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ABSTRACT

Schultz, Donald Gene, Ph.D., Purdue University, April, 

1962. The Variable Gradient Method of Generating Liapunov 

Functions, with Applications to Automatic Control Systems. 

Major Professors John E. Gibson.

The contribution of this thesis is the introduction 

and development of the variable gradient method of gener­

ating Liapunov functions. A Liapunov function, V, is con­

sidered to be generated if the form of V is not known be­

fore the generating procedure is applied.

Two previous attempts at the generation of Liapunov 

functions to prove global asymptotic stability for non­

linear autonomous systems have been made. These attempts 

are summarized and evaluated in some detail, as they form 

the basis for the variable gradient approach proposed in 

this thesis.

It is assumed that the system whose stability is being 

investigated is represented by n first order, ordinary, 

nonlinear differential equations in state variable form

x - X(x) X(0) =0 (1)

The particular state variables used throughout the thesis 

are the phase variables. This was done for convenience.

The problem of finding a scalar V(x) to satisfy a 

particular Liapunov theorem is recast into the problem of



IS

finding a vector function, \nabla V, Having suitable properties. 

As the name implies, \nabla V is assumed to be a vector of n 

elements, \nabla V-^, each of which has n arbitrary coefficients. 

These coefficients, designated as a^j, may be constants or 

functions of the state variables, In its most general form,

the variable gradient is assumed to be

All<5>*l + a13<5>x2 + * * • aln(±)xn\ 

a2i<x)xi + a22(x)x2 + ...

+ an2(x)x2 + . • • Onn^)^ j

V may be determined as a line integral of \nabla V if the 

following (n-l)n/2 partial differential equations are sa- 

tisfied.

Here \nabla V^ are the elements of the vector \nabla V. The equa­

tions (3) are referred to as generalized curl equations, 

dv/dt may also be determined from \nabla V.

§! *= W'x (4)

An outline of the procedure by which a suitable V and 

dY/dt may be determined for a particular problem, starting 

from the variable gradient of (2) is as follows,

1, Assume a gradient of the form (2),



2, From the variable gradient, determine clV/dt by 

equation (4).

■3*. In conjunction with and subject to the require­

ments of the generalized curl equations (3), 

constrain dV/dt to be at least negative semi- 

definite,

■4, From the now known \nabla V, determine V,

5. Invoke the necessary theorem to establish sta­

bility,

Numerous examples are worked to illustrate the pro­

cedure outlined above, V functions are generated that 

involve higher order terms in x, integrals, and terms in­

volving three state variables as factors. The problem of 

determining Hurwitz like criteria for nonlinear systems is 

considered in some detail.

The last chapter attempts to'extend .the variable gra­

dient approach to nonautonosnous systems. The results of 

this chapter, though somewhat marginal, are of interest 

from the point of view of further research.



CHAPTER I

Introduction and Organization of the Thesis

The second method of Liapunov is a general method for 

determining the stability of autonomous or nonautonomous, 

linear or nonlinear, ordinary differential equations. The 

method was advanced in Russia by the mathematician A,'My' 

Liapunov near the end of the nineteenth century and trans­

lated into Freneh in 1907. Little use was made of the method 

until the early 1940's, when the Russians began to realize 

the value of the Liapunov approach in connection with the 

analysis of nonlinear, automatic control systems.

The French translation of the original Liapunov man­

uscript was reproduced by the Princeton University Press in 

1947, but publications in English did not begin to appear 

until around 1955. Since that time interest in Liapunov's 

second method has steadily increased, and with it the number 

of English publications, either in the original, or trans­

lations from the Russian, French, or German.

The earliest works in English were almost completely 

mathematical in nature, and without exception included ex­

tensive references to original Russian papers. In 1959, 

two Ph.D. theses in engineering appeared on the subject, 

and each of these also drew heavily from the Russian. In 

contrast, this thesis may be considered as something of a 

"second generation" effort, as the extensive translation of 

early material from the foreign languages, particularly Rus­



2

sian, had already "been done before this work was started.

As a consequence, the majority'of references are in English, 

and, more importantly, these references are readily avail­

able .

Hie historical background of the second method is 

largely mathematical, and due in part, perhaps, to the 

communication barrier between mathematicians and engineers, 

the theoretical capabilities of Liapunov’s second' method’ 

far exceed the present' practical' applications. In -fact, 

the lack of-a systematic means of"generating the so- 

called ”V function” of Liapunov to satisfy the existing 

powerful theorems has been deplored in almost every English 

publication on the subject,.

The purpose of this report, is to develop a logical , 

and systematic means of generating Liapunov functions. The 

means by which this is accomplished is called the variable . 

gradient method of generating Liapunov functions.' The 

method is based upon the introduction of a completely ar-: 

bitrary vector, the variable gradient,, and a number of 

auxiliary equations, called the generalised curl equations. 

Procedures are described by which.the unknowns in the gra­

dient are determined', -and from the gradient, both J and

dT/dt can be determined directly. This approach reduces 
the emphasis ©n the ingenuity and experience of the in­
vestigator that has so .long been linked with the engineering 
application 'of the Liapunov theorems.
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Following this introductory material, Chapter II is a 

review of the basic Liapunov theorems, with the definitions 

of necessary terms. The emphasis is on clarity rather than 

on completeness. Only those theorems that are to be used 

in the chapters immediately following are presented. Later, 

as more completeness is needed, additions are made as re­

quired.

The variable gradient method is an outgrowth of the 
work of Ingwerson [l], [2] and Szego [3]* [4] described in 

the third chapter. The author was fortunate enough to see 

the early work of both of these individuals before it ap­

peared in the journals, and because the two papers were 

read at essentially the same time, the foundation for the 

variable gradient approach practically suggested itself.

The work of Ingwerson and Szego is dealt with in some de­

tail as a foundation for the variable gradient method.

The variable gradient method is proposed in Chapter 

IY as applicable to the autonomous system. Here, as in 

the rest of the thesis, the analysis is restricted to 

systems containing only single-valued nonlinearities. No 

special attention is given to linear systems, as they are 

considered as special cases of the nonlinear type. To de­

monstrate the capability of the variable gradient method, 

examples are worked in Chapter V to illustrate the dif­

ferent types of V functions that can be generated. Addi-
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tional examples are 'included that deal with practical serve 

problems* In eaeh ease the starting point is not a set of 

n first order differential equations, hut the block diagram 

from which these equations are derived. Thus the reader is 

dealing with problems with which he may be expected to be 

familiar, so that only the framework within which the prob­

lem is considered is different.

In Chapter VI, the variable gradient method is extended 

to include time-variable-parameter systems and systems with 

an-input. Here-the order of magnitude of the problem is 

increased, and the results might be considered to be some­

what marginal» '

Chapter VII is a short; summary of 'the report, with re- 

. commendations for-further study. The Appendix outlines.' 

several-methods of determining'the-.closedness of higher ' 

order Liapunov functions. The. Appendix is considered a 

vital portion of this report, as" the:motivation for slightly 

restricting the form of the variable gradient hinges.on the 

means that are used to show that the higher forms generated 

actually do represent elosed surfaces.in n dimensional 

space«

-The contribution of this report is .the .introduction 

and development of the Variable Gradient. Method of gene­

rating Liapunov functions, ant the application of-this 

method to different types of problems.In-the field of auto­

matic control*
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CHAPTER II

The Seeohd Method of Liapunov 

for Autonomous Systems

■2*1 Introduction and Organization of the Chapter

The second method of Liapunov is a means of deter­

mining the stability of a system of n simultaneous* first- 

order, ordinary, differential equations. In this chapter 

the automatie-eontrol system is interpreted in terms of 

equations of this type. Before the introduction of the 

actual Liapunov theorems, the concepts of "definiteness*, 

and ”elosedness" are considered, as is the precise meaning 

of the term '’stability*.

The more basie Liapunov theorems and their extensions 

are presented, however no proofs of the theorems are in­

cluded, as the theorems have been adequately proved in the 

literature. Rather, an attempt is made to present the ma­

terial in such a way that the reader with a knowledge of 

phase-plane analysis will understand the physical implica­

tions involved in the statement of the theorems.

■2.2 Notati on

The following notation is used throughout. Vectors are 

designated by underlined quantities, as x or X. The only 

exception to this is the gradient of a scalar function, a 

vector, which is denoted by VV. A function of an under-



lined quantity is a function of the elements of the vector. 

Thus X(x) is a vector function identical to X(x-j_, Xg, ... 

xn) and V(x) is a scalar function; equal; to V(xj., Xg, ... 

xn). The transpose of a vector x is designated as x*. The 

Capital letters A, B and C are reserved exclusively for 

square matrices in the theoretical Chapters II, III and IV
r ( ' ... ' ' 1 v .

only* Capital letters other than these refer to scalar
■tojq'sdo sijid 0I ■„sne.l:J.swpx igilJxreggTtifr ■ .
quantities.

• - ' 1 ' r ' > i v '' ' ‘

2.3 System; Representation <>'V. ’ ■■ a 1 d- 1J^

The application of the second, method of Liapunov to

the determination of the stability of an autonomous, phy­

sical system presupposes that the- tedfchd^desf* dynSiMed'%yb—

tern under consideration is specified by n, simultaneous, 

first-order, ordinary differential equations of the form

"*11 *1 * ”12 *2 + ••• *Si.u ,&• s «*1 i M h a m "Mb: m 9 ■+ J ,b j gi! „ g-xal sjie.t dt

1C- b21 X1 + b22 X2

-B8- txcmi' .IsoiBvrki; gild y:<?!.Rya‘mhm!i £i iw

tB;g!X70 5s:* --jr-dt 'to siit «i-.Svsv’Xov'.tt’x emjl't

xn * bnl X1 + V x2 + b x nn n oat dr; r.-., V,. S

In the linear system, the be's would be'constant, hut 

mere generally, the b^'s may Ue functions of x^,

... sn. For a given nonlinear system, the b-y's are not
-MsrMMi ms ' ;rir? moImsmmM A, ,¥/v ■ mci imsonah ai: ilM'xxiM
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necessarily unique, as a term such as xq x2 would serve to 

indicate.

For convenience, though not necessity, vector notation 

is used to represent the system of equations (2.1), so that

(2.1) may he rewritten as

x * B(x) x (2.2)

or

x - X(x) (2.3)

A further assumption is made that the variables x are 

chosen such that

X(0) « 0 (2.4)

This in no way restricts generality, as a linear change in 

coordinates can he made to shift the equilibrium point to 

the origin.

In equations (2.2) and (2,3) the variables xq are 

functions of time, and a knowledge of the vector x com­

pletely describes the state of the system for all time. 

Hence, the variables x are referred to as the state va­

riables of the system. It should be noted in passing that 

any given system may be represented by an infinite number 

of equations of the form (2,2) or (2.3), as the state 

variables are not necessarily the physical variables of 

the system, but may be any linear combination of these



physical .-.variables-;. Gib son, et-al,, -b.;. .<■,

Often, physical systems are not described by equations 

such as (2*2) or (2.3). A basie assumption of this report 

is that the system under study is representable in block- 

diagram form, and that either the;'block diagram or ;an/nth- 

order differential equation representing the system is 

known, If systems with time lag are ignored* the require­

ment that the block diagram be known is identical to the 

requirement that an nth-order differential equation be.. 

known, as a block diagram is simply a pictorial represent­

ation of a differential equation. Systems with time delay 

will not be considered, as they result in differential dif­

ference equations,; .

In the example problems to follow in later chapters, 

the problem is always stated first in terms of a block 

diagram, and this is reduced to the form'

Equation (2,5) is easily reduced to n simultaneous first 

order equations by assuming as the state variables, the 

system output or error -and its n - ^derivatives. . .Thus,'-'; 

with x1 equal to x, and this choice of state variable,

a2 WE + aI (2,5)

This may be written more conveniently as

x(”>. ♦ ^ x^-1), x + a^ x = ® (2,6)
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(2.6) becomes

x3
(2.7)

a2x2 “ alxl

This particular choice of* state variables is referred 

to as the phase variables, a name that stems from the eo-

of a second-order system of the form of (2.7) is usually 

depleted. This choice of the phase variables is a natural 

one for the engineer, as these variables have a ready phy­

sical interpretation. In a positional servo, for example; 

x^ could be ehosen as output position; x^, velocity; Xj, 

acceleration; etc. The behavior of the system can tiien 

be depicted as taking plaee in an n-dimensional phase 

space, analogous to the two-dimensional phase plane, with 

time not explicitly indicated.

Sometimes equations in ^normal” or "canonic” form 
[Cunningham, 'd], or in the canonie form of Lur’e [?J are 

convenient. However, the variable gradient method of 

generating Liapunov functions to be developed is not de­

pendent upon the representation of the system, as long

ordinates of the usual phase plane on which the behavior
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as n, first-order* differential equations are given. Phase 

variablesi will he used because of their simplicity, al­

though later an example will he worked in an alternate co- 

ordinate system (Example 5,6).

2.4 The Concepts of Definiteness and Glosedness

The concept of definiteness is utilized in the state­

ment of the theorems ©f Liapunov, and the following defi­

nitions apply. The following definitions follow Malkin

!>]•
Definition 2.1. [kalkin, 8^ Positive (Negative) 

Definite

A sealar function Y(x) is positive (negative) 

definite if for

||x| . C h where |x|| 2 - Xj* * x&z * ... *n2

V(x) (v(x) < 0) for all X y 0 and V(0) - 0,

Definition 2.2, [Malkin, 8] Positive (Negative) 

Semidefinite

A scalar function V(x) is positive (negative) 

semidefinite if for

K. h

Y(x) ^ © (Y(x) < ©) for all x and V(0) » 0.

In the above definitions, h may be arbitrarily small,



in which ease ¥ would be definite in an arbitrarily’ small 

region about the origin. If h is infinite, ¥ is definite 

in the whole space.

Definition 2,3 fMalkin, 8~| Indefinite

A scalar function ¥(x) is indefinite if it is 

neither of the above, and therefore, no matter how 

small the h, in the region

¥(x) may assume both positive and negative values.

A few simple examples will clarify the definitions. 

The function

•• 2 2 ¥ = x^ + Xg

is positive definite if the system under consideration is 

second order, but it is only semidefinite if the system is 

third order, since, for x^ = Xg = 0, ¥ is 0 for arbitrary 

x^« Similarly, for a third order system, the function

¥ ® x^2 + 2 x-^ Xg + Xg^ + x32

is only semidefinite, because for x3 = 0 and x^ *= x^,

¥ ■** 0. A function such as ¥ ^ x^.. or ¥ = xi - xg is ob­

viously indefinite, no matter what the order of the 

system.

When ¥ is a quadratic form, expressible as
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v - x* e x (2.8)

where C Is a square matrix with constant coefficients, the 

usual means of determining the definiteness of the form is 

through the application of Sylvesters Theorem [LaSalle |T|. 

Sylvester*s Theorem

In order that the quadratic form (2,8) he 

positive definite, it is necessary and sufficient 

that the principal minors of its determinate, that 

is, the magnitudes

C11 >0,

C11 e12

e12 G22

>

C11 e12 *** eln

e12 e22 e2n

®ln ®2n * * * enn

> 0

he positive.

Closely allied to the concept of definiteness is the 

concept of a simple closed curve or surface, A surface 

is said to he simple if it does not intersect itself and 

closed if it intersects all paths that lead from the 

origin to infinity [Letov, 1©] . That is, a simple closed 

surface is topologieally equivalent to the surface of an 

n dimensional sphere. If V is a positive-definite fune-
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tion, then the equations V = K, a constant, represent a set 

©f nested, closed surfaces about the origin in a suffi­

ciently small region. In order to insure that the region 

extends to infinity, it is necessary to insure that the 

curve T■» K is closed for sufficiently large K. Letov [lo] 

States that the closure of the curves V =* K is assured if, 

in addition to positive definiteness, the Liapunov function 

approaches infinity as the norm of x goes to infinity, that 

is, if

Lira 
x

V(x) oo (2.f)
GO

As an example of a curve that is positive definite and 

yet closed only for values of K less than 1, Letov 

cites the following example from Barbashin Qllj »

V « XX2 * ------
I + Xa‘

A seeond example of Letov includes an integral in the Lia~ 

punov function. If V is given as

T *= / f(Y.i)' dtx + x22

/ ©

Iand
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fC^') '■ a

then the curve V = K is closed only for values of K less 

than a*

2,5 Definitions of Stahllity

The concept of stability of a linear system with cons­

tant coefficients is basic to control engineering. Such a 

system is defined to be stable [Bower and Sehultheiss, 12]] 

if and only if its output in response to every bounded in­

put remains bounded. A neeessary and sufficient condition 

for the stability of a linear system is that the absolute 

value of its weighting function, »(t), be integrable over 

the infinite range, i.e„,

The weighting function of a linear system is simply the 

inverse Laplace transform of the transfer function of the 

system*

Not only is the concept of stability clearly defined, 

but the range of stability is not in question. If a li­

near system is stable, then it is stable for any input, re­

,00
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gardless of size.

This is not at all the ease in nonlinear* systems, as 

stability is a local concept and a possible function of the 

input. Kalman [13J defines eight types of stability, An- 

tosiewiez jjL4]| nine types, and Ingwerson [l] twenty differ­

ent types. Many of these definitions, however, apply to 

nonantonomous systems, and many are not of interest in 

engineering applications. Hence, here only stability in

the sense of Liapunov and asymptotic stability will be de-
. ■ ■■ ■ .. ■ v

fined, Definitions applicable to nonant©nomons systems are 

given in Chapter TI,

The definitions here follow LaSalle [is], and assame

that the system is expressed as equation (2.3).

Assume that the equilibrium state being investigated

is located at the origin, and that X(0) = Let

the norm of x, be the Euclidean length of the vector x,

where ** X-^ + Xg . +. .. n Let S(R) be a spheri*

cal region of radius R > 0 around the origin, where

consists of points x satisfying < R,

Definition 2.4. Stability in the Sense of Liapunov

The origin is said to be stable in the sense 

of Liapunov, or, simply stable, if, corresponding

to each S(R) there is an S(r) such that solutions 

starting in S(r) do not leave S(R) as t —■** o© .-
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Definition 2,5. Asymptotic Stability

If the origin is stable and, in addition, every 

solution starting in S(r) not only stays within S(R) 

but approaches the origin as t —> 00, then the system 

is called asymptotically stable.

The definitions themselves emphasize the local charac­

ter of these types of stability for nonlinear systems, as 

the region S(r), the region of initial conditions, may be 

arbitrarily small. If the region S(r) includes the entire 

spaee, the stability defined by 2.4 and 2.5 above is 

global.

Note that in the above, the region S(R) is a function 

of the initial conditions, or more precisely, a function 

of the region of allowable initial conditions. As a con­

sequence of this fact, a linear system with poles on the 

jas axis is stable in the sense of Liapunov. Henee, as far 

as automatic controls are concerned, Liapunov stability 

has only historical importance. The type of stability of 

interest is asymptotic stability, and more specifically, 

global asymptotic stability.

