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ABSTRACT

It has been>pointed‘eu$ that cemmunicétion systems having wideband
signal waveforms have certain advantages éver the conventional narrowband
systems, This report describes the results of a research progfam which
examined in detail the information efficiency of wideband systems,

The results presented in this report fall ihte three major categories:
j (1) analysis of systéms utilizing linear receivers (i.e. synchronous re-
ceivers, etc.), (2) analysis of system utilizing non-linear receivers, and
(3) analysis and description of methods which can be used for realizing
certain optimum and sub-optimum wideband receivers. The development of
these topics is based on the geometrical conéept of a signal space. 'These
signal space concepts along wiih certain definitions are discussed in
Chapter I,

In Chapters III, IV and V wideband systems utilizing linear receivers
are analyzed and the performance of these systems is determined for cer-
tain important types of noise which may be added in this communication
channel., It is shown that in most cases, optimum performance cannot be
obtained through the use of linear receivers, |

Nen-linear techniques which are capable of supplying improved per=
formance arévdiscﬁssed in detail in Chapters Vi and ViI,

From the consideration of the types of noise which one may expect
to encounter when using wideband systems; it is apparent that a relatively
sophistieated approach is required in @rdér to obtain the required
physical realizations. Certain methods which appear to be useful in
obtaining these realizations are discussed in Chapter VIII and IX, Be-

cause the nature of the interference; in general, will not be known in



detail to the designer, certain adaptive techniques are incorporated.



CHAPTER I
INTRODUCTION

The subject of wideband eemmunications éystems has received a great
deal of attention in the past few yearsl’z’ssho As Gestasl has pointed
out these systems have certain advantages over nafrawband:systems.' The
most notable advantage of the wideband systems is that their ihformati@n,‘
efficiency5 can be expected to rgmain relatively constant when the noise
environment is éharaétefized-by a jagged, highly variable spectrum. Under
these conditions the performance of a narréwband link can be,expected.t@ :

‘vary from extremely good to extremely poor with the result that reliable
communications can be obtained frem a wideband system with a sma;lerWQXo
penditure of signal energy, Thus, one of the important aspects of the-
application of wideband systems is their performance in a nonm-white and -
pessibly non-gaussian neise environment,

~In this report, the performance of linear wideband systems i§ analyzed
for two impertant classes of noise, viz., interference from a large number
of narrowband stations ahd impulse noise, In order to échieve better per-
f@rmance then is available from linear receivers, certain non-linear tech-
niques ére investigated, One non-~linear technique which appears quite -
promising is analyzed in detail, | |

The pérfermange’of wideband systems can be improved by using a pre-
whitening filter at the receiver, In the case where the noise spectrum
is variable, a receiver which autematically,adapts ité filter to the 
spectrum is desirable, Two receivers which pérform this funétien are
described in Chapter IX alongrwith a more sephisticated version which alse

analyzes the noise statistics and adapts itself a,dcordingly°
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CHAPTER II

THE ANALYSIS OF BINARY SYSTEMS
USING SIGNAL SPACE CONCEPTS

2,1 Infc_r’oduc'pion

A binary communicatioﬁs _system is generaily ;ohomghtvof as being a
cqmmunications link vover which sequenéesA §f binary digits are trans-
mitted. Each ofl these binary digits, thic-:h are usually referred to as
bauds, is represented in the t;'ansmission channel by one of two possible
waveforms. These waveforms gex;erall;')r have a (nomina;l’_) time duration T
and a (nominal) bandwidth W _a.ndv can i;niquely bé represented by 2WT numbers,
Thus it,is possible to conceive of these Wavefomé as being points in a
.?.WT‘dimensional signal space., . In subsequent chapters the concepts of
n-dimensional geometry w:Lll be used in thé» ana.lysis of various types of
wideband binar,f systems, As a foundation for ’ghis material certain
definitions and fundamehtal notions pertaining to signal space representa- a
tions will be discussed in thi_s chapter..l | |

2.2 The signal space

4 The sampling theoremé’ states that a waveform which has a nomiﬁal '
bandwidth W a.nd nominal time duration T is uniquely specified by 2WT
properly taken samples, Furthermore the theorem states that the wave-
form ean be reconsfruc{ced by multiplying the sample values by appropriate
time functions and summing the resgltant products, Since the waveform
can be represented as 2WT numbers, the wa.vefom can be designated as .t.he
position vec{:or '15 of a‘_particul'ar peint in ‘a.~n Qrthogpnal n-dimensional

space and there is é, one-to-one correspondencq between each point in the
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space and each possible waveférm having the specified duration and band- -
width, | | | |

There are two extremely useful basic.formscl‘In;hoth,casés, the sample
values are the coefficients”of'orthonormal.waveforgs; In the first of
these foﬁms; the samples are obtained by sampling the amplitude of the
waveform e(t) at inter§a13~of 1/2W secomds, .If these samples are repre=
- sented by the symbols El/\/ﬁﬁ s Bp/VEW - 9°°’En/m - (where n = 2WT) then

the waveform is given by

ce(t) = ) B glt) C (2.2-1)
R U R |

where the functions

gi(-b) - m Siz(géiw‘fg)i) N - N : | | ‘ o (2’2_2) .

are orthonormal functions and have the properties

" o0

EXORAORE B e

il

The quantities E,, E2 oce B, are the coordinate values of the vector

-
E which in terms of these values is '

(2;2-&)"~



Yo

where ?[:_ is a unit #ector; in the positive direétion of the i-th coordinate
axise. »
It is of interest to note that the form given by Eq. (2.2-'-1') describes
a waveform e(t_) which has a nominal duration of T secqnds but is strictly
band Limited to a bandwidth of W,
- ‘Another useful form is the following éx_pfession which has a strictly

limited time duration but is only nominally band limiteds

e(t) = ) B (t) | - ~ (2.2-5)

The time functions fi(t) are defined as

[u("') - u(t - T) YE/T cos B8 1.1, 3, 5 ¢ -

. oy (2.2-6)

,(6) =

" and satisfy the following relationships

T

' f (t) f~(t) dt z v j ’ (202.7)
A A R | ‘ \

and are, therefore, érthoﬁo.ﬁnal. Thus, their coefficients are the coordinate
values of a point of n-dimensional spaeé hairingv an- ort.hogonal' coordinate
system. The values of the various Ei!s can be obtained by sampling the
voltage spéetrwn of the baud waveform at frequencies 1/T, 3/T, 5/T, etec,

‘These samples are complex quantities and the real parts are \/‘—1‘_ El, ﬁ EB’
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JT E; etc. and the imaginary parts are JT E, f‘f‘Eh,,f ﬁEé, etc, at
the frequencies 1/T, 3/T, 5/T, etc. | |

Either of the above signal spaces are useful in the analySis of
binary systems using wideband waveforms and the type of space which is
selected to be used in a particular ahalysis will, in géneral, depend on'
the type of noise,

2,3 The transmitter

A binary eommunications system consists of a transmitter and a re-
ceiver, both of whose parameters are under the control of the designer,
and the channel whose parameters are not. In Fig. 2.3-1 is_shown a binary
communications link, The purpese of the transmitter is to produce a
suitable waveferm gl(t) depending on the binary input which is recognizable
téﬁthe receiver, The noise n(t) which is added in the channel,,however; |
causes the waveform which arrives at the receivér to be somewhat different -
with the resulting possibility that the receiver may make an incerrect .
interpretatiex;° Therefore, it is important that the waveforms produced
by the transmitter be designed to produce as small a probability oﬁferrer
as possible under the constraints that may be present.

The waveforms for each baud which aré produced by the transmitter can
be represented by 2WI-dimensional veetors., Fig, 2.3-2 shows thé signal
vectors corresponding to a ¥Ymark" and to a %space' for one such baud, In
order to minimize the probability that the receiver will misinterpret the
received signal it is clear that the two signal points be placed as far
apart as possible, ioe¢,,' the mark vector-lzamd the space vector E'should _
be diametrically opposed,

. . | | N | R
S=-kM | - (2.3-1)
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If the transmitter has an average power constraint it can easily be

shown that the separation between the signal points is maximum when

P R J
o =

where P(M) is the probability that the baud will be a "mark® and P(S) is
the probability that it will be a Uspace®,

2.4 The receiver

The purpose of a receiver in a binary commanication system is to de=-
termine and indiciate whether a "mark" or a "space" has been transmitted,
Only in the absence of noise or at‘least the presence of a very special |
kind of noise is it possible to perform this function with complété cer-”
tainty, and when noise is added in the channel we may expect the recei#er
to make errors from time to time. In general, subject to the constraints
of high cost and reduced eqnipmeh£ reliability which usually accompany
complexity, a receiverts utility is measured in terms of ité capability ot
detecting With'the least probability of erfor which signal was sent. This ’
process is aceomplished by dividing the signal space of the channél into a
"mark? region and a "space® region, If the received signal plus noise |
vector falls in the "mark! region Rm the receiver will decide that a "mark"®
has been transmitted and if it falls into the “space“ region RB then the
decision is that a "space® was sent, The hypersurface separating these
two regions is referred to as the decision surface.

Although the decision process can be performed directly on the signal
space of the channel it is more convenient to first transform the multi-
dimensional space of the channel to a one-dimensional decision space.

This process will be referred to as demodulation. In this way the decision
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process is reduced to the relatively simply task of detecting whether the
outpﬁt of the demodulator is above or below a certain decision threshold |
value, For this type of receiver the decision surface in the channel
signal space is determined by mapping the decision thréshold value back
into the channel space with the aid of the inverse demodulation trans-
formation,

The probability of error Pg (on a per baud 'basis) for any binary
- receiver is the probability of the following event: that the signal plus
noise vector X lies in the space" region R, and that a "mark" was sent
(i.es §1 = ﬁ), or that the signal plus noise vector ¥ lies in the "mark®
region Rm and that a "space! was sent (i,e. 'ﬁl = 3). Since the evepts are

mutually exclusive

~po -t -
P =Prob{x1n,R,E W)
e sy T

. - - >
+Prob 4XinR E =8 (2.4-1)
which can also be written
2 —pn ‘
B, = 2(4) Prop {¥in R|E, -}

+ B(s) prov {X 1n B [E, - T} - (2.4-2)

where P(M) and P(S) are the respective probabilities that a "mark" and a
e
"space" were transmitted and where Prob { X in Rs\ﬁl =-£5I} is the condi=-
-+ -
tional probability that *X is in Rj given -E.-l = M";, etc, The conditienal

probability density functions over the appropriate regionsgij



i

Prob { ¥ in R|E, - T }

f p_ () & (2.4-3)

]

“Prob {.}-f in Rm!E;L =?} f pxs(-}?ijs) aX o (26k-4)
m o

The above conditional probability density functions can be related to

- ,
the joint density function of the noise pn(N) with the aid of the fact that

e . —

N =X =%, Therefore,

oy @) - - (244-5)
and
o (Xls) =p,&-B) (2.4-6)

By substituting Eq. (2.4-3), (2.4-4), (2.,4=5) and (2.4-6) into Eq,

(2.4=2) the following expression for the probability of error is obtained,

P_ = B(M) f p, (X - M) ax
- - /&

!

+ B(S) f pn'é{-'é’jdx o (2.4-7)

R
m
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As mentioned above this is the probability of error of a particular
baud. If any of the quantities in the right hand side of Eq. (2.4-7) vary
from baud to baud then, in general, the probability of error may be ex-
pectéd to vﬁ:y also., In such an instance the average pfobability of error
Pé must be computed in order to evaluéte the performance of the receiver,

2,5 Optimum receivers

In the analysis of binary communications sﬁstems where the design of
the transmitter has already been fixed and the joint probability density _
of the noise is known, it is often of interest to determine the parameters
A of the optimum receiver where an optiﬁnm receiver is defined as one in
which the probability of errof is minimum, i,e°; the output is a "mark"

for the case

p(uf) > 2(sl%) (2.5-1)
and‘thé output is a ¥space" if

2000) < 2(61) (2.5-2)

where_P(M1§3 is the conditional probability that a "mark" was sent given
the waveform X is received and P(SJX) is the conditional probability that
‘a "space! was sent given the wavefonm?i'was received,

By applying Bayes! Theorem to inequalities (2.5-1) and (2.5-2) the

following decision rules are obtained: If
o =b=
p, (X - ) B@)> T - ) 2(s) (2.5-3)
then the optimum decision is "mark®" and if

2, & - ) B(u) <2, - 3) 2(s) - o (2.5-4)
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then the optimum decision is "space',

The surface which separates the regien’where‘thé optimum decision is
a "mark" and the region where the optimum decision is a "space" is given
by

pn(_f - ) B(u) = pn(f - 3) P(S) | |  (2.5-5)

Quite often the likelihood ratio7 is used in the specification of
the rules for optimum detection. |

The likelihoed ratie* is defined as

which ¢an also be written

3 (2,.5—7)

Clearly thé optin‘zﬁm‘decisions are Ymark® if L > 1 and %space® if L1
and the decision surface is given by the equation

L =1, ' o o o (‘205"f8)

2,6 Signal waveform generation

In order to produce,either‘the Ymark® or "space" waveforms at the
transmitter it may be desirable to perform a suitable operation on a
signal carrier waveform, This operation will produce a change in the

carrier waveform such that the required "mark% or "space" waveform results,

¥* It should be néted that this is a more general form than used by many
authors, For the case P(M) = P(S) this form reverts to the more usual

p(X) / p(Els).
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This type of operation will be refered to as modulat:’v.on.

Many different configurations are possible. 'F;.ar example, a ‘sinu~
soidal carrier may be frequency modulated. by a wideband sn.gnal as ié
shown in Fige 2.6~l, On the other hand, the signal to be transmitted
might be the result of amplitude modulating a relatively wideb“énd carrier
sigﬁal with a narrowband modulation signal (éee Fig.. 2,6=2),

In spite of the many ways in which the modulation can take place it
is possible to make use of a generaﬁied'appmacho B |

Let: the unmodulated ca.rrie;' be written ip the followiné v,fom
e(t) = Ac(t) ces[m@’t "'iﬁa(t);]. o B , | (2o6~1)
and the modulated carrier be written
: e(t): B(t) 905[,&0@'* ﬂ(t):‘ S . ' A(:2~.6-1-2)

It is evident from B3, (2,6-1) and Eqe (2.6-2) that modulation can pro-
duce a change in the multiplying amplitude factor or in the magnitudev of |
the angle and therefore it follpws that the two basic classes of modula-

tion are: (1) amplitude modulation where
A (8) = B(t) / A (t) S 0 (2.6-3)

is the amplitude modulation waveform and

(2) angle modulati@n where
gmele) g 6) (26

is the angle modulation waveform, Thus, the "mark¥ or “space' waveforms

can be written in the vfollowing .fOI'E‘lov
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) - a0 @ e mprg @ gw | @)

(8) = ,(8) &,(8) co w8 + () + £,(t) | (2.66)

These waveforms can also be expressed in the following equivalent
forms,
R(8) = 4,06) ,(8) cof @t + 5,(8) | eos ()
- & (t) & (t) sin[ @t + 4, (t) ]Siﬂ, g, (t) - (26T
H(6) = 4,08) A (8) con] o8 + 8,00 | o0 g, (0)
2,0 ,00) st a4 8,00 | tn 5,0 @6
It is evident that the waveforms given by Eq. (2.6-7) and Eq. (2.6-8)
c¢an be produced through the use of amplitude modulatién by the scheme shown
in Fig. 2,6-3 where the carrier waveform is given by Eq. (2.6-1) and the
modulation waveform is given by
By (6) = 4, (%) cos g (t) | (2.6-9)
if a "mark" is to be transmitted and

A(t) = A (t) cos 4 (t) | (2.6-10)

if a "space! is te_be transmitted., The waveforms given in Eq, (2;6-9)

and Eq, (2.6-10) will be referred to as composite modulation waveforms,
It may be expected that; in general, the probability of errof of

the receiver output will depend on the ngture of the signal waveforms.

