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ABSTRACT

It has been pointed out that communication systems having wideband 

signal waveforms have certain advantages over the conventional narrowband 

systems. This report describes the results of a research program which 

examined in detail the information efficiency of wideband systems.

The results presented in this report fall into three major categories: 

(1) analysis of systems utilizing linear receivers (i.e, synchronous re­

ceivers , etc„), (2) analysis of system utilizing non-linear receivers, and 

(3) analysis and description of methods which can be used for realizing 

certain optimum and sub-optimum wideband receivers <, The development of 

these topics is based on the geometrical concept of a signal space,. These 

signal space concepts along with certain definitions are discussed in 

Chapter II.

In Chapters III, IV and ¥ wideband systems utilizing linear receivers 

are analyzed and the performance of these systems is determined for cer­

tain important types of noise which may be added in this communication 

channel. It is shown that in most cases, optimum performance cannot be 

obtained through the use of linear receivers.

Ion-linear techniques which are capable of supplying improved per­

formance are discussed in detail in Chapters VI and V11.

From the consideration of the types of noise which one may expect 

to encounter when using wideband systems, it is apparent that a relatively 

sophisticated approach is required in order to obtain the required 

physical realizations„ Certain methods which appear to be useful in 

obtaining these realizations are discussed in Chapter V111 and IX. Be­

cause the nature of the interference, in general, will not be known in



detail to the designer, certain adaptive techniques are incorporated



CHAPTER I

INTRODUCTION

out these systems have certain advantages ever narrowband systems. The 

most notable advantage of the wideband systems is that their information

environment is characterized, by a jagged, highly variable spectrum. Inder 

these conditions the performance of a narrowband link can be expected to 

vary from extremely good to extremely poor with the result that reliable 

communications can be obtained from a wideband system with a smaller ex­

penditure of signal energy® Thus, one of the important aspects of the 

application of wideband systems is their performance in a non-white and 

possibly non~gaussian noise environment*

In this report, the performance of linear wideband systems is analyzed 

for two important classes of noise, viz.j interference from a large number 

©f narrowband stations and impulse noise* In order to achieve better per­

formance than is available from linear receivers, certain non-linear tech­

niques are investigated* ®ne non-linear technique which appears quite 

promising is analyzed in detail*

The performance of wideband systems can be improved by using a pre- 

whitening filter at the receiver* In the case where the noise spectrum 

is variable, a receiver which automatically adapts its filter to the 

spectrum is desirable* Two receivers which perform this function are 

described in Chapter IX along with a more sophisticated version which also 

analyzes the noise statistics and adapts itself accordingly*

can be expected to remain relatively constant when the noise



CHAPTER II

THE ANALYSIS OF BINARY SYSTEMS

USING SIGNAL SPACE CONCEPTS

2.1 Introduction

A binary communications system is generally thought of as being a 

communications link over-which sequences of binary digits are trans­

mitted, Each of these binary digits, which are usually referred to as 

bauds, is represented in the transmission channel by one of two possible 

waveforms. These waveforms generally have a (nominal) time duration T 

and a (nominal) bandwidth W and can uniquely be represented by 2WT numbers 

Thus it is possible to conceive of these wavefoims as being points in a 

2WT dimensional signal space* In subsequent chapters the concepts of 

n-dimensional geometry will be used in the analysis of various types of 

wideband binary systems. As a foundation for this material certain 

definitions and fundamental notions pertaining to signal space represents-
i .

tions will be discussed in this chapter,

2.2 The signal space
c

The sampling theorem states that a waveform which has a nominal 

bandwidth W and nominal time duration T is uniquely specified by 2WT 

properly taken samples. Furthermore the theorem states that the wave­

form can be reconstructed by multiplying the sample values by appropriate 

time functions and summing the resultant products. Since the wavefona 

can be represented as 2BT numbers, the wavefom can be designated as the 

position vector E of a particular point in an orthogonal n-dimensional 

space and there is a one-to-one correspondence between each point in the
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space and each possible waveform having the specified duration and band­

width*

There are two extremely useful basic forms* In both cases, the sample 

values are the coefficients of orthonormal waveforms* In the first of 

these forms, the samples are obtained by sampling the amplitude of the 

waveform e(t) at intervals of l/2W seconds* If these samples are repre­

sented by the symbols ° »EnA/2W (where n » 2WF) then

the waveform is given by

*(*)=£ (2.2-1)

■ i=l

where the functions

"■ *!<?)- <2-2'2>

are orthonormal functions and have the properties

The quantities B^, Eg En are the coordinate values of the vector 

E which in terms of these values is

air



where !L is a unit vector in the positive direction of the i-th coordinate 

axis*

It is of interest to note that the form given by Eq. (2.2-1) describes 

a waveform e(t) which has a nominal duration of f seconds but is strictly 

band limited to a bandwidth of W.

Another useful form is the following expression which has a strictly 

limited time duration but is only nominally band limited?

EWfI
i=l

E.f. x x (2.2-5)

The time functions f^(t) are defined as

(2.2-6)

( 1 i - j
f,(t) £.(t) m. - 1 , (2.2-7)

J ( o i / 4

and are, therefore, orthonoimal. Thus, their coefficients are the coordinate 

values of a point of n-dimensional space having an orthogonal coordinate 

system. The values of the various E^'s can be obtained by sampling the 

voltage spectrum of the baud waveform at frequencies l/T, 3/T, 5/T, etc. 

These samples are complex quantities and the real parts are
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✓? etc. and the imaginary parts are /T Eg, ■/t E^s> \/T E^, etc. at 

the frequencies l/l, 3/T, 5/T, etc*

Either of the above signal spaces are useful in the analysis of 

binary systems using wideband waveforms and the type of space which is 

selected to be used in a particular analysis will, in general, depend on 

the type of noise.

2.3 The transmitter

A binary communications system consists of a transmitter and a re- 

ceiver, both of whose parameters are under the control of the designer, 

and the channel whose parameters are not0 In Fig*.8*3-1.is shown a binary 

communications link* The purpose of the transmitter is to produce a 

suitable waveform e^(t) depending on the binary input which is recognizable 

to the receiver* The noise n(t) which is added in the channel, however, 

causes the waveform which arrives at the receiver to be somewhat different 

with the resulting possibility that the receiver may make an incorrect 

interpretation* Therefore, it is important that the waveforms produced 

by the transmitter be designed to produce as small a probability of error 

as possible under the constraints that may be present*

The waveforms for each baud which are produced by the transmitter can 

be represented by 2WT*=4imensiomal vectors. Fig. 2.3-2 shows the signal 

vectors corresponding to a “mark" and to a “space1* for one such baud. In 

order to minimize the probability that the receiver will misinterpret the 

received signal it is clear that the two signal points be placed as far 

apart as possible, i.e., the mark vector M and the space vector S should 

be diametrically opposed,

If = - k"M (2.3-1)



If the transmitter has an average power constraint it can easily be 

shown that the separation between the signal points is maximum when

where P(M) is the probability that the band will be a ’•mark** and P(S) is 

the probability that it will be a "space*1*,

2*4 The receiver

The pnrpose of a receiver in a binary communication system is to de­

termine and indiciate whether a "mark" or a "space* has been transmitted* 

Only in the absence of noise or at least the presence of a very special 

kind of noise is it possible to perform this function with complete cer­

tainty, and when noise is added in the channel we may expect the receiver 

to make errors from time to time. In general, subject to the constraints 

of high cost and reduced equipment reliability which usually accompany 

complexity, a receiver?s utility is measured in terms of its capability of 

detecting with the least probability of error which signal was sent. This 

process is accomplished by dividing the signal space of the channel into a 

"mark* region and a "space" region. If the received signal plus noise 

vector falls in the "mark" region 1^ the receiver will decide that a "mark" 

has been transmitted and if it falls into the ."space" region Rg then the 

decision is that a "space" was sent. The hypersurface separating these 

two regions is referred to as the decision surface.

Although the decision process can be performed directly on the signal 

space of the channel it is more convenient to first transform the multi­

dimensional space of the channel to a one-dimensional decision space.

This process will be referred to as demodulation. In this way the decision

(2.3-2)
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process is reduced to the relatively simply task of detecting whether the 

output of the demodulator is above or below a certain decision threshold 

value* For this type of receiver the decision surface in the channel 

signal space is determined by mapping the decision threshold value back 

into the channel space with the aid of the inverse demodulation trans­

formation*

The probability of error PQ (on a per baud basis) for any binary 

receiver is the probability of the following event? that the signal plus 

noise vector X lies in the “space* region Rg and that a “mark* was sent 

(i«e« » M)* or that the signal plus noise vector X lies in the “mark**

region and that a "spaced was sent (i.e, = S*)« Since the events are

mutually exclusive

P * Prob \ X in 1 E. e l ' s, ' ■ 10
(•

+ Prob -sx in R E.m. a

-1}
(2.4-1)

which can also be written

Prob ^x" in R^E^

Prob < X in (2.4-2)

where and are the respective probabilities that a “mark* and a

“space*1 were transmitted and where Prob "{^X in Rg\E^ = is the condi-

—^ —+k • —

tional probability that "X is in Rg given E-^ = M“s etc. The conditional 

probability density functions over the appropriate regions,!
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Prob -fx in lg|l^ = m} = ^

1
P, ax (2.4-3)

Prob IX in la xs (xjs) ax (2.4-4-)

Bm

The above conditional probability density functions can be related to 

the joint density function of the noise pn(W) with the aid of the fact that 

I'“ X - E^o Therefore,

® xar = ■ ®n
(f-D (2.4-5)

and

p_(xjs) = P (T - T) (2.4-6)

ly substituting lq. (2.4-3)* (2.4-4)* (2*4-5) and (2.4-6) into Eq. 

(2.4—2) the following expression for the probability of error is obtained*

re P(M) J pm(x - M) ax

[

m

Pa(x - s) ax (2 *4-7)
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As mentioned above this is the probability of error of a particular 

band. If any of the quantities in the right hand side of Eq. (2.4-7) vary 

from band to band then, in general, the probability of error may be ex­

pected to vary also. In such an instance the average probability of error 

PQ must be computed in order to evaluate the performance of the receiver.

2.5 Optimum receivers

In the analysis of binary communications systems where the design of 

the transmitter has already been fixed and the joint probability density 

of the noise is known, it is often of interest to determine the parameters 

of the optimum receiver where an optimum receiver is defined as one in 

which the probability of error is minimum, i.e., the output is a “mark" 

for the case

p(m)x) > P(s| X) (2.5-1)

and the output is a "space" if

P(Mjx) < P(sffi (2.5-2)

where P(m|X) is the conditional probability that a "mark" was sent given 

the waveform "x is received and P(s)x) is the conditional probability that 

a "space" was sent given the waveform X was received.

By applying Bayes’ Theorem to inequalities (2.5-1) and (2*5-2) the 

following decision rules are obtained® If

Pn(X - M) P(M) > pn(X - t) P(S) (2.5-3)

then the optimum decision is "mark" and if



then the optimum decision is "space".

The surface which separates the region where the optimum decision is 

a "mark" and the region where the Optimum decision is a "space” is given

by

Sm(X'- K).*(M) * p (X - S) P(S) (a.5-5)

Quite often the likelihood ratio**'' is used in the specification of 

the rules for optimum detection.

The likelihood ratio* is defined as

I-Hi!

which can also be written

P(l) Pn
Vm fjllij ~ iT

(X - e) p(e)

cr-wm (2-5-7)

Clearly the optimum decisions are "mark" if L > 1 and "space" if L <. 1 

and the decision surface; is given by the equation

i^i, (2.5-a)

2.6 Signal waveform generation

In order to produce either the "mark" or "space" waveforms at the 

transmitter it may be desirable to perform a suitable operation on a 

signal carrier waveform. This operation will produce a change in the 

carrier waveform such that the required "mark" or “space" waveform results

* It should be noted that this is a more general form than used by many
authors. Fo.r the ease PCM) * P(S) this form reverts to the more usual
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This type of operation will be refered to as modulation*

Many different configurations are possible. For example, a sinu­

soidal carrier may be frequency modulated by a wideband signal as is 

shown in Fig, 2,6-1, ©nthe other hand, the signal t© be transmitted 

might be the result of amplitude modulating a relatively wideband carrier 

signal with a narrowband modulation signal (see Fig. 2.6-2),

In spite of the many ways in which the modulation can take place it 

is possible to make use ©f a generalized approach.

let the unmodulated carrier be written in the following form

and

G COS a tc ■ + 0, ]
the modulated carrier be written

(2*6-1)

ms m "fce

It is evident from Eq, (2,6-1) and Eq. (2.6=2) that modulation can pro­

duce a change in the multiplying amplitude factor or in the magnitude of 

the angle and therefore it follows that the.two basic classes of modula­

tion ares (1) amplitude modulation where

■ ' (2.6-3)

is the amplitude modulation waveform and 

(2) angle modulation where

is the angle modulation waveform. Thus, the “mark1* or “space1* waveforms 

earn be written in the following form.
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ia(-b) = Am(t) Ae(t) cos£ + 0j.t) + 0m(t) J 

#(t) = Ajt) Ajh) e©s « t + 0 (t) + 0a(i)
S' •© '..'1;. ■■ €2- © S

(2,6-5) 

(2.6-6)

These waveforms can also he expressed in the following equivalent 

forms.

m(t) = Am(t) Ac(t| cosj^ ®et + 0c(t) J cos 0m( t)

- A (t) A (t) sin <0 t + 0 (t) sin 0_(t)M _ . ■ - I ■ ' © . © ; I .

s(t) - A (is) A (t) cos at + 0 (t) cos 0_(t)s,-S , ' •’ © . C Jl

- A (t) A (t) sin a) t + 0 (t) sin 0t

(2.6-7)

(2.6-8)

It is evident that the waveforms given by Eq. (2.6-7) and Eq. (2.6-8) 

can be produced through the use of amplitude modulation by the scheme shown 

in Fig. 2.6-3 where the carrier wavefora is given by Eq. (2.6-1) and the 

modulation waveform is given by

^(t) = i^.(t) cosj^(t) (2.6-9)

if a "mark*1 is to be transmitted and

A'(t) = A (t) cos 0 ft) (2.6-1©)■ s. ■. S ■*> ■

if a •’space11 is to be transmitted. The waveforms given in Eq. (2.6-9) 

and Eq. (2.6-1©) will be referred to as composite modulation waveforms* 

It may be expected that, in general, the probability of error of 

the receiver output will depend on the nature of the signal waveforms*

As was shown in Section 2.2, these waveforms are completely specified by
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points in an appropriate signal space* The important characteristic of a 

binary signal pair is the vector which is the difference of the position 

vectors of the signal points* viz*, K - S« In fact* it is evident that 

this; difference vector is the only characteristic of the signal pair; 

which influences the probability of error and the probability of error 

will be determined both by its magnitude and its direction* Furthermore, 

if the equiprobable surfaces of the probability density function of the 

noise are spherical (as would be the ease if the noise were white gamssiam 

noise) them it is clear that the probability of error depends only on the 

magnitude of the difference vector, i.e, 8M •• J$j|*

Im some applications it may be desirable to use a non-repeating 

carrier waveform and, therefore, it is of interest to determine the 

conditions under which the probability of error is independent of the 

shape of the carrier waveform (i.e* the direction of the carrier vector)* 

For this reason the following theorem is important*

Theorem If (1) the equiprobable surfaces of the joint probability 

density of the noise are spherical and if (2) the spectra of the carrier 

waveform and the composite modulation waveform do not overlap and if (3) 

the energy ©f the carrier waveform is uniformly distributed over the dura­

tion of the baud them the probability of error of the output of an optimum 

receiver is independent of the carrier waveform*

Since by hypothesis, the equiprobable surfaces of the joint prob­

ability density ©f the noise are spherical, it is sufficient t© prove 

that the square of the magnitude of the difference vector I V - sf is 

independent of the shape of the carrier waveform*

This qmamity can be written in the following form
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Jm'- Si2 ■- M-M + l-l* - eI•S (2.6-11)

The terms on the right hand side of Eq. (2.6-11) can be evaluated 

directly from the time functions given in Eq. (2.6-5) and Eq. (2.6-6).

