+@,s), F(r,+0), P 1(r,+0), F(+0,s), G(r,+0)

may be chosen arbitrarily, the condition for nontrivial solutions 

is (assuming ytor ~ l)
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6(r>s) = \(l+Wp(s)/3tanT'C e v' F(r,s) (4.124)

from which we have the transformed boundary condition at the origin
g(+0,s) = \|l+Np^3kmTT e v * F(+0,s) (4.125)

Substituting from (4.122) and (4.125) into (4.74) and solving for 

F(r,s), we have
F(r,s) - F(+G,s)/ [r*(e/o)frtM/3w7?]

from. which
-(sz/c) lfl^j^s)/3kmTi € 1

F(z,s) = e v F(+0,s).

Therefore
PY+joo s [t- 4 (g)t 1

f(z,t) = (l/2jtj) I e p F(+0,s) ds, Re s
'S‘Y-jco (4.126)

where for tropospheric electron and polar resonances, 
r : —7

°^(s) » ^ l'+Mp(s)/3kmT f e ^ (4.127)

with p(s) defined in (4.122b).

The inversion integral (4.126) may be approximated by integrating 
over the saddlepoints of the exponent of the kernel exp s [t- o(^(s)t J

d(s) is somewhat more complex than the example given earlier for 

the ionosphere.
For the radio frequency portion of the electromagnetic spectrum, 

the resonances of the tropospheric refractive anomalies are due 
principally to the presence of water vapor and oxygen. The resonance 

bands of water vapor and oxygen are located approximately at 22-5 
kM cps and 60 kM cps respectively (USA 1, BUR l). These are not 

the electron resonance phenomena defined by the coefficients of the 
frequency-sensitive tern p(s) of the polarization discussed above.



The 'wavelengths for the electron displacement resonances usually fall 

in the ultraviolet or optical •wavelengths. It is therefore necessary, 

in using an expression for p(s), to choose a form and coefficients 

■which represent the spectral region of interest. The various types 

of molecular resonance have frequency variations described by the 

general form, of'p(s) but the coefficients must be generalized.to 

represent the relative strength ©f the absorption! somewhat is the 

fashion'indicated.in the discussion of quantum effects at the close 

of Chap. 3>

The radio frefueney absorption bants of water vapor and oxygen' 

were predicted and found to exist.in work conducted in the last 
twenty years (see references cited by"If! 1, p. 51). *01® 23-5 **

eps water vapor absorption is due to a rotational spectral line of 

relatively small strength having a half width of -'3000 M cps. For a 
concentration of Vfo water molecules in air (density of 7*5 gm per 

meterthe peak absorption is only 0.17 db per km. We also note 
that the relaxation time « for water vapor (lEB 1, p. 85) corresponds 
to.a critical frequency of about kC kM eps. It cam be shown (TOW l) 

that the collisions cause pressure broadening of the spectral line . 

at 23*5 KM cps and accounts for its shape.'
For oxygen present is'normal amounts in air at 76 cm pressure 

there are two absorption regions in the ■millimeter wavelength region. 

The resonance band at 60 fell cps has a half-width of 600 M cps and a 

peak absorption of Ik db/ka. The spectral line at approximately 120 

M eps is much sharper .'and has a peak' absorption of about 3-5 db/km. 

Meteorological conditions cause significant variation in the shape 

and magnitude ©f the absorption. Heavy rainfall (BTJR l) causes a



sharp general absorption rise at all frequencies in the general region 
above 6 KM cps. The absorption in db/km may be increased a hundred 

fold at 6 KM cps by a cloudburst. The absorption levels off and 

even decreases at sextain millimeter wave lengths- The equivalent 

coefficients for use in the above solutions may be obtained by the 

following method.
The complex dielectric constant is given as

€ * n^(l-Jk)^ (4.128)

where n is the index of refraction and tc is the absorption index.
In terms of the absorption index, the exponent w(s) may be written,

w(s) = s it-n(l-5^ )tjl (4.129)
Jtr

The absorption data is indicated for a sinusoid of frequency Cu •

For s * j<o,
w(u)) = -c*> n Kt_ + ^co(t-nt ) (4.130)

Jr 3?

The amplitude of a sinusoid travelling in the medium is proportional

- omxt -2conA/t
to e p. The intensity is therefore proportional to e

The attenuation is the ratio of incident to received intensity andthus
db attenuation = 10 log10 (incident power/Received power)

-2 <on^t= 10 log10 e P

= -8.7wn/<ct (4.131)
: ■ ■■■ '■ p

Since the index of refraction of air is essentially unity in these 

weak dispersion bands, and
'.t = z/c: P. ■■ '

= 1000/(3* 108),



t>£ = (O*33) 1® see for. 1-km
K& -(db attenuation/km)/8.7) (0-33 X I0^)o.)

& -(db attenuation/km)/2.9 x 10~^CO (4.132)

As aa. example., for the oxygen absortion band at 6© KK ops,

/■C # 14^.9 x 10"5 x 6© x lO?x 2*c

% 1.3.x 1©”^

The coefficients t© be associated with the real aad imaginary parts 

of w(s) may thus be determined from measured values of the refractive 

index and absorption at the frequency of maximum absorption by use 

of (4.131).- or (4.132) and substituting for K into (4.129) *

fhe range of operating frequencies in the electromagnetie 

spectrum has broadened with &evelo jane its in the state of the art.

