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ABSTRACT

Schultz, Donald Gene, Ph,D., Purdue University, April,

1962, The Variable'Gradient Method of Generating Liapunov

Functions, with Applications to Automatic Control Systems.

Major Professor: John E, Gibson.

The contribution of this thesis is the introduction
»andvdevelopment’of the variable gradient method of gener-
ating Liapunov functiens. A Liapunev function,'v, is con-
sidered to be generated if the form of V is not known be-
fore the genéfating procedure is applied.v

Twe previous attempts at the generatioh of Liapunov
functions to prove global asymptotic stability for nehn
linear autonquus systéms have‘béen méde. These attempts
are summarized and evaluated in some detail, as they form
the basis for the variable gradient approach propesed in
this thesis. “ . |

It is assumed that the system whose stability is being
investigated is represented by n first order, ordinary,

nonlinear differential equations in state variable form

= X(x) - X(0) =0 @

Ixe

The particular state variables used throughout the thesis
are the phase variables. This was dene for convenience,
The problem of finding a scalar V(x) to satisfy a

particular Liapunov theorem is reeast into the problem of



| finding a vector‘funetioh, Y?V hav1ng sultable propertles.
. As the name 1mp11es v'<7V 1s assumed to be a veetor of n. |
elements, ﬁ?Vi, each of whlch has 'n arbltrary coefflcients._;f-
| These,ebeffielents des1gnated as “13; may be constants or 1
. funciiens of the state Varlables.j In its most general form,vr

‘:the varlable gradlent 1s assumed to be'f"-f‘

- all(x)xl + alg(x)xz + s aln(x)xn" i

Ct‘.zl(X)Xl + O'.zz(X)Xz + ..‘.:.'.'

an1(§)x1'+'an2(x)xz=+ﬁé;w_“nn(ﬁ)an?*,1

_ V.may be determlned as a llne.lntegral of Y?V 1f the,¥ ;_

,}following (n-l)n/z partlal dlfferential equatlons are sa_v q';

tisfled, ' . B :

| | DV%' QVV . *1'7; e e
033 Dxl .3  i;.;e,;v:v r'f" o (B)x

Here VYV are the elements of the vector’ K7V?; The‘equaéf gf

" tions (3) are referred ‘to as generalized curl equatlons,:m

dV/dt may also be determlned from vV,

- An outline of the procedure by whlch a. sultable V and
'dV/dt may be determlned for a partlcular problem, startlng

from the variable gradlent of (2) is as follews,v o

1, Assume a gradlent of ‘the form (2)



x

2. From the variable gradient, determine dV/dt by
equation (4).

3. In conjunétion with and subject to the requikeé
ments of the generalized curl equatidns (3);
‘constrain dV/dt to be at least negative semi-
definite.

4. From the now known VYV, determine V,

5. Invoke the necessary theérem‘to establish sta-
bility. |

‘Numerdus examples are worked to illustrate the pro-

cedure outlined aboeve. V functiens are generated that
involve higher order terms in x, integﬁals, and terﬁs in-
volving three state variables as factors. The problem of
determining Hurwitz like eriteria for nohlineér sy stems is
considered in some detail.

The last chapter attempts to extend the variable LYo, =

dient approach to nonautonomous systems. The results of"
this chapter, though somewhat mafginal, ére of interest

from the point of view of further research.



CHAPTER I.

gIntroduction»and Qrganization of the Thesis

The second method of Liapunov is a general méthod'fér_
“determining the:stability‘of:autonOmeus or,ﬁonautonomous,‘
linearror‘nonlinear, brdinary differeﬁtial eqﬁationé. 'Thé
‘methodrwas'advanced'in Russia by the'mathematician A,’M; 

Liapunov near the end of the nineteénthfcentury‘éndltrans-b_

' lated into French in 1907, Little use was made of the method

until the early 1940's, when the Russiéns began to reélize
the value of the'Liapunov approach in connection with:the‘
analysis of'ﬁonlinear,'automatic cOntr01 systems,

The French translation of the original LiapunOVZMan;
useript wasvreproduced by the Prihcetbn»UnivePsity‘Press in
1947; but publiéations in English did not begiﬁ tb éppear
'untii‘éround'1955. Since that time interest ithiapunovfs
second method has steadily increased, and with it thé number
of ‘English publiecations, éithervin the originalg or trans—'
lations from the Russian, French, or German.

The earliést works in English were almost co@pletély»
mathematical in hature, ‘nd'without.eiceptioh ihcludéd éx-
“tensive references to or1gina1 Russian papers. .In 1959f
’two Ph.D. theses in engineering appeared on the subgect
and each of these also drew heav11y from the Russian. In.
contrast, this thesis may be considered as something of a
"second geﬁeratlon“ effort, as the extensive translation of

vearly material from the forelgn 1anguages, particularly Bus-
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sian, had élready been done‘beforé this work Was started.
vAs a eonsequence, the majority’of referenqes are in English,
and; more importantly, thesé references are reg&iiy avail=-
able. |

The historical backgrounﬁ'of the second methodiis
largely mathematical, and.due in part; peﬁhéps, to the 
communication barrier between mathematieiaﬁs gnd engineers,
ihe theoretical capabilities of Liapuﬁev?s second methed
far exceed the present practical applications. 1In fact,
the lack of 2 Systematic means of"genérating’the 80- -
ecalled "V functioﬁ"»of Liapunbv to satisfy ﬁhé eﬁisting
powerful theorems has been deplored in almost every Engiish
publication on the subject, o |

The purpose of this reﬁort is to'deﬁéiop ablpgicalk
‘and systematic means of generating Liapunov‘funcfions.b The
means by which this is éccomplished is called th‘e‘variable
gradient method of generating Liapunov fuhctions,' The |
methed is based upon the introductién of a cbmpletely ar-
bitrary vector, the variable gradient, and a number of -
auxiliary equations, called the generalized curl equations:
Procedares are described hy whiéh_the unknowns in the gra-
dient are determined;~and from the gradient, both V and
av/at éan be determined directly. This approach reduceé
the emphasis en the ingenuity and experience of the in-
vestigator that has so long been linked with the-engineering

application of the Liapunov theorems.
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Following this introductory material, Chapter II is a
review of the basie Liapunov theorems, with the definitions
of necessary terms, The emphasis is on clarity rather thgn

on completeness., Only those theorems that are to be used -

in the chapters immediately fdllowing are preSented‘ Later,-'-*

as more completeness isrneeded, additions are made as re-
quired, |

The variable gradiént method is an‘outgrbwth of the -
work of Ingwerson'[l], [2] and Szego [3]5»[4] described innn'“'
the third chapter. The author was fortunate’enough to éee“'
the early work of both of these individuals before it ap-
peared in the joﬁrnals, and bécause the two papers were
read at essentially tne same time, the foundation for the
variable gradient approach practicnlly suggested itself.
The work of Ingwerson and Szego is dealt with in some de~-
tail as a foundation for the variable gradient method,

The variable gradient method is proposed in Chapten
IV as applicable to the autonomous system. Here, as in
the rest of the thesis, the analysisvis nestricied to
systems containing only single-valued nonlinearities. No
- special attention is given to linear systems, as they aren'
considered as special cases of the nonlinear type. To de-
monstrate the capability of the variable gradient method;
éxamples are.worked in Chaptér V to illustrate the dif- '

ferent types of V functions that can be generated. Addi-
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tional examples are included that deal with practiéal servo
preblems;“In‘each case the starting point is not a set of

n first order differential equations, but the block diagfam
from which these equations are derived. Thus the reader'ié__
dealing‘with preblemé with which he may be éxpected te'be:
familiar, so that only the framework within which thevprobw:-
lem is considered is different. | o

In Chapter VI, the variable gradlent method is extended
to include tlme-varlable-parameter systems and systems w1th
an input. Here the order of magnltude of the problem 1s_
increased, and the results might be considered tovbe'some-
what marginal. | | : | | |

Chapter VII is a short summary of the report, with re-
commendations for further study. The Appendix outlines
several methods of determining the closedness of higher:‘
order Liapunov functions. The Appendix is considered a
vital portion of this report, as the metivatidn’for slightlj’f
restricting the form of the variable gradient hinges on”the
means that are used to show that the‘higher forms genérated '
actually de represent elosed surfaces in n dimen@ionall
space.

The contribution of this repert is the introduction
ana‘development of the Variable Gra&ieht Method of gene- :
rating Liapunev functions, and the application of thié.
method to different types of problems in the field of auto-

matic contrel.
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CHAPTER II
The Second Method of Liapunov

for Autonomous Systems

2.1 Introduction and Organizétion of the Chapter

The second method of Liabunov is a means of deter-
mining the stability of a system of n simultaneous, fifstf-.
order, ordinary, differenfial equations, In this chapter
the automatie-eontrol system is interpreted in terms of
equations of this type. Before the introduction of thé,
actual Liapunov theorems, the concepts of “definiteness" 
and "cleosedness" are considered, as is the preecise meahing
of the term "stability®. |

The more basic Eiapunov theorems and their extensions
are presented, however no preofs of the theorems are in-
cluded, as the theorems have been adequately proved in the
1iterature° Rather, an attempt is made to present the ma-
terial in such a way that the reader with a knowledge ef"
phaseaplaﬁe analysis will understand the physical implieca-

tions involved in the statement of the theorems.

2.2 Notation

The following notation is used throughout. Vectors ére
designated by underlined quantities, as x or X. The only
'ex@eption to this is the gradient of a scalar function? a

vector, which is denoted by VV, A function of an under-
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lined quantity is a functlo the elements of the vector,
Thus X(x) is a vector function identieal :to' X(xl, xz, e
x,) and V(x) 1s axscalan:funct1on?equalsio V(xl, Xgs «os

Xn)' The'tbanspose of a veetor x is designated aé'x',m The

2, 3w,§ystemxﬁepresentat10n~

= The!: app11catian ‘of: the»second methed of: Llapun@v to:

“the: ‘determination of’ the stablﬂlmyﬁof ‘ah autohonion’s) phy-

sical system presupposes that the. h=th' order’ dynamic’sys=

; simul taheous,

s-tem under ‘consideration is specified by

firsth@r&éﬂi?mﬁﬁinaﬁyJdiﬂféréntﬁﬁlgéq&%%ﬁéns@bﬁﬁﬁhéﬁfeﬁﬁﬁ

o Inthe linear sy étem, the'

mere generally, the le s may pe functiens“efixiixﬁé;ﬁ
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necessarily. unique, as a term such as xl xz weuld serve te
'-1ndicate.t

| Fbr convenience, though not necessity, vector notation 3
is. ﬁsed to represent the system of equations (2 1), so that

(2. 1) may be rewrltten as

or
.é=§@>ese -~7_,,'f*K?é)

A further assumption is made that the variables x ere. '

chosen such that
x=0 (2.4

This 1ﬁ no way restriets'geherelity, es,axlinear ehange‘in -
coordinates can be made to shift the equilibrium point to
the origin. | | ‘ | | ”
In equations (2.2) and (2.3) the variables x§ are
functions of time, and a knowledge of the veetor x eom-..t
pletely deseribes the state,of the system fer>a11 time . -
Hehee, the variables x are referred to as the state va-
riables of the system, It should be noted in passing that
any given system may bevrepfeseﬁted by an‘infiaite-nnmber |
of equations of the form (2, 2) or (2. 3), as the state
variables are not necessarlly the physieal variables of

the system, but may be any~1inear eombination of these
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physical. varlables Gibéon, et. él., 5‘.ggj‘¢,:¢;ig; ;;

Of'ten, phy31ca1 systems are not described by equatlons"
such as (2.2) or (2.3). A basie assumptlon of . this report
is that the system under study is representable ._.in block-
diagram form, and that eifhér;thejblq@k\diégrah or[an?nth- :
order differential equationrrepreéénting ihe”syétém is |
known. If systems with timéilag are ignored,‘theﬁrequire-
ment that the block diagram be known is identical to the
‘requirement that an nth-érd_er ‘differential e(iuatioh bé
known, as a block dlagram is s1mp1y a plctorlal Pepresent-
ation of a dlfferentlal equatlon.- Systems Wlth tlme delay -
,.Will not be considered,_as‘they1resu1t in dlfferentlal,dif-‘
~ ferenee equations. | . | |

In the example problems to follow 1n later ehapters
the problem is always stateﬁ flPSt in terms ef a block o
' dlagram, and this is reduced to the form o |

n n-1
X

d x d _ dx- o B 3 .

Thls may be wrltten more convenlently as

x(n) + ay . x(nvl) L as x,+“al‘x =,@w‘v<4 n‘(z.ﬁ)
,Equation (2.5) is ea81ly reduceé to n 81multaneeus flrst
order equatlons by assuming as the state Varlables the
system output or errer and 1ts n - 1 derivatives, .Thus,"

with xy equal to x, and this'cheiceAOf sﬁate,variaﬁlé;HEw-



(2.6) becomes

X% X
X = X, o - R |
X =-a X ",anslj*ﬁ51:7 i"7a2x2-' ayxy

n -~ ‘n“n

This particular choice of state variables is referred
to as the phase variables, a name that stems from the co-
lordinétes df‘thé usual phase plane on which the behavior
of a second-order system of the feorm of. (2.7) is usually
depicted. This choiee of the phase variables is a natural
one for the engineer, as these variables have a*ready PhY¥
sical interpretation. In a positional servo, for example;
xllcould be chosen as output‘position; kz, velocity; X3,
acceleration; etc. - The behavior of the system can then
be depicted as taking élace in an n-dimensiénal'phaseA
space, analogous to the two—dlmenS1onal phase plane, with
time not explicitly indicated, »

Sometlmes equations in "normal®" er "canenie® form
[?unningham, QJ, or in the canonie form of Lur'e [7] are
convenient, However, the variable;gradient method of
generating Liapunov funetions to be_developed is gqt de~

pendent upon the representation of the system, as leng
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as n, first-order, differential equations are given, Phase
variables will be used because of their simplieity, al-
though later an example will be worked in an altefnate co-

ordinate systém (BExample 5.6).

2.4 The Cohcepts of Definiteness and Glosedﬁess

o The conéept of definiteness is ntilized in the state-
ment of the theorems of Liapﬁnov, ahd‘the following defi-

nitions apply. The following definitions follow Malkin |

[¢].

Definition 2,1. [Malkin, 8] Positive (Negative)

Defini te
A scalar function V(z) is poesitive (negative)

definite if feor

” " h where "x“ » xéz x L. #52

vix) > 0 (v(x) < 0) for all x # 0 and V(o)

 Definition 2.2, [Malkin, s’]' Posibive (Negative)

Semidefinite

A sealar funetion V(x) is positlve (negative)

‘semldefinlte if for

<

V(z) » 0 (V(x) < 0) for all x and V(0) =

In the above definitions, h may be arbitrarily small,
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in which case V would be definite in an arbitrarily small
region about the origin., If h'is'infinite,‘v is definite
in the whole space, ' | |

Definition 2,3  [Malkin, 8] Indefinite

A scalar functien V(x) is indefinite 1f it 1s
nelther of the above, and therefore, no matter how
small. the h, in the reglen‘

V(x) mayvassume both positive and negative values,

A few simple examples will clarify the,definitions,
The function

2 2

V = + X5

%
is positive definite if the system under consideration is_‘i.'
second order, but it is only semidefinite if the system is
third order, since, for x; = X, = 0, V is 0 for arbitrary

X Similarly, for a third order system, the functien

30

V= xlz + 2 Xy X *+ xzz + 332'

‘is only semidefinite; because for xé,= 0 and xq = - X,
V = 0. A function such as V_¥'x1 or V= x1 - Xp is ob-
viously indefinite, no matter what the order of the
system,

~ When V is a quadratic form, expressible as
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V= x! c x - (2.8)

where C is a square matrix with constant coefficients, the
usual means' of determining the definiteness of the form is

through the application of Sylvester's Theorem EFaSalle Q].

Sylvesteris Theorem

In order that the quadratic form-(2.8) be
positive definite, it is neeessary and suffieient
that the prineipal minors of its determinate, thaf

is, the magnitudes

€11 ©12f €11 %2 -++ ©C1in
lcl].‘ >0, | > 0,

%12 %22 €12 %2 -+ %2p| > O

be positive,

Closely allied to the concept of definiteness is the
eoncept of a simple closed curve or surface, A surface
is said to be simple if it does not intersect itself and
closed if it intersects all paths that lead from the
origin to infinity Ebetov, lé], That is, a simple closed

surface is topologically equivalent to the surfaee of an

n dimensional sphere. If V is a positive-definite func-
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tion, then‘the equations V = K, a eonstant, represent a set
of nested, closeﬁ_surféceé‘about the origin in a suffi-
‘ciently small region. In order to insure that the region.
extends to infinity, it is necessary to insure that the
curve V = K is closed for sufficiently 1afgé K. Letov [ld]
states that the closure of the curves V = K is‘aSSQred if;
in addition to pbsitive definiteness, the Liapunov funetion
approacheé infinity as the norm of E.goes to infihity, that
is, if | |
Lim V(x) — o - (2.9
o == | |
As an example of a eurve that is positivg.définité and
yet closed only for values of K less than 1, Letov [lqa‘ |

cites the following example from Barbashin [Lﬂ o

2

1+X22

A second example of Letov includes an integral in the Lia-

punev funetion. If V is given as

x1
) | o 5
v=/[ f(y7)dyy + xo

and
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| B |
Lim - f(yy) dyy = a

x1==>€o 2]

then the curve V = K is closed only for values of K less

than a.

2.5 Definitions of Stability

The concept of stability of a linear system with cons-
tant eoefficients is basic to contrel engineering. Suech a
system is defined to be stable [Bower and Schultheiss, lé]
if and only if its output in response to every bounded in-’
put remains bounded. A neéessary and sufficient conditien
for the stability of a linear system is that the abselute
value of its weighting function, w(t), be integrable over

the infinite range, i.e,,

® :

lﬁ.w(t)l at < o (2.10)

The weighting funetion of a linear system is simply the
inverse Laplace transform of the transfer function of the
system, | |
Not only is‘the econcept of stability élearly defined,
but the range of stability is not in question, If a li-

near system is stable; then it is stable for any input, re-
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gardless ef 31zeov _
This is not at all the case in nenllnear systems, as .
stability is a leeal concept and a possible functien of the
input. Kalman [13] defines eight types of sta‘bility,» An-
tosiewicz [i43 nine types, and Ingwerson [1] twenty differ-
ent types. Many of these definitiens, hewever,’apply to
vﬂenautonomous systems, and many are not of interest in
engineering applications. Hence, here only stabllity in
~the sense of Liapunev and asymptotle stability will be de»
fined. Deflnltlens applicable to nonaatonemeas systems aPee
given in Chapter VI° _ |
| The deflnltiens here fellow LaSalle [}5], and assume
that the system is expressed as equation (2 3) )
Assume that the equilibrium state belng 1nvest1gated 3

is located at the origln, and that X(O) = O

'rthe norm ef x, be the Euclldean length of the veetor x,9
where ” ” xlg + x22:+ .,; xnz. Let S(R) be a SPherla
eal regien of radius R >0 around the origln, where S(R)
cons1sts of p01nts X satisfying ” ” < R,

Definltion 2.4. Stabillty in the Sense of Liagunov

The orlgin is said to be stable in the sense
of Liapunov or, simply stable, 1f eerrespendlng
to each S(R) there is an S(r) sueh that selutiens |

startlng in S(r) de not 1eave S(R) as t —> @0 ,
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Befinitidn 2.6, Asymptotic Stability |

If the origin iS'stable.ahd, in addition, every
solution stsrting in S(r) not enly stays within S(R)
but approaches the 6rigin as t —> 00, then the system

'is called asymptotically stable.