The concept of asymptotic stability does have one 

disadvantage, however. The region S(R) is a function of 

S(r), but the relationship of the size of S(R) with res­

pect to S(r) is not specified. Hence it is quite con­
ceivable that a system that is asymptotically stable, or
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even globally asymptotically stable, might still perform 

-quite,-badly, as, for example, a linear, second*-order sys­

tem with a damping ratio of *05. More will be saidabout 

the region S(R) with respect to various inputs in Chapter

VI. . ■ .

2.6 Liapunov Stability Theorems

A large number of theorems e^ist which are related to 

the seeond method of Liapunov) for example, Donaldson [l6j 

lists 32* Only three theorems of immediate interest are 

stated 'below* ;

The original theorem due to Liapunov, Theorem 2*1, 

is applicable only to an arbitrarily small region about 

the origin.

Theorem 2.1 [Malkin, 8j

If it is possible to find a V(x), definite 

with respect to sign, whose total derivative with 

respect to time is also a function of definite 

sign, opposite in sense to that of Y, then equa­

tion (2.3) under assumption (2,4) is asymptotically 

. stable..

Modern convention assumes that V(x) is positive de­

finite, Thus, in a geometric sense, the equations V «, K, 

where K is a positive constant, represent a one parameter 

family of simple closed surfaces nested about the origin
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in the space of x« However, V(x) does not necessarily re­

present a closed surface in the whole space, and only 

local asymptotic stability may be concluded.

With V assumed to be positive definite, Theorem 2,1 

requires that dV/dt be negative definite. This rather 

severe requirement on dV/dt is overcome by LaSalle [l§J 

in the following theorem.

Theorem 2,2

If there exists a real scalar function V(x)

continuous with continuous first partials, such

that

1. 

2, 

I.

= 0 and

V(x) > f) for x / 0

V(x) oo as oo

< 0 for x/ 0 (At least negative

semidefinite)

4. dV/dt not identically zero along a solution

of the system other than the origin, 

then system (2;3), under assumption (2.4), is glo 

bally asymptotically stable.

Conditions 1 and 2 insure that Y represents a closed 

surface in the entire spaee. The requirement of Theorem

2.1 that dV/dt be negative definite to insure asymptotic 

stability is replaced by the conditions 3 and 4. These 

conditions require that dV/dt be only negative semidefi-



nite, as long as it is not identically zero along a solution 

of the system. In order to insure that dY/dt =* © is not a 

solution of (2.3), it is only necessary t© substitute the 

solution of this equation baek into (2.3), In praotiee 

this is often a trivial problem.

If condition 2 above is not fulfilled, it is impossible 

to conclude global asymptotic stability. Often, however, it 

is possible to conclude stability in a well defined region 

through the use of the following theorem.

Theorem 2.3 [ha Salle, isj

Let J2, be a bounded, closed (compact) set 

with the property that every solution of (2.3) 

under assumption (2.4) which begins in JR. remains 

for all future time in Ji. , Suppose there is 

also a scalar function Y(x) which has continuous 

first partials in SL and is such that dV/dt ^ 0 

in Sl~ . Let E be the set of all points in ,-IV 

where dY/dt * 0, Let M be the largest invariant 

set* in E. Then every solution starting in JX. 

approaches M as t —00 .

If the set M is the origin, asymptotic stability may 

be concluded. In order to make use of this theorem, of
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k set M is said to be invariant if each solution 
starting in M remains in K for all time.



eourse, it is necessary to define the region and show 

that all solutions starting in JX remain in JR. as time goes 

to infinity. Means hy whieh such an -A may be determined 

are discussed in connection with the gradient in Chapter 

IV.

It should be emphasized that the stability theorems 

presented above give sufficient, but not necessary, condi­

tions for the stability of equations (2.3), The failure 

of a particular V function to prove stability in no way 

implies that the system in question is unstable. Instabi­

lity can only be established by recourse to theorems di­

rectly involving instability,

2.7 Geometric Interpretation of Liapunovfs Theorems

It is possible to give a relatively simple geometri­

cal interpretation to the theorems of the previous section. 

Since Theorem 2.2 is the most useful, interpretation will 

be made in terms of it. For purposes of illustration, it 

is assumed that the system in question is second order, so 

that the system behavior may be interpreted on a plane 

instead of in n dimensions. Extension to n dimensions 

follows readily.

It is assumed that V and dV/dt meet the conditions 

of Theorem 2,2, The equation V equals a constant repre­

sents a series of closed curves around the origin, with 
the size of these curves increasing as the constant is
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Increased from t® Cg, etc. as in Fig. 2.1. Because of 

condition 2 of Theorem 2.2, these closed curves extend 

over the entire x-^Xg plane. If coordinates are chosen 

such that Xg is the derivative of Xi, then the state plane 

of x^Xg is the phase plane.

Sinee dY/dt is negative semidefinite, it is either 

negative or zero everywhere in the state plane. If dV/dt 

is zero along a curve that is not a trajectory of the 

system* then* if at any time the trajectory lies on such 

a curve* it will not remain on the curve where dY/dt is 

zero. Bather, the trajectory will move to a region where 

dY/dt is negative. This negative derivative of V insures 

that as time increases, Y will decrease, and in the limit 

as time goes to infinity, Y decreases to the origin.

But ¥ is a function of the state variables. The 

condition Y(0) » 0 is only possible if the state variables

also go to zero as time goes to infinity. This is the
. \

meaning of asymptotic stability.

If dY/dt were to equal zero along a curve that was a 

solution of (2.3), as, for example, if dY/dt = 0 along 

a limit cycle of'(2.3), and if the trajectory were to co­

incide with this curve at one point, the trajectory would 

remain forever coincident with the curve dY/dt “0,

While the physical interpretation of the meaning of 

Theorem 2,2 is not difficult, the determination of a Ida-
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Figa 2*1., Phase Plane Trajectory Crossing the Curves 
Y(x t x ) = Constant in the Direction @f 

. Decreasing T



punov function* V(x)* to satisfy the conditions is indeed 

a difficult task. The remainder of this'report is devoted 

to means of determining such Liapunov functions.

- 23 -
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CHAPTER III

Methods of Generating Liapunov Functions 

for Autonomous Systems

3*1 Introduction, and Organization of the Chapter

The major difficulty in applying the second method of 

Liapunov to practical problems is the laek of a means of 

determining a suitable T function. This lack of technique 

is well recognized and is mentioned in almost every English 

publication on the subject. The ability to determine the 

required V function is usually depicted as an art, depend­

ent upon the skill, experience, and even the luck of the 

investigator. The purpose of this chapter is to explain 

in detail methods that now exist for generating Liapunov 

functions. A Liapunov function is said to be generated if 

the final form of the V function is not known before the 

generating procedure is applied.

Several of the better known methods of solving non­

linear differential equations by the second method are 

considered briefly. These methods, due mostly to the 

Russian authors, assume the form of V initially, and thus 

V is not said to be ‘’generated”. The methods of Ingwer- 

son [l], [V] and Szeg© [3], [V] are treated in detail, be­

cause they are actual generating methods within the mean­

ing of the word as here used, and because the Variable 

Gradient Method, described in later chapters, is based



upon a combination of these two techniques,

3,2 Well Known Techniques Applicable to the Second Method.

section, A more comprehensive treatment, aside from the 

original references, is to he found in the Purdue Universi­

ty’s Control and Information Systems Laboratory. Report. 61-5

The methods of laar’e and Letov, and the extensions of 

these techniques due to Rekasius, consider Y’s of a qua­

dratic form or a quadratic form plus an integral, after 

the system equations have been arranged in a suitable cano­

nic form. The coefficients of the variables in the quadra­

tic form are not assumed but are determined on the basis of 

a set of stability equations that naturally result. Since 

the form of V is assumed, this is not considered to be a 

Y function whieh is generated. The method of Aizerman is 

similar in the sense that Y functions are not generated. 

Aizerman approximates the nonlinear element of the actual 

system by a straight line characteristic and then deter­

mines the quadratic Y function for the approximate linear 

system. The hope is, of course, that the same Y will be 

successful in proving the stability of the actual non­

linear system.

man

of Liapunov
The work of Lur ’e [?], Letov [lo], Rekasius [l?] , Aizer 

jjLsj , and Krasovskii [jL®J is considered briefly in this
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Krasovskii}s method is more of an existence theorem 

than a working technique„ Krasovskii has shown that it is 

possible to use the phase velocities* not the phase co­

ordinates* as variables in a quadratic form for Y. That 

is* Krasovskii has shown that a suitable Y function is

Y(X) =I'1I

Here the X8s are the right hand side of equation (2.3), 

Krasovskiiis method deserves some special mention* 

however* because even though Y is assumed to be a quadra­

tic form in X* in the state variables x* Y will be a func­

tion of higher order,, Perhaps it is this fact that promp­

ted others to investigate the generation of Y functions 

of higher order form*

3 »3 The Method of Ingwerson £l]* [2]

3*3*1 Theory and Mechanics of Ingwerson*s Method

The method of Ingwerson is a technique for generating 

Liapunov functions for the general nonlinear system. The 

method is based upon the successive integration of matri­

ces* and yields sufficient Conditions for the stability 

of nonlinear systems that are always correct for small 

disturbances. The method is applicable to systems repre­

sented by equations (2.2) or (2.3)* under assumption (2.4). 

Phase variables are used exclusively* so that the equations 
of motion in expanded form are as in (2.7). Thus the

J
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matrix B(x) of (2.2) becomes

0 1 0 

0 0 1

B(x) *

an-l an-2

0
0

(3.1)

In the linear autonomous system^, the a*s of (3*1) 

above are all constants. Note also that the matrix B is 

simply the Jaeobian of' ("2.3)/ so that the elements of B 

xand they are constants.

For the linear autonomous case Ingwerson proceeds in 

a manner similar to that of Krasovski! and assumes Y as a 

general quadratic form

Y « x' A x ■(3.2)

For this Ys dY/dt becomes

dY/dt » x« [b»A + AB] x (3.3)

form

is constrained to be negative semidefinite,, of the

dY/dt = ~ x5 C x (3.4)

where the ehoiee of C is restricted to those matrices 

which have all elements equal to zero* except one element
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of the principal diagonal. This element is set equal to 

a positive constant.

if the left sides of equations (3,3) and (3.4) are 

equated, as in (3.5),

It is then possible to solve this matrix equation for the 

elements of A in terms of the known elements of the matri­

ces B and G. Obviously, the elements of A are dependent 

upon the choice of the matrix C, For an nth order system, 

n possible C matrices exist, and corresponding to each C-^ 

is an Ai matrix. Ingwerson has solved the matrix equations 

of (3.5) for n up to and including 4. These solutions are 

tabulated for second and third order systems in Table I 

and give necessary and sufficient conditions for the sta­

bility of linear systems. The results for fourth order 

systems are not considered significant, since, although 

dV/dt is constrained to satisfy the usual Hurwitz condi­

tions, these same conditions are violated by the resulting 

V.

In the linear case, if the matrix A is considered to 

be the coefficient matrix of a quadratic Y function, it 

is observed that the elements of A are equal to

B’A + AB C <3.5).
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Table I

MATRICES FOR THE LIAPUNOV FUNCTIONS

Second Order

"a2 O' ~o 0

_0 1_ ci
_0 2aj_

2
al + a2 a£ 2ala2 0 “

I)

al 1.
C2 St-

_ 0 0 _

Third Order

A1

r 2 
a3 a2a3 0 0 0 0

a2 a3 a, a„ + art^ 13 2 C! = 0 o 0

0 a3 a2. 0 o . 2(a^ag-a

"I $ll A13 * ^ a3 0 "o 0 o"

a„
3

al2 + a2
al C2 " 0 2 ( a^a2'-a-3) 0

[0 al 1 0 0 0

^'la2^“a2a3+al^a3 al^a2 ala2“a3 2a^( ) 0 o”

a3 ‘ al^a2 a|+a^ a 2. a1 .. - C3 = 0 0 0

ala2" a3 *1* al 0 0 0_



This suggests a double integration to obtain V directly 

from A, and it is this idea tha.t is carried over into the 

nonlinear case.

In the nonlinear case the same problem formulation is 

assumed. In order tp obtain a B matrix of the form (3.1), 

which is also the Jacobian of the system, (2.3) is dif­

ferentiated, with the result that

x = B(x) x (3.7)

Now B is no longer a constant matrix but B(x), as the a's 

are, in general, functions of x.

In a manner analogous to that used in the linear ease, 

the matrix equation (3.5) is solved for the elements of the 

matrix A in terms of the chosen C and the known B(x). (Al­

though this step is not justified, comment will be reserved 

until the section on analysis of Ingwerson's method.) The 

resulting A matrix is also a function of x, so A is actually 

A(x).

Ingwerson points out the conditions that are necessary 

for the elements of a matrix, such as A(x), to be the se­

cond partial derivative of a scalar, such as T, This is 

required by (3,6) if integration is to be used to determine 

a unique IT, A(x) must be symmetrical and the equation

^aij d)a ik 

d xk . (3-.8)
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must lie satisfied for the elements of A(x). In general the 

elements of A(x) do not satisfy (3.8) if the system is non­

linear. The difficulty'is overcome by altering the elements 

of A(x) to form a new matrix A(x.£,X|). This is accomplished 

by letting all of the variables in each element of A(x) 

vanish except x^ and Xj, where i and j are the respective 

indices of the row and column containing the element. The 

elements of A(x^,Xj) now satisfy (3.8).

Once this A(x£,Xj) is found, a vector, the gradient 

of a scalar function Y, is determined by the integration

x

VY = / A(x^,xj) dx (3.§)

/©

If the components of VV in the x^ direction are designated 

as VT^ V is determined as a line integral of VT, as

Y = j VV‘ dx (3.10a)

The upper limit here is not meant to imply that Y is 

a vector quantity, as in (3.9), but rather that the integral 

is a line integral to an arbitrary point in the phase space 

located at x - (x^, xg, ... x^). Because of previous cons­

traints on A(x), the line integration indicated by (3.1©a) 

is independent of the path of integration. The simplest
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path of integration is indicated by the expanded form of 

(3.10a) to be

VTi(tx, o W2(xi, Yg,

VVn(Xl, Xg, xn-l> ^>*1* (3.10b)

Once V is known, dV/dt may be determined either di 

reetly from V or from the gradient, as

ifl V ■ ' . 0 ■
Jjr -■ W x = VV» X (3.11)

The mechanics of this method are best illustrated by 

a simple example taken from Ingwerson [V]. Consider the 

undamped, second-order system of Pig. 3.1, which is stabi­

lized by a variable gain. The equations of motion written 

in the form of (2.7) are

t-, ® x,2

b
x2

©
T X1 “ *T A1 *2X, X«-

is the Jaeobian of the above, or

'o 1
B(x)

K
TT

2bl hl 2
T~ xl x2 ~ "T X1



Fig. 3*1. The Ingwereon Example of an Undamped System 
Compensated by a Nonlinear Compensator
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With the matrix C equal to G-^, A(x) is equal to A-^Cx), 

which is given by fahle I to he

&2 0

A(x) - A-j^x) «
G 1

Substituting from B(x), A^Cx) is found to be

VT';=| 

©

b_
,J. pSJ-sjLTsyJa 

ilInoM a
0 1

/ dYjTO€ ^ff) vpft
hoS

gl.i

From (3.10), V is determined to be

V =

o

„ bo 2 x2
Y = sr xi +

,x2

"f YldYl + I Y2dY2

o
2

2~
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dY/dt follows from (3.11) as

dY *1
T

2

Y and dV/dt meat the conditions of Theorem 2.2, and hence 

the system of Fig. 3.1 is globally asymptotically stable. 

If a satisfactory result had not been obtained, the proce­

dure would have been repeated, with C equal to Cg. If the 

results were still not satisfactory, a combination of Ci 

and Cg might be tried. Of course, the method is not 

guaranteed to work in every ease, but it often does give 

good results.

3.3,2 Analysis of the Ingwerson Method

In the development outlined above, two steps were 

taken (quite arbitrarily, sueh that the resulting procedure 

is not formally correct in a mathematical sense. Nor does 

Ingwerson claim that what he has done is rigorous. The 

justification is purely pragmatic,

A step taken above that might lead one to question 

the validity of the method is the formation of the matrix 

A(x£,Xj) from the matrix A(x). As mentioned, this is 

necessary to insure that the integrations subsequently 

performed will yield a unique scalar function Y. How­

ever, the Y thus determined is in no way assured to satisfy 

the conditions of any theorem.



The other arbitrary substitutionis not as obvious.

For the linear case (3.3) is a valid equation, but for the 

nonlinear ease with the system specified by (2.3), dV/dt 

is found to be

ay dt.(x)
« XfA(x) x + x» x + x1 A(x) X (3.12)

If dY/dt is now eonstrained as in (3.4), (3.5) does not 

follow, as

X?A(x)x + xf —x + x* A(x)X / x* £b(x) *A(x)+A(x)B(x)J x

If the nonlinear system is linearized, however, (3.12) does 

reduce to (3,3), and valid results are realized in the vi­

cinity of the origin.

The question remains, if the Ingwerson method is not 

formally eorreet, why does the method often give good re­

sults, ’

The question can perhaps best be answered by a re­

examination of the mechanics of the Ingwerson technique,

As an initial step, is chosen arbitrarily. This choice 

of C± determines dV/dt, as in (3.4). However, the ehoiee 

of Ci also uniquely determines A(x), A(x^,Xj), VY and V 

itself. In short,. the initial arbitrary choice of 

completely determines both Y and dY/dt. Hence the choice 

of Ci amounts to a rather elaborate means of guessing not 

only dY/dt, but also Y. Since there are always a large
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number of V functions capable of proving stability for a 

given problem, the method often gives results.

Of course it may not be possible to constrain dV/dt 

to be as required by (3.4). This fact was pointed out by 

Ingwerson. He indicated that it might be necessary to 

combine two different C* matrices, or to even include off 

diagonal terms in the final C matrix in order to be able 

to find a suitable V function. However, it seems like an 

almost hopeless task to try and modify an unsatisfactory 

T by making an alteration in the matrix G, whieh is one 

matrix equation and two integrations removed from V.