As was shown in Section 2.2, these waveforms are completely specified by



~15-

points in an appropriate signai space, The important éharacﬁeristic of a
blnary 31gnal pair is the vector which is the difference of the p@Sltlon
vectors of the signal p01nts, ViZey W - $¢ In fact it is evident that
this difference vector is the only characteristic. of the signal%pair:
which influences the probability of error and the probablllty of error
will be determlned bcth by its magnltude and its d1rect10n¢ Furtherm@re,
if the equiprobable surfaces of the probability density,functlon of the
noise are spherical (as wmuld'be the Qésé if‘the neise wéfe ﬁhité gaussian
noise) then it is clear that thg probability of error depends only on the
magnitude of the difference vector, i.e. I -3, | “ |

In some applications it may be desirable to use a nénarepéatingv
carrier waveform and, therefore, it is of interest to defermine the .
Qonditions under which the probability of error‘is independent”of ﬁhe
sh&ﬁe of the carrier waveform (i.e. the direction of the c#rfiér #eétor)o,
For this reason the following theorem 1s important., | | | |

- Theorem Ir (1) the eqnlprebable surfaces of . the j@lnt probablllty
density of the neise are spherical and if (2) the spectra of the carrier
waveform and the chpOSlte medulation waveform do not overlap and 1f (3)
the energy of the carrier waveform is unlfonmly distributed over. the dura«
tien of the baud them the probability of error of the output of an optimum
reeceiver is independent of the ‘carrier waveform,

Since by hypothesis, tHe equiprobable surfaces of the joint pfob~
ability density of the‘noise are spherical it'is éuffiéienb to pfove |
that the square of the magnltude of the dlfference veetor l .q12 is
1ndepeadent of the shape of the carrler wa.veforzm°

This quanity can be written in the following form
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|- 8P =Wl + 58 - S | (246-11)

The terms on the right lhand side of Eq, (2.6-11) ean be evaluated

directly from the time functions given in Eq. (2.6-5) and Eq. (2.6-6).

T

w- |

Ai(t) rf*i(?:;);'QQ.sa [:wet ¥ gc(t) * Q‘m(t) ] &

which can be written
T

Wil = 1/2 f ©aB(s) 2(x) ab

T : ,
+1/2 f 22() A2(4) cos z[ ot + g (t) + g (t) } at (2.6-12)
7o | - oo d e e

The second term of the right hand side of Eq. (2,6-12) can be written

in the following form.

3 f V[A(zi:(t)‘ cos 2wt + ;ac(t‘)] ] [ 22(t) cos 20, (t) } at
o |

o3[ [0 sm 2o p@] ][ o) emman ) [
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Since, according to the hypothesis, the spectra of the carrier and
the composite modulation do not overlap, the spectra of two factors in
the integrands of_‘ the two integrals in the above expression do net over-
lap. Thus, ’the factors, in the integrands are orthogonal and, therefore,
‘bhe‘values of the integrals are zero,

Thus, Eq. (2.6~12) becomes

T
- 1/2 f AZ(6) K(t) @t | (2.6-13)
0 : '

- > —
In a similar fashion the values of S¢S and M+S can be determined.

T | |

5 -1/2 f 22(t) a2(t) at | (2.6-14)
2) A

, T I | |

W1z [ a0 4,000 236) cos [ 400 - 2,68) | e (2.6a05)

By substituting Eqs. (2.6-13), (2.6~l4) and (2.6-15) inte Eq. (2.6~11)

the following expression is obtained

-3 -2 f Aﬁ(h)[ai(t) +A2(5) - 2 cos [ (x) - g (6] ]dt
" S . (2.616)

.

Since the energy of the carrier is evenly distributed over the duration

of the baud, the quantity A’z'(t) is a constant and, thus, it is evident

L
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that the quantity given by Eqe (2.6-16) is independent of the shapé of the

carrier wavefornm,

Eq. (2,6-16) is also generally useful in determining the effect of

waveform variation when different schemes of modulation are used under =

the conditions where the équiprobable surfaces of the noise are sphefical'

and where the carrier and meodulation spectra do not overlap. ‘For,iéxample,

if an amplitude modulation scheme is used where
(8] =2

and
a(6) = 1

then, according to Eq. (2.6-16)

T
I - 312 - zf A2(s) at

[

(2.6-17)

(2.6-18)

(2.6-19)

From Eq, {2,6-19) it is clear that the probability of error does not

depend on the carrier waveshape in any way and, therefore, the carrier

energy need not be evenly distributed over the duration of the baud,

It should be noted that the hypothesis of the theorem consists of a

set of conditions which are sufficient to insure that the probability of

errér is independent of the carrier waveform. It is not nécéssary-that'

all three conditions be fulfilled in every case as is shown by the above

example,
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2.7 Information efficiency

The information efficiency5 has been defined as

~where H(x) is the data rate of the source and H(xly) is the equivocation -
of the channel, It has been shown that this quantif.y depends only on
source statistics (i.e. P(M) and P(S8)) and on the transitional error
probabilities (i.e. the probability that a "mark"® is received as a "space"
and probability that a "space" is received as a "mark"). A

In general, the results which will be obta.inéd will be for syﬁnnet.ri—

cal systems. Under these circumstances
Hx) =1
and

(;;l:r) = - [Pe»i@gzj?e + (1 - 'Pe:) log, (1-2) :l

aﬁd the information efficience is uniquely related te the probability of
errors |

In order to be able to compare the performance of wideband systems
with narrow band systems the following definitien will be made,

Definition Two binaryf communications signal pairs will be said te
correspond if the energy of the mark vectors are equal and the energy of
the space vectors are equal and if the imner product of the "mark® and
the "space" vectors (i.e, ’ﬁo’g) are equal., To have the inner product-ﬁqg
egual at.bt,he same time that the mark energies are equal and the space

energies are equal is equivalent to having the mark-space correlation



=21~

coefficients equal,

If white gaussian noise is added in ﬁhe channel the efficiency is
affected by the placement of the signal point; accordipg_te»the magnitude
of the vector difference[ﬁzga;FIt is evident from Eq, (2,6;11) that,
under these conditions a wideband signal pair offers no'advantage:QVer ’
the»correéponding narrowband signal pair,

2,8 Summary -

In Chapter II the concepts of the signal space have been reviewed and
the way in which they apply to a binary communications system has been dis-
cussed, Methods by which the "mark" and ¥space® waveform may be generated
from a single carrier have been discussed and the criterion for making:the
system performance independent of the carrier waveshape has been deri#éds

The efficiency of‘wideband communications systems are discussed and
it is shown that, under the condition that the channel noise is white and
gaussian, that a wideband signal pair offers no inhefent advantage over

the corresponding narrowband pair,
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'CHAPTER III
LINEAR RECEIVERS

3.1 Introduction

Synchronous receivers and matched filter receivers have heen ex-
tensively employed where superior performance hasvbeen desired, It has
been shown8 that these types of receivers given optimum performance when
the noise is gaussian. In this chapter a more general theory for the
, perforﬁance of these receivers will be developed. This theory will be
applied in subsequent chapters tb determine the performance of these

receivers when the noise is non=-gaussian.

3.2 Signal space analysis of the syhchronous receiﬁgr

A typical synchronous receiver'iS'shown in FigeYBoZ%l, In this re-
ceiver the input x(%) ='el(t) + n(t) (where gl(t) is the‘signal component
and n(t) is the noise component of the input) is multiplied by the local
carrier ez(t) producing the input to the finite memory integrétor
vz(t) =x (t) ez(t.)° The output of the finite memory integrator as a

function of its input is
%

vy (t) = f v3(u) du (3.2-1)
t-T ‘

Here the lenth of the memory T, has been chosen equal to the baud length

T. One method of realizing the input-output characteristic given in

EqQ. (3:2-1) is shown in Fig. 3.2-2,

At t = T the decision circuit samples its input which is

: T
v, = (1) = f (e)(8) + n(8) ) o (t) at G2
A 0 \ ) . -
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- If this input is greater than some threéhold level,Vdé then the decision
eircuit will indicate for example, tﬁat a "mark" had been transmitted.
va; however, V; is less than Va then a "space“ will be indicated,

. If the received 31gnal received noise and local carrier waveforms
are bandlimited te a bandwidth W then they each can be represented by
the coefficients of the 2T orbhonormal functions fi(t) in the following

series representations,

e(t)=) By i(ts) (3.2-3)
n(t) = Z L (t) | | | (3.2-4)
’ 1_'1 . -
20T
e, (t) = : Zi i(t) o _ ] (302'5) )

& | |
vwhere elCt) n(t) and eg(t)_are assumed to be strictly time limited,

The following axpressioh for the output of the integrator'va is 05~

‘tained by substituting Eq. (3.2~3 )s (3;2;&), and (3.2-5) into Eq. (3.2-2),

Vg = /[ [ (2, +1¢) (t) ][ E,, f(t)]
. " o 1_1 | : j=1 S
2WT 20T T f |
= ) (B + K ) f o 5(8) £5(8) as (3.2-6)
1‘13=1' 0 .

- According te the definition given in Chapter Ii the orthonormal

functions fi(t) has the following property
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vhich in conjunction with Eq. (3.2-6) yields the following expression for

) (B + W) B, | (3.2-1)
§=1 - ;
From Bg. (3.2-7) 1t is clear that V, is the imner product between the

‘ - = = L
plus noise vector X = E, + N and the loeal carrier

rec@ived ,a Y

veet@r Ez a.nd can be written

—p—s»

Vg = (B + - %5 | - (3.2-8)
Eq. (3.2-8) is the mathematical expression for the demodulation pr@eess ,
by which the multidimensional varisble X is transformed into the one-

dimensienal varisble V_ . Since this is a liﬁear trans'foma#i@a; this .

a’
type of receiver mll be referred ‘ée as a linear receiver.

Eg. (3.2-8) can be written in the following form
- ¥ Bl (3.2-9)

AR

i

vhere |E, ] is the magnitude of the vector Ez From Eq. (3.2-9) it is

evident that V F E.l is the length of the projectslon of the vector X ento

the veetorgEga From this it is clear that the equation
V. =TeE | .  (3.2-10)

where V‘dd is an arbitrary constent is satisfied by the set of *v'ea'e:ter:és=
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- = -
X = Xd whose end points lie on the hyperplane which is orthogonal to E,

and intersects‘EZ at a distancebvdo/ iﬁ;i from the origin, If Vde _is the
decision threshold voltage then the hyperplane determined by Eq. (3.2-10)
is the declslon surface whlch is generated by the synchronous reeeiver.
Fig. 3. 2=3 shows the locatlon of this decision surface in a typical 2-
dimensional subspace containing the vector EQ.

If, for example, Vy > V4, is interpreted as a "mark" then the "markh
decision region R, will be to the right of the decision surface in Fig.
3.2=3 and if V3 < vdo is a “spécé“ then thef"spaée# decison region R, id
to the left of the decision surface, o ”m-

For a given binary system the waveforms which are transmitted to fg-'
present a "markn (ice, ig_ =-ﬁ) and a "space" (i.e, _il =§) will be known
along with their probabllitles of transmission P(M) and P(S)° If, in
addition to the abave information the Joint probablllty den31ty of the
noise in the channel pn(ﬁ) is known, it is possible to calculate the prob-

ability of error Pe with the aid of Eq. (2.4=7), viz,

ro-xo [ p G-D&E

+ B(s) f b, @-B) & - (2

R
m

The evaluation of the integrals in the right hand side of Eq., (2.4=7)
is tedious and involved if the dimensionality of the signal is very large.

F@Fbuzéately,, however, there is an alternative approach which ean' be used

to obtain a simplified solﬁ_tion for certain important special cases,
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According to Eq. (2.4~2) the probability of error is
P_ = P(M) Prob {3{' inR_| i”lﬂ-;iv'f}
)

+ P(S) Prob { X in R oA =‘§"} (2.4=2)

-
In terms of the decision space "X in Rs” corresponds to Vd<: Vdo_and
- ) _
" in R " corresponds to Vy 3> V4o and the expression for the probability

of error becomes

P =P(M)Prob{ V.< V., | E =%
| . -

. Ty Y = 02"11

+ () prob { v, > v, | E =% ) (3.2-11)
which with the aid of Eq. (3.2-7) becomes
‘P_ = P(M) {'ﬁf ARt
e = P( Prob { ME,< Vgo - MEZ}

+ 2(E) moo (WE>v,, - T,  (3.2-12)

The quantity

quy

L, M - - Be2-)
i=1 - :

is a random variable which is the sum of 2WT random variables and isrill

-D-‘-Eh

have a gaussian distribution under eithef of the following c_onditiens:
(1) That each of the random variables Ni has a gaussian distribu~-
tion, or
(2) That each of the random variables N;E,; is independent and has
a common distribution (here it is assumed that the number of
random variables NiE2i is sufficiently large for the central

limit theorem to apply),
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Clearly if‘ﬁrgé is the sum of several groups of NiE2i such that each group
falls into one or the other of the two categories described above then the
sum of each group is a gaussian random.variablé and therefore'§i§% ﬁill.

also have a gaussian distributiongvxThe mean ;; and variance cthz of this
random variable will be the respective sums of the means and variances ofi

the individual random variables miEZi‘

(3 02“M)

(3.2-15)
2 [E g let (3.2-26)
9 - [?‘i, - () J Bay
The probability of error is
'}é."s‘f
dv (3 02?'17)

(3 ° 2“18 )
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3.3 Eguivelent linear receivers

In Section 3.2 the eynchronons receiver was analyzed. In m's eéé.tien
the ma&ched filter receiver and hybrid combinations ef the matehed filter
Hwand synchronous receivers will be considered._

Fig 3 3-1 shows & matched filter receiver.‘ The input signal plus
noise is filtered and at the end of the baud the. eutput of the filter
vh(t) is sampled end the decision.clrcuit determines the appropriate eut-
‘put depending on whether the sample is gbove or belew & certain thresh-
hold value.

.. The output of the filter is

t | . |
() = / - x(u) b(t - u) (3.3-1)
, R o NPT
which at the end of the baud (i.e. t = T) when the filter output is
sampled_is
: . T
Vg =7 (T) = x(u) B(T - u) du (3.3-2)
-0 ’ k

It may'be assumed thaﬁ in order to avoid intersymbol interference the
deratien'of p@e filter impluse response is made egual te‘the_beﬁd lengtg,
_This along with the fact that the seceﬁd factor inﬁthe integralfef'Eq;

‘ ( 3. 3~z) is equal to the wavefem to whlch the filter is matched allews

_lEq (3 3-2) to be rewritten to the following form

r
v, = / x(u) (u) du - (3.3-3)

where ez(u) = h(T - u).
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Eq. (3.3-3) is of the same form as Eq. (3.2-2) which is the egquation
describing the performance of the demodulator of a synchronous receiver.
Clearly the development which follows Eq, (3.2-2) also applies to Eg,
(3.3-3) and the results which apply to the synchronous receiver also
applies to the matched filter receiver.

In Fig. 3.3=2 is shown the block diagram of the hybrid receiver in
which thé process of matched filter reception and synchronous reception
are combined, The output of the filter vk(t) is related to the receiver

input x(t) by the following equation

: st )
v () = //( , x(u):ezg () n(t - w) du (3:3-4)
- t T . - . v - . = - - *
where the value of the lower limit of the integral is the result of
limiting the’length of the impulse response of the filter to a duration
T. At the end of the baud the output of the filter is sampled by the

decision circuit juét as in the other receivers and the value of this

sample is

T

v, = v (1) - [ x(n) &, (2) B(E - u) au (3.3-5)
o

Designating the waveform to which the filter is matched by the function

ez(t) ‘
E£7135— =h (T - %) . (3«3-6)

Eq. (3,345) can be reduced to

. 7 | ,
Ya = . x(u) ey(u) an. (3.3-7)
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Eq. (3.3-7) is of the same form as Eq. (3.2-2) and the results which
apply to the synchronous receiver are also applicable to the hybrid re-
ceiver, .
| Thus, it has been demonstrated that on a per baud basis the theoretical
performance of the synchronous;, matched filter and hybrid receivers are
equivalent.,

3.4 Summary

“ In this chapter the general performance of linear receivers has been
derived, The class of linear receivers is that class of receivers which
performs a linear transformation on the n - dimensional input signal in’
order to reduce it te a one dimensional signal. A typical'éxample of a
linear receiver, the synchroneus receiver, is analyzed in detail and the
results are extended to include matched filter receivers and other equiva-

lent types.
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CHAPTIER IV
THE APFLICATION OF LINEAR RECEIVERS (Part I)

Lol 'Introduetion

 In Chapter III the general theory of linear receivers has been
developed with:the aid of signal‘space concepts, These results will be
used in this chapter as a basis for the analysis of the performance which
can be expected from linear receivers for various kiﬁds of interfering
noise, Although some of the material which is develobed in this chapter
has more general application, the emphasis will be on noise which has
independent spectral components,

4.2 Optimum reception with linear receivers

In Chapter III, it was shown that the decision surface generated by
a linear receiver is a hyperplane, Thus a linear receiver can provide
optimum reception only if the optimum decision surface is also a hyper-
plane. Optimum reception can then be aéeompliéhcd with a linear receiver
whose loéal carrier vector and decision threshold have been appropriately
chosen, Clearly, if the optimum decision surface is not a hyperplane,
optimum receptionvwith a linear receiver is not possible.

