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| ABSTRACT

Harrison, Robert Eugene, Pn.D., Purdue University, August, 1962.

‘Electromagnetic PrOpagation Velocitiessin.an lnhomogeneous or‘Random'
| ;'AtmOsphere Major Professor° George h hcooper.,'i | -
| This thesis is concerned primarily with determination of sta-
_.tistics for the velocities of propagation of an electromagnetic wave ?
2 in a dispersive medium | The velocities of propagation are discussed
rvin terms of a plane travelling wave solution of Maxwell's equations A?"J
obtained using the multiple Laplace transformation and complex inver-:

‘;_sion integrals. The types of dispersion discussed correspond to YM

. magneto—ionic, electron displacement and polar resonances of the iono-‘,;f:{\

sphere and troposphere. The physical nature of the randomness of
the dispersive index of refraction is derived from considerations of

statistiﬂa] turbulence theory. Expressions are then obtained for

‘determining the mean, mean square. and variance of the signal, group ':f:V '

‘ and phase velocity of an electromagnetic wave.‘
It is proposed by 8. M. Harris (IRE Trans. Vol. AP—9, No. 2,
P 207-210, Mar., 1961) that the group velocity and phase velocity
of an electromagnetic wave propagated in the ionosphere may be averaged
‘to obtain a velocity estimate free of rcfraction to within second»
"order refractive effects. The basis for this procedure is that for
van operating freQuencyhconsiderahly above the critical frequencies‘
of the ionospheric medium, the group velocity is slightly less than o

, ithe velocity of light



Introduction

Arnold Sommerfeld and Leon Brillouin (som 1, BRI 1) first ciis;-’
~ ,cassed the velocities of propagation of eleétmmg‘netic-energy'in a
dispersive medium in 191k, At that time, a controversy existed as to
the validity of the statement in Binstein'’s theory that the velocity
of light coulé no‘c be exceeded f@r eleetrgnetic wave propagation.
W. Wien had prepesed that, since the gromp veleoeity in a éispersive ’
medium can be inf:.nite, a contradjction to Einstein's theory existed.
Sommerfeld was able 'bo show by means of a cemplex pla.ne integration
that solutions of Maxwell's equatiens were Zero until the vacuum
propggation time, equal to the distance from the source divfided by
the veloc‘iﬁ:} of light, had elapsed. : ‘I,rlx his dissertation under Sér:-’
feld, Brillouin completed tha.wa#e equation »sélutié and obtained |
. x;e’la’qiens beﬁw‘een the phase and group velécities , and a.new quantity |
represea,ting the actual veloeity o:E' prepagatlon of energy at the
signal frequency. He called ‘this quantity the signal velocity.

For many years after the controversy was settled, the results
- deseribed above were mainly of academic interest and were mentioned
in enmly a few texts on electremagneﬁicthe@ry In fpe,rticular, the
n@nrealistw character of tb.e group veloclty was seldom discussed.
i The studemt obtains t.he impression that the physical veloecity of
propagation of a wave packet is the group veleeity with@at»}a clescri"p-
tion of the ’rés‘brieti@ns of this approﬁimatien. 'lIn“the past few years,

interest in velocity measurements using electromagnetic enérgy has



revived interest in the original work of Serfeld. and Brillouin
wi‘hh ‘the result that the work is now available in English (BRI 2).

In & recent article, s ‘M. Harris (HAR 1) exploits ‘the fact
"bhat in an ionospheric 'bype of aispers:we medium at an operating fre-
queney well abeve the frequency range of strong dispersive effects, s the
gr@ap veleelty is asvnmch 1ess as the phase velocity is greater*than ‘
the veleeiﬁy éf. '1igh‘b in vacuum to wi‘ﬁhin ‘second oi‘def refractive
effeete. He ’chen proposes that smple averag:.ng ef the phase and -
grp veieeities ena‘bles one te detemme “the vacuum veloeity of the
wave mdependent of the dis:faersive effects of the medium.

The problem is then suggested that one may desire to relate the
var:.ma.s velecl'bies in o‘l;her types of &ispersive media 'bhan the iono-
shere anc?l ;perfem compensation for the dlspersive effects at eperating
freqaeneies within the dispermve range‘ "Also one desires to kn@w
the mean value and variance of 'bhe velecity measurements in an inh -
geneeus or random medium which_may be dfg.’spersive. This thes;s_-preses
a method of analysis for’oei;ainingﬁ‘ answefs to these aspects of fthe‘
.problem. o -

In Cha@ter 2, the theory of refractive compensatien pr@posed by
Ha.r‘ms is reviewed, ana. ‘the pertlnen‘t results of his work are derived
and aiscusseé. Some of -bhe werk of" Brillouin and Smerfeld. who- first
discussed the ture of pro:@agati@n velocltles in a disperswe med:mm
is csn.aered ‘briefly ‘ | |

 In Chapter 3, ‘the"steaay-sfea{:é response equations of media such
és are e:‘icounfbered' in the atmosphere are ’aerivea. ' The equations foz_'
‘che dieleciztﬁe @nst&nt of a magnetoei‘id medium are éb#ainea'.-i and

aiseuSSed. Assuming a certain mode éf"‘:;iaagatiox;, the formula for



,i- 3.
| the canplex refractive index function for steady-state,propagstiou of
a sine wave in a magneto-ionicimedium is dbtainedifor use'in develop~
| meutkof the thesis. This equation is typical for a propagation :
Bituation in the ionosphere ‘ Follcwing this treatment for an ionized
‘jmedium a derivation is given for the complex refractive index function
for non-polar and polar molecules. This equation is descriptive of the
dispersive nature of the troposphere _The relations of this chapter
are obtained using classical-mcchanical models of linear osciilators.'
A brief survey is given of the changes.required in the eqnations of |
the complei refractive function for a quantum-mechanical‘analysis of
_-dispersion,. o |
In Chap. 4, a techniqnc for solving Maxwell's equations using
the multiple Laplace transformation and inversion integrals-is
presented. The solution of Marwellfs equations for a'plaue wave is e
‘simple and useful exauple which is employed throughout the :eﬁort;
The maltiple Laplace transform applied to partial differential
bequations‘consists of transforming with resyect to each positional
coordinate as‘well‘as time, and seeking.the solutionvof the resulting
algebraic‘equations in a scqueuce of inversionsi' The partial differé
ential equation may be transformed if the coordinate system‘is “
seyerable. o | -
Initial and boundary conditions are introduced as their trans-'v
, ﬁoﬁms,‘and 1t is not necessary to assume the form of the solutiou. It
’is‘shown that the characteristic iupedance of the medium must neces-
sarily relate the electric field strecgth and magneticvintensity» |
vectors in order to obtain a nontrivial or travelling weve solution

(the standing wave solution 1s a special case not discussed). It is
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alsd shown __that expressions. for‘ the phase é.nd. group velocity may be - -
ebtained simply by imposing invariance conditions on the phase or .
amplitude of the envelope of the propagated wave and solving the
resulting equations for the velocity. Camplete and detailed solutions
of wave equations by the multiple Lap&ace_transform for a plane wave
Asolution are given and the author feels that this is a contributien
whlch may have instructlonal value. The condltlons for a travelling .
wave, use of initial and boundary conditions, application of 1nvar1ance
methods for derivation of .group and ;hase veloeity - express1ons, and-
rlgorous 1ncorp@ration of dlspersion charaeterlstlcs are Telt to. be
centrrbution in techniques of solution of wave eqnations The -
advantage of the Laplace transform in permitting easy adaptatlon to
spectral formulatl@ns has long been recognlzed and is exploited in the
thesls. The Laplace transform selution-also expedites rigorous;derivation
of qnéntities suehlasvthe»chéracteristic impedance and dielectric
constant of campleX'média.

Maxwell s eguations for a dispersive medium are formulated us1ng
the eqnatlan for the camplex refractlve index functions of the ionob-
svhere and troposphere. The solutlon for prepagation of a plane wave
in a disperéive medium is givén in terﬁs of a cmnpléx inversioh
integral. The integratlen of this integral is con51dered in detsil,
and &ue tb the irratlenal nature of the exponential kernel it is-
necessary to obtain approxxmate solutzons by replaclng the orlginal T
conbour inﬁegratlon with 1ntegratlon on contours passing over. saddle; '
p01nts ef tha'exyenent of the kernel. The manner in Whlch the saddle;
points depend on the txme of propagatlon and the running tlme variable :

is alscussea alcng wmth the effects of saddlepeint l@catlon upon the-



V'characteristics of the wave.

' At this point the. concept of signal velocity as defined by
,Brillouin is introduced and expressions obtained for the signal ‘
_velocities for_the magnetoaonic,.electron displacement and poiar a
_resonances of atmOspheric mediav -The methods for evaiuation:are
'indicated with means for obtaining necessary constants for other _
‘types of molecular resonances. The refraction compensation scheme"
~of Harris is now discussed in terms of its extension to regions ofil
dispersion and constitutes a. contribution to this theory i
In Chap 5, a review is given of the theory of statistical
turbulence as-it applies to the randomness of the tropospheric
- refractive index.':The'physical‘natnre of the turbnlence‘is‘discussed :
“as it affects the densityiof‘distribntion‘ofmeIecularbspecies;V | ‘
Expressions are then derived‘for the mean sqnare values} mean valne;
and the_Variance of the various'velocities of’propagation in*tenms of
the refractive‘index spectral density functions. The"latter‘results

are the primary contribution of the thesis.



CHAPTER 2

- Review of Pertinent Literature

Iﬁ. a recent paper by Harris (HAR 1) it is ibi'ijOSed_ to Obtain an
estimate of the tme‘ velocity of & wave pfopagated through & ‘spheri-
cally sti‘atified .ioﬁcsvphere by caicuiation_of ‘the arithmetic average"
of tﬁe Iehaee ané. gi‘buﬁ velecifiee of the wave. In the analysis of
the pfo"blem by 'bhat a»u;thorv,v repeaﬁedkin:'bi"ief form below, it is
shown that this estimate is accurate to within second-order refrac-
tive e:ti‘:f:’ec::'l:ss° The possiblli'by of generallzing the compensatwn of
refractive effects for other media and condltions in the media was
eonsidered and-is treated- _in' this thesis.

The e’cvmplexb refractive index of a region populated with free
electrons is glven by the Appleton-Har‘bree equation (MIT 1). For
freg:.encies well a'b@ve the cyclotron frequency w of the ions, we /
wey write . | |

n® = (1=m0/m )s (2.1)

where w is the angular frequency of the incident radiation. The

phasge velocity vP of a wave propagated on a path ST may be expressed

in temms of the refractive index as

vy = e/n (2.2)

where n is the index of refraction on the path and e is the veloeity
of iaropaga'hi@n of the radigtion in free space. The vacuum phase range
of the path ST is proportional to the total phase shift and, assuming

2 radians phase shift per vacuunm wavelength, is given by
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R ((0) = ¢t =f n(w )ds, - (2.3)
' P s . .
where ds is an element of path 1ength a.nd tp is defined as the phase

‘t:hne delay. R (w) is also known Y the electrical length. It 15 well
Xnown (BOR 1, Section 3. 3) that the integral (2.3) is an extremal ‘by

~ Fermat's principle. | -

o " The value of 020/ a)lzv is ;fproimizely 0.01 or smaller at the fre-

quency renge considered by Harris. Consequently a power series expan-

bn(w‘) = "/',..L-Qi/wz ‘

- '1-'u)§/2w 1/8 (w‘*/w“)—

sion for n is valid, thus

. from which we have. su‘bstitutina this result into (2 3),

R (‘0) Lgs - (1/2“*) )f Wo (x:y,oz:)ds (1/8 w )f wWo (x:sz)ds (2. l")

1 In the integral relation (2.3), n{w ) is a function of the ccordinates
| . of the path. In i:he integral reiations of (2.4), ‘this deﬁendepce ie |
born by w (x,y,z) | :

The integral of ds over the path BT is the true, or geanetrival

‘length of the path R,, -that is,
f ds = R, , -~ (2.5)
Thus, from (2.4) electrical length of the path becomes.
A ¢ el
R, =R 2 ZSK ca s " | . (2'6)
whgfg

Ax(l/?iwoz(x,y,z)de . L (3-°7)



end
LTy | - | ,
vC-=(l/8z/w w (x,y,z)ds» e (258) .

It nay be shown (BOR 1, Sect. 1.3) and will be discussed in later'

sections y that the delay time of a group or wave packet is given 'by
t = [ag(r>/aw]_ (29
"where @ is the mean frequency of the wave group a.nd g(?) expresses -
the variation of the phase for a wave pecket of the form - ’
V_('f,t) = Ref . (*‘ e L‘*’t'gw(r)] aw , ’_,(2.10)
(Aw) : o o
" An explicit method for obtaining the group delay 1s developed in
: Section IV The phase is expressed as a f‘unction of the nmesn frequency
approximately as follows ‘

.é(?):étp '» (2.1’1)"'

_ where t o’ the phase delay, is associated with the meun frequency w

Applying (2.9) to (2.11), and since t, Rl/c, we ha.ve from (2.4) that

, - pT A T B
t =dlwt )/dm:(l_/c)f ds +(l/2.cw/“)j7 w z(x,y,z)ds ,
g /" q _ g © .
| Ty s |
+(3/Bcw ) ® (x,y,z)as o - (2.12)
The group i'ange Rg is given by

o T a7 2 Wl oh,
R =ct_ ={ as +(1/20°)] W “(x,y,2)ds +(3/8 w N W “(x,y,z)ds,
g 8 Js s © g o ds 9
o 2 4 o .
= Ry + Afw © +3C/w ' o 0 (2.13)
From (2.6) and (2.13) the arithmetic averege of the group and pha.se
‘measurements is then ‘ |

R =(Rg+3ﬁ)/2‘ =R, * C/w l‘,}' | - (zam)
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so ‘tha*b the average will be free of the first-oﬁer, (1/(02), refraction
term. Harris considers other effects in the ionosphere such as magneto-
ionie effects which, because they add a cbndﬁctivity effect, reguire an
imsginary component in thé indexvof refraction. The expression for the
index then has both even and odd components, and the expansion involVes>
the odd powers of 1/(02 as well. Iﬁ cannot be expected that these will
cancel, since the cancellation noted gbove is due to the evenness of
the index of refraction when it can be considered to 'Ee & real function.
The general cér_idi’tis, for such ¢ancellation will be eonsidefed. in more
detail 'beicw.f !

The restriction of the compensation vscheme projposed by Harris to
an operating frequency well above the reasonace band of the medium
Permits use of the particular functional forms given above for the phase
characteristic. In the study to be 'p'resented; the subject of the effect
of resonances of the medium is considered in detail, and more generai
conditions for Qb'baining compensation developed.. In general, any
mate:bial meditﬁﬁ'may‘ exhibit resonances, axid hence refractive compen-
sation may 'be considered for media other than the ionosphere.

The properties of the gi'o%ip and ghase velocity as = fmmction of
frequency was studied for optical media by Sommerfeld and Brillouin
in 19lh- (BRI 2). Brillouin notes that the group veloeity @iffers
from the actual velocity with which the signal propagates, and, in
the range of the resonances of the medium, the group velocity is
equal to the signal veloeity only for certain fi'equencies. The
nonphysical nature of the group velocity is gquite evident in the
resonance region. The sighal and.jphase (Doppler) velocities are

the only quantities which may be of use in a general compensation
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 scheme. It is ap@arenﬁ from the work of Sommerfeld and Brillouin that
other schemes than the arithmetlc averaging of phase and group velocity

may be used at operating frequencles closer to the resonance band.

In the following discussion, the nature of resonances of the medium

4

is first determined. The resonances are related to the physical
properties of the mﬁterial comprising the medium, and in the case of

maguneto-ionic effects, to the direction of propagation vfth respect to

the magnetic field. Transforms of the wave eauations are employed

throughout in order to facilitate discussion of random effects in thé.

medium.
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' CHAPTER ‘3"( |

Phase and A’bsorption Characteristics of Media in Steady State. R

3 1 Magneto—ionic and Collision Absorptlon of the Ionosphere

We shall consider characteristics of the ionosphere and tropo— : S
is;phere as. they affect propagation of an electromagnetic wave. | The , : -
difference 'between these 'l'wo med:_a is due to the concentration of ”
ionized versus un«-ionizea varieties of material com;pris:mg the media.”
i-Consider first (JOR 1, Sec. 17 03) the ionospheric region which is a

"dielectric region containmg free electrons and ions ‘ In the absence

S of . these free charges the constants of this region would 'be essentially '
those of free space, that is e=ey , Mkh=p, , and a= 0 where 6y
and ,uv are the free space values of the dielectric constant and :
"pemea'bility, and @ is the condmctivity of the medium As the electro-
. magnetic wave passes 5 the charges have im‘parted to them an- oscillatory .
motion that a“bsorbs some,of-- thc _incident energy »which they reradiate
. avswéev. S : S : v .

For an analiysis of the ionosp‘here we consider an ion or' electron
:density of N ions or electrons per cubic meter 1t B is 'the field
strength in volts per meter of the el ectrc&nagnebic wave, the force
on ‘the charged partlcle having a charge q will be q[‘.. For an effecti\'re
: damping due to collisions of R v, the equation of motion for the perticle

fwill be S | o
& - m(av/at) +RF  (3.1)

where mis the mass of the fparticle, ¥ 1is the velocity, and Re is‘an



: effective frictiona.l resistance The actual average frictional force
.due to collisions is given by nvy, where nmv is the a.vexa.ge mcnnentun lost
| -1ost on collision and v is the frequency of collision,b Thus | R
R =my. L (3}2)

 For ES sinusoidal variation of the field strength with time, 1 e.,

E=Ee e | (3 3)
the velocity"of‘: the particle is of the form V= ir“oe’jwt e (3#)
where , R
Tr‘ = E q/(R +me) B (35) |

'Now the current density for a flux of such ions is expressed by

o i=wg, e
whe’re N is the nu:ﬁber of charges per unit volcne.v The currcnt'density o
s also sinusoid.al fram (3.4), i.e., o

“13‘, 0t [E Nq/@ +awn)]

FOrk

Vv'-{o =[Nq2ﬁ R /(R ) mz)] Jon [E N /(R 0 mZ)]
Su'bvctituti_ﬁgi :frdm (3.2) = : o

‘_f—{o [Nq E¥ /m(l’ 40 )] (Jw [E N /m(v +w2)} (3. 7)
' For f.he_s.e sinusoidal ‘fields',‘ Maxvfell’s eqrxation for the,electromotive |
force may be written o hE

-

Jwe B, +1,

",

curl H0

([

Joe B [r-qu/e‘vm(vz—m )] + We vE /m(v2 2)

i}

GosepeR, G
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where the dielectric constant of the medium relative to vacuum is
e = l-qu/evm(y2+w2) , (3.9)
and the conductivity of the mediwm is | |
& = Na?y/nly%f). (3.10)
We note that for a given frequency, the conductancefc'is maximum
when w equals the collision frequency ¥V . The presence of the charged
particles reduces the dielectric constant below that of free space and
reﬁlts in a conductivity that is maximum at the collision frequency.
The extent of the effect is a function of the collision freguency and
the density of the particles. | |
The presence'of the Barth's magnetic field couples thé,motion of
the charged particles along coordinates transverse to the direction
of the magnetic field. Consider theisimﬁlifiéd_case of a constant
magnetic field ﬁo aligned‘along the positive axis of propagation. The
non~-relativistic vector equatién for the Lorentz force on the ions or
electrons may be equated to the mechanical foreces,
F = o(B+¥x3E)) = n(a¥/at) + R V. (3.11)
We are assuming that
3, -3f - (3.12)
where k is the unit vector along the axis of propagation (the z-axis),
hence
B, =3B =0 (3.13)
Agein assume the incident field is of constant amplitgae and frequency,
then the velocity will also be sinusoidal since the equation of motion