For frequencies irader SOGO hM cps. there is very little effect upon 

propagation time in the troposphere due to dispersion. However, the 

nomniformity in composition normally encountered due to inhomogeneity 

of airborne moisture (WHS l), is sufficient to cause effects of some 

significance.. This is especially true if the signal is used for velocity 

measurement. Temporal variations in.density of the medium causes 

fluctuations which distort precise target velocity measurements. A 
variation im signal propagation time directly affects measurements 

of the velocity.©f motion ©f am object by radar techniques. We shall 

consider in the last chapter the relation between the inhomogeneity 

and temporal fluctuations ©f the medium and variations in the prop­

agation time and signal velocity.
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0MEEE1 5
Propagation in an Inhomogeneous or Random Medium

In this section, expressions will "be derived for the velocities 

of propagation of electromagnetic waves in an inhomogeneous or 
random dispersive or nondispersive medium. While the result® are 
particularized to the troposphere, the method of analysis can he 

extended to the ionosphere by use of the ionospheric refraetive 

index function discussed earlier. We shall begin with a discussion ■ 

of the nature of turbulence and its effect upon the medium.

5-1 Spectral Characteristics of Turbulence
The randomness encountered in the troposphere is a variation 

in both time and spatial coordinates. The general theory of statis­

tical turbulence has been applied over the past decade to improve 
the understanding of electromagnetic propagation in a random medium. 
This work has been reviewed by Wheelom (lH -l). Sesults from analysis 

of turbulence using correlation techniques have been applied to 
predict the shape of the high frequency oat of the velocity spectra.

Large amounts ©f energy at low wave numbers are fed into the 

atmospheric turbulence processes by meteorological phenomena. The 

nonlinear Wavier-Stokes equation, the partial differential equation 

for the forces on each particle of gas, indicates that low wave 

number energy is transferred toward high wave numbers. (Complete 

solutions for the lavier-Stokes equation, especially for turbulent 

situations have not been obtained.



Tayl©r (TAY l), von Barman and Hcwarth (BAR 1), Kolmogorov 
(K0I» l), ObuKhov (OBU l), and Batchelor (BAT l) have discussed 

spectral concepts of turbulent velocities. Wheelon (WHE 2) has 
related velocity distributions to distributions of a passive additive, 
such as pressure or humidity, which may have a direct connection to 
refractive index variations for the troposphere. By use of the 
equation of continuity of fluid dynamics and the dimensional analyses 
of statistical turbulence theory, he derives spectral formulations 
for the dielectric constant in the troposphere.

The literature of statistical turbulence theory is growing 
rapidly and there are many differences in the approaches to be 
found in the literature. An assumption often made is that the fluid 
is incompressible. The simplication resulting from this assumption 
is considerable and appears to be essential to dimensional analysis 
applied to the shorter wavelength end of the spectrum. At the large
scale wavelengths at which energy is derived from solar heating cycles

/ 'and. Coriolis forces, density differences must be assumed (COK 1,
Chap. 2, IUrt 3), and the analysis of the spectral form for these 
wavelengths is incomplete. It is indicated below that for processes 
of small scale in which the dominant forces are associated with 
motions along streamlines, the assumption of incompressibility is 
quite valid.

We shall now consider the general equations of motion of fluids. 
In particular we are interested in indicating how energy introduced 
at low wavenumbers is changed into energy at high wavenumbers. Since 
the wavelengths at the high wave number end of the spectrum are 
commensurate with distances and. wavelengths in radio frequency commun-
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ication, it will be of interest to examine the physical origin of the 

inhomogeneous structure of the troposphere.
The equation of motion for fluids is the Navier-Stokes equation.

A discussion of the derivation of this equation is found in practi­
cally any text or treatment of general fluid mechanics (see, for 

example, BIR l). This equation and the equation of continuity hear 
certain common features which may he interpreted hy concepts of spectral 

analysis to explain why the low wave number kinetic energy Of the 

general drift Of hulk motion of a body of gas is converted to high 

wave number energy even in the absence of turbulence.
The equation of motion is applied in statistical turbulence 

theory to obtain relations involving correlations and spectra of

gas velocity or momentum distributions. The equation of continuity 
connects derivatives of the gas density and velocity and, as mentioned, 

has been applied by Wheelon (WHE 2) to relate the spatial spectra of 

the material density in the medium to the input of convective energy 
using the results of the dimensional analysis of velocity spectra. We 

shall briefly examine the nonlinear terms of these equations and 
discuss the physical processes involved from spectral concepts. The 
derivations below follow the very lucid presentation of Bird, et al 

(BIR l). - '
The equation of continuity expresses the mass balance over the 

stationary volume element Ax Ay A 2 through which the fluid is

flowing The mass balance may be expressed as
T rate of mass! f rate of 
|_aceumulationJ = I entering - 

[of mass _
rate of 
exit of 
mass

(5.1)

The left-hand side involves the time late of change of the density
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times unit volume at a fixed point in space, that is x,yrz == constant.

Therefore
; - [rate of mass!, z M v : ' (5.2)

Laccu^^ 31

where p is the density of the fluid. The right hand member can he 
expressed in terms of the negative of the divergence of the product 

pv where v is the velocity of the fluid in the infinitesimal element 

of volume. ..'Thus; ■ v ^
i\x/XyAz « - ^V*(pv!^ iix4y6 z (5.3)

Dividing this equation by Ax Ay A z and taking the limit as the

dimensions of the volume

M m - Jt
bt bxf*J*

zero, we have

r+k^' (5-4)

the equation of continuity. Performing the indicated differentiation

and collecting all derivatives of p on the left side:

at +%x
?/> . v 2A- vj - -pi-** ^

\ b X b y b %
(5.5)

The left side is the "substantial" derivative (MR l) of density and 

expresses the time rate of change of density at a point moving with 

the fluid. We may rewrite this result as

££. -^(y.v) (5.6)
Dt V- .