Because of the completely mechanical operations re- 

quired ©nee G has been chosen, solutions exist which are 

not achievable by the Ingwerson method. Consider the 

following example as a case in point. The system is re­

presented by the bloek diagram of Fig, 3,2. The differen­

tial equations of motion are

*1 “ x2 

' *2 “ x3

X3 = -(xj + cx2)^ - bx3

and B(x) is

Kx)

0 1 0

0 0 1
2 2 3(x1 + ex2) -'3©(x1 +' cx2) - b
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Fig. 3*2. Third Order Example of Iagwerson
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If in this problem an attempt is made to constrain 

dV/dt to be negative semidefinite inx^ or x^2 through an 

initial choice of or a satisfactory result is not 

obtained. Yet an answer does exist for dV/dt in terms of 

x^ * Such a dV/dt5 along with the corresponding V, is

V = bx22 + 2x2x3 + Cx3^ + i(xi + cx2)4

and

§! - - 2x32(bc - 1)

Why the method of Ingwerson is unable to produce this 

result can be seen by considering only the first element 

of A3(x)s corresponding to C^„ The element a;Q of A^Cx) 

is ■

all 33 9bc2(x1 + cx2)4 + Gctxj^ + cx2)4 + 3b2(x1 + cx2)2 

The element a^ of ^(x^, x^) is

a^ = 9bc2x-^4 + 9ex^4 + 3b2x^2

Since a term in x^4 appears in this element^ a term in x-^6 

will appear in -V. This term does not appear in the aetual 

¥ that proved to be a successful solution to this problem. 

Hence, a satisfactory solution is not attainable by the



Ingwerson method when dV/dt is constrained t© fee a function 

of x^2.

Ingwerson did obtain a solution to this problem in 

terms of Xg2 in dV/dt. The point here is not that a prob­

lem has been worked whieh was not solved by Ingwerson, 

sinee the problem was solved by him in terms of x^2. The 

point is to demonstrate the inflexibility of the approach, 

©nee has been ehosen. In problems where dT/dt neces­

sarily eontains terms in x^Xj, the choice of a single 

or a combination of C^’s will not produce a solution.

Mueh of what has been said concerning the Ingwerson 

method of generating Liapunov functions has been said in 

a negative sense. Yet Ingwerson*s contribution is signi­

ficant. The idea of integrating a veetor VV as a line 

integral to determine the scalar V is original, and this 

idea offers a new approach to the generation of Liapunov 

functions, as is explained in the following chapters. 

Further, the method is applicable to cases in which the 

nonlinearity is expressed as a polynomial or as a general 

function of x.

3.4 The Method of Szego

3 ,.4.1 Theory and Mechanics of Szego * s Method

The Szego method of generating Liapunov functions 

which is presented here is based on material from refer-
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Fig. 3.3. All Illustration of Szego's Method of Cons-
training d^&t to he Negative Semidefinite by 

Forcing Solutions to the Equation 
** 0 to Coincide

;



Note that the form of a^iCx^) and £2^ is

identical* since a^^Cx^) is a polynomial* Hence the 

bracketed terms above may be replaced by a new coefficient, 

ai;j(xl>? wh©re

^ ai .• (x-j ).
aij(3Il) ' aij(xl) + i -g-xY~ «l. (3.17)

Thus dV/dt becomes

dV
df + Sa-^gXx^Jxg + SfCx^^Xg) ja^2(x-^) x-^+aggXgj

(3.18)

Note that in the above equation, two sets of coefficients 

now exist, ai.j(x^, Xj) and a^(x^, xj) • To elimihate the 

excessive number of arbitrary coefficients, Consider an 

auxiliary equation of the same form as dV/dt, sueh as

j£(x) ■ Sa-jJ^Xj^x-jXg + 3a1|(x1)x22

+ 2f (xx, xg) ja12<x1)x1 + aggxgj (3 .1@)

Now instead of forcing the solutions of the equation 

i= © to coincide, the solutions of the equation 

^(x) = 0 are forced to coincide. Thus the a^j^x^xj) fs 

are evaluated, and a V function which produces a proper

j4(x) is determined.
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However, ^(x) is not the funetion of interest. The 

function of interest is dV/dt, hut dY/dt does have the 
same form as ^(x). Hence it is reasonable to expect that 

a Y function of the same form that was used in connection 
with j^(x) might also yield a dV/dt that could be cons­

trained to be at least negative semidefinite, as ^(x) 

was constrained to be at least negative semidefinite.

Thus, the problem is started over, this time not with an 

arbitrary Y function, but with a V function of the form 

determined from the consideration of the auxiliary equa- 

tion The coefficients of this new Y funetion are

left arbitrary, and they are determined by constraints on 

dV/dt which make it at least negative semidefinite.

What has been said in general above is clarified by 

the following example. The block diagram of the system 

is pictured in Fig. 3.4, and the dynamic equations are

X1 * x2

x2 " x2 ~ xl3 

Assume Y is as in (3.13) or (3.15)

g 2
Y = an(xi^xi + 2a12(x-L)x1x2 + x2

After differentiation and substitution, dY/di is found to 

be



Big, 3,4, Block Diagram of a Second Order 
System with a Cubic Nonlinearity
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" xz [2a12(xl) ■ *] + - 2a12(x1)x1-2x1

- Sa12(*1)*14.

and

/^(x) “ x^jsa-jJCx^ “ + x2 [2ali^xl^xl“2a12^xl^xl"2xl^]

- 2a12(x1)x14

Here dY/dt and j^(x) are arranged as quadratics in x2.

The roots can fee made to coincide if the radical in the 

usual quadratic formula is made equal to zero, that is if

p2 - 4ay * o, where, for |4{x),

t , .a * 2a12(x1) - 2

X * 2aig(xi>xi4

As Szeg© does in his example problem, Case b of M, 

a and p are constrained to be 0. Thus

*18<*1> "a12 ■ 1

With this substitution in p,

all^Xl^ S 1 * XJ2
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Thus the Y associated with ^(x) is known, and the 

form of V associated with dV/dt is also known. The prob­

lem is now started over, under the assumption that Y is

V = ax 4
1 + + GX-^Xg + x«

Here a, >, and c are arbitrary constants, For a » 5,

b = 1, and 0 = 2,

and Y is

t is

dY _ 
dt “

4

Y 4
Xl/2 +

2 + 2x^Xg + Xc

Here V is positive definite* and dY/dt negative semide- 

finite* Theorem 2.2 applies, since dV/dt is not zero 

along a trajectory, as x^ *= 0 is not a solution of the 

given equations. Thus the given equations are globally 

asymptotically stable, or, perhaps more significantly, 

the system described by these equations is globally asymp­

totically stable.

In the application of this method to the third order 

ease, difficulties arise that are not apparent in the 

example above. Consider again the Ingwerson third-order

Note that the constant portions of Y remain identical 
to those previously determined for the auxiliary equation 
Y (x). This is always true.
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system of Fig. 3,-2, for which the equations of motion are 
given as

X1 = x2

x2 “ x3

;3 = - (Xl . ex2)3 - bx3

In order to appreciate the difficulties that arise, 
it is necessary to consider this problem in detail. From 
(3.14) V is set equal to

V- aj^Cx-^Xj + 2a12(x1,x2)x1x2 + 2a1^(x1)x1x3

+ a22(x2>x22 + 2a23(x2)x2x3 + a33x32

| dV/dt is found to he

,d¥
2dt

r / . 1 <)aii^xi^ 1
£11 ^1^ + 2X1 t) Xx J X1

[•
[■

+ I ai2 ^ X1 ^ ) X1 ^ xx

+ . )h2(x1’X2>
+ la12(Vx2> + *2

E*i3(xi> + X1 ^4~] :

[a22(x2> + H ^T5“]

If*

xlx3

x2x3 +

+ ^ .(x.) + x.23 2' --y^
al3^xl^xl(xl + cx2)^ - ha1^(x1)x1x^

- a^(x2)x2 (x-^ + cx2)3

ha2^(x2)x2x^ - a^^x^Cx-^ «■ cxg)*3 - a^^hx^



The starred terms above are of the same form, hut are not 

necessarily equal. Hence in substituting the a-^ j'(x^Xj)’s 

into dV/dt, an additional coefficient must be introduced. 

The double starred term above is assumed to be equal to 

b’lgCxpXg), and |d?/dt is ordered as a quadratic in X3.

d¥ o r .i'/idt * “ x3 [f31^ - a23^x2^J

' X3[a33Ul + *X2)3 + ba23^3)x3 + ba13(xl)xl

-- ai3(xi)x2 - 1>i2<xi>x2)x:i]

- a2^(xg)x2(x1 + exg)^ + a^Cx-j^JxjLCxj + CX2)^
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The formation of (x) is accomplished as before. The 

a^j(x^,Xj) terms are simply substituted for the a^j(x^,xj), 

but here it is also necessary to substitute ai2(xi»x2) 
for b12(xi> xs) • Tlle resulting jf^(x) is therefore

^ (x) • "* x3 1^33b ~ a23(x2)j

- x^ ^’(x-^ + cx2)^ + ba23(x2)x2 + bal3(x1)x1

“ a22(x2)x2 * al|(xl)x2" all^xl»x2>Xl|

- ag’CxgJxgCxj^ +ex2)3 + a13(x1)x1(x1 + cxg)3

- ai^(xi,x2)x22 - ai*(xi)xix2
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This may fee constrained to have the surfaces resulting 
from the equation j(x) *»; 0 coincide if the radical of the 

usual quadratic formula is made equal to zero. In this 

ease p and y are made zero. In t a term in results 

which cannot fee cancelled unless a-^^x^) is zero. Since 

one coefficient is always arbitrary, set ag^Cxg) « 1.

Then y * 0 results in

x2(xi + exg)-^ « a^gCx^jXgJxg2 + aix(xx)xix2

or

xX^ + ^ex^Xg + 3c2x^Xg2 +e^xg^» ai2^xl*x2^x2+all^xl^xl

If a.{(2.) »* x_2, then 11 1 1

a12(xl*x2> “ 3exi2 * + ©^Xg2

When these known coefficients are substituted into the 

equation p ■ 0,

3cxx^ + 3e2x12Xg + e^Xg^Xj + aggtxg^g »■

fexg + a^2xi^+ 3a33exi2x2 + 3a3^e2xixg2+ a^^e3xg3

If terms in like powers and like variables are equated, 

four equations result, as

3ex1^ » a^xx^ (3.20a)
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(3 .201j)

(3,20c)

(3.20d)

From (3.20d)j a„l(xg,) equals•'* a22s~2

However, if (3.20a) is solved for a^, the result, 

a33 ° does no^ satisfy the remaining equations. These 

are simply not equalities, although in each case it is seen 

that a^ should he of the form a^ * Kc, where K is a cons­

tant, Hence the fact that these terms do not cancel in 
<£<*) is overlooked, in hope that the terms will actually 

cancel when the form of Y determined from j£(x) is applied 

to |dY/dt. Thus the Y function with which the problem may 

he reworked is

Y « alxj.4 t a2xl3x2 + &3x12x2 + a4xlx23+ a5x24

4* -a

In this ease 0 and y can he forced t® 0, so that

' dV 
St

- 2x«a2(he - 1)
'3

and, with the coefficients evaluated,
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V ’ ** bx,,^ + + ex^

+ f(x^ + CXg)^

Vis positive definite and dY/dt negative semidefinite 

in smeh a manner that Theorem 2.2 applies. Thus the system 

is globally asymptotically stable.

3,4.2 Analysis of the Szego Method

As a consequence of this last example* it is dear 

that the success of the Szego method of generating Liapunov 

functions depends completely upon the similarity in form 

of the undetermined coefficients and of dV/dt and ^(x)„

It is true that the form determined for Y above was success­

ful in solving the problem in question, even though ^(x) 

could not be constrained as desired. However, in a problem 

picked at random the opposite might well be truej that is, 

it may be possible to constrain (x) as desired, but not 

dY/dt. Then, of course, no result would be obtained. Hence 

the Szego method, like the Ingwerson method, is not guar­

anteed to work*
On another point, the method of constraining j/'ix) or 

dV/dt is unnecessarily restrictive. The idea of forcing 

the two surfaces that result from the equation ^(x) *§ 

to coincide is conceptually appealing as it was described 

with reference to Fig. 3.3. Yet the meaning is not always



dear, as in the second-order example cited above. The two 

values of x<g were forced to be identical by letting a and £ 

be zero, where a and p are defined in (3.21). Xet if a is 

allowed to be zero, x2 becomes unbounded, as a also appears 

in the denominator of the quadratic formula. Thus the gra­

phical or pictorial significance is lost. Actually, as 

long as $ is forced to be zero, ©an take on any

value from 0 to 2 inclusive, and the resulting J4(x) is 

still at least negative semidefinite. This problem is 

worked as an illustrative example in the chapter to follow, 

and this point is discussed further.

The last adverse criticism of the Szego method is 

based upon an initial assumption of the problem statement, 

namely that the nonlinearity in question can be represented 

in polynomial form. This objection stems from the usual 

eomplaint that any power series of finite number of terms 

either goes to plus or minus infinity for large x. This 

behavior is not typical of the nonlinearities of physical 

systems, and it may very well be that it is impossible to 

prove global asymptotic stability for a system which is, in 

fact, globally asymptotically stable, simply because the 

assumption of the nonlinearity in polynomial form produces 

an unbounded output for large x.

In defense of the Szego method, it should be stressed 

that the method is easy to apply and often does give re­
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suits. Also, many nonlinear differential equations of 

classical interest do have a polynomial representation of 

the nonlinearity, such as the Van der Pol equation for 

example. In [3] and [4] Szego brackets the limit eycle 

of the Yan der Pol equation by forcing the equation 

(x) « 0 to represent a closed and bounded surface.

The reader is referred to the above references for fur­

ther treatment of this excellent example. Formally 

speaking, the mechanics of application are as described 

here.

The idea of assuming the unknown coefficients to be 

polynomials of the state variables is made use of in the 

following chapter.



CHAPTER IV

The Variable Gradient Method of Generating Liapunov

4*1 Introduction and Organization of the Chapter

This chapter is devoted to the development and appli­

cation of the variable gradient method of generating Lia­

punov functions. The method is mathematically sound and 

is characterized by its ability to handle systems contain­

ing multiple nonlinearities in which the nonlinearity is 

known as a definite function of the state variables, or 

simply as a general function of x. The method overcomes 

the theoretical and practical limitations of the two 

methods described in the previous sections.

Two main sections follow this brief introduction.

The first of these is devoted to the theoretical consider­

ations upon whieh the variable gradient method is based. 

This is followed by a detailed explanation as to how these 

theoretical considerations ean be implemented. Example 

problems are treated separately in the following chapter.

4.2 Theoretical Considerations

It is assumed here, as in the previous chapters, that 

the physical system under consideration is represented by 

(■2*3), under assumption (2.4).

Functions for Autonomous Systems

k ■ X(x) 

X(G) * 0

(2.3)

(2.4)



The following theorem is due to Massera [?2I, p, 2Qo] . 

A preferred form of the theorem is quoted from Kalman [13] 

for autonomous systems.

Theorem 4,1 [Kalman, 13, p. 397]]

If the system described hy (2.3) under assump­

tion (2,4) is Lipschitzian,* and if the equilibrium 

state, xe«.® is globally asymptotically stable, 

then there exists a Y(x) which is infinitely dif­

ferentiable with respect to x that is capable of 

proving global asymptotic stability.

The Lipsehitz condi tion implies continuity of X in x. 

Hence all physical systems that are globally asymptotically 

stable and whose nonlinearities satisfying the lipsehitz 

condition satisfy the conditions of Theorem 4.1. The 

theorem could be reworded to say that if a physical system 

with a continuous nonlinearity whose derivative exists and 

is bounded everywhere is globally asymptotically stable, 

then an infinitely differentiable V(x) exists which is 

capable of proving this type of stability via Liapunov's 

second method.

Theorem 2.2 requires that V(x) be continuous with con­

tinuous first partials. If the scalar V(x) has first par-

X(x) satisfies the Lipsehitz condition in a region 
H if tEe following condition is satisfied

X(t) - X(6) C K y - 8
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tials with respect to x, this is equivalent to saying that 

the gradient of V(x) exists. This VY is a unique n di­

mensional vector with n components VV* in the x^ direc­

tion, Thus if a physical system with continuous nonlineari­

ties is globally asymptotically stable, at least one VY 

exists which can be determined from a Y(x) capable of pro­

ving such stability.

Instead of assuming a knowledge of V, from which VY 

may be determined, assume that VY is known. It is shown 

in standard texts on vector calculus ^Lass, 22, pp, 297- 

3@l] that for a scalar function V to be obtained uniquely 

from a line integral of a vector function, VY, the follow­

ing (n - 1) m/2 equations must be satisfied.

Equations (4.1) are necessary and sufficient conditions 

that the sealar function Y be independent of the path of 

the line integration. In the three dimensional ease, the 

above equations are identical to those obtained from set­

ting the curl of a vector equal to zero. This form of 

Stokes theorem is familiar to electrical engineers from 

field theory. Equations (4.1) are thus an n dimensional 

representation of Stokes theorem, and these equations will

be referred to hereafter as curl equations.
A VY determined from a Y(x) capable of proving glo-

(4,1)
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bal asymptotic stability necessarily meets the conditions 

©f (4.1)* This is seen as follows. Theorem 4.1 guarantees 

that

b 2V(x) ^2V(x)
\ \ _ and \T .""V" >™.' (4.3)
c)xidxj d xi

exist and are continuous, as V is infinitely differentiable. 

A theorem from advanced calculus [Taylor, 23, p. 22©] states 

that if expressions (4.2) are continuous in the whole re­

gion, then, in the whole region.

b 2V(x) ^2V(s)

dH ~ c>xj c) xi

This is simply a restatement of (4.1). Hence a knowledge of 

either V(x) or VV uniquely defines the other. The conclu­

sion from the above is stated as a theorem.

Theorem 4.2

If the system described by (2.3) under assump­

tion (2.4) is Lipsehitzian, and if the equilibrium 

state, xg = 0, is globally asymptotically stable, 

then a VT exists, from which Y(x) may be obtained 

by line integration, and the V(x) so obtained is 

capable of establishing global asymptotic stability.

This is rather powerful existence theorem. If a gi­

ven system has nonlinearities that can be represented by 
continuous functions, and if that system is globally asymp-



totieally stable, then a gradient capable ©f establishing 

this stability exists.

Since the knowledge of either V or VV uniquely de­

termines the other, Theorem 2#2 may be restated in terms 

of the gradient function.

Theorem 4,3

If for the equations (2.3) under assumption

(2.4) there exists a real vector function V? with 

elements W^, such that 
() Wi JvVt

T*? " T*L

2. VV*- .X(x) ^ 0, but not identically

zero on a solution of (2*3) other than the origin 

and such that the scalar function V(x) formed by a

line integration of VV is continuous with conti­

nuous first partials, and

3

4

V(x) > © for x / 0

V(x) oo 0©

then (2*3) is globally asymptotically stable.

This theorem is not new in the sense that it is an

extension or a generalization of an existing theorem. 

However, in this restatement of Theorem 2.2, the role of 

the gradient function is emphasized.

If condition 4 above is not satisfied or if condition 

2 is not satisfied in the whole space, it is impossible to



conclude global asymptotic stability, and Theorem 2.3 may 

be used to prove stability in a smaller region. As im­

plied by Ingwer son a possible means of defining the

region exists if f is positive definite and

1. One of the surfaces, V = a constant, bounds 

the region.