M*M
f

4<t) eos2 |©et + 0Q(t) + 0J%) ] dt

which can be written

IT
M-M = l/2 [ A^(t) A^(t) dt

+ 1!%{ J^(t) A^(t) cos (Bet + j2T(t) + J^(t) Jdt (2.6-12)

' 0

The second term of the right hand side of Eq. (2.6-12) can be written 

in the following form.

T

I f I" A^(t) cos 2 [®et + 0e(t)l A^(t) cos 20m(t) 1 
*'©

f
•if [*■

'0

dt

(t) sin 2 £a>ct + 0c A^(t) sin 2j0^(t) ' J dt



-17-

Composite
Modulation
Waveform

Phase
Shift

Phase
Shift

A METHOD ©P QBTAIKIHG A GENERALIZED MODULATION

HGTOE 2.6-3



Since, according to the hypothesis, the spectra of the carrier and 

the composite modulation do not overlap, the spectra of two factors in 

the integrands of the two integrals in the above expression do not over­

lap, thus, the factors, in the integrands are orthogonal and, therefore, 

the values of the integrals are zero*

Thus, Bq. (2,6-12) becomes

M*M * /'
/0

Am dt (2,6-23)

In a similar fashion the values of S«S and M«S can be determined.

f-S = a: dt (2.6-14)

M*S
1

C(t) ; dt (2.6-15)

By substituting Eqs, (2,6-13), (2.6-14) and (2,6-15) into Eq. (2.6-11) 

the following expression is obtained

2 cos

(2.6-16)

Since the energy of the carrier is evenly distributed over the duration 

of the baud, the quantity A*(t) is a constant and, thus, it is evident



that the quantity given by Eq# (2*6-16) is independent of the shape ©f the 

carrier waveform#

Eq* (2#6-l6) is also generally useful in determining the effect of 

waveform variation when different schemes of modulation are used under

the conditions where the eqaiprobable surfaces of the noise are spherical 

and where the carrier and modulation spectra do not overlap# For, example, 

if an amplitude modulation scheme is used where

iLCt) =1 (2.6-17)
' EX

and

JLg(t) = 1 (2#6-18)

then, according to Eq# (2*6-16)

If-?!2 (2.6-19)

From Eq# (2#6-lf) it is dear that the probability of error does not 

depend on the carrier waveshape in any way and, therefore, the carrier 

energy need not be evenly distributed over the duration of the baud#

It should be noted that the hypothesis of the theorem consists of a

set of conditions which are sufficient to insure that the probability of 

error is independent of the carrier wavefoim# It is not necessary that 

all three conditions be fulfilled in every case as is shown by the above



2o7 Information efficiency 

The information has been defined as

X 100

where H(x) is the data rate of the source and l(x|y) is the equivocation

of the channel* It has been shown that this quantity depends only on 

source statistics (i«e, P(M) and P(S)) and on the transitional error 

probabilities (i,e, the probability that a "mark8 is received as a "space" 

and probability that a "space" is received as a "mark"I*

In general* the results which will be obtained will be for symmetri­

cal systems, Under these circumstances

and the information effieience is uniquely related to the probability of 

error.

In order to be able to compare the performance of wideband systems 

with narrow band systems the following definition will be made,

Befinitlon Two binary communications signal pairs will be said to 

correspond if the energy of the mark vectors are equal and the energy of 

the space vectors are equal and if the inner product of the "mark" and 

the "space" vectors (,i,e, M°S) are equal. To have the inner produc t M»S 

equal at the same time that the mark energies are equal and the space 

energies are equal is equivalent to having the mark-space correlation

l(x) » 1

and

]
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eoeffieients equal®

If white gaussian noise is added in the channel the efficiency is 

affected by the placement of the signal points according to the magnitude 

©f the rector differencefM-sI. It is erident from Eq0 (2,6-11) that, 

under these conditions a wideband signal pair offers no adrantage over 

the corresponding narrowband signal pair.

In Chapter II the concepts of the signal space hare been reviewed and 

the way in which they apply to a binary communications system has been dis­

cussed. Methods by which the '•mark8 and "space" wareform may be generated 

from a single carrier hare been discussed and the criterion for making the 

system performance independent of the carrier wareshape has been derived.

The efficiency of wideband communications systems are discussed and 

it is shown that, under the condition that the channel noise is white and 

gaussian, that a wideband signal pair offers no inherent adrantage ©rer 

the corresponding narrowband pair0
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CHAPTER HI

LINEAR RECEIVERS

3*1 life roduet ion

Synchronous receivers and matched filter receivers have been ex­

tensively employed where superior performance has been desired. It has
g

been shown that these types of receivers given optimum performance when

the noise is gamssian. In this chapter a more general theory for the

performance of these receivers will be developed. This theory will be

applied in subsequent chapters to determine the performance of these

receivers when the noise is non-gaussian*

3*2 Signal space analysis of the synchronous receiver

A typical synchronous receiver is shown in Fig. 3,2|1. In this re-

(where e^(t) is the signal component

and m(t) is the noise component of the input) is multiplied by the local

carrier eg(t) producing the input to the finite memory integrator

v3(t) - x (t) OgCt)* The output of the finite memory integrator as a

function of its input is 
t

ceiver the input x(t) = e, (t) + n(t)

v^(t) = J v3(u) dm (3*2*-l)
A-T

Here the lemth of the memory Tffi has been chosen equal to the baud length 

T. @me method of realizing the input-output characteristic given in 

Eq. (3*2-1) is shown in Fig, 3.2-2,

At t = T the decision circuit samples its input which is 
rT

Td “ Tlf(f ^ ■“ j + a'(t) ) e2(t) tfe (3*2-2)
H , •
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If this input is greater than some threshold level Vdo then the decision 

circuit will indicate for example, that a nmarkM had been transmitted. 

If, however, is less than Vdo then a "space** will be indicated.

If the received signal, received noise and local carrier waveforms 

are bandlimited to a bandwidth W then they each can be represented by 

the coefficients of the 2WT orthonormal functions f^(t) in the following

series representations,

2W
(3.2-3)e ^" i % fi

i=i

am
i

i==i

(3.2-4)

21*.

E2i fi (3.2-5)

i-1
where e-^(t) n(t) and eg(t) are assumed to be strictly time limited.

The following expression for the output of the integrator is ob­

tained by substituting Eq» (3.2-3), (3.2-4) and (3.2-5) into Eq. (3.2-2), 

$ 2Wf _ _ 2fT
?a / [ t (En+v

/0 i=l ' ' ■ ■ ' .

tm tm
+ Ik) Eg

i=a 3=1

3/ %(t) f^(t) at

According to the definition given in Chapter IX the orthonormal 

functions f^(t) has the following property



| 0 ’■ 1,^.4 . ' : ■ ,

fl i = J '

■which in conjunction with Eg.. (3.2-6) yields the following expression for

Y
a

. iff. ■■
■ y.'i “ 'H. :^ti + '(5^7)

1=1 f
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from Eg,* (3*2-7) it is clear that ¥^ is the inner product between the 

received signal plus noise vector X = E^ + 1 and the local carrier 

vector Eg and can he written

Ef. (3*2-8) is the mathematical expression for the demodulation process 

by which the multidimensional variable X is transformed into the one­

dimensional variable ¥,. Since this is a linear transformation, this 

type of receiver will be referred to as a linear receiver.

Ef. (3.2-8) can be written in the following form

where.|Eg| is the magnitude of the vector Eg.. .From;If. (3.2-9) it.is

evident that !»■ the length of the projection of the vector if onto

r
the vector E_. From this it is clear that the equationa

.2-1©)

where ¥. is an arbitrary constant is satisfied by the set of vectors . i.#



X = whose end points lie on the hyperplane which is orthogonal to Eg 

and intersects Eg at a distance %@/l^ from the origin. If Vdo is the 

decision threshold voltage then the hyperplane determined by If* (3.2-10) 

is the decision surface which is generated by the synchronous receiver. 

Fig. 3*2-3 shows the location of this decision surface in a typical 2- 

dimensional sobs pace containing the vector Eg*

If*,' for example*, ?d > V^0 is interpreted as a '’mark" then the "mark’* 

decision region will be to the right of the decision surface in Fig, 

3.2-3 and if is a *»spaceB then the flspaceM decison region Es is

t© the left of the decision surface.

For a given binary system the wavefoims which are transmitted to re­

present a **mark® (i.e. E^ ="m) and a «spaeeM (i.e. "^ = ~S) will be known 

along with their probabilities of transmission P(M) and P(S). If*, in 

addition to the above information the joint probability density of the 

noise in the channel p^CK) is known*, it is possible to calculate the prob­

ability of error P@ with the aid of Eq» (2.4=7)*, viz.

The evaluation of the integrals in the right hand side of Iq. (2.4-7) 

is tedious and involved if the dimensionality of the signal is very large.

to obtain a simplified solution for certain important special cases*

(2.4=7)

m
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THE ©EOMEroiGAL UPBESEMAfOT @P THE DECIS10I SURFACE 

GMEPAIIB BI A SYCHR03DUS RECEIVER ,

■figure 3.2-3



According to Eq* (2*4-2) th© probability of error is 

P == P(l) Prob 1 In Bs | = 1“

| —*»X in R En -8m 1 1 (2.4-2)

In terms of the decision space "X in E corresponds to V.< V, ands a * do
"X in corresponds to Vd Vdo and the expression for the probability 

of error becomes

e
Prob { Vd < Vdo | V7 }

+ P<S> {Vd > | » S }

which with the aid of Eq, (3*2-7) becomes 

Pe =P(M) Prob m2< VdQ - t-E2 

+ P(S) Prob -1^ > J

The quantity

(3*2-11)

(3.2-12)

tm
JPE„ Wai (3*2-13)

is=l
is a random variable which is the sum of 2WT random variables and will 

have a gaussian distribution under either of the following conditions?

(1) That each of the random variables N. has a gaussian distribu- 

tion, or

(2) That each of the random variables N^Eg^ is independent and has

a common distribution (here it is assumed that the number of 

random variables is sufficiently large for the central

limit theorem to apply).



falls into one ®r the other of the two categories described above then the

sum of each group is a gaussian random variable and therefore MoEg will

also have a gaussian distribution® The mean T; and variance <X E of this 
** n n

random variable will be the respective sums of the means and variances of 

the individual random variables

Glearly if is the sum of several groups of NjjEL^ such that each group

V %e2±
1=1

(3.2-14)

zm
l

$*L.
(3.2-15)

where

X. /.:] E„n., v~i'

The probability of error is

(3.2-16)

-.o *■%

V**
■163®'

'/W'OL
em [-

<T - \)2 -

Jt

E 
îl: ;dv

which in terms of error functions can be written

(3.2-17)



3*3 Equivalent linear receivers

In Section 3.2 the synchronous receiver was analyzed. In this section 

the matched filter receiver and hybrid combinations of the matched filter 

and synchronous receivers will be considered.

Pig. 3*3"! shows a matched filter receiver. She input signal plus 

noise is filtered and at the end of the baud the output of the filter 

vj^(t) is sampled and the decision circuit determines the appropriate out­

put depending on -whether the sample is above or below a certain thresh- 

hold value.

The output of the filter is

t
x(u) h(t - u) dm (3*3-1)

which at the end of the baud (i.e

sampled is

t » f) when the filter output is

T
u) du (3*3-2)

It may be assumed that in order to avoid intersymbol interference the 

duration of the filter impluse response is made equal to the baud length. 

Shis along with the fact that the second factor in the integral of Eq. 

(3*3-2) is equal tothe waveform to which the filter is ffiatehed allows 

Eq.. (3.3-2) to be rewritten to the following form

where e^u) = h(l - u).

du (3*3-3)
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Eq* (3.3-3) is of the same form as Eq, (3.2-2) which is the equation 

describing the performance of the demodulator of a synchronous receiver* 

Clearly the development which follows Eq, (3*2-2) also applies to Eq, 

(3*3-3) and the results which apply to the synchronous receiver also 

applies to the matched filter receiver*

In Fig* 3*3-2 is shown the block diagram of the hybrid receiver in 

which the process of matched filter reception and synchronous reception 

are combined* The output of the filter v^(t) is related to the receiver 

input x(t) by the following equation

v

where the value of the lower limit of the integral is the result of 

limiting the length of the impulse response of the filter to a duration 

T* At the end of the baud the output of the filter is sampled by the 

decision circuit just as in the other receivers and the value of this

V4 - V*) du (3*3-5)

Designating the waveform to which the filter is matched by the function 

« h (f - t) (3.3-6)
'2

Eq, (3.3-5) can be reduced to

(3.3-7)
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Eq® (3®3-7) is of the same form as Eq» (3®2-2) and the results which 

apply to the synchronous receiver are also applicable to the hybrid re-

eeiver.
Thus, it has been demonstrated that on a per baud basis the theoretical

9

performance of the synchronous* matched filter and hybrid receivers are 

equivalent®

In this chapter the general performance of linear receivers has been 

derived® The class of linear receivers is that class of receivers which 

performs a linear transformation on the n — dimensional input signal in 

order to reduce it to a one dimensional signal® A typical example of a 

linear receiver, the synchronous receiver, is analyzed in detail and the 

results are extended to include matched filter receivers and other equiva­

lent types®
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CHAFTER IV

THE APPLICATION OF LINEAR RECEIVERS (Part I)

4*1 Introduction

In Chapter III the general theory of linear receivers has been 

developed with the aid of signal space concepts* These results 'will be 

used in this chapter as a basis for the analysis of the performance which 

can be expected from linear receivers for various kinds of interfering 

noise* Although some of the material which is developed in this chapter 

has more general application* the emphasis will be on noise which has 

independent spectral components*

4*2 Optimum reception with linear receivers

In Chapter III* it was shown that the decision surface generated by 

a linear receiver is a hyperplane* Thus a linear receiver can provide 

optimum reception only if the optimum decision surface is also a hyper- 

plane* Optimum reception can then be accomplished with a linear receiver 

whose local carrier vector and decision threshold have been appropriately 

» chosen* Clearly* if the optimum decision surface is not a hyperplane * 

optimum reception with a linear receiver is not possible*

In this section the types of noise which result in a hyperplane 

decision surface will be determined* In order to simplify the analyses 

it will be assumed that the source is symmetric and that the “space" 

waveform is the negative of the "mark", i*e»j

S



A binary communications system having the properties given by Eq, (4,2-1) 

will he referred t© as a symmetric binary system. From Eq, (2,5-5) and 

Sq, (4,2-1) the equation for the optimum decisionsurfaee may be obtained, 

vis,*

p: (X-* If) ~pJ? + ll) (4.2-2)

RI^P
Befi^ltlon - a function f(z) is said t© he symmetrical about the 

hyperplan©

(4.2-3)

if:the variable vector Z in Eq, (4.2-3) also satisfied the Eq,

+ uA - -1 (4.2-4)

where "X and 1 are fixed vectors and u is a variable scalar.