(3.11) is linear. Then
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v=‘\?oe‘7°'t SN (31&)
| ' The rectanguler ‘Veemiponenfbs of Eq. (3ll)ms.y 'be ﬁi‘_b‘tenv o |
Fot gl g aar i e G

wa+ Ry /e :,,,(3ﬂi6.)7

| | ' -vawm/qv ' Re"oz/q A, 17)
’Equations (3. 15) and (3 16) contain only terms in the velocity

components in the tra.nsverse plane and may 'be solved simultaneously

-for these, thus L
[qE (R +,jwm)+quoy 0]/[(q B +R -w m )+ ZmeR] (318) .

and

_ @ 2uZ) o1 (3.19)
ov [quy(R +jmm) - q_onxBOV[(q B +R m") +23mee] | ’ )
For a genersal o’rien"bation‘of‘ the mgmm field,the velocities along
each axis may contaln terms of each type | | |

If the effect of the collisions can ‘be neglected (R = 0), it is

- ,'seen that the expressions reduce to B B
| 2 2, \2 C(3.200
[J“’(m/q)on 5 oy} / [B - (m/ﬁl) } | (3 S
cend

[am(m/q)E -BE ]/fs ) (m/q)z] _ ,(3".‘2 1) g

oy "o ox
There is a re.sonant»freq_uency. a’t'- i = » o T o
B(q/m) ) S (3.2)
_ Frmn Jorda.n (JOR 1), assuming the earth's magnetic field intensity 1s

0,5 gauss (O.SXJfO-lffwe‘bers/m and q/m for the electron 1s vl.77x10

i
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coulombs/ké,'the resonant or gyrofrequency is'l.hchps for electrons and
800cps for the hydrogen ion. The effect of the collision frequencx

; (and thus R ) upon the gyrofreqpency {8 to broaden the response and to

B lower it slightly, in the usual manner for the damping term of the

characteristic equation for a linear system. The effect of such a
resonant frequency upon radiation 1ncident upon the ionosphere is to
'vcause absorption at this frequency. (Emission due to excited quantum »5i’
"states is discussed briefly at the close of the chapter ) It is well
| .established for daytime propagation that a broad absorption band does |
exist in the ionosphere with a center frequency in the neighborhood B
oi‘ 1400 kcps (JOR 1, M 1. |

S Bquations ( 3. 20), (3.21), ( 3. zz\ ney 'be substituted. into ( 3. 6)
to obtain an expression for the - components of the current density,

. assuming the charge is the electronic charge e, thus

‘i°¥i {[Jmne(m/e)]/[ -0 (m/e)?ﬁ +E_ {NeB /[Bz-af(m/e)zjg '(3;23)‘i”
. {Ne:B /[Bz wz(m/e)?‘]§+ E_ {[Ja)(m/e)Ne]/ [TB -6 (m/e)?‘]i (3. zu)f.
'iig ’= E NE/Jw(m/e) o : ‘rkit L "i : :ikilb‘ (3 25):f o

For a region having such a current den51ty, Maxwell's eqnation for

,current-dcnsity expressed in- rectangular cartesian‘coordinates is

curl B = 1oy *%Fox o ( 26)
' curlyH ='1oy +eony | (3 27)':
curl H =1 eonz} . | (3 28)

oy oz 11 (3. 23),

1(3 24),(3 25) by E /Jw E y/:]w and E /ja), respectively, and |

1'Assuming Sinusoidal variations, we replace E %’ Ec

substitute the results intc (3.26), (3 27), and (3 28), obtaining



16
curl _H»:; ‘e E ' g { ;+Ne2/"[€'m(&>2s wzj)]g i j{std: /&, m(wz;}wz)]?ﬁy :  (329)

curlyH = € E {1+Ne /[e m(m2 wa)]}ﬂ{Ne @ /[w m(a)2 wz)]} i!v l | (330) .'

‘cnrl JH=e E.-Ne /ew m]E sl o ; | (3 31)
If we define the critica.l a.ngula.r frequency of the conductiné medium a.s |
L m ey 32)

‘ cur;xH = ’feé‘on 3 oy

-ge R (33

curl H = € ony.+ J € on. - »1’, ‘en o (3.3&)_

v e 3

A
e, [rrodetad] G

f’evl,;*’oq’c/w(“? - O)] o (338
The x‘elative dielectric con-sta‘nts are then | | ‘ !
€py = L-a /e’ S ()

€z = 1- ,c/(w "“90 ) S e (337b)
e, 2 ey

E3 T T 9% --ﬁv(w -5 '(3 38b)

v ""'I'hus there are essentially three distinct dielectric constants el, ez, |

and 63 The presence of the magnetic field ha.s caused. the medium '

to exhi'bit different responses with respect to the propagation direc‘cion

The effect a.long the axis is contained in the el term, and it :I.s 'bhis
frequency dependence which is utilized by Harris (HA.R 1) 1n deriving

‘his refraction .compensa.t_ion,scheme descri‘bed in Chepter_Z- 3 ,We_ shel;L -



SN _
also typify the iesonance characteristics of ionospheric propagation
by an eqpation of this form in the following sections.
If the collision damping effects cannot be ignored,‘we have upon

‘substituting (3 18) into (3. 6)

1, = [Nq (Reuwm)‘E +Ng B E y]/ [(q B +R, -w m )+zjmee] .

Since the pfinciplc abSorption is due to the motion of electrons,
q = e, the electron charge. Also from (3.2), (3.22), (3.32),
| R o=my '

'=vBoe/m

em

R
n

50 that, as a function of w,

i (w) e of {[(waw)E (w)w E (u.))]/[ (w2+v2 uHZ.j“"’B

e o [(\7+J6t)) E, (w)+wE (w)]/[(jmij) (,jco+v-,jw)] (3.39)

:l Whereas the ionosphere exhibits effects'principally due to the
response of free electrons to the incidentvradistion,‘such charged
' Particlcs are of negligible importance to‘propagation phenameha in thelbl
troposphere ‘This is due to the fact that those electrons and ions
that are formed by high energy collisions in the lower altitudes quicklylf
recaMbine due to Lhe much lower mean free path. ‘However dispersive
" effects still exist in media that do not contain suohlfree charged'
particles. These are due to the interaction of the clectrqmagnetic :
waﬁe with:shc électfonic charges of‘nonpolar snd.polsr molecﬁlés}: |
: Such effects are of minor importance ip'the,ionosphere; The following |
section considers the_résponSe to electroﬁagnetic waves of a mediﬁm‘

_containing only polar and nonpolar molecules.
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3. 2 Elementary Theory of Absorption in & Medium Consisting of Nonpolar
“and Polar Molecules v . . .

When a dielectric is ;&aced in an eleetric field it acqnires |
"surfaces charges on its faces, proportional to the strength of the .

| fiel& These surface charges contribute to the field just as do any

’other charges which may be applied by external means. Our theory
;shall treat all charges 1n like manner for their effect upon. the -
medium. In apulying Maxwell's equations to the dielectric,_ it shall
be'conoidered different fram free space only due to the preSence ofv_}i
these polariz&ble electrons}v The polarizgfion charge mist be produced e
in the originé.lly uncharged dielectric by ‘t;,he motion of ,poss.-me P
lcharges in the‘directioneof the applied‘field'and’of the negative.'
charges in the opposite direction,vdepending npon the relative;{‘!<‘
| mobilities. | | - o |

we shall consider the interaction of the electric field upon the f o

imedium by expmessing the flux densities D and.B as the sum of two .
tﬁfms (BOR 1). Of these, one is taken to be the vacuum field ‘and one ,”-.".
is regarﬂed as arising from the influencefof'matter.‘ One is thus-

lead to the introduction of two new vec+ors for describing the effects
of matter° the electric polarization 3 and ‘the magnetic polarization L
~or magnetization M " Relations involving P and M replace the usual
‘ material relations of Maxwell ] eqnations; v v S e T
B i»<3-.no-->”

-

B =B A L3 m
The use of'§ emd ¥ results in & more direct physical meaning of ‘the ot
interaction. Thus an electromagnetic fiel&_produces in a,givenayolume._"{

element of medium an amount of polarization proportional to thengigld. ;';f
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Each volume element becomes the source of a new secondary or scattered

wavelet whose strength is related in e simple way to P amd M All
the secondary wavelets combine with the incident field and with each
ther to form the total field Instead of the relations (3 1&0) R ‘
(3 14-1) » we shall. now describe the interaction of matter and field 'by

~means -of the vreletions -

B-eE+P (k)
B-ufi+l,  (343)

~ vhere €_ and"'uv ai‘e the dielectric constant and pemeebiiity of vacuum. |
P amd_ﬁ vanish in a vacuum and thefefore represent the influenc‘e of

the matter.  One regards matter as composed of interacting pdrticles
embedded in the vacuum, producing fields which ha.ve large local vari- |
ations in the interior of the ms.tter‘ This internal field is modified

' bj any field which is applied extermally, and the properties of the
vmatter are then deriiied by averaging over the whole f‘ield vithin it '

As long as the region‘ over which ‘the'averege is taken is large coxnpe,red
with the 1inear dimensions of the particles theb electromagnetic |
properties of each can be represented as those of an electric and magnetic
dipole. The secondazjy fields are then just the‘ retarded fields of these.
dipovles_.' It is assuined then that | _ : ‘
| P9k o (3.44)
| WM=xE . (3.49)
The factor » 1s calledl the electric susceptibility and X the nm.gneti‘c"
susceptibility, where from (3.40), (3.k1), (3.42), and (3.43), these |

quantities are related to the dielectric constant and the ma.gnetic
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pg{meab'iiity by | o |
3 =ev+‘77 S | v (3.1;6:):
pepr X S 3
It is neé‘eése‘a“,ryl"v to distinguish between the »effeciv:ivé field,sr, B |
or ﬁ', acting on a molecule and the mean or observed‘field; 5 or ﬁ, '
obtained by averaging ovei' a region which contains é great number ofv '
mqle'cules. The ‘, difference between the two fields is due to the gﬁpé
bet‘ween'the moleculés and depends on the number of moléculés pe.r unit
‘volume. | ' _
To estimate the difference E' - B bet};één the effec,tiire field
E' and mean field f,' consider a particular molecule centered within
a sphere: of radius lérge compared to its linea.r‘ di.mens'ions.- Following P
Slater and Frank (s1A 1), we rePlacevthe effects of the external fields B |
by the polarization on this sphere. We may calculate thé force at
the center 6f‘ the sphere using the systexﬁ of ihduced charges on the
surface of the sph‘ere. The surface density of induced chérge on a.‘ :

spherical ring at an angle 6 to the direction of the field is 'ﬁcose.
The area of the ring is 2::32 sin 8 d46. The charge on the r,ing is there-

foire Znﬁﬁz sin 6 cosé d0. This charge produces a field at the center

of the sphere whose component parallél to § is
aE :{[ZthR cos esina]/@ﬂsvﬁ ]}d@ - (3.48)

The total charge on the spherical surface produces a field at the

center equal to
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(P/ze ) / cos Gsinede (P/3e ) “ " _(3'.»!;’9)

'It has been shown that the force exerted upon the central molecule

| 'b'by other molecules w-lthin the sphere is zero (BOR l) The total field

within the s];here, which is the effective f‘ield ac‘ting on the central

-molecu.le, is o'btained by adding to 'bhis the mean field E, given 'by o

E Et g F.: + P/3e ‘ (3 50) ’

If we- now assume tha'b the molecule is a dipole with one electronic

I jcharge s fbhe force on the electron is eE“ When the electron undergoes

R and :

Vdisplacement x due to polarization of the applied field the restoring S
’ force is -ax Therefore . ' L |

S 2= eE'/a o (3s2)
- The dipole moment 80 induced. is a e | o |
" ex = ezE /a.v_. o ST (3 53) '
'I’he quantity e /a is called the mean polarizability o of the molecule.
It expresses the proportionality ‘between the applied field and the |
“»elec'bric dn.;pole nzu:mem:° 'I.'he ’cotal electric moment per unit volume » ‘.
.i's_w*'uA | ‘,

3 Eliminating ﬁ' 'between ( 3 ‘50 and (3 514-) s the dielectric susce:pti‘bility

9= Na/[l-(No:/3e )] (3 55)
“.‘:v_Substituting for 77 fr'cm (3 47), ve obtain the follwing e?"‘l’l‘eﬁ"ﬁiOn for

(’.-“bhe dielectric constant
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| = ¢, + Toy/[1-(Mt/3e )] (3.56)
or, solving f‘or &, we obtain ’bhe Lorenz~Lorentz relation (mks system),
using € = ere s | | |

o o= 3e (e -1)/1\1(e +2) (3.57)
where er is 'bhe dielectric cens‘han:b of the medium relat:.ve to vacuum
Finally employing Maxwell‘s relatien n | € rl“r’ or nz = er,for non-
magnetie media o

ot= 3¢ (na;-i)“/m(ngm) | (3.58)

In-order to determine th.e d.e;pendence @f the polarization and the
refraetive index of n@npalar m@lecules upon the frequency of the fie.‘l.d
we must find the hsplaeement T of each chargeel particle from 1ts equi-
11brium p@sitlon We assume tha‘b each electron is acted on 'by the
Lorentz f@rce F | Lv o

F = e(B'+vXB) | (3.59).

wheré e is the charge of the electron aﬁd 7 is its _ireloeifcy;'. Tt will
be assumed that|¥|1s small c@m;ééréaifo the veloéi'ty of light. The
felleﬁing de_z"ivat»iop assumes a Véiy ?él'emen‘tar& model for the _.,iﬁ‘t‘;er;—
, aétiémof “the charged fpé.&cj-'hicle upon ‘i"cék'faré‘e ceriber and neglé'efs
q_uantnm—-mechamical ef:t‘ects. Even 50, the result is u.seful for describing‘”
t.he prmeiple na‘bure of dispersion. ‘We. shall assume that an electron 4
‘behaves as if 1"h were. ‘b@and to an eqailibrium p@si‘bi@n by a qu.asi—

elastw rest@mng f@ree »qr where T is the. chsplaeement, and +that the

»°v,
ah

é.ampiag ferce due to cellisn.ons is gt. The equation of _mqt:.on is then

:mr + gr + qr = eB' (3.60)

_If w is the - angu.lar freqaency of the inecident field,



E' = B om0t (3.61)
The displacement is also harmonic and the steady state solatin is
T = B/ [m(¢§?m2)ldég=] | (3.62)
where the naturel frequency

@O=,/§/m. A (3.63)

Each electron comtributes to the polarization a moment P = e¥. The
con%ri‘i:utions of the motions of the heavy mueclei are meglected, since
their digplaceménts are several orders of magnitude below T. Assuming
also that there is only one éffeetive_ electron in a molecule with

résonant frequency « o’ the total p@ls.rizatin ? is

e

P=0p=Net = Ne'B'/m (wi-wz)-ng (3.64)
where N is the number of melecules per unit volume. P = N« ,‘ there;-
fore o | | | |
¥ = Hez/[m(wi-wz)-Ja)g : ' (3.65)
so that N« is a complex qﬂantity related to the iz;dex of réfraciion
by (3.58), so that | |
(Nt /3e,) = (n°-1)/(n%+2) (3-66)

The behavior of No¢ is shown in Figure 3.1. Between the region of the

maxime is the region wl- wz of anmaleus_;dispersion.
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Figure 3.1
Dispersion of a Nonpolar Gas Showing Anomulous Dispersion

We ha:ve so far eons:.d.ereé. that the resenating moleeule has enly

one resomnt :ﬁ‘reqnency.~ In general 'i;here will be many resnt frequen—
' \ B

cies even in sars*hnes m‘bh ‘bhe same kiné. @f melecules A mere genera.l

expressien, neglecting é.amping and ‘the motion ef the :m:tclei., is

(N3¢} = (a2 el)i/(;afz) (Ne /3 ) z [v, /(wzafoz)] (3.67)

where Nh,i ié‘?the nunmber of ele‘etrons esrresponding t@ the resonant

freq_uency (oi F’or gases, the iné.ex of" refraction is apprexlmat.ely

uni‘ty, and. we may rewm.t,e (3 67) in the form

- (Net/ey) = (me"/e n) Z[n/@i-)] (.68

For p@lar moleeﬁles it is necessary t@ account for the em,ergy

a’bsorbed in the angular er:.entati@zz of ‘bhe molecule as the polarity
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eflﬁhe field:reverses, Debje (DEB 1) considers theeanalysis of this-
cese in'detail,e Forethe'presentvpnrposes, sqme_simplifieationvis
penmissiblef,ane fellowing analysisbef‘tne effectfof'a pefmanent
polarizatien in'the molecule is adaptedvfrom the pfesentafion of_ k
Loed (LOE 1). | | | '

Certaln molecules, such. as water, have permanent dipoles present,
and their dlelectric constant is cemposed of two fypes of actlon
There ig the usual osclllatory'separatlon of the charges'by thevfield N
as'analyZed 350ve. Also pecause the fiked dipeles in the moleculea
are orlented in all directlovs because of thermal agitatlon, they suffer B
torques as they tend *o allgn *hemselves with the electrlcal field
This torque is temperature dependent because the alignmen+ is being
continually destroyed by the random impacts of neighboring molecules'

: under therwal agitation. But, on the average,*bere is a resultant
camponent of these dlpoles in hhe field and they act to increase the'p~
dlelectric strength of the material, or, contribnte to theepolarlz~j O
ability of ﬁhevmoleeules} Sinee the ection-expmeSSedbby the Lorenie‘n
Lorentz law involves linear coordinafes and the present effect 1nvolves
» angular ceordinates, they gre sdditive in Lhe sense of energies, and |

way be analyzed scparately‘ Accordlngly the present analy51s will

- be. golely concerned‘w1+h fhe effect, of penmanent electric dipoles

upon the d:electrnc constant, the effects of dlsplaeement frequenciesxv
, havingvbeen considersd above.

vAssuming the melesule-as a whole is_uneharged; the'potentlal

energy is given by

fud
i

e
‘P°E

#

- pE.cos‘ei ' o (3.69)



where 9 is the angle between the dipole moment p and the electric
‘field strength E Thus the num'ber of molecules which have a potential
energy u in the field is given 'by the Ma.xwell-Boltzmann law (LOE 1)
PRCEIN (pmcose)/k R e E )
'where k is Boltzmann 8 consta.nt 5 T is the a'bsolute temperature, and "
-'_v dQ represents the element of volmne surrounding the point where the L
potentia.l energy is u. The average moment p of the dipole in the -

”'fieldis givenby R Coe e e R ,
[f (pEcose/kT)PcosedQ]/[ (PEcose/deQ] (371) ‘ B
_"The elementary volume dQ = Zusine de Msking the su'bstitutions

5 = cos 6 and x = pE/kT, (3 72) 'becomes T

+1 xt Y41 xg 1 ,
(p/p) = fe é dé e dé (3 72) |
| 'which integrates to the La.ngevin f‘unction e . S

| (p/p) [ce +e"‘)/(e e"‘>] - - L(x) -(»3,73)_
o By dividing throu.gh by eXee” the following asymptotic expansion L

'results which is good for large va.lues of b 34

» L(x) 1 - (1/:) + 2e” “2x s »_ (3 7u)
Powera of e s.nd exponents of x in the expansion for this function a.re
) negative and it is seen that this function approaches unity as 8. |

;sahn'a.tion value at very high fields For the veak field.s of our

s concern we ma.y use the approximations

o L(x) (x/3) g (x3/1+5) . , -

. “or even only -
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S X )

Fe-w/x, (376
= PE/3kt I (3 77) |

. which is the contribution of a permanent dipole to the measureable ‘l
‘ polarizability A unit volume contains N polar molecules Hence the S

:_ polarization for a unit volume is ' o |

| Np Np E/3kT SRR (3 78)

_ .and the general expression for magnitude of the molecular polarizability‘

- of polar molecules of gases is then, _ncluding the effect given in (3 6#)-
.
(Ne E)/ [m (w w®)- st] * (Np E)/(3k'r)

. » ( EN ){[(e )/ m(wz (D ) Ja)g]] /31{'1'% .v_v ‘ (379) :

ﬂ

P

-

The frequency response of the dipole population mnst also be considered
There is e definite time required for the maJority of the population '“_Yh:
“of the disoriented molecules to return to their previous state of S
thermal equili'brium De'bye (DEB 1) considers this situation in detail
eand characterizes the process by a simple exponential decay of the
excited population The complete expression, taking this relaxation ‘
' time 1ato account is then, R . e D
N o B- - n{e? [m(w?-w )-jog] + (pz/sk'r)/(wwc 3 (3 80)
But from (3 54) g | ‘ |
| Henée;: Gl e v " S A A R
" | No = Niez/[m(wibw‘_z)'—'jwfs] +v,p2_/'_31£'r(1+:iw)} o (3.81)

From
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i

2 2 .
(n -1)/(n"+2) = (€ -1)/(e +2) Iurot_/%v |
(/3¢ ){ e/ [m(aZ-)- j0g |
o o + (o /m)/mm)} (3.82)
lwhich is the final expression for the dielectrlc constant for polar

H

molecules, includlng the effects of displacing chargeS'llnearly and
'changing the angular orientation of the electric dipole of the mole-

cule. Since the index of refraction for gases io near unity, i.e.,

(/3¢ )e /[m(w - amg] + (s /3kT)/(1+Jm)}(3 83)

For all possible states,
e la (N/e ) Z{h e /[m(w 2) ngi] [(hipi)/sk’f(lﬁm)]}

| (3.84)
In summary of the brief treatment above, it is seen that the

'frequenoy dépendence of dielectrics may bevrepresented.by-linear
oscillator models which yiold second or thirdiofder chaiacferistic
eguations with conétant coéfficients for.the cases of thelionosphére;"'
iqsa'(3.36), (3.37), (3.39), ard nonrolar and polar dielectrios, |
Egs. (3.67),,(3668), and (308h)f ‘According to Boro and Wolf‘(BOBvl.;
p- 97), the classical mechanicél'model is quiﬁe sucessful in predicfing

iexperiments and, in faot, the solution for a'quantmm mechanical model,r

‘differs only in requiring an infinitude of virtual oscillators instead
of a finito‘number, as was obtained above; However in the guantum -
mechanical model the weighting of the obcillators is such that only
a finite number of the terms may need to be considerea ‘We shall now’

consi&er briefly the differences due tovquantumrmeehanical’considerations.
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3 Brief Survey of' Quantum—Mechanical Theory of . Dispersion ’

In the quantmn»-mechanical theory of dis;perslon, there is a ‘term. .

