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ABSTRACT

The problem considered here is that of binary pulse communieation
operating in a white noise enviromment vherein interfering signal pulses
are generated by any of the following causes:

(1) A signaling rete larger then chamnel bandwidths, causing pulse

} spill over into succeeding bauds. N

(2) Co-channel interference or cross talk on carrier systems;

(3} Signal echoes or reflections due to antenna location or mis-

match of high frequenéy components.

The optimum correlation receiver is found to be a linear combina-
tion 6f the desired signal pulse plus the interfering pulse. In severe
ceses significant improvement can be had over a correlation receiver
using only the desired Signal pulse.

P "

For the %%se (1) above, prior receiver decisions may be used to im=
prove'the design. "Iﬁ particular, the immediately preceding overall
receiver decision is used to select one of two parallel component corre-
lation operations whose designs are based on a prieri knowledge of the
preceding transmission. Tt can then be shown that this is,equivglent to
a single correlation @peration with dual decision levels, wherein the
preceding receiver outpubt controls the seleetion of the decision level
to be wbilized next. The resulﬁing performance of this type Qf receiver
is superior to the correlator composed of the linear sum of signal plus

interference pulses.
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» A similar investigation was performed for the case of Rayleigh
fading on the interfering pulse. Analytical équations are established
for determining the necessary solutions; however, numerical complexity

precludes definitive results at this time.



INTRODUCTION

In recent years consgidergble engineerihg inteiest has been devoted to
the use of digital data links %o meet»the ever increasing ﬁeeds’for high
speed efficient communication. With suitsble terminal copversibn_equip~
‘ment, the digital communication system,cén‘convey both discrete and ana-
logue types of information. Thus} the digital data link may be used for
machine (digital) to machine cdmmunication,or for the ﬁransmission of
continuous signals, such as voice, via sampling, or:any combination of
the two (e.g., man-machine remote comtrol). Common types of digital sys-
tems in practigal use today are amplitude keying, phase shift keying,
-and frequency shift keying. The flexibilityvof digital communication
design and,application coupled with the growing computer technology would
seem to justify~the continuing interest in digital data links for,mbdern
commyni cations. | | |

We may visualize a communications system (Figure 1) as being com-
~posed of an information source (analogue or digital) coﬁnected to.an
encoder which feeds the.ccmmunicaxiqn chénnel, followed by sappropriate
decoding equipment which delivers the tramsmitted information to the
user'or‘"information sink”, The communication channel is-characterized
by the physiecsal medium-through’which»we wish to transmit our message
(e:g.y wire, water, atmosphere, "space") terminated at each end by

sppropriate egquipment (transmitters:and:receivers) designed to transmit
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.and receive gignals pertinen@ to the physical medium. The purpose of
the encoder is to convert*thé’information source -output to a form usable
by the transmitter; similarly, the object.of the decoder is to convert
‘the receiver output to a form meaningful to the "sink". Thus the term
‘digital data link refers to the communication channel just mentioned. |
The types of information sources with which a digital data link is used
then determines the encoding and decoding equipment. This dissertation
proposes 1o theoretically investigate the formal structure of the
receiver in the»communication'channel with the‘following assumptions.
(l) The encoder presents to the transmitter evefy'T-seconds'one
-of two possible symbols. 'The,a priori probability of achiev-
-ing emch of these symbols is p énd 1-py respectively; and at
‘each T instant the symbol realized is statistically independ-
‘ent,of.all other symbols, That is to say the encoder forms a
»sequence*ZnT; n= ... =1,0,142,... 0f independent binary ran=-

dom ‘yerisbles where Z ., = 2 (say) with probsbility p and

nT

Z n=1 with probability (1~p).

(2) The transmitter has stored two possible~waveforms,.az(t) and
al(t); 0=ts=T. Botha, and &, have finite energy (square |
integrable) and are zero outside the interval [0,T}. At time
‘1T the signal az(tﬁnT) or‘al(t—nT),is transmitted oyer the
physical medium by the transmitter, the choice of a, Or a;
being dictated by the value of ZnTi

’-(3) The effects .of the physical medium may be abstracted to a

mathematical model where the receiver is presented;with~da£a

v(t), which may be partitioned into a sum of signals

sl(twnT),-sl(t-(n+l)T),a.°a, and noise n(t). That is to say,
2 2



(&)

Note that

ent of nT.

L

if ak(tunT) (k = 1,2) is transmitted in the absence of noise

n(t), sk(t~nT) is presented to the receiver where

sk(t-nT) =0 t < nT
tOO
5 'sz(t)dt: E <w k = 1,2
k 'Sk

s}

We note that sk(t-nT) is not necessarily zero for t > (n+l)T,
i.e.y the'medium-may'"sfretch out” or give spurious reflec-
tions of ak(t)@ Furthermore, we allow sk(t-nT) to be
probabilisticaly derived from ak(t-nT) but require complete

a priori knowledge of the necessary probability distributions
and assume that they are stationary (iae,, independent of nT).
As usual,; n(t) is assumed to be stationary white gaussion
noise (WGN) of spectral intensity NO watts per c.p.s. (double
sided).

The receiver will announce at time (n+l)T after examining v(t)
over the interval nT = + = (nfl)T, that ZnT was either 1 or 2.
Thus we are assuming perfect synchronization on nT intervals
between transmitter and receiver. Since there is noise and
pulse distortion present, the receiver can certainly be in-
correct in 1ts estimate of ZnT’ The object of our receiver
design is to minimize the average error rate Eﬁ'at the receiver
outputy or equivalently maximize the average rate of correct
ch= 1= PE’

as 8 conseguence of the stationarity (assumed)~PC'is independ-

reception
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In terms of Statistical Hypothesis Testing the-above probiem ié
gsolved by a Bayes’receiver, A methematical functional, "Ldkelihood
Ratio", is established on the observed data, v(t), from consideration
of the a priori probability distributions. This functional dictates &
(electronic) network which cperates on any particular realization of
obgeryed data v(t), producing a numerical yvalue Vg et time (n+1)T.
This value is then compared %o a stored reference level K (Bayes deci-

sion leyel). If V  is greater than or equal to K, the receiver

T

announces that Z . was 2, otherwiée(fnT < X) Zogp=11is announced. It
has been shown that this receiver provides an absolutely minimal error
rategl i.e.y no other receiver structure can do better. The Bayesfres
ceiver has:achleved a great deal of| englneering success in certain
applications. Nemely, if there is no signal pulse overlsp at the re-
ceiver and sk(t)y k = 1,2, is functionally perfectly known, then the
Bayes' receiyer reduces to a correlation or matched filter type of re-
ceiver. If again there is no sigral pulse overlap, but only the signal
envelopes and carrier frequency are known perfectly (assuming carrier
phase to be uniformly distributed), then the Bayesfreceiver'ré&uces‘to
the well known narrow band matched filter followed by & linear enVelope
detector. In both of the sbove cases the receiver performance (receiy-
er error rate) can be predicated. For the matched filter the errorlrate
ig gilven by a sum of Normal Distfibuti@ﬁ,functions}\whereas for the‘
enyelope detector the error rate is given in terms of Marcum's "Q
functions" (or "Offset circle probability distribution functions®™). In
‘general, however,.predictihg the performance of & Bayes' recelver is
computationally intractable. Thus from an engineering point of view,

the Justification of fabricating such a devicey is questionable.



Rather than seek the truly best receiver (Bayes'), the philosophy
of fhis work will be to arbitrarily restrict ourselves to seeking the
best receiver within a specified class of receivers (e‘g., ecorrelation,
linear envelopey square law, ete.) utilizing min-mex calculus. By a
¢lass of recelvers we mean that the basic physical structure of each re-
ceiver in the class is the same. The receiver "class" then dictates the
functional form of the receiver error‘rate'PE.and each particular receivy-
er in the class assigns vaiues to the pertinent parameters\of‘Pﬁ. For
example, under the essumptions (1) - (4)¥and assuming perfect knowledge
of the form of skﬁt)jand if we choose for our receiver class the set of
correlation receiVersgbwe then hgve that PEuis functionally the finite
- sum of weighted Normel Distribution Functions whose arguments depend on
the decision leyvel K and correlating operation (é;T,dt,h(t):) chosen.
The goal 1s then to simultaneously choose K and h?t),so as to minimize
Py (or meximize By=1-~ PE).

To illustrate this method in a more definitive manner we will con-

sider & well known example.

Froblem Statement
Asgumptions (1) - (4) are yalid. sk(t),-k = 1,2 is zero for t > T,
t < 0 and functionally perfectly well known to the receivery i.e., the

receiver may store "copies™of sk(t), k= 1,2,

Bayes  Solibion

The best possible'receiver for this problem is one which computes

_the number

T

V= §:(sz(t) - sl(t))v(t)d'b
0



and compares V.to the decision leyel

B - E

- 2z Y —
Ko+ ln 75

"(132)
T |

E = g s2(t)at k = 1,2

8 k

A

where 2 is announced 1f V 2 K, otherwise 1 is announced.

Since v(t) = ‘s_‘k(t) + n(t), vva.nd:n(t) is Gaussian, V (a linear opera-
tion on v(t)) is & Geussian 'randém variable. The mean and variaﬁcé of V
are conditioned by the prior eyent Z gy 1.e., vhether sl(t) or éz(t)_was

actually sent. However s the yariance in either case is the same, namely

- _
2 : > . : ,
o =‘_VAR(V§£= N, \g [gz(t) - sl(‘t;)] at | (1.3)
L A
Thus PC 1is given by
By =1~ Bg=p Pr(VEk/e,) + (1-p) Pr(VE/s)) (1.4)
where |
- .
- Kemz : ﬁ?
K-m, . (1.5)
o 5 o 2 4
Pr(VzK/s.) = exXp = ==
1 e z HQZﬁl

‘where



T » |
- S 5, (t) [s_z(t.) - vs_l,(t)l dt | k = 1,2

w =
-0
2 g | 2
o“ = N [sz(t) - sl(t?] at
0
E -E
S2 .S
K = —& + N_ 1n =fe
2 0 1l-1p

| Class Solution

in thislmethod.ﬁe mﬁst seiect'a class of receivers from which we
wiéh to select an optiﬁumo Choice of this class is up to the designerv
‘and S0 appealing to intuition and engineering artistry (vesides knowing
ywhat'thezansﬁers-should,be) we select the class of correlation receivers.
Thus we form the number V'(fuﬁctional) from the observed data v(t)

according to the prescription

V = V(h) = \_S\ n(t)v(t)dt (1.7)

0

and compare it to & decision level K. For each K and h(t) the .correct

reception rate, Pus can be computed as

PC(K;h) = pPr(VgK/sz) + (l = p) PI‘(V < K/Sl) ‘ (198)

Once again; since V is formed by a linear operation on Gaussian
data v(t), V.is a Gaussian random:Variable,»conditioned»on the trans-
mitted symbol, and the above conditional probabilities can be computed

/in & fashion similar to the previous method of solution. Nemely,



K- f Th(t_)sl(t)dt
o) :
Ej th' .
[exp - x?/éldx/d?ﬂ?

PC(K;h) =p 5 [exp - XZ/Zl‘dx/m + (1~p)
. _

K- 5 n(t)s,(t)at o
0

(1.9)
T
E = S n?(t)at
o

Reflecting on what we have accompiished so far we see that by choos-~
dng the class of correlation receivers we immediateiy;deduce that
’PC (= l’--PE).iS'a»Weighted sum of two normal distribution functions
whose arguments depend on the quentities

T

Ky By and S h(t)s, (t)at k = 1,2,
.0

We mey now seek to maximize P, ‘through our cholce of K and h(t). The
details:of the -optimal solution for K and h(t) arercarriedeout:in
Chapter Iy Section 2.4, It is shown there that h(t) must have the

form

h(t) = cész(t) +-clsl(t) 3oCpr & constants

Thus, Pc;carriesﬂevernto a, function on three variables
By= Pc(KQnggg) B | - (1.10)

and we seek values-of Kycl,czwwhich'maximize Ec.subject to the con~-

‘straint
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T 2 , o
E, = g tgzsz(fc) +:_clsl(t)1.dt =E o (1.12)
0 :

‘Maxdimizing (1.10) subject to (1.11) ylelds the result
h(t) = sz(t) - sl(t)

T

V= S ‘.s'z(t) ~»sl(£)]-v(‘t)dt , (1.12)
0 _
Es - Es -

K= 12,2+1\Ioln-i—§—p-

which is identical to the Ba,yes'irec::eiw._r__er. Certainly a feceiver designed
‘in this faghion cannot be better than the Bayes!' receiver., If the class
. of 'receivers chosen by the. désigner ‘cantaiﬁs ‘the Bayes® réce-iver', then
it is reasonable to expect: that this method will indeed produce the
Bayes' receiver. However, this would be an extremely fortuitous circum-
‘stance and not very likely. The advantage offered by this method is a
‘reasgonably synthesizable r_ec,eiﬁer of pr‘ejdic.ta.ble performance which is a
direct -'f(;@é;n_SéQuenc:e_ of pree:chgasing 8 recelver ¢lasgs. |
Chapter II esfablish'es “the mathemstical frame-work necessary for
dealing 'Wl'bh the correla.tidn ¢lass of receilvers. In Chapter III ‘ﬁhe
simplest type of intersymbol interference is considered. Here the -form
of the interference is assumed perfectly kniowﬁ. The correlation receiv-
er utilizing ne prior decislons (memoryless) is found for this situation
and ite performance derived. For. comparative purposes, the performance
0of the correlation receiver ju;st discussed i1s also computed. Chapter IV
‘desls with the design of ‘that recelyer which assumes its previous deci-

slon to be absolutely correct in the ~envii*@nmént -of Chapter ITI.



Chapters V and VI are extensions .of -'thé «eff"orbs -‘of Chapters III and IV,
respectively,. to the ca.seof fading on the interfering signals. Chapter '
VII closes ‘with an oyversll comparison of the results of the previous
chapters together with suggestions fbr'fut‘uﬁe work - _(‘é.g., \.enméléfbe.'déw
“tectors and. diversity systeﬁé). | |
Throughout ‘this invéstigation, the pertinent Bayes! receivers are
présented. The -elements of this ’fheary -are not discussed here, For an
introduction to this subject, the reader's aftentlion is drawn to the
texts of HeMStr@mgz;rand, Davenport Z“Md'iRoot.3 The threshold behavior

‘of the likelihood function is discussed by Middlret;cnuh.
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'CHAPTER IT
GENERAL EQUATION FOR THE CORRELATTON RECEIVER

~In this chapter we dérive-in mathematical terms the genéralveqpa-
tions of the optimal correlation receiver. That is to say, our class of
recelvers is the one which correlates the received date v(t) with a.
-stored reference h(t);and-cqmpares the result with a decision level K.
Thus any particular pair (h(t),K) represents a particular receiver with-
in this class. TFor a particular'chaﬁnel.model operating with the class.
of correlation receivers, there is a probability law, Pys governing the

performence (probability of,correctgrgcgpjiqn),af.any particular corre=«

lation receiver. In other words, for each pair (h(t),K) there is a
number'Pc(K;h(t)) between zero and one which represents the average rate
. of correct reception for that particular»choice.of.(h(t),K). Further-
morey - since we are dealing with correlation receivers it is reasonable

to expect that h(t) enters into P in the form of values 1300053, Where
T
J, = S h(“b)l‘i(t)d‘b ’ 1 = l’:qo s}no
0

and:the ri(t) ~are n linearly independent given functions; related to
the received signal glphabet.

Als@,-PG mey - depend on the gquantity

. I
E = YS n?(t)dt
LN
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However, we will‘assume~(2,ld) that P, is independent of receiver gain

C
which implies invariance to the cholce of a particular Eh. We may then
C ‘ - :
eliminate this dependency by constraining Eh to be fixed. That is,
E, = E for all h(t). Thus we seek to maximize
T
PC(K;Jl_,...,_Jn); J; = 5 h(t)ri(t)dt i = 1l,40e5n
5 .

subject to the constraint
T
2
Sh(t)dt=E.

&)

by optimel choice of (h(t),K)."
The genersal physical properties .of communication media allow us the

following mathematical assumptions.

2.1 Mathematical Assumptions

(a) We deal exclusively with time functions, f(t), defined -on the
interval, 0 = t = T, which are real and have finite energy.

le€oy

T .
§ £2(t)dt = . <o

]
=

(b)'”PC is & rvesl function of n + 1 variables

PC = P(K;Jl’oaa,Jn)

with continuous first and second derivatives in all of its

variables.
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(e) The J, are linear functionals of h(t) generated by a given

i
" set of n linearly independent functions ri(t).
T
Ji' = \S\ .h(t)ri(t)d'b 1= 1ly.0e,n
’ 0
(d) P, is invariant to receiver gain; i.e., for u >0

P(K;Jl,.,.,qn) = P(nK;le,...,pJn)

Note that PC dmplicitly . depends on Eh which will be held fixed.