The definitiens themselfes emphasize the lecal charac-
ter of these types of stability for nonlinear'systemsv as |
the region S(r), the ‘region of 1n1t1a1 eonditions, may be
arbitrarily small° If the region S(r) includes the entire
space, the stability defined by 2.4 andv2;5 above is
global, J

Note that in the above, the region S(R) is a function
of‘the initial donditions, or ﬁere precisely,’a'function '
of the region of allowable initial conditions, As a eon-
sequence of this.fact, a linear system with poles on the
jo axis is stable in the sense of Liapunov, Henece, as far
'as autematic ceentrels are concerned, Liapunov stability
has only historiecal importan@e. The type ofbstability of
interest is asymptotic‘stability, and‘moré speeifically,
global asymptotie stability. | |

The concept of asymptetie stability does have one
disadvantage, however, The regioh S(R) is a fﬁhctioﬁ of
S(r), but the relationship ofrtpé size of s(R) with res-
pect to S(r)‘is not specifiédl Hence it is quite con-

ceivable that a system that is asymptotically stable, or
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even globally asymptotlcally stable, might still perform
quite, badly, as, for example, a llnear, second erder sys- |
tem with a damplng ratio of .05 More w111 be sald abent
| the reglon S(R). w1th respect to varlous inputs 1n Ghapter,f

L

2.6 Llapunov Stablllty Theorems

A large number of theorems exlst whiech- are related to

_ the second methed of Liapunov' for example, Donaldson [l&] L

~lists’ 32 Only three theorems of immedlate 1nterest are -
'stated below, | ‘ |

| The erlglnal theerem due to Llapunov, Theerem 2 1

1s applleable only te an arbitrarlly small‘reglon abeut

~ the origin.

: Theorem 2. 1 [Malkin, 8]

If it is p0531ble to find a V(x) deflnlte
with respeet to s;gn,.whosebtotal derivative with =
‘respect to.time is aiso a function ef»definite- |
sign, epp951te in sense te that ef v, then equa— ;ﬂ»
tien (2.3) under assumptlon (2 4) 1s asymptotlcally

stable.

Modern convention assumes that V(k)iis pesitive de; ‘
finite, Thus, in a geometric sense, the equatlens V= K
' where K is a positive censtant, represent a one parameter

family of slmple closed surfaces nested abeut the or1g1n
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in the SPace of X. HOWever, V(x) does not necessarlly re-
present a elosed surfaee in the whole space, and only
local asymptotlc stabllity may be concluded..

Wlth V assumed to be p081tive deflnite, Theerem 2,1
requires that dV/dt be- negative deflnlte. This rather
severe requirement on dV/dt is overcome by LaSalle [;5]
in the fellowing theoremo '

B Theorem 2.2

If there exiets a real'Sealar funetion V(g):e
contimuous with continuous first partials, Sueh‘
that V(0) = 0 and R

1. V(x) > 0 for x 7‘ 0

2, V(x) —>® as " “ —>

3. av/at < e for x # 0 (At least negative

semldefinite) | L
4, av/at not identically zero along a solution
of the system other than the erlgln,
then system (2:3), under_assﬁmpt10n>(2.4), is glo-
bally asymptotically stable,

‘Conditions i and 2 insure that V,represents a closed
surface in the entire space. The requirement of Theorem:
2.1 ﬁhat d?/dt be negative‘definite_tovinsure asymptotic
stability is replaeed by the conditions 3 and 4;j.These

conditions require that dV/dt be only negative semidefi-
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nite, as leng as it is not identically zefo]along,a Solﬁticn‘;
of the system. In'ordef to insure thet dV/dtef 0 is not a"
solution of (2. 3) it is only necessary to substitute the
vsolutlon of this equation back into (2, 3) ,In praet;cej
this 1s often a trivial problem. - | | |

If condltlon 2 above is not. fulfllled 1t is :i.mposs:.ﬂ:)le'1

‘to conclude global asymptotic - stablllty. Often,’however, it

is possible to conclude stabllity 1n a Well deflned reglon o
‘through the use of the follow1ng theorem. ;
‘Theorem 2, .3 ELa Salle, 15]

Let J?. be a bounded, closed (compact) set
with the property that every solutlon of (2 3)
under assumptlon (2.4) Whlch beglns 1n.Jl remains
for all future time 1n-IZ Suppose there is |
“also a scalar functlon V(x) whlch has contlnuous,j:
first par'tials in 2, and is such that dV/dt 0'\'
in /2., Let E be the set of all p01nts in AL |
‘Where.dV/dt .. Let M -be the 1argest 1nvariant
set® in E, Then every solution startlng in ;n.

approaches M as t —» 00 .

If the set M is the origin, asymptotictstability may -

be concluded, In order to make-use'of this theorem, of ..

A set M is said to be 1nvar1ant if each solutlon
starting in M remalns in M for all time,.
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course, it is necessary to define the region.fl and show -
that all solutions.starting iﬁ_Q_ remain in.Iz‘as time goes
to infinity. Means by which such an J1 may be deterﬁined/
‘are discussed in connection with the gradient in Chapter
. | |

It should be emphasized that the'stabi1ity théoremsv
presented above give sufficient, but not'necessary, eondi-
‘tions for the stability of equations (2.3). The failure -
of a particular V function to prove stability in ne way
implies that the system in question is unstable., Instabi=
lity éan only be established by recourse to theorems di-

- reetly involving instability,

2,7 Geometric Interpretation of Liapundv's Theorems‘

It is possible to give a rélativeiy-simple geometri-
cal 1nterpretat10n to the theorems of the previous section.
Since Theorem 2.2 is the most useful 1nte1~pretat10n will -
be made in terms of it. For purposes of illustration, it
is assumed‘thét the system in questien is second order, so
that the systém behavidr may be interpreted on a plane
instead of in n dimensions.‘ EXtensien'to n dimensions
follows readily. o

It is assumed that V and dV/dt meet the conditions
of Theorem 2,2, The equation V équals é éonstant repfeu

sents a series of closed curves around the origin, with

the size of these curves increasing as the constant is
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increased from ¢y to eg, ete. as in Fig; 2.1, Because of
condition 2 of Theorem 2,2, these closed curves extend
over the entire X1 Xg plane., If coordinates are chosen
such that xg is the derivative of xj, then the state plane
of XX is the phase plane,

Since dV/dt is negative semidefinite, it is either
negative or zero everywhere in the state‘ﬁlane. If dV/dt
is zero along a curve that is not a trajectory of the
system; then, if at any time the trajectory lies on such
a ecurve, it will not remain on the curve where dV/dt is
zero, Rather, the trajectory will move to a region where
dv/dt is negative. This negative derivative of V insures
that-és time increases, V will decrease, and in the limit
as time goes to infinity, V decreases to the origin,

- But V is a function of the state variables. The
condition V(0) = 0 is only pessible if the state variables
alse go to zero as time goes te infinity. This is the
meaning of asymptotic stability.

If dV/dt were to equal zero aleng a curve that was a
solution of (2.3), as, for example, if dV/dt = 0 along
a limit cycle of (2.3), and if the trajectory wefe to co-
incide with this curve at one point, the trajectofy ﬁould
pemain forever coincident with the curve dv/dt = 0,

While the physical interpretation of the meaning of

Theorem 2,2 is not difficult, the determination of a Lia-



Fig. 2.1, Phase Plane Trajectory Crossing the Curves
V(x , x ) = Constant in the Direction of
. Deereasing V :
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" punov function, V(x), to satisfy the conditiens is indeed
a difficult task. The remainder of this répert is devoted

to means of determining such Liapunov functioens.
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CHAPTER III
Methods of Generating Liapunov Functiens

for Autonomous Systems

3.1 Introductien and Organization eof the Chapter

The major difficulty in applying the second method of
Liapunev to practical problems is the lack of a means of
determining a'suitable v function. This lack of technique
is well recognized and is mentioned in almost every English
publication on the subject. The ability to determine the
required V function is usually depicted as an ért, depend-
ent upon the skill, experience, and even the luck of the
investigater. The purpose of this chapter is to explain
in detail methods that now exist'for generating Liapunov
functions, A Liapunov function is said to be geﬁerated if
the final form of the V function is not known befere the
generating procedure is applied.

Several of the better knowh methods of solving non-
linear differential equations by the second method are
considered briefly, These metheds, due mostly to the
Russian authors, assume the form of V initially, and thus
V is not said to be "generated". The methods of Ingwer-
son [1], [2] and Szego [3], [4] are treated in detail, be-
cause they are actual genérating methods within the mean-.

ing of the word as here used, and because the Variable

Gradient Method, described in later chapters, is based
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upon a combination of these two techniques,

3.2 Well Known Techniques Applicable to the Second Method

of Liapunov

The work of Lur'e [7], Létev_{l@], Rekasius_[l?],‘ﬂizeru
man [lé], and Krasovskii [;é]'is.eonsidered brigfly in this
seetion. A more comprehensive treatment, asidé from the
erigiﬁal references, is to be found in the Purdue Universi-
ty's Control and Information Systems Laboratory Report 61-5
[¢ibson, et al., 20]. |

‘The metheds of ﬁﬁr'e and Letov, and the extensiens of
these techniques due to Rekasius, sonsider'V's‘éf a g{t:la,-=
drgtie form or a guadratic form plus an integral, after
the system equationé have been érranged,in a suitable cano-
nie form. The coefficients of the variables in the quadra-
tic form are not assumed but are determined on the basis ef
a set of stability equations that'naturally‘result. Since
the form of V is assumed, this is not considered te be a |
V funetion whieh is generated. The method of Aizerman is
similar in the sense that V functions are not generated.
Aizerman approximates the nonlinear element of the actual
system by a straight line cecharacteristic and then deter-
mines the quadratiec V function for the appreoximate linear
system, The hope is, of course, that the same V will be
“suecessful in proving the stabiliﬁy of the actual nen-

linear systen.
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Krasovskii's method is more of an existence theorem
than a working technique. Krasovskii has shown that it is
possible to use the phase velocities, not the phase eo-
ordinates, as variables in a quadratic form for V. That

is, Krasovskii has shown that a suitable V funetion is
V(X) = X' A X

Here the X's are the right hand side of equation (2.3).
Krassvskiifs method deserves somé special,mentien,
‘howéver; because even though V is assumed to be a quadra-
tic form in X, in the state variables x, V will be a funco
tion of higher order, Perhaps it is this faet that promp-
ted ethérs té investigate’the generation of V functions

of higher order form.,

3.3 The Method of Ingwerson [1]3 [2]

3.3.1 Theory and Mechanics of Ingwerson's Methed

The method of Ingwerson is a teehnique for generating
Liapunov functions for the general nonlinear system, The
methed is based upon the successive integration‘of matri-
ces, and yields sufficient conditions for the stability
of nonlinear'systemé that are always eorréet for small
disturbanees; The method is applicable to systems repre-
sented by equations (2.2) or (2.3), under assumption (2.4).
Phase variables are used exclusively, so that the equations

of motion in expanded form are as in (2.7)., Thus the
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matrix B(x) of (2.2) becomes

0 1 o ... 0
0 0 1 ... .0
B(x) = y - (3.1)

- an - an‘]. = an_2 * o = al

_ | 4
In the linear autonomous system, the a's of (3.1)

above are all constants, Nete also that the matrix B is

simply the Jacobian of (2.3), so that the elements of B

are bXﬁ/E)xj, and they are constants,

' For the linear'autonomous case Ingwerson proceeds in

a manner similar to that of Krasovskii and assumes V as a

general quadratie form
V=x' Ax | '(302)
For this V, é’V/dt_ becomes
av/at = 3{"[3'@ +FAB]v x | ((2303)

dv/dt is constrained to be negative semidefinite, of the

form

av/at = - x' € x (3.4)

where the choice of C is restricted to those matrices

which have all elements equal to zero, exeept oﬁe element
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~of the principal diagonal., This element is set equal to
a positive constant.
If the left sides of equations (3.3) and (3,4) are.'_

equated, as in (3.5),
B'A + 4B = - C (3.3)

It is then possible to selve this matrix equation‘for'the 
elements of A in terms of the known elements of the matrie'_ 
ces B énd C;’ Obviously, the elements of A are dependen£
upon the choice of the matrix C. Fof'an nth order systém;.
n possible C matrices exist, and corresponding to each Ci
is an 43 matrix., Ingwerson has solved the matrix equatibﬁs'
of (3,5) for n up to and‘including 4., These solutions are
tabulated for second and third order systems in Table I
and give necessary and sufficient conditions for the sta-
bility of linear systems. The results for fourth erder
systems are not considered significant, since, although
dv/at is constrained to satisfy the usual Hurwitz condi-
tions, these same conditions are violated by the Pesulﬁing
V. |

In the linear case; if the matrix A is considered to
be the coefficient matrix of a quadratic V funetien, it
is observed that the elemehts of A are equal to

%1 T )7 0x; (3.6)
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Table I

MATRICES FOR THE LIAPUNOV FUNCTIONS

Secqnd Order

raz | 0 [0 0 ]
A, = » C = .
1 [0 ‘ 1 1 . Lo 2al_j _
2 . - -
Fél +a, aj | 2a 2, 0.
A, = C, = |
2 , 2
_ a) 1 L 0 0
Third Order
ra32 ;‘233 . 0 ] .(-) 0 0 7]
_ | 2 o |
Al =laz a4 ala3 + ag ag , C1 =10 0_ » 0
| 0 a, as | 0 0 _2(ala2—a32
- 2 o - '
As =lag ay +a, ay Cy = 0 Z(alaz-a3) 0
0 ay 1| » o 0 0 |
E -a,a.+8.°a, a a“a an-a.] 2a.(a ‘ -a.) O dj
B18p7 383781783 81785 2133785 azlajag-as
Aqgo= 3 a;"ag agtas 2 _ 03 = 0 0 o
8,8,- a a R a 0 o o
182~ 25 1 1 B -0
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This suggests a double integra;idn'to obtain V direéﬁlye'».
- from A, and it is this“idearthat iSfcarriedeoﬁer inte'tﬁe
nonlinear case, ‘ .
In the nonlinear case the same problem formulatieﬁ iSf
assumed, In order to obtaln a B matrix of the form (3. 1) |
whlch is alse the Jacobian of the system,,(g 3) is dlf_t;i:,,,__

ferentiated, with the result that

-
.

EeB@E G

Now B is no longer a constant‘matrix but_B(g), asfthe:eis'}.e
are, in general, functlons of x._i |

In a manner analogous to that used in the 11near ease,7 
the matrix equatlon (3.5) is solved for the elements of the.

matrix A in terms of the chosen C and the known B(x). (Al-

though this step is not justified, comment will be reserved

until the section on analysis of Ingwerson'e methodgjn The
resulting A matrix is alsoba function of 3? so A is actﬁail&. 
a(x). | .
Ingwerson p01nts out the condltlons that are necessary
for the elements of a matrix, such as A(x), te be the se-_f_
cond partlel derivative of a scalar, such as V, This is .f'
required by (3.6) if integration is to be used to determinee.
a unigque V, A(g) must be symmetrieal and the equetien_,

aai L] _ ()aik

o% | I%j [ - Bs




. v_'3]‘_‘”..‘

_muét be satisfied for 1v:he‘ ;ellemejnts éf‘,A(g_)}. In general the
eléments of A(x) do not sati,s?i‘y" _(3;8,) if the system is nen-
linear., The difficulty is overcome by altering vthe .vé'lements
of A(x) to form a new matrix ‘A(xi,xj')._ This 1s accomplished
by letting all of the variables in each elvemient' of}A(gg)
vé.nish except x; and X§s 'w-here i and_ 'j are the reSpectivé_
indices of the row and column containing the element. The
elements of A(xi,xj) now éatisf‘y (3.8). ‘
Once thiS'A(xi?xj) visv’_foﬁnd, a vector, the gradient
of a sealaf function v, is determined by the integration..
| X , | .
vv=[ Axj,x3) dax (3.9)
) o _
If the cohaponents of V‘V.in'the X4 direction are'vdesignatéd
as Vvi, Vvis determined as a line vir.ltegr'al of VV, as |
) . .
V=§¢ VV'dx - o - ‘(3,103,)' '
X o ‘
The upper limit here is not‘ meé,nt to imply that V is
a vector qué,n;t-i«ty», as _in‘-(3.19),‘ but rather that the integrai ’
is a line integral to an é;rbitrary"point "in the phase space
,1ec.ated at x = (x7, X, «+0 Xp)o Because of previous eoﬁs»
traints on 3(3;;), the line intégration indicated by (3.10a)
is independent of the path of'int‘egr:ation.;‘ The simplest
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path of integration is indicated by the expanded form of
(3.10a) to be . |
| x X2
V=] vVi(yy, 0 ... 0)dy; +

VVa(xg, Yz, 0 ... 0}y

Xn

t oot VVp(xy, X, ee. Xpo3, Tpddv, o (3.100)

Once V is known, dV/thmay be.determined either’di- -
rectly from V er from the gradient,_és°
f= vvi-vvx  (a)

The mechanies of this methbdfare bestviliustfaied;byv
a simple example takén;fr6m IngWérééh-[2].’=Cﬁnsiderftheﬁ»
undamped, éecond=order system of Fig. 3.1, ﬁhich is stabi-
lized by a variable gain, The'eqﬁatiohsééf motibn &fittén

,in the form of (2.7) are
Ay = %

s 0 - 1 2
X = =7 X% -7 % X2

B(x) is the Jacobian of the above, or

[o 1

B(x) = B
b, 2b; b

o . Sl 2
T 7 XX - < Xy
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W x |1 1 T x
’f)OQigtrL . \ ‘-”,.dsa

Mutiply |~ s —

Fig. 3.1. The Ingwerson Example of an Undamped System
. Compensated by a Nonlinear Compensator
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With the matrix C equal to €y, A(x) is equal te Al(-_:_c_),‘
which is given by Table I to be
A(_JS) = Al(?_{) =
0 1

Substituting frem B(x), A;(x) is found to be

e

| rbe _Bby X
. T

% .
2 2 J st,«g’»@s“_x‘ é ‘”"””""‘“"’f""‘"’"‘@ o
by e { ¢ v

PRI
B U B VA |
e

Lo 1

Ay (%4,x ) ‘i‘,s,‘f‘ormeg arbitrarily, ias

|
{ § P 4
¢ o Em»‘n-m;'v o 1 Wb o & 5 : "R‘ i
e bo yigltlin M
£

A-“_I_(Xis Xj) §=

WY
& A 'k
>
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dv/dt follows from (3.11) as

b
av _ _ P12 2
T=~T A1 %

V and dV/dt meet the conditions of Theoren 2.2, and.heﬁce
the system of Fig. 3.1 is globally asymptotically stable.
If a satisfactory result had not beén obtained, the proce-
dure would have been rgpeated; with Cvequal to Cy. If the
results were still not satisfactory, a.cbmbination of C1
andlczgmight be tried., OF Course, the method is not |
guaranteed to work in every‘éase, but it often does give

good results.

3.3.2 Analysis of the Ingwerson Method

In the development outlined above, two steps were
taken‘quite arbitrarily,'such that the resulting procedure
is not formally correét in a mathematical sense. Nor does
Ingwerson claim that what he has done is rigorous. The
Justlflcatlon is purely pragmatlc. | |
| A step taken above that might lead one to question
the validity ef the method is fhe formatibn of the matrix
A(xy,%4) from the matrix A(x). As mentioned, this is
neéessary to insure that the integrations subsequently‘
performed will yield a unique séalar funetion V., How-
ever, the V thus determined is in no waysﬁsured to satisfy

the condltlons of any theorem,
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The other arbitrary substitution is not as obvious,
For the linear case (3.3) is a valid equation, but for the
nonlinear case with the system specified-by (2.3), dV/dt

is found to be

av _ ., ' da(x) i
Tt = XA x v x' g x+x' Ax) X (3.12)

If dV/dt is now constrained as in (3,4), (3.5) does not

follew, as

-@

XAz + _X.."E&lé-"f—)- x+ x' A A x' B ’A(§)+A<§)B(§il x

If the nonlinear system is linearized, howeVer,.(s.lz) does
reduce to (3.3), and valid results are realized in the vi-
cinity of the origin. |
The question remains, if the Ingwefson methed is net
formally correct, why does the method’ofien give good fe;
‘sults, | ‘ | |
The question.can perhaps best bé answered by a re=-
examinatien of the mechanicsndf ﬁhé Ingwerseon technique;
As an initial step, €{ is echosen arbitrariiy. This choice
of C; determines av/dt, as in (3.4). However, the choice
of € also uniquely determines A(x), A(xing), V7V}and‘V
itself. In short, the initial arbitrary cheice of Cj
completely determines both V and dV/dt. Hence the choice
of Ci'amounts to a rather elaborate means of guessing not

only dV/dt, but also V. Since there are always a large
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number of V functions capable of proving stability fer a
| giveh problem, the method eften gives results,

Of course ifvmay not be possible to constrain av/at
to be as required by (3.4). This faét was pointed out by‘
Ingwerson. He indicated that it might be necessary to
combine two different Cj matrices, or to even inéiude off
diagonal terms in the final C matrix in order to be able
to find a suitable V funétiono Howe?er, it seems 1ike én
almost hopeless task to try and ﬁodify an unsatisfactory
V by making an alteration in the matrix C, which is one
matrix equation and two integﬁatibns reméved from V.

