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- PREFACE

On June 2, 1961 the Communication Sciences Laboratory, School of Electrical
Engineering, Purdue University, was awarded USAF Contract No, 33(616)«8283¢
This contract is administered under the Aeronautical Systems Division, Wrighte
Patterson Air Force Base, Ohie by Mr. B, W. Russell,

Durihg the initial phases of this program it seemed desirable to classify
and unify the various coding techniques as they related to digital communication
| systems, This report represents the results of this brief study and represents

a minor phase of the overall program,
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ABSTRACT

An introduction to coding theory and a discussion of specific coding tech~

niques are given as applied to digital communication systems.

The place of coding in a communication system is illustrated and the various
. : . e :
approaches to coding are discussed. The information theory concepts required are
presented along with the First and Second Fundamental Theorems of Shannon, The

relation between Shannon's theorems and coding for the noisy and noiseless channel

is discussed. For the noiseless channel the technigues of Shannon, Fano, Huff=-

man, Gilbert-More, Karp and others are discussed., For the noisy channel the

techniques of Hamming, Slepian, Elias, Cowell, EoseﬁChaudhuri, Reed=Muller, Fire,

L Weozencralt are presented., The relationships between the various codes are

anu

given and the advantages and disadvantages of each indicated. Numerous examples

1llustrating the use of the codes are given and|areas of further research outlined,
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CHAPTER 1

INTRODUCTION

The classic work of Shannon (1,2), followed by tha£ of Feinstein, Khinchin;
Fano, Elias, and others laid the foundation for the modern field of Information
Theory. In his original work Shannon proved an important theorem giving a promiser
of information transmission capabilities previously considered impossible. Loosely
stated the theorm is as follows: If information™ is transmitted over a noisy
channel at a rate‘less_than the chennel capacity it is possible to encode the
transmitted message in a manner such that it may be received with an arbitrarily
“small error rate.

Uﬁfortunately Shannon's proof of this theofanie an existence proof, and does
not glve any information about how the encoding is to be accompllshed in practice,
The severity of thls problem is readily apparent when 1t is reallzed that today,
more then a decade after Shamnon's original work, communication systems still do
not operate at an information rate or an error rate even close to that theoretimh
cally possible, |

Atvpresent a large amount of work is being done in an attempt‘to devise cod=
ing techniques that will allOW'this situation to‘be improved. Present results
(3,4) indicate that within a few years it will be possible to operate a communica-
tion system at an information rate near the channel capacity with an error rate in
the range of one’error per day to possibly onererror per several hundred yeafs,

Because of this it is increasingly importanﬁ that more people become aware ef
the basic concepts involved in coding,

1.l Purpeose and Structure of the Report

To a person working in the field of coding theory the names Golay;.Hamming,

Slepian, Shannon, Fano, Elias, Bose=Chaudhuri, Huffman, Gilbert<Moore, Wozencraft

% Here as in the next few paragraphs, terms such as information, information rate,
capacity, coding, and others should be given their intuitive meaning until more
precise definitions are given,
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and Reed«luller bring to mind several approaches to the solution of the coding
pfoblem, ﬁnfortunately this same preponderance of names gives rise to considerable
confusion in the minds of those not acquainted with the coding field and in addition
points‘out the lack of a unified approach to the determination of optimum codes;
It is the aim of this réport to alleviate some of this confusion by presenting,
with -a minimum of proofs and analyses, the various better known coding schemes
and showihg how they are related, Thus, this feport will be tutorial>in naﬁﬁre
and, wiil, nopefully, prévide a more unified picture of the field of coding than '
can presently be obtained from the literature,

bAsbisfalways thé-dase‘in a tutorial'presentation, an aSsumptidn musﬁ be made
concerning the background of the reader., In this repqrt it will be assumed that
the reader is familiar wiﬁhvthe representation of discreté messages by biﬁary'nnm?
befs and ﬁith the basic congepts of discrete probability5theofy. vReferéncés'<5;6,7)
provide anvinﬁfoductionvto'discréte probabiiity theory for those lacking‘this-back_
ground,

The COnstructioﬁ of thisvreport is briefly as follows: First, a discussiqn
of a genefal communiCation system‘will be giwven, pointing out how coding fits ihﬁo
the COmplete system. Next, severai concepts from Information Theory-will_be_pre§'
sentedy This will involve precise definitions éf terms such as information and
channel capacity that are required for a study of coding theory. Thirdly, coding .
techniques for the noiseless binary channel will be discussed, Fourthly, the major
portion of the report will discuss coding techniques for the noisy 5inary channel,
In each case numerous examples will be given to illustrate the material discussed.

1.2 A General Communication System

A conventional communication system is illustrated in Fig, 1, Here an infors
mation source supplies a message to the transmitter. The transmitter converts the
message to a form suitable for transmission over the channel, (For an RF channel

this usually involves modulating some property of a carrier with the message signal.
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For a wire 01rcu1t it could 1nvolve nothlng more than direct transmission of bhe
‘message.) At the channel output there is, 1n general a noisy, dlstorted repllca
o ofethevtransmltted,message.‘ The recelver operates‘on this signal convertlng‘lt
e.into e‘ferm»suifable fer-the'user; It ié uéuelly desired that the meesage supplied
te_the'ueerabe as'nearly~identical, in eome'sense,_to the eourée message as is
‘possible, |
: In general, a commﬁnlcatlon system may. be either continuous, ‘discrete or both,
An example of a contlnuous system is a conventlonal AM system used for transmlttlng
voice 1nfonnatlon¢_ A teletype system represents”a dlscrete system while a system
fof a trahsmittihg TV»signals by pulse~ccde§moduletion‘(PGM)vrepresentS'a combined
discreﬁevand continUouS'system; Fig. 2 1llustrates the bas1c differences between
- %he 31gnals 1nvolved 1n each of these systems.'

At present there has been essentlally no work done in coding for oontlnuous
systems although Shannon's work applles to these as well as dlscrete systems. Be-
| Qause ofethls, thls_report will be cencerned;enly with the,dlscrete.case and, due

toeits_widespread-use,;only the binary form of this, Thus, the.informatien source
of Fig; 1 Will'nOW be'considered to" prodyce a seéuence of Ots and 1's which represent
the meséege to be transmitted."It is the'fﬁﬁction of the transmitter, cbannelé‘and
receiver to accept these binary digits (binits), to reproduce them with as few
errors as poesible at the receiver, and to supply the results to the user.
Thevnumefous details involved inedesigning a transmitter and receiver to
dpefaté with'a,sﬁeeified chahnel and to preduce a minimﬁm error rate are of no
‘intefest,to ﬁhe'coding>theoris£. For this reason the transmitter, channel, and
 receiver»are usuaily considered as a "black_box" which accepts Ots and 1lt's . at itsb
. input éhd[repneduces these, with an,occaeional errer,vat its output. This sinplie-
fied model is-illustrated in Fig. 3(a)s In this illustration P0 is the tranéitional
probability that a transmitted O will be received as a 1, For example if PO‘= 01

© this model implies that for every 100 Ofs transmitted there will be, on‘the average,
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ten of these recelved erroneously as lts. The remaining Os will be received
correctly., Similarily Pl is the transitional probability that a transmitted 1

is received as a 0, These transitional probabilities provide all the information

required to determine the effectiveness of a partiéular code. Because of this all

further discussion in the report will be based on the model of Fig. 3(a) or on the

closely related models of Fig. 3(b) and 3(c).

The binary communication system resulting from these simplifications is shown

in Fig. 4(a). Here a source produces a sequence of binary digits;that are trans-
mitted over the channels Due to noise on the channel some of these are recelved
in error and thus represent erroneous information. In general this.incorrecf in-
formaﬁion can not be tolerated and some means of eliminating the errors must be

found., This can be accomplished in one of the following three wéys:

1. Use Error Correcting codes that correct an error before the messagé is
presented to the user. In general this involves the periodic insertion of
so~called "check digits® into the sequence of message digits that are to be
transmitted, Proper use of these check digits at the receiver allows the
most probable transmission errors to be corrected. Fig. 4(b) illustrates a
system ﬁsing this technique. Note that additional equipment, usually a small
special purpose digital computer, is required at both the transmitting and re-
ceiving terminals to perfor@ the’encoding and decoding operations.

2+ Use Error Detecting Codes. These codes provide only for the detection

of errors and as such are normally of use only when provision is'made for

the retransmissioen ofvincorrectly received messages. This requires the use
of a feedback channel from receiver to transmitter which is nbt_alWays avail-
able., However, recent results (3) indicate that this approach offers the
greatest hope for attaining the information and error rates theoretically
possible, |

3. Use  Brror Correcting and Detecting codes. With some codes it is
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possible to correct some of:the received:errors aﬁo to deteot, bub not
cofrecb, additionalferfors;ifWhen a feedbackvchennel is pfeseﬁb these den,

':’tecﬁed ‘bﬁt uhoorrectéd erroheous ﬁessages are retransmittedA The‘adw
vantage of these COdes, as eompared to error detection only codes, lies in
the reduced capa01ty requlred for the feedback channel,

“With these technlques it is poss;ble, in pr1n01ple, tO’obtain en arbitrarilyﬁ
small error‘fete proeided only-thatvfovahd'Pl are less theﬁ 1/2 and that informa-
tion isftransmitted'at:a rate below the'channel oepacity. In‘oractice; en'increaew
’ llnglf large amount of codlng equlpmenu is necessary as the requlred error rate is
‘decreased., Thls means that in most 81tuatlons a compromlse must be made between
equlpment cost and allowable error rate. At present there 1s conslderable effort
, belng expended to dlsc0ver codes that requlre less equlpment for a spe01f1ed error

rate. To date the most promlSlng of the new approaches appears to be that of
| bseQuentlal‘codlng‘ (4) d;scovered by‘szencraft of MIT and, that of error detec~
'.tion,coding with»feedback (3)« " : | ‘ | ‘
:ln summery;jtbeefolloWiﬁg oonoepte from this sectioﬁ should be emphasized.‘
1. bTbis repoft'will bevconcefned only‘ with binary oommunioation systems and
the coding techniques for these. The binary infofmabioh souroe‘wiil be con=
e‘sidered to produce a Sequence of Ots and 1's that,fepresents the’informatioh
to be tranSmittedvandathe'tfansﬁitber«channelereceiver will'be represented byb
‘one efetbe models of Fig.»B. -
2, Due to noise on thevchannel-SOme'of'the‘tfansmibted_O's will‘be received
. as lisbend.viee Versa., iThie‘effect is included in the‘models of Fig., 3 through
the 'probabilities P, and Py, L
3;~ﬁUse‘of‘suitable‘encodingbteohniquee'at'the transmitting station and de-
Coding'teChniques at the‘feceiving station'allow these errors bo be reduoed
"~ to an arbitrarily low valﬁe. - |

. L4s There are essentially‘two coding mebhodé that_cah be used to epproech
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this lOW'errof rate, namely, eerr correcting codes or error detectihg codes

plus a feedback ¢hannel for retransmission.

It should Be noted that although error detecting and:correcting codes form a
major portion of the field of coding theory a second type ofvcoding, used with a
noise free channel, is also of considerable importance and will be discussed laters

1.3 Information theory concepts,

Up to this point the terms information, channel capacity; information rate,
etc.‘have been used in an intuitive manner. To be able to discuss further the
'concepts of coding and the benefits to be gained'fromicoding it is necessary that
these terms be defined in a precise manner,
| Consider the intuitive concept of information, Imagine that a coin is to be
tossed; If the coin is biased so-that 1t is certain to come up heads then, intui=-
.tively, it‘ﬁould seem that no information would be gained by tossing the coin.
Similar reasoning follows if the coin is certain to come up tails. However, when
either heads or talls may oceur some information may be obtained by tossing the
eoin. Thus the conclusion to be reached is that information can be obtained from
the occurrance of an event only when the probability of that event occurring is |
less than 1. Extending this reasoning it seems reasonable to require than any
measure of information be such that the information associated with an event in=-
creaSe‘as the probability of the event decreases.‘ This reasoning plus other
‘mathematical requirements (pp 80-82, Ref, 8) leads to ﬁhe following definition of

“information, commonly called entropy or uncertainty,
o = -log, P(X) bits/event ' . (1)

‘Here and throughout the report, all logarithms are to the base 2 unless otherwise
noted,
As an example consider the tossing of a biased coin where the proBability of

obtaining a head is 1/4. From EqQ. (1) the information, or entropy associated with



obtaining a head 1s H ~-iog /4 = - log 4 = 2 bits. Similarily the uncertainty
assoclated with a tail is 1og h/3 = 0,415 bits, Since. different entropiee are
'assoclated w1th a head and a- tall 1t is more meaningful to speak of the average
uneertalnty assoclated with the toss of the,001n. _The average.unoertalnty_1s:3uet
the ume:éﬁainty associated with a head times the probability that a. head is obtaine
ed plus the unceftainty associated with a tail times the‘probability of a tail,‘t
‘Lettlng the probablllty of tails = P(T) and the probabilityiof,heads = P(H) the

above statement becomes
H =',-P(TI)= J.ag}P(r)‘ - P(H).log-P(H) bitS/téSS o - (@

‘Nete the use of H te denete the average entropy as contrasted to }+ whlch repre~
_ sents an 1nd1v1dual entropy. For the above example'Eq. (2) shows that the_entropy

.gsseclated_w;th tosslng.thevblasedlcein is
H = ~1/L log 1/4 - 3’/Avlo'g 3/k = .811 bit/toss,

Observe:that.H as‘given by Eq. (2) is maximum for_P(T) = P(H) = 1/2, This is
'intuitivelybeatisfyiﬁg'since this represeﬁts a condition of ﬁaximnm uhcertaihlye
_about'the outcoﬁetof the'tesslof a eoin. | |

Next, censider a”binary source that produces a sequence of O'e and 1lts,
~ Before eaeh digit is produced there is a certain prdbability‘that it will be a l,n
denoted P(l), and a correspondlng probablllty that it will be a O, denoted P(G)
Since 1t is assumed that either a 0 or a 1 must be produced the relatlon
P(1) + P(0) = 1 must hold. Analogous to BEqe (2) the amount of information pro-.

vdﬁced this source is”defined to be
HX) = -B(0) 1og P(0) - P(1) log P(1) bit/binit  (3)
or, since - P(0) + P(1) = 1

H(X) = -»15(0) log P(e)_ - fl-P‘(O)] 193' [i-fp(o)] bit/oinit .(A)
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HereAthe notation H(X) rather than just H is used so that the emtropies.

- assoclated wiﬁh a ééurce, H(X), can be differentiated from the entro?y at fhe
user, H(X). The reason for this distinction will become clear as the discussion
 prog#esSe$¢ |

Fig, 5 illustrates this entropy function for values of P(0) between zero and
unity.' Observe that H(X) is maximum when a Oand a 1 are equiprobable-and is

zéro when either a Oor a 1 is certain,

- This deflnltlon gives the amount of 1nfornatlon produced when é single binary
'dlglt (blnlt) is produced. Thus if the source generates 1 blnlt/sec. it produces
vlnformatlon at a rate of H(X) pits/sec. Likéwise if m binits/sec afe’produced
the infdrmation'rate of the source is mH(X)»bits/éec. With'this definitidn it is
vposSible-to.Speéify unambiguousiy the amount of information produced,by a binary
source, = | |

A USeful geﬁeraliZaﬁion of Eg. (4) can be obtained by‘considering a discrete

“‘'source that can producé any one of m'symbols eachvwith a specified probability,

,Denotlng the m symbols by Xl’ X2 -— - Xm and the correspondlng probabljltles by
‘ P(Xl), P(Xz), - - P(Xm) the entropy of such a source is defined to be
M ' o L .
H(X) = - ;Ei P(X;) log P(X;) bits/symbol (5)
i= : v

Example 1.2-1

Consider a discrete information source that produces the followiﬁg

symbols With the probabilities indicated

A 1/2 D 1/16
B 1/h E 1/32
¢ 1/8 F 1/32

- For this source the average entropy per symbol is
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ig. 5 - Enbtropy of,a Binary Source
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H(X) = <1/2 log 1/2 = 1/4 log 1/k - ~ - - - 1/32 log 1/32
=1 15/16 bits/symbol

It can be shown (pp 82=89, Ref., 8 ) that the entropy of a source is
max1mnm.when all symbols are equlprobable,' Thus for this case
Max H(X) = 21/6 log 1/6 ~ - — = = 1/6 log 1/6

= log 6 = 2,58 bits/symbol

From this examplé it can be seen that more information is produced, on
& per symbol basis, when a larger number of symbols are possible.
Denoting the symbols supplied te the user by Y ,the information supplied to

. the user is defined in a manner analogous to that of the source, i.e.,
H(Y) = ~P(¥=0) log P(Y=9) - P(Y=1) log P(Y=1) bits/binit (6)

The relations between P(Y), the channel probabllltles, and P(X) can be determined

from Flg. 3(a) and-are as followss

P(Y=0) = P(X=0)X1-B,) P(x-1) P,

P(Y-1) = P(X=0) P, + P(X=1) (1-P) - | o (7)