where the capital D denotes the substantial derivative. For an 
incompressible fluid, the density is constant and the latter relation 

yields the following equation for that condition
(Vvv) = 0

This result enables considerable simplification in discussion of the 

equation of motion. Since this condition is valid if p remains
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'rate of 
momentum

-*■ ’rate of rate of
55 momentum - momentumJ in i out

constant as the fluid element moves along a streamline for which 
D p/dt ** 0, it is equivalent to requiring that diffusion effects 
are nil and that mixing can he neglected. This condition is only 
partly met in the turbulence processes of the lower atmosphere. The 

useful results of Batchelor’s prediction of the form of the spatial 

spectra (BAT l) depend on this assumption.
The equation of motion is written from a momentum balance for 

the unit volume Ax AyAz, Thus

fsum of 1forces acting/ 
on system J (5*7)

Momentum flows in and out of the volume element by two mechanisms,

convection, or bulk fluid flow, and molecular transfer by velocity
gradients (pressure and viscosity effects). Considering the x-component

of the equation of motion, the rate at which momentum enters the face
at x by convection is ov v /i y A z and the rate at which it

leaves at x + A x is pv v I A y A x. The rate at which it

enters at y is yov .v I A x A z, etc. Including the terms for all

six faces of a unit cube at x,y,z, we have the x-component of convective 

momentum flow into the volume element is
AyMrxvx I XTVX I W + 4 W

tdxMpv* LrVx (5-8)

The forces due to molecular transport (not just viscosity) are as 

follows. The shear stress exerted in the x-direction on a fluid surface 

having coordinate y +A y by the fluid along the surface having the
coordinate y is designated as T w for fluid having a velocity componentyx



v . By the definition of the coefficient of viscosity, the shearing

stress (defined as the force in the direction of the relative velocity 

divided hy the area normal to the velocity gradient) is proportional 

to the negative of the local velocity gradient, that is

dv
f = - M (5.9)V dy

vhere /A. is the coefficient of viscosity. We note that the force

T yx:Ax A % i® ifi the + x direction. Then the rate at which the x~

component of momentum enters the face at % hy molecular transport is 

1' I ^ £X , and the rate of which it leaves at x + A x is3q£ l 3C y X ■
€ I „ , A Ay Ax. The rat® at which it enters at y is € ) A. A^xxlx+Ax * yx I y x Hz-,
etc. Summing all such terms, we get

^A ^ t xxlx- SJ»A + ^x4z(t^VVIW

+ A'x&y(t |“tgxU+Az^ (5.10)
ZX |Z 1

The component /t „„„ is the normal stress on the x-face resulting from

pressure or potential energy, and % is the x-directed tangentialyx
or shear stress on the y-face resulting from viscous forces.

Sie pressure and gravitational forces in the x-direction are

&y<iz + /°«x AXAyAz

where p is the pressure and g is the gravitation constant in the x- 

direction.

The rate of accumulation of the x~ component of momentum within 

the element is



Ax Ay A a ( c>p v^/b t) (5.11)

Upvx)

<5’12)

The equation of continuity may he applied to the latter result and 

similar ones for the y~znd z-components to oh tain component equations 

of the form

This is essentially the x-component of the Navier-Stokes equation.

Again the left member involves the substantial derivative •which gives 
the acceleration of a small volume of fluid which is moving with the 

fluid. Equations may be obtained in terms of a point fixed in space 

if desired (BIR l). The following discussion of the resulting 

spectra will apply in either case.
The left hand side of the force equation, and the equation of 

continuity, both involve substantial derivatives, that is, terms of 

.'the .form'
t>v /Dt = *v /at + (aWax) (dx/at) + y) (*y/at)X X'. X

+ (Bv fbz)x ■.
= Av£>t + v (9v /3x) + v(avAy) + v(»v>z) (5-14)

X X X J ^

(5.13)

and
rp/Dt = 2>y0/kt’+ vx(2»p/Bx) + vy(hyoA y) + vJPp/Zz) (5-15)



Taking Laplace transforms of the product terms of the right hand side
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of (5.l4) yields expressions involving multiple complex convolutions 

of the velocity spectrum with itself. For example, transforming first
with respect to t yields
Lt &V®*] ■* Lt + \ + Lt Lvy(^vxAy)]

+ LtLTz&V3z)l
“ sV (x,y,z,s) + T lx,y,z,s) ®i[_c>V(x,y,z,s^xj + ...

* - 7 ; ■ x (5.16)

where the symbol ® denotes the complex convolution (©AS l) with

respect to s defined by a term of the form.

V ® x s
eo

x) ■* (l/i^)f V (x,y,z,s-s*)
m-doo

dVx(z,y,z,s)

_■ ~h X
ds

max ? -,<r
x T +X __X

<cr, < 0 <o=-cr , <r+ le svx vx
'■ ’ ^X ’' «>x

etc. for the other velocity and density components. There is a set of 

complex convolutions for the transform of each product term with respect

to each of the coordinate variables x,y,z. The use of spectra in this 
case does not aid in getting a solution. However the following inter­

pretation is instructive.
The complex convolution integrals may he interpreted graphically, 

as follows. Consider only the time convolution given above at a 
fixed point in space. Then if the spectrum ?x(x,y,z,s5 is contained

in the frequency band 0 s' ^ s., and the spectrum 'bV (x,y,z,s)/2> x

is contained in the frequency band G £ ar the convolved

is zero except for values of s where the spectra overlap, Fig. 5.1,

■feat is for @ £ s + sl"



Spectral Density at (x,y,z)

