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Aismcf

The problem considered here is that of binary pulse communication 

operating in a white noise environment -wherein interfering signal pulses 

are generated by any of the following causes t

(1) A signaling rate larger than channel bandwidths, causing pulse 
spill over into succeeding bands.

(2) Go-channel interference or cross talk on carrier systems.

(3) Signal echoes or reflections due to antenna location or mis­

match of high frequency components.

The optimum correlation receiver is found to be a linear combina­

tion of the desired signal pulse plus the interfering pulse. In severe 

cases significant improvement can be had over a correlation receiver 

using only the desired signal pulse.
For the cause (l) above, prior receiver decisions may be used to im­

prove the design. In particular, the immediately preceding overall 

receiver decision is used to select one of two parallel component corre­

lation operations whose designs are based on a priori knowledge of the 

preceding transmission. It can then be shown that this is equivalent to 

a single correlation operation with dual decision levels, wherein the 

preceding receiver output controls the selection of the decision level 

to be utilized next. The resulting performance of this type of receiver 

is superior t© the correlator composed of the linear sum of signal plus 

interference pulses.
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A similar investigation was performed for the ease of Rayleigh 

fading ©a the interfering pulse. Analytical equations are established 

for determining the necessary solutions; however, numerical complexity 

precludes definitive results at this time.
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CHAPTER I

INTRODUCTION

In recent years considerable engineering interest has been devoted to 

the use of digital data links to meet the ever increasing needs for high 

speed efficient communication. With suitable terminal conversion equip­

ment^ the digital communication system can convey both discrete and ana­

logue types of information. Thus, the digital data link may be used for 
machine (digital) to machine communication or for the transmission of 

continuous signals, such as voice, via sampling, or .any combination of 
the two (e.gy, man-machine remote control). Common types of digital sys­

tems in practical use today are amplitude keying, phase shift keying, 

and frequency shift keying. The flexibility of digital communication 

design and application coupled with the growing computer technology would 

seem to justify the continuing interest in digital data links for modern 

communications.

We may visualize a communications system (Figure l) as being com­

posed of an information source (analogue or digital) connected to an 

encoder which feeds the communication channel, followed by appropriate 

decoding equipment which delivers the transmitted information to the 

user or ’'information sink",, The communication channel is characterized 

by the physical medium through which we wish to transmit our message 

(e.g., wire, water, atmosphere, "space") terminated at each end by 

appropriate equipment (transmittersand receivers) designed to transmit
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.and receive signals pertinent to the physical medium. The purpose of 

the encoder is to convert the information source output to a form usable 

by the transmitter; similarly/ the object of the decoder is to convert 

the receiver output to a form meaningful to the "sink". Thus the term

digital data link refers to the communication channel just mentioned.

The types of information sources with which a digital data link is used

then determines the encoding and decoding equipment. This dissertation

proposes to theoretically investigate the formal structure of the

receiver in the communication channel with the following assumptions.

(1) The encoder presents to the transmitter every T seconds one 

of two possible symbols. The a priori probability of achiev­

ing each of these symbols is p and l-p? respectively^ and at 

each T instant the symbol realized is statistically independ­

ent of all other symbols. That is to say the encoder forms a 

sequence ■ Zbrp| n = ... -1/0^1/2. of independent binary ran­

dom variables where = 2 (say) with probability p and

^hT ~ 1 with probability (l-p).

(2) The transmitter has stored two possible waveforms/ a2(t) and 

integrable) and are zero outside the interval £o^t]|. At time

(t)l 0 ^ t ^ T. Both a2 and a. have finite energy (square

nT the signal a2(t-nT) or a^(t-nT) is transmitted over the

physical medium by the transmitter/ the choice of a2 or a^

being dictated by the value of Z^,

(3) The effects of the physical medium may be abstracted to a

mathematical model where the receiver is presented with data

v(t)/ which may be partitioned into a sum of signals

Sj-(t-nT)/ s^(t»(ntl)T)/...»/ and noise n(t). That is to say/ 
2 2
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if a^(t-nT) (k = 1,2) is transmitted in the absence of noise 

n(t), s^(t-nT) is presented to the receiver where

s^(t-nT) = 0 t < nT

S
\°° s^(t)dt = E <oo k = 1,2

K sk

We note that s^(t-nT) is not necessarily zero for t > (n+l)T, 

i.e., the medium may "stretch out" or give spurious reflec­

tions of a^(t). Furthermore, we allow s^t-nT) to be 

probabilisticaly derived from a^(t-nT) but require complete 

a priori knowledge of the necessary probability distributions 

and assume that they are stationary (i.e., independent of nT). 

As usual, n(t) is assumed to be stationary white gaussion 

noise (WGN) of spectral intensity Nq watts per c.p.s, (double 

sided).

(k) The receiver will announce at time (n+1)T after examining v(t) 
over the interval nT StS (n+1)T, that Z was either 1 or 2. 

Thus we are assuming perfect synchronization on nT intervals 

between transmitter and receiver. Since there is noise and 

pulse distortion present, the receiver can certainly be in­

correct in its estimate of Z The object of our receiver 

design is to minimize the average error rate P_ at the receiver 

output, or equivalently maximize the average rate of correct

reception P^ E*
Note- that as a consequence of the stationarity (assumed) P^ is independ­

ent of nT.
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In terms of Statistical Hypothesis testing the above problem is 
solved by a Bayes* receiver* A mathematical functional* "Likelihood 

Ratio",, is established on the observed data* y(t)} from consideration 

of the a priori probability distributions. This functional dictates a 

(electronic) network which operates on any particular realization of 

observed data v(t)* producing a numerical value V ,p. at time (n+l)l. 

Ihis value is then compared to a stored reference level K (Bayes deci­

sion level). If is greater than or equal to K* the receiver 

announces that-Z ^ was 2* otherwise (V^ < K) = 1 is announced. It

has been shown that this receiver provides an absolutely minimal error
1 ^ rate* i.e.* no other receiver structure can do better. r£he Bayes re­

ceiver has achieved a great deal, of engineering success in certain 

applications. Namely,, if there is no- signal pulse overlap-at the re­

ceiver and s^(t)* k = 1*2* is functionally perfectly known* then the

receiver reduces to a correlation or matched filter type of re­

ceiver. If again there is no signal pulse overlap* but only the signal

envelopes and carrier frequency are known perfectly (assuming carrier
iphase to be uniformly distributed)., - then the Bayes receiver 'reduces to

the well known narrow band matched filter followed by a linear envelope 
detector. In both of the above cases the. receiver performance (receiv­

er error rate) can be predicated. For the matched filter the error rate 

is given by a sum of Normal Distribution functions*,- whereas for the 

envelope detector the error rate is given in terms of Marcum’s "Q 

functions" (or “Offset circle probability distribution functions"). In 

general* however? predicting the. pertermanCe of a Bayes1 receiver is 

computationally. intractable. Thus from an engineering point of view* 

the justification of fabricating such a device* is questionable.
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Rather than seek the truly best receiver (Bayes1)/ the philosophy 

of this work will be to arbitrarily restrict ourselves to seeking the 

best receiver within a specified class of receivers ( e. g., correlation, 

linear envelope, square law, etc.) utilizing min-max Calculus. By a 

class of receivers we mean that the basic physical structure of each re­

ceiver in the class is the same. Hie receiver "class" then dictates the 

functional form of the receiver error rate Eg and each particular receiv­

er in the class assigns values to the pertinent parameters of P_. For 

example, under the assumptions (l) - (4) and assuming perfect knowledge 

of the form Of s^(t ) and if we choose for our receiver class the set of 

Correlation receivers, we then have that Pg is functionally the finite 

sum of weighted Normal Distribution Functions whose arguments depend on
the decision level K and correlating operation (^ dt h(t):) chosen.

0
The goal is then to simultaneously choose K and h(t) so as to minimize 

E-g (or maximize E^ - 1 - Eg).

TO illustrate this method in a more definitive manner we will con­

sider a well known example.

Problem Statement

Assumptions (l) - (4) are valid. s^(t), k = 1,2 is zero for t > T, 

t < 0 and functionally perfectly well known to the receiver, i „ e., the 

receiver may store " copter"of sk(t), k = 1,2.

Bayes*. Solution

The best possible receiver for this problem is one which computes 

the number

T » j (o2(t) - s1(t))v(t)dt 

0
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and compares V to the decision level

K
E - E

2 + N,0 In __3B__
l - p

E
"k ■S T

s^(t)dt k = 1,2

(1.2)

where 2 is announced if Y S K, otherwise 1 is announced,
Since y(t) = s, (t) + n(t), and n(t) is Gaussian, Y (a linear opera- 

tion on v(t)) is a Gaussian random variable. Hie mean and variance of Y 

are conditi oned by the prior event Z i. e., whether s^ 

actually sent, However> the variance in either case is the same, namely

(t) or s_(t) was

d2 =[Yiffi(Y^ = \ ^ [s2(t) - sx(t)] 2dt

Thus Pc is given by

Pc = 1 - PE ,= p Pr/VS K/sg) + (1 - p) Pr(VS K/s1)

where

Pr(Y^K/s2)

a

Pr(YsK/s1)

K"ml

(1.3)

(1.4)

(1.5)

where
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"k
cT= J .s^Ct) [s2(t) - sr(t)l dt k = 1,2

rT= Ho J [S2(t) - at

E - E sn snK = - ■ 2~ . ■ 1 + N In -■& - 
2 o 1 - p

Class Solution

In this method we must select a class of receivers from which we 

wish to select an optimum. Choice of this class is up to the designer 

and so appealing to intuition and engineering artistry ("besides knowing 

what the answers should be) we select the class of correlation receivers. 

Thus we form the number V (functional) from the observed data v(t) 

according to the prescription

V = V(h) = ^ h(t)v(t)dt 

0
(1-7)

and compare it to a decision level K. For each K and h(t) the correct 

reception rate, P^, can be computed as

Pc(K|h) = p Pr(V #f/s2) + (1 - p) Pr(V < K/s^) (1.8)

Once again, since V is formed by a linear operation on Gaussian

data v(t), V is a Gaussian random variable, conditioned on the trans­

mitted symbol, and the above conditional probabilities can be computed

in a fashion similar to the previous method of solution. lamely.
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pTK- J h(t)s (t)dt
0

Pc(Kjh) = p \ [exp - x2/2j dx/^lh? + (l-p)

J pT
K- J h(t)s (t)dt

00
j"exp - x2/2^dx/ V 2 it’

(1.9)

\ ^ h2(t)dt

o

Reflecting on what we have accomplished so far we see that "by choos­

ing the class of correlation receivers we immediately, deduce that 

P (= 1 - P ) is a weighted sum of two normal distribution functions 

whose arguments depend on the quantities

.T
K9. and

J h(t)sk(t)dt
k = 1*2.

¥e may now seek to maximize Pc through our choice of K and h(t). The 

details of the optimal, solution for K and h(t) are carried out in 

Chapter II* Section 2.1. It is shown there that h(t) must have the

form

h(t) = CgSgCt) + c1s1(t) j c1 constants

Thus* . carries over to a function on three variables

Pc = P^K^Cg) (1.10)

and we seek values of K^c^^Cg...which maximize P^ subject to the eon-

■ straint
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i [C2S2(t) + <=!=]_(*)] « = E
,T

(l.H)
0

Maximizing (l.io) subject to (l.ll) yields the result

h(t) = s2(t) - sx(t)

V = (1.12)
0

■which is identical to the Bayes* receiver. Certainly a receiver designed 

in this fashion cannot he better than the Bayes* receiver. If the class 

of receivers chosen by the designer eontalns the Bayes* receiver, then 

it is reasonable to expect that this method will indeed produce the 

Bayes* receiver. However, this would be an extremely fortuitous circum­

stance and not very likely. The advantage offered by this method is a 

reasonably synthesizable receiver of predictable performance which is a 

direct consequence of pre-choosing a receiver class.

Chapter II establishes the mathematical frame-work necessary for 

dealing with the correlation class of receivers. In Chapter III the 

simplest type of intersymbol interference is considered. Here the form 

of the interference is assumed perfectly known. The correlation receiv­

er utilizing no prior decisions (memOryless) is found for this situation 
and its performance derived. For comparative purposes, the performance 

of the Correlation receiver just discussed is also computed. Chapter IV 

deals with the design of that receiver which assumes its previous deci­
sion to be absolutely correct in the environment of Chapter HI.



Chapters T and 71 are extensions of the efforts of Chapters III and. IV, 

respectively, to the case of fading on the interfering signals. Chapter 

VII closes with an overall comparison of the results of the previous 

chapters together with suggestions for future work (e.g., envelope de­

tectors and diversity systems).

'Throughout this investigation, the pertinent Bayes * receivers are

presented. The elements of this theory are not discussed here. For an

introduction to this subject, the reader*s attention is drawn to the
2texts Of Helmstrom, and, Davenport and Hoot. The threshold behavior

hof the likelihood function is discussed hy Middleton. .

11
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CHAPTER II

GENERAL EQUATION FOR THE CORRELATION RECEIVER

In this chapter we derive in mathematical terms the general equa­

tions of the Optimal correlation receiver. That is to say, our class of 

receivers is the one which correlates the received data v(t) with a 

stored reference h(t) and compares the result with a decision level K. 

Thus any particular pair (h(t),K) represents a particular receiver with­

in this class. For a particular channel model operating with the class 

of correlation receivers, there is a probability law, P^, governing the 

performance (probability of correct reception) of any particular corre­

lation receiver. In other words* for each pair (h(t),K) there is a 

number E^(Kjh(t)) between zero and one which represents the average rate 

Of correct reception for that particular choice of (h(t),K). Further­

more^, since we are dealing with correlation receivers it is reasonable 
to expect that h(t) enters into P in the form of values ...,Jn where

0

and; the r^(t ) are n linearly independent given functions, related to

the received signal alphabet

Als% P^ may depend on the quantity

0
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However, we will assme (2,Id) that is independent of receiver gain

which implies invariance to the choice of a particular 1^. We may then
C ' '

eliminate this dependency by constraining to be fixed,, That is,

E^ = E for all h(t). Thus we seek to maximize

J± - J hCtJrjCtJdt i = l,...,n

0

subject to the constraint

■J1
0
h-(t)dt = E

by optimal choice of (h(t),K)o

The general physical properties of communication media allow us the 

following mathematical assumptions„

2.1 Mathematical Assumptions

(a) We deal exclusively with time functions, f (t), defined on the 

interval, 0 g t § T, which are real and have finite energy, 

i.e.,

JT
f (t)cLt = Ef < «.

(b) Pg is a real function of n +1 variables 

Pc = P(Kj..,1^)

with continuous first and second derivatives in all of its

variables.



(c) The .J^ are linear functionals of h(t) generated by a given 

set of n linearly independent functions r^(t).

- f (t )dt x 1,. •., n
0

(d) Pr is invariant to receiver gainj i.e., for ju > 0

P(Kj Jir. . • , )

Note that P^

Fran assumptions (2.1c and d) we may make two conclusions. Firstly, 

the Optimal h(t) is a linear combination of the r^(t), and secondly, 

since h(t) is arbitrary to a multiplicative Constant, we may eventually 

adjust the value of E^ for our convenience so as to normalize h(t) in 

some sense.

implicitly, depends on E, which will be held fixed.

We justify the conclusion that the optimal h(t) is a linear combina­

tion of the r^(t).

n
fc(t) = ^ c^Ct) 

i=l

constants (2.1.1)

Assumption 2.1(a)1 establishes that we are dealing with functions which 

are members Of a real Inner Product Space ^ (KL^) where the inner product 

is defined as the "correlation" between any two member functions.