From assumptions (2.1c and d) we may meke two conclusions. Firstly,
the optimal h(t) is a linear combination of the ri(t), and. secondly,
since h(t) is arbitrary to a multiplicative constant, we may eventually
adjust the Value of Eh for -our convenience éo as to normalize h(t) in
some sense. | | |

We justify the conclusion that the optimal h(t) is a linear combina~-
tion of the-ri(t).

n

h(t) = ;E: c,r, (t) ¢, constents (2.1.1)

i=1
Assumption 2.l(a)*establiSheS'thatrwe are dealing with functions which
are menbers of a resl Inn:erProductSpace5 (RLZ) where the inner product
is defined as the "correlation" between any two member functions.

Namelyy

T

§ £(t)g(t)dt

0

In particulary h(t) is & member of RL, so that the J; 1 = ly...yn

i
represent the components of h(t) along the linearly independent»ri(t),



15

Since .Pf*c '‘depends only on the .J‘:l 3 fconsequently;l_?c ‘depends only-on the
- component: of h(t) in the subspace :spanned by *the»‘ri.(t). - Thus 1t suf-
fices to choose h(t) as a linear combination of the i'i (t). ILet
T . , |
0 | |
80 that

n
Ji = Z Zijc',j : i‘-- lyeeeyn
| (2.1.3)

n

= 2 D, T

1=l =1
We may.n;cw.,;»exﬁréss BC, a8 :.a,,funt:tien;@n K and the "'j'variables“ Syseeests
. Pc - .P(Kgiglvi"-i?‘n); : | :
| and’we seek to 'meximize P, by cholce of K, "1”% subdect-h@ the alde
eondition ' %

n on

By = Z Z 715%4% = E | | “ »:(.2.1.&)-

i=1 J=1

Note that since the Ji are linear ﬂmbin;tibng -:of" the *¢1,,;. assumption
2.1(b) carries over to By(Kjeypreest,)s |

We wish here to establish the necessary conditions for meximizing
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gubJject to

. s | S
ZZ 733% %y =B>0 o o (zez2)

i=1 J=1

Using the usual technigue of the Lagrange multipliers, form the function

I(ngc joon’c ) = PC(K,C‘I}Q.Q}Q ) + d E 2 7lj¢i ,j ' | (202a3)

i=1 J=1

whers o 1s the Legrange miltiplier. Theny as.;usual; ’s‘rhe:nenessarygczenu

oL oI dT . ' ,
= = seosu0- = e = () ’ 2o.2¢)+

ke 3, ° , (2.2.%)
plus equatieon (2.2.2).

For the remainder of this work, the following notation cenventions
will be used.

(i) x= K¥y x:i = ci* ‘1 = lyseeyn represent the zﬁpti;nial?values

of K and ¢, satisfying (2.2.4)

and (2:2.2).

(81) Pe= Ty (Kyeppeeessy)

eveluated 2f K = Kfﬁi = i} B fixed

i. = l’ Y a’«n. . evaluatEd att K = K ’ ‘c.i = ci}

E fixed
In (2.2.3) and (2.2.2) E 18 considersd sn independent quentity in

“terms of wich we solve ¢, and K after eliminating & We should recall



7

that the particular value of E .chosen does appear in the expression for
'PC' By the implicit funetion theorem‘we-ﬁay solve for c: andqu’as
functions of E if the Jacobian of system (2.2.5) and (2.2.2) does not
venish for some E > 0. It is then jos‘sib—le-- to-}normali‘Ze h(t) so that‘

any-one non-zero C

;2 88y ¢, , may be set to one.
o v

2.3 [The Correlation Recelver, An Fxemple

Here we Will develop the correlation receiver from the point of |
view of the previous discussion. With reference to the problem state=

ment -of Chapter I, pages 6, T, 8, 9 and 10, we have that

K'°1711_",°2712

I(Kseppe,) = pg {_exp - XZ/Z}GX/ Yex + (»l-’p)’ Exp - %/ Zldx/ {en

K 7127% 722 ®
{ N E
o
2 2 - .
+.a S, CLY. (2.3.1
X Z 163713 (2.3.1)
i=1 j=1 ‘
Denote
oP oP
Py = 5z g%_aﬁ 1= 1,2 (2.3.2)

Our three conditions on K, ¢, ¢, for meximizing P, are then

T _ 3T _ 3L _ | .
3 " 3c,  dc, © | (2.3.3)

_or



18
() Be=0
®) B +@pge vrge)=0 BN CERY
Now

. ; . _ -K -C. 7 7 ) _ - Kue 7 -c,y
. le\[oE 2% 9 ﬂNOE o

(2.3.5)
or equivalently
E = g
EK °1711 27211 [\K °1712 27'22\ ' ZNE o g (2.3.6)

Evaluating P and Pc_;_, we have
il T2

| 2
» a2 EK °1712" 2722]) l’P)711 I.K 711"‘3272;1

‘1 (EE 2N E \ 2n1\I_oE‘ 2N E

(2:3.7)

Pap @"""17’12“’27221 (1’9)721 . K_K 777 27211

P = exp(= | . , :
R ZN E v 21\I E
| 2 \SZJtl\T E" , \&Zﬂl\IOE

Multiply (2.3.4b) by Yip and. (2.3.ke) by 7,, &nd sub-‘bra;cty' which yields

_ 2 i | ’ ) 5
20t (72 =y ) _ PUna755= 735) - ,[K,"c._lﬁ_z’cz?zz] )

-after substitubion of eguations (2°3;‘T') and noting that 719 = Yo1°
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Since‘yllyzz-- 7?2 >0 (Schwarz's lemma) we have

S 2
» L : - K_cv 7 ~-C_7. e
e = B exp( [ 112" 222]) | 4_ - (2.3.8)

27 -
20, QZﬂKOE’ ZNQE

Using this yvalue of c, in (2.2.4%) and equations (2.4.7), we haye that

| 2
__(1-p) "[K'°17;11"‘°27121
Cp =T exp(——=F 5
20t {200 E ‘o

But by (2.3.5)

We now choose E such that c, = +1, (Leeey E= 75, + 799 - 27_12)
h(t) = sz(t) - sl(t)

We then have for (2,3.6)

2
(7 -7 (Y= 0)
722 12 11" 712 1 2

K = |
| 2(711+722, 2715 e

so that

: Yoo =7
goeo22 Ty o1p R

2 el 1-p
put
: - .
y.. =E. = g 82(t)at
22 T8, AR
2 -
0
T )
y.. = =S s2(4)at
17 Tsy haRleA
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Thus our receiver is “glven by
L T S e
V= S [s2(8) - s, (8)]v(s)as
- 0

R - E ,
8, s

K = welimee= + N 1n -JE..
2 ) 1-p

which is identieal to the Bayes® receiver.

2.4 Sumery: A Geometric Interpretation .

We have shown that the fcnly;h(t)_ of interest to extremize PC is - of

the form

n

1) = D e, (6)

i=1

s0 that each recelver may be specified by the ntl tuple (Kyeppeee ’c.n) p
rather than by. (K,h(t)). “-Furtheimore,, for a fixed value of E = Eve
‘see that the optim,ai .(c;_-e,.. oo ,:c_:i) ﬁust be & point on an n dimensional
"ellipsaidé; ’cent'ered_;a.t ‘the origin. Thst is to sayy we may form a n
~ dimensional orthogonsl coordinste system of.the Ciyene 50 -, and that

Eh = K is the equg:bi.ton of the aellipsoi,d 811 .on bw'hi‘ch the cpt-imal".
(-éalef,u .y cz) must lie. We may adjoin to this -coordinate system one more
;c‘:rfhogonal.a:ds,ac_‘:orre‘:sponding to K 'valués;.n so that we have &n n+l
dimensional space g with points given by (K,ci_,:. .o ,-Qn). The ‘receiver
(K,h(t)) is then equivalent to a point in this space. Since h(t) = O
1s . triviel, -the-origin of S is trivisl. as.sre.all points lylng solely
on the K axis. On the other hand, ‘note that peints '(O;,fc:ly._.,,x;n) are

not- trivialo
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Now by assumption 2.1(d), if (K,cl,.o.,-cn) is a non~-trivial point
-of S then P is constant along the punctured line L: (uK,ucl,..o,;ucn) 5
§ )i ;é'O. That 1s to say.:PQis constant along any straight line (n+l dimen-
sional) which passes through the origin (but excluding the origin as &
point -on which %’is defined) and is not identically the K axis. Conse~
;_e,,;. ,cZ) is an extremum of Esthen Ryis optimé.l over
*

* * 3 *
the punctured line L , passing through (K ,cl,..,,cn) and the origin.

quently, if (K ,c

* * % *
Whence,  the antipodal intersections of L. with fn define (K gCigeee ’cn)

and (-Kj- 1,..;@9;%). A word-of caution is in order: if we multiply
(K,h(t)) by a negative comstant (1< 0) then the set of decision inequsl-
ities associated with (K,h(t)) must be reversed.

Conversely, each value of E > O uniquely defines an él(E) and the
collection -of all .suchEn(E) Torms & family of conc.entric Jeljipsoids
growing mondtonically .on E: the 1oﬂéus ‘o.f optimel points on .each ellips~
old of this family is the orthogonal pi'oje:ction of L* into the CigeeesCy
sub-space. Note that if K = O, the L' lies wholly in the Cpyeoerc, SUD-
‘space. | '

We thus are led to the conclusion that ‘only the direction cosines
of L*r need be found. In an n+l dimensional space the orientation of a
line L is given by n -of its direction cosines. Consequently: P‘C -could,
as well, have been defined functionally -ofl n varigbles representing the
direction cosines -of L and maximized over these n "direction" varisbles
in the usual way without the use of a subsidiary constrainﬁ; Although
“this concept 1s fundamentally simpler, it is felt '-'_bha.t the formal solu~

tions are facilitated with the use of the Lagrange multiplier.
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CHAPTER ITT
_ THE OPTIMAL CORRELATION RECEIVER FOR INTERSYMBOL INTERFERENCE

We will now apply the theory developed in the previous chapter to a
simple channel model in which intersymbolvinterference is ‘inherent. In
particular, numerical results will be presented for the binary symmetric

ccases of unipolar, bipolar and orthogonal types of signals.

3.1 Channel Model
Assuming (1) through (4) of Chapter I plus the following:
(5) The receiver has complete kﬁowle.dge of the channel distortion
gharacteristics,.i.e,,vifJak(f), k = i,Z;iS'transﬁitted,»then
’\;k(‘t) is received in the é.bse-nce of noise and is known in full
detail.

(6) Denote for k = 1,2. (See Figure 2)

~

:sk-(t) = sk(t) 0=t<T

s (t) =3 (t#T) 0 st< T

T\ K =

o

:.sk(t) =0 all other t

T T »
{7) S si(t)dt > S sé, (t)at k= 1,2
0 o =

and for k = 1,2, sk(t)-and S (t) are linearly independent.
' k
(8) The receiver is not to utilize any previous decisions it -has

made (i.e.; the receiver is memory-less) with respect to T

intervals.
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FIGURE 2 A SINGLE RECEIVED SIGNAL PULSE
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A few comments are in order. (5) assumes that the channel pulse
distortion is constant in time and known to the receiver. In (6), it
is assumed that the pulse is "spilled over" only into the next T inter-
val and will conflict with & transmission only on that_inferval° Note
that the original signal pulse can be "stretched out" or spuriously
"reflected" and in general may be any RL, function, sTki(sT'is'chosen
to mean signal tail). We limit ourselves to only interference on the
imnediately succeeding T interval because the computational details
grow combinatorially whereas the basié‘prdblem'remains the same. Note

that (7) is reasonsble in that if the opposite were true
T

T
( E; 'sg at > j; s;(t)dt), one would reverse the role of sg (t) and
k ' k
0 0

sk(t). Nemely, one would delay one T interval and detect_on-sTk so that
sk(t) would cause pre-interpulse intefference as opposed to the post
interpulse interference of sTk.as:assumedqby.(T).

Several physical situations come t0 mind which 'would lead to
assumptions by (1) through (8). For example, a binary transmitter (e.g.,
high speed teletype) connected to & wire line whose effective bandwidth
is slightly less than the signaling rate C%) of the transmitter; or re-
-ceiving fixed spurious reflections or distorted echoes. due to antenna
location or mismatch. Another example which almost fits (5) through
(8) is that»of‘digital carrier equipment in which the channel frequency
- separation is not quite large enough (co~channel interference). In

this context,»sT ’is;not:reallyggenerated serially (in time) but in a

k
parallel sense. However, with assumption (8), this makes no difference
in the following development; although such is not the case when (8) is

relaxed (specifically Chepter IV).
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3.2 - The Bayes' Receiver

. We now give the truly optimum receiver (Bayes')xfor~opefating’in
‘the enviromment of 3.1. Remembering that the-only interference present
is from the immediately preceding.transmiseion which causes an sg (t)
to appear additively to the s (t) which is to be detected, ‘and that the
events are independent, we enumerate the four possible cases with their

associated a priori probabilities of occurrence.

Received .
‘Previous Current Signal in A Priori
Transmission Transmission Absence of Noise Probsbility
Case 1 2z, =1 7 =1 s (t) + 8 (t) (1-p)2
Case. 2 Z,=1 Z, =2 ;ez(t) + sTl(t) | p(1-p)-
Case 3 2, =2 z =1 | s (t) * sy (t) p(1-p)
- . _ _ , . 2
Case 4 Z,=2 Z, =2 ez(t) + st(t) P

_Teble 1 Received Signal Combinations

From this table the Likelihood'Ratio./X(v) on the received dats in the

presence of noise, v(t) (= sk(t) +-sT_(t) +,n(t)))can_he formed.
. . Y

J/k , lmp)A1 exp vo(s2+sT )/N + pA2 ‘exp v0(52+sT )/N
(v) =
(lwp)B exp ve(sl-i—sT )/N +. pB eXp. vo(sl+sT )/N

(3.2.1)

where
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T
vo(s, + STQ) = \S‘ 'v(t)[sk(t) + sTQ(t)l dt K, 4 =1,2
0
E
.32 +»sTl xsz + ST2
Ay = exp - 2N Ay = oxp = =57
E E
8y +~ST_ Sy + st
B = Xp = B = -exXp = .
1 2N 2 2N

-
- and »Ex+y = é: "(x(t) +,y(t))2.dt

A(v) is then compared to the decision level

K = L.-EH; ‘ (3.2.2)

and the Bayes' receiver is specified by (3.2.1) and (3.2.2) vhere the’
decision is 2.1f /\(v) 2 K, 1 otherwise. A block diagram for this re-
ceiver is given in Figure 3.

Now for each particular realization of v(t) (0 =t <), A(v) is |
simply & real number. Since v(t) has random values we know that A:’Ls
& random variable which theoretically has an associa.ted}pro‘bability."'den-r
sity function, B (A ), derivable from the statistics of v(t).

Theswo.rd'tl;:eore-tically is used adyisedly, for a glance at (3.2.1)

. shows thet it is all bub hopeless to deduce p A ( [\_) from ‘the statistics
of v(t) (actually in this case the WGN, n(t)) except in limiting cases.

In some cases it is possible to define & strict monotonic function
on A5 £{A) (e.g., log A ') so that one may as well utilize the

"number” £( /A(v)) in comparison to the decision level K, = £(K) to
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announce a reception. This receiver will have the same performance as
the original (.A. sK) receiver since f is & one-one function. The pur-
pose of this procedure is to obtain, by cholce of f,_ba ‘random variable,
P AN (v)) with which a tractable probability density function

pr‘ (r.'_ ) is associated. A classic example of this is given by setting

8p =8y =01in (3.2,1) and taking the varisble \' to be
1 2 |

B
- ves : 8,
X T XD - g
r‘,= in A(V)=ln O EO
Vo8, 8
X~ exp = TR~
o
(3.2.3)
vala E »E
_ 7’_9(512‘ e R N
N 2Ny
with decision level
K = lrl"ii»".‘-':il-.g‘Z
»
oY comparing
\ _ Ceeay o2 1 1-p a8 o
S v(t)[sz(t),- sl(t)] @t with ==+ N In =2 (3.2.4)

o
which is recognized as the correlation recelver, That is to say, the

correlation réceiver is & sufficlent statistic of _/\_(v) when 8, =8,=0.