2. The gradient of Y, VY, is not zero anywhere 

in the region except at the equilibrium 

position.

3. dY/dt is negative or zero inside the region.

Proof of the fact that the regional, can be defined 

in such a way is quite simple. If Y is positive definite, 

Y(@) = ©, and in a neighborhood of the origin, VY is 

such that every point, movement along the gradient is 

movement toward a higher value of Y, The requirement that 

all of the elements of VV not be zero except at the 

origin insures that V has no relative maximum between 0 

and the curve Y ** K which bounds the region. Since dY/dt 

is always negative or zero inside Y = K, solutions start­

ing within Y = K remain within _TL .

Notice that here again the gradient is important.

The following section is devoted to discussion of a method 

of generating Iiiapunov Y functions, starting with a va­

riable gradient.
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4*3 Implementation of Theorem 4*3

A comparison Of Theorems 2.2 and 4*3 clearly indicates 

a shift in emphasis. The problem of determining a V func­

tion which satisfies Liapunov’s theorem is transformed into 

the problem of finding a VY such that the n dimensional 

curl of this gradient is equal to sere, '®r, in other words,

(4.1) is satisfied. Further, the V and dV/dt determined 

from VY must be sufficient to prove stability, according 

to either theorem, as the theorems are equivalent. On the 

surface it may appear as though the problem is actually 

being made more difficult, although the opposite is true. 

The existence of the auxiliary curl equations is the device 

that enables a solution of the stability problem, starting 

with VY.

As the name “variable gradient^ implies, the task of 

implementing Theorem 4.3 is accomplished by the assumption 

of a vector, VV, with n undetermined components. In or­

der to make this vector general enough to embrace all 

possible solutions, each of the n undetermined components 

of the gradient is further assumed to be made up of n 

elements of the form x^. The a*s are assumed to be 

general functions of x or polynomials with an unspecified 

number of terms, such that VV is equal to



all X1 + a12 x2 + aln xn **1

a21 X1 + a22 X2 + fz

vv =\ •
•

>= <

.«

CLi X, ^ # • ... Xnl 1 nn n .

©

vv„n

(4.4)

The a’s are assumed to he made up of a constant portion a 

ijk, and a variable portion ijv. The variable portion is 

a function of the state variables, so that

°ij - “ij* + aijv (4*5)

and

allk+a,llv^—^ X1 + a12k+a12v^~ x2+• °' aink+alnv^-^ xn

VV
■<

a21k+a21v^ X1 + *'

anlk+ahlv^x^ X1 + * annk+annv<x> xn

(4.6)

Several interesting facts are apparent from an examination 

of the ith element of the gradient,

Wj[ " ailk+ailvCs) xl+* * * aiik+^±tv(£^ xi+> • * aink+ainv^x) xn

The solution of a given problem may require that Vf± eon- 

tain terms that have more than one state variable as 

factors. It is evident that such terms may be determined
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from terms such as ®ij(x)xx, such that aiiv(x) need only he

aiiV(Xi).

V is to he determined as a line integral of VY, ac­

cording to equation (3.10).

VV> dx
X1

VTX (t.j, © 0)dYx

line ' ©
/*

+ I y.^gC-s^, ^2* ® • • • 0)d*^+ • . .

VTn(x1* x2> £n-l< VdYn (3.10)

Note that the coefficients give rise to terms such as

aiik- - - - - -2 and
xi

aiiv(Yi)YidY±

Here it has heen assumed that has heen set equal to

®iiy(xi')* as mentioned above. For Y to be positive definite 

in the neighborhood of the origin, aXXjj. must he always 

positive. For V to represent a closed surface in the whole 

space, or for ¥ to he always positive, ®iiv(xi) must be an 

even function of xx and ® fcr large xx. Also, if 

aiik “ ®iiv^xi^ must be even and greater than zero for 

all xx»
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What has been said, above in regard to the a^’s has 

been said in view of requirements that have to be met by 

the resulting V function if Theorem 4,3 is to apply.

This line of thinking is pursued further in the following 

paragraphs.

Since the are allowed to be functions of the

state variables, it is expected that Y may well contain 

higher order terms in the state variables. Since this is 

the case, the question of the positive definiteness of the 

resulting Y becomes important*

The term positive definiteness is usually used in re­

ference to quadratic forms, although the concept does have 

meaning for a form of arbitrary order. Geometric means of 

insuring that a sealar function, as Y(x), represents a 

closed surface are discussed in the appendix. The geometric 

method used requires that one of the state variables in Y 

be raised to the second order, and no higher. This is ac­

complished by forcing one to be equal to a constant, 

and by forcing the remaining not to be functions of

Xi*
These restrictions were originally made so that dV/dt 

could be constrained by letting the solutions to the equa­

tion dY/dt = 0 coincide. As mentioned in Section 3.4.1, 

this technique is unnecessarily restrictive, as will be 

made clear in Example 5.1. However, the assumptions that
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one of the is a constant and that the remaining 

are not a function of x-^ do insure that the V. finally 

produced from VV will he a quadratic in x^, as is 

necessary for the geometric considerations of the Appendix.

In problems Involving automatic control systems, the 

xn term frequently appears linearly in the n first order 

equations that describe the motion of the system. For this 

reason, the assumptions of the previous paragraph are 

applied to the xn variable. Specifically, ,aMB is set equal 

to 2. This seemingly arbitrary choice of ann in the gra­

dient is equivalent to the assumption of an arbitrary 

constant* or scale factor, in V. The choice of a„n - 2 

insures that V will contain a term in xn2.

In view of the above discussion, VV is now

allk+allv(xl) xl+ ®12k+a12v(xl»x2>••*xn-l) x2 

.alnk+almv<xl»x2»••*xn-l> xn 

vT a21k+a21v^xl*x2> * * *xn-l^ X1 * a22k+a22v^x2^ x2 + ' * **>

xl> x2> • • • xn„i) xx + ... 2xjj

(4.7)

Through an examination of the requirements on V, the 

most general gradient of (4.§) has been somewhat simplified 

in form f© that of (4.7). Without loss in generality, the
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have been constrained to be functions of x-^ alone. 

With slight loss of generality, one of the here am)

has been set equal to ah arbitrary constant, and the aijy 

have been constrained to be a^jV(x-j_, x^, ... xn_-j_). This

has been accomplished in view of the future requirements 

of V. Further knowledge of the unknown coefficients in

VV is obtainable from an examination of the generalized 

curl equations, (4.1).

Consider the expanded form of equation (4.1),

cJvvi c>ailv(xl> x2> •• xn-l^xl
<)xj ' _ 1*} “

" Xjkx;|

+ . .

S-* ^Xji c)aijv^xl> x2> * * * xn-l^xj
Jx, IT•J - 3

^glny(xl? x2> xn-l^xn (4.8)

and

. §S 1.M—M .... ....——     ■■ 4* •••-*
d X± C7X±

^ a«iikxi b a jiv^xl» x2» ••• xn-l^xi
+ —T5———

^ainv^xl* x2* *** xn-«l^xn

c> xi
l *

lere-^~Aî1-— and 1t) X^ (J A j
i ikx if-4—a- result in constant terms. If

constant terms on either side of the equal sign are equated, 

it is seen that
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aijk “ ajik

Thus further knowledge of the variable gradient is pro­

vided, this time from the curl equations. A knowledge of 

the necessary values of the remaining unknowns in VT can 

toe acquired from a joint consideration of the generalized 

curl equations and dV/dt*

dY/dt is determined from the variable gradient toy 

means of equation (3.11), In order to satisfy either 

Theorem 2,2 or 4,3? dV/dt must necessarily toe constrained 

to toe at least negative semidefinite. In general, an 

attempt is made to make dV/dt negative semidefinite in as 

simple a way as possible* This is accomplished if

- - K x±2 (K > 0) (4.9)

where K is initially assumed to toe a constant. If dT/dt is 

constrained as in (4.9), the remaining terras in dV/dt must 

toe forced to cancel. This is accomplished toy grouping terms 

of similar state variables and choosing the s to force 

cancellation. The o^j's are assumed constants, unless can­

cellation or the generalized curl equations require a more 

complicated form.

Grouping of terms is guided toy the restrictions on the 

a^-’s stated above. For example, if in a third order 

system, dT/dt contains the terms «uxlx2» ai2x22 and - xix2s 

the indefinite term, - eould not toe grouped with



allxlx2» as ali can only /be a function of x^. However* if 
- XjXg3 were grouped with &i2x2^s> ^ could be eliminated by 

letting a12 = x^x^.

The choice of the to force cancellation is not

arbitrary* as the generalized curl equations must be satis­

fied. In faet* if one coefficient is chosen through neces­

sity to eliminate undesirable terms in dY/dt* information

concerning the required value of one or more of the unknown

coefficients is often supplied directly from the generalized

curl equations. Thus dV/dt is constrained to be at least 

negative semidefinite in conjunction with and subject to the 

requirements of the generalized curl equations* (4.1).

If it proves to be impossible to constrain dY/dt as in

(4.8)* it is necessary to attempt to constrain dY/dt to be 

negative semidefinite in terms of two state variables* then 

three* etc,* until the final attempt is made to force dY/dt 

to be negative definite. If no solution is yet available* 

it may be necessary to revert to the more general gradient 

function of (4.5)* or an attempt at a proof ©f instability 

may be in order. In problems that have been treated to 

date* these latter alternatives have not been necessary.

In summary of what has been said in this section* the 

following outline for the formal application of the variable 

gradient method is included.

1. Assume a gradient of the form (4.6).



2. From the variable gradient, form dV/dt, as 

|| » VV‘ x, (3.11).

3. In conjunction with and subject to the require­

ments of the generalized curl equations, (4.1), 

constrain dV/dt to be at least negative semi- 

definite.

4. From the known gradient, determineV and the 

region of closedness of V.

5. Invoke the necessary theorem to establish 

stability.

This procedure is illustrated with examples in the 

chapter to follow.

4.4 Discussion of the Tarlable Gradient Method of Genera­

ting Liapunov Functions for Autonomous Systems

This chapter has discussed the theoretical considera­

tions upon which the variable gradient approach is based. 

Whether or not the method as outlined is applicable to prob­

lems of interest in automatic control remains to be shown in 

the following chapter of illustrative examples.

It has been shown here that for all globally asympto­

tically stable systems whose nonlinearities satisfy the Lip- 

schetz condition, a vector^ 7Y, exists from whieh a scalar 

V may be determined uniquely by line integration. This 

scalar V function is capable of proving such stability via



the second method of Liapunov, This conclusion is stated 

as an existence theorem, Theorem 4,2.

Existence theorems are reassuring, hut rarely helpful 

in solving engineering problems. To say a solution exists 

does not necessarily imply that it can he fount. However, 

in order to emphasize the possible role of the variable 

gradient in solving the stability problem, Theorem 2.2 is 

restated as Theorem 4.3. Here it is emphasized that the 

gradient enjoys a somewhat unique position, in that both Y 

and dY/dt may be determined directly from VY. Further­

more, if V is to be unique, the generalized curl equations

(4.1) must be satisfied. Thus, through the introduction 

of the variable gradient, (n-l)n/2 additional equations are 

also introduced. It is the existence and use of these curl 

equations that facilitates the search for a suitable Y and 

dV/dt to satisfy Liapunov’s theorems.

Initially a gradient function of sufficient generality

to embrace all solutions was assumed. However, in view of

the future requirements on Y, the generality of the gradient

was decreased to insure that the resulting Y is a quadratic

in one of the state variables. Obviotisly this excludes the
4 4generation of Y functions such as Y = Xq + x*> , which might 

well be a suitable solution- to a particular problem.

It is difficult .to assess exactly how much generality 

has been lost, particularly in view of the fact that often



an infinite number of V functions exist which are capable 

of proving stability ia any given case'*; For the types of 

problems treated in the following chapter, the assumption 

is apparently not a prohibitive one. For other classes of 

problems, perhaps different initial assumptions concerning 

the variable gradient may be in order. However, it is felt 

that the existence of the curl equations and the ability 

to determine both V and dv/dt directly from the gradient 

are significant advantages in attempting to find a suit­

able Liapunov function.
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CHAPTER V

Examples Using the Variable Gradient Method

5*1 Introduction and Organization of the Chapter

The variable gradient approach outlined in the previous 

chapter is a method for generating Liapunov functions. The 

ultimate criteria of any method of obtaining problem solu­

tions is not the elegance ©r generality of the formulation, 

but rather the applicability of the technique to the class 

of problems under consideration. This chapter includes ex­

amples of increasing complexity to illustrate both the use 

of the method and the results that are obtainable.

The first four examples serve to illustrate the mecha­

nics of the method and the types of V functions which have 

been generated.

Example 5.1 is a simple illustrative problem. Example

5.2 considers the Ingwerson third order example that has 

been discussed in connection with the methods of Ingwerson 

and Szego. The V functions generated in each of these first 

two cases includes higher order terms in the state variables 

The ease with which integrals appear in the generated V fune 

tion is illustrated in Example 5.3, and a V function whieh 

includes three state variables as factors is produced in 

Example 5.4,

The remaining examples illustrate the results that are 

available from the application of the variable gradient



method to several of the more interesting types of problems. 

Example 5,5 considers two systems, each of which has more 

than one singularity. A system with a limit cycle is dis­

cussed in Example 5*6. The last example is a rather exten­

sive discussion of the se-ealled "generalized Routh-Hurwitz 

conditions" for nonlinear systems.

5,2 Examples

Example 5*1

Assume the system is given by the block diagram 

of Fig. 5.1, such that the equations of motion written in 

state variable form become, with x^= x

*1 = x2

Step 1

VV «
(allXl * a12x2

t a21xl + 2x2

Step 2

d¥
df VV*x

" xlx2<all * a21 " 2xlS> + x22^W2) ~ a21A1
4

Step 3

If the given system is stable, there are a large
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Pig. 5.1. Block Diagram of the Control System 
of Example 5.1



- 76 -

or even infinite, number of Y functions, with a correspond­

ing number of dY/dt's, which will show the system to he 

Stable* In faet, it is the existence of this large number 

of suitable Liapunov functions as opposed to the one unique 

solution of the initial nonlinear differential equation 

that gives the Liapunov method an advantage over classical 

methods in the determination of stability.

Here there are a large number of ways in which dV/dt 

might be constrained in order to prove stability. However, 

in order to be able to conclude anything about stability, 

dV/dt must be at least negative semidefinite, In Example 

5.1, this can be accomplished by setting the coefficient of 

x^Xg equal to zero and by assuring that Xg2 and x-j4 have 

zero or negative coefficients. The latter can be accom­

plished if is any positive number from 0 to 2, and if 

<*21 is any positive number whatever. This is less restric­

tive than forcing the solutions of the equation dV/dt * 0

to coincide, as discussed in Section 3.3. Hence, is 

assumed to be a constant between 0 and 2, and since it is 

constant, «g1 » a^g. With the coefficient of x^Xg set equal 

to zero, dV/dt becomes

dY
a?

2/« \ 4- Xg (2 - <z12) - ^12^i

The requirement that the coefficient of XjXg be zero is sa­

tisfied if
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all “ a12 + 2xl

Therefore, with these substitutions, Vf becomes

VY ■

al2Xl + 2xl + *12X2'

a12xl + 2x2
f 0 ^ ^ ^

Step 4

Y is determined from (3.10) to be the line in­

tegral
x xi /x2

f s [ VY‘dx = / (ai2?l + +f (®12X1 + 2l2^dT2

Jo o
4 C£*ti oX-A 12 1 . , „ 2 

+ 2 + ai2xix2 + X2 * 0 ^ ^ 2

Step 5

Here V is positive definite and lim V oo as

the x —oo , such that V represents a closed surface in 

the whole space. Since dY/dt is also at least negative 

semidefinite in the whole space, by either Theorem 2.2 or

4.3, the system of Fig. 5.1 is globally asymptotically 

stable.

Example 5,2

This is the third-order example of Ingwerson, the 

block diagram of which is given in Fig. 3,2. Ingwerson was 

unable to obtain a solution to this problem when dY/dt was
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constrained t® be a function of x^, and the solution 

achieved by Szego was achieved only through a rather spe­

cial set of fortunate circumstances, as shown in Section 3 

3.2. The equations of motion are repeated here for con­

venience.

X1 * x2
Xg x3

s - (x-j^ + cxg)^ - bx,3 “ '*^1 • UA2/ -

From (4*6), the gradient is written as

VV *

allxl * a12x2 + al3X

°21*1 + a22x2 + a23x

a31xl * a32x2 + 2x3

From (3,11), dV/dt in ordered form becomes

S - xlx2<all - a32xl2 - 3a31cxl2>

+ x22(012*3a3aexl2'3“32<?2xlx2-3“31eS*-a31c3xlx2-a32c3x22>

* xlx3<a21 ■ ba31 - 2Xj2 - SoXjXg - «c2Xg2)

+ X2X3(a22 * al3 - a32 b - 2o3x22>

+ X3a(°23 « X. 4

Since the solution is being attempted in terms of x3 , 

is set equal to zero to eliminate the x-j4 term, and thus 

al3 is also zero. If a^g is set equal to zero in order to
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t© be zero, and this is not possible. Hence, a^g is left 

undetermined for the moment. Note the two underlined terms 

aboye. When removed from the parentheses in which they 

are now enclosed, these terms contain the three state 

variables as factors. One might at first wonder exactly 

how these terms should be grouped, whether they should be 

with the x-^Xg terms, the XgX^ terms, or with the x^x^ terms 

as they are now located. Under the restrictions placed on 

the a1.S’by equation (4.7), only the present location is 

allowed.

For terms in x^x^ to vanish, a21 must be equal to

and
2

®11 “ a32xl

Thus far, VY has been determined to be

l \

Vf ®(2x13 + 6ex12Xg + §e2x1x22 *

a _x^ + 2x
'3 /

and has been found to be
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dV 2, 2cTC * x2 (“12 * 3“32exl

^ 2/+ x. (<x_„ 3 ' 23

2 1? 2n>e xixp “ a32® x2 ^-32v 12

By means of the curl equation relating VT| and VVg, 

the coefficient a-^ nay be determined. In solving for this 

coefficient, information regarding is automatically ob­

tained , First, both sides of the equation

3vvx }vv2
3 X1

are determined to be

c)vyx
m x

3 VV2
3 x1

o c)a32V
1 3 x2

2

+ a12K + a12V + x,
<)a

12V

2 2 
t2

2 <3 x2

Ja
6X1 + 12cx-,x0 + 6c x0 + bx2 + x3 ~^~x~

32V
1

<) a,23V
“3.

