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ABSTRACT

Kline, Raymond M., Ph. D., Purdue University, August 1962.

Analysis and Design of Digital Control Systems. Major Professors 

King-sun Fu.

All digital control systems contain at least one signal which is 

sampled in time and quantized in amplitude. Design of these systems 

is often based on the assumption that a yery large number of levels 

of quantization is available leading to the approximation of the 

basically nonlinear system by a linear one. If the actual system is 

constructed so that the linear assumption is satisfied, the performance 

may be excellent but other design factors such as reliability, cost, 

weight, and power consumption may be very unsatisfactory. On the other 

hand, if the actual system is constructed so that only a few levels of

quantization are available, the other factors may be quite satisfactory 

but a previously well-behaved system may now possess limit cycle 

oscillations, large static errors, and an objectionable transient res

ponse. Thus, an important problem in the field of digital control is 

the development of analysis and design procedures such that the designer 

has the freedom to select quantization schemes not satisfying the linear 

approximation but producing an overall satisfactory design.

Two techniques are presented as a partial solution to the above 

problem. The first is based on a study of certain properties unique 

to quantized sampled-data system and uses Laplace transforms to carry out 

the analysis. It leads to closed form solutions but appears to be some

what restricted in the class of systems to which it can be applied. The
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second technique is a numerical procedure based on the state transition 

method and uses a digital computer to carry out the numerical calcula

tions, It is not limited by input type, order of the plant, state 

variables having other than zero initial conditions, or quantizer 

complexity.

Using the first method, some closed form solutions are obtained 

for first and second order systems and the results favorably compared 

with the results obtained by the more general second method. Where 

possible the results of the second method are compared with the results 

of other workers. In other cases, typical results are checked by com

parison with results from simulation on an analog computer. In all 

cases favorable comparisons are obtained. Design charts prepared by 

the numerical procedure are presented and examples given demonstrating 

their use to satisfy specifications on static accuracy, response time, 

and presence or absence of either overshoot or limit cycle oscillations.

A set of rules are derived describing certain properties of the 

system^ e.g. a final value rule similar to the final value theorem for 

linear systems is obtained. These rules are found to he useful in , 

both analysis and design by reducing the number of computations required 

to solve a given problem, by providing physical insight into system 

operation, and by furnishing a check on certain results.
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GSAPZEB 1

INTRODUCTION

1.1 Statement of the Problem.

The general representation for a single loop of a digital control 

system is shown in Fig. 1„ 1, In practice the complete system may con

sist of many loops sharing a large general purpose computer, or the 

complete system may consist of a single loop in •which the computer 

ha#^’Se#!i^:fatedyfir;i^ie!ly"’a sui^ng'&eyice. Concerning physical 

separation of the digital computer from the remainder of the system, 

again a tremendous contrast exist. For example, the computer may be 

adjacent to the remainder of the system in an automatic factory, or 

it may "be separated from the remainder of the system by irast distances 

as happens when the plant is a part of a space vehicle controlled by 

a computer on the earth.

Analysis and design of digital control systems are often based 

on the assumption that a very large number of ley-els of quantization 

(large number of bits per computer wort) are available leading to the 

approximation of the basically nonlinear system by a linear one. If 

the actual, system is’ constructed s© that the .'linear, assumption is 

satisfied, the performance may be excellent but other design factors 

such as reliability, cost, ease.of servicing, weight, and power con

sumption may be very unsatisfactory, 0® the other hand, if the actual 
system is constructed so that only a. few. 'levels, of quantization are. 

available, the other factors may be quite satisfactory but a previously
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well-behaved system may nowpossess limit cycle oscillations, large 

static errors, and an objectionable transient response. Thus, an 

important problem in the field of digital control is the development 

of analysis and design procedures such that the designer has the free

dom to select quantization schemes not satisfying the linear approxi

mation but producing an overall satisfactory design.

The digital control system in which a relay is inserted in the 

error channel of a sampled-data system has been fairly extensively 

analyzed in the cases of second order plants and plants whose output is 

approximately sinusoidal. However, even here a complete design pro

cedure does not appear to be available. For systems not fitting into 

one of these two cases, numerical methods appear to be the best means 

of analysis. However, none of the available numerical methods appear 

to be entirely satisfactory. The situation described above is compounded 

in multiple level quantized systems in that very little in the nature 

of analysis and design has been accomplished. These points are amplified 

and discussed more fully in the chapter on Literature Survey, Chapter 2.

1.2 Research Objectives and Procedures

One objective of this research is to develop a technique, which can 

be applied with a minimum of manual labor to the analysis of as wide a 

class of digital control systems as possible. The minimum permitted by 

this objective is the development of systematic analysis procedures not 

limited by the complexity of the quantizer, the order of the plant, or 

the input type. Another objective is the attainment of as much insight 

into the design of digital control systems as is possible.

- 3 -
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These objectives are accomplished by using the following pro

cedures:

i Extension of the state transition method to the analysis of 

xionlinear systems (discussed in Chapter 3).

2. Development of the digital simulation technique, -which 

’ involves ' implementing the ' state transition method ©a

a digital computer (discussed in Chapter 4).

3. Derivation of a set of computational rules to be used in 

conjunction with 1 and 2 above to further reduce the work 

required, to provide physical insight into control system 

operation, and to be used as a checking method (discussed

■ lU'::fthDter.'3|».

. k. Evolution of design procedures .from the above .analytical' 

techniques (discussed in Chapter 5)*

% Derivation of closed form solutions, which can he used in 

the analysis and design of certain systems (discussed in 

Chapter.

' 6» Simulation of typical systems on an analog computer to

provide a check on themethods of analysis and design and

Since a large class of digital control systems can either be

directly reduced to the form shorn in Fig. 1.2 or can be reduced to It 

after seme minor simplifications, exclusive consideration will be given
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Linear Plant 
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this form in presenting examples. However, it appears that most of the 

basic methods developed Mere earn Me extended to a wider class of systems. 

Throughout this report, systems are classified according to the order of

the plant contained in the system; e.g. a second order system means a 

system of the form of Pig. 1.2 containing a second order plant.

The output of the quantizer in Pig. 1.2 is labeled l(kT+) while
\

the input and output of the plant are labeled in accordance with the 

terminology of the state transition method, which is developed in 

Chapter % She remainder of the labeling on Pig. 1. 2 is standard.

Because the holding circuit is of zero order, it is immaterial whether 

this circuit appears before or after the quantizer. She quantizer itself 

is shewn in more detail in Pig. .1*3 where Sg, etc. indicate the begin

ning of the first, second, etc. quantization intervals for positive 

TOtaes of uosntiser iaput; 81', .y, ate. Indicate tea totfm** of 

the first, second, etc. quantization intervals for negative values of 

quantizer input; b^, bg, etc. are the output amplitudes for the 

positive quantized levels; b^V b^8, etc. the output amplitudes for the 

negative levels. Usually in practice ©^ = 8, % '°1 • ~

bg = bg *, etc. Although, this simplification will be used henceforth, 

it could, be eliminated in most of the work that is to . follow. She in

terval freo. t© will be eaUed the quantizer dead zone, and with 

©»■ = §,9 , the dead zone will be uniquely represented simply, by giving

its are often classified by the total number

of levels they contain, meaning the sum of the positive and negative 

levels plus one if a zero output level exist as it does in Pig. 1.3°



7

For three level quantizers, the subscripts ©a'S^ oat h^/will he 

..ami, im this esse the;-test, some amplitude .will he- isdiestet hy ®„
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CHAPTER t

LXTEIATOTI SiSyH

$. 1 General

Most portions ©f the field ©f linear sampled-data control systems

are well covered 'by the three major texts1'2'-5 now available in English. 
h
.has- -stated im;Ms reriew article^ nIm contrast to the 

linear theory of sampled-data, which has been thoroughly developed, the 

nonlinear theofy has sot 'been widely investigated and developed". Gon- 

cerning the work that has been done, much of it must he classified as 

analysis rather than design, hut . even when analysis alone is considered, 

a fairly narrow section of the field has been studied. For purposes of 

classification aadconvenien.ee in this discussion, the literature con

sidered will he somewhat arbitrarily divided into the following six 

sections; l) Classical Methods, 2) Numerical Methods, 3) Analog Simula

tion, b) Methods of Approximation, 5) Special Techniques.
>2 Classical Methods

■ ' • ■ ■ - ' • '••••' i .
The classical describing function method of analysis for continuous 

data systems has been extended to sampled-data systems by a number of 

investigators including Chow,5 Russel,6 and Kuo.7'8 Show presented a 

number of examples in his paper showing the predicted limit cycle 

amplitude and period compared to values actually obtained experimentally 

on the analog computer. He also predicted the dead zone amplitude re

quired to eliminate limit cycles. Although this method is applicable 

to higher order systems, it says nothing about transient performance and



static errors in those case when a limit cycle does not exist. In 

Section k. k a comparison is presented "between the results obtained by 

the method of this report and the results of Ghowfs method.

Phase-plane analysis of nonlinear sampled-data systems has also 

been developed from the corresponding classical technique for continuous 

systems. Seme of the most important work using this method has been
q in 22done by Kalman, Izawa and Scheidenhelm, Izawa and Weaver, Mullin

. Ikand Jury, ^ and by Aseltine . The method is applicable to all types 

of inputs, and transient performance as well as static error are ob- 

:, the method is very difficult to apply to systems 

second order. To this must be added the comment that 

the method is fairly time consuming in application, and for the majority 

of eases it does not appear to be easily adaptable to machine solution.

those of digital simulation; see Section k. k.

Numerical methods have the characteristic in eemmon that they are 

step by step calculations based on seme type of recurrence relation in 

which the actual solutions are either carried out manually or by means 

of a digital computer. These methods, in general, have fewer limitations 

than most other methods on the type of system that can be analyzed; e. g., 

usually there is no limit on the order of the plant or the type of input 

which is permitted. On the other hand, numerical methods usually provide 

less physical insight into overall system behavior and they usually are 

more difficult to use in system design.
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15 lUo IT iBTostanoski,'5 Kinnen and Tou~* - and SteelA have been some of the

more prominent workers in this area. Tostanoski described howthe 

analysis of sampled-data systems based on a z-transform approach could 

be carried out on the IBM Type 650 computer. Healso mention the 

possibility of using a variation of this method for nonlinear systems. 

Unfortunately, no examples of the solution of either linear or nonlinear 

systems were given nor were any suggestions made as to how the method 

could be used for design.

Kinnen and Tou have used ^-transforms t© develop an exact method 

of analysis for nonlinear sampled-data systems in which the nonlinearity 

appears in the error channel but is not between frequency sensitive 

eluents. This location effectively allows the nonlinear element to he 

separated from the linear part of the system so that a recurrence re

lation can he written. Moreover, Kinnen and Tou have extended their 

method to the approximate analysis of systems in which the nonlinearity 

occurs between two frequency sensitive elements through the introduction 

of a fictitious sampler and hold circuit preceding the nonlinearity.

The method was originally developed for use with manual computation] 

however, this author has successfully programed it on a digital computer 

for the case of a quantizer .which is not /between frequency sensitive 

elements. Although the method is a very useful one, it appears to be 

more time consuming for either manual or machine computation than the 

method of digital simulation to he presented in Chapter 3» In addition, 

their method does not appear to he readily adaptable to the use of non

zero initial conditions on the state variables and it does not appear to 

be as versatile as digital simulation.
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The approach of Steel is in manyway similar to thatof the earlier 

work of Kinnen and Ton. Again the nonlinearity must not he between 

frequency sensitive elements and again this allows a recurrence relation 

to he written. The author has also successfully analyzed quantized

-data systems hy this method. However, it was found to he less 

in scope and more time consuming in application than the method 

of Kinnen and Tou.

2.4 Analog Simnlatich ■

Sampled-data systems have heen analyzed by simulating them on the 

computer with auxiliary equipment such as a relay or electronic

gate being used to perform sampling action. Similar to the numerical

methods, analog simulation is applicable to a wide class of control

systems but the disadvantages are also similar in that there is usually

less physical insight into system behavior and there is difficulty in
19 20obtaining design information. The work of Chestnut, et al, Klein,

21 ■ 22Wadel, and Seheidanhelm, et al, have been described in the literature. 

Unfortunately, only Seheidanhelm has considered a quantized sampled-data 

system and his was an experimental model of a Specific system rather 

than an analog computer representation which could he easily changed to 

simulate a wide class of system types.

As mentioned in Section 2,2 Chow has presented results of his 

analog simulation work for comparison with the results produced hy the 

describing function. Although the analog simulation work of Chow appears 

to he of very high quality he does not give a detailed description of the 

equipment or the techniques used.