) of the form of (3 65) associated with each jpossi‘ble quantum transition

. vin the molecule. _ The coefficient N is replaced with quantities known o

'as the oscillator strengths f associated with each resonance frequencyi |

.by the formula o

j‘- (me ?)/3?1 , | (3 85),'{

. in which"a) ' is the angu,lar frequency asSOciated with the quantum

- Jump between 'the m h “and nth levels and Tn is the matrix cqmponent

" of the vector coordinates connecting these two states 'I’here is also B B
' i-:a damping term associated mth each quantlm t:cansition, 'Ymn“)mn- i
| According to Condon (C’ON l, Iart 6, Chapter 6), there is a feature |
, vof the quantwn«-mechanical theore tical formila of negative dispersion ~
‘that has' no classical-analog. In (3 85) it 1is assu:med that the quantum
'transition m-n is one corres:ponding to a jwnp fram a lower to a higher
level, that is , an absorption However, if the initial state m is an.
excited state, then there will be a lower state n, for which the
‘ associated quantum .Jum;p w111 be ‘an emission For th,is transition,
 the frequency Wy and hence the oscillator strength f are considered.
vnegative : Hence the contribution of dis persion due to molecules in
- excited states is negative at frequenc:les associated with emission trans-— .
- itions and subtracts from the total absortption. o ‘ .
| If N is the total number of molecules in a u.nit volume and N |

| is the total mmber of molecules in th.e mth quantum state, a partic-

ular frequency mll occu:r bwice in the formula for o, once jpositively o
as an a‘bsorption, and once negatively as an emmission frequency The |

total contribu,tion to o is given ‘by



| ~-m—v o |
- (e /Nm)Z Z[ 7, /,[@m-,)._, : —Jafmnw]» (3«86)
_-'where the ;prime on the summation indicatea that this sum is to ’be |
"te.ken only for levels which are higher :l.n energy than the mth level. |
'I'he values of f may 'be determined 'by experlment It tu:ms out that

only certain of these have appreciable strength in a given case, so ’

that a finite nmn‘ber of terms of the sunnnation is sufficient We sha.ll .

f»assume that the deta.ils of determination of the coefficients may be

settled from quantum—mechanical considerations, if necessary How- .

” ever, we are most interested in the mathematical form of the resona.nce

“iterm and shall use the classical—mechanical fo.nn for convenience. i ‘ -
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CHAPTER k-
Velo_c.itiés of _Prépagati on

' h 1 Solutis ef ’che Wave Equatlon for Kenﬁis,‘gersive Media

We shall establish certain results 'bas:.c to our discussmn by
consmering solutisns of ‘t;he wave equatiom for 8 linea:c medium o‘btaineé.’
thrcugh the use of mltiple Laplace transformatiens | The smgle appl:.-
'ca‘bion of 'bhe Laplace transfom t@ prtlal a,ifferen‘bial equa‘bions ca:n
- be. feimd in the presentatmns of several authors (see for exaznple
._CEE 1, STB l) The appllcatien of the malt:.ple Laplace tmnsfermtien
0 partial differen‘tlai equatmns 15 treated ‘by van der Pol a.nél Bremer_
'_,,,(IOL 1) whe gives creait t@ Heava.side There is als@ a suggestion
~of the exis‘heace of such methods :m. the prom:.se of the second volume
of Garaner and Bames (GAR i, Prefaee and p. 320) An elementary
y&lscussien of the életails of‘ the tyfpes of mnipulations ::.zwalveﬂ in
usm ezaeasié.eé. m.ltmyle ’cransfems 1.s given by Estrm ué, Eiggins
(m l) Maﬁmla’cien of smgle twomslaed transfems is &iscussed
'by ';Em;gal (m 1) and ven der Pol a.nd Bremmer (POL 1).

The. perfermance @f waves in a linear meditam is deseribed by

l

Maxwell's equa’cmas(mks system of tmits)

VXH=-“+j, i
2 (k1)
- DB :
VAE ===y ! (+.2)
ot

\Y) 'ﬁ =L, | (h"3)
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Ve+B=o0; _ (k%)
together wlth the material relations A
D= €F, . | (k.5)
and v
B = pE, (4.6)

where vectorial guantities are. indicated, by the arrow. We ‘_ make_the.
additi’onal‘ aSSmnptions that there is no distributed chargé and that
the medimn is mn—conductmg, hencep= 0, and g = 0, resp.

~ We shall first o'b’t.aln solutions for a simplified model and ceorai-
na:be system The direction ef ;propaga’c:.on will be along the ; 51tive
z-axis by a transverse wave whose components are given by .the eg;a,ations

E = £(z,t) (k.7)

L R

where f and g are each Laplace-tmESfemable with 'reﬂs;pec't to t and z.
Applylng equations (4.1), (k.2), (&.5), and (%.6) to the components
E, and 5, we have

2H.  E.

- —d e X L e C(4.9)
dz 0t ' 1
and |
bEx oH '
—Z =L . (4.10)
22z ot

Following Estrin and Higgins we define the single and mltiple
- Laplace transforms of a function of two variables in the follcwing

manner. The Laplace transfom of £(z,t) with respect to t is

L, [#(z,6)] =Hmﬂ=/‘éf“f@w)ﬁ, e
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where we assume that f(z,t) is tran,sfqma'ble if a real number 7y

exists such that

CpTy -qT S IR E
1;2/ |e £f(z,t) [ at <o | o (kae)
This single transform F(z,t) can be. transformed again with respect S
- to z by the relation o :
| ® -z | Ty
P(r,s) = LZ{F(Z,S)] =] e ¥(z,s)dz o (ka13)
v - /o o IR ,
vhere again convergence of the integral is assumed in the fs’ense e(;,uiva.lent
to (4,12). The m:.ltiple transform’ operations indicated are assumed to
be interchangea‘ble with respect to the order of transfomation.-. That

1s, the multiple operation

L ot [f(z,t)] fm i f:)e st f(r,z)at dz_ -'_ (bflh)

may be written in either order, thus -

| -1z -8t -3t L
‘F(r,s) f f f(z,t)d‘t d.zf j( f(z,t)dz at (4.15)

which implies that the integrand is u.nif‘ormly convergent. The inversion
integral :i.sv given by | | |
1 | Y +Jjo tsv £+30 zr v N '
f(z,t)» = ————é—f e f . e F(r,s)ar ds, Re 8>y
- (2x3)" J v -3 £-J00 , |
| o » | and Re T 5, : (4.16)
.We naw transform (1+ 9) and (h lO) with respect to both = end t, using
(LL'?) and (_4.8). This operation is called simultaneous transformation,
or 'trénqusifion, ‘b_y ven der Pol and Bremmer (POL 1). Thus

. ;:G (i',s) + ¢(,0,8) = s ¥ (r,s) - F(r,+0) B v(ltv.l'?)g |
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T F (r,8) - F (,0,8) = 45 @ (1,8) + 4G (,20)  (1.18)
CBold capital letters indicate double transforms , light capi‘bal letters
'indica‘be single trgn‘sforms). Solving (h 17) for G (r,s) and su'bstituting |
into (4.18), | | s . _,__' a
r¥ (r,8) = F,(+0,8) +,uG(r,+0) K _fi—p(r,s) -_’;_F(r,m) - £(+0,6)
| o (ka29)
or v

(o) Fx0) = 2 [F00,0) cpelero)] -ps [exte0 *‘?(*9’23],25)

The initial conditions correspornd to an unexcited medium at t = +0,1i.e,,

£(z,+0) = Ex(z,+0)'=_0, :]g(z,+b) = Hy(z,+0).= 0. (k.21)

Hence _ ‘ | ,
B(r,40) = 0, a(x,#0) =0.  (k.z2)
Now from (4.17) and (4.18), | '
r@(r,s) + ¢ s F(r,s) = e F(r,+0) + G(-r'O,s‘) ' (4.23)
rF(x,s) + ps€(r,s) = F(+0,8) + MG(r,+0). (4.24)
We shall be interested in solutiohs for which tme‘and the z-coordinate
are positive. Hence the freq:uéncy irariable 8 and wave number variable
r must also be positive from the- definition of the Laplace transform
of £(z,t), (¥.15). Then the condition for e non-triviel solution is,
from (k. 23) and (u zh) | |
M [G(r,s)] - [F(r,s)] G
or : v '
| (}(r,s) /E—’ F(r,s) o o (h 25) .
v'.I‘he q;mnti'ties € and /,4 have positive real par’cs in abeorptive '
media and the square root - €/  1is teken to be & positive quantity}.

~ (k.25) ‘c‘:o‘nstitutes & relation from which conditions on G(H y) or F(Ex)
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may be found if only one or the other is specified. e//u has'-the'
dimensions of an electrical mpedance and is the characteristic impedance
of the} nedium. ‘ |
The,sinusqid applied at the origin at time t= +0 is _ _
f'(+0,bt).;;'E‘x(+O,t)>= E_ sinwot | _'(lL.,z_“G)-
Hence the I.apla;e transform of the fdrcing,f‘unctiqn defined bj (h.265 -
is | |

vF(+0,s) =E u)/ v(s-2+§o2).v | . SR (ﬁ.z7)..

Fro:m (14- 25) the condition on Hy is given "by e
6(+0,8) = {e/U B w0/ (s 2y o (h.28)

Substituting (%.22), (u.zT), and (4.28) into (4.20), and solving for -

¥(r,s) _ . : | , _
F(z,6) = B,/ (v €K 8) (s+0). o (w2)
“Taking the inverse transform with respect to z,
P(z,5) = (1/23) E, e [ /(stsw) + 1/(s-30) | (5.30).

The inverse transform with fespeczt to t is 5 .

£(z,t) = E, sin @ (t-v{é;(’z)v : | ' (4’,’.3’1")'
This equation indicates a wave travelling from the origin and arriving,'. '
at time t = e,u, ' Z. The quantity l//é?f‘ has the dimensions‘ of"‘a. v'e]..dcityf
and is ‘the velocity with which the wave propagates. | The quantities é,_
and M 5 the dielectric constant, permeability of the medium, respect4-

- ively, are relateql to the values ev, /uv for vacuum by the relatiqns o

/U '/(’(r /av? | : . (J‘"'32)

€ = €_E_- o (k.33)

r-v



.-" o -
.¢he'qﬁan§1t;és M., end 'ef'are theﬂre1a£1§e'permeability;and”die1e¢££id:' |
‘ | éopstant of the mediﬁm.‘ We ha,vvé thé.‘relatio‘n ‘between e.-'v l.'an'd.,' | /{vand  :

| 'l:he vélbéity o:‘t‘“ lig_ht._ c | ‘ | L o
Cso that o
M = A e

= T T =fl_1__‘.,:. (’-I-.35) .

where n, the index of refraction of the medium :Ls given 'by Maxwell‘

nﬂhge;‘,b : lf:[i:f(L%X 

;h- 2 Phase Velocity for a Nondispersive Medium

relation ’

We shall now seek the condition’ for which the pha.se of the 'pasitive- _
going wave is c;onsta.nt. : _'l‘his may be accomplished by examining 'l_;he con- |
ditions'undéi.ﬁhich the wave is totally invariant. Since the vave is
simisoidal, variation in amplitmle is thé’lresﬁlt of varia.'bi'.on'rof' the
phase argument. Ve therefore o‘b'bain, from considering 1nvaria.nce of
the wavé,a’ cbndition __for ‘inve.ra.ance of phase. The total differential 4

of the wave is | . o -~ o
a [Eo sin w (t-(Fé—' z)] = 0, ' | : (8.37)
or v : e -
- {cos [w(tw\/ﬁ?z)} } [w(t-\]/ﬂ‘e‘ z)J =0, _'(_#.38_)'
which 1s satisfied if IR

d[A)Uwﬁm?Z)]}‘= 0, - _  'i :UR39)_
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or if
7 w (d’t—\r/]—adz) = O)
whence fram (4.31)
4z =___-—-=——=v. (ko)

Since this is the condition for constant phase, »vp is called_the _phaae _.

velocity of the sinusoid. This is the velocity with which surfa.ces of _'

E consta.nt phase are propagated and as & concept, is d.iscussed in many
_ books on electramagnetic theory (see for emmple BOR 1 and JOR l)

~ has a precise mea.ning only for sirm.soids of infinite extent

If we apply & time function

f(z,t) =B (+0,t)

et the origin at time t = +0, and express its transform as '_
 B(+0,8) = - E(s) |

1 follows from (4.20) and (4. 25) that ST _

| F(r,s) = E(s) [(r+ & 8), - : (k)

80 that | R

-'._e,u 82

F(z,s) E(s) ¢ ' ; S (4.42)
Then, taking the inverse transform with reapect to %, |

_ , y-300°
Under conditions of narrow bandwidth of the spectrum B( sv) discuséed ~

o y+yo0 o
£(z,t) = (1/2::32/ B[t' s Z]E(s)da o (4.43)

below, the solution is of the form

vf(z)t) = VE(t‘z/V )s
vhere vg is the velocity of propagation and depends upon E(s) The

- _iivelocity vg associated with ‘the narrow band apectrum E(s) is ca.lled
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the velocit& of the wave group E(s), or the group velocity.

h, 3 'Gro'up‘ Velocity for a Nond.ispersive Medium

We may vrite the transformed solution (b.b1) as 'k

Frriry, 0+ ) - Bo+g)/ [(Ga,am, ) “/_GF (ﬂw)](h zm)-'.

| Where T ,ri, ¢ ,w are the real and imaginary parbs of T 'and 8, .;resyec-». E
tively. Assmning now tha.t the real 'parts', g and‘r';, ere zero (this '
corresponds to steady state and vanishingly small change of the vave

‘with dista,nce) , then (1+ k) becomes

Plir,30) = B3o)/ s VT @ )

~ The inversion integral now becomes a Fourier.in'cegral'_ '-

f(z','t)‘.—._.je_‘w(t'z "p) E(w)dw e _(n;.us)'
2 : _ T » ' '

where vy = 1/\e Assume now tha.t the spectral components of B(w)
TR

are limited to the narrow band Aw wl wz, 80 tha.t (h hS) may be

FWTit'ben_

, | ;jw(t-z/v - | |
2z, t) = (1/2x)] e P E(u))dw . ,

. Aw : _ | v - (h26)
We further restrict the bandwidth so that Aw is much smaller in

magnitude than the meen frequency & , that is, .

bo_ 2% «1 o a)
) | wlf wz o o '
2

It will now be cOnVenient to define the wave mumiber of the wave with
~ frequency w . ‘The wave number k gives the thase shift in radians

' .per meter traveled in the .nieaium, that is



k = Q)/Vp : (4.48a)
=nwfe ~ (b.48p)
where n is the imdex of refraction. ’In:serti.hg (1&.‘48@) into (lth6) s
J(a)t- k2)
f(z,t) = (1/2::) - E(w)élco | (4.49)

Now ’che 1ndex of refraection is 8 fmzctlon of frequeney, as was dlscussed
in Ghapter 3. _Se that

, : | _ k(w)
For a suita‘bie small frequency range we may /e:;:pa, k(w) in a Taylor's

series about the mean frequency ® ¢

k) = k(D+w) = k(&) + aw [‘ak(w)/aa:)]a) + {5w)3/2[bzk(w)/aw]6
T oaeey (4.50)
'which for. suffiez,ently small dw may be simplifled te v
| K(w) - k(@ )¥6w [ak(w)/aw] _ o (ws1)
| Equation (h h6) may now be expresse& as | o

£(z,t) = W(z,‘(;).eg [_wt i k(w,)z] 7 (4.52)

where
N 31 (@ -8)t - [6(w)-x(5 )]z
Wiz,t) = (1/22) | E(w e [ f
. . ™ (4 53)
Tnserting (4.51) into (%.53),
- o 33 (w-3)t - B 5k(w)/aw z
w(z, ) (1/2xn) ‘E(w) e { [ J }
o Aw (’4 5l+)
'The exnent:.al factor of (h 52) represen‘bs the central frequeney of
the wave group (’+ 46). This ‘frequency is called the carrier ‘frequeney

of an electmcal commmni cation syste:m The W(z,t) factor is a slewly

Vvarylng moﬂnlatiem of the amplltude of the carrier hanng frequency

_cemponez::bs in the range w5 @, From (4.48a) the phase veloeity
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varies inversely with k(w ) and the prepagatlen veloelty is not equal
fer all frequency componenj;s. Consequen'bly the shape ef ‘the wave ;
which depené.s upon ’che phase of the varlou.s components ) changes as
the wave travels _
| The exnential fae’cer of (br 52) represents a six%uSei&al fac"bcr
of cmmﬁ smplituae Therefere the factor w( z, t) propaga‘bes the
shape of the wave grmp and is called. the envel@pe Fm:' Aw suf'fi;-
cn.ently small, the ;product [ak(w)/ bw] z is essen‘bla.lly constant
a.nd may be temed. the prepagatlen time tg of +the grou;p, that is,
bg = Prlw)/ow] 2 (hs)
We may »se‘lve for the av_eraée veloeify |
| e C o (se)
T e [er(w)/3w]g

This derivation is essentially that given by Born and Wolf (BOR 1).
An alternate me'bhed ef derivation'of the group ‘veleeity may be given

in tems of invariance cenditlons appl:.eé. to the envelo;pe., In (b4.54),

(o) [ ¢ 2B@]
W(z,t) = 2 E(,w)ej(w w)[t ow lﬁ Z] dw.
| J Aw o (.57)

dw = W=W, ani therefore

or

Py ]
J | t-———|_2Z
E( w e ( bw (1) ‘dw

oo 258 1y r"—-

Qﬂu Aw

;ga‘)[fe ak(w)l ] [ 3k(w) z] (?‘75)
o o

= e
L 2w

]
o

W(Z,'b) =

 Fram (4.52) we then have

::[w?”;( - ¥{w )| =

f(z,t) = &

dx(w)
So o]

& E [’c - |, (k.59)
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The factor bearing the shape characteristics of the group is