Because of the completely mechanicai operations‘reé
quired once C has been cheseh; solutions exist which are
not achievable by the Ingwerson method. ‘Consider‘the
following example as a case in point., The system is re-
presented by the bloek diagram of Fig. 3.2. The differen-

tial equations of motion are

X} < X3
§3 = -(xl + cx2)3-- bx3
and B(x) is |
o 1 0
B(x) =| © 0 1
- 3(x1 + exz)2 - 30(x1 + cxz)2 - b_
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lex, | ]

Fig. 3.2. Third Order Example,of Ingwerson
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If in this problem an attempt is made to’constrain' .

2 or'axg2 through an

av/at to be negative semidefinite in x;
initial choice of ¢, or-635 avsatisfactory result is not

obtained, Yet an answer does exist for dV/dt in terms of

x32° Such a dV/dt, along with the corresponding V, is
V= bxz2 * 2Xgxq + cx32 + 5(x; +bcx2)4

and
av 2, |
H = - 2X3 (bc - ].) .
Why the method of Ingwerson is unable to produce this
result can be seen by considering only the first e1emént o
of AB(E)g corresponding to'030 The element'a,11 of A3(5)

is
a1 ='9bcz(x1'+ cx2)4 +'9c(xl + cx2)4'+ 3b2(x1 + °X2)2
The element a;, of AB(xlg x,) is

= 2, 4 4 2, 2
a4y = 9be Xy + chl +- 3b Xy
Since a term in xi4 appears in this element, a term in x,6
will appear in V. This term does not appear in the aetual
V that proved to be a suecessful solution to this problem.

Hence, a satisfactory selution is net attainable by the
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Ingwerson method when dV/dt is eonstrained to be a function
of x3 . |
Ingwerson did obtain a solution to this problem in
terms of x22 in d4v/dt. The point herewis not that a prqb-
lem has been worked which was not solved by'Ingwers@n,>
since the problem was solved,by him in terme»of xzz, The
point is to demonstrate the:inflexibility of the approach,
once C; has been chosen. In problems where dv/dt neces-
sarily eentains‘terms in xxj, the choice of a single.ﬂi
or a combination of Ci's will not produce a SOIution;
Muech of what has been sald concernlng the Ingwerson
‘method of generating Llapunev functlons has been said in
a negative sense, Yet Ingwerson's contrlbutlen is 51gn1~
ficant., The idea/ef’integrating‘a'vecter VYV as a line
integral to determine the scalar V isforiginal,vand this
idea offers a new approach tovthe generation of Liapunov
funcfiens, as is explained in the following chapters.
Further, the method is applicable to cases in which the
‘nonlinearity is'exéressed as a pelynémial or as a geheral'

function of Xx.

3.4 The Method of Szego

3 4.1 Theory and Mechanlcs of Szege‘s ‘Method

The Szego method of generatlng Liapunov functlens

which is presented here is based on material from refer-
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Fig., 3.3. An Illustration of Szego's Method of Cons-
: training dVAdt to be Negative Semidefinite by
Foreing Solutions to the Equation

dv/dt = 0 to Coinecide -
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Note that the form of a-ll(xl) and %x’i )‘al‘l”‘(xl)/DXi is -
1dentlcal, sinece all(xl) is a polynemial. Henee'the

braeketed terms above ‘may be replaced by a new coefficlent

ij(xl){‘where

- ixij% @ (3an

a;'y(x1) = 13("1) *
Tous av/at beeomes |

dv

(3 18)
Note that in the above equation, twe'sets-ef coefficients
now exist, aij(xi, x}) end‘aig(xi; x.)’ 'Tg eliminatevthe :
excessive number of arbitrary coefflclents, con31der an

auxiliary equation of the same form as dV/dt such as
(X) - 2a '(X:)x X, + .-2'9; v‘.(x‘ ..)3‘2,
p ) = Ran(xn)nxg * 2agpinde

+ 2(xy, xp) [alz(xl)xl + azzxz] (3 19)'

Now 1nstead of forclng the selutlons of the equatien
dV/dt 0 to coineide, ‘the solutlons of the equatlen ~

ﬁé(x) = 0 are ferced to coinclde.. Thus the aij(xl9xj) s

are evaluated, and a V function whlch produces a proper

’}4(5) is &etermined.
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However, ;/(5) is not the function of interest. The
function of interest is dV/dt, but dV/dt does have the
same form as }L(g). Hence it is reasonable to expect that
a V function of the same form that was used in cennection
with {(x) might also yield a dV/dt that could be cons-
trained to be at least negative semidefinite, as }é(g)
was constrained to be at least negative semidefinite.
Thus, the problem is started over, this time not with an
arbitrarﬁ‘v function, but with a V function of the form
determined from the consideration of the auxiliary equa- o
tion yé(x) The coefficients of this new V- functlon aré
left arbltrary, and they are determined by constraints on
dv/dt whiech make it at least negative semidefinite.

What has been said‘in general above is clarified by |

the follewing example., The block diagfam'of the‘system

is pictured in Fig. 3.4, and the dynamie equations are

o B

®

Xg = = Xp = X7
Assume V is as in (3.13) or (3.15)

2
Vv = all(xl)xl + 2a12(x1)x1x2 + x2z

After differentiation and substitution, dV/dt is found to

be
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t>0

o

Fig; 3.4, Block Diagram of a Second Order

System with a Cubic Nonlinearity
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av s 7 L ‘
T E?'alé(xl_) - 2] t Xy [231{(1‘17".1_ - .?alz(xl)"l"gxlg']

;

s s
2a12(xl)x1,
and
F@ = x?[ra3(x) - 2| + 5 [2911'(xi)xl"zalé(X1)31“3X13]'
1
- 2a,0x)x %

Here av/at and_}é(g) are arranged as quadraticsvin 32'

The roots can be made to coincide if the radieal in the

usual quadratie formula is made equal te zero, that is if
Bz’n 4@7.#v®, where,.for'ykg),

NP | ey

B = 2a11(x1)xl - Zalg(xl)xl - 221

1= Ragplx)n®

~ As Szego dees in his example problem, Case b of [4], T

o and B are constrained to be 0, Thus
3 ‘ ) 't y
Cagp(x) = Ay =1
With this substitution in 8,

2

ey o
e (x) =1+ x
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Thus the \4 assoclated with 9L(x) is knOWn, and the
form of v assoclated w1th dV/dt is also known. The prob-

lem is now started over, under the assumption.that V is

V = ax14 + bxl2 +,cx1x2'+ x22>

Here a, b, and ¢ are arbitrary constants, For a = 1,

b=1, and ¢ = 2, dV/dt is

av _ _ .. 4
at”
and V is
. .4 2 o . .2
V = xl/2 + X3 + 2xlx2 + Xo

Here V is pesitive definite# and dV/dt;negative semideQ
finite, Theorem 2.2 applies, since«dv/dt is‘nét zero
along a trajectory, as x; = 0 is not a solution of the
given equations, Thus the given e@uatiéns-are.globally
asymptotically stable, or, perhaps mere significantly,'}
‘the system described by these equations‘is globally asymp-
totleally stable. .

In the application of this method to the third order
case, d;ffleultles arise that are not apparent in the

example above, Consider again. the Ingwerson third-order

“Note that the constant portions of V remain identieal
to, those prev1ously determined for the aux111ary equation
}& (x). This is always true,



- 49 -

system of Fig. 3.2, for whieh the equations of motion are

given as
X = %2

X2,= XB

= - (x + cxz) bgs

In order to appreeciate the difficulties that arise,
it is necessary to consider this problem in detail. From .
(3.14) V is set equal teo

i av/at is found to be
- )all(xl)
a10(Xy,X5)
* a12("13"2).+ Xlz) 13 Xi - ] Xy
B | ') (x;,%,)
813\ %12 %2 ,
%Xz } Xlxg

Yers(xy) |

ay5(x1,%5) + x5
L
+ ,als(xl) +

'azs(xl)xl(xi + cxz) - balB(xl)xlx3
)3, )

Nofea

ag5(Xp)xy (x) + oxy

1

2
baZB(XB)X2X3 = 85X 3(x1 + cxz) 33bx3
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The starred terms above are of the same form, but:are.ﬁot
neeessarily equél. Hence in substituting the aijf(xi,gj)ts_
into dV/dt, an additional coefficient must be introduced.
The double starred term above‘is assumed to be equa1 to»j.

bilz(xl’xz)’ and 3dV/dt is ordered as a quadratic in x3.

<

a 2 o
T %3 a33b - azs(xgi]

- 0l
ot

- XB[%SB(Xl + cxz) ,f ba23(x2)x2 +.ba13(x1)xl
SRR ' T
- azz(xz)x2 - alg(xl)xz - blz(xl;xz)xi}__.
- ags(xz)xz(xl + cx2)3 + aiB(xl)xl($1/¥ eXé)B-
‘_a.f(x X) 2"‘8, '(X )XX
12151 %2 *2 1%

The formation of }b(x) is accomplished as before,_ The

alJ(xl,x ) terms are simply substituted for the aiJ(xl,xj),'

but here it is also necessary to substitute alg(xl,xz)

for blé(xl’ X5). The resulting }A(g) is therefore
L 2 oo t
;&(g) = - X, [éBBb ‘a23(x2ﬂ
- x, |a,l(x, + €x )3 + b@ "(%,)%, + ba, . (x,)x
3 173371 R/ R3 72772 13471771

- ap5(xp)xy = 8y 5(x) )%, - alé(xl,xg)xﬂ

- azé(xz)xz(xl *°X2)3 * alé(XI)Xl(xl'*-exz)B

t ' 1
- alz(xl’xz)ng - a1 (x)x %,
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This may be constrained to have the surfaces resulting
from the equation }l(x) 0 coincide if the radical of the
usual quadratic formula is made equal to zero. In this

4 results

case B and ¥ are made zero. In Y a term in x;
which cannot be cancelled unless a13(xl) is zero, Slnce
one coefficient is always arbitrary, set azé(xz) = 1,

Then ¥ = 0 results in

xz(x1 + cx2)3 = alé(xl,xz)xzz + ali(xl)xlxz

or
%3 + 3ex)2x, + 362 x,2 +09x7= a0 (x), %y gt (x));
s -5 2

Ir all(xl) X% then

! = 2 : 2
a19(%),%,) = 3ex;° + 3ex;x, + c3x2
" When these known coeefficients are substituted into the
equation g = O,
36x13 + 302x12x2 + e3x22x1 + agé(xg)xg =
b} 3 4 2 t 2 2 7‘3 3
bxgo + a33x1 + 3a330x1 Xg + 33330 X1Xgt a330 Xo

If terms in like powers and like variables are equated,

four equatiens result, as

: 3 = . 3
3exy 843%) (3.20a)
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36%x,°x, = 3a3;ex12x2 o - (3.20b)
.p3x1x22 = 3a3%62x1x22 ) | (3.20¢)
azé(xz)x2 = bxy + 33§GBX23 {3.204)

- %
From (3.204), azz(xz) equals

agé(xé) =5 +va3;63x22

However, 1f (3.20a) is solved for 33%, the result,

a3§ = 3¢, does not satisfy the remaining equations. These
are simply»not equalities, although in each case it is seen
that aB; should be of the form aB% = Ke, where K is a cons-
tant. Hence the faet that these terms do not cancel in
}ﬁ(ﬁ) is overlooked, in hope that the terms will actually
cancel when the form of V determined from»}é(g) is applied
to $dV/dt. Thus the V function with which the problem may

be reworked is

V = a1x14 + a2x13x2 + a3x12x2 + a4x1x23* a5x24

2 3
+ bxz + 2x2x3 + qsxz .

In this case B and ¥ ean be forced to 0, so that
AV _ 5, 2 _
3T = ZXB {(be - 1)

and, with the eoefficients evaluated,
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2
3

V= bx22 +72x2x + ex

3
+ 'é(xl + CX2)4

V is positive definite and dv/dt negative semidefinite
in such a manner that Theorem 2,2 applies, Thus the system

is globally asymptotically stable,

3.4.2 Analysis of the Szego Method

As a consequence of this last example, it is clear
that the success of the Szego method of generating Liapunov
functions depends completely upon the similarity in form
of the undetermined coefficients and of dV/dt and ;&(g),
It is true that the form determined for V abeve was success-
ful in solving the problem in question, even though }5(5)
could not be constrained as desired. However, in a preoblem
picked at fandom the oppoesite might well be true; that is,
it may be possible to constrain /4(2) as desired, but net
dv/dt. Then, of course, no result would be obtained. Hence
the Szego method, 1like the,IngwerSon method, is‘not guar-
anteed to work. ‘

On another point, the method of constraining }A(E)‘or
dV/dt is unnecessarily restrietive. The idea 6f foreing
the two surfaces that result from the equation 5}(&) = 0
to coincide is conceptually appealing as it was deseribed

with reference to Fig. 3.3. Yet the meaning is not always
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clear, as in the second-order example cited above, The two
values of xg were forced to be identical by letting a and B
be zero, where a and B are defined in (3.21). Yet if a is
allowed to be zerb, X5 becomes unbounded, asla also appears
iﬁ the denominator of the quadratic formula. Thus the grae'
phidal or pictorial significance is lost. Actually, as
1éng as B is forced to be zero, alé(xi) can take on ahy
value from 0 to 2 inciusive, and the resulting 9&(5) is
still at least negative semidefinité. This probiem is
worked as an illustrative example in the chapter to follow,
and this point is discussed further.

The last adverse criticism of the Szego method is
based upon an initial assumption of the problem statement,
namely that the nonlinearity in question can be represented
in polynomial form. This objection stems from the usual
complaint that any power series of finite number of terms
either goes teo plus or minus infinity for large x. This
behavior is not typieal of the nonlinearities of physieal
systems, and it may very well be that it is impossible to
prove global asymptotic stébility for a system which is, in
fact, globally asymptotically stable, simply because the
assumption of the nonlinéarity in polynoemial form produces
an unbounded outputkfor large x, ’

In defense of thé Szége method, it should be stressed

that the method is easy to apply and often does give re=-
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sults., ,Aiso, many nonlinear differential equations of
classical interest do have a polynemial.représentation of
the nonlinearity, such as the Van der Pol equation for
example. vIn [3] and [@] Szegb brackets the limit eyele
of the Van der Pél équation by forcing the equation
yﬁ(g) = 0 to répresent a closed and bounded surface.
The reader is referred to the above references for fur-
ther treatment of this excellent example. Formally
speaking, the mechanics‘of‘appliéation are as described
here.

The idea of assuming the unknown coefficients to be
polynomials of the State variables is made use of in the

~following chapter.
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CHAPTER IV
The Variable Gradient Methed of Generating Liapunev

Functions for Autonomous Systems

4.1 Introduction and Organization of the Chapter

This chapter is devoted to the develepment and app1i=
cation of the variable gradient me thod bf'generatingwbiaq
punov functions. vThe method is mathematically.seund and
is characterized by its ability te handle systems contain-
ing multiple nonlinearities in which the nonlinearity is
known as a definite function of the state variables, or
simply as a géneral function of x. The method overcomes
the theoretical and practical limitations of the two.
methods described in the previous sections.,

Two main sections follow this brief intreduction.

The first of these is devoted te the theeoretical consider-
ations upon which the variable gradient metheod is based.
This is followed by'a detailed explanation as to how these
theoretical cqnsiderations can be implemented. Example

problems are treated separately in the following chapter.

4,2 Theoretical Considerations
It is assumed here, as in the previous ehapters, that
the physical system under eonsideratien is represented by

{(2.3), under assumption (2.4).

oo

x = X(x) (2.3)
=0 | (2.4)

o ﬂ

x(
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The following theorem.is due to Massera Eél,.p; 206],
A preferred form of the theorem is guoted: from Kalman‘[iﬁj

for autonomous systems,

- Tneorem 4,1 [Kalman, 13, p. 397 -

- If the system deseribed by (2. 3) under assump=
tlon (2. 4) is L1psch1tz1an,* and 1f the equlllbrlum
state, X = 0 is globally asymptetlcally stable,
then there exists a V(x) which is infinitely dif«
ferentlable with respect to x that is. capable of

' ,prov1ng global asymptotlc stability.

TheﬂLipschitz condi tion implies eontinuity of g_in‘g,
Hence all physical syStems that are globally.asymﬁtotiOEIIy
stable and whose nonlinearities satisfying the :Lipéehitz |
condition satisfy the conditiens of Theorem 4,1, The :
 theorem could be reworded to say that if a physical system
with a centlnueus nenlinearity whose derlvatlve ex1sts and
is bounded everywhere is globally asymptotlcally stable,
then an 1nfin1te1y dlfferentlable V(x) ex1sts which is
capable of preving thls type of stablllty v1a Llapunov's'
second method, ‘ . v

Theorem 2,2 reqﬁiree thatwv(g):be continuous with con-

tinuous first partials, If the sealaﬁ V(x) has first par-

X(x) satisfies the Llpschltz condition in a Peglen
R if the follewing condition is satisfied

Jxw-30] <5 - 6n
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tials with respect to x, this is eqﬁivalent to saying that
thévgradient of V(x) exists, This VV is a unique n di-
mensional Vector with n components ALY in the x; diree-
tion, Thus if a physical system with continuous nonlineari-
ties is globaIly‘asymptoticallyvstable, at least ohe vy
exists which can be'determined from a‘V(§) capable[of»prd-
ving such stability. |

- Instead of assuming a knowledge of V, from which V7V
may be de@ermined, assume that VV is known. It is shown
in standard texts on vector caleulus [Lass, 22, pp. 297-
301] that for a scalar function V to be obtained uniquely
from a line integral of a veetor function,.<7v, the follewé
ing (n - 1) n/2 equations must be satisfied.

()VVi Dzvi i

i=1,2, ...n . (4.1)

Equations (4.1) are neeesséry_and sufficient eenditiené
that the sealar functien V be independent of the path of
the line integration. In the three dimensional case, the
above equations are i&entieal to those obtained from set-
ting the curl ofva vector equal to zero. This form of
Stokes,theorem is familiar to electrical engineers from
field theory. BEquations (4.1) are thus an n dimensional
representation of Stokes theorem, and these equations éill

be referred to hereafter as curl equations.

A VYV determined from avvfg) capable of proving glo-
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‘bal asymptotie stability neeessarilyameets-the~conditions
of (4,1). ‘This is seen as follows, Theorem 4.1 guarantees
that |
o v  ( . )
dxoxy ox3o0% |
exist and aré'continuous, as V is infinitely differentiable.
A theorem from advanced calculus [iaylor, 23, p, 22@] states

that if express1ens (4 2) are continuous in the Whole re-

gion, then, in the whole region,

N 2, o 2.0 |
0 “V(x) d “V(x) S
This is simply a restatement of (4.1). Hence a knowledge of
- either V(z)'or VYV uniquely defines the other, The eonclu-
sion ffam the abote is stated as a theorem,

Theorem 4.2

If the system deseribed by (2.3) under assump-
tion (2.4) is Lipschitzian, and if the equilibrium

state, x_ = 0, is globally asymptotieally stable,

Ze
then a VYV exists, frémvwhich V(x) may be obtained
by line integration, and the V(E),solobtained is

capable of establishing global_aSymptotie stability.r
This'is rather powérful existence théorem.. 1fﬂa gi-

ven sjstem has nonlinearities that can be represented by

cantinuous'fanetiens,vand if that'system is globally asymp-
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totieally stable, then a gradient'capable of establishing
this stability exists. »

Sinee the knowledge of either V or VV uniquely de-
termines the other, Theorem 2.2 may be restated in terms
of the gradient funetioh.