2.5 Methods of Approximation

Having the same basic objectives but using entirely different tech-
03 Clinique s both Bertram and Tsypkin have developed seme useful approximate

results for the performance of quantized sampled-data systems. Bertram 

used the state transition approach to develop a method for obtaining an 

upper bound on the error in the state variables caused by quantization 

fca? any number of quantizers in the system. He also showed that the 

introduction of quantization can not cause instability in a previously 

stable sampled-data system. Unfortunately, Bertram's results are quite 

conservative and may lead to quantizer designs which are too complicated 

and expensive. Moreover, his method provides no information about tran

sient performance or about the possibility of the existence of limit 

cycle oscillations.

working in terms of the impulse response of the linear portion 

of a multiple level quantized system, Tsypkin was able to show that the 

maximum upper bound on the error caused by a single quantizer is given 

by the sum of the absolute values of the impulse characteristic of the 

linear portion multiplied by the quantization interval Tsypkin touches 

on the problem of limit cycle oscillation and shows that it will have a 

value no larger than the upper bound for system error caused by quanti

zation. The same comments made with respect to Bertram's work concerning 

the conservative nature of the results and the lack of information on 

the transient response also apply to Tsypkin *s work.

The articles by Tormg and Me serve, Tou and Lewis, ^ and Widrow^



do not logically belong to any of the above groups, nor do these 

articles have much in common except that they all consider quantized 

sampled-data systems. However, they are placed together in this section 

as a matter of convenience.

Torag and Me serve use a difference equation approach to determine 

the various limit cycle modes in a relay type sampled-data system.

Their method applies to systems of any order hut it does not furnish 

information on transient response, static error, or other phases of the 

©verap. problem.

¥idros has taken a statistical approach to the study of quantized 

systems. He has been able to develop a quantization theorem, analogous 

to Shannon’s sampling theorem, -which determines the conditions required 

for recovery of certain statistical properties of the control signal.

This method may he applied to systems with deterministic inputs but the 

results win be given in statistical terms. Moreover, the method does 

not provide information on limit cycle conditions or on system transient 

performance.

A dynamic programming approach is used by Tou and Lewis to develop a 

design technique for multiple level quantized systems. The designs pro

duced by this method are optimum in the sense that certain performance 

criteria are minimized. Although the method appears to have a great 

amount of potential, it is presently limited to rather simple systems due 

to the complexity of the computational problem.

- 15 -



CHAPTER 3

ANALYSIS OF NOHLIHEAR SAMPLED-DATA SYSTEMS 

3-1 General Considerations
n /£ *j O

Some other numerical methods 1 have been used, successfully hy 

the ■writer for the solution of nonlinear sampled-data systems, but the 

state transition method is especially recommended for its convenience, 

versatility, ability to provide inforaatioa eomcerning the behaviorof 

aU state variables, and its apparent potential as a basis on which to 

build more elegant methods for analysis and design. This method has 
been used for synthesis2^2® and linear analysis21^® of control systems 

and can be readily adapted to provide an exact method of analysis for 

nonlinear sampled-data systems if the nonlinear element can be placed 

adjacent to a zero Order hold, (in most other cases it should be

possible to at least develop approximate solutions, but these in general

■will be more

3* 2 Review of the Analysis of Linear Time Invariant

the State Transition Method

A Unear time invariant control system can be described in terms 

of a single nth order differential equation with, constant coefficients 

and with the input or driving function m(t).

d\.T d dx1

+-+ s * v*r + m(t) (3„la)

This equation may also be written in terms of a first order differen-
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tial equations;

dx,
X- = TT2 dt x, =

dx
dt“ = m(t) - aQxn ' aj5x5 “ Vg " alxl

where x^, x^, Xy ..., x^ are called the 

system may he described in another but eqi 

the system on a state diagram/ which is s 

used for an analog computer. Integrators 

diagram and the output from the imtegrato: 

state variables mentioned above. For exaijr 

diagram for the differential equation

state variables. The above 

luivalent way by representing 

:Lmilar to the flow diagram 

are at the heart of the state 

s may be identified with the 

pie, Fig. 3*1 shows the state

+ a
dr dt = m(t)

which represents the plant • -t- ■ ^ drive:s^s + a;
A vector consisting of all the state 

convenient way is called a state vector, 

one component of the state vector at some 

by applying the superposition theorem to ■ 

due to each ©f the,initial conditions at ' 

). Using matrix notation, the relati

at the two different instants t and t may■ o *

l(t). - t0)i(V) =

(5-lb)

(5.2)

n by a step input, 

variables arranged in Seme 

Since the plant is linear, 

time t, x1(t), may be found 

he individual contributions

ime tQ in the state vector

ona between -the state vectors 

be Written

(5*5)



3.1. State Diagram for the Plant 
(Step Input) *
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vector is n x 1, the 0( X) matrix is square and. of order n. After ex

panding Iq. (3.3) tiie following equation fs obtained 
^x1(t) ^

where $( %) is the state transition matrik and. A. = t - t . If the stateo

V ,

x^(t)

i x (t)1 n\/ ,' J
After matrix multiplication.

A
*11 .& «*« ^ln ' *!<*«>+)|

% ^22 9 9 9
<

x2(t<

'

>+)

O 9 O
** ^a2 9 9 9 0rnn

O «.>

X (tnv e
V y

■>

' ^12 ;Vfco+) + *** iia xn(

(34.)

(3- 5)

fhms, lq« (3*5) is exactly equivalent to the statement in words given 

above concerning the use of the superposition theorem to obtain 

Moreover, Xg(t ), x^(t), etc. may be obtained in the same way. (A method 

for determining the § matrix will be given later).

She notation t0+ was used in the abore equations in anticipation

of the sampled-data case where a sampler,

is closed at t and the relation between the state vector Just before
O... ; •. . •

sampling, y(t), is related to the state vector Just after Sampling by the 

equation ■

v(t0+) = B v(t0) (3.6)

where 1 is a matrix of the some order as p. (A method for determining 

the B matrix will be given later).

Equations (3. 3) and (3.6) may be combined to yield 

v(t) .- 0(A) B v(tQ) = I^A) v(t0)

followed by a zero order hold,

(3-7a)
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where

H(3j * 0(2.) B

The following sequence of equations can he written from

Ef* (3* 7a):

(3.7b)

0 ' t = T •;; > v(T) = H(T) x(o)

t 0 T, t = 2T $ , v(2T) = H(T) v(T)

t = 2T, t = 3? i v(3T) = H(T) v(2T)

t = k - 1 I 0 ', t = kT *> v(kT) = H(T) v(k - 1

i T is the sampling period and k is the numlaer of s?

(3.8)

Substituting the first equation of (3-8) into the second and then the 

second into the third, etc. finally the closed form expression for the 

state vector at the end of the kth sampling period is obtained in terms 

of the initial state vector v(o).

k

If the initial state vector and state diagram are given, one eah deter

mine H(t) and then use Eq. (j. 9) to determine the new state vector at 

the eb|L of any sampling period.

A method of computing the entries in the ${%) matrix trill now 

be established. Consider each of the initial conditions in Eq. (3-5) 

to be zero except one. For example, let x^(tQ+) be the only term with 

a nonzero value. From Eq. (3.5)}
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i
xx(t)

13 W7
Any convenient method may he used to dete:rmine x-^(t), and since the 

system is linear, the initial Condition xL(tQ+) isarhitrary and 

u(t - t ) = nC'A) may he used. As an exapple, consider the plant

sis + ar The state diagram for this system is shown in Fig. 3* !♦

Since x5(tQ+) « u(t - tQ), its Laplace transform will he X^(s) = g

Moreover, the transfer function between X^(s) and X^(s) is e|s + ay > 

therefore.

Xx(s)
-st0

and

s(s + a)

[> l_-e^
*1^ - I k - _2

Finally, substituting Eg. (3*12) and ^ (t +) = u( 9i) into Eg. (3.10),

%
a

1 - e

13
a2
u(/U

h( %)

for 0, which is the only case of

may he used to find the other entries in 

The entries in the B matrix are dete 

Eg. (3.6) as follows;

(3.10)

e~sto

1
(3.11)

(3- IS)

1 - e »a^-
a (5.13)

a

Interest here. The same method 

the $( %.) matrix, 

mined hy first expanding



After matrix multiplication,

+ VS^V

and the equations for xg(te)+)/ ^(t^)^ etc. follow in the same way. 

laying the equations for x.(t +), x^(t +) etc. the values of the 

entries in the 1 matrix are determined by inspection of the state 

diagram. It should be noted that application of the B matrix in this 

way requires that a state variable be assigned to the output of each 

zero order hold in the state diagram.

3*3 Application of the State Transition Method to the Analysis

of lonlinear Systems

Consider the nonlinear sampled-data system shown in Fig. 3.2. 

fhere is no difficulty in writing the terns in the matrix whieh

only involve the plant. However, any attempt to include the non- 

linearity in either the 0 or in the B matrix causes that matrix to 

become nonlinear and makes it difficult to handle analytically.

In order to see how this happens in a more specific case, consider 

the quantized system shown in Fig. 3*3. Inspection of the state





y1(kT+) » y-^kT) 

x^kT+J = x1(kT)

Xg(kf+) » x2(kT) 

x^(kf+) = y1(kT) - x1(kT)

(5,16)

where the sequence of the components in the state vector is the same as 

the sequence of the above equations. Therefore, the B matrix becomes:

1 a 0 0
j 0 1 0

B I © © 1
,

1 -1 0

(3.17)

©sing the method described above, the 0 matrix is found to be:

1 © 0 o
0 1 1 - e" % ( i +

where Q in Eq. (3.18) represents a quantizatioh operator, (in this 

case, it quantizes all signals arriving at the point denoted by the 

state variable x^). Thus, the 0( %,) matrix is nonlinear with respeet 

t© the state variables which makes it very difficult to use.

On the other hand, the fact that the holding circuit is of zero 

order allows the quantizer and hold to be interchanged producing 

Fig. 3»h. The matrix is now found to be the following linear

matrix:



+

Pig. State Diagram of Fig. 3* 3 with Quantizer and 
Hold Interchanged
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0 0 ©

Inspection of the state diagram yields the following egnations for the

(3.19)

determination of the B matrix:
i

y1(kf+) » y£(l?) 

x,(kf+) = x,(kT)
1 1 (3.20)
Xg(kf+)xg(kf )

However, mow the guantizatiom operator % prevents one from writing the 

B matrix, because x^(kT+) can no longer be determined by a linear

operation on y^(kT) and x^(kf).

On the other hand, as long as the nonlinearity is not between two 

frequency sensitive elements the following alternative procedure can be 

used. Referring to Fig, 3.2 again, the quantity e(kT+), the system 

error at the end of the kth sampling interval for a system with sampling 

period f , is computed from

e (kf +) = r (kT ) ~. x^(kT) (3.21)

Then l(kT+), the output of the nonlinearity, is determined from e(kT+) 

and the characteristics of the nonlinearity. From Fig. 3« 2,

xa+1(kf+) = I(kf+) (3.22)

and the state transition method, Eg, (3.3)>can then be used to find the
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state vector v(k + 1 T) from the known value of xn+^(kT+) and the other 

state variables at kT+. The process can he repeated as often as 

desired, to get the complete time response of the system* Of course, 

this method does not allow closed form solutions to he generated as 

was done in Eg. (5.9) for a linear sampled -data system where both the 

$ and the E matrices were used, hut it does provide a convenient re

currence scheme, the method is also applicable to a large variety of 

other more complicated situations. For example, the system could in

clude additional samplers and additional noniiaearities with the same 

general method as above being applicable. The only restriction is that 

if exact results are desired, the nonlinearity must not occur between 

frequency sensitive elements. This comment also holds for the non

linearity between a hold circuit of Order higher than zero and a 

frequency sensitive element, although the nonlinearity can precede a 

higher order hold circuit. Another complication which can he easily 

handled is the situation where it is desired to know the response between 

sampling instances. Mere the input to the plant, x -, is held at the

Value it had for kT+ and the parameter /L in the $(7i) matrix is

allowed to take on as many values as desired between 0 and T in order 

to generate the desired state vectors between v(kT+) and v(k + IT). 

% k Illustrative Examples

In order to illustrate the above method, consider the following

Plant 1
s(s + 1)

T = 1 second, r(t) = .9u(t)
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0
©
©

(3.25)

ete that the plant gain, K,is unity in this example). The quantizer 

and the state diagram are shorn in Fig. 3* 5* Here the quantizer dead 

zone amplitude, 5, is 0. k and the saturated output value,, b, is 1.0. 

Find the state variables at the sampling instances.

From the state diagram the 0 matrix is found to be;

1 - e-Si

©

0

“X” .i + ®

■■v- ' -x
. 1 - e

1

" ' ' IT
Sinee only the 

Therefore,

0

(3.2b)

instances are of interest, /h = T = 1 second,

fi

Substituting the 

found that e(0+) 

zone

0 . 368 . 632; , (3.25)
0 © 1 

given values of x^(0) and r(0) into Ef. (3.21), it is 

= ... 9; the input to the quantizer has exceeded the dead 

frcm If, (3.22) x,(©+) = U(0+) =1. Therefore,

(3.26)



N (kT+)e(kT+)

r(V\ e(V b-
-8

■ +' J 8
-b

Zer 0
Order

*3^
K

Hold

Fig, 3.5, State Diagram for a Second Order Digital
Control System



r • - f
:'l .632 . 368 0 f.368

v(T) = ^(T)v(C)t):= 0 , .368 ..632 ■< 0 ^ - • **• i
. 632 |

0 0 1 1 1V. . J L J
Again applying Sqs. 1[3* 21) and (3« 22) it 1s found that N(T+) = 1; there

fore'^'

yield H(2T+) = 0; therefore,

for that first 111- seconds are summarized in Table 3*!•

An examination of the latter

and the state variables have become ■which means that the

is in .'..limit In this case, the

oscillation is six seconds.

consider the

that... the dead zone of 'the?|pianti]ser 

using the same <f> matrix as before



fable 5.1

Summary of Results for Example 1

0©

0
0
©0 .

t '
(in see.)