T T,

At presenty there does not exist a monotone function of (3.2.1), .0f

a tracteble natureywheh either or S (t) 5 Sm (t) are not zero. Further-
1 2 '
more, it seems unlikely that such exists. Thus we are faced with an

idesl receiyer about which we can make no statements pertaining to its

"1 2 .
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‘expected performence.  As seen from Figure 3, this Bayes' receiver 1s
not particulerly simple, so that an experimental approach is not Justi=
fied on -economic grounds. Counsequently, we will design &a Dbest correla=

tion receiver and examine its performance.

343 _.,Fomulation of the Correlation Class

With reference to Chapter II, we choose the class of correlation
recaivers ’{h(t);K) smongst which we seek that correlation recelver Whi ch

nmeximizes P Referring to Table 1 and in & wmanner analogous to eque~

ce
tions (Ll.1) through (1.5), it can be established that the probability of

correct reception P, for a receiver (h(t);K) is

Kuh" ( e T]_ ) K<ho ( s l+s’.T32' )
ViE " g

& e ax + p(1-p) &sX /2 S

=(1_P)2‘> ; ; -

2 5 -»x /Zm_ ~ S | -x°/2 dx 3,
+ P \!E?+ p(1~p) e \Fz_n_‘ (3.3.1)

Kaho( s, ‘K=ho ( s,

)
T' A

wheérey as before

T
E = g ne(t)at
o

_ . : |
.ho(s S ) = g ,h(t)gysk‘(t) *“STQ (t}idt k, 0 = 1,2.

0
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Note that if we multiply by My obteining (uK,uh(t)), P, 1s unchanged -
and satisfies assumption (d) of Chapter II. A further inspection of
(3.3.1) shows that all the assumptions of 2.1 are valid. Defining four
linear functionals corresponding to hO(sk+sT9), k, /= 1,2 it follows
that h(t) has the form

n(t) = 'cl[sl(’“)‘*sml(t)] + czisl(tﬁst(t)] + csg‘;sz(tﬂst(_t)_]

+.ch{s2(t)+sT (tzj
1
or baking linear combinations of these cfsj obtain new c's

h(t) = clsl(t) +,chsTl(t) +20252(t) +.cT23T2(t) (3.3.2)

As we are especially interested in the case where p = 1/2 and the 8y

S:k form unipolar, bipolar, or orthogonal signals; we will f0rego
develbping the,general-necessary conditions on (30331) in favor of in-
vestigating each ¢of these special cases separately. Our motive for
specializing at this point is,one of convenience. A general solution to
(3.3.1) is not simple. It involves solving five coupled equations with
a ﬂi7ij," matrix of sixteen elements. The special cases just mentioned,

which are of most practical iﬁteresty considerably simplify (3.3.1) if

derived separately.

3.4 Unipolsr Case (On-Off Signel), p = 1/2

The unipolar texrminclogy is teken to mean that the signal corre-

‘spcndingjto~25m-= 1 is identically zero, or that

sl(t) = sTi(t) =0
sz(t) = s(t) (3.4.1)

STz(t> = sT(t)



and
h(t) = es(t) + cTsT(t); Eh =
Denote
T
E = S s%(t)at
0
T
_ 2
EST= g sT(t)dt
T
p = g -s(t)sT(t)dt

0
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E

Substituting (3.4.1) and (3.4.2) into (3.3.1) yields

(3.4.2)
el
\ NOE‘
+ L S ‘e-xZ/Z_;bL
-2/2_d£_+']E_ 3 xZ/2 ax
A3 (eE - Vex
o) K=~ (cE_-cqp) (3.1.3)

K/\TE
.
1 -x"/2 dx
PKscye,) = F e —_
gyt T
o ‘{ 2%
1
N
K-(c E_+p +op E
N E
(¢]
with
2 2. _
%, = B, + 2eopp + opf, = F

*
T

to Chapter II are then found to be

' A *
The necessary equations for c, ¢

(fixed)

*
» K to meximize (3.4.3) in accordance
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(a) P; =0
(p) P‘: + Zoté*Es + zocc;e p =0 - | - - (3.h4)

¥* * o
(¢) P, +20ep + 20e =
Crp , S

Define the function ¥ to be

(u) /e (3.4.5)
¥(u) = === 3.k.5
I VZrt'
Then from (3.L.3) it follows that
OP : .vKa.hﬁs K—h"v(s-bs )
(a) By = = == XL“" £) + ¥ (=) - w( <)

g = NGE | , NOE‘ . l\i‘[{oE‘ —

o
(v) P, =~%f§, R {’ DIII(K—hOS ) (E +§)1[;(Iih°(S+ST)
K B IEE W
+Eﬂmms g (&m@'
\F‘E
(e) P :,,839.= 1 {g . W(K-ho e ;D)W(K-ho(s+sT))
vy \EE| Cr WE  Cro YRR
+W(K-hes) g
Consider (3.4.4a); from (3.4.6@) we have
IU(»K*. K*'h*"ST ) Kﬁht(s"‘% _hes (3+4:7)

SR L O S K
W@)+M“E?) W('VEE “HYF?
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* * *

where h™ = ¢ s(t) + cTsT(t)
Now ‘

* 1 1% Ly 1 |

K = A ho(s+sT) =3 c [ES+ pl + 2,,cT1E +p (3.4.8)
produces an identity on (3.4.7) as ¥ is an even function. Moreover,

* -

this value-of K is unique (ref. Appendix B). Thus (3.l4.ka) is "de-
coupled” from (3.L4.4b and c). We mention in passing that this happy

event occurs only for p = 1/2.

Evaluating P and P, by using (3.4.8) and (3.4.6a and b) produces

T
E-p To(s-s E + h° +
(a)P-—(Sp’ s (-8 ) Ete (SST)
Q [ 2 \’N B \!
(3.4.9)
™ ‘.p—E h*o(s -5q) p‘l'Es ‘h*a(s.-bs )
() B = T)w —) Ly (——)
b F 2 \jm E‘ \]Noﬁ 2 N E
We are now in & position to assert that Oté* is not zero.
From (3.4.4) we may algebraically obtain
K ¥
E P - pP
% sc Cr
- 200 = — (3.4.10)
EE, =p ‘
8 s
Tntroducing (3.4.9) into (3.4.10) produces
*
® h'e (s+s,f) h e(s-sT)
- 200 = === ) + ¥ ) (3.h4,11)
QNOE 2 NOE 2 \J N,.OE
Since 2
0 = 2L (3.1n12)
1,[ u = 2 > O 3. 012
L\2x'
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~neither O nor ¢ are zZero; whence we may take ¢ = 1. Then

. hc (s+s ) 'ho"(s:»-rs )
1 W( , I) 4 (i

NE NE 2\NE

Solving for ¢, in (3.4.4) produces

»* o3

EP = QP

3% 8 cT e
ZG‘.(p oo E E )

Sp

Ttilizing (3.4.9) and (3.4.13) gives ¢ 88 ‘the solutlon to

v, ¥
= (L= ==)/(1 +3)
Ve vy

@
LI}

where ¥ is defined by (3.4:5) and

B o= E +2(:Tp+( )E

Algebraly resrrengement of (3.4.15) requires that e satisfy

* c(EE 62)
T

RN 21\1: (c ZE +2¢T p-l-E )
’ T

Tet

(3.4.13)

(3eko1l)

(3.4.15)

(3.4.16)
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=u; Cn = TF T | (3.4.17)

and seek that positive value of u which solves (see Appendix B)

EE -
& 8 -
(Fg )" - 1)
0 S+ST
1n u + 2% + . 3 R E =0 - : (30""018)
o) s " s *s-8
w o+ 2(—§r———-2)u + g I
.s+ST s+sT
We now normalize (3.4.18) in terms of
S Es
=5 (Signal s(t) energy/2 noise power per unit bandwidth)
° - (3.14.19)
Since
E_<E  and | o|? <EE_
T i
define
By
T S -
Eﬁ_- a o 0=sax<l
:0 :
(3.4.20)
£ _p\Rs 1<p<
o b\e = 1<p<1
Then (3.4.18) reduces to
s a[l-bzl 5
| = (= V_’;‘)(u.-l)
1n(u) + bW% + _ltatib Va =0 (3.4.21)

& 4 gz By, 4 Lteczp Ve

1+a+2b V& l+a+zby &'

Thus we have the unique solution
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h*(t) = s(t) + c;sT(t)

¥* . ¥ .

K =%ho(sts) =22 (L +bVa+cla+DbVa)) (3.4.22)
2 7 =T W T

c* = L————lu N l

T u+.1 v

where u satisfies (3.L4.21)
The sufficiency of (3.4.22) is demonstrated in Appendix B. Note that
K% is just one half the fiiter‘output in the s@bsence of noise when both
s(t) and sT(t) are present; and that this criterion is the same as thet

0).

]

of the symmetric correlation receiver, (p = 1/2,-3T
‘ o * _% * * ¥
To evaluate Pc(h ,K'), or more pertinently, Pp = 1 - Pc(h;,K‘),

simply introduce (3.4.22) into (3.4.6) to obtein

00 00
2 2
* 1 g -t%/2 a1 S ~t%/2 _at
P == e — e - (3.4.23)
B2 ’ e 2 {ax
] *2
*
* Y15 Ltep +olElep+2)
gl 2T ] ‘ '

Q + *b{__;+ 2,
1 2cT a 'CT”a

* ¥
2 S . \

o ® *2
levT.ZCTb{7;irCT a

i
ol -
=i

In order to compare this result with a realized system we next de-
rive the performance of a "standard" correlation receiver (cT = 0) in
this enviromment. Since adjustment of the decision level is trivial
‘physically, we will allow for~optimum adjustmentpof X when cTi= 0.

Referring to (3.4.8) it is seen that this value of X, Kb, is given by
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K =
o/

]

he (s+s
o .

) = %% (1 +p¥a)zn, i (3.k.2k)

where

ho(t) = s(t).

With this value of K , e, =0, ¢ =1 (i.eey b (), Kﬁ) we can compute

-
from (3.4.3) that

N ‘ 00
O , 2
© .1 5 cH/ gt L1 g 2 _a (3.4.25)
° 21 o ‘ 2n
X Xo
xi = %-%»(l +b a)
x5 = %%(1-10 a)

which is exactly the results of (3.4.23) with c., set to zero.

T
* *
Performance curves with corresponding values of X andch,aS‘a funec-~
tion -of (%), for various parasmeter values -of a'andfb,~are presented at
the end of this chapter. The results were camputed on an IBM T090
‘computing facility. The numerical method used in solving (3.h922) for

u - ls explained in Appendix A,

3.5"Bipolar'Gase,,(plusfminus-signals)5-p~= 1/2

For the bipolar type of signals we require that

sz(t) = - sl(t) = s(t)

STé(t) = = sTl(t).= sT(t)
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By a suitable stratagem we will reduce this case to that of the uni-
polar signals. Namely, if s(t) + sT(t) is always added on to the in-
coming data, v(t),»the receiver then faces & decision between the four

signals,

2s(t) + ZST(t)

2s(t)
ZST(t)
0

which is exactly the unipolar situation where the signals have been
multiplied by a factor of two. Then, frqm the results .of the previous

sectlion,; the receiver is specified by

hf(t) = 2s(t) + ZC;'ST'(‘G)

(3.5.1)
VoL ;
K'=%h o(2s + ZST;,)
E Ly
) S\t _ 28 _ s _ /(8
where Gﬁ) = Eﬁ:x_ §ﬁ: = A(N)

and * solves (3.4.22) for (%) . .lp(%)

e

Now we know that the receiver gain may be scaled without affecting the

. performence; so we choose to divide (3.5.1) by two, obtaining

()

]

s(t) + c;sT(t)

(3.5.2)

AL

(K')* = h o(s+e

)

3% ' ¥*
and cj, ‘solves (3.4.22) with (%)‘replaCed by hq%)a The performence P
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of (3.5.2) is then givén by (3.L4.24) where (%) is replaced by hq%).
Similarly for Pg, (%) is replaced”by,h(%) in 3.&.26); Our overall re-
ceiver is shown in Figure L.

It is now possible to simplify the receiver of Figure 4. Consider
any correlation receiver (K,h(t)) with incoming data v(t). Add to v(t)
a prescribed function £(t) so that h(t) operates on v(t) + £(t). Then,
no matter what signals are presen't in v(t) s the output 'V.of the corre-
lator (V égT h(t)xy(t) + f(t)]dt) will always contain the constant

term f n(t)f(t)at. It then follows that if £(t) is added to the
0
data v(t) and S h(t)f(t)at is added to the decision level K, we have

eQuiva.lent receivers: where, if the performance of the receivers is
‘identical, we call them equivalent. Whenée, the receivers of Figure 5
‘are equivalent.

By the preceding argument, the receivers of Figure L can be réduced

* .
to the form -of Figure 5 where K 1is given by

= (k)" - no(stsy) =0 | (3.5.3)

ThHe optimum correlation receiver for symmetric bipolar signals is then

reduced. to
B(t) = s(t) +,c;sT(t)
(3.5.L4)

s ; \ s .. . #* O -
Since (3.5.4) is equivalent to (3.5.2), P, and Py are given by

(3.4.24) ‘and (3.4.26), respectively, wherein (-1%) is replaced by-.h(%)-.
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3.6 Orthogonal Case,{uncorrelated signals) p = 1/2

The orthogonal transmission system utilizes signals which have the

following properties

(a) vEsl = E82,= E,
(b) ESTl = ESTZ = EST
T
(c) g\ sl(t)sz(t)dt'=v0
0
(3.6.1)
ST
(a) » sTl(t)st(t)dt =0
0
T , i
(e) 1; sl(t)sT (t)at = 5‘ sz(t)sT (t)at = 0
2 . 1
0 0
and
T ‘ T
£ t t)at = | s.(t)s. (t)at =
IS 5; ) (£)ay (+)at é: ((Dag (Dt = 5

An example of signals which satisfy assumptions (3.6.1) (a) through (f)
is the frequency shift keying (FSK) scheme.

To evaluate this case, essentially the same trick employed in the
bipolar case will be used except that the orthogonal signals will be
converted to bipolar signals by first-subtraqting

7 ST'(tj + 8, (t) :
sg(t);sl(t)+ 2 Ty | : (3.6.2)

from the input data v(t). The fours signals then facing the receiver

‘are



v.u3

s5y(8) —:sl(t) | STz(t) "?Ti(t)

B . 5

4

H+

‘From :(3.5.4), the best correlation receiver is

50) - () o8 e ()

ht(t) =- 5 +:C'T' 5

Kt =0 .-

or scaling h by a factor of 2

H() = 8,(t) - 8y (t) + o Kst(t) —'sTl(t)l

(3.6.3)

(k)" =0

*'v

vhere c’T

solves (3.4.22) with (%) replaced by

2N z yab =2y
0

=

T
" s, (t) - s (%)
Gro j’ AN i s

0

‘Next the-operation of subtracting (3.6.2) from the data mey be replaced

by an adjustment of the decision level. Analogous to (3.5.3), we have

(3.6.4)

K = 0+ h*e( + )

and from the orthogonality and equi-energy properties of the signals,
the integral of (3.6.4) evaluates to zero. The optimal correlation re-

celver is then prescribed by

n'(t) = %ﬁ)-sﬁt)+x%[%;t)-§aﬁﬂ

(3.6.5)
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where c; solves (3.#4 22) vﬁth (-IS\T) replaced by 2(%)

Furthermore, ‘P; and Pg.:are given by (3.%2#) and (3J+.’ 26), respectively,
~with (%) ‘replaced by '2(-1%). An equivalent physical realization of (3.6.5)
is given in Figure 6.

Basicallyxwe.need,oﬁly;qne‘set-of solutions‘for‘all three of the
cases discussed. - The particular case at hand is normalized by multiply-
ing (-1%) by the-appropriate dou'blinég factor. The results are plotited for
the unipolar case. Corresponding results for orthogonal and bipolar sys-
‘tems are-obtained by multiplying (%) ,vby,-'tw’o and f'our respect\_ively, and

setting K -equal to zero.

3.7 General Observations

For the case of symmetric (p = l/ 2) unipolar, orthogonal and bipolar
signals, we seek that real root of equation (3.4.22) wherein the appro-
priate % ‘doubling factor "is dictated by the type: of above 'signa.lsv used.