In this section the types of noise which result in a hyperplane
decision surface will be determined. In order to simplify the analyses
it will be assumed that the source is symmetriec and that the "space®

waveform is the negative of the "mark®, i.e.,

P(s) = p(m)

_S,a - gff ' (h.,g.,l)

!
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A binary communications system having the properties given by Eqe (4.2-1)
will be referred to as a symmetric binary system, From Eq. (2.5-5) and
Eqs (4e2-1) the equation for the optimum decision surface may be obtained,

vizZoy

O, -
Pn(z _M) = pn(?Q +»B‘:1) . o , Q" 2-2)

Definition = a function f(Z) is said to be symmetrical about the

hyperplane

EF-F-x-o0 | o , B (L"°2‘f’3v)...'
if thé variable'veetorV?rin.qu (ho2»3)'also satisfied the'Eég

£(Z + vk - B) = £(z -k -B) - | | (4«2~4?, |

where & and B are fixed vectors and u is a variable scalar,

An example of thiévtype of symmetry is given im Fig, 4.2-1 where
tjpieal curve of f(§3 set equal to an arbitrary constant is shown as an’v
illustration. Although the example is only two dimensional it is typiéal
of any two dimensional eross sectien containing the véctor’zsin an n-
dimensional space.

Definitien = A e¢losed surface is said to be convex if there is no
straight line which intersects the surface at more thanvtwe points.

Wiﬁh the aid of the above definition it is possible to state the
following theorem

Theorem L,2-1 The optimum surface of a symmetric binary system is

' -
a hyperplane if the joint density of the noise pn(ﬂ) is monotone decreas-

A L=
ing with increasing noise magnitude [Nl {while holding the angle of N



%

constant) and if the equiprobable surfaces of pn(ﬁ3 are every where con-

vex and are symmetrical about the hyperplane “f"'ffs 0O where ‘L?is the tﬁn.ark“

signal vector, The optimum décision surface is the hyperplane of symmetry.
From the hypothesis and the definition for symmetry the following

equation can be written
, L s <or :
p,(X + M) = p (X -M) , (4e2-5)

L
where X satisfies the equation

M =0 | ' (he2-6)

Eq. (4.2-5) is identical to Eq. (4.2-2) which is the equation of the.
optimum decision surface and according to the above statement is satisfied

i = g , i
when X « M = 0, i.e,, when X is a point on the hyperplane orthogonal to M
and passing through the origin. It is now necessary to prove that Eq.
(442-6) is the only solution to (4.2-5). Since:pn(N) is monotone decreas-

- ‘
ing with increasing |N| there can be only one equiprobably surface for a
-

given value of Pn(N)" Therefore the two sides of Eq. (4.2-5) must refer
to points on the same equiprobably surface.

The rest of the proof is by contradiction. Suppose there is a point

C not on the hyperplane X * M = O which is a solution of Eq. (h.2-5), i.e.,
-~ =
p,(C + M) =p (C - M) | (he2-7)
- > .
where C « M # 0, See Fig. 4.2-2
-3
- Let the scalar a and the vector Xi be chosen such that

(4.2-8)

— —=pe



£(2) = Constant

AN EXAMPLE OF SYMMETRY ABOUT A PLANE

FIGURE k.2-1
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where X.l satisfies the relation Xl ¢ M 0.

Substituting Eq. (4.2-8) into Eq. (4,2-7) gives the following re-
sult '

pn(Xl * aE +M) "*‘Pn(xl"' ) (4.2-9)

As a result of the symmetry which was specified in the hypothesis,

the following equation must be satisfied;
| .

eafie e B
for all u and for all X satisfying the Eq, X « M = 0,
- s
Setting X = X; and u = (l + a), Eq. (4.2-10) can be written

(A.2-li)

and similarly with w = (1 - a)

" (4e2-12)

From Eqs, (4.2-9), (4.2-11) and (4.2-12) it is evident that the

points

“"zf'x: + (14 a) m_ | | (4.2-13)

X + (1 - a) M | | < (4e2-14)
"*’*ﬁ R (h2-15)
and

?»'f =3t: - (1-a)3§' | (4,2-16)
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THE GEOMETRICAL REPRESENTATION OF THE SIGNAL PLUS NOISE SPACE WHEN A
SOLUTION NOT ON THE HYPERPLANE X-M = O IS ASSUMED

FIGURE 4.2-2
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are on the same equiprobable surface, The location of these points are
‘shown on Fig. 4.2-3, | v

From Egs. (4.2-13), (4.2-14), (4.2-15) and (4.2-16) it is clear that
the end points of ’i’: 3, ?t. a.nd_Shfall on a straight line., This is contrary
to the hypothesis that the equiprobéble' surfaces are cdnvex and theréfore
the only solutions of (4;2;5) are given by (4.2-6) thereby proving the
théoremg ,
4.3 Types of noise encountered |

The types of noise which may be encountered can vb.e divided into two
' main catagories: (1) natural interference and (2) man-made interference,
Natur»a;lv interference consists mainly of thermal noise which has a gaussian
distributiena Other types of nat-ural noise inelude imp_ulsg nQise _d_v_.»;g to
lightning and VLF whistlers. Since there seems to be little likelihood
that wideband binary systems would be used at the lower frequencies it
may be assumed that interference from VLF whistlers will be of no interest.,

For the most part, man made noise cénsists of radio stations which ,
: gonerally have relatively narrow bandwidths., The presence of these narrow
band stations will cause the spectrum to be very jagged, It appears like-
ly that this type of noise will be the most significant in many applications
of wideband systems.
| Aé an example of this type of noise, consider the case where the |
| interference consists mainly of a large number of conventional A.M. radio
telephone links of equal bandwidbha The stations may be assumed to be -
independent of each other and to have a wide variation of average powers,
If the data rate (1/T) of the wideband system is equal to the bandwidth

of the interferring A.M, stations then the instantaneous signal level for
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-
eulM|

i |
THE GEOMETRICAL REPRESENTATION OF THE NOISE SPACE OF -ﬁ FOR THE

CASE WHERE A SOLUTION NOT ON THE HYPERPLANE F+M = 0 IS ASSUMED
. FIGURE 4.2-3 |
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each station can be represented as a single sample for each baud peried
and, as a first approximation, it may be assumed that the carrier fre-
quency'of each interferring station is the same as the frequency of one
of the coordinate axes, If the intarferring links arebof a similar natare
then it may be assumed that the instantaneous carrier levels follow the
same statistical law and, therefore, the only differences between t he
probability densities associated Wiﬁh each of these carrier levels is
their variances,

‘The effect of this noise can be determined with the aid of the
signal space representation given in Egs. (2.2-5) and (2.2«6),"These

equations can be written in the following form

(43-1)

where

£13(t) = 2T [u(t)-a(t -T)] cos 3“*’”‘?. -0y ) (4.3-2)

(and where E- and f (t) are not the same quantities used previously),
Here both Ei and_ei.are variables and the total number of variables is
the required 2WT,

 The following relationships can easily be verified

(1&03"‘3 )

e g
W
e

and
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E: - N P
L : (t) 3(t) @ "[Ag.s {821 ") i;g (“-A)

If the signal plus noise is given by

(443=5)

([-}03‘6)

The output of the integrator of the synchronous rweiver at the end
of a baud will be

Va= f x(t) e,(6) at

W W T

=) ] A E,. of i(1:.) f:i(‘g)’[, as
c1= = o

o+ J' R Ellﬂzifli(t) dt
8

which in accordance with Eq. (4.3-4) reduces to



+-§:'~E11E21 cos(ezi - 9;1) v» .(&.3—7)

It is epperent that, .for this situation, it_is_adquatevte_réyreé‘

R 3’)

y (4.3-9)

" ana
WD , ' .

B, = Z Boy . , 0‘3‘19)
i=1 ' ’

Thé'quantity N.cos(e -6, ).ié'a raﬁd@m‘variabie which is the pr@iuét
of the random varlables Ni and cos(GZi’- Q ) the latter one depenéing
‘on.the random’ variable (9 i ) The quantity N, is the interferring
icarrler'level and (@ i ni) is phase differenee between the inter-

:fErring carrler and the i - th component of: E

It is reasonable to assume ‘that the prdbability density ef ( 'Qni),

'; dlstrlbuted over the range o to 2x. For this case, lt can

easily be aetermlned that ﬁhe prabability den51ty of



-45-

v = cos (8 ,; - 6,) -  (4a3-11)

is given by

vz < 1
(4.3-12)
v2 > 1
The distribution function of a random variable
WW=uv o ) ’ (14-03"’13)
can be obtain by evaluating the following expression
B (w) = p,(u) p (v) du av (bo3-14)

R
where the region of integration R is given by the inequality wg§ uve

Therefore

o) = p,(8) p,(v) av au.

~ ) wfu

©  wfa . o | |
| + [ . f o p,(u) p(v) &v au (403_;5)

The probability denmsity function‘of the random variable w can be obtained

by differentiating Eq, (4o3-15)
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0

In particular if u = N; and v is the quanity given in Eq. (4.3-11)

(4.3-16)

then the density function of the,randam variable

W‘= Kicos (925_ - m) (Lh3"‘l7)
is given by
(" b, @) @
R s »

where the probability density fun¢tion of’thg random variable Hi is
P,(ny)e

If the probability density pu(Ni) is known then it is possible to
make a complete analysis of the performance of the System.>

A similar approach is pbssible for other types of interferring narrow -
band statien, e.g. DSB, SSB, FSK‘and to a first approximation the only
difference will be the shape of the density function py(N;).

Better approximations are possible by taking into consideration the
relationship between the baud length T and the bandwidth of the inter-
ferring stations W;.

If,.for example, /T = BWi then there will be room for three adjacent
channel stations for each coordinate of the signal vector El; The coor-
dinate valaeé of the w! can be considered (to a first approximation) to be

i
the sum of three independent random variable, i.e,
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-

where w,;;, Wi and Wyg are determined with the aid of Eq, (4.3-18).
If, on the other hand, 3/T = W;, then the bandwidth of an inter-

ferring station corresponds to three of the coordinate axes of the

signal, This situation can be handled with the aid of the following

signal space representation,

(LI-OB"Z)

VTR [ u(e) - us - 9/3) | cos(@LE - 0),
A - f ifgmrwua
(4. 3-21)
o, =< VETE [ (e - /3) - ule - 29/3) | cos®BE - 0y),
. o N L i"g 5"4;;»0".

\Eﬁ €ﬂ@-2Wﬂ—ah~T)}wd®“ - 6,)s
| = 3,690+

The noise from the k=th interferring station can be represented as.
the three random variables W, Wg,1, and W, whose densif.ies are deter-
mined from Eq. (L4.3-18). If the spectrum of the interferring station is
white then these random variables are independent, |

From the analysis given above, it is apparent that a good approxima-
tion of the interference resulting from many similar narrow band stations

is that the signal, represented by a WI-dimensional vector, is perturbed
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by WI random variables with similar density functions given by (4.3-18).

In many cases the random variables can be considered independent,

Lol Reception of signéls perturbed by narrow band interfering stati@ng
In the preceding section it was pointed out that one of the most

important types of interference which a wideband system may encounter will
be caused by narrow»band stations. In this and the following segﬁiong,m
@hgwtypemgf perfo;mggce whiqh can be obtaingd from linear recei&ers when
‘used‘in this enviromment will be determined,

As was pointed out in Section 4.2, optimum reception with a linear
receiver is posssible only when the optimum dec¢ision surface is a hyper-
Plane., In general, this is not the case for the noise which has been |
assumed as indicated by the following example.

Suppose the noise is a result of WT adjacent channel stations and
that eachvstatipn corresponds to a coordinate axis of the signal space.
Further, sﬁppose the noise density as determined by Eq. (4.3-16) has the

following form
' — 7 C (hebe1)
Pw(wi) = exp (ai - biw~) bk

Since the stations may be assumed to be independent the coordinate
values of the noise will be assumed to be independent. The joint density

can therefore be written

o R |
pn(N) = !j‘_:Il ex.p(‘ai— - biwll-) : (404—“2)

For the sake of simplicity it will be assumed that the system is symmetric,

The optimum decision surface according to. (2.5-11) can be written



exp [ ey - by (%; - Mi)h ]

g

',
| o

oy

s

X exp [‘ai - 'bi (Xi 'l'Mi)h ] : : (hoh‘B)

By taking the logarithm of Eq, (ho.4-3) the following equation for the
opbimum decision surface may be obtained.
W 3 WT 4
Z a; - by (xi - Mi) = z a; - b, (x:.L + mi.) (4obi=k)
i=1l i=1

which ean be simplified to read

o
Z by X5 My (xF + ) = (bok=5)
i= < ,

Since Eq. (4o.4-5) is clearly not a hyperplane then optimum reception

cannot be obtained with a linear receiver,

Although optimum reception with a linear receiver may not be possible

in a certain situation, it is; never-the-less, important to de’cem:il.ne what

criterion may be used to obtain maximum performance, i.e., least proba-

bility of error. Although it is possible to determine the probability of

error frem Eq., (2.4-=7), the process involved is tedious and ne general re-

sults are possible, For wideband systems it will be shown in the next
section that the signal-to-noise ratio criterion can be used for an im-

portant sﬂubclass of this type noise to obtain useful knowledge of perform-

ance,
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45 The signal-to-noise ratio

The signal—to-neisé g:'atiq is a factor which is often used in the
evaluation of communications systems, When the statistics of the .:ﬁc;a‘ise
are known a complete analysis of a binary c@mmuniéations system wili .
have as its moét impértanb result the relationship between the signal=to=-
‘noise ratié at the input to the reéeiver g.nd the probability of error of
its output. The relaﬁionship between the signa_l—to-noisc ratio at the
. demodulator @ﬁtput. and the signal-to-noise ratio at the receiver input
is also useful, either when used as an intermediate step to obtain the
relation between the @utput probability of error and the receiver input
signal-to-noise ratio or when us_;ed directly to evaluate reeeiv_er perform-
ance,

From Eqe (3.2-9) the output of the demodulator can be written

Vy =E'E) + B, : (4o5-1)

In Eqo (4.5-1) the quantity E, ° E, is the signal component of V, and
N o EZ is the noise component. The output signal te noise power ratio
(SNR),, is given by
‘ - .
(B Bp)”
i ‘—)-‘—9- | 2
Vg,

- Where E[N Ez] .'LS t.he expected value of (H Ez ) 2. As;.a general

(som), (h.5-2)

~ rule the noise will have a zero mean value and E[N —ﬁ] becomes equal

to
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where 0,7 is the variance of the rendom varisble Ny end vhere

n = ZWP. Substituting Eq. (4.5-3) into Eq. (4.5-2) results in

In order to facilitate the further analysis of Eq. { _h..s-h) it will

be assumed that the neise is white, i.e.

| ‘o*iz - %— < (k.5-5)

where O “ is the variance of the noise N. For this case Eq. (4.5-4)

becones

(4»5"6) .

Tt is- apparent frem Eg. (4.5-6) that for fixed values of ig, o‘g and n
tiae quantity (s_xm)9 is a function only of the direction of ’i:’z If only
‘the ai‘rectin of ’sh’e‘ vector B,is allowed to vary ‘then the demoninator of
~ the right hand side of Eq. (h.v.fzv‘:je-_‘é)v is a constent. ané. (SEIR)O is & maximum

‘when the mumerator is a maximum. Clearly this is the case when Eg has
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either the same or the opposite direction of E;y i.e. the maximum value

of (SNR), is obtained when
‘i}’. = k.—E’ (ho5-7)

where k may be positive or negative,

Substituting Eq. (3.4-7) into Eq. (4.5-6) gives the following re-

sult,
2 2 2
nlEl_Ikﬂ‘v .n’El'
Max(SHR), = —gT—F— = —3— (4+5-8)
and
. = - . ,
v, = kff-i?l = kl.pl( 2 vk E:}F (h.s-?)