9
P
0

1 e(kT+)
0
P

0
P9
{ x1(kT+)
•©

0
♦

P
P

00
9
P

x2(kT+)

• -
0
[ Xj(kT+)
♦» , .

9
f

00
9
9

• • .0

0-O
P 0

©O
: .900 ; 0.000 00 0.000

4» '
t 1000

*0
0

% 1 ; .532 : .368 0 . 632 1. 000 0
. 0 -

* 2 : , -.235 t 1135 0 ... 865 j 0.000 90
9 3 : 782 ! 1682 0 .318 s -1.000 ♦O
O 4 : 615 .»■ 1.515 0 -.515 : -1.000 0

0

9 5 : .078 : .822 ' 0
0 , 822 : 0.000 0

0

* 6 : . 598 : . 3©2 0
• .. 3©2 : 1.000 ♦

O 7 5 .421 5 .479 •
■ .521 ; 1.000 0

•9

* .
9' ■' ' 8 s -. 216 1.176 ..•.-~-.-0-.-V -n

0 .824 : 0.000 00
I 9 t -.797 : 1.697 0 .303 : -1000 0

•

: 10 : -. 621 : 1.521 • -.521 t. -1000 0
♦

© 11 : .076 : . 824 2 -.824 t 0.000 $

0 12 .597 : .303 0
© -.303 £ 1000 00

© 13 : .421 * .479 © . 521 . : 10Q0 0
p• 14 : -.276 ; 1.176 ■0 .824 ; 0.000 *

0

% ♦0 ■, 0 © 9 9

and the results are shorn in Table 3° 2.

Note that the system is not in limit cycle oscillation, but the 

error appears to be approaching a steady state value of -0.1. Thus, 

the increase in the dead zone amplitude from 0. 4 to 0. 5 has been 

able to eliminate the limit cycle oscillations.

3.5 Seme Computational Rules

Same computational rules have been developed whichwill provide 

insight into the operation of digital systems. These rules will help 

to simplify the computations in the analysis and design sections to 

follow.



Table 3*2

of Results for Example 2

sec.3. )
xg(kT+)

p> v • ’ ‘V-‘.; • • .v : ' -'?*r ‘ ■ ' .1. -V ' -
. <* •* ■ 0 t .900 0,000 . •: 0.000 : 1.000 :* ■ 1 : .532 ©.368 ■ > - 0.632 V ■ 1.000 -*:■*
0 ' 2 ■ T- -.235 1.135 4 . .865 1 0.000 :

3 s 782 1,682 -4• .318 : -1.000 s
b ~-v-' 615 1.513 515 : -1.000 :
5 .078 . 822 * -.822 : 0.000 :
6 : .598 *322" - 4 ■ -.302 s 1.000 :
7 : .b21 *b79 4

4 .521 : 0.000 :
8 ■ ' .092 .■ .808 4

4 .192 : 0.000 :
9 ‘ : 030 *93© 4

4 •- .070 : 0.000 :
10 : -.07b • 97b 4■4 • 026 : 0.000 :
11 r -.090 *990 .# -' # .010 i 0.000 • :

««
12 : -. 096

•
* 996 . 4• . 00b : 0.000 :’ * 0 ■.'-I *.

3*3. 3. Dead-Zone Range Rule

Since the data in Tables 3*1 and 3*2 were for specific values of 

dead zone amplitude} it might at first appear that the calculations 

are good only for those specific values. This is not tarue in general 

as the discussion below shows.

Consider the data listed in Table 3*1 especially that of 

columns e(kT+) and x^(kT-t-)* The quantizer used to obtain these data 

has a dead zone amplitude of O.b. How consider the change in the 

results at t - 0 if the dead zone amplitude had been larger. It is 

apparent that the dead zone amplitude could be as large as 0.9 before 

the results would be changed. However, a dead zone amplitude of 0. 9



would not leave the other points unchanged as consideration of the point 

at t = 1 second shows. There the dead zone amplitude could he increased 

to 0,552 before the results would he changed* Continuing, it is found 

that the joint at t = 2 seconds places no limit on the maximum value of 

the lead zone amplitude since x^(kT+) is already zero for this particular 

point* Thus the point t = 1 second is still the limiting point. Con

tinuing to examine the points in Table 3* 1, it is found that the point 

at t = 7 seconds is the ultimate limiting quantity and it establishes 

a limit on the maximum value Which the dead zone amplitude may reach of 
§ = ©.til before the results of Table 3.1 are no longer Valid.

(There are other points, Which occur every 6 seconds, having e(kT+) = *4il

but none between .4 and .421). A similar inspection technique was used 

to determine the minimum value of dead zone amplitude applying to

Table 3.1, and it was found to be 5^.^ « 0.276., whieh first occurs at 

t = § seconds hut again is repeated with a 6 seeond period. Applying 

the same technique to Table 3-2, it is found that STngy ->532, which 

occurs at t = 1 second, and S . = .421, which occurs at t = 7 seconds.

An interesting point should now be noted. There is a common

value for i from Table 3«1 end § . from Table 3» 2, i. e. , both occur , max- mm
at 8 = . 421; thus,’this point should be the dividing line between limit 

cycle oscillation and completely stable behavior. If the specifications 

on the system^ such as that shown in Fig. 3» 5* where that the quantizer 

should not produce limit cycle oscillations for a single input of 

r(t) »*■. 9a(t),' the design problem would be solved by using a quantizer 

with a dead zone amplitude of at least .421. Practical problems are



merer this simple, "but the use of the range rule has been demonstrated

for a single point and further extension of the rule to more practical
/

design problems will be presented later.
3.5.1 Input-Signal lamge Rule

Just as the ealculationsin fables 3*1 and 3*2 initially appear to

apply only to a specific dead zone amplitude they also appear to apply .

only to a specific input magnitude, butagainthis is not true in

general. Consider what will happen to e(kT+) if the magnitude of r(t)

is increased. Since e(kT+) = r(kT) - x^(kT) is a linear equation,

superposition applies; and if r(kT) is changed by a giren amount,

e(kT+) will be changed by the same, amount. Proceeding as in the Dead

Zone Range Rule then determine how much the magnitude of r(kT) can

increase before the results of Table 3-1 are no longer valid. By

inspection it is found that r(kT) can increase by .215, i. e., r(kT) =
mex

1.115u(t) and the critical point is at t = It- seconds. Also r(kT)miT> =

* 8T9u(t), which first has its critical point at t = 7 seconds.

3.5-3 Final Value Rule

For a system without limit cycle oscillations it would be valuable
to have a final value theorem or rule. However, the nonlinear nature of 

these systems prevent direct application of the conventional final value

theorems. Consider Table 3-2; the values of the and Xg state

variables would be the same with an open loop system having the input 

shown in the x^ column as it is with the closed loop system which was

function is for a closed loop system or if he knows the functional form
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from the results of analysis and wants an independent cheek on the system

steady state value, the f ollowing method may he applied.

Sincethe plant Itself is assumed to he linear, one can consider the 

output of the zero order hold to he a series of pulses which are con

sidered separately and their individual re stilts combined hy superposition. 

The statement of final value rule then becomes: Given a linear plant,

which is driven hy a zero order hold whose output sequence is either 

known oh assumed, the steady state value of any of the state variables 

associated with the plant is obtained hy computing the steady state 

value caused hy a single pulse of length T and then using superposition 

to determine the results for the actual pulse train*

The following is an example of the application of the final value 

rule. Given a plant or portion of a plant of transfer function G(s), 

and an input pulse of amplitude A and length T. The input function to 

the plant, m(t), may then he described hy

m(t) = ju(t) - u(t - T)J A (3* 30)

Taking the lapla.ee transform

fsing x^(t) as the output state variable of the plant G(s),

X^s) = M(s) G(s) A G(s) (3.32)

Therefore,
‘iW state from a single pulse

lim s X(s) = lim (l - e~s^)A G(s) 
s -&-0 s -^0

(3.33)
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How the plant analyzed in Table 3.2 is of tie form

thus

S(s) = K
s(s + a) (3.34)

(1 - e“sf) A K
(3.35)

©ireet substitution of s = 0 in Eq. (3.35) results in an indeterminant 

form, but by the application of L’Hospital’s rule this is easily re

solved as follows:

ss S —*-0
T e~sx A K ART

■■■•■ W' (3.36)

For the system analyzed in Table 3-2, T = 1 second, A = 1, and a = 1; 

thus, '(%)sg-- 1* Referring to Table 3*2 it is seen that there are

three positive pulses and two negative pulses each of magnitude A = 1. 

The result after superposition is a net steady state output of 1, 0,

which appears to check very well with the results of Table 3.2.

3* 5* k Quiescent Plant Rule .

It is desirable to determine some conditions under which a plant 

can became or remain quiescent. These conditions as a group are called 

the Quiescent Plant Rule. The present version of the rule assumes a 

system having the general form of that shown on Fig. 3.2, with a quantizer 

of dead zone amplitude as the nonlinear element. However, the same 

method can be applied to systems in other forms*

A necessary conditionfor the plant to become quiescent is ob-



talned as follows:

a) Unless x +^(k3?+) is zero for all k beyond some k^w the 

plant willreceive actuating signals and cannot become

b) $y definition, xn+^(kT+) will be zero if

J e(kT+)J (3-37)
c) Now e(kf+) = r(kT) - x^CkT) (3*38)

d) After substituting Eq. (3. 38) into Ef. (3* 37)^ it is 

found that a necessary condition for the plant to become 

quiescent is that

| r(kl) - x-Jkf) | < &x (3. 39)

for all k s* kn)iTi.

It follows from the above reasoning that necessary and sufficient 

conditions for an initially quiescent plant to remain quiescent is that 

there be no external disturbances to the plant state variables and 

that Eq. (3.39) hold for all k. Moreover, Eq. (3*39) also .indicates-' 

the size of the disturbance reaching or the size of the system in

put, r(t), required before the system will attempt to make a 

correction.

In many eases, time must theoretically approach infinity to have 

the plant state variables approach quiescence. However, for practical 

purposes the plant can be assumed to be quiescent after a length of 

time, beyond k^, which is long compared to the longest time constant 

in the plant. In this way, the Quiescent Plant Rule can also be



applied lay segments to situations where the system is actuated at 

widely separated intervals and approaches quiescence between these 

intervals..'



CHAPTER b

RESULTS FROM SIMULATION OP DIGITAL , 
CONTROL SYSTEMS

4.1 General

Two basic method for simulating digital control systems were used 

to obtain the results presented in this chapter. In the first method, 

digital simulation* the technique explained in Chapter 3 was programmed 

on _a small digital computerj and in the second method, analog simula

tion, the system was simulated in the usual sense by using an analog 
computer in conjunction with an experiment alquantizer. The two 

methods of simulation were chosen to supplement one another and not to 

duplicate i^he other functions. The following are considered to be the 

advantages of the digital simulation approach:

1) Multiple and unusual quantizer are readily programmed on 

the digital computer as compared with the difficulty and 

expense of physically constructing them for use with the 

analog computer. (This is also true for other non- 

linearities).

2) Highly accurate, noise free performance is available.

3) Depending somewhat on the types of computers compared 

and the calculations required, the digital method win 

usually be faster.

if) The method of digital simulation, together with the com

putational rules presented in Chapter 3 can considerably 

reduce the computational time and provide greater physical



5) Digital control systems involving logical decisions or com

plicated numerical operations can be simulated on a single 

machine.

These advantages for digital simulation may at first make it 

appear that analog simulation is unnecessary. However, the analog 

method was found to complement the digital method in the following 

ways:

1) Many of the practical problem such as drift and noise which 

occur in an actual system are encountered in analog 

simulation. These can be a "blessing in disguise" in that 

they give the investigator insight into the way these 

problems affect system design.

2) Since analog simulation is a completely independent 

technique, it provides an excellent method of checking 

digital simulation. In the work reported here, analog 

runs were made to "spot check" representative digital 

solutions for gross errors; but with the far superior 

accuracy of digital simulation, no attempt was made to 

obtain the ultimate in accuracy with the analog method.

h*S ;Pigit^-viimaintifia:'.

For higher order systems and situations requiring calculations for 

a large number of sampling periods, hand calculations, such as those 

presented in Chapter 3, become very laborious. Furthermore, roundoff 

errors eaa become significant because each calculation depends on the 

previous values. Thus, programming of the numerical method on a digital
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computer is advisable ia many cases to satisfactorily simulate the 

control system. She computations reported here were performed on a 

loyal Melee RPC-4000 computer using the Purdue interpretire routine, 

PUS, although satisfactory results could he obtained on an even 

smaller machine. Consideration has been given to inclusion of the 

Dead Zone Range Rule and the Input Signal Range Rule into the computer 

program, and it might be necessary if a large machine were used. How

ever, it was not done here because application of these rules is a 

task easily and accurately performed by the computer operator while 

waiting for the next series of calculations to be completed.