Define G(bju) as Pollows

s[ a(1-b%) j(u 1)
v N l+a+2b'\ra ’
2 oapelm , (1ta-zb B )
1+a+2b & ( 1+a+2b\E) -
(3.7.1)

G(b;u) ln(u) + b’\f?:- +

Then

s a.(l-ab) (u -1)

s L ; S 1+a=2b &,
q(_b;ia) = ln(;) -b &=+ :

N1, 1a 1., g+a+2b )

42 1+a-2b a © (1+a=2b &)
(347.2)

Multiplying '.nwneratar and déncminator_ of (3.7.2) by



45

> S[s (t)+c (t)ldt >
v(%) A
—_— ] X
' I
M
U
M

> g Y_l(t)J"Ts (t)]dt: >

FIGURE 6 OPTIMUM CORRELATION RECEIVER FOR ORTHOGONAL SIGNALS
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1+a -'2bﬂu2
1+8-2Va

yields the relation
6(-b;Z) = - G(bsu) (3.7.3)

Consequently, if x = u is the real root of G(b;x) = 0, then x =7% is the
real root of G(-b;x) = 0 and by uniqueness it is the only such root.
Furthermore, if b > 0, it is easily seen that O <u < 1. Thus by

¥*
(3.4.18) cT,isvnegative for b > 0. If the sign of b is changed then the
% o

¢T7corresponding to =|b| is
e ( ) :
3% u 1l -1 u - 1
c‘ = = = = (3070’4’)
T .%%‘+ 1 1+ u -+ 1

3*
s0 that ¢ is > 0 and equal in magnitude to the case in which b > 0.

T

Sumerizing, if b = ~\bl then c*'= \c*l‘and ifb = +\b\ then c* = mlc*l
we? T T T TV
*

so that ch.é 0 in all cases.

e
‘With this in mind we see that Py of (3.4.24), (3.5.2 ) and (3.6.5)
depends on the absolute magnitude of b(|{b}). Likewise, the correspond-

ing*Pg depends only on.!bﬂo Thus the sign of b uniquely. determines the

L%

gign of CT
3 Ve

and Py and PE are independent of the sign of b.

We now examine the case for b = 0. Then u = 1 is the desired real

¥*
in an antisymmetrical way, whereas [cp | is determined by |b |

* * '
root of (3.7.1), so that ¢ = 0. Then PE! is given by
T . b=0
4 O unipolar )
PE 1 orthogonal (3f7°5)

<]

a
2
]

i
mlh’cwﬂwUS
M
]
2]
[NV]
~
D2
Eg
U
B
1]

S\.m = 2 bipolar
(ﬁ)z m b
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Furthermore, the corresponding Pg for b = ‘© 1is

Pg‘ :P?F;‘ | | - (3.7.6)
b=0 b=0 '

*
T

This should not be surprising. For if b = O then (=0, which means

and in :-fa.ct,,sz -since ¢, = O, the corresponding 'I;eceivers-'a.rev, identical.
the correlation operation is ‘insensitive to the presence of s,,I,(t)o How-
»-“evér,- 1f we mssume-a lossless (energy) medium the “total transmitted
‘energy per T interval is (1+a)E_and so the transmitted (potential)
-gémergy/ noise ratio is (l+a)(-1%) ;wh‘er-ev' (%) is the actual .energy/ noise
ratio at the recelver due only to s(t). - Consequently, if b =0, hhe
only effect of the chamnel is to attenvate the "transmitted" energy .
_noise ratio by (1+a). Thus the well known performence curves for corre-
. Istion reception with no pulse distortion msy be used if the energy/noise
ratie 1s diyided by (1+a).

.I_m view of the foregoing discussion the performance curves Pz and
Pg with corresponding c;
T through 15 as functlions of received ::energy/noisg ratio; (%), for

for the unipolar signal are plothted in Figures

varipus parsmetér values -of & .and b. The appropriate _("-1%) , dcu‘baling fac-
4or can then be used for obtaining the performence of the orthogonal
and bipolar schenes. v |

’Theré..is but one subtlety left to discuss and that is the pe_,rfor’m-
ante of the ophbimm receiver in the absence of noise. Certainly, if the
noise, n(t), were to disappeary we would like our designed receiver to
be error-less. In & sensey we require & consistent receiver. This is

cegquivalent to regquiringy for the unipolar case

Rl U TR R .
s (S*l-sT) >K. = 'Q‘E‘:hc (Sv+ST')
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-and
* *
hesg>K

with
‘h = s(t) +,-cTsT(t)., ‘C'Tl<‘l
‘which is the same as
no(stsy) >0 _. - , (3.7-7)

the_ that (3.T7.T) is the ‘same condition for errorless performence of the
‘bipolar case, |

Now asupp;cssé that p.= b ‘{E ES > 0. Then “
* N N . o * -
-‘Wh(are we recall that
ler pl<0
\epl <1
To show that
ho(smsy) >0 | o o (3.7.9)
essume-otherwise; l.e.y
* *
‘h@(’s-,s_vT)': ‘-1 -bya + \.¢T((a -b‘f_E)IsES 0 (3.7.10)
For this ;evént to oceur

a-b{a<o0

and for some O £ x< 1

1-bVa - x(b{a-2a)=0 (3.7.11)



k9
Theny since x'<1
l-bya<bVa-a=a
‘or, remembering that \bl <1

el

pl <1
2Ya' '

Now the function, f(y)

=+Yy .
’f(y)=L_‘é-_—§l; y >0

with equality at-y = 1 only.

Since Va <1, (3.7.13) implies,

1<\vl <1,

(3.7.12)

(3.7.13)

(3'7- l)-l-)

(3.7.15)

a contradiction to assumption (3.7.8). For p <0, the arguments are

identical except reversed. That is to say, obviously

*
'h °(s.—sT) >0
and one contradicts the assumption

¥
he(s+s.) €0 .

)
. ;*
If p = Oy Cq = 0 and we have
hes = ES >0

In effeé¢t we have shown that

‘,ho(sisT) >0

c
for ‘any cholce of ¢, c such that \ "52\ < 1l. In particular c = 1 and

T
*

Cm = c’T,, is & consistent receiver.
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3.8 Computed Receiver Performence and Comparisons

The error rate PE'for'the optimum correlator of the form

W (t) = s(t) + 6ps(t); K=K

is shown in Figures T, 9, and 11. For comparison, the error rate P;

for the standard correlator of the form

1°(+) = s(t); ¥ =k&°

is presented in Figures;8, 10, and 12. TFigures-13; 14, and 15 giVes-the
values of ¢y as-a function of (§), for Tixed a and b.

Examination of the performanée curves-of»FiguresvT-throuéh~12 shows
that for small a, there is negligible improvement to be had in using the
opﬁimumccorrelator'(h*).over‘thé standard type (h°). For s = 1/4 and
b= 0.5 and 0.7, the optimum'corfelator-giveS*a gain of 1 db in (%); a
marginal improvement. For a =>l/2.and'b»=-0;5, there is g 2 db gain in
(%), and for b = 0.7 there is a 3 db gain. This represents a signifi-
cant improvement. Due to the steepness of the ecurves, over a decade
decrease in EE is to .be had.

Since the receivers .considered here are to be memoryless, it follows
that they can obtain no a priori information about the interference |
pulse. Consequently, a good receiver policy Wbuldfbe to try to ignore‘
the prééence'of‘the interference puise° The optimum correlation receiv-
-er attempts to decorrelate-or»orthogonalize-itSelf to the pulse inter~
ference. Thusy it is no surprise that for all cases the error curve for
is

5 » is uniformly best. For a = 1/2 and b = 0.7, EE

Eb=0 b=0
3 «db better than the optimum correlator and 6 -db better than the standard

correlator. It then seems plausible that . the best;one_could-éxpect;fram
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a memoryless receiver when both a and b are not zero is to achieve the

PE -eurve. If such is the case we must be willing to sacrifice
b=0

.per cent .of the transmitted energy to noise ratio.

a
1l+a

3.9 Summary: A Geometric Interpretation

As mentioned in Chapter II we are dealing with a real innerproduct
space. As there are only two linearly independent wvectors s, Sm in
this chapter, a planar Euclidean vector representation is possible,
where the length of a .vector (signal) is represented by the square root
-of the signal.energy;and the "dot" product (hence angle) between two
vectors. is the correlation operation between the two corresponding sig-
nalsy i.e.y
T .
084008, = S s, (t)s,(t)at
0
For convenience, a graphical description will be given for the bipolar
- case. The unipolar and orthogonal cases will then be shown fo,be simply
-a rotation and translation of the coordinate axes established for the
bipolar situation.,
In Figure 16 we have fixed'the horizontal axis such that it passes
- through the points S and S' and is oriented in the direction of S. The
vector 08 represents s(t) and 0S' represents -s(t). Thebvectors;aﬁ
and 0§ represent s(t) + sT(t) and s(t) - sT(t), respectively. Thus OP'
and 3@? are obviously defined. So in this two dimensional signal space,
the points Py, Q, P', and Q' represent the four possible signal points
- with P, Q associated with a plus transmission and P'; Q' associated with

‘e minus transmission.
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Now SP represents the signal _sT(t) , 50 that-SPe 0S is p = bV & L
But |

_S'f".]?ég |88\ ‘B'S'l cos 0 = byE E,

where ‘

{ | = lensgth

a = angle ‘between SP.and 0S -
whence |

o=costo .,

Since h(t) is a linear combination of s(t) and sT(t), the vector
E-ﬁ representing. h(t) must lie along the line QSP. In fact, since b > 0

and ‘¢, <1, the point H must lie between S and Q. Now, if OV is any

T
realized date vector corresponding to v(t) » then the correlator output
is the projection off)vv'onto OH. | If this quantity is non-negative a
plus symbol is 'announc'ed;, -otherwise & minus symbol. It is obvious 'Ehat
‘the correlation .reéeiver ‘establishes a "decision line" perpendicular to
OH ‘which -par"titions ‘the receiver space so 'théﬁ 1f V is to the 'fight,-.on
L' a plus is pronounéed,; .iva._'is to the left.-of LL' the decision is
for s minus symbol. |
The unipolar case is represented by a strict »:translation of the
axes to the point ‘P'. The orthogonal .case .in_volves a translation and
- rotation. By assumptions- 3.6(a) . through (f), orthogonal signals need a
four dimensional bf'iguvre to. represent-their -space which therefore: ié -ﬁot
shown. It is now ob‘vious.t‘,hat .any. pair -of “transmitted signals ‘whose
four possible received signal points form & parallelogrem may be
re'clucedl to the bipolar case by a codrdina‘.‘ce shift.
In terms of this model (Figurewvl6) » it is possible to give a

qualitative discussion for the ¢

i results contained if Figures 13,
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14, and 15. Notice that ‘ep; is a direct.measurement -of the tilt of . IL'
away from vertical. The 1arger'.[eT|,, the closer H is to Q, and the more
horizontally tilted is L', _Coneequen’cly; we will discuss the tilt in
LL' as a function of (%), b, and a .

The probability of correct .reception can be interpreted as the
volume under a particular surface (probability surface) defined over the
received signal plane (Figure 16)., Given that v(t) is the sum of noise
n(t) and s(t) + sT(t,), we have that OV is the sum -of the vector OP and
a noise vector PN. Now the vector ﬁ\f may be decomposed into orthogonal

..components parallel and perpendicular to Bgo Let x and 'y be the respec~

tive axes .of such a decomposition (Figure 16). Then the x component of

VpPilr\f‘, -say EP'—NX is given by

N T
TR = EN20S | 1 S s(t)n(t)at
0

* sl {E

Since n(t) is Gaussian it follows. that ‘the probability density on l ?ﬁx‘

is given by'
-
p(x) = 2 X/
. anly
: o)

where x denotes lﬁx( « Tt is-also true that (?ﬁyl (denoted by y= |ﬁ yl')
hias the identical Gaussian density function as x and furthermore, since
x and y are orthogonal, x and y are statistically independent. Tn_us s 1f
we wish to interpret the differential prob‘ability ‘that ﬁ lies within
the differential area dA with coordinates x and ‘y, as avdiffeﬂrential

volume 4V, the dV is given by

| 1 é('x2+y2f)/2Nf@
o = e © axdy
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‘Then the conditional probability surface GD P’ associated with the point |

:Py is given by the Gaussian surface

G’ 1 | 7-(x2-l‘-;5r2:)/21\T50

PTZmy ¢
(o]

or in circular -¢oordinates

2
G 1 nr/Z}\?O
P 2wN. ©

Gonsequent’lyG_P is generated by ‘taking a ray from P and defining the

function

1
27N
‘Q

2
-7 /21\T0
e :

on this ray perpendicular to the plane of the receiver space and rota-
ting the ray through 2x radians. G P is then the generated surface of
‘revolution. The conditional probebility that given the receiyed point

‘P, the data vector oV lies in a prescribed area A is given by
Pr(OV.in A/P) = §6‘ PaA’
o F

where dA”is the differential area element.
Thus y glven ’chét P is the received signal point, thé ‘conditional
p_fobability of 'correet reception is that portion of the volume under a
Gaussian surface centered on P-and to the right of the line LL'., Thus
the total probability is oﬁe fourth (symmetric a priori probabilities)
of the separate volumes' uncier Gaussian surfaces centered on P, Q, P'
and Q%y respectively, and to the right of IL' for P, Q; “to the left

Of f‘I;Iﬂ" fOl’" P?’ 'Q,to



. Sinee LL* must zpass"{chreug'h ‘0 and the points P,Q,Q%,P* are symmetric
with ‘-respé-ct' to Ovand are symmetric with respect »t,ofthe:i,‘r‘ra, priori preoba~
bilities -of ‘occurrences,. it follows that PC can be obtained in the manner
~discussed: above by considering -only the points P and Q. In this bi=
polar case theny - PC is -.equivalent, te one half- ;of.the volume Jc,o‘ the right
-of LLY ‘and under a probability surface g'iven by the sum oftwo identical
Gaussian surfaces centered on P -and Q, respectively. PC. is then maxdi-
mized by til'bing. LY such that maximum velume is contédined to the

|

- pight (or mlnlmum volume to the left which 're]_arés*er.lts PE)“ It is now
apparent that 1f the received signal points were not :ﬁompie’qely sym-=
metrices then LL* need not pass through 0 so that the lecation and tilt
of LL" ave coupled snd hence K and ¢y would be imterdependent. |

For a fixed a and b we may now discuss the behavior of ‘¢, 882

Tungtion of (%) If (-1%) is very large, the -contour lines of this
probebility surface in the region of the -:orig‘in,y approximate fellipsés’
with foel ecolinear with ﬁ. Tt is reasonsble then to expect IL' to be
rreariy tangent to the cenwur line passing through 0. Tiis t1lts the
: ‘d:e?ei:sirg iin»e» I‘;-Igi‘i"';bWé;_rds: “the horizental axis. That (-_.-g_;T,,l < 1 follows
fr@m oq ‘being less than OF.. The cireular effect from Q slightly
ﬁf@m:.na‘@es that 'fi‘E},-;causing the centour line th,reugh 0 to be-a
1ittle mere c:anted towards vertical than the elli]_ase.

F@r - very Tow (v-) the origin is very nesar the hilltops ‘of both
Gaussian component surfaces ‘so that the contour linés of the PI‘Ob&blld-
ity suﬂifagé ténd to be clrcular with center at S. This ’ire*au_seS‘LL‘“'t@:
be directed nﬁia;rlyvvertiﬁally. Thus \QT\ appro&iches Zero &s '(_’%)'gbés

o zerd.
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CHAPTER IV
- SWITCHED .-MODE RECEIVER

In this chapter we-will,allow:pur receiver to utilize its own past
decisions. Except for assumption (8) our channel model is that of 3.1.
Bince we hayve signal interference on only adjacent T intervals, only the
immediately preceding receiver decision will convey information about
the expected interference on the next T interval. »Wé'will»examine the
behavior -of the receiver that assumes that its previous decision is

perfectly correct.

k.1 The Deterministic Switch

For the rest of this :chapter we will denote by the symbol ﬁml, the .
- event associated with the recelver decision immediately ﬁreCeding.the
-deeisiony, Dy to be currently made. Thus Dul‘is.the rece:’nrer.a,rm‘ounce-‘=

meat-regardingithe-EVEnt'Z(n”l)T.When the -recelver is concerned with

udecidingzzht, Weuassignito ﬁ”l two numbers, 1 and 2, which are associ-
-ated with Z(nal)T in the following way:

() if the recelver decides thet Z, jy = 1, ve say pl-1

(p) if the receiver decides that Z(n~l)T'= 2, we say ﬁ”l = Ze

We will design two parallel recelvers wherein DT activates our
choice of which one we choose o use {ref. Figure 17). Since we have
8 stationary channel.modelxwith~statistically-independent input symbols

Znt’ it follows that the prdbability of D%l'beingﬁcorrect'is the same
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for any value of n, and, in particulars; is the receiver correct recep-
- tion rate or one ‘.minus ‘the receiver error rate. As will be shown, these
two receivers differ:only»in the decision levels, both having the :same
~¢orrelation operstion. | |

Now with reference to Table 1 of Cha.pter ITI, we see that if.Dhl, is
one then’the'receiver'presumes sTl(t) to be present.and.since the receiv-
er assumes DL to be correct the recelver mey first subtract sg (t) from
the inpui—v(t)vleaving{;kt)-composed only of sl(t) or éz(t),plﬁs white
geussian noise n(t).. The optimal receiver operating on v(t) is the
- correlation receiver 'discuSSed in ‘Ché.pters I and II. Similarly, if thl
is two,  subtract sj (t) fromv(t) ylelding v(t) In either case the
correlation opera.tlon involves the stored reference s (t) -8 (t) The
.:operatién of subtracting eithe? sle(t) or vs_Tz.(t) from the input may be
equivalently ,replaced:by*a»_djusting., the decision bias ‘level. (ref.
section 3.5) The receiver then hes the form shown in Figure 18.