2, 2 |
Since lEl‘ / T is simply the input signal-to-noise ratio (SEEOi Eq.
(4.5-8) can be written

Mex(SNR),, = n(sER)i = 2WE(SIR), , (he5-10)

which is identical to the results obtained by Turiﬁg If the noise at the
input to the receiver is not white then a prewhitening filter c¢an be
Placed ahead of the demodulator (see Fig. 4.5-1), In order to simplify
reception it is desirable that the prewhitening filtér have a constant
delay over the input signal band, In this case the filter can be repre-—

sented as the following linear transformation of the input signal space

n v '

o) BT, | (he5-12)

-/ i 71
i:l . o
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' PREWHITENING FINITE MEMORY =~

FILTER ~ INTEGRATOR

,/‘
E,

| DECISION
* CIRCUIT

A SYNCHRONOUS RECEIVER WITH A PREWHITENING FILTER

FIGURE 4.5-1
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where the X; correspond to frequency domain samples of the input signal
plus noise and Hi is the filter‘gain at the sample frequencies, In order
to transform the noise at the input of the filter to white noise, H must

satisfy the f@ll@wing equation
P A AR o | (k.5-12)

_ - _
where the CTi 's are the variance of the coordinate values of the input
noiSe‘and 672 is the variance of the noise at the output. The gain factor
A is an arbitrary constant and will be taken equal to unity for the sake

of convenience. The signal at the ouiput of the filter is

B - z T _ & T, . (4o5-13)

and the signaiwte—noise ratio at the filter output is

(SEB)

(h.Svlh?

q

The expression on the right hand side of Eq. (445-14) is the average of
the coordinate signal-to-noise ratios. . |

By combining Eq. (4.5-10) and (4.5-14) the following general expres—
sion for the maximum output signal—to-aeise ratio of a linear receiver is

obtained,

o n )
Max(SER) Z Eli | o (4e5-15)

i-;h
|
B add
.
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It is evident from Eq, (4.5-15) that the maximum output signal-to-
noise is equal to the sum of ﬁhe coordinate signal-to-noise ratios, -
In this case the local carrier must have the same direction as Ei' ’
to realize maximum signal-to-noise ratio at the output, i.e.y
T oakT
2 ' lﬁ'
For this case the output becomes

n n

A Z X} By, = Z kX B, S (b05-16)
i=1 i=1 - o

Bdo (4.5=13) is also valid for the signal plus noise vector.ia, i.e.
T =X z —x ’f | REL)

and therefore Eﬁo (4o5-16) can be written

o oon 2 N : ' :
C 'ko” _ ,.5-18
vd_ o 2, XiEli | o (4o5-18)
1=l n<53

From Eq, (A 5»18) it is evident that 1dentlcal performance to the
linear receiver hav1ng the prewhitening filter descrlbed above can be
obtalned w1th a 31mple synchronous receiver (whlch does not have a prea

whltener) having a local carrier

B
. ;
By =)
i=1

In many cases it is possible to easily determine the output probability

4}

 (he529)
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of error from the signal-to-noise ratio at the output of the dem@dulaﬁoro
If the random variables E2imi are independent,with common distributions
then, according to the central limit theorem, the output of the demodulater
Vs will have a gaussian distribution. |

This will also be true if theré is some variation betﬁeen the quanti-
ties EéiNi so long as they can be grouped such that each group contains a
relatively large number of randem variables whose distributions are the
same, Iﬁ such a case the probability of error can eésily Be determined,

If the system is symmetrical and the receiver has a zero threshold then

it can easily be shown that

P, = 1/2 ['1 - erf.g/(lja)'(333)é ] -;(h'5'20>J

If» for example, the noise consists of a very large number, say one
thousand, narrow band stations then it appears reason#ble to assume that
Eq. (A°5-20) will give a good approximation to the probability of error
which will be encountered,

This approéeh is extremely useful since, in most cases, the prébabilin
ty den31t1es of the interference will not be known, thus, maklng a more
axact analysis impossible° |
ko6 Summary

In Chapter IV lt has been shown that, in general optimum reception
cannot be obtained with a linear receiver, Optimum reception can be
obtained, however, in certain cases and a sufficient condition for such
a case to exist has been derived,

The types of noise which may be encountered in practice have been

discussed including gaussian noise, interference from narrow band stations
i v s ' : ‘
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and impulge noise, The nature of the noise which results from a large
number of similar interfering narrow band stations has been analyzed in
‘detail, )

In general, great difficulty is encountered in determining the con-
figuration of the linear receiver which results in the minimum probability
. of error for a givén type of noise,:lFor this reason the signal-to-noise
ratio criterion is of importance, In this chapter the configuration which
results in maximum signal-to-noise ratio has been derived using geormetrical

methods based on the signal space concept,
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CHAPTER V
THE APFLICATION OF LINEAR RECEIVERS (Part IT)

5.1 Introduction.

In_Ghapier IV the performance of linear receivers was analyzed when
the inﬁerference ﬁas fr@m narrow band stat;ons. In ﬁhis chapter the case
where the signal is perturbed by impulsebnoise will be examined, The re=-
sults will be extended to include both impulse nbise‘and noise from narrow
‘band stations,

5.2 Iypes of impulse noise

| Impulse noise can be caused by natural phenomina such as lightning
or it can be man-made such as,fdr example, switching transientso_ Although
usually it is not periodic, in some cases it has a périodie'nature.as;

for example, commntation noise, In many‘cases the océurrance of a pulse
of noise depends to some degree on the time of occurrence of previous
pulses, Thus, it is evident that to properly specify the statistiq#l
nature of the ﬁoise it is necessary to refer to the specific type.

In many cases, however, impulse noise which is objeetionable is
characterized by very strong,short duration pulses which are separated by -
relatively long intervals. If the data rate of the communication system
is sufficiently.high the probability of more than one impulse occuring in.
a single baud will be negligable, In such éases, it is sufficient to
specify the amplitude distribution and average rate of occurrance, The

affects of this type of noise will be analyzed in the next section,



- 59-

5.3 The analysis of systems utilizing quasi-random binary carriers when
perturbed by impulse noise

As was indicated. in the previous section, impulse noise eas.often be
characterized by high amplitude, short duration bursts of .noise which
occur infrequently., :

The affects of this type of noise on the following types of systems
will be analyzed: (1) systems with low pass signals'; (i.e., signal spectra
" centered about zero) and (2) systems with band pass signals (i- e., signals

whose spectra are centered about f >W/2 where W is the s1gnal bandwidth).

The fI‘-"’W Pass Case. S:ane the results depend to a certain exbent on
the nature of the signal waveform it is necessary to assume a spec:.i’:l.c
waveform characterization in order to proceed W:Lth the analysis. @f most
interest are the .wav'efoms consisting of.sequence of‘quasi-randombi’nary

pulses which are produced by shift register generators. -

el(t) = By £,(8) o o (5.3-1)
where |
fi(t) =,  \/ﬁ[ u(t - (4 - _‘;L,)Zzw)- u(t - i/ZW)] | (503-2')

and where the amplitude of the i-th‘pulse .cf tfle sequence Alj is
Ali \/‘* ' | S (5.3-3)

For a typ:l.cal b:.nary system where the "space" waveform is the negative
of “mark® wavefonn the receiver loca.l carrier ez(t) will have the same

shape as the "mark" waveform, These waveforms can be written in vector
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form as follows:

- - o |
M= Z Mi Ii . . (503"‘&)
1= |
T (5.3-5)
ﬁ; = k‘ﬁ ‘ (503"6)

where k is a constant which for convenience is taken greater than zero

and where
S = a%/aw | (5.3-7)
In the absence of noise the output of the finite memory integrator

at the end of the baud is

: X Mi:k . R (5.3-8)
imi

if the input to the receiver was a "markf' waveform, and the output is

(5.3-9)

if the input was a H"space®,
If, for a particular baud, the input signal is perturbed by an im-
pulse having the form of a Dirac delta function

;) | -(5.,3-.-1)
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where t is measured from the beginning of the baud and ty is the time of

occurence of the impulse then the output due to the impulse is

T | /T awr
Von = / ﬁ(t)e‘z(t;)ﬁt = f ¢ E(t -t ) k Z (t)d:b -
= C kM, VEW (5.3-11)

where the subscript i is given by
(1-1)2w< 6, < tfow S (5.3-12)

If, as is‘usually the cése, the wavefonnjﬁ is chosen such that it has a
zero dc component then the probability that a particular M. picked at
randam.will be p031t1ve wlll be equal to the probablllty that it is nega-
tlveo If the time Wthh the 1mpulse occurs is a random variable which is
uniformly dlstrlbuted over the duration of the baud then from Eq, (503-7)
and (5°3=ll} it is ev1dent that the probability density function of the

output of the integrator due to the presence of the 1mpulse is

where p@(G) is the probability density function of the impulse amplitude C.
If the decision threshold is set at zero then the probability of

error Pe is given by
:.Pe‘ =Pro’b {Vdm + V6n< 0} P(M)

+ Prob { Vo, + V> 0} P(S) (5.3=14)
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 where P(M) is the probability that a mark was transmitted and P(S) in the
probability that a space was transmitted., From Eq. (5.3-8), (5.3-9) and

(5.3-13) it is evident that
Prob { v, + V< o} =B { Vg, + V> 0} (5.3-15)
which reduces Eq. (5.3-14) to
= Prob {v <V } | o (5.3-16)

The right hand side of Eq. (5.3f16) is the probability distribution
function of Vg evaluated at ;vam and therefore with the aid of Eq,
(5.3-13) the probability of error can be written

( Vam
RAL 2kA[ (Vdn/kA) + p( dn/kA) ] d,n (5.3-17)

-co

With the aid of Eq. (5.3-8) the above Eq. can be written

[~AT 2 [ Pe(2) + py(-2) ] &

which in terms of distribution function of G becomes
1
Pe=-2-[P(-AT)+1-P(AT)]

If the impulses have an average occurrence of O impulses per baud

than the average probability of error due to impulse noise is

fONJ

i [ 1+ P (-AT) - P (A‘.{') ] ' (5.3-19)

or in terms of the average signal power PE = A? -



F =270 I:l-i-P( ,/"m)-P(\Fm)] , (5.3-20)
Further results depend, of course, on a knowledge of P (C) and U.
If, for example, the impulse'noise;has a constant amplitude C = ClAT

then from Eq. (5.3=19) it is clear that

‘§ 0/2; ;> 1

.03 %41_

(5.3-21)

There is almost always some sort of filter between the input of the
receiver and the demodulator, For this reason thebnoise,pulSes at the in-
put to the demodulator will generally not be iﬁpulses but pulses of finite
amplitude and non-zero duration. The length of the pulses will depend on
the nature of the 1nput filter and since the input fllter is usually made
approximately equal to the bandw1dth W of the 51gnal the length of the
noise pulses will be in the order of 1/2W. Such a noise pulse C n(t) is
shown in Fig. 5.3-1., For this particular example the'pulse occurs at time
tl and has, for all practical purposes decayed to zZero at a tlme 3%1later.
Furthermore, the waveform of the pulse n(t) is everywhere nonpnegatlve and
G ie a‘positlve multlplier° The output of the finite memory ;ntegrater
at the end of the baud due to the presence of the pulse atithe ihput'ef :

the demodulator during the i—th pulse of the local cerrier ez(t) is
Von = f Cn(t - ) ez(t) at o (5.3=22)

where t, has the probability density function
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1-1,
= < 1< zw

O, otherwise

- 2W;
‘ Pt(tl? =

(5.3-23)

Since, in general; the noise pulse overlaps two of the pulses of
e5(t), then there are four possible forms which Eq, (5.3-22) can take,
These forms correspond to the four follow1ng cases

Case (1) A = A(i+1) = A

Case (2) 4, = -A(i+l) = A

Case (3) A -4

Aas1)
Case (4) A = 'A(i+l) = <A

where kAi and k(i+l) are the amplitudes of i-th and (i+1)=th pulses of
ey(t) and kA is the positive square-root of the average power of ez(t).
For case (1) the output of the 1ntegrator vdnl is independent of tl'

and is given by

1
: 2W , :
V3, = EAC St n(t) at : (5.3-24)

The integrator output for case (2) depends on the value of tl, how-

ever, and is

2 L
2w - Bt W

1

which can be written
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i-th - | (itl)-th

PULSE OF e,(t) | PULSE OF e,(t)

4=l
W W

Bl

A TYPICAL NOISE PULSE
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Van = 2kAC n(t)vdt -V (5.3-26)
: 0
where
i 5 o327 )
- R (5.3-27)

Y. = V. : | ‘ (5.3-28)
‘dn3 any ,
and
dnh “2,

Designating the conditional density functions of V,_ for cases (1)
dn ’

(2), (3) and (4) as p,(V, |1), pz(Vdn\Q), Py(Vy,|3), and p (V, |4) respec-
tively, the density function of the output can be written

p(Vgy) = T Py (Tl 1) + 13?3’2("6:1\2,)' * 1'11'93(Vdn\3),'+ ,PE(Vdn\?.), o)
' an e -, S T (5.3

The distributien function of the output is

) Yﬁh | Vﬁn Véh
Bv,) =% [ py(x|L)ax + § [ v, (xl2)ax + / py(x|3)ax

Van

’ f P, (xl¥)ax | | - (5.3-31)

+

I
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‘From Eq. (5.3-23), (5.3024), (5.3=25), (5.3-28) and (5.3-29) it is
evident that |

pg(Tgl3) =y (Tl L (532)
and

'Pﬁ!?ﬁ?):pl(-vll)' o (5.3-33)

and therefore .

v V Van

dn : 'a
CR(Ve) - f p, (x11) 6x+1l;f . Pz'(is\z)dxw%j p, (- z)1)az
v |
f'%; / Pg(' 2[2) dz (53_31‘)

-0

Letting =z = X, Eq. (5.3-34) becomes
| Van o w
B(v,) = = o py(xl)ax+ £ f "o, (x12) ax (5.3-35)

“Van Van

From Eq. (5.3-24) it is clear that
21 (V4 |2) .__.a(jv- - V) o (5.3-36)

Since n(b) > 0 it is also evident from Ea. (5.3-23), (5.3-2k), (_'51.‘3:-26)

and (513-27) that
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v, < p (V. \2)K ¥ - ;337>
an, S F2Hlan!’ an, (5.3-37)

With the aid of relati@nships (5.3-36) and (5.3-37), Eq. (5.3~35)

can be written

(o5 =< Vg < -'*Vanl

Ve | » |
. 1.1 ' N A .
B(v,) g,< P p(x12) 8% Vo & Vop <V,
_. v | |
<v<«.  (5.3-38)
From Eq. (5,3.26) and the fact that € n(t)= 0 it is clear that
gxx> o (5.3-39)
and therefore
03 -oo< Vdn< -Vdnl v v
Y(Vh)
v 1.1 -
CBVy) = E E[ 2(y) ay; Van, < Van< Van,
REL™ | |
1; v WS V< (5.3-%0)
Where
p(y) = p(z% - &) =20 (5.3-41)

By substituting Bq. (5.3-h1) into the right hand side and performing
the indicated integration, Eq. (5.3~40) becomes
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05 =< Vgn< Van

mn—-

w[ . , I

9 50 - ¥ Tg) |5 Vo € Vg <

2 oS dn< an,

L V< V< (5.3-42)
where y(V, ) is given implicity by Ba. (5.3-26), i.e.,

¥(v,y,)

=21:Acf - n(t) at -V | (5.3-43)

v an
o .

an 1
For a symmetrical binary communications systems (i.e., P(M) = P(S)

-
and 8 = =M) the probability of error is

P, ?P(’Vam) | o | (5.-34»&)

\

where Vdm is the output of the finite memory integrator when the receiver

input is a "mark" and is given by

¥ kAT , o o (5.3-45)

and where it has been assumed that the imput filter has not appreciably

dlstored the input waveform,

Therefore, from Ed. (5.3-1;2) the probability of error is found to be

(5.3-46)

[(kAT) -y(kAT)]; 0< A< o+
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If € is a negative mﬁltiplier the above results ‘c‘an be shown to apply by
intefchanging case (1) with case (3) and ecase (2) with case (4).

If C is a random variable with a prébability'density pc(C) the prob-
ability of error can bé ob'taﬁin_ed by taking the expected value of the right

hand side of Eq. (5.3~46) and, therefore,

wi=

[}
P =2+ f " [ y(-k 4%1) —y(x A%1) ] p,(C) ac (5.3-47)
is the probability of error if € is unbaounded, If € is bounded then ‘Eq.
(5.3-47) is valid for the range 0 < A2< (V dn/max’ KT 204 zero over the
range (v dn)max/kT <A2$ where (V dn)max is the maximum magnitude of

v dn and is given by

| » . 1/zw
7o :

and where (c>max is the maximum magnitude of the random variable C.
The average probability of error can then be determined by multi-

plying Pe by the average oceurrence of the pulses per baud , i.e.,

B =0F, - (5.3-49)
Although the above analysis is restricted to noise waveforms n(t)> 0
which have a duration 1/2W, similar analyses can be made of waveforms of

longer duration. It is also p;ossibl_e to make analyses of speeific wave-

forms having zero crossings by using the same methods.
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To illﬁsﬁréte the use ef‘the above results consider impulse nbise

consisting of square pulses, i.e.