Figure- 5.1 - 
Convolved Spectra

The convolved spectrum in the variable s thus has a wider range 

than either of the original spectra. Since the substantial derivative 

is merely the result of writing a force equation involving an inertial 

(acceleration) coordinate system and a moving coordinate system for 

expressing relative motion or shear forces, we see that the upscaling 
(or increasing the range) of energy wave numbers is a consefuemee of 

the combination of inertial and viscous forces.
It is a simple matter to illustrate this process if one assumes 

a turbulent flow, Mg. 5.2. From a study of the figure it maybe seen 

that energy is the incident gas stream entering with a very low wave 
number at A is deflected as the gas stream nears the low velocity 
interface; and due to conservation of momentum begins vortex motion, 
providing the ratio ©f inertial, to viscous forces (Reynold's number) 

is large enough. Bart of the stream tarns toward B and forms a smaller 

interface at which momentum is exchanged with the surrounding gas. As 

each vortex continues its motion, additional interfaces are encountered
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Incident Mr Stream

Interface of tower Relative

Figure 5.2
Battern of Successive Motion of Viscous Eddies

at which momentum is interchanged, such as C,D,E, etc. We note that 

each interchange of momentum occurs with the creation of a pair of 

smaller vortex centers where the stream splits. This process continues 

until the motion is completely dissipated in thermal agitation of 
molecules.' '

This particular viscous process of a chaotic distribution of 

vortiees is not necessary to the up-scaling of the wavenumbers* As 
shown above, up-scaling occurs due simply to the necessity of having 

to use a relative coordinate system in conjunction with an inertial 

coordinate system in order to describe the balance of momentum of 
inertial# viscous and other types of forces. The presence of any r 

viscous process, even a laminar one,would not eliminate the necessity 

of the complex convolutions given above. We might expect however 

that a purely laminar process would be typified perhaps by a spectrum



that is less gradual in the fall off at higher wavenumbers. Shat is, 

the turbulence wouldappeartohasten the energy dissipation and 

hence the fall-off of high wave numbers due todamping. Shis is 
indeed the ease and, in fact, it has been suggested (DRY l) that 

turbulence may he defined as' a viscous process .having a certain

characteristic rate of fall-off at high wave numbers.
It is obvious fire®, the transformed left-hand member of the havier- 

Stokes equation above that the general; solution"-of the component . 

spectra of the velocity fluctuations may be impossible. A similar 

remark may be made for the continuity equation for which the left 

member written above transforms in the same manner.
She useful results so far obtained (KOL 1, ©If 1, BAS 1, TIB 1, 

mure 2) rely upon dimensional analysis to predict the general shape of 
the spectra of various physical quantities. A number of ’’mixing*’ 
models have been developed as reviewed by Iheelon ('WHE l). Perhaps 

the one of these which is most useful for predictions of communication 
phenomena is "the mixing-in-gradient" model (lH i) which predicts 

the turbulence spectrum S(k) of dielectric fluctuation1 to be of the

form,.

= 6/<ae *> if/CwAbV o
w •'Where C is the mean square value of the dielectric constant 

G .1 .is a characteristic length .of the turbulence and k is the wave­

number. Results of tropospheric, scatter and line: of, sight propagation 
experiments (MR 1} confirms the shape (-5/2 power) of this spectrum 

quite -well at the 'high wave number end of -Mae spectra. The spatial 

correlation function G(s) equivalent to (5 -IS) contains; the. first



order Bessel Function of the second kind,
C(R) - (!/l0) Kjl (l/l0),

where
R = xi + y<j + zk

(5.18b)

g.2 Propagation Velocities in an Inhomogeneous Troposphere
From (4.118) we have the polarization vector for a homogeneous 

troposphere expressed in the form
P(r, s) = E(r, s) (N/SkmT'c) p( s) (5-19)

where p(s) is given by (4.122b) for electron displaeement and polar 

resonances or by similar terms with appropriate coefficients as deter­

mined from absorption and index of refraction data at the close of 

Chapter 4. Now in (5*19)> for an inhomogeneous troposphere, 1 becomes
a function of z and t. We wish to consider the manner in which this 
dependence on z,t should be introduced.

The particle density N must be considered a parametric function 
of z in (5.19)• It is not proper to consider N as a transformed 
function of z such that P(r,s) should contain N as the spatial 
spectrum N(r) or its convolution wither,s). This can be reasoned 

in the following way,
Consider a region having a particle density in which the wave

is being propagated. The signal velocity v is given by (4.114)s

V “ ®/f& (s)+sdoc (s)/ds 1 (5.20)
S1 1 1 J 8 " ss

where s is the location of the saddlepoint in the complex plane at
' \ ' ' - . ■ ...

which the signal is first detectable. We also are given that the



actual propagation time tg for the signal is
t = z/v - (z/c) [~cx. (s)+sd n(s)/ds"j (5-21)
S1 S1 L 1 . ”* s — s

s

where z is thelength of the path. If the dispersive effects are 

negligible at the chosen operating frequency, we have from (4. 127)
a± & 1 + KEj/2, clfi^/ds « © (5-22)

where K is a constant. We my then conclude hy substituting (5.22) 

into (5.21), that there is an increment of t proportional to the 

tensity of the gas in the medium. If we then have a continuation of 
the path trough a second section of medium of density Ng and having 

the same thickness, the total signal propagation time is t , t .si : s2
low consider an equivalent path of the same total length through

several layers of density JT^ and hut thinner in proportion to

the numbersof each layer. There is to he the same total thickness of

medium of densities and lg. Under these conditions the signal
propagation time is still t t .S1 ■ s2