The two declsion levels K, -and K, are given by

. E, -E_ 3 ' ,
K =l W mi%P- + S‘ 'S’T‘a’(t)[sz(t)“"?1(*5)1‘@’& (1.1)
° p = 1}2'.‘ |
and
- K = s () = s ;. | ) - & b1,
-Kl .S; [st(t) sIl(t):( {'.S‘B(_t) - Sl(t)l é‘t | ( ;’]_’.;’2.)

We npw-assume that K2~ Kl is not weroy otherwise the switch opera~
tion is superfluous. Furthermore, for the ‘sake of argument, let

K, > K. (We could just as easily consider K > Kzo)' For the unipolar,
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bipolar, and orthogonal types of signals discussed in Chapter IIT we

have the following table

Unipolar = Orthogonal Bipolar

- .
\S; sTl(t)[sz(t) w-sl(tzldt 0 - 1p - 2p
T | ‘
j; sgb(t)gfz(t) - sl(t)ldt | o + 1p +2p
0 . o
K, - K - o 2p | - bp

where as in Chapter‘III

. o
p-= S s(t)sT(t)d:b o
0 : .

Teble 2 Switched Mode Decision Levels

Now if we draw a line (V. axis) to represent the possible values of

the output V of the correlator, (Figure 18), we see that K, and K, serve

to define three regions A, B, and C of the V axis (see Figure 19).

FIGURE 19 SWITCHED MODE.DECISION»REGIONS
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© Thus, if V falls into reglon A, then V is less than both K and K,
‘soléhat_both "receivers" announce & one. Similerly, if V is in region
‘B both receivers announce a two, consequently)vif V falls in elther
region A .or B the switching operation is uﬁnecessary. If,ﬂhoWever, v
falls into region C one recelver says one while the other says two. The
switch, g0vernedfby*ﬁ-l, then determines whether one or twe will be
announced. We point out the similarity of this errangement to the binary
erasure~channel6 wherein we use vt in a simple fashion to "write in"
the symbol "erased". In this context & more detalled study from‘the in=-
formation theory viewpoint would yield ‘more'sophisticated modes -of "switch.
control”. |
- - We now compute thevperformance,:Pc,.of this recelver remembering

- that

Prob (D‘l correct) =P (4.1.3)

C

Listing all the possible indépendent events which lead to a
successfulﬂdecisionﬁaiong‘with their associated probebilities, we have

the following (remeﬂbering'thatvwe have~fa.ssumed.-Kl <:Ké);
Case I D~ = 1 and correct; Pc(lqp)

and (a) s,(t) sent end V <K 3 (1-p) PL(V <X /s)

or (b) ‘S.Z(t) sent and V2 K5 D PI(V z vKl/sz)

Case II D~ = 2.and correct; Py p

and (a) sl(t) sent and V < K3 (1-p) P (V< Kz/sl)

or (b) sz(t) sent and V 2 K3 “p PII(vfz Kz/sz) '



- Ta
,'nl )
Case ITTI D ~ = 1 and incorrect; (l-»p)(l-P.C)
~and (a) sl(t) sent and V< K ; (1-p) PIII(V <;Kl/sl)

or (b)‘ sz(t) sent gnd vz Ké; P PIII(VIE Kz/sz)

Case IV Dfl = 2 and incorrect; p'(l"PC)

and (a) sl(t) sent and V <K (1~p) EIV(V < Kl/sl)

: o s v o
or (b) sz(t) sent and V = K5 p PIV(V z Kz/sz)

Now if indeed K2>< Ki.we need to interchange Ki and. K2 in Case IIT and
Case IV,
Now each case is mutually exclusive as is each (a), (b) subcase so

that'P is the sum-of the probabilities of each event.

C

P, = (1-p) B, i (1-p) BV < 'Kl/sl) +p Pr(V 2 Kl/sz) %
+p By, {(lwp) P (V< Kz/sl) +p P (V z Kz/sz) i |
+,(1~p)(1~PC){(1»p) PIIi(V <K /sy) +p Prp(V 2 Kz/s2)§
+ 2(1-7) § (1-8) ry(v <X /o)) + 2 Bpy(V = Kp/s,) } (4.1.1)

and P

K <'K2; if K, < Kl,,lnterchange Kl with K2 in P v

1 2 IIT

The Roman numeralédvcanditional probabilities are the gaussian distri-
buti@n.functions.and.are.éomputedﬁas in equation (l°5)o The gaussian

distribution function %jé is defined as
W |
IO &
5 :
(=Tea} gjt

We then have



T3
(V<K /5) = & (w, + W)
P(V2K/s,) =R - W)
PV <Ky/s)) = D (W +W)
P (VEK/s) = R (W - W)
P (V<K /5)) = &P (W, +W, - W3')
P (V2 Kz/sz) = Dw - W)

P (V<K /s) = B (W +W,)

PV 2 Ky /s,) = & (Wy + ¥, - W)

and K, <K

1 T2
where
T
Wy = = .(sz(t) - sl(t)) dt
0
Wy =
& -E) e
W3 —(,ﬁ)va (K - Kl) defined in (4.1.2)
A

Por KZ < K1 “we- have that

(V<K @(w +W,)
Prpr(V 2 K1'/ ?é-) = (E(Wl“"’ Wy +.W3)
PV <Ky/e) = P (Wy + Wy +Ws)

Bry(V = 1/e) = Ry + W)

(k.1.5)

:()_;_910_5 !)
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One may then substitute (4.1.5) or (4.1.5%), (according to whether K, >K

or K, > Kz) into (4.1.4) and solve for By We do this only for p = 1/2

,(wz = 0).
b, = kBB (W) + 2(1-2,) B’:(wl) + B Gy - W3)l (h.1.6)
K, > K
0T

lLPC = L;Pc %(‘Wl) + 2,(1-1?0) [@(Wl) + @ (Wl + W3‘)l

K5 >K

‘and since,

(4.1.6) is solyed, irrespective of the sign of - K»; as
¢4 £ 1

Efb(w)+@(w - lwl)

(4a1.7)
©T e ® (v, - \W3\) - @ (w)

We evaluate (hngT) for unipolar, bipolar and orthogonal signals so
that they mey be compared to the results of Chapter III. Using the
notation for the types of signals as in Chapter III, we have the follow-

ingjtable~for‘Wi,~W3, Klj.and.Kécvalueso
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- Unipolar Orthogonal - Bipolar
1 s s \’ 8y

W 2b Ya' \s% (— Ve \! (%) 2 a 2(%)
(-1%) | | ~pya (-1%) - 2b \a 2(,1%)
K/, z@E0+nyE) R @ o {a 2@)

Table 3 W and X Values for Unipolar,
Orthogonal and Bipolar Signals

Thus for the unipolar case PC' is given by

D <—>>+€@N (—)‘(1-z\ur’>>
2+®< Gy (1- 2003 - DN Z E)

S\'

N

, l"P=g e _ax (,_,l_ X2 _ax )
: €N §23 ? Ve

L /S [
(’5 & , \f%— (%) (1-2{pl V&)

Orice again we see that the performance of orthogonal and bipolar signals

(4.1.8)

of-

d
It

ig .obtained by multiplying '(%) by 2 and k4, respectively.’

If b =0, K = K,o Then

Pc“ﬁ(‘\[:—%

Kl =K, = Es/z " unipolar » B (4.1.9)

=90 “orthogonal or bipolar



or

m =0, unipolar
m = 1, orthogonal (L“l“,lo)
m = 2, bipolar

which is exactly the result of Chapter III, when b = O.
Referring to the expression for By in (4.1.8) we may use (4.1.10)

to express PE as

P
el
T = I

" Veme
- = ( . -x’/z. . >
1-5 e dx/ \}'é?
(1-2|6 {7 2) {(s/m)/2

From this expression the following bounds on P are readily obtained.

(4.1.11)

P, <P 527D ‘ o (k.1.12)
E B | o

koo

Furthermore; 'PE is -asymptotic from :above to PE‘ as %‘goes to zero.
, =0 :

If | v] v—g <%‘; then Pp is asymptotic from above to Py -and is bounded

| ‘b=0

| above by % PEE ¢ Since lbl \Ja <% in Chapter III, only the bounds of
b= '

~are presented in Figure 20.

P, \ - and &- P
o= =0

k.2 he Probebilistic Switeh

We now ask, if instesd of hsving the switch of sec¢tion 4.1 complete~
ly determined by JD""l, ‘suppose the switch is probabilistically controlled.
That is to sayy if pt is -one then the switch takes position 1 with

probebility & and position 2 with probability (1~£). On the other hend
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1r DL 15 two, position one is assumed with probability (1-¢) and posi-
tion two with probebility €. We might then .choose that value of £ which

c«

meximizes P
To compute EC we enunterate the mutually exclusive v-‘e‘vents. leading to

a . success. Assuming K‘.L < Kz We have

Case I D! = 1 correct and switch in position 1,

and (a) ) sent, V<K £P(1-p)° P (V<K /5 )

or (b) s, sent, V2 K ; chp(l.—p) .PI(V z ’K?L/_Sz)

Case I' ‘ - 1 correct and,._switéh in position 2

‘and (&) s, senty V< € (1-8) By(1-p)° PL(V <K /s;)
or (b') s, semty; V2K (1-¢) Pp(1-p) Br(V 2 K /5,)
Case II Dt = 2 correct end switch :Ln ‘position 2

and (a) s, senty V<K e.de(l»p) PII(V < Kz/sl)

or (b) s, semt, V2 Ky tBp° PL(VZK/s)

Case IIT o1 ¢orrect :aﬁd-switch in'positi'on 1
and (&%) '8, sent, V'<K; (1~¢) P‘dp(l—p)y PIII(V < Kl/s.l)
or (bt) s, sent, V 2 ’KZ; (1-t) PCPZ P;III(V 2 'Kz_/sz)

Ca,s-e IIT ]5'1 =1 and incorrect and switch in positi-oq 1
and (a) sy senty V<K §(l=l?¢)(l-P)2 'PIIT(V <K /s)
or (b) s, sent, V2 K3 £(1-F,) p(1-p) (V2 K/s)
Cage III* D”l. =1 ..anid incorrect and switch in position 2
and (a%) s, senty V< Kz, (l--E)(l«-P(._})(lx-p)2 RII(V,<'K2/sl)
or (b*) s, sent, VZK; (iﬁé)(l:—Pc) p(1-p) P (V %-.~K2/sz)
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-]

Case IV D ” = 2-and incorrect and switch in position 2
“and (a) s, sent V<K; E(1-B,) p(l-p) (7 <K /s

, = : -
or () s, sent VZK; (1 Py) 5° PIV(V z K2/s2)
Case IV" D'l = 2 and incorrect and .switch in position 1
. ¥ } . . o - - . - . R
and (a') s, sent V<K; (1-8)(1 PC) p(1-p) PI(V,< Kl/sl)

or (b*) s, sent V zK; (l-§)(l-Pc) p2 'PI(V z 1{1/32)

(For K, > K, interchange K, and X, in Cages III and IV.) The Roman

nunmeraled conditional probabilities are identical to those found in sec-
tion 4.1; nemely, (4.1.5) and (4.1.5").

P, is simply the sum of the above probabilities, and we may then

C
solve f-oi'- P-C in exactly the seme fashion as in section L.1. We do this
for p = %‘- to obtain

2 (n,) + e[ B, - W\) - @ )1
e W) - B0 - W) + 26100 - \Wy) - )]
(k.2.1)

where W, and w3 are defined in (4.1.6). Note that if & = 1 (k.2.1)

reduces to (4.1.6). Differentisting (L4.2.1) with respect to & ylelds

BPG' X_d"(W)-- L (W - |V )1[3@(W)+<5.> (w, -\w3|)-ZJ
dt [%@(W-@(W'- (Wy| ) +26 {é(‘w LAY - B W )}]2

‘ (ugz.z)
‘ OP, :
Conseguently the sign of ’-g? is independent of £ implying that
. ' ‘ oP ‘
£ = 1 0or Oy Or P‘C is invariant to & according to whether -g;- is greater

than, less than, orequal to O, respectively. Equivalently we need only
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examine the mmerator of (4.2.2). Since @ is a monotone increasing

function we have that
ﬁé(wl) - @ (wl - \W3\) >0 ; w3 £0 (4.2.3)
Whence, we need only -examine the ‘sign of the e;@res,sioﬁ

g=3®d ‘(Wl) +3& (Wl> - \w3\,) -2 (ho2.b)

For the unipolar case (4.2.4) reduces to

s -sBO\E@+B\F@ a-am@ -2z

Now ‘& crude sufficient condition thet & = 1 or g' be grester than zero

is easily derived by using (L4.2.3) to obtain

gt > LL@( \‘-%.(%) (1-2b2’)-2>0 7(4.72,5)

or )
1-2mY¥a>o0
or
'bza < %‘:

‘a:nd. since bz <1
‘g" >0, if a < 1/4. These results are independent of (%) so this ‘condi-
tion holds equally well for the orthogonal and bipolar cases. A sharper

bound on (a) would involve the value of (’1%).

1 /5 S
I 5 (-I\T) > 0. bhor (-N-) > 0.k | then
30\ @) -2>0

and g* is gusrsnteed to be larger than zero, Similarly,for the ortho-

gonal. case %) > 0.2 and bipolar case (-1%-) > 0.1 guarantees &€ = 1. From.



an engineering point of view any system which operates st &
Py > 107t (%v<”l) is unaccepteble so that, in this .context, we would

- .alweys choose £ =1 as is the case described in'Sectionbh,lg

L.3  Sumery

In terms,of“theageometriC'model of 3.8 the switched mode scheme for
the bipolar case can be depected as in Figure 21. Note that a simple
translation and rotstion -of the coordinate axes generalizes to other
‘than bipolar signals as in 3.8. Here it is easily seen that we have two
vertical decislon lines.passing through Kl and Kz,,respectivelya The
strip between these lines defines the region in which the immediately
“preceding decision, ]f].‘f,, is used to -gerierate the succeeding decision D.

‘From the relatively tight bounds on P, in terms of P it

,
E E}b:O

gppears that this receiver succeeds falrly well in its attempt to ignore
the presence of the interfering pulse—sTs The smeller bfvgx,hence the
narrower the strip betWeen“Ki.and.Ké,~the more successful is the receiv-
er in-obtaining the performance for b = O,

There is yet to be discussed the transient problem associated with
initisting communications with this receiver. As the previous discus~
sion asgumed a steady state behayior, the recelver must be turned on in
s manner which insures the steady state behavior assumed. It is-reagon-
gble 0 expect that if ther%nratié ig large we may use initially=eithér5
decisibn‘level,‘Ki,er-Ké‘fbr-our'first‘transmission, as the probability
-of making. the correct decision with eilther Ki or'Ké_is very -close ‘o
BelaicH

However, 1t would seem that the best way of initlating reception,

independent of %%-is to use the fact that there 1is no sT:present on
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‘the first transmission, Hence, for this first T interval, the Bayes'

receiver is the correlation recelyer

T

S-s(t.)v(t)d’c
o
Ko - X%

K=K+ (K > &)

and this insures the highest proba.]qility thet the first decision is made
correctly.

This first BayesT decision would then ‘be.used in conjunction with
the twd decision levels Kl..and K2 -on the -second transmission and then
‘operation would be as described in L.1l. Consequently in the practical
design of thisg receiver three decision levels need to be incorporated
‘besides a correlation filter, namely Kl’ K2 and & level midway between

K__Land 'Kz_.
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CHAPTER V
CHANNEL WITE FADING INTERSYMBOL INTERFERENCE

The next case to be examined involves the preceding channel model
which also produces "fading" on the Sy portion of the signal. That is
to say, instead of s;(t), osp(t) constitutes the interfering signal. In
particular,’ g .is assu:med ‘to b’e_.‘ a R_ayleigh distributed‘anOm yariable.

A physical model for this fomulati‘on 1is a channel .which. ha‘}.s -one :spuri-
ous fading "’multipa.thf’ in parallel with a direct ‘communication ],i_nke
We then seek the best correlation recelver to operate in this environ-
ménto, Due to the compu’cati‘@na.l, complexity of the equations 'to_' be
solved, they are presented without specific numerical results; further-

more; -only the symmetric (p = ~]2-1) bipolar case is examined.