(1 ogi< g - N
n(t) = i 1 " (5.3-50)
0; t<Oendt>zy T _ .

substituting Eq. (5.3-5@) into Eq. (5,3-h3) yields

| V) !
Vg, = 2k AC f at -.v (5.3-51)
o 0 ‘ L

which, when solved for y, results in

BN A9 3 7 o
) e i (5.3-52)
: YZKAE;. . , ‘

The average probabillty of error can now be obtained by substitutlng Eq.
(5.3-52) and (5.3—47) into Bqe (53-&9)

| ® o xa? L%
P : + H Al -
e ¥ 21 2KAC .

n
ol
DO

which becomes

ac (5.3-54)

g

#

cﬂ
Dﬂk»

2
. -y

If the pulses have a constant amplitude then



P = : (5‘3"55) _

3 2AWE>C

ol
POl

‘It is evident from Ba. (5.3-55) that P, is linearly related to the
product of the signal dimens'ionality times the ratio of the si_gnal ampli-
tude f.évthe noise pulse amplitude in the range where this product is iess
t.han'unity and that Pe is zero in the :Ea.nge where this prédubet.»is greater

than unity.

The Band Pass Case ‘

| When ‘é. radio link is used, the uSué.l’proéedure is to translate a low
p'ass‘ sig_na.l £9 some __c;onvexéient point in the rf spectrum before the signal
is radisted. To demodulate this signal, the signal waveform must be multi-
plied by eg(t) cos(2x £+ ﬁl) where ez(ﬁ} is the low pass waveform pre-
viously referred to and f is the translation frequency (see Fig, 5.3-2).

If the noise ceﬁsists of impulses, whe‘re it is assumed that no more

than one impulse-occurs durlng a-given baud, then the noise- n(t) ‘at -point

HAM due to a particular impulse U a(t-tl ) is
n(t) = cos(axfyt + #) U 8t - ;) | (5.3-56)

where ?'l is a randem variable with a probability density whieh is uniformly
distribyted over the baud interval o |

Eq. (5.3-56) ecan be written

3 #a L

n(t) =¢8(t - t) | - . (5.3-57)

where
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() + n(e)

FINITE | | DECISION
MEMORY |- ] CIRCUIT
INTEGRATOR

FOINT

o npn ‘
cos(antt + @) e,(t)

A BANDPASS SIGNAL RECEIVER
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C = U cos(anrt, + g ) | - (5.3-58)

The randeom variable C is the product of the two random variables U
and v = cos(2x f1t1 * #1)s If the translation frequency f, is large com-
pared with the reciprocal of the baud length 1/T then it can be assumed
with little error that 6 = (2x £16; + @) is uniformly distributed over
the range € 2x. From this hypothesis it can easily be shown that

the random variable v has the probability density function

C—2 YR (5.3-59)
. /1 _ VZ, ,

0 ; v2>1 _

From Eq, (4.3-15) the probability di.stributiori function of the random

variable € is

S c¢/u

» , 0 © L
Pc(c), = [ f pu(g)pv(v)dv avu+ f / pu(U)pv(v)dv avu
) ~to E/U | 6] -0 :

" (5.3-60)

The following result is obtained when Eq. (5.3-59) is substituted

inte Eq. (5.3-60) and the integrations with respect to v are performed,

-1l
P (C) = -23= - —3{1 [ s:Ln(C/U) Pu(U) du

®

+ -]—'-vf’ | sin (¢/U) Pu(U) dU : (5.3-61)
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Eq. (5.3<57) is the same as Eq. (5,3-10)‘and therefore the resulting
average probability of error is given by Eq. (5;3—20) The substitution
‘of Eq. (5.3-61) into Eq. (5.3-20) yields the fellowing expression for the

prsbabillty of error,

-|AT) - o N
/ f Sin“‘-l(AT/ U) p,(v) av

M b
+
E Y L

. L (5.3-62)
-2 / sin (AT/U) », (V) v i
jaT

For the case where U is a constant quantity, Eq. (5.3-62) reduces to

P, =0 [g--;lr..-sinfl_(m/e)], S  (5363)

Usually there is a filter at the input to the receiver., The effest
of this filter is to cause the waveform at point A" resulting from an
impulse at the input to haVeiaﬂfinite.ampliﬂude and a length,of>thé order‘
of the reciprocal of the filter bandwidth, .

, In general fsr any noise wavsform nl(t) at the receiver 1nput the

noise waveform at polnt “A“ is

,An(t)v= cos(Zﬂfi# + ﬁi) ‘ff hl(u) nl(t - u) du ; _(BbBeéh)

-y

where hl(t) is the impulse response of the input filter. If the input

filter-is;assumed to be summetrical sbout some frequency £, then the
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transfer function Hl(j_m ) of the filter can be expressed in tems of a
particular low pass filter H(jm) by the following relationship,
Hy(30) = B(m + Jmy) + Ko - dug) - (5385)

The impulse response of the filter can be determined by taking the
Fourier transform of Eg. (5.3-65),

hi(fc-) = [ B(jo + jmg) + B(m - Ju) exp(jat) a2 (5.3-66)

which can be written

by (t) = ‘ie:xip(-aa::fé) f H(Jemu) exp(j2mut) du

| | (5.3-67)
+ exp(Jaafyt) | H(j2nv) exp(J2nvt) av |
where u = £ + fQ andv=f-f°.

The two integrals in the right hand side of Eq, (5.3-67) are simply
thé expression for the impulse response of the 1ow pass prototype filter

and therefore |
’hl(t) = 2n(t) cos(2xz t) ' (5.3-68)
which can be written in the following form

1 (t) = 2n(t) cos(2nf,t) | (503-69)




- 77...

'If the transmissions are double sideband, i.e, symmetrical about £y,
then the center frequency of the filter fé will be made equal to fl. For.
this case according to\Eq.‘(5¢34éh) and (5.3-69), the noise waveform at
point A will be

w . .

n(t) = ces(Zﬁfi t + ﬁi)‘ S’ 2h(u) cos(2mfy u) nl(t -u) du,

| . B - (5.3-70)
If the input noise waveform n (t) is the impulse U 5(t~t1) then Eq.

(5.3=70) reduces to
. n(t) =0 h(t’ftl) [cos(ﬁi + Zm;ltl) + cos(hafl# + g - Z#fitl)J
| - © (5.3-71)

Since the finite memory filter is a type of low paés filter then there
will be little contribution from the second term of the sum in the right

hand side of Eq. (5.3-=71) and for all practical purposes n(t) is given by
n(t) = €n(t - %,) ) (5.3-72)
where C is the random variable
c = U cos»(gi +,2gfitl)

and has the probability function given in Eq. (5.3-61)

The:output of the finite memory integrator at the end of the baud is

. ,
v@=wf'xth-a)%@)&‘ -  (5.3-3)
L 2 |
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which is of ,the. same form as Eqe (5.3-22), If the same assumptions are
made about the length of the impulse response n(t), viz., the length of
the waveform has essentially died out at t = 1/2W then the results of the
development following Eq, (5.3-22) apply. Thus, the probability of error

is given by

Po=g+ [ 1 [ y(ua 7) - y(ea” 7) ]pc(c) 4 (5.3-74)

where y(V dn) is given implieitly by

¥Vgn) /2w

v,dn = akAcf -h,@ dt - f  h(t) at (5.3-75)
. 0 -

If the transmissions are single sideband then fo =f W/2 where
‘the plus sign is chosen for upper sideband transmission and the minus sign
corresponds to lower sideband transmission. It can easily be shown that

the noise waveform which results from an impi:lse at the input is

2Un( - %)) conleatys + 4,) cos | 2a(e; £ W/2) (6 - %) |

and the low frequency component is found to be
n(t) =Un(t - 1;1,) cos(Wt/2 ’-r.»_‘Wt‘l/z + g+ 2t t,) - (5.3-76)

The probability of error can be found by a method similar to the one used
previously (i.e. Eq. (5.3-24) to (5.3=49) taking into consideration that

n(t) as given by Eq. (5.3-76) will change polarity for certain values of
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the quantity

11

=

ty * 0y 2 exy

~

5.4 The analysis of systems having carriers consisting of quasi-random

impulses when perturbed by impulse noise‘

In the anslysis of systems which are perturbed by impulse noise, the
following question arises. What is the nature of the signal waveform which
1s least vulnerable to 1mpulse n01se9 "If the energy of the slgnal waveform
is held constant, it appears that in many cases the probablllty of error
can be reduced (in comparison to the case of the last section) by selecting
a signal waveform which is zero throughout the major part of the duration
~ of the baud. In this namer the probability that the noise pulse occurs
at a time that the local carrier is non-zero is made small, |

In this section, the case will be examined where the carrier consists
of pulses, each corresponding to a baud and each 1o¢ated-in a qpasi;random
fashion during ite baud period and having a quasi-random pslarity (i.eo if
a carrler pulse is picked at random then the probabllity that 1t 1s pes1~
tive is oneahalf)o It will be assumed that the signal pulses at the input
to the veceiver are square with a duration of 1/2W and have an amplitude
. _ o

~ Since the ratio of the time during which the signal waveform is non-
zero to thelbsud{périod"is I/ZWT>then'the probability of the integrator
outpnt noise vOltagé'Vdn being non-zero is 572WT, where 0 iS'ths'avérage
occurrence per baud of the noise pulses. tvathe nbiss‘rmlsss have the
waveform given in Eq, (5»3-10) i.ee

nft) = ¢ 8(t - %)
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If the amplitude of the locally generated carrier is kAl then the

"”‘81gnal component of the 1ntegrator output at the end of the baud will be‘:fuz_-

" where

-ei(t) :

R

iA1[ “(t- ‘1"»0)"‘- u(t -to- 1/2w)] (5.1,_2)

e (t)

R B
. Therefore, ‘.;." I | | .
vk B (5ukeb)
Vom = K Al/zw j
The noise output, when it occurs, will have an amplitude

Vs - l'k'Alcl ‘(5"-“5’ |

} =Thus it is evident that the derivation following Eq. (5.3-10) can

| - be made to fit this 31tuation if AT 1s replaced by Al/éw in the equation

rollomng Eq. (5.3-17). | - S

| | The probability of error obtained from Q. (5.3-19) will be the con-
_ditional probability given that the no*se pulse occurred during the inter-

:'heval that the 31gnal was non-zero, i, e. Q/ZWT and therefore ‘the average ,

o probability of error is  ; | o | o

e
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In terms of the avérage signal power
= & /2wt , R : (5.4-7)

The probability of error is

N

) [1+ 2,2V, /D) - 2 (2 VE; /A (500)

Similarly, the resultlng probablllty of error for the bandpass case

can be obtained by replac1ng AT by Al/ZW in qu (5.3-62) and 0 by Q/EWT.

- -.|A1/2W1

sinfi 2—%—5.? P, (U) au

(5.4=9)

Vel

Of particular interest is the case where the impulses have been
filtered previous to demodulation. From Eq. (5.4=3) it is evident that
for the low pass case the noise compqnent of the output of the integrator

at the end of the baud will be

2

Vip =2 kA C f n(t) at - (5.4-10)
- e - R

where h(t) is the impulse response of the filter and z is the random

variable
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Z =%tz by | (5.4-11)

0" ZW

having a probability density function

) S ew; 0L y<1/aW

nlz) (5.4-12)

e 0; otherwise

The probability distribution function can be determined in the usuwal

manner and is

B(V,,) =20 2(Vy) | (5.4-13)
where z(Vdn) is given implicitly by Eq. (5.4-10),

5 .1 [% J [ P - V) -3»_(vdm) +’1}_ - . (5hl’+)

which with the aid of Eq. (5.4-13) becomes

P, = 5% [ S +Wa (V) - Wz (V) ] (5.'4515}.

If C is a random variable, the value of 5; as obtained in Eq, (5.4-15)

must be averaged with respect to 0, i.e. .

"' ..»_§_. S!: - xv _ - e (5.4-16)
Toomm j30V [ [T vy [o0) ac 2

Eq. (5.4-—16) also applies to the bandpé.ss case since the random

variab‘le C can be related to the input impulse amplitude U by the method
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described in the last section.

5.5 The affects of noise which is a_combination of impulse noise and .

interference from narrow band stations

In this section, the method by which the probability of error can -
be determined will be outiined fof the case where the noise is a com=
bination ofrinterfering narrowband stationsvandbimpulse noise, ,Since,’
in genéral, the spectfum of the inﬁerferencq from the narrow‘ban& stations
will be very jagged, it will be assumed that there will Be a filtering
operation on both the input signal plus noise waveform and on the locally
generated carrier waveform (as shown in Fig. 5.5-1(a)). The affect of
this filtering on the output component resulting f£oﬁbimpulse noise will

now be analyzed. The output of the input filter'Hl is
a - :
- > ’
X' = z AT (5.5-1)
i=l ' ' '
and the output of Hy is

'(505-2).(

The output of finite memory integrator at the end of the baud is

n
Vd;f'X’?Ez'?ES- X By By By (553)
S s ' . :



;gu_

| FINITE - |

- INTEGRATOR|

meMory | Va DECISNN‘ ’

,. (a) -

v

(b)

] DECISION [

X X FINITE
Hy - *(g)-* MEMORY
‘ - INTEGRATOH

. |

EQUIVALENT WIDEBAND RECEIVERS

FIGURE 5,5=1
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For the system shown in figure 5.5-1(b) the output of filter Hy is

»l |

i3 Z R TR T T - (5.5-k)

and the 6utput of the integrator at the end of the baud is

e ' |  (5.5-5)
- Yt N 5,55
Vg = X'NE, - Z Ry Hll Hy, . -G
| T4 | o

1

From Eq, (5.5-3) and (5.5-5) it is evident that the two systems are
equivalent.,

If ez(t) is either a quasi-random binary sequency or quasi-random
impﬁlses thenbthe material which was previously developed in_this chapter

can be used where the impulse response referred to is the impulse response

of the combination of H, and Hy, i.e.

n(t) =j ngm)ﬂz‘(jw)’east s (556

. If interference from narrow band stations is present as well as im=-

pulse noise then it is necessary to determine the probability density

function of

Van = Vani * Vans (55-7)

where V. . is the component due to the impulse noise and V is the com=
dni : dns
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ponent due to the interference from the narrow band stations. Vdni and
Vdns are independent random variables and their density funetions have
been determined (or approximated) in Chapter IV and Chapter V. The den-

sity function of vdn can be determined in the usual manner by convolution

co

P(Vgn) = f ; (%) By (Vgy - x) ax (5-'5-3?

where pi(vani) and ps(vdns) are the density functions of_Vdni and Vins®
The probability of error can now be determined in the usual way

and for a symmetrical system
0

y 1 |
/ p(V ) @ Vdn "z / p(Vg) &g (5.5-9)

dm

rd
L
Do

- Wwhere Vdm is the signal component of the output of the integrator when'a
"mark! is transmitted,

The presence of a prewhitening filter will cause the synchronous de-
modulator output which results from impulse noise af the input to be :
smeared over a relatively long interval. If, for example, the prewhitener
consists of a bank of filters where the bandwidth of each component filter
is 1/T then the impulse response of the prewhitening filter will be in the
order of T seconds, It is evident that, in this case, the advantage of
using a quasi-random impulse carrier to reduce the systems vulnerability
to impulse noise will be nullified, Any attempt to reduce the'vulnerability

to impulse noise by increasing the bandwidth of the .component filters will
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result in an increased vulnerability te narrow band interference. Thus,
it is apparent that a system caﬁnet be designed to have minimum vulner-
ability to narrowband interference. |
5.6 Summary

In this chapter, the performance of linear receivers has been analyzed
_ for the case where the interference consists of impulse noise. Two types
of linear receivers have been considered, The first type of receiver em-
ploys a quasi-random binary noise carrier and the second uses a carrier :
consisting of guasi-random impulses, The results obtained are extended
to include interference which consists of narrowband noise as. well as
impulse noise. It was shown that minimum vulnerability to impulse noise
cannot be achieved while at the same time maintaining minimum vulnerability

to narrowband interference,
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CHAPTER VI
NON-LINEAR RECEIVERS.

6.1 Introduciion

In the last three'chapters it has bsen shown that a properly designed
linear receiver can be expected to perform relatively well in the large
class of situations where the optimum decision surface could be'apprsxi-‘
mated by a hyperplane. In this chapter several non-linear methods will
be discussed whiéh can be used to obtain optimum or at least nearly
optimum reception fef a much more geﬁeral class of situatioﬁ.