The basic flow diagram for the digital computer program is given 

in Pig. h. 1 with a complete PUT program being given in Appendix A.

The diagram shown is for a single quantizer in the error channel, but

more complicated systems should be capable of being analyzed by minor 

modifications of this basic program. The program shown in Appendix A 

automatically determines the 0(T) matrix for the plant g|'g"+ aJ with 

any desired values of E, a, and T. This program is for a step input 

but a program to generate ramp inputs is also available. Moreover, it 

would not be difficult to write programs for a wide variety of other 

inputs, e„g. sine waves and random signals. In addition, complete 

freedom is allowed in the selection of initial conditions on the state 

variables. The quantizer subroutine permits quantizers of as many 

levels as desired and with any arrangement of individual levels to be 

simulated, also the quantizer subroutine can be bypassed so that un

quantized systems can be simulated. By using the tape input feature
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of the computer to supply new data, a large number of complete runs may 

be made automatically. For each computer run the system input, the 

error signal, and all of the state variables are printed, to eight 

significant figures, at the beginning of each sampling period. In 

this way a complete picture of the system performance is obtained.

It was easy to cheek the operation of the quantizer by comparing 

the value printed for the error signal at a particular time with the 

value printed for the output of the quantizer. Frequently it was 

possible to determine heeded quantizer modifications for desired system 

performance merely by inspection of the computer's printed record alone 

or with the aid of one or more of the computational rules. In aH 

eases where the system did not go into a limit cycle, the final value 

rule was applied to the quantizer output to Verify the steady state 

value given on the printed record. It was interesting to watch a 

system begin to lock into a limit cycle in that it usually required 

several complete cycles before the state variables would repeat from 

one period to the next out to the full eight significant figures.

As an example of the application of the method of digital simula

tion to a fairly complicated system, the following third order system 

was considered:

Plant . 0 + 5 -
s(s + l)(s + 5) r(t) = 1 + 0.8t, f = 0. 5 second

v(C (v.i>

ant with the state diagram and quantizer shown in Figs. 2A and h-. 2B



./



respectively. Note that aH state variables have nonzero initial con

ditions, that the input is a ramp superimposed on a unit, step, and that 

the 5 and b values of the quantizer are not all equal.

Using the method previously described the following transition 

matrix was found:

0(T) 0 0 
o : o §

(V.2)

These data were fed into the computer and the digital simulation carried 

out. The behavior of all state variables and the input for the first 

15 sampling periods is shown on Fig. 4.3* Note that after the initial 

transient, the output follows the ramp input fairly well but there 

appears to be a steady state position error of approximately 0.4 unit.

4.3 Analog Simulation

A simplified block diagram of the equipment used in the analog

simulation of the control systems considered here is shown in Fig. 4.4. 

The heart of the equipment is the quantizer, which consists of an Epsco 

analog to digital converter and a digital to analog converter developed 

by the author. With this equipment it is possible to simulate digital 

control systems with levels of quantization ranging all the way from 

very fine (10 bit quantization) to a relay without dead zone (l bit

quantization). In addition, it is possible to select a very wide range 

of sampling rates. (As far as the quantizer is concerned the limit is
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r(t)

s(t)

xIY System Output

Brush ’■■■..y A2
Recorder V. :

x3, Quantizer

Sampler, Zero Order Hoid, 
and Quantizer

Kate: Shaded blocks indicate functions performed on an analog computer



As indicated in Fig. k. k plant simulation, signal generation, and 

certain other functions such as summing are performed on an analog 

computer. A six channel Brush recorder is used to record the same

vahihhles "as are printed in digital sinralationdiseussed in Section 

h<>2; thus, a direct comparison can he made between the results of the 

two methods of simulation and this is done in Section k. 5 below.

A detailed discussion concerning the techniques used in the anal r>g

simulation work and complete circuit are

with Results Presented in the Current

In order to test the validity of the method of analysis developed

here, a comparison will be made in this section between the results 

produced by digital simulation and those presented in the literature 

for the same system. A further validity test will be presented in 

Section k. 5 inhere a comparison win be made between results from 

digital simulation and analog simulation of the same system.

Consider a system having a sampling period of one second, a

three level quantizer, and the plant —7— ly changing the deadsis + I;
zone amplitude and varying the magnitude of the step input to the 

system, different modes of limit cycle oscillation can be produced.

loth Kuo and Chow have analyzed such systems and the results for four 

modes of oscillation found by them are summarized in the first few

columns of Table k. 1. Mote that KouVs results are for the apparent 

amplitude of osciHatiom, which is computed by knowing the system out

put at the sampling points only, while those of Chow are for the
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. Table 4. 1

COMPARISON OP ANALYSIS RESULTS FOR A SYSTEM 
33S IHHT CYCLE OSCULATION -

Mode ; Period 
of (in

Oscillations- See.)

Apparent ‘ True
Amplitude s Amplitude 

fromg s from,.
Kuo v Chow5O -

; Using Methods of this 
t Report
9 7 9o «
t Apparent ; True 
s Amplitude ;Amplitude

p '•«••••* * ga a a a a
1- t 4 : .30 s'

9 • 9
9 9 .9

.308 s .295
O
•«

1 .302
0O

2 ' s 4 s .352 1
« 0 a
6 0 a

. 435 .3519
0
•0'’

s .430
0 ■
0

3 s 5.... ; .525 . . • 571 s .5253 : . 568

4
9 9 "9

1 6 s .80 ; .84 ! .799 . 851a: • ~ • -'■■■■ ■■ a '« . o " '• 96 . 9 . 9 ■ -.... 9 . «



true amplitude of oscillation. Using digital simulation, the system 

was analyzed and the apparent amplitude ©f oscillation computed for 

tie same cases as presented "by Kuo. (See the second last column in 

Table i.1). lote that very good agreement is obtained with Kuo* s 

results but that a significant differences appears between these re

sults and those of Chew especially for the mode of oscillation labeled 

2. The apparent reason for this is that the mayinmm amd rrn* nitti-nm of*

the 'output do' not occur! at' the; s.ampling instances. ■ This ;appear-S to he 

physically reasonable because the acceleration can change instantaneously 

but the velocity cannot for this particular system; thus, the command to 

the plant may be to change the direction of motion hut the output will 

continue in the original direction for an interval after the sampling 

instance. A crude approximation for determining the true amplitude is 

to plot the output against time for the sampling instances and draw a 

smooth curve by eye through the points* A better method is to; calculate 

and plot several inter sampling points and from these determine the

of oscillation. It is not necessary to determine the inter- 

l points within all sampling periods. As a matter of fact, data 

for one sampling period in which the maximum occurs and one in which 

the minimum occurs are all that is necessary so that intersampling 

points are needed during only two periods. Although it would not be 

difficult to modify the computer program to accomplish this automatically,

wr.. • ... ■ ..
Actually Kuo has also calculated the true amplitude by another 

version of the same method used by Chow and obtained essentially the 
same results as Chow.
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the following alternate manual method will also be satisfactory in many 

instances. Recall from Eg. (3.3) that the state vector at any time, t, 

is given by
v(t) = 0(t - tQ) v(tQ) (^.3)

To obtain intersampling points, let t = t + p® ih lg. (^3)

+ pT)■» 0(tQ + pf - tp v(t^) = 0(pT):i(t0) (h.h)

where © ^.p^.1.

Since only the output is of interest, Eg. (h,h) may be simplified

llv-o

where ■I h is the row vector formed by taking the first row of

matrix. Often it is not difficult to determine 0-^lpTj to 

moderate accuracy with a slide rule for four or five values of p. The 

computer record is then

carried out. This method was used to determine

to determine v(tQ) and the operation

the true oscillation amplitudes presented in the last column of Table 

h.1. Rote that these results are guite close to those presented by 

Chow especially when it is recalled that the author's work is to slide 

rule accuracy and the describing function, which was used by Chow, is

■am

As a further check, the re stilts of digital simulation were compared
13with the phase-plane results presented by Muliin and Jury for the 

plant with a unit step input and for sampling periods of 0.5
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and L, 0 second. In the case of the 0. 5 second sampling period,, the 

system output -was found to overshoot hut to finally settle to a value 

of 1.0. On the other hand, the 1.0 second sampling period caused a 

limit cycle with a 6.0 second period to exist. She results of digital 

simulation were found to he in good agreement with those of MuUin and

Jury in both cases.

4. 5 Comparison of Results from Digital with

Simulation.. .
In order to an,

islttlsitisai C««tainiijg the'

e method of digital

subject to step inputs have been analyzed by the method of analog 

simulation described in Section If. 3» Typical results obtained are 

presented here in Figs. 4. 5, 4. 6, and 4.7. with some additional 

results.being presented, where appropriate, in other parts of this 

report. Also shown on these figures are the results of digital simula

tion under the same conditions. In plotting the digital simulation 

data, minor corrections were made to take into account snail imper

fections in the' recordings! e,g. the fact, that the chart speed is slightly 

less than 1.0 division per second and the fact that the arc made by the 

peas d© mot always .agree perfectly with the arcs printed m. the .recording ' 

paper were taken into account.

He suits for analog simulation of a system with a three level

quantizer are shown by the solid line in Figs. 4.5 and 4.6, also shown

..from the .Brush Recorder were retouched to 
sure that good reproductions would be obtained.

in-
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la these figures are points at the sampling instances, which were com

puted from digital simulation. Hotethat the re salts hy the two 

methods of simulation give results which are in good agreement. The 

only change between Fig. h. 5A and Fig. I4-.5B is that the normalized 

input has increased hy . 02. This cause sa considerable difference in 

the transient response hut the final outputvalue isessentiaHythe 

same. The difference in perf©rmaace is easily explained in terns of 

the design graph presented and explained in Chapter % The fact that 

a limit cycle exists for the conditions of Fig. k.6 is also easily

explained in terms of the design graphs of Chapter % Using only the 

quantizer output and the Final 'Value Rule,, the steady state value of 

output was predicted for both Figs. h. 5A and 4.5B and the predictions 

were found to he in agreement with the actual steady state output values 

obtained. A check of the steady state error in both figures reveals 

that both are well within -8, which is as it should he.

|h all three figures the plot of Xg, which is a general state 

variable but corresponds to velocity in a position control system,

against time contains discontinuities in its slope j this is reasonable 

in that Xg =5 Xj - x^ and x^, the quantizer output, is a discontinuous 

function. Since the initiation of the input is not synchronized with 

the sampler, a random delay is observed in the first nonzero output 

from the quantizer on all, figures. The delay in the output from the

quantizer in turn causes a random delay in the overall system response 

by up to one sampling period, but it is the most common way such a 

system would operate in practice.



Essentially the same procedure described above for the three 

level quantizers was used to analyze multiple level quantizers ; the 

result from two different cases are shown in Figs, 4. 7A and 4, 7B.

Again the results of analog and digital simulation are in good 

agreement. Although the quantizer producing the results of Fig, 4.7A 

contains 15 levels., only 7 of these actual show in the figure. 

Uaturally levels not shown can be made to appear and those appearing 

can be made to disappear if either the input magnitude or sampling 

period are changed in the proper way. It was shown by both methods of 

simulation that small changes in either the b values or the 5 values 

of the quantizer due to noise or other causes can significantly in

fluence the transient performance of the system; hut of course,
,

steady state response will always lie within -8, as long as a limit 

cycle ;isOhot: produced,: '

As expected, it was observed that the system reponse appears to 

more and more resemble the response of a system without quantization 

as the number of levels increases. However, it appears that many 

systems could be designed to have quite satisfactory performance with 

only a few levels of quantization; this will be placed in quantitative1 

terms in -Chapter 5 where the design ©f a three level quantizer is 

considered, ;• ■•.'-■3 - . / ■ ...

Si all of the analog simulation runs, the results observed were 

either predictable by digital simulation or definitely caused by 

system malfunction, • drift, or noise. Drift in the decoder and in the 

networh preceding Amplifier 7 were the' most troublesome effects.
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Although it was not difficult to control these hy frequent checks and 

adjustments during the experimental work, careful redesign would he 

required in hoth of these areas in commercial equipment.



CHAPTER 5

DESIGH ©F DIGITAL CONTROL SISTERS IX DIGITAL 
SM1LATI01

5.1 General

This chapter preseats design methods -which, have evolved from the

analysis techniques of Chapters 3 and h. First, the design graphs for
■ : - • . • : '■ 11;. V: ' •

' - . ■ ■ ...... " ■ ' . . .• ;• ; •• - ...
a three level quantizer used in a specific second order system are pre

sented ana their salient features explained. The method of construc

ting design graphs applicable to any second order system is then pre

sented. FifflaHy,.. more detailed consideration is given to systems 

possessing overshoot.

■5*%.-.,Dfslgh,.;Of-a,Thfhh-:,ttvol^,ln^l>iger for;!%,.jie;CjBhd:,ifedir

In order to see hew digital simulation can he applied to the de-

[£% is ;'Jteh© . .s; . ■

•••••. iv"-' v:
can he used in

the
■ :

1 to he described without causing limit cycle oscillations.