5.1 - Math_ematical Assumptions &nd Associated Bayes' Receiver

The basic channel model of 3.1 with the following modifications is
adopted

(1) s,(t) = = 5,(t) = s(t)

8 (t) = = 5, (t) = 5.(t)
T2 T T
(2) -s(t) is known perfectly at the receiver

ST(’G) = GST(t) ‘yhere s’T(t) is known perfectly &t the
receiver.
(3) o is a random variable, statisticelly independent of the out-

~cameaaf.si(t)»and stationary over the T intervals, with the
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probability density function

2 1ol
pc(g) = i%,e'c /2a 020
d
=0 v 0<0
‘ 2.1 ‘ j2
where a°=% E(o) ; a= }-(E(G)

and E is the probebility expectation operator.

(%) a- <92= ; in enalogy to assumption (7) of Chapter III note
that
T
E( S o° sg(t)dt): 2d°E < E
.ST S
' o

(5) The receiver is not to use any of its previous decisions.
The four possible combinations of signals formed from *s(t)# crsT(t)
constitute the equally probeble -combinations -of recelved signals plus

noise. The likelihood function /\ is then given as

Ay - Zlaeetreleoog)/n)] « lbenm(re(arony)/io)]
, E%%ieXP(=Vo(s~GST)/q0)] + EfAzexp(-ve (stosy)/n, )] |
(5.1.1)
where
T

Al_*.exp miﬁ%; f;*%ﬂt)~~ OST(t{lzdt

-0

1 ¥ | 2
by = e - g Slate) + ang()] ot

T
mf=§-ﬂwﬂw&
0

5| - S:o p(o)*]as
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To perform ‘the indicated expectations of (5.1.1) use of the following
7

.relation’ will be made _

00

2 1 2_ X7 -0’-
S’o exp - (x0°+2y0 +z)do = ~—=— exp(¥ = ) e (==-L)ao
x

) | =
A N

x>0

(5.1.2)

To relate (5.1.2) to the Gaussian nature of the problem, define the in-

tegrated Gaussian distribution function @ .as

©w- [ [ e oot

(5.1.3)

Letting o = ???‘/\’ 2, (5.1.2) vecomes

J\Gex_p-(xd +2y0+z)dd== T@(\}—-\y)expz—-——;x>0

(5.1.4)

~As an illustrative exampley, we compute

B Ay exp(ve(s - oay)/n,)

0 hiH
s . . p=~vos E =2ves
=’L2'S°' exp "’{(/ZNIT* 1‘2)"2' ()0 + = )zdo
da o o 2d

0 0

where B , E, and p.are as defined in Chapter III. Referring to (5.1.4),
s’ e, . ,
it follows that

2 .
CE, +N | |
Sm o . | P~ ves Es . 2Vos

A =T2n
0 (o)

and from (5.1.4)
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E \fl exlp(Vo(s - GST)/l\IO)}

-Vos') } ’—2 | (E a4 S)
\ra? ‘{ NOT}e’“P( B o)

where o = E(¢”

’E =E(U)= ‘@‘d
A
- B
-2 T8
2 g T
Ve Fotd
‘,O

Mathematically we may redefine '32;:- 26.2 so that 'ES’ = E'S'; that is to say

S
{*32]-_: -ﬁ’f-
' :ST

We label ['EZJ_ as "3'2,, Letting, as before,

Sy = I
N/ T 2N
‘Then;

[z}

A =1+0 ,(N)

Computing the expéctations indicated in (5.1.1) produces

(a) | E ‘_Al exp(ve(s. = csT)/l\Io)l

<p ‘“’ST> Fricll e S Yes
Vzﬂ =7 /- ®* %
0 27 O : . 0.

(5.1.6)
®) 3 e - (s - UST)/NJ]
52 (e +vesy)| \s Sy _ ves
R e A =) - =—
VET? @ )\2 No xpi N 1\IO




(e) E{Az exp(ve(s + GST)/NO)J

(5.1.6)
, (cont.)
(@) 2[4y o - (v (s - oo/, ] |
: =2 =2 (-vésy - p) -2 [vos_+p\ o
=\[§§°_.., g R ):.expo ( T _('.S.),-.Y."_s.
2)2 22 5, 2\Z. N, N N,

After dividing common 'f'a.ctrors, (Solil) may be expressed as

ves - ves
- « ves @[W(b W T)] * @\: o § - T)l
x| 2 - 290(8) _ 2
Nb v ¥ N s Vs, ' | s vosy,
@\ g+ 5ol @ Fog+ 1\10)
(5.1.7)
-where
.
7 2)\2
p,=b(~§a) ,al<b.<+l

We note the presence in (5 1.7 ) of only the even part of @ (@ ) 1f

the numerator and denomlnator are multiplied by l/ 2. The even pa.rt .of

is given by : .
- 3 2 Y 2
-1 ew s @t (e /2 fal (o mer/ai
: eu u

"0, 00 ‘00 2 00
;Lg &V Z/2 v 1 .ve“’” /2 dv . 1 v /2dr _%uSe-v /2 dv_
’P = VR 2 o

u - u



89
which reduces to

| ful S - o |
. (u) = ul S R Nt | (5.1.8)

Ta.king the ‘logarithm of (5.1.7) results in

: 2
in A(v) = —-: vos . No ( ) vos,

: vos,, :
: ~ ST S
CN T oty
. : 0

vos
T

- 1In e‘\ry' T + () ] | | (5:1.9)

Then lnjA&(v) given by (5.1.9) is compared to the decision level

'» ln%E: - (5.1.10)

‘Taken together, (5.1.9) and (5.1.10) define -the optimum Bayes' receiver
‘for ‘this. channel model. The‘eseential date operations are -again correla-

-tion of the input-data v(t) With-s(t):and-sT(t)-followedfby;the indicated

in E_fhnc‘bions. The block diagram--»_of“such; 8 'rece‘iver"‘is ‘given in
Figure~22, Needless-to say that the possibility of a more~tractable form
=of.thewstatistic“is”quite“remote7and9-except:for the limiting case, the
performance of this receiver is .quite unpredictable. So=once again we
will utilize the phllosophy of prewestablishing 8 receiver class w1thin§
Which'a-bestereceiver is sought. In particular, since the pertinent

‘operation is:correlation, we -choose to examine- the.class of ‘correlation

receivers.
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Let (K,h(t)) be a given correlation receiver. That is to say, the

number V is formed as

T
V= \ h(t)v(t)at
e

‘and ‘compared to the decision level K,

vV zK say 2

’ (5.2.2)
V<K | say 1

Then if Uvis:aSSumed'known,,the,conditional probability of correct

‘reception, PC/U_for;the bipolar symmetric case 1s easlily derived, as in

the previous chapters, . to be

2 | 2
V4-h0(s1-csT)) (V + he(s - UST)) av

K
(
P o= exp - + exp - ,
6/d lr_m BN E 2N E Wr——\z N E,

~ (Vw&1(3wos))2 (V#lw(s+cs))2
¢ i A ') __av
T :§ - 2Ny e | zNogh [z E,
(5.2.3)
‘where T
no(s + oag) = § n(e) [s(6) + omy(e)|as
T

E, = g hz(t)d:b
0

It then follows from the definition of conditional probability that the

average rate of ‘correct reception chis found from
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- 60

Py =B PC/@ = S pcv(o‘)v P‘C/o" du (5.2.4)
0 o

Operating on (5.2.3) with E and interchanging E with the indicated in-

tegrals of (5.2.3) produces integrands of the form

s - L2222 )

(5.2.5)

The implied ‘expectation integrals of (5.2.5) can be evaluated by means

of relation (S.1.4). Namely,

Ny
EZ \' 2" (% hes ) . 2
25 . = Eh (V + hos)| exp o —2hos
2n ',‘o : A ‘ an-th ,
where
2 _ ?2(hasm;,§2
| 1 =1+ mﬁé‘m
e}

P, is then given as the sum of four integrals -of the form

C
01 10 T o
Sﬁo o j; @ ézﬁz NOE;h (v £

which we normalize with the substitution

h@s

\anmh
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(5.2.7) .1s.then reduced to

K % hes

o L & I (the T)Wle" g ‘(50-207) '
. ek LA

(5.2.8)

‘Once again 'only the even part .of @,., @'e" is involved in determining

_-P.C, .80 tﬁa’s Pc'ﬁiay be expressed as

(5.2.9)

- S .(hos,I‘,)w e 4% aw

2o




9k

where
o = E(dz)
T
‘hef = yh(t)f(t)dt
0
sEhﬂ=.h@h
) Py

O

Now if the receiver (XK,h(t)) is scaled by M to (AK,2Ah(t)), examination

of (5.2.9) .shows that

Ahes b 12
Ty 2
EN M By
ﬂﬁg(Ah@s")z ,7E£(h@s 32
RN N oo 2
1-(-“_,(' "“‘-—=l+"="’"§"ﬁ”‘ia““"°“n
‘ ZNOAZEh 0 h ’

M Ahes K % hes

\Pras, \nns,

and P, is invariant to the gain of the receiver. Thus P, satisfies the

c C

‘agsumptiong of section 2;1,.and'since Pc.isudetermined.by the two linear

~functionals hes and hesg,, we may conclude that the optimum h(t) has the

7
form

h(t) = es(t) +-CTST(t)

Substituting this h{t) into (5.2.9) and assuming we 'scale G° such that

EsTkE Es’ Ec.ls given by
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: N 2
+1J‘ (Cp '+'C’I'Es)w:(eW/2 dw
K N
2 (5.2.10)
”'NéEh
‘with
?2'= E(dZ)
T
2 2. | | ,
'Eh = (c +.cT)ES + ZGQTQ; p = S\S(t)sT(t)dt
0.

=

s . 2
12 = 14l (op + gE)

2N _E, Crf

We may now use the system of equations (2.295) to obtain optimal
valueS‘of'K*,'c* and.c; such that Eh,= E is fixed and in particular E
is that value for Which-c* =1 (assuming,c*vﬁ 0). Now for any particu-
lar achieved value 9 of o, the results of Chapter III state that'K*

% '
for co«is equal to zero-and this value of K 1is independent of Uo“

*
Thus we would expect ¥ to be zero for the case-at hand. Now,

BP

\(—,\F 6{@(1{ + cE  +eg RQ(K = cE_ - CTD)

(5 2.11)

and.éigl(u) is the even funetion
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(ﬁfi (u),=‘(:)e‘ ol  -(¢9‘+L9TEs)P;‘ oxp - @2

E ) |
: : - 2
on \g, 2N B,

Since (sz"is,an even ﬁunction} for"énylfixed'valuerof,é and'gT?,PK =0
is solved for K = K* ='6vindependgntlyrof.the;c, cT’choice‘and S0 B; =_O
is solved for‘K* = 0, Furthermore, as shown in Appendix C,~Kf =10'is,the
unigque solution, in thevbifolar symmetric case, to,PK = Qgfor ahy
’acceptable,frobability density function pc(c).

Setting X = 0 in (5.2.10) and letting w' = =w in the second inte-

‘gral of (5.2.10) produces for PC.(noting (:)e(-u)‘# (:)é(u))'

The necessary equations for meximizing (5.2.12) subject to holding

E, = E fixed are then obtained from (2.2.5) as
‘ % * '% '
f(a)‘,Pc + 21(E3¢ + ch) =0
L3 * *
{b) P +20(pc +Ec.) =0 : (5.2.13)
QT s T . B

‘,(c)‘,(c2 +»c§)ES + 2ccp = E

‘where O is the Lagrange multiplier. It isceasily>verifiedathat.(5.2.13)

;can be put into. the form

*

(a) 2" .

(¢]

- (P - P, )/(E -« o7) |
. T ° (5.2.14)
(b) ey =~ (BP .- oP")/(E- = p°) ,

]
*k

0



(<) (c’:2 + ..c?j)Es + ZcQTp = E gS._‘Z.'.lll-)
. . copt.)

since by Schwartz's J;,e‘mma.-E: '—-=::p~.2 > 0.

We next evaluate Bé, P, the partial derivatlves of P

e o it By

“held fixed. Put

ll[

ep + CTEs =-he Sq

il

i

©
1]

Ro I S
S

P = hes o (5.2.15)

'=-=2

o=l ZN iz a

¢/'q1\TE

Py = (‘n.z)gl/z 5 @

:ee"wz/ 2

aw

Let & represent either ¢ or Cm, so.that

aP ¥ ‘(-;2
TN R & Vg R

20°N _E
I NN \O o

SCow
\h AL
g .

2,2
| o~¢ /2n N_E

(542.16)
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-Where
@l -2 0 (u)\
u=a,

Yoo

Ve
wc_T = By
o =E
c S

i
¢CT = p

*
Using (5.2.15), 20c may be computed from (5.2.14a) as

‘{—2‘ .
K1 _ o oy, 2., 2
2006 = - @e ~5 T E exp(~9°/2n NdE) . (5.2.17)
N E t2n o c=c
n N _ . .
Cr=Cp

Now from the definition Oﬁi(:)e’ (5.1.8), it follows that <:)e isa
strictly positive function, so that for any value of c, cT‘and'in parti-

% *
cular ¢ , ¢ the right hand side of (5.2.17) is less than zero.

T

Consequently, neither & nor ¢ ‘are zero and we may set ¢ -equal to . one.,

* *
For e =1, ¢

.
Note that E is now considered a function of c¢.. T

m may be

-solved from

(5.2.18)

Once :again using (5.2.15) it is easily established that
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EF, - pE,

e N Ay L . A—— )
. A K AN 2 et 2
E - p»z 21121\1 E C :2,(q2)2(1joE)3/ <€

2 ot antn
o | .

' n N E
2z _
@ 21\I E . W AW (5.2.19)

‘The integral appearing in (5.2.19) mey be integrated by parts, producing

.._‘l’_ 62 /onN
N = :EXP(“[’ /2"] NOE)

Zaw  (5.2.20)

. From the definition of ~®§é(u)'

{ui - R o
Ll S wv iz av L€ /2 . : (5.1.:8)

Ver e

we obtain

b ~ (5.2.21)
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E‘!S:ECT,s 'ch . EZ\V i ’524)11; @ V___‘ N, - 2/ 2N
S By == exp( ¢%/2n"N_E)

5| e(-e%/nn 2)

C2
2NN E

' ‘Whence, (5.2.18) together with (5.2.15), (5.1.8), (5.2.21), and (5.2.22)
serve*to>establish_thefequation frqmtwhich:c; is solved, Furthermore
this equation involves only the well known Geussian density and distri-
bution functions. | |

Consider (5.2.18).in conjunction with (5.2.22). Suppose we change
the sign of p (i.e., make sT(t) = w-:sf(t))aA Letting p' = - p and

'CTY ==~ cp the following is easily verifiec

il

(1) o' =E_  +cgp' =E_ +ocpp =0

T

(11) V' = p' tegE = =(p + el ) == ¥
(1i1) qz) Ejremain‘unchénged
(iv) Py is even, é is odd on ¥
,Theng with regard to (5.2022);féplacing ¢”and'wbwithj¢' and V' is

equivalent to multiplying (5.2.22) by minus one. Consequently it follows

* * :
-that‘cT'= w-cTwsolves (5.2.18) for p" = = p. So, as in Chapter III,
[cT. | is determined by |pl and Py is ultimately a function of oz, E, N

and \p\. Numerical results are not computed.as-the;necessary'solution
techniques~and chputer:time'required'do not'seem justified*er~the-pur-

~poses of this investigation.
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' :'"VInJSection;5¢l"the:idealnBayes{'receiver'is’deveioééd,,(5;1.9)5
.formtheﬂbipolarwsymmetricgsigna;ing:schemeawith;randémlyyfading
(Reyleigh) but othervise specified intersymbol interference. A glance
at Figure 21 shows.the .complexity involved in‘realizing;this‘receiver.
MOreover,;any’attempt'at‘camputiﬁg¢therperforménceaof this receiver
should prove difficult in the extreme.