An example of this type of symmetry is given is Fig, 4.2-1 where 

typical curve of f(Z) set equal to an arbitrary constant is shown as an 

illustration. Although the example is only two dimensional it is typical 

of any two dimensional cross section containing the vector A in an n- 

dimensiomal space.

Deflation - A closed surface is said to be convex if there is no 

straight line which intersects the surface at more than two points.

With the aid of the above definition it is possible to state the

following theorem

Theorem 4,2-1 The optimum surface of a symmetric binary system is 

a hyperplane if the joint density of the noise pa(l) is monotone deereas- 

ing with increasing noise magnitude fll (while holding the angle of N
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constant ) and if the equiprobable surfaces of pn(N) are every where con­

vex and are symmetrical about the hyperplane X'M «' 0 where iT is the "mark" 

signal vector, fhe optimum decision surface is the hyperplane of symmetry.

From the hypothesis and the definition for symmetry the following 

equation can be written

Pn(X + M) = pn(X -M)

where X satisfies the equation

X«M * ©

(4.2-5)

(4.2-6)

Eq. (4.2-5) is identical to Eq« (4.2-2) which is the equation of the 

optimum decision surface and according to the above statement is satisfied 

when X * H * ®, i.et> when X is a point on the hyperplane orthogonal to M 

and passing through the origin. It is now necessary to prove that Eq*

(4*2-6) is the only solution to (4.2-5)* Since p (M) is monotone decreas-
■ n ■

ing with increasing |N| there can be only one equiprobably surface for a

given value of Pn(N)* Therefore the two sides of Eq. (4*2-5) must refer

to points on the same equiprobably surface.

The rest of the proof is by contradiction. Suppose there is a point 
•*4* ■*-*>
0 not on the hyperplane X. * M - © which is a solution of Eq. (4.2-5), i.e.,

Stt(C;-+;i) « pn(e - M) 

where C * M f See Fig. 4.2-2

(4.2-7)

Let the scalar a and the vector be chosen such that

t ail (4«2-8)
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f(z) = Constant

m EXAMPLE ©P SXMMETET ABOUT A BLAIS 

FXGUEE k.2-1



where X^ satisfies the relation X^ « M * ©«

Substituting Eq. (4*2-4) into Eq. (4*2-7) gives the following re­

sult

-38-

Pn(X1 + aM + M) - Pn(X1+ aH -H) (4.2-9)

As a result of the symmetry whioh was specified in the hypothesis, 

the following equation must be satisfied*

tn(x + um) = pn(x -ui (4.2-10)

for all m and for all X satisfying the Eq. X * M*» ©,

Setting X = X^ and u * (l + a), Eq. (4.2-10) can be written

■n-; + (1 + rn
|| - (l + a) j| (4.2-11)

and similarly with u » (1 - a)

ma f + (l - a) U ipn L *1
•>“] (4.2-12)

FromEqs. (4.2-9), (4.2-11) and (4.2-12) it is evident that the 

points

+ (1 +

(1 - a)

..1

(4.2-13)

(4.2-14)

(4.2-15)

(4.2-16)
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the geometrical representation of the signal plus noise space when a

SOLUTION NOT ON THE HYPERPLANE X«M - 0 IS ASSUME!

3I0HBE. 4.2-2



are on the same equiprobable surface. The location of these points are 

shorn on Pig, 4,2-3,

From Eqs, (4.2-13), (4.2-14), (4.2-15) and (4.2-16) it is clear that
-h

the end points of P, Q, R and S fall on a straight line. This is contrary 

to the hypothesis that the equiprobable surfaces are convex and therefor© 

the only solutions of (4.2-5) are given by (4.2-6) thereby proving the 

theorem,

4*3 Types of noise encountered

The types of noise which may be encountered can be divided into two 

main categories! (1) natural interference and (2) man-mad© interference, 

natural interference consists mainly of thermal noise which has a gaussian 

distribution, Other types of natural noise include Impulse noise due to 

lightning and VIP whistlers. Since there seems to be little likelihood 

that wideband binary systems would be used at the lower frequencies it 

may be assumed that interference from VEP whistlers will be of no interest.

For the most part, man made noise consists of radio stations which 

generally have relatively narrow bandwidths, The presence of these narrow 

band stations will cause the spectrum to be very jagged. It appears like­

ly that this type of noise will be the most significant in many applications 

of wideband systems.

As an example of this type of noise, consider the case where the 

interference consists mainly of a large number of conventional A,M. radio 

telephone links ©f equal bandwidth. The stations may be assumed to be 

independent of each other and to have a wide variation of average powers.

If the data rate (l/T) of the wideband system is equal to the bandwidth 

of the interferring A,M, stations then the instantaneous signal level for
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1

q = x. +

SHE GEOMETRICAL REPRESENTATION OP TIE NOISE SPACE OF N FOR TEE 
CASE NHERE A SOEiTION NOT ON THEHYPERPLANE T*M = 0 IS ASSUMED

FIGURE 4.2-3



eaoh station can be represented as a single sample for each band period 

and, as a first approximation, it may be assumed that the carrier fre­

quency of each interferring station is the same as the frequency of one 

of the coordinate axes* If the interferring links are of a similar nature 

then it may be assumed that the instantaneous carrier levels follow the 

same statistical law and, therefore, the only differences between the 

probability densities associated with each of these carrier levels is 

their variances.

The effect of this noise can be determined with the aid of the 

signal space representation given in Eqs, (2*2-5) and (2*2-6)* These 

equations can be written in the following form

If
e-Jt) ~ ^(4*3-1) 

i=l '

where

. %_(•&) = yfzJT. | ti(t) - u(t - T) ^ cos (^- - ) (4*3-2)

-42-

(and where 1 and f (t) are not the same quantities used previously)*

Here both R. and are variables and the total number of variables is i x
the required 2WT.

The following relationships can easily be verified

li' f. i = J 
i / 3

and

(4.3-3)
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If the signal pirns noise is given by

i ^ | &.3-k)

m
i Vm

M
+ L (4.3-f)

and the local carrier of the synchronous receiver is given toy

.e,
If

L E2if2i<
i=l '

(4.3-6)

The output of the integrator of the synchronous receiver at the end 

of a baud will toe

which in accordance with If. (4.3-4) reduces to



WT

a HAi e3s(e3i - eai)

i=l

WT
+ £ Wsi e0S<e2i ' 9li)

i=l

(4.3-7)

It is apparent that# for this situation, it is adequate to repre­

sent the various waveforms as WT-dimensional vectors as follows.

IfI
i-1

E1 = /. Eii cos(®gi “ eii) (4.3-8)

and

ITI
i~l

h cos(®2i “ eni} (4-3 -$)

WT

E2 - L E2i
i=l

-.3-

The quantity SLcosC©^ - eni) is a random variable which is the product 

of the raMom variables I. andeos(0„. - 0 ) the latter one depending 

©n the random variable (0gi - 9ni)» The quantity 1^' is the interferring 

carrier level and (0gi - 0^) is phase difference between the inter- 

ferring carrier and the i - th component ofEg.

It ...is^reasonable to assume that the probability density of (0^ - ©ni) 

is uniformly distributed over the range 0 to2«. For this ease, It can 

easily be determined that the probability density of
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v - cos..(» at - Sni>

is given by

v2 <' .1

2 . .v > 1

The distribution fraction of a random variable

w *'u v.

©an be obtain by evaluating the following expression

where the region of integration R is given by the inequality 

Therefore

P^Ct) tr au

4W p.
:r 4v In

The probability density function of the random variable w cam 

by differentiating Eq® (4.3-15)

(4.3-11)

(4.3-12)

(4.3-13)

(4.3-14)

UV.

(4.3-15)

be obtained



m
(4.3-16)

In particular if u = and v is the quanity given in Eq* (4.3-11) 

then the density function ©f the random variable

where the probability density function of the random variable is

If the probability density PU(N^) is known then it is possible to 

make a complete analysis of the performance of the system,

A similar approach is possible for other types of interferring narrow 

band station, e,g, ©SB, SSI, FSK and to a first approximation the only 

difference will be the shape of the density function pu(%)«

letter approximations are possible by taking into consideration the 

relationship between the baud length T and the bandwidth of the inter­

ferring stations

If, for example, l/f = then there will be room for three adjacent 

channel stations for each coordinate of the signal vector 1^. The coor­

dinate values of the w| can be considered (to a first approximation) to be 

the sum of three independent random variable, l,e*

w * Jl^ cos (4.3-17)

is given by

(4.3-1S)
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+.% (4.3-19)

where wi2 and w^ are determined with the aid ©f Eq. (4.3-1©).

Tfj ©n the other hand, 3/T “ then the bandwidth of an inter— 

ferring station corresponds to three of the coordinate axes of the 

signal* This situation can be handled with the aid ©f the following 

signal space representation.

WE

i=i

where

(4.3-2©)

u(t - 2T/3) j cos(^S . 0^),

■ m(t - f) J cos(^~ - 9^),-

The noise from the k-th interferring station can be represented as 

the three random variables wk, wk+1, and wk+2 whose densities are deter­

mined from Eq® (4*3-18). If the spectrum of the interferring station is 

white then these random variables are independent*

From the analysis given above, it is apparent that a good approxima­

tion of the interference resulting from many similar narrow band stations 

is that the signal, represented by a WT-dimensiomal vector, is perturbed



fry W random variables with similar density functions given by (4.3-18),

In many cases the random variables can be considered independent,

^*4 Reception of signals perturbed by narrow band interfering stations

In the preceding section it was pointed out that one of the most 

important types of interference which a wideband system may encounter will 

be caused by narrow band stations. In this and the following sections, 

.Performance which can be obtained from linear receivers when 

used in this environment will be ..determined,

As was pointed out in Section 4.2, optimum reception with a linear 

receiver is posssihLe only when the optimum decision surface is a hyper- 

plane. In general, this is not the case for the noise which has been 

assumed as indicated by the following example.

Suppose the noise is a result of IT adjacent channel stations and 

that each station corresponds to a coordinate axis of the signal space. 

Further, suppose the noise density as determined by Et. (4*3-16) has the 

following form

PV(VA) = (»± - fr^) (4.4-1)

Since the stations may be assumed to be independent the coordinate 

values of the noise will be assumed to be independent. The joint density 

can therefore be written

W k
Pn(l) » XT ex®(ai - ) (4.4-2)

Fot6 the sak© ©£ simplicity it will b@ assigned that th© systam is ©ymmetric*

Th© ©ptisitasi d©©isi©M sioCac© according to (SeS*3*!!) ca& foe writteii
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(4.4-3)

following equation for the

(Xi + (4o4"4)

|\ 8 -b± T± M± (3^ + 1^) = 0 (4.4-5)

1=1

Since Eq. (4.4-5) is clearly not a hyperplane then optimum reception 

cannot he obtained with a linear receiver.

Although optimum reception with a linear receiver may not be possible 

in a certain situation, it is, never-ihe-iess, important to determine what 

criterion may be used to obtain maximum, performance, i.e., least proba­

bility of error. Although it is possible to determine the probability of 

error from Eq. (2.4-=?), the process involved is tedious and no general re­

sults are possible. For wideband systems it will be shown in the next 

section that the signal-to-noise rati© criterion can be used for an im­

portant subclass of this type noise to obtain useful knowledge of perfora-

TO r ' u 1
TT [ ai " V(Xi " V J
i~l

fu r ji- pf exp [ &i - bt (\ +.^) J

By taking the logarithm of Eq. (4.4-3) the 

optimum decision surface may be obtained*

TO TO
£ ai ' bl (X, - = £ \ - V

i=i i=i

which can be simplified to read

ance.



4#5 The signal-to-noise ratio

The signal-to-noise ratio is a factor which is often used in the

are known a complete analysis of a binary communications system, will 

have as its most important result the relationship between the signal-to- 

noise rati© at the input to the receiver and the probability of error of 

its output# The relationship between the signal-to-aoise ratio at the 

demodulator output and the signal-to-noise ratio at the receiver input 

is also useful, either when used as an intermediate step to obtain the 

relation between the output probability of error and the receiver input 

signal-to-noise rati© or when used directly to evaluate receiver perform­

ance#

From Eq0 (3#2-9) the output of the demodulator can be written

In Eq# (4.5-1) the quantity ° S2 is the signal component of and 

N * E2 is th© noise component# The output signal to noise power rati© 

is given by

evaluation of communications systems# When the statistics of the noise

(4.5-1)
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where <T^ Is the variance of the random variable 1^ and ■where 

n = 2ff. Substituting If. (4.5-3) into Ef, (4.5-2) results in

i=l

(4.5-4)

In order to facilitate the further analysis of Ef. ( 4.5-4) it will 

he assumed that the noise is white, i.e.

(4.5-5)

where c2* is the variance of the noise If. For this ease Ef. (4.5-4) 

becomes

n

2'or

"|2
E «E.1 2 J
"k

i=l

(4.5-6)

I*fe is aggaremt from B<i* that for fixed values of and n

the fuantity (SH)@ is a function only of the direction of Eg . If only 

the direction of the vector ..Bg is allowed to vary then the demoninator of

the right hand side of Ef. (4.5-6) is a constant and (SIR)q is a maximum

when Mae numerator is a maximum. Clearly this is the case when E„ has



either the same or the opposite direction of Ep i.e. the maximum value 

of (SWR)0 is obtained when

\ (4.5-7)

where k may be positive or negative.

Substituting Eq« (3.4-7) into Eq. (4.5-6) gives the following re­

sult.
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(4.5-8)

?t = k X«E1 » kjiy 2 + k (4.5-9)

Since [l^2/ <7* is simply the input signal-to-noise rati© (SHR)i Eq. 

(4.5-8) can be written

Max(SM)0 = nfSIl^ = 2WT(SHR)i (4.5-1©)

which is identical to the results obtained by Hiring If the noise at the 

input to the receiver is not white then a prewhitening filter can be 

placed ahead of the demodulator (see Fig« 4.5—1). In order to simplify 

reception it is desirable that the prewhitening filter have a constant 

delay over the input signal band. In this case the filter can be repre­

sented as the following linear transformation of the input signal space

JL X. I. i x a
1*1

X' (4.5-11)
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where the correspond to frequency domain samples of the input signal 

plus noise and is the filter gain at the sample frequencies. In order 

to transient the noise at the input of the filter to white noise, H. must 

satisfy the following equation

„ 2 _8 A <r
h °l .mlT ,5-:

where the 0~^ *s are the variance of the coordinate values of the input 

noise and O' is the variance of the noise at the output. The gain factor 

A is an arbitrary constant and will be taken equal to unity for the sake 

of convenience. The signal at the output of the filter is

I cr
& <r. hih (4.5-13)

and the signal-to-noise rati© at the filter output is

} 1
;l2 n

cr
i
a:

i=i
(4.5-14)

The expression on the right hand side of Eq, (4,5-14) is the average of 

the coordinate signal-to-noise ratios.

