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FOREWORD

This is Volume III of a three volume final report for Air Force 

Research Project Number AF 29(600)-1933. Volume I, Issued October I960*

Is titled SPECIFICATION AND DATA PRESENTATION IN LINEAR CONTROL SYSTEMS. 

Volume II is a continuation of Volume I and deals with Indices of Perform

ance for Control Systems, Time Variable Parameter Systems and Specifications 

for Sampled Data Systems. Volume II is being printed along with this 

volume.

The reader is directed to the FOREWORD of Volume I for the general 

approach of Purdue to the spec!ficatiohS of control systems. It was 

pointed out there that the present volume would be more introductory and 

tutorial than the others because of the nature of the material. There 

is no satisfactory treatment in English at the present time of the 

Engineering applications of the Second Method of Liapunov, This fact is 

widely recognized, and a number of authors are rushing to meet this 

deficiency. For the present, however, the field is virgin.

The only direct attempt to specify control systems by means of the 

second method comes in the discussion of the Aizerman index of perform

ance which utilizes the concept of the V function. The discussion of 

Aizerman's original work Is included in Volume II. Further work on this 

approach has been completed at Purdue separate from this project, and a 

paper is shortly to appear concerning it.

Although the Second Method applies directly to Nonlinear Systems, 

this report is not to be viewed as an adequate statement of the state 

of the art in the Specifications of Nonlinear Automatic Control Systems.

It is background, tutorial reading on an Important tool In the analysis 

and synthesis of Nonlinear Systems, Such background material is not 

necessary, for example, on the Describing Function or Phase Plane Analysis



since they have been widely treated In English, Much of the material 

Included here was aval Sable only in Russian when the work started and 

some Is the fruit of original research. Our further work In the 

Specification of Nonlinear Automatic Control Systems will lean heavily 

on this volume.

At the present time the Purdue group Is drawing up an interim report 

on the State of the Art of Specifications for Nonlinear Systems. Industry 

will be invited to comment on this work so that, If further work is done, 

the final Specifications will reflect a wide spectrum of industrial 

thinking, rather than simply that of a small academic group. This general 

area is, of course, most difficult, and it appears impossible to the de

finitive at this time. It should be recognized, however, that the possi

bility exists even today of designing and building nonlinear systems that 

are lighter, simpler, cheaper and more reliable than the linear systems 

they are to replace. Thus it seems imperative that, as the state of the 

art advances, these advances be included in Air Force control system 

specifications. It will be in the best interests of the Air Force to 

include the possibility of Non linear Systems in their procurement speci

fications for aerospace systems as soon as such trustworthy and inclusive 

specifications dan be developed,

Since Volume I on Linear Systems was delivered, the conclusions have 

been extracted and a paper containing them presented at the Winter General 

Meeting of the AIEE with the cognizance of AFMDC. The paper will appear 

in the Transactions of AIEE and thus will afford a wide circulation of 

the concepts even though supplies of the original report have been 

■exhausted.
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ABSTRACT

This report investigates the stability of autonomous closed-loop 

control systems containing nonlinear elements. An n-th order nonlinear 

autonomous system is described by a set of n first order differential 

equations of the type

dt = *i * *2f ■***■^ 1/ '-2, n.

Liapunov's second (direct) method is used in the stability analysis 

of such systems. This method enables one to prove that a system is stable 

(or unstable) if a function

■ v’ = v.«x,j. x0> ... x .1

can be found which, together with its time derivative. Satisfies the 

requirements of Liapunov's stability (or instability) theorems. At the 

present time there are no general|y applicable straight forward procedures 

aval table for constructing these Liapunov's functions. Several Liapunov's 

functions, applicable to systems described in the canonic form of differ- 

ential equations, have been reported in the literature. In this report 

it is shown that any autonomous closed-loop system containing a single 

non I inear element can be described by canonic differential equations.

The stability criteria derived from the Liapunov's functions for 

canonic systems give sufficient and not necessary conditions for stability. 

It is known that these criteria reject many systems which are actually 

stable.