Namely, -

J f(t)g(t)dt 
0

In particular, h(t) is a member of BLg so that the i - 1,...,n 
represent the componentsof h(t) along the linearly independent r^(t)»
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Since Eg depends only on the consequently Pg depends only on the 
component: of h(t) in the subspace spanned by the r^(t), Shus it suf­
fices to choose h(t) as a linear combination of the r^(t-).* let

0?
7i(j = 7ji = § r^tJr^CtJdt (2.1.2)

0

so that

n
= 2 
4=1

^14^4 i — 1 f • e m f Xl

(2.1.3)
n n

\ ■ 2 X
1*1 4*1

We may now express Eg as a function on K and the “variables” ... ,c^ 

Eg — P(KjC^...yCn)

and. we seek tomaximiZe Eg by choice Of K* C^*. . ./Cn sub ject t ° the side 
condition

n n
' Z 2 Wi ' E (2.1.4)

i-1 4-1
that since the are linear combinations of the cA, assumption

2.1(b) carries over to E

2.2 Meeessary Conditions
We wish here to establish the necessary Conditions for maximizing

Eg(Kj C^>• • • >Gn) (2.2.1)



sub ject t®-

U 'U
^ijCiCj = E > 0 (2V2.2)

i=l j=l

Using the usual technique of the Lagrange multipliers, form, the function

n n
l(K| c^, • • •} = EC(K,ci* * m *t) **" ® ^ijcicj (2. 2*3)

i=l 3=1

•where 0! is the Lagrange multiplier. Then, as usual, the necessary con-

plus equation (2.2.2).

For the remainder of this work, the following natation conventions 

will be used.

(i) K = K*,. ci = c|- i = l^.,»|(h. represent the optimal values

of I and satisfying (2.2.4) 

and (2.2.2).

(ii) F^ — (if ..*>b^)

1

*

In (2.2.3) and. (2.2.2) E is considered ;an independent quantity in 

terms of which we solve c.^ and K' after eliminating a. We should recall

F.■th X • Jr?- * * o.jh3X
oc

xlM
at K = K , c

E fixed

PK evaluated at K K, oi E Fixed
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that tile particular value of E chosen does appear in the expression for
* *Pg. By the implicit function theorem we may solve for c^ and K as

functions of E if the Jacobian of system (2.2.5) and (2.2.2) does not

vanish for some E > 0. It is then possible to normalize h(t) so that

any one non-zero say ci , may be set to one.
o

2,3 The Correlation Receiver? An Example

Here we will develop the correlation receiver from the point of 

view of the previous discussion. With reference to the problem state­

ment Of Chapter I* pages 6, 7r 8, 9 and 10, we have that

K"Cl7ll“C2712

1”?
I(Kjc1?C.2)

= p ^ [exp - x2/2^ dx/ ^ 2j? + (l-p) ^xp - x2/2^dx/ {~2x

K"C1712“C2722

f¥lP1 o

+ a
2 2

1=1 o=i
cicJ7U (2.3.1)

Denote

OP.
P, C
K £>K

' _ <*C
i = 1,2. (2.3.2)

Our three Conditions on K, c2 for maximizing P^ are then

dl = = Ol
Ok Oc^ Ocg (2.3.3)

or
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(a) PK'°

(fe) \ + + ?'l2C2) ' 0 (2.3.fe)

(c) ?c;. * “(’2J°. - •V.T2) 0

Now

PK 0 ~
exp(~ K"Cl7l2"C2y22 ^ + JJ-ZS). 2r)

2*ME ^ ^ V 2*HE ^ 2EoE ;
o O

(2.3.5)

or equivalently

ci7ii -c272^ - ]k - - c2722^ 2N E In ^r^*-
p 1 - p (2.3.6)

P and P , we have C1 °2

P =
^12 ,lK'°-rl£-C£’'c2l7

cl 2M E ) -
If

'll -|K-ci7ii-c2721J
■exp( 1 11 1 '" W P 1 1111 -")

2rtE E P
2N Ep

P. = C2
P722
^2tcK E1

exp(”
" (?~^^2~C2y22j \ (1~p)721 |Y“'lK~Ciy1l,~G2y21l

2H E....... “ eVT*
o ip5^

exp(-
E 2H E o

(2.3.7) 

2
-)

Multiply (2.3.%) fey 7^ a^d (2.3.^u) fey 711 and subtract^ •which yields11

®^4*W .**&:*»>
^ xa xx ^ “^12jtNQE

•LK’°ciyi2“C2y22l >

2M E 0

after substitution of equations (2.3*7) and noting that 7 „ = y.12 7 21



Since 7^7-22 ~ 7i2 > 0 (Schwarz’s lemma) we have

C2
-p , f? Cl712 2722l N

1 ..exp(---———)
2Q! "l|2jtNoE

(2.3.8)
2N E o

Using this value of c2 in (2.2.4b) and equations (2.4.7)/ we haye that

cn =
(i-p) (~[K-Ciri].-Vi2|2.

'e:xpK 2N E1 2a^2itlTE )

But hy (2.3.5)

C1 + C2 = 0

¥e now choose E such that Cg = +1, (i.e., E ;= y99 + 7n1 - 2y19)22 'll '12‘

h(t) = Sg(t) - s1(t)

¥e then have for (2.3.6)

K =
^722 ” 712^ “ ^7ll" 712^

2<7ll+722 2712*^ ■ H In J- 
o 1-p

so that

K + ¥ in ;o 1-p

hut

722

'll - E'!flL



20

Thus our receiver is given by

0

E - E S0 ' :sT (■K = ■ • 2 r ■ r1 + N ln^- 
2 o 1-p

which is identical to the Bayes * receiver-.

2.it- Summary: A Geometric Interpretation

We have shown that the only h(t) of* interest to extremize P^, is of 

the form

n

i=l

so that each receiver may, be specified by the n+1 tuple (K,c^,...,c^), 

rather than by (K,h(t)). Furthermore, for a fixed value of E^ = E we 

see that the optimal (c^,.. .,c ) must be a point on an n dimensional 
ellipsoid/^* centered at the origin. That is to say, we may form a: ft 

dimensional Orthogonal coordinate system of the c^,.. ..,c and that 
E^ = E is the equation of the ellipsoid £ on which the optimal

’Xt(e^,.. ., ) must lie. We may adjoin to this coordinate system one more

Orthogonal axis, corresponding to K values, so that we have an n+1 
dimensional space ^ with points given by (K,^,., .,-0 )* The receiver 

(K,h(t)) is then equivalent to a point in this space. Since h(t) = 0 

is trivial, the origin of ^ is trivial as are all points lying solely 

on the K axis. On the other hand, note that points (0*0^,. . .,0^) are 

not trivial.
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Newby assumption 2.1(d), if (K) is a non-trivial point

/i ^ 0. That is to say. is constant along any straight line (n+1 dimen­

sional) "which passes through the origin (hut excluding the origin as a 

point on which ^»is defined) and is not identically the K axis. Conse- 

quently, if (K ,0^,...,cn) is an extremum of P^then ^is optimal over
*K* “Jf 'Jrthe punctured line L , passing through (K ,c^,...,cn) and the origin.

/** *Jf “Jf"Whence, the antipodal intersections of L with cn define (K , c^,.. , cft)
. -Jf *Jf Vand (-Kj,-* • fr • A word of caution is in order: if we multiply

(K,h(t)) by a negative constant (ji < 0) then the set of decision inequal­
ities associated with (K,h(t)) must he reversed.

Conversely, each value of E > 0 uniquely defines an ^(E) and the 

collection of all such <^(E) forms a family of concentric ellipsoids

growing, monotonidaily on E: the locus of optimal points on .each ellips-
*old of this family is the orthogonal projection of L into the -c^,.. ..,c 

sub-space. Note that if K = 0, the L lies wholly in the c^,.«.,.c sub­

space.

We thus are led to the conclusion that only the direction cosines 
*of L need he found. In an n+1 dimensional space the orientation of a 

line It is given by n of its direction cosines. Consequently P^ could, 

as well, have "been defined functionally On n variables representing the 

direction cosines of L and maximized ever these n "direction" variahles 

in the usual way without the use of a subsidiary constraint. Although 

this concept is fundamentally simpler, it is felt that the formal solu­

tions are facilitated with the use of the Lagrange multiplier.
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CHAPTER III

THE OPTIMAL CORRELATION RECEIVER FOR INTERSYMBOL INTERFERENCE

We mil now apply, the theory, developed 'in-the previous chapter to a 

simple channel model in which intersymbol interference is inherent. In 

particulars numerical results will he presented for the binary symmetric 

cases of unipolar, bipolar and orthogonal types of signals.

3*1 Channel Model

Assuming (l) through (k) of Chapter I plus the following:

(5) The receiver has complete knowledge of the channel distortion 

characteristics^ i.e., if a^(t)y k = 1,2 ,is transmitted, then
S'* / \s^(t) is ;received in the absence of noise and is. known in full 

detail.

(6) Denote for k - 1,2. (See Figure 2)

sk(t) " Sk(t) 0 t. « T

sT (t) = st(W) 0 § t < Tk

sk(t) ^ 0 all other t

(T) iT

%

T5 T, k = 1,2

and f or k = 1,2, sk(t) and s^ (t) are linearly, independent.
k

(8) The receiver is not to utilize any previous decisions it has 

. made (i.e., the receiver is memory-less) with respect to T

intervals*
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t = T

t = T

FIGURE 2 A SINGLE RECEIVED SIGNAL PULSE



A few comments are in order. (5) assumes that the channel pulse 

distortion is constant in time and known to the receiver. In,(6), it 

is assumed that the pulse is "spilled over" only, into the next T inter­

val and will conflict with a transmission only on that interval. Note 

that the original signal pulse can he "stretched out" or spuriously

"reflected" and in general may be any RL^ function, s^ (s^, is chosen
k

to mean signal tail). We limit ourselves to only interference on the 

immediately succeeding T interval because the computational details 

grow combinatorially whereas the basic problem remains the same. Note

that (T) is reasonable in that if the opposite were true 
T PT

( \ *2 dt > \ s^(t)dt), one would reverse the role of s^, (t) and
0 k % k

s, (t), Namely, one would delay one T interval and detect On s™ so that 
* k
s^Ct) would cause pre-interpulse interference as opposed to the post

interpulse interference of s™ as assumed by (7).
a

Several physical situations come to mind which would lead to

assumptions by (l) through (8). For example, a binary transmitter (e.g. 

high speed teletype) connected t.0 a wire line whose effective bandwidth 
is slightly less than the signaling rate (■jj) of the transmitter; or re­

ceiving fixed spurious reflections or distorted echoes due to antenna 

location or mismatch. Another example which almost fits (5) through 

(8) is that of digital carrier equipment in which the channel frequency 

separation is not quite large enough (co-channel interference). In

this context, Sm is not really generated serially (in time) but in a 
Xk

parallel sense. However, with assumption (8), this makes no difference 

in the following development; although such is not the case when (8) is 

relaxed (specifically Chapter HT).



25

3.2 The Bayes * Receiver

We now give the truly, optimum receiver (Bayes1) for operating in 

the environment of 3*1« Remembering that the only interference present

is from the immediately preceding transmission which causes an s™ (t)
k

to appear additively to the s^(t) which is to he detected, and that the 

events are independent, we enumerate the four possible cases with their 

associated a priori probabilities of occurrence.

Previous
Transmission

Current
Transmission

Received
Signal in 

Absence of Noise
A Priori 
Probability

Case 1 Z = 1 o s2(t) + Srp (t)
1

(1-p)2

Case. 2 z-i = 1 Z = 20 Sg(t) + Sm (t)
1

p(l-p)

Case 3 z_x = 2 % = X
sx(t) + sm (t)

2
p(l-p)

Case 4 z-i=2 Z = 2 o S2(t) + Sm (t)
• o

2P

Table 1 Received Signal Combinations 

From this table the likelihood Ratio .A. (v) on the received data in the

presence of noise, v(t)(= sv(t) + s^, (t) + .nCtJjj can be formed.

A (v) =

(1-p )A1 exp y*> (Sg+Sfj, )/Nq + pAg exp v©( Sg+s^ )/lf0

(l-p)B1 exp ye (s1 ts^ )/Nrt + pB9 exp v©(sn +s1 1 T_1 o

(3.2.1)

where.
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T
vo(sk + s^) = J T(t)^sk(t) + sT)?(t)Jdt kf H = 1,2

E

A^ = exp
S2 + ST: 

21

ES2 + ST2 
A2 = e2q? " —ZS~

ES1 + ST.f
Bi e:Kp 21

O

Eal + ST,

b2 = ^ - ”sr

and Ex+y

T
^ (x(t) + y(t))2dt

0

Aw is then compared to the decision level

K _ Ik#.), (3»2«2)

and the Bayes* receiver is specified by (3.2„l) and (3»2.2) where the 
decision is 2 if ^\(y) S I, 1 otherwise., A block diagram for this re­

ceiver is given in Figure 3*
Now for each particular realization of v(t) (0 S t < T),, ,./\.(v) is 

simply a real number. Since v(t) has random values we know that A is 
a random variable which theoretically has an associated, probability den­

sity function, p/ ( A. ). derivable from the statistics of v(t).A.
The word theoretically is used advisedly^ for a glance at -(3.2.1) 

shows that it is all but hopeless to deduce p^ (./A) from the statistics 

of v(t) (actually in this case the WGN, n(t)) except in limiting cases.

In some cases it is possible to define a strict monotonic function 

on A. | f(A.) (e.g.* log ,/i ) so that one may as well utilize the 
"number” f( A-(v)) in comparison to the decision level = f(K) to
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announce a reception. This receiver will have the same performance as 
the original (A ,K) receiver since f is a one-one function. The pur­

pose of this procedure is to obtain, by choice of f, a random variable, 
f1 = f( A (v).) with which a tractable probability density function 

Pp (l-1) is associated. A classic example of this is given by setting

Sm = s_ - 0 in (3.2,1) and taking the variable V to be 
1 2

v®sr E
exp

P a In A(v) = In H. exp - 2WiO
v«s,

exp I exp
TO

E

2U

/ \ E .* Evo(s2-s1) .s s2
N + 2N
TO O

with decision level

(3.2.3)

K a In p

or comparing

T
§ 1r(t)[s2(t) - s1(t)J dt With

0

E , - E S2 S1
f f-.'y. ■ +,S. In .2 o p (3.2.4)

which is recognized:as the correlation receiver. That is to say, the
correlation receiver is a sufficient statistic of _/V(v) when Sn, = s™= 0.

, X1 l2
At present, there does not exist a monotone function of (3,2.1), of

a tractable nature, when either Or s„ (t), s_ (t) are not zero. Further-
X1 X2

more, it seems unlikely that such exists. Thus we are faced with an 

ideal receiver about which we can make no statements pertaining to its



expected performance. As seen from Figure 3* this Bayes* receiver is 

not particularly simple, so that an experimental approach is not Justi­

fied on economic grounds. Consequently* we -will design ahest correla­

tion receiver andexamine its performance.

3.3 JtumulatiOn of the Correlation Class

Witt reference to Chapter II* we choose the class of correlation 

receivers (h(t )jK) amongst "which we seek that correlation receiver which 

maximizes P^. Referring to fable 1 .and in a manner analogous to equa­

tions (l.l) through (1.5)* it can he established that the probabilityof 
-correct reception Pg for a receiver (h(t)|K) is

K-h°(s -fs„ ) 
..x . X1 .

K-hoCs^s^ )
. . 2w-x2/2 . #c

+ P(l-P) "X2 Jz dx

~oo

+ P

00I -X

M0(S2“tST )

' Y^

$
*x2/2 dx

K~h°(Sg+s^ )

Ym

(3.3.1)

where* as before

= ^ h2(t)dt 

0

fh°(sk*f-sT ) - ^ h(t)[sk(t) + sT (t| dt k* £ = 1*2.