" ‘ ' ' . - - ' ..’i' if •" ' ' ..
accuracy is a function of input magnitude, hut assuming it is desired to
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operate the system in response to a fairly wide range of input mag

nitudes and that noise, may he present to perturb the output, appli

cation of the Quiescent Plant Buie leads to the conclusion that the 

error will, he limited to a hand of. - S about the desired value in 

steady state* On the other hand, there are hounds to how small 5 can 

he reduced before, limit cyele oscillations occur. One example of 

this ms presented in Chapter 3, hut a much more complete presentation 

of the influence of 5 on system performance is shown in Fig, 5- 3- 

3Ms figure was developed hy using the computer program shorn in Fig, 

k.l with the various computational rules helping to reduce the com

puting load, The following several points should he observed con-

1, The parameter h of the quantizer has the same effect 

on the output of the plant as does the gain of the 

plant Kj thus, both parameters 

single quantity Kb,

g, The fact that the plant itself is linear allows a single 

:set; ©f :in:"terid-

3*JL :^ther
hlw"curve. Kb*.-..Ifea Sahticp;:.3^:T,f^':h’

3,. ;:i^|h|iag ,©h;-uie ; a®sf^ =-v
and the value of normalized input magnitude J r | * ^ ,

the system response will fall into one of four regions; 

no response, limit cycle oscillations, overshoot, or no
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overshoot. set off by the dashed lines

will be discussed starting in Section 5. 3).

Ik M,though both the limit cycle as well as the overshoot 

boundaries are a function of input magnitude, little 

advantage can be taken of this fact unless the system 

is 'lie., used jritk: if very' harrow range of input aaptituleji*.;1

In addition, the overshoot boundaries are somewhat lower 

for small inputs, but again this is a rather special case. 

For most practical purposes, Fig. 5*1 shows that a minimum 

value of 8 * 1.0 is required to avoid overshoot mid a

miaiatsa vaiue of $ = . 5-15 is required to Wold.limit cyclea /‘V;
oscillations.

I, There appears to be approximately a factor of two to be 

gained in the minimum value of 8& by allowing overshoot. 

However, in many eases this advantage can not be

because the long settling time produced by seme inputs are 

objectionable. There is a band of values of j r | along the 

right side of the overshoot regions for which long settling 

times are produced. For example, with &n = . 58 and } r j a 

between 1.3 and the overshoot boundary at 1. %25 the minimum 
value of settling time (to within 5°/© the final value)

is 8.6 seconds. Moreover, narrowing the input range by 

allowing the left edge of the range to approach the over

shoot boundary increases the minimum settling time until in

finite settling time is reached at the boundary itself.
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Initially, it will be assumed that the possibility of long 

settling times or just the fast that an overshoot is present 

rules out consideration of the overshoot case. However, 

system design with overshoot allowed will be considered 

ia lection 5.9*

6. Since Fig, 5,1 is normalized ia terms of Kb, it is seen

that any numerical value of 5 may be selected provided that 

it is used with the proper value of Kb. (Here 5=1
I3>

(6 = Kb) leads to no overshoot independent of input magni

tude). It is thus seen that high static accuracy may be 

'obtained, by wsihg asmellvalue~of Kb*;' HfWeyersettling' 

time is again increased but not to the extent it is in 

seme instances when overshoot is allowed.

to analog computer verification of the location of some of the 

boundaries shown on Fig. 5* 1 was attempted. The results are indicated 

on the figure by means of the circled points at 5^ = 0.6 and values of 

1 r 1 ^ near 0.6, 0.96, 1. b and 1.75* Each circle encloses two points 

although they usually are too close to be resolved on the figure.

One point indicates the position of the left edge of the boundary and 

the other indicates the right edge as determined by analog simulation. 

Again note the close check between the results of digital and 

simulation. Incidentally, the complete analog record for the two 

points near | r j = 1,75 are shown on Fig. it-. 5.

Fig. 5*2 shows the relationship between settling time and input 

magnitude for the smallest value of Sn consistent with no overshoot
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for any member of tie ensemble of inputs up to tie value of [ r | a 

selected from, tie graph. Mote tlat this figure is also normalized in 

units, of Kb. Making use. of Kgs. 5« 1 and %2 it is possible to. es

tablish a quantizer design vhich satisfies a set of specifications on 

settling time and maximum static error. For example, assume that the 

specification requires a system accuracy of at least . 24 unit and the 

settling time should be no more than 14 seconds for an ensemble of 

inputs of magnitude no greater than 3.0 units. Select a value of 

5 = .24 in order to satisfy the accuracy specification and initially 

assume the smallest value of Kb which would ever be required in this 

system, i. e, ? Kb = § = .24. The normalized dead zone amplitude and

normalized input magnitude then becomes 5 =1 and I r I ■= I2*:!v■■a ■■ tit 24," : .
From Fig. 5.1 it is seen that the original assumption of Kb = S is 

justified in order to prevent overshoot. Going to Fig. 5.2, it is 

seen that j r | n = 12. 5 leads to a settling time of 13.6 seconds.

Thus, it is seen that a quantizer design having Kb =5 = .24 will 

satisfy the original specifications. As a verification of this de

sign, the system was simulated using the analog computer method des

cribed in Chapter 4 and Appendix B. A copy of the five channel record

ing obtained is shown in Fig. 5.3. Mote that the settling time of 

13.2 seconds is in good agreement with the value obtained from the

{that the curves frean analog simulation s,re accurately 

verified by the points determined from digital simulation. As ex

pected a steady state error exists; in the output but this is within
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Of course, there ■will he situations for which the specifications 

on accuracy and settling time can not he satisfied simultaneously.

When this occurs some compromise must he made. Either the specifi

cations must he relaxed or seme change must he made within the system^ 

e. g, a. quantiser with an additional set of levels may satisfy the 

specification. Another possibility that becomes more attractive for 

larger values of j r | & is to allow overshoot. This possihility will 

he explored further in Section 5. 9*

5* 3 Use of Computational Rules in Developing Design Graphs

The results presented in Section g. 2 and especially those of 

Fig, 5-1 could have been obtained, by using the barrage technique of 

computing a multitude of points in the regions of interest .and then 

trying to find sane systematic behavior in the results. Of course 

this .was not done, hut as was. mentioned before, the computational 

rules mre '..employed to..male, the’ procedure autre systematic and to reduce, 

the number of computer runs, needed... The reasoning used to develop the 

various boundaries and. regions: ©n:.jig.:. §.l will now be presented. 

Initially it will be assumed that Kb = 1, but the normalization of 

both 6 and j r j will b«: discussed later. The Region of Ho Response is 

the simplest region to consider but the reasoning used is similar to 

that employed on the other regions, Analysis of this region proceeds 

as follows:

1. If x^(o) - 0 sad the plant was initially quiescent, the 

Quiescent Plant Rule, Eq, 3.39, yields

6 > | r( kf ) | (5*1)



as the condition for the plant to remain quiescent.

2. Thus, Eg, (5. l) describes a region in which an initial 

quiescent plant with x^(0) = 0 win remain quiescent.

This region is called the Region of Ho Response on 

;Eig.. 5* 1.

3. Hote that the conclusion in 2 above holds not only for 

step inputs but f orany functionwhose values are defined 

at the sampling points.

5. h limit Cycle Region

As may be seen from Pig. 5* 1, the Limit Cycle Region is divided 

into a number of smaller regions. These will be discussed separately- 

beginning with Region A.

1. In the discussion of the Pinal Talue Rule/ Section 3* 5- 3, 

it was found that the output in steady state, x^(oo ), 

for the system under consideration will be an integer, 

which is a special ease since the steady state output of 

systems of this type will be quantized but not necessarily 

quantized to an integer value. (However, the following 

reasoning can also he used in the case of noninteger 

values).

2. If © < r < 1 and 5 < I (where r represents the magnitude 

and sign of a step input), the Only steady state values of

which wild, satisfy the Quiescent Plant Rule, Eq. 3» 39* 

are Q or +1. (if *-l < r < 0, x^ can only he 0 or -l).

3. With x~(cq) = 1, the Quiescent Plant lule will not be



satisfied during any sampling period for which

§ < | r(kT) - 1| (for © < r < 1) (5.2)

at the. beginning of the sampling period and if the 

input..is.:;av::step the fact thatEq, (5.2) is not 

satisfied for k = 0 means that it will not he 

satisfied for any sampling period. 

bo For x^(oo ) = “1# the equation corresponding to Eq. (5.2)

| r(kT) + 1 | (for -1 < r < 0). (5.3)

% Equations (5.2) and (5«3) may he combined into the

following equation which covers the range -1 •< f < 1 '

@ ^ jrj -1 (5.^)

6. With x^(oo) = 0 and a step inputs reasoning similar to 

that in 3 leads to

* < It ! (5.5)

as the condition for which the system can never be

7. The above discussion leads one to the conclusion that any 
input within the region defined hy Eqs. (5. h) and (5.5) 

cannot lead to a quiescent system. Since Bertram.^ has 

shown that quantization cannot cause a previously stable 
sampled-data system to be unstable 7 then the above must be

The definition of stability used here is that the output must be
bbhjid^# f®^ /'SU
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a limit cycle region. Shis region has heen labeled A on 

Fig. 5. L. (Hote that 6 < 1 for the entire Region A; thus, 

the assumption in 2 above is justified).

Seasoning similar to that used on Region A will now be applied 

to Region B.

3U Assume 1 <, jr J <. 2? i ■< 1, and x^(o) = 0.

2. From the Quiescent Plant Rule> Eq» (3.39)} the plant may

become quiescent if

I rCfef) - x^Rf) | < (5,6)

for k > Xwin
3. .Recalling that x^co) must be am integer "for this

particular system and using the assumptions of 1, it is 

found that x^co ) = 1> x^oo ) = 2 or in some cases both 

are the only values of x^oo ) which satisfy Eq, (3.6). 

.(x^er). = -l arf^Cos') .= -2:.f©r negative:;inputs^. 

k., As staling x-^00) is +1 or -1, the Quiescent Plant Rule will

act be satisfied if

'. : h,.. < ...

% Assuming' rfc©.) is +2 or

I? I 4

•2, the Quiescent Rule

6,

will not be satisfied if
S < | J r 1 t2 (

Frau 3 the plant., can only be quiescent if x^Coo ) =*.■■% or. 

ig 'but ■’ even if this. is true" the plant Will, hot he quiescent

if. both
7« therefore.

ahd .CS4®) are satisfied,

,7) and (5.8) define a region (Region B



cm Fig. % l) where the plant is never quiescent. Since the 

system is stable this region must he part of the Limit Cycle

to those used on Region B* it may he shown 

that legions* C* D* E* etc. are also part of the Limit Cycle Region.

It is desirable to find a way of proving that Regions 1* 2* 3, 

etc. are also regions of limit cycle oscillation. Although only a 

few computer runs are required to establish that the boundary satisfies 

the conditions for limit cycle oscillations and although it seams in

tuitively clear that the entire region is one of limit cycle oscillation* 

the best that the writer has been able to do thus far is to make the 

best use possible of the Input Signal Range Rule and the Dead Zone 

Range Rule to systematically show that every point in these regions 

is one of limit cycle oscillation. On the other hand* once it has been 

shown that the outline of these regions is correct and that a sizable 

portion of the area around their boundaries lead to limit cycle 

oscillations it is immaterial for most engineering purposes if the 

regions contained a few holes in which the conditions for limit cycle 

oscillations are not satisfied.

% 5 Ho Overshoot Region

Like the Limit Cycle Region* the Ho Overshoot Region is divided 

■into a number of smaller regions which will be diseased separately:.

!<• From Table 3„2 at t » 1 second* x^T) =* .368. This value 

win be obtained for the system under consideration ir

respective of the magnitude of r as long as x^(0) = 0*
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the input does not fall in the Region of Ho Response, and

r is positive.

CJ*T MAO

(For r negative, x^T) = - .368),

e(kT+) = r - x^kf) (5.9)

e(f+)

Sl33,cl

= r - . 368 r > 0 (5.10)

e(T+) = r + .368 r <0 (5.11)

3. The output of the quantizer at t = 1 second will he zero 

as long as § > | e(f+) | . Substituting Eqs. (5-10) and 

(5.11) into this inequality and writing the result as a 

single inequality, which is good for all values of r, the 

following expression results:

r > | r I -

S^^ting with a quiescent plhah .and'fallowing a single

(5.1

one to ccme from the quantizer,
*

it is found that monotonically approaches = 1 

>1 --1 for “^ati-re in this case, Eq. (5.9)

yields the foUowing monotonic behavior for the system 

■errors .

e (kT+ ) ,—s~r - 1 r > 0

or

e(kT+) —>r ■) 1 r < 0

5„ As long as 8 satisfies the equation

(5* DO

*See Iqo (€.52).
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obtained from Eqs. (5.13) and (5. It) and the requirement 

that | > j e(kT+) j leads, to zero quantizer output, the 

output of the quantizer will always he zero after the

'fitit'

. Eq. (5.32), Eq. (5.15) and the boundary of the Region of 

Ho Response define a region labeled I in Jig. 5«1 in which

II was found in a manner very similar to that

1. If the input does not satisfy Eq. (5*12), the quantizer 

output will maintain its maximum (or minimum) value for at 

least the first two sampling periods.