Theorem 4,3

.if for the equations (2.3) under assumption
(2.4) there éxisté'a real vector function VV with
elements VYV;, such that | |
Jvmi=9vv1
0 Xj 0 Xi

2, VV' X(x) < 0, but not identically

.1.

zero on a solution of (2.3) other than the origin
and such that the scalaf funetion V(x) formed by a
line integratien of vV is'continuouSIWith contic
nudus first partials,'and'

3. V(x) > O0forx#0

4, V(x)—» 0 as “ “ —> 00

then (2.3) 1s gldbally asymptotlcally stable,

This theorem is net new in the sense that it is an
exténsien or a generalization of an existing theorem.
However, in this resiatement of\Theerém 2.2, the ro1e of
the gradient functien:is emphasized;

If condition 4 above is not satisfied or if condition

2 is not satisfied in the Whole'spaee, it is impossible to
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conclude global asymptotie stabiiity, and Theoremvz.g may
be used to prove stability in a smaller region. As im-
plied by Ingwerson [i], a pOSSIble means of definlng the
region (& exists if V is p081t1ve deflnlte and
" 1. One of the surfaces, V =‘a constant,.bounds
‘the region. 'v
2, The gradient of V, VYV, is not zero anywhere
in the region except at the equilibrium
position,

3. dV/dt is negative or zero inside the region,

Proof of the fact that the region £ can be defined
in sueh a way is quite simple., If V is positive definite,
V(0) = 0, and in a neighborhood of the origin, vV is
such that every peoint, movément along the,gradient‘is
movement toward a higher value of V, 'Thevrequirement that
all of the elements of VYV not be»zero‘excebt at the
origin insures that V has no relative maximum between 0
and the curve V = K which bounds the region. Since av/at
is always negative or zereo inside V= K,fsolutions start;
ing éithin V = K remain within Ji;.

- Notiee that here again the gradient is impertant.
The following section is devoted to discussion of a methed
of generating Liapunov V functions, starting with a va- |

riable gradi ént N
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4.3 Implementation ef Theorem 4,3

A comparisdn of Theorems 2.2 and 4.3 clearly indicates
a shift in emphasis. The problem ef=determining a V fune-
tion which satisfies Liapunov's theorem is transfbrmed into
the problem of finding a Y?V such that the n,dimensional
curl of this gradient is equal to zere, or, in other words,
(4.1) is satisfied. Further, the V and dV/dt determined
from VYV must be sufficient to prove stability, according.
to either theorem, as the theorems are equivalent. Oh the
surface it may appear as thbugh the problem is actually
being made more difficult, although the opposite is true. |
The existence of the auxiliafy curl‘equdtiens is the:device
that enables a solution of the stability problem, starﬁing
wvith VV,

As the name "variable gradient? implies, the task of
implementing Theorem 4.3 is accOmplishéd by the aésumption
of a vector, VV, with n undetermined components. In or-
der to make this veétor general enough to embrace all
possible solutions, each of the n undetermined components
of the gradient is further assumed to be made up of n
élements of the form ajj Xj. The a's are assumed to be
general funetions of x or polynémials with an unspecified

number of terms, such that "VV is equal to
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Xy * G Xp oo Oy Xy ’kvl\'
Xl + azz Xq + L., _sz
Xl + 3 o0 0 ann Xn an

The a's are assumed te be made up of a constant portiona
ijk, and a variable portion ijv. The variable-pbrtien is
a funetion of the state Vériables, so that
aij = Gijk + aijv (?_{‘) (495)
~and |
a1ty (X) X+ Gygptoray(X) Xpt... oqpgetayny(X) xn\
o1k 21y (X) Xy oo

vV . : | , >

L3

i

p1xt Oy (X) X3 * oo v Spnk* Onny (X) X

(4.6)

Several interesting faets are apparent from an examination

of the ith element of the gradient,

VVi = G51x*ai1v(X) xXptee. aipt@id(X) Xite.. Giprteing(x) xp
The solution of a given preblem may require that vV Vi eon-
tain terms that have more than one state variable as

factors, It is evident that such terms may be determined

\
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from terms such as.aij(g)xi,fsuch thaﬁ'aiiv(g),need'only be
ajiv(xi). | |

\'2 is te be4deterﬁined as:a 1iné intégral,of‘Y7V, ac= -
cording te equationf(B.l@). B

| x1
v= |vVrax-= VY (11, 0 ... 0)dY;
‘1ine /o |
X2

+ ' VVZ(X

12 Yos O ..._0)d1é+ e

0
+] vvn(xl, Xgs oo Xy 7, Ypldv, (3.10)
. |

Note that ‘the aj; coefficients give rise to terms such as

.2 =y
ﬁi_l_l_ltg_’_‘_i__ and a33v(v4) V5875

A :
Here it has been assumed that “iiv(ﬁ) has been set equal to
“iiv(xi)s as mentioned above. Fbr'V.to Be positi#e definité
in the neighborheod of the'efigin, aiik;mﬁst'be always
positive., For V to represent a clbsedvsurface‘in the whole
space, or for V to be always positive, aiiv(xi)'must be an
even function of x; and > 0 for large xj. Also, if
@ik = 0:~“iiv(xi) must be even and greatef than zero for

all x4.
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What has been said above in regard to the ay;'s has
been said in view of réquirements,that have to be met by
the resulting V function if Theorem 4.3 is to apply.
This line of thinking is pursued further in the follewing
paragraphs. | |

Since the ajjy are aLlowed to be functi@ns of the
state variables, it is expected that V may well eentain .
higher order terms in the state variables,  Since this is
the case, the question of the positive definiteness of the
" resulting V becomes important.

' The term positive definiteness is usually used in re-
ference to quadratic forms, although the concept dees have
meaning for a form of arbitrary erder. Geometric means ef
insuring that a sealar function; as V(g), represents a
clesed surface are discussed in the appendix. The géometric
method used requires that one of the state variables in V
be raised te the second order, and no higher. This is ac-
eompli shed by‘forcing one “ii te be equal to a econstant,
and by forcing the remaining aj jy not to be functidnsvéf
Xj. | | . | | o

These restrietions were origiﬁally made so that av/dt
‘could be constrained by ietting the‘solutiensvto the equé-
tion dV/dt = 0 coincide. As men_tienéd in Seetion 3.4.1,
this fechnidue'is unnecéssarily restrictivé, as‘will be

made elear in Example 5.1. However, the asSumptions that



- 66 ~.

one'of-thé'aii is a censtant}and that the remainihg'aijv'
are not a funetion of xj do insure that the ? fina11y
produced from VYV will be a quadratic in xi; as is
necessary for thé geométric 6ohsiderations of the Appendix.
In problems ‘invelving automatic contfol systems,jthe
Xn term frequently appears linearly in the.n first Ordef_
‘equations that deseribe the motion of the systeﬁ. For this
reason, the assumptions of thevprevious péragraph are"
applied to the x, variable. Specifieally, a,, is set equal
to 2. This séemingly arbitrary cheice:of Opp in thé gra-
dient is equivalent to the assumption of anﬁarbitrafy o
constant; or scale faeter, ih.V;’ The'choiéevqf Snn = 2v
insures that V will eontain a term in > S |

In view of the abové-discassion; vYZV'is now
an1xt®1v(x1) X1t agpreray(x1,x2, .0 xp1) xp
+ : s o0 :‘alnk+(¥1nvv('xl, ng, . °'.an‘1) : Xn

a21k+“21V§X1’X2"°'Xn-1) X} ¥ GgoptOagy(xg) Xy + °°?

“nlk*“niv(xl’ x2’ oo Xn-l)_xl,+ e 2xp j
| (4.7)

Through an examination ef the requirements on V, the

most general gradient of (4;6),has.been séméwhat'simplified

in form to that of (4.7). Without loss in generality, the
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ajj have been constrained to be functions of x; alene.
With slight loss of generality, one of the aii,_here Gnns
has been set'équal to an arbitrary constant, and the i jv
have been eonstrained to be alJv(xl, xg, cee Xp_ 7)o This
has been aceompllshed in view of the future requlpeménts
of V. Further‘knbwledge of the unknown coefficients‘in

YV is obtainable from an examination of the generalizéd‘
curl equations, (4.1).

Consider the expéndéd form of,equation'(4.1),

DVVi aallv(xl, Xz,» PEPE Xn_ )Xl

a X R = ’ dx ‘ ° . °
D ka a“iJv(xl’ Xps ees xn_l)gu
. d X + ° . *
Dainv(xl’ Xz’ ° ,; Xn-l)xn (4e8)
o Xj
and
Qv Vj 3 >ajlv(X1’ \Xz’ 6 b 0 anl)xl ¥ . . .
) X4 &Xi ,
03Kk O “le(xl’ Xgy «or Xpo)%y
0 Xi ¥ o Xi R
D(}.inv(xl, Xg, s 4 o Xnﬁl)xn
a Xi .

Here ;)ajikxi ) % jkXj

J
and result in constant terms. If
X3 3 xJ

constant terms on either side of the equal sign are equated,

it is seen that
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[+ 30

ijk = &

jik
Thus}further know1edge of the iériable grédient is pro-
vided, this time from the curl equations, A knowledge of
the necessary values of the femaining'unknowns in VYV c¢an
be aequired from a jeint considération}of the geheralized
curl equations and av/dt. | |

av/at is determined from the variable gradient by
meansvof equation (3.11). In order to satisfy eitherv
Theorem 2,2 or 4.3, dV/dt must necessarily beiconstrained
to be at least negatiﬁe-semidefinite.- In general, an
attempt is made to make dV/dt negative semidefinite in as
simple a way as possible. This is accomplished if

%% = - K x;? (X > 0) (4.9)

where K is initially assumed to be a constant. Ir av/dat is
constrained as in (4.9), the remaining téfms in dv/dt must
be forced to cancel, This is accomplished by grouping termé
of similar state variables and choosing,the aij's te‘ferce
cancellation. The ajj's are assumed constants, unless can-
ceilation or the generalized eubl equations require a more
eomplicated form,

Grouping of terms is guided by the restrietions on the
aj j's stated above. For example, if in a third order
system, dV/dt contains the terms aj1XjXs, 013X~ and ~'x1x2§

the indefinite term, - x1x23, could not be grouped with
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 @11X1Xg, as ajj can only be a function of x;. However, if
- xix23 were grouped with algxzz, it could be eliminated by
1etting'a12 = X1X2s ’_ |

The choice of thé_aijfs'ﬁé fOrce'caﬁcellation'is not
arbitfary, as the génefalized curl equations must be Satis;
fied. In fact, if one coeffieient is chosen through neces-
sity to eliminaté undesirable terms in dV/dt, informatiénv
coneerning the required value of'oné or more of the unknown
coefficients is_ofteh supplied directly fromvthe generalized
curl equations, Thus dv/dt is constrained to be at least
negative semidefinite in conjunction with and subject to the
requiremenﬁs of the generélized curl equatiéns, (4.1). _

If it proves to be impossible to constrain dv/at as in
‘(4.8), it is necessary to attempt to constrain av/at to be
negative semidefinite in terms of two state variables, then
three, ete,, until the final attempt is made to force dv/at
to be negative definite., If no solution is yet available,
it may be necessaryﬂto‘reveft to the more'general»gradient
function of (4.5), or an attempt at a proof of instability
may be in order° In problems thét hévé béen tréated fe_
date, these lattervalternatives-have nof beeh,necessary.

- In summary of what has been said in'this:sectién, the

following oeutline for the‘formallappliéation ofithe’variable
gradient method is included,.f_- |

'1; Assume a gradient of the form (4.8),
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,4°

From the Variable gradient, form dV/dt as
-av

A vv' x, (3. 11) L

In con;unctlon w1th and. sub;ect to the requlre-
ments of the generalized ourl equations (4 1),
constrain dV/dt te be at least negative seml-,

definite.‘

‘From the known gradient determlne V and the
' reglon of closedness of . V. |

 Invoke the necessary,theoremato establish -

stability.

This procedure is illustrated with examples in the

chapter to follow.'V

4. 4 Dlscus31on of the Variable Gradient Method of Genera-'i'

tlng Liapunov Functlons for Autonomous Systems

This chapter has d1scussed the_the@retlcal.considera—A

tionsvupon which the variablelgradient'approach is based.

Whether or not the method'as outlined is applioable to prob-

lems of interest in‘automatic,contfol"remains to be shown in

' the following chapter of illustrative examples,

It has been shown.hene'that'for'all'globally asympto-

tlcally stable systems whose nonllnearltles satlsfy the L1p—

schetz oonditlon, a vector, Y?V,_ex1sts from-whioh a scalar

V may be determined uniquely by line integration., This

~scalar V function is capable of pnoving,such stability via



the second method of Liapunov. This conclusion is stated
as an existenece theorem, Theorem 4.2,

Existence theorems are reassuring, but rarely helpful
in seolving engineering prqblems. To say a solution exists
dees not necessarily imply that it can be found, However,
in order to emphasize the possible role of the variable
gradient in selving the stability problem, Theorem 2.2 is
restated as Theorem 4,3. Here it is emphasized that the
gradient enjoys a somewhat unigque position, in that beth V
and dV/dt may be determined directly from VV, Further-
mere, if V is te be unique, the generalized curl equations
(4.1) must be satisfied. Thus, through the introduection
of the variable gradient, (n~1)n/2 additional equations are
also introduced. It is the existence and use of these curl
equaﬁions that facilitates the seareh for 2 suitable V and
dv/at to satisfy Liapunov's theorems.

Initially a gradient funetion of sufficient generality
to embrace all solutions was assumed. Hewever, in view eof
the future requirements on V, the generality of the gradient
was decreased to insure that the Pesultinglv is a quadratic
in one of the state variables., Obviously this excludés the
generation of V functions such as V = x;% + x,%, which might
well be a suitable selution to a partieular preblem.

It is diffieult to assess exactly how much generality

has been leost, partiecularly in view of the fact that often
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an infinite ﬁumber of V functions éxist which are capable
of proving stability in'any given case. For the types of
problems treated in the‘folldwing chaptér,~the assumption
is apparently not a prohibitive one. For‘other classes of
problems, perhaps differentlinitial assumptions concerning.
the variable gradient may bé in order. However, it is felt
that the existence of the curl equations and the ability

to determine both V and av/dt diréctly from the gradient
are significant advantages in attempfing to find a suit-

able Liapunov function.
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CHAPTER V_ |
Examples Using the Variable Gradient Method

5.1 Introduction and Organization of the Chapter'

The variable gradiehtiapproaéh outlined in the previous
chaptef'isba method for generating Liapunov fﬁhétibns, The
ultimate criteria of any method of'obtaining’prOblem solu-
tions is not the elegance or generaiity of the formuiatibn,
but rather the applicability of the technique to the class
of problems under consideration. This chapter includes ex-
amples of increasing complexity to illustrate both the use
of the methed and the results that are obtainable.

The first four examples serve tq illustrate the mecha-
nies of the method and the types of V functions which have
been generated,

Example 5.1 is a simpie illustrative problem. Example
5.2 considers the Ingwerson third order example that has
been discussed in connection with the methods of Ingwerson
and Szego. The V functions generated in each of these first
two cases includes higher order terms in the state variables,
The ease with which integrals appear in the generated V func-
tion is illustrated in Example 5.3, and a V function which
ineludes three state variables as factors is produced in
Example 5.4. _

The remaining examples illustrate the results that are

available from the applicgtion of the variable gradient



- 74 -

method to several of the more interesting types ofvprobléms.

Example 5.5 considers two systems, each of whieh has mere

than one singularity. A system with a limit cycle is dis-

cussed in Example 5.6. The last example is_a rather exten-

sive discussion of the so-called "generalized Routh-Hurwitz

conditions" for nenlinear systems,

5.2 Examples

- Example 5.1

Assume the system is given by the bloek diagram

of Fig. 5.1, such that the equations of motion written in

state variable form become, with X] =X

17 X2
X9 = 7 Xg = x13
Step 1
@11%1 * %%, vV
VV = =
GoyXy + sz VVé
Step 2
av _ ve
aE vvix
_ e 2y . v 2 4
= XX5(a09 - agy = 2%;°) + x4 (“12“2) - %1%y
Step 3

If the given system is stable, there are a large
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r(9=0, X | y=feo| Y | |
>0 | y=x

Fig. 5.1. Block Diagram of the Control System
of Example 5.1
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or even infinite, number of V functions, with a correspond-
ing number of dV/dt's, which will show the system to be
stable. In faet, it is the existence of this large number
of suitable Liapunov funcfions as opposed to the one unigue
solution of the initial nénlinear differential equation-
-that gives the Liapunov method an advantage over classical
methods in the determination of stability.

Here there are a large number of ways in which dv/dt
might be constrained in order to prove stability. However,
in order to be able to éonciude anything about stability,
dV/dt must be at least negative semidefinite, In Example
6.1, this can be accomplished by setting the ceoefficient of
x,%5 equal té zero and by assuring that x22 and x14 have
zero or negative coefficients. The latter can be accom-
plished if ajp is any positive number from 0 to 2, and if
agy is any positive number ﬁhatever; This is less restriec-
~ tive than forcing the solutions of the equation dvV/dt = 0
to coincide, as discussed in Section 3.3. Hence, ayp is
assumed to be a constant between 0 and 2, and sinee it is
constant, Ggy = ;5. With the ceefficient of XX, set equal
to zero, dV/dt becomes |

av

2, | 4
TE =~ X (R - ag5) - 0%y

The requirement that the coeffieient of X1Xg be zero is sa-

tisfied if
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o 2
@1y = 99 * 2%

Therefore, with these substitutions, VYV becomes

tegral

v

a, . X. + 2% 3

1251 S Tl

1272\
vV = -
012%1 * 2Xp
Step 4

V is determined from (3.10) to be the line in-

_}5_ Xl Xz
vVidx = (Gy0¥1 + 2712 )ay: H  (Gq0%X7 + 275)d
X 12Y1 Y1 T3 12%1 Ygl)dYg

o

o o 0

X 4 Uy X R '
1 1271 ‘ 2
5 + 5~ + allexz + x2 s 0

i

Step 5

Here V is positive definite and 1lim V —> 00 as -

the “g“‘—4> 0, such that V represents a ¢losed surface in

the whole space. Since dV/dt is also at least negative

semidefinite in the whole space, by either Theorem 2.2 or

4.3,

the system of Fig. 5.1 is globally asymptotically

stable.