Ak(w)
E [t- 2w

envelope depends only upon the independent variables z and t for a

&)Zil’ the envelope. -We see that the argument of the :

chosen center frequency. If we examine the condition for which the
ami&itude of the envelope is invariant, we will obtain an expression _
involving the propagation velocity of the group directly. This is
true so long as the shape does not change. Points cn the wavefront
travel with the propagation velocity by definition. Proceeding witﬁ_ ,
fhe condition for invarisnee of the envelope, we set the total differ-

ential equal to zero, thus

d{E[t_ ak(w)'w ]% % g+ 2P gz -0

> - 2z (4.60)
or o
at - 2Ew)) 4 o
ow
go that,
v =.d_:?.= 1 . . . o
€ at ok{w) o (k61)

which agrees with the previous result. The additional phase factor

given in (%.59), exp jED ok{ w )/ow -k(a)ilw.z, results from the lack
w

of symmentry of the onesided transform and the odd forcing function.
I+ shows that there is a phase shift of the carfier of the amount

% =[w ok(w )/ow  ~k(w )]a-) z radians - (k.62)

over a path z meters long.
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b4 Solutions of the Wave Equ,ation for Dispersive Medig--1 onosphere

The rectangular cartesian components of Maxwell‘s equations (h l)
and (4. 2), are . . _ _,
-28 /2t (4.63)

curl}v(E- - BEz/b y—aEy/a = | )
_ourlyE =2 Ex/a‘z:- eEz/a X = - aBy/B t ) :(_u.'_eu);
‘\ cuﬂzm - ésy/a_ %- 'aE‘};/'a y=-28,/2¢ o (i#~6f5)
eurl =28, /? yaeny/az = 142D /0t - -'_('4.6‘6)
vcuﬂyu = b : /a 7= BH /’a'x = iy+a'ny/a‘ t " | " _'.~-:_(.h.6_7)

- curl H =72 Hy/a X aH.x/by =1+ aﬁz/a t (lr68) -

' For our case, onJ.y Ex and Hy are ‘n'onzero,f 80 thet ‘c;'e have-need for _ i
only two of the‘ above equations, (4.64) and (1&66) -Asl ‘shomll_inChapte.r. |
3, tlie dielectric constant is freq_uency dependent. The work of clw_,ptei‘

.3 epi)lies to steady sté.te' solutions for sinusoidal waveé. Fo;*’ waveg.-- ..
of more general typesi of tiﬁe variation, it is necesysa‘ry to e#pre_és E
the dielectric constant"ae & time varying coef:ficient in Maxwell',e B
eque,tions. ‘Rather than seek a eolution of the wave eq_uatione ixl
terms of the«time variation, we shall utilize the e:tpreseions det'elop_ed
in Chapter 3 for the frequency variation of the dielectric constant;' B
These expressions will’ find use as the equivalent Laplace transfoms
The differential equations (lb 64) and (+.66) will be transfomed and
‘solutions obtained by inversion of the transform. | |

- Bquation (4.66) may be re*witten as | |

'.3Hy(2,t)/a z =‘V ix(z)t) +9D (z,t)/a‘ﬁ.f" ) . (h 69)

For the assumed nonzero wave components E_s Hy’ and alignment of

magnetic field along the z-axis we have from (3.39), -
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1ox(w) = e WE_ [(v+3w)/(@o+ Pe-w 23wy )

(l-70)
_Now, the subscript "o" in the variables of(h 70)was used in Chap. 3
in order to deeignate the amplitude_of,the components 1 and E which were
assumed to have a sinusoidal time variation, i.e. B from (3 3),
E, =,on’ joot,
The assumption of sinuseidal solutions of a Qiffefential equation is
equivalent to imposing conditions for thevsteadj—state respohse, or
mathemétically'speaking, obtaining tﬁebFoﬁrier‘transforﬁeof the eolution.'
~ Further, the Fourier transform may'be.dbteihed fram the Laplace |
tfansform by subetituting jw for s. vSince we bave expreSSions,er
. the Foufier transtrm of the coﬁduction current(k;7oh'we desire to -
proceed in the feverée direcfion, i.e., to obtain the Laplace trans-
form from the Fourier transform. This ﬁe,ceﬁ do by theiéubstitution~ L
of s for jw, 52 for na)?, providing we can assume the initial’eon-k>
ditions of the Laplace transform ere’ell iaenticall& Zero.b
In‘the case ef‘the’eonduction current (%.70), we are assumihg
that the medium is initially at rest, so;that the latfer restriction

is satisfiedf Hence wevform the Laplaee'transform of the eon&uction
current from (h;fo)’byvthe_eubstituﬁions given above. ‘The result is

I (r,s) = ew‘,wi}?(r,s).[(v +s)/_(w§+v2+sz+2vs)] (4.70)
.where the ot subseript'is'now ho longer neceésery"since the'time .‘
variation of i(z,t) and.E(a,t) is not restricted to 51nusoids |

Taking the Laplace transfonm of (h 69) with respect to t and z

._'letting E =1,

.y."g’:

"'r@"(r’s) + 6(+0,5) = X (r: ) +se F(re) -' < F(r,+0) -(#;72')"
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Substituting from (4.71) and rearranging

2
€(r;8) + s : +¢e | ¥(r,8) = € F(r,+0) + G(+0,s)
2, ,2 v v -
» s+2ystw + VY : o )
° €. w¥(r,8)
vie Y
-3 75 (4.73)

8 +2y s+a)o+ Wi
 Now (4.64) may be rewritten as S
aEx(z,t)/az = - M [aﬂy(g,t)/a t] . (b.4)
Teking the Laplace transform with respect to t and 1z, with notation

consistent with expressions above K rearranging the order of terms, B

w(r,s) +p s¢(r,s) = F(+0,8) + Y4 G(r,+0) _ (14-.7‘5)
Now,‘ since r and s are not identically zefo, and the right hand ‘members
of (4.73) end (4.75) are arbitrary, the condition for a nontrivial

solution of (%.73) and (4.79) requires that the determinant

2 .
€, 1 .
e(r,s) v e + € | ®(r,s)
. 2 2. .2 v
s +2ystww +)
° = 0 (4.76)
¥(r,s) ﬂG(r,s)

for the mode and medium that we have acsumed. ‘This‘ condition yielded
(4.25) in the case of a ﬁondispersive medium and gave the familiar
expression re\elating Ex and H_y by the characteristic impedance W
'of the medium. In the present éase the characteristic impedance of
the medium 1s modified by the demped resonance of the electr'ons and
presence of the magnetic field. We there_fo_ré have from (4.76) .a-new'
relation which must e.xi's.;_t between G(r,s)'andﬂF(r,s) for nontrivial |

solutions,



: rz- Cv My { ﬂv 2(S) + 8 ( 'va)c )] F(r,s)
| . v 2. o ’ _

sPrey stwor v’

o
Letting . L ) ST : |
a2q%(s) = s%( M/ év)zi(s)'+ s [V wi/('sz+zv s+ 60?;‘ vz)].
_ 32 [53+52932+( w §+ w§+ vz)é+ Y E
s(sd+2 Y s+ w§+ »%)

3 2 2'
587+2vs + +e) T+ +co
q(s)/ZS(coco v)sv 4

s(s'+2\)s+(o§+\) )y - - el (h.82a)

But ,Ev)u-“’ = 1fc, and

2
s +2y st w.§+ \>2

‘ 2 2 IR
,uZ(s)—(S/c)\/s +2\)Sfm+m+\) E ~ (.82p)

We may write (4.81) in the form

[r-s,uvZO;(s)] P(+0,s)

e o] [mea(o)/e]
& alodile -sq<s>z/c] r0,8)
Faz <s>/q<s>] [ sals)z/c e“sq(s)”/"] #(+0,0). (i, 83)
Where

/ 3+2va +(w +coc V) )s L "

‘ - (4.8)
§+ Y )s+ vwz o

[c/“vzo(s)] /Q(S) B

\/s3+2\)s +(co +w



e

Now :E(z,t) is given by the 1nversion of(ll- 83) Even with considerable
:7‘1.simplification the inversion of (1& 83) nay be qu.:l.te complicated.. 'I'he
‘process may be illustrated by considering a much simplified case E
'Assuming that the effects of collision da:mping are negligi‘ble, :

R = mv = 0, or V= 0, and

: ) 2 !
B Gv' wc N -
ZO(S)F —(1 ""—é—'—"); v

pro seg

q(s) =s {l + N /(s +w2)]1/,2}

F(T,S) = | F(+O S)
' : r+s/u Z (s)
Then
Bzt) - W‘ (S),] T )
” Nowv.for»béo“ | o '
MZ (<) = €y [.l + /(s + W )]

Ay

g m\/;“' @ i/(ser cozv':)‘

The quantity My € =(l/c2), where ¢ is the velocity of propagetion

~of electromagnetic radiation in vacuum. Therefore

,uZ(s) (1/c>\/1+ Wi/ o 2y

As will be shown., the quantity under the squ.are root sign determines
- the characteristics of p:rijagation of the signal £(+0,t). In sub-
seqxient d,iscussions we shall have occasion todiscuss the radicand

in some detail. It shall be designated as O((s) where
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'QX(S)ré 1eS—  (h86)
We rewrite (h. 85) in terms of of (S), ,

Lx( >sz/cJF<+o s) @.a;y

The inverse transform with respect vto t is given ‘by the inv'ersi’c')n _

‘.F(Z: )“‘e

integral s L
Cpen) L [T, L o =/ ] F(+0,8)ds  (5.88)

2an] _'Y-°Joo :
(< BRe 3

Cénsi(‘ier‘now the evaluai:ion of the contour integral (h.88_)'.

s-#oo, x(s)-1. | Therefore, startingb at 8. = 'r-jéo 1P (t-z/c)

| < o, the contour may 'be closec‘l by an. infinite se.mi-circle to the

right enc1rcling th@n rightwhalf s-plane. S}ince < Be(s) » 1f thereb' |

are no poles of F(+0,s) in the right-half plane, £(z,t) = 0. Thus

“at a point z in tfﬁe me&iumbthe field is zero for t{z/c. Hence |

the veloci“t;y of the wave front cannot ex-:aeed the velocity of light c. ‘
When (t-z/c)) 0, the exponential fac’bor ->00 a8 8500 and. hence the

‘contou,r can be closed only in the negative half plane. 'I.’he singu.- .

larities enclosed include’ poles of F(+0,2) in the left half s-plane

[t-a(s) z/e]

and also the branch points of e K Neglecting damping

We write  (s) in the fprz@

 "(h-89)

" where the'positive' roo’c; oﬁ.ly ié indiéatéd by an'mi;signed‘ radica‘l.ﬁ



. We see that

HJe,

oz
+J w °+0)cv°..

O((s) =oo vvﬁenr .Sf‘

S

" -

(X(s) 0 whens

| The location of the singularities is indicated in Fig. 4.1, whei.-e o

. “the branch points are denoted by |

W
:’t ,‘:tj. o

Figure ’+ 1

Paths of Integra.tion in the s-Plane for Equa.’cion (h 88)



L oiwme

-The double lines connecting a to b Iy a to b represent the branch
"-fcuts Crossing & branch cut 80 that & single branch point is encircled v
" .vresults in 8. change of" sign of the integral This source of’ ambiguity |

is avoidable by devising an integration contour which does not cross S

over the branch cuts 5 and thus branch points are encircled in pairs

with no resultant sign change Along the branch cuts the path of

i the contour may be so arranged that the branches are traversed as :

“ if the function were single-valued ‘I'he details of branch point

_ ]-integration are discussed in detail in Morse and Feshbach (MOR l,
Section h h) As the equivalence of single-valued branches ve use
"‘: a contour ~such as show'n in Fig. ll- l The path of integration for
(h 88), vwhich follows the imaginary axis from 'r-Joo to *f+,100, ,

is closed by an in:finite semicircle to the left It may now be :

o deformed in any manner on. the cut plane without altering the value

of the integral ’ provided onl}r that in the process of defomation

_the contou.r does not. exclude the poles of F(+0,s) or cross either |
| of the branch cuts 'I’h.e path may be shrunk to the form indicated ’
in Fig h 2a, where it is assumed in the discussion of phase velocity

in the present case that f(+0 t) is a sinusoid and hence F(+0,s)

- has a pair of poles on the Jw axis at +,ja) 'I’he contributions

arising from a passage back and forth alo;ng the straight ‘lines connecting
each of the encircling contours cancel each other since there are
no singul‘arities enclosed COnsequently Eq. (lt 88) reduces to fourb

_ integrals about the closed contours Cl, 02, 03, and Ch as shown

in Fig 1& 2'b The integrals around the poles “of. F(+0 s) over contours

(!2 :and (_33 may b,e. evalua-ted at once 'by summing the‘ residues. We may -



- 51 -

‘/—-\dw o
Y l‘l/é C, (1} ¢,
e e
MBS i
, 3 c
b, \II/ T\\__/ ‘3
2t
i a a
/|!\ ) ‘/\\,
a [ f ’ '
g < ACZ ? jc,
b N // : \”
- /“\
> 4 C
i\ 401 A 1
(2) | (v)

Figure 4.2

Final Paths of Integration of Equation (4.88)

represent their contribution as

o o (s)
v flk(z’t’) = __.]_"__ f e ° [t- - z:lli‘(-l~0,s)c1? )
: 4.90
ZKJ Cl+C)+ )
The remaining two integrals around contours (‘J1 and Cl; surrounding

the branch cuts may be represented by

1 s| t-a(s) %
£, (2,%t) = A*‘g\ e [ 1cJF(,O,s)ds
3 | 0 *C

21 3 (k.91)

where ’c.p = z/ ¢, the vacumm propagation time. Physically, the com-

ponents of f(z,t) resulting from integration around ¢, and C,

represent the forced response of the medium to the incident radiation

t) represent the free

at the origin f(+0)'b)‘, The ccmponents f2_3(2:

or transient response of the charges of the medium at the natural

frequencies coo and W,
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It is shown in the Appendix that the solution for the positive

traveling wave is of the form

‘ o W
£(z,t) =f'__q_{‘sin w(t- 1+—2
R 2 mi+w2 . )
-2 ' 3 2,2 2
ot w (-t ) wts  [Wit2-3)(t-t )
+_ 9 {coswo(t-tp)[_- cr,_° P CPZ( °P 2
2 2 .2
w~-wb 2 16u% - 1920 | ,2.tp
. 3(t~tp))
2t
P
8.4 bk 22 3
'+w ctp . (wotp 15wotp(t tp)
b\ n
381_%00 l+8"t‘g:p
, 2.2 2
- (28agTs) (8-ty)
. —
l6t?
2.2
S )]
2
P
A oo 6.3 - 2
w Wt 30 (t-t_)
+ sinwo(tutp) c._..c? ( ° P
16«% 192«% 2!

+

2

2.2
£441) (t-t
+(3“b o ) ( p) 3 )
20t ¢ . 2wt
op ()

Y
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B4 or 3 3ie ity (re)d
o‘)ctp - (&)’otpfls af)ot‘;p) .(tf'tp) ‘
A -

384“ Y
o. TP

(Tgtpfas oghy) (Etg)™

1683

, (8iraBge1s) (-t
2.

16t°
D

(8w§tp+l5)
oo
°op BN » o
+] R 8
The first term is the steady state and the ’suceeeding terms are those
of the tra.nsient It may ‘be noted that all ‘but the first tra.nsient '

term contains a factor of (twt ). U:p to the time it tekes the wave ] f
to. pmpagate 8 distance z in vacuum, the field is Zero. At' time t=% v’ '
the reﬁponse is still zero to the flrst order in tp as it can be

- geen by using the small angle approxmation on the stea&y s’cate term
and by expanding ‘the radical. Thu.s for tme slightly greater than

S,
o’

sin co[t— \fl+ (mz)/(co -© ) % ] & a)Ecu ﬁ+ (o /(ro2 coz) t]
2 N

,\,w(t-t)+(wa)t)/2(w )

which, combinea with the first tmnsient term yielas

P
Bt '<<' %,
Y

fz,t) ~ (Eo/a)w(t~t ), | t=t +8tp
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Thus for a very small initial instant after the wave Wﬁuld.have reached
the point z in vacuum, the response in the medium grows lineafiy from
Zero. Qﬁantitative discussion of the tramsient in subsequent instants
depenas upon thé plasma freémeneies &)c ant Coo and the distance z and
is Dbetter indicated by an asymptotic form of the séries solution
below. |

After decay of the transient the steady state response prevails.

The phase velocity may be derived as was done irevi@usly, and is

(4.93)

W

w

o
Thé complex nature of the wave transient after t = t_ cannot
be visualized frem the solution given in (h.92), but by the use of
asymptotiec relati@ns and approximation ﬁeéhﬁiques it is réssiblé
to determine certain characteristic features of the vespouse.
| For very sméll valﬁes of time in excéss ef the.vacﬁum ﬁyopagation
time tp’ *éie may apply thé‘ ‘iﬁitial vé.lue theorem (see the .Appe;n&ix)

to obtain as the response in the instants of time for which t is

slightly great@r_than tP,

' e W2
E@w 2(t tp

s ;_ 2y (4 o\ . ol
Lin £ 12,) - - 5, [\/m@-up(t tp)} (hoh)
2 \wgty ’

Where Jl is the first order Bessel

funetion of the first kind. A
plot of Eq. (4.94) is presented in the Appendix in Fig. A.2. It
can be séen from this that the response is & growing @écillatioﬁ.

The spacing of the zercs is that of the first order Bessel functien
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having an increasingfargﬁment givenriﬁ (4.94). Thé dscillatiéns
decréaéeiin‘frequency with‘time‘at this particular epbch of the
. ‘rESPQnse« The frequency approaches -the efitical fréquencyiof'the |
'glectrons.; The response given ih (h.9h) is eventually damped and
16 réplaced by that of succee&ing‘epochs which will be described
; beibw.? This first paft'ofvthe response which arrives with velocity
of light is called tﬁe'fifst forerunner or precurébr of the signal
(BRI 2). | o
For the regponse for timeé much in excess of the vacuuﬁ Prop~
agatioﬁ time, it is necessary to consi&er &étails of integration ’
of the contour integral using approximate methods. We note that
the exponential kermel of (4.88) has the form

' st (t/t - (s))
K(s,tp,t/tp) —e P P

In general o (s) is complex and therefore the exponent has both real

and imeginary parts which vary with s,t and'tp~ If the realvpart

is zero, we may use the approximate method known as the method of
stationary phgse (BRT 2). If both real and imaginary parts are
present,as in our case, the method of sueépest descents may be
employed (MOR 1} 

The oscillations of the integrand due to the imaginary art
of the exponent of the kermel cause the algebraic sign‘and‘magnitudé
of the integrand to fluctuate as'the,path of 1n£egration is traversed
in the s-plane. For a given absolute value of the kernel, tﬁe con-
vergence:of the integral is affected adversely by oscillations in
sign. However the oscillations are a functidn of the contour of

integration. . Since the contour may,be chosen anywhere to the right
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of the real part of the exponent of the kernel, there is the possibility
that the integral may be made to converge rapidly to the greatest pert
of its value in a relatively short path. The value of the integral
determined’on such a2 path would then be itaken as the appr@ximafe
value of the imbegral. If necessary dr feasible the yath of inte-
gration mey be cloged in a #i@inity'where the abselute value of the
kernel is very small, relaﬁively speaking, and where oécillations
- due %0 ﬁravezsiﬁg the remaiming’part of the contour thus have small
effect. |

It is apparent that the best path to choose is ome where the
rate 6f@chamge wi%h regpect to pathvlength‘is maximm and at the
vsame timé_@s@illaﬁi@hs of the kérnel aré minimized or held te a
mipimmm over this]p@fti©m'©f the path. Fr@m:thé theory of fumcti@ns
ef a @Qm@lex variabie?an éﬁalytic fﬁn@ti@n @ésS@sses neither true
mexima or minime but instead, exbibits minimax or sa@dl@@oints.‘ At
. these pointe, dme to the orthogomal charmcter of the réai énﬂ’imaginary
parts of the &ﬁalytic fun@ﬁién; ‘L,he lines »al@ﬁg which the function
changes at s maximum r@t@ are also linmes along which the rate of
ehange of phas@Langle'is 28X aﬁa‘hen@@ ar@'lin@s of consgtant phase.
It is ﬁhmé‘possiﬁle o use a 1in@v@f maximmm @@é@ent as the desired
tath @f_inﬁegr&ti@ﬁe Whér@as s line @f'maximum ascent connects th@
high p@iﬁts of theAfmﬁeﬁiém, such as p@leé, a line of maximwm.deéc@nt‘
connects the low p@inté or valleys of the function. These limes
cross orthogenally at saadle?@imtg. Binee the origimal integral
is presumed comvergent, the paﬁh along the ridge lin@, or line of
m&ximum agseent ceuses the imt@gral t5 beceme infinite at tﬁe poles

and thes camnot be the reguired s

th. The path of imt@graﬁi@n thus



B leads from one valley region of negatlvely infinite values for thev

cqmplex exponent to another valley region of negatively 1nfinitev

‘values,‘see Fig . 3.