If terms in equal powers are equated, the first result is

d>a23 V
x3 = 1

A possible combination of terms is

C> xi

X,
3 a32V c) a
3 x2 “ bx2 ~~5

This equation has the solution « 0 or a^2V = x14-2bx2'5

If the simplest solution is chosen, a^gy « © and

*23 - a. a32K + ®

Two equations remain, namely



81

4 a
a12V + X2

a12K

12Y = Sx-^2 + lBex^Xg + 6e2Xg2

Thus the form ©f a^g is known immediately as

,2V 2tt-^g = 0 + ®]_2V ** ^2 cxlx2 ^ ^ ® Xg

Simple manipulations with the two equations above determine 

that

a12Y * 6xl2 + ®cxlx2 + 2®2x22 

The only remaining coefficient to be determined is 

a23K * a32E* 5116 re<lu^red value is obtained if a^Y ^ove

is substituted into dV/dt.

dY 
dt ® Xg (dx-^ + dcx^Xg + 2e x.2__ 2 l32K cxl2 "3a32K°2xIx2" a32K°3x32^

+ X32(a23K

By equating terms of equal powers, a^gg is soon determined 

to be 2/e. Now dV/dt is completely known, as is 7V,

dY
cTE

2x<
- (be - 1)

and
2/c x^ + 6x^Xg + 6cx^Xg^ + 2e^Xg^

VY ■ / 2x^3 + Bcx^Xg + 6c2x1Xg2+ 2b/c Xg + 2c^Xg^+ 2/c x^

x2 + 2x3
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dV/dt has been constrained to he negative semidefinite and 

the generalized curl equations are satisfied for VV; in 

fact, they are the means by which VV is determined. All 

that remains to be done is to determine V and the region 

for which V represents a closed surface. From (3.12), V 

is found to be

V cTl ^+6cx^2t2+6c2x^y22+?v2c3v )dy.

X-a
(| x2 + 2r3)dr3

After grouping terms, Vis

v. " c x22 + § X2X3 + x3^ + Zq Ui + cx2>4 

The fractions in both V and dV/dt may be removed by multi­

plying each by the constant c. As a final result

eV = V* = bx22 + 2x2x3 + cx32 + Kxx + cx2)4

cdV/dt = dV/dt* = - 2x32(be - 1)

dV/dt is negative semidefinite and not equal to zero 

on a solution of the system if (be - 1) > 0, and Vis

positive definite under the same conditions. V also satis­

fies the limiting Condition as the norm of x goes to in­



finity, and hence V represents a closed surface in the 

whole space. According to Theorem 4.3, the given system 

is globally asymptotically stable if both b and c are 

positive and if (be - 1) > 0.

The solution to this problem is lengthy perhaps, but 

nowhere was the procedure vague or difficult. In the eva­

luation of ©12, it might have been assumed that *32 waS a 

constant. Or this fact might have been guessed as in W2 

the coefficient of x2 was ba^2, and another term in x2- 

already exists. This would have reduced the length of the 

solution, but in no way would have changed the results.

Example 5.3

The two previous examples considered systems in 

which the nonlinearity was expressed as a polynomial in x, 

and the resulting V functions contained higher order terms 

in x, as opposed to the usual quadratic form for V. This 

example differs from the first two in that the nonlinearity 

is not known as a definite function of x, and further, the 

linear portion of the system contains a zero located at an 

arbitrary point P.

The problem of example three is illustrated by the 

block diagram of Pig. 5.2. In this synthesis problem it 

is desired to know the restrictions on the nonlinearity and 

on p for which the system will be globally asymptotically 

stable. The problem is considered significant because of



Kt^Q. XV- y-f(x) Y S <
t> 0 -1

J

y=xg(x) s(s+i)

Fig, 5,2. Bloek Diagram of the Control System
of Example 5.3
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the integrals that appear naturally in the Liapunov func­

tion which is generated.

For x^ » x, the equations of motion are

- ^->2

*2 “ ” Xg * M[ x2 ~ 0g(*x)xi

As before, let

I allxl + a12x2

VV = /
I a21xl + 2x2

so that

3T = *1*2 [“11 ' “21 * “21 - 2Sg(xi>]

- *33 [2 + z£i[ - “12] -■ 02x.<l*(xi? *i3

If the coefficient of the x^g term is forced to vanish,

■v.

all 88 ft21 + a21 £xj[ + 2^g(xi)

and

I a21xl + a21 X1 * 2Ps(xl)xl + a12x2

VV « <
V a21xl + 2x2

The optimum choice of a^g - a2\f a oonstant, is best seen 

from a joint examination of V and dV/di. As before, from 

(3.10), V is
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dV/dt has not changed. It is seen from dT/dt that if a^2 

is 0, then dy/dx, the slope of the nonlinearity, may take

changes its sign. Hence it might he decided to let a12 

he just that. However, if this is done, V becomes

V is positive definite if the integral is always 

positive, and V represents a closed surface in the whole 

plane if the integral goes to infinity as the upper limit 

goes to infinity, fo remove this latter restriction on 

closedness, a12 might he chosen as the arbitrarily small 

number £. Then the allowable minimum slope of the non­

linearity, as determined in dT/dt, is not changed signi­

ficantly, yet Y is closed in the whole space independent 

of the integrals, as long as they are positive. Since the 

nonlinearity was specified as y = xg(x), g(x) is always 

positive if the nonlinearity lies in the first and third 

quadrant, and, under these conditions, the integral in­

volving g(x^) is always positive.

The final form of T and dT/dt is then

o
on a maximum negative slope of unity before the x2 term

*1
V - x2Z + 20 gCt-L^dr-L
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X1 xi

V “ f xl2+^xlx2+x22+Yjdyi+2$f sXYjJt^^

/© /©

a? *■- 3x32(1 + ^ " I5 ' £0*.<*i>*ia

It is seen that as long as 3 is positive, or the zer© 

is in the LHP, the value of 3 is not important. As men­

tioned, the problem is included as an example to illustrate 

the ease with which integrals are introduced into V without 

having to guess their existence beforehand.

Example 5,4

Example 5.4 is artificial in the sense that the 

block diagram. Fig. 5.3, which corresponds t© the dynamic 

equations of motion of the system, contains five loops 

and is not a system that might be expected to be encoun­

tered in practice. However, the system does contain more 

than one nonlinear element, and it is particularly in­

teresting because the linearized first approximation of 

the system, as determined by dropping all higher order 

terms, has poles on the joa axis of the s plane. Henee, 

the linearized first approximation of the system yields 

no information concerning the stability of the aetual non­

linear system. It is shown in this example that the exact 

nonlinear system is asymptotically stable in the entire 

state space; that is, it is globally asymptotically 

stable.



Square

Square

ilg* 5,3, Block Diagram of the Control System 
of Example 5,4
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The problem is interesting from another point of

view. The V function that proves asymptotic stability
2

contains a term 6x1 x^x^. However, the presence of 3 

state variables as factors does not alter the procedure 

that has been previously established. The problem is 

solved in exactly the same way.

The equations of motion corresponding to the system 

in Fig. 5.3 are

e

X2 - x3

X3 J “ 3xx x3 - 2xg - dxjxg 3

Here the large number of negative terms in dV/dt is

reduced by allowing one of the m3j*s to be zero. In this

case is set equal to zero, and as the ultimate ob-
2jeetive, dT/dt is constrained to be a function of Xg .

o oTherefore, the negative term in x^ is cancelled by set
2ting ©23 equal to 6x^ , and one curl equation is used to

2determine that &3g ^-s eTso 6x-^ * A second of the curl 

equations determines that a^3 is 12x-^Xg, and with these 

substitutions, dV/dt is found to be

.dV
dt

* “'G*!4) + x2^(al£ ~ 36x13x2>

2 2- 12x^ Xg + XgX3(a22 - 4)

* XlX3(a21 - 2xl2 - 18xi3x2)
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Terms in XjXg, XgX^ x^x^ can toe eliminated toy setting

' „ 4
aii “ 6xi

“23 = 4

®21 2xl2 +18*13*8.

The term in can toe forced to vanish toy causing a^g
3to equal 36x^ x«j, Hence the attempt here has been to force 

to toe

dV _ _ lz 2 2
I? 14X1 X2

toy using the gradient function

6x_ ® + 36x_ 3Xo2 + 12x- x0x, 
1 1 * 1 & ;

V Y 2x, 3 + 18x,4x„ + 4x ' + 6x
1 2

6xl x2 + 2x3

1 3

That this is not a satisfactory gradient function can he 

seen toy applying the remaining curl equation

1

> i)vv2
dx2 c)xl
ivvx
■3^"‘ 72x1^x2

^vv3 ■„ 2 . [13*2
Ll-3

These are not equal, and it is seen that a^.g must contain
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more than one term, as did ®ie secon<^ term is de-
2

termined from the equation directly above as 6x^ . Hence,

the final value of VV is

5
6xl +

% 2
1*2 + 6xl x2 + ■l2xix2x3

V? 2x^ + 18x^^Xg + 4x2 + 6x12x^

26x1 x2 + 2x^

From the VV, and V are determined in the same man­

ner as before,

S' % 4 2 2 2 2*
V =*:Xj. tZx^Xg+Qx^ Xg +2Xg +6XJ, XgX^+x^

dV
m

2 2- ®X]L x2

Using geometric considerations, (see Appendix) it is 

possible to show that Y satisfies the conditions of 

Theorem 2.2. dT/dt is negative semidefinite, and the sys 

tem is globally asymptotically stable.

: Example 5.5 ^

The block diagram of Fig. 5.4 pictures a non- 

minimum phase control system whose dynamic equations of 

motion are, with K = 0, 6 ® 1, y = •* 1 and 3 = 2.

X1 * x2

- - *2 + 2xl - Xl3

The configuration of the given system is such that the des
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t»o -

Fig, 5.4. Block Diagram of the Control System
of Example 5.5
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cribing equations above contain singularities not only at 

the origin, but at - \/~i, and the linearized first appro­

ximation indicates that the solution is unstable in the 

neighborhood of the origin. This information need not be 

known in advance, as it is included in the rather interest 

ing solution of this problem. With 7V as in (4.7), dV/dt 

is found to be

S = " a21 * 4 ** 2xi2)

+ x22(a12 - 2) + 2aZJx12 - a21xl4

If an attempt is made to constrain dV/dt in terms of 

x^ no choice of a21 is possible, such that dV/dt will be 

at least semidefinite in the whole plane. However, if 

a is allowed to be 0, and

cufcn 2x^ - 4

then

and

dV 0 
S? 88 “ 2xS

2x^ - 4x^
VV

2xr

By integrating in the usual manner, the resulting V is

4xl 2 2- 4- - 2xj/ + x2T
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For very small values of x^, the fourth-power term 

above is negligible compared to the second-power term, and 

may be negleeted, The remaining quadratic form is not a 

definite function, and hence does not represent a family 

of closed curves about the origin, no matter how small the 

neighborhood. Geometric considerations, however, indicate 

that the curve is indeed closed, though not around the 

origin, and a family of these V curves is plotted in Fig, 

5.5. The curve V * 0 bounds the region J~L. ©f Theorem 2.3. 

Since dV/dt is negative in the whole plane, any solution 

starting within the curve V = 0 will proceed to the en­

closed singularity as time runs to infinity. It is im­

possible to say whether a solution starting outside of the 

curve V = 0 will terminate at the singularity located at 

+ /i" or -\Ti . It will definitely not terminate at the 

origin, since the equations of first approximation deter­

mine the origin to be unstable.

Thus for the choice of constants that was initially 

made, a complete analysis of the system requires an evalua­

tion including negative values of V.

If the constants in Fig. 5.4 are chosen so that K * 1, 

6 = ■ 1, t a 1, P a 2, the equations of motion of the sys­

tem are



V= 1,0

Fig. 5.5. V Curves of Example 5.5
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*1 * x2

Xg « - 3(x12 + l)x2 - 2x1 + xx3

This time the origin is stable and the two nodes at ±y/i~ 

are unstable, An analysis almost identical to that above 

results in a V and dV/dt of

8xi3 -

S - - * i)
Again the plot of Y thus determined is quite unusual. For 

all values of V from Y = 0 to V « 2, the equations actually 

represent three disconnected curves, as may be seen from 

Fig. 5*6. In this case the region -TL of Theorem 2.3 is 
bounded by the curve V = 2 for |xl| < ^ All trajecto­

ries that enter this region approach the origin at 

t —. Several typical trajectories, as determined by 

the isocline method, are superimposed on the plot of the 

Y curves in Fig. 5.6* The behavior of these trajectories 

agrees with the interpretation that results from viewing 

the Y curves alone.

The application of Liapunov's second method to 

seeond-order systems with limit cycles has been considered 

in papers by Szego [d], Ingwerson [2], LaSalle [l5~j, and in
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Fig. 5.6, V Curves and Trajectories of the Alternate 
° Example of Example 5,5
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the recent "book "by [Graham and McRuer 24]. The first tw© 

authors make use of the phase variables, which have been 

used exclusively in this report thus far, while the re­

maining aiithors use a more general state variable, The 

application of the variable gradient method is independent 

of the coordinate system, as is demonstrated in this ex­

ample of the Lewis servomechanism [Graham, 24, p. 360] in 

which the solution is obtained in both coordinate systems, 

A possible block diagram of the Lewis servomechanism 

is given in Fig, 5,7, and the equation governing the dyna­

mics of the system is

*x* + 2 j" (1 - a|x])x + x * 0

As Graham points out, this is a special case of the Lienard 

equation

X + f(x)x + g(x) » ©

for which La Salle [l5, p, 23J has recommended the change 

in variable . v

y = x +/ f(x) dx

' o

With this substitution, 

motion become■

x ** y

the tw© first-order equations of

f(x) dx

7 " “ g(x)
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Function Box

Fig. 5.7. Block Diagram of-the Control System
of Example 5.6



Here the variable y is no longer the velocity, but the 

velocity plus an integral involving the nonlinearity.

Hence the x, y plane no longer represents the phase plane. 

For the specific problem under consideration, the two 

first-order equations are

y« - x

Here the equations are normalized with 2^ *= a - 1,0. From 

the variable gradient, dY/dt is found to be

dY V o % 2/d¥ * xy<all ” 2 " a12> * x <all + a21>
' 2 

2 a12x f + aUT+ *12 t2 + ^r;
If dY/dt is to be negative semidefinite in any region, alg

must be set equal to zero. With al2 » 0, a21 ■ 0, and if 
a^^is 2, dY/dt becomes

dV
m

x2(2 - x)

VY is simply

VV
2x

2y

and Y is found by line integration to be

r - Xs + y2

T is the equation of a cirele in the x, y plane, and the
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given physical system is asymptotically stable within the 

radius 2 of a circle in the x, y plane. Any limit cycle

must lie outside of this circle.

A similar solution is obtained through the use of 

phase coordinates which, with x-^ equal to x, describe the 

system as

X1 “ x2

x2 m - x2 + xx Xg - xx

Proceeding as above from the variable gradient, dV/dt is

dV ,•tt ■- xx (.a, _ - a__ + a0. dt i 2 11 21 21

+ x2 ^a12 “ 2 + 2

xj - 2)

) -

A decision to constrain dV/dt to be negative semidefinite

in terms of Xg results in a dV/dt whieh is negative only

within the range - 1 < x^ < 1, an answer that agrees with

the results obtained from the application of Bendixson’s

first theorem [Graham, 24, p. 35oJ<. A better solution is
2obtained if dV/dt is constrained in terms of x^ . Toward 

this end, a^2 is set equal to

2-2a12

The application of the only curl equation that applies in 

this second order case determines that a2^ is

a21 “ 2 X1
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With these substitutions, the x^Xg term in dV/dt is can­

celled by allowing <x-q to be

2 '*U = 4-3 |X]L

and thus dV/dt is constrained to be

2

+ Xi

dY
dt - *r (2 - X1 *

The coefficients in the gradient whose values were initially 

unknown have now been determined, and the gradient is

4xl - 3NV * * * * X1 + V * 8i2 - 2K|-3
VT

2xl ' |'**| *i + 2x2

V is determined from the usual line integration to be

y - aXl2 - Sl3 + -L. + 2xix2 -
*1*2 + Xc

V is a closed curve within the range for which dV/dt is

negative semidefinite. This eurve, V = 4, is identical

with that obtained using the coordinates recommended by

LaSalle, if the indicated change of variables is made. The

results are indicated in Fig. §.8, which was taken directly 

from Graham and MeRuer [24, p. 351]. It is seen that the 

curve T = 4 closely resembles the limit cycle, while the 

conclusion based on Bendixson’s theorem indicates that no 

limit cycle exists between Xj. 1. This latter conclu­

sion, while true, gives little information.
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Stability boundary 
** (Bendixson)

Unstable _ 
limit cycle

Stability boundary 
(Liapounoff)

3

Pig. 5.8. Estimates of the Region of Stability Given 
by Bendixson’s First Theorem and by the 

Seeond Method of Liapounoff (Prom 
[24, p. 351] )



In some cases, as, for example, in the van der Pol 

equation, it is possible to find a surface over which 

dY/dt is zero. In such cases the limit eyele can be 

bracketed by V curves tangent inside and outside to the 

d¥/dt = 0 curve jszego, 4],

Example 5.7

The last of the examples to be included in this 

section on autonomous systems is the so-called "Aizerman 

problem." Simply stated, the problem is to determine a 

"generalized Hurwitz" criteria for nth order nonlinear 

systems of the fora

xn + an(x)xli*’1 + an»i(x)x11**2 + . . . a1(x)x « 0

where the coefficients are not constants but functions of 

the state variables. This problem has been considered by 
Aizerman [25] and by Hahn [26], and solutions to different 

phases of the problem have been contributed by Ingwerson 
[2], LaSalle [l§] , and Barba^ain[ll] , The discussion here 

is restricted to second and third order systems.

Consider the rather general second order nonlinear 

differential equation

- 104 -

x + A(x, x)x + B(x)x '» 0

In terms of the phase variables, the given second-. 

order equation is equivalent to the following two, first- 

order equations
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X1 = x2

x2 = ~ A(xls x2)x2 - B(xi)x1

Starting from the variable gradient, (4.7), dV/dt is de­

termined to he

S “ xlx2 [all “ a21 A(xiJxa) " 2B(xi)]

+ *2 [a12 - A<x1»x2)] ‘ a21B(xl)xl‘

The most general result is achieved when a-^2 ^ a2]_ = 0, 

and if the x-j>x2 term is caused to vanish, dV/dt becomes

2

31 = - 2A(X1=X2)X2S

and W is

2B(x2)x^
VT

2x5

V is once again determined by a line integration, and the 

result is
X1

/ 2T - 2 / B(T1)Y1dT1 + x2

/©

and

s " 2A(x1,x2)x2

If the coefficients A(x1,x2) and were constants,

the Routh-lurwitz condition for stability of the given dif­
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ferential elation would be that the two coefficients he 

positive. If the two coefficients, now a function ©f x, 

are positive for all x, the Y and dV/dt determined above 

are positive definite and negative semidefinite respectively 

Thus the system described by the given differential equation 

is asymptotically stable in a region about the ©rigip. If 

the integral in Y goes to infinity as the norm of x goes to 

infinity, then Y represents a closed surface in the whole 

space, and the system is globally asymptotically stable.