Example 5.2

This is the third-order example'of Ingwerson, the

block diagfam:of which is given in Fig, 3.2, Ingwerson was

unable to obtain a solution to this problem when dV/dt was
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constrained to be a funetion eof x32, and the solution
achieved by Szego was achi eved ohly.thrqngh a rather spe-
cial set of fortunate circums taneces, as_showﬁ-in,Section 3.
3.2. The equations of motion are repeated here for eon-
venienee, | |

7 X2

kd

x5 = = (xg +‘cx2)3 - bx,
From (4.6), the gradient is written as

+ Q. X 7

Q. xl+’a 1553

11

12%2
vY = “21"1 }+ “22"2""' a23‘x3

+ 4 _,X, + 2x

o 32%2 3

31%1
From (3.11), dV/dt in ordered form becomes’
v = | ‘ |

T = u%ley, - a3p%% - 3a30x,%)

o+ Xzz(“12‘3“320312’3“32¢2X132‘3“31°2X12‘“3103X1x2‘“32¢3x22)

! - .-o - 6 -y . .
+ xlx3(a.21 | baBl 2x12 6cglx2 6c?x22)
o+ x2x3(a22 + a13 _ a32 b 2¢ x2 )
* 3 (.23 ) - 3171

Sinece the solution is being attempted in terms of 332, L3
is set equal to zero to eliminate the x14 term, and thus

Gls is alseo zZero. If:a32 is set éqnal to zéro‘in order to
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foree the»xg4 term teﬁbe zerb,.both,aleand Go1 would have
‘to be zero, and this is not possible, Hence, d32 is left
undetermined for the moment. Note the twe underlined terms
above., When remqved fr@m_the-parentheses in whieh they
.are now enclosed,uthese terms contain the three staﬁe
variables as factérs, One might at first wondér gxactly _
hoh theSe terms should be gfeuped,,whether they:shouldvbe‘

with the x,x5 terms, the XpXq terms, or with the X3X4 terms

as they are now located. Under the restrictions placed on
the d's by equation (4.7), only the present lecation is
allowed. | |

For terms in X)Xg to vanish, Goy must be equal ie

- 9g 2 e 22
Goq = le f_ﬁcxlxz + 6¢ 32

and x,x, te vanish,

Similarly, fer terms in x2x3 1%

i _,,.3 .
a22 baBz + 2¢ xg

and

- e x?
931 T %32%y

Thus far, VYV has been determined te be

s .
GgpXy” * CG1p%Xp

VY = 2x1? + 6ex12x2 + ﬁclexzz *'baBzxz + 2@3x23 * GgqXg

: +
a32x2 - 2x3

and dV/dt has been found to be
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av _ 2, 2 2 2
IT = %o (al2 - 3532cx1 - 3a32c XXy = a3203x2 )
2
X \a,, =:2b) .
3 (a23 2b)

By means of the curl 'équé;fi‘on”rél'aiing_ VVy and VVs, -
the coefficient a;, may be determiﬁed; In solving for this
coeffieient, information fegarding a32 is automatically ob~
tained, First, both sides of the equation o

oV va2

=

I Im

are determined to be

. OvVVi ., Jesv D“lzv
Tox; T F1” "‘Q'sz. *a1pg * Gy * Xp o5

3Y7V2 J(z ;5@ »
= 2 ¢ 2_2 32V 23V
—jrgz- = 6x;" + 1lR2ex;x, + 6c7x5" + bx2 —:r——- X,

If terms in equal pewers are'equated, the first result is

D% 3y C J%svy
’ = 0 2 = ~
BoE T Um t 0
A possible combination of terms is
<. 3 D“szv - bx J“gzv
This equationvhas the seolution G3oy = 0 9r'“32V = x14—2bx22°

If the simplest solution is chosen, a32v_= 0 and
“23 = a32 = a32K + 0

Two equations remain, namely
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) S

. aq o1 I . . N :
L F12V 2 : 2, 2
Glzv + Xg % = 6X1 + 126X1X2 +.60 Xo
Thus the form of aqo is known immediately as

o = - 2 | 2, 2
a1z = 0 + ajpy = By [T * By XXy + By 07y

Simple manipulations with the twe equations above determine

that

2

2 2
X2

_ 2

The only remaining ceefficient te be determined is
a23K = “32K° The required value is obta1ned if Gyoy above
is substituted inte dV/dt.

¥

av

2ea. 2 2 2 2 2

+ x z(a 2b)

3 ‘923K ~

By equating terms of equal powers, a32K is soon determined

to be 2/¢, Now dV/dt is completely known, as is VYV,

2 2
av _ X3
TE =" 5 (be -1)
and _
2/c x> + 6x,°x; + 6ox x5° + 2¢7x,] | \
={ 2x.3 2 2 2 2e3%. 3
vV 2x,” + 6ex;x, + 6¢°x,x,+ 2b/e x, + e xyo+ 2/e x3>

+ 2/e Xg + 2x3
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av/at has been constrained to be negative semidefinite and
the géneralized curl equations are satisfied for VV; in
fact, they are the means by which VYV is determined. Aall
that remains to be done is to determine V and the region
for which V represents a closed surfaee. From (3.12); v

is found tovbe

_Xl Xg- _
- 2 3 3 2 2_ . 2.2b 3, 3
vV = APRCASY | (Rx, +6ex, "1 +6¢ x172v+7;72+2c.72 )dv,
) o
3, :
o

After grouping terms, Vis

_b 2.2 _ - 2, 1 4
V=g ¥ g XXyt ¥y tgg (x+ exp)
The fractions in beth V and dV/dt may be removed by multi-

plying each by the constant ¢, As a final result

eV = V¥ = bxz2 + 2x2x3 + ch2 + %(xl + cx2)4

cav/at = av/at* = - 2x,%(be - 1)

dv/dt is negative semidefinite and not equal to zero
on a selution of the system if (be - 1) > 0, and V is
positive definite under the same eonditions. V also satis-

fies the limiting eondition as the norm of x goes to in-
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finity, and henee V represents a closed surface in the
whole space. According to Theorem 4.3, the given system
is globally asymptotieally stable if both b and ¢ are
positive and if (be - 1) > 0.

The solution to this problem'is lengthy perhaps, but
nowhere was the procedure vague or diffieult. In the eva-
luation of ¢y, it might have been assumed that 2P was a
c&nstant. Or this fact might have been guessed as in VVy
the coefficient of xp Was bagy, and another term in x23
already exists, This wouid have reduced the length of the
solution, but in no way would have changed the results,

Example 5.3

The two previous examples considered systems in

which the nonlinearity was expressed as a polynomial in x,
and the resulting V functions contained higher order terms
inlg, as opposed to the usual quadratic form for V. This
eiample differs from the first twovin that the nonlinearity
is not known as a definite function of x, and further, the
linear portion of the sysfemvcontainé a zero located at an
afbitrary point B. |

The problem of example three is illustrated by the
bloek diagram of Fig. 5.2. In this synthesis problem it
is desired to know the restrietions en the nonlinearity and
oh B for which the system will be glebally asymptotically

stable. The problem is considered signifieant because of



- 8¢ -

:ff(x;')‘ % S+ﬂ

O -F | yexak) | slsen |

Fig, 5.2. Block Diagram ef the Control System
of Example 5,3



- the 1ntegrals that ~appear naturally 1n the Llapunov func_
tion Whlch is generated o ' SR

- For x1 = X, the equations of motlon are.

Xy = Xg
AT . S B (3 )x' “h
S E T T % T ax Tt FELAL
As before, let
| G11%1 * 912%2 |
VV::
Gg1Xy + 2Xg |
so that 5
av | ay 2 ( )|
T T x)%p 911 ~ %1 Jx; T “21 - Bg X1
22+za-a - a, Bg(x)x‘
) xl 12} 21 1

If the coefficient of the xlxz'term:is'foréed*tOLvahish,'*

L 5 N
@41 = Gzl + 321 a'x""'l + ZBg(Xl)

and o

Oy .
a21X13+ Gnq 3§I xl'+ ZBg(xl)xl +. 015Xy
vV = ' ” | | L X
’ o 0-2 1X1 + 2X2

The optimum choice of 0y = “219 a constant is best seen
from a joint examlnatlen of V and dV/dt As before, from

(3.10), V is
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X1 ‘ Xy .
vl L2 e xtha OF 4 ay +2 Oridr,
| B~ X Hap X Xt Xg %21 371 Y1 Ylw B, g(Yl)Ylle “
, = ° - P .
vdV/dt has not éhanged. It'is seen from dv/dt that if ay5
is 0; then dy/dx,_the slope of the'nonlinearity, may take
~on a maximum negative slope of unity before the xgg'term_
changes its sigh. Henee it might be declded to let “12
be just that. However, if this is done, V becomes
| X :
vex2+28 [ glynan
| o
V is positive definite if the integral is always
poSitive,land v repreSehts a closedvsurfacérin_the whole
 plane if the integral goes té"ihfinity as the upper limit
 goes to infinity, To remove thié latter festfiction on
clbsedness,.alg mighf be chosen as the,arbitrariiy small
mumber €. Then the allowable minimum slope of the non-
linearity, as determined in dV/dt, is not changed signi-
fieéntly, yet V is closed in the whole spaéé indépendent
of the integrals, as long as they are positive. Since‘fhe
nonlinearity was speeified as y = xg(x), g(x) is always
positive if the nenlinearity,liesliﬁ the first'aﬂdvthird
quadrant, and, undér these conaitions, the integral in-
volvihg'g(xl) is always positive. |

The final form of V and dV/dt is then
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V=g ey xy € 9%— 178v1+28(  &(v7)1yd7,

7= - 2x22(1 + 39% - %) - e8elx)x,>

It is seen that as leng as B is positive, or the zefo ~
is in the LHP, the value of B is not iﬁportant. Aé men-
tioned, the problem“is indluded aé ahbexamplewto illustrate
the‘ease with which integrals are}introduced into vaithout
having to guess their existence beforeﬁand. | |

Example 5.4

Example 5.4 is artificial in the sense that the
block'diagram,'Fig. 5.3, Which_correspohds ﬁo the dynamic
'équations of motion of the system; contains five loops
and is not a system that might be expected to be encoun-
tered in practice, However,'the system doeé conﬁain more
than one nonlinear element, and it is particularly in-
teréstingwbecause the linearized fifstlépproximation of
‘the system, as‘detefﬁinédvbybdropping all higher order
terms, has poles on the jw axis of the s plane. ‘Hence,
the linearized first approximation of the system yields
no information concerning the stability of the aétual non-
liﬁéar system. It is shown iﬁ this'example that the exaet
nonlinear system is asymptotically stable in the entire
state space; that is, it is globally,asymptotically .
stable. |
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Fig. 5.3. Block Diagram of the Control System
of Example 5.4
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The problem is interesting from another point of_""
‘view. The V function that proves astptqtie stability
eontains a term 6x12x2x3, However, the pfééence of 3
state variables as factors dees not altér the procedure
that has been previously established, The preblem is
’selved in exactly the same Way. | |

The equatlons of motlon correspondlng to the system

invFig. 5.3 are

o B
Xp = X4

X3 = - 3X1333 ;.2x2 - éxixzz eixi3“

Here the large number of negétive'tefms in dV/dt is

reduced by allewing one of the azi's to be zero. In this
case ayy is set equal to zero, and as the ultimate ob-
jective, dV/dt is constrained to be a funetion of xzz.
Therefore, the negatlve term in X12X32 is cancelled by sét¢
ting apg equal to 6x12, and one eurl equétioh'isJused to
determine that ags is also GXlgf -Avsécegdlof the cﬁrl
equations determines that ay, is i2x1xé5 and with these

substitutions, dV/dt is found to be
ay o 2, o
T = Txaleny - 6% + x7(egp - 36x7x5) -
- 12x; x2 + xsz(azg - 4)

+ X1x3(a 2xl - 18x1 xz?



Terms in x4X,, XoX4 gnd x1x3 can be eliminateQ by‘setting

_ _ 4
all = le.
‘“22 f 4
o 9u 2 100 3
Gy, = 2x1 + 18xl x2

' The term in x13x23 can be forced to vanlsh by causing “12
to equal 36x13x2. Henee the attempt here has been to force
av/at to be | - |

10y 2.2
= »:12x1 XZ' _

L

by using the gradient funetion

322 & 12x.:
1 X, 12x.x

+ 36x 'y 2x3

3 Y -
X7+ 18%) "X, 4 A%y ¥ 6X7xg)

2
+
6xl xz 3x3
That this is not a sétisfactory gradient,function can be

seen by appljing the remaining curl equation

val ' bvv2

To% © T

val 3
*?y;g-‘z 72x1 Xg * 12x133 :
OV,

_ 2 3 .
-?¥§E~.— le +v72X1 Xy + 12xlx3

These are not equal, and it is seen that G1oy must contain’
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. IThe second term is de-

more than one term, as did Gogv

2
termined from the equation directly above as 6x1». Hence,
the final value of VYV is

5 2 , 2
6xl + 36x13x2 + 6x1 Xy + 12x1x2x3

_ 3 4 .
vy 2xl + 18x1 Xg + 4x2 + 6x1 x3

2
6x1 Xq + 2x3

From the VV, dV/dt and V are determined in the same man-
ner as before. - | S
6.3 ... 4 2, 2 2 | 2
v = Xy 12Xy "Xp+9X; Xg +2x5 +6X, x23:3+x3

av 2 2
I m - 6x1 Xy

Using geometric considerations, (see Appenéix) it is
possiblé'to,shdethat V satisfies fhe‘cbnditidﬁé of
Theorem 2.2. dV/dt is negative semidefinite, and the sys-
tem is globally asymptotically stable.

VEXamp13~5;5if’~f”

The block diagram of Fig. 5.4 pictures a non-
minimum phase control system whose dynamic equations of

motion are, with K= 0, 6 =1, y =~ 1 and B = 2.

‘Xl

i

. = - - 3
X5 vxg + 2Xl Xl

The configuration of the given system is such that the des-
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KS+S

oY U s |

Fig. 5.4. Block Diagram of the Control System

of Example 5.5
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cribing equations above'contain singularities not only at
the origin, but at % V2, and the linearized first appro-
ximation indicates that the solution is unstable in the |
neighborhoed of the origin, This infermation need not be
known in advance, as it is included in the rathef interest-
ing solution of this problem, With VV as in (4.7), dV/di
is found to be |

av _
dat

| . 2
x Xp(ayy - agy + 4 - 2%,%)
2. .2 4
+ X2 (312 - 2) + 20}21){1 - Gglxl
If an attempt is made to comstrain dV/dt in terms of
%), no choice of ay, is possible, such that dv/dt will be
at least semidefinite in the Whole plane. However, if

a,.. is allowed to be 0, and

21
vall 2xl 4
then
av 5 2
dt = © ~%p
and
3
2x1 - 4x1
vV = A
sz

By integrating in the usual manner, the resulting V is

x14 2 2

V=—2—-2X1+X2
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~ For very small values of xl,—the fourth-powor_term-‘r
vabove is negligible eompéred to the second-power term, and
may be neglected. The remaining quadratic form is'not,é
definite function, and hence does not represent a family
of closed curves about the origin, no matter how small the
neighborhood. Geometric considerations, however, iﬁdicate”
that the curve is indeed closed, though hot around-the'
origin, and a family of these V curves is plotted in Fig.
5.5. The curve V = 0 bounds the région._beof Théérem 2.3.
Since dV/dt is negative in the whole plane, any solution
stérting within the curvevV = @ will proceed to the en-
closed singularity as time runé-to>ihfinityo It is im;, .
possible ﬁo-éay whether a solution starting>outside of the
curve V = 0 will términate at the singularity.located at
+\[§- or -QFE'. It will definitely not terminate'ét tho,
origin, since the equations of firs; approximation deter-
mine the origin to be unstaole,

Thus for the choice of constants that was initially
made, a complete analysis of the system requires an evaiua—
tion ineluding negative values of V, |
v If the constants in Fig. 5.4 are chosen so .that K = 1,
8§ = =1, y =1, B8 = 2, the equations of motion of the sys-

tem are



Fig, 5.5. V Curves of Example 5.5
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R |
; = = 3 2 ! ....‘ | 3
%, = 13(X1 + l)x2 2x; +ox)

This time the origin is stable and the two nodes at 2
are unstable. An analysis almost identical to that above
results in a V and av/at of .

4 2

2 X3
= TE ot X,

V= 2x1 

A e - x5, ¢ 1)

Again the plot of V thus determined is quite unusual. For
all values of V from V = 0 to V = 2, the equations actually
represent three diseonneeted:curves, as may bevseén from
Fig. 5.6, 1In this césé the regien .2 @f Thééfemiz.g is
bounded by the curve V = 2 for lill<: Vr§: A1l tréjééto« :
ries that enter this region épproaeh the drigin at '

t =@ ., BSeveral typical trajectories, as determined by
the isbcline méthod,‘aré superimposed on the plot of the
VY curves in Fig» 5.6, The behavior of these'trajectofies 
agrees with the interpretation that results from_viewihg

the V curves alone, -

Example 5.6
The application of Liapunov's second methed tﬁ.
‘seemnd-erdér systems with limit cyeles has been censidered

in papers by Szego [4], In§wef$on [2], LaSalle [}5], and in
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-0.5

Fig. 5.6.

v Lumveo and Trajectories of the Alternate
Example of Example 5.5
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the reéent book by[Graham and McRuer 243. The firsﬁ two
authors make use of the phase variables, which have been
used exclusively in this report thus far, while the re-
maining authefs use a more general sfate_variable. The
applicationvof the variable gradient method isAindépendent
of the coordinate system, as is demonstrated in this e#4
ample of the Lewis servomeéhahism~[§raham, 24, p. 360] in
Whiqh the soiution is obtained in beth coordinate systems,
A possible bloek diagram of the Lewis servbmechanism
is glven in Fig. 5.7, and the equation governing the dyna»

mics of the system is

+ 2 ; (1 - alx])i +x =0
As Graham p01nts out, this is a speclal case of the Llenard
equatlon .

¥+ £(x)x + g(x) =

for which La Salle [15, P- 23] has recommended the change
in varlable - : x
y=x+ £(x) dx
. ) o .
With this substitution, the two first-order equations of

motion become. X

17c=y-/ f(x) dx
o
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| _‘r(f)»:O_A: e g >< 

canen

S24 26 S+

2alxx, 2 || Function Box

| @‘_ o =2 x| f N

] >E%h

Fig. 8.7, Blockaiagram of the Control SjStem
of Example 5.6
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Here the variable y is no longer the veloeity, but the
velocity plus an integral involving the nonlinéarity.__.
Hence the x, y plane ne longer represents the phase plane.
For the speeific problem under con31derat10n, the two

flrst-order equations are
xz
&
v ¥y X 3
j=-x

Here the equations are'normaliZediwith.zs = a =1,0. Frem

the variable gradient, dV/dt is found to be

- av o 2 . )
at = wlegy = 2 - ayp) = x (ag; + agy)
; o
+ a 2 12x il
11 5+ a2 V2t Tm

If av/dt is to be negative semidefinite in any region, aj,
must be set equal te zero. With alg = 0,_a21 = 0, and if
aj1is 2, dV/dt becomes '

g% = - x°(2 - x)
VYV is simply
2x
VvV =
and V is found by line integration to be

Vex®sy?

V is the equation of a eirele in the X, ¥ plane, and the
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given physical system is asymptotically stable within the
radius 2 of a cirele in the x, y plane. Any limit cycle
must lie outside of this circle,

A similar solution is obtained through the use of
phase coordinates which, with x; equal to x, describe the

system as

X2

(Al
[\
]

"Xt lxllxz g |

Proceeding as above from the variable gradient, dV/dt is

av _ .
T = %X (a,, - a,, + a21‘x1|- 2)

A deeision to constrain dV/dt to be negative semidefinite
in terms of xzz results in a dV/dt which is negative only
within the range - 1 < X3 < 1; an answef that agrees with
the’results‘obtained from'the application of Bendixson“s

first theorem [Graham, 24, p. 350]5 A better solution is
obtained if dV/dﬁ is constfained in terms of xlz° Toward

this end, a;, is set equalvto

) = 2 = 2'xﬂ
The application of the only curl equation that applies in

this second order case determines that %91 is

agy = R - |X»1l
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'With these substitutions, the X)Xy term in dV/dt is can-
celled by allowing 2y to be |

o,
ayp = 4 -3 lxll M |

and thus dV/dt is constrained to be

av

P
at X (R - lel)
The coefficients in the gradient whose values were initially

unknown have now been determined, and the gradient is

le'- lkllxl + 2x,

V is determined from the usual line integration to be

L ow 2 _ .3 P | 2

V is a closed curve within the range for which dv/dt is
negative semidefinite. This cur've,r V=4 is identieal
with that.obtained using,the coardinatés recommehded by
LaSalle, if the indicated change of variables is made. The
results are indicated in Fig. 5.8, which was taken directly
from Graham andeeRuér [24, P, 35i]. It is‘séen that the
cufvé Vv = 4'close1y‘fesembles the limit’cyclé, while the
conclusion based on Bendixson's theorem indieates that no
limit cycle exists between x; = I 1., This latter conclu-

sion, while true, gives little informatioen.
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Stability boundary
~ . (Bendixson)

" Unstable
limit cycle

Fig., 5.8, Estimates of the Region of Stability Given
by Bendixson's First Theorem and by the
Second Method of Liapounoff (From
- [24, p. 351])
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In some cases, as, for example, in the van”der Pol
equation, it is possible to find,a}surface over which
dvV/dt is zero. In such cases the limit eycle can be
bracketed by V curves tangent inside,ahdjoﬁtside to the

av/dat = 0 curve I:Szego; 4].