6.2 Computation of the‘likelihood ratio

In section 2.5 the likelihood ratio was shown to be equal to

p (% - 1) 2(w)

L =

5, - 8) 2() (6.8
where pn(N) is ths probability density of the noise vector-ﬁ; and when
P(M) and P(S) are the probabilities of having transmitted a mark and a
space respectively. Here, as usual.i; ifandlg-are respectively the re-

ceived signal plus noise, "mark", and "space" vectors., It was shown that

the equation of the optimum decision surface is
L = 1 ! (602-2)

and that the optimum decision is "mark" for L > 1 and "space" for L<1,
‘Clearly, sne method of obtaining optimum reception is to design the
receiver to perform the computation indicated by Eq, (6.2-1) and then
put out a "mark" or "space' depending on whethef this value exceeds or

is less than unity, Two possible configurations of such a receiver are
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shown in Fig, 6.2-1 and 6,2-20 In Fig, 6.2-1 the input to the receiver
is sampled at time intervals of'l/ZW.to get an orthégonai set of coordinate
values of the signal blus noise vectér‘i; The numerator and denominator
of the right hand side of Bq, (6.2-1) are computed separately and the
value of the denominator is subtracted from the numerator. If this differ-
ence is greater than zero then L is greater than unity and the optimum
decision is "“mark", If the difference is less than zero the optimum de=-
cision is M"space®, This is’a¢complished~With,é'decision cireuit having
a zerc.thresholdzleve;. o

vin Fig. 6.2-2 is'an alternative configuration., The input is saépled
in frequency at inter&éls of 1/7 to obtain an orthogonal set of coordinate
values of théISigﬁal plus noise veetor.iz’ The method in which these co-
ordinate values are further precessed is essentlally the same as with the
eonfiguratlon ef Fige 6,2-1, ' ) |

If all the de51gn 1nformatlen is known, (i.es P (N), Eg S P(H) and
P(S)) then 1t 1s not dlfflcult to conceive of the realization of such a
) recelver, For example, the coordinate values of X can be converted to
digital férm and processed‘by special purpose cemputers to perform the
indicated operatlonso. A difficulty arlses, hewever, in that in general
we would not expect to know the magnitudes of the recelved signal wave-
forms M and S, Thls;implies that the:recelver m@st also contain some
mec¢hanism Which ;Vneaszi;res the magnitudeg Vof fhe E_&dgveetors at its in-
put and then_adapts iﬁs computation process accordingly,

663 vSubdivisiOn of the signal space,

With this method the signal space is divided into subdivisions and .

each subdivision is appropriately tagged with the corresponding optimum
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deeisibn; This informatieniislstored in the memory of the recéiver

(see Fig, 6.3-1), The signal plus noise is sampled (either in frequency
or in time) in the same manner as was described in section 6.2 to obtain
its coordinate values, These coordinate values are‘ then quantized and
the eombined output of the éﬁantizers (which in eaéh case uniquely corre-
.spo'nds to a ,subdivision»of the signal space) is used to retrieve the
correct decision from the memory, -

. Here, as was the case with the systems described in section 6,2, it
is necessary to know t.he magnitudes of the signal vectors "I;Ihand _S’-beforea
hana.. Furthermore a change in the magnitudes of ;ihand ‘_Sbmay réquire a
major revision of the informatiﬂon storeél in the memory which would make
it partieularly diffieult to incorporate a suitable adaptive process.

64 Non-linear coordinate trafnsforﬁations
~In this section a method m.ll be described by whic‘h a non-linear

transformation can be determined which, when applied to the coordinate
valﬁes of the received signal plus noise vector, will cause the decision
surface to be transformed into a hyperplane. Subsequent processing with
a suitable linear receiver will be shown to result in optimum reception,

It will be assumed that the noise vector ?which has been added to
the signal has coordinate values which are independent random variables
and therefore the joint probability density of the noise pn(I\? ) will have

form
-5 n . o '
ALY ".H p, (M) | : - (604-1)

vhere p,(N,) is the probability density function of the i-th eoordinate
R R K .
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value of the noise,

As was shown in %ection 2.5 'th_e decision surface (see Bq. 2.5-5)
is : given by

pn(x - M) P(m) = Pn‘(X - S) P(s) | , (6,4=2)

The optimum decision will be a "mark" if -

p (X - ¥) PO1)>p (X - s) ®(s) . (6.4~2a)
and a "space" if

p, (X - M) PO)<p (X - 5) B(5) | (6u4-20)

For the sake of simplicity it will be assumed that the system is
-t —pe .
symmetric, i,e, that 8 = - M and that P(M) = P(S) = 1/2 which reduces
Eqa (60’-!—“2) to

oK - 1) =9, (X +30) | (6.3)

Substituting (6.4~1) into (6.4-3) we obtain

n_ n : ’ ’
];-r Pi(Xi - Mi) = -I;Tl pi(xi + Mi) ‘ (6¢ll-"'ll')

which can alse be expressed in the form

n n |
Z dog v, (X - ¥y) - Z log py (X, + M) (6.4-5)
i S i=l | - .

Now suppose the logarithm of each of the density function is ex-

panded into a Maclaurin series



log py(N;) = a5 + 8y, + a’ZHiB e

which when substituted into Eq. (6.4-5) yields

3 ‘ . - ‘ : - W 2 s
Z B0 * 2y (X - M) +apy(® - M)+ e
i=l o . ’ ’

it
2
2]

" q. 9 > 2 > ein
' 8 (% + H,i)_ +ag (X 1)+
i=1 o . .

which can be simplified to

Z (2&1 ) + (l}a.z L 1) + (63, XEM + 2a, M3)

1371

A (Ba'ihx:i?Mi +’ai,1LXiMi)- + =0

Thus the surface ¢an be represented as

where

a - 3 »'5.".
a..M, + a, M +aisla+

io 1171 i34

L]
Y (2 - 1)
= Z %, (2x - 1)

k=1l

D 3 5 e
:_Ll"zai‘ZMi"'#aihM * Gagg My

(604-6)

(60A‘7)

(644-8)

(6.4-9)
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-}

Y 2k - 1)
= Z Zka; M

k=1

0pp = 32y My + 108 M3+21a M5+m

iz 5 i7 1
S (2k - 1)
=/ 1,(2k + 1) M,
k=1
(2x - 1) PR
%y = 1,(3 rox-1) % , (6.4 w}

A set of non-linear coordinate transformations can be choosen such that

o0 : .
k ' 3 :
z @, X o (6e4-11)
J=0 ,

where the si's are arbitrary constants. When Eq. (6.4-11) is substituted

into Eq. (6.£~9) we have

n
- Z B, Y, =0 | | (644-12)
& . ,

which is the equatlon of the hyperplane which passes through the origin

and is orthogonal to the vector

n .
-) &7 | (604-13)
= |
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Thus, the non-linear coordinate transformation given in equation (6.4-11)
transforms the decision surface given by Eqe. (6.4-4) into the hyperplane
given by Eq. (6.4-12),

It is important to determine the affect that the transformation has
on the "mark" region specified by‘Eq. (6.4-2a) and “space" region specified
by Eq. (6.4-2b). The affect on the "mark" region can be determined by
employing a line of reasoning om Eq., (6.4~2a) similar to the one used on
Eq. (6.4-2), This is equivalent to replacing the Mequals" sign in Eq.
(6.4-3) through (6.4~5) and (6.4-7) through (6.4~9) with a "greater than"

sign, Thus it is evident that the region given by

n ] .
\ J -
- Z Z a5 X3 >0 (604-9a)
i=l =1 '

is identical to the region given by Eqe (6.4-3), i.e., the "mark" region.
It is evident that any pointizwsatisfying inequality (6.4-9a) which is
subjected to the non-linear transformation will map into a point-f'satis-
fying
n
- z Y >0 | (6o4=12a)
i=1 :
Therefore, the "mark" region given in Eq. (6.4-2a) is mapped into the
semi-infinite region given by inequality (6.4~12a) which is all the region
on one side of the surface given by (6.4-12). |
A similar analysis shows that the Pspaﬁé“ fegion given by inequality

(6o4-2b) is mapped into the region



-57-

n

Y em<o
i=1

which is the regioﬁ on the other side of the surface given by (6.4~12),

From the foregoing it is clear that the optimum detection can now be
achieved through the use of a synchronous receiver having a zero threshold
and a local carrier as specified by Eq. (6.4-13), Two possible configura-
tions of sr:‘lch’ a receiver are shown in Fig, 6.4-1 and 6.4-2,

In practice the operations specified in Eq, (6.4~11) would be
approximated with series of finite length.

Suppose the series of Eg, (6,h-1.0) converges sufficiently rapidly

that @ ;4 can be approximated with one term,

J
agy =0 :+ l,) & (5+ 1) M (64-14)
and
= A (5 q 39 6, v_l
Y- 5 Z (3+1) o 5.1y % (6.4-15)
| Ly .

Here it is convenient to choose Bi = M:L and

o0 .
= . ' 6.4~16)
17 Z G+1) e en® | (6.
3=0 , ‘ . .
e
The form given by Eq. (6.4=16) is especially useful since Y does
not depend on M but only on X, This means that reception can be accom-

-
plished without previous knowledge of the magnitude of M,
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Whether the apprdximation given by Eq. (6.4-14) is appropriate in
a given situationféan only be determinedvbyvexaminabi@n of Eq, (6»&-1@);
In general, however, we may antlclpate that for a given situation the |
appreximatlon will be valid for sufficiently small 31gna1-to-n01se ratlos.

The following example will be used to illustrate the method which was
derlved above, Suppose that it has been determlned that the noise whea
sampled in time at intervals of 1/2W can be represerted as ZWT 1ndependent
random variables having a common probabllity distribution whose density
functiong'are symmetrical about the origin. _Suppose farthéf that the log-
arithms of these density functions can be represented with reasohablé

accuracy by the following Maclurints series.,
log Py (H ) - ag * 3m2 Ki (6.4-17)

A grgph of pi(Ni) = .i8é5 exp.(zmiz-mih) is shown in Fig, 6.4=3.
ﬁé shall also assume that the signalii'is a psuedo-random binary noise
L2 2 2 . o
sequence such that Mi = M where ZWM is the average signal power,
With the aid of Eq. (6.4-10) the following values are determined
@, =0

a,, =l -

41
% =0 v  o | ‘,) | (6.4-18)
P33 7 -y
&, =0 fbr}j >3
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‘THE REQUIRED NON-LINEAR TRANSFORM
FIGURE 60&:‘"1“
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The exadt expression for Yi as given by BEq. (6.4~11) is
v oo (- Y v - b3 19"
Y, = (b - k) X b  (6u4-19)

where B4 has been set equal to Mi°

Through the use of Eq, (6.4-9) it is possible to determine the
equation of the optimum decision surface prior to the non-linear trans-
formation

n

Z - (h Mi - hﬂg) Xi - ZI-Mi X’_?_ =0 (6,4=20)

i=1

which reduces to
Z [(1 - mﬁ) - xf_] X, =0 - (64-21)
i=1 o

It is of interest to examine the decision surface generated by Eq.
(6.4-21) for the case of a two dimensional signal space., Clearly a

solution is
X +X, =0 - (6.4=22)

The root eorresponding to this solution can be removed yielding an easily
solved quadratic having the following solutions

% VB rua-of )
- BER..

X ;

o = '(6.&423)

The curve given by Eq. (604=22) is clearly a straight line and
it is possible to show that the curve of Eq. (6.4-23) is an ellipse

whose major axis makes a 45° angle with the X, axis, A graph of these
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| THE DECISION SURFACE OF THE SIGNAL SPACE AT THE
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curves is shown in Fig. 6.4-5 where Miz = Ool. In the figure the "mark"
and "space" signal vectors are indicated by—l\f and -;ﬁ'. respectively, The
optimum decisions associated with the various regions bounded by the de-
~cision curves have been determined in accordance with the likelihood ratio
and are indicated on the figure by the words "mark" and 'fspaee*_’, It is
interesting to note that the "mark" signal point lies in the "space" de-
cision region and the “space" signal peint lies in ﬁhe "mark" region,
Clearly no linear receiver is capable of optimum reception under these
circumstances, _
It is clear from an examination of BA. (6,4-19) and (6.4-20) that
the transformation given by (6.4-19) produces a deeision surface which
is a hyperplane and optimum receprblon can now be obtained with a 11near
receiver having a zero threshold and the follow:.ng local carrier as

given by Eqo (6.4~13)

g-'n

n :
Z I, T -k (604-24)

where k is an arioitrary constant,

The output of the integrator of the linear receiver is
(60’-I-"’25)

‘With the aid of Eq, (6°L.,nl9) and the fact that X; = N; + M, the

elements of the sum are found to be equal to
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oY = (- &MZ) (n +M)—h(m +M)3

. R
=how W - 3Mz nz + Q- tpmz) M, N, + Aok zmz) mz  (6u4-26)

.-'l'ha-i_:. each o‘f the MiYi are independent random variables with cemrﬁeq distri-
butions can be .shown by examination of Eq. (6.4=26) and by recalliﬁg the
prppertiéé assumed for M, and N, (namely that the N, are independent ré.n—
doin vafi;a.bles whose densiﬁites are common and symmeﬁrieal a’édut the origin
and that 2WM§= 2WM2 which is the average -]s:ignal power), From this we can
infer that V, is a random variable with a '%aus‘sian distribution, The -

probability ‘of error P, is

p o1 1, nE (M %)  (6u4-27)
e 278 B

\/Zn E( Y)Z-E (m wr)

where E(MlY ) and E(HiYi)lv are the mean value and mean squared value of

t.he random variable MiY o For a signal power of 2WM2 .ZW these quanti—

tles are found to be

& PR

CE(G T) = ] MY pn(ﬂ) ap=-zam (6.4-28)

Théw;u’"cbtzat signal-to-noise ratio is



~106~

2, :
nE (Mi xi)_

(SMR) = = 0,22n (6.4-30)

2 2.
BUGY ) - B (4, )
Ifyinstead of the non-linear receiver described above a linear re-
ceiver is used which has a zero threshold and the same local carrier then

the signal-to-noise ratio is found to be
 SNR = 0,12n (604-31)

vwhieh indicates that the non-linear transformation gives an improvement in
the signal-to-noise ratio of 1.83 (2.62db),

1f, for example, n = 100 the probability of error of the oﬁtput of
~ the nonflinear receiver is 1,32 x 10’6 while the probability of error for
the linear receiver is 2,65 x l@”h,

From>Eq° (6aAs18) it appears that the approximate form given by
Eg. (6.4=16) would be useful, - In this case the non-linear transformation

is

1 = - A | | C (6u4-32)

It is evident that Eq,- (é.,,agaa) is equivalent to equation (6.4-19)
with Mﬁ set equal to zero and thus the decision surface in two diménsi@ns‘
corresponding to Eq. (6.4=32) can be obtained from Eq, (6.4-22) and
(6.4~23) by setting M; equal to zero., Therefore the decision surface is

given by
X + X = ‘ (6.4-33)

and
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and the difference between the curves given by Eq. (6.4-33) and (6,h§3h)
and Eq, (6.4=22) and (6;4~23) with Eilset equal to Ogl is a difference
in the length of the major and minor axes of the elipses,

The effectiveness of the transformation given by Eq. (6.4=32) can
be determined by comparing the decision surface which it generates with
the optimuﬁ surface previously determined, This comparison is made in
two dimensions in Fig. 6.4-6., As can be seen the smaller the signal-to-
noise ratie the better the approximation becomes which in general can be
conSidefed a desirable property since excellence of performance is of
greater importance at low signal-to-noise ratios that it is at high-
signal-to=noise ratios,

6.5 Summary

Three methods of obtaining optimum reception through the use of
non-linear techniques have been discussed in this chapter, The first two
have the serious disadvantage that the parameters of the receiver must be
detenmined in accordance with the strength of the received signal, An
approximate form of the third method which is ﬁalid for small signal-to-
noise ratios is independent of the strength of the received signal, how-
ever., For this reason, this method is‘considered to have the greatest

practical signifiecance,
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CHAPTER VIIL

APPLICATIONS OF NON-LINEAR RECEIVERS

7.1 Introductlon |

In chapter VI, three methods of non-linear reception were descrlbeda
lAn important design parameter of two of the systems is the received signal
strength, An approximate form of the third method is 1ndependent of 31gna1
strength and for this reason this method appears to be the most useful.
In this chapteriﬁhe possible applications of ﬁhis method are discussed,

7.2 Interference consisting of many narrowband stations

In Section 4.3, the nature of the interference which results from
many similar narrowband stations was analyzed. It was pointed out thei-
to a good approximation, the signal represented by a WI-dimensional vector
(as represented by WT complex numbers ), is perturbed by WT random variables
and that in many cases these random veriables can. be considered independent.
In fact, 1t is apparant from the analyses of Sectlon L3 that 1ndependence
can be 1nsured by ChOOSlng the baud length T of the wideband system such
that it is equa.l to 1/kB where B is the bandwidth of the narrowband
stations andwk ;s ag q.ntegere Thus,_if.the commnnlcatlon system is sym=
metricaljthen_the hypethesis'for'the develepmeﬁt of the non-linear receiver
described in Section 6.4 is satisfied and optimum reception using this
technlque 1s p0351bleo | | |
» For example, lf the narrowband 1nterference consists of WT adjacent
AM statlens, each wlth a bandwidth of l/T then the den51ty functlons of
the noise fer each of the cqerdlnates can be obtained with the aid of Eq.