In a sense, the condition imposed on the integral is 

an additional requirement to the usual Routh-Murwitz con­

dition that the coefficients be positive. In another 

sense, it may appear less restrictive, as here BCx-^ 

seemingly need not be always positive, as long as the in­

tegral is positive for all xx. The system of Pig. 5.9 is 

such a system. The differential equation describing the 

system is

• • * , o Y4x + x + x(l - xa + -£—) = 04.5'

Here ACx-^x^) is simply unity and BCx-^ is

B(*i) =1 - x* ♦ ^

A plot of B(xx) is pictured in Pig. 5.10, and in the range
from 1.24 to \J~3S BCx^) is actually negative. However, the 

integral
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Fig. 5.9. A Nonlinear System Which Apparently 
Violates the So-Called "Generalized Hnr- 

witz Criteria"



4.5

2.0 X

Fig* 5*10* Graph of the Nonlinearity 
of Fig* 5.9
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®(‘ir1)TldY1

is positive for all x-^, 

Being .25 at ®

the least value of the integral 

Here T is always greater than zero

oo .for x / 0, and T also goes to infinity as 

Under the assumption that A(x^, Xg) is always greater than 

zero, dV/dt is negative semidefinite. The conditions of

Theorem 2.2 are apparently satisfied, and one is tempted 

to conclude global asymptotic stability. If this were 

true, the usual Routh-Hurwitz conditions that A and B be 

greater than zero would be violated. In this case global 

asymptotic stability may not be concluded, as the given 

equation has four additional singularities in addition to 

the equilibrium point at the origin. Theorem 2.2 does not 

apply. In general, if B(x]_) ever becomes negative, the 

system will have more than one stable or unstable equili­

brium point.

For the third order linear system of the form

*1 = x2
♦

x2 “ x3

x-j = - Ax^ - Bxg - Ux^

the Routh-Hurwitz criteria requires that for stability, 

AB - C > 0* If the coefficients A, B, and C are not



constants, tout are functions of the state variables, the 

question arises, as in the second-order case, if the 

Routh-Hurwitz conditions are satisfied for all x, is the 

system stable?

This question has been considered by several inves­

tigators, and the following information pertaining to 

their results is presented on the following pages.

1. The block diagram of the system.

2. The differential equation of the system.

3. The V function which proved the system asympto­

tically stable.

4. The dV/dt determined from the given Liapunov 

function V.

5. The reference.

In eaeh of the eases cited on tkese pages, the re­

sults were presented toy the various authors with only 

slight justification for the assumptions made in forming 

the Liapunov function, V. Through the use of the variable 

gradient, it becomes evident why it is possible to obtain 

the results above, and further, how these results may be 

extended.

The basis of the discussion to follow is the general 

derivative as determined from the variable gradient for 

the third order system above. In this general derivative, 

the coefficients of the differential equation are written
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1. Block Diagram of the Ingwerson System

■ 2 * Differential Equation, with x-^ = x

Xt =1 “ *2

x2 = x3
x<g = - Ax^ - Bxg -* C(x^)x^

B2 2
3* V = A / CCy-j^)!! dyx+ -g* Xx +

'o

+ 2—i~2 x22 + Bx-^x^ + AxgX^ + x^2

4* dY/dt = - BC(x1)x12 + 2C(x1)x1x3 + Ax^2

5, Reference, Ingwerson, 1 , 2

Fig, 5,11. The Ingwerson Example



- 112 -

Block: diagram of the Barbashin System 
Differential Equation

X1 " ■ s2
±2 ». X3

X^ ~ " Ax 2 ~ B(x2)xg *• 0(xx}xx

■ :*i
3. V = 2aV ,C<T1)Yx dYx + 'ScUjJxjXj- + [a2 + B(xs)] x2Z

) ■ 0

+ 2A XgX^ + x^
-1 ^)0(x )

- C(Xl)J + SXl4, cLV/df- - 2x2
5. Reference, [Kalman, 13, p,

Big. 5.12. The Example of Barbashin
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Function
Box

s

s
1. Block Diagram of the Example of La Salle 
2» Differential Equation

X1 = x2

■ = X3 '
Xj 55 - A(3Cs>2C^ - Bx2— Cx-j^

o 2 2C
V = -5- + 2Cx^X2 + Bx*> + "5“ X2X3

Xo
2 2C /+ x3 + ~F /

Xo
A(T2)T3aTf2

4. 4T/4t =
- 2x,____ J

■ B
A.(xg) B - c]

5. Reference La Salle 15

Jig.. 5.13. The Example of La Salle
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as though they are constants. In the discussion to follow, 

one or more of these coefficients will he allowed, to he 

functions of the state variables.

The general dV/dt is

“ xlx2^all ~ Ba3l “ Ca32^

+ x2x3(a13 + a22 - A®32 - 2B)

+ xlx3(a21 “ Aa3l - 2C)

- ®a^ixi + x2 (ai2 “ Ba32) - x3 (2A - a23)

Consider the Ingwerson example, which corresponds to 

a rather practical automatic control system configuration. 

The significant feature of the solution of this problem 

is not the Y function itself, hut rather the manner in 

which it was possible to constrain dY/dt. dV/dt is cons­

trained in terms of x-^ and x^. Why this is possible is 

evident from careful consideration of the general deriva­

tive above, where C is now considered to be a function of 

x-p or C = C(x^). C(x^) appears in the x-^x2 term along

with which may be a function of x-j^. Hence the x-^Xg

term may be caused to vanish by letting

all “ Ba31 * c<xl>a33

Consequently, an integral appears in Y, since C(x]_) is not 

know explicitly* C^) also appears in the x-^ term, and
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this coefficient may "be retained as long as terms in
O

and x^ are also retained. Thus in the x^X| term, otg^ is 

allowed to be Aa^. If is not allowed to be zero, the
O term does not vanish, and the remaining constants are 

determined rather mechanically to obtain Ingwerson's re­

sult, as indicated in Fig.■5.11,

This result was possible for two reasons. C(x^) ap­

peared as a coefficient of the same term as a,and hence 

could be cancelled by . C(x^) did not appear as a coef­

ficient of a term which also had <*22 as a , If

this had been the ease, no cancellation would be possible, 

as a22 ean not be a function of x-^. These points are em­

phasized in the following paragraphs.

An alternate solution is possible for this problem.

The C(x^) term in x^x^ may be forced to vanish by letting

be equal to ^GCx^), with and thus the system
2

may be constrained in terms of Xg alone. Here it is in­

teresting to note that since &21 is a function of x^, the 

eurl equation

7
cWtl

requires that a^g be

a12 2C(x1) + 2xx
^(x-j.)

TV



Thus dV/dt, as determined from the gradient containing this 

additional partial derivative term, is

IT - - 2x22 [“ - + 2xa2 xi

In systems where the nonlinearity is of the saturating 

type, as, for example, y = aretan xq or arctan xq plus some 

kxq, the last term is always negative. This alternate 

solution, of course, is less general than the Ingwerson 

result. The point is that from an examination of the 

general derivative, as determined from the variable gra* 

dient, more than one means of attacking the problem is 

evident.

Further examination of the general dV/dt reveals that 

the term B, if allowed to be B(xg), enjoys the same unique 

situation as C(xq) did above, if at the same time ctq^ is 

set equal to 0. With a^q = 0, a,qq will not contain a term 

in Xg from B(xg). Then B(xg) in the XgX^ term may be can­

celled with the &22 coefficient, which is allowed to be a 

function of Xg, and dV/dt may be constrained in terms of Xg^. 

This result is contained in the Barbashin result quoted by 

Kalman,

The coefficient A, if allowed to be ACxg), is in an 

identical situation as B(xg) above, if a^q is allowed to 

be zero once again. Then A(xg) in the xgx^ term may be 

cancelled by the <*22* This time it is necessary to cons-
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O
train dV/dt in terms of x^ to avoid the appearance of 

A(x2) in as this A(x2) would appear as a coefficient

of x-^Xg and could not he cancelled by a-Q, If dY/dt is 

constrained in terms of "the solution of LaSalle re­

sults, as in Fig, 5,13»*

The thought immediately arises that if A(xg) and 

B(x2) have the same position, why not let each of them be 

functions of x2 at the same time. This proves to be im­

possible, If an attempt is made to constrain dY/dt to 

be negative semidefinite in terms of any one or two state 

variables, in each ease a-j^ ultimately proves to be a 

function of either A(x2) or BCxg). Similar difficulty 

arises in other cases in which two variable coefficients 

are considered, as A(x^) B(xj), A(x^) 0(xj) or B(x^) C(xj), 

i, j = 1, 2, 3, except for the Barbashin problem, Fig, 5.12,

In the Barbashin example, the nonlinearities are des­

cribed as B s B(x2) and C = C(x^)« dY/dt can be eons-
2trained in terms of x2 , with a^ “ 0 and a2^ = a^2 = 2A, 

a constant and not a function of x2. When this is done, 

a12 = ^O(x^) and, as in the alternate solution of the Ing- 

werson example, a partial derivative is introduced in the 

derivative.

It may be somewhat disconcerting to learn that more 

solutions are not available from the variable gradient 

method for those eases in which more than one variable
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coefficient is considered. An examination of the "block 

diagram of such systems indicates why this is the ease.

If two coefficients are functions of the state variables, 

the linear portion of the system contains only two terms 

in s. In the Barbashin example, Fig. 5.12, the linear 

portion of the system is l/s^(s + A), and it is indeed 

surprising that the system is stable at all. For the 

ease when A = A(x^) and C = C(x^), as in Fig. 5.14, the 

linear portion of the system has three poles on the jw 

axis. It comes as no great shock that global asymptotic 

stability cannot be proved in this oase.

The difficulty lies in the differential equation re­

presentation that is being considered. The cases of Fig. 

5.12 and 5.14 represent configurations that are seldom 

met in automatic control practice. In fact, it is the 

authors s ©pinion that such eases are of little more than 

academic interest.

A case of practical interest is that of the third- 

order system with one zero, as pictured in Fig. 5.15, A 

seeond-order servo motor compensated with a lead lag net­

work can be considered to be of this configuration, as can 

a third-order model of the motor compensated with taeh 

feedback.

A solution is not possible, or* at least not obvious, 

by using the differential equation representation that has
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Big, 5.14. Block Diagram of an Hypothetical
Control System
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Fig. 5.15. Blocfc Diagram of a JPraetiGal Control
System
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been the subject of this example thus far. Sueh a repre- 

sentation would cause both C and B to become functions of 

Xj. However, if the system differential equations are de~ 

termined direetly from the bloek diagram and used in that 

form, the method applies direetly and the results are of 

immediate interest. Based upon the bloek diagram of Fig. 

5.15, the three, first-order differential equations des­

cribing the system dynamics are

x« = x

Xo “

3

-(Y+6)x„
JfCxj^)

t6V *2 - PsCxr)*!

Letting (t + 6) = M and « N, these equations become

X1 " x2

x2 - x3

x3 - - M x3 - N x2 - —x2 - Jg(x1)x1

Through the use of the variable gradient, as in (4.7), 

dT/dt in ordered form is found to be



* r ^^xi^
V * xlx2 |_all - a31 N ~ a3X"3'x1... “ *32?«(xl

r ^c)^.Cxx ) -»■
* X2X3 Lal3 + a22 ” a32M “ 2N “ '()x1 J

+ *1*3 [a21 - a3XH - 2es(xx)]

2 r X f (x-j) n
+ x2 la12 ~ a32N “ a32 Jxx J

+ x32(%3 - 2M) - a31pg(x1)x12

Stability ©f this system is definitely a function of 3,

3 appears in dV/dt as a coefficient of the xxx2 term and 

of the xxx^ term. The 3 dependent portion of x-jXg is easily 

cancelled hy a suitable choice of axx# Hence, dV/dt may he 

most easily constrained in terms of x, and x0. With this 

in mind, the Xg2 terms are forced to vanish if

wo. ^ f(xl>a12.-"fl3 2N+a32"l-xJ;L“

From the xgx^ term, sinee cigg cannot he a function of xx,

ax^ must have the form

al3 " al3k
2<)r(x1) 

* ' <D *i'

Thus, vvx is known to he

VYX =
r « <)f(xx)n

1 “11 X1 + La3* N + a32-^— J *2 + [al3k +
2c)f(x1)

~^3 J*
Using the first curl equation, it is seen that
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dx2 a32 N + a32 d xi S c) X1

Here it is recalled that f(X]L) - Xlg(X]L)> Hence if a21 is 

allowed to he

“21 " “32 N + “32 S(xl)

VVg becomes

Wg =* a^2Nxl + a32S(xl>xl + a22^x2^x2 + a23x3

and

e)vv2
= a32N + a32 '(^x1

if a23 is assumed to he a constant.

is satisfied.

The first eurl equation

Consider a second eurl equation

c) VVX 2)f(Xl) ^VV3
= al3k + “^1 = c) X1

With the relationship between■ f(Xj_.) and g(X^) in mind, 

a3l is allowed to be

“31 ' “13k * 2s(x3)

Since a2^ was assumed constant, cc^g = <*23* afld VV^ is now

V?3 « ai3kxi + 2g(X]L)X;L + a23x2 + 2x3 

The second curl equation is satisfied. Because no coeffi-



eients in VV2 of VV^ are functions of x2 ©r x^, the last 

curl equation has already been satisfied by setting
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■23 a a constant.

If the x^Xg term in dV/dt is eliminated, dV/dt will 

have been constrained in terms ©f-xj. and x^. The x^xg .term

is eliminated if a-^ is set equal to

^fCxj)
all “ a3lM + a3l ~$x{ + a32^<xl>

)f(xx)
*■ al3kN + 2NS(X1> + al3k'~"^)'x1 2g(xi) -p’x*

+ a23pg(x1)

dV/dt is now

3T - - “jlM*].)*!2 - x1x3 [a31H + 2Pg(x1) - Ojjjj

“ x3 (2M * a23^

Substituting for a^ and a2^, dV/dt becomes

11 83 ~ [al3k + ^S(xl)x12

“ xix3[tti3kM ~ a23N + 2g(xi')H"t SpgCx^ - ag^gCxj^^J

“ X32(2M “ a23V

The constant portion of x-^x^ above is removed if

a13k “ "’"W
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agoN
Since a22k + ai^\z = a23M * 2N’ a-2Z a23rf +,,2N “ T 

Now all of the elements of VV are 'known within a 

constant to be

wr -
"a23^ , ' . ’ , , «23N ^) £(xl> ^ , "■ v.).f(.xiy
~ir~+ (2n ■+ <x23p)g(x1) + t "5"x"- + 2g(xi) ~^rifjxi

■^f(xi)’
a,23N + a23_^)x1 ‘ x2

a2 3N 2 f (xx }
~*>~ + >i

VVg = »23Nx1 + a23g(x1)x1 +

a23^
VV3 = ~ir~ X1 + 2S(xi)xi + a23x2 + 2x3

and.

cu>oN r
a23M + 2N.-,-^_ x2'+ a23x3

dV
IT

- 23g(x1)2x12- x-^gCxj) [23 + 2H - a2J - x3^(2M-> 033) j

- 3g(s1)x13

2
Note that the x3 terra regains negative for a23 < 2M.

If in ^ j above, the following substitutions are made

2M - a^3 = 23 or = 2(M ■* 3)

xlS(xl> - ZX

:3 = z3

dV/dt becomes



126

dV
M 2gz^2 + 4gz1z^ + 23z^2

.I.,).,'

■0

dV/dt

is negative semidefinite, and the remaining term in 

is also not positive for positive N, M, g, and gCx^),

as long as 3 ^ M,

If the poles of the linear portion of the original

system are in the LHP, M and N are both positive. gCx^) is 

positive if the nonlinearity y = fCx^) = x^g(x^) lies in 

the first and third quadrant. (M - 3) ^ 0 if 3 is less

than or equal to the sum of the open loop poles of the 

linear portion of the given system. It is interesting to 

note that this is exactly the condition required for the 

root locus of the linear portion of the system to remain

in the LHP for all values of gain from 0 to oo .

If it is assumed that the solution of the equation 

dV/dt = 0 does not satisfy the given system equations, 

then dV/dt satisfies the requirements of either Theorem

2.2 or 4.3. However, before any decision concerning sta­

bility can be made, the closedness of V must be established. 

¥ is determined by a line integration of the gradient to 

be



Y
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(2N + a23P) / «('Ti)Ti^t1- +

a23Nxlx2

+ ‘23?(ll*¥2 + “23M + 2N
x22 a33N
t*+ ir xix3

f
+ 2g(x1)x1x3 + a23x2x3 + x3^

The integral with asterisk above ean he evaluated, since

xng(x ■) *.f(x,), The integral becomes 1 1 1

2 fCti) df(Tx)
, .(4 , v«

ftXj) » gtXj^) x3

The Y determined above is quite complicated. It is 

difficult t© draw any conclusion for an arbitrary non- 

linearity and an arbitrary zero location, p. However, it 

is possible to select a zero location that will prove 

global asymptotic stability for a large class of nonli­

nearities, If p = M, «23 = 0, then V becomes

X1 ‘
V - 3N'/ g(Yx)TidTi ^ Kx22 

} ©
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X1
T “ 253 g(Y1)Y1dt1 + Nxg^l‘MrMl

[■z^2 + 2zizj + z

V is positive definite if N is positive and if the integral 

is greater than zero for all x1# If the integral also goes 

to oo as x^ —0© j V is sufficient to satisfy the con­

ditions of global asymptotic stability, 

dV/dt, corresponding to the V above is

If dV/dt is not identically zero on a solution of the 

system, which would be rarely true for such a complex dV/dt, 

global asymptotic stability of the given system is assured.

The class of nonlinearities for which V is positive 

definite is very large. The nonlinearity need not be an 

odd function, although it must lie in the first and third 

quadrant enough of the time so that the integral stays 

positive. If the nonlinearity saturates at any finite 

value, the integral will, go to o© as x^ —► oo . The slope 

of the nonlinearity is not important.

In a sense, the solution to the above problem is dis­

dV oc, .' ■ ■ \2WE " “ 2p(zl + z|)



appointing to a control engineer. The solution required 

that £ * M, the sum of the ©pen loop poles. Practically 

speaking, this is impossible. A better answer would be a 

range of P for which global asymptotic stability eould be 

concluded. Another alternative requirement might be the 

size of the region of global asymptotic stability for a 

given range of p. Such questions ean be answered, but not 

until the nonlinearity is specified.

5.3 Discussion of the Application of the Variable Gradient

Method to Specific Problems

Chapter IV included a general discussion of the va­

riable gradient method of generating Liapunov functions. 

This chapter has applied the method to specific problems 

of engineering interest. As a consequence of this appli­

cation to a large range of stability problems, the follow­

ing conclusions are reaeheds

1. As concerns nonlinearities, the method is appli­

cable to single-valued, continuous nonlineari­

ties where the nonlinearity is known as a poly­

nomial, as a specific function of x, as a 

general function of x, or as a curve determined 

from experimental results.