Section 5.2 examines the'perfOrﬁancewof.the correlation receivers
'in:thisvenyironmentt 'The‘foxmalldevelopment‘is’qpite-similar~to_that
of Chapter III. However, we may not make the transition to the unipolar
;agd;orthogonal.signaling situations with 'such dispatch as:the-precise
“value -of ﬁ.iSeneedgd'tofutilize:thentechniquefused'invChapter ITI. We
‘sge-though that for bipolar symmetric signaling the optimal decision
“level K%'is“zgro?for'any,type~of stationaryg.statistically.independent
fading. anysically‘spéaking,Wevwbuidtexpectﬁthis result to .carry over
to - the orthogonal schemeaalso;and'indeed;such is the caseas is showp
in Appendix'iD;- For-the case of Rayleigh fading, the \valﬁe' of c; in-
 v0lves the solution -of an equation, (5.2.18), of an intrinsically
?Gauséian-naturé. S0 in a sense,‘we.haxe,tradedfan enormously diffi=
wcult numerical analysis problem associated with the:Bayes"receiver,
‘which'iS'éf questionablezpractical realizability, for a much more
:tractablexngmerical,problem«associated with the correlation ?eceiVEr,

whose fabrication has already been achieved.
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CHAPTER VI
SWITCHED MODE RECEIVER, FADING CHANNEL

Ina fashion:aﬁalogous;to.Chapter IV, we will examine the:éhannel
model of Chapter V, where the receiver is desiéneddassuming,its past
‘decision was correct with probability one. In actuality we have two
‘receivers operating simultaneouSIygdnjthe“incoming_data;_the-choice'
of which~receiver-decision.is'tO‘be-accepted.iS“predetermined'byﬁthe
-immediately preceding decision (ref. Figure T, Chapter IV). Once the
- individual reCeiversvhaveabeen decided on and their prdbability law
(conditioned as in Chapter IV) established, the overall system per-

formance is solved‘algebraicallyuin-exactlyvthe'manner‘Of‘Chapter'IV.

6.1 Switched Mode Bayes' Receiver

.The Bayeg! recelver is next: derived wherein the assumption (hence
condltlonlng) is made that “the . 1mmed1ately precedlng de0131on ‘was
:absolutely correct. With the" assumptlons of Chapter V, exceptlng (5),
and. the notatlon of ‘Chapters IV and. V we need to design two Bayes'

receivers, correspondlng,to D equal,tofone:and»two.

Case (1) pl-1

For Dw1v= 1, the receiver presumes that it must.distinguish between
s(t),a‘csT(t)‘and»=s(t):é QST(t). Consequently, the likelihoed function

J%u(V/D@l = 1) is given by
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A(Y/D"’l _ 1,) . E[Al exp(ve(s = UST)/N;i_

_ (6.1.1)
'EEAZ exp(eVo(sﬁ-osT)/Né]

where- the notation of (6.1.1) is explained in (5.1.1).

Use of (5.1.6a and d) evaluates (6.1.1) as

- @red -5 e
Nt =) - { ol — exp (2 B2 - 2p(§) )
H? ) + =5 S
: o (6.1.2)

where the notation is that of (5.1.7).

Case (2)
‘Here the decision is between s(t) '+ oS, (t),andn~3(t) + 08 (t)a In

exactly the same manner as Case (1) and with reference to (5.1.6b and ¢),

J/\(V/D ;s»obtainedlas
BT o®- )
(/o ) - K N v s "(’ZFS - 2n() NOT)
G od 72|
e (6.1.3)

Thus, (6.1.2) and (6.1.3) demonstrate that the utilization of a switched
mode in a sense separates the H ‘s of (5.1.7). From an analyticél
point of view we are in no better position than that of (5.1.9) for we
have merely traded the even part of H for H itself. Consequently,

we end the discussion of the switched mode Bayes' receiver.

6.2 Switched Mode Correlation Receiver

In a manner analogous to 6.1 two optimal correlafion receiveré,

conditioned by DL are derived.
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Case (1) o1

The receiver assumes its decision is between s(t) - UsT(t),and
-s(t) = os (t). Letting (K,h(t)) be the correlation receiver for b’%::l,
‘we have from the development (5.2.1) through (5 2. 8) that

P, (h K/D =P (l) is- glven by

Ry I
(K+hes) AN _E,

p (1) = |2 § O e R
¢ 2712 T NN By 2t

=00

(621)

Strictly speaking, we should subscript h(t) and K as hy (t) and Kl
to separate them from .the receiver corresponding;to,D = 2. As we will
deal withADpl = 2 in a summary menner,. there will be no confusion if the
subscripts-are'deleted.

The: reader's attention is drawn to the similarity of (6.2.1) to
‘(50298), The difference between the two lies in omitting the (i)#s of
(592°8)‘which have minus signs in their -argument. Since the case
D~ = 2 corresponds to using -s (t),P (2).is of fhe’exact’form;as,PC(l),
except that minus signs need be'inserted in the (:) arguments. There
is only a small difference-"formaliy" in the neceésary,conditions on
(K*y c*y c*)‘fromvthose of 5.2. K" cannot be solved independently of
(c > @ ), a difference which adds a great deal of computational diffi-

cultyo The condition
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T W aa s 1)
~t 1] = L) os S R R .
WWeo BoEph T ReSI ek % o2
5 exp({K +hosl /2N E)

B _exp(-(_K - h‘oslz‘:/zl\l E) (6.2.2)
) thZ NOE _ 14 /#Ng

4

:As . has :'no partlcular odd or even propertles s obtalmng K directly

from”h 41's not obv-xous,, Note the followlng effecto If s (t) is replaced

by s>-(vt) and K by minus K in (6 2.1); ‘and then the variable of 1nte-

’:(fgration set to -W, (6 2, l) remains unchangedo From this one may conclude

that if K ‘solves (6:2.2) for s, (t), then -K solves 63 2 2) for*-s (t)

Now changlng the varlable of 1ntegrat10n to W in the second 1nte-

gral, (6 2.1) sets P (1) equal to

¢ = hos = K
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The great simllarlty of (6.2. 3) to (5 2.5) is seenelf (:) is sub-

stituted for (:) and ¢ and ¢ are. accounted for. * Thus,’the“develop-

‘ment for demonstratlng~that'c £0 (say o l) and obtaining o follows

T
directly (502 16), through (5 5. 22) In partlcular, the follow1ng are

‘eas1ly derived

20C =e ———— St (2ol
e =m @ 2 N.B exp( ¢+/?“ N,E)

@ 2 e ) o
Al __equ,anE

N R
80 that a¢ <0,  Consequently,

o= (B - eEE - (62)

Now

o
Z(ESPCT - ch)/(Es ~ 0’

can be read ‘directly from (5o2.22) in the following manner

(1) For P

C substltute P, (l)

Co(ai) Replace the te _t

{¢+ @'(o..%)e ’

(1ii) Simf larly, replace { @_‘g( vid ¢)e"¢/” * g by o

2 - 2 :.oo
{@3((°°°¢+)e +/°” + @-’(,,.Qﬂ)‘e ¢~/ \'}-.;wﬁ;ii '
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6/ues LIV ¢ /oue

;v) Change 55‘ i.to % S + :E %

00 =00

From the discussion following (5.2.22) .and the preceding remarks

* ) i
concerning the sign of K, it follows that‘if.sT(t)fis replaced by
*

T by =c

* : * , *
-ﬂ'sT.(‘t) then K 1is replaced by -K and ¢ -

Case (2) Tt =2

As ‘already pointed out, gt -2 is -equivalent to the case of D'-l='l

*

« :
if‘sf(t) is replaced_by-=sT(t) so that K and c_ need only be negated.

T
The resulting receiver is depicted in Figure‘zg;\

6.3 Sumery
We see in the immediately preceding ‘two sections the great analyti-

cal similarity to Chapter V. (:)'iS'substituted for (j)evandgthe éign
of sT(t)‘comeS‘into»same_play. The -actual perfoﬁmance-ofxthe receiver
‘80 designedlrequires the probability law PC(l):(which will be of the
same ' form :as PC(Z),because,ﬁeffectively},only’sT(t)’has been negated).
‘With this in hand,.one simply proceeds as in Chapter IV, enumerating
‘the events leading to a succeséful.decision:and'perfOrminggthe neces~

‘gary algebra.
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CHAPTER VII

CONCLUSTIONS

" T.1 System C.ompa.rison
In thié section we compare the performance of tlie receivers of

.Chapters IIT and IV. That is to say, the memoryless correlation receiv-
ers of ‘optimum "type_ (h* = g +;¢;ST, K= K*) and standard (1° = &, K = K°)
type and the dusl decision level,. switch -controlled':correla-tor

(h=s ;Kl’K.‘Z) s vhere the immediately preceding receiver ‘output activates
the switeh to select the next:.decision level, Kl.:or K,Z’ -to be used. |
Figures 24, 25 and 26 plot the error performance; - Py, ‘of these receivers
for the extreme case of b = 0.7, & = 0.1,.0.25 and 0.5; as functions of
“the re'ceifred (%) ratio. Also plotted on these figures is the P, curve
for b = 0. In all cases for 'PE <'110;l, the switched mode correlator
provides the best. performance. In fact; in terms of (%) » the switched
‘mode is negligibly different from the b = O.curve. Even for as small

an a as 0.1 the s,wi‘bched mode correlator represents a (*1%) gain of 1.5
db Over the optimal memoryless c;@rrélator. For & = 0.25; the switched
mode correlator represents a gain of approximately. 2. db :over the optimal
_,,c.o.rrelatorv":and more than 3 ,db-.over the standard correlstor. For a = 0.5,
the‘switchedgmgde;eorrelater represents an improyvement of 3 db and 6 :db,
respectively.
The switched mode correlator has another -adventege’ ovef “the memory-

‘less correlators in its ease of construction and that existing systems
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nmay be easily modified to a éwitched.mode'operafion. The prescription
for implementing this modificatlon is to take the usual. correlator,
\f h(t)dt s or "mateched filter", and modify it for two decision levels.
Thus- the sw1tched.mode eorrelator is much the preferred receiver.
However; the pulse interference‘must-be serial in time so that memory
'may;bezemployed. IT on the other hand the pulse interference is-causéd
by a parallelﬁccmmunication channel, -e.g., cross talk -on multichannel
”carrier'equipmént,-thennmemory'm@y not ‘be -employed and the optimum
mamoryless»corrélator should:be employed if a énd.b are sufficiently

large to Justify the cost -of improving the error performsnce.

T.2 vAng;ytical,AQproach

At the onset of this investigation a receiver -class (correlation)
was postulated and the probability law over this class was maximized.
, This represents-aAfunctional.approach to the problem -of reception,'
Involyed in this method was extremizing a function of functionals
(linear functionals). In this cqntext,‘Andreewgsin 8 recent paper,
rmathematically discusses the necessary and sufficient conditions for
extremizing a function of functionals subject to ,s:‘L_d.é-condi'l:‘:i.._ons.° Both
the functionals and side conditions are fairly general in that they need
not be linear nor holonomic respectively. The orientation in his paper
1is towards automatic control in that the motivation is to extremize a
"performence index" associated with & control problem. This perform-
ance index is mathematically described as a function .of functionals. In
‘a-communications cqntext,\éur performance index is the probability 1aw'

associated with the receiver -classs
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On the other hand, with the development of Chapters II and III, a
geometric approach has emerged which is equivalent to the functional
method. There is a received signal space in which one seeks-the'begt
straight line decision curve. The linear decision curve is equivalent
to the correlation receiver class. As has been '_oointed.:o*t,‘z,w!:?"3’)+ “the
Bayes' receiver represents a-decision curve (in two dimensions; in
general this is referred to as a decision surface) in the received sig-
nal space. The difficuity in ‘ocbtaining the probebility law associated
wifh the Bayeg' receiver is frecisely the difficulty in relating defin-

itively, the liklihood :equation
/ X(V? =K K = decision level

to & decision curve in the received signal space. Thus the decision
line represents a zero order “approximation” to an unknown curve.

This idea sugéests successively approximating the Bayes*'decision
‘curve with perhaps polynomial curves. It would thus be of theoretical
interest to . establish a few theorems of mathematical statistics regard-
ing the convergence of a seguence of decision curves-to an optimum
curve., Furthermore, given a particular decision curve, what is its
physical or functional representation infgeneral? €.8., & linear
decision line impliés-a éorrelation receiver,

In Chapters V and VI the received signal points in the absence
of noise are not fixed. In general, if’thé noiseless signal points
fall in & region .of the plahe with & given probability -distribution:
conditipned by the transmission.of one of two possible information
states, the conditional probsbility surface, given the transmitted -
state, is obtained by averaging the individual probability surfaces

(Gaussian if the noise is Gaussian) with respect to the signal point
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‘probability distribution associated with the given transmitted state.
Consequently, the geometric interpretation associated with Chapters III
ahdvIV carrles -over to Chapters V. and VI, In particular, . the dedision
curves. are line_are However, . the probability surface associated with
‘thOSe»chapters‘is not ‘obvious.

- The philosophy .contained in these two approaches may be. summerized
briefly. If the functional approach is taken, one chooses a receiver
class for which there is associated a well known probability'lﬁw, His
choice of class:iS'arbitrary;.perhapé'intuitive’or this class may repre=
‘sent the‘pertinenﬁ physical operations involved in the Bayes' receiver.
Applying extremal calculus, the*exiremizing'réceiver in the prechosen
‘class is found. On the other hand, if the geometric approach is taken,
.one mustAfirst.construet'therappropriate'probability surfacese Given
the necessary a priorl probability distribution for noise and signals,
this construction is theoretically straightforward, if pracfically
difficult. - By consideration of ﬁhe‘surface, a cholce of decision curve
-is made. DPerhaps this choice is arrived at by volumetric extremization
fﬁith respect t0 a parsmetric family-of decision curves. For example,
.extremize‘with respect to the two parameter family of decision curves
¥y =ax + b. Having obtained & decision curve there yet remains the

‘problem of relating said ‘curve to a physical device.

T-3 Suggestions for Further Investigation

It ‘should be :of some interest to initiate‘a:detailed“eomputer
study to obtain the necessary solutions of the -equations of Chépters V
fand»VIs vThejresults«of this'studyfcould,then’be-cgmpared’in?a:manner

similar to that performed for Chapters ITI and IV. It Wouldlthen'be
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' possible to see if, and to what extent, simple memory utilization im-
proves the correlation receiver in the presence of fadingfiﬁterfereﬁce
pulses. Obviously, a further investigation should be made- for the case
where the fading is present on both the desired and interference signal
pulses. Also, of importance is the extension of the results obtained
4o the case of M-ary signal alphabets. The approach to these problems
'maytbe‘through~either or both the functional and geometric viewpoints.
Of‘particular'intereSt‘Would'be*an‘investigation“of diversity
‘schemes. ‘Consider M‘ghannels for which M correlation receivers
(n j(thj‘).j = 1,000,M are to be selected. For each channel, in the’
‘absence :of noise, . there is associated a set’of’NJ:of'linearlyiiﬁdepéndn
51 =1,000,N3 3 = 1,00.,M, which may be received. The

J

M receiver outputs are diversity combined with which there is an associ-

‘ent 51gnals,»sji
~ated probability law PC'; The problem is then to choose the M optimal

L, % * R
correlators (hj(t),Kj)g J =1,000,M. The side conditions imposed for
c.will be -of paramount importancea'“For'example,:thé}ef

‘comes o mind the two possibilities

-extremizing P

(1) 'Ehj_= Ejb 5= 1y600,M mnd Ei:EzﬁeO,:EM-is*pr5scribeao”f

(2) Z OE =E,
=1 J

where the ratios of O, are fixed or the aéfthemselvesrmay

J
be further adjusted to maxdimize Rdo
Previous results on diversity combination should be obtainable from the
above model snd would serve as a.check on this approach.

. In the realm of nonlinear -extensions to this dissertation would be

‘an optimization :of (say) the bipolar symmetric case of Chapter III with
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respect to the family of decision curves y = ax + bx3. Having found the

“best ﬁcubié" decision curve it is then necesséry to obtain its physical
realization.

Analogous'té,the’receiverAprobléms (baéébaﬁd)»so far discussed is
'the‘&gtectionwof interfering;r. f. signel pulses. Assuming the phases
of different r. f. signéls'to-be independentfand*uniformly distributed;
.the pertinent réceiver'claSS’would‘seem to Be the set of linear -envelope
detectors, i.e., a passband filter followéd'by’an'ideal.linéar~envelope
detector and an ‘associated ‘decision level. The prdbability’law,»Ec
‘associated with thisﬁclgss;is the distribution function generated by the
Modified Rayleigh density function. The'problem ié then to maximiz‘e-PC
fover*the class-qffenvelqpe‘detectors.

In general, .it should be possible to:apply the approach outlined
in Chapter I towanstituation'for which Bayes' criterion is applicable.
In'fact,,a'reasoﬁable:choicefof receiver~¢laSS‘maytbe made by deducing |
‘what pertinent physical operation is involved 'in the Likelihood. Ratio
‘&nd?using:that“operation~to"establishathe\receivér-class~over'which P_C
is méximized. Of course, for the receiver -class chosen, .the designer

must functionally have knowledge of'Ece
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APPENDIX A
NUMERTICAL METHOD OF SOLVING EQUATION (3.L.22)

Define G(x) as

S a[l - 'bz,]' 2
Qﬁ)( ‘.)(x - 1)
o(x) = 1nx + bV () + Lxs+.2oVe » ;
.2 1--a 1 +a~20Va
x +2 x +
1+a+2\a 1+a+20\a
(A1)

where, O =a<1
0=2b <1
Then (3.4.22) requires that real value of x, x = u, so that G(u) = O.