2. From Table 5»2 at t =2 seconds, x1(2T+) = 1*135*

5* How the output of the quantizer at t » 2 seconds will be

zero as long as § > J e(2T+) J. Therefore, the requirement 

for zero output at t » £ second is
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after the second sampling period:

a. > - 2 (for all r) (5.17)

5. (%!£), (5.16), and (5.17) define a region (II on Fig.

5.1) for wMek x^ monotonieally approaches x^ = 2 (or 

«g')l tlierefore it also is part of the Ho Overshoot*i:
Region.

The same type of argument used to determine Regions I and II was 

used to determine all of the other regions (XII^ XV, Y, etc. ) which 

make up the lo Overshoot Region. How Region I required a pulse of 

length T to bring the system to the steady state value of 1 and Region 

XX required a pulse of length 2T to bring the system to the steady state 

value of 2. By the same reasoning it is found that a pulse 3T long is 

required to bring the system to the steady state value of 5 in Region 

XXXj and the values for Regions IY, Y, VI, etc. follow in the same way. 

% 6 . Overshoot..-.

Like the other major regions the Overshoot Region is also broken 

into smaller regions. These will he considered separately beginning

with Regions.

1, Igain assugtihg that x^(0) = 0, then at t = 1 second, 

x,(t) = t . 368 depending only on the sign of r as long 

asr does not fall into the region of no response.

2, Osingreasoning similar to that used previously it is

found that

5 r (5.18)

is the condition for the quantizer output to continue to
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maintain its maximum the second

3. With -2 < r < 2 and 5 < 1,

k.

K;-

cannot he quiescent with x^ ^ 2 (x^ ^ -2 for r < 

A system satisfying Eq. (5.18) will settle with x-jO 

unless the quantizer output changes sign for some 1

>2

sampling period (x^oo) ^ -2 for negative inputs). But 

a system which also satisfies Eq. (5.19) cannot be 

quiescent with x^(<© ) >> 2 (or x^(oo ) ■£. -2).

5. Therefore, any system satisfying both Eqs, (5.18) and (5.19)

must overshoot if it is to become quiescent.

6. The above discussion does not prove that all points bounded 

by Eqs. (5.1$) and (3.19) settle out to a steady state 

value of x1 (® ) =1 because it has already been proved that 

Region B in Fig. 5* 1> which is a subregion of this, is one 

of limit cycle oscillations. However, systematic use of 

the Dead Zone Range Rule and the Input Range Rule reveals 

that Region a in it entirety is an overshoot region. Details

;ion a are in

Arguments similar to those used above show that Regions b, c, d, 

etc. have the same properties as that of Region a, i, e., they can 

either be overshoot or limit cycle regions but actual calculations re

veal that they are overshoot regionsonly.
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5. 7 The Significance of Kb as a formalizing Parameter

For the systems discussed here, the plant itself always is assumed 

to he linear. Thus, the value of the system output at any time and for 

that matter the value of all of the plant state variables at any time is 

linearly related t© the size of the quantity Kb. Thus, if Fig. 5*1 is 

considered to be for Kb ~ 1 for the moment and then inquiry is made (by 

reviewing the arguments of Sections 5*3 through 5*6) as to what happens 

to the regions in the figure as Kb is increased (or decreased) it is 

seen that the Kb acts as a magnification factor which is applied to 

both axes* Thus, one can obtain a universal or nomalized set of 

curves by plotting ~ and | r, | a instead of 8. and J r J

themselves, which is what was done in Fig. 5*1*

5.8 Application to either Systems
The general method described in this section can be used to develop 

quantizer design curves for other systems. Moreover, depending on the 

system specifications, it may not always be necessary to make the curves 

as detailed as that shown in Fig. 5*1* For example, if the design 

specifications require no overshoot, only the boundary of the no over

shoot region needs to be drawn; this saves a considerable amount of 

work and computing time.

5* 9 System Design under the Condition that Overshoot is 

Allowed

Da order to obtain maximum steady state accuracy with minimum 

settling time, it is tempting to try to operate the system in the over

shoot region. Seme of the consequences of this will now be discussed.
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Figure 5* *+ shows seme of the structure occurring in and around the first 

overshoot region. Basically, it is an enlargement of Regions a, I, II 

and III of Fig, 5,1 with the .settling times. hp'^^thi*"?0^;;# tie; finpl 

value indicated on each of the subregions. Bote that very long settling 

times are produced if the system operating point on Fig, 5,14. happens to 

lie inside hut very close to the right side of the overshoot boundary. 

Table 5« 1, "which was prepared from Figs, 5.2 and 5„k, presents a 
comparison of the settling times obtained with and without overshoot, 

i»e»3 §a ~ °6 and 8Q « 1,0 respectively. This example uses the seme 

system accuracy, 8 = .2^-, as was used in the example given in Section 

5,2, For'inputs within certain ranges the settling time with overshoot 

is equal to or less than that with no overshootj and in other ranges 

the settling time is slightly longer with overshoot j and in other 

ranges it is considerably longer with overshoot. These results are 

typical of those obtained for all of the overshoot regions. However, 

ah Ihislfh: ibiNts ,;.arc;e|^siip|n<g|L:.It ..apfj^rs. that" a 'greater j^rcehtajgeof • 

the total range of inputs lead to shorter settling times in the over

shoot case. For example, with inputs in the range 2. 5k to 3.0, with 

8 = .2k, and again comparing the results for 5 = .6 with those for
8n ” •L0^ approximately 70% of the cases result in a shorter settling 

time for the overshoot ease and only approximately 6°/o of the inputs 

have settling times with overshoot which are more than 2.2 seconds 

longer than without overshoot. Moreover, in those instances where the 

yory long sottling times occur, the output is approximately within ^8 

for the entire latter portion of the settling period. Thus, in many



N
O

R
M

AL
IZ

ED
 DEA

D
 ZO

N
E A

M
PL

IT
U

D
E,

 8

- 77 -

No Overs

Region of .■ 

No Response j
5.0 s/ 3.7 S

/ 9.6 s / Approaching

First Overshoot

Limit Cycle Region

D 0.5 1.0 1.5 2.0
NORMALIZED INPUT MAGNITUDE, Irl

Fig. 5.4. Structure within and around the First 
Overshoot Region(Settling-times, in seconds, to within 5°/o of steady state indicated)
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designs it may be desirable to allow overshoot in order to decrease the 

average^setiidnft timid"'©f the systemin response to an ensemble of inputs 

and accept the few cases where the settling times are long.
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CLOSED FORM SOLOTIOMS

6.1 General

The development of some closed form solutions for quantized 

systems will now he presented. Closed form solutions, which are 

universally applicable to all input types, multiple level quantizers, 

etc., are desiredj hut, at the present time, their development 

appears to he an almost impossible task. However, solutions for 

certain special eases even though they may he only approximate in 

seme respects, are believed to he very valuable in the following 

aspects;

1. They provide general physical insight into the operation 

of quantized systems.

2. In those cases where available closed form solutions are 

exact or where approximate solutions are satisfactory, 

system design or analysis can he completed in a short 

time. (Approximate solutions should he particularly 

valuable in preliminary design and feasibility studies).

5. In those cases where the approximate closed form solutions 

are not good enough as final results, they can provide a 

starting point for more accurate numerical methods.

6.2.1 Conditions for Elimination of Limit Cycle Oscillations

The closed form solution for the first order system shown in
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Fig, 6.1# with a step input, iri.ll now be developed. It is seen from 

Fig. 6.1 that if e(kT+) > §/l(kf+) =6. At t = 0 let e(0+) ^6*# 

then M(Q+) = b and it will continue that way through succeeding sampling 

intervals until the end of the sampling interval, n at which e(nT+)-<. 5. 

Thus# the system output# x^(t )# for 0 ir t ™ nT may be obtained by 

allowing a pulse of length nT and amplitude b to exist at the input to 

the plant. In this case the input to the plant is
x2(t) =b ju(t) - u(t - nT)J (6.1)

Taking the Laplace transform of Eq. (6.1)#

X2(s)=b
t ■ -snf

therefore#-

and

X1(s) 1 - e-snf X^©)

xx(t) -KbJ^t j~u(t) - u(t — n!f)J, + nf u(t - nf )j

where x

+ x.

is the initial value of the output.

Case I; The situation where ! e(nf+) I <■ 5 will be called Case I.

For this case# M(nT+) = 0# but the output of an integrator (such as 

the present plant ) will remain constant at the value it had when its 

input went to zero. Mow the overall system input, r(t) is constant 

and if the x^(t) does not change# e(t) can not change. Therefore# the

fhe results for e(0+) ~ -S throughout this chapter follow in a 
similar way to'those for‘e(©+); ~ §... ■ . ’ ■i-T'



system has reached steady state, Note that under these conditions,

If, (6.h) is valid for all t ^ 0, and from Ef, (4, h) the steady state 
value of the output, x^(cc ), is

x1(oo ) = KbnT + x^(0) (6. 5)

The steady state system error, e(oo), hecomes

e(® ) = A - KhnT - x^(0) (6.6)

where A is the amplitude of the step input,

fase.:.I;I; .The situationwere e{nT+) < -S will he Known as

Case II, (By definition it is impossible for .e(:nf+) ' > h). Then 

■x^(t) = -h for nf < t ■S. (n + 1)1 and the input to the plant for 

!:©;^ t — (h + l)T he comes

b u(t) - u(t - - b|u(t - nT) - ujt (6,7)

Proceeding in the same way as previously it is found that

x^t) Kb|t jict:); - 2u(t - nT) + m(t >1h;/+:X' T 

+ KbT|nf2u(t - nT) - u(t -■ m V IV a ll T)?+ x.

(6.8)
which is valid for 0 i t — h + 1 %

From Eq, (6„ 8,

. Xt-(» + 1 T) = Kb.

and

ffe

+< X,

+ X,

(6.9)

(6.10)
The output, the error, and hence the input to the plant are the same 

for the (n —. l) - and the. (a + X) sampling instances,’ hut the .response of



Fig. 6.1. A First Order Digital Control System

(n-l)T n T

TIME IN SEC

Fig. 6.2. typical Response
of Case I)

Xi Co)
(n-OT (n+l)T (n +2)T 

TIME IN SEC.

Fig* 6.5. Typical Response 
(System of Case IIj
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an integrator plant is determined only by its input and the initial con

dition on the integrator. It thus appears that the system is in limit

under which a limit

Since the error is greater than or equal to the dead zone amplitude

How

e(n - 1 T) » r(n - 1 T) - x^n - 1 T) = A - ^(n - l T) (6.13)

After substituting Eq. (6.10) into Eq. (6.13) and the resulting equation 

into Eq. (6.12), it is found that

A - KbT(n - 1) - Xj(0) ^ S (6.1h)

A T

There h is a positive 

Writing e(n®+) in 

substituting for x^1 

obtained;

“6 < A -

or zero, which will be determined later. 

(6.11) in terms of r(nf) and x1(nT+) and

is

¥ -

Mow solve Eq, (6.15) for A and substitute into Eq. (6.16)

8 « EbT + h ■< 6 (6.3L7)

Solving the left portion of this inequality for 5
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a KbT - h
' ' 'iV

Ttm the right portion of Ef. (6. 17),

h <. Kbl

but h :2r. ©| therefore^

.0-15 h <.KbT

Frcra. Eqe. (©.IS) and 

cycle oscillations rs 

•values of A and x.

), 20) the values ©f I which will prevent limit

f%m ,i > :®.,t©>,>* depending on the

which in turn control the location of x,(n$)
1

•within the band—® about A at t = at. , This may be seen on Pig. ©.2

'■whefe 'the ’ - c.^5r*3^e to'a' value of A and x. which

leads to x^(nf )=A. and the condition ® > -g~ corresponds to values of

KbTA and which lead to x. A - or x^i ~ A + "2 If the

system is to be designed to operate with a range of values of A and 

x^(G) at least as wide as 2S = Kbiy then the condition ® > must 

be maintained. Since the great majority of the cases of interest in 

practice^ result in ranges in either A or x^(0) of at least KbT, the 

.following'.'wiH.be adopted as a. system design criterion;

® >■ m/S'

T

Moreoyer^ a value of S satisfying Ef. (©.21) or a value of T satisfying

If.als©'. assures that the system will not go into a limit cycle 

after a noise disturbance beeausea noise disturbance can merely be



considered to establish a new value of x^(0)r and Eqs. (6.21) and (6.22)

uere derived without restrictions on x.