2. As concerns coordinate systems, the method is 

applicable independent of the particular state 

variable formulation used. In the examples,
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the phase variables were used almest exclusively. 

This was dene for convenience, and because it is 

possible to treat in the same way systems that 

have one or more integrations, multiple poles, 

poles or zeros in the RHP, etc.

3. As concerns Y functions, the method generates Y 

functions to suit the problem at hand. This fact 

was illustrated in Examples 5.1 to 5.4, where Y 

function with higher order terms, integrals, and 

terms involving three state variables as factors 

were generated.

The question may be asked as to why this method of 

assuming a general gradient is better than a method 

assuming a general Y. The answer is clear in terms of the 

examples of this chapter. If a Y general enough to include 

the solutions of all of the examples had been selected as a 

starting point for eaeh problem, the number of terms re­

sulting in dV/dt would have been completely prohibitive.
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CHAPTER VI

The Application of the Variable Gradient Method 

to Nonautonomous Systems

6.1 Introduction and Organization of the Chapter

The term nonautonomous system refers to all systems 

which are either forced or nonstationary, or both, inde­

pendent of linearity or nonlinearity. The form of the dif­

ferential equations arising from time-varying-parameter 

(TVP) systems and from driven stationary systems Is dif­

ferent, thus it is convenient to treat these two types of 

systems in separate sections.

The first type of system to be considered is the non­

stationary type, as this is more closely allied to the work 

that has been presented in the previous section. The defi­

nitions and modifications necessary to take care of the 

explicit time variations in the system differential equa­

tions are made, and this is followed by a discussion of 

several adaptations of the variable gradient that make it 

possible to take into account this new condition. Examples 

indicate the application to both linear and nonlinear, 

time-variable-parameter systems.

Forced systems cannot be said to be stable in the 

sense that they seek an equilibrium point. Hence a dis­

cussion of stability of this type of system is not appli­



cable, and is replaced by adiseussion of ultimate bounded- 

ness* A theorem on boundedness is Cited and specific ex- 

amples are given to indicate the meansthat are available 

through the variable gradient approach for determining the 

region of ultimate boundedness,,

6.2 Time-Yariable^Parameter Systems

The pattern of the section devoted to time-variable- 

parameter (TYP) systems is similar to the pattern estab- 

lished in the consideration of autonomous systems. After 

the necessary definitions are presented, the Liapunov 

theorem applicable is stated, and means of implementing 

this theorem along the lines of the variable gradient are 

■'considered..

6.2.1 Definitions and Applicable Theorem

The purpose of this section on TYP system is to de­

termine the stability of a set of n, first-order, ordinary, 

differential equations of the form

x = X(x,t), where X(0,t) = 0 (6.1)

Because of the explicit time dependence of the right hand 

side of equations (6.1), it is necessary at the outset to 

define the exact meaning of the term stability in this 

nonstationary ease.

The following definitions are made under the assumption 

that the efuilibrium state being investigated is the origin



and that _X(0,t) = 0, The definitions are compatible with 

the usual definitions, as, for instance, those of Kalman 

[13] or Szego [27~j . However, as in Section 2,4 on auto­

nomous systems, the definitions are stated in terms of the 

regions S(r) and S(R), rather than in terms of S and ‘ji £ ). 

Definition 6.1 Stability in the Sense of Liapunov 

The origin is said to be stable with respect t© 

the coordinates and the initial time tQ, if, cor­

responding to each S(R) there is an S(r) such that 

every solution starting in S(r) does not leave S(R) 

for all t > t0.

Definition 6.2 Uniform Stability

The origin is said to be uniformly stable with 

respect to the coordinates x-j. if, independent of 

the initial time t@, corresponding to euehS(R) 

there is an S(r) such that every solution starting 

in S(r) does not leave S(R) as t > 00 ♦

Definition 6.3 Asymptotic Stability

The origin is said to be asymptotically stable 

with respect to the coordinates x-^ and the initial 

time t@ if, corresponding to each S(R) there is an 

S(r) such that every solution starting in S(r) not 

only stays within S(R) but approaches the origin
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as t0 < t 00 ,
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Definition 6,4 Uniform Asymptotic Stability

e origin is said to be uniformly asymptotically

stable with respect to the coordinates x^ if, inde- j 

pendent of the initial time tG, corresponding to each 

S(R) tfaereisan S(r)suchthat every solution start­

ing in S(r) not only stays within S(R) but approaches 

the origin as t —■*» l"y0- t;VU

In each ease above the type of stability defined is 

local. If the region S(r) includes the entire space, each

type j)bf ‘ stabiiity;'dbfih^diiaboveMisvglobaii:'-r;::iAssbefbhb, in-.

terest is principally in global stability, and becabse, in 

general, an automatic control system must function indepen­

dent of so&e arbitndry lime l@, ilie principal interest is 

in gldbai:'Uniform'asymptotie'“istability',^-'-';i'

Sinee equation (6.1) above is an explicit function of 

time, it ;inight be expected that the Liapunov function re­

quired to prove stabiliif raaylikewise be a function of 

time. This is true, and the basic theorem applicable to 

the nonautonomous ease is as folloitfs.

Theorem 6,1 [~Kalmah, IS , P * 379] -

If for the system of equations(6.1) thereexists 

a scalar function V(x,t) with continuous first par­

tial s with respect to x and t such that ir(_0, t) « @

1. V(jx,t) is positive definite! that is, there



2

exists a continuous, non-decreasing, scalar 

function a such that a(0) ** 0 and, for all 

t and x ^ 0

0 < a( ) ^ V(x,t)

There exists a scalar function t such that 

*Y(0) » 0, and dY/dt along the motion starting 

at t, x satisfies for all t and x ^ 0,

dT
dt < ) < 0

3. There exists a continuous, non-deereasing

scalar function 0 sueh that 0(0) 35 0 and, for

all t,

V(x, t) < 0(

a( ) oo as oo

THEN the equilibrium state xg * 0 is globally, uni­

formly, asymptotically stable for t ^ 0,

Mote that Theorem 6.1 requires a new definition for

positive definiteness in the nonautonomous case. For 

V(x,t) to be positive definite, Y(x,t) must be greater than 

or equal to another positive definite function, which is in 

dependent of time, and this inequality must hold for all 

time. Kalman points out in a footnote that the require­

ment on dV/dt is less than the requirement of negative de­

finiteness, as t is not required to be a non-deereasing
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function. However, here, in attempting to apply the 

theorem, a negative definite dY/dt is always sought.

Conditions 1 and 4 above insure that at any instant 

of time, Y(x,t^) represent a family of nested, closed sur­

faces about the origin in the entire spaee. Because Y is 

an explicit function of time, conditions 1 and 3 are neces­

sary to insure that the variations of this family of sur­

faces with time are not such that stability cannot be con­

cluded.

Consider, for example, the family of surfaces in two 

dimensions . .

Y = e"* xx2 + emt x22 (6.2)

If both sides of the above equation are divided by the ex­

ponential, it is seen that as time increases, this family 

of circles has an increasing radius. Even though dV/dt 

may be negative, V may be increasing at such a rate that 

the net movement of the trajectories may be away from the 

origin. This is an intuitive explanation of the necessity 

of requirement 1 of Theorem 6.1.

Conditions 3 is sometimes stated as a requirement that 

Y(x, t) have an infinitely small upper bound [kalman, 13] , 

meaning that Y must be bounded in all of its coordinates 

for all time. Szego [27] states this requirement differen­

tially, as



lim V(x, t) 0 uniformly on t, for t ^ t0
INI-*6
The problem of determining a V(x,t) to fit the con­

ditions of the theorem for a given problem is necessarily 

more difficult than in the autonomous case. The condi­

tions of the theorem are more restrictive, and dV/dt must 

be determined not only from the gradient but from the 

gradient and another partial derivative with respect to t. 

Methods of determining V(x, t) are the subject of the 

following pages.

6,2.2 Methods of Generating Liapunov Functions for Non- 

Stationary Systems

Three methods are proposed in this section for the 

solution of T¥P problems via the second method of Liapunov. 

These methods rely heavily upou the variable gradient tech­

niques which have been developed in previous chapters.

Method I

The first method is based upon the fact that the 

constants of a physical system are never actually constant, 

but are always changing, due to aging, and environmental 

changes. In the analysis of physical systems, these time 

variations are ignored, and yet the results of the theore­

tical analysis often agree quite well with physical 

reality. The first method suggested for the generation of 

Liapunov functions for TVP systems is a procedure identical



t© that in which the parametersare assumed to he constant„ 

Time variations are ignored completely, and the system is 

treated as a fixed parameter system.

At first glance, it seems that this approach has 

little ehahee of success, until it is realized that dT/dt 

will almost surely contain a derivative with respect to 

time of the time varying e©efficient. Only in the excep­

tional ease could this time derivative he expected to can­

cel . To ignore the time variation in forming Y simply 

amounts to the acceptance of a time varying term in dV/dt 

before the problem is started.

This procedure is satisfactory if itis possible to 

limit the appearance of the time varying coefficient in V 

to bO the coefficient of a definite term. This assures 
that in dV^dt the term arising from ^V/^t will be a de- 

finite term in one of the state variables. It is possible 

that this term may be over ridden by other negative de­

finite terms in the same state variable in dV/dt. This 

matter is Clarified in the following example.

Example 6.1 ;

Consider the s econd order differential equa­

tion,'■■

x + Ax + B(x,t)x *» ® 

which,, in phase variable form becomes



As before, let

VY *»
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X2

“ Ax2 - B(Xl

llxl +
\

a12X2

21xl + 2x2

dV/dt becomes

<H *" xlx2 [all “ Aa21

+ x22(a12 - 2A)

- a2^B(xls t)x-L2 + Jlr/^t

If B(x^,t) is considered for a moment only as a function

of x-^, becomes

all ** Aa21 +

and, with a21 still unspecified, VY is

VY -
Aa21xl + 2*(xl>%>xl + a12x2 

a21xl + 2x2

As in previous chapters, Y is produced by a line integra 

tion of VY, and is found to be
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Act.21 2 
2- *1 + 2

f
B(xi^ t)xidx-L + ^ x2

With V completely known, dV/dt is also completely known,, 

WZ « - x2 (2A - a12)

X1 ;
" a21B(xist)xi2 + 2 / ^ BCx^tJx-jdx^

/ o

Quite obviously should be made as large as pos­

sibles or = 2A - £ , and the resulting V and dV/dt 

are'

V - (A - € )A xx2 + 2 (A - 6 Ix^g + x22

.. *i,
+ 2 / B(x-^, t)x^dx^

/ o

and

■- - 2(A -£) B(x1#t)x12 - C x22 

^BCx^^t)
XidXi

If the integral in V is always greater than zero* V 

is always greater than the time independent positive de­

finite function
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Wi(x) £ [a(a - € )x. ,2 + 2(A -6 )x,x 2'

12 2

Thus Y is positive definite.

In order for - dV/dt to he greater than a time inde­

pendent positive definite funetion, B(x1#t) must he always 

positive and mast contain a linear term of arbitrarily 

small magnitude. That is, BCx-^ t) must he able to he 

written as

B(xl5t) =* Bk + By(x1? t)

Here Bk may he arbitrarily small. Then - dV/dt is 

** ® 2Bk(A - € )x-^2 + 6 Xg2 + 2(A - £) Bv(x^, t)x^

- 2
\
>y(Tl5t)

at— *1**1

If

(A - ®v^xl* ^X1 ^
BvCtx,!)

't----- (6.3)

for all Xjl and t, then - dV/dt is greater than the time in­

dependent positive definite funetion

W2(x) « £ [2Bk(A - € yxj2 + £ x22J

Y and dY/dt meet conditions 1 and 2 of Theorem 6.1, Un­

less the nonlinearity is specified, it is not possible to 

guarantee that conditions 3 ahd 4 are realized. For in-



stance, if B(x-^,t) = + e^x-^, V would not be bounded

in its x^ coordinate, and condition 3 is violated.
■ ev.ljJr.aocf 31, V.ayiif

The differential equation under discussion corres­

ponds to the bloek diagram of Fig, 6.1. A nonlinearity 

with a small linear element and which lies in the first 

and third quadrant for all t would have B(x^,t) always 

positive as required* This is also the type of nonli­

nearity of interest in the automatic control area*

Two further observations ban "Be made1. If the partial 

of Bv(x£*t^v;witJh respect to ils negatiye, the inequality 

(6.3) is always valid* If the partial is not negative, 

then B(x-j.,i) must contain a significant constant portion. 

It is the minimum value of B(x|,cbXd&aiaiS'' bf. importance 

in (6.3)* Secondly, the amplitude of variations in 

By(x^,t) are not of importance, but rather the rate of va­

riation, is the .critical latent*\

It is passible to construct many 'nonlinear!ties for 

which inequality (6.3) is valid* for example, a linear 

'term'^pluS'an codd function 3©f x^ 'multiplied Jby e-^ would cA 

be sufficient, since the.?partialiiwi;thcriespde't:';t<| trwould^l- 

be negative* This might be expected, since the forward 

gain would be decreasing as time increased in this ease.

A- nonlinearity for ‘which the gaih"is'’iheheasing would .be
33 j J jiawv jo/v. *].: ;rx , j a J v;5 eili ..as j ]'

y.: = kjXj + &2X1 + k3xlte ^ valid for Akq >
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r(t)=0+ X t>0^" y=xB(x,t)
S(S-i-A)

-X

Pig. 6.1* Bloek Diagram of the Control System
of Example 6.1



Here the 6 in the exponential may be arbitrarily small, s© 

that the gain actually increases as t for any range, hut 

the exponential must he included to satisfy condition 3 of 

Theorem©.1.

Method II

The second method of generating Liapunov func­

tions for TYP Systems is based upon the realization that 

the additional constrains on Y in Theorem 6.1 appear be­

cause V is an explicit function of time. Hence, Method II 

simply requires that dY/dt he constrained in such a way 

that time does not occur in V, that is, Y is simply V(x). 

This method compliments Method I rather nieely, as no 

derivatives with respect to time appear in dY/dt, and 

hence the quantity of interest here is magnitude rather 

than rate of variation. Again the method is illustrated 

by the rather general example of Pig. 6.2, for which the 

equations of motion are

x2 « Ht)x2 - g(x1)x1

This example corresponds to a nonlinear system with a time 

varying load or damping. Prom the usual gradient, dY/dt 

is determined to he
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Fig. 6.2. Block Diagram of the System Dismissed Under
Method II
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ar = *1*8 [°n ' a2i6(t) • 2s(xi>]

+ X23 [a12 - 2*>(t)] - «21g(l1)l12

Since it is postulated that V could not he an explicit 

function of time, dV/dt is constrained to he

= " ^(t)xjXg—X2^(26(t) — Qjg)

by use of the gradient

Certain assumptions must he made in regard io g(^) 

and §(t) to insure that -dV/dt is positive definite» 

First it is assumed that 6(t) is always greater than some 

arbitrarily small number, £ , This is not illogical in 

terms of the system, as this simply requires the ttpole" 

of the linear portion of the system to remain in the IiHP. 

If &(t) has a least value 6 , the Xg^ term in dV/dt re­

quires that = ag^ < 26(t), or a-^g is also £ , To 

insure that - dV/dt is greater than another positive de­

finite function, W(x), g(x^) must also have at least a 

small constant portion, so that - dV/dt may he written

as



- 147

If “ 6 skxl2 + € Mt)xiX2 +"x^(Zb(t)■■* € ) 

+ 6 gv(x1) x22

Then

- 31 > S (skxl2 + 6<t)xlxs + *22)

and - dV/dt is positive definite. As in previous problems* 

the nonlinearity in the system has been assumed to lie in 

the first and third quadrants.

V is simply determined from the gradient to be

X1
¥ » 2 f gCt^Yjdr-L + + x^2

¥ = g^x-j2 + £XlX2 + x22 + 2 / ^(Y-LiY-idY-L

Now* as desired* ¥ is independent of time* and ¥ is also

positive definite and goes to oo as oo . The con­

ditions of Theorem 6.1 are satisfied* and the system is

uniformly* globally asymptotically stable, ;

To be specific* in the example above* assume that 

6(t) is Aj_ + Ag sin ©t* and let y be a nonlinearity of the 

form y = K-^x-^ + KgX-^gCx-j^)* where may be arbitrarily 

small. The system of Fig. 6.2 is globally* uniformly*
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asymptotically stable' as long anib(t) jis; always positive, 

or if % > A2, In contrast to the solution of the pre­

vious problem, there is no restriction here bn the rate 

of variation, w may he any number whatever. In addition, 

it should be noted here that the variation is large, s© 

that no artificial restriction need be made that varia­

tions be slow and/or small.

- Method III v

At the outset of the investigation of TVP Sys­

tems, it has felt that this third method wohld prote to be 

the most successful in solving the stability problem. How­

ever, the results attainable by this approach prote to be

less general than those mentioned above, and as a conse­

quence, this last method of generating V functions will 

only be mentioned as a subject for further consideration.

In consideration of equations of the form (6.1), in 

the most general case, V might be expeeted to be a func­

tion of both x and t.. If time were considered as simply 

another coordinate, say xa+i, dV/dt could still be consi­

dered as dV/dt = VV5 x. Thus instead of Y being 1r(x,t),

Y becomes Y(x1# x2, ... xn+1), and It is possible now to 

treat the sy s tem as though it were a constant parame ter 

system. The idea of increasing the order of the system by 

considering time as ah additional Variable was shggested 

by Bozonoer. in connection with Pontryagih1 s maximum

1
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tMs section of nonautonomoUs systems is included for com­

pleteness, and because some of the results previously ob­

tained apply directly to the driven system.