Example 5.7 | |
The last of the examples to be included in this
section on autonomous systems is”thé.so;called_ﬁﬁizerman
problem.” Simply stated, the Problem is to determine a
”géneralized Hurwitz"tcriteria for nth order hohlinear

systems of the form

| xn‘+‘a1,1(3<_)xn""l +,an;1(§)xn'2 + .., al(g)x.= 0
where the coefficients are not constants but functions of
the state variables. This problem hés been considered by
AizerMan [2$ﬂ ah&wﬁy Hahn [26],’and solutions to different
phases of the problem have been contributed by Ingwerson
[2], vasalle [15], and Barbatin[11]. The discussion here
is restricted tdwsecond and third ordef systems,

Consider the father general second ofder nonlinear

differential equation
X + A(x, i)i + B(x)x = 0

In terms of the phase variables, the given second-
order equation is equivalent to the follewing twe, first-

order equations
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S T

I

| " Xg = - A(xlg xz)xz - B(Xi)xl
Starting from the variable gradient, (4.7), av/at is de-
termined to be

TT = X1%e [“11 - agy Alxy,%5) - 23("1)]
2 | | 2
* X3 [“12“,“319"2?] - ap3B(x1)%,

The most general result is achieved when Gyg = @9y = 0,

and if the xyx, term is caused to vanish, dv/dt becomes

av 2
-t Sl 211{(){1,:%_,‘)1:‘2
and VV is
zB(xl)xl
vV =Y
2X2

V is once again determined by. a line integration, and the
result is
X1

| AP 2
V.: 2 B(Yl)Ylle + Xz

and
%% = - 2A(x13x2)x2

If the coefficients A(xlyxz) and B(xy) were_constants;

the Routh-Hurwitz ceondition for stability of the given dif-
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ferentiai equation would be that the two’coefficienis‘be
positive. If the two coefficients, now a funetion of x:
are p081t1ve for all x, the V and dV/dt determined. above
are positive deflnlte and negative semidefinite respeetively.
Thus the system described by the given differential equation
is asymptotically stable in a region about the origin., If
the integral in V goes to infinity as the horm df X goes to
infinity, then V represents a elosed surface in the whole
..Space, and the system is globally asymptotically stable.

In a sense, the condition imposed on the integral is
an additional requirement to the usual Routh—Hurwitz con-
dition that the eoefficients be positive. In another
sense, it may appear less restrictive, as hefevB(xl)
Seemingly need not pe always positive, as long as the in-
..tegral is pesitive fdr all xy. The system of Fig. 5.9 is
-such a system. The differential equation describing the

system is

2

b i

% v + -
X + X x(1 x 5

Here A(xl,xz) is simply unity and B(xl) is

B(§)=1-x2+ X
1 1t 15
4 plot of B(x;) is pictured in Fig. 5.10, and in the range

from 1.24 to \/3, B(x;) is actually negative. However, the

integral
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X(I»—xa»—i-ar-)(—:')' o _‘5(S+jl-)~‘ |

Fig. 5.9. A Nonlinear System Which Apparently
Vielates the So-Called "Generalized Hur-
witz Criteria®



- 108 -

Fig. 5,10,

Graph of the Nonlinearity
of Fig. 5.9




--109 -

X A
/C B(Yl)vldvl

is p631tive‘for all x;, the 1eas£ value of the integral
being .25 at x; = V3. Here v is’always-greater than zero,
for x # O, and V also goes to 1nf1n1ty as - “ ” ——9-00._'
Under the assumption that A(xl,xz) 1s always greater than |
zero, dV/dt is negative semidefinite. The conditions of
‘Theorem 2.2 are apparently satisfied, and one is témpiéd
to conclude global asymptetic stability. If this were
true, the usuallﬁouthuﬁﬁrﬁitz'conditionsjthat A and‘B be
greater than zero would be violated. In this case global o
asymptotic stability may not be concluded "as the given
equation has four add;tlonal,slngularltles ;n addltlon te
the eguilibrium point at the brigin. ;Theorem-z;z‘does not
apply. In’general, if B(x;) ever become s negative,vﬁhe
system will have more-than,one,stabie or unstable equili-
brium point. . | e

For the third order linear system of the form

X3 = - AXB - BXg = CXI

the Routh-Hurwitz criteria requires that for stability,

AB - € > 0, If the coefficients A, B, and C are not
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constants, but are functions of the state variables, the
gquestion arises, as in the second-order case, if the
Routh-Hurvitz conditions are satisfied for all x, is the
systenm stable? . |

This question has been considered by several inves-
tigators, and the following information pertaining to |
their results is presented on the following pages.

1. The block diagrémiof the system.

2, The differential equation of the system.

3., The V funetion which proved the system asympto-

tically stable. |

4, The aV/dt determined from the given Liapunov 

funetion V.

5, The referénce.

In each of the cases cited on these pages, the re-
sults were presented by the various.authers with only |
slight justification fer the assumptions made in forming
the Liapunev function, V. Through the use of the variable
gradient, it becomes evident why it is possible to obﬁain
the results above, and further, how these results may be
extended.

The basis of the diseussion to follow is the general
derivative as determined from the variable gradient for
the third erder system above. In this general derivative,

the coefficients of the differential equation are written
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y=xCh) || sases |

Block Diagram of the Ingwerson System .

Differéntial Bquation, with %y = x
*1 7 %2

Xg = Xg
%3 = - A%z - Bxp - C(x)x
x

1 .
_ B°

2

V=4 C(vy)yy Ay + T %

A + B 2

2
3

i

- : 2 ' ‘
av/at BC(x; )% +,zc(x1)xlx3 + Ax

Reference, Ingwerson, 1 , 2

~Fig. 5.11. The Ingwefson Example
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r(l‘)=Oo |

)

: B (x 2) - .(X % ‘ ‘ | X, ‘

1. Bloek dla,gram of the Ba,rba,shln System
2. leferentla,l Equat:a.on

Xl = X5

Xz-_—XS

- Axy - Blxpdxy - OCx)xy

]

X o
3. V = ZA/ C(Yl)Yl d71'+ 2C(X1)X1X2 + [Ag + B(xz)] ng
) o ) -
+ RZA XgXq + X4
O C(x;)

4., av/at = - szz [AB(Xg) - C(xl)]- + .?.xl -9——1— xgz
5. Reference, [Kalman, 13, p.. 384] o

Fig. 5.12. The Example of Barbashin
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| r'(t‘)-:O ~ s

>0 -} | s%Bs+c

' FunChon

.ié i | o EB()Xi »b | ' E?

X

1. Block Diagram of the Example of La Salle
2. Differential Equation

X = Xg
Xy = X, |
§3 = = A(xz)x3 - Bx, - Cxy
2 2 _2¢
3. Vo= 5 X t 20X1X2 + Bxao™ + —B—°X2X3
X2 ‘
2 2C _
t Xy v g A(Yg)Yngg
50
- 2x

. 3 ' :
4,  AQv/at = 5 _Eg(xz) B -'Cﬂ
5. Reference La Salle 15

Fig. 5.13. The Example of La Salle
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as though they are constants. In the discussion to follow,
one or more of these coefficients wiil be allowed to be
functions of the state variables.
The general dV/dt is
av ' _
T = X1%g(eg; - Bagy - Cag)

- Ac_, - 2B)

+ x2x3(a13 + oo 32

. X1X3(a21 - Aa31 - 20)‘

2

- Caleil + ng(alz - Ba32}'- x32(2A - a23)

Consider the Ingwerson example, which eorresponds to
a rather practical automatie control syS£em configuration.
The significant feature of the solution of this problem
is not the V function itself, but rather the manner in
which it was possible to constrain dV/dt. dv/dt is cons-

trained in terms of Xq and x Why this is possible is

30
evident frem careful consideration of the general deriva-
tive above, where C is now considered to be a funection of
xl, or C = C(xl). c(xl) appears in the X1 Xg ﬁerm along

with aq,, which may be a function of Xy. Hence the x;x,

term may be caused to vanish by letting

= BaBl + C(xl)a32

%11
Cbnsequently, an integral appears in V, since C(x;) is not

- know explicitly. C(xl) also appears in the X1Xg term, and
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- this coefficient may be retained as long as terms in‘xlg
and x32 are also retained. Thus in the X1 Xgq term, azlris,
allowed to be Aagy. Ir 3] is not allowed to be zero, the
xlz term does not vanish, and the femaining constants are
determined rather mechanically to obtain Ingwerson's re-
sult, as indicated in Fig. 5.11, |
This result was possible for two reasons. C(x;) ap-
peared as a coefficient of the séme term as ayy, and hence
could be cancelled by ap;. C(xy) did not appear as a coef-
ficient of a term which also had ago as a coefficient, If
this had been the case, no canéellation would be possible,
és 4y, Can not be a function of Xq These pointé aré‘emn
phasized in the following paragraphs.
An alternate solution is possible for this problem,
The C(xl) term inxlx3 may be forced to vanish by letting
Goq be equal to 2C(x1); with Gay = 0, and thus the syétem
may be éonstrained in terms of xzz alone, Here it is in-
teresting to note that since agy is a funetion of xl,“the
curl equation’
avvz Q‘v vy
PEET

requires that a12 be
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Thus dV/dt, as determined from the gradient-cohtaining this
additional partial derivative term, is
- ' 1 2 Jex)
%% = - 2x22 [&B - C(xli] + 2x22_x1 jfiil' _
- In systems where the nonlinearity is of»the saturating
Ktype, as, for example, y = éretan X] or arctan xj plus some
kx4, the last term is always negative. This alternate
solution, of‘course,'is less_generallthan»the ingweréon '
result, The point is that from an examination of the
~ general derivative, as determined from the variable gra-
dient, more than one means of attacking the problem is |
evident;  | ‘
Further examination of the general dV/dt reveals that
the term B, if allowed to be B(x;), enjoys the same unique
situation as C(x;) did above, if at the same time aj, is
set equal to 0. With @gy = 0, a3 will not contain a term
in xg frbm B(x5). Then B(xz) in‘the'xzx3 term maykbe can=
celled with the ap, coefficient, which is allowed to be a
function of x5, and dV/dt may be constrained in terms of x22,
This result is contained in thé Barbaéhin result quoted by
Kalman,
The coefficient A, if allowed to be A(xp), is in an.
identieal situation as B(xZ) above, if azy is allowéd’to
be zero once again. Then A(Xg)'in the xpx3 term may be

cancelled by the ass. This time it is necessary to cons-
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train dV/dt in terms of xszvto avoid the appeérance of
A(xz) in Ggg, a8 this A(xz) would appear as a coefficient
of xyX; and could not be cancelled by ay;. If av/dat is
canstréined in terms of x32, the solution of LaSalle re-
sults,‘as in Fig. 5.13,.

The thought immediately arises that if A(xp) and
B(x5) have the same position, Why not let each of them be
functions of x, at the same time. This proves to be im-
possible; If an attempt is made to constrain dV/dt to
be negative semidefinite in terms of any one or two state
variables, in each case ajj ultimately proves to be a
function of either A(xz) or B(Xz). Similar difficulty
arises in other cases in which two variable coefficients
are considered, as A(x;) B(xj), Alx;) C(xj) or B(x;) C(xj),_
i, j =1, 2, 3, except for the Barbashin problem, Fig, 5.12,

In the Barbashin example, the nonlinearities are des-
cribed as B = B(x,) and € = C(x;). dV/dt can be cons-
trained in terms of ng, with Ggy = 6 and Ggg = Ggg = 2A,
a constant and nét a function of x5. When this is done,
ay5 = 20(xy) and, as in the alternate solution of the Ing-.
werson example, a partial derivative is introduced in the
derivative. |

It méy be somewhat disconecerting to learn that more
solutions are not available from the variable gradient

method for those cases in which more than one variable



- 118 -

coefficient is considered. An examination of the'biock‘
diagram of such systems indicates why this is the case.,
If two cdefficientsvare‘functions of the state variables,
the linear portion of the system contains only two terms
in s, In’the Barbashin example, Fig. 5.12, the linear
portion of the system is 1/sz(s + 4), and it is indeed
surprising that the system is stable at ail. For the
case when A= A(xl) and C = C(xl), as in Fig. 5.14, the
1inéar portion of the system has three poles on the jw
axis., It comes as no great shock that global asymptotie
stability cannot be proved in this case. |

The difficulty‘lies_in the differential‘equation re-
presentatiqn that is being considered. The cases of Fig.
5.12 and 5.14 represent configurations that are seldom
met in automatic control practice. In fact, it is’thé
author's opinion that such cases are of little more than
academic interest,

A case of practicai interést is that of-%he’third-
order system with one Zero,-as pictured in Fig, 5.15, .A
second-order servo motor‘compensated with a lead lag net-
work can be considered to be of this configuration, as can
a third-order model of the motor 6ompensated with tach
feedback.

A solution is not possible, or at least not obvious,

by using the differential equation representation that has




Fig. 5.14. Block Diagram of an Hypothetical
Control System



>0 T | y#xg‘(x)' - I,S(S#)‘(s}f)"_'» i

)

Fig. 5,15, Block Diagram of a Practical Control
System
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been the sub ject of this example thus far. Suech a repre-
sentation wouldvcause.both C and B to become funetions of
xy. However, if the system differential equations are de-
termined directly from the biock diagram and ueed in that
form, the method applies directly and the results are of
immediate interest.< Based upen the bloek diagram of Fig.
5;15, the three, first—erderbdifferentialiequations des-
eribing the eystem dynamiesjafe

X, = X

% = x

Af(xl) :
xg = =(Y#8)xy - Y8Xy - —35— x5 - Balx)x

. Letting (y + &)

M and vé& = N, these equations become

xi = Xg

it

Xy = X,
| - éf(xlf

Xy = - M X5 = N x, - -—3;;—‘x2 —_Bg(xl)xl

Through the use of the variable gradient, as in (4.7),

dv/dt in ordered form is found to be
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of (%)
v - *1%2 [“11 - a3 N - e‘31‘3_"‘ - “32‘3%("1)]
| zbf(xl)‘

+ X x3[:13 - aszM - 2N =- f?YEI——]
* XIXB[ 21 = %M - zﬁg(xl)]

f(x )
+ x2.2 [0'12 - a32N - cc b 1 ]

(a23 - 2M) « a 1Bg(xl)xl

Stability of th1s system is definltely a funetion of B.

B appears in dV/dt as a coefficient of the x;x, term and

of the xlx3 tern ., The B dependent portion Qf X1Xg is easily
cancelled by a suitable choice of a;;. Hence, dV/dt may be

most easily eonstrained in terms of X, and x_, ‘With this |

3
in mind, the xz2 terms are forced to vanish if

o . N+ 3 f(Xl)
f12 7 %32 T T Csaya—
From the XoXg term, since “22 cannot be a functlon of x3,

.“13 must have the form |
20 £(x))
“13 7“3k T T X

Thus, VVy is known to be

O£ (xp) 20f(x;)
Vi1 T8 2t [32 N+ ag Z)xll ]x?- [“13k * ?X3X1 ]"3

Using the first curl equation, it is seen that
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-*-D.V"lg e gf(xl) viz
0% - 32 Bzaxl P ESY

‘Here it is recalled that‘f(xl) = xlg(xl);,'Hence if ayy is

allowed to be
. a21-= q,»32 N + a,3'.2 g(xl)‘ o -
VV2 becomes

/

| sz = “‘32le '+ a}32g‘(xi)xl.+ »azz(X2)_X2 + ‘.1231{3
and

avvz o B Dfa(xl) )

755;. % aszﬁ + @32—2r§If'_

if aéB is‘assumed to ﬁe'a constant. The‘firét curl equation

isbsatisfied. | | | “
Oons1der a second curl equation

vV z)r(xl) va
5 ekt yE A

With the relationship between f(xl)_and'g(xl) in'mind,

a3 is allowed te be | |
»a31»§~“13kv+ 2g(xy)
Sinece aj4 Was assumed constant, a32 = “23, and VYV, is now
VV3 = G1g®y 7 Qg(xi)xl + GgaXy + RXg

The second eurl equation is satisfied. Because no coeffi-
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Hcients in Y7V2 of‘ VV3 are functlons of xo er X3, théilast

’,‘curl equation has already been satlsfled by setting

Gog = 32, a constant,

If the xl , term in dv/dt is elimlnated av/at will
‘have been constrained in terms of-xl and Xge The X1xg term

is eliminated if dll is set eqﬁal to

)f(x .
= a31N + 0.31 ‘—D""“ + “32Bg(xl)

D) Delxy)
= a13kN + ZNg(Xl) + algk_?'-T + gg(xl) —g—x—l—" '

+ a23§g(xl)
av/at is now

%¥'= = “glgg(31)312 - XiXB'[¢31M'* ZBg(xl)'- agi]

Substituting for ag) and G,;, dV/dt becomes

| 2
%‘if =T [“131: * ?.g(xl)] Be(xy)x;

- Xle[é13kM - a23Nv+ Zg(xl)M'f ZBg(xl)b- q23g(x1i]
2 on :
The eonstant portion eof X1Xg abové is removed if

_ag3N
%13k T TH
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3 £ LY S C('231

Now all of the elements of VV are known within g

constant to be

, _ | | .

X ag 3N SCEN )E‘(,Xl} , D.f(xl)

| | - aggNT |
Vg = a23ﬂxl + a23g(xl)xl + azBM + BN - =g | %o+ OnqXg
Gg4N L

and |

av . 2 2 ‘ o

IF = {- gsg(xl) Xy - XlXBg(Xl) [28 + 2M - agj - X33(2M a‘a23)}

Qo N
2 ’
- =~ pe(x)x’
;5 2 . » .
Note that the X3 term remains negative for a23 < 2M.

If in f} above, the following substitutions are made

oM - o

1

g5 =2 or gy =20 - B)
x18(%q) = zy
X3 = 23

av/dt becomes
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%% = _{ggzlz + 4pzz, + 28z32 }
- 2(M "MB)BN g(xl)xlz

- {} is negative semidefinite, and the,remaining term in
dV/dt is also not positive for positive N, M, B, and g(x;),

as long as B § M. |
| if the polés‘of the linear portion of the original
system are in the LHP, M and N are both positive. g(x;) is
positive if the nonlinearity y = f(xl) = xlg(xl) lies in
the first and third quadrant, (M - ) > 0 if B is less
than or equal to the sum of the open loop poles of the .
linear portion of the given system, It is interestingvto
note that this is exaetly the condition required for the
root 1ocué of the linear portion of the system to remain
in the LHP for all values of gain from 0 to oo .

If it is assumed that the solution'of the equation

dV/dt.% 0 does not satisfy the given system equations,
then dV/dt satisfies the requirements of either Theorem
2.2 or 4.3, However? before any decision concerning sta-
bility ean be made, the closedness of V must be established.
V is determined by a line integration of the gradient to

be



)f(v )

V= (2N + ag,8) | g(vl)vldvl “TT“ - ;y“““' Y1‘”1

X o
- . £(vq) N>
+ 2 Ylg(71)1ZD¥EL~ *'. 23

o

131. t oggNxyXp

2 ‘
* aggelx)ay Xy [?ZBM *aN s ,rilJ A et

+ Zg(x )x x + a23x2x3 +. x32

The integral with aStérisk above can be evaluated, since

xlg(xl) = f(xl). The integral becomes

f(xl)
2 £(vq) df(vl) = f(xl) = g(xl) x,°
Jo - .

The V determined above}is quite comﬁiicated; It is
difficult te draw any conclusion for an arbitrary non-
linearity and an arbitrary'zérd locatién,.s. HoWever,’it
is possible to select a zéro location that will prove
global asymptotic stabiiity fbrya large clasé of nbnli-
nearities. If B = M, gy, = 0, then V becomes |

3 |
V = 2N g(vl)vldfi +’Nx22
. ‘ +

+ [é(x )2 2 + Zg(x )x x3 + XB%]‘
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Ir in[:] 5. g(xl)xl is set equal to zl, and x3 set equal to
Zgs 'V becomes ’
X1
2
V = 2N g(Yl)yldyl + Nxo~
o '
2 : . R
+ [zl +,2Z1Z3 + ZB’]_

Vis pdsitive definite if N is positive and if the integral
is greater than zero for all‘xl.' If the integral also goes
to oo as X3 — o, V is sufficient to satisfy the con-
~ditions of global asymptotlc stablllty.
dv/dt, corresponding to the V above is

- - 28z + 2)?