0
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Note that if we multiply by p, obtaining (pK,|j.h(t) ), is unchanged

and satisfies assumption (d) of Chapter II. A further inspection of 

(3.3*l) shows that all the assumptions of 2.1 are valid. Defining four 

linear functionals corresponding to h«>(s,+sm ), k, ^ = 1,2 it follows 

that h(t) has the form

h(t) = o1^s1(t)+sT (t)J + c2rs1(t)+sE (t)J + cJs2(t)+sT (t)J

+ c^s2(t)+sT (tj

or taking linear combinations of these c’sj obtain new c's

h(t) = c1s1(t) + c^ sT (t) + c2s2(t) + cT s^ (t) (3.3.2)
1 1 .2 2

As we are especially interested in the case where p = l/2 and the s^,

Sm form unipolar, bipolar, or orthogonal signals, we will forego xk
developing the general necessary conditions on (3*3*l) in favor of in­

vestigating each Of these special cases separately. Our motive for 

specializing at this point is one of convenience. A general solution to

(3.3.1) is not simple. It involves solving five coupled equations with 
a " matrix of sixteen elements. The special cases Just mentioned,

which are of most practical interest, considerably simplify (3.3*l) if 

derived separately.

3.^ Unipolar Case (On-Off Signal), p — i/2

The unipolar terminology is taken to mean that the signal corre­

sponding to Z^rp - 1 is identically zero, or that

■BT(t) = Sm (t) = 0
1

s2(t) = s(t) (s.k.l)

Srj (t) = Sf(t)
2
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and

h(t) = cs(t) + cTsT(t)j = E 

Denote

T
Es = ^ s2(t)dt 

0

T

V S' 3§(t)it
■ 0

T
P = y s(t)sT(t)dt 

0

Substituting (3.^«l) and (3.^.2) into (3.3.1) yields
K-(cp+c^Eg^)

K/flfE - / \ ;0
Pc(K;c,ct) = j

t N iP

f2?
-x /2 dx' (2?

00
+ i <1

K-(c Eg+p +cT Eg^+p )

OC-x2/2 dx , 1 f
J&T

w1

K-CcEg-c^)
ipri1

with

E^ = c2Eg + 2cCrpP + c^Eg = E (fixed)
T

* * .*The necessary equations for c } K to maximize (3»^«3) in­

to Chapter II are then found to be

(3.^.2)

;2/2 dx 
~\{Zn

(3.^.3)

accordance
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(a) 4=0

■00 4 + 20!c*Es + 2ac* p = 0 (3.4.4)

(c) P + 2Q!c p + := 0
T

Define the function i(r to he

i(u) =
-XL f2

Then from (3.4.3) it follows that

(3 » 4. 5)

(a) I> =
6P,.

K die
K-h« sr+ t(-==i) K-h°(s+sJ

tc ■,___ )
IE0

-t@=J) T
o ^

■dP„
(h) pc ^ wi ^) + (e+pM-

K-ho (s+s,,,)
■)

* E y(££K)

8 Yv (3.4.6)

-r , , K-h<*s K“ho(s+s_)
(<=! = E. 'rf-^r! -(K + pM

'T acT ^iTeI “T A|1|0E' W )

+ ot(S^)
he I

Consider (3.4.4a); from (3.4.6a) we have

^(-4=r) + i(-
* * * * ,K —h o sm K -h® (s+s

-) = ♦(■
ilW0E N E

T) + ^(~=~) (3.4.7)
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* * , . * where h - c s(t) + cmsTT(t)

How

*K 1 * , . - ho (s+sT) (3.4.8)

produces an identity on (3.4.7) as \|r is an even function. Moreover* 

this value of K is unique (ref. Appendix B). Thus (3.4.4a) is "de­

coupled" from (3*4.4b and e). We mention in passing that this happy 

event occurs only for p = 1/2.
Evaluating P and P * .by using (3*4.8) and (3.4.6a and b) produces 

^ CT

(a) P = (—=j)i|rO
E_- p li*(s»sJ E + p t 0(s+sJ 
S v"/ *')+■$—=:)♦(------- -

I HE 2^1? |HqE
)

2 yHE

(h) P* - Ct7=?M
P"ESrn h^O (s-Srf,) ;P+Est .h e (s+s^)

HqE
) + (— TJ

2 'VH E 2-\|Fe
0

We are now in a position to assert that otc is not zero. 

From (3.4.4) we may algebraically -obtain

* *BP. - pPsc Cm
20!c = ^ •

E E p ■« %

Introducing (3*4.9) into (3.4.10) produces

. ldote =

* . . * , . h o (s+s-) h «(s-s„)»( j "!i * t( ■_____* )
HE' , ' ' 2 Yh^1

Since .-u2/2
t(n) - ^ 1 ajj. 1 > 0

4Y&?

(3«^9)

(3*4.10)

(3*4.11)

(3.4.12)



* -Jf
neither -OS':mor-tr ana geroi. whence we niay fa]ce # =5 l. Then

2a = ** +*V
T ^(stS*,) ^0(85^)
=N t(~p“-) +t(-~~-~~) 
E_E 2 VN E 2 MEM ■M

Solving for in. (3.4.4) produces

*
*

CT ~

IPa a,
■*P
■■-cE.

V E E ).8 S,T

Utilizing (3°4.9) and. (3.4.13) gives c^, as the solution to

..* *, , &crjT - (l ~
%

%s 
+ *%)

*€
, *, h. © (s<”S_)
s±zH

2 \| he '

.where i|r;is defined hy (3.4.5) and

® ~ 2Cgj p >+ (C,j) E^
T

Algebraic rearrangement of (3.4.15) requires that c_ satisfy*P

*1 +.-<^

1 - c,
■W * W
'T

21 e2J>
M 0+V

’l©t

(3.4.13)

(3.4.14)

(3.4.15)

(3.4.16)



35

1 + c,T
1 - c_

= u * U - 1 °T u + 1 (3.4.1?)

and seek that positive value of u which solves (see Appendix B)

EE - p
----- )U2 " 1)

k2N E J 0 os+sT
m u + ■§§- --------- e 1TF

o „ s s E = 0 (3. h-. l8)
U2 + 2(- T

E )u
s-s„

s+s E
T s+sT

¥e now normalize (3.4.18) in terms of

„ E S __s_
E 2E

(Signal s(t) energy/2 noise power per unit Bandwidth)
(3.4.19)

Since

E < E and Ipf <E E sT s lK» s sT

define

EST _ S
2N a H 

o
0 ^ a < 1

(3.4.20)

2E~ = bt?| -1 < h < 1

Then (3.4. l8) reduces to
.[i-t2]

ln(u) + hYa +

| (, ,r>ir.r..-V)(xl2,i)
s . ... l+a+2b fa}

2 . 1. - a \ . l+a-2h fa
u + 2(. , ■ ■ --)u +

= 0

l+a+2b V a

(3.4.21)

Thus we have the unique solution
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h*(t) = s(t) + c*sT(t)

K* = I h*0 (S+ST) = f (! + + Cj(a + bfa)) (3. 4.22)

c* - (u - x)
T u + 1

where u satisfies (3.4.21)

The sufficiency of (3.4.22) is demonstrated in Appendix B. Note that
*K is just one half the filter output in. the absence of noise when both

s(t) and Sfp(t) are present; and that this criterion is the same as that 

of the symmetric correlation receiver/ (p - l/2/ s^ - 0).

To evaluate E^h /K )/ Or more pertinently/ Eg = 1 - F^(h ,K )/ 

simply introduce (3.4.22) into (3.4,6) to obtain

.*pE
oo po,1 f e-S2/2 _i|_ + i f J 

2 J 2 J
*1 *z

{T*r
(3.4.23)

* ^(Xi1 1 + CT^ + CT -+ ■1)
*± = If f r—■' 

N 1 + 2cTb fa + cT a

= 1 2_ g 1 1 ” ”** k 'J a( Cj “ E)
In ■\j —

\ 1 + 2c^b fa + c,*2 JT a

In order to compare this result with a realized system we next de­

rive the performance of a "standard" correlation receiver (c^, - 0) in 

this environment. Since adjustment of the decision level is trivial

physically/ we will allow for optimum adjustment of K when c^, :== 0. 

Referring to (3»4.8) it is seen that this value of Kr Eq/ is given by



(3*4.24)K0 -1 v - H(1 +
37

where

hQ(t) = s(t).

With this value of Kq# c^, = 0, c = 1 (i.e.> hQ(t)^ Kq) we can compute 

from (3«4.3) that

E

po 00 -|2/2 _d|_

O*L
fitt

4
(■3.4.25)

x2= \li§(1 ’13 a)

which is exactly the results of (3*4.23) with c^, set to zero.
* *Performance curves with corresponding values of K and c^ as a func-

stion of (^)>- for various parameter values of a and h, are presented, at 

the end of this chapter. The results were computed on an IBM 7090 

computing facility. The numerical method used in solving (3.4.22) for 

u is explained in Appendix A.

3.5 Bipolar Case, (plus minus signals), p - 1/2
For the hipolar type of signals we require that

s2(t) = - s1(t) = s(t)

Sm(t) = - ST (t) = ST(t)
2 1



By a suitable stratagem we will reduce this case to that of the uni 

polar signals. Namely# if s(t) + s^,(t) is always added on to the in­

coming data# v(t)# the receiver then faces a decision between the four 

signals.

2s(t) + 2sT(t)

2s(t)

2sj(t)

0

which is exactly the unipolar situation where the signals have been 

multiplied by a factor of two. Then, from the results of the previous 

section, the'receiver is specified by

h;(t) » 2s(t) + 2cJsT(t)

(3.5-1)
K* - i h?«*(2s + 2Srpj

T*1 IlTT1
- # - W- - >

;0 .o,

and c* solves (3.4.22) for (-J* = 4(-|)

low we know that the receiver gain may be scaled without affecting the 

performance/ so we choose to divide (3.5»l) by two# obtaining

b*(t) = s(t) +.c^sj(t)

(3.5.2)
■OO* = h'©(s+sT)

•Jf q[ q #and Cj solves (3*4.22) with (—) replaced by 4(~). The performance
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s sof (3*5*2.) is then given by (3*2h-) where (^) is replaced by 4(^). 
o S SSimilarly for PE' (—) is replaced by 4(—) in 3*4*26). Our overall re­

ceiver is shown in Figure 4.

It is now possible to simplify the receiver of Figure 4. Consider 

any correlation receiver (K,h(t)) with incoming data v(t). Add to v(t) 

a prescribed function f(t) so that h(t) operates on v(t) + f(t). Then, 

no matter what signals are present in v(t), the output V of the corre­
lator (V = § h(t)Tv(t) + f(t)ldt) will always contain the constant

p,T 0
term J h(t)f(t)dt. It then follows that if f(t) is added to the

0
data v(t) and J h(t)f(t)dt is added to the decision level K, we have 

0
equivalent receivers: where, if the performance of the receivers is

identical, we call them equivalent. Whence, the receivers of Figure 5 

are equivalent.

By the preceding argument, the receivers of Figure 4 can be reduced
*to the form of Figure 5 where K is given by

K = (K )' - ho(s+sT) = 0 (3-5.3)

The optimum correlation receiver for symmetric .bipolar signals is then 

reduced to

h*(t) = s(t).+ c*sT(t)

(3.5.4)
*K = 0

Since (3.5.4) is equivalent.to (3.5.2), Eg and P° are given by
q q(3.4.24) and (3,4.26), respectively, wherein (£) is replaced by4(~).
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3.6 Orthogonal Case t(uncorrelated signals) p = l/2

The orthogonal transmission system utilizes signals -which have the 

following properties

(a) E — E = E 
S1 ?2 S

(b) E = E = E
®rj1 Sm”1 2
T(c) [ s1(t)s2(t)dt = 0 

0

T(d) ^ s (t)s (t)dt = 0

10

T T
(e) J s1(t)sT (t)dt - J e2(t)8T (t)dt =

0
0

and
T _T

(f) J s1(t)sT (t)dt .= J s2(t)sT (t)dt =
0 0

(3.6.1)

An example of signals which satisfy assumptions (3.6.1.) (a) through (f) 

is the frequency shift keying (FSK) scheme.

To evaluate this case3 .essentiallythe same trick employed in the 

bipolar case will be used except that the orthogonal signals will be 

converted to bipolar signals by first subtracting

s2(t) + sx(t) ST2^t) +
(3.6.2)

from the input data v(t). The fours signals then facing the receiver

are
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(t) - sT (t)s2(t) - Bl(t) ^ T2 -x
2 2

From (3.5.4), the best correlation receiver is

3 (t) - 3 (t) . ST (t) ' ST

h,(^>---------+ 4 2
K* = 0 ,5

or scaling h by a factor of 2

h*(t) - s2(t) - s1(t) + c* ^ (t) - (t)j

/ *%(K )» = 0
(3.6.3)

s•where cm solves (3« 4.22) with (—) replaced by"T

&2(t) - s1(t) 
2

)2dt 2 S
N

Next the Operation of subtracting (3.6.2) from the data may be replaced 

by an adjustment of the decision level. Analogous to (3.5*3)> we have

K* = 0 + |.h^(s2 + S1 + T0 + ST ) (3*6.4)

and from the orthogonality and equi-energy properties of the signals, 

the integral of (3.6.4) evaluates to zero. The optimal correlation re­

ceiver is then prescribed by

h*(t) = s2(t) - s1(t) + % - sT1(t)|

(3*6.5)



s swhere Cpp solves (3*4.22) with (^) replaced by 2(—).

Furthermore. P„ and P° are given hy (3.4.24) and (3.4.26)* respectively,iii ili
g g

with (^) replaced hy 2(^). An equivalent physical realization of (3.6.5) 

is given in Figure 6.

Basicallywe need only one set of solutions for all three of the 

cases discussed. The particular case at hand is normalized hy multiply-
ging (--) hy the appropriate doubling factor. The results are plotted for 

the unipolar case. Corresponding results for orthogonal and bipolar sys-
gterns are obtained by multiplying (^) by two and four respectively* and 

*setting K equal to zero.

3.7 General Observations

For the case of symmetric (p - 1/2) unipolar* orthogonal and bipolar 

signals* we seek that real root of equation (3»4»22) wherein the appro-
g

priate ^ doubling factor is dictated by the type of above signals used. 

Define G(b|u) as follows

£ [, j
G(b;u) = ln(u) + b^R | +... ' W

(u2-l)

2 . . 1-a . (l+a-2b fa)u + 2     u + .»■ • »■ ■■—t
1 ta+2b ^a (l+a+2b ~\j~a)

(3.7.1)

Then

b af +
I -slfcLi. (uU)

l+a-2b a

+ 2 1-a 1 (l+a+2b a)
u l+a-2b a u (l+a-2b a)

(3.7.2)

Multiplying numerator and denominator of (3.7.2) by
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(3-7.3)

k6

1 + a - 2b 'Ta 2
- .. ... 1 u1 + a - 2b \fav 

yields the relation

G(-bji) = - G(bju)

Consequently* if x = u is the real root of G(b;x) = 0* then x = — is the 

real root of G(-bjx) = 0 and by uniqueness it is the only such root. 

Furthermore* if b > 0, it is easily seen that 0 < u < 1. Bros by 

(3.^18) is negative for b > 0* If the sign of b is changed then the 

Crp corresponding to - [bj is

* - u " _ 1 - u _ (u - l)
CT - 1 _ ~ 1 + u ~ u + 1

w + JL U
(3.7.^)

so that is > 0 and equal in magnitude to the case in which b > 0.
Summarizing* if b = - |bl then = | c^, | and if b = +|bl then c^ = - [c^ |* 

*so that pc^ = 0 in all cases.