By combining Eq. (4,5-10) and (4,5-14) the following general expres­

sion for the maximum output signal—to—noise rati© of a linear receiver is 

obtained.

(4,5-15)



It is evident from Eq. (4*5-15) that the maximum output signal-to- 

noise is equal to the sum of the coordinate signal-to-noise ratios*

Tn this case the loeal carrier must have the same direction as E^* 

to realize maximum, signal-to-noise rati© at the output$ i.e.y

^ E1

For this case the output becomes

n

Ta * L xi Si
i=a

(4.5-16)

1=1

Eq. (4.5-13) is also valid for the signal plus noise vector X% i.e.

m
-*•
Xf

<r
i=i °t

hh (4.5-17)

and therefore Eq. (4.5-16) can be written

m

d
k<F

1=1 n
% (4.5-18)

From Eq. (4.5-18) it is evident that identical performance t© the 

linear receiver having the prewhitening filter described above can be 

obtained with a simple synchronous receiver {which does not have a pre« 

whitener) having a loeal carrier

.»
E„ = 2

kcr

i=l a °l
2 Eli % (4.5-19)

In many eases it is possible to easily determine the output probability



of error from the signal-to—noise ratio at the output of the demodulator,)

If the random variables are independent with common distributions

then, according to the central limit theorem, the output of the demodulator 

win have a gaussiam distribution#

This will also be true if there is some variation between the quanti­

ties so long as they can be grouped such that each group contains a

relatively large number of random variables whose distributions are the 

same# In such a ease the probability of error can easily be determined#

If the system is symmetrical and the receiver has a zero threshold then 

it can easily be shown that

erf ^(3/2)
0

1
■•5-

If, for examples the noise consists of a very large number, say one 

thousands narrow band stations then it appears reasonable to assume that 

Eq# (4o5-20) will give a good approximation to the probability of error 

which will be encountered#

This approach is extremely useful since, in most eases, the probabili­

ty densities of the interference will not be known, thus, main wg a more 

exact analysis impossible#

In Chapter I? it has been shown that, in general, optimum reception 

cannot be obtained with a linear receiver# Optimum reception can be 

obtained, however, in certain cases and a sufficient condition for such 

a ease to exist has been derived#

The types of noise which may be encountered in practice have been 

discussed including gaussian noise, interference from narrow band stations



and impulse noise© The nature of the noise which results from a large
i

mimhp.r of similar interfering narrow band stations has been analyzed in 

detail#

In general^ great difficulty is encountered in determining the con­

figuration of the linear receiver which results in the minimum probability 

of error'for'a given type of noise# For this reason the signal-to-noise 

ratio criterion is of importance# In this chapter the configuration which 

results in maximum signal-to-noise rati© has been derived using geometrical 

methods based on the signal space concept#



CHAPTER V

THE APPLICATION OF LINEAR RECEIVERS (Part II)

5 o.l Introduction 1

In Chapter IV the performance of linear receivers was analyzed when 

the interference was from narrow band stations* In this chapter the case 

where the signal is perturbed by impulse noise will be examined# The re­

sults will be extended to include both impulse noise and noise from narrow 

band stations#

5*2 Types of impulse noise

Impulse noise can be caused by natural phenomina such as lightning 

or it can be man-made such as, for example, switching transients# Although 

usually it is not periodic, in some cases it has a periodic nature as, 

for example* commutation noise# In many cases the occurrance of a pulse 

of noise depends to some degree on the time of occurrence of previous 

pulses# Thus, it is evident that to properly specify the statistical 

nature of the noise it is necessary to refer to the specific type#

In 'many cases, however, impulse noise which is objectionable is 

characterized by very strong, short duration pulses which are separated by 

relatively long intervals# If the data rate of the communication system 

is sufficiently high the probability of more than one impulse occuring in 

a single baud will be negligable# In such cases, it is sufficient to 

specify the amplitude distribution and average rate of oeeurranee# The 

affects of this type of noise will be analyzed in the next section#
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5,3 The analysis of systems utilizing quasi-random binary carriers when 

perturbed by impulse noise

As was indicated in the previous section, impulse noise can often be 

characterized by high amplitude, short duration bursts of noise which 

occur infrequently.

The affects of this type of noise on the following types of systems
' v

will be analyzed? (1) systems with low pass signals, (i,e», signal spectra 

centered about zero) and (2) systems with band pass signals (i«e,, signals 

whose speetra are centered about fQ W/2 where W is the signal bandwidth).

The Low Pass Case, Since the results depend to a certain extent on

the nature of the signal waveform it is necessary to assume a specific 

waveform characterization in order to proceed with the analysis. Of most 

interest are the waveforms consisting of sequence of quasi-random binary 

pulses which are produced by shift register generators.

2WT

i=l

(5.3-1)

where

u(t - (i - l)/2W) - u(t (5.3-2)

and where the amplitude of the i-th pulse of the sequence A^j is

JL^ = 1^ v/lW (5.3-3)

For a typical binary system where the 11 space11 waveform is the negative 

of “mark*1 waveform the receiver local carrier e2(t) will have the same 

shape as the “mark*1 waveform. These waveforms can be written in vector
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(5.3-4)

(5.3-5)

(5.3-6)

where k is a constant which for convenience is taken greater than zero 

and where

« A2/2W (5.3-7)

In the absence of noise the output of the finite memory integrator 

at the end of the baud is

2WT
= M»E2 = k ^ =k A2T (5.3-a)

i=l

if the input to the receiver was a "mark" waveform, and the output is 

2WT

V4S H “ X ' * 4 * - k ^ (5-3'9)
■' 1=1

if the input was a •‘space*’*

If, for a particular baud, the input signal is perturbed by an im­

pulse having the form of a Dirac delta function

n(t) = 0 S (t. r tj) (5.3-10)

form as follows:

zm
‘i h

i=l

—*■ —► 
S « -M

E_ = k M 2
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where t is measured from the beginning of the baud and tj is the time of 

occurence of the impulse then the output due to the impulse is

f
n(

©

T 2Wf
I C 6(t - t^) k^T M^CtJdt 

* @ ' ■ i=l

= 0 kj^y/ll (5.3-11)

where the subscript i is given by

(i-l)/gW< %x< i/m (5.3-12)

If, as is usually the case, the waveform M is chosen such that it has a 

zero de component then the probability that a particular picked at 

random will be positive will be equal to the probability that it is nega­

tive, If the time which the impulse occurs is a random variable which is 

uniformly distributed over the duration of the baud then from Eq, (5.3-7) 

and (5*3-11) it is evident that the probability density function of the 

output of the integrator due to the presence of the impulse is

where pe(6) is the probability density function of the impulse amplitude 6.

If the decision threshold is set at zero then the probability of 

error 1 is given by

<*«*> r(K) 

+ **<*, { Tds + Vdn> 0 } P(S) (5.3-14)



where P(M) is the probability that a mark was transmitted and P(S) in the 

probability that a space was transmitted. From Eq* (5.3-4), (5.3-9) and 

(5.3-13) it is evident that

{Tarn + **< °).»!» f Ju - ▼a.1’ °)

which reduces Eq. (5.3-14) to

P* ' *"*> { van< -Tcta }

(5.3-15)

(5.3-16)

The right hand side of Eq. (5.3-*l6) is the probability distribution 

function of V^m evaluated at -V^m and therefore with the aid of Eq. 

(5*3-13) the probability of error can be written

'dm

e
1

2kA
* \(-Vw) 3 wan

-00

With the aid of Eq* (5.3-8) the above Eq. can be written

(5.3-17)

-AT
P =6 f [ pc(z) + Pc('z) ] **'

which in terms of distribution function of Q becomes

_ 1 P .4= ■— .
e 2 P (-AT) + 1 « P

C - ; ^ e

3

If the impulses have an average occurrence of 0 impulses per baud 

than the average probability of error due to impulse noise is

v-1° 1 + P (-AT) - P cv / c
3

(5.3-19)

or in terms of the average signal power P = A*



(5.3-20)

Further results depend, of course, on a knowledge of P (G) and "0* 

If, for example, the impulse noise has a constant amplitude G • G^AT 

then from Eq. (5.3-19) it is clear that

There is almost always some sort of filter between the input of the 

receiver and the demodulator*. For this reason the noise pulses at the in­

put to the demodulator will generally not be impulses but pulses of finite 

amplitude and non-zero duration. The length of the pulses will depend on 

the nature of the input filter and since the input filter is usually made 

approximately equal to the bandwidth W of the signal the length of the 

noise pulses will be in the order of l/2W. Such a noise pulse G n(t) is 

shown in Fig. 5*3-1. For this particular example the pulse occurs at time 

t^ and has, for all practical purposes decayed to zero at a time ^ later. 

Furthermore, the waveform of the pulse n(t) is everywhere non-negative and 

G is a positive multiplier. The output of the finite memory integrator 

at the end of the baud due to the presence of the pulse at the input of 

the demodulator during the i-th pulse of the local carrier ^(t) is

cl> 1 

e1<!
(5.3-21)

1$
<fo(t - %) eg(h) dt (5.3-22)

©

where t^ has the probability density function



Kt'vr
2W> I
0; otherwise (5.3-23)

Since, in general, the noise pulse overlaps two of the poises ©f

©2(t), then there are four possible forms which Eq. (5*3-22) can take* 

These forms correspond to the four following cases 

Qase (1) A

ease (2) A± - “A

ea« (3) A± - A(1U) - -A 

Qase (4) A^ » ”A(i+i) “ —A-’

where kA^ and k^+l) are *ke amplitudes of i-th and (i+l)-th pulses of 

©2(b) and kA is the positive square-root of the average power of ©2(t)» 

For case (l) the output of the integrator is independent of t^

and is given by

h.m
7a_ « kAC \ n(t) dt 

©
(5.3-24)

The integrator output for case (2) depends on the value of t-^, how­

ever, and is

1_ 
Z' 2¥

'dn. = Me'
2 V

n(t - t^) dt - MC t1
•3-25)

which can be written
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t1 H *
i
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FIGURE 5.3-1



where

(5.3-26)

For cases (3) and (4) the outputs are

"" S5*' iw.’tjT
eta- eta,

- 3 1

and

(5.3-27)

(5.3-2S)

(5.3-29)

Designating the conditional density fmnetions of Vdn for cases (i),

(a), (3) and (4) as P^V^l), P3^VdJ3^ and P4^Vdn^ ^ respec

tively, the density function of the output can be written

-i * i
. (5-3-30)

The distribution function of the output is

dn

*) ■ s Px(x|l)dx + 5

1dn

j 1
P2:(X' + f I P3(x|3)dx

'Ceo.

Tdnif Pk(xl*i-)ax (5.3-31)



From Eq. (5.3-23), (5.3024), (5.3-25), (5.3-®«) and (5.3-29) it is 

evident that

^3^13) = (5.3-32)

and

in

and therefore .

(5.3-33)

in 'in

+ ¥

rin
to + 5 I pi(" 2

+ ¥

St*
z iz (5-3-3*0

Letting -z = x9 Eq. (5.3-34) becomes

Tin in
\ V 1 . 1

fa* = I ¥ ix + j-

-Tin
-Tin

ix (5.3-'

From Eq. (5.3-24) it is clear that

f )fa*Vl&JV -

Since n(t) ^ 0 it is also evident from Eq. (5.3-23), (5.3-24), (5.3 

and (5,3-27) that ; r ' '

(5.3-36)
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(5-3-37)

With the aid of relationships (5.3-36) and (5.3-37), Eq. (5.3-35) 

can he written

0; ~< vdE< -7^

dh ■

(5-3-

From Eq. (5.3-26) and the fact that C n(t)^- 0 it is clear that

M. > ©ix *

and therefore

(5.3-39)

etn;

where

rJ -Tdn^ vdn< X

(5.3-14.0)

:«§ - V -2W (5.3-41)

By substituting Eq. (5.3-41) into the right hand side and performing 

the indicated integration, Eq. (5.3-4©) becomes



-<Va»<-V

P<V = i f + ! [ y(Ta»> - y(-var.> ] ;
"^cto^ Vdn ^ ^dn^

(5*3-

where y(V^) is given implicity by Eq. (5.3-26), i.e.,

(Y, = 2kAC an. i
/c

dt - Ydn.
(5.3-43)

For a symmetrical binary communications systems (i.e., P(M) * P(S) 

and S * -M) the probability of error is

P = P(-V, ) (5.3-44)
e am

\
where V, is the output of the finite memory integrator when the receiver dm
input is a “mark** and is given by

•Y.- ~k A2T (5.3-45)

and where it has been assumed that the input filter has not appreciably 

distored the input waveform.

Therefore, from Eq. (5.3-42) the probability of error is found to be

~^CA2<oo 
kT <*-A ^

y(-kA2T) -y(kA2T) 0< A2*£
¥dni

kT

(5.3-46)



If G is a negative multiplier the above results can be shown to apply by 

interchanging ease (l) with case (3) and ease (2) with case (4).

If G is a random variable with a probability density pc(C) the prob­

ability of error cam be obtained by taking the expected value of the right 

hand side of Eq. (5*3-46) and, therefore,

Pe = | + j | ^ y(-k A2T) -y(k A2f) J pc(c) dC (5.3-47)

J —00

is the probability of error if G is unbaounded, If G is bounded then Eq* 

(5.3-47) is valid for the range © < A2^ (V^)waY/kT and zero over the 

range (fj_)___ /kT -< A*oo where (Vj_ )___ is the maximum magnitude of

(5.3-48)

and where (G) is the maximum magnitude of the random variable G, max
fhe average probability of error can then be determined by multi­

plying P by the average occurrence of the pulses per baud ©, i.e,,
©

f -If (5.3-49)
e e

Although the above analysis is restricted to noise waveforms n(t).j>© 

which have a duration l/2W, similar analyses can be made of waveforms of 

longer duration. It is also possible to make analyses of specific wave­

forms having zero crossings by using the same methods,

U£l IUCLA.
¥, and is given by an

uu met*.

l
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T© illustrate the use of the above results consider impulse noise 

consisting of square pulses, i.e.

1; 04 t< aw
0; t< 0 and t > ^

(5.3-50)

substituting Eq. (5.3-50) into Eq. (5.3-43) yields

cbr

1. = 2k AOdn ' dt - V (5.3-51)

which, when solved for y, results in

y(T * Ydnl (5-3-52)

. 2KAC ■
The average probability of error can now be obtained by substituting Eq. 

(5.3-52) and (5.3-47) into Eq. (5.3-49)

which becomes

2kAC

kA T + Vdni
2kAG

-00

(5.3-54)

If the pulses have a constant amplitude then
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Fe

1 AWT . 
;• 2 " 2C J * 0<24SX.'<e

0 j 2AWT> C

It is evident from Eq. (5.3-55) tkat Pg is linearly related to the 

product of the signal dimensionality times the rati© of the signal ampli­

tude to the noise pulse amplitude in the range where this product is less 

than unity and that P is sere in the range where this product is greater 

than unity.