If dV/dt is not identiecally zerb on a solution of the
system, which would be rarely true fér such a complex dV/dt,
global asymptotic stability ofvthe giveh system is assured,

The class of nonlinearities for which V is positive
definite is very large. The nénlinearity need not be an
odd function, although it muét lie in the first and third
quadrant enough of the time se that the 1ntegral stays '
positive., If the nonlinearity saturates at any finite
value, the integral will go to oo as x; —>00. The slope

of the nonlinearity is not important,

In a sense, the solution to the above problem is dis-
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appointing to ancontrol engineen. The solution required
that § = M, the sum of the open leop poles. Practieally
speaking, this is‘impossible, A better answer Wculd be a
range of B for whichbglcbal'asymptotic stabilityvccnld be
concluded. Another alternative requirement might be the
size of the reglon of global asymptotlc stability. for a
given range of:B. Such questions can be answered, but noﬁ

until the nonlinearity is specified.

5.3 Dlscussion of the Appllcatlon of the Varlable Gradient
Method to Speclflc Prcblems . ‘

Chapter IV included,avgeneral discussicn of the va-
riable gradlent method of generating Llapunov functlons,
This chapter has applled the method to speclflc problems
of englneering interest, As a consequence of thls appll-__
eation tc a large range of stablllty prdblems the followgv
ing conclusions are reached: |

1. As concerns nenllnearltles, the methcd is apnli-

cable to single-valued, ceontinuous nonllnearl-
ties where the nonlinearity is kKnown as a poljav\
nomial, as a specific funetion of x, as a
general function of,g,bcr'as a curve'determined
from experimentai resnlts}

2., As concerns coordinate Systems, the_method_is

applicable independent of the particular state

 variable formulation used. In the examples,
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the phase variables were used almost exelusively.
‘This was dene for:¢0nvehiénce, and because it is
possible to treat in the same way systems that
have one or more.integrafions5 ﬁultiple poles,
poles or zeros in the RHP, ete.
3 .As coﬁcerns V funetions, the method generates V
functions to suit the preblem’at'hand.: This faet
‘was illustrated in Examples 5.1 to 5.4, where V
funetion with highef order tefms, integrals, and
terms involving three state variables as factors
were generated. |
~ The question may be éskéd as to why.this method of
assuming a genérél gradient is better than a methbd
aSsuming a genefal V; The answer is clear in terms of the
examples bf this chapter._'if a V general enough to include
the sqlutioné of ali of the examples had been selected as a
starting point for each preblem, the number of terms re-

sulting in dV/dt woeuld have been completely prohibitive.
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- CHAPTER VI -
The Application of the Variable Gradient Methed -

to Nonautonomous Systems

6.1 Introduction and Organization of the Chapter

The term nonautonomous System refers to all systems
which are either forced or nonstationary, or both, ihde-
pendent of linearity or nonlinearity. The form of the dif-
ferential equations arising from time—varyingnparameter '
(TVP) systems and from driven statienary systems is aif-
ferent, thus it‘is convenient to treat these two types of
systems in separate sections.

The first type of system to be considered is the non-
stationary type, as this is more closely allied to the work
that has been presented in the previous section. The defi-
nitions and modifications necessary to take care of the
expliecit time variations in the system differential equa-
tions are made, and this is followed by a discussion of
several adaptations of the variable gradient that make it
possible to take into account this new condition., Examples
indicate the application to both linear and honlinear,
time-variable-parameter systems,

Forced systems cannot be said to be stable in the
sense that they seek an equilibrium point. Hence a dis-

cussion of stability of this type of system is not appli-
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cable, and is replaced by a discussion of ultimate bounded-
ness. A'théofem>on‘bbundédne53‘is“éited”and specific ex-
amples are given to indicéte’thé‘meaﬁs”ﬁhat are availablé
fhrough the variable gradient approach for determining the

region of ultimate boundedness,

6.2 Time-Variable-Parameter Systems -

The pattern of the»secﬂionjdevoted to time-variable-
parameter (TVP) systems is similar to the pattern estab-
lished in the eonsideratiéhlof autonomous systems. After:
the neeessary definitions are presented, the Liapunov . . .
theorem applicabie,is stated, and means of implementipg
this theorem aleng_the lines of the variable gradient are

considered,

6.2.1 Definitions and Applicable Theorem

The purpose of this seetion on TVP system is to de-"
“termine the stability of a set of n, first-order, ordinary,

differential equations of the form

é = X(x,t), where x(0,t) % 0 '> (6.1)
Because of the explieit time dependence of the right hand
side of equations (6.1), it is neecessary at the outset to
define the exact meaning of the term. stability in this
nonstationary case.,
The feilowing definitions are made under the assumption

that the equilibrium state being investigated is the erigin
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and that_zxg,t) = 0. The,definitioné ane 60mpatib}e_with
thevusual definition$;,és;”for ins£énce,_fhése of Kalman
[li] or Szegeu[zi]e .Howeven,,as;in-éeetion32,4 on auto-
nomous systems, the definitions are stated in terms of the
regions S(r) and S(R), rather than in terms of & énd}?(él)f

Definition 6.1 Stability in the Sense of Liapunev

The origin is said to be stable with respect to

the coerdinates xy and the‘initial time t,, if, cor-
- responding to each S(R) there is an S(r) sueh that
every solution starting in S(r) does not leave S(R)

for all t > tg.

Definition 6.2 Uniform Stability

The origin is said to be uniformly stable with
respeét to the coordinates x; if, independent of
the initial time t , corresponding to each S(R)
there is an S(r) such that every solution starting
in S(r) does not leave S(R) aS»t-e—>fm>b

Definition 6.3 = Asymptotic Stability

The origin is said to be asymptotically stable
with respect to the coordinates x; and the initial
time t, if, eorresponding te each S(R) thefé is an
S(r) such,that.every solution starting in S(r) not
only stays,withinvS(R)_butvapproaches the erigin

as to <t —= 00,
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Féﬁ?Deflnltlon 6, 4 Unlform Asymptotlc Stablllty
T pet ‘origin is 'said to be' unlformly asymptotically
"' Stable with respect to ‘the coordlnates xl 1f 1nde~ff
?pendent of the 1n1t1al tlme’tég‘correspondlng to"eachb
~ ""S(R) there 15 an S(r) such that every solution’ start-
‘'ing in S(r) not only. stays within S(R) but. approaches
" {he origin as t-—q» 0.

“"In eaeh ease above the 't:ypé-‘*' of stability defined is
local,  If the’ reglon “S(r) ineludes the entlre space, each
type of stabllity deflned above s global As before, 1$-
‘terest is principally in global stabllity? aﬁdrﬁécéﬁse, in
general, an autematicfcéﬁéééifsﬁsiémfmust:fﬁﬁctiBﬁ*iﬁdepen-
dent of Some arbitrary time tg, the pﬁiﬁéiﬁai interest is
in global uniform asymptotiec stability. —~ =

 since eQﬁati6n (éfi)”éﬁéﬁé“is:éniéibliéifEfﬁncfion of
timégiit éighi’ﬁéfeipééﬁéd that thé?Lidﬁﬁnéﬁ.fﬁnétisﬁ re-
quired to prové"sfabiiiﬁﬁ may likewise be ‘4 function of
-time., This is true, and’ the ‘basic ‘theorem. applleable to

the nonautonomous case is" as fellews.

Theorem 6.1 [Kalman,” 137, p, 378 =7
" IF for the system of equations (6.1) there exists
‘a sdsiaf'fuﬁétibﬁ*V(éng;With"ééntiﬁﬁﬁus”firsiwﬁar-
tiais with respect ibvgﬁsnésifsﬁéﬁﬁfhat 7(g,t) = 0
and E

‘1. V(x,t) is positive definite; that is, there
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exists a continuous, non-decreasing, scalar
funetion o such that a(0) = 0 and, for all

t and x # 0

o <ol |x]) € viz,0)
2. There exists a sealar function Y such that
v{(0) = @, and dV/dt along the motion starting

at t, x satisfies for all t and x # O,

%<l < o
3. There exists a continuous, non-decreasing
sealar funetion B such that B(0) = 0 and, for
all t,
o T(x,t) S B(-Hzi;”)
4, af Hém ) —> o0 as Hg“'._4> 00

THEN the equilibrium state x = 0 1is globally, uni-

e
formly, asymptotically stable for t 2> 0.
Note that Theorem 6.1 requires a new definition for
pesitive definiteness in the nonautonemous case., For
V(x,t) to be positive definite, V(x,t) must be greater than
or equal to anether positive definite funetion, which is in-
dependent of time, and this inequality must held for all
time, Kalman points out in a footnote that the require-

ment on dV/dt is less than the requirement-of negative de-

finiteness, as Yy is not required to be a non-decreasing
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function. However, here, in attempting to apply the
theorem, a negative definite dv/dt is always sought.

Conditions 1 and 4 above insure that at any instant
of time, V(E,tl)brepresent‘a familyfof nested, c¢losed sur-
faces about the origin in the entire space, Becausé}V is
van explicit function of time, conditions 1 and 3 are neces-
sary to insure that the variations of this family of sur-
faces with time are not such that stability'cannot be con-
cluded.,

»Gonsidéf, for example, the'family-of surfaces in two
dimensions

2

vV =et X% + e xzv_ o (6,2)

If both sides of the above eqﬁation are divided by the ex-
ponential, it is seen that as time indreéses, this family
of cireles has an inereasing radius, Even though dV/dt
may'be negative, V may be increasing at suqh a rate that
the net movement of the trajectorieé‘may be away from the
origin. This is aﬁ intuitive expléhation of the necessity
‘of requifement 1 of Theorem 6.1, |

Conditions 3 is sometimes stated as a requirement that
V(x,t) have an infinitely small upper bound [kalman, lé],
meaning that V must be bounded in all'of’its eoordinates
for all time, Szego |27] states this requirement differen-

tially, as
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lim  V(x, .t) = 0. uniformly on t, for t 2 to5
Hx‘~$=0 ' |
The.problem of determihing a V(E;t) to fit the conf”.

ditions of ﬁhe_theorem for a given problem is geeesearily

more difficult £han in the autonomous case, The'épndi-_' 
tions of the theorem are moretrestrietive, end.dv/dtimus;_’.
be determined not only from the gradient_but from the
gradient and another partia} derivative With”respect te_t,i

Methods of determining V(g,.t)rare the subject of the

following pages.

6.2.2 Methods of Generating Liapunov Functions for Non-

Stationary;SyStems

VThree methods are proposed in this section for the
solution of TVP problems v1a the second method of Liapunov,
These methods rely heavily upen the varlable gradlent tech»
nigques which have been developed in previous chapters.

Method I | |

The first method is based mpon the fact that the
constants of a physiecal system arevnever actua11yvconstant,
but are always changing, due to aging, and environmental
changes, In the analysis of physiCai systems; these time
variations are ignored, and yet the'resﬁlts of the theoreav
tieal analysis often agree quite Well with physiecal
realit&. The first method suggested for the generation of

Liapunov funections for TVP systems is a procedure identical .

4
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to that in which the parameters ‘are assumed to be constant
Time var1at1ons are 1gnored completely, and the system is-
treated as a f1xed parameter system. et e

| At f1rst glance, 1t seems that th1s approach hassli::
little chance of success, until it 1s reallzed that dV/dt:L
Wlll almost surely contaln a derlvatlve W1th respect to o
time of the tlme varylng coefflclent ' Only 1n the excep»ﬂﬁ
tional case conld this tlme derlvatlve be expected to canw%'
cel. To ignore the tlme var1at1on in form1ng V s1mp1y -
amounts to the acceptance of a time vary1ng term in dV/dtvg
before the . problem is started ' o B

This procedure is satisfactofy if it is possible to

limit the ‘appearance’of’ the time varying coefficient in V
to be the coefficient of a &efinite'tefm,:'This assures
that in av/dt the term’arisingffrOm’“DV/At'Will“be7a de-
finite term in one-Of“the“state variables, It is*possible
that this term may be over ridden by other negative de-
fihite'tefms»in»the-samefstate*Vabiable in'dv/dt, This
matter is clarified in the following example,

Example 6.1

Consider the second order differential equa-"
tion, -
X + AX + B(x,t)x = 0

which, in phase variable form becomes



As before, let

dvV/dt becomes

- ayv '
I = 9% [all - Adgy - ZB(xl,t)]

2
* X, (0'12 - 24)

- ale(xl,t)xlz +()V/ét

Ir B(xl,t) is considered for a moment only as a function
of X5, a4y becomes
and, with a,, still unspecified, VYV is
| Aagyxy + 2B(xy,t)x) + 61Xy
VvV = ‘
a21x1 + 2X2

As in previous chapters, V is produced by a line integra-

tion of VYV, and is found to be-
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B(xy, 8)xdx) + ag) X)Xy + Xp°

With V eompletely known, aV/dt is also completely known.

av 2. oy
IT = - X (2A3-ra12)

;x s

- agB(xy, t)x” + 2 lZf%:B(Xlst)xld?l
Quite obviously a,, should be made as iafge as pos=
sible, or ag) = 24 - ¢ , and the resulting V and av/at
o R
V= (4-€)Ax?+2(h-e)xx, + x52
X1 L
‘f 2 B(xl; t)xldxl

and
C ota v om 2 .2
X . :
1 .
o ) B(x,t) .
- x7dx
» )t 1L
o
If the integral in V is always greater than zero, V
is always greater than the time independent positive de-

 Pinite funetion
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= 1 - 2 _ . 2
wl(z) = 3 [A(A € _)xl + 2(a ‘e)xlxz + xz}:l )
Thus V is positive definite,
In order for - dv/dt to be greater than a time inde-
pendent positive definite function, B(x;,t) must be always
positive and must contain a linear termbof arbitrarily

small-magnitude. That is, B(x;, t) must be able to be

written as
B(Xl,t) = Bk + Bv(.X]_,t)
Here By may be arbitrarily small, Then - dV/dt is

ay | , | | 2
- = 2B (A -)x® + €x% + 2(a - €) By(xy,t)x

X
1
Cof 9Bt

%]
If
X1 -
2 Bv(Ylat)
(4 -€) B (x,0)x)” > | ——F— 1141y (6.3)
A |

for all x; and t, then - av/at is greater than the time in-

dependent positive definite funetion

Wo(x) = 3 I:sz(A - € %%+ € Xzz]

V and dV/dt meet conditions 1 and 2 of Theorem 6.1, Un-
less the nonlinearity is specified, it is not possible to

guarantee that conditions 3 and 4 are realized., For in--



L yan

stanee, iﬁﬂB(ﬁl;tggéi”k'+ etxlz, V. would" net be* bounded

in its Xy coordlnate, and condltlon 3 1s Vlelated
The differential equatlon under d1seuss1on corres-MWN

ponds to the block dlagram of Flg. 6 1 A nonlineanity

w1th a small 11near element and whlch lles in the flrst
and thlrd quadrant for allxt Would have B(Xl:t) alWayséﬁéﬁ'
p081t1ve as Pequlred | This is also the ‘type of nonlluﬁfmﬁ
nearity of interest in the automatie control area:'lwwgqﬁw
Two further observatlons can be made. If the partial

of Bv(xlgtj:with«respeet tewtnlsanegatlwe;“theﬁinequalitxﬁg
(6, 3) 1s always valld. If the partlal is not negatlve,

then B(xl,t) must contaln a s1gn1ficant constant portiono
It is the mlnimum value of B(xl,t)Ethat is of 1mportance
in (6.3). Secondly, the amplltude of varlatlons in
B (xlst) are not of importance, but rather the rate of §§1
riatlen is the crltical 1tem°% . B
N It is poss1ble to constrnct many nonllnearltles fer
which inequality (6.3) is Valid; for example, a linear ’
térm*ﬁius’énﬁedd functibnﬁbfﬁxifmultipifedﬁbynefﬁqwduldﬁei
" be sufficient, sinece the ‘partial 'with-respect: tg tiweuld-:
be negatlve. Thls mlght be expected s1nce the ferward
gain Weuld be decreas1ng as tlme 1ncreased in this case.

A nenllnearity for ‘which the gein Hs 1ncre381ng.weuld bhe

. - » ) » B . k
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r(1)=0+ X Y

o

q¢ = t
50 % .yx (x,1)

S(Si'-A)\

Fig., 6.1. Block Diagram of the Control System

of Example 6.1
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Here the & in the exponential may,be'arbitrarily smailé so
that the gain actually increases as t for any range‘ But -
the exponential: must be 1neluded to satlsfy condltien 3 of
Theorem 5 1. |
Method II |

The seeond method of generatlng Llapunov func-'
tions for TVP systems is based upon thevrealizatlon that
the additional constralns on V in Theorem 6 .1 appear be-
cause V is an expllcit function of tlme. Hence, Method II_
s1mp1y requires that dV/dt be constralned in such: a way
that t1me does not ocecur in v, that is, Vis 31mp1y V(x)
This method compliments Method I rather rlcely, as no
derlvatlves with respect to time appear in dV/dt, and
hence the quantity of 1nterest here is magnltude‘rather,
than rate of variation, Again the method is il'l_ustratec.i
by the rather geheral exampie‘of Fig,'6.2, for Which-the

equations of motion are
xg = - 8(t)xy - glx)%;

This example'eorresponds to a ﬁenlinear System with a time
varying load or damping. From the usual gradient, dv/dt
- is determined to be |
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i
-
z
<
|
X

Y1)=0, X | y=f(
y

0 F

s [ssth] |

i
x -

O
—

X

Fig. 6.2. Block Diagram of the System Discussed Under :
- - Methed II |
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T = 5% "’“2_15("")' - 25("-1)] |

+ xzz[ 12 - 26(tﬂ - a, 1g(xl)x

Sinece 1t is postulated that Vv could not be an explieit

functien of time, av/at is constrained to be

Tt = - 0218(x)x P05 8(6)x)x,-x,2(25(8) - ay)

by use of the gradient

[2E(x)xy +lagaxa |

v Certain assumptions must be made in regard te g(xl)
and 4(t) to insure. thatv- dV/dt is positive. deflnlte.
-First it is assumed that 6(t) 1s always greater than some
'arbltrarily small number, e % This 1s not 1110g10a1 1n
terms of the system, as' thls 31mp1y requires the "pole"
of thevlinear portion of the system to‘remain in the LHP,
If 6(t) has a least valwe E‘,'thé xzz term in aV/dt re-
quires that ajp = agy < 28(t), or ayp is also € ., To
insure that - dV/dt is greater than another positive de-
finite function, W(x), g(xl) must alssbhave at least a
~ small eonstant portion, sovthat ~ dv/dt may be written

as
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av o .o » | -
- cmx P eb(t)x g + xp2(20(8) - €)
‘ . . . " 2 o —

Then
- A g (gkxl‘?' + é(t)xl_xz + xgz) .
and - dv/dt is positive definite, As in previeus problems,
the nonlinearity in thé system has been assumed to lie in
the first and third quadrants.