With this in mind we see that Pg of (3«^.24)* (3.5« 2 ) and (3.6. 5 )

depends on the absolute magnitude of b(jb)). Likewise,, the correspond­

ing P° depends only ori ! b jL Bins the sign of b uniquely, determines the 

sign of c,p in an antisymmetrical way, whereas (c^ J is determined by | b |
* -oand Eg and Eg are independent of the sign of b.

We now examine the case for b = 0. Then u = 1 is the desired real

root of (3.7»1)? so that = 0. Then Eg is given by
>b=o

#PE
b=o

' e-62/2 ^_
I fii?
1 (S)2m
2 'iir

m = 0 unipolar 
m - 1 orthogonal 
m = 2 bipolar

(3.7.5)



the aorresponding P^ for h = o is

E
>5f- -RE

h=o h=o

(3.7-6)

and in fact* since c^ = 0* the corresponding receivers are identical.

This should not be surprising. For if b = 0 then P = 0* which means 

the 'correlation operation is insensitive to the presence of s^(t). How- 

ever, if /we assume a lossless (energy) medium the total transmitted 

energy per T interval is (l+a)E and so the transmitted (potential) 
energy/noise ratio is (l+a)(Jjr) where (“) is the actual energy/noise 

ratio at the;receiver due only to s(t). Consequently} if fe = 0* the 

only effect Of the channel is to attenuate the ''transmitted" energy . 

noise ratio fey(l+a). Thus the -well known performance curves for corre­

lation reception with no pulse distortion may he used if the energy/noise 

ratio is divided, hy(lfa).

In view;Of the foregoing discussion the performance curves Eg and
'ZMPg with corresponding Cm for the unipolar signal are plotted in Figures

sJ through 15 as functions of received energy/noise ratioj (^)j for
Bvarious parameter ’values Of a and fe. The appropriate (||) douhling fac­

tor can then he used for Ofeiaining the performance of the orthogonal 

and "bipolar schemes.

There is feut one subtlety left to discuss and that is the perform­

ance of the optimum receiver in the ab3en.ee of noise. Certainly* if the 

noise* n(t)* were to disappear* we would like our designed: receiver to 

he error-less. In a sense* we require a consistent receiver. This is



hS

and

h ® s > K

with

h* = s(t) +. c*sT(t) ; lc* 1 <1 

■which, is the same as

ho(s±sT)>0 (3.7.7)

Note that (3«T»T) is the same condition forerrorless performance of the 

"bipolar ease.
HOW suppose that p ,= h fu E > 0. Then

h7® (s+s^) = - Ac£[a + ,hfa(l -* | c*|)| Es > 0 (3.7-8)

where we recall that

i4i«i
TO show that

hh(s^) > 0 - (3.7.9)

,assume ©therwise^ ,i.e.,

h® (s-s^) = ^1 - h fa + lc*((a - hfli)J Eg S 0 (3.7-10)

For this event to occur 

a - "b {"a* < 0 

and for some 0 Si x <1

1 - blfa - x("b{""a - a) - 0 (3.7.11)



Then, since x < 1

1 - b\j"a < b {~a - a

or, remembering that \bl <1

iiS < \*[ < 1
2 V

Now tile function, f(y)

v + y
j y > o

(3.7.12)

(3.7.13)

(3.7.i^)

with equality at y = 1 only.
Since 'fa < 1, (3.7.13) implies,

1 <\b\ < 1, (3.7.15)

a contradiction to assumption (3.7.8). For p < 0, the arguments are 

identical except reversed.. That is to say, obviously

h*0(s-s^) > 0

and one contradicts the assumption

ti© (s+Sfj,) ^ 0 .

*If p > % = 0 and we fraye

h« .s - E > O s

In effeqtwe Iiaye; shown that

ho(s±s5) > 0

I CTl
for any choice of c, such that \ ~ j < 1. In particular c = 1 and

*Crp = Cy, is a consistent receiver.



3.8 Computed Receiver Performance and Comparisons
*The error rate for the optimum correlator of the form: 

h*(t) = s(t) + e*s(t)j E*K

is shown in Figures 7, 9/ and 11. For comparison* the error rate P°„ 

for the standard correlator of the form

h0(t) - s(t)i K = K°

is presented in Figures 8, 10, and 12. Figures 13, l^fc, and 15 gives the
* ;g.values of c^ as a function of (^7, for fixed a and b.

Examination of the performance curves, of Figures j through 12 shows 
that for small a, there is negligible improvement to he had in using the 

optimum correlator (h ) over the standard type (h°). For a = l/k- and
sb = 0.5 and 0.7, the optimum correlator gives a gain of 1 db in (jj)l a 

marginal improvement. For a = l/2 and b= 0.5, there is a 2 db gain in 

(-j), and-for b = 0.7 there is a 3 db gain. This represents a signifi­

cant improvement. Due to the steepness of the curves, over a decade 

decrease in E_ is to be had.
-Cl

Since the receivers considered here are- to be memoryless, it follows 

that they can obtain no a priori information about the interference 

pulse. Consequently, a good receiver policy would be to try to ignore 

the presence of the interference pulse. The optimum correlation receiv­

er attempts to decorrelate or orthogonalize itself to the pulse inter­

ference. Thus, it is no surprise that for all cases the error curve for

b - 0, P_| ., is uniformly best. For a = l/2 and b = 0.7, E,| is
fb-0 “ !b==0

3 db -better than the optimum correlator and 6 db better than the standard 
Correlator. It then seems, plausible that the best one could expect from
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,b = 0,5

Received i. in db
FIGURE 8 STANDARD CORRELATION RECEIVER ERROR RATE FOR a - 0.1



Received t; in db
FIGURE 9 OPTIMUM CORRELATION RECEIVER ERROR RATE FOR a-0.25
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FIGURE 10 STANDARD CORRELATION RECEIVER 
ERROR RATE FOR a-0.25
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Received win-db

ERROR RATE FOR a - 0;5



b ■- 0.0

b - 0.318

Received
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b - 0.318

Received n in db
FIGURE 13 c





b - 0.318

Received w In db
FIQURE 15 cf VERSUS. i. FOR a - 0.5
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a memoryless receiver when both a and b are not zero is to achieve the

P„| curve. If such is the case we must be willing to sacrifice 77— ElteO 1+a
per cent of the transmitted energy to noise ratio.

3.9 Summary; A Geometric Interpretation

As mentioned in Chapter II we are dealing, with a real innerproduet 

space. As there are only two linearly independent vectors s* s^, in 

this chapter* a planar Euclidean vector representation is possible* 

where the length of a vector (signal) is represented by the square root 

of the signal energy and the "dot" product (hence angle) between two 

vectors is the correlation operation between the two corresponding sig­

nals* i.e.*

T
.O^oSi = § s1(t)s2(t)dt 

0

For convenience* a graphical description will be given for the bipolar 

case. The unipolar and orthogonal, cases will then be shown to be simply 

a rotation and translation of the coordinate axes established for the 

bipolar situation.

In Figure 16 we have fixed the horizontal axis such that it passes 
through the points S and S* and is oriented in the direction of S. The 

vector OS represents s(t) arid OS* represents -s(t). The vectors OP 

and OQ represent s(t) + s^Ct) and s(t) - s^,(t )* respectively. Thus OP' 

and OQ* are obviously, defined. So in this two dimensional signal space* 

the points P* Q*. P*, and Q* represent the four possible signal points 

with P* Q associated wifh a plus transmission and P** Q* associated with 

a minus transmission.
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Now SP represents tile signal sm(t), so that SP* OS is p = b f"a E ..
x S

But

SP. OS = 1 SP\ lost cos a = bVa Eg

where

| | - length

a = angle between SP and OS

whence “
„ -l"a - cos b .

Since h(t).is a linear combination of s(t) and s^(t), the vector 

OH representing h(t) must lie along the line QSP. In fact, since b > 0 

and c,p < 1, the point H must ;lie between S and Q. Now, if OV is any- 

realized data vector corresponding to v(t), then the correlator output 

is the projection of OV onto OH. If this quantity is non-negative a 

plus symbol is announced, otherwise a minus symbol. It is obvious that 

the correlation receiver establishes a "decision line” perpendicular to 

OH which partitions the receiver space so that if V is to the right of 

LLf a plus is pronounced; if V is to the left of LL* the decision is 

for a minus symbol.

The unipolar case Is represented by a strict translation of the 

axes to the point P*. The orthogonal case involves a translation and 

rotation. By assumptions 3=6(a) through (f), orthogonal signals need a 
four dimensional figure to represent their space which therefore is not 

shown® It is now obvious that any pair of transmitted signals whose 

four possible received signal points form a parallelogram may be 

reduced to the bipolar case by a coordinate shift.

In terms of this model (Figure l6), it is possible to give a 

qualitative discussion for the results contained if Figures 13,
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1^, and 15. Notice that is a direct measurement of the tilt of LL' 

away from vertical. The larger jc^|, the closer H is to Q, and the more 

horizontally tilted is LLr. Consequently we will discuss the tilt in
sLL' as a function of (—), h, and a .

The prohahility of correct reception can he interpreted as the

volume under a particular surface (prohahility surface) defined over the 

received signal plane (Figure l6). Given that v(t) is the sum of noise 

n(t) and s(t) + s^,(t), we have that OV is the sum of the vector OP and 

a noise vector PN. Now the vector PN may he decomposed into orthogonal

components parallel and perpendicular to OS. Let x and y he the respec­

tive axes of suqh a decomposition (Figure 16). Then the x component of 

FN,'Say.FN is given hyX

s = m*os
x ivosl

T
s(t)n(t)dt

0

Since n(t) is Gaussian it follows that the prohahility density onj PN J
•A.

' ’'Tv.

is given hy

p(k) -
rx2/2N0

where x denotes It is also true that PN^J (denoted hy y

has the identical Gaussian density function as x and furthermore, since

x and y: are orthogonal, x and y are statistically independent. Thus, if

we wish to interpret the differential prohahility that PN lies within 

the differential area dA with coordinates x and y, as a differential 

volume dT^. the dY. is given hy
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Then the conditional probability surface6^,, associated with the point 

P> is given by the Gaussian surface

-U2+y2)/2N
O . = 1

P 2jcN*- e

or in circular, coordinates

CL* i_ -r2/a?°

p zm e
0

p is generated by taking a ray from P and defining the

function

~r2/2N 
1 ' oe2itN

on this ray perpendicular to the plane of the receiver space and rota­
ting. the ray. through 2jt radians. G* p is then the generated surface of 

revolution. The conditional probability that given the received point 

P, the data vector OV lies in a prescribed area A is given by

Pr(OV in A/F) = ^6* pdA'

A
. /where dA is the differential area element.

Thusj, given that P is "the received signal pointy the conditional 

probability of correct reception is that portion of the volume under a 

Gaussian surface centered on P and to the right /Of the line LL*. Thus 

the total probability is one fourth (symmetric a priori probabilities) 

of the separate volumes under Gaussian surfaces centered on P, Q, Pr 

and QI:jr respectively, and to the light of LL* for P, Qj to the left 

of Eh* for Pi, Q*.



&5

Since Hi* must pass through 0 and the points PpQ,Q%P5 are symmetric 

■with respect to 0 and are symmetri c with respect to their -a priori proba­

bilities of occurrences^. it follows that Pg can he obtained in the manner 

discussed above by considering only the points P and In this, bi­

polar ease then, Pg is equiralent to one half of the volume to the right 

of LLl and under a probability surface given by the sum oftwo identical 

Gaussian surfaces centered on P and Q, respectively.. Pg is then maxi­

mized by tilting LLf such that maximum volume is contained to the 

right (or minimum, volume to the left •which represents Pg). It is now 

apparent that if the received signal points were not completely sym­

metric, then LL1 need not pass through 0 so that the location and tilt
•Jfof Hi* are coupled and hence K and would be interdependent.

For a fixed a and b we may now discuss the behavior of as a 

function of (~). If (^) is very large, the contour lines of this 

probability surface in the region of the origin approximate ellipses 

with foci eolinear with Rb It is reasonable then to expect Eh* to be 

nearly tangent to the contour line passing through 0. 'Phis tilts the 

decision line W towards the horizontal axis. Pbat | <M follows 

from 0^ being less than OP . Hie circular effect from Q slightly 

dominates that f ram P, causing the contour line through 0 to be a 

little more canted towards vertical than the ellipse.
For a very low (Jp the origin is very near the hilltops of both 

Gaussian component surfaces so that the contour lines of the probabil­

ity surface tend to be circular with center at S. Phis causes LL*' to 
be directed nearly vertically. Bins approaches zero as (|p goes

to zero.
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CHAPTER IV

SWITCHED MODE RECEIVER

In this chapter we will allow our receiver to utilize its own past 

decisions. Except for assumption (8) our channel model is that of 3*1. 

Since we have signal interference on only adjacent T intervals, only the 

immediately preceding receiver decision will convey information about 

the expected interference on the next T interval. We will examine the 

behavior of the receiver that assumes that its previous decision is

perfectly correct.

1 The Deterministic Switch
<”1For the rest of this chapter we will denote by the symbol D , the

event associated with the receiver decision immediately preceding the
-1decision, I), to be currently made. Thus D is the receiver announce­

ment regarding the event Z^ when the receiver is concerned with
~1deciding :Z We assign to D two numbers, 1 and 2, which are associ­

ated with in the following ways
(a) if the receiver decides that ~ 1/ we say D ^ = 1

■ (b) if the receiver decides that Z^n ^ ^ - 2, we say D”^ = 2.

We will design two parallel receivers wherein D ^ activates our 

choice of which one we choose to use (ref. Figure lrf). Since we have

a stationary channel model, with statistically independent input symbols
Znt^ i>°ii°’w's that the probability of D”x being correct is the same
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FIGURE IT SWITCHED MODE RECEIVER



for any value of n, and, in particular,, is the receiver correct recep­

tion rate or one minus the receiver error rate. As will he shown, these 

two receivers differ only in the decision levels, both having the same 

correlation operation.
How with reference to Table 1 of Chapter III, we see that if D 1 is

one then the receiver presumes s_ (t) to he present and since the receiv- 
-1 ' 1

er assumes D to he correct the receiver may first subtract s™ (t) from
'a, 1

the input v(t) leaving v(t) composed only of s^(t) or Sg(t) plus white

gaussian noise n(t).r. The optimal receiver operating on v(t) is the
correlation receiver discussed in Chapters I and II. Similarly, if D 1

is two, subtract Sm Ct) fram y(t) yielding v(t). In either case the
■2

correlation operation involves the stored reference Sg(t) - s^(t). The

operation of subtracting either s_ (t) or s_ (t) from the input may be
1 2

equivalently replaced by adjusting the decision bias level, (ref. 

section 3*5) The receiver then has the form, shown in Figure l8.