The Band Pass Case

When a radio link is used, the usual procedure is to translate a low 

pass signal to some convenient point in the rf spectrum before the signal 

is radiated. To demodulate this signal, the signal waveform must be multi­

plied by 6g(t) eos(2jt fjt+ 0^) where ©gtt) is the low pass waveform pre­

viously referred to and is the translation frequency (see Pig. 5.3-2).

If the noise consists of impulses, where it is assumed that no more 

than one impulse occurs during a given baud, then the-noise n(t ) at point 

”AH due to a particular impulse I 5(t-t^) is

m(t)> eosfaatjt + 0^) W §(t - t1) (5.3-56)

where t^ is a random variable with a probability density which is uniformly 

distributed,over the baud interval 

Eq. (5*3“56) can be written

n(t) = 0 S(t - t^) (5-3-57)

where
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(5.3-5$)C = U e©s(2itf^t1 + 0^)

The random variable C is the product of the two random variables ¥ 

and v = cos(2jt f^t-^ + 0j)B If the translation frequency f^ is large com­

pared with the reciprocal of the baud length l/T then it can be assumed 

with little error that 0 - (2a f^ + 0±) is uniformly distributed over 

the range 0 & Ba. From this hypothesis it can easily be shown that

the random variable v has the probability density function

C—--1-------; V2<1 (5.3-59)

Pv(v) « Jt Jijl - V2

[ 0 ; V2>1
From Eq. (4.3-15) the probability distribution function of the random 

variable C is

Pe Pu(u)pv(v)dv dU + Pu(u)py(v)dv d U 
(5-3-60)

The following result is obtained when Eq. (5.3-59) is substituted 

into Eq. (5.3-60) and the integrations with respect to v are performed.

Pc
1 1 
2 " a sin PU(U) dU

P.u dU (5.3-61)



Eq. (5.3-57) is the same as Eq« (5.3-10) and. therefore the resulting 

average probability of error is given by Eq. (5.3-20). The substitution 

of Eq. (5.3-61) into Eq. (5.3-20) yields the following expression for the 

probability of error.

pu(u) m

i sin 1 au
(5.3-62)

For the case where I is a constant quantity, Eq. (5.3-62) reduces to

Pe = 0 | | - | sin"1 (AT/u) J (5.3-63)

Usually there is a filter at the input to the receiver. The effect 

of this filter is to cause the waveform at point “A11 resulting fro® an 

impulse at the input to have a finite amplitude and a length of the order 

of the reciprocal of the filter bandwidth*

In general for any noise waveform n-^(t) at the receiver input, the 

noise waveform at point "A" is

n eos^ajtfjt + 0j) h^u) n^t - u) du (5.3-64)

where h^Ct) is the impulse response of the input filter. If the input 

filter is assumed to be summetrical about some frequency fQ then the



transfer function H-^(4®) of the filter can be expressed in terns of a 

particular low pass filter H(j® ) by the following relationship*

H-jUcd) « 1(4® + 4®0)+ 1(4® - 4®0) (5.3-65)

The impulse response of the filter Can be determined by taking the 

Fourier transform of Eq. (5*3-65).

-76-

which can be written

+ 4®0) + 1(4® - 4®0) exp(jcGt) df (5.3-66)

exi(-42jtf0t) H(42«u.) exp(42itut) dm

+ exp(j2jtfQt

(5.3-67)

H(j2jrv) exp(42icvt) dv

where u = f + f. and v = f - f„*

The two integrals in the right hand side of Eq. (5.3—6?) are simply 

the expression for the impulse response of the low pass prototype filter 

and therefore

h^t) = 2h(t) e©s(2«f0t) 

which can be written in the following form

h^(t) = 2h(t) cos(2jtf0t)

(5.3-68)

(5.3-69)
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If the transmissions are double sideband, i#e<> symmetrical about f^, 

then the center frequency of the filter fQ will be made equal to f^* For 

this case according to Eq* (5 *3*^4) and C5 ♦3—^9)^ the noise waveform at 

point A will be

2h(u) cos(2itf1 u) nx(t u) du„
(5-3-70)

Tf the input noise waveform n (t) is the impulse TJ &(t—t-^) then Eq. 

(5.3-70) reduces to

n(t) = 1 h(t -i^) j^cos^ + + cos^f-jt + 0± -

(5.3-71)

Since the finite memory filter is a type of low pass filter then there 
will be little contribution from the second tern of the sum in the right 
hand side of Eq. (5.3-71) and for all practical purposes n(t) is given by

a(t.).-..C>(i},--.^L.) (5.3-72)

where 0 is the random variable

0> IT cos (0^ +

and has the probability function given in Eq. (5.3-61)

The output of the finite memory integrator at the end of the baud is

0 l(t « e2(t) dt .3-73)



which is of the same form as Eq. (5.3-22). If the same assumptions are 

made about the length of the impulse response h(t), viz., the length of 

the waveform has essentially died out at t * l/2¥ then the results of the 

development following Eq. (5.3-22) apply. Thus, the probability of error 

is given by

W
2

y(-M2 T) - ] pc(e) ac (5.3-74)

where y(Vdn) is given implicitly by

dn'
7^ 2kAG dt (5.3-75)

If the transmissions are single sideband then fQ «*■ f^ + W/2 where 

the plus sign is chosen for upper sideband transmission and the minus sign 

corresponds to lower sideband transmission. It can easily be shown that 

the noise wavefom which results from an impulse at the input is

2fh.(t. - t^)' cesCssrfjt

and the low frequency component is found to be

n(t) =Uh(t - t±) cos(Wt/2 - Wt^/2 + 0± + Eaf^) (5.3-76)

The probability of error can be found by a method similar to the one used 

previously (i.e. Eq. (5.3-24) to (5.3-49) taking into consideration that 

n(t) as given by Eq. (5.3—76) will change polarity for certain values of
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the quantity

" I %x - % - ^Vi

5.4 The analysis of systems having carriers consisting of quasi-random 

impulses when perturbed by impulse noise

In the analysis of systems which are perturbed by impulse noise, the 

following question arises* What is the nature of the signal waveform which 

is least vulnerable to impulse noise? If the energy of the signal waveform 

is held constant, it appears that in many cases the probability of error 

can be reduced (in comparison to the case of the last section) by selecting 

a signal waveform which is zero throughout the major part of the duration 

of the baud* In this manner the probability that the noise pulse occurs 

at a time that the local carrier is non-zero is made small*

In this section, the case will be examined where the carrier consists 

of pulses, each corresponding to a baud and each located in a quasi-random 

fashion during its baud period and having a quasi-random polarity (i*e* if 

a carrier pulse is picked at random then the probability that it is posi­

tive is one-half)* It will be assumed that the signal pulses at the input 

to the receiver are square with a duration of l/2W and have an amplitude 

A^*

Since the ratio of the time during whieh the signal waveform is non­

zero to the baud period is 1/2WT then the probability of the integrator 

output noise voltage Y^ being non-zero is ©/2WT, where 0 is the average 

occurrence per baud of the noise pulses* If the noise pulses have the 

waveform given in Eq* (5*3-10) i»e*

. d §(t - 1^)'



If the amplitude of the locally generated carrier is kA^ then the 

signal component of the integrator output at the end of the baud will be

Jo

where

e^(t) = + A^ £ u(t - t^) - u(t - - l/2W)J (5.4-2)

and

e2(t)■.*.+■ k%~ \) " - l/2W) J (5.4-3)

Therefore,

Vdm = k Al/2W (5.4-4)

The noise output, when it occurs, will have an amplitude

lVd»l =lkAicl (5.4-5)

Thus it is evident that the derivation following Eq. (5.3-10) can 

be made to fit this situation if AT is replaced by Aj/2M in the equation 

following Eq. (5.3-17).

The probability of error obtained from Eq. (5.3-19) will be the con­

ditional probability given that the noise pulse occurred during the inter­

val that the signal was non—zero, i.e. Q/2WT, and therefore the average 

probability of error is

A - I [ 1 + W2tt) - Pc(V2ff) ] (5,4'6)
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In terms ©f the average signal power

Pg = A^/2WT (5.4-7)

The probability of error is

(—)V2OT' i + p (-t jf /Tiro) - pn(T /r f \rmC5 S w o
(5.4-8)

Similarly, the resulting probability of error for the bandpass case 

can be obtained by replacing AT by A^/2W in Eq» (5.3-62) and 0 by @/2WT.

0 ) 1 1
2WT ) 2 it dU

(5.4-9)

Of particular interest is the case where the impulses have been 

filtered previous to demodulation. From Eq0 (5.4—3) it is evident that 

for the low pass ease the noise component of the output of the integrator 

at the end of the baud will be

where h(t) is the impulse response of the filter and z is the random

variable
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z %.* it"" h (5.4-11)

having a probability density function

-* ( SWj 0^ y <
1 i

( 0; otherwise
(5.4-12)

The probability distribution function can be determined in the usual 

manner and is

™ *(vto)

Tfdiere zCV^) is given implicitly by Eq. (5.4-10),

= 1 P a,*' e •• 2 2WT } [p<-v -p^+i]

(5.4-13)

(5.4-14)

which with the aid of Eq, (5.4-13) becomes

P = JL
e 2¥T (5-4-15)

If C is a random variable, the value of PQ as obtained in Eq. (5.4-; 

must be averaged with respect to 0, i.e.

Pe =2§T \?+Vf_ [yl(*V •y<Ya») ] pc<C) dC \ (5‘k-U)

2q» (5.4-16) also applies to the bandpass ease since the random 

variable C can be related to the input impulse amplitude U by the method



described in the last section.

5.5 The affects of noise which is a combination of impulse noise and

•interference from narrow band stations

In this section, the method by which the probability of error ean 

be determined will be omtlined for the case where the noise is a com­

bination of interfering narrowband stations and impmlse noise. Since, 

in general* the spectrum of the interference from the narrow band stations 

will be very jagged, it will be assumed that there will be a filtering 

operation on both the input signal plus noise waveform and on the locally 

generated carrier waveform (as shown in Fig. 5.5-1(a)). The affect of 

this filtering on the output component resulting from impulse noise will 

now be analyzed. The output of the input filter is

n
(5*5-1)

isl­

and the output of Mg is

(5*5-2).

i=l

The output of finite memory integrator at the end of the baud is
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For the system shown in figure 5»5-l(b) the output of filter H2 is

n

X*' = > Xi Hii H2i %
i=l

(5.5-4)

and the output of the integrator at the end of the baud is

n

Td=^'*E2" 1 (5,5‘5)
i=l

From Eq. (5.5-3) and (5.5-5) it is evident that the two systems are 

equivalent.

If eg(t) is either a quasi-random binary sequency or quasi-random 

impulses then the material which was previously developed in this chapter 

can be used where the impulse response referred to is the impulse response 

of the combination of and M2, i.e.

h(t)
f

H2(*d) e cut df (5.5-6)

If interference from narrow band stations is present as well as im­

pulse noise then it is necessary to determine the probability density 

function of

v B V + V,dn dni dns
(5.5-7)

where 1, . is the component due to the impulse noise and .? is the com-fiTn dns
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ponent due to the interference from the narrow band stations,, 7. . and
dm.

^dns are indePendent random variables and their density functions have 

been determined (or approximated) in Chapter IV and Chapter V„ The den­

sity function of ¥dn can be determined in the usual manner by convolution

where P^V^) and pg ^dns^ are the density functions of 7^ and ^ 

The probability of error ean now be determined in the usual way 

and for a symmetrical system

where V^ is the signal component of the output of the integrator when a 

'•mark” is transmitted*

The presence of a prewhitening filter will cause the synchronous de-

smeared over a relatively long interval. If, for example, the prewhitener 

consists of a bank of filters where the bandwidth of each component filter 

is l/T then the impulse response of the prewhitening filter will be in the 

order of T seconds. It is evident that, in this case, the advantage of 

using a quasi-random impulse carrier to reduce the systems vulnerability 

to impulse noise will be nullified. Any attempt to reduce the vulnerability 

to impulse noise by increasing the bandwidth of the component filters will

CO

x) dx (5.5-8)

•V

cte (5.5-9)

modulator output which results from impulse noise at the input to be



result in an increased vulnerability to narrow band interference. Thus, 

it is apparent that a system cannot be designed to have minimum vulner­

ability to narrowband interference*

In this chapter, the performance of linear receivers has been analyzed 

for the ease where the interference consists of impulse noise* Two types 

of linear receivers have been considered* The first type of receiver em­

ploys a quasi—random binary noise carrier and the second uses a carrier 

consisting of quasi-random impulses. The results obtained are extended 

to include interference which consists of narrowband noise as well as 

Impulse noise* It was shown that minimum vulnerability to impulse noise 

cannot be achieved while at the same time maintaining minimum vulnerability

to narrowband interference.



CHAPTER VI

NON-LINEAR RECEIVERS

6.1 Introduction

In the last three chapters it has been shown that a properly designed 

linear receiver can be expected to perform relatively well in the large 

class of situations where the optimum decision surface could be approxi­

mated by a hyperplane. In this chapter several non-linear methods will

be discussed which can be used to obtain optimum or at least nearly 

optimum reception for a much more general class of situation.

6.2 Computation of the likelihood rati©

In section 2*5 the likelihood ratio was shown to be equal to

Pa(% " m) f (m)

Pa(? - S) P(S)

where pn(N) is the probability density of the noise vector

(6.2-1) 

and when

P(M) and P(S) are the probabilities of having transmitted a mark and a

space respectively* Here, as usual X, M and S are respectively the re­

ceived signal plus noise, "mark*, and "space? vectors. It was shown that 

the equation of the optimum decision surface is

u x (6.2-2)

and that the optimum decision is "mark" for L > 1 and "space" for L < 1. 

Clearly, one method of obtaining optimum reception is to design the 

receiver to perforn the computation indicated by Eq. (6.2-1) and then 

put out a "mark" or "space" depending on whether this value exceeds or 

is less than unity. Two possible configurations of such a receiver are
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shown in Fig. 6#2—1 and 6.2—2. In Fig® 6®2—1 the input t© the receiver 

is sampled at time intervals of l/2W to get an orthogonal set of coordinate 

values of the signal plus noise vector X® The numerator and denominator 

of the right hand side of Eg.® (6*2-1) are computed separately and the 

value of the denominator is subtracted from the numerator® If this differ­

ence is greater than zero then L is greater than unity and the optimum 

decision is ''mark"* If the difference is less than zero the optimum de­

cision is “space*1® This is accomplished with a decision circuit having 

a zero threshold level®

In Fig* 6®2-2 is an alternative configuration. The input is sampled 

in frequency at intervals of l/T to obtain an orthogonal set of coordinate 

values of the signal plus noise vector X® The method in which these co­

ordinate values are further processed is essentially the same as with the 

configuration of Fig® 6.2-1.

information is known, (i.e. pJ[M), M, S, P(M) andIf all the

then it is not difficult to conceive of the realization of such a
■ ■

receiver. For example, the coordinate values of X can be converted to 

digital form and processed by special purpose computers to perform the 

indicated operations® A difficulty arises, however, in that in general 

we would not expect to know the magnitudes of the received signal wave- 

forms M and S. This implies that the receiver must also contain seme 

mechanism which measures the magnitudes of the M and S vectors at its in­

put and then adapts its computation process accordingly®

6.3 Subdivision of the signal space.

With this method the signal space is divided into subdivisions and 

eaeh subdivision is appropriately tagged with the corresponding optimum
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decision. This information is stored in the memory of the receiver

its coordinate values. These coordinate values are then quantized and 

the combined output of the quantizers (which in each case uniquely corre­

sponds to a subdivision of the signal space) is used to retrieve the 

correct decision from the memory.