Line of o
Steepest Descent - Level.

Figure 4.3

Contour Plot of the Exponent of the Kernel K(s,tp,t/tp)

If in Fig L, 3, curve ab represents the line of ascent along which
the real part of the exponent increeses fram the saddlepoint es
fest as possible, and curve cd represents the line of steepest descent
along which the exponent decreases from the saddlepoint at maximum
rate, then curve ed is the desired path of integration. |

We shall now derive a general formula for the first term in
the asymptotic expansion for £ (z,t). Let the contour integral be

fepwesented‘by'
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" o twls) '
£(z,t) = {(1/2n3) | e P F(+0, 8 )ds (4.95)
¢
In the neighborhood of the saddlepoint at s = 5, We may represent
the exponent of the exponential kernel w(s) by a Taylor's series
w(s) = wls ) + (s-8 )w’(s )+ (172!) (s-s )g'w” s ) +...
v o’ o 0 o e}
Since we are at a saddlepoint of w(s), w’'( so) = 0. Therefore
' 2 _1n
- 4 -
w(e) = w(e ) + (1/2¢) (§ s )" w (s )+

The approxiwation for the integral becomes

| N2t g
(l/erj)fdetP [W(se) + (s-’so)v Wl’;,\so)/z.]

1

£{z,t) F(+0,s)ds

[}

: At (e Y2 17 )8
(etPW(s°>/2ﬁj)fdetp(s so) v <s®>/2 F(+0,8)ds

where the path is taken in the direction of +he original contour,
say from ¢ to 4. Now w(s) tekes on large negative values at the

extremities of the path of steepést descent, so that the quantity
2 _te | ¢ .
[(s=so) W (so)] /2! < 0.
Furthermore as either tp or t in the exponent takes on large values
the exponent becomes & larger negative number and the convergence

of the integral on the path of steepest descent is even more pro-

nounced. If the path is smffie,i‘en’@ly short due to the effect of

these factors on the convergence, then F(+0,8) is relatively constant

and may be factored outside of the integrai.v We therefore write

the integral in the form
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. ' _ 2,
- t_w(s ) a -t 8“2
ry
f(z,0) = (V10" (sl «® /) e P 1 as,
_ : c
where '
2 - 2 Iy V
§° = |(s-so) W (sO)L
and
’
as = J\/ |w (so)i ds
For sufficiently large tp or t, the integrand will effectively

become zero outside the‘fange in which the Taylor's series,forvv(s)

is valia. We may then replace the contour integral by a real integral
over the rﬁnge - to +o. The direction of integration on the path
is chosen to'be'éonsistent with the direction of the original contour.

For these conditions the approximate value of the integral is then

o ' tyls,) |
£(z,t) = \/,w”(so)/Zﬁtpl [e p" %o F(+O,so)] /2 (4.96)

We note that in this method the vhase of £(s) on the path of inte-

gration is taken to be the phase of f(so).

In order to obtain the rest of the terms of the asymptotic
expension, we shall use a different expansion than that of (4.9%)

(MOR 1). Let
£(s) = (s ) -£°. (%.97)
Since the phase of f{s) is that of f(so), then £ is resl. The

integral now becomes

» 2
(z,%) = [etPf( o)/zgj]fcetl’g F(+0,s) (ds/d§) 4§ |
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f(z,t) = F(+Os)e »°/2 f (d/d%)dg
2t - | ] j (1.98)
We now compute ds/d% by inverting the power series for £(s), (MOR 1),
0
(as/aw) = Zo a 5% (4.99)
. m=
Where
= (1/n!) (a%as™) [ (s-s)/e(s)]™™  (&.100)
and
m .
£-als) = 2 (e /u) (s-s)"  (ha0L)
n-=

We may now investigate the response of the medium after the

instant of arrival of the first part of the wave transient at t = tp

as given in (4.9%). From (4.80) we have the square of the complex

refractive imdex function
o “(s) = 1 +0Z [1/(s% w?)]

with singularities located in the complex plane as shown in Fig.
L.2. The factor w{s) of the expoment of the exponential kernel
ig of the form

w(s) = s [/t~ a(s)] (%.202)

We now investigate w(s) for the location of saddlepoints, that is
where dw(s)/ds = 0. Taking derivatives,

[aw(s)/as] = t/’cp— o(s) -s [aot(s)/as]  (k.103)

Eazw(s)-/dsz} = = [doc(s)/dls;] -5 [dzo((s)/dsg] (,10k)

For o (8) as given above



Cle-

 aale)as = - §eod) [(B0DY? (BobedY2]} @aos)

[351529 ((o +co )’ 2(co + @ )] |

R
Y ) o((s)/ds = — (LL 106)
B T )7/2‘ ( +coz+coz)1/2
o FOr exact determination of the location of the saddlepoints, Eq
| ‘(1; 102) may be substituted into Eq_. (4. 100) and the roots located c

as t/t var.ies However it is readily perceived that the resulting

valge'braic equation is of fourth degree, and in general the roots
B are all complex This projected task is therefore not a light one,
| and is one 'best accomplished with c;omputational facilities This :
E approach is not the one employed here, since there are other more ’
s1mple methods which may 'be employed to trace the loci of the saddle-

_points as a function of t/t .

It is possi'ble to solve the eqtnvalent of the su'b,ject alge‘braie “
equation by a com'bination of cmnputational and graphical techniques
vi’.[’here is still a substantial amcu.nt of labor required. in this |
procedure, ‘but it has the feature not afforded by the - pure compu-'

- tational method that the topology and the motion oi‘ the saddlepoints
is more easily visualized This method first requires a plot of
"the contours of the real and imaginary parts of (4 (s) on the complex .

_‘ plane Gosmputational and crossplotting techniques are employed

o ‘_for this step. A plot results su,eh as given in Fig. 1+ L,

' (1+ 101) is now employed to compute the real part of w(s) for a
" chosen value of t/t . The contcmr Plot made as a result of this s
o step resembles Fig h 3 in the neigh'borhood of the saddlepoint,

While this :method does enhance the understanding of the motion of
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] 6‘3 B .
the saddlepoints, band. like thé compatational method yields feéi;lté'
. ‘which may bé ma‘dé ar'bitrarily more accurate, it is. still qﬁité
'lengthy compared to 'l:he following more. approximate method |

It is learned through experience w:l.th the plots of the gra.phical
method just described that the lo,cations of the saddlepoin’qsv for
which there is the greatest _change in contour vv‘alubé‘sv are those
closest 'bo':the' ,singulari-ties of o (s). This iinnediaﬁely" suggests
an ap'proximaﬁe method since only factors associated with the singu-
larity of a function of a cOmplex‘ variasble change rapidly in neigh- A
bdrhoodﬂ of fche singﬂarity.‘ The motion of‘ 8 saddiepoint near &
singularity may then be traced by Stﬁdying the behavior of an,i’ncré—v
ment in s for the coné.itivon‘ that the first deriirative rust be zero.
This procedure will ‘n,ow be applied to the problem at hand |

~ We have | | | | |

o((s) - [1 w2/ (s +co2)] 1/

- [0 +m2) / (s%4w )] 1/2

with singularities loca‘bed. at 8 =+ j((«)»é**‘l)i)l/z

_a:.t:d's =+ ,jwo,f
Near s = + jcoo’,o((s) is an even f‘u.rictiornbof‘ s. Because of this
symsetry we shall deal only with the upper half rlane in this
discussi;)n,, let ‘ | o

é, = ‘re’je ‘ [ | (4.107)
| hen | |
o(s) = [1 +u)/ (rze'jze (02)]1/2

Now for r very small we: have

u( ) = @ +a>%2>1/2,
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and then -
v(‘s») = s [t/tp -0&(3)]

. : 2,..2yl/2

= s [/, ~(rag/0 Q]
so that

e Tt f1en2. 2912

avfas = [/t -(10’/0 ) /4],

fT)J’e havé then that a saddlepoint or inf,leeﬁi,on pqint for which

2)1/2‘

dw(s)/ds = O is located at ‘c./'t-:.:p = (1+ Co:?/(oo Since d.z'ge'/ds2 = 0,

this is an inflection point rather‘thaﬁ a. saddl‘epoint,. Therefore
this bpoin"b does not locate the summit across which the path of inte-
gration must pass.. o |

Ve next»_consié.’er r guite large and sinee our appmxmation
technique is being employed to reduce algebraic complexity, we

eonsider only the predeminant term for the other extreme for which

rzejze ))coi » 8o that

*(s) = (l+&)2/rge‘jge)l/2.
We now consider two cases, first the case for which |co2 | 7 \rz 326}
Then ,
x(s) & w r e "I
and
w(s) = rel? (t/t ®, rle” j6)
- (t/s.) ze® -
go that

= (t/ty) e 99 ar + g(t/t yre 98 ao
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For a sé.ddlépoiﬁt, dw = 0, so that
(#/t) e P(axrja0) =0
vhich yiéldé ﬁhe condifions, | ,
| , dr/r = -je
or
r = Ce -36
‘axvld -
| 6 = +J°, Since.t/tp =
ihe fesult,”r = +oo; is incompatible with the ofiginél premise of
iuo 2\‘>\ zi The indication hdwever that r is alwaysyégitéllgrge,iv
is consistent between cases. In fh; "viciﬁity“kof @, we havé
left the case of ir erei >co " Then |
Y_Ok(s>?§ (1+ @i/rzejze)l/z o
~ 1+ (1/2)0 % "2e79%

Therefore

w(s) reje_‘[ (t/tp) -l-(l 2 w? oF 2o "129}

i

(/1) red? -(1/2)Q§r'le'39v
For avsaddlepoint, dw = O, hence
[(t/t 1) 94 w2292 /2) arer [(e/%,-1) % w22 9%/2] a6 = 0
from which we obtain the condltions | | |
dr/r =~ja6
or

breje =8=20C
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where € is a constant independent of r and 8, and

2,920

it

2t te Ay 2
we/Z(t/tp-l) = s“.
The final form for s is

s

f

v [\ Befig1) NCRE)

vhere the positive root is chosen consistent with the diréction

of the contour of integration. We note from this, that for t/tp =1,

the saddlepointe are located at +o0 on the real axis. Sinee our
solution given in (4.9%4) is exact for this ’case, it is not necessary
to obtain an approximste solution by the saddlepoint métboé!}.

From (4.108) it is indicated that the location of the saddle-
points approach- zero as t/ tp-a-oé . This result is due to the incomplete

nature of our approximation since we are comsidering the effect of

only one singu.larity at a time. We next assume 8 = Jjw ° + reJe,

and since ol(s) is an even fanction of s we need only to consider

only the upper half Plane. We have then

A (s) = (1+w?/r2eI20)t/2

This result is identical to the preceding case, so that we may
conclude that saddiepoints significant for operating freguencies

neay jcoo are on the real axis between + oo and 0.

8

We now let s = jlow 2+Q)§)1/ 2. reJ o locate the approximate path

of saddlepoints near this singularity. We have

' » ‘ ‘o 26 - 1
jz(a)§+a)§)l/2 re 39 4 rgegze /2

ok (s) = | T EETS
. 2929 4320 o i-i- wi)l/zre‘]e-v wi
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First consider the caiée”foiﬁ which 1;‘((«)_?&)2)]‘/ 2reje] >lr 329
o« (8) = 1/'[ 1;(5'00 /2) (@ + o i)-l/ar'leiéﬁ] 1/2
end therefai'e; - - ‘ | _
w = [j(w mg)l/ rejej[t/t F(w%z)e—ssr/h Yz 300210 ]
or o |

e oDV o R )

’.Eaking the é.erivatlve and solvng y:.elé.s the req;airement that r
be infinite, which is in con'bmé,iction to the hypothesis for this
!

case. We are thus led to considering a caseA;E‘or which r may be
large. Allowing such a condition Tesults ia obtaining the func-
tienal varlatwn f@r r. Let o _v

lg(w +oo2)l/2re‘w| < l 2o928) .
Then

a(s) [ 2,320 aéjzé_¢§)] 1/2

= [€1/2- wzr"ge‘jzejl/ 2

 Now reguire that
‘wzr‘zeﬂjzel > 1.
c ) |
We have
K (s) = jwcr"le"*je |
and '

w = /) @ +wg)1/2 o (@ +w2)1/2 1439 re'je(t/t ) -3,
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Then'fo_r &' saddlepoint, aw = 0 and
-0 (@ +w2)l/2 2436, (17, )eje] (ar+jrao) =
) which y‘lelé.s the result |
s = 1/2 -+c03)1/2/l/?b‘/;‘7+ e +({)2)1/2: — 1.9)

as the loca.tim"i of the:‘prédemiﬁant sadlepcin’c." Finally consider
the case for which |
: ‘Oozr'z_‘eagzel <1.-
We have . '
o(s) & 1+ wz 23 529/2
wa [aoio?) 2y, ‘je][ tf/6,1-wlir 2 0 ]
Frmn dw = 0, we have the cenirbion

(t/t -1) 3 J36 +(Co /2) red +jw (a) + © )3‘/2 0.

For reJ9 very large ’che ar@xima’ce roe’cé of +this equation are

si red® [w (c,) ,,0)2)1/2/“/1; 1)] 1/3 5,;/6

1 =[002(Q) +w2)1/2/(‘b/'b 1)] 1/3 jﬁ/z
and '

- 0% +coa)l/ 2/(’c/’c -1)] M3e35/8

Only 'bhe sec@né. of these loeati@ns is al@ng the positive imaginary
axis and hence will centri'bu'be most to the resnse

We ma.y zww srize our observati@ns conceming the loca.tien
of the saepoints When the eperating frequency is. m the vieinity

of the origin or '_ne‘ar or less than g = J @ the location of the
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: saddlepoint is glven by

N

"va-b ""00/\/2(1;/1; ]_) - | - ’,(’-FJ.F].O)

- When the operating frequency is near s = j(&) +Q)2)l/2, the location

1‘r_of the saddlepoints 1s given by

s =(w l/z(w +w2)l/”/ \f—/t )+ J(w +a>?‘)1/z (an)

Then when the operatlng frequency is beyond s = J(GJ +(02)l/2

‘Athe 1ocation of the saddlepoint is given approximately by

mw o )1/? . [wz(w +w2)1/2/(t/t 1>] /3}4112)

We shall now discuss the characteristics of the transient
response of the medlum in terms of the motion of the saddlepoints
and the frequency ‘range. From (h 93) the first term of the asymp-'r
totic expansion for the response is given by o |
| t_w(s )

: f(z,t) Szf”(s )I /Znt F(+o,‘s Je P '93/2’. |

or N -
£(2,%) = Als e P ° [t/ ‘p é((vso)]

'We note that

o - IR v B
A(s) = Vv r(so) I_/zntp F(+0, s,)/2
- is an amplitnde factor.dependent upon time throughvthe loCation of |

the saddlepoint A From the discussion above there are three -

frequency ranges in which the ap@arent motion of the saddlepoints .

' differ somewhat with respect to t/t In general each frequency

o

range sees the saddlepoint in the same proper direction but due to

the nature of_the approximations used for discussing the 1ocation,-
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of the saddlepoints ; the exact locations and weighting are not eciual,
For the range 0 <w w, the saddlepoint starts in from + ® at
t./‘bp = 1 and approaches 0 as t/tp-?oo . Then (4.108) takes the

form

o[ 'b/tl;,o((sé)] /’\/-2(t/fcpa-1) ,

f(z,’c) A(s Je

which for t/t ¥> 1 becomes

RS c[ﬁﬁ” o«(s)\ft’,f/?lff‘“

(z,t) = A(s

4.5 The Signal and Group Velocities

It will be recallea from (4. 94} that at t/t = 1, the response

begins with a very small high frequency oscillation and grows

steadily in emplitude with a decrease im freguency. As _’c/ t’P

becomes larger,. the respenée given by (k.113) grows és a siwmple
exponential since the exponent is real. If there had been damping
inczludeé. in the cmn:plex refvactive index funetion, the initial
oscillatory respo;ase would begin to be éamped at this p@i,zlnt.‘ The
re‘maining part of the reénﬁse is giveﬁ‘ by aﬁ‘é.'iﬁienalf terms im the
asymptotoc expansion of (%.99). While mathematical evaluation

of the inversion of the power series given m (4. 99) is- quite
involved, a good umlerstanﬁmg of the overall :result mey 'be obtained
by ref‘_gmng to Flgo k.5 showing contours of w(s) on ’che complex

- plané.‘ Sincé at the poles of z(s), w(s) beeomes +o0, the lines

| of steepest descent pass from one :pole of Of° (s) s over the sadd.lee-
m‘b to the @ther mle, Gn Fig. L, 5 we see 'that as the saddlepoint

noves mward toward the origin with imreasing 1:/ tp, the integratien
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path along the line of steepest descent is brought closer to the

imaginary axis. ‘Therefore as the path comes into proximity _wi‘bh _

ﬁ 3

ey

» ja) A
Operating
Frequency ~4 , - L

Jo \/ Seddlepoint.

Motion of Sadd.lepoint with
Increas:.ng Time ‘ .

Figure b, 5

Relation of In’cegratlon Path to Signal Veloc:Lty

the operé.ting frequency jw ,: a ‘term begihs to a.p?ea:f in bthek‘ feéponse
having the frequency of the s-ighal or operati‘ng‘ fr'equen‘éy. The |
growth of the sié;nal is ¢quite ra;pid as 'ﬁhe contour approacheé the -
ox_'igin in the limit, as can be determined by thé dependence of the
saddlepoint lmation upon the time t. At a particular time the o
sign‘al‘ has grown to an arbltrary fraction of final value. This

is the arrivel time t_. The distance z and the arrival time may
be related by & velocity called the signal velocity vy, for which '

an expression may be obtained as follows. The function w(s)
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is defined by
w(s) = tps Et/ti; 0((3;)]
The condition for a saddlepoint is
dw(s)/ds = t [t/tpwo((s) -sdof (s)/as] =0

or since t = zfe,

2/t = ¢f [ (s) + sact(s)/as ]
How the actual velocity of propagation of the signal to the point

z“is z/t. If at a time t_ the signal has attained detectable pro-

portions and is considered to have arrived, we may define the

associated veloci‘by as the signal velocity \A

vy = z/ts = a/[(x»(ﬁs) T sax(s)/ﬁSJs . {%.11%)
_ g

where 8y is the position of the saddlepoint at "bime_ ts.' The guantity

c/"_s doc(s)/ds] is known as the group ve;écity l(BOR 1, Sectioﬁ 1.3),
and was discussed earlier. It is aﬁparent'fr@m (4.114) that, c’ilepe:crir;==
ding upon the relative sizes of ot(s), doee(s)/ds, and the detecting
level for the" signal, the signal velocity may be significantly
aifferen’c from the group veloeity.