The two decision levels and Kg are given by

TE -E
K = ^i+I|oirii|£+ J S^(t)[s2(t)-s1 dt (4.1.1)

0 I = 1,2,
and

T .
Ks - h “ J (V(t) ’ sTr(t)] [s2(t) - s-.(t)j®

0 d X

We now assume that Kg - K^ is not zero. Otherwise the switch opera­
tion is superfluous. Furthermore, for the sake of argument, let 

Kg :> K^. (We could: just as easily consider K^> Kg.) For the unipolar,
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bipolar, and orthogonal types of signals discussed in Chapter III we 

have the following table

Unipolar . Orthogonal Bipolar

where as in Chapter III

p = J s(t)sT(t)dt o
0 '

Table 2 Switched Mode Decision Levels

Now if we draw a line (V axis) to represent the possible values of 

the output V of the correlator, (Figure l8), we see that and Kg serve 

to define three regions A, B, and C of the ¥ axis (sea-Figure 19)«

A C

K1

B

—V

FIGURE 19 SWITCHED MODE DECISION REGIONS
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Thus, if Y falls into region A, then Y is less than both and 

so that both "receivers" announce a one. Similarly, if Y is in region 

B both receivers announce a two, consequently, if V falls in either 

region A or B the switching operation is unnecessary. If, however, V 

falls into region C one receiver says one while the other says two. The 
switch, governed by B ■*", then determines whether one Or two will be 

announced, ¥e point out the similarity of this arrangement to the binary 
'erasure- channel^ wherein we use B ^ in a simple fashion to "write in" 

the symbol "erased". In this context a more detailed stuely from the in­

formation theory viewpoint "would yield more sophisticated modes of "switch 

control".

We now compute the performance, P^,, of this receiver remembering

that

Prob (B"1 correct) = P^ (b.1.3)

Listing all the possible independent events Which lead to a 

successful decision along with their associated probabilities, we have

the following (remembering that we have assumed 

Case X B-"'" - 1 and eerrectj P^(l-p)

<K2)j

and (a) s^(t) sent and V < Kjj (l~p) Pj(V < K^/s^)

or (b) s2(t) sent .and Y ^ p Pj.(Y s K^/sg)

i-1Case II D = 2 and eorxecti P^ p

and (a) .s^(t) sent and Y <(l-p) Pjj(Y < YL^/s^)

Or (b) s2(t) sent and Y § ,p Ejj.CY^ K^/s2)



Case III
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D E = 1 and incorrect; (l-p)(l-E^)

and (a) s^Ct) sent and V < K^j (l-p) Pj-jj(V < K^/s^)

or (b) s2(t) sent and V Kgj p PIXI(Y § K2/s2)

Case IY B E = 2 and incorrecti p (l-P^)

tand (a) '. b1 (t )' sent -.and 

or (b) s2(t) sent and Y S Kgj p P^Y § Kg/sg)

Now if indeed Kg < we need to Interchange and Kg in Case III and 

Case IYo

Now each case is mutually exclusive as is each (a)r (b) subcase so 

that P^Jis the sum of the probabilities of each event»

Pc ,= (1-p) Pc £ (1-p) Pj(Y < K]/s1) + p PX(V § K^/sg) ^

+ p En(y < Vs!) + P PII^ ^ Vb2>1

+ (l~p)(l-Pc)^(l-.p) Pm(V.< K1/s1) + p Pm(?.l Kg/Sg)|

+ p(l-Pc) I" (1-p) PIT(Y < K1/s1) + p PIT(V "S Kg/sg)j (k.l,k)

K^ < Kg | if Kg < K^, interchange K^ with Kg in Pjjj and P^

Y < K^ (1-p) PI (V < K1/s1)

Bie Roman numerated conditional probabilities are the gaussian distri­
bution functions and. are .computed :as (l„5)« The gaussian 
distribution function cjs is defined :as

_¥
% (¥) = J -x2/2 dx

We then have
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E±(V < E^) = § (¥x + ¥2)

PjCv ^ k2/s2) = 5(\- - V 

PjjCv < k2/Si) = $ (w1 + w2)

Pli‘V * V'2) * 5 <W1 - W2> 

PIII(TX V&1) = ^ (W1 + W2 ~ W3)

■VT,<*A>- i? c^ + w.,)
Pj^tv a I^/s2) = 4 + W2 - Wj)

and E^ <Kg

where

EVs!

T
(s2(t) - sx(t))2dt

0

3E .. ..S2"S1

”3 defined in (4.1,2)

Edh Eg < we have that

^(T^ Kg/s^) ^ 0(jffx + Eg)

Em(T - 3e} 3(V ~ % * *3}

< Kg/sj) ■** <$>(% + Wg + W3)

e^Ct ^ ^/s2) - + Wg)

(4.1.5)

(h-.l. 5 *)



One may then substitute (1.5) or (t3l«, 5*), (according to whether Kg>K^ 

Or > Kg) into (t.l.. t) and solve for E^. ¥e do this only for p = l/2

(¥2 = 0).

t + 2(1-PC) ^ (Wx) + $ (^ - ¥3(K1.6)

K2>K1

':qr

+ [#(¥■!_) + # (\ + W3)J
Ki > K2

and since,

K
¥ - 3'

2 - *1

TEc H 
S2“S1 °

(K0l.£f) is solved, irrespective of the sign of Kg - K^, as

<^(1^) + (¥^ * l¥3j;)

G 2 +§ (¥1 - \WJ) - (¥1)

1 Esrs
Tuif * ;*3l v %>/ { Eq . H ’ S2‘S1 °

(4.1.7)

¥e evaluate (Kol«T) for unipolar, bipolar sad orthogonal signals so 

that they may he compared to the results Gf Chapter III. Using the 

notation for the types of signals as in Chapter III, we have the follow­

ing table for ¥^, W3# K^, and Kg values.
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W,

V,3

V2^

Unipolart T
- (-)2 MST'

»vU<|)
1 (2)2 VIT

| (f)(l + 2bfa)

Orthogonal

W
2b fS \ /S(-)

(f)

h fa (~)

Bipolar

2 (£)

2b \fT y 2(f)

2b yr 2(|)

2b fT 2(f)

Table 3 W and K Values for Unipolar,
Orthogonal and Bipolar Signals

Thus for the unipolar case P^«i6 given

pc
(|» 1- <g(\§ (|> a - 2\*t f?)) 

2 +<5 (ft (I? a - swrs)) - 1 (i))
2 V'

: P =1 - P = E C
S'
\2 >$'

-x2/2 dx •/(’ If
(4.1.8)

-x/2 dx3*. \ 
fsT1 /

'H^f) (i-2m yt)

Once again we see that the performance of orthogonal, and bipolar signals
sis attained by multiplying (^) by 2 and 4, respectively.

If h = 0, K^ = Kg® Then

rc = §<!ii»
K^ = Kg = Eg/2 unipolar

= 0 orthogonal or bipolar

(4.1.9)
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m — 0f unipolar
. ,. v (4.1.10)m = orthogonal v 

m = 2} bipolar

wMch is exactly the result Of Chapter HI> then h = 0.

Referring to the expression for in (4.1.8) ve may use (4.1.10) 

to express P„ as

1 :~ 1
2

(1-2

(4.1.11)

From this expression the following hounds on Pg are readily obtained.

P,E £ £, * 2 P
b=0 E E b=0

(4.1.12)

sFurthermore.. ,p_ is asymptotic from above to P_| as ss goes to zero 
'* K»b=0 iM

If j b f a < “ then P_ is asymptotic from above to ?_,[ and is bounded 2 E Ej-jj-Q
above by & * r,‘s— ^ ' "**

lb-0
^ -g, . Since Ibj \| a < in Chapter III,, only the bounds of

U>=0 4 1and P_ are presented in Figure 20.3 E|b=0
4.2 The Probabilistic Switch

We nowash, if instead of having the switch of section 4.1 complete- 

ly determined by suppose the switch is probabilistically controlled, 
fhat is to say*: if B.1 is one then the switch takes position 1.with 
probability I and position 2 with probability (l-i). On the other hand
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if D 1 is two, position one is assumed with probability (l-i) and posi­

tion tiro with, probability I® We might then choose that /value of £ which

maximizes ]

To oca

a success®

apute P^ we enumerate the mutually exclusive events leading to 

As suming < Kg we have

Case I D ^ = 1 correct and switch in position. 1,

and (a) s1 sent, Y < K±; £Pc(l-p)2 P^V < K^)

or (b) s2 sent, Y £Pcp(l~p) P-^V § K^Sg)

Case I* >-lD = 1.correct and switch in position 2

and (a1) sx. sent/ Y/< Kjj (l-|) Pd(l-p)2 P-^Y < Kj/s^

or (b1) s2 sent/ Y £ Kg! (l-£) Pdp(l-p) Piy(Y * Kg/sg)

Case II D = 2 correct and switch in position 2

and (a) s1 sent/ Y < Kgj iP^p(l-p) P^CV'< Xg/s1)

or (b) Sg sent/ Y > Kgj IP^2 P^Y > Kg/sg)

Case II5' B = 1 correct and switch in position 1
and .-(a*) s1sent, V<K1j (1-|) Pcp(l-p) PIIT(V < K^)

or (b1) s2 sent, V § Kgj (l-l) P^2 P^V ^ Kg/sg)

Case III D = 1 and incorrect and switch in position 1

and (a) Sl .sent, Y :< TZ1j i(l-Pc)(l-p)2 PriI(V < K1/s1)

or (b) s2 sent, 7i Kgj |(l-Pd) p(l-p) PIIX(Y § Kg/sg)

Case III*5 D ^ - l and incorrect and switch in position 2

and (a5) S;L sent, Y < Kg| (l-£)(l-Pd)(l-p)2 P^Y < Kg/s^

or (b) Sg sent, Y § Kg! (l-|)(l-PG) p(l-p) P1X(Y * Kg/sg)



Case IT D~ = 2 and incorrect and switch in. position 2 

and (a) sent V < |(l-Pc) p(l-p) P^V <

or (h) Sg sent |(l-Pc) p2 Piy(V S Kg/sg)

Case IV' D P = 2 and incorrect and switch in position 1 

and (a*) e1 sent V < (l-|)(l-Pc) p(l-p) P

or (V) s2 sent V S K^(l-|)(l-Pc) p2 P^V S I^/sg)

(For Kg > K^; interchange E_^ and Kg in Cases III and XT.) The Roman 

numeraJLed conditional probabilities are identical to those found in sec-
• . ' ' . - V. •

tion 4»lj namely; (4.1.5) and .(4.1.5* )•

Pq is simply the sum of the above probabilities^ and we may then 

solve for P^ in exactly the same fashion as in section 4.1. We do this 
for p = i to obtain

pc-

2^(W1) + | [$(W - \W \) - (W1)J

2 + |? (W1) - <3? (Wx - lW3\ ) + 2|\j£ (W1 - \W3\ ) - ^(W^J

(4.2.1)

where W^ and W3 are defined in (4.1.6). Note that if £ = 1 (4.2.1) 

reduces to (4.1.6). Differentiating (4.2.1) with respect to I yields

6pc (wx) - % (wx - |w3\)}[3^ (wx) + i? (wx - l w3l ) - 2J
"ST " [2+ <^(w1) - ^(wr - |w3t)* 2i (wx - \w3\) - ^(Wi)}]2

(4.2.2)

SpcConsequently the sign of --— is independent of £ implying that£ Spo
i - 1 or 0. Or •£„ is invariant to I according to whether is greater 

o d|
than; less that; or equal to 0; respectively. Equivalently we need Only
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examine the numerator of (4*2.2). Since is a monotone increasing 

function we haye that

5(WX) - <5 (w1 - lw3V) > 0 j w3 i 0 (4*2*3)

Whence^we need only examine the sign of the expression

S ~ .5$ (^) + ^ (¥]_ - \W3l;) ~ 2 (4.2.4)

For the unipolar case (4,2.4) reduces to

g' = 3^ ( ^| (|)) + ^ | (|) d^abirs))- 2 (4*2.4')

Now a crude sufficient condition that | = 1 or g* be greater than zero 

is easily derivedby using (4,2.3) to obtain

g* > 4$.( ¥ § (§) (l - 2[b\ ta ) - 2 > 0 (4.2.5)

1 - 2 \b\ i~"a > 0

,;®T- ' '
.*2-1 d s* <.

2and since b <1
g* > 0^ if a < l/4. These results are independent of (”) so this condi­

tion holds equallywell for the orthogonal and bipolar cases. A sharper
qhound On (a) would involve the value of (^).

If i (”) > 0,44 or (|p > 0.4 j then

3$( 2 > 0

and g’ is guaranteed to "he larger than zero. Similarly^ for the ortho- 
0 Sgonal case (^) > 0.2 and hipolar case (^) > 0.1 guarantees | = 1. From



an engineering point of view any;system which operates at a 
I B■ P > 10 (^ < 1) is unacceptable so that, in'tMs-nontext, we would

.always choose i - 1 as is the case described in section 4.1/

4.3 Summary

In terms of the geometric model of 3.8 the switched mode scheme for

the bipolar ease can he depeeted as in Figure 21. Note that a simple 

translation and rotation of the coordinate axes generalises to other 

than bipolar signals as in 3.8. Here it is easily seen that we have two

vertical decision lines passing through K^ and Kg, respectively. The 

strip between these lines defines the region in which the immediately 
preceding decision, D”1, is used to generate the succeeding decision D.

Prom the relatively ti^ht bounds on Eg In terms of Pgj it

appears that this receiver succeeds fairly well in its attempt to ignore

the presence of the interfering pulse s^. The smaller b\f a, hence the 

narrower the strip between and Kg, the more successful is the receiv­

er in obtaining the performance for b - 0.

There is yet to be discussed the transient problem associated with 

initiating communications with this receiver. As the previous discus­

sion assumed a steady state behavior, the receiver must be turned on in 

a manner which insures the steady state behavior assumed. It is reason-
sable to eaepect that if the ratio is large we may use initially either 

decision level/ or Kg for our first transmission, as: the probability 

Of making the correct decision with either K^ or Kg is very close to

However, it would seem that the best way-of initiating reception,
s‘pendent of is to use the fact that there is no s^ present on

one.
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the first transmission. Hence* for this first T interval* the Bayes* 

receiver is the correlation receiver

83

^ s(t)v(t)dt

O

K - *L
k2 - ^

(E, » %)

and this insures the highest probability that the first decision is made

tEhis first. Bayesr decision -waald. then be used in conjunction with 

the two decision levels .and K_ On the second transmission and then 

operatioh would be as described in 4.1*. Consequently in the practical 

design of this receiver three decision levels need to be incorporated 

besides a correlation filter* namely K^* Kg and a level midway between 

and Kg.



CHAPTER V

CHAfflEL WITH FADING IMERSIMBOL IHTERFEREHCE

The next case to be examined involves the preceding channel model 

•which also produces "fading" on the s^, portion of the signal# That is 

to say^ instead of Sj.(t)^ as^(t) constitutes the interfering signal. In 

particular^' a is assumed to be a Rayleigh distributed random variable.

A physical model for this formulation is-a -channel which has one -spuri­

ous fading "multipath" in parallel with a direct communication link.

We then seek the best correlation receiver to operate in this environ­

ment# _ hue to the computational cotrrplexity of the equations to be 

solved^ they are presented without specific numerical resultsj further­
more,, only the symmetric (p - i) bipolar case is examined.