As shown in Appendix B, u is unique and positive. It is also showm in

Appendix B that

1l =& 1l +a -~ :Zb“\[;
x + _

. (42)
1+a+2pVa 1+a+20\a

X2 + 2

‘has no real roots, so that G(x) - 1n(x) is bounded. Then for suffi-
clently small x, G(x) < 0; since G(1) > 0, u must lie between zero and
ONSe

The following method of halving was used te approximate u. ©Set

XO: 0

Take
=t by - ox gl /2 1 6(x) <O

Teg T X = 1% = Beql /2 1F 6lx) > 05 k= 1,2,
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In the unlikely event that G(xk) = 0, we have found u exactly. Assume
that this does not occur. We then choose to stop the reiteration proc-

ess when

|2 = 2| <207

and u is taken to be the last computed X value. Now,

1

I = el = ey - /2

so that
E}Ck - "KK_]_E = \Xl - Xol/zkﬂl = Zl-k, k = 1,2,9000‘5

Consequently, for k = 20

=1 6

| %20 = 19| = 2 7 < 0"

and the process is terminated.

Suppose 0 < u < 2717, then G(x,.) > 0 for k = 1,25.000.519, 80 that

_ _ =20 ; -6 \ PL :
Xoq = 2 and ?XBO - u! =10 7. Suppose 2 7 <u <1, then for some
k = klg G‘(}Ck) > O fOI‘ k = l”aosce,kl"‘.].;and G(}(kl) <‘Oc ThU.S, the Xk
-step to the left by halves until k = kl°
1=k_-
L
=2
g
=k
1
=2
Xk.l

Since G(xkl)’<‘o, u must lie between xkl,and Xkl-l and
»klul
; = + 2
X1<:l=-xn1 Xk:l
The xk_then step to the right by halves until k = kZ;’at which point

EN >, so that G(xk ) > 0 and the x, proceed to move left by halves;
2 z



1z1

snd so on wntil k = 20. Consgequentlyy

'l X = T ls 1070

cand sines

e

= 1 + I

e

=1

K
o

the error inrc% iz at most one part in one million.
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APPENDIX B
SUFFICIENCY OF THE OPTIMAL CORRELATION RECEIVER OF SECTION 3.L

*
B.1 K Uniqueness

*
Rather than show that K is the unique solution to equation (3.k4.Ta)
PK = O - (3-9&'073.)

we will show that for & certain set of choices of ¢ andﬁcT

A .
l pe—
K=K-= E—ho(s + ST), h(t)-f es(t) + cTsT(t)

uniquely maximizes Pc.over K, for ¢ and ¢ fixed. In particular, if

T
h(t) is of the form
h(t) = es(t) + cTsT(t) (B.1.1)
and has the property that
he(s * sT) >0 (B.1.2)

Then PC‘considered‘as a function of K, with c and ¢

absolutely for the value

T=fixed, is maximized

« .
K=K=

ofH-

he(s + ST) (B.1.3)

.This is demonstrated easily by writing

A,

K = K + € (Boloh‘)

and substituting this X into equation (3.4.3). With this substitution,
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‘e+ho(s+sy) € +ho(s~sr)
zdgbvh 2 _ @ Nth 2, ..
A ; -1y - .
B(K+e) =fd1+ sz w2 du

e-;hO(s+s,'I;) V2x | -\I_éj?

GthO(SaIST)

. =u /2 : N . . .
Since e /, is -even ‘and monotone decreasing for positive u and since

* - ‘
he(s sT) >0

the desired result follows. Now if h is of the form

n(t) = s(t) + egan(t);  |eg| <1, | (B.1.6)

then by the discussion‘in"section 3.7 -h has property (Byl.z) and

maximizes P, for fixed cj, where ¢ =1 and [cT\ < 1. Thus, when

C
£ * *
p = ¢ K=K and K is unique. Physically spesking, (B.1.2) and

(B,l.S), assure errorless. performance if the noise were todisappear.

]

It ‘ought to be emphasized,,fhat theée results are-valid'only for
symietric (p = 1/2) transmission of information. In essence, the above
argument is directly tied to the fact that (3.L4.7a) can'be-Sqlved“indew
pendently of (B,L,Tb and ‘¢). If we have a noﬁssymmetrié channei, such

is not the case.

*
B.2 ¢, Uniqueness

I
If we let
(1 +.c;)/(1 = c;) = U3 »c; =(u-1)/(u+1) (B.2.1)

then from (3.4.16) u must be that real muber which satisfies



uep/ZNb = exp = 7 _Tﬁ % y (anﬂz)

Now the right hand side of (B.2.2) is positive for all -» < u < o, S0
the solution, u, of (B.2.2) must certainly be greater than zero. Further-
more, it is shown below that ‘the function g(u),

- 2,
(gsEsTa ) N

T (u” - 1)
o] _S+ST .
g(u) - e (5.2.3)
] 8=5
u2 + 2 T u + I
s+sT s+sT

is monotone increasing for u > 0. Consequently, for u > O, the right
hand side of (B.2.2) is monotone decreasing on u; whereas the left hand
side is monotone increasing. Since the range of the right hand side of
(B.2.2) intersects that of the left hand side, for u > 0, we are guaran-
teed of a unique, positive u solution to (B.2.2)., Taking the log of
(B.2.2) produces (3.4.18).

Differentiating g, (B.2.3), produces

Es _ ES E5 + ES ES - ES
T 2 T T
N E g (u) u + 2 u +
o stsy, s*sy stsp s+sq
(LE 2 - T oE 7 (B.2.4)
sisn P 2 B S 5=Sq
T u o+ 2 i Ut
s+s s+s
T T

and since
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E >E , E.E .>p‘2
s . s ST

g'(u) >0, u>0

hence g is monotone ihcreasing on .(O, »), Note that

or
\2 . _ 2 .2
T) <E s, Bevs, T (E,s * Es') - bo

(B, - E
s m STSp m

Equivalently,

.¢-~2ESES < 2E E, = ll-pz
S ® Sp
whence
ol <EBE
8 S

which is guaranteed'by Schwar -~ inequality.

B.3 Sufficiency

¥
It was shown in section 3.4 that e # O and by the nature of PC"
L'

e ‘could be set to one. Under B.l we saw that K is an-absolute maximum

with e =1and |ep| <1. Then it follows that



126

) A
maX~PC(K,c,¢T) = max PC(K’l’cT)
K,c,cT c=1

leg| <2

N _
Now PC(K,l,cT) is a function of one variable, c

* *
Cp = Cps K =K 1s a local maximum if

2 A
d PC'(K,l,cT)

<0

where it must be remembered that Eh is now a function of ¢

: 2
By = Eg *+ Zocg * g EST

 Denote by the following
E3 *
h (t) =s(t) + cn sT(t)

E =heh " =FE + 200 + (c)2E
v =heh = S PCn Cm s

" (+)

'hi>(s+sT)
h(=) =ho (s-5q)

2
(u) = /Z/uQEE?

Vi(+) = ¥ (+)/AN E)

Vi) = v/ E)

‘It can then be shown thsat

T

Consequently ¢ = 1,

(B.3.1)

(B.3.2)

(B.3.3)
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: 2
2
2, (& EE =p
| = =g () W) + (o) W)
de, « LE (l\TOE ) ‘ ‘ ‘
] ‘cT=cT ”

"Eﬂ E T.u- pz]

+-¥-——-——-—7—E(NE) {v()+w(+)7§

3(p + cT E_ )

- 1/2 {[l+c ]uy (=)= [1—1‘:;] #%(+)j

(E ) (N E)
(Be3.4)
But equation (3.4.16) states
{1 - -cﬂj\lf*(ﬂ - [1 + c;J w*(-;) =0 (3.4.16)
-and ‘since,
h(£) = h'e (s * 8) >0
¥
¥ (£) >0 (B.3.5)
[ 2 ) E
ESES’B p >0

T

the right hand ‘side of (B.3.4) is positive, and (B.3.1) is proven. Thus

the receiver

h.(t) = s(t) + e sT(t) |
‘(B.3.6)
%
X = 32; h™ (s + 8 )
‘ * * .
is locally maximizing; the .point K = K , ¢.=1, ¢, = ¢ is unique amongst

T T
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all choices of e, ¢ such-that

T

*

v 2
S‘_ Ec_s(t) + cT'gT(t)] at = E
0

Furthermore, for any fixed choice of ¢, cT’satisfying (Bs357),,it is

easily seen from (3.4.3) that

; . 1
©1im PC(K,cycT)': 5

K- Teo

which represents -the minimal value of ch Thus, we have established

that (B.3.6) absolutely maximizes Pso
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APPENDIX C
DECISION LEVEL FOR BIPOLAR SYMMETRIC CHANNEL

WITH FADING INTERFERENCE

‘ ' *
With reference to (5.2.11) it is here shown that K = O is the -
unique extremum -corresponding to (5.2.11) for ‘any choice of c, and cp,

and for any acceptable probability density function (distribution)

~p§(q), Consider (5°2°5>

.,PC(K,c,cT) = E(PC/O(K,c,cT,c)) (5.2.5)
where E(¢) = \(\ pc(a)(9)q6

usingvexpression.(5.2.3);for‘PC/d,and interchanging the expectation

operation with the indicated integrals of (5.2.3) produces

1 ¢  efutx+o ]2/2x2 ~lutx-oy]?/aa%,
PC(K’C"CT)'= T y E(e'{ ‘ J +e b v R
='c0 ' ‘\}"ZnNOE'
(c1)

00

2, 2 2 2 .
1 : -a[u—-'x+cy] /Z}L —=[u--'x;-'0y] /2}» q
L 5\ © VZnNOE

K
where
K= hos-=:cES-+vqTP
Y =hosy.=-co+ cp B
2 =NE
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Note«.that.. P, is even on K. Then differentiating (Cl) with respect to

Cc
K, (c, cT) ‘held constant, gives
C ) f o ~ :
<& (1 \zi E) = Bt o k(0 ) | (c2)

9.')’

(o) _ ‘_K+x+0y] /2}\ ‘.K+x Oy] /2}\

@ x+w]/m. W:x qﬂ/m.

Now note that the argument of the expectation, fx-y.K(o), is an even
i
funection of ¢ so that the -expectation may be equlvalen’cly carried. out
only for o 2 O(denoted by EUZO( ) = y pc(o)( ¢)dg). -Rearranging

: (d) algebraically, we obtain
' x; v,K

. -s(o‘ Y +(_K-XJ2)/2)\

=
—
(=}
~
|

- gxa YsK( )

{c3)
- é«,-cryx/ Xz ‘,eK( 2x = -U.V)_/ }\2 - .éoyK‘/ }‘2 1

- _ecryx/ }\z %K( 2x + oy) / }\2 - "é_-‘ cyK/ }»21

‘Thus, -if we show that f. (o) >'O, o 20, for K # 0, then
X, ¥, K <) ' o e
,aPC i
OK

is ‘solved iﬁniquely by ’K* =0, -béca.izse.ﬁhe .expectation of & definite
(iuantity is itself not zero. Equivalently, we -need only -examine |
x - K(c) 5 as the :exponential function of a. real argument is always
‘positive. Clearly, for K =0,

g 0(0,)' =0 | _ | | (ck)

Xy s
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and X = 0 is & solution to (5.2.11). Also, for x =0
\ o) =0 ‘ : (c
€, y,x(%) = | | (c5)
However, x =;O;maké3xno.physicalvsensejaswitvimplies;thatﬁour’receiver
is. insensitive to:the presence of s(t).. . Consequently, we assume x # O

‘and K >0, Since Pis even on K, this represents no restriction. If

vy =0

£x,0, K(d) ZKX/l >0 | (c6)

There are now four possible cases to be :examined, .corresponding to

the ‘four -combinations of * x, * y.

Case (1) x>0, y>0
2K /02 : |
o = 0 ((0) =27 >0 - (c7)
X;Y} .
x X 22 Kx/x K /)
0< o<} (0) g
y _ ny}

2 21 -
+ [em/l e/ ] >0 (c8)

’ ' 2
_x, _ XNE 3kn® | ka J N
o= By K(X/y) =< ‘_ - T o (c9)
For o é=% let oy = ax, a > 1, then

(a) = &7 /x [Kx(zwa)/)\ K.xa}

X; ¥vsK

+-éaxz/12 &-em‘(z*a)/?\z A 1 a>1" (CL0)
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-Clearly, fora>1 (x>0, y>0, K>0)

2,2 ‘ 2 2,2 .2
oax /A [l _ caxk/\ } L 2/ [eaxK/l_ ) l]

2
vg.x;»Y:K(c)
(c11)
or,
%y Vs xlo) 2 B/ ‘.’eax AN, ax /A l + ie ax /A" _ ax"/x l
fat A4
(& >1, x>0, K>0) (c12)
Equivalently,
gxsny(c) B Ke ' =€ =1
. ey2 TN
> \;ea,x /A R /x J >0 (c13)
S0 K =0 1s unique and, moreover, since P’C 4is even on K and BP/BKV > 0,

(K >0) it follows that K = O is the absolute minimum for an fixed c,

e If K <0, then BP/BK < 0 as the .derivative ‘of ‘an even function is

To
‘odd.

Case (2) X <0, y<O

From (C2) note that

w0 = (o) (c1t)

f
=Xy=Y s Xs¥o

.Génsequently, if X is replaced by its negative (:--K <0)

£

_ x,yy+K(q)‘= fﬂxiblylamK(c)h< 0, by Case (1) (c15)

x<O0
y<O0

And, as in,Case‘ (l)‘,.» K =0 is the absolute minimum for ¢, c, fixed.

T
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.,_ﬂhene;isga“physicaliinterpretaﬁionﬁofTthis;argumﬁnim:'It”is:simply

“multiplying" the receiver by minus. one (which also .causes a reversing

. of decision inequalities).

Cese (3) x>0, y>0

This easily reduces to Case (1) by noting that the seme effécts may

"behad if y is:considered positive and ¢ negative.

E(f g)) =BT (O x>0, y<0
(@) = B, @) x>0, 7 <0
g =0 .20
But'fx,y,K(o) is eyen on 0, so that.
B(f a)).= B 1)) . > 0, by Case -
g=a0 g 20

Case (L) x<0, y>0

That is to say

(c15)

Bytanﬁargument'identical_to‘Case (3)}-we may reduce this to Casgf(z)

:and thence to Case (1).
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DECTSTON LEVEL FOR ORTHOCONAL SYMMETRIC: CHAN

Heve we will show thet K = ¢ 1& the b

sl depision level fer
orthogerel slguals by reduging this gage to & form where Appendix C

T model glven by ssswmpkions 5.1 (3)y (4)

CEppliss. Conglder & Whanne
and (5) and 5.1 (1) 18 replaged by (3.6.1 (a) through (d)) snd with

an dbvious extension of 5.1 (2). Then h(t) is of the form

n(t) = ofa,(6) = sy (8)] + {st . sTl(’G)l +fsy(t) + -:sl_(t?)]

. + %bz(t) + ,-.smi(t)x, (m1)

end & gimple calewlation shows that By s glven by (C1) except thet

Ky xy -#ind y sre replaged regpectively by

M

ki

K« 4(B + op) » dyo(e + B)

X ho(sz = Sl) (DZ)
5= ho(gy = 8y )
¥ O(srz; %l)

Careful sxaminstion of the indicated x snd y shows that they sre indes

pendent Bf 4, Oy, valves, Cbnasequently, the only eoffect of d and d, is

v gd ushment of the deelsion léyel, From the grgument of Appendix €

allowed values of oy wtherwise
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oP,
OFe

Suppose there 1s only -oune allowed value of oy say g (i.e0y

p,(0) = 8(0 = g )). Then,

M=0=X-~ &E, + o p) ~ do (p+ E) (13)

Supposey next, that there is more than :@né allowed value of 0. Conse-
quently, resrranging (D3)

Ms0=K= de:;s wr O Edp: + (ES + p)dT] (D5)
and for this o be soy for more than one value of dy ~the coefficlent of

o mush vanigh, nemely,

, (Eé: +p>0. ) (D6)

wiher no fading is present. Theny d-end d, may be srbitrarily specified.
Whetly indeedy there is fadingy we hayve from (D5) and DG) that only.d
mey be specified srbitrarily, namely
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From (D2), (D5), and (DT) it follows that haying chosen consistent yalues
of K, d, and dy, P, 1s 1o longer dependent on these variables. Thus, no

~ ‘generality is lost by teking d = dT= 0, so that K = 0.
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