•TIn a discussion of forced systems, the boncepts of sta 

bilI%fVi^I^Mlii&:kt§-*?'i»tS.M^.ity are replaced by those of
Jrf — . ... \ . g . ; , : ' v • . _ . • . .

boundedness and ultimate boundedness, as defined below.
o3:DfeS*i4iiti€n€}i1iAi3‘|!te ux BOundednesb1 ei ■"

The System of- equations ( 6.1) is said to be 

bounded if for every bounded’regioh S(r) there 

ib exists anotherbouridedregibnS(R) ^dch^tibat ^0 ^
>ii j £?. f$ir i>? r t r; 4 -S-. 0-01 :~j. \ T •

every solution starting in MJMmainl1il9 .9£!J‘
-^sm ii&BOciqq&, I,;?*isn9g sriosi aMif mrx

Thi^i type of boundedness if often referred to as 

stability in the'sense of Lagrange. It differs from 

stability in the sense of Liapunov in that the region 

S(r) must be chosen first. A system with a limit cycle 

is stable in the sense of Lagrange as long as S(R) is

chosen large enough to enclose the limit cycle. Such a
119 Till 11 lo aa & 3 Mill 8 g ill ‘ . g

system is not stable in the sense of Liapunov.
s:m ns i.w nif>i ays ■ i 0‘i-J'jio.D si.i’.extofxte ns 'to m/is a wo/±ix A

Definition 6*6 fRekasius, 28~| Ultimate Boundedness
<u* Jo c< i*!•/ ." *V ij- xcl & IJ c; ,1 a/ *3 iij.. ■ gzkiQ 8 .1 ' c*' zny8 <!i 'lAVi.£X

pie system of equations (6.1) is said to be
-ilOO 9i.:U ■ * HO 1J 0,O,t3Or| JViS. Oil J 101 .00-00£$%i001 .80 f V0 X, i

„ ultimately bounded if it is bounded, and if there
Skto. ftlUJOlC? XI. J.ifp C 3' C/30. .0 0SO8/ -TOO'. 0,0 0 h 9i8J8 0g jloOut

exists a bounded region JX in the state space such
-anin ot £i9?:i:/ an/ wo.IIgI.-:oi ilsea Mx/ma ji //aas/.

that every solution starting, in the complement of
0'is--rsvrc.m *.son om,i ,i ■ ouixcsio ;i 'xo .•no o-osatot 00100 so . 00 ro

-0-. > -TU , will approach 10 asymptotically as 

t —00 .



The basic theorem relative to ultimate boundedness, . is

due to Yoshizawa [29] . A statement of the theorem due to

Rekasius [28] is given below.

Theorem 6.2 [~Rekasjus, 28~|

Let -fL be a bounded region of the equilibrium

state xa = 0 of the system of equations (6.1) and . “^6 -
let JZ.* be its complement. Then (6.1) is ultimately 

bounded to Jl. if there exists a scalar function V(x) 

such that
1) V(x) > 0 for all x in -ft-*

2) V(x) is locally Lipschitzian

]

f

If the region _/Vis simply the origin, this theorem 

corresponds to a Liapunov stability theorem. Conditions 

1, 2, and 3 above require that V(x) represent a one para­

meter family of nested closed surfaces about the region -A, 

The problem is to determine the size of the region M*, 

the region to which the solution is ultimately bounded. Of 

course it would be more desirable if one were to be able to 

establish a region in which the solution always remained, 

but this capability is not afforded by the above theorem.

For simplicity, consider first the usual block diag­

ram representation of a unity-ratio automatic control sys­

00
•00

/dt ^ 0 for all x in



tem in which the input, r(t), isno longer zero. The con­

figuration is that of Pig, 6*3, Here once again no spe­

cial attention is given the linear system. It is treated 

as a special case of the nonlinear system, in which g(e) 

is the forward gain, K, In general, the nonlinear dif­

ferential equations describing the system of Pig, 6.3 are

®2 = e3

(8.4)

a e n n an-len-l*• * a2e2 “ alel

f(e)m - * • # bp df (e)
. dt...

rn + anr*M* • • « _ dr
a2 W + air

(e)

Here the equations are written in terms of error, e, ra­

ther than in terms of the output, x, and the use of the 

phase coordinates is retained, as elsewhere in this worh. 

Notice that the above formulation requires that as many 

derivative s of the input exisi as the order of the sy stern. 

Also, the nonlinearity must possess as many derivatives 

as there are zeros in the system, These are definitely 

limitations on the type of system that can be handled in 

the phase coordinates by the approach being described. In
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Fig. 6.3. Block Diagram of a Conventional Control
System x^ith an Input
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systems with no zeros, it is possible to write the equa­

tions in terms of x, and these limitations no longer 

exist.

Because of the form of equation (6.4) and because of 

the similarity of the theorem on ultimate boundedness to 

that of the theorem for asymptotic stability, many of the 

results of the previous sections are directly applicable. 

The procedure is similar to that used in Example 5.6 in 

connection witb limit cycles. Here, however, it is neces 

sary to find the region outside of which dV/dt is always 

negative, and then to choose the smallest V curve to cir­

cumscribe that region.

In the examples that follow, the input and its deri­

vatives, as in (6,4) are replaced by M, M is the maximum 

value of

As a first example, consider the block diagram of 

Pig. 6,4. In terms of error, the equations of motion be­

come'

a^r + a^r max = M

df(ex)

or



■\

Fig. 6,4. Block Diagram of a More Specific Example
of a Forced System
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e, = e.

Aen - n)
den - e1g(e1) + M

Prom the gradient, dV/dt is found to he 

dY = €1 ;[“]1'2 ril " J*“21 ■ “21 lej

e1 )

el^

+ eg'- - 2 <|e 2i^(ei)ei

+ ®21^el + 2^e2

dV/dt must he constrained so that the region in which dY/dt 

is not negative is a minimum* In this case, the hound of 

is independent of &2l> anc^ hence is chosen to he the 

arbitrarily small number € , so that the extent of e2 

might he minimized. The coefficient of the e^e2 term is 

forced to he zero through an obvious choice of a-Q, and 

is thus constrained to he

dY _ ' . 2 
If ~ “ e2

f 2df(e1)
I24 * -wr + 2Mes

£ [ex2 g(e1) - MeJ

£ A 2 . _ . <s» , ^V =? -g- + € en e0 + e0 + £,

and, from the gradient, Y is ^
1

;fc2 T c2 TV*/ : —
Jo

+ 2 g(Y1)Y]d'y1
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For - dV/dt to be positive definite, the magnitude of e* 

must' be

611 gie^)

To be specific, consider the linear system for which 

the input is a ramp. Then M is A and g(e^) is K, the for­

ward gain, and e^ is bounded by

Here in order to make the region a minimum, A should be 

reduced to as small as number as possible, and K should 

be increased to as large as possible. This is completely 

reasonable for the given system with a ramp input. Thus 

the second method of Liapunov begins to look like a design 

tool when applied to systems where the form of the input 

is known.

In the case of a nonlinear system, the minimum value 

of g(e]_) must be considered in determining the size of the 

bound. Thus in the case of a nonlinearity such as y = 

Arctan e^, which represents saturation, g(ej. 5 is unity for 

ex = 0, but it goes to 0 as ei goes to infinity. Hence, 

for this nonlinearity, the size of the bounded region 

would be infinite. If it were possible to approximate 

the given nonlinearity with y = arctan e^ + k^e-^, the 

bounded region would be a function of kjL» and the method



would give a result. The Liapuriov method here suggests 

that the designer not let his components w saturate com* 

pletely**..

It should toe noted in passing that although apparently 

little use was made of the variable gradient approach in 

the solution of this problem, aetually the resulting Y con­

tains two integrals.

If the system of Pig. 6.4 had a unity numerator, the 

equations of motion may toe written in terms of x as

■ xi

x2 - - Ax2 - f(e) = - Ax2 ^ (r - x) g(e)

Prom the usual gradient, dV/dt is formed, and it is seen 

that only a portion of the coupling term, x^xg, may toe re 

moved toy letting a-Q toe ajgA, The remaining dY/dt is

It = - a21S(e>xl2 - 2g(e)x1x2 - x2a[2A - aj 

+ a2iS(e)rx^- + 2g(e)rxg

The term in x^Xg could not toe removed because g(e) is a. 

function of r as well as x^. Hence the problem of deter­

mining the region of boundedness is somewhat more compli­

cated, Essentially a portion of the x-j^ and x»>^ terms must 

toe allocated to take care of the coupling term in x-^Xg, and 

the remainder of these terms is used to determine the



boundary. This becomes more evident in the following de­

velopment. Let

a21g(e>xl2 *''.gC.e) [a2i ’ Kl] xi2 + SM Klxl2

(2A— a12)x2 = [2A - a12 ~ x2 + ^2X2

With this substitution, dV/dt becomes

31“" [Klg^e^xl2 + 2®(e)xix2 + ^2*2 J

- g(e) [a2l " Kl]xl2 + a21g(e)rx1

“ [2A - >12 “ ^J ^2 + 2g(e)rx2

The large square bracket is made definite from geo­

metric considerations by forcing

> g(e) max

The bounds of and Xg are then determined from the re^ 

maining terms to be
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> a21 ~ K1

xf >
2g<e>max r

2a.-..^r^2

Here tbe result depends upon the magnitude of the 

input and not upon any of its derivatives. In a linear 

system, g(e) would correspond to K, the forward gain. For



high-gain systems,' A must be large t© keep the region of 

Xg small, whieh again agrees completely with the usual 

linear design. How, however, it is possible to draw con­

clusions of a similar nature for the nonlinear system.
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6*4 Analysis of the Variable gradient Method as Applied 

to Nonautonomous Systems

In this chapter the variable gradient method was ap­

plied to solution of differential equations representing 

systems with time-varying coefficients or with forcing 

terms. The examples presented as expositions of the method 

were all based on second order systems, whieh in itself in­

dicates the degr’ee of achievement or flexibility that has 

thus far been achieved in dealing with these more difficult 

systems. It is felt, however, that the fact that anything 

at all was achieved is significant.

Of particular interest in both types of problems that 

were considered is the fact that linear and nonlinear sys­

tems received the same treatment. Hence if a design or 

synthesis procedure could be worked out for the linear 

system, the results would be direetly applicable to the 

nonlinear case* If the second method of Liapunov is all 

that Letov [lo] claims in the introduction to his book, a 

linear system design and synthesis procedure should be

forthcoming, and with it the nonlinear technique.
Perhaps it is superfluous, but it seems that this is 

an interesting area for further research.



- 1@! -

CHAPTER VII

Summary and Conclusions

The second or direct method of Liapunov is a power­

ful tool for the analysis of the stability of ordinary 

differential equations. Although originally conceived 

and developed by the Russian mathematician Liapunov in 

the late 19th eentury, the method has received consi­

derable attention from other competent mathematicians only 

in recent years. As a consequence* the theoretical so­

phistication involved in the development and proof of the 

original and supplementary 'Liapunov.theorems far exceeds 

the applications to which these theorems can be applied.

The difficulty in applying Liapunov's theorems lies 

in the determination of a V function which meets the con­

ditions of the given theorem. In the past, the determina­

tion of a suitable V function for a given differential 

equation has been a task that has relied heavily upon the 

ingenuity and experience of the investigator. This work 

presents a systematic approach to the determination of a 

Liapunov's V function that in some measure overcomes this 

problem. The new method is known as the variable gradient 

method of generating Liapunov functions.

The precise meaning of the term ’’generating’’ is de­



fined in the sense that it is used in this work, and the 

two principal means of generating Liapunov functions that 

have been proposed to date are examined in some detail.

The desirable and undesirable features of each of these 

methods are emphasized, and the more desirable features 

of each are incorporated into a new technique. The va­

riable gradient method that results is based upon the 

assumption of a variable gradient that is thought to be 

of a sufficiently general nature to include all possible 

gradients within its structure. This gradient is assumed 

to be a vector of n components where n corresponds to the 

order of the differential equation in question. Each 

component of the gradient is further assumed to be made up 

of n terms, each of which has an unspecified coefficient. 

These coefficients are determined from constraints on 

dT/dt, with the aid of (n - l)n/2 additional curl equa­

tions that must be satisfied if the V function determined 

from the resulting gradient is to be unique. Once the 

elements of the gradient are known, both Y and d¥/dt are 

determined directly from the gradient. Because of the 

general nature of the gradient, if solution to a physical 

problem with continuous, single valued, nonlinearity 

exists, in theory, the solution exists within the frame­

work outlined.

Hie variable gradient method of generating V fune-



tions is. characterized "by its ability to handle systems . 

containing multiple nonlinoariiies in which the nonli­

nearity. is .known as, a ..definite,funetion of the state 

variables- or' simply, as,.a.,general, function of x., Systems ■ 

with one or more integrations, multiple poles, or complex 

conjugate poles are treated in the same way. As opposed ■ 

to the more .usual,..quadratie, form for Y, -with this method 

it is possible to generate V functions which include state 

■variables raised to higher - powers,, than. 2, depending., upon.,.-, 

the actual representation of the nonlinearity. Also, T 

functions which include one or more integrals are derived 

quite, naturally, as are Y'seontaiming terms, that; involve,, - 

not two, but three state variables as factors.

■•The capability of generating this broader class of 

Liapunov - functions..,that, is described, above: is...,, demonstrated 

through simple examples-, through,,,the.reproduction and ex­

tension of the results of other investigators, and through 

the solution of ..original problems-The .last, chapter, of ■ 

this report is deiroted to extensions of the variable gra­

dient method -to nonautonomous systems.

7.2 Recommendations for Further Study

The variable ■■gradient method developed:.'aboVe: is- a . t"-

general-' 'technique for the:;; generation ' of ..''the'. Liapunov ' V !: 1 

function. In 'this report the example problems'' considered - 

include only" single-valued'nonlinearities, and the eoor- ■■
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dinate system used is almost exclusively that of the phase 

variables. An obvious extension would include the con­

sideration of multiple valued nonlinearities, or a coor­

dinate system in canonic or other special form. For ex­

ample, if the basis of system description is to be a set 

of nonlinear equations, these may be generated by the use 

of Lagrange’s equations. The resulting equations include 

variables that are intrinsic to the physical system in 

question, the so-called generalized coordinates. It is 

quite conceivable that the resulting set of second-order 

differential equations might result in a set of n, first- 

order, differential equations that would be more meaningful 

and easier to handle than the phase variables considered 

here.

As developed in Chapter IV, the variable gradient 

method is applicable to the nth order system, yet only 

second and third order systems are considered as examples. 

Obviously it is desirable to apply the method to higher 

order systems. Limit cycles were considered for only se­

cond-order systems, yet it is known from experience and 

from describing function analysis that higher-order systems 

also exhibit periodic behavior. In short, this work pro­

poses a method of generating Liapunov functions, and this 

method is used to solve as many different types of problems 

as possible, in order to show the generality of the method.



No particular attempt is made at a deep penetration of any 

one particular class of problems, other than the conside­

ration of the Aizerman problem. In this sense it might be 

said that this report suggests more problems than it ac­

tually solves.

The greatest area of interest lies in the furthering 

of the work in the last chapter on nonautonpmous systems. 

There it was observed that linear and nonlinear systems 

were treated in the same manner, at least for the second 

order systems. For example, in the discussion of forced 

systems, it was noticed that the region of dY/dt had to be 

a closed region, such that the Y curve might circumscribe 

it. Yet in the previous solutions of Chapter T, advantage 

was taken of the fact that dY/dt was net required t© be 

definite, as long as it was not zero on a solution of the 

system. It is conceivable that a determination of stabi­

lity in one coordinate system for the autonomous case and 

the region of ultimate boundedness for the driven system 

in another coordinate system might be in order.

The discussion of ultimate boundedness in itself is 

a compromise. What is actually of interest is the maximum 

value of the response for a given input, or better yet, the 

maximum deviation from a given or desired response. There 

is no theorem as yet to aid in this pursuit.
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APPENDIX*

Since n© general analytic method is known for pro­

ving the definiteness of Y functions other than quadratic 

forms,' the purpose of this appendix is to provide a geo­

metrical basis for the establishment of the definiteness, 

or closedness, of higher order Y functions, ueh as those 

generated by the examples above.

That Sylvester's inequalities are not adequate in 

the case where V is not a quadratic form can be seen from 

a consideration of the Liapunov function that follows.

0 4 _ ^ 2 2
T = x-j^ + xi + 2xi x3 + 2x2 + x3

Here it is possible to arrange Y in what could be con­

sidered a quadratic form with variable coefficients. How­

ever, the arrangement is not unique as is indicated by the 

two configurations belpw.

Case I - Y^ - (x^ + x-j^ + 2x-^x^)x^ + 2xg^ + Xy 

Case II - Yg = (x-^4 + x^2)x^2 + (2x^^)x^x^ + 2xgS + x3^

The coefficient matrix to which Sylvester's inequali­

ties apply indicates that in Case I the Y function is in­

definite, while in Case II the function is definite -~ 

clearly a contradiction.

This method was originally suggested by Dr, 6, P. 
Szego.
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In order to determine the definiteness of higher 

order Y functions, it is possible to employ basie geome- 

trical considerations. Consider, for example, a second- 

order case where

v o .
According to Sylvester, if a^ a22 - ai2 > then Y 

is a positive definite function, or a closed function*

In fact, if the above condition on the a’s holds true, 

the closed curves representing different values of Y are 

simply a family of nested ellipses in the x^x2 plane.

Suppose that in this example xg is determined as a 

function of V and x^

■xa
all a22^ * a22V

Assuming that the a^ are positive, for any constant value

of Y, Xg has two values for small values of x^. If the
ocoefficient of x^ under the radical is negative, as x^ 

is increased, a value of x-^ is reached for which the two 

values of x2 are identical« Beyond this value of x^, the 

two values of x2 are no longer real. Of course, the con­

dition that insures this closure of the curve is identical 

to Silvester’s conditions, namely that
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all> a22 > 0

11 a22 “ a12
2] > o

The idea ©f closeness depending upon the two values 

of a variable becoming imaginary is the concept that is

functions. For this reason, in all examples ann was as­

sumed to be 2 and the aij's were not allowed to be func­

tions of xn. Thus the resulting V is always a quadratic 

in xn, and the quadratic formula can be used to solve for 

the two values of xn.

In the third order -systems, of course, it is neces­

sary to show that ¥ represents a elosed surface rather 

than a closed curve. This procedure can be reduced to the 

examination of a closed curve by considering one of the 

state variables a constant. Thus a three dimensional 

elosed surface is cut by a plane, and to insure closeness, 

each eurve of intersection must be a elosed curve. As the 

plane of intersection is moved along its axis, the curve 

of intersection must eventually vanish.

This procedure can be illustrated by the ¥ function 

of whieh was cited above. Here, since x^ appears in the 

most complicated form, let x^ be a constant, k, so that

used in determining the definiteness of higher order ¥

¥ becomes
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■V - k6 + k4 + 2k3x3 + 2x22 + xy

The term in x^ alone can he eliminated by a linear change 

in variable s to produce a form amenable to Sylvester * s 

theorem* Let

Xg = Zg + a and x^ = Z^ + 3

The constants are found to be

a « 0 , 3 = “ h3

such that

V - k4 = 2Zg2 + Z32

A
For a particular value of V = c and x^ for which k is 

less than V, this is the equation of an ellipse in the 

ZgZ^ plane. As x-^ is increased till x-j4 = V, the ellipse 

finally vanishes and closeness of the surface is demons­

trated i

The ¥ function chosen in this example was a simple 

one for expository purposes. The V function resulting 

from Example §.4 is considerably more complicated, yet 

closeness can be demonstrated in exactly the same way. In 

the ease of a fourth order system, a geometrical interpre­

tation is not possible to visualize, yet the procedure is 

the same. For eaeh x^ a constant, it is necessary to show
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that the resulting surface was closed, and that this sphere 

finally vanished as the value of x-^ is increased. Although 

the concept is not difficult, the work involved increases 

rapidly as the order of the system is increased.
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