511 Mathematical Assumptions and Associated Bayes{ Receiver

The basic channel model, of 3,1 with the following modifications is 

adopted

(l) s2(t) = - s^Ct) = s(t)

s^(t) = * s^(t) = sT(t)

(E) s(f). is known perfectly at the receiver

Sj(t) s= dSrji(t) where s^Ct) is known, perfectly at the 

receiver#

a is a random variable* statistically independent of the out­
come of s^(t) and stationary oyer the T intervals* with the

(3)
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probability density function

p (a) a -cr2/2d2 _ ^ _

d ■

= 0 a <0
where d2= ir E(a) ; d := *^'e(a)

and E is the probability expectation operator,
p i(4) d < —• j in analogy to assumption .(7). Of Chapter III note

Li

that

T
E( ^ 02 s^(t)dt) = 2d2Es < Eg

O T

(5) The receiver is not to use any of its previous decisions.
The four possible combinations of signals formed from ±s(t) ± 0s^,(t) 

constitute the equally probable combinations of received signals plus 

noise. The likelihood function A is then given as
Aw E jiLjOxpCv® (s-0sT)/Uo)] + E[A2exp( v«* ( s+CSj,)/]!^) ] 

E^LJ:e2cp(-v®(s-0ST)/]!|o)"J + E^A2exp(-v® (s+asT)/No)J

(5.1.1)

where

.=?• exp
2
dt

T
A2 = exp - ” ^ ls(t) + aST(t)] dt 

0 0

y«f = j v(t)f(t)dt 
0
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To perform the indicated, expectations of (5«l«l) use of the following 
7relation will he made

C*° 2 P °° 2
\ 0 exp-(x02 + 2y0 + z)d0 =-^exp(^~r^) A e-0 (~--^)da 
” ~\[T x ° ^fx x

y/ fsT
x>0

(5.1.2)

To relate (5.1.2) to the Gaussian nature of the problem, define the in­

tegrated Gaussian distribution function as

u ^ u

®(u,= S +
-o° °° V -U

Letting 0 - #/ ^ 2,' (5.I.2) becomes

-v2/2 dy
* VT7

(5.1.3)

a
j" 20 exp - (x0 + 2y0 + z)d0 i’W C-Ufy) exp^-lJE. x>0

( 5» 1* ^")

As an illustrative example* we compute 

E exp(v«(s - asT)/l|o)

-if—
o

p - vos- Eo - 2yos 
(”“N ”)° + ItTO /d0

where E_* E and p are as defined in Chapter III. Referring to (5»1.^) 1. S- S- 'T
it follows that

d E + 1
x = -J

2BT d o

p - y®st
; 2BT j 

o
z =

E - 2 vos s
2H

and from '(5*l«-*0



E ^exp(v*(s - asT)/NQ)^

-2- 1^~2 ® Kp. (p - v«sT) *•)

0, 2 1 21 o J

-2 ~ (E -2T«s). s 0 / \ 2 . Sexp I — v^ (yaSru - p) - -( 2N2X2 V’^T 
o

where a2 = E(cr2) = 2d2

— = E(a) = *\^d

21

(5-1.5)

x2 _ £ \
X 2 ~ 1 

,o

2Matbeinatically m may redefine 0 = 2d so that E = E j that is to say
sij s

in 4

sT

¥e label [a2J as o'2. Letting, as before,

(I) = -!L 
21o

Then;

Computing the expectations indicated in (5*l*l) produces 

(a) E \jll exp(v«(s - asT)/KQ) ^

■ rSx TVS \
W 1 o

(5.1.6)
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(c) e^A2 ®3cp(ve(s + asT)/No)J

(d) E Ja2 exp - (v (s - 0sT)/lo|

exp’
[Wrjf- P

„ '2 V N
2X \ °

/S\ , vos - ¥ + —

(5,1,6)
(cont,)

= VSj® !p(-Y*a?-p)

|2X2 No
\o2 /S\ vps ¥ ‘ N

After dividing common factors, (5=1.l) may "be expressed as

Am- ■

exp 2rb(S) US 
% 7°V N° -* ® ^ I+ + ® \ W* I+ -r^)}

(5=1=7)

where

7 =
2X

P = i>(i) 1 < b < + 1

¥e note the presence in (5=1=7) of only the even part of © <@eVf 
the numerator and denominator are multiplied by l/2» The even part of 
(|^ is given by

®e = I |® (u) + ® ©ul= I $ (v + -u)e“V ^ -|p+§ S (v - u)e"v /2^

1 r e'-^2/2 j£_+i fve"y2/2 C e-vS2j2L„ fe-^/2_^L
2 J .VST 2 J (2? 2 J ^2? 2 J fS'

u u13L
pi?
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which reduces to

e“^2/2Jy + 
^2jT

-u2/2

Baking the logarithm of (5«1«7) results in

in A(v) = |- y®s - (§) yosT
O O

(5.1.8)

+ ln©ie^^-7l=(|)l

o

- Xn ©e ^ -jr- + M§) J
(5*1.9)

Then In Aw given by (5.1.9) 1 s compared to the decision level

In i-E = o (5.1.10)
3? ■

Taken together, (5»1«9) end (5.1.10) ,define the optimum Bayes' receiver 

for this channel model, 'The essential data operations are again correla­

tion -of the input data v(t) with s(t) and s,p(t) followed;by the indicated 

In (5) • functdotts. The block diagram of such a receiver is given in 

Figure' 22, Heedless to say that the possibility of a more tractable form 

ef the statistic is quite remote and, except for the limiting case, the 

performance of this receiver is quite unpredictable. So once again we 
will utilize the philosophy of pre-establishing a receiver class within^ 

which -a best receiver is sought. In particular, since the pertinent 

operation is correlation,; we choose to examine the class of correlation

receivers
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5.2 Formulation of the Correlation Class

Let (K,h(t)) be a given correlation receiver. That is to say, the 

number V is formed as ‘

T
V = £ h(t)v(t)dt

0

and compared to the decision level K,

Y II say 2
(5.2.2)

, V < K , say 1

Then if a is assumed known,, the conditional probability of correct 

reception,, P^y^ for the bipolar symmetric case is easily derived, as in 

the previous chapters, to be

(V+ho(s + asT))J
^cT=,ir 5 exp  -----21.........

o\
+ exp

(V + h»(s - bsT))‘
dV

2NoEh ^ 2jtNQEhi

l s
K

(V» h (s-asT))2 (V- hoCs + as^))'
21 E, + €35> “ 21 E, ”
on on

+t j €2q?“ dV

l2
(̂5.2.3)

where x
h®(s ± crsT) = J b(t)| s(t) ± as^t)|dt 

0

T
^ = £ h2(t)dt

0

It then follows from the definition of conditional probability that the 

average rate of correct reception P^ Is found from
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V= E PCA (5.2.4)

Operating on (5*2.3) with E and interchanging E with the indicated in­

tegrals of (5*2.3) produces integrands of the form

(5.2.5)

The implied expectation integrals of (5.2.5) can he evaluated hy means 

of relation (5*1.4). Namely,

E
j^V + h®(± s ± nsT)]2 

2NR

j2 ' (+ h«sT)
No^ (Y ± h<*s) exp

(V ± h«s)2

where

2
a2(h0sT)2

21o\

Pc is then given as the sum of four integrals of the form

£2* (* h sT)
(V ± h«s) exp

which we normalize with the substitution

(1 ± h s)2] dV

(5.2.7)

Y - ,h«s
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(5.2.7) is. then reduced to

K ± has

(5.2.7)'

Substituting ,(5.2c7)r into (5.2.1)-) yields as 

K + h«s

Qn-ea ’again only the even part of (h);, is involved in determining

so that P^ may be expressed as

(5.2.9)



9k

where
a2 = E(o2)

T
hot = I h(t)f(t)dt

0

a ^(ll0ST]'
TJ2 -- 1 +■■' ■'*'

Now if the receiver. (K,,h(t)) is scaled by X to (XK^Xh(t))^ examination 

of (5.2.9) shows that

Xh&Sj

o2(\h®sJ
1 + - 1 +

2N XTEL io :h

d2(h«
TJ

2N E, o h

XK ± .Xh.es = K ± h°s

and -P •is invariant to the gain of the receiver. Thus ]?£ .satisfies the

'assumptionsof section 2.1^ .and since P^ is determined by the two linear 

functionals h®s and h©s^ we may conclude that the optimum h(t) has the

form

h(t) -= cs(t) t c^sr^(t)

Substituting this h(t) into (5.2.9) and assuming we scale d such that
Sg - ?c is given by
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K+cEs +CTP

$
p„ i=
m

isrtr(op + °*)w
o h

1 1I :Wr
72 dw

m

e,1 o h

/with

^ ( °P + 'tV" -vZ/2
e 1 dw

(5.2.10)

V :??. E(0

T
^ = (c2 + cr^Es + 2cctP^ p - £ ^(t)8^t)dt

2 - a11 1 + =21Iu E, + Ca^s ^
oh

We may now use the system of equations (2.2.5) to obtain optimal
■$£ -¥rvalues of K c and ,Cj such that E^ = E is fixed 'and in particular E

* . * / vis that value for -which c = 1 (assuming c f 0)9 Now for any particu- 

lar -achieved.'value cr^ of oP the results of Chapter III state that K 

for ctq is equal to zero.and this value of K is independent of (T* 

ihus we would expect K to he zero for the case at hand. Now.,

K
ie(K + cEs + c.jp) - ^e.(K cEs ~ CTp)

(5.2.11)
and (jj^(u) is the even function
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Glem = ©s -2 (cp + -c^)u

V-A
exp /« u

2A,\

Since VJvj£ "is ;an even function, for any fixed value of c and c,p, P^ = 0 

is solved for K = K - 0 independently of the c, Choice and so F^. = 0 

is solved for K = 0. Furthermore,, as shown in Appendix C, K = 0 is the

unique solution, in the bipolar symmetric case, to P^ =0Ifor any 

acceptable.probability density function p^(g).

Setting ,K = 0 in (5*2.10) and letting wr = -w in the second inte­
gral of (5.2.10) produces for P^ (noting ^)e(-u) - (H),g(u))

% *c#

"06

i ^
iw I e 72 dw

The necessary equations for inaximizing ,(5.2.12) subject to holding 

E^ = E fixed are then obtained from .,(2.2.5) as

(a) P* + 2a(Esc* + pc*) = 0

(b) P*^ + aa(pc* + Ec*) = 0 (5.2.13)

(c) (c2 + c2)Es + Zccyp = E

where CL. is the Lagrange multiplier. It is easily verified that (5.2.13) 
can be put into the form

(a) -.ax6*« - (EP* - p?* OAK2 - p2)
SC V S (5.2.11).)

(b) -2P!cT = - (EsPc^ W pPc)/(eJ p )



(c) (c2 -f- c2)Eg + 2cc^p = E (5.2.U)
(cont.)

2 2since by Schwartz' s lemma E w p > 0.’S
We next evaluate P Pc ^ the partial derivatives of P^,, with E^ 

held fixed. Put

■CJ} =■ h® s,Tb

K'V = h®s

-2 nlr2jcx
2M E 0 ¥

(5.2.15)

s P that

Pc.- c2)-l/2 j •*w / 2 e ' dw

Let £ represent either c or sp that

6P„

E
2x\ H E 1 °‘ o

r o 1
w■?*#**
I - 2t)% E J

+ v»tH - >r > : ( H
n2 Vnoe

e Or/2 » E2r| e

.~<t>2/2T]2NE 
e ' o

, o-2 * .
•+ \ >:,v

2-n H E 5 o

(5.2.16)
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where
- -t Qkm

u=a

t.
■tc = p

iff = E 
<?T s

r 4> = Ec s
<

Vn, = P
T

TVUsing. (5o2«15)jf: 2qce may he computed from (5.2.14a) as

*
2ptc - >w

a2 4>i|r expi-^/Zx^ E)
c=c

*
CT=CT

(5-2.1T)

Now from the definition of (5.1.8)^ it follows that (h)6 -is a

strictly positive function* so that for any value of c* and in parti-
* -X*cular-c } cT the right hand side of (5.2.17) is less than zero. 

Consequently* neither Qt nor e are zero and we may set c equal to one. ,• 

Note that E is now considered a function of c^. For c = 1, c^, may he 

solved from

(5.2.18)

Once :again using ,(5^2.15) it is easily established that
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E P - pP • s cT K c
_2 : 2 "
E - p s

*-2,g; A|f
2ti2N E 

1 o
pc +

-2. ,P <tnjf
:2(Ti2j2(]TE)3/2 We

fp2 <h|r exp(-<t>2/2ri2Kr E)

lp
2tj2NoE

<t>/Vn N E v ' 0
-w2/2

e ' w dw (5.2.19)

The Integral appearing in (5.2.19) may he integrated by parts, producing

E P l- pP o ps'ct : /c 0% r o2n
2„ „ C 2;2„2 2 E - pS • 2Tj“NE r 2(t) ) (NoE)

exp(-<t>2/2Ti2NoE)

(5.2.20)

From the definition of (h) iu)

(H)e(u) = \u\
»u‘ 2,_ . -u/2/2 dv e (5.1.8)

¥e obtain

u) . JV 72 dv 1

“U2/2 (5.2.21)
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E P - pP S c H c
-L- - --.2 2E - p s ■

ff2t 4.trrpc +
2n N E 1 o

2('.2)2(k'e)3'2 „ 2 fE2tj o

5XI)(-<I>2/2ti2N E)

S? | •y|f 4>-2a2n2 V
exp( - 4>2/2ti2N_E )

q2i|r
2q2N E 

1 o f ;.e ~w
/2 .fl-v (5.2.22)

Whence, (5.2.18) together with (5.2.15), (5*1.8), ,(5.2.21), and (5.2.22)
*serve to establish the equation from •which c^ is solved. Furthermore 

this equation involves only the well known Gaussian density and distri­

bution functions.

Consider (5.2.18) in conjunction with (5.2.22). Suppose we change 

the sign of p (i.e., make s^(t) = - -s^(t)). Letting pf = - p and

'T
? _ c^, the following is easily verified

(i) ♦;* = Eg + c^p’ = Eg + cTp = 4>

(ii) ty’ = P* + c^Eg — “(p + c^E^) = ■- i|r

(iii) rj2, E remain unchanged

(iv) Pg is even, is odd on i|r

Then, with regard to (5.2.22) replacing 4> and i|r with and i|r' is 

equivalent to multiplying (5.2.22) by minus one. Consequently it follows 

that » cT solves (5.2.18) for p* = p, So., as in Chapter III,
|c|j | is determined by Jp \ and P^, is ultimately a function of o’2, Eg, Nq 

and |p|. Numerical results are not computed as the necessary solution 

techniques and computer time required do not seem justified for the pur­

poses of this investigation.
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5*3 Summary

Inisection5-1the ideal .■..Bayes'.’- receiver is developed, (5.1.9); 

for the,bipolar, symmetric signaling scheme«.with randomly fading 

(Bayleigh) but otherwise specified intersynfool interference. A glance 

at Figure 21 shows the complexity involved in realizing this receiver. 

Moreover, any attempt at computing the performance of this receiver 

should prove difficult in the extreme.

Section 5.2 examines the performance of the correlation receivers 

in this environment. The formal development is quite similar to that 

of Chapter III. However, we may not make the transition to the unipolar 

and orthogonal gigpaling situations with such dispatch as the precise 

value of c is needed to utilize the technique used in Chapter III. We 

sea though that for bipolar symmetric signaling the optimal decision 

level K is zero for any type of stationary,: statistically independent 

fading. Physically speaking we would expect this result to carry over 

to the orthogonal scheme Also and indeed such is the case as is shown 

in Appendix D. For the case Of Rayleigh fading, the value of in­

volves the solution of an equation, (5.2.18), of an intrinsically 
Gaussian nature. So in a sense; we have traded an enormously diffi­

cult numerical analysis problem associated with the Bayes* receiver, 

which is of questionable practical realizability, for a much more 

tractable numerical problem associated with the correlation receiver, 

whose fabrication has already been achieved.
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CHAPTER VI

SWITCHED MODE RECEIVER, FADING CHANNEL

In a fashion analogous to Chapter IV, we will examine the channel 

model of Chapter V, where the receiver is designed- assuming its past 

decision was correct with probability one. In actuality we have two 

receivers operating simultaneously on the incoming, data; the choice 

of which receiver decision is to be accepted is predetermined by the 

immediately preceding /decision (ref. Figure Chapter IV). Once the 

individual receivers have been decided on and their probability law 

(conditioned as in Chapter IV) established, . the overall system per­

formance is solved algebraically in exactly the manner ©f Chapter IV.