6. g. 2 ISystem flme Response

lefime the system response time tr as the time required for the 

output to reach 95°/o of the final value. Assuming that it is necessary 

to have‘the'.final'value.' eqdal to the desired value, A, the value of the 

output When the time response is measured becomes x^(t^) = . 95A. From 

Eq. (6.h) with x^(o) = 0; it is found that

tr- Kb

lb

Sampling at f intervals causes the above equations to be approximate in 

some instances | this is considered farther in the next paragraph. After

substituting Eq. (6.2h) into Eq» (6.21) the following equation is ob

tained

f < It

From the • Quiescent Plant Rule., § .is. the ..maximum’: steady state error. for ' 

this system; Eq. (6.26) then becomes

< 2. ft

where f - is the fractional steady state error. Equations
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(6.21*) and (6.27) are the design equations for a single integrator 

system using athree level quantizer.

If it is desired that t^ as calculated frcm Eq. (6.23) he the exact 

time response for a particular A, it is necessary that m, determined 

ffia Eft. (6. 5) hy letting x,(od ) = A and x,(o) » 0, be an integer* teis

n 28)

If n as calculated frcm Eq. (6.28) is not an integer, the system res

ponse nill be that for the next highest integer. To find the values of 

A; end'ty ;nbieh"corresponds' to thenewysuLae of n> it' is merely neeessary 

to substitute the new ■value of n into Eq. (6.28) and solve for the new 

value of A. By using the new value of A in Eq. (6.23) the true value

of t can be determined. Variations of this procedure may be required 
r

depending on which system parameters are part of the specification and 

which are being determined. Moreover, if the minimum 5 allowed by 

Eq. (6.25) is not used the system output may not reach A in which case 

the settling time as calculated frcm Eq. (6.23) will be too

6.2.3

fee demonstrates the use of the above

shown in Fig. 6.1s f < . 0ks K - 2, tr < 0.1 second and the system 

is to operate with an ensemble of inputs up to A = 2 without going into 

limit cycle oscillation. Find the parameters T, b and 6 of the system. 

Solutions From Eq. (6.27)/ I < 0. 008^2 second said frcm Eq. (6.24),
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Kb = 19. Since f = j./, ■ § = (. 0h)(2) = 0.08. Cheeking the value of n

), it is found that a = 12.5. Bras, the actual system 

n = IJ which would then make the settling time 

than the specified value. If necessary, a correction 

can he made hy selecting n = 13 hut keeping the same nT product; thus, 
the new value of T becomes T = ^ = 0.00809 second. In

8 can now he slightly smaller. From Eg. (6.25) the new 8 is found

> 0,0768.

Second Order

order system with a step

»ij.yv»Ax xii x&o wm now he developed trader the restriction

that the system output does not overshoot. Similar to what was done

tl= i let e|©t) ^ 6; then, 1(0+) = h and it will

continue that way until the end of during;
wiiidh. ;nit) < 8. The output, 

considering a pulse of length 

'to ;^he;;:pla^l*:: ■ ®Bih. .i-

, f or 0 < t

..x, ~ ■“ u(t = nT)J

Taking the Laplace transform
n-suT\
■ft. : V-.

:’fheref®re: 
xi'(s) * G(s) X^(s) + ______rs s(s + a)

-e rSS^Ii. ' j&jj

(6.30a)

(6.3©h)



r(t)=Au(t)+ N(kT+) Order

Fig. 6. k. A Second Order Digital Control System

+ X,(<

TIME IN

Fig. 6.5. Typical Response for the System shown in Fig. 6.4.



For t > nT} Eq. (1.51) . yields

+nT u(t-nT)

> + xl(°)

J ■ (6.31)

x. m
. :•

nT +

and in steady state ^ t ■

a

■m:9

aafve ) + x.

x1(oo) .* Kbnfvvr#::-' + x.

F|r (So^3t.); yields';.

i + s__
a.v a + .x1

Assume that it is necessary to design the system in such a way that 

the output x^(t) does not overshoot its steady state value for any 

value of A or x^(o). In this case a typical system response will he as

shown in Fig. 6. 5.

Examination of Fig. 6. 5 reveals that

a: + ®

x, (if> 1 l)

;Implied' ih this, inequality is the requirement that x^(t) = 0
t
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axe the two extreme conditions which satisfy this assumption. The re- 

quirement of Eq. (6.36) arises from the fact that x^(t) = A - § at 

semetime within the interval a - 1 f ^ t < depending on the value 

of A and x^(©)« However,, to include all possible values of A and 

Xi(0) the extreme conditionon t is used^ i. e, , t = (n - l)T. (ifote 

that A in Pig* 6, 5 controls the positioa of the dead zone with respect 

to the response curve). Solve Eq. (6.36) for Aj substitute into Eq, 

(€.35)> sad solve the resulting equation for ©

x1(gg>) - x, (n - 1 T)
5 > - ■.... --—— (6.37)

After substituting for x^(go ) and x^(n - If) in Eq. (6.37) hy using 

Eqs. (6.33) and (6.3*1-) respectively^ it is found that

S > Kb
2a a

lote for a(a - l)T >> 1,

can be written in the simpler form

1)T

_

<< 1 and in this case Eq.

(6.38)
(6,38)

i M

If it is desired to solve for T, Eq.

(6.39)

eaa be written as

T < 2a©
Kb

1
a

(6.4©)

An independent verification of Eq. (6.38) will now be demonstrated. 

Divide Eq, (6.38) through by Kb and recall that in Chapter 5 the defi

nition Kb. 8 was used n

n Kb > 2a T +
»a(m ~ l)f

(6.41)



How tie values given by Eg. (6. 41) axe the minimum values of &n re

quired to prevent overshoot for that particular value of n. However, 

a plot of the value of &n for the no overshoot case was obtained by 

an independent method in Chapter 5 and this plot is found in Fig. 5.1. 
It was shown in Chapter 5 that the peaks in this figure at the 

separation of the Ho Overshoot Region from the other regions occur 

for n = 1,2,3> etc. How in Fig. 5*1 the following constants are 

used a = T = 1 second. These values were then substituted into Eg. 

(6.4-1) along with first n = 1 then n = 2, etc. The results are shown 

in Table 6.1.
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Table 6.1

Values of 5Q from Eg. (6.4l), a = T = 1

;i . 2 "f ■ 4- ’ " oo

8 > * 5 >. 8l6 >.932 >.975 > 1

Comparing these values with the values of 8n for the first, second, 

etc. peaks on Fig. 5* 1# it is found that Eg. (6.4l) exactly predicts 
the peaks within the accuracy of the graph. It is thus seen that 

Eg, (6.41) is a valuable addition to the techniques for producing 

design graphs already discussed in Chapter 5.

The response of this system will now be determined. In con

trast to the first order system considered in Section 6.2, the output



of the system, presently under consideration does not remain constant 

when the input to the plant goes to zero hut continue to increase, at 

an ewer slower rate, until t = oo. However, as long as Eq. (6. 38) 

is satisfied, the final error of the output from the desired walue of 

A will always be less than 6.

The same definition will he used for the settling time as was 

used in Section 6.2 and in Chapter 53 i. e., the settling time is the 
time required for the output to reach 95°/o of its final value. Taking 

95®/© of the value calculated from Eq. (6. ,33') and letting 2^(0) 0,

it is found that

xlK'} 00) = .95 KfenT
a (6. ¥2)

The value of t cam then he obtained from either If. (6.32) or If. r
(6.34) depending on whether x^Ct^) = »95^(00 ) occurs before or after 

t = nT. For the condition t ^ nf, substitute Ef. (6.k2) into Eq.

(6.5^) with = © to obtain

.it . i + £ltr
- r a a

(6. k3)

How assume that it is desired to have x^(t) equal the desired value, A, 

in steady state. From Eq. (6.33), with x^(0) = ©,

A = x^Coo) = KbnT (6. kk)a



y to obtain
siSubstitute Eg* (6.45) into If. (6.43) and solve for =

Kd

y — 1. ©53 | at **■ X + e
-at*1

where the subscript 1 in t indicates that t is calculated under the
rl r '

eoatitioa that t ^ a*. If at » 1, Eg. (6.46) may be written
rl

in-the simpler form

y « 1* ©53 ' at (€.k7)

Wmr- the eoaditioa tr > nl% substitute Ef. (6.42 ) into'Eg; (6. 

to obtain

-atr>^ ■
.95nf = ©f + a

(1 ■- e ■i)

Substitute If, (6.45) inf© If. (6,4S) and solve for e ^ to obtain

at
© ft 2G

y

where the subscript f ia the t indicates that t is calculated under
a r

the conditio© that t > nT. The solution for at frcm Ef. (6.49) is
r2

at
r .11

y
(ey - 1) (6.50)

Efs. (6.46)2 (6.47) and (6.50) are plotted ia Fig. 6.6. The regions 

of aj^licability of these equations within the figure will..aw be' de

termine!, Wow.If. (6.46) is applicable for t^ ^ nT or &t^ < sxi1!} but 

from. If. (6.45 )4
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Thus, Eq. (6.51) describes the half plane in which Eq. (6.46) is 
applicable with the equation

atr = y (6*52)

being the line of separation. Similarly, at^ > y describes the half 
plane in which Eq. (6.50) is applicable, with Eq. (6.52) again being 
the line of separation^ Equation (6.52) has also been plotted in 
Pig. 6.6. Bote that the intersection of all of the equations occur 
at at = 19.7. Thus, Eq. (6.46) is applicable above the intersection 
and Eq. (6*50) is applicable below the intersection. Further, Fig. 6.6 
shows that the dotted line representing Eq. (6.47) is practically 
identical with the dashed line representing Eq. (6.46) beyond 
approximately at^ = 3. Thus, the simpler equation, Eq. (6.47), can he 
used over the whole region in which Eq. (6.46) is applicable. In 
addition, Fig. 6.6 shows that for 8 ^ at^ 'S (the intersection) the 
difference between Eq. (6.47) and Eq. (6.50) is never more than 5%, 
which means that Eq. (6.47) is valid within 5°/° for atr > 8. This

of course Fig. 6.6 or even EqS. (6.46) and (6.50) may be used to
S4*

'pri la:

,2, here it is found that if the system parameters are such 
that n obtainable from Eq. (6.45) is not an integer, the .final value, 

jwill hot .equal A but will be larger due to the fact ’that the ’ , 
use the next highest integer as its value of n. This is
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the reason for the step-like nature of Fig. 5. 2. Thus, the value of 

tr fram Fig. 6.6 maybe seme what lower than the actual value. However, 

the difference will he small for values of A requiring large values of 

n; and a correction can always be made by first determining n from 

Eq. (6.45), rounding this value to the next hipest integer, using 

Eq. (6. ) to find a new value of A, and finally using Fig. 6.6 to

find the corrected value of t . On the other hand, the value for t 

obtained from Fig. 6.6 may be larger than the actual tr if the minimum 

allowable value for &, calculated from Eqs. (6.38) or (6.39); is not 
used. Here again a correction can be made if necessary.

Recalling the definition of the normalized input presented in
I r I AChapter 5, i. e., I r ! n = the quantity y = “gj— becomes

y = | r J .■ . With a = 1> y = | r | ^ and atr =t^ ■ Although they

were produced by different methods, Figs. 5.2 and 6.6 are now found to 

be in agreement. (An explanation for the step nature of Fig. 5*2 has 

already been made).

A design method using the above results proceeds in the following

;Sayt

1. System specifications give the value of a, the maximum' 

value of A, and the maximum allowable value of t .

2. Either Fig. 6.6 or one of the equations represented on 

that figure is used to determine y and frcm this Kb.

3. The values of K and b may be apportioned according to other 
requirements or in an arbitrary manner as long as the proper 
Kb product is maintained.
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If the value of T has “been specified, tie value of §. is 
determined from either Eg.. (6.38) or (6.39). Alter- 
natively, if tie value of 6 las been specified tie value 
®f f mayrie determiMed frcm tie same equations.

$*3*3 .'.Example -and 0emeluf.isg, Remarks .
A system designed ly tie methods of this section irt.ll now be 

with a design obtained using the design graphs of Figs. 5.1
and5.S.'

fSiyen; A three level quantizer is to be designed for a system 
having the block diagram of Fig. 6.1 with K = 2, T = 1 second, a = 1, 
tr It.2 .’seconds, the system error must be less than 2.5 units and. 
the system must operate with an ensemble of inputs up to 22.0 units
without overshoot of the final value.

Solution; Here at = 12.2■ ■ r from Fig. 6.6 y = 11,6 = Aa 22
■ Kb:"-'- W *

therefore, Kb = «L9« From Eq. (o.kj), a =11.1, Since the specification 
requires t 12,'2 seconds, the new value of n is n = 11. From Eq.
(C I5)#. Kb = 2 and b = 1. low, y = 11 and from Fig, 6.6, t ~ 11.6,
How a(n - 1)1 = 1© thus the approximate equation, Eq. (6. 39), may be 
■cased to. find 85 the result -is

2'
r "j
I1 + 11
L J

2

Fresa the specifications on system error and from the Quiescent Plant 
lule, 5 can be as large as 2.5 units. Therefore, the specifications 
can be satisfied by choosing the parameters 5 = 2. 0 and b = lj the 
resulting settling time will be ©« J second less than required by 
the specification.



From the design graph of Fig. 5,2/ it is found that the largest 

value of t^ which will satisfy the specification is t = 11.7 seconds 

largest value of I r I in this ease is ( r I = 1X0. Thus
f H * * B .
I 22 _ t

a = 2. With r| 11.0 1
1 Has the requirement for a© overshoot. From this and the faet that 

Kb = 2jf it is found that 8 > 2. The close agreement of the results 

from these two methods should he noted.