In certain cases (for example P(X=O) = P(X=1) and P, = P; ) H(Y) and H(X)
are equal numerically; however, in general this is not true. |

Referring again to the channel model of Flg. 3(a) note that the vérlous
probabllltles (P Pl,.l—PO, I«Pl) indicated are actually transitional, or con-
ditional, probabilitiés, i.e. P represents the probability of receiving al
. glven that a O is transmitted, Pl represents the probability of receiving al
Agiven that a 0 was transmitted ete, |

Thus in a more consistent notation the relations are
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kY

F, = P(1=1|%=0) € P(1y|x,)

P, = P(Y=01%=1) € P(Y_|%;)

1-p_ = p(Y=0|%=0) £ P(Y,1%,) (&)

i

1-p; = 2(v=1lx=1) & P(¥y|%})

With these definitions three additional entropies associated with the source and

user may be defined as follows:

| 2 2
H(TIX) = = > P(X;,7;) log B(Ty|X;) (9)
| i=l 3=l ' : |
2 2
H(Z|Y) = - Z > P(Z;,75) log P(%;[T4) , - (10)
i=1 j=1
2 2 . |
H(X,T) = = Z Z P(Xi,'*fj)-log P(xi,tfj) (11)

[
1]

[
[
"

—

The justification of these entropies on an intuitive basis is nob as
straight forward as it waé for the source and user entropies, H(X) and H(Y)ar,
However, some feeling for the‘meaning of these may be obtained in the following
manner. Associated with the occurrence of a specified event at both the trans—
mitter and the receiver (for example the event a 1 is transmitted ;ahnd. a l is re-
ceived) there is a definite probability which depends upon the source probability,

P(Xi), and the transitional probability P(YjIXi) which is
P(X,4) = P(zgj[;{i) P(%;) | (12)

From the earlier discussion it appears reasonable to define the information

-G s s o .
% The symbol = is to be read: "is defined as" or, "is, by definition, equal to',
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associated with this event as

¥ =log P(Zy,1;) bits/occurrence of X; and ¥,

Taking the average of this information over all possible values of X and Y
gives the expression of Eq, (10} for the average entropy associated with the
Jjoint occurrence of a source and user symbol,

In a similar manner the conditional entropies of Egs. (9) and (10) are the
average of the individual entropies - log P(leXi) and =~ log P(XiIY5> respec—
tively. The conditional entropy H(YIX) can be considered as the uncertaihty
concerning the received symbol Y when it is known that X has been transmitted.
For a nosieless channel T would be uniquely determined by X and H(YIX) w@uld be
zero, Likewise H(X|Y) is the average uncertainty concerning the symbol trans-—
mitted, X, where the received symbol, Y, is known. For a néiseless channel
H(X[Y) is also zero.

For convenience the five entropies associated with a source-user combina=
ﬁion are listed below along witﬁ their‘appropriate interpretations,

H(X) = A measure of the average uncertainty of the symbols produced by

the source in terms of bits/source symbol,

H(Y) = A measure of the average uncertainty associated with the received
symbols in the terms of bits/received symbol,
H(X,7) = The average uncertainty associated with the transmission and re—

ception of a symbol in terms of bits/symbol pair,

H(Y[X) = The uncertainty concerning the received symbol when the transe
mitted symbol is known,

H(X|Y) - The equivocation of the channel which is a measure of Lthe uncer—
tainty concerning the source when the received symbol is known,

It is readily shown (pp 101-1C2, Ref, 8 ) that the following relationships

exist between the various entropies.



ux,Y), = HE) + KTIX) |
= H(Y) + H(x|¥)
H(X) H(XIY)

(14)
H(Y) 2 H(Y|X) v

Example 1.2-2

- A source produces Ofs and 1's with the Drobabllitles P(O) = l/h,

P(1) = 3/k. The channel transitional probabllltles are glven by

0.9 1 o
Determine the varlous entroples a35001ated with this system.

H(X) = "1/h log 1/ = 3/ log 3/@ = 0,811 blt/blnlt -

B(Y,) = 1/h x 0,9 + 3/4 x 0.1 = 0,300
P(Yl) 1/4 x 0,1+ 3/4 x 0.9 = 0,700

H(Y) = ~0.3 log 0.3 = 0,7 log 0.7 = 0,881 .bit/binit

H(T|X) = -Qiilog 0.9‘«-9-,_-;341 og 01-=---°—%5-3-10g 0.9
- S22 10g 0.1 |
= =0,9 log 0.9 - 0,1 log 0.1

H(YIX) = 0.469 bit/binit

P(X},Y;) = P(Yljxl) P(X;) = 0.9 x 0,75 = 675
P(x,7,) = B(Z 1K) B(K) = 0.1 x 0.75 = .05
”P(XO,Y:L) = P(Y,|X) B(X)) = 0.1 x 0,25 = .25
P(X,¥,) = BT |X) B(X) = 0.9 x .25 = .225

H(X,T) = =.675 log 675 = .225 log .225

~, 075 log 075 = ,(R5 log .OR5
= 1,280 bits/ pair of binits
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P(Xlg Yl) e 675
PJ(Y:L) . @ 7

]

Rl - = 4965

o P(X,T) |
P(x. |y = o L7 Te! = 0075 = 2
' ( l} 0) P(YO) . o3 ’

P(Xp¥T1) L5

Ml Sy Tt T
N ¢ % A
Pl = Sy <5

. H(XIY) = = J765 log 1965 = JO75 log .25

L3 9025 l@g 0’@5 —-22510g 975
0.399 bit/binit

LI

Note that

1,280 bit

H(Y) + H(XIT) .
1,280 bit

H(X) + H(YIX)

Hou

H(Z,Y)

B
[

0.881 + 0,399
0.811 + 0,469

H(X) = .8112 H(X|Y) = 0,399

881 2 H(Y|X) = 0,469

1]

H(Y)

Note that in this example the uncertainty, H(Y), at the user ié greatef |
than that, H(X) supplied to the chamnel, It should be emphasized that this in-
bcrease invextroéy does not mean that useful information is gained on the channel
bﬁt only that the noise has introduced.additionél‘unéertainty into the réceivéd‘
symbois. The folléwing discussion concerning tﬁe actual information hransmitted
through the channel will further clarifyvthis“point.

 One additional concept, thatvof mutual iﬁ}ormatién or tranéinformation-is
réquired before proceeding furthér,_ Mutual information is a measure of the
amount of information transmitted through channel and is defined, for the binary

channel as

| 2 2 P(X, ,Y. |
HxT) = 2. 3 PX;,Y,) log (o7y) (15)

A SN R
i=1 j=L 1 .P(éc_-L)P(Yj)
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Straight forward algebraic manipulations show that

H(x) - H(xliy) bits/binii-; '
H(Y) - H(YIX)  Dbits/binit ' (16)
H(Z) +H(Y) = H(XT) bits/binit S |

I(X,Y)

[

For a noiseles‘s channel H(X) = H(Y), 'H(XIY) = H(Y}X) = O and the informa-
tion transmitted through the channel is equal to the source information H(X).
Conversely, when the noise on the channel is sp great thatvP(Yl|XQ) = P(Ylel) =1/2
then H(X) = H(XlY) a@d»the infonnatién transmiﬁtéd through the‘cﬁannel is ‘zero,.
~ Since these are intuitively satisfying resglts this appears fo be reasonable defi-
nition fopr the‘amount'of information transmitted through a chahnél. ‘

Considéring the results of Ezamplé 1.2-2 above observe that the information -
transmitted‘through‘the channel is
CH(X) -H(X|Y) = 0,811 - 0.399 = 412 bit/binit

0,811
H(Y) =H(Y|X) = 0.88L = 469 =0,412 bit/binit
H(x) +H(Y) =H(X,Y) = ,811 + .881 - 1,280 = ,412 bit/binit

1(%,1)

TR

[ IR I

:Thus, due to noise on the channel, the information I(X,Y), transmitted through
- the channel is considerably less than that Supplied to it. |
With these précise definitions for the amount of information supplied by a’
SOurceband the amount of information t;ansmitted byia channel 1t is now possible
to define precisely what is meant by channel capacity., Acqbrding to Shannon (1)
“the capacity of a discrete, memoryless; channel is given by

max [ﬁ(X) *H(XIYi]

¢ = max 1(%,1) o |
mex [ H(Y) ~H(YIX)] | (17)

a1l

where the maximization is with respect'td the source probabilitiés P(X). This
definition is completely general, applying to all discrete channels and’even to
continuous channels when the various entropies are properly defined. ' The work

in this report will be concerned with only the binary symmetri¢ channel (BSC)
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of'Fig 3(b) and ‘the binazy erasﬁré channel-(BEG) of Fig.. B(c)' The calcula~

tlon of the capac:.ty for these chammels is stralghtforward and lS 1llustrated

) belOWo
Example 1,2-3
2 D‘e'tvermin'ef the’ capacity of ‘the BSC shown below
PX)=a O
' P(\l) (lwa) 1
For th:Ls ' |
=ﬁH(IkX)-= aPy log Py + (l~a) P, log P,
. o aQ9 log Qo + (l~a) Qo ng Q0
=‘=ﬁP logP +Q logQ '
thus :

'C-max EH(Y)+P log P, +Q logQ]

From previo'us results H(Y) is maximum when

P(Y ) = (1) = 1/2

and has a value of unity. Thus, for the BSC
G =1+B log By + Q log Q bits/oinit (18)

Sinc’e P(Y ) = a Qg * (l—a) P 1/2 the source probablllty that mll

: _transmlt information over the cha,nnel at this rate is a = 1/2
Example 1,2-4

‘ Deteminé the eapacity for the BEC shown
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P(Xo) =

it

F(%) = (1-2)

For a BEC the symbols received as x are ignored. Thus

aQy log Q, - (1-a) Q, log Qq

H(YIX)'

= = Qy log Qg

Since H(Y|X) is independent of P(X) it is necessary only to maximize

H(Y).

As before H(Y) is maximum for equiprobable symbols. The corresponding

entropy is
Max H(Y) = = 1/2 Q  log 1/2 Q - 1/2 Q, log 1/2 %
= =~ Q, log 1/2 Q
¢ =0, [log q, - log 1/2 q;] = Qgpits/binit | (19)

It is an interesting property of the BEC that for Qg > 0.23 the channel
capacity is greater than that for the BSC. Ih addition all digits received as
a O or a 1 are correct. Because of this it is:in some cases easier to use error
correcting codes with the BEC than with the BSC.,

With this material as background it is now possible to give the first and
second fundamental theorems of Shannon. It is‘because of the commnication
possibilities promised by these theorems, and the fact that both theorms are
based upon the assumption of appropriate coding'techniques, that the current

interest exists in the field of coding theory.
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In the flrst of Shamnon's theorems channel capaC1ty is considered on a per
‘second basis rather than on a per binit ba51se If m blnlts/sec can be trans—

mltted over a channel ‘its cap301ty, on a per second ba51s, is

C! = mC bits/sec . | - o (20)
- Shannons First Fundamental Theérem éppiies to‘a discretg noiseless,>(i.e¢‘
the prébability of an error is zero) memoryless chamnel and is as fOllows.
| Theorem - Let a source have an entropy of H(X) biﬁs/Source symbol
.andva channelba capacity of C‘ bits/sec, Then it is possible to encodé
ﬁhe output of the SOurce in‘such a way as tp transmit ovér»the charmel
at an éverage rate arbitrar;ly close to C!'/H source symbols per second.
. It ié not,poésible to transmit at an average rate greater than C'/H,
Conslderlng the symbols of Example 1. 2-1 and assumlng a binary channel
‘wlth m=1 blnlt/éec, this theorm states that the source symbols, A By G, D,

B, F can be encoded into blnary dlglts in such a mamner that they can be trans-‘

. mltted over the channel at a rate up to but not exceedﬂng 16 source symbols per

"‘Bl second,

The 1mportance of this is made clear by notlng that sinece there are 6
symbols to be represented a 3 dlglt code would appear to be necessany. This
‘would allow transmission of only 1 symbol/3 seconds which is considerably
less than that indigated by Shannon's theorem, Optimum COding»techniques for .
this situation have been developed and will be presented later in this report;-‘
- Shannon's second fundamental theorem, given earlier in a less pre01se form,
applies to a n01sy} memoryless ‘channel and is as follows: v
| - Theorem - Let a binary source have an entropy of H(X) bits/biﬁit-and R
channel a capacity QfAC bits/%init, Then if H(X) < C there exists a
» coding_scheme such that the output of the source mayrbe transmitted over

the channel with arbitrarily small error rate. This is not possible if
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H(X) > C.

The importance of this theorem lies in the fact that it was previously
thought that a reduction in the error rate could be accomplished only through
a corresponding reduction in the information rate. Thus as the error:rate
approached zero so would the information rate. Shannon's theorém states that
this is. not trﬁé provided that proper encodihg techniques can be obtained,

The determination of these techniques represents the major effort ih,

coding research at the present time,
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CHAPTER II
' CODING FOR THE NOISELESS CHANNEL

| 2,1”‘intr¢duction

~ Before startiﬁg a discussion of coding the folleowing definitiéns, pertain—-
ing'to a noiseless channel, are given.

S@urce symbol - - One of n pessible symbols produced by a message sourcé.

Alghabet ~ = A list of all n allowable source symbols.

‘ Message - A flnlte sequence of source symbols,.

Encodlng or. enclpherlng - - By definition this operation occurs at the trans-
mitter and is a procedure for associating the source Symbols with a corres=
ponding set of binary digits in a one~to~one manner.

- Decoding or deciphering ~ -~ This operation occurs at the receiver and

corresponds to the inverse of encoding, i. oy it is a procedure whereby .

the received set of binary digits are assoclated w1th the orlglnal sourcé

symbols.

gggigg -« A general term 1nclud1ng both the operatlon of encodlng and that
~of decodlngc

Code‘word - —~ The binary npmber assigned to a soﬁrce symboi, This may be

composed of one or more bihary digits,

Length of a,Gode word - = The number of binits in a code word.

Optlmum Code - = A code having the maximum possible efflclancy for a given

get of source symbols and probabllltles.

The capac1ty, C!, of a noiseless, binary channel is given by Egs, (18) and
(20) (w1th P, = Q) as a m bits/se¢c. Shannon's first theommlstates that ‘the
symbols from a source having an entropy of H(X) bits/source symbdl can be en-
~¢pded in such a manner that they can be transmitted éver'bhis channel at a‘rate_

- 1 ' '
‘up to but net exceeding %(§7 source symbols/sec, Thus 1f a binary source with
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P(O) = P(1) = 1/2 is considered the entropy ié H(X) = 1 bit/source symbol and
the symbols can be transmitted at a rate of m source symbels per second.
Obviously this represents straight foreward transmissioﬁ of binits each having
maximum possible entropy and no coding is possible or necessary. However, if
the source probabilities are such that H(X) = 0,25 bit/source symbol the theorem
states that 4 m source symbols, or binits, can be transmitted over the channel
sach second. Since the channel can transmit only m binits per second coding is
obviously required for this case, The following example illustrates encoding

for this situation.

Example 2,1<l
Assume that a coin‘is to be tossed 100 times at the rate of one toss/
sec and that the results (heads=l or tails = O) are to be transmitted, in
order, over a noiseless binary channel., If a fair coin is considered the
probabilities will be P(0) = P(1) = 1/2 giving rise to a source entropy,

‘on a per second basis, of
H(X) = =1/2 log 1/2 = 1/2 log 1/2 = 1 bit/sec.

Since the capacity of a noiseless binary channel transmitting 1
binit/sec is 1 bit/éec., the entropy of the information supplied to this
channel is e@ual to the chanhel capacity and coding is not required.

Next consider the case where the coin is biased so that the probabilities
are P(0) = 0,05 and P(1) = 0,95,

Under this condition the source entropy is

=0.05 log 0,15 = 0,95 log 0,95

HY(X)

- 0,286 bit/sec.

Direct transmission of these symbols results in an information input to



w2 B

the channel of approximately one~fourth its capacity., Shannonts first
theoreﬁstates that this situation can be improved by suitable coding,
Ideally this coding would lead either to the transmission of nearly L
times as many source symbols per second over the same channel or the trans-
mission of the same number of source symbols per second over a channel
having & capacity of approximately one~fourth that of the‘originél channel,
Ih either case this would represent a considerable increase in the channei
utilization. To demonstrate the improvement possible with a relatively
simple code consider the technique of transmitting only the positions-in._'
fwhich a O occurs and assuming that all other positions are 1l's, Since
there are 100 positions to be represented, a seven digit binary code is
required, Thus if a O occurs in positions 7, 25, 63, 75 and 92 the code
sequence to be transmitted is

0000111 0011001 0111111 1001011 1011100

If this experiment were repeated a large number of times the average
number of (!)s appearing would be 5 and the average code length would be 35
binits. Thﬁs a channel operating at a rate of 0,35 binit/sec can be used
to transmit the coded message as compared to a rate of 1 binit/sec required ‘
for the uncoded message.