Our discussion of the effects of saddlepoint motion upon A

may now be carriéﬁ out for each freuémy range using the equations
for the path of the saddlepoints derived above. The general 'effee;b
in each range may be compubed with no &iffezjence in technigue from
that given above. We have established ‘ﬁhe key result that there
may be a significant difference between the velocity with which a
signal is prog)agaﬁed and the group veloecity. Thi‘s‘ effect »varies

with the operating freguency relative to the critical freguencies.
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Figure 4.6 presents a plot (BRI 2) shovrizig variation of these three
ty'_pes of veloci"cy with epera‘l;ing --fre@iemy - The -r'ela‘bive ordinates -
of 'bhe actual curves vary in e given ehoice of eritleal frequ.eracies 5
&eteetien level, and form of o( (s) , which itself de‘pends (at least
in determizaa’eien ef the lecat.im of the zer@s) upon ‘che prepagati@n
iﬂpde. Gexaeral features con te the curves are ne‘becl In ;part:.c-— .
wlar the gremg veleeity is eqwl to either the thase or _signal,lv
velocity at their ::‘espec:‘tlve maxim

‘I‘he basis for the eem}aensati@n method pr@posed ‘by Herris (HAR l)

is now eva.dent. For frequencles much above the erl'tical frequency,

Retio of Veloeity of
'Light to Signal, Group,
~or Phase Velocity

Figure 4.6

Relations Betwe@n Sil Gr@mp and Phase Vel@city

in a Bispersive Medium (BRI 2)

Ay
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the group velociy is very nearly equal to the signal velocity, and
in addition, is approximately as much less than the veloeity of
light as the phase velocity is greater. We note that this relation
does not exist at freguencies near the critical frequency. However
if two or more propagation links may be used, many other schemes
are apparent, such as using other weights than simple averaging
of group and phase velocity. Propagation velocities at other
freguencies may also be ccmbinéd.with'éertain weights to effeet
coﬁpensation’for dispersion. However effects not studied here,
such as the averaging of signals received over slightly_different
paths by the aperture of an antenné, adds variations which require
a trans%erse dimension for their specification and analysis.
Referring to (4.85% complete discussion of the velocity effects
including collision damping requires discussion df thevsingularities

s t+a(s)t ‘ s t-gs)t :
of e P p(+0,8), e P F(+0,s), etc. The task

becomes much more formidable than the previous=case because (4.84)
and the defining relation for q(s), (4.822) contain a ;ubic factor
which can only be studied numerieally. The discriminant of the
cubic factor in (4.82) and (4.84) i3 not a perfect square. Thus
factors of the cubic eqaétion can not be iﬁdicatéd (DIC 1) in a

way that expedites a general discussion of the saddlepoints for any
of the exponential kermels involving q(s). It would appear that

a numerical integratiom would be the most expedient means for studying
solutions of (4.85). In general there are more saddlepoints than

in the previous case. The contribution of the iﬁtegration over each
saddlepoint mist be summed. At some operating freqaéneies the tran-

sient is more complex than indicaﬁed above, there being additional
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predominant parts in the transient as the saddlepoints approach
‘the criticai frequencies of the exponential kernel.

We shall now conSidef brieflyvthe nature of propagation in
the troposphere in which the resonances of poiar and nonpolar mole-

" cules determine the eritical frequencies.

4.6 Solutions of the Wave Eguation for Diépersive Media--Troposphere
As discussed in Chap. 3, we consider the tropospheric mediuﬁ

to consist only of nonconducting nonpolar and polar molecules.

Maxwell's general current density equation including polarization

effects is |

VxH-= aﬁ/at+§+"ip » (4.115)

where 1 is the current density due to conduction processes in the

nedium an&'fp is the displacement current density which accounts

for polarization. The'polarization'? is a chafge density due to
the shift of charges and reorientation of molecules in the medium.
The displacement current density is then (SIA 1, Section 170),
3= 30 | (4.116)
Since the medium is assumed noncondﬁcting, 1= 0, and Maxwell's
current density equation becdnes
yxE= ab/ot+ d2B/3t
From'(3.80), neglecting collision damping, the polarization is
expressed as a function of the frequency of an applied steady state
. jo

electric wave E = Eoe in the form

o) = o [ /n(020?) + p¥/an1joc)]  (4.117)

This may be converted to the equivalent Laplace transform by the
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substitution 8 = jd, assuming the medium is deveid of waves at

t = +0. Hence
B(s) = T(s)N [ez/m(82+ (oi) + pz/SkT(l+é¢ )] ,

or

s) = [B(e)0/3arc)  (mp®s% 3T Pormp e S 3kme®) /(s+1/n ) (s%al)
(4.118)

The component of Maxwell's equation in rectangular coordinates which
is nonzero for the transverse wave under comsideration is

-2H,/2 2 = ¢, VE /2t + 2B /2% (4.119)

Taking multiple Laplace transform,s with the notation of (k.7) and (4.8)

-x8(r,s) + 6(+0,s) = evéﬁ’(r,S) - ¢ F(r,+0) +SP{(r,s) -Px(r,+0)(’4 )
e v : .120

From (4.118)

Ex(r,s) = @“(r,s)l‘i‘/mfrc'j (mp252+3kT'eezs-kmp2+3kTe2)/(s+1/c ) (32+ wi),
(k.121)

Substituting (4.121) into (4.120) and using the initial conditions
that the medium is at rest, i.e., both F(r,+0) and Px(r,+0) are

zero, we have upon rearranging,

ro(z,2) + » [o Ms(e) /s cY0(r,0) = 6(,0,8) 1€, 2(x,20) + B(w30)

where
o(s) = (mpzsz+3k’rtezs+mp2m§+3k‘l*eg)/(s+l/t ) (s2+w§) (4.122v)
Also from (4.75)

W(r,8) + pselr,s) = F(+0,8) + U G(r,+0) (4.123)

Since r,s £ 0, and G(+0,s), F(r,+0), Px(r‘,+0), F(+0,s), &{r,+0)

may be chosen arbitrarily, the condition for nontrivial solutions

is (assuming M, = 1)
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e(r,s) = ¢ ZM vf(1+Np(s)/3kmrm gv_F(r,s) C(k.12h)
from which we have the ‘bfansfoi‘med boundary condition at. the origin .
a¢(+0,s) = Jev//jv_ JI;Nx(s)/sknﬂff €. F(+0,s) (%.125)

Substituting from (4.122) and (4.125) into (4.74) and solving for

F(r,s), we have

¥(ry5) = ¥(40,5)/ [2+(s/0) | ToNole)/Fonte ¢ |, ']

fram which
~(sz/c) Eiq}(s)/gmmm ’
¥(z,8) = e F(+O 8)..
Thérefdrev
| YHioo s [t d(s)t] o |
f(z,‘b) = (l/ZnJ)j e P p(+o0, s) ds, ')KRe s
r-joo - | (h 126)

wheyre for tropospheric electron and polar resonances,

% (s) = \[i*ND(S)/3ka’F€;V | - - » o ,(4-12?)-

with p(s) defined in (4.122b).
The inversion integral (4.126) may be approximated by integrating

over the saddlepoints of the exponent of the kernel exp s [t— o t(s)tp] .

A (s) ii:s smnéwhat niore complex than thé example given eavrlier for
the ionospherenb | |
For the radio freguency portion ‘of the electromagnetic spectrum,
the resonances of the trqpospheric refractive anomalies are d.ue
principally “t;ob the presence of water vapor and oxygeh. ’I‘heb resonance
bands of water vapor and oxygen are located approximately at 22.5
"KM cps and 60 kM cps respectively (USA 1, BUR 1). These are not.
the electron resonance phenomena defined by the coefficients of the

frequency-sensitive term p(s) of the polarization discussed above.
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The mvelegagths for the elec’chn displacement resonances usually fall
in the ultraviolet or optical wavelengths. It is ﬁherefdre necessary,
in using an expres‘sien for ]l;('s)‘, to choose a form ama ceeffieiehté
which represent the spectral reglen of imterest The variéus types
of molecular resonance have frequency vamatiens descrlbec’l 'by the
general f@rm of p(s) but the @oeff’iclents must be generaln.zed to
represent the relatlve streng’ah @f the a‘bsorjptien, somewhat in the
fas_hwn lnéilgated in 't;_he dlscmgsn;@n of @uammm effeets at the close
of ’Ghﬁp. 3. |

The radio 'fréq_uency absorption ban@.é @f water vapor and oxygen
were predictéa and, found f@éx:’ist’ _'iﬁ ‘t-ysja.:c'k,I conducted in the ia'st_
twenty yeérs (see references éi‘bed;‘by‘BER 1, p. 51). The 23.5 kM
cps watér vapor absorption is due to a r@tationalb speeﬁral iing' of
relatively small strength havmg ‘s half width of 3000 M ape. _i'F@r a
con;:ent;‘at;ep of 1% water mdlecuies in air (aensitjr Off Tng per
meter3) the peak sbsorption is only 0.17 db per km Wé alse néﬁe
that the relaxati@‘tizﬁe c for water vapor (DEB 1, p. 85) cOrreslﬁmfids

to a cri't:.cal frequency @f about h(?ﬁ kM eps. It can be shown (W l)

that the colllsions couse pressmre broa«ieming of the spectral line
at 23.5 kM c;ps anél aecotmts fr its ShaPEo

For ozqrgen present in nomal ammmts 1n air at 76 cm pressu.re
there are twe a‘bsorption regions in the milljmeter waveleng’ch regien.
Th,e resonance ‘bané‘. at 60 M eps has a half—width of 6“ M cps and a
peak a‘bserptlon of 1% @:b/km The s;pectral line at amaroximately 120
kM cps is much sharper and ‘has a pesk a‘bsarption of a‘beu,’c 3.5 d‘b/km

Me%eorol@gical condi"twm cause sigmfi@an“&; vamation in the shape

and magmtade of the abs@r};tmn. Heavy rainfall (BUR l) causes 4



me

blsharp general absorption rise at all frequencies in the general regionl
above 6 kM cps The absorption in db/km may be increased a hundred »
| fold at 6 KM cps 'by a cloudburst The absorption levels off and
i.even decreases at certain millimeter wave lengths The equivalent -
coefficients for use in the above solutions may 'be o'btained 'by the .
following method | | o -

The ccmr_plex dielectric constant is given as

(1-:]&) a & (u 128)

_where n is the index oi‘ refraction and K is the a'bsorption index

‘In tems of the a'bsorption index, the exponent w(s) may be written, :

w(s) 8 [t-rn(l—:;fc )1-.'1 o (u 129)',",

The absorption data is ’indicated Vforva sinusoid’ of freq;uency_ w.

For s = ,j'cu y

The amplitude of a sinusoid travelling in the medium 1s proportional

_ -wmct o o e ' ' N -Zwrwt: : -
toe p. 1 The intensity is therefore proportional to e -‘_ LA

The attenuation is the ratio of incident to received intensity and thus

db attenuation = lO loglO (Incident power/Received power)

=-2 a)nl-ct
P

lO Zl.oglO

"

| ,Since the index of refraction of air is essentially unity in these "
 weak dispersion 'bands A and -
= z/c

1000/(3 108)

w(u)) b-(»nHtp+ jw(t-nt ) ' ” (’4130)
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tp = (0.33) 10 "2 gec for 1 km -

Kz -(db attenuation/km)/[8.7)(0.33 X 108w
& -(db attemiation/km)/2.9 x'io"% T (k.132)

As an example, for the oxygen a.bsort;i@n ‘band at 60 kM eps,

K lh@QxlOsxéOxlogxzﬂ

~ 13 x 1.@76

The coefficients to be associated with the reél van@..imé.giné,ry ?érts
of w(s) may thus be determined from measured values of the 'refiactive
index an‘i a‘bsorp’cmn at ’che freqmenﬂy of maximum ahs@rption by use
of (le- 1,31) or (h 132) and su'bstltm“bmg far K into (h 129) ”

The range of exaerating frequeneies in the‘ eleetromagnetm :
spec’cmm has 'breadened m'uh developmm’cs in the state ef the art.
For freqaencies under 6@0@ kM cps, ’chere is very 11't’cle effeet upon
tpropagati@m 'hime :Ln the tr@pesphere due ’ce dlspersion¢ However, the
nomaniformity irz. comp@sz,tion nomzally enceunbered due 'bo inhomogenel’cy
of airborne moisture (WHE} l) 5 is sﬁficient to cause effects of some
slgmfma.mge,, Thls is especlally tme if the signal is used for velecity
m_easuremen‘& | Temporal vvamatins in. e‘:?.ensity of the medium causes
‘flmctuati@ns which disbort precise target veloecity measurements. A
varia‘i;ioa in signal propagation time &ireatly affects measurements
of the veloclty of motion of an c¢bject by radar te_chni@ies. We éhall
consider in the last chapter the relation between the izihomgéneity
and "&-emp@zﬂal :f’luctmﬁmns of the mediwm and variatiens in the pr@p-» ’

agation tn.me &m&. signal velmlty
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CHAPTER 5

l?ropagatlon in an Iﬁhomogeneous or Random Medlum

'

In this section, expressions mll be derived for the velocities
of propagation of electromagnetic waves in an inhomogeneous or
random dispersive or nendlspermve medium. While the results are
_ partieu.‘larized ’to the troposthere, the method of analysis can be-
extended to the ionosphere by use of the iono‘s;éherie- refractive*
index function discussed earlier. We shall begin with a -diséuSs‘ian

of the nature of turbulence and its effect upon the medium.

5.1 S"pectral Gharac‘bemstlcs of Tar’buleme

‘1‘he randomness encmmtereél in “bhe tre:posphere 1s a varlatlcn .
in both time and spaﬁn.al goordinates. The general the@ry of statls-
tical turbuleme has been appllecl over the past éecac‘ie to mprove |
the un&erstanalng of eleetremgnetic propagation in a randam medium.
This wqu has been reviewed by Wheelon (mm 1). Results from analysis
of mr'bulence using ebrrélation te@hniques have been applied to |
:@re&lct the sha‘pe of the hlgh frequen@y end ef’ the velocity spectra.

Large amounts of energy at low wave mm‘bers are fed 1n'bo the
amosyheme ‘burbulence processes by mete@rologlcal phenomena The
nanllnear Navier-Stokes equation, the partial differential eqaatlon
for the forces on each zar‘tlcle of gas s ind:.cates that lcw wave
’mmber emergy is 'hransferred tewara ha.gh wave nmbers. Complete
solutlons for the Navier-Stokes equatlon, especmll‘y for turbulent

situations have not been obtained.
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Taylor (TAY 1), von Karman and Howarth (XAR 1), Kolmogorov
(KoL 1), Obuksov (0BU 1), and Batchelor (BAT 1) have discussed
specti‘al eoneepts of turbulent velocities. Wheelon (WHE 2) has
related velocity distributions to distributions of a ‘Passive additive,
such ae preesﬁre er ‘humidity, which may have a direet comﬁection to
refractive index variations for the tropesphere. By use of the
eqﬁation of centinuity of fluid dynamics and the dimensional _enalyses
of statistical turbulence theory, he derives spectral formulations
for the dielectric conetant in the tropoepﬁere. _ |

The literature of statistical turbulence theory is growing
rapidly and there are many differences in the approaches to be
found in the literature. An assumption often made is that the fluid
is incompressible. The simplication resulting from this assxunption
- is considersble and appears to be essential to dimensional analysis
applied to the shor'ber wavelength end of the spectrum. At the large
scale wa.velengths at whi‘eh energy is derived from solar heating cycles
and Gorioli; forces, density differences must be '_asSumeél (com 1, o
Chap. 2b, Part 3) ,v and the analysis of the spectral form for these
wavelengths is ineomplete. It is indicated below that for processes
of small seale in which the domiﬁant forces are agsociated with‘
.motions along sf:g'ee:mlines s the assumption of ir_xcompressvibilify is
quite valid. . '

We shall now consider the general equations of :motion of fluids.
In ?erticular we are bintere.sted in indi'cating hc:} energy introduced
at low vavenumbers is ehanged into energy at high’wavenumbersv . S8ince
the wavelengths at the ha.gh wave nuniber end of the spectrum are

eemnensurate with distances and Wavelengths in rsdio fre@ency commn-
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-ication, it will be of interest to examine ‘the : physical orlgin of the
inhamogeneous structure of the troposphere

-The equation of motion for fluids is the Navier-Stokes eqnation
A discussion of the derivation of this equation 1is found in practi- o
cally any text or treatment of general fluid mechanics (see, for |
example, 'BIR l) This equation and the equation of continuity bear
certain common features which may be interpreted by concepts of spectral
analysis‘to explain;why the low weve number kinetic energy of the
fgeneral drift or bulk motion of a body of gas isiconverted to high
wave number energy even in the absence of tufbulence. | |

' The equation of motion is applied in'statistical turbulence

theory to obtain relations involving.correlations and spectra of
gas velocity or mamentum distributions. The eqpation of continuity
connects derivatives of the gas density and velocity and, as- mentioned,
has been applied by Wheelon (WHE 2) to relate the spatial spectra of
‘the materialfdenslty in the medium to the input of conVectlve energy
using the results of the dimensional analysis.of velocity spectra,_;we
-shall briefly examine the nonlinear terms of these equations and
discuss the physical processes involved from spectral concepts. The
derivations below follow the very lucid presentation of Bird, et al
(BIR 1).

The equation of continuity expresses the mass balance over the

stationary volume element AX Ay Az through which the fluid is

flowing. The mass balance may‘be expressed as

rate of mass rate of I rate of E
_accumulation| = | entering} - |exit of| . - (s5.1)
of mass ‘ | mase :

_ The left-hand side involves the time rate of change of the density
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E times umt 4volu1vne a‘t‘av,f fi#ed poi'nt-‘ir.d space, that is :’c,.y',zv = ‘constant.
Therefoié'; N ,‘ o '»,i B e o | :_

o [;ztmgagg] AxAyAz ?-’3 BN
: where P is the density of the fluid Th.e right hand ménbérv,‘can 'be
xpressed. in terms of the negative of the divergence of the product ‘

ipv vhere ¥ is the velocity of the fluid. in the infinitesimal element
:vofvvolums. Thus‘- )k 1 » | ' - v: : .

C\xﬂyﬂz bt == [V (pV)J Axawz o (543)
. Dividing this equation by Ax AyAz and ta.king the l.tmit as the “

, d.:Lmensions of the volume approaches zero, we have

at» bxlovx ayP +-——sz, R v(-s Y

"the4'eq_u.e.tidn of C6ntinuity. Performing the :lndicated differentiation

" and, collecting'all'derivétives of o on the left side:

- V. IV, v -
" p gl Ip . + v 3/°+ v, 2L - ..P(-—x-i- E_I,._ 23""3) .  (5-5)
'bt x T3y ‘zbz' ox 'by X ~ '

~The left side 1s the "substantial” derivative (BIR 1) of density and
expresses the time rate of change of de_nsity at & point moving. with
* the fluid. We may rewrite this result as

DA, . o(9-3) » | .6
i ,o(9-¥) | | (5.6)

. where the ‘capi“tal D déndtes the siz‘bstaﬁtial' derivative. For an
v:incmnpressi‘ble fluid, the density is constant end the latter relation
yields ﬁhe following equafion for that cgndition
| o | (v'¥) =0 .
This result enablee cohsidera‘ble simplification in d‘.is'c‘us.sibn of ‘tllxg

 equation of motion. Since this condition is valid if o remains
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constant as the fluid element moves along a streamline for which
Dp /dt = 0, it is equivalent to requiring that diffusion effects
are nil and that mixing caﬁ be ‘neglected. This Econdition is only
paftly met in the turbulence processes of the lower atmosphere. The
useful results of Batchelor's prediction of the form of the spatial
spectra (BAT 1) depend on this assumption.