It appears to he possible to extend the closed form solutions 

to more complicated systems,, e.g.} ramp inputs and higher order plants 

hut it is likely that the solutions will become much more complicated 

and if approximations are used they may be less accurate than those 

already presented,

| = 11 j, Fig. 5.1 yields 8 > 1

and the
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GHAPTES 7

CGHUBIGV

f|ie statetransition method has been extended to tee analysis of
digital control systems in which a quantizer is in tee error channel 
and tee plant itself is linear and time-invariant. After adapting tee 
method for programming on tee digital computer, examples were solved 
for second and third order systems. Bamp and step inputs, multiple 
level quantizers, and initial conditions on tee state variables other 
than zero were seme of tee features of these examples. Where possible 
these results were compared with tee results of other research workers 
and in other cases they were compared with results from systems simulated 
©a tee analog computer. In all cases favorable comparisons were 
obtained.

A design technique was developed frem the analysis method and 
charts prepared for the design of a second .order system containing a 
relay with dead zone as the quantizer. : ‘Using these charts an example 
of system design to gives specifications was completed. Simulation of.
tee- system ©a tee analog computer verified tee design. Seme closed form 
solutions for first and second order systems subject ho step inputs 
were derived and their results favorably compared with tee design tech
niques mentioned at tee beginning'- of this paragraph.

A set ©f computational rules were derived. These rules were found 
to be helpful is both analysis and design by providing information con
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cerning the properties ©f the systems, by reducing the eomputational 

load, hy furnishing a check on results, and hy providing physical in

sist into system operation.

T.t Areas for future Study

fhere appear to he a number of possibilities which can be 

suggested as areas for future study through extension or application 

of the techniques developed here. One of the most challenging areas 

for future study is that of the development of closed form solutions.

A general method is desirable but it is doubtful whether one will he 

forthcoming in the near future. On the other hand, the method presented 

here can probably he extended and there is a possibility that a closed 

fom method can he developed based on the state transition technique.

Perhaps a less challenging area hut certainly a promising one is 

that of extending the methods developed here, especially that of 

digital simulation, to digital and other nonlinear sampled-data control 

systems of other forms, ^rpieal examples&f this aresystems containing 

quantizers in both the feedback path as well as in the error channel and 

systems in which a nonlinear element appears between two frequency 

sensitive elements.

' Ihere are a number , of possible . paths to be, investigated Which may 
be"sailed application of the present results. Such things as consid
eration of other types of nOnlinearities, writing and studying the re
sults of . more general computer programs, and developing design graphs 
for additional plants fall into' this' category.
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7*3 Conclusions

Digital simulation, in conjunction with the computational rules, 

has heen shown to he a powerful and versatile method for the analysis 

and design of digital control systems. In contrast to many other 

methods it is not limited by input type, order of the plant, state 

variables having other than zero initial conditions, and quantizer 

complexity. Wot only does digital simulation possess the distinct 

advantages of accuracy and noise free performance over analog computer 

simulation, hut in most cases it also is faster, more versatile and 

easier to use. On the other hand, simulation on the analog computer 

tends to complement digital simulation in that it presents more of 

the practical problems of control system operation and is a good meins 
of spot checking digital computer results.

Of course closed form solutions are more concise and much quicker 

to apply than the other design and analysis methods considered. How

ever, they are difficult to develop and presently are available for 

' Only a;few cased.

From the work on quantizers containing a relay with a dead zone, 

it appears that this type of quantizer can be used in a large variety 

©f systems having step inputs to satisfy specifications on static 

accuracy, response time, and on absence of overshoot and limit cycle 

oscillations. However, there will he eases where a compromise must be 

made between fast response time and high static accuracy in that these 

two quantities are somewhat opposed to each other.
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APEEID3X A

PROGRAM FOR THE RPC k-QOQ CCHPOTER

fhe following is a program that computes the state vector at the
K 'sampling points for the plant j aad a system input •which is a

step* She quantizer can. contain as many levels as desired hut the 

magnitude of the output levels and the quantization intervals must he 

the same for both positive and negative signals, (This is a working 

program and has not been reduced to the minimum possible orders). The 

coding is that of the P33f routine, a detailed explanation of which 

nay he obtained from the School ©f Electrical Engineerings Purdue 

University.

Input lata Storage locations;

19% - a, 195 * K, 19o = T, 197 = number of positive levels in the 

quantizer, 198 = 1. 0, 199 = number ©f points to he caaputed,, 200 = order 

of the pf{f) matrix, 501 = 502 = 5g - S.^, 503 * 5^ - §g, ..,,
100 = 0. , 601 » ¥-, 6m - b , ... , 899 = r(0), 900 » %(§), 902 * Xo(0), 
9©3 - x^(0), »»« • (For as explanation of the above symbols, refer to 
the Met of Symbols).

Summary of the Function of Program Orders:

02f-0g8 data input

027-0^8 computation ©f $ matrix entries

&
Results for more ©epplie&tel. plants and system inputs can he oh*- 

tainei. by modifications t© this program.-

;.Hs0 see Fig. 4.1> which is a basic flow diagram for the program.



049“©7© preparing conditions for both. matrix multi

plication and for quantizer subroutine 

071-075 compute and store e(kf+)

074.-O87 quantizer subroutine

088-O9O preparation for transfer of state vector

(see order 101) '

091-098 subroutine for printing data

099 jump t© location 134 for next instruction

100 jump to location 13J for next instruction

101-103 transfer of state vector from temporary

storage to operating position

104-111 end computation, input new data., and begin

new computation

112-132 matrix multiplication subroutine

134-138 calling sequence for matrix multiplication

Program Propers 

CLEM* LOAD 023*

§23. /, 111194* ni5©i* im6oo* 3*899* 00F198*
028 001201* 001205* CZI204* CZ1206* CZI207*
©53 CGFI96* MUL194* HEGOO0* E3OPOO0* 0GI209*
038 HE60OQ* ADBI98* ir#194* 001203* MiM.95*
©43 GSI208* CCF196* SUB203* W1195* BIf194*

©48 001202* 7O5A201* 6LDA399* 4031001* 3LDI001*
©55 2031001* 1031001* 2O3AO0Q* 0OF199* 0OI397*
©58 0@F2©§* AB1198* CAIQ61* 2030004* 200F899*
©S3 2G0I399* 2011062* umooo* 3O3AO0O* 4IBAO0Q*
©68 GCF197* GAI®7©* 1LDCO01* C0F599* SfB400*
@75 001398* 111081* isiB5©i* JH©78* 10IJ075*
078 1CCF600* @01401* jmpo88* POSOQO* lSfi5©l*



083 JBI085* 1CU082* 1CCF600* EEG00Q* 
©88 CCF200* CAI090* 3I»DC003* CCF200* 
093 ADDI98* CAIO95* 4IDC005* 4PEM398* 
O98 CARGO©* JMP134-* JMP112* 3CCF800* 
1§5 3CU101* CCF39T* SUBI98* CCI39T* 
108 JIPO65* ELfllO* IM899* JMP055* 
133 SAI119* CAI123*' CAI13®* 6CXI125* 
118 X6LDIGQ1* 5LDC003* CZI133* 70X1124* 
323 6LDC003* 6CCF207* 6MUI400* ADD133* 
128 6CU124* X5CCI000* 7AXA003* 5CIJ120* 
133 'Temp.Sterage ©012©©^ 7EiA2Cl*; : 6MA4©©* 
131 : JMP10©*

ccl%©i* 
ADD198* 
4CIJ096* 
3CCI400* 
TOS109* 
S1A132*: 

X5LDI001*
x6imooo*

CCI133*
JMP101*

5LDA800*
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APPETOIX B

SYSTEM SBfUXATIOI BY HEMS OF THE! 
lUMSeCKTOR..

The reasons for mailing analog computer runs, their advantages sad 
disadvantages, and a summary of the results obtained have already been 
presented in Chapter 4. However, the actual technical details of the 
simulation equipment have not been previously covered and -will be 
discussed here.

A simplified block diagram of the overall experimental, equipment 
was presented in Fig. 4.4. The experimental equipment is built around 
the Epseo Model B-611 analog to digital converter and a digital to 
analog converter. The Epseo is constructed so that a semistatic binary 
coding of the analog input signal, at the sampling instant, is available 
within a few microseconds of the sampling instant and lasting until the 
next sampling instant. Moreover, a parallel output is available from 
the Epseo so that each binary digit is represented by a separate output 
terminal. The digital to.analog converter, basically a decoder, acts 
on the semistatic output of the Epseo to provide an analog output.
For this purpose a relay type and an electronic type decoder were 
designed and tested.

In the relay type decoder each bit in the parallel output from the 
Epseo controls a separate relay in the decoder. The relays in turn 
control the resistance in the feedback path of an operational amplifier 
so.that the voltage output, trm, the decoder'is a quantized analog re
presentation of the original input to the Epseo. Such decoders are
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described in detail in References 1 and 31, Although the relay type 

decoder is rather simple in construction, it was found to he unsat

isfactory in that a ramp input to the Epsco was not found to give a 

perfect ”stair case type” output. Instead, the output had spikes 

riding on the expected wave form at several points. The trouble was 

traced to the fact that at several times during the duration of the 

ramp input same of the relays in the decoder are required to open si

multaneously with the closing of others. Since the relays do notvhave 

the same pull-in and drop-out times, an erroneous relay combination 

exists for a short time causing the voltage spikes.

fhe circuit for the electronic type decoder is shown in Fig. B. 1.

It is connected to the Epsco in the same way as the relay type, but 

in the electronic type the Epsco*s parallel outputs control vacuum 

tubes, which are connected so as to approximate constant current 

generators. The vacuum tubes in turn are connected to a resistance 

network which combines the individual signals in a weighted fashion 

according to the significance of the bit which they represent. The 

output from this network is a quantized analog representation of the 

original continuous signal which was Impressed on the Epsco. The single 

pole double throw switches in the grid circuits of all channels except 

the first determine the number of decoder channels receiving inputs from

The resistors in the network which connect the plates of the 
tubes directly to the +200 v. supply are 6.8k except those of the end 
channels. All Other resistors in the network are 3.3k.
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the Epsco; hence they determine the number of levels in the decoder 

output. In the down position of these switches, instead of receiving 

signal from the Epsco, the grids receive an amplified signal from the 

channel representing the most significant hit, the sign hit, causing 

the channels whose switches are down to he in the opposite state as 

the sign hit. This forces the first quantization interval, S^, to he 

of the same width for both negative and positive inputs. Without this 

circuit the first quantization interval would he some nonzero value to 

inputs of one sign and zero to inputs of the other sign.

Like the relay type decoder, the electronic decoder is also 

rather simple in construction, yet open loop tests as wen as later 

closed loop tests have revealed a large improvement in performance for 

it over the relay type decoder. Because of its superior performance, 

the electronic type decoder has heen used in all the closed loop system 

simulations, Mditional information eoncerning his decoder is found in 

Seference 31*

A detailed analog simulation flow diagram for a typical computer 

run is shown in Fig, 1.2 with the function of each part of the circuit 

being indicated adjacent to that part. Hote that Amplifier 3 performs 

the dual function of forming the error signal as well as providing On 

adjustment on the overall scale of the quantization intervals. One way 

of looking at this is that with a gain of unity in Amplifier 3, 6-j, 8g, 

etc, occur at voltages fixed by the Ipse©, hut when Amplifier 3 

possesses the gain K each of the 5*s possessed by the Epsco alone are 

divided by K which effectively produces a new scale for the quantizer.
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(Since the output to the e(t) recorder channel follows Amplifier J, the 

gain K must he taken into account in the calibration of this channel so 

that the true value of e(t) will he recorded). The circuitry associated 

with Amplifier k and the input to Amplifier 7 provides a cLc. level 

change (ground reference restoration) so that the output from the de

coder, normally biased at Ik 5 volts above ground, is referenced to 

ground potential, which avoids grounding problems and a shoek hazard in 

other parts of the system. The ’JOK potentiometer provides a course and 

the 10K, 10 turn potentiometer provides a fine adjustment on bhe ground 

reference. The feedback resistor around Amplifier 7 is adjustable to 

establish the overall scale on the b values of the quantizer much as 

is done with Amplifier 3 to establish the scale on the 5's.

It was found to be necessary to provide a clipping network between 

the output of Amplifier 3 and the Epsco in order to prevent voltages 

considerably greater than 10 volts, the Epsco*s full scale input, from 

reaching it in those eases where the initial error signal is very 

large. Without the clipping circuit the Epsco was found to give 

erroneous results for the first few sampling periods follow the receipt 

of a signal of magnitude much greater than 10 volts. A circuit producing 

a dead zone whose magnitude is much less than the dead zone of the 

quantizer is inserted between Amplifiers 7 and 11. This circuit pre

vents any small deviations from zero output of Amplifier 7 from being 

fed to the plant where it would be integrated producing a drift in the 

output. Account is taken of the additional dead zone in establishing 

the b values of the quantizer.
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