Since no information is gained or lost in the encoding process the
information associated with one binit in the original seguence must be the
same 2s that associated with 0,35 binit in the code sequence, This gives

an entropy for the code binits of

- 0,286 bits/source binit

Hcﬁx) 0,35 code binit/source binit

= 0,817 bits/code binit

A convenlence measure of the efficiency of a coding procedure is the

ratio of the average information per code binit to the maximum possible
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information per code binit., The efficiency, n., is thus

. 'Hc(x) bits/code binit
Ne = —T51%/5ods binit

x 100 = 100 Hy(X) % | | (21)
= 8107%

Later discussion of more sophistiéated techniques-will show that in
general efficiencies of greater than 95% are readily obtained.
the that‘)Té is equélly well é'measure of the efficiency of chanﬁel
utilization since it is equivalent to the ratio éf the actual rate of in-
formation transmission to the maximum possible rate of information trans—
missions |
This example illustrates encoding for a‘binary'source. In many case this
binary source would have been obtained by assigning binary digits to each of the
n (n an integer > 2) possible messages of the:original’message source, An ex~
ample of this woﬁld be the transmission of‘Englishytext by assigning 5 binits
to each letter of the alphabet., In general this would not result in binafy
sequencesbfor which HG(X) = 1 bit/pinit and therefore coding of the binary source
would be requiréd. This two step encéding procedure is rather pointless since
it should be possible to encode the original message in»suchba manner that

' Hé(XD o~ 1 bit/binit. The following example illustrates this'point;
Example 2.1-2

Consider the source of Example 1.2-1. For this source the symbols

and their probabilities were

A 1/2 D 1/16
‘B 1/4 E 1/32
cC 1/8 F1/32

These six symbols are to be transmitted over a binary channel and

therefore must be represented by binary digits. When assigning binits to
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these symbols it should be realized that if fewer digits afe assigned to
,the symbols having the greatest probability then? with care, vt.,he ave?c‘age—vv
number of binits per'SOurée symbol will be less than when an equal nuﬁxber‘
of binits‘ are assli’gned to each source éymbol, )

With this in mind consider the following code.

A0 D 110 |
B 10 E 11110 |
¢ 110 CF 11111

The average mumber of binits, f, required for this code is

L = 1x1/2 + 2xl/4 + 3xl/8 + z,xl/lé + 5xl/32 + 5xl/32

=1 15/16 binits/source symbol
= The entropy of this source was previous._ly found to 'b‘e.‘ :
H(X) = 1 15/16 bits/source symbol

The entropy of the code digits is given by

r (y) = H(X) _ __bit 1 source symbol
He(X) = =1 15/16 Souves symbel * 115/16 Dinite

(]

1 bit/pinit
Since the maximum entropy of a binit is 1 bit/binit, the coding
efficiency is

1 bit/binit
Toit/binit -

" Ne = x 100 = 100%
. Note that

p(0) = &verage number of zeros
average number binits

_La/2 s b;l/% 153/.1::2/8 - 1x1/16 + 11/32 = 31/32 x 16/31 . 1/2

‘Likewise
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vHn=1ﬂ%f2ﬂ@;§§ﬂé+mvﬁ+5ﬂ62=ﬂB2Xmﬁl=U2

or,vequally_well,
P(1) = 1-P(0) = 1/2

 This jllustrates that for this case the code binits are equiprobable
and independént.
At this point a question mught be raised COncerning the reason for assign-
ing such a lérge number of binits to some of thé»symbéls in the_above example,
For ex&mple‘why'not assign the code words in the following, apﬁaﬁently'muchlnore

efficient, way?

A © D oL
B 1 o E 10
¢ 00 F 11

This gives an average length of

T

k!

1x1/2 + 1xl/l + 2x1/8 + 2x1/16 + 2x1/32 + 2x1/32

[}

1 1/4 binit/source symbol |

H,(X) = H.(I:Xl = ?‘L i%lé = %% bits/binit
Since the maximum possible entropy for binary digits is 1 bit/binit it is
obvious thét a falacy in this coding scheme must exist and indeed one ddes;
This is readily demonstrated by counsidering the code sequences that would be
‘gransmitted for the message symbols A C F E D B, These sequences are as followé:
a) original code 01101111111110111010
b) alternate code 0001110011
Imagine that these sequences have been received and are to be decoded.,

The deeoding procedure consists of checking the first digit to see if it corres—
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ponds to a source symbol, If it does not. then the first two symbolé are con-.
sidered, ‘This procedure is continued until a group of digits are recognizedb
' that correspond to a source symbol. The symbol is‘then recbrded and the pro=
cedure:repeated_for the following digits in_exactly fhe same manﬁer;

The following illustratés this procedure for the‘origihal‘code.

digits checked result
0 B
L ,”b : ~meaningless
i | meaningless
110 - . C
1 : V, - meaningless
1 » _ ‘meaningless
111 | g meaningless
»llll | . méaningleSS'
11111 - F
1 | o meaningless -
1111 | meaningless
11110 L B
1 , meaningless
S 1l o . meaningless
lil" ; meaningless
\lllO ,: o | D
1 ' meaniﬁgless
lo | B

Thus the transmitted message is
ACFEDB

-When thié procedure is épplied to the alternate code the following sequences
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are obtained as possibie traﬁsmitted mességeé.

AAA BBB AA BB

AMMAFEDB

YC DFB C’F‘

ACFED B :

Because of this, unambiguoﬁs decoding is not possible for the alternate
~coding é¢héme and no useful informétioﬁ can be transmitted. It is for this
reason that:an inconsistent value was found for the entropyioffthe alternate
cdde digite

Since it is usually desirable to obtain codesvhaving a maximyum average
1length it is‘well,tq_reconsider the above situation in an attempt‘tobdetermiﬁé
why one code féiled‘ané the other did note Consider the siutation that would
.e#ist if the alternate codevwere trahsmitted with a space between each of the
\code wordsg ‘For this case the code sequences would be

0 00 11 10 Ql‘l

Obviouély,no ambiguity exists with this code and the transmitted message
is directly obtained astQFEDBe Note, however,vthat this spacing of code words
was noﬁ requiréd for the original code. Thus the property required for un- |
ambiguous decoding is that the code words éan bevtransmitted in sequenge with-

out intervening spaces. A code having this property is described as being

uniquely decipheﬁable. Further consideration will show’that the altérnate
code does not have this property due to the fact that some of the code words
can be obtained from others by adding a digit. For example the code word for
¢ is obtained from the code word for A by adding a O, Observe that this situ-

ation does not-exist in the original code, i.e. no code word is the prefix of

another code word, It is this property, c¢alled the prefix property, ﬂhat de=
termines whether or not a particular code is uniquely decipherable.

From this discussion the two requiremenﬂs for an optimum code should be
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. clear,
ls The code must be uniqueiy decipherable i.e,, each code word must have
the prefix pfoperty. This condition alsé insures that HC(X) <1 bit/binit,_
(4 proof of this statement is given in Ref. 8, pp 148-151). Because of
this,‘n o as defined above, can never exceed 100%.
2e »The average length of a code word should be as small as possible con-
sistent with the above requirement.,
-For the sake of completeness it should be noted that it ‘is possible to con-
ﬂceive of codes that do not have the prefix property but are still uniquely- |

decipherable, For example consider the code

A1
B 10
¢ 100

Application of the above decoding procedure to any sequence of these code-
words shows this to be a uniquely decipherable code. However, there appears to.
be no general method for determining such codes and in addition no known cgdeé
of this type have a higher efficiency than codes héving the prefix property._.
Thus all codes discussed in the following sectionsof this chapter will havé the
prefix property.

The folloﬁing sections will discuss, in a more or less chronological order,
the various better known techniques used in coding for the noiseless channel,
Since Huffman encoding represents tﬁe optimum (in the source of giving méximum
efficiency) coding ﬁrocedure it may seem superfluous to describe some of the
other non-optimum techniques. To delete these, however, would be to defeat the
purpose of fohis_reporte

2.2 Shannon=Fano BEncoding

The Shannon~Fano encoding procedure (9) appears to have been the first

constructive procedure for determining codes having the prefix property and as
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such repfesenté a logical starting point in the discussion of spe¢ific coding
technigues,

In eésamée the.procedure is a technique for assigning binary digits to
source symbols in such a manner that the number of binits assigned is inversely
| proportional to thésprobability of the corresponding message symbol. The pro- .
cedure consists of liéting the source symbols in the order of nonincreasing prob-
ability and theﬁ dividingvthis‘group of symbols into two new groups having ap-
proXimately equal probabiliiies, A O is assigned as the first digit of the
‘code words in one group and a 1 is assigned to the first digit'in the other
group. This subdivisien process is then repeated uﬁtil groups are obtained
that contain enly one soﬁfce'symbol each, The resulting code will in;all‘cases
have the prefix propérty although‘it will not always have maximum efficiency.

The following examples illustrate this procedure,.
E};ample 2 ® 2"1

 Apply the Shannon-Fano encoding procedufe to the following source,
Symbol = A B C D E T
Probability 1/2 1/L 1/8 1/16 1/32 1/32

Step 1. List the symbols in the order of nonincreasing probabillity.
Step 2,. Divide the list into two groups having probabilities that are

as nearly equal as possible,

A 1/2 ¥ total prob. = 1/2
B /4

¢ 1/8

D 1/16 total prob. = 1/2

E 1/32

P 1/32
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Although probabilities of exactly 1/2 are dbtdined for this problem.
in general this will not be possible. |
Step 3. Assign & O as the first digit in the code word for the first
group and a 1 as the first digit in the code word for the second group..
Step 4o Repeat the division and assigning of digits process until single'

symbol groups are obtained.

A 1/2 0
‘ 1st division
B 1/h 1|0
— 2nd division
c 1/8 1i{1{o
3rd division
D 1/16 |1l|1|L|0
1| Lth division
E 1/32 |1fil1{r]o
' 5th division
F 1/32 |1il1l1(1l1

Observe that this code has the prefix property and from Example 2,1-2 its: |
efficiency is 100%. Thus this isvan optimum code and no other procedure
can yield a better code. This situation, however, is not typical of
Shamnon~Fano encoding and occurs in this example only because of the
pérticular séurce’probabilities used. In fact the following proof shows

that 100% efficiency is possible only when
P(Kj_) =2 » (22)

where ns; 1s the number of letters in the i th code word. Note that this
relation exists in the above example,
Taking the logarithm of both sides of Eq. (21), multiplying by P(X; ),

and summing over all i yields
N . N :
~ D B(x;) log B(X;) = 2 B(X) n, | (23)

i=1 i=1

The right hand side of this expression is the average length of the code
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words,.f; while the left hand side is the entropy of the source symbols,

CH(X)s Thus H(X) = T and N = ﬁéﬁl x 100 = 100%. Any other sets of.
L .
probabilities will lead to the condition -
P(X, ) > 2t
~ causing f‘té be greater than H(X) and N, to be less then 100%.

Exanmple 2.2-2

Determine the Shannon-Fano code for the following source, ‘
Source Symbol Xj X, X3 X, X5 X X, Xy X5 Xy
Probability 3 .2 .2 1 W05 05 .03 L3 ., .02

Applying the procedurexdemonstratéd above yields

X.l '03v 0 ¢ .
' ‘ — 2nd division
' o2 0] N :
X2 : p————— -1st . w
%o .2 [1]o|0 o
' | — 4th u.
'Xh N S 1|01 '
\ . B 3rd n
% .05 [1[1]ofo |
v 2 ——6th -
Xg o051 11L10[L L
) - —5th n
X, .0 |1j1/1/0/0
. —8th. -~ n
Xé «B | L]L(L(0]1
_ ———-é']th n
X, . (11110 »
o ——9th  n
Xo 2 |Lj1j1j1jr

’i = 0;6}+’O.h + 0,6+ 0,3+ 0,2 + 0,2 + 0.15 + 0,15
+ 0.1 + 0,1 = 2,8 binits/source symbol
H(X) = = (0.3 1og 0.3 + 0.4 log 0,2 + 0,1 log 0.1
'+ 0.1 log 0,005 + 0,06 log 0,03 + 0,04 log 0.(R)

= 2,743 bit/source symbol
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= 2

nc = HQKI x 100 = Mg—% x 100 = 9709%
L ’ |

Although this efficiency is quite high it will be shown later that:"
this code is not optimum i.e., it is possible to obtain a higher efficiency

with another coding technique, Obviously any improvement will be small,
Example 2,2<3

Apply the Shannon~Fano encoding procedure to the binary source of‘n
Example 2.1-1 for the case of P(0) = 0,05, |

The procedure for encoding a binary source consists of grouping the
soufce binits into groups of two or more binits and considering these
groups as new source symbols, Binary code words are then assighed tb
these symbols in’the usual manner,

Consider the case of using 2 binits pervgroup. The possible_seqﬂenées
two binits in length are 00, 0l, 10, 11, Assuming successive binité.to-Ee.' '

indpendent, the corresponding probabilities of these sequences are

Sequence Probability
00 205 x (05 = ,00R5
oL . <05 x .95 = JOLT5
10 | .95 x .05 = 0475
1 | 295 % .95 = .92

The Shannon Fano code for these sequences is thus

Sequence Code word
00 ‘ 0
oL 10
10 ‘110
11 111

1x 905+ 2x 0475 + 3 x 0475 + 3 x ,0025

=
]

1.1475 binit/sequence
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Since the source binits are considered in pairs the average entropy

per pair is twice the entropy for a sihgle bihit. Thus, from example 2.1-1,
' ’H(X) 2 x 0,286 = 0,572 blts/éource symbol

7lc— f‘§Z$5 x 200 = 49,75

This example 1llustrates that encoding groups of two source binits can
reduce the required channel capacity from 1 bit/seo to 0,5875 bit/sec. An
even greater reduction in channel capacity can be obtainod_by encoding larger

groups of source symbels, This is illustrated in the following example,
Example 2,2+4
_ A source produces two independent symbols, A and B, W1bh the probability
B(A) = 1/16 P(B) = 15/16. | o
It is de51red to encode these so as to obtain a codingefficiency

greater than 70%.

1, - Encoding of single symbols

Symbol ~  Probability " code word
A o 1/16 | 0
B | 15/16 1
T=1 . |
H(X) = - ('1/16} log 1/16 + 15/16 1og 15/16)

0,337 bit/source symbol

= 33.7%

#

=~
o
1

2, “HEncoding of pairs of symbols

Symbol . Probability code word
BB - 225/256 0
4B 15/256 10
BA | 15/256 110

AA - 1/256 1
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| 'f 1/2 (. -—% -*-% ——% ) 0.592 blnlt/source symbel

Nes .L_Z .:.32... x 100 = 56,5%
: .

O. 592 .

3. BEneoding of 3 symbols

Symbol . : Probabi].ity‘ code word .
BEB | (156
BBA (15/16)%(1/16) 100
BAB (15/16)%(1/16) 1
ABB. (15/16)%(1/16) 110
BAA . (15"/_16);(1/16)2 11100
1BA (15/16) 182 11101
B (15/6) ('1/16“)2  nno
| AAA (1/16_)3 S LT

:,_—-1/3(3375 +>93£.§Z5+l¢éx5> - : _K/

= 0.458 binit/source symbol
e = 22 x 100 = B3

This illustrates that encoding larger groups of source symbols” yields bmoreﬂ
be’fficiént,cv;odes., ’ Actually it is passible to obta._in an Mg a.rbitrariljcloése'to
_\;.iOO%by'enéeding suitébly large groups of symbols. However, for thls example
v‘the e:fflczl.ency increases so slowly for groups greater than L or 5 binits in -
length that the inereased cost of the encodlng equlpment would in most s:.tuaq-v
tions, more than offset the increase in codlng efflclency.

A second fundamental limitation of any codlng scheme can be observed :Ln
*vth:l.s example, Note that as larger groups of source._symbols are .encoded there,

is an increasing amount of delay between the time that a source symbol is pro-
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duced‘and the time that'its code word is transmitted. Thus, depending upoﬁ“the
partigular applloatlon, there may also be a limit on the size of the groups that
may be encoded due to a limitation on the allowable delay tlme.

An alternate method for constructlng Shannon—Fano codes conslsts of using
a eodlng tree. ‘When u51ng the coding tree it is des1red that the probabllltles
of symbols whese branches meet at a node point be as-nearly equal asfpdssible.
The use of the code tree is best demonsfrated by giving the code tfee“for some

of the previously derived codes,
Example 2,2-5

_ Determlne the Shannon—Fano code for the source of Example 2e2-1 by~

means of the code tree,

4 1/

d‘B 1/h

¢ s
D ,1/16
B 1/32
P 132

Note thet et each node poin£ the symbol probabilities are equal, Whenz
this condition exists a 100% efficient code is obtaihed. |
The code'ﬁerds are obtained by starting at the root and progressing
- via the branches to therdesiredjsymbol noting ﬁhe Ots and- 1l's that are
Veneountered on each branch, .Thus.ﬁhe,code word for C is 110, The result-

ing code words derived-from'thiS'tree are the same as those ofExample__?.z.la
Example 2,2-6

-Draw the code tree for the source of Example 2,2-2
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0.2 |
0.2
0.1
0,05
0.05
0.3
0,03 |

0.2

@. 02
In this case the symbol probabilities are not équal at eaeh node.point and ,
.aleQ% effieient code is not obtained. The oode‘symbéls derived from this}'

tree gcorrespond to those found in Example 2.2-2,
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243 Shannon's'ﬁinary Encoding

Shannon's binary engoding procedure (ppe 402~4(3 Ref. 1) is primarily of
theoretical interest since it has no practical advantages over other techniques
jand often has a lower efficiency. ‘It is presegted here for the sake of completee=
v;neé$ and because it allows a simple verification of Shannonls first fundamental

theoreﬁ. -
Thé proecedure is. based upon determining code ﬁords that have the prefix

property and satisfy the following relation.

el +l ) eal}q .