The equation of motion is written from a momentum balance for

the unit volume Ax Ay & z. Thus

rate of rate of rate of sum of
momentum = | momentum | - |momentum | + | forces acting
accumulation in out on system (5.7)

Momentum flows in and out of the volume element by two mechanisms,
convection, or bulk fluid flow, and molecular transfer by velocity
gradients (pressure and viscosity effects). Considering the x-component
of the equation of motion, the rate at which momentum enters the face

at x by convection is PV I'x Ay A z and the rate at which it

leaves at x + A x is pv_ v Ay Ax. The rate at which it
PV% % Y

x+ 4N X

enters at y is /ovyvxl ¥ Ax A z, etc. Inclu&iﬁg the terms for all

gix faces of a unit cube at x,¥y,z, we have the x-component of convective

momentum flow into the volume element 1s
Ay AZ(/Wr«:vzs: l xﬂpvxvx ‘ Jt:!-ﬂx) + 4 RAZ(PV:VVX ‘ym}ovyvx ‘yﬁ\y‘)
+ Axﬁy(pvzvx lz—/ovzvx ' Z‘*‘AZ) (5.8)
The forces due to molecular trausport (not just viscosity) are as
follows. The shear stress exerted in the x-direction on a fluid surface

having coordinate y +A v by the fluid along the surface having the '

coordinate y is designated as T - for fluid having a velocity camponent
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VX- By the definition of the coefficient of viscosity, the shearing

stress {defined as the force in the direction of the relative velocity
divided by the area normal to the velocity gradient) is pro'porti'oxaalr
to the negative of the local velocity gradient, that is

v,

X
Tyx = My = (5.9)
RAS Vo ay ,
where M is the coefficient of viscosity. We note that the force
Tyxhx b 2 is in the + x direction. Then the rate at which the x-

component of momentum enbers the face at x by molecular transport is

T lx 4 yA < ?.nd the rate of which it leaves at x + A x is
'Cxxl % +A xﬁyﬁxe The rate at which it enters at y is fjrx l YAX Az,
ete. Summing all such terms, we get
AyAe(t wxlx” cxxlxh& x) + AXAfZ@_yxEy"?yxiydsy)
| ~ Ty | ) .
+A‘xﬁy(tzxiz zx |2+ 2 (5.10)

The component /txx is the normal stress on the x-face resulting from
pressure ér‘po’cen‘tial energy, and 'ny is the x-directed tangential
or shear stress on the y-face resulting from viscous forces.
The pressgure and gmvitati{oml forces in the x-direetion are
Ay Oz (0| Plup o * P8, AXAY AZ
where p is ﬁhe pressure and . is the gx;avitation constant in the x;-

direction.
The rate of accunwlatior of the x-component of momentum within

the element is
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Dx AyA-z (2pv/ot). o (51)
The ba.lance equation for the x—component of momentum may now 'be i

written, and the limit taken of the qu.otient of ea.ch of the above

, terms as the dimensions, approach zero. . The result is

Apr) (ﬂ’”ﬁvxl dpred Hpry )> (a e, Doyx am) ® o
>t - ‘IBX , 2y | Dz ng vaz_ 0z ?&12) |
The équ‘at:ton of cohtinuity may be ajppliedr to the latter result and
similar ones for the y- ‘znd zncomponehts to obtain ccmp'oﬁent equations |
' of the form !
ek (e B O

+pg, (5.13)
Et' L ox Bx.‘ b‘y 'Bz)Px RIER o

This is essentially the x-component of the Navier-Stokes equation.

Again the left member involves the substantial d_erivative which gives

the acceleration of a small volume of fluid which,is‘moving: with the = -

fluid. 'Equations may be obtained in terxhs of a point fixed in space
if desifed (BIR‘ 1). The following discussion of the resulting
spectra will apply in e1ther case. | |

The left hand side of the force equation, and the equation of
-contlnuity, both involve substantial derivatives, that is N tems of
the form |

: Dv /Dt = dv /bt + (v, /ax) (ax/at) + (av Wk (ay/at)

o (av /az) (az/at) 3

-2v /‘at by By fox) + v (v A v v fpn)  (5.4)
and | | |

. Dp/Dt - ?p/ét + vx(ép/ax) + vy(a/o/ay) + ‘vz(gp/az)  s1s)



.

Teking Laplace transfonns' of the product berms.of 'Ehe right hand side
of (5 :Lh) y:u.elds express:.ons involving mn.ltiple complex convolu‘c:u.ons
of 'bhe velocity spectrxm with itsel:f‘. For example s tmnsfoxmng first

with respeet to t yields
L, [Dv/pt] =1, [2vx/at] + L [v (av /ax):\ + I, [_v (av /ayjl
N 4L, [v (&v /az)]

S

]

: sV (x,y,z, 5) +V (X-;Y)Z:S) @ [_DV(X)Y:Z: 5)/5353 '
(5.16)

where the symbol @ demotes the complex comvolution (GAR 1) with -

respect to s defined by a te.rm of the form

C poFje AV (z,y,z,s )
VR S(bVX/M) = (1/2x3) V (x,5,2,8-5 )[ ’ ] ds

C-joo x

. <c‘,vc§<e <o‘¥-%' , o+Res  (5.17)
V +Bv % o |

mex [ v Qv 27
X
e §;€.
ete . for the other freleci'by 'ax;zd' density components. ‘There is: a .éet of
ciex é@nvolutions for the transform of each product term with réS};éc'b
to eéch of 'th'e‘ e‘oérai'nfate ‘varia'bijes x¥,%. rThe:' use of specti;a'iﬁ' thié
case does not a:.d in get*tlng & solution. Hoﬁever the foll@m.ng inter-
jpreta’cn.on is instrt:a.c't;:j’.ve° ! | | |
The complex eonvalution integrals may be m-berpreted graph:.cally,

as follows. Ccmsz.der only the time convolution given above at 8

fixed point in s:pace« Then if the spectmm v (x,y, z,s) is contained

in the frequency band 0 < 87 < s,, and the spec.tmm Bvx(x,y,z,s)/b %

4

is contained in the’freqaeney 'bané. 0<% 8 < B5) ’éhe c@ﬁ‘volved pr@&uet

is zZero exce;pt for values of s where the spec’cra overlap, Fig 5.1,

£ .
that ig for 0 £ £ s £ sl+ sz
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Speetral Density at (x,y,z)

. an(.g,y,z,As')/an . avi(x,y, z,s‘-.sf)

e

s-g £ '82 : ks

Figure 5.1
Convolved Spectra

The 'eonvdlved spectm in the véria'ble & thus has a‘ wider range
than either of the or:u.glnal spec:tra; Sinee the su‘bstantlal derivatlve
is merely the result of wrlting a fo:rce eq,uatmn involving an 1nert1al
(acceleratmn) ceordlna’ce system and a mov:.ng eoordmate system for
expressing relative motion or shear forces, we see that__ the gpscaling
(or increasing the range) of energy waire. mabers is & con;«;equeﬁce _ef
the combination of inertial and viscous foreces. |

If is a éim:pie nﬁa.tter ‘o iliusfbxafe thié proeesé 1if one assumes
a turbulent flow, Fig. 5.2. From a study of the A:E"itgure it may be ‘seen ’
"that energy in the incident gas ‘stream éntering 1r»r’.:i.’tsh a vefy 16w wﬁve
number at A is deflected as the gas strea.m nears the lmr veloclty
interface; and due to conservatlon of momentum beglns vortex me'blon,

_ };:reviding the ratio of imertial to viscous forces (Reynold,'s number )
is 'large enough; Part of the stream tarns toward B and fqﬁs 8 smaller
interface aﬁ which momentum is exchanged with the surrounding gas. As

each vortex continmues its motion, additional interfaces are encountered
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Incident Air Stream

> — I s —Up

Interface of Lower Relative Veloelity -

.Figui‘e 5.2
Pattern of Successive Motion of Viscous Eddies

at ﬁrhich momenﬁﬁn is interchanged,, _sueh_av.s_c,D,E, etc. We note that
each interchange of sementum ec,curs m.th the sreation of a pair of
gmaller VOfteié éenters v.rhei*e fhe stream splits. This process continues
until the motion is cénnpie'selj aiss;iasted in thermel agitation of
molecules. o |

This particular viscous: process of a chaotlc distribution of
vort:,ces is not necessary to the up- scaling of the wavenumbers . As.
shown a'bove, up-scallng eccurs due smply to t.he necessity of having
to use a relatlve coordlnate system m congunction with an inertial
coordlnate system in order to descri'be the balance of momentmn of
inertial, viscous and o-bher types of :E‘orces.ﬁ The presence of any .
viscous process B even a lam:.nar one, would not el:.m:.nate the necess:.ty
of the eomplex convolutlens given a’bove. We might expec‘c however

that a purely lamlnar precess Weuld be ty:plfied perhaps by & spectrum
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that is less gradual in the fall off at higher siavéﬁumbers. That is,
‘the turbulence would appear ,_tdlhhast:en ’the"_:énergy ’d.iss‘i::_oa'bion and
~ hence -the fali;bff of high wave mumbers due “to damping. This is
indeed the case a, in fact, it has ‘been suggested. (BRY 1) tha’c.l
tur'bulenee may ‘be defined as & viscous preeess hav:.ng a certa:.n
characteris’clc rate of fall-off at hlgh wave mnnbers
It is ebvious :ﬁ“rom the tranﬁf@mea 1eft=-hand. mem‘ber of the Navs.er-s
Stekes e@mtlon a'bove tha‘b the general solu'blon of t]a,e component )
spectra ef the veloeitiy flmctaatwns may ‘be impossible. A sim:n.lar '
‘ remark may ‘be ma&e for the centmurby eq_uation for which 'bhe le:f"b
member wrltten a‘beve tmnsfoms in the sa.me ‘manner.
The useful results 80 far ebtained (K@L 1, OBU l, BA‘I‘ l, VIL l,
WHE 2) rely upon a:.measmnal analys1s to pred:.ct the general shape of
the spectra of varim:vs physmal qmantitn.es. A mmber of m:.x:.ng |
models have ‘been aevelapeei as rev1ewe& ‘by Wheelon ('WI-IE l) PérliaLps
the one of these Whn.ch is mos‘b useful for preé.ictions of ccation
phenomena is "the mimng~1n~gmd1en " model (‘WH‘E 2) vhich predlcts
the 'bur‘buleme specztm S(k) of dielectric fluctuation to be of the

form
S(k) = 6" (Qe } 13/(1+k 1 2)5/2 " ."",(5._18;)

where <\A€ 2> is the mean S@i&l‘,@ value of the dielectrie constant

€, 1 iss characteristic leng{th of the _tur‘bulen@e and k is the wave-

nmnber. Results of tre;p@sphenc scatter and line @f sight propagation
exyerments (NOR 1) confirms “the shape (- 5/2 pewer) ef this spectmm
q;aite well at the h:c.gh wave mnber end of the spectra. The spatial

correla‘bi@n function ¢(r) eqmvalent to (5. 18) contains the first
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~order Bessel Function of the secend kind, K

¢(R) = (®/1)) K (R/1), (5.180)

where
- - xS -
R=xi+yj+ zk

5.2 Propagation Velocities in an Inho‘moggneous Troposphere

From (4.118) we have the polarization vector for a homogeneous
troposphere expressed in the fomm | |
| B(r,s) = B(z,s) (W/3mre) p(s) . (5.19)
where p(s) is given by (A.lzzb) for electron displa.c_emeﬁ‘c and poiér
resonances or 'b‘y similar terms with appropriate coefficients as det_ér;
mined _f‘r'ouﬁ absorption and index of refraction data at the élese_ of
Chapter 4. Now in,j(5.19)., for an inhomogeneous troposphere, N becomes
a functidn of z and t. We wish tb:_ consider the manner in which this
dependence on z,t shoﬁld be introduced.

The perticle dénsity N must be considered a paremetric function
of z in (5.19). It is not proper to éonsidér Nas a tmﬁsfoimed
function of z such that f’(r,s) .shoulé.' contain N as the spatial
spectrum N(r) or its convolution with ﬁ(r,s); This can be reasoned
in the following way.

Consider a region having a particle density Nl in which the wave
is being propagated. The signal velocity v_ is given by (%.11%)
as

_ s (5.20)

_Vsl = c/[ctl(S)+sdocl(s)/ds ] 5= s,

where gy is the location of the saddlepoint in the complex plane at

which the sigﬁa_l is first detectable. We also are given that the
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actual propegation time t for the signal is _
= z/vsl = (z/c) [O(l(s)+sd l"(s)/ds] (521) |

8§ =8
s

"hs
1

where z is the length of the path. If the dispersive effects are
negligible at the chosen operafing frequency, we have from (4.127)

| | o =1+ Kﬁi/z, dqi/ds =0 . (5.22)
vhere K is a e@nsta‘nt;.‘ We may then conclude by substituting (5. 22).
into (5.21), _that therev is an increment‘ of tsl proportional to the
density of the gas in the medium. If we then bave a continuwation of
the path throqgh'é second section ofjmeaiam of density N, and héving

the same thickness, the total signal propagation time is ‘té 4 ts .
: ' 1 "2

Now consider an equivalent path of the same total length through
several layers of density Nl and ﬁz s but thinner in prep@rt-ic;n to
the numbers. of each layer. There is to be the same total thickness of
me&i}%n of densities~ ISfl and Nz,' Under th§se conditions the signal
prop;.gation bime is still ts + ts . |

Co 1 2

If we had coﬁside:’céd it pecessary to express B(r,s) as the product
'Qf N(r), the’u spatial spec'brmn of the density, with other factors of
(5.19) , it is easy to see ‘t;hat we are faced m‘th a difficult inversioﬁ'
integral with respect to z (see lt.i26). The spectra for the two
different ’arrangeinents of the layers of densi‘bies' 1\11 and Nz are
different. The inversion integral would ‘therefore not yield the same
exponential kernel foi; the z inversion and.a different expression

for (5.20) would result for rearrangement of the layered mediwm. The

sil propagation times ,wéﬁld, therefore not be the same in the two
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cases. We see then that N must be a z-parsmetric factor which typifies
the density over a path which is of length z. In the limit, ¥ becomes
& contimuous funetion of z, ﬁ(z) , for which tﬁe applicable ;@éth is of
incremental length dz. The total time of propagation *then ‘becomes a
matter of integration of the incremental contributions to the signal
propagation time for each increment of path length, i.e.,

g -
8

s % ' ‘ 1% ' : _ o .
L tmvﬁf at {z) = (i/ycfI {0((3)-1-5[&0((5)/6.3]} dz (5.23)
-8 Jo 8 o _ | | - ]
The zﬁejpen&eme of K is s as'»explainéa ‘a‘bove} vtlfié factérfm('z‘); -Which
ex;g;jesses the inhomogeneous &istri'butio&_ ofdensit:}c The average
signal velocity ovér_ the path O:ﬁ“_l_eng‘bh 2 is then
V. = zft_= =zef {&(s)%{dm{s)/@sh . dz} . (5.24)
o 8 8 @ - ) ) . s' . ,
. i o s, ) R
By a similar line of reasoning, the time of propagation of a

wave front through on incremental thickness of a medium is given by

d‘hphz . dz / ‘\_i"P

= [ 8 ]
V e/ (sﬁ? |
'ﬂtphz (1/c) o {s) dz (5.25)
The total time of propagation of a phase front Qver distance d is

then :
b gl/e}ﬁ ol(s,2) (5.26)

Tbg;aye:é.ge veloeity bo:E‘ propagation of the phase vf‘ront over the ivhole

distance z is then



_ z ] -1 |
o = z/tph = ch;. (s,2) az (5.27)

Similarly for the group velocity

Ve = c/(sdn/as) | N
z sdx(s) -1
Vg = 2 U; s dz] | : (5.28)

5.3 Propagation Veloeities in a Banﬁom'Troposere

lu,e to the convectlon of the air mass, the Iartiele é.ens:n.'by as
a function of 2 is also a slowlty varying rané,om ﬁmcti@n of tlme

Thus the signal pr@jpagat;.on timé at ¢ = t’l is, from (5 23) 5

%. A - ;
() = (l/c)f‘{df(s,z,?l) + ngdd(s,z,t_l)/és:[?ss i | (5.29)

~ where the time variation of K is due to N(z,t),, There is negligiblé
interaction upon the signél frequency because the éignal frequenéies‘
are generally much higher than those of the randomness of Nz,t)-.

The autocorrela'blon func'tlon of t ( t) is

B[+ (’c e (6 )]

]

5t (5,%,)

“

{(l/c)j 0((3 2,56, )+ s do((s, 2% )/ds] dz,

X /e [ etCe, i)+ 8 8oty )fes sdzz}
3

2 2 z | |
(1/c) j;dzlﬁ‘dzggo((s,zl,tl) ol(s,z,5t,)

+ SO((S:Zlatl) _é,e((s,_zz,tg)/ds‘ + 804(8,22,132)

]

X do((s,le‘, tl}/ds +
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+s [aox(s, l,tl)/ds] [ao((s,za,t )/as]}j (5.30)

v | $=84

. Now for gases, we have frem (5 22) - o

Q((s,z,’_b)&;\ & 1+ K(‘s)‘N('z,vt)/Z’
s | %

@[N(z,@_/ajms)/ast |

s . SSM.

aa(snt)fis)
8

where K(s) expresses the proﬁuct of comrers:.on faetors ‘and’ the ftznction
of 8, ami K(z, t) expresses the gas density as a function of position

and 'bime ’Ihen_
tt(t t)v(l/cz)“ﬂgf é.zf {l+[K(s)/2] [Ef(zl,t)

+ Wzyt,) | + [x2<s)/u }mzl,t ) Maypt))
+sla(s)/ds) [N(zl,tl) + N(_Zg,tz?]/?]rl'stl‘i(s)

x ) as ey ) My )/ 47 o)/as]

- = Wzp,t) Wz, t, )/u]
B 2502, N T ey . |
= (-1/c‘ )%L as, f@ _dg2-+ [Is;(-s)/z ]SSE[N(tl) + mgtz)]

+ ‘(i/ l*'t,@;z')' [ K("S)%Sdl?_(s)/_dé]sjﬂ; _Z‘dzl f: az,
e xN(zztz)g |
= (/e 1(a) |

, 0> §+ (1 /‘ue?)
S

X [K(s) +de(s)/ds {f dz. f dz,, Iﬁ‘(zl,t)
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Xn(_vzz,fsg) T ) (5.31)
where , ’ - o
v - pe
Mz,t) = (1/z) § W(z',t) dz’
. - Jo -
- and <Tf> is the time average of N. If N(z,t) is stationary and ergedic

R R, 4 (
-+ 2 [1K(s) |, <NGEO)|
L % ' -

+ (83/1) [ K(s)rsar(s)/as | | By () (5.32)
The mean sguare vaiue of &, ‘<t2> is

2
<t,"p = Btsts(@)” %1 + [ K(s)+sak(s)/ds ] BﬁN (o)? /(5 55)

In order to apply this equation we must establish the relation
of the aﬂtocoﬂ_r?elation» cti'on éf {;he -z-;avéra'ged deﬁs'it.y ‘fancatidn %o
the availsble data T@ obtain a spatial spectr!m fu.nction for the
density, an instan‘caneeus measurement of the den31ty versus p@sﬂion
must 'be made over a length of path snfficlently great to define the
spectrum to the ne@e,ssary degree of preecision. This bemg a metical
impossilbility,' the inethod' used (NOB 1, KUB 1) im most line of sight
@r@i:agatién experiménfﬁs eonsists ‘éf méasuring ‘the_‘i{;ime fluetuatioﬁf
of the pilase of the signal betwéen two é’eints’ in the ‘medium. The
process 1s then assumed to be sta‘bi@nary 80 tha’c time averages may
be assumed. to be eqfalvalent to: spatia,l averages This avssmnptien »
is under question at the present time mth rega:ﬁ t@ ""ir'ery l'frequeﬁey.

disturbances (WHE 1). The spectrum which is measured is then Bﬁﬁ('c)
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rroviding the paths are of the same length. Changing the length of
the .pa’ch changes the lemgth of the z-average. In case the spatial

spectrum for the dielectric comstsnt is given, as in (5.18a), the

z-averaging operation becomes equivalent ‘te maltiplying the spectrum

of (5,1) by (l+e_kz) /&, whézfe z is averaging length aﬁd k is the
z-wave pumber, equi%ralent to the variable r in Chap. k.