Here, as was the ease with the systems described in section 6,2, it 

is necessary to know the magnitudes of the signal vectors M and 8 before­

hand. Furthermore a change in the magnitudes of M and S may require a 

major revision of the information stored in the memory which would make 

it particularly difficult to incorporate a suitable adaptive process*

6.4 Mon-linear coordinate transformations

In this section a method will be described by which a non-linear 

transformation can be determined which* when applied to the coordinate 

values of the received signal plus noise vector, will cause the decision 

surface to be transformed into a hyperplane. Subsequent processing with 

a suitable linear receiver will be shown to result in optimum reception.

It will be assumed that the noise vector M which has been added to 

the signal has coordinate values which are independent random variables
—k»

and therefore the joint probability density of the noise Pa(M) win have 

form

where Pi(li) is the probability density function of the i-th coordinate

(see Fig. 6.3-1). The signal plus noise is sampled (either in frequency 

or in time) in the same manner as was described in section 6.2 to obtain

(6.4-1)



value of the noise

As 'was shown in Section 2*5 the decision surface (see Eq* 2.5-5) 

is given by

p JSf - m) f(m) = p„<X - s) F(S) (6*4-2)
H IX .

The optimum decision will be a “mark“ if

Pn(X-M)F(M)>Pn(X-S)F(S) (6»4-2a)

and a “space” if

Pn(X - M) F(M)<Pn(X - "S) P(S) (6.4-2b)

For the sake of simplicity it will be assumed that the system is 

symmetric, i,e» that S = - M and. that P(M) = F(S) = l/2 which reduces 

Eq. (6.4-2) t©

Pa(X ~ 5) .» Pa(X + M) (6*4-3)

Substituting (6.4-1) into (6.4-3) we obtain

fr fj + %> (6.4-4)
which can also be expressed in the form 

m m
log pi(Xi - M±) <= ^ log Pi(X1 + M.) (6.4-5)

i=l i=l

Now suppose the logarithm of each of the density function is ex­

panded into a Maclaurin series
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l°e VjlVj} - a10. + allHl + a^ + — 

which when substituted into Eq, (6.4-5) yields

m

ai0 + ail 'Xi + a^(Xi - T *

m

Z aw + aii
i=l

which can be simplified to

n
£%*> + +»»««&+ 2\ fP

i*l

'imT0aim+ 8a. i.X.M.) + * * * = 0

Sims the surface can be represented, as

n ®

i=l ^=0
a<A ■0

where

a*n = a41JL + a. m| + &. Ml! + ** io xl x 13 x 15 i

a.1,(2k - l)Mi
k=l

-1)

®il = Iai2 \ + ¥ai4 + 6ai6 Mi +

(6.4-6)

(6.4-7)

(6.4-8)

(6,4-f)



©0

k=l

“18 * 3*13 “i * 10at5 ®i + 21a17 *i + ”

0©
^ (2k + 1)1 _

(IF’^pIfT %(2k + 1) i
k=l .■■'■<•

(2k - 1)

^ =
c=l

h~ 2k *• 1)1
il(2k/- l)X % (J + 2k - 1) Mi

(2k - l) (6.4-10)

A set of non-linear coordinate transformations can be choosen such that

00

- -c- I •« xi (4-4-u)
0=0

where the p^5s are arbitrary constants* When Eq. (6.4-11) is substituted 

into Eq. (6.4-9) we have

B

i=l
1± = 0 (6.4-12)

which is the equation of the hyperplane which passes through the origin 

and is orthogonal to the vector

n

1=1

hh (6.4-13)



Thus, the non-linear coordinate transformation given in equation (6.4-11) 

transforms the decision surface given by Bq. (6,4-4) into the hyperplane 

given by Eq, (6,4-12).

It is important to determine the affect that the transformation has 

on the “mark’1 region specified by Eq. (6.4-2a) and * space" region specified 

by Eq, (6.4-2b), The affect on the "mark" region can be determined by 

employing a line of reasoning on Eq. (6.4-2a) similar to the one used on 

Eq. (6.4-2), This is equivalent to replacing the “equals” sign in Eq, 

(6,4—3) through (6*4—5) and (6*4—7) through (6,4—9) with a “greater than" 

sign. Thus it is evident that the region given by

n oo

- I I
1*1 3=1 '

is identical to the region given by Eq. (6.4-3), i.e., the "mark" region.

It is evident that any point X satisfying inequality (6.4-9a) which is 

subjected to the non-linear transformation will map into a point satis**

n

> 0
i=l

(6.4—12a)

Therefore, the “mark” region given in Eq, (6.4-2a) is mapped into the 

semi-infinite region given by inequality (6.4-12a) which is all the region 

on one side of the surface given by (6.4-12).

1 similar analysis shows that the “space” region given by inequality 

(6.4-2b) is mapped into the region
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m
ei Yi < 0

i=i

■which is the region on the other side of the surface given by (6.4-12)* 

Prom the foregoing it is clear that the optimum detection can now be 

achieved through the use of a synchronous receiver having a zero threshold 

and a local carrier as specified by Eq. (6*4-13)* Two possible configura­

tions of such a receiver are shown in Fig. 6.4-1 and 6.4-2.

In practice the operations specified in Eq. (6.4-11) would be 

approximated with series of finite length.

Suppose the series of Eq. (6.4-10) converges sufficiently rapidly

that ean be approximated with one term.

a
13

(4 +1) + i ) Mi (6.4-14)

and

OS

0,
to *1) %(J-M} ^L 4 (6.4-15)

Here it is convenient to choose (3^ = and

00
+ i) ■a£,(5 +...i)"3^ (6.4-16)

The form given by Eq. (6.4-16) is especially useful since I does 

not depend on M but only on X. This means that reception ean be accom­

plished without previous knowledge of the magnitude of M*
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Whether the approximation given by Eq. (6.4-14) is appropriate in 
a given situation can only be determined by examination of Eq, (6.4—10).

In general, however, we may anticipate that for a given situation the 
approximation will be valid for sufficiently small signal-to-noise ratios. 

The following example will be used to illustrate the method which was 

derived above. Suppose that it has been determined that the noise when 
sampled in time at intervals of l/2W can be represented as 2WT independent 
random variables having a common probability distribution whose density 
functions are symmetrical about the origin. Suppose further that the log” 

arithms of these density functions can be represented with reasonable 

accuracy by the following Maclurin's series.

log pi (I.) * a§ + 2Ut - (6.4-17)

% ItA graph of p.(l.) - ,1265 exp (21. -M. ) is shown in Fig, 6.4-3.
11 3. 3.

We shall also assume that the signal M is a psuedo-random binary noise
2 2 2sequence such that * M where 2WM is the average signal power. 

With the aid of Eq. (6.4-1©) the following values are determined

a. = @
X®

m ss -il a -:i

ai2 0 (6,4-12)

ai3 " ■ 1

~ © for 4 >3
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The exact expression for as given by Eq* (6*4-11) is

h * (4‘ ’ *4 (6.4-19)

where g. has been set equal to M. 0j- x
Through the use of £q0 (604-9) it is possible to determine the 

equation of the optimum decision surface prior to the non-linear trans­

formation

a

£-1

which reduces to

4 Mi x| = o

i=l
0

(6*4-2©)

(6*4-21)

It is of interest to examine the decision surface generated by Eq* 

(6,4-21) for the case of a two dimensional signal space* Clearly a 

solution is

.3i-+32-® (6,4-22)

The root corresponding to this solution can be removed yielding an easily 

solved quadratic having the following solutions

The curve given by Eq* (6*4-22) is clearly a straight line and 

it is possible to show that the curve of Eq* (6*4-23) is an ellipse 

whose major axis makes a 45° angle with the X^ axis* A graph of these
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Mark
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-1©4-

2
curves is show in Fig0 6.4-5 where - ©.1. In the figure the "marie" 

and "space" signal vectors are indicated by M and —M respectively* The 

optimum decisions associated with the various regions bounded by the de­

cision curves have been determined in accordance with the likelihood rati© 

and are indicated on the figure by the words "mark" and "space"* It is 

interesting to note that the "mark" signal point lies in the "space" de­

cision region and the "space" signal point lies in the "mark" region* 

Clearly no linear receiver is capable of optimum reception under these 

circumstances*

It is clear from an examination of Eq* (6*4-19) and (6.4-2©) that 

the transformation given by (6*4-19) produces a decision surface which 

is a hyperplane and optimm reception can now be obtained with a linear 

receiver having a zero threshold and the following local carrier as 

given by Eq* (6,4-13)

m
kB k M. I* x x * k M. (6*4-24)

i=l

where k is an arbitrary constant 0

The output of the integrator of the linear receiver is

n

= k B*Y ;* k M. X. l x (6.4-25)
i=l

With the aid of Eq* (6,4-19) and the fact that Z± ■ + 1^ the

elements of the sum are found to be equal to
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%) ~ ■+ ^)3

■.« % - % k| - 3*4 4 * ^ ^ Mi % + ^ ■ 2*f) (6.h-26)

That each of the are independent random variables -with ecramon distri­

butions ©an be shown by examination of Eq. (6,4-26) and by recalling the 

properties assumed for and (namely that the N. are independent ran­

dom variables whose densitites are common and symmetrical about the origin
2 a

and that 2Wi^ = 2WM which is the average signal power)* From this we can

infer that is a random variable with a gaussian distribution* The

probability of error P. is©

P = i _ i erf 
e z 2

where E(M^Y^) and

n I ^ )

\/sm 

2
are the mean value and mean squared value of 

the random variable MJL » For a signal power of 2WM^ = *2W these quanti­

ties are found to be

00

i¥t> (6,4-28)

Vif - C Y Li xi
(6.4-

The output signal-to-noise ratio is



0.22n (6,4-3©)

a E2(M. T.)

(sim) - —------r-...\ . ' •
Bd^) - 1 (M^)

If instead ©f the non-linear receiver described above a linear re­

ceiver is used which has a zero threshold and the same local carrier then 

the signal-to-noise ratio is found to be

SHE - 0o12n (6.4-31)

which indicates that the non-linear transformation gives an improvement in 

the signal-to-noise rati© of 1.83 (2„62db).

If* for example, n = 100 the probability of error of the output of 

the non-linear receiver is 1.32 x 10 ^ while the probability of error for 

the linear receiver is 2.65 x 10*"^o

From Eq. (6.4-18) it appears that the approximate form given by 

Eq« (6.4—16) would be useful. In this case the non—linear transformation 

is
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J± - 4^ - 4XJ (6.4-32)

It is evident that Eq. (6.4-32) is equivalent to equation (6.4-19) 

with set equal to zero and thus the decision surface in two dimensions 

corresponding to lq<, (6.4-32) can be obtained from Eq. (6.4-22) and 

(6.4-23) by setting equal to zero# Therefore the decision surface is 

given by

Xi + Ig 85 ®
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xl± \fk

ani the difference between the curves given by Eq« (6.4-33) and (6.4-34) 

and Eq0 (6«4**22) and (604c”23) with set equal t© 0.1 is a difference

in the length of the major and minor axes ©f the elipses.

The effectiveness of the transformation given by Eq. (6.4-32) can 

be determined by comparing the decision surface which it generates with 

the optimum surface previously determined. This comparison is made in 

two dimensions in Fig. 604“60 As can be seen the smaller the signal—to— 

noise rati© the better the approximation becomes which in general can be 

considered a desirable property since excellence of performance is of 

greater importance at low signal-to-noise ratios that it is at high 

signal-to-noise ratios.

6.5 Summary

Three methods of obtaining optimum reception through the use of 

non-linear techniques have been discussed in this chapter. The first two 

have the serious disadvantage that the parameters of the receiver must be 

determined in accordance with the strength of the received signal. An 

approximate form of the third method which is valid for i signal-to- 

noise ratios is independent of the strength of the received signal, how— 

ever. For this reason, this method is considered to have the greatest



CHAPTER VII

APPLICATIONS OF NON-LINEAR RECEIVERS

7.1 Introduction

In chapter VI, three methods of non-linear reception were described.

An important design parameter of two of the systems is the received signal 

strength. An approximate fora of the third method is independent of signal 

strength and for this reason this method appears to be the most useful.

In this chapter the possible applications of this method are discussed,

7.2 Interference consisting; of many narrowband stations

In Section 4.3, the nature of the interference which results from 

many similar narrowband stations was aiialyzed. It was pointed out that 

to a good approximation, the signal represented by a WT-dimensional vector 

(as represented by IT complex numbers), is perturbed by WT random variables 

and that in many cases these random variables can be considered independent 

In fact, it is apparaht from the analyses of Section 4«3 that independence 

can be insured by choosing the baud length T of the wideband system such 

that it is equal to l/kB, where B is the bandwidth of the narrowband 

stations and k is an integer. Thus, if the communication system is sym­

metrical then the hypothesis for the development of thenon-linear receiver 

described in Section;6.4 is Satisfied and optimum reception using this

technique is possible

For example, if thenarrowband interference consists of WT adjacent 

AM stations, each with a bandwidth of i/T“ then the density functions of 

the noise for each of the coordinates can be obtained with the aid of Eq. 

(4.3-1$) whieh can be written
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■L pui(ul)toi
(7.2-1)

ii ■* " *i

where p^Cu^) is the probability density function of the amplitude u^ of 

the i-th narrowband station and pi(Ni) is the probability density function 

of the i-th coordinate value of the noise* The parameters of the optimum 

non-linear receiver can then readily be determined from Chapter VI*

If the interfering stations transmit 0W carriers such that

- 8(ut - St) (7-2-2)

then

g2 < C2
*i ^ wi

S>4i (7-2-3)

In order to obtain the desired Maclurin#s series it is convenient to 

approximate Eq„ (7<>2-3) with the following expression

— — 1 —1

1 1

.* M - »i. . 1+J*-
(7-2-4)

where the closeness of the approximation depends on the exponent m.

The coefficients of the first m terms of the Uaelmrin's series as 

determined from Eq* (7*2-4) are

aiQ = - log it ©i (7-2-5)
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air

(r - l)l / Cr; r even and 0< r< m 

©I r odd (7.2-6)

; m even (7-2-7)

Suppose that it is decided to terminate the series with a./. Accord­

ing to Eq. (7*2-6) and Eq. (7.2-7)

•u ■ v<$ (7-2-8)

... V (7-2-9)
a^-6©^ (7.2-1®)

the coefficients of the non-linear transformation can now be determined

with the aid of Eq. (6.4-1©)

(7.2-II)

(7.2-12)

2 2
Since G. is twice the variance of the i-th noise component (J* the

jL 4*
quantity l^/®i r©l***d to the coordinate signal-to-noise ratio by
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_1 1
2

and therefor©

a’ll
x

a

a

[ 1 * 6 /<r* - /<r|* ]

. ^ [ 1 -125 ^/of]

(7.2-1%)

(7.2-16)

(7.2-17)

In order to obtain optimum reception the following non—linear trans­

formation which is a result of substituting Eq. (7.2-15), (7.2-16) and 

(7•2-17) into Eq. (6.4-11) may be used

Y =
Wi 1

ftfi
1 4 ilel- ,4 / k 

l ' °"i

+ 6 E I / 2/o-i & / ^ (7-2-

fhe equation for the non-linear transformation can be greatly simplified
2 2 2 2 

if the value of M^/cr^ is sufficiently small. If < li0 the first

term of the sum in the braces in Iq. (7*2-lt)s viz.