PR > RE)z2 . | (2
where, as before, n; is the number of binits in-the i th code word., The code
words are determined in the following manner.

1., List the sjmbol probabilities in nonincreasing order and let these be

denoted by P(%p), P(X,) - - - P(X,) where
CKX)=P() 2 - - 2PR(X)

2. Calculate the numbers

k-1

B =3 Py) k=23, --on
=1 |

P. =0

3+ For the k th symbol write Pk as a binary number’wr of 1y biniis where

# In the binary representation of a number less than unity the binary digit

weights are
20 271

Thus, for example,

0.8

- o o

R,
, 272, 273,

.2Wl £ 272 032*3 Oazuh . 270,

4

o1100] - = =
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n, 1s an integer satisfying Eq. (24). The resulting binary number is the
k th code word,
It can be shown (p4O2, Ref. 1) that these code words have the prefix pro-

pertye. The following example illustrates this procedure,
Example 2,3-1

Determine the Shannon binary code for the following source and compare

it to the corresponding Shannon-Fano code,

Source Symbol Xi, X, Xé XL | X5 Xg X7 Xé |
Probability =~ 0.4k 0Ol 0.0l 0,2 0,0l 0,08 0,2 0,05

L, List probabilities in nonincreasing order,

hoh K X X L L
Ol 02 0.2 C.1 0,05 0.3 0,0l 0., QL

.2. icalculate Pk's

Pl =0 = ,OOOO - -
B, = O = o010 = -
33 = 0,6 = 100l = -

: PL = 0,8 = ,1100 -~ =
P5 = 0,9 = ,11100 -~ -
Pé = 0,95 = ,111100 = =
P7 = 0,98 = 1111101 = =
Py = 0,99 = .1111110 - -
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3. Determine nkgs and code symbols

k nk Source Symbel Gode word

12 S o

2 3 % 1100
33 % | 1111101
b L X, 011

5 5 X5 | 1111110

6 6 Xy 111150
7T Xy 100

& 7 Xg 11100 -

For this'code

T= 0.8+ 0,6+ 0.6+ 0,4 + 0,25 + 0,18 + 0,07 + 0,07

- = 2,97 binits/source symbol

H(X) = =(0.4 log Osh + Q.4 log 0.2 + 0,1 log 0.1 A
+ 0,05 log 0,05 + 0,03 log 0,(3 + 0,02 log 0,G2)
= 2,29 bits/source symbol

Thus the entrepy of the‘code digits is

H (X) = HEZ) . 2222 - 0.77 bit/binit

and

Y = 17

- Tt is readily determihed that the Shannon-Fano code for this source

is as follows,
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B S

X, 1110

% 1111110 | L
BT |

’% 1111111

X, 111110

‘..X,.(.; 110

% 11110

} For this code
T = 2,37 binit/source symbol
vnc = '%58.% :

~This 1llustrates the fact that in general Shannon's blnaﬁy encodlﬁg :
~is less efficient than other methods. ‘ : } |
'The theoretlcal 1mpartance of thls coding technlque lies in the fact that
the condltlon nnposed by Eq. (2&) allows bounds to be determlned for the average
B code length L.» | | | _‘ | |
These bounds are readlly determlned in the following manner. Taklng the'

 ‘logar1thm of Eq, (24), multlplylng by P(Xl) and summing. over all i yields

n n . a
> P(xi) n> - Z P(%;) log P(X, )>Z B(x;) (ni--l) (@)
Cis1 T i= o i=l SR

Ngging ‘that
n

> P<X1>n =T

i=1

- Zl P(X;) log P(X;) = H(X)
1= ]
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n n

Z POG) (1) = ) POG) m - B(G) = -1

i=l i=1 i=1
allows Eqe (25) to be written as

T>Hx)> -1

. Which can be rearranged to give
CH(X) + 1> T 2 HX) R S (26)

Here H(X) is the average entropy per encoded symbol and I is the average
| number of binits per engoded symbol, If it is assumed that the eﬁcoded symbols
'represent groups of N independent source symbols the relatlon between the

entropy of the -encoded symbols and that of the source symbol is
- H(X) = N H,(X) bits/encoded symbol

where H (X) denotes the entropy associated with a single source symbol. Similar-

1y
f‘% Nﬂﬂ;. : ‘binits/encoded symbol
Using these relations Eg. (26) can be rewritten as
NH(X)+1'>NT. NH(X)

or

B0+ §2L, 2R@ B e

It is this relation that Justifies: consideration of Shannon's binary éﬁ»
- coding procedure, Observe that as larger groups of soureefsymbols are encoded,
the average number of code binits per source symbol approaches the.entropyuof
bﬁhe souree symbels, HoWever, the eondition fg = HS(X) is exactly that required

to obtain 100% coding efficiency and the transmission of information at the
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ehannel capagity. Thus the limiting form (as N becomes infinite) of Eq. (27)
-demonstrates that an encodlng procedure g¢an be deuermlned for the n01seless_
© channel that w1ll allow the transmlsslon of 1nfonnatlon at a rate arbltrarlly
close to ‘the channel capacitys |

‘Thislstatement is exaetly that of Shannon's first fundemental theorem and
'as'such demonStrates the importance of Shannon's binary encoding prooedure.’ It
should be emphas;zed however, that this result does not 1mply that a more
-~efflelent c0de can not be ootalned for a given value of Ny The above example
1llustrates that one can.

'2,4, Huffman Encoding

The Hufﬁman encoding,procedure (10) is a sysﬁematie method for'determinihg
‘optimum'codes in the sense thet ho,other codes having.the prefix propertyrand a
higﬁep efficiencj.can'be}determined.'

| hls procedure is slightly more complex than those prev1ously discussed- and

is as follows' | : 7
| 1, Llst the symbols to be encoded in the order of non1ncreas1ng probablllty.
: 2+ Group the two least probable symbols together and consider these as a
vsingle new symbol_whose probablllty is the sum of the individual probabili-
ties, | |

3. Form a new list of sympols containing the remaining original symbols

and the new symbol, List these in the order of noninoreesing probability

also.

he Group the two least probable symbols of this list formlng a second new -

symbol whose probability is the sum of the individual probabllltles.

5. Repeat the regrouplng and rellstlng process until a one element group
“having a prooebility of unity is obtained, o

6? Assign ecode blnlts to the original symbols according to the posltlon

.ocgupied by the symbol in the various subgroups ‘that were formed.
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The following examples illustrate systematic procedures for carrying out

these shbeps.

Example 2.4l

-

Determine the Huffman code.fof the following set of sourge symbols;
Symbols A B G D B
Probability  1/2 1/6 ~1/6 1/12 1/12

Proceeding with steps one through four above gives,

A »1/21 - 1/2
‘B 1/6  1/6
¢ 1/6  1/6
D 1/12}f1/6 '
E _1/12 4

The exact lecation of the>resulting symbol is ﬁnimportant as long as
‘ne symbols having a greater probability are below it in the list,

, Continuing with step five giﬁes, as a complete result,

A 1/2 '1 2 1/2 1/2]}‘/9 1
B 1/6 o 1/6 1/3-} I—> 1/2

¢ 1/6 1/6}F 1/6

k. :1/12}f’ 1/6 »

B 1/.12

The code blnﬁ.ts are determlned for each symbol by a.ss:Lgn:Lng a0 to
the code word each tlme the symbol, or a subagroup contalnlng the symbol,
is the lower element in a subgroup and a 1 when 1t is the upper element,

For example, the locatiohs of C, or a subgroup Gontéining C,'invtﬁe

above columns aré as follows,
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location: = not included upper - upper lower

codé symbols- “ o 1 1 0

The uniquely decipherable code words are obtained by writing these binits
in the reverse order,

'.The code words for this,source‘are thus

a1

B 00

¢ oLl1l
D 0101
.

0100

L=1/2+2/6+3/6+4/12 + 4/12 = 2 binits/source symbol
. . .,5 .
CH(X) = - EE:'P(Xi) 1og'P(Xi) = 1,959 bits/source symbol
i=1 » B

Hy(%) = E¥§l = 0,979 bits/binit
fel = _ .

e = 97.9%

" An alternate procedure for carrying out Huffman encoding that is similar -
to the coding tree for Shannen~Fano encoding, has been given by Fano (pp, 75 Ref.

11). Applied to this problem it gives the following result.

A 1/2 — ' —
| 12 — 7
B L%:~"' —_| I3
¢ 1/6— -1 ‘
D 1/3—

1/12 '
Ev_Lﬂz:}*L% 0

The determlnatien of the code word from this graph is essentially the. same

as above, namely, proceed from the symbel via the most direct path te the termlnal
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_ point noting the Qs and lts encountered. Thé code words are these digits in -

reverse order andva‘re the same as those above,
Example 2,4=2

 Apply thé Hufﬁnan encoding procedure to the follewing symbols.,
Symbol , Xl X.2 7 X3 X:h- X5 | Xé
Prebability 1/6 1/6 1/6 1/6 1/6 1/6

Code word Symbol Probability

0 :L‘ , 1/6—1 , - 3
E e — 1/3— O PRABL
00 X, 1/6—0 ) o — 1,0
vl 01 XB | 1/6—1_1/3
100 %, "1/6-0
111 X% 1/6 '1/3 |
11 X 1/6—

T=1/+1/3+1/2+1/2+1/2+1/2=22/3 binit/symbol
H(X) = log 6 = 2,58 ‘b'i’cs/symbol

Hé(X) = %—%% = 0;967 bit/binit

)’(e = 96«*:7%

Example 2,4=3

Deteﬁniﬁé the Huffman écde for the source of Example 2.,2=2,
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Code Word Symbol Probability

11 X

1 %3 0,3, 03 0.3 0.3 0.3 .03 .ao Loy

oL 5?‘2 042 0,2 0,2 0,2 0,2 '0.?; 230 oyw

00 x, 0.2 0,2 0.2 0,2 0.2 0,2 }

1011 X, 0.1 01 01 0Qfmllfmis ,.20 :

1000 X W05 0506509 | ,10)| J11 |
1010 X, .05 .05 .05 |.08), }

ool o, o8 1304 | ,05)),05)

1000 X, N; .oz}

101001 X9' .:} .

101000 X, |

T = 0,6+ 0 + Ol + Ouly + 0,2 + 0,25 + 0,15 + 0,15
¥ 0,12 + 0,12

= 2,79 binits/source symbol
. H( 00 = 2743 blts/éourCe symbol

e = -22--,%2- x 100 = 98.5%

Note that this gives an efficiency slightly higher than that for the

‘Shannon~Fano code previously considered, .

25 Additional.T=chniques for the Noiseless chéhnel

In the prev1ouo discussions it has been assumed that the code havlng the
greatest eLflc¢oncy, for a given source, is the best code. This is a valid
_assumptlon when the cost, in time or money, involved in transmitting a O is
‘the same as that for a 1. For this‘oondition,‘thevtotal cost. inyolved in trans—
‘.mitting a message is minimized when the coding efficiency is maximized. 1pr;

- ever, When the code symbols have unecual cost the maximization of 7[0, as
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as previous defined, does‘not give‘the leasticost encoding. Under this condition
the Huffman procedure is no longer optimum and éther techniques must be considered,
Blackman (12) and Marcus (13) have considered this problem giving results that

are extensions of the Shannon=Fano and Huffman procedures, Their methods, how-
ever, do not neéessarily give minimum cost encoding. A recent article by Karp

(14) describes such a technique which involves the use of digital computer, Be-
cause of themdomplaxity of this pfocedure reference should be made to the article
for specific details.

An additional situation in which Huffman encodihg can not be used éccufs
when the encoding is to 5e‘done in such a mamer that the alphabetical order“of
the.squrce symbols 1s maintained in the code words. This might occur, for ex-
‘amplé, when English text is ﬁo be encoded for storage in a compubter memory.
Gilbert and Mbore (15) have developed a technique for encoding suéh'sources.
When applied to the English alphabet thist echnique results in an average code
word leﬁgth'af 4,1978 binits/letter as compared to the minimum possible
(Huffman code) of 4,1195 binits/letter. The procedure for determining these

codes, however, is considerably more complex than that for the Huffman code,
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CHAPTER 3
CODING FOR THE NOISY CHANNEL

3.1 Iptroduction

The previous chapter considéred coding for the noiseless channel.. The
techniques discussed represent methods for approaching the information transe—
mission rate given by Shannonts first fundamental theorem. in most practicai
situations, however, the entire channel will not be'nbise free and the second
fUndamentél theorem must be applied. The coding techniques discussed in this
chapferrepresent various approaches to the realization of the information and
error rates given by this second theorem,

Unfortunately there is at present no single teéhnique, analogous to the
Huffman pfocedure for the neiseless channel, that gives a maximum information
rate and a minimum error rate. There are instead a number of procedures, each
haﬁing their own advantages and disadvantages, that have Eeen;proposed as a
solution to this problem. The better known and moré readily explained of these
techniquesiwill be discussed in this chapter, It should be emphasized, however,
that a large émount of work remains to be done in this area since the techniques
presented all represent essentially trial-and~error solutions to the coding prob-
lem, -

In the previous chapter it was shown that the output of a discrete source
could be encoded into binary digits (binits) in such a manner that the resulting
probabilities for a O and a 1 were as nearly equal as desired, Thus this chapter 
can consider,without loss of generality, only a‘binary source for which the symbol
probabilities are equal, The block diagram resulting from this approach is given
in Fige 6. |

If a sequence of O's and l's are transmitted over a noisy binary channel

some will be received in error, Since the source binits are assumed to be pro-



m discrete - ~ message e - message binits
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- ‘ . . User
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Fig. 6 - Coding For The Neisy Channel
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duced independently, all sequences of binits will be equiprobable and there will
be no way in which the erroneous digits can be detected,

One method of alleviating this problem is to transmit each message digit an
odd number of times and to select at the receiver the digit occurring most often
in each group., For example, assume the sequence to be traﬁsmitted is 00101110
and that three digits are to be transmitted fpr each message digit. The trans—

mitted sequence is thus
000 000 111 000 111 111 111 000

Assume the transmission errors are such that the received sequence is
100 CLO 011 000 101 110 111 010

Assigning to each successive group of three binits the.symbol appearing most often
in the group yilelds the original transmitted sequence, Thus this technique
gives error free transmission when only one error occurs within an individual
group. lote, however, that to obtain this improvement in error rate it has been
riecessary to reduce the rate of transmit‘bing message ‘digitsvby a factor of one=
third, Proper selection of the rédundant digits allows more efficient error
correction ﬁhan that illustrated. However, the selection of these binits in an
optimum manmner represents the major problem in coding for the noisy channel,
This examplé illustrates an important general characferistic of coding for
the nolsy channel, namely, to be able to detect and/or correct an error at the
receiver 1t 1s necessary that redundant binits be inserted into the message at
the transmitter. In the above example the second and third binits in each group
are redundant since they are uniquely determined by the first binit. These
redundant digits contain no information. Their effect is thus to reduce the
average information, or entropy, per binit of the transmitted sequence, Be~

cause of this it can be stated that for error detection and/or correction to be
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possible it is necessary that the average entropy of the transmitted binits be
‘less than 1 bit/binit. This should not be too surpriSingvsince Shannon's second
fundamental theorem states that the average entropy per binit forvthe digits
supplied to the channel must be less than the channel capacity, G, 1f error free
tramsmiési@n is to be theoretically possible,

A second imporbant characterisiic of coding for the noisy channel is the
encoding of greﬂps of message digits, In most codes groups of, say, m, message
binits are éncoded by inserting k redundant digiﬁs to give a code word of -

n é,m + k binits, .Such codes in which all code words aré of equal length are
- commonly called bleck codes. In the above example m = 1, k = 2 and n = 3, -

In sumary, the two important propérties of codes for use with a noisy
_channel are as follows.

le The probability of error for a received code words If the coding is -

to be of value this must be less than the probability of error for the

message sequence when it is transmitted without coding.

2, The ratio of message binits, m, to tetal binits, n, in a code word.

This ratio can never exceed, C, the channel capacity, but should be close

to it for efficient transmission. At present, few codes approach this

ideal while simultaneously giving a low probability of error.

Before proceeding te the discussion of specific coding techniques the
following definitions pertaining to coding for the noisy channel are given.

Memoryless channel - A channel in which the probability of error for a

received binit is independent of the occurrence of previous errors,

Parity checgk digits « A more descriptive term that means essentially the

same as the term redundant diglts used above,
Code word -~ A sequence of n binits composed of both message digits and
parity check, or simply, check digits,

Length of a code word - The number of binits in a code word, Usually all
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code words in a given code are of equal length.