If we had considered it necessary to express P(r,s) as the product 

of l(r); the spatial spectrum of the density, with other factors of 

(5..I9), it is easy to see that we are,faced with a difficult inversion 
integral with respect t© z (see 4.126). The spectra for the two 

different arrangements of the layers of densities and Ig are 
different. The inversion integral would therefore not yield the same 

exponential kernel for the % inversion and a different expression 

for (5.20) would result for rearrangement of the layered medium. The 
signal propagation times would therefore not be the same in the two



eases. We see them that I must be a , z-parametric factor which typifies 

the density ever a path which is. ©f length %. Br the limit, S' ‘becomes 

a continuous function of t, S(z), for Which the applicable pith is of 

incremental length dz. The total time of propagation then becomes a 

matter of integration of the incremental contributions to the signal 

■propagation■time for each increment ©f path length, i.e.,

j"* , ' J}%c r n)
dt (z) = (l/el •<ofCs)+e!do('(s)/dsJc dz (5.23)

0 :S : ; L ' ; ‘ s ■■

The % dependence of oc is, as explained above, the factor 3S(z), which 

expresses the inhomogeneous distribution of density. The average

velocity over the of z is then

e^ftsaV

By a similar line of reasoning, the time of propagation of a 

wave front through on incremental thickness of a medium is given by

dt . = <tz/v 

v = e/oc(s)if ■ i

■ dt^- (l/e) cL (b) dz : (5*25)

The total time of propagation of a phase front over distance d is 

then

'kplT ^Cs,z) dz ($*26)

The average velocity of propagation ©f the phase front over the whole 

distance z is them
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V = z/t . = zc p ph
y;

z) dz (5.87)

Similarly for the group velocity
v = c/(sdoc/ds)

'z sd$(s)
v = zc$

[C

ds dz (5-*®)

5-3 Propagation Velocities in a Random Troposphere

Due to the convection of the air mass, the particle density as 

a function of z is also a slowly varying random function of time.
Thus the signal propagation time at t = is^ is, from-(5•■83).*

tg(t^) - (1/«)J + s ['do{(.3,z, t-^/dsJ^ dz (5-2
® . ®s

where the time variation of ocis due to H(z, t). There is negligible

interaction upon the signal frequency "because the sigaal frequencies
are generally much higher than those of the randcmn.ess of l(z,t).

The autocorrelation function of t (t) iss

- e|(i/c)^" + 8 ditf(s,E1,t1)/asJ d^

0 ^
X C1/6) fQ [o((s,zg,t2) + s d3ds,z2?t2,)/ds]

*= (l/e1) dz.^ J dz^oC. (S, z1, ^) oi( s, zg, tg)

+. *o((s,si1,'tL) d4s,zg,tg)/ts + saCs,z2,tg)

X doCCs^z^t^i/ds +



+ ;'b:.■:;[;4o^(s,-z1,tL>/ds”[. '[_ 4oc(.8,a8,tg)/te]j| (5*30)
IS.*8«

Now for gases, we have from (5.
& 1 + K(s) N(z,t)/2

'S'

[ll(z,t)/2l &K( s)/ds
ss

where K(s) expresses the product of conversion factors and the f inaction 
of s, and N(z,t) expresses the gas density as a function of position 

and'time. &ea' ■

% t%V*'.fVV- * 1 [ Jo dzljQ ^2l1 + [Xs)/2] [ »Cv\)0 J0

+ N(z2,t2)'] + [#(s)A >(2^) l(z2, t2)

+ s[dK( s)/ds] [N(z1/t1) + N(z2, t2)J/2 +s[k(s)

s 1 N(z1,t1) N(z2,t2)/2 +S2[dK(s)/ds] 2

% N(21,t15 N(s2,t2)/tJ

z 1 £**»■■+[*'0 ^otes'+'1:*{","VL'""1' ""'a‘

2S Z f z

a 1^0 •'O
/
/O

+ (l/te ) ] K(s)-!-SdE(s)/ds J “1<|| dz, f dz, 

X N(z2t2)'

= (z2/g2) ^ 1+X(;s) ^NCz, t)^ ^ + ( 1 Ao1)

X |X Sj *S0El.B//aS
s
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X N(z2,t2) '(5-31)

where
l(z,t)(l/z) / H(zr,t) dz’

Jo

and is the time average off. If !(z,t) is stationary and ergodic

\VvV* \\^

= V^S) \ss<n(Z’tr>]

+ (t|/4)[K(s)+silCs)/tSJs Bgg. (t) (5.32)

, gmean square value of t , \t '/ is

s'(6)1 A.
' a

N S ^ W * < L ss ^ -> (5-33)
In order to apply this equation we mast establish the relation

of the autoeorrelation function of the z-averaged density function to 

the available data. To obtain a spatial spectrum function for the 

density, an instantaneous measurement of the density versus position 
mast be made over a length of path sufficiently great to define the 

spectrum to the necessary degree of precision. This being a practical 
impossibility, the method used (l©K 1, EOT l) in most line of sight 

propagation experiments consists of measuring the time fluctuation 
of the phase of the signal between two points in the medium. The 

process is then assumed to be stationary so that time averages may 
be assumed to be equivalent to spatial averages. This assumption 

is under question at the present time with regard to very low frequency 

disturbances Cm l)« The spectrum which is measured is then
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providing the path© are of the same length. Changing the length of 

the path changes the length of the z-average. In ease the spatial 

spectrum for the dielectric constant is given,- as in (5.18a), the 
2-averaging operation becomes equivalent to multiplying the spectrum
of (5.18) by (l+e“kz)/k, where z is averaging length and k is the 

z-wave number, equivalent to the variable r in Chap. b.