-V is simply determined from the gradient to be

x

2

or

gy (v1)13dvy

Now, as desired, V is independent of time?:andnv is alse
positive definite and goes to e as _“5“ — 00, The eon-
ditions of Theorem 6,1 are,satisfied, and the system is
uniformly, globally asymptétically stable. | L

To be speeific,'in'the example above, aSSume that |
o{t) is &y + Ay éin wt, and let y be a nénlinearity‘of,the
form y = Kyxy + szlg(xl),'where Ky may be afbitrarily
small, The system of Fig, 6.2 is glebally, uniformly,



- 148 o0

’asymptotically stahleiaealohgfaexé(taZiseaiWays.pesitive,
or if A3 > As. In contrast to the solutlen of the pre-
vious problem, there is no restrlction here on the rate

of variation. o may be any number whatever., In addltlon;5
it sheuld be noted here that the varlatlon is large, Seo.
that no artificial restrletien need be made that varla-
tions be slew and/or small,

 Methed III

At the outset of theﬂtnveStigatieniofﬂTVPfsys-*ﬁf
tems, ithaS‘felt}that this*thirdfmethed?woﬁldﬁproté'to be
- the most suceessful in solving the stability preblem. How -
ever, the results attalnable by this approaeh prove ‘to be
vless general than ‘those mentioned above, and as’'a econse-

quence, this last method of genmerating V functions will |
”omly be mentloned as a subgect for further con51derat10n.
In con51derat10n of equatlons of the form (6 1), in
the most general case, V mlght be expected to be a func-
tlon of both x ‘and t.. if time were Considered as simply o
another coerdlnate, say Xn+1$ dV/dt could Still be cens1=“§
dered as dV/dt Y7V” x.; Thus instead of V being V(x,t),
v becomes V(xl, xg, ..,' n+1)» and it is pos51b1e now to o
system° The 1dea of 1ncrea51ng the erder of the system by
cen51dering time as an addltional varlable was’ suggested »

by ROZ@HOGR [39] in connection with Pontryagln“s maximm



o

Qboundedness =

"[Rekas1us,

ot
\f\

ns in’ S(R)

stability in"
S(r)‘must be ¢
is stable in

chosen large

o .Ji_ , will approach.fl asymptotlcally as

t —> 00,
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- - The basic theorem relative to ultlmate boundedness is
f»due to Yosh1zawa [29] A statement of the theorem due to

,-Rekasius [28} is given below.;
Theorem 6.2 [Rekasius 23]

‘ Let.IL be a bounded reglon of the equlllbrium
N Vstate xe 0 of the system of equatlons (6 1) and ‘
E tilet ¥ be 1ts complement ' Then (6 1) is ultimately
.;’bounded to_JL if there ex1sts a scalar functlon V(x)
" such that | | o | |
| 1) :V(x) > 0 for all x in -Q_.*
2) V(x) is locally L1psch1tz1an

3) Um o V(z) -
e

-4 dV/dt < 0 for all x in .Q* -

If the region.Jl is simply the orlgln, this theorem o

. corresponds to a Llapunov stablllty theorem.; Condltlons

| 1, 2, and 3 above requlre that V(x) represent a one para~ S
‘_lmeter famlly of nested closed surfaces about the region Jl
_ The problem is to determine the size of the region £,
E .the region to which the solutlon is ultimately bounded 'Of l‘
course it would be more des1rab1e if one were to ‘be - able to
’;establish a reglon in which the solutlon always remained
but thls capabillty is not afforded by the above theoremo
| For simplicity, ‘consider first the usual block dlag-‘

"ram representation of a unity~ratlo automatlc control sys-



tem in Whlch the 1nout r(t), is no longer‘zero;_ The con-il
'flguration is that of Fig. 6 3. Here once a@aln no spe«
hclal attentlon is glven the 11near system.‘ It is treated )
as a spe01al case of the nonllnear system, 1n whlch g(e)
is the forward galn K ' In general the nonllnear dlf-'

ferential equatlons descrlbln“'the system of Fig. ,3 are-

S = e

env=:-'anenfe an-len-l,“ a2e2'~ alel

.- -‘ f(e)m _ hmf(le)n"l '.v.“.‘ b2 g_%e_)— -blf(e)

+ rn +’ahrn';.+i;o.,a2 afv+‘air S

Here.the eQuations are written in termg-efeérror; e,'ra-v
'ther than in terms of the output 'x;iand’the”ﬁse ofbthe
phase coordinates is retained ‘asaeisenherelin thisvnork. -
Notlce that the above formulation}reqnires:that as~many
deriVatlves of the input ex1st as?the order of the system.’
A1s03 the nonllnearlty mst possess as many derlvatlves

as there are zeros in the system° These are deflnltely

' 11m1tat10ns on the type -of - system that can be handled 1n

the phase coordinates by the approach_belng described, In
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RO, E[yfe | Y [ X
“” 2 y=egle)| |7 ]

S'*’i'br;‘sf““.f cee bz‘S"' bl N

Gls)= ————
S vSn+OnS~v+.'.+Ozs+'O' |

Fig. 6.3. ‘Block Diagram of a’Conventiohal Control
System with an Input
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systems with no zeros, it is possible to write the edua-
tions in terms of x, and thesé limitations no longer |
exist. |

Because of the form of equation (6.4) and because of
the similarity of the theorem on ultimate boundedness to
that of the theorem for asymptofic stability, many of the
results of the prévious sections are directly applicable.
The procedure is similar to that used in Example 5.6 in
connection ﬁith’limit cycles. Here, however, it is neces-
sary to find the region outside of which dv/dt is always
negative, and then to choose the smallest V. curve to cir-
cumscribe that region.

In the examples that follow, the input and its deri-
vatives, as in (6.4) are replaced by M. M is the maximum

value of
5] n-1 . : =
[r' + a,r + L. agr + alr’] max = M

As a first example, consider the block diagram of
Fig. 6.4, In terms of error, the equations of motion be-

come

e]- = 92
: af(e;) L

or
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Fig, 6.4,

 31ock Diagram of a More Speclflc Example-

- of a Forced System




o . df(el) »
ey = = Ay - —g5— % - elg(el) *M

From the gradient, dV/dt .i-s f-ounc’l t:o ,be o o
. df(e ) .
o av , og 2]
qE erezfoy - Aag; - “21 "T" - ‘2»-%‘-(31)].
| df(e ) - s
+ 92 [12 - 24 - 2 —qe ]‘ ag18(ey)ey

+ az.lMel‘ + 2M;e2

av/dt must be ceznstraihed so that the region in Whiéh dv/dt )
is not negative is a minimum. In this case, the bound of |

ey 1is indevpenc:le'nt of a5y, and hence oy is chosen to be th_e» ,

| arbitrarily small number € , so that the extent of ey

might be minimized. The coefficient of the eieé' term is

forced to be zero through an obv1ous choice of “11’ ahd

dV/dt is thus constrained to be

v L 2[ny 20 o
It = " 2 [ A T dey 'G:l * '21‘1_?2.:‘,

- € '}i[elz g(el) - Mel] .

and, from the gradie’nf, V is

YV = %@-‘ 912 + eelez + e2 +€‘

X1

+ 2 g(Yl)Ylle
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For - dV/dt to be positive definité,,the magni tude of{él -
must be v | o
n - M
'|e‘1| > zley)

To“bevspecific, consider the linear system for;which_:
the'input is a ramp. Then M is A and_g(él):is K, thé'for#"
ward gaih, and e 1is bounded by | i o

| lell > %
Here in order to make the region a minimum, A should be
reduced to as small as nuinber as possible;~and K"shoﬁld:_,
‘be increased to as large as_poésibie._This'is completely
reasonable for the giVenvsystemvwithva ramp input. Thus
the second methdd of Liapunov begins'to-look-like'a design
tool when épplied fo éystéms where the form of the-input
is known . B ' |

| In the casé of a nonlinear system, the-minimum value
of g(el) must be considered in determining the size of the
bound, Thus in the case of a nonlinearity such as y =
_arctan ey, which represents saturation, g(eljvis unity for
e = 0, but it goes to 0 as ey goes to'infinity.'vHence,v
- for this nonlinearity, the siée of the bounded region
‘would be infinite. If it were pbssiblevto approximate
the given nonlinearity with y = arctan eq +vk1e1, thev

bounded region would be a fuhction of k;, and the method
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would giveﬁa resﬁlt. The Liapnnov method here suggests

that the designer not 1et hlS components "saturate com-;mr

.pletely_o

It should be noted 1n pa581ng that although apparently |
11tt1e ‘use was made of the varlable gradlent approach in-
the solutlon of thls problem, actually the resultlng V confd
tains two integrals. '

If the system of Fig. 6. 4 had a unlty numerator, the

equatlons of motion may be ertten in terms of x as

Xy = - sz - f(e) = - Ax ;—'(r»—.X)’g(e)t
From the usmnal gradient, dV/dt is formed ‘and 1t is seen

‘that only a portion of the coupllng term, xlxz,‘may be re-

'moved by lettlng “11 be ale. The remalnlng dV/dt is h'

df = - azlg(e)xl - Zg(e)x x2 - X. 2[?A - alZ]
+Aaglg(e)nx1-+‘2g(e)rxgv*

The term in XXy could not be removed hecause g(e) is e,

function of r as well as xl. Hehce the problem-of'deters

m1n1ng the region of boundedness 1s somewhat more compll—
2

- be allocated to take care of the coupllng term in Xl 2, and

7 the remainder of these terms is used to determlne the :

and x22 terms must



- 159 -

boundary. This becomes more evident in the following de-

velopment. Let

ag8(e)xy” = (o) [“21 "Kl] %"

2
+ g(e) Kyxq
| 2 [o. o 2 2
With this substitution, dV/dt becomes

%% =" [Klg(e)xl2 + 2gle)x;x, +.K2x2%]

- &le) |ag,y - Kilxlz + gy gle)rx;

o ; 2 . e
- [2A i e Kz:]x2 + 2g(e)rx2
The large square bracket is made definite from geo-

‘metric considerations by forcing

Kle >  g(e) max

The bounds of x, and x, are then determined from the re-

maining terms to be

r
X, | S S
1 agy = K
2g(e)yay T
Xg Z BT Ay - K,

Here the result depends upon the magnitude of the
input and not upon any of its derivatives. 1In a linear

system, g(e) would correspond to K, the forwabd gain, For
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high%gain systems, A must be large to keep the‘region of
Xo small,'whieh again agrees completely with the usual
linear design. Now, however, it is pessible to draw con-

elusions of a similar nature for the nonlinear system,

6,4 Analysis of the Variable Gradient Method as Applied

to Nonautonomous Systems

In this chapter the variable gradient method was'ép«»
plied to solutioh of differentiai equations representing
systems with time-varying coefficients or with forcing
terms, The examples presented as expositions of the method
were all based on secendvordér systems, which in itself in-
dicates the degree of achievement or flexibility that has
thus far been achieved in dealing with these more difficult
systems, It is felt, however, that thé fact that anything
at all was achieved is significant.

Of particular interest in both types of proeblems that
were considered is the fact that linear and nonlinear Sys-
tems reeeived the same treatmento> Hence if a design or
synthesis procedure could be worked out fof the linear
system, the results would be direetly applicable to the
nonlinear case., If the second method of Liapunov is all
that Letov [10] claims in the introduction t6 his book, a
linear system design and synthesis procedure should be

fortheoming, and with it the nonlinear technique,

Perhaps it is superfluous, but it seems that this is

~ an interesting area for further research.
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CHAPTER VII

Summary and Coneclusiens

7.1 Summary

The second or direct method of Liapunov is a"poweré.‘
ful tool for the analysis of the stability of ordinary
differential equations. Although originally conceived
and developed by the’Bussian mathematician Liapunov in  _
the‘late 19th eentury, the method has received eohsi-
dérable attention from other competent mathematicians only
in reeeﬁt years. As a eonseqaéncé, the theoretical so-
phistication involved in the develepment and proof of the
original and supplementary Liapunov,theorems far exceeds
the applications to thch these theorems can be appiied.

The difficulty in applying Liapunov's theorems lies
in the determination of a V function which meets the con-
ditions of the given theoremn. In'thé paét,‘the determina-
tion of a suitable V function for a given'differential
equation has been a task that has relied heavily upon the
ingenuity’and'experience of tﬁe investigator. This work
presents a systematic approach to the determination of a
Liapunov“S’V'funCtion that in some measure overcomes this
problem°' The new method is known as the variable gradient
method of generating ILiapunov funetions, |

The preeise meaning of the term "generating" is de-
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fined in the sense that’it is ﬁsed in this work, and'thef-
two principal meéns of generating Liapunov functionsfthat 
have been proposed to date are examined'in‘séﬁe-detail;.
The desifable and undesirable features of each of these
methods are emphasized, anﬁ the moré.desirable feature$_;
of each are incorporated inte a new fechnique.;:Thé va;a
riable gradient method that‘resﬁlts_is baSed}uponiihe
assumption of a variable gradient that is thought to be
of a sufficiently general nature to include all possible
gradients within it$ structure. Thié gradiént is_aésuméd
to be a vector of n‘compbnénts ﬁhere n correSponds to the_'v
order of the differential equation in queétién; Eachi'
component of the gradient is‘fufther'aséumed:to,be'méde up
of n terms, each of whieh has an unspgcified'coefficient.
These coefficients are.determinedbfroﬁ constraints oh
dv/at, with the aid of (n - 1)n/2 additional eurl equa-
tions that must be satisfied ifvfhevV functipnvdétermined
from the.resulting gradient is tp_be unique, :Onée the
slements of the gradient are known, bbth V and dv/dt are
determined directly from the gradient.v Because of the
general hature of the gradient,-ifvsolution to a physical
problemvwith continuous, single valued, nonlinearity
exists, in theory, the solution exists within the frame-
work outlined. | -

The variable gradient method of generating V fune-
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tions 1is characteri;ga by its ability to handle systems
containing mu1tiple1nonlinearitigs;in which the nonli- -
nearity is knewn as a definite function of the state -
variables or simply as a general function of Xx. Systems

with one or meréxintegra@ions,,multiple poles, or complex

conjugate poles are treated in the same way, As opposed  ;-3{3

to the more usual quadratic form for V, with this methed
it is possible to generate V functions which include state
variables raised to higher powers,than.z, d epending upon
the actual representation of the nonlinearity., Also, V
funetions which include pne»er'more-integrals;are derived
quite naturally, as are V's containing terms. that involveg.
not two, but three state vaPiab1es as faetors.

( Thexcapability.of generating this broader class of
Liapunovy functions that is described_abovéiis_&emonstrated
through simple examples, through. the reproduction and - ex= .
tension of the results of other.investigators, and through
the solution of original probleﬁs.,:The last chapter of
this report is deveoted to extensions.of the variable gra- .

dient method to nonautonomous systems.

7.2 ReeommendationskfqrtFurther Study

The variable gradient method developed above is a in
general technique for thé*geheratibn’offthe‘Liapunev Voo
funection, In this report the example problems considered

include only single-valued nonlinearities, and the coor-
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dinate system used is almost’excluSively that of the phaée__
variables. An obvious extension would include the con-
sideration of multiple valued‘noniinéarities,.or a coor-
dinate sYstem’in canonic or othér special form, -For‘ex—_
ample, if}the basis of system deseriptibn is to be a se£ :‘
of nonlinear equations, these may be_génefated‘by the_ﬁSe_
of Lagrange's eQuations, The'resulting'equations inelude
variables that are intrinsie to thé:physical'systemvin“
question, the sb-cailed generalized coordinates, It is]
quite conéeivable that the‘reéu1ting Set'of éecon&-ordérv'
differential equations might result in a set pf n, firSt;  
order, differential equations that wdﬁld be more meaningful
and easier to handle than the‘phase vafiables considered
here, _ v |

As developed in ChaptePiIV, the variable gradient
method is applicable to the nth erder'éystem,.yet only
second and third order systemé gre considered as examples,
Obviously it is desirable to apply _the method to higher
order systems, Limit eycles were éonsidered for only se-
cond-order Systems,»yet it is known from experienece an& |
from describing function analysis that-highef-order systems
also exhibit periodic behavior. In éhort3 this work pro-
poses a method of generating Liapunov functioné,fand this
methoed is used to solve as many different'types of problems

as possible, in order to show the generality of the method,



- 165 -

No particular attempt isvﬁade at a deep penetration of anj
one particular class of problems, other than the conside-
ration of the Aizerman problem;"In this sense it mightvbe
séid that this’report suggests»mofe.probleMS than it ac-
tually solfes, |

The greatest area of interest,liesbin fhe furfhering N
of the work in the last_éhapter,6h’nonaut6nomous syétems.k_
There it was obsefved ﬁhat_lineaf‘ahd nonlinear syStems.
were treated in the same manner, at least fbr the second
order systems, For example,vin,théldiscussien of forced
systems, it was noticed that the region of dV/dt had ‘to be
a closed region, such that the V curve might.circumscribe
it. Yet in the previous solutions of Chaptér V;_advahtage
was taken of the fact that dV/dt was not required to be
definite,}és long as it was not zero on a solution of the
system. It is conceivable that a determination of stabi-
lity in one coordinaté syétem for the‘autonomous easé and
the region of ultimate boundedness for the driven system
in another coordinate system might be in order.

The discussion of ultimate Boundedneés in itself is
a compromise. What is actually of interest is ‘the maximum
value,ef the response for‘a'given input, or'better_yet,‘the _
maximum deviation from a given or:desifed reéponée; Théré

is no theorem as yet to aid in this pursuit.
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APPENDIX "

Since ne genérai analytic method is known for pro-
ving thé‘définiteness of V functions other than Quédratic_:
forms, the purpose of this appendix is to prbvide a geéa
metrical basis for the establiéhment_of thé defihiteness,
or closedness; of higher order V functions, uch as those
generated byrthe examples above. | |

Thaf Sylvester'!s inequalities are not adequate in
the case where V is not a quadratic form can be seen from

a consideration of the Liapunov funetion that follows,

6 4 3 2 2
+ xl + 2X1 x3 + 2x2 + XB

Here it is possible to arrange V in what could be con-
sidered a quadratic form with variable coefficients, How-
ever, tﬁe arrangement is'not unique as is indicated by the

two configurations below,

4 2 2

+ X,

Case I - V1"= (xl 3

2 o4 - 2 —
+x,° o+ 2x1x3)x1 + 2x,
Case II = V5 = (xl4 +,x12)x12 + (2x12)x1x3 + 2x22 + X32

The coefficient matrix to which Sylvester's inequali-
ties apply indicates that in Case I the V function is in-
definite, while in Case II the function is definite --

clearly a contradiction.

*Mhis method was originally suggested by Dr, G, P,
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In order to determineithe"definiteness of higher
order V functions, it is possible to employ basic geome-
trical considerations. Consider, for example, a second-
order case where |

V-'= R 4 Za.

a11% 21251 % 2 + azzxz SRS

Aceording to Sylvester, 1f all azz - 3122; > 0, ltheﬁ V; e

is a positlve definite functlon, or a closed functlona

In fact 1f the above cendltion on the a's holds true,
the closed curves representlng dlfferent values of v areaH
simply a fam1ly of nested ellipses in the xlxg plane.

Suppese that in this example.xz is determined as a

funetion of V and xj

- apex t'\/./""12(?"12U"“ a11 322) + azzv

Xg = ' 2a22
Assuming that-the’all are positive fer any constant value'
of V, xo- has two. values for small values of Xpe If the
coefficient of xlz under the radical is negat1ve, as xl

is inereased a value of Xy 1s reached for whleh the two
values of x, are identical, Beyond thls value of Xqy5° the
two values of xg arehnevlenger real,: Of course, the con-.-
dition that insures this closure of the curve is»iQentieall

to Sylvester's conditions, namely that . .
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8175 835 > - 0

| '»ll‘_én‘azz”"’ ""122] > 0

The idea of closeness depending upon the two values
of a variable becoming imaginary is the concept that is
ﬁsed in determining the‘defihiteness>of higher order V
functions. For this reasen, in all examples Gyn Was as-
sumed to be 2 and the ajj's were not allowed to be func-
tions of x,. Thus the resulting V is always é qﬁadratic
in x,, and the quadratic formula can be used to solve for
the two values of x,. |

In thevthird order systems, of céurse, it is neces-‘
sary to sﬁow that'V represents a closed surfacé rather
than a closed curve, Thi s pfocedure can be reduced to the
examination of a closed curve byléonsidering 6ne’of'the
state variables a constant, Thus a'threevdimensional
closed surface is cut by a plane,band to insure closeﬁéss,
each curve of intérseétion must be'a‘closed‘curve, As the
plane of intersection‘is moved aldng ifs.axis, the curve
of intersectibn muist eventually vanish, |

This procedure can be illﬁstbatéd by the V functien
of which was cited above; Hére, sinee xj appears in the
most complicated form, letAxl be a conétant, k; so that

V becomes
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The term in XB alone can be eliminatedeby'a'linear‘ehange
 in variables to produce a form:amenable‘to Sylvester's
theorem. Let = |
The constants are found to be_’;

«a=0 : B "kB

suech that

v -kt - 2222 + 2,°

For a particular value of V”= c aﬁd'xl for which k4 is
less than V, this 1s the equatlon of an elllpse 1n the
z2 3 plane. As Xy is 1ncreased t111 xl = V, the elllpse
_flnally vanishes and closeness of the_surface 1s»demons-‘
trated. | | | |

" The V functien'chosen in this exempie was.a»simple
one for'expositofy purposes. The V function resultlng
from Example 5.4 is cons1derab1y more compllcated, yet
cleseness can be demonstrated in exactly the same‘way. In
the case of a fourth ofdeb system; a’geometrieal interﬁre-
tation is not possible te‘visualizeé yei the procedufe is

the same. For each x; a constant, it is necessary to show
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that the resulting surface was closed, and that this sphere
finally vanished as the value of x; is increased, Although

the concept is not difficult, the work involved increases

rapidly as the order of the system is increased.
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