Weight of s code wWord - The number of 1's in the word,

Block code - Anyicode in which all code words are of equél length, n.

ggggg ~ A collection of elements or symbols having a specific mathematical
property.' This term will be defined more precisely in sectioﬁ 3342 and is'
given here only to indicate that it now has a épecific mathematical definition.

Group code - A binary code in which the code words have the group property.

'Systematic code - An n binit block code in which m digits are information
digits and k = n = m digits are parity check digibs. |
Linear code - A mathematlcal term for n-ary (blnary, tr1nary3 etc, ) codes
‘nav1ng a speeific property. For binary codes the terms linear code and
- group code are synonymous.

342 Hamming Codes

The error detecting and error correcting codes discovered by Hamming (15)
represent the first useful coding béchniques for_the noisy memoryless channel,
The work of Hamming is best considered in four parts as follows.

l. Coding to provide for single error detection, i.e., SED codes,

2, Codlng to provide for single error correction, i. e., SEC- codes,

3. Coding which allows single error correction plus double error detection,

i, e., SEC-DED codes° |

Lo Certain condltlons required of code words to obtain higher orders of

detectablllty and correctablllby.

All of the following results are based upon the assumption of a binary
source with equlprobable symbols, a binary symmetric channel (BSC) with P < 1/2
and the use of equal length code words.

3.2,1 SED Codes

Hamming's SED codes for n binit code words are readily determined in the
following manner: In the first n-1 p031tlons are placed message digits, In the

n th pesition a © or a l is placed so that there is an even number of 1ts in the
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total code word., The resulting code word allows single‘error detection (actually
odd error deteétion) since any single (odd) error would result in an odd number
of 1's in the received code word. Observe that all even errors go undetected,

Since the ratio of message digits to total digits ism/n=1-1/n it might
éppear desirable to make n as large as possible so as to obtain the maximum
transmissien of message.digitég However, as n increases the probability of two
or more errors, and thus an undetected error, increases, Thus when a maximum

probability of an undetected error is specified there is an upper limit on n.
Example 3.2.1-1

For a BSC in which P, = lO”Z,determine the value of n for avHamming
"BED code that will make the probability of an undetected error approximately'
10'3. Gempare this to the probability of an undetected error without cod-
ing, |

For the SED ccde the probability qf an undetected error, P(UDE), in a
code word is simply the probability that an even number of errors will occur.

Thus
P(UDE) = P(2 errors) + P(L errors) + - -

For a B3C the probability ef a particular set of two errors out of n
2 n-2
transmitted digits is P, (l"Po) + There are a combination of n digits

3
taken 2 at a time, (5) s different ways in which two errors can occur, Thus

the total probability of two errors in n digits is
n 2 =2
(2) B," (1-P,)

Similar reasoning follows for 4, 6, 8 = ~ errors. Thus

5 2 = nd
() ri (n=-r)}
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n
L n 3 N

we) = - (D) g (1-R,)
i-even

' Use of the binomial expansion (pp 51-52, Ref, 8)‘allows this toibe

written as

' r n 1
P(UDE) = 1/2 | 1-2(1-P,) + (1-2B,)" | (28)
or

P(UDE)= 1/2 | 1-2(.99)" + (.98)" |

Substituting values of n gives

n P(UDE)
3 . 00057
b 00112 .
5 00229

Thus a value of n=4 meets the specified erreor probability.
Without e¢oding, an undetected error will occur whenever a message is

received incorrectly. Thus

il

P(UDE) = 1~P(no errors)

i

n
1- (1-P,)

i

1- (.99)
0,3936

It

The probability of an undetected error has thus been reduced by a
factor of more than 30 while reducing the information rate by only 25%.
The type of check used above to determine the presence of a single error
is called a parity check and will be used througheﬁt the discusgion of coding

for the noisy channel. The above discussion used an even parity check. Had an



odd " check been used thebn th dlglt would have been chosen so as to make an odd
“number of dlglts 1n the code word.s ThlS report will use only even parlty checks,
It should be noted that the parlty check need not always 1nvolve a check over
all of the message dlglts but may check only a portlon of these. The codes of
'the follow1ng sectlons illustrate this point.

" 3. 2.2 SEC. Codes

Hammlngs SEC code allows the correctlon of any _iﬁﬁii error. that occurs with-
”ih'a'Partlcu;ar code‘word However, when two or more errors occur this procedure
vcen cense‘additionel errors to be created in the decoding process. Thus it is

‘vnecessary that these codes be used only in 81utatlons where the probablllty of

two or more errors is negllglbly small. | |

. The CQnstruction of snc code proceeds by first assigning m of the n binits

o in a-codeiword to be information digins;v For a given n,im will be considered to

be fixed. The specific location of three digits will be determined later, The

o remaining‘k5=4n—m'positions ere‘essigned to be parity check digits, The values

of the check dlglts Wlll be determlned in the encoding operation by even parlty

3 checks over the selected information places. The follow1ng dis cussion w1ll de~-
termlne how these parlty checks are to be made.

Consider the'situation in'which a codevword has been received either with or
w1thout a slngle eTTors Assuming the parity check rules to be known, they can
be applled in order with the condition that for each time the parlty check ass1gns
the value‘observed in the correspending check pos1t10n:a 0 w1ll be“recorded while
a 1 will bejrecorded-wnen_the two ralues disagree. Since there are k check digits,
'va sequence of k Ois end 1's will.be.Obtained. When this'sequence»is'written from
rignt to left it can be considered as a binary number. This number is called
 the checking number end:shall be required to give the position of any single error
' in the code word. :The zero value of this number shall mean that ne error has

'Qccurred. SinCe'tne code words are n binits long the checking number must be
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27 n+ 1

A _.ma£iﬁum.m k = n-m
1| e 1

2 0 2

3 1 2
s 1 3

5 2 3
6 3 3

7 b 3

e I L

9 5 b

10 6 b
1 7 4

12 8 b
T mem1 |

=60~

capable of specifying n + 1 different events. The relation between the number

“of check digits, k, and n is thus

With this result the values of Table I may be
determined. This table gives,‘for a specified
n, the meximm mmber of message digits that can |
be used while retaining the capability for correct~
ing single errérs. | |

Although it appears from this table that
more information can be transmitted‘by‘using
lafgef values of n it should be remembered that
the probability,of twb OF MOTe errors alsg in-
creéses with n, Thus an upper bound en ﬁvwillv'
also exist for SEC codes when ﬁhe maXimum prob-
ability of error is specifiéd. : |

it 1s now necessary to determine the parity

check rules that will allow the operation des—

cribed to be obtained, The digits of the checking number are to be dbtainedvby

applying the parity check rules in order.and recording, from right to left, the

resulting sequence of Ofs and 1's,  Since thevchecking numbep is to give the

”p081tlon of any 51ngle error in a code word any positien in the code having a 1

‘on the right side of its blnary representatlon nust cause the flrst parity check

~to fail,

Position
1
2

The binary representatlons of the various positions are as follows, |

Binary representation

. 0001

0010
0011
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0100
OLOL
0110
‘Olll
1000

N~ oN W F

1001

Observe the rlght hand binit is a 1 for all odd positions, . Thus the first”
parlty check must be over p051t10ns 1, 3, 5, 7, 9 - = = Slmllar regsoning in-.
"dlcates that the seCOnd parlty check should be over all p051tlons having a 1 in
the,second dlglt from the right. From above these are 2, 3, 6 Ts lO 11 —'f —,.
 Likewise the positions fer.the‘thlrd parlty check are by 5, 6, 7y 12, 13, i, 15 -
oetes | | o |

TheSe resﬁlts indiCate the positions to be checks in each of the successive.
'parity eheeks,' It'reneins to determine'e#aC£ly‘where~invthe n binit sequence 2
i,'the k parlty ¢heck dlglts sheuld be placed. Observe thet by piaeing the eheck
dlglts in posltlons 1, 2, 4,y 8 etc. each check dlglt will be 1nvolved ln only
‘one of the parity check operations determined above. - Although this condltlon 1$'n‘
_‘not>reqﬂired to obtain the SEC‘property, it greatly simplifies the decodlng pro~.

cedure, Thus these positions will be used. ' Table II summarizes theee.results,

Par:.’cyCheck ,v “_Léceti‘o’n‘of., n _’ Pésiﬁioﬁs
Noo N Cheek Digit Ghecked
— PR I
2 | - 2,356,7,10, 11~
5| by 55657512, 13, 1hp 15 =mm
s g ' 8,9,10,11,12,13, 1k, 15,24, 25-=

TABLE II
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Example 3,2.,2-1

As an illustration of the preceeding results consider the Hamming SEC
code of n=7, Table I shows that there are L4 message digits and 3 ¢heck1 '
digits per code word, Table II shows that ﬁhe first parity check is over
positions 1, 3, 5, 7 and determines the value for the digit in position.l;
the second parity check is over positioné 2, 3, 6, 7 and determines the
value in the second position; while the third check is over Ly 5, 6, 7 and
determines the value in position 4., The information pesitions in this code :
aré thus 3, 5, 6, 7 allowing a total of Zad 16 different code words, As
an example of the application of these check rules assume that the digits in‘
positions 3; 5, 6, 7 are 1, O, 1, 1 respectively. The first parity check
rule thus requires that a O be placed in position 1, Likewise, the secoﬁd_
and third parity‘check rules require a 1 and a 0 in positions 2 and L respec—
tively. The resulting code word is OllQOll. Table III givesthe code words'
when éll 16 possible message sequences are considered,

To demonstrate the error correcting capability of this code assume that
- code word 6 has been received as

OL10101
Applying the first parity check to positions 1, 3, 5, 7 indicates‘that the
digit in position 1 should be a 1, Since the received digit is a O the
Tirst digit of the checkiﬁg number is l; Similarly the secoﬁq parity qheck
predicts a O for position 2 which disagrees with the received digit. Thus
a 1 is written to the left of the 1 obtained above.

Finally, the third check prédicts a O for position /4 which agrees with o
the received value, The resulting check number is thus

0L1
which correctly indicates ﬁhat position 3 is in error.

To demonstrate the effect of 2 errors consider the situation'in whicﬁl>
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c¢ode word 9 is received as
1111100
Applyiﬁg th‘e '>p.arity check rules gives the checking number
| 001
>,Thus the decoder would change the digit in position 1 to a O causing a new
error to bé ¢reated, This demonstrates that ﬂhe vprobability of two or mdre _

-errors should be negligibly small when a SEC code is used,

Code Word L __ Letter ?ogitio#; ]
1 ofo|lofo]ofo]o
2 1|1 o | 1 o | o 1
3 11 fo|lx]of1]o
b 1 0 0 o} o 1 |1
5 |1 |olorr]e]o
6 o1 fofo|1|o|
. 1 1o flofr]1]o
8 ol ool |1l
5 | 1l1l1lofo]lo]o
10 o] o 1 1 | o o | 1
11 1| o lrf{1fo]|1|o
12 o1 11 o | o | 1|1
BT C R PSS R I I B P
u 101 ]ol1 o]
15 ol o1 |o]1]1]o
16 IR S T N T I A A N S

TABLE III
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Since a SEG code is used to reduce the probability of a code word being
received in error it is useful to determiné the amount’by which this prebébility
is reduced. For this code, the probability of correct reception is the proba-—
bility that either no errors or a single error occurs. From the resuits of

example 3,2.1~1 this is given by

n=1

H]

P(no error) (l—Po)n +,(§) P, (lﬁPo)

it

n n-1
(l‘Pc) tn Po(lmPQ)

Since

[}

P(no error) = 1 = P(error)

mp

l-P,

the desired result is

_ 3 \n n=1
Pe =1 = (l—Po) n Po(lePo)

Without coding, m digits would be transmitted in each word,

The corresponding probability of error is thus

m
P,=1= (1~EQ)

Considering specific values of n =7, m = 4, and P, = lszvgives the follow-
ing results,

With coding

7. 6 _
Pe = 1 « (o9?) - 7(«99) = Oa00195
Without coding

P,=1- (.99)" = 0.08936
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. Thus, SEC coding has reduced the probability of an uncorrected error by a
factor of 15 while reducing the information rate by less than a half (the rate
with coding is essentially 4/7 bits/binit giving a reduction of 43%).

Observe here that a penality has been paid to obtain the error correcting
capability. In example 3,2,1-1 a reduction in the probability of an undetected
error of 30 times was obtained for only a 25% reduction in the information rates

The primary advantage of the SEC codes as compared to the SED codes of the
last section lies in the fact that SEC codes correct instead of only detecting
the most probable of the received errors. Thus in situations where message
retransmission is not possible SEC codes can be used to improve the reliability
of transmission., However, a penality is paid for this capability since fewer
message digits can be transmitted in each code word, Because of this the SED
" Codes can be of value when a feedback channel is available, In the following
sectlon a code is discussed which has both error detecting and errof correcting
capabllities,

3243 SEC-DED codes

In some cases where a low capacity feedback channel is present it might be
advantageous to correct the most probable single errors by means of a SEC code
and to provide for message retransmission via the feedback channel when more than

& single error occurs. Hamming has suggested such a code which is obtained from
the SEC code.by simply adding an additional digit that is an even parity check
over all previous digits. For the code words of Table III this involves adding

an 8th column having the following digits

HHOO

O+
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HHOO oOOorH

The operation of the SEC-DED code is best explained by considering several
cases,

l. No errors occur. In this case all parity checks are satisfied. For
example if the sequence

10110100
is received the check number is found to be 0 0 O, Since an even number of
11s are present the last parity check is also satisfied; Thus when the last
parity check is satisfied and the checking number is zero it is concluded
that no errors have occurred, (Actually this is not completely true since
the errors could be such as to change one code word into another. The |
probability of this occurring, however, is considerably less than the corres—
ponding probability of a single or double error.)
2. A single error occurs. For this situation the last parity check will
fail, The resulting checking number will indicate the position of an error
with a\zero indicating an error in the last check position. For example,
aésume that the seguence

000 O‘l 110
is received, The checking number is found to be 100 and the last check
fails. Thus the error is in position L.
3« Two errprs o¢cur., In this situation the iast parity check is satiéfied
but a checking number is obtained., This indicates that two errors have
occurred but gives no information regarding their location. Thus, if the

received sequence is
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10001011
the last check is satisfied and the checking number is O 1 L. Howeve;, the
errors occurred in positions 4 and 5 and the checking number is of no use,
‘A. ‘More than two errors occur. In this case no useful information is ob=
tdined and if the number of errors is odd (so that the last check is satis=~
fied) it is possible that the resulting checking number will cause an addis
tional error to be created.
For the SEC-DED code the probability that a received code word is either
correct or known to be incorrect is simply the probability»that either O;

1 or 2 errors have occurred. Thus the probability, Pe’ of receiving an .

. erroneous word and not knowing that it is incorrect is

P =1« P(no errors) - P(1 error) - P(2 errors)

il

n+l v n _ n(p+l) 2, n=-1
1-(-8)" 1) p, (1-7)" -2ZL p2 1)

For the values considered previously, i.e., n =7, m = 4 and Pj =”1§@; this

gives a Py of less than lO"h. Thus the use of a SEC-DED code has reduced -
the probability of an undetected error by approximately 500 times while

causing a reduction in the information rate of 50%.

342,h Gede Requirements for Larger values of Detecting‘and‘Correctinngapability
In his article (15) Hamming introduced a geometrical model that allows some
 conditions to be specified for codes that are to either detect or correct more
than two errors, This model consists of identifying the sequences of Ots and 1's
in each code word with a point in n-dimensional space. For large values of n
this ia é rather abstract concept that is of value primarily to the mathematician.
However, the case for n = 3 can be readi}ngonsidered and illustrates the basic
concept, For n = 3 the 23 = 8 possible code words can be associated with the

points of a 3-dimensional cube in the following manner,
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110

Let the distance between any two of these roints, say X and Y, be D(X Y)
From the above figure it is clear that the distance between any two points is

equal to the number of digits in which the two correspondlng code words dlffer.

Thus, for example, the distance between the parts 101 and OLO is 2, Thls corre-

sponds to the number of edges of the cube that must be traversed in g01ng from
one point to the other, |

U31ng this concept it is apparent that the effect of an error in the brans- '
mission of a code word is to move the code point to a new location. Thus 1f all 
p01nts are used as code words the occurrence of an error can not be detecued
However, if code Words having a minimum distance of 2 units are chosen a 31ngle
error will cause a code point to be moved in only one coordinate to a p01nt that
is ﬁot defined as a code word, This allows a single error to be detected,- From
the above model one such set of symbols would be

000 |

011

101

110
or, equally well,

001

010

100
100
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Observe now that if the minimum distance between code words is at least 3
units then any single error will leave the displaced point nearer to the correct
| point than to any other code point., This means that any single error can be
lcorreeted, This can be generalized to larger mihimum disténces with the follow=-

ing results.

1 Minimum ‘ ’ Resulting code
Distance '
- 1 1 No error detection or correction possible
2 | Singie error detection (SED)
3  Single error correction (SEC)
I Single error correction - double error deteétion(SEC-DED)
5 Double error correction (DEC) or,

Single error correction - triple error détecﬁiqn (SEC~TED)
or, quadruple error detection (QED)

6 } Double error correction - triple error detection (DEC~TEC)

or, ete.