Frea (ill l), the space-time correlation of the dielectric

constant at low radio frequencies, neglecting dispersion, maybe 
written in the form

' ^ ■ - -r ^ >(OT* )
<A€(d,t) Ae (d+B,t+'C )> = (1/8^) I ddkSfK)ea »(£,*).

J (5.34)

B is the spatial correlation separation corresponding to the temporal'• «-a. ^ ■
lag t ,k is the vector wave number, U is the air mass velocity and 
T{ (h, T ) is the time correlation of fluctuations contained in a fixed 

wavenumber interval k. op (k, -r ) is unity for zero time displacement 

and is often taken as unity for greater time displacements due to 

lack of knowledge concerning its functional form- Some work has
been done on dimensional analysis of significant variables for Jp , 
(see HE 1). Assuming 77 (k,r ) = 1, and the value off being known,
S(k) may be obtained from (5.18) modified by the factor (l+e“kz)/k

to represent the average over %\-hence the correlation (5.33) is 
known frcaa (5-33) and the proportionality constant relating e and the
density 1 (see BSA l) fhe mean square value- of te aay them be

ccmputed from the relations above.

The mean' yalm© ©f t aay be obtained from the mean value of' S
t„(t) given in (5*29) and hence depends on <^!(z,t)^> since the
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time variation is due to N(z,t). The mean value of the index of 
refraction (hence N) has been studied in detail (EEA l), and is given 

in terms of measurable meteorological conditions by the following 
standardized expression^ with the special meaning of symbols nbtedj

n - 1 = f77*6P/T+ 3,73xl05e/T2]xlO“6 (5-35)

where . ..
n = index of refraction,

T = air temperature in degrees Kelvin,
P = total air pressure in millibars, and 

e = partial water-vapor pressure in millibars.

From the mean square <Qtg / and mean ^tg^>, the variance of

tg is given by

°t “ “ <%>2* <5-36)
s

Since the signal velocity is given by
v_ = z/te, (5 * 37)s s

then

dv = -(z/u ) dt . S ■ ' s s
The variance of vg is therefore given by

(5-38)

c| - (zfi/tp o£ ‘ (5-39)2 J2 
bS ■: S . ;

A similar procedure may be followed for the phase velocity, 

where (5.31) is replaced by the autocorrelation function of the 

propagation time of the phase front,

R-t t = (*/c^2 [i+k2(s)A *] (5*i*0)'
ph ph x
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The procedure is otherwise the same and may he followed as well for

the group velocity.
’ '\ - . .

The procedures given in this chapter enable calculation of the 

mean, mean square and variance of the signal, phase and group velocities 

is a random atmosphere. The cempatatiott is fuite involved in the 

case, of a dispersive medium, since it is necessary to first determine, 

the location of the predominant saddlepoint in the complex s-plane 

for the time at. which the signal becomes detectable as the time 

parameters are varied. The spatial spectral functions for the 

dielectric constant, or gas tensity, may then be ..applied in the 

above relations to obtain the desired statistical quantities.
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Summary of Results and Conclusions

In this thesis, a study is made of the velocities of propagation 

of electromagnetic -waves in the atmosphere. The solutions are obtained 

for phase, group and signal. veloeities ia steady state and random dis­

persive media, la the case of dispersive media, the solutions are 

indicated in the form of certain contour integrations which mast he 

performed to obtain approximations for complex inversion integrals.

The investigation ©f the conditions for arrival of the signal involve 

trial and error solutions and are of a tedious nature for all but the 

simplest types of media. Computer solutions are recommended for 

obtaining specific values,

Methods for solving the wave equations of electromagnetic theory 

are developed using the multiple Laplace transform. The application 

of multiple transform methods would, appear to have applications ia 

formulating solutions to a number of problems in electromagnetic 

theory, lerivations for the characteristic 'impedance and dielectric 

constant of complex media are simple and include the assumptions of 

the mode of propagation and boundary conditions and therefore are 

rigorous.

The physical nature of turbulence amt its effect upon factors 

which influence electromagnetic wave propagation is discussed. A 

study is made of the random variables ia the wave equation solution 

and the manner in which they are related to the turbulence model . The 

expressions are then developed for the mean, mean square and variance



of the propagation velocities. For the signal velocity the result is 

indicated in terms of the contour integral used to define the arrival 

time of the signal.

The practical aspects of the work presented above can he extended 

by investigation of the signal and target velocity statistics for 

various specific media and statistical models. The effects mentioned 

herein will he of special interst for ©pernting frequencies in the
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which dispersive effects are more pronounced'and. numerous . than in the

Ste statistical optimization of refractive eoapensation methods 

ms an early objective of this work, and at this point, it can be 

said that the analytic and computational tools are now defined for 
such a study. It is noted that in the report that the signal group

and phase velocities are quite distinct mathematically and there 

should be considerable independence in their statistics. Accordingly
it should be possible to combine these, if measurable, with properly 
chosen weighting functions in order to achieve more accurate velocity 
measurement.
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Evaluation of a Certain Complex Inversion Integral 

Encountered in Solution of the Wave Equation 

with Time-Varying Coefficients

We consider the evaluation of the complex inversion integral
If. (h.91)

, x r s|jfeo((s5(z/cj]
f (z,t) = (l/2?tj) / L F(+0,s)as (a.i)

which occurs in the solution of the vaye equation for dispersive media, 
(see Chapter h).. In this case, for the ionosphere, neglecting collision 

(see Chapter |),

(A.I)

We shall first assume that F(+0,s) is the transform of a sinusoid

21,F(t@,s) » Eow/(s +co ), U.k)

so that

f -© Ve3

c s[t-0f(sXz/c)] . p ) 
ve /(s2+co)^ ds (A.5)