1 + 6 /cr| - /o\



is, for all practical purposes, unity; The range of values of the co­

efficient of the second term is

-k»$ < 6 1 - A i«l ] $

Thus, it is evident that the second term makes a neglibable contribution 

and can be disregarded* Therefore, the following non-linear transforma­

tion can be used*

*&
2
i

] (7»2-l^)

The non-linear transformation given by Eq. (7*2-19) as characterized 

by the quantity in the brackets does not depend on the strength of the 

signal* Similar results are obtained by using larger values for m in that 

all terms excepting the first and the last becomes negligable for small 

signal-t©-noise ratios*

It should be noted that the shape of the density function of the 

noise in the above example is quite extreme in that its value becomes 

infinite at the ends of the range of the random variable* In practice 

it is reasonable to expect the density functions to be better behaved 

since any amplitude modulation will cause the curve to be smoothed out*

In these eases the performance of the approximate form of the non-linear 

transformation should be satisfactory over much larger signal-to-noise

ratios*

7*3 Methods of determining the coordinate probability densities

In order to determine the parameters of the non-linear receiver it 

is necessary to know the probability density functions of the coordinate



values of the noise* There are two methods by which these densities can 

be detemined (l) the analytical method and (2) the experimental method.

In order to accurately determine the probability density functions 

%(%) analyticallyj, it is necessary to have an exact knowledge of the 

characteristics of the interfering waveforms. It may be anticipated that 

in most cases the designer will not have the necessary knowledge of the 

nature of the interference and the results of an analytical approach 

will be of questionable value. For this reason the experimental method

will probably be the most useful especially since it should not be dif­

ficult to obtain log p^(N^) directly. The values of the Of. . «s can then

be computed and receiver can be adjusted to give optimum performance. 

Because of the ease in which the receiver can be changed to fit the

statistics of the interference and in view of the fact that these statis­

tics may be expected to change from time to time*, it is evident that the 

non-linear receiver will be highly useful when certain adaptive techniques

7.4 Summary

In Section 6.4 a non-linear technique of obtaining optimum reception 

in the presence of mon-gamssian noise was dereived. The application of 

this technique to the case where the interference is from narrowband 

stations has been discussed in this chapter and results are obtained for 

stations transmitting GW carriers.



-115-

CHAPTER ¥111

TIME COMPRESSION METHODS

S01 Introduction

Linear and non-linear receivers hare been analyzed in the preceding 

chapters in some detail and in both cases it was generally necessary to 

perform an appropriate filtering operation subsequent to the further pro­

cessing of the signal* In the case of the linear receiver, the purpose of 

the filtering is to whiten the noise spectrum at the input to the syn­

chronous demodulator, whereas, in the case of the non-linear receiver, 

there is the additional purpose of separating the various signal-plus- 

noise coordinates so that each may be subjected to the desired non-linear 

transformation*

If adaptive operations are incorporated in the receiver then certain 

signal analysis processes must be performed and in general eaeh part of 

the signal must be analyzed in real tune*

The filtering processes, and in many cases the signal analysis pro­

cesses referred to above, must simultaneously be carried out on many 

different parts of the signal* For example, the filtering process must 

divide the signal-plus-noise waveform at the input of the receiver into 

the WT component waveforms, each having a bandwidth l/T*

In general, there are two methods by which such processing can be 

accomplished? (l) the parallel method (2) the serial method* The parallel 

method, which is the most direct, employs m duplicate sets of apparatus 

to perform the m operations simultaneously* In the case of the filtering 

process, the operation is accomplished through the use of WT individual



similar- filters, each having a bandwidth of l/T and eaeh timed to its 

appropriate ©enter frequency,,

Although in theory this process is feasible, in practice it is im­

practical if the number of operations is large# Consider, for example, 

the equipment complexity of the filtering process if WT was one hundred#

The serial method employs a single set of apparatus which is used 

over and over m times to perform the m operations in a serial fashion#

An example of such a method is the ordinary spectrum analyze® in which 

the various parts of the signal are heterodyned to the center frequency 

of a filter# In order to completely process all parts of the signal in 

real time, however, it is necessary to precede this operation with a 

time compressor#

8#2 Time Compression

Time compression is accomplished by recording the signal at a certain 

rate and then playing it baek at a much higher rate# In this manner the 

waveform is speeded up, or compressed in time and can be played over many 

times in a period of time equal to that which was required for the record­

ing process# A different step in the serial processing of the signal can 

then be performed eaeh time the signal is played back and in this manner 

the processing can be performed serially in real time#

The time compression technique has increasingly been used in the past

few years in the field of signal analysis particularly in spectrum analyzers
1© IX 12and correlation analyzers ® '*» The method which is usually used to ob­

tain time compression is the deltic method, or delay line time compression 

method#

Fig# S#2=1 is the block diagram of a typical deltic system# The in-
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put is a low pass signal and is bandlimited to W cycles per second* This 

input is sampled by very narrow clock pulses having a period 1/2W* The 

time delay of the delay line is made slightly shorter than the sampling 

period and the delayed samples are fed through the gate and back into the 

delay line (see Fig* 8*2-2)* Since this process reduces the period be­

tween the pulses from 1/2W to 1/2W — T^ the waveform has been speeded up, 

or time compressed by a factor

kc
1

1 - 2WT, d
(8*2-1)

In order to simplify the timing in the system, 2WT, is chosen so that kCl O'

At the end of the k^-th sample the delay line will be filled* If the 

sampling process was discontinued at this time, the pulses would continue 

to recirculate in the delay line and at the output would be produced a 

periodic waveform, each period of which would be a time compressed replica 

of the input* The time duration of the input waveform corresponding to 

one of the output periods is

(8.2.2)

If, on the other hand, the sampling of the input waveform is continued 

after the line is filled then it becomes necessary to drop off a re­

circulating sample each time a new sample is inserted at the delay line in­

put* This is accomplished by closing the gate in the feedback loop when 

a new sample is taken. The output is a quasi-periodic waveform in which 

each period differs from the preceeding in that an old pulse has been 

dropped at the beginning of the period and a new one added on the end*



In both of the cases described above the bandwidth of the output is

= kcW (0.2-3)

In some applications it is required that the output waveform repeat 

a certain segment of the input waveform k. times and then repeat the next 

segment of the input kc times, etc. This can be accomplished by following 

the time compressor shown in Fig, 0,2-1 with a buffer storage unit shown 

in Fig, 0,2-3,

At the end of eaeh Tg seconds the delay line of the time compressor 

contains a completely new set of pulses and each of these sets corresponds 

to successive segments of the input# The purpose of the buffer storage 

unit is to recirculate each successive set of pulses in turn for intervals 

of Tg seconds. To accomplish this Gate #1 is opened and Gate #2 is closed 

for a time duration of T-, seconds at the end of each series of k clockQ. G

pulses such that the output signal of the time compressor is fed into the 

delay line of the buffer storage unit. During the remaining time Gate #1 

is closed and Gate #2 is open and the pulse train recirculates around the 

loop.

Certain practical considerations arise in the design of time compres­

sors, These considerations can be divided into the following areas! (l) 

bandwidth and switching speeds (2) loop gain and (3) timing.

The bandwidth of the output signal and therefore the minimum bandwidth 

of the delay line is Wc as given by Eq, (0,2-3), That the required switch­

ing speeds are also proportional to ke is evident from the fact that the 

maximum allowable width of the sampling pulses is l/(2WKe), Thus, from a 

practical standpoint, the feasibility of the time compression technique
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in a given application depends on the signal bandwidth W and the compres­

sion factor k , e

fhe requirements that the loop gain must be held exactly at unity and 

that the timing of the sampling be extremely accurate are obvious* These 

problems are usually solved by infinitely clipping the input signal and 

using pulse regeneration techniques in the delay line feedback loop* It 

appears, however, that a more sophisticated approach will solve these 

problems and at the same time retain the amplitude information of the in­

put .

8.3 Beceivers with time compression filters

As has been shown in the previous chapters, a rather complex filter­

ing process is required to obtain optimum or even sub-optimum reception*

It is apparent from the high dimensionality of the wideband signals being 

considered that the direct approach of parallel processing with IT filters 

is prohibitive in terms of the equipment complexity which is'required*

The use of the time compression technique followed by serial processing 

will result in a considerable reduction of the equipaent required to per­

form the filtering operation and, thereby, make the desired filtering 

process feasible*

The block diagram of a wideband linear receiver using time compression 

filtering is shown in Fig. 8*3-1* The purpose of the filtering is to cause 

the noise at point "AM to have a white spectrum. The receiver'input 

e (t)+m(t) and the input from the local carrier generator egCt) are both 

individually time compressed* The time-bandwidth diagrams of the input 

and output of the time compressor are shown in Fig* 8.3-2 where the inter­

fering signals are assumed to have equal bandwidth B and lie adjacent to
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one another. It is convenient to divide the region occupied by the baud

into IT cells of bandwidth 1 and duration T where it will be assumed thats
the system has been designed so that

.3-1)

(8,3-2)

These WT cells correspond to WT complex numbers and completely specify the 

waveform of the baud.

In order to whiten the noise it is necessary to separate these complex 

numbers and to apply to each an appropriate gain factor. It is evident 

from the diagram that this process can be done sequentially if the factor 

k^ is made equal to

(8.3-3 )

If the time compressor of the signal channel is designed so that T_s
is the real time length of the input sample which is stored in the time 

compressor and T^is the length in compressed time then

= k (8,3-4)

where k is the compression factor.

In order for the filter to separate the waveforms corresponding to 

the cells of the input it is necessary that mT^ be long enough so that 

the waveforms of the output cells will contain the complete replicas of 

the corresponding input cells. Since is the length of this replica



then m is the number of times the waveform is repeated and therefore 

a ^ 1. (8.3-5)

After the input has been time compressed, the WT components of the 

waveform are sequentially obtained by a heterodyning and filtering process 

The output of the heterodyne oscillator for the deration of a particular 

baud is

^ v

en(t) = £ Y E ) u [ * " C1 - 1) - ii " 1)TS ]

. j=l . iSlL \ .

)
+ 0(i *
(8.3-6)

inhere f is the center frequency of the bandpass filter*

From Fig* 8.3-2, it is evident that the required bandwidth of the 

filter is keB,

■ In order to eliminate filter transients, the factor m can be made 

somewhat larger than unity and only the last seconds of each output 

cell used.

As the frequency of the heterodyne oscillator is stepped from one 

frequency to another to obtain the various frequency components, the gain 

of the variable gain amplifier is stepped to appropriate gain values so 

that the noise at point "A" has a constant variance.

The same operations are simultaneously applied to the local carrier 

generator output-e^t)#

Since the waveforms which appear at the outputs of the variable gain



amplifiers correspond to the orthogonal components of the waveforms at 

the inputs to the time compressors they do not need to be recomposed be­

fore being processed further but may be multiplied together directly.

After multiplication the usual integration and decision process is per­

formed.

The linear receiver shown in Fig* 8.3-1 can be converted to a non­

linear receiver by sequentially inserting the appropriate non-linear 

voltage dividers at point "A”0

8,4 Summary

In the previous chapters various methods of reception have been 

analyzed. Most of these methods require a rather sophisticated filtering 

process. To accomplish this process through the use of a bank of filters 

operating in parallel would result in a prohibitive equipment complexity 

because of the excessively large number of filters required.

In this chapter a method has been described by which the processing 

of either the signal or the local carrier can be accomplished sequentially 

with one filter. Time compression of the signal previous to filtering 

allows all of the signal to be processed without loss of information.

This method offers a relatively simple way of realizing the required 

filtering process and avoids the inherent disadvantages of the parallel



CHAPTER IX 

ADAPTIVE RECEIVERS

9*1 Introduction

In a great number of applications of ■wideband systems it will be 

impossible for the designer to know the shape of the spectrum of the 

interference or the statistical laws which it follows* In fact, the 

nature ©f the interference can be expected to vary from time to time#

It is evident that in such instances optimum, or, for that matter, sub- 

optimum reception can only be obtained from an adaptive receiver which 

measures the spectrum and the statistics and adapts Itself accordingly* 

In this chapter, several adaptive receivers which incorporate the tech­

niques described in the previous chapters will be outlined*

9*2 Adaptive linear receivers

The type of adaptive linear receivers which will be considered in 

this section analyzes the input spectrum and varies the input filter 

characteristic accordingly* The block diagram of such a receiver is 

shown in Pig* 9*2-1* As can be seen, the receiver utilizes time com­

pression filters of the type described in the previous chapter.

In order for the filters to perform their function satisfactorily, 

the gain control voltage must vary as the filters select the different 

coordinate values such that the average power of the output noise remains 

constant across the spectrum. If the process were non-sequential then 

it could be performed by the method shown in Pig* 9*2-2, The quadrature 

component of the noise is obtained by demodulating the signal plus noise 

with a synchronous detector which is driven by the local carrier shifted
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by 90°„ Since the phase difference between the signal and the noise is 

random with a uniform distribution over the range © to 2* , the probability 

distribution of the quadrature component of the noise will be Identical 

to the probability distribution of the in phase component* Thus, a 

voltage which is proportional to the average power of the noise can be 

obtained by squaring and averaging the output of the synchronous detector* 

If this voltage is subtracted from a reference voltage and the resultant 

used as a gain control voltage and if the loop gain of the gain control 

circuit is made large then the output noise power will be held essentially 

constant. This method can be incorporated into a sequential filtering 

process by replaing the simple averaging circuit by a sweep integrator 

as shown in Pig* 9*2-1. The period of the sweep integrator is made equal 

to the period of the sweep of the stepped oscillator and in this manner 

the required averaging operation is performed sequentially on the various 

coordinate values of the noise.

Several variations of the method which has been described are possible. 

For example, in order to insure that the variable gain amplifier of the 

local generator channel has the same gain as the one in the signal channel, 

a single amplifier can be either frequency shared or time shared between 

the two channels,

9.3 Adaptive non-linear receivers

In this section two types of adaptive non-linear receivers will be 

outlined. The first adapts to the noise spectrum but has a fixed non­

linear characteristic. This type is useful when the narrow band inter­

fering stations are all of the same type and where the statistical law 

of their amplitudes is known to the designer. The adaptive linear receiver
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shown in Fig# 9.2-1 cam be converted into this type of adaptive non-linear 

receiver by inserting a non-linear transformation circuit at point *A*.

A suitable non-linear transformation circuit is one whose input-output 

relationship satisfies Eq» (6.4-16), viz.,

I ^ + * 1) xi (9.3-1)

where it has been assumed that it is valid to use the approximate 

expression for a as given by Eq. (6.4-14). Since the variances have 

been made equal through the action of the variable gain amplifier of the 

signal channel and since the various noise coordinate values are assumed 

to follow the same statistical law, the values of the various ai?(j+i) 

are independent of the subscript “i".