The procedures discusséd in sections 3;2;1, 3.2,2 and 3.2.3 are mereiy
’specific techniques for determining code words having a minimum distance of 2,
3, and 4 respectively. Thus all the code words of Table IIT will be observed to
have a minimum distance of at least B'units.

The determination of a set of code words which is as large as pbssible
while maintaining a specified minimum distance represents an unsolved problem
for distances greater than 4 units., These results, however, give conditions that
must be mét by anybcoding scheme that may be devised. |

3.3 Slepian Group Cedes

33,1 Introduction

The work of Slepian (16), which is a generalization of results obtained



0.

earlier by Hamming and Reed—Muller (17), represents a major contribution to the
fleld of codlnp tneory. In essence Slepian showed the Hamming and Reed-Muller

- codes to a subclass of a larger class of codes called group codes. The group
codes have several special features of practical interest., In particular, (l)
the encodlng scheme is relatively Smele to 1nstrument due to the placement of
the check dlg;ts in the last k positions of the code word; (2) the decoder - a .
’ maiimgm likelihood detector-is the best possible theoretically (i.e. it gives the 3
' .lowe5t possiblé P -for a given codé) and isvreaéonabiy easy ﬁo instrumenﬁ, ahd'
'(3) in many cases of practlcal interest the codes are the best possible theoretl-
cally (ie€4s no other code of any type whlch is- COnposed of the same number of
‘equal lengbh n=binit code words has a lower P_),

The Sleplan group codes do not, however, allow Lransm1351on ‘at a rate near
the channel capa01ty'w1th an arbitrarly small error rate., Since Elias (17) has
shown that such codes do exlst it is clear that addltlonal work remalns to be
‘ ,done. At present nearly all of the block codes being studled are a subclass of
the general‘group codes discussed by Slepian.

As with the Hamming éodes, ali discussion of -the Slepiah codes is_baséd
upon the assumption of a memoryless binary symmetric channel (BSC) with P, < 1/2
and equiprobable binary source symbols, |

The folleowing section will.discuss the mathematical properties that are re-
'QUired for an understanding of subsequent wbrk.

3.3.2vDefinition‘and Properties,of a Group.

The follow1ng dlscu881on of the definition and properties of a group is
not a8 rmgor@us nor as conplete as that given by mathemaulclans. The 1nformation
rresented, however, will allow the fundamental properties of group codes %o be
understood,

In terms of binary words (i.e., sequences of n binary digits)‘a gfoup is‘

defined as followss
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Definition: A collection of binary words is said to form a group if the

P
G

product’

S

of any two words is also a member of this collection and if the
collection contains the identity element‘(this elanent, I, is defined to be
the all-zero n binit sequence),

From this definition it is clear that the 2" possible séquences’of.n binits
form a group since the product of any number of the sequences is another sequence,
This group is denoted by B, and contains 2" words or elements.

Other groups having less than 2% elements can also be found from ﬁhese binary
words. For example the weords

000

160

001

l 01
form a group since the product of any number of the words is also contained in
the group. (Note that any word multiplied by itself yields the identity element ),
Groups of this type are contained in the larger group Bn and are defined to be a
subgroup of Bn;( The group codes invespigated by Slepian are’iﬁ this category.

3.3.3 Definition of a Group Code

An n-place group code is defined to be a collection of 2m'(m<:n) n binit
code words that form a group as defined above, Since the group Bn contains all

2h possible sequences of n binits, all n~place group codes are subgroups of Bn’

¥* The product of twe binary words is defined as follows, Let A= 815 8py 2g

- == =ayand B = Dby, by, ~ ~ - b, be two n~digit binary words., Then the pro=-
duct AB is defined as

AB:al+b'ls 32+b2’_F““an+bn

h

where + denotes addition modulo 2, i.ee, O+ 0= 1 + 1 = 0b 0+1=1+0=1,

Thus if A = 011000 and B = 110110, AB = 101110,
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For simplicity in subsequent discussion such codes will be deonoted as (n,m)-
godes,
Slepian has shown (pp 219~221, Ref. 16) that there are exactly

(2§_20> (2n~21) (2n_22> —— (Zn_zm-l)
(20) (F2h) - - - - - - (2R

N(nym) = (29)

different subgroups of B, having 2™ ¢lements or words and thus N(n,m) possible

(nym)=codes, Some values of N(n,m) are given in Table IV below,

n ‘ m
RN N T
3 7 7 1 0
oy 5 35| 1 1
5 31 155 155 31
6 6 651 | 1395 651
7 127 | 2667 | 11,811 | 11,811
8 255 | 10,795 | 97,155 | 200,787
TABLE IV

Observe that as n and m become large the number of possible subgroups in-
creases rapidly. Since the Slepian group codes are to be selected from these
subgroups, the problem of choosing the best code for a given n and m becomes -

quite difficult for large n and m,
Example 3.3.3-1

Forn =3, m = 2 Table IV shows}that there are N(3,2) = 7 possible

(3,2)~codes. . Trial and error methods show that these are as followss
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(352)=Code No,
1 2 s | b 5. 6 | 7
000 000 | oo | ooo 000 000 000
Code 001 o11 | oor | oo | oor o0 | ou
Words | 010 101 100 | 100 wo | 1 | 100
011 1mwo | 1 | 1m0 | m 1 | 11
TABLE V

The determination of these codes for larger values bf h and\m is not

a simple problem.

Assuming that a (n,m)=code has been chosen and the 2™ WOrds déterﬁined, ine-
formation is transmitted with this code by selecting blocks of m message digits'
and associating these in a one;to—qne manner with the 2 code words. Then as
- each block of m message digits is received, thevcorrespohding block of n code
digits»is 'tranémitted over the channel, Due to noise on the channel some of
the digits in ﬂhe received code word will be in error. The next problem is thus
éoncerned with thevmethod for correcﬁing these errors usiﬁg the known property
that the transmitted words formed a group. | |

3034 Detection of Group Codes

It has been stated that the transmitted code words form a subgrbup of B..
This means that only 2% of the POSSible 2% n-binit sequences are transmitted.
However, due to noise on the channel it is possible to receive any of the 2"
n-binit sequences., Thus, the detection process must involve associating & number
of received words with each of the transmitted words in such a manner-that the
probability of error is minimized. Slepian has shown (pp 222-223, Ref. 16) that
the optimum detection method (i.es, it gives the least probability of error) is
as deseribed in ths following paragraphs.

Let the words of a specific (n,m)acode be A=1= 000 = 0 (I is the identity
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element ), Ay AS’ - Au? where u = 2%, The group By (i.e. the collection of
all 2" possible received words) can be developed from this subgroup as shown be-

 low
32 32 A2 SQ A3 P T 3 5 Au

»

8, 8,4 Syhy -

paloiich
where u = 2m3 v = 2

s and SiAj is the product of n~binit sequences as previously
defined, Observe that there are wu = 20 elements, or words, in this array. Jt
can be shown (pp 17, Ref. 19) that thié array contains every element of B, once
and only once if the words Sp, 53 ~ = Sy are chosen in the following manner; :

For 8o choose any code word not contained‘in the first row, for 83, any word not
contained in the first two rows, etc, The various rows, other than the first,

- in this array are called cosets and the first word, i.e., Sp, S ~~ Sys in each

row is called a coset leader.

It can also be shown (p 436, Ref, 8) that if a coset leader is replaced by
any element in the coset, the same coset will result. Thus, the two collections

of words

Sip Sihy  Sihy = SiA

and

are the same., (Note that this does not imply that words in the same.position of

each coset are identical but only that the same words are contained somewhere in
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cach coset)e

~ The wéight, Wij’ of an element in the above array is defined to be the number
of 1's in the n~binit.word located in the i th row and the j th column. With this
definition and in view of the preceeding paragraph it is possiﬁle-to rearrange |
ﬁhe array for Bn so that the coset leaders will have the minimum weight in eé@h'

cosel. Such an array is defined to be a standard array.

Bxample 3.3.4~1

A sﬂandard array for B

b |
(4,2)-code 0000, 1100, 00l1l, 1111 is as follows

when developed according to the specific

0000 - 1100 0011 1111
eoolr - 1101 0010 1110
0100 | 1000 0111 1011
0110 1010 0101 1001

In the last row any of the elements could have been chosen as coset leaders.

since all are of equal weight 2;» In the third row either,OlOO or 1000 could

have been used, while éither 000L or 0010 could have been used in thé
second row, It should be clear that many such standard arrays could be
obtained by cheosing different coset leaders having the same weights,

The debection scheme for a group code used with a B3C is now as follows:
When a word, say Aj, is transmitted, the réceived word can be any element in B,.
If the received word lies in column i of the standard array the detector will
indicate that A; has been transmittéd. For example, the array of Examplé 3.3.4-1
shows that the received word OL11l will be produced by the detector as OC&l, 0110
will be produced as 0000, ete., Since any word in a standard array is at 1east.as
close to the code word at the top of its column as it is to any other transmitted

code word (pp 222-223, Ref, 16) this detection scheme represents maximum likeli-



~76~

hood detection, i.e,, the detected symbol is the one most likely to have been
transmitted. It will be shown later that, for a given group code, this scheme
giﬁes the lowest possible probability of error, i.e., no other method has a
greater average probability that the transmitted word be correctly produced by
the detector,

Chserve that this detection-scheme requires a knowledge of all oh possible
received words., This means that detection equipment requirements will grow
exponentially with ihcreasing'code length. Since in many practical situations
 1arge code words are required this represents a seriéus limitation. ‘A later
section of this report will discuss an alternate mathod for‘obtaining maximum

likelihood‘detection that does not have this characteristic,

3.345 Probability of Error for Group Codes

Let an arbitrary code word that is to be transmitted over a BSC be denoted
by A and the resulting received word by T. Note that each of these words are
n-plane binary sequences, The digits of T differ from those of A only in the
positions where an error occurred due to noise on the channel, Thus, a new wofd,
N can be defined as N = AT which will have a 1 in each position in which the digits
of A and T differ, i.e., in each position in which an error occurred. This word,
is also an element of B, and serves as a record of the noise on the channel during
the transmission. (For example, if A = 1010010 and T = 1110110 then N = AT =
0100100 indicating that an error occurred in positions 2 and 5.,) From previous
results it is known that the probability of N being any particular element of Bn

is
. W _ n=w
where w is the weight of N

Consider now the case of transmitting with a particular (nym)=code and

assume that the standard array for this code is known at the receiver. If the
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maximun likelihood detection scheme is used, a trénsmitted.letter, A;, will be
prqduded without error if and only if the received word is of the form Sin, l.esy
the received word must lie in the column of the standard array having Ai as its
heéd; Thus there will be no error only if the noise on the channel represented
by N, is one of the coset leaders. In view of this the probability of correct

detection, 1 = P_, is just the sum - of the probabilities that N is a coset leader,

Lle€ey
v .
‘ W, Dt :
- = i - 1 )
1-F, E RAEE (1‘ PO) | i (30)
‘ . g
where wy is the weight of Si' Since, for a fixed n, the term

Wy, -~

P Y (1~ Po)n i

is minimum when w; is minimum (P, < 1/2) and since the coset leaders of a
standard array have minimum weight the probability of correct detection given by
Eq. (30) is as large as possible. Thus, as previously indicated, maximum 1ikeli-
hood detection gives, for a particular code, the greatest averagewprbbégility of
correct detection. However, for a specified n and m there are ﬁ(n,m) possible
group codes and this result tells nothing about which of these will have minimum

P This problem is considered in a later section.

e*
Example 3.345~1

For the (4,2) code of Example 3.3.4=1 the probability of correct

detection is
4 3 3 2 2
l-;-'Pe = (1“Po) + Pb(l”Po) + Po(lme) + Pb (l—PG}

. =
Assuming P0,= 10  gives
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3 - 2
Pe = 1"(.99)h+ Oom (099) + 10 h(099>

= 01985
Without coding

m 2
Po=1-(Q~P ) =1-(.99)

= 0199

Thus, in this example nothihg has been gained by coding. In fact a
loss is involved since the information rate with coding is\oﬁly 50% of that
without codings This illustrates that coding can not be used indiscriminately
to obtain a reduction in Pe'

In general such a situation would be remedied by encoding larger blocks

of message digits,

34346 Generation of Group Codes by Parity Checks

An encoding method has been suggested‘in Section 3.3,3 in which the 2m(n,m);
code words are listed in a code book aleong with ﬁhe o possible m binit Sequences,
The sequence of binits from the message source is then divided into blocks of m
binits and the corresponding code word determined from the code book. The re-—
sulting m binit code word is transmitted over the channel, This procedure suffers
from the fact that Zmﬁl words must be stored in the encoding device, Thus,
storage requirement will increase exponentially with increasing message block
lengths, A simpler encoding procedure, giving rise to only a linear increase in
equipment requirements, involves the generation of code words byvsuitable parity
checks over the message digits in a manner similar to the.Hamming procedure, Two
concepts are required before this approach can be discﬁssed: that of a systematic
EEQE and that of gggjvalenqe.

In a systematic code the digits in any word can be divided into two classes:
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(1) the information digits (there are m of these in a (n,m)=-code), and (2) the
check digits (némék in number for the (n,m) code), All words in the code have

' the same information digit locabions and the same check digit locations. The m
infonnation‘locations may be occupied by any of the 2" m-digit binary sequences.
: Thé digits'iﬁ the check locations are détermined by fixéd parity checks over

. prescribed combinations of the informationbdigits. Thus the Hamming codes are

one example of systematic codes,
Example 3.3.6-1

Gthider the (4y2)=code given by 0000, llOO, 0011, 111l. Assume that
positiohs 2 and 3 are to be informatioh positions. Appropriate parity
‘cheéks over these positions'will give the digits iﬁ'pOsition 1 and L. De~
noting a code word by Xy, ng XS; X#, the parity check rules can be deter=

mined by solving for the unknown copstants in the following equations,
Xy = ¥y @ g (@)
X, = AT, 8 A% ()

"Substituting values from the second and third code words above gives the

following simultaneous equations

1= Al c1® A 0

| (a-1)
0=4, » 0@4 1
O=4, + 1®A, ¢ O -
3 b (b-1)

®

1=43-004, -1

Simultancous solution of Eas. (2-1) and (b-1) gives A; = 8 =1,

AZ'# 43 = 0, Thus the parity check rules are



. =80~
I =X

If instead the information p031tlons where chosen to be 1 and bhe'

- above procedure would yleld for the parlty cheek rules

.

' .Note that for this code positions 1 and 2 or 3 and 4 can not be used for

' lnfonnablon 31nce only 2 numbers appear in each p031t10n, i,e. either OO

vor 11,
EQMPle 3 03 « 6“2

Consider the (5, 3)-code 00000, . 10001, OlOll O0L1L, 11010, lOllO p
OllOO 11161 and choose the information p031tlons to be -positions l,

a.nd 3« The geﬂera,l parity cheek equations to be solved are

X, = 4K @ AX, ® AKy (o)
| It 40 O AL @ A, (a)

Using the second, fifth, and seventh code words gives, for the simul-
taneous equations,
l"Ach.@Azol@ABo@ (G-—l)

'—"AlQ@@AZOl@ALBOl

LTy 10k 0@Ag e 0
O=4) *1®h +1@4 0  (a-1)
L

“Oﬁ= A4.° O@AS ® l®A6
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Simultaneous solution of these gives for the parity check equations

Xh = X @ Xg

X5=X1®X2 @XB

Two group codes are defined to be equivalent if one can be obtained from
the other by permuting the digit locations. Thus in Example 3.3.3-l1 code numbers
1, 3, 4 are equivalent; code numbers 5, 6, 7 are equivalent; and code number 2 is
in a class by itself. In conjunetim with this Slepian gives the following im—
portant results: (p 210, Ref. 16) |

1, Every group code is a systematic code ana vice versa.

2. Every (m,m)~ code is equivalent to a (n,m)n code in which the first m

places are information digits and in wﬁiéh the last n-m = k places are

. determined by parity cheéks over the first m places.. |

Because of these results it is now necessary to consider only (n,m)-codes

in which the first m digits are information digits.. The general expression for

the k check digits then becomes

m .
Xi = Z Xinj i=m+ l, - = =1 - . (31)

Here the Suﬁmation is modulo 2 with the multiplication rules being C:1 = izO =
0:0 =0, 1:1 = 1, The km values for B/ij may be either 0. or 1 and define the
rarticular (n,m)«code being used,

Using fhese results, group codes will now be specified by giving the parity
check rules rather than by listing all 2" code words. The encoding operation
will then be performed by applying these check rules to blocks of m information
digits in the order specified. The k check digits thus obtained will be added -
to the m informatlon digits and the resulting n binit sequence transmitted as

the code word.