From (WHE 1), the space-time correlation of the dieleetric
censtant at lew radio frequencies, neglecting d,isperswn, may ‘be

written in the form _

(Ae (@,t) Ae (B, 000 )> = (1/8ﬁ3)f&3§s(fi)ed#'(mm )r)(’ﬁ,'c e
| - (5.34)
R is the spatial correlation separation c@rrespendi to the temporal
lag € ,i: is the vectcar. wave nunber, ff.is ﬁh;e, air'massi veloeity and
7 (f;,_’(‘ ) is thé time correlation of fluctuations eog‘caiﬁe& in e fixed
wavenumber interval TE 7 (k, 1) is unity for zero time displacement
and is often faken as unity for greater time ’é_:isplacefments due -v"‘to
lack of knm#led.ge concerning its fxmetiorial form. OSome work has .
 been done on ensi@rlal analysis of signifigaint véria‘bles for /3
(see WHE 1). Assuming 7 (“ﬁ,f) = 1, and the value of U being known,

8(x) may be obtained frem (5.18) modified by the factor (1+e-kz) Je

to represent the average over z;. henge the correlation (5.33) is
known from (5.33) and t;he proportionality constant relating € and the
&enswy N (see EEA 1). T&ae mean square value of ts may then be
compated from the ‘rela"ai@ms a‘bovea

The mean value of t, may be obtained from the mean value of

“E;S(t) glven in (5.29) and hence depends on < ﬁ(‘é,t)) since the
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‘time varietion is due to N(z,t). The mean value of the index of
refraction (hence N) has been studied in detail (BEA 1), and is glven
in terms of measurable meteorological conditions 'by'thef following

- standardized expression with the special meaning of symbols noted,

n-1-= [ﬁ7@ﬂ+3nﬂ§df]ﬂ0 | 639
where | o
n = index of refraction, '
T = air tempem“mre in degrees Kelvin,
i.‘P = total alr pressure in milllbars, and
e = pa.rtial waternva'por jpressure in milli"bai"s.r

. Fr@.me meen square <t5 > and mean <ts>, the variance of
ts is given by
- SAIEREA X (5.36)
Since the signal velocity is given by :
v, =zt S o (5.37)

8

then
av_ = -(z/t%) at . ; (5.38)
S : 8’ 8 » ‘ _
The variance of vy ié therefore given by
of,g - (zz-/ti) 614 . - (5.39)
. A similar procedure way be followed for the phase w}eiocity,
where (5 31) is repla«.,ed "by the autocorrelation function of the
: jpropaga,tlon time tph of the phase front, '

= 2 2(s)/4 - ,‘b .. .
Ryt (t,t,) = (/) [14%(s)/ '] RNN(t ) | (5. 40)
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The procedure is otherwise the same and may be followed as well Tor
the group velogiﬁyf |

| The procedures given in this ehapter enéble calculation of the
mean,vmean sguare and,variance Qf the signal{ phase anﬁ group velocities
in é rén&mm atwosphere. The campatati@n is quité invelved invthe
case of a dispersive medivwm, sinee it iz necegsary to first determine
the location of the predaminanﬁ gsaddlepoint in the complex séplane
for the time at which the signal %eccmes detectable as the time
parameters are vafied, Thelsyatial sﬁe@tral functions for the
dielectric constant, or'gas dﬁnsity, may then be applied in the

above relations to obtain the desirs&'statistieal guantities.
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Summary of Results and Goneluéioas

Tn this thesis, a study is made ‘of'.th,e velocities of propagation
of electromagnetic waves in the aitmosphere. The s_@lu'bins a:ire vo’bﬁaix»aed
for phase, gi‘mp and sigriél veloeities in steédy state and rand.dﬁ' dis;-
persive media. In the case of dispersive med:.a, ‘the solutions are

indiecated in the form of certa‘i:o econtour

integmtiens whlch mus*b ‘be |
perf@rmed to ebtain a‘p;proximati@ns for emngolex inversion iﬁtegrals,
The inves‘b:.gatlom of the eonﬁltioms for amval of the signal i:mr@lve
trial and. error solutions and are of a tedious natare f@r all ’bu:t the
simplest tyres of media. Gommter mlu-bwns are reeemen&e@. for
o‘btalm.ng speclfle values. | | ..
Methods for solving the wave e@ma'tmns of electromagnetic the@ry'
are &eveleped. weing the mﬂtlple Lalalace transfem The ap‘plication
of m‘eﬁtiple ‘bransfom methoﬁs ‘tmuld appear t;c have a:pplicatioms in |
fomlating solutions to a number of Qr@blems in electr@magnetlc o
theory. Derivations for the characteristic impedance and dielectric
constséz;ﬁ of cemplex medla are simple and include the asémptioms of ..

the m&e of propagation and boundary comditions and therefore are

rigorous.

The physical nature of turbulence and its effect upon factors
"Whiehnini’lumee electromagnetic wave propagation is disgussea. A
study is made of the @Ed@n variables in the wave equation éelution
and the manner in which they are related to the turbulence model. The

expressions are then developed for the mean, mean square and variance
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of the ﬁrcpagatieﬁ velocities. For 'Ehe. signal veleci‘&y the fesﬁlt is
indicateé. in terms of the c@n‘s 1ntegral used to defme the arrival
time of the signal |

The practleal aspects of the work preéenﬁed above can be extended
‘by inves*tslgatmn of the signal and “barget veloci‘by statistics for
various 3pecz1fic mea.ia and s’catlstieal m@dels The effeets mentmne;d
herein mll 'be @f spec:.al in'terst fer eperatizag fmquencies in the
. infrawred and ep‘t;ical regi@ns @f the elee*bre*bic spectrmn for
which dispersive effects are more :pr@netmced anci mumerous 'bhan in the
radio»fmquency r'bwn of the spectrmn |

The s’catistmal optimzation @f refractive cpensation meths
wa.s an early @bgectlve e:f.‘ thls work, and at this pemt, i‘b can be |
| sald that the apalytic and @mpa’catil ls are now defineél. f@r
such a smdy. It is ne‘bei that in the remr’c that the sigml grcup
- and phase veloeities are qul‘be é,ist.inct mathmtically and there
sh@uld 'be considera’ble independeme in 'l:.hen.r statistics Ac@@rdmgly '
it sh@ald be ssi‘ble to cine these, :Lf measurable, with pmjperly
chosem weigh"bing fzmcti@ns in @rder to achleve nore accurate velocity

measwrement. A
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“Evaluation of a Gertain‘ Complex Inversion Integral
Encountered in Seolution ef the Wave Equa‘lsion

with T-ixﬁe-Varying Coefficients

We consider the evaluation ef the eomplex inversmn integral
Eq. (h oL | |

f | (.Z:a “?-) = ‘(211/27\."3) f es[téd(ng/c)]
23 . eg-l-c

F(+0,5)ds (a.1)

whieh occurs in"lshe solution of the w‘av‘é eq:ﬁatiozi fb;c’ diélﬁefsive médi-a,

(see Chaptei’ k). . In this case, for the ionosphere, negleeting collision

damping (see chapter 3), |
o((s) [:L+w /(s 2)11/2

and the exponential kemel displays branch peints at

a, :I:,]w | | (A.2)

(4.3)
We shell first assume that F(+,'s)- is—the trensform of a simusoid
F{+0,8) = B w/(s +0f ), (a.k)

so that

s ’c-d(s)(z/ c)]

fl (39 = (m90250) f { /(%0 as (a.5)

_Assmning the singularitles of the exponentia.l kernel ané. denominator

are G.:Lstinet, they occur ’she imaginary a:d.s as shown in Fig. ?4 2.
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The residues of £ (z,t) for s = +J& present no problem. However the
'inﬁégration around the contour encifcling‘the‘branch points must be:
exa.niine‘d in de’cail;, . In order to determine the'_na.tuzje of the contri-
butions of the brﬁnch points to the contour ihtegrétion, consider
the contour C, in Fig. A.1, encircling one air of the branch points.
The shrinking of the contours to this pa>rticula.r one was discussed

in Ch&p. 4 .

J
' s-Plahe’
n — m
€ €
k 1
b_
Figure A.1

Path for Integration on Contour c2 Around a Branch Cut
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-NW consider t‘he- integrati along can’sm C, element by element.

2
_Refering to Fig. A.l we have for se@:ent k—l

s =,oe -(:r/z) £ <o < -(::/2)+g , p= (w2+w2)1/2 (4.6)

s = pe%®, (x/2)-¢ < 6 < -(a/21e, p= (O +w2)1/2 (A.7)
For,s;_egmenf: 1-m:
. | .- pej(,s:/BNE)’ (¢°§+@25,1/2 S >, (A.s) |
For se@nenib m-ns
s =P¢39? -(n/2)+€ > 6 > -(af2)-E, p = @, | (A.éy
f‘@r se@neﬁé n%k; " |
o =f’¢'j('“/2"8) wg < p < (w2+co§)l/2 (A.10)
Evé.luatian of T 23(2,1;) on svegﬂment,v k«;l:

s =pe’®, -xfz-e <6 < -xfrre, p = (@)
Let 6=-xf2+g, -e<g<E

Fhen s = j(-:r/2+¢) gpe i |

- j_(q)g&)i )j‘j R )

L]

or for @ small,

-3fw +w3)l/2(1+3¢)

It

5

Then

L}

\l[l +cd§/ ( Szif“?“’g)]'

J [02?) (2-29)] /[ 05e?) (2®-2im)-0f ]

o {s)

C B

é.na



o1 -

E 2 oan 2 ' ' ' —7-
. 'eS [t-ﬂ(S)(Z/c)]z e-.j(‘wpféc) / {t—(z/c) (Cdi'l—(vi) (2¢2-2J¢) g
o | ©i?) (2ff-2ap)-0f D

Also

i

| F(+0,8) Eo'(o/(szﬂoz)

[}

, 2, 2 2
Eow/[w(wowc) (1+23g)+w ]
From these expressions, upon substituting into (A.1) for the portion

of the path k-1 and taking the limit as & approaches zero, we have

. 2 2 )]
-3 B z)l/z{t-(z/C)wgwi) () (2;3'2_2‘]55){
° ¢ (wo+w§)_(2g2-zgg) .“"i )

(8]

€

J

€ 2 2y1/2 N ;
- J@%w®) %t C
" e fs e 77 [Eo‘*’/ (“’?‘*’E*“’z)]dﬁ =0 (A1)

Evaluation of f t) on segment l-m:

23(2)

o pdH/2 ) @R sy
_ _,Jpeje ‘
~ -3p(L+3E)

o(s) ;\[[wimi-pz(u,jmﬂ [wi-p?(l+32t)]‘

8 [t-»o((s)(z/c)] Jp(1+3¢€) wo-yq)ﬁ-/oz(].—i-,jZ(‘:)j
e =€ (&) wo- p(1+ j2e)

_"F'(+o,s) = B/ [w®-p*(1+ j2¢)]

whence, taking the limit as E€-0, :
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-Jp[’c \/;2 pz)/(w )1(7;/0)]%

2 2
{Eo(f)/ (w K )XGP
which becomes improper at p =W o’ in the same fashion as the original
integral | | | |

Evaluati@n of f+23(z,“b) on segment mens

s = pe??, _afore > 6)-;!/2«»& , 8 =W,
Let 0 = ~x/2+@ E>F > -¢ |

then s » -§ (1+39)

0 E »
o(s) ==

F(+Q, s) = — o — o
we- w§ -3 2;?500%

‘(\)z‘kagwi }(E—) OE ) (l jﬁ)dﬁ

o2 e 1€ £, (0

w? =00 +jg¢m ha
which beeomes mpreper as ﬂ and w a:p:proaeh zer@
I

Evaluatmn efﬁ f (z , t) on segnent, neks

Therefore

-t
I, = lim expgaja) (1+32) |t~
3 gsof T[T T

@20 €

Ioo2+w2 p“(l~j£€)

A P

s (:twm(s)(z/e)] ) ~;§p{t~==\/[ﬁ P 2(1- 325)] /[{o -p (leZ&)I}

F(+0,5) = B [wP- (Mze)]

Thus,

2 u)g pz(lagas)

(bzul-coz)?’/ 2 -dp|t-
© o

(z/e) o
@i. p_gl_;gg) o E to]-3 (1-Je)]
B0 - we-pP(1-2€)

dp.(a.13)
£->0 -
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which becomes improper at/o =0 .
0
We see that the integrand of the contour integral around C2

exhibits a singularity at the branch point a_,and otherwlse is zero.

We may therefore collapse the contour to encircle this singularity only.
In order to evaluate the contour integral we must expand the

exponential kernel about the singulerities a_and a_. (s) is an

even function of s and the expansion will enable evaluation of the

integral for both singularities. We abbreviafe slightly and write

& (s) as
DC(S) = [l+w§/(sz+a)§}}l/2 - (l+W)l/2

where W represents aﬁ/(s2+u§) in the algebraic steps to follow. Then

ol(s) = 1+(w/2) - (wz/zzz.') + (2w3/233.') - (3-5w1*/2”u3) + ...
Letting z/c = tp’ the vacuum propagation time,

Z -s048)%
~sx(8)- = e sof ):9

Or

~sa(s) (z/c) —stp(l*W/Z—nwz/ZZZF~3“W‘3/233f-». .2)

e e

-5t
Py r 2,202 1,2, 2.2
e Pli-sty/zrs t;wz/z 2i-...] [l+stPW 2221k

2. 2.0, W, 3 375341
8"t W j2(2Y) +][ leStpW /273

5 _
+3 52t§v16/26(3!)223~...]

st
2.2 2 162,y :
= e p[lwst§W/2+(s tp+5tp)w /2 2-’(33t%+35tp) W3/233!

3

+(sh‘t;;+663‘bl;blSS?t;+155tp)Wu /21
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_,(SS 54-103 % +lf~5s3t3+1058 t +105’st )W5/2553+~-~} .

Now from (A.S),

. - 2 2.2
. st S“?‘p st w (s“t7+st )co
£ (z,t) = wE f e == 1- 28 + 2
C,1¢

23" Eﬁa 2tCs soruf Z(s—ﬂ‘wz} 2¢ 23 (s 0)2
(s t; +3s 3 +3scp)wi
33 (sf‘g—kwi)' 3
ho ko 3 3 2.2 , 8
* (s tp+6§ tp«i»lSs‘ tp+15‘st1§)mc
2* 1 (sz+w§}4
_,(;5@12-‘1-10#"1;1%4533 2+1055%¢2+1058t Jo'd
, 2 5.(s i)s
+ .“]d;s (A.14a)
-8t 2,22 b '_,
P st (s"t+st )oo’ -
= O/ € 1- P + b pc (A.lh‘b)
o/ Res —_— )
: 2 2 2. 242 .
f=rjo, 8 +® a(s70?) 22t (s +o,)
But
é/(s%oog) = (1/2) [1/(5«»30) )+ 1/(s+jw )] (A.15)
S0 [ 2. o} ¥ o'Jd, . |
2 2, o 2. . .
s +S/t1> i 1 womgw@/tpn Joo, . w®+aw@/"bp . Jog (8.16)
{SZ‘Hx)i)d 4@% (s»jw@)g B=Joo, v"(s+jw 3 s+ o,
2
a3¢3s /t+35/“‘3 1 [ Bw/“t aBa)/P+ - w/PJ(‘U +l/'t;)

-

(s2+w2>3 (R L (s-nd)?
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B e fe g2 22
2 - 2 Y
tp(s on) | (s+,](%)3 | (S+j£00)2 ztp(s—i-jwo)
(A.17)
— 3 -
150 6w, 15w
2 )
slt.+.6_s_3+158 +]fi : Wo~ S 2
g t2 w1 % £t
PP P D P P
2. 2% Lk '
(s +000) léwo i (5= Jjw |
[1800 75 15w ] 15 18w
+-3~+;)(7m3 5 O) 8a)§+-—2+j~—-3
t A7 t v t 1
4 P 1 P P
- Fe :
(s-30)> | 2| (s-30)® |
8w2+3_:_5_
3 o} ,tz ‘
+
2W g-Jw e
0 o

- ete.
Substituting (4.5), (4.16), (A.17), (A.18), etc., into (A.14) summing

the residues, and including those for s = + jw, we have

£ (2,t) = E [sin w(tf« ‘/]:wi/(bi-wz)‘tp)

2, wl(tt)
+ >3 cosw(’c—t )[ cp +‘~“‘““‘P—
we - A 16(,%
6.3 /(2P (s 2
@ 2 (wotp i ) tp) X t—*b];) N
| I Yt
1926 2!t 2t
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:1;: - L‘tz ~150; )(t % )3 (18u>t +75)(t«»t )2 3@21; o+15) (et )
+
PR ol 3 ‘ 'i"_z '
,3% ‘ hg{f’s “ :l§tp. o tlg
+ . '

: ’ L 6,3
retng (6t )| %o %% [Bw(tﬂ (30 t+l)(t~t) 3

R +
16w 19248 \ 2! 20t 2 2wt
- . 0 A ©'p °p
8.l . 3.8 _ 3 3.2,
ctp ) (6wot1)+;5@etp,)(h- tp) _.(’ m@tPﬂsw@«z-P)(t_tp)
b " Yoo 2 |
: L8+ v
384 | A8tp | 16%

. (BQ' +18a> % +15)(tmt ) (8@ % +15)

2 2
létp otr " (a.19)

Smcse ‘t;he da pimg term was n@t mcludea, it would be expec“bea,
‘lsha‘b 'th:n.s solumcm wouli dlverge as tlme ‘be@es inflnite Addltmn

& 'K:;he ‘v"

ping term can be made ané. the game steps follewed t@ @‘bt.am
the amopriate semes solutien« This mll not be done at ;present |
since o nmtative &iscﬂssions ef p%opagation effec"bs in the ienmw
sghere ‘Wlll not be given. o

It is @f 1nterest to aetemine the bel}ava_er @:E‘ the solut.len fer

.;...» !

small values of time. As nc*bed in t}we iiscussien of the cen'b.ur integral

in Chapter U, ghére is no. resnse at Z pr:.or t@ the vacwm prﬁ:pagatien

time; This result, usmg the et@m“ integral existeme comejp’cs was
flrst @btamei ‘by Somnerfeld (som 1, represente& in ‘See. zg BRI 2).

| The fi}:'st term of (A 19) :Ls the stea@,y sta‘i‘;e term ana, the succeeamg

terms are these of the tmnsient It may be’ ne‘f;e«i that all ‘but the

first f@rans:net ‘tam @ftams a fa,cztor of (tv-t ) These tgrm_s are
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definitely zero at t = tp. At this instant the other terms sum to zero
a8 can be seen by using the small angle approximation on the steady
state term and by expangling the radiecal. Thus for a time slightly; in

excess of t_,
el ( 2700 2,0,2
sin w { 1+ /(w + 0 ) tp] ) w[%— Lrlwc/(cvom ) tP]

2 2
~plt-t ) + -
~ o tp) cuwct];/%!(co w_)

which combined with the first transient term yields

ond - 5 T = T : .
f (2,t) & Eooo(t tp)/z, for ?b b, 8%, where 6tp<< t,

We may determine a good deal more about the behavior of the solution
for small values of t—’cP by redueing it to an asyﬁptotic form (PéL 1).
In essence, this was done by Sommerfeld (op. ci‘b ), however the sn.mplici‘by
of the approach usmg the Lapalce transform may be of interst. In
lorder to obtain an asymptotic series valid for smsall values of %, we
consider the value of the inverse transform for large lvalues of s.
The series of (A.1ka) 6r (A.5) may be transformed term by tem to
obtain a serieé in tﬁe variabie t. However a moré dﬁ.rect procedure

from (A.5) is to write
+joo s[t-uls) ]
lim £ {(z,t) = lim1 § e F(+0,s)ds,
Tt O S0 21 Sy =30 '

where by the limiting processes we mean that each side will assume
asymptotic forms as t vanishes and s increases without "bouﬁd. It is
shown by saddlepoint integmtion.that the initial response is deter-
mened for the values of s beyonrd Wy Therefore for s)ta)o;

dlshy 1 +&)§/Zsz,
and

P(+0,8) % Efs’.
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Then

| zr+g s(t-t ) a) 2¢ J2s
lim £{z,;t) = lim — 1’/ ]/s ds
50 80 2:] - 300

From a table of transforms (CHU 1, No. 80%'we then have

: Z(t-'bp)\‘l/g ‘ —~ > ' N ,
lim £{z,t) = 1lim B, “;w [Jl \/chtp(t-tp) ] (A.20)
30 S0 wﬁtp

The series obtained by expanding this solution and transforming the
limiting series obtained from (A.1ka) agree. The initial part of the
transient starting at time © = tp = z/c and represented by (A.20) is

plotted in Fig. A. 2.
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