Assuming the .singularities of the exponential kernel and denominatorv. f
are distinct, they: occur « the imaginary axis as ^own in Fig. 4.2.
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The residues of f (z, t) for s = +J6) present no problem. However the 

integration around the contour encircling the branch points must be 

examined in detail. In order to determine the nature of the contri­

butions of the branch points to the contour integration, consider 

the contour CL in Fig. A.l, encircling one pair of the branch points. 
The shrinking of the contours to this particular one was discussed 

in Chap. A .

j

s-Plane

Figure A.l

Bath for Integration on Contour Cg Around a Branch Cut
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low consider the integration 

Jteferiag to Pig. A.l we lmve for segment k-1:

je

contour 6_ element lay element.

s = per , -(jt/f )»£ < 0 ( *-(*c/2)+£ , p a (co^+o^

- pe3$, -(*/2)-£ < 0 < -(>t/2)+E, />= (wW)-1^.

For i-mj

For segaeat m-mi

s * r '+£>©> -{%/*)-£■, yO » co©

For segment a-iti

Evaluation of f __(a,t) on segment k-lt
uj

a = /O^8, ■£ < e < -#/2+£ , ■/> -

men s = yOe

® . -«/s + # , * e < 0 < b
j(-jr/2+0) _ . i0

- W

or for 0 small^. jS = ”j(W^+®f)1^2(l+j0)

men

o o'

(A.6)

(A.?)

s > > > coo . (A-@)

CA.9)

0)@ < p < (wj+aJ^)1/2 (A.l©)

<X(s) a ^[l +C^/(§^)]

- /"C^2"2^)] / [ CwW) (2/-2j0)-O)2]

-and
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[t-rt(s)(z/c)]_ '-&6+aJ / (202-2j0)

^ |/(co2+0)2) (202-2j0)-W

■ Also ''
F(+0,s) = Eoco/(s2+co2)

= Eo&)/[o)(w2+0)2) (l+2j0)+W2]

From these expressions, upon substituting into (A.l) for the portion 

of the path k-1 and taking the limit as £ approaches zero, ve have

3( l*
o c

fojWj) (202) (202-2j0)
|)(o)2+4>2) (20^-2^) -a)2

EoW/[(w2+W2) (1+2J0) -Ku2]

'6 .j(«V):/21

p(l+j0)d0

= lim f e
e*0 A-z

o c [V«/(d02+co2+&>2)] d0 - 0

Evaluation of f ^(z,t) on segment 1-m:

>»e:

- -J/)eJ£

<x(s) = yj[w2+C02-/)2(l+j2e)] [d02-/)2(l+j2t)] '

s [t-o<(sXz/4| jp(i+je)

e *= e
W2+«2-/52(!+j2e)

t-(z/c) 7..g'—g"---------“(l+J2€?)
F(+0, s) = E a/[co2-p2(l+j2£)]

(A. 11)

whence, taking the limit as £-*-0,
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rco„
I = 
2

° c {Bo^¥2^.i/°

which T3ec0tt.es improper at /O = co , in the same fashion as the original

Evaluation of on segment »-m

Set # .*> -

then s «$ -jo>

= -at/e+£ > 0 > -at/e-e ,|9P0O
£ } 0 ~ t

o
<*(») «

-, ,w2+j2^co2
1 ^ ... -..-a. f(+o; s) --- g------ arW j2cof a)2-to2-3S^oof

E <0 o
0

therefore

« lim I expj-j«o(l+ 
0-*o £

t~
i_. K+«*$
a/2 >C7i 0 0 o .] C/| £02-C02+j2^ i

•which "becaaes improper as 0 and £0 approach zero.

Evaluation of f m' n-ks

£0%q^-pgCl-j2e|

0>2"70g|l-j2e)

wvn-) e rs £t-tf(s)(z/e)]
■ » 0. 1. y -

F(+©,s) = E0W/ [a>2~p2(l-«52e)~J

©J^Ci-tfc),

©ms,

lL=lia 
' £■?#

Cd2+Ci^
• © C/J

—-——U/e,
. K-/C1- E@Co[-j(l-is)]

0)2-p2(l-2e) ”r‘ •13>
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which 1*60011168 improper at p =(o .
' o

¥e see that the integrand of the contour integral around C2
exhibits a singularity at the branch point a_^and otherwise is zero.
We may therefore collapse the contour to encircle this singularity only 

In order to evaluate the contour integral we must expand the 
exponential kernel about the singularities a+ and a_. ct(s) is an 
even function of s and the expansion will enable evaluation of the 
integral for both singularities. We abbreviate slightly and write 
Oi (s) as

0C(s) = [l-W2c/(s2+®lf/2 = (1+W)1/2
2 2 2where ¥ represents U)^j(s -HO^) in the algebraic steps to follow* Then

Od(s) = l+(W/2) - (W2/222‘) + (2W3/2330 - (3* 5^/A-’) + ..
Letting z/c = t , the vacuum, propagation time,

xz -s<x(s)t -soc(s)-- = e pe u
Or
-sot(s) (z/c) -st (l+W/2-W2/222*-3W3/233.#“...) 

e - e P
8tp[l-stW/2+s2tV/222 . ..] [ 1+ st^W2/222 !+

s2t2wV24(2!)3 +...][ l-3st W3/233.’+
P J L P

+ 32s2tpW6/26(3022• •

s t« e P[l~stpW/2+(s2t2tstp)W2/222!"(s3t3+3stp) W3/233-‘

+(si4'tp+6s3t3+15s2tp+15stp5w4/2\ !