(493r1§)'Whichncaﬁﬁbe:written
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o0 : )
| , P, (u, Jau, .
Pj_(Ni) = / S S SN § (7,.2‘-1)
Il g -0

where pﬁi(ﬁi) is the probability density function of the amplitude u of
the i-th narrowband station and pi(ﬂi) is the probability density function -
of the i-th coordinate value of the noise, The parameters of the optimum

non~-linear receiver can then readily be determined from Ghapt,er‘VI° |

If the interfering stations transmit CW carriers such that

PasCay) = 8(a - ¢) | (7.2-2)
then _
—=; E<&
p, (N,) = |
o W > (7.2-3)

In order to obtain the desired Maclurin's series it is convenient to

approximate Eq. (7.2-3) with the following expression

. 1 ' 1
B /_eg _ Ng—} 1+ m‘;‘
where the closeness of the approximation depends on the exponent m,

The coefficients of the first m terms of the Maclurin's series as

determined from Eq. (7.2-4) are

a

50 = -~ log w C,

A "(_7‘,2-5)
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(r-1)/¢; revenend 0<r<m

0; r odd o (7“2f6)
a‘im; [ mt + (m - 1)1] /" ; m even E g | (7.2-7)

Suppose that it is decided to terminate the series with 860 Accord-

" ing to Eq. (7.2-6) and Eq. (7.2-7)

o i )
85 = 1/C] (7.2-8)

= 6/0“ | - o (7.2-9)
A 1 | | “
8yg = -600/C5 | ' o (7.2-10)

The coefficients of the non-linear transformation can now be determined

with the aid of Eq. (6.4~10)

o, - [~ , :

il 2 2 7 2 mammt /7 et -
Ve = 3| 1+1zmjz;/c-i.- lOQMi/ci ] (7.2-11)
1 ¢; o | _
«, . DT | o | |

13 _ 2k [
Kfi - & ».1—25,1-12 /ci ] | - - (7.2-12)
1 ¢ - » I
(04 r o ‘ . .
15 _ _ 3600 | SR - | r.2-13
W 3503— | | (7.2 3)

Since Ci is twice the variance of the i-th noise component o‘f the

quantity Eﬁ/@i is related to the coordinate signal~to-noise ratio by
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2 -
QU g | (7.2-14)
2 2 2 14

1 01
and therefore
(54 ; . .
1 1 [ .2, 2 P e
M- 2 [1*6@/01“1”5.”1/%] (7.2-15)
i cri
| " - £ [1 125 /ob ] (7.2-16)
v O; -
%5 | - (7.2-17)
Mi ‘5'1 , ' | o

In order to obtain optimum reception the following non-=linear trans-
formation which is a result of substituting Eq.'(7,2«15), (7.2-16) and
(7.2=17) into Eq. (6oha11) may be used

i : 2 ol I .
- ; g -[1+6M§/°i‘1‘5omi/0'i ]
Pi®s ‘
6| 1-129€ % | 28 /oGP - bsoxt / 1 { (7 2-18)

The equation for the non-linear transformation can be gredtly simplified
2, 2 2, 2
if the value of M;/¢; is sufficiently small, If M,/o; < 100 the first

term of the sum in the braces in Eq. (7.2-18), viz.

2,2 b, L
1+6¥ /ob - hso M, /oy
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is, for all practical purposes, unity. The range of values of the co-

efficient of the second term is
-u,5<6[1-125m§/a—§]<6

Thus, it is evident that the second term makes a neglibable contribution
and can be disregarded. Therefore, the following non-linear transforma-
tion can be used,
M.X.

oy, = [1 - w0 %! /oy ] o | (7.2-19)

He 0O

The non-=linear transformation given by Eq. (702=l9) as characté;ized
by the quantity in the brackets does not depend on the étrength of the
signal, Similar results are obtained by using larger values for'm'in that
ali terms excepting the first and the last becomes negligéble for small
signal-to-noise. ratios, , |

It should be noted that the shape of the density function of tﬁe
noise in the above example is quite extreme in that its value becomes
infinite at the ends of the fange of the random variable. In practice
it is reasonable to expect the density functions to be better behaved
since any amplitude modulation will cause the curve to be smoothed out,
In these cases the performance of the approximate form of the‘nonwlinear
transformation should be satisfactory over much largervsignalnto—noise
ratieé. | |

7.3 Methods of determining the coordinate probability densities

In order to determine ﬁhe parameters of the non-=linear receiver it

is necessary to know the probability density functions éf the coordinate
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values of the noise. There are two methods by which these densities can
‘be determined (1) the.analytical method and (2) the experimental method, -

In order to accurétely determine the probability density functions
pi(Ni) analyticallyp it is necessary to have an exact knowledge of the
characteristics of the interfering waveforms, It may be anticipated that
in most cases the designer will not have the necessary knowledge of the
hature of the interference and the results of an analytical approach
will be of gquestionable value, For this reason the experimental method
will probably be the most useful especially since it should not be dif-
ficult to obtain log p»i(Ni)‘directlyo The valués of the aij's can then
be computedband receiver can be adjusted to give optimum per'férmanceo
Because of the ease in which the receiver can be changed to fit the .
statistics of the interference and in view of the fact that these statis-
tics may be\expected to change from time to time, it is evident that the
non-~linear receiver will be highly useful when certain adaptive techniques
are incorporated,
7ok Summary

In Section 6.4 a non-linear technique of obtaining optimum reception
in the presence of non-gaussian noise was dereived, The application of
this techﬁique to the case where the interference is from harrowband
stations has been discussed in this chapter and results are obtainéd for

stations transmitting CW carriers,
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CHAPTER VIII
TIME COMPRESSION METHODS

8.1 -Introduction

Linear and non-linear receivers have been analyzed in the preceding
chapters in some detail and in both cases it was generally necessary to
perform an appropriate filtering operation subsequent to the furﬁher‘bro—
cessing of the signal. In the case of the linear receiver, the’pﬁrpose"of
the filtering is to whiten the noise spectrum at the input to the syn-
chronous demodulator, whereas, in the case of the non-linear reCeivér, '
there is the additional purpose of separating the various signal-plus—
noise coordinates so that each may'be'subjected:to the desired non-linear
transformation,

If adaptive operations are incorporatéd in the receiver then certain
signal analysis processes must be performed and in general each part of
the signal must be analyzed in real tune,

The filtering processes, and in many cases the signal analysis pro-
cesses referred to above, must simultaneously be carried out oh“maﬁy
different parts of the signal, For example, the filtering process must
divide the signal-plus-noise waveform at the input of the receiver inta
the WT component waveforms, each having a bandwidth 1/T.

‘In general, there are two methods by which such processing can be
accomplished: (1) the parallel method (2) thé serial method, Thé parallei
method, which is the most direct, employs m duplicate sets of apparatus
to perform the m operations simultaneously. In the case of the filtering

process, the operation is accomplished through the use of.WT individual
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similar filters, éach having a bandwidth of 1/T and each tu.ned to its
appropriate center frequency, |

‘Although in theory this process ié‘feasible, in practice it is im-
practical if the number of operations is large. Consider, for example,»
the equipment complexity of the filtering process if WD was one hundred,

'Thevserial method employs a single set of apparatus which is used »
over and ovér m times to perform the m'operations in a serial fashion,
An ‘example of such a method is the ordinary spectrum analyzer in which
the various parts of the signal are heterodyned to the center frequency
of a filter, vIn order to completely process all parts of the signal in
real time, however, it is necessary to precede this operation with a

time compressors,.

8,2 Time Gompressiqn

Time compression is accomplished by recording the signal at a certain
rate and then playing it back at a much higher. rate, In this mamer the
waveform is speeded ﬁp9 or compressed in time and can be played over many
times in a period of time equal to that which ‘was required for the record-
ing process, A different step in the serial processing of the signal ean
then be pe_rformed each time the signal is played back and in this manner
the processing ean be performed serially in real time, |

The time compression teechnique has increasingly been used in the past
few years in the field of signal analysis rpart.icularly in spectrum analyzers
~ and correlation ::z.n::zlyz,'e:c'js;lG’a 11, 12 The method which is usué.lly used to ob-
tain time compression is the deltie method, or gg;l_._ay line Qme compression
méthod,,

Fig, 8,2-1 is the block diagram of a typical deltic system. The in=
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put is a low pass signali_and is bandl'mited to W eycleé pe:;; secénd; This
iwﬁput -ié éampled by very'narrow élock pﬁlées havimg a‘ period 1/2??'.,." :Thé
time djelay Ty of the ciélé.y line is méde slightly shorter than the sémpling
period and the dele_zyed S»amplés are fed through the gate and ‘back inte the
delay line (_.see Figo 8,,2-:2;)-9 ) Since this process reduces the,period be-
tween the pulses from 1/2W to 1/2W - 'l‘d the waveform has been speeded up,

or time compressed by a factor

X "1/2%/?%& = ;—wd . (821)
In order to simpiify the timing 1n the system, 2WI, is chosen so that k o
is an integer,

At the end of the ky=th sample the delay line will be filled, If the
sampling process was discontinued at this time, the pulses would continue
fo irecirgulate in the delay line and at the output would be produced _é
periodic waveform, each period of which would be a time compressed repiica

of the input, The time duration of the input waveform corresponding to

one of the output periods is

‘ Tsakcwa ‘ . (80202)

if, onA the other hand, the sampling of the input waveform is continued
after the line is filled then it becomes necessary to drop off & re- : .«
circulating sample each vtime- a new ‘sample is inserted at the delay line in-
pub, This is accomplished by closing the gate in the feedback Loop When
a new sample is taken, The output is a quasi-periodic waveform in which
each period differs from the preceeding in that an old pulse has been

dropped at the beginhing of thevperiod and a new one added on the end,
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In both of the cases described above the bandwidth of the output is

W =k W ] . (802"3)
e . ¢ . . . .

In some applications it is reguired that the output waveform fepeaﬁ
a certain segment of the input waveform ké times and then repeat the néxt
segment of the input k, times, etc. This can be accomplished by'following
the time compressor shown in Fig. 8.2-1 with a buffer storage unit shown
in Figob8°2-3;

At the end of each Té seconds the delay line of the time compressor
contains a completely new set of pulses.and each of these sets corresponds
to succéssive segments of the input, The purpose of the buffer storage
unit is to recireulate each successive‘set of pulses in turn for intervals
of T, seconds. To accomplish this Gate #i is opened and Gate #2 is’élosed
for a timé duration of Td seconds at the}end of each series of’ké clock
pulses such that the output signal of the time compressor is fed into the
delay line of the buffer storage unit., During the remaining time Gate #1
is closed and Gate #2 is open and the pulse train recirculates around the
loop.

Certain practical considerations arise in the design of time compres-
sors, These considerations can be divided into the following areas: (1)
bandwidth and switehing speeds (2) loop gain and (3) timing,

The bandwidth of the output signal and therefore the minimum bandwidth
of the delay line is W, as given by Eq. (8,2-3), That the required switch-
ing speeds are also proportional‘to kc is evident from the fact that the
maximum allowable width of the sampling pulses is 1/(2WK,), Thus, from a

practical standpoint, the feasibility of the time ébmpression technique
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in a given application depends on the signal bandwidth W and the compres-
sion factor kea

The requirements that the loop gain must be héld exactly at unity and
that the timing of the sampling be exﬁfeﬁely accurate are obvious, These
problems are usually solved by infinitely‘clipping the input signal and
using pulse regeneration techniques in thé delay line feedback loop. It
appears, however, that a more sophisticatéd approach will solve these
problems and at the same time retaig-thé amplitude information of the in-
put.

8.3 Réceivers with time compression filters

As has been shown in the previous chapters, a rather complex filter-
ing proéess is reqﬁired to obtain optimum or even sub-optimum récéptibn.
It is apparent from the high dimensionality of the wideband signals being
coﬁsidered that the direet approach of parallel processing with WT filters
isiprohibitive iﬁ terms of the equipment complexity which is required,
The use of the time compression technique:followed by serial processing
will result in a considerable reduction of the equipment required to per-
form the filtering operation and, thereby, make the desired filﬁering
process feasible, |

The bleck diagram of a wideband;linear receiver using time compression
filtering is shown.in Fig. 8.3-~1. The purpose of the filtering is to cause
the noise at point "A" to have a white spectrum. The reeeiveriinpui
be (t)+n(t)band the input from the local carrier generator ez(t)'are both
individually time compressed. The time-bandwidth diagrams of the input
and output of the time compressor are shown in Fig, 8.3-2 where the inter-

fering signals are assumed to have equal bandwidth B and lie adjacent to
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one another, It is convenient to divide the region occupied by the baud
into WT cells of bandwidth B and duration Ts where it will be assumed that

the system has been designed so that

/5 = ¥, = iateger - (8:3-1)
and o

?/25 g'k%_g WE/k = integer | (8:3-2)

These WT cells correspond to WT complex numbers and completely specify the
waveform of the baud,

In order to whiten the noise it is necessary to separate these complex
numbers and to apply to each an appropriate gain factor. It is evident
from the diagram that this process can be done sequentially if the factor
ky, is made equal to

7

. \ 8 o 4 Py
f. ﬁ; (8.3 3_.)

If the time compressor of the signal channel is designed so that Ts
is the real time length of the input sample which is stored in the time

compressor and T;is the length in compressed time then
me, = k (8,3=4)

where kc is the compression factor,

In order for the filter to separate the waveforms corresponding to
the cells of the input it is necessary that mT4 be long enough so that
the waveforms of the output cells will contain the complete replicas of

the corresponding input cells, Since Td is the length of this replica
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then m is the number of times the waveform is repeated and thérefqre
m>l o o - (83-)

~After the input has been time compressed, the WT components of the
waveform are sequentially obtained by a heterodyning and filtering process.

The output of the heterodyne oscillater for the dyration of a particular

baud is
Kk B -
e (t)= ) ZE: B 3‘ ® [‘t - (1-1)mr - (3-1)2, ]
i Es I = A R

x??f?4m%f3%]i?%3?“[%*5§%%%B]tfﬂi+w§
. | R - (8.3-6)

where fo is the center frequency of the bandpass filter.

From Fig. 8.,3-2, it is evident that the required bandwidth of the
 filter is k B,

In order to eliminate filter transients, the factor m can be made
somewhat -larger than unity and only the last T4 seconds of each output -
cell used,

. As the frequency of the heterodyne oscillator is stepped from one "
frequency to another to obtain the variousbfrequency components, the gain
of the variable gain amplifier is stepped to appropriate gain values so
that the noise at point "A" has a constant variance.

The same operations are simultaneously applied to the local carrier
generator output es(t). |

Since the waveforms which appear at the outputs of the variable gain
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amplifiers correspond to the orthogonal components of the waveforms at

‘the inputs to the time compressors they do not need to be recomposed be=~

fore being processed further but may be multiplied together directiyo
After multiplication the usual integration and decision process is per-
formed,

The linear receiver shown in Fig., 8,3-1 can be converted to a non=-
linear receiver by seéuentially inserting the appropriate nonelinear
voltage dividers at point “AM,

8.4 Summary

In the previoﬁs chapters various méthods of reception have been
analyzed., Most of these methods require a rather sophisticated filtering
process, To accomplish thié process through the use of a bank of filters
operating in parallel would result in a prohibitive equipment complexity
because of the exéessively large number of filters required.,

In this chapter a method has been described by which the processing
of either the signal or the loecal carrier can be accomplished sequentially
with one filter., Time compreséion of the signal previous to filtering
allows allbof the signal to be processed without loss of information,
This method offers a relatively simple way of realizing the required
filtering process and avoids the inherent disadvantages of the parallel

approach,



CHAPTER IX:
ADAPTIVE RECEIVERS

9,1 Introduction

In a great number of applications:ofbwideband systems it will bév
impossible for the designer to kncw”the“shape of the spectrum cf the
interference or the statistical laws which it follows, In féct; the |
nature of the interference can be expected to vary'frcm time to time.
It is evident that in such 1nstances optimmn, or, for that matter, sub-
cptimnm reception can only be obtalned from an adaptlve recelver which
measures the spectrum and the statlstlcs and adapts itself accordingly.
In thls chapter; several adaptive receivers which incorporate the tech~
niques described in the prev1ous chapters will be ou.tllned°

9,2 Adaptivc llncar recelvers

The type of adaptive linear receivers which will be considere& in
this section analyzes the input spectrum and varies the input filter
characteristic accordingly. The block diagram of such a receiver is
shown in Fig. 9.2-1. As can be seen, the receiver utilizes time come
pression filters of thettype described in the previous chaptcr;‘ |

In order for the filters to perform their function satisféctofilj;
the gain control voltage must var& as the filters select the diffcrénc ’
coordinate values sﬁch>that the average poﬁer of the output noise remains
constant across the spéctrum§ If the process were ncnycéQuential then
it could be performed bj the method shown in Fig, §,2~2 The gquadrature
component of the n01se is obtained by demodulating the 81gnal plus noise

with a synchronous detector which is driven by the local carrier shifted
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by 90°, Since the phase difference beﬁween the signal and the noise is
random with a uniform distribution over theArange O to 2% , the probability
distribution of the quadrature component of the noise will be identical
to the probability distribution of the in phase component. Thus; a
voltage which is proportional to the averagé power of the noise can be
obtained by squaring and averaging the output of the synchronous detector,
- If this voltage is subtracted_from a reference voltage and the resultant
used as a gain control ﬁoltage and if the loop gain of the gain control
circuit is made large then the output noise power will be held essentially
constant, This method can be incorporated into a sequential filtering
process by replaing the simple averaging circuit by a sweep integrator
as shown in Fig. 9.,2-~1, The period of the sweep integrator is made equal
to the period of the sweep of the stepped oscillator and in this manner
the required averaging operation is performed sequentially on the—various
coordinate values of the noise.