Fig. 9.3-1 shows a convenient way of realizing the non-linear trans­

formation. The various powers of the signal pitas noise components (i.e, 

the X »s) are obtained through the use of non-linear voltage dividers 

and their coefficients are determined by the associated amplifier gains.

The values of the gains of the amplifiers are given by

’’j - + 1) ai,(j + 1) <?-3-2>

This form has the advantage that the non-linear characteristic can

easily be adjusted to fit any desired noise statistics by an appropriate

adjustment of the amplifier gains.

If the transmission is a band pass signal then the probability

densities of the coordinate components of the noise will be even functions*

In this case the values of b. will be zero when j is even.
J

The second type of adaptive non-linear receiver adapts to the noise



-132-

(1 V9H rejfemfifLl

NON-LINEAR AMPLIFIERS,
VOLTAGE
DIVIDERS

A NON-LINEAR TRANSFORMATION CIRCUIT 

FIGURE 9*3-1



-133- -

statistics as well as to the spectrum of the noise. This type uses a 

non-linear transformation circuit similar to the one shown in Pig. 9*3—1* 

The gains of the amplifiers are controlled electronically hy gain control 

signals which are obtained from an analyzer unit. The function of the 

analyzer is to obtain points on the probability density curve from the 

incoming noise waveforms and from these points compute and supply the 

required amplifier gain control voltages. Such an analyzer is shown in 

Fig. 9.3-2. Points on the probability density curves are obtained 

through the use of the triggers and sweep integrators. Bach trigger is 

designed to put out a pulse if its input voltage is within a certain 

range and each trigger is set so that the range where it triggers a 

pulse is centered at a noise value where the corresponding probability 

density is to be determined. For convenience the noise values at which 

the triggers are set to operate are equally spaced by an amount h.

Points on the probability density curves are then obtained by averaging 

the ©ccurance of the pulses through the use of the sweep integrators. 

Thus, the probability density function of each of the noise coordinate 

values as defined by these points appears in sequence at the outputs of 

the sweep integrators.

Since it is necessary to determine the coefficients of the series 

= log pi( a. + a,. 10 xl + a12 •3-:

it is convenient to convert the data defining the curves to data 

defining the curves log This is done by passing the outputs of 

the sweep integrators through non-linear voltage dividers having loga-
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rithmic input-output characteristics* This data can then be combined ■with 

the aid of the Gregory-Newton formula to obtain the required gain values 

as given by Eq. (9*3-2)* The Gregory-Newton formula can be written in the

f<x0 + rk) * fo + rDf0 * "X%1..D“fo *
sk.-r,.-1.) n2-p + E(r - l)(r --g.) j3;fo +

(9*3-4)

where

fA =:0 'A0" *1h .q + h); ■ fg;:«,f(x'+ 2h); etc.

and

. ■».. £- - 2£_ + f^ 0 2 • 1 0

■,«e ;r r f®

©fc@

Since x » x + rf, Eq. (9*3*4) is equivalent to equation (9.3-3) 

and the values of the Q+i) cam k® determined by a suitable manipula­

tion.

For example, if five points are taken at -2hj -h, 0, h, and 2b then

■' x + 2h

and



which becomes

~ f2 + x 12h

2 (-f0 + l«fx - 18f2 + 0£fs - f)t)
■*" X ■ o ■ :

'■ 2kh

„ (-f_ + 2f, -If. .4- f, )+ x3 v 0 1 3 V
:-v:;r' 12h3

. V.. ?V~^%)
. +■ x ; ■: " - .f—  rr "ir!,:"ir——^ (9.3-6)

If the transmission was a bandpass 

function and

then f(x) is an even

f(x) ts f + xc
<-*„ + )

12h

V (f© - ^ + 3%)

12h

(9.3-7)

The relationships which determine the various amplifier gains can



be gotten by combining the results given by Eq. (9.3-2), Eq. (9.3-3) and 

lq. (9.3-7).

©

-f.0

©

% -^i + 3**

(9.3-8)

The designer of a wideband communications system will often not know 

the shape of the spectrum or the statistical laws of the interfering noise 

In this chapter three types of receivers which adapt to the nature of the 

interference are outlined. The first is a linear receiver which has an 

adaptive prewhitening filter at its input. The second is similar to the 

first with the exception that a preset non-linear transformation of the 

type discussed in section 6.4 is incorporated. The third adapts to the 

statistics of the noise as well as to the noise spectrum. All of the re­

ceivers which are discussed use the time compression technique Which was 

analyzed in the last chapter making possible the minimization Of equipment 

complexity through the use of serial processing.



CHAPTER X

CONCLUSION

In tfe© Introduction* it was pointed out that in the application of 

wideband communications systems one of the most important sources of noise 

will he from interfering narrowband stations* In this report the effect 

of interference from narrowband stations on the information efficiency of 

wideband communications systems has been analyzed* A study has also been 

made of the effects of impulse noise*

Linear systems which can be made to give optimum performance if the 

noise is gamssian are found t© perform relatively poorly when the inter­

ference is from narrowband stations* The example worked out in Section 

6*4 demonstrates this fact since the probability density function of the 

noise which is used may be assumed to be typical of interference from 

narrowband stations* For the example given* the output probability of 

error which is obtained for the linear receiver is 2*65 x 10“^ as com- 

pared with 1*32 x 1@” whieh is the probability of error which would be 

obtained from an optimum receiver* The reason that the linear receiver 

does not perform.better is tlat the decision surface that it generates is 

a plane whereas the optimum decision surface is curved and* in the example 

the decision regions are not even simply connected*

It is possible to obtain optimum reception in such cases by the use 

of certain non-linear techniques* In essence* these techniques* make it 

possible to generate the desired decision surface* For the most part* 

however* these techniques have serious practical disadvantages* ©me 

technique* however* which was developed in the course of this research
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appears t© have appreciable practical significance,, One approximate form 

©f this technique which is valid for low signal-to-noise ratios has the 

advantage that n© knowledge of the received signal strength is required 

in the determination of its parameters« The performance of receivers using 

this technique approaches optimum as the signal-to-noise ratio is decreased* 

In comparison, the performance of a linear receiver will diverge away from 

optimum for decreasing signal-to-noise ratios for this type of noise.

Since the noise from the narrowband interfering stations will be 

highly colored, a complex filtering process to prewhiten the signal will 

be required if the best results are to be obtained from a linear receiver. 

Filtering of a similar nature is also required in the case of non-linear 

reception. The direct approach of using a bank of parallel filters is not 

feasible since the amount of equipment involved is prohibitive. It appears, 

however, that time compression of the signal followed by serial processing 

will make the desired prewhitening and non-linear techniques practical.

At the present it appears to be within the state of the art to realize 

systems having bandwidths of the order of 1 me and time compression factors 

of 1@©. This might correspond to a binary link having a data rate of 1000 

bits/sec in an environment of narrowband interference which has 10 ke band- 

widths. Since the state of the art is advancing quite rapidly in the area 

of high speed switching and data handling it appears that the bandwidths 

and time compression factors can be increased in the future.

The results of the theoretical investigation which is being reported 

on are sufficiently promising to warrant an experimental phase. In 

particular, experimental models of the linear and non-linear time com­

pression receivers described in Chapters Till and IX should be constructed*



la order to simplify the practical problems, frequency and time scaling 

should be used in the construction of the first model,

Concurrent with the construction of the experimental receivers, the 

statistics of the interference from various types of narrowband stations 

should be measured. Based on this data, further analysis of the per­

formance of the non-linear receivers using the techniques discussed in 

Section 6,4 and Chapter VII can be made providing important specific 

design information which will be useful in the experimental phase.



-141-

BIBLIOGRAPHT

1. Costas, J. P,: Poisson, Shannon and the Radio'Amateur, "Proceeding
of the IRE", vol. 47, pp 2Q58-2Q6S; December, 1959*

2. Green, P, S»: "Correlation Detection Using Stored Signals",'
Massachusetts Institute'of Technology, Lincoln'Laboratory,'"' 
Technical Report No. 33, August, 1953 (Confidential Document)

3. Birdsall,' T. G., Carlsen, R, k»'t Daws, J, L*, Risteribatt, M. P*,
Roberts, G. A. and Rothschild, Dr* R.: "An Introduction to 
Pseudo-Random Systems Volume Is Basic Concepts and Techniques 
(U)", The University of Michigan Research institute, Technical 
Report No. 104-1; August, I960, (Secret Document)

4. Arnow, G. J.,'Erickson, D. E„, Norris, P, C«, Splitt, F, G.,
and Stastny, G, F* t "Feasibility Study to Provide Protection 
Against Detection and Jamming", Cook Electric Company,
ASD Technical Report 61-72; February 1961, (Secret Document)

5* Hancock, J. C„, and Sheppard, E. M, j 11 Informant ion Efficiency of 
Binary Communication Systems", Purdue University School of 
Electrical Engineering, TR-EE62-4j May, 1962,

6, Shannon, C, E,t "Communication in the Presence of Noise", Proceedings
of the IRE, vol, 37, PP 10-21, January, 1949.

7. Middleton, D„; "An Introduction to Statistical Communication Theory",
McGraw-Hill, I960.

5. Baghdady, E. J.s "Lectures on Communication System Theory",
McGraw-Hill, 1961.

9. Turin, G* L.: "An Introduction to Matched Filters", IRE Transactions 
on Information Theory, vol. IT-6, pp 311-329; June, i960.

10. Anderson, V* G„; "The Deltie Correlator", Technical Memorandum No. 3©
Harvard Acoustics Research Laboratory, Harvard University,
5 January 1956.

11. Scanlon, W. W« and Lieberman, G.i "Naval Ordinance and Electronics
Research", Proceedings of the IRE, vol 47, pp 910-919, May 1959.

12. Ehrich, W. G* and Steinberg, B. D.s "Panoramic Spectrum Analysis in 
Real Time", IRE National Convention Record. Part 2, pp 62-69; 1959*

Wylie, G,; R„j "Advanced Engineering Mathematics", McGraw-Hill, 1951*13.



APPENDIX

ANALYSIS ©F THE CONTINUOUS SYSTEM

The block diagram of a continuous communications system is shown in 

Figo A-lo

We shall assume that m(t), c(t) and n(t) are band limited but are not 

necessarily white such that the signal and noise spectral densities in the 

channel are zero for f < f and f «> fQ + W and that the input signal spec­

tral density is zero for f > B» Furthermore we shall assume that m(t), 

c(t) and n(t) are independent of each other#

The following representations of the waveforms are convenient?

(A-l)

(A-2)

(A-3)

clearly

lim > a. cos
n-»<» M.

■, i=l

t + 0,)ar

lim > Bk cos
**■*■ & •+.V

lim cos (a^
b=l

The average power's of these waveforms are
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+ n (t)

A CONTINUOUS SYSTEM 

FIGUBE A-l
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»B

M df • lim (A-5)

0 k=l

ST Jf
x0

2NQ(f) df * lim (A-6)
b=l

The waveform of the output of the modulator s^(t) is obtained by 

taking the product of the two input waveforms m(t) amd c(t)

sit) « eit) mi

B.
lim

oo
p-*00

“i

i=l k=l

$
2 l cos i + V.l

+ cos * + *1 - «k (A-7)

Thus the average power at the output of the modulator is

n

S « lim 2
21-#-oo

m
•00

i=l k=l

S * CM (A-8)



This represents the signal power in the channel

Noise is added to the signal in the channel and this combination 

forms the input to the receiver

s itu = c e

This input is multiplied by c(t) producing at the output of the multiplier

s0(t) e(t) = c(t) m(t) e(t) + m(t) c(t)

The multiplier output component due to the presence of the signal is

c(t)

« m(t) lim
n 2 

GCS \ ' ~i
l L 2
: i=l

1 + cos 2 (eo^t + 0^)

n i-1
+ '

i=l 4=1

«i«3 [cos ' V * + 0i " ^

+ cos (cb_. + 03^) t + 0^ + 0j J |
(A-9)

That part of c(t)m(t)c(t) which has a waveform similar to m(t) will be 

called 32(b) and will pass with no change through the low pass filter} 

the remaining part will be called self noise

n

ezM = lim
m^oo

a*
= m(t) C

i=l



s2 « mcg » sc (A-10)

fhe self noise ng(t) in the output is equal to that part of the self 

noise in e(t)m(t)e(t) whieh passes through the low pass filter, i.e, that 

where .«£ - <®>j < 2st B«

The self noise waveform at the output of the filter is

n i-1
ns(t) = lim

n-*-»
a.a. cos i 4

i=l
[K -»}>***! - 0J ]

(A-ll)

We desire to evaluate the average power in ng(t)« First it is necessary 

to determine the voltage at each frequency Thus the component

of ng(t) in the interval at od^. with width ^f is

n
n+1

lim
oo

a.a. cos i 3 + *i-V.

b=3

(A-12 )

where

x = b + k

t - k 
J ~ ■ 2

The self noise power is the sum of the powers of each of these components< 

Clearly, if the self noise is to be zero the voltage components at 

each frequency must sum to zero.



This is simply another way of prescribing that the power of the carrier 

is constant.

The worst case will occur when 0^ - 0 ^ equals a constant over the 

range of b at each value of k*. Here all terms in Eq. (A-12) are in 

phase and the power at \ Is

and the total power is

m
I » lim ) sk

k=l

= kM

• B

©

•f© + W
~i

- l) df &q



f < f < £ + ¥ we haveo o

For the case of the flat spectrum where C(f) - C/2W in the range

= MC2 1 « Sgl

V " 1 (A-13)
S

Here, the phase relationship of the noise carrier voltage spectrum is 

such that the carrier is a single sin x/x shaped pulse. Such patho­

logical cases, however, should be easy to avoid in practice*

0f much more interest is the case where the noise carrier is a ran­

dom sample of Russian noise* Here, we do not have a definite relation­

ship for the phase and amplitude distribution! we only know the prob­

ability densities of the gaussiam noise* Since the phases have a prob­

ability density which is uniform in the range 0 to 2& we can conclude 

that ( has the same distribution. In other words, the com­

ponents of mg(t) which have the same frequency have phases with a uni­

form random distribution* As is well known the expected total average 

power delivered by these components is simply the sum of the average 

powers of the individual components* Thus



Ms - M lim
B-»-oo

n i-1 2 2or a.
i 3II

i=l j=i-m

f©+ w r t
.W EM

0 'f - B

£ 2C(f) J £ 2C(n) J dn df

Furthermore, if 6(f) = e/Wj f0 f ^ fQ +

B
¥

^2 1 ¥
jr “IIs

(A-lk)

We see that for W B the self noise will be negligable.

Another source of noise is the noise which is added in the channel. 

The spectral density of the noise at the output of the filter can be 

obtained by convolution ’

-f0 + ¥

I2(f) = 2 Ax) C(f - x) dx (A-15)

or conversely

•f© + ¥

,(f) = 2 ,(f - x) C(x) dx (A-16)
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If either the carrier or the channel noise has a white spectrum then it 

is evident from the above equations that the noise spectrum of the filter 

output will be white and that the output noise power will be

CHE
W (A-17)


	Purdue University
	Purdue e-Pubs
	5-1-1962

	Binary Communication Systems Using Wideband Signals (Final Report v.II)
	J. C. Hancock
	W. D. Wade

	tmp.1542052450.pdf.JsNpR