.
Example 3,3,6=3

Consider the (6,3)wcode. Suitable parity check rules are given by

Slepian (Table III, Ref. 16) as

=5 0x%
Xg = Xﬂ_C’XB
Ly = X @ X5
Since-m = 3, there are 23 = 8 words in the (6,3 )=code which are as
follows,
Céde ‘vInformatioﬁ Parity‘éheék
word Digits‘ o ’Digits
1 000 | 000
2 00l | 011
3 010 | 101
4 0ll | 110
5 100 | 110
6 101 | 101
7 110} 011
8 111 | 600

323.7 Detection of Group Codes by Parity Checks

The detection method presented in section 3,3.4 is analogous to the code
book encoding described above, 1l.e. the standard array lists all possible received
words and assigns each of these to a transmitted word, As mentioned previously
the disadvaentage of this method lies in the fact that storage space for 27 words

must be provided at the decoder, Sleplan has described a method for obtaining

maximun likelihood detection by means of parity checks over the received code
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words. This approach eliminates the need for storing all possible code‘words
and resultsiin a simplification of the detection equipment.

Consider the standard array for the group Bn’which has béen developed about
a specific (n,m)—COde. This code is assumed to have a set of parity check rules
in the form of Eqs (31). For any word in the array, say T, these parity checks
may be applied. The check digit resulting from the i th .parity checkrmayfor mayr
not agree with the digit in the 1 th position of Te If it does T satisfies the |
i th parity check and a O is recorded. Otherwise T fails the i th check and a 1
is recorded, Proceeding in this manner with all k parity checks results.in a k

digit binary sequence which is defined to be R(T), the parity check sequence of

7, (In determining R(T) the digits are to be written from left to right as the
parity checks are applied in order, starting with the check for posibion m+ 1.)
For example, using the parity check rules of Example 3.3.6-3 shows E(iOlOOl) =
100 since X + Xp =1 # X, X + %3 =0=XsandX + X3 =1=Xg Obviously,
R(T) can be determined for any word in the array, Using this definition of R(T)
Slepian (pp 224~225, Ref, 16) has proved the following theorem. |
Theorem: Let I, Ay, Az, - A,, be a (nym)~code and consider B, to be
developed in a standérd array about this code, Let R(T) be the parity
check sequence for a word T which has been formed in accordance witﬁ the
parity check rules of the specified code. Then R(Ty) = R(T,) if and only

if Ty and Ty lie in the same row of the standard array.
Ex'ample 3 a3 ® 7"1

Consider the (L,2)-code shown below

0000 1011 - 0101 1110
0010 1001 0Ll 1100

0100 1111 - 000L - 1010

1000 0011 1101 - OL10
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The parity check rules for this code can be shown to be X3 = Xl;
%, = Xﬁ'CJXQ. Every word in the second row fails the first parity check
(for the digit in position 3) and satisfies the second check, The parity
check sequence is thus 10, In like manner the parity check sequence fof
row 3 is Ol and for row 4 is 1ll. By definition, all words in the first row
satisfy the parity checks giving a parity check seguence of 00, The follow-
ing relations can thus be established between the coset leaders and the parity

check sequences.

00 —»5; = 0000
10->5, = 0010
0L—> 85 = 0100
11—>§, = 1000

Maximum likelihood detection can now be obtained in the following manner,
/When‘a word T is recelved it is subjected to the k parity checks of the code
being used. This gives a parity check sequence R(T) which places T in a definite
coset and identifies the coset leader, say S;e The product 3;T is formed (SiT is
the word that would be at the head of the column containing T in the standé.rd,
array) and produced as the detector output. The probability of error for the dem
tected word, P, is as given by Bq. (30)s |

Usingrthis detection scheme only (2T + ok 1) words, plus the parity cheék
rules, must be stored by the detector, For large n and m this represents a

considerable reduction from the 2 words required for the original scheme,
Example 3,3.7=2

Assume that the word O0QL of the (A,Z)ecode of Example 3.3.7-1 has
been received. The parity check rules are X3 = Xy, Xﬁ = Xi'@ X, giving a
parity check sequence of Ol., From above, this sequence corresponds to

Sy = OL00, . The detected word is thus (0100) (0001) = OLOL,
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3.3.8 Determination of Groups Codes Having Minimum Probability of Error

The discussion to_this-point has assumed that the code words, or the parity
check rules, for a .given (n,m)=-code where known. However, it was previously in-
dicated that there are N(n,m) possible (n,m)~codes from which to choose. Since
these codes are used for error correction it is reasonable to require that the
(n,m)-code selected have a minimum P, when compared to all other codes having the
same n and m, These considerations give rise to the following questions,

1. Which of the N(n,m) different subgroups of B, give a (n,m)-code, having

& ‘minimus P_? | -

2, What is the value of the minimum P,7

Unfortunately, the answers to these questions are not known for general
values of n and m. Slépian has, however, determined the answers for several
specific valueéa

| His résults are presented in Tables II and III of Reference 16 and in Tables
T-4 and T-5 of Reference 8. These results will be discussed in thisvsectiono
Additional details should be obtained from the references cited,
BEge (30) gives the probability, 1 - Pe,‘of correctly detecting a transmitted

word as

. v .
1-Py= ) B (- L (32)
i=o
It will be recalled that wai (1 - Pb)n-wi is the probability thai a coseb
leader will be of weight wy while having a specific configuration. In general
there will be several, say oCy, coset leaders having a weight w;. Grouping these
together allows Eq,v(32) to be written as

n
1= 1De‘ - Z o<1 P,owi (1 - ’Po)n-?wi ‘ (33)

i=0”
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. =i .
Since there are 2 = v coset leader the relation
n
Eo(l = v
i=0

must hold for any (n,m)-code, The maximum possible number of coset leaders
having a weight W; 1s the number of ways in which n digits can be divided into

two collections of wj 1's and (n-w;) O's. Thus

oy € Gy) = 5 T - (34)

In a previous discussion a new word N was defined as N = AT, where A re-
presents the transmitted code word and T the received word, It was shown that
N Was a record of the errors on the channel during the transmission of A and that
correct detection was obtained only when N was one of the coset leaders, Thus;
the 1ts in a éoset leader indiéate the position, and the weight of a coset leéder
indicates the number of transmission errors that can oécur without causing a
detection error, The oCi's defined above thus give the number of i-fold errors
that can be corrected by a given (n,m)-code,

Tables II and T=4 of the cited réferences give values ofqili for the best
(i.es they have the minimum possible P.) (n,m)-codes for values of k = 2y 3, = =
-n=-1, and n =4, = - - 10, (These references use Q1 instead of P,, Here
Po=1- Qye) The binomial coefficients, (ﬁi), of Eq. (34) representing the
maximum possible number of i-fold errors, are also listed for compafison'wiﬁh the

9(:"_'5.
Example 3,3,8-1

Form = 4 and n = 7 Table II, Ref, 16, shows that all 7 single and none
of the 21 double or 25 triple errors will be corrected, The corresponding

probability of error, as given by this table is
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By = 1= (1=P) =71 = Ey)

,Notevthat this is the same expressioh as determined for the Hamming'ssc
code of Example 3¢343=1,. Slnce Hammlng codes are a subgroup of the Sleplan
"group codes and. since the above (7,4)-code corrects all 31ngle errors thlS 5
means that the two codes are equlvalent. | e | | |
- If 1nstead n =10 1s useq Table II Ref, lé shows that all 10 single,
139 of the pOSSlble L5 double, la of the poss1ble 120 trlple, and none. of the - -

:p0551ble 210 quadruple errors w1ll_be corrected. The result;ng.Pe‘1s~ o

_%—15(13%) ~10P (1 =F) =39 B (L=P,) =1 B (1~F,)

vIn addltlon to know1ng the mlnlmum p0831ble P ‘for & glven n and m 1t is als0"
necessary to know the parlty check rules that w1ll allow the correspondlng best
code wordSvto.be generated. These rules are- glven in Table IIT and T~5 of Ref,

16 -and 8 respectively. The use of these tables is best explalned by an example.‘
Example 3.3.8-2

For the (7,4)-code considered above Table IIT (Ref. 16) gives the -
parity check rules as | | o

5134

6124

7123

In terms of previous notations this becomes
L =3 0% 0%

~ Thus, if a particular 4 binit message sequence is 1100 the correspond-

' ing:code word is 1100 X; X where
A5 A6 |
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X6=l®l®0=0
I;=16100=0

Slepian makes the following observation about the best codes given by Table
IIT, Ref, 16, |

1, The (nym)~code best for a particular value of P, is best for all values

of P, 0€P <1/2,

2« Not all best (n,m)wcodesvhave the greatest possible minimum distance be-

tween nearest words.

3. If a (n,m)acode corrects all errors equal to or less than j and no errors

greater than j + 1, then there exists no 2™ word, n digit code of any type

that is better than the (n,m)-code listed. Such codes are defined to be

optimum codes, Note that all optimum codes are best codes but that best

‘codes are not necessarily optimum. For example, of the best codes listed

in Table II, Ref, 16, the (11,3 )-code is not optimum while the (8,2)=code

is optimum, |

3.4 Blias's Tterative Coding

At the present time, the iterative encoding and decoding techniques presented
by Elias (20), (21), (22) represent the only practical method for obtaining an
arpitrarly small error rate without using a feedback channel. The procedure is
conceptually quite simple and may be used with either the BSC or the binary
erasure channel (BEC). The following discussion will illustrate the operation
for the BEC. Similar results using the Hamming SEC-DED code, or any other
systematic code, are obtained for the BSC (20),

Consider a BEC as given in Fige. 3=-(c). This channel model differs from the
BSC in that the decision process at the receiver is modified so as to produce an

erasure symbcl, X, instead of an erroneous symbol., In practice this would in-
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volve the use of two decision levels instead of the single level used with a
BSCe This difference allows error correction to be obtained with the BEC By
using a single parity check encoding procedure equivalent to the Hamming‘SED
code,

‘The error correction feature is obtained by dividing the input sequence of
O's and 1's into blocks of n = 1 binits, In the n th position of each block is
placed a digit resulting from an even parity check over all previous n-l digits,
This sequence of n binits is transmitted over the BEC. At the receiver there is
é probability, P,, that a given digit will be received as an erasure. If only one
binit in a single block is received as an erasure the missing digits can be re-
inserted by performing an even parity check over the remaining digits, l.e., if
an even nﬁmber of 1lt's remain the erased symbol was a O while if an odd number
remains the erased symbol was a l, For example assume the following blocks
(n = 8) were received,

01110X160

101001XX

1100X100

0001110%X
In the first block the erased symbol must have been a O since an even number of
1ts. remain. Likewise the erased symbol must have been a 1 in the third and
fourth blocks. No eorrection is possible iﬁ‘the second block since the erased‘
symbols could have been either 01 or 1 O,

It is clear that this procedure reduces the average number of erasufes re=
maining in a block, The amount of this reduction is determined as follows: Be-

fore correction the probability of exactly z erasures is
Z nNe2z
P (z erasures) = (%) P, (1 ~-P,)

The average, or expected, value, X, of a discrete random variable, X, is




=9 O
given by

T= 2 1 R(h)

Thus the average number of erasures before correction is

n .
7= ; z (3) 2% (1 -2,)"" | - (35)
=n P, (Series Noe 194s Ref, 23)

The average number of erasures after correction, z} is given by
n

=) 2(@r®@a-2)

z=2

i

s N1
=z-nP (l»Po)

nB [1-(1- Po)n"l] - - (36)

The average number of érasures is thus reduced by a factor of [1 - (1~ Po)n!l]

when the first order correction procedure is used,
Example 3,4=1

If n=7and P = 10“2 the resulting values are

2
7310 = O«O?

w |
1

N
-
]

0,07 [ 1~ (:99)° ]

fl

0, 00409

Thus, compared to the situation with no coding, the average number of

erasures has been reduced by a factor of 15 while reducing the information
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rate by only 12.5%. This compares quite favorably with the Hamming SEC

code of Example 3,2.2~1,

BElias's iteration technique suggests that the averége nunber of erasures can

be further reduced by periodically transmitting blocks of n binits that are
- segond order parity checks over the digits in the preceeding ny - 1 blocks, In
this manner correction may be made for most of the double erasures, This pro-

cedure is best explained by means of the following example,
Example 3.4=2

Assume that blocks of 8 digits are to be transmitted and that every
v8th'block is to contain the second order parity check digits. ‘Let the ih-
put to the encoder be the following 7 sequence of 7 binits each.

OllliOl |

1111000

1160101

1101116

0011111

0110010

0001110

The first order check digits are dbtaiﬁed by an even parity check
over the digits in each row and are placed at the end of the corrésponding
'rowx: The second order ¢heck digits are obtained by an even parity check
over the digits in each column and are placed at the bottom of the corres-
ponding column, Applied to the above sequénces‘this‘results in the

following array,
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0111101
1111000
1100101

1101110 1st order check digits

0011111 |

0110010

0001110 -

= 2 o o M

1101101 1,

2nd order

check digits

The code words to be transmitted corresponds to the rows in this'array.
At the receiver the words, containing the erasures, are placed in a’similafv
arréy. All single erasures are then corrected by pa,rity' éheck;s over the |
rows in this array, Additional erasures are corrected by checks over t‘he -

colurms in ‘the array. BElias (22) has shown that the avérage number of

erasures, 2", remaining after this second order correction is
211 =y Py [jl ~(L=~p)? ']

where P, = .21 = Py [l - (1~ Po)nhl:] 

Nl‘

d

1

and
ny = 1 = the number of digits checked by the second order
parity check,

For the values of Example 3.4-1 this gives
Py = 0,00409 x 1/7 = 0,000584

Z11= 0,00409 [ 1 - (.99%26.)7]

20,00409 x 0,00464 < 0,000019
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In this case the average information rate at the channel input is

- 49/6l, bits/oinit, This represents a descrease of 12,5% from the fate for

single order correction and a 23.5% reduction from she rate with no correct—.

tion, Corresponding to these reductions ﬁhe average nﬁmber of remaining
erasures has been reduced by a factor 200 times from the single correction
value and by a factor of 3500 from the no correction value.

Elias has shown (20) that this iteration procedure can be continued by means
of 3rdy 4thy, - = = order parityichecks and that ‘in the limit the average number
of erasures will approach zero while the information rate remains at a usable
non=zero value,

Thus, using this method, it is possible to make the erasure probability as
small as desirable if the receiver i1s willing to wait until a sufficiently high
order parity check has heen received.’ A unidue featureiof this technique is the
fact that the erasure probability can be controlled at the recelver without.
changing the transmitted code words,

3.5 Use of Group Codes in Feedback Communication Systems

Previous discussicrs have indicated that when a feedback channel (i.e. a
communication link from the receiver to the transmitter) is present it is ?ossible
té use error detecting codes and to request retransmission of erroneous words via
this channel, When possible, this approach has the advantage of requiring less
coding equipment while simultaneously giving a high information rate and a lower
error raté. It should be emphasized, however, that this method does not exceed
the information rate given by the second fundamental theorem but only provides a
practical means of more closély approaching this rate while maintaining a low
error rate,

Many investigators (3) (24) (25) (26) (27) (28) (29) (30) have analyzed the
characteristics'of systems using a feedback channel,. Héweverj to quote Peterson

(Ref. 19)
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UThe efficient use of feedback in error control has not received the atien—
tion it deserves in coding theory. Certainly feedback can greatly simplify error
correction, Yet there is a definite limit to the efficiency of a simple error—
detection and retransmission system, for short error~detection codes cannot _
efficiently detect errors, while if eXuremely long codes are used retransmission
must be performed too frequently. Little is known about the use of the feedback

' channel in any more sophisticated way,"

Thus the method presented in this section is not to be con51dered as the
ultimate answer in coding for the feedback channel., Instead it represents one
approach that illustrates the use of group codes forberror detection,

Cowell (30) has investigated the use of group codes in a feedback system in
which the group property is used to correct some errors in the conventlonal
manner (zs described in Sece 3.3. 4) and to detect additional errors. When an
error is detected & request is sent, via the feedback channel, for a retrnas-
mission of the erroneous code word. The procedure for accomplishing this is as
follows: First, a (n,m)-code is assumed and the'array (not necessarily in stand-
ard form) for the group Bn is developed about this code. The r'esm_ting_2n"“m =y
coset leaders are then divided into two sets one of which contains the identify
element, I. Let S be the set containing I. Also, let I, Ay, Ay - - ~ Ays
(u = 2®) represent the code words of the (nym)=code selected. The decoding
operation is then performed by expressing the received word, Ty as the product
of a transmitted word, A, and a noise word, N, i.e., T = AN, (This noise vord
is the same as previously discussed and is a record of the errors during the
transmission of A.,) If the word N is contained in the set S the received word
is decoded as A; obherwise the transmitter is requested, via the feedback channel,
to retransmit the code word. Thus, this decoder corrects all error patterns that
give noise words contained in S and reqﬁests retransmission when the noise word
is not contained in S, If S contains all v coset leadérs‘and.these are of
minimum weight this corresponds to the maximum likelihood detection previously
discussed, Conversely, if S contains only ﬁhe identity element retransmission

occurs whenever the received word is not a code word,
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- Using this decoding scheme Cowell (30) has shown that the probability,
1= Pe, of a word being correctly decoded (this includes the case of correct

decoding after numerous retransmissions) s given by

C1-P, =2 | (37)

where

D = 2:» PQW(N) (l'ﬁ Po)n - w(l)
N

1 .0-= 2§ ?;_R;N(NA) 1 - Po)n~w(NA)

Here the summations are over all noise words, N, contained in the set S and
over all code words, A, contained in the (nym)=code, The following example illus-—

trates this prdCedure.
Example 3.5-1

Consider the foilowing (542 )=code
00000, 01110, 10101, 11011,
4 suitable standard array for this code is as follows
00000 01110 = 10101 11011

00001 01111 10100 11010

00010 01100 10111 11001

00100  0L010 10001 11111

01000 00110 11101 10011

10000 11110 00101 01011

00011 OLLOL 10110 11000

10010 . 11100 00111 01001

When S contains all coset leaders of weight O or l'any received word



9

lying in the first 6 rows of the array will be decoded as one of the code
words, Similarly a received word lying in either of the last two rows
will cause a request for retransmission. For this situation thevSummation _ L

for D is over the first 6 coset leaders in the array.k Thus

D= (lv*‘fb)ﬁ *5F (1~ PQ)Q

=B -

. Likewise the double summation for 1 - & is over all words in the first

6 rows of the array. This gives
1-8=(1=P) +5P(L~B)*+6B° (L-5)
+ 627 (1-2) +5p% (1= P,) * By -
P A2 X 27
= 25; (2) B (1 - Po)s - A[PO (1~ Po)3 + P03 (1-Pp,) ]
e o
=1 -4 P21 =-p)

where the last'step follows from'the'ﬁinomiai expansion. The final

expression is thus |
L (L4 P) (1= Bt

1 sz (1 - P):Z' |

1-p (38)

If, instead, S contains only I the expressionsbecome

D

5
(1-P)

ba-x)

(&) 0

:1-.--4;{= (1-PQ)5+2P'3 (1-130),2+ P
- T | | (39)
e TITIY (L= F,00 ¢ EFA = BT - 4

1 =P
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Likewise, if S conbains all coset leaders the expressions are

D= (1~ 90)5 +5 P (1 - Po)l” + 2 P02 (1 —‘Po)3
lﬁ-Q: 1
1-P,=D | | (40)

which agrees with the value given by Slepian (Table II, ref, 16) for maximum
likelihood deteection.