Severalbvariations of the method which has beén described are possible.
For example,b in order to insure that the vai-iable gain amplifier of the
local generator channel has the same gain as the one in the signal channel,
a single amplifier can be either frequency shared or time shared between
the two channels,

9.3 Adaptive nen-linear receivers

In this section two types of adaptive non-linear receivers will be
outlined., The first adapts to the noise spectrum but has a fixed non-
linear characteristie, This type is useful when the narrow band inter=-
fering stations are all of the same type and where the statistical law

of their amplitudes is known to the designer,/ The adaptive linear receiver
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shown in Fig. 9.2-1 can be converted into this type of adaptive non-linear
receiver by inserting a non-linear transfommation circuit at point "A",
A suitable non-linear transformmation circuit is one whose input~output

relationship satisfies Bq. (6.4-16), viz.,
X N Vj” T S
Yi"'" Z‘ (J + ;)ai;(j + 1) x‘i ‘ ] (9°3.1)
J o ' '

where it has been assumed that it is valid to use the approximate
expression fe; @ as given by Eq. (6.4-14), Since the variances have
been made equal;through the actionjof the variable gain amplifier of the
signal chaﬁnel and since the various noise coordinate values are assumed
to fe;lww the Samevstatistical law;.thé values pf the various a3, (4+1) -
are independent of the subscript Mif, | | o
Fig. 9.3-1 shows a convenient way'of realizing the non-linear trans-
formation, The various powers of the signal plus noise cbmponemts (i.e.
the Xi's} are obtained through the use of non-linear voltége dividers
and their coefficients are determined by the éséociated amplifier gains,

The values of the gains of the amplifiers are given by

by =3+ 1) ey (5.0) ) o (9.3-2)
easily be adjusted to fit‘anyhdesired noise statistics by an appropriate
Aadjustment of the amplifier gains.

If the transmission is a band pass signal then the probébility
densities of the coordinate components of the noise will be even fuﬁctions.
. will be zero when j is even.

J
The second type of adaptive non-linear receiver adapts to the noise

|
|
|
|
This form has the advantage that the non-linear characteristic can ’
In this case the values of b
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statistics as well as to the spectrum of the noise, This type uses a
non-linear transformation circuit similar to the one shown in Fig, 9.3-1.
The gains of the amplifiers are controlled electronically by‘gain control
signals which are obtained from an-analyzer unit, The function of the
analyzer is to obtain points on the probability density curveifrom”tﬁe
incoming noise ﬁaveforms and from these points‘compute and supply the
required amplifier gain control voltages. Such an analyzer is shown in
Fig. 9.3-2, Points on the probability density ctrves are obtained
through the use of the triggers and sweep integrators, Bach trigger is
designed to put out a pulse if its input voltage}is within a certain
range and each trigger is set so that the rangé where itvtriggers a
pulse is eentefed at a noise value where the corresponding probability
density is to be determined. F@r convenience the noise values at wﬂich
the triggers are set to operate are equally spaced by an.amount h,
Pointsrtn the probability density curves are then obtained by averaging
the occurance of the pulses through the use of the sweep integrators.
Thus, the ﬁrobability density function of each of the noise coordinate
values as defined by these points appears in sequence at the outputs of
the sweep integratorso |

Since it is neecessary to determine the coefficients of the series

.:i(gi) = log [Pi.(mi)- ] e T e e‘iz“z. T e (9.3-3)

it is convenient to convert the data defining the curves:pi(Ni) to data
defining the curves log Pi(Ni)° This is done by passing the outputs of

the sweep integrators through non-linear voltage dividers having loga-
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rithmic input-output characteristics. This data .can then be combined with
the aid of the Gregory-Newton formula to obtain the required gain values

as given by Eq. (9.3-2). The Gregory-Newbon fommla can be written in the

fellemng fon!x”

‘f(x-+ rh) f.+er +—-(-———2Df + l)(:'lz)ﬁf.*—

(9 3-’4)

where
fo flxpli £y = Flxg + B); £ = £lx + 2h); ote.

and

Frgr gy man gy

3 e L mp e L
B XY
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Since x = x_ + rf, Eq. (9.3-4) is equlvalent. to equation (9.3-3)

and the values of the a, (3 +1) can be determined by a sultable mampula—
3

tion.

For example, if five points are taken at «2h; ~h, O, | h, and 2h then

and




~

tfx) =gy + A2 B e B2 R) B

(x+ Zh?éx + h) x’Bf " (x + 2h)(x+ h) x (x - h)

h” ' h3

(9.3-5)

which becomes

. (£, -8f +8f - 1)
2(x) = £, + x —= iZh" i

g2 U 165 - 188, ¥ 268, - 1)
| v

( £ f Zfi -2f, + fa)

12h3 *

+ x3

R T (’fo - h'fl +.6f2 = }"'f3-"f}_|_) (9,3—6)
+ X sy e

x ‘24h“

If the transmission was a bandpass signal then f(x) is an even

function and

) - g0 SR )

12n°

| (9.3-7)
y (o - M8 +35)

+ x
lZ'hh

The relationships which determine the various amplifier gains can
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be gotten by combining the results given by‘qu (9.3-2), Eq. (9.3-3) and
Eqe (903"7)0

=0 |
b o Dot 05 7 9
1 el N
S (903"8)
By =0
. £, by + 3%,
b= i i
9.4 Stmmary

The designer of a wideband communications system will often not know
the shape of the spectrum or the statistical laws of the interfering noise,
In this chapter three types of receivers which adapt to the néture’of the
interference are outlined, The first is a linear receiver which has an
adaptive prewhitening filter at its input, - The second is similar to the
first with the exception that a preset non-linear transformation of the
type discussed in section 6.4 is incorporated. The third adapts to the
sﬁatistics of the noise as well as to the noise spectrum. ”All'of'the’res
ceivers which are discussed use the time compression téchniqﬁe which was’
-analyzed in the last chapter making poséible‘the minimization of equipment

complexity through the -use of seria;l'prec'essing°
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CHAPTER X
GONGLUSION

In the Introduction, it was pointed out that in the application of
wideband communications systems one of the most important sources of noise
will be from interfering narrowband stations. In this .report the effect
of interference from narrowband stations on the information efficiency of
widebanci communications systems has been analyzed, A study has also been
made‘ of the effecté of impulse noise,

Linear systems which can be made to give optimum performance if the
noise is gaussian are found to 'perfom relatively poorly when the inter-
ferehce is from narrowband stations. The example worked out in Section
.6.h demonstrates this fact since the probability dénsity function of the
noise which is uséd may be assumed to be typical of interference from
narrowband stations. For the example given,_ the output probability of
error which is obtained for the linear receiver is 2,65 x .'LGf'lF as com-

pared with 1.32 x 1070

which is the probability eof error which would be
obtained from an optimum receiver, The reason that the linear receiver
doeis not per_form:better_ is tHat the decision surface that it generates is
a plane whereas the optlimum decision surface is curved and, in the example,
the decisién regions are not even simply connected, |

It is possible to obtain optimum reception in such cases by the use
of certain non-linear techniques. In essence; these techniques, make it
possible to generate the desired decision surface., For the most part,
however, these techniques have serious practical disadvantages. Qne

technique, however, which was developed in the course of this research
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appears to have appreciable’ practical significance. One abpraximﬁté form
of this technique which is valid Tor low signal-to-noise ratios has the
advantage that no knowiédge'oftthé'reCéived signal strength is required
in the determination of its parameters. ‘The performance of receivers us:.ng |
this technique approaches optimum as the signal-to-noise ratio is decreased.
In comparison, the performance of a linear'réceivér‘Will diverge away from
optimum for decreasing signal-to-noise ratios for this type of noise.

Bince ﬁhe noise from the narrowband interfering'étations“wili be
highly colored; a complex filtering process to prewhiten the signal will (
be required if the best‘results are to be obtainedvfrdmaé‘linear receiver,
Filtering of a similar nature is also requifed in ﬁhs cése of non-iinear
- reception. The direct approach of using a Bank of parallei filters is not
feasible since the amount of equipment invelved is prohibitive, It appears,
 hewever, that time compression of the signal followed by serial processing
will make the desired prewhitening and non-linear techniques practical,

At the present it appears to be within the state of the art to realize
systems having-bandwidths of the order of 1 me and time coﬁpression factors
of 100, This might correspond te a binary link having a data rate of l@@@‘
bits/sec in an enviromment of narrowband interferenge“Which has 10 kc band-
widths, 8ince the state of the art is advaneing quite rapidly in the area
of high speed switching and data handling it appears that the bandwidths
and time compression factors can be increased in the future,

The results of the theoretical investigation'which is being reperted
on are sufficiently promising to warrant an éxperﬁmental phase, In
p#rticular, experimental models of the linear and nen~linear time com-

pression receivers described in Chapters VIII and IX should be constructed,
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In @rd_er__to s_imp_lify the practical préblems, frequency and time scaling
---ghould :Be“used in the construction of the first model,

Concurrent with the construction of the experimental receivers, the
statistics of the interference from various types of narrowband stations
should be measured, Based on this da.ﬁé., further analysis of the per-
fozifma;;;ce of the non-linear receivers ﬁsing the techniques discussed in
Séctiém 6ok and Ghapber VII can be made providing important specific

deéign information which will be useful in the experimental phase.
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APPENDIX

ANALYSIS OF THE CONTINUOUS SYSTEM

The block diagrém of a continuous eomi;lunications system is shown in
Fige A=lo :

We shall assume that m(t), c(t) and n(t) are band limited but are not
necessarily white such that the signal and noise spectral den_sities in the
channel are zero for £ < f0 and £> fo + W and that the input signal spec-
tral density is zero for f > B, Furthermore we shall assume that m(t ),
c(t) and n(t) are independent of each other.

The following representations of the waveforms are convenient:

e(t) =Lim ) @ cos (ot + ;a'i’) , (A-1)

By €OS (a.\kt + ﬁfk) , (A-Z) ,

n(t) = lim i 8 cos (a +¥,) (a-3)
B g & : o :

b=L

The average powers of these waveforms are clearly

0 n 2
c=j () ar=1m ) & (a-k)
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(4
sd(t) = sz(t) + nz(t)
| +n_(t)

A CONTINUOUS SYSTEM

FIGURE A-1



B 2.
o : Bk“ : v
Mz'=[ 2M(f) af = lim i = (a-5)
ot p-wgo» k=1 :
£y + w , a‘:;
N = 2N, (f) af = lim i o - (A-6)
. | T gee L \
£, b=l

The waveform of the output of the modulator s (t) is obtained by

teking the product of the two imput weveforms m('b) amd c(t)
8(t) = e(t) m(t)
= lim

n-» oo
Pprow

_ : cos[(ﬂ)i "'“‘k)t '_"'gi * O ]

1=l k—l

(a-7)

]
§

+ cos [ (mi-wk)t g -6 ] N

Thus the average power at the output of the mod.ulat@r is

2
%Py
2 .

n
B = lim 2 Z ' i 3
B+e 431 k=1

S =CM | | (a-8)
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This represents the signal power in the channel.
Noise is added to the signal in the channel and this combination

forms the input to the receiver
‘sc(t) = é(t) Ymv(t‘)vv-t- ﬁ(t)

This input is multiplied by e(t) producing at the outpﬁt of the multiplier
sc(t_) c‘('b‘) ='¢(t) n(t) e(t) + n(tb) e(t)

The multiplier output component due tp the presence of the .signal is

c(t) m(t) elt)

s n az | -
= m(t) lim e _}: Ei [ 1+ cos 2 (ot +¢;) ]_
el T - ,
n i-1 » '
+,§£ ’§:‘ a0y [cps (@; - &3) t+ g -9,
C i=1 = o ,

+ cos (w& + mj) b+ g+ ﬁj , ] (A'?)

?
y

That part of c(t)m(t)c(t) which has a waveform similar to m(t) will be
called sz(t) and will pass with no change through the low pass filter;

the remaining part will be called self noise

1R

= ﬁ(t) C.

n+ o

n
5,(t) = m(t) Lin z |
' i=1
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S. =M¢“ =8¢ c ‘ (A-10)

The self noise ng(t) in the output is equal to that part of the self
noise in c(t)m(t)c(t) which passes through the low pass filter, i.e, that
part where ®; - mj< 2n B,

The self noise waveform at the output of the filter is

n i-1
ns(t) = m(t) iﬁ.’mm | Z z aiaj cos [:(mi _-a;j) t+ g - ¢j ]
i=1 j=i-m v (a-11)

We desire to evaluate the average power in ns(t). First it is necessary
to determine the voltage at each frequency w; - wj. Thus the component

of ns(t) in the interval at @, With width Af is

nﬂ.
ns(t)' = m(t) ;Llimm ) %@y cos (aakt + g - ¢j) ‘(A-lZ)
“x ' b=3 :
where
R b+ Xk
i="
b=k
j =

The self noise power is the sum of the powers of each of these components.
Clearly, if the self noise is to be zero the voltage components at

each frequeney must sum to zero,
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ns(t) =0, k=1,2,--m

@,
This is simply another way of preécribing that the power of the carrier
is cénstant«, '

The worst case will occur when £ i = g 3 ‘equals a constant over the
range of b at each value of k. Here all terms in Eq. (A-12) are in

phase and the power at Wy is

n+l 2

o _M
AN, =3 iimw Z 00y
, &
=2—.‘-  VEC(E) VEC(F - KAL) af

and the total power is

m k=1
_ 2
B fo + W |
= M ve(e) o(f - n) af dn

Gy



=18

For the case of the flat spectrum where C(f) - C/2W in the range

f°<' .f<fa+Wwe have

5| %
o
o 0 £

2o .
= MC" B = 5,3

+ W

ar an

=Hleo

or

2
I‘Is

=

Wi

(a-13)

Here, the phase relationship of the noise carrier veoltage spectrum is
such that the carrier is a single sin x/x shaped pulse., Such patho-
logical cases, however, should be easy to avoid in practice,

Of much more interest is the case where the noise carrier is a ran-
dom sample of gussian noise. Here, we do not have a definite relation=-
ship for the pha,sé and amplitude distribution; we only know the prob-
ability densities of the gaussian noise., Since the phases have a prob-
ability density'which is uniform in the range 0 to 2% we can conclude
that ( & - Q%) has the same distribution. In other words; the com-
ponents of n_(t) which have the same frequency have phases with a uni-
form random distribution. As is well known the expected total average
power delivered by these components is simply the sum of the average

powers of the individual components, Thus
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n i-1 "‘i 2
N =M lim z - -—-2-—*1
%@ 431 j=i-m

£+ W .
= 2M [ / [zc(f) ] [ 2¢(n) ] dn af
£, f-3B

Furthermore, if €(f) = ¢/M; £, L £ < £, + W

ol B
Ns = 2MC W

S

L (a-14)
- .

We see that for W >2> B the self noise will be negligable.
Another source of noise is the noise which is added in the channel,
The spectral density of the noise at the output of the filter can be

obtained by convolution E

fo + W
Nz(f) =2 No(x) e(r - x) ax (A-15)
%o
or conversel&
2o + W
N,(f) =2 No(f - x) 6(x) ax ! (A-16)
f ' '
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If either the carrier or the eha,n_n’él noise has a ifwhite spectrum then .it
is evident from the abeve equations that the noise spectrum of the filter

output will be white and that the output noise power will be

y - B o (a-17)
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