6.1 .Switched Mode Bayes1 Receiver

; The Bayes-' receiver is next derived wherein the assumption (hence

conditioning) is made that the immediately preceding decision was

absolutely correcti With-the assumptions of Chapter V, excepting .(5)^

and the notation of Chapters IV and V, we need to design two Bayes’
-1receivers, corresponding to D equal to one and two.

s(t):*■ os^(t) and•-s(t) = hs^(t). Consequently, the likelihood function

Case (l) d"1 = 1

-lFor D = 1, the receiver presumes that it must distinguish between
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/VCy/d"1 = 1) =
exp(vo(s - asT)/NJ

e[A2 exp (“V» ( s + crs^

where the notation, of (6.1.1) is explained In (5*l*l)« 

Use of (5*l*6a and d) evaluates (6.1.1) as

■(6.1.1)

where the notation is that of (5*1*7)*

Case (2)

'Here the decision is 'between s(t) >+ 0s^,(t) and.-s(t) + as^t). In 

exactly the same manner as Case (l) and with reference to (5 • 1 • 6b and c),

= 2) is obtained as

(v/D"1 = 2) =
H , (0(f)

q V s,W|) + -No
exp ( 2yc s IT

a Vo^m *271.(1) -5- )

(6.1*3)

Thus,, (6.1.2) and (6.1.3) demonstrate that the utilization of a switched 

mode in a sense separates the H ’s of (5.1.7)* From an analytical 
point of view we are in no better position than that of (5*1*9), for we 

have merely traded the even part of H for H itself. Consequently,, 

we end the discussion of the switched mode Bayes’ receiver.

6.2 Switched Mode Correlation Receiver

In a manner analogous to 6.1 two optimal correlation receivers,, 

conditioned by are derived.
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Case (l) Drl = 1
The receiver assumes its decision Is ‘between s(t) - crs^t) and 

-s(t) “ crs,p(t). Letting (K,h(t)) be the correlation receiver for D”"3" = X, 

we have from the development (5• 2.l) through (5.2.8) that 
P^Ch^K/D"3" = l) i= Pc(l) is given by

(K + h.s)/!|A0Eh

^09

-w2/2 dw

00

(6.2.1)
Strictly speaking.,; we should subscript h(t) and K as h^(t) and 

to separate them from the receiver corresponding to if ^ = 2. As we will 

deal with D 3 = 2 in a summary manner, there will be no confusion if the

subscripts are deleted.

The leader's attention is drawn to the similarity of (6.2.1) to

(5.2.8). The difference between the two lies in omitting the £h)*s of

(5.2.8) which have minus signs in their argument 
I) 1 = 2 corresponds to using -sT(t),1^(2) is of

. Since the case 

the exact form as P^(l) )
except that minus signs need be inserted in the (h) arguments. There

is only a small difference "formally" in the necessary,conditions On
■M- ~x(K c ■f Cfp) from those of 5«2<, K cannot be solved independently Of 

(c ,-c^), a difference which adds a great deal of computational diffi­

culty. The condition
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-doa a i ^ £*ass3 '-a-x

-cjolst'sx) a.ygr0 ,'X;-a

' - - V/’ - V

- - ' “ •

-2-1 ha st(K* + has)

2t)
W
'o

X' xxx Leikiil? s

■ Xf/.tj.eaj':aiXO£e£x6. /xol chkhs. 

■x• ax' ■, (of ,S

xxc v LLiPi-
Jxp(-^K* + h*® s]2/2NE)

— oas ,
xS x '

(6.2.2)

As has no particular odd or even properties^ obtaining K directly 

from h is not obvious. Note the following effect. If sT(t) is replaced 

by -Sjj(t) 'and K by minus K in (6.2.1); and then the variable Of inte­

gration: set to ~w, (6.2.1) remains unchanged. From this one may conclude
^ f-vf„. ^

that if K solves (6^2.2) for s^(t)> then -K solves (6.2.2) forv-s^(t).

“21 h ® Sx,(K. - hos)

2t) N E 0
C' ■ ** . *ho* sl;'/Si0K)

Now changing the variable of integration to -w in the second inte-

, (6.2.1) sets Pc(l) equal to
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The great similarity of (6.2.3) to '('5*2.5) is seen, if (hJ is sub- 

stituted for and 4>+ and <!> are accounted for. Thus/ the develop- 

ment for demonstrating that c f 0 (say c - 1) and obtaining c^ follows 

directly (5.2.16), through (5*5*22). in particular, the following are 

easily derived , j

*
2DCc =•

2ri2'jH1

1

exp (- <t>2/ 2r| 2M'oE )

•2* <!> t
. 2 IE 2r\ o

exp (- 4>2/2rj \ E)

*so that Cic < 0. .Consequently,

c = c

- v',-

K = K
H - T-:1

(6.2.4)

* * *v/. 2 2w% * " CEsPct - PPcV(£s * P A3*5 ) (6.2.5)

Wow
2(E P ' s cT

2 . 2

can be read directly from (5.2.22) in the following manner 
(i) For P^ substitute P^(l)

l-\ ... ;V"^ i ' ’ • ■ \ ' 2 > ‘ .“ (ii) Replace the tem;^ ^H)e(...<l>)e"’!<*> ' * * jVitK T

r ~'J• •• *-<l> /... 7
|*+ @'(...*+-)e + ©•(... 4>Je ~ j-

(iii) Similarly, replace ^ (®) g(
by

@/(...<l>+)e + + @/(,..4>Je
■<t>2/.,



♦A. . / • • •
(iv) Change ij !» J

♦ /...
/ }

From the discussion following (5« 2.22) and the preceding remarks
■)f iconcerning the sign of E , it follows that if s^,(t) is replaced by 

“S^(t) then E is replaced by -E and c^ hy -c^.

Case (2) iT1 = 2

-1 -1 As already pointed out, D = 2 is equivalent to the case of D =

if s^,(t) is replaced hy -s^ft) so that K and c^ need only he negated.

The resulting receiver is depicted in Figure 23.

6.3 Stanmary

We see in the immediately preceding two sections the great analyti 
cal similarity to Chapter V. (h) is substituted for (h)s and the sign, 

of s^ft) comes into some play. The actual performance of the receiver 

so designed requires the probability law P^,(l) (which will he of the 

same form as 2) because,■, .effectively* only sT(t) has been negated). 

With this in hand,- one simply proceeds as in Chapter IV, enumerating 

the events leading to a successful decision and performing the neces­

sary algebra.
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FIGURE 23 BIPOLAR SWITCHED MODI CORRELATION RECEIVER 
FOR FADING PULSE INTERFERENCE .
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CHAPTER VII

C0HCLUSI0HS

7„1 System Comparison

In this section •we compare the performance of the receivers of 

Chapters III and IV. That is to say, the memoryless correlation receiv­
ers of optimum type (h = s + c^s^, K = K ) and standard (h° = s, K = K°) 

type and the dual decision level,, switch controlled correlator 

(h = s;K^,Kg), where the immediately preceding receiver output activates 

the switch to select the next decision level, or Kg, to he used. 

Figures 24, 25 and 26 plot the error performance, V of these receivers 

for the extreme case of h = 0.7, a = 0*1, 0*25 and 0*5; as functions of
sthe received (“) ratio. Also plotted on these figures is the Pg curve 

for h =0. In all cases for Pg < lO"1, the switched mode correlator

sprovides the best performance. In fact, in terms of (^), the switched 

mode is negligibly different from the b = 0 curve. Even for as small
san a as 0.1 the switched mode correlator represents a (^) gain of 1.5 

Uh over the optimal memoryless correlator. For a = 0.25, the switched 

mode correlator represents a gain of approximately 2 -db aver the optimal 

correlator and more than 3 dbover the standard correlator. For a = 0.5, 

the switched mode ^correlator represents an improvement of 3 db and 6 db, 

respectively.

The switched mode correlator has another advantage' over the memory- 

less correlators in its ease of construction and that existing systems



STANDARD
OPTIMUM

SWITCHED MODE

Received $ In db
FIQURE 24 ERROR RATE COMPARISON OF CORRELATION RECEIVERS FOR a - 0.1. b - 0.7
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STANOARO

SWITCHED MODE

Received,
FIGURE 25 ERROR RATE COMPARISON OF CORRELATION RECEIVERS FOR a - 0.25, b - 0.7
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OPTIMUM

SWITCHED MODE

Received £ in db

FIGURE 26 ERROR RATE COMPARISON OF CORRELATION RECEIVERS FOR a = 0.5, b « 0.7
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may "be easily modified to a switched mode operation. The prescription 

for implementing this modification is to take the usual correlator,rT. \ h(t)dt , or ''matched filter", and modify it for two decision levels.
0

Thus the switched mode correlator is much the preferred receiver. 

However, the pulse interference must he serial in time so that memory 

may he employed. If on the other hand the pulse interference is caused 

by a parallel-communication channel, e.g., cross talk on multichannel 

carrier equipment, then memory may not he employed land the optimum 

memoryless correlator should he employed if a and h are sufficiently 

large to Justify the cost of improving the error performance.

7 • 2 Analytical Approach

At the onset of this investigation a receiver class (correlation)

was postulated and the probability law over this class was maximized.

This represents a functional approach to the problem of reception.

Involved in this method was extremizing a function of functionals
8(linear functionals). In this context, Andreev, in a recent paper, 

mathematically discusses the necessary and sufficient conditions for 

extremizing a function of functionals subject to side conditions. Both 

the functionals and side conditions are fairly general in that they need 
not be linear nor holonomie respectively. Hie orientation in his paper 

is towards automatic control in that the motivation is to extremize a 

"performance index" associated with a control problem. This perform­

ance index is mathematically described as a function of functionals. In 

a eonmmnications context, our performance index is the probability law 

associated with the receiver class.
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On the other hand, with the development of Chapters II and III, a

geometric approach has emerged "which is equivalent to the functional

method. There is a received signal space in which one seeks the best

straight line decision curve. The linear decision curve is equivalent
2 ^ Lto the correlation receiver Class. As has been pointed out ,J} the 

Bayes' receiver represents a decision curve (in two dimensionsj in 

general this is referred to as a decision surface) in the received sig­

nal space. The difficulty in obtaining the probability law associated 

with the Bayes' receiver is precisely the difficulty in relating defin­

itively, the liklihood "equation

jA^(v) = K K - decision level

to a decision curve in the received signal space. Thus the decision 

line represents a zero order "approximation" to an unknown curve.

This idea suggests successively approximating the Bayes’ decision 

curve with perhaps polynomial curves. It would thus be of theoretical 

interest to-establish a few theorems of mathematical statistics regard­

ing the convergence of a sequence of decision curves to an optimum 

curve. Furthermore, given a particular decision curve, what is its 

■physical-or.-functional, representation in general? e.g., a linear 

decision line implies a correlation receiver.

In Chapters V/and ¥1 the'received signal points in the absence 

of noise are not fixed. In general, if the noiseless signal points 

fall in a region of the plane with a given probability distribution 

conditioned by the transmission :pf one of two possible information 

states,.the conditional probability surface, given the transmitted 

; state, is obtained by averaging the individual probability surfaces 

(Gaussian if the noise is Gaussian) with respect to the signal point
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probability/distribution associated -with the given transmitted state. 

Consequently, the geometric interpretation associated with Chapters III 

and TV carries over to Chapters V and VI. In particular, the decision 

curves are linear. However, the probability surface associated with 

those chapters is not obvious.

The philosophy contained in these two approaches may be sunmarized 

briefly. If the functional approach is taken,.one chooses a receiver 

class for which there is associated a well known probability law. His 

choice of class is arbitrary! perhaps intuitive or this class may repre­

sent the pertinent physical operations involved in the Bayes* receiver. 

Applying extremal calculus, the extremizing receiver in the prechosen 

class is found. On the other hand, if the geometric approach is taken, 

one must first construct the appropriate probability surfaces. Given 

the necessary a priori probability distribution for noise and signals, 

this construction is theoretically straightforward, if practically 

difficult. By consideration of the surface, a choice of decision curve 

is made. Perhaps this : choice- is arrived at by volumetric extremization 

with respect to a parametric family of decision curves. For example, 

extremize with respect to the two parameter family of decision curves 

y = ax + b. Having obtained a decision curve there yet remains the 

problem of relating said -curve to a physical device.

7.3 Suggestions for Farther Investigation
It should be of some interest to initiate a detailed -computer 

study to obtain the necessary solutions of the -equations of Chapters V 

'and -VI*. The results of this study could then be Compared in a manner 

similar -to that performed -for Chapters III and TV. It would then be



possible to see '-If, and to what extent, simple memory utilization im­

proves the'correlation receiver in the presence of fading interference 

'pulses. Obviously, a further investigation should be made for the case 

where the fading is present on both the desired and interference signal 

pulseso Also, of importance is the extension of the results obtained 

to the case of M=:ary signal alphabets. The approach to these problems 

may be through either or both the functional and geometric viewpoints.

Of particular interest would be an investigation of diversity

schemes. Consider M 'channels for which M ^correlation receivers'

(hj(t JfCj) j = 1,.. .,M are to he selected. For each channel, in the 

absence of noise,.there is associated a set of EL of linearly independ­

ent signals, s^j i = l,...,Njj j = 1,...,M, which may he received. The 

M receiver outputs are. diversity combined with ’which there is ah associ­

ated probability law Fgo Hie problem is then to choose the M optimal 

correlators (hj(t},K^), j =l,o..,M. The side conditions imposed for 

extremizing will be of paramount importance. For example,;there

'comes to mind the two possibilities

(l) E^ . ■= E . j = 1,... ,M ‘and E^fEgr... sE^ is prescribed.

M(2) 2 “A. -"E1=1
where the ratios-.pfa,j,:are fixed or the themselves may 

be further adjusted to maximize F^,

Previous results on diversity combination should he obtainable from; .the 

above model, and. would serve as a . check, on this, approach. ■ ,7

, In the realm -of; nonlinear -extensions to this .dissertation would., he 

an'optimization of (say) the bipolar spimetrie ease -of Chapter HI with
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3respect to the family of decision curves y = ax + bx . Having found the 

best "cubic" decision curve it is then necessary to obtain its physical 

realization.

Analogous to the receiver problems (baseband) so far discussed is 

the detection of interfering r. f. signal pulses. Assuming the phases 

of different r. f. signals to be independent and uniformly distributed, 

the pertinent receiver class would seem to be the set of linear envelope 

detectors, i.e., a passband filter followed by an ideal linear envelope 

detector and an associated decision level. The probability law, P^ 

associated with this.class is the distribution function generated by the 

Modified Rayleigh density function. The problem is then to maximize 

over the class of envelope detectors.

In.general, it should be possible to apply the approach outlined 

in Chapter I to any situation for which Bayes' criterion is applicable. 

In fact, a reasonable choice of receiver class may be made by deducing 

what pertinent physical operation is involved in the likelihood Ratio 

and using that operation to establish the receiver class over which P^ 

is maximized. Of course, for the receiver class chosen, the designer 

must functionally have knowledge of P^.
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APPENDIX A

NUMERICAL METHOD OF SOLVING EQUATION ( 3. ■4. 22)

Define G(x) as

G(x) = lnx + b +

■where, 0 € a <1 

0 ^ b < 1

(-)(VNA
L-^l£)(x2 - 1)

1 + a +: 2b fa*
2 . „ 1 - a . 1 + a - 2b fax + 2 —- — * ■—— x +

1 + a + 2bfa* 1 + a + 2b fa
(Al)

Then (3*4*2.2) requires that real value of x, x = u, so that G(u) = 0.