It is instructive to compare, numerically, the cases for S containing
only I and for S containing all cosét leaders, Assume Po = 10“2. Then from
Eg. (39) the brobability of error using retransmission only (i.e., S = I) is

1

P =51 = - - -
1+ 201070 (9907 + 1070 (L99)7H

2.165 x 10"7

it

Conversely, when no retransmission is used (i.e., S contains all coset

leaders) Ba. (40) gives

1= (099)5 + 510 (099)4 + 210 l+ (099)3

o
]

7.36 x 1074

Thus when the code is used only for error detection (with error correc-
tion being obtained by retransmitting the erroneous word) the probability of
error is reduced by a factor cf approximately 3400 times,

Cowell (p 169, Ref, 30) has show that this result is true in general. Thus
when a group code may be used for either error correction, error deteétion (error
correction via & feedback channel is assumed)g or for both, the minimum Pe will

be obtained when the code is used only for error detection, This is intuitively
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satisfying since for this case the probability of retranémitting_code words is

maximum thus introducing a maximum amount of redundancy into the transmitted

S equences .

Due to the pronounced improvement in Pe obtained with error-detection-only
operation a question arises as to the amount by which t his type of operation

reduces the information rate. A convenient means of specifying this reduction

is to define the coding efficiency, N, as
N v= m = number of message digits:per code word
¢ average number of digits transmitted until

a word is decoded

This ratio, when expressed as a decimal gives the information rate at the
channel input, Thus, when no retransmission is used (i.e., the code‘is used

only for error correction) the input information rate is

Ne =

siE

(41)

: Whén the code is used for both correction and detection (or detection only)

Cowell has shown that the coding efficiency is given by

N = n(1~29)

& n+1L&

where n, m, and & are as previously defined and L fepresents the number of

digits that are lost whenever a retransmission occurs (i.e., digits required to

re-establish synchronization, digits lost because of an in interleaved trans-

missioh pattern, etcs),
In determining L the digits of a retransmitted code word are not included,
Thus the value of L depends directly upon the communication system and only in-

directly, if at all, upon the (nym)=codes
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Example 3,5-2

Assume that the (5,2) code of Example 3.5-1 is used for error detection
only, that L = n, and that B, = 10-2. For this situation the coding efficienc
o} _ : J

is

o

1 -
+ &

=
f
51
L 2
=

-6 2 -8
2, (99) 5 20107°(.99) + 16°(.99)
2 8(.99)% -107%(.99)

2-(299)° = 2010"

0.951

Ol X 7208

i

]

0,363

Thus the use of the (552)-code for errbr detection only (as compared'
to its use for error correction only) causes a reduction in the information
rate of approximately 10% while giving a reduction in error rate of 3400

© times. This result illustrates the fact that in general the use of é'feed;
back system will allow a greatly reduced error rate for a given information
rate and code wofd length. However, very little work has been done in |
determining optimum codes for this operation and little is known about the
maximum possible improvement that can be obtained. AL present this area
appears to offer the greatest potential for determining practicalltechniéues
that will allow the rates of the second fundamental theorem to be approached

rand as such 1s an area worthy of much additional research.

i

3.6 Additional Technigues for Noisy Channel

The coding techniques presented in the preceeding four sections were chosen
primarily for two reasons: (1) they represent some of the most basic and better
known of present techniques; and (2) they are relatively easy to explain, This

section will present some of the more advanced techniques, These will not be
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discussed in detail, however, since they require a knowledge of modern algebra
with a strong emphasis on matrix theory,

3 .64l Bose~Chaudhuri Codes

Bose~Chaudhuri codes (31) (32) (Chapt. 9, Ref, 19) represent a generaliza-
tion of Hamming codes in that a specific procedure is given for constructing a
set of code words when the amount of error correctability is specified, Peter=
sen (p 165, Ref. 19) gives the following theorem regarding these codes:

Wor any m and t (mt<n) there is a Bose=Chaudhuri code of length 27=1 which
corrects all combinations of t or fewer errors and has no more than mbt parity
check digits,."

Thus, in contrast to the Hamming (which could be constructed only for a
capability up to SEC~DED) and the Slepian (which must be constructed by some
type of a search through N(n,m)possibilitieg codes, the Bose~-Chaudhuri codes
can be constructed for any n, m, and t provided the-relations of the above theorem
are satisfied. However, there is at present no general infowmation concerning Pg
for these codes, |

The Bose~Chaudhuri codes are related to the Slepian codes in that they are

a1

.
2. subgroup of cyclic codes.which are in turn a subgroup of the general class of

group codes. The decoding procedure, however, differs considerably from that for
the Slepian codes (33).

3.6,2 Reed=Muller Codes

As indicated previously, the Reed=Muller codes (17) are a subclass of the

group codes considered by Slepian, They differ from the Slepian codes in that a

¥ ° A cyclic code is a special group code in which a cyclic shift of any code
word is another code word., For example if 10110000 is a word of a cyclic code
then OLOL100O, OOLOLLO, etc, must also be code words,
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speeific procedure is available for determining a set of code words when the

following relations are satisfied:

=gt

=4
1

e e-- @
n*m=l+($+lf‘aﬁﬁ

where t is thebmaximuh distance between code words and r is the "order of the
code. iFor eﬁample,‘if t = ) and r = 2 the Reed-Muller code would have n = 16,

=11 and, from section 3.2.4, would be a SEC-DED code.  The generation of the
code words for a Reed-Muller code invblves the use of vector algebra and there-
vfofevwill not be discussed, The primary advantage of Reed-Muller codes lies in
the realiyive éase‘with_which decoding equipment can be constructed. Some work
| “has been done.at thé M,I.T. Lincoln Laboratory (34) in the éonstruction Qf‘an :
encoder and decoder for a Reed-Muller code with n = 128, m = bk

3. 6.3 Fire Codes

The Fire Codes (Sectlons 10,1 and 10.2 Ref. 19) are designed to detect and/
6r correct errors that occur in a single burst. within a code word (1.e., the
errors do not occur independently but instead occur in several consecutlve dlglts).
Other codes such as the Reed=-Solomon codes (Sections 9.3 and 10,7, Ref. 19) can -
correct more than one burst of errors.

The conditions under which a Fire Code can be constructed are as follows:

= least common multiple (LCGM) of (2% = 1) and (b + d - 1)

where b = length (in binits) of burst to be corrected
d = length (in bihits) of burst to be detected
4 = an integer 2 b

nemsk=t+b+d=1

When used for detection alone such a code can detect a single burst of
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length no greater than k binits., When used for both detection and correction it
will correct any single burst of length b or less and detect any single burst of

length 4 or less,
Example 3.,6.3=1

Form =5, b =5, d = 7 the length of the Fire Code is given by
n = LM of 31 and 11 = 341
Thus
k=5+5+7«1=16
and
m = 325

This code will correct a.burst of 5 errors and detect a burst of 7
errors, Observe the high ratio of m/n for this code. This is a charactef—_
istic of codes for burst errof detection and correction and is not possible
with codes for independent errors.
Details cohcerning the construction of Fire Codes should be obtained from

Ref. 19, Section 10,1l.

30664’Nozencraft's.Sequential Coding

All of the codes previously discussed have been block cﬁdes. All bléck
codes have the fault that as n is increased (in an attempt to obtain a greater
m/n ratio and a lower Po) the delay between the time a symbol is produced at
the source and the time it is decoded at the receiver also increases, Thus in
many situations a maximum allowable delay‘places an upper bound upon the length
of any block code thatbmight be used. This in turn limits the information rate
and Pe that may be obtained, A practical method for circumventing this problem
could offer a considerable potential for more closely approaching the rates of
the second fundamental theorem,

The sequential encoding and decoding technique discovered by Wozencraft (4)
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(35) represents such a method,
Since the crux of this method lies in the decoding operation only this will
be considered,
In essence, sequential decoding is accomplished by decoding one received in-
formation digit at a time. The procedufe is as follows: The actual recelved
sequence is compared with all possible transmitted sequences star£ing with a ©
"and also with all possible transmitted sequences starting with a 1. Unless a

large number of errors have occurred the actual received sequence will differ

from all but one segquence in one of these sets by such a large amount that it

can be concluded that the sequence for which the difference is a minimum represents
the transmitted sequence. In this manner the first information digit is deter=-
mined. It is then recorded and deleted from the sequence, The comparison Pro=—
_cedure is then repeated to determine the next information digit, etc, |

With thisypr6cedure the delay between a generated symbol and a decoded
symbol is greatly reducedifor a given Pe’ A second advantage of this method
lies in the faet that decoding equipment requirements grow approximately as
the square of the effective code length while many block decoding schéemes in-
volve equipment requirements that gTOW'exponentially with increasihg code length.

At the pfesent time, sequential coding represents what is probabiy the most
sophisticated of all techhiques and as such is one of the most difficult to under-
stand, For the serious worker in this area Ref, 4 gies a thorough discussion-of
the details involwed,

3.7 Relationship Between the Coding Technigues Discussed in this Report.

It is‘often difficult for a newcomersto the field of coding theory to.
establish just exactly where the numérous coding techniques fit into the overall
picture. The block diagram of Fig. 7 has been prepared to provide such a picture.
Starting at the top, the general area of the study of coding techniques is in=

dicated, This area can be divided into essentially two groups: (1) those systems
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that use binary symbols, and (2) all non-binary (or n-ary) systems. Because of
their widespréad use, this report has considered only binary systems. Proceeding
with binary systems, there are within this group two further divisioné, namely,
codingvfor the noiseless channel and coding for the noisy channel, From this
further breakdown are indicated between equal ahd non~equal cost symbols, etc,
Finally, the various coding téchniques are indicated under the appropriate blocks.,

For purposes of comparison, Fig. 8 lists some of the advantage and disadvante
ages of the various codes.

3.8 Coneclusion

The coding technigues presented in this report represent some useful and
practical methods of coding for both the noisy and noiseless channel., The noise-
less procedures of Huffman, Gilbert-loore and Karp represent optimum (i.e. they
give maximum efficiency) proceduresrfor the noiseless chammel and as such may be
used. essentially without qualification. However, the noisy procedures that have
been presented do not have this desirable characteristic, Instead, these pro-
cedures represent some of the less mathematical, and thus more readily explained,
better known procedures. In many cases these procedures arevwell known simply
because they represent the first work in a particulér area and not because they
are the'best possible techniques, Thus any practical application of nolsy coding
should be preceeded by further investigation into some of the later and more ad-
vanced techniques, Elias (pp 342-343, Ref. 36) gives an excellent discussion of

some additional factors and methods that should be considered,
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| }"COding i.
- Techniques -
Coding - " Coding
for for -
Non=Binary Binary
Systems . Systems
Not discussed
Coding - Coding
for - the for - the’
Noiseless . - - Noisy
Channel " Channel -
Coding with | . Coding with , 'Codihg;fdr:theh- ' _'Coding~for“
Equal - Cost - Non-Equal-Cost BSC-or -BEC | Channel with
Symbols ' Symbols - | jwithout memory| memory
Bhannon~Fano - ‘Blackman Reed-Soloman
|Gilbers=loore | " Karp ' Fife
Huffian Marcus
Shannon's
Binary .. — v '
o Group - Sequentialu _j
. Codes Coding . .
(Slepian) . | (Wozeneroft)
| Hemming
que—Ohaudhuni
Pig, 7 - A Block Diagram Presentation Recd-Muller

3of'the Relationship~Betweeh;Varibus Coding Techniques




Coding
Technigues

Advantages

Disadvantages

Hamming Codes

1.

Are concoptuclly the most 81mple
codes .

'Afe reésonably,easy'td instfument.:'

. No procedure for constructlng codes. -

having a mlnlmum dlstance greater

than b o

‘.Informatlon rate is. small dus to the 8
restriction on word length imposed by
the Tequirements that the probab1¢1tyﬂ'j‘
“‘of higher. order. errors be negllg bly~v

Slepian Grdup R
Codes

" In some cases are best possible
. codes:

The encodlng scheme is relatlvely
‘easy to instrument.

The decoding_scheme is the best

, - The procedare for detefﬂlnlnv D rity
check rules 1nvolves a search through '
~ a large number of possible codes, '

Because of this.codes for n greater

“than 12 have not.been determined,

:The pr0cedure for JeﬁefmlninnICOSét

| Codes

‘constructing codes having a speci- |

fied minimum: dlstaqce between coae
words : :

. 2;
possible theoretically and is .leaders used in: decodlng is: 1nvolved 1f.,'
relatively easy to instrument. for 1arge n.z=’ g -

| Eliasts Iterative | 1. Allows érror rate to be made K l;~'Both"énC6dér and‘deCOder have. lérgéw

Coding - ' , arbitrarily small while giving a |- .‘storage requlrements when Pe must be’
o iAusefu¢ 1nformatlon rate., L small. ’ : ‘
"2. For. moderate P requirements the 24 ‘Transm1331on at channel capa01ty is
A‘.decodlng is relatlvely 81mple. . not- p0531ble while 51multaneously
RREUTOI ‘ ~ obtaining arbitrarily small Poe
3+ When used with a 'BEC the encodlng ' R : S
< is extremelJ 31mple.v :
””Bose-Chéudhuri '-' ffl,f’PTOVihb an explicit procedure for |- l;i_Procedure is appllcable only for

. code word lengths of 2P__ 1

-

"”‘P-l Bedamime

Flg. 8‘— Some Advant, ages and Dlsadvantages of Varlous NOlSJ Codlnb Tecnn.ques |

90T~



Coding. Adventages Disadvantages
Techniques ' ' ‘ '
Reed-luller Codes 1. Decoding procedure is rela.tlvelj 1, Conceptually quite complex,
' o s:l_mple to instrument, » ‘
24+ Procedure applies only for code
24 Prov:.oes an ex 1101‘5 procadure for ~ lengths of 2P, P =2, 3y by ==
constructing codes having a speci- ‘ '
~ fied minimum cGisatance between’ code
words,.
Fire Codes 1. Can correct errors occuring in 1, Can correct only a single burst of
- bursts with fewer check digits errors within a given code word.
than with codes cesigned for . SR
independent errors. 2. Require a knowledge of modern -
' : ' : algebra to understand,
2., .Are relatively easy to instrument, - : : ' p
3. Can be used for simultaneous
: detectlon and correction,
Secuential Cod:mg 1, Oilew‘ possibility of obbaining 1. Ope ration eftremelj d iculi_:-to- 2
small P without the excessive analyze.
delay time of block codes, . ‘ L y
, ‘ : h . , 2+ .No 'information available “o‘n_,Pe.
2, Decoding equipuent grows slowly. : ' '
: witn erffective block length as
- compared to block decoding,
Feedback Systems 1. Reduces equi pmau complexity 1. Reguires a feedback channel,
 for a given 1mor~1a‘clon and : S e
S error rﬂ.te.
e Al.Lows the LS" O.L erroraqet

tion-only codes’ nth are. ea.s:.er
to instrument, M

Fig. 8 - - (cont)
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