114 -

—(s^t^+10s
. p

5),

iS / St *S^p
* e *

2k j Jgg+®3 s^+ttf

<*>, p c.

w :' r

W

(sgt2+st )to^
* 1 P e
8Sf! Cs2+«2)2

0

■3^35^3Sg^

' 233*. (gV)' 3

43+l5 s! ■fcp+ljs'fc^

2*4* (s2+to2f
- 0"

,8
0

j s5t^+10s4t>45s3t3+105s2t2+105stp)w1^

05E'o / Res ^ 2S = ±j<tfQ S +CO

2st co ■ p c
•2' 2,« +» ;

2?5J(s2*koJ)5
ds

,.f 1 , » 4(s t +st )«£
h__JL_JLJL
2S2! (sW)2

■0

+%l ■* [i/( S-Joo } 4* o CO0

u‘/\ _1 vn{Vj!!®.+ “®

!2+w2)2 4<u2
© o ■^V •-»

> +

s+jco

53+3sf/y3s/t| 1

4ft)©
8®fl

34 —
2 (8-j«)2)2
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j3
2t (s-jc^) (s+jco )3

:yyj(#p)
(s+jWq)2”

J3
2tp(s+,3«o)

>1.15

t t2 
p P

t3 l

, 2, 2sh (s +<0 ) 16loo

\ 15“t, / ^+15uol
CO - +.1 - . +__0

t t t3 /P p p
(s->0)li'

-

18a? 75 , o 15wft
. V’V
P V P -f-i

2

r ' 15 l8w
s »2+ :*) °° t2 tP p

(s-otoQ)3 (s->Q)2

2coo

8^
° t2 

_____ P
e-J^ + . * *

(A.18)

etc.
Substituting (A.5 ), (A.l6), (A.1T), (A.l8), etc., into (A.l4) summing 

the residues, and including those for s = + jco, we have

f (z,t) = E. sin 0)(t- JnaZJ[i>2^J) tp)

-f4 “nlt-V
Cu -Gy

- co2t8 . CO (t-t )
*“ C p “*• o p

2t 16p %
((^p~3)(Vtp)2 3(t-t )

c P
i92w2 y

+
25 tP 2t

1



«§*£ v3 f;t|+75)(t-tp)5

P

+siaci»(t-t )-,o- , 5
^ “M K^-v

©

i2#
© p

Sort’© p

■+.

.>at8+:0 p •t ) 
p

.* j 3JL- + _
* V* /

.co^t*- / (6co3t2+l56t> t )
+ C P f_ V O p : G P

V* C7a)3t|n;yp)(t-y

t
%

+ ^4tp'lS<wi^c^tp:

p

: + ■
t0 P (A.lf)

Since the damping tern was mot included, it would he expected 

that tMs solution would diverge as time “becomes infinite. Addition 

if the damping tea.caa "be mad® and tie.same .steps' followed to obtain 

the'appropriate series solution. Shis trill-ait be done at present 

since fwai|ti1iative discwssions of propagation effects in' the iono­

sphere -will not he given.

It is of interest to deteaine the behavior of the solution for ■ ' 1 ... ■ ■ ' j .i-'. ,, 4 • ,. 1
small ■m'laes of time* . As m©t@d ia the discussion ©f the contour integral

ia Chapter A 9 there is no-, response at % prior t© the vacuum propagation 

time. Shis'.result*■ using ,1iie. contour integral existence concepts was 
first Obtained by Sopserfeld |S©M 1,’represented in'See. IS, BRX 2).

She' first tern ©f (A.19) is the steady slate tea and the succeeding 

teas are those ,©f .the transient. It my be noted that all hut the 

first transient tea contains a factor of (t-t..)» These teas are
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definitely zero at t - At this instant the other terms sum to zero 

as can he seen hy using the small angle approximation on the steady- 
state tern and hy expanding the radical. Thus for a time slightly in
excess of t ,P

sin co t- \jl+o|/(co\(/) f t^J ft® t- J l+®^/(<0^-K02) ' j

ftQ)( t-t^) +C0(OQk'j2fa>2-«?)

■Which combined with the first transient term yields
f (z,t) ft I &)(t-t )/Z, for t = t + St . where St << t .o p P P P P

We may determine a good deal more about the behavior, of the solution
for small values of t-t by reducing it to an asymptotic form (POL l).

P
In essence, this was done by Sommerfeld (op. eit.), however the simplicity

■ , ■ ■ ' ■ 1
of the approach using the Lapalce transform may be of interst. In 

order to obtain an asymptotic series valid for small values of t, we 

consider the value of the inverse transform for large values of s.
The series of (A.lta) or (A.5) may be transformed tens by term to

obtain a series in the variable.t. However a more direct procedure 

from (A.5) is to write
/V+joo s[t-et(s) t^"]

'lim f (z,t) = lam 1 / @ F(+Q,s)ds,
ts*0 s&&> Ejtj Jy -jw

where by the limiting processes we mean that each side will assume 
asymptotic forms as t vanishes and s increases without bound. It is

shown by saddlepoiat integration that the initial response is deter­
mined for the values of s beyond Therefore for s>a>0)

$(s)& 1 -Hk/j/2s*%

and
F(+©,s)^ iWsl

©\



Then

lim f(z>t) = lim 
t«0 s^P 2atJ*i Jr*<3°° ^ ds

From a table of transforms (GH0f 1, No. 80)^ we then have

lim f(z/t) = lim Eq
t«*0 aasoo

’2(t-tp)] 

© P

^y*-v] (A.20)

The series obtained by expanding this: solution and transforming the 

limiting series obtained from (A.lha) agree. The initial part of the 

transient starting at time t = t= z/e and represented by (A.2©) is
Jr

plotted in Fig. A. 2.
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