As shown in Appendix B, u is unique and positive. It is also shown in 

Appendix B that

x2+2---- 1 -ft. ... x-+ 1 * a ZblR (A2)
1 + a + 2bfa 1 + a + 2bfa?

has no real roots, so that G(x) - ln(x) is bounded.. Then for suffi­

ciently small x, G(x) < 0j since G(l) > 0, u must lie between zero and

one.
The following method of halving was used to approximate u. Set

X0 = 0 

X^ = 1

*tn * ** + lv *k-il/2 lf G(V < 0

Vi = ** * 1*k ■ Vil/2 lf 0(xk) > °> k = 1»2' —

Tahe
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In the unlikely event that = 0, ve have found u exactly. Assume 

that this does not occur. We then choose to stop the reiteration proc­

ess •when

-6K - VlI < 10'

and u is taken to he the last computed x^ value. Now,

ht - \-i'= I J/2

so that

K - vd = K - *bh2i-l , 2x-i k “ 1,2,.o•

for k = 20

x,20 -*is\ < 10

and the process is terminated.

0 < u < 2 then G(x^) > 0 for k = 1,2,.•»,.,19, so that 
■20 i ^ „______  „-l9XgQ - 2 and | XgQ — uj S 10” . Suppose 2~ • < u <1, then for some

k = k,V > 0 for k = l,.....,k^«l and G(x^ ) < 0. Ihus, the x^

step to the left by halves until k ,= k^.

\-i =2
1~ki ’

2

Since ) < 0, u must lie between x, and x, , and 
1 *1 *1_1

\+i ” \ + 2
■V1

Hie 2^ then step to the right by halves until k = kg; at which point 

x^ > u, so that G(x^ ) > 0 and the x^ proceed to move left by halves;
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and so on until k =

'IX S 10

20. G'onsequently? 

-6

and sin#§

u * 1 
Ti+.i.

tte error in .is .at most one part in .~®a# million.
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APPENDIX B

SUFFICIENCY OF THE OPTIMAL CORRELATION RECEIVER OF SECTION 3A 

B.l E Uniqueness

Rather-than-show that E is the unique solution to equation (3A«7a)

Pg = 0 (3.4.7a)

we will show that for a certain set of choices of c and c^

A. -i
E = K = ^ ho(s + sT)j h(t) = es(t) + cTsT(t)

uniquely maximizes P^ over E, for c and c^ fixed*, In particular, if 

h(t) is of the form

h(t) = cs(t) + cTsT(t) (Bol.l)

and has the property that

he>(s ± s^) > 0 (B.1.2)

Then P^ 'considered as a function of E, with c and c^ fixed, is maximized 

absolutely for the value

E = E = | ho.(s + sT) (B.1.3)

This is demonstrated easily by writing
AE = E + e (Bol.4)

and substituting this E into equation (3»4.3)» With this substitution,
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;e + hv(s+ s^) e + ho(s - sT)

P0(K+s)
-u2/2 da

i ' —— +T“^ 1 + yj e _ve -ho(s + sT) r2* U_

21m
ho(s - sT)

-U /2 du
AfiT

2m

Since e"u ‘, is even and monotone decreasing for positive u and since

h» (s ± Sy) > 0

the desired result follows. Now if h is of the form

h(t) = s(t) + cTsT(t); 1ct| < 1> (B.1.6)

then by the discussion in section 3*7> h has property (B.1.2) and

K = 2 h°(s + sT)

maximizes for fixed c^,, where c = 1 and |c^ < 1« Thus, when
'•& -)£ -X-c^. — 0^, K = K and K is unique. Physically speaking, (B.1.2) and 

(B.1.3), assure errorless, performance if the noise were to disappear.

It ought; to he emphasized,, that these results are valid only for 
symmetric (p = l/2) transmission of information. In essence, the above 

argument Is directly tied to the fact that (3°^-«7a) can he solved inde­

pendently of (sA.Tb and c). If we have a non-symmetric channel, such 

is not; the'case.

*B.2 Cj Uniqueness 

If we let

(l + ej)/(l " c*) = uj c* = (u - l)/(u + l) (B.2.1)

then from (3.4.16) u must he that real number •which satisfies
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E E :s sT

ue
p/2N0 _

‘•2N E ^ o s+s
■)(u - 1)

= exp T
E E E

u2 + 2 T s-sr
E u +
s+s E

T S+Sn

(B.2.2)

Now the right hand side of (B»2„2) is positive for all -» < u < so 

the solution, u, of (B„20 2) must certainly he greater than zero. Further­

more, it is shown "below that the function g(u),

CE„V e2)

g(u) =

T
2rt J

o :s+s
(u - 1)

T
E - E9 ® ®rnu + 2 T

Es-s.
E u + T
s+sn Es+s.T

(B.2.3)

is monotone increasing for u > Oo Consequently, for u > 0, the right 

hand side of (B„2<,2) is monotone decreasing on u; whereas the left hand 
side is monotone increasing*. Since the range of the right hand side of 

(B<,2„2) intersects that of the left hand side, for u > 0, we are guaran­

teed of a "unique, positive u solution to (B.2„2)0 Taking the log of 

(Bo2o2) produces (3o4ol8).

Differentiating g, (B,2<,3), produces

E E E + E E - Es S™ p S S™ s s„u2 + 2 u +-------
s+sT :s+sT Es+s„

2u +2
E - Es s E (B.2„k)

T s-s
E u + T
S+S. E

T s+sT

and since
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E > E . EE > p S Sy} s sT

g' (u) > 0, u > 0

hence g is monotone ihcreasing on (0; «o). Note that

E - E EO -®. ®m ®“®rn“ + 2 -5----- £ « + 2
S+ST :S+ST

has no real u roots. This is certainly verified if

E ~ E ES Sg, S“Sj
E ^ < FT"
s+sT :stsT

or
(E ~ E )2 < E E . = (E + E )2 ■- 4p2

S ®rji S+ST ®iji

Equivalently^

-2E E < 2E E w bp‘

■whence

p < E E S ST

which is guaranteed by Sehwar inequality.

B.3 Sufficiency

It was shown in section 3*4 that c f. 0 and by the nature of
*c could be set to one. Under B.l we saw that K is an' absolute maximum 

with c = 1 and [ e^j <1. Then it follows that
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max Pn(K, c,cT) = mspc En(K, 1, )

c.» Crp C = 1
°tI < 1

Now P^K,!, c^) is a function of one variable, c^„ Consequently c = 1,

Cj = K = K is a local maximum if

d2Pc(K,l,cT)

dcT
< 0 (B03ol)

*
CT=CT

where it must he remembered that E^ is now a function of c^

\ = Eg + 2pcT + c2 E (B-3.2)

Denote by the following

h*(t) = s(t) + c* sT(t) (B°3°3)

E = ho h = Eg + 2pcT + (cT) E

h*( + ) = 'h* (s+sT)

h (-) = h* (b-st)

2ijr(u) - e”U ^2/lAj"2jT

**(+) = 1f(H*( + )/2^EF)

W) '= t(h*(-)/2^N?)

It can then be shorn, that



2
^(K>l>c_)

dc,T

E E p
= -VT * i/2
* to (N E y>d I T T

CT CT

[e E u p2T
L s ST Jr*
e*(n ea)wtIlf (-)..+ f*<*)}

3(p + 4 \)
(E*) (I^E*)1/2 [|i«£]tV),-[***]♦*(♦>

(B.3.4)

But equation (3.4.16) states

r *7 v r *■ t *, x\i - CT j t ( + ) “ [l + cT V (- ) = o (3.4.16)

• and since.

ti*(±) '= h*« (s ± sT) > 0

*t (±) > 0 (B.3.5)

E E p2 > 0 
:s sT

tike right hand side of (B*3«4) is positive, and (B.3.1) is proven. Thus 

the receiver

h*(t) = s(t) + 0* sT(t) 

K* = | h* (s + sT)
(B.3.6)

is locally maximizingj the pdint K = K , c - 1, c^, = is unique amongst
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all choices of Cj, such that

T

H'cs(t) crpSQi("t)
0

at = e

Furthermore^ for any fixed choice of e., satisfying (Bs3«7)> it is 

easily seen fran (3° ^>3) that

• lim Ec(KJ,e^eT) - | 

K—» t o®

which represents-the minimal value of P^. Thus/ we have established 

that (B»3o6) absolutely maximizes P^«
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APPENDIX C

DECISION LEVEL FOR BIPOLAR SYMMETRIC CHANNEL 

WITH FADING INTERFERENCE

With reference to (5.2.11) it is here shown that K = 0 is the 

unique extremum corresponding to (5.2.11) for any choice of c} and c^,, 

and for any acceptable probability density function (distribution)

P0(a). Consider (5.2.5)

■^j(K> (~> ct^ ~ ^ CT^ ^ ^ ^ (5.2.5)

00

where E(® ) = po(a)(* )dcr

using expression (5.2.3) for P^y^ and interchanging the expectation 

operation with the indicated integrals of (5.2.3) produces

P_(k,<!,0 ) • i C B(ei'u + ^ + oy]2/2^+ e-t<i + x- oy]2/212) _i 
u 1 4 J -\Fo,Y 2rtN E'

(Cl)
f E(e“i-U " x + ffy] 2/2x2+ e” tu * x- °y] d/2X^ )
t “V 2*N E
a. o

where
x = h®s = cEs -+-c^)

y= h°sT = CP- + ctE£

X := N E o
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Note-.that-.Pp--is even on K. Then differentiating (Cl) /with respect to 

K, (c, c^) held constant, gives

dP.■SF (‘‘■'P®?) - *(**,,,K(a)) (C2)

f Ja) = e-lK+ x+ eiK +

(k- x + 0y]2/2X2 e-(K - x- oy]2/2X2 2

Now note that the argument of the expectation, f^ ^ g(o), is an even 

function of a so that the expectation may he equivalently carried out 
only for 0 § 0 (denoted by E^qC* ) = J' Pa(cr)(*)da)o - Rearranging

f ^(a) algebraically, we obtain
0

_ / s f \ ■ ^(^y2 + fK-xl^)/21^fx,y,K^) = gx,y,K^ 6 L J

%y,KM ’ *
yy-A-2 (eK(2x - oy)A2 eayK/>.2 j

+ e

I *“

oyx/X2 ^K(2x + 0y)/l2 _ -0:yK/x2^

(C3)

Thus, if we show that f ^.(n) ^ 0, a § 0, for K ^ 0, then
co

2St = 0

is solved uniquely by K = Q, because theexpectation of a definite 

quantity is itself not zero. Equivalently, we need only examine 

g rr(a)r as the exponential function of a real argument is always
x>y*A

positive. Clearly, for K = 0,

g -(0) = 0 x,y,Ov (C4)
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and K = 0 is a soliition to, (5.2.11). Also> for x = 0

%y,KM = 0 (C5)

However, x = Omahesno physical sense as it implies that our receiver 

is insensitive to the presence of s(t). -Consequently,, we lassume x 0 

and K > 0. Since P is even on K, this represents no restriction. If 

y - Q>

>° (06)

Phere are now four possible cases to he examined, corresponding to 

the foxur camhinations of 1% i y.

Case (l) x > 0, y > 0

“ - ‘ > ° (CT)

x- - - --2A2 [e
0<0<f5

a gv ,, M/i) =
2 u 2

L

gKx/X2

•Kx/X2 j
> 0 (C8)

Kx/X2
> 0 (C9)

For a 1 > let 0y = ax<> a > 1*. theny

X,
(of) = e-ax2A2 ^Ex(2^ a)A2 ^ eKbca j

+ e t-ax2/X2 [ ^Kx(2 + a)/x2 ^-Kxa
a > 1; (CIO)
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Clearly,, for a. > 1 (x > 0,, y > 0P K > 0)

'«*2A2 f], . eaxK/X2 j + eax2/x2 j^axK/x2 _ x J

(C11)

or«
„./,2 f 2/, 2 2/2 1 r 2,, 2 2/,2axK/X \ ax /I ^-ax /I | ^ [ o-ax /I ^ax /X1 * L-“ 1

(a>l, x> 0; K > 0) (C12)

Equivalently,,

c ^K(a) 1 ^eax2/x2 w.g-ax2A2j ^A2 . 

>
ax2A2 ,, e-ax2/x2J

(C13)

■So K = -O.is unique andj, moreover,, since P^ is even on K and dP/cSK > '0, 

(K > 0) it follows that K = 0 is the ah solute minimum for an fixed c,, 

cT. If K < 0* then dP/dK < 0 as the derivative of an even function is 

odd.

Case (2) ,x < (X, y < 0

From (C2) note that

Consequently,, if K is replaced by its negative (~K < 0)

■;fx,y>+K^ = f{x|P [y| < °> by Case A)

x < 0 
y < 0

(Cl4)

(015)

Andj, as in Case (l)*> K = 0 is the absolute minimum for •■c, fixed.



. ... There.is a physical interpretation of,this argument.; It is simply 

11multiplying,,.-the receiver by minus one (■which also causes a reversing 

:0f decision inequalities)#

Case (3) x > 0, y > 0

,'This easily reduces to Case (l) by noting that the same effects may 

be had if y isJconsidered positive and 0 negative* That is to say

ssS(fx,y,K(o)) x> °' y < 0 (C15)

O S 0 0 .S 0

But f ^(a) is even on 0, so that x^y^n

E(fx,|y|,K(o)) = E(fx,tyl,K(o)) > °' ty °“e (1)

0 & 0 0 so

Case (4) x < 0^ y > 0

By an argument identical to Case (3)^ we may reduce this to Case (2) 

-and thence to Case (1).

133
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APPENDIX D

HECISIOH LEVEL FOB ORTHOGONAL SIMMETRIG CHANNEL 

WITH FARING IMEEFERENCE

Here we will skew that K = 0 Is the optimal decision level for 

orthogonal signals ‘by reducing this case to a form where Appendix C 

.applies. Consider a Channel model giyen by assumptions 5.1 (3)^ (4) 
and (5) and 5.1 (l) is replaced by (3-6.1 (a) through (d)) and with 

an Obvious extension of 5-1 (2). Then h(t) is of -the form

4- . + s
2 w

]|t simple calculation shows that is given by (Cl) except that
■ Vf ■'

M - E - d(E& + dp) - d^d(p .+ Eg)

■x-^ Jt®(% s^3 . ■ (D2)

■X

Careful examination of the indicated x and y shows that they are inde­

pendent of dj. d^ values^ Consequently? the only effect of d and d^ is 

an adjustaent Of the decision level. Prom the argument of Appendix 6 

it follows that M = 0 for all allowed, values of - otherwise
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Suppose there is only, one allowed value of cr* say 0q (i.e.*

** S(c ~ %)l° ®ien*

■M ■* @ ^ X• * 4(11 * tfjp) •*■ 4^(pEg) (13)

+-%] w

Suppose* next* that there is more than one allowed value of cr. Conse­

quently^- rearranging (B3)

U W 0 " & * •■* 0 jdp + (Es * (D5)

and for this to he so*. for more than one value of cr* idle coefficient of 

o must vanish* namely*

“ ,(Es +#>0. ) (*)

SSius* to satisfy

for any choice of c and e^* either (Dt) or (D5) and (d6) must hold as a 
relation between 4*. d^ and JC. We remark that (l4) is the special case 

when no fading is present. Mien* d and d^ may he arbitrarily specified. 

"When* indeed* there is fading* we have from (D5) and B6) that only d 

■■ may' te ;Spe^£fied arhitriJ4.1y*' -namely

X.s= *:4E,.
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From (D2), (D5), and (DT) it follows that haying chosen consistent values 

of K, d, and is no longer dependent on these variables. Thus, no 

generality is lost by taking d == d^ - 0, so that K - 0.
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