The reasons why stable systems are sometimes rejected by these 

simplified stability criteria are investigated in the report. It is 

found that a closed-loop system will always be rejected by these simpli

fied stabi1ity criteria-, if the root locus of the transfer function ©<s),
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representing the linear portion of the system, is not confined to the 

left-half of the s-plane for all positive values pf the loop gain.

A pole-shifting technique and a zero-shifting technique, extending 

-the applicability of the simplifled stability criteria to systems that 

are stable for sufficiently high and/or sufficiently low values of the 

loop gain, are proposed in this report. New simplified stability criteria 

have been developed which incorporate the changes in the canonic form of 

differential equations caused by the application of the zero-shifting 

technique.

Other methods of constructing Liapunov's functions for nonlinear 

control systems are presented in Chapter III, These include the work 

of Pliss, Aizerman and Krasovski. Numerous other procedures, which have 

been reported in literature, apply to only very special cases of auto

matic control systems. No attempt has been made to account for all of 

these special cases and the presentation of methods of constructing 

Liapunov’s functions is 1SmSted to only those which are more generally 

applicable.

A pseudo-canonic transformation has been developed which enables 

one to find stability criteria of canonic systems without the use of 

complex variables, '

The results of this research indicate that the second method of 

Liapunov is a very powerfuI tool of exact stability analysis of nonlinear 

systems, Additional research, especially in the direction of the methods 

of construction of Liapunov’s functions, will not only yield new analysis 

and synthesis procedures but also will aid in arriving at a set of mean

ingful performance specifications for nonlinear control systems.



vf

TABLE OP CONTENTS

Page

PREFACE ■ f '

FOREWORD fi

ABSTRACT. ■ |v

LIST OF ILLUSTRATIONS ^ vii?

LIST OF TABLES jx

CHAPTER I - INTR00UCTION 1

1.1 DeflniHons of Stability 6

: ^ " V’""1*2 -:L.iap;tiriaV's'Plre<:tv{.s:9'coaidl :

: , StabitIty Analysia 14

1.3 Stability Investigation from Eqaatiaas

of First Approximation 28

1.4 Stability of Limit Cycles 34

CHAPTER II - STABILITY OF CANONIC SYSTEMS 37

2.1 Introduction 37

2.2 The First Canonic Transformation 37

2.3 Simp!Iffed Stab!11ty Criterla 46

2.4 The Pdle«=Shi f 11 ng Technl que 60

2.5 The Zero^Shifting Technique 66

2.6 Analysis by Weans of the Second Canonic

Form of System Differential Equations 79

CHAPTER ill - METHODS OF CONSTRUCTING LIAPUNOV'S FUNCTIONS 91

3.1 Introduction ©1

3.2 Stability of Linear Autonomous Systems 92

3.3 Performance Indices - A Method of Their

Computation ■ 98



3,4 Aizerman's Method 101

■'3.f Krasovski*'s: Theorem;'.' ■■'■■■ 107

3.6 • :=T*»»-.;Wor'le;;.1-f#i-= 110

3.7 Pseudo-Gsnonlc Transformation 112

Construction of LiapunpvTs Functions

Based pn Pseudo-Canonip Transformation 114

chapter iv:-4»-'.<sbiiipii:iJsiojfis'--'.-:,--'/;-:--. 121

BIBLIOGRAPHY 128

APPENDIX A - Solution ofStability Equations for The Second

and Third Order Systems 131

APPENDIX B - Global Stability of the Solution on a System

of Non I inear Differential Equations 133



vi i i

LIST OF ILLUSTRATIONS

Number Title Page

1.1 Phase Plane Portrait of the System of Example 1.2 18
1.2 Block Diagram of the System of Example 1,3 21
.1*3 Amp!ifier Saturation Characteristics of the System

of Example 1.3 22
1.4 Block Diagram of the System of Example 1.4 31
1*3 Approximation Used in Connection with Backlash

Characteristics of the System of Example 1^4 33

2.1 Schematic Diagram of an Indirect Control System 38
2.2 Block Diagram of a Closed-Loop System with a

Single Nonlinear Element 39
2.3 Simp)if led Block Diagram of a Closed-Loop System

with a Single Nonlinear Element 41
2.4 Block Diagram Representation of Canonic

Transformation':''--. 45
2.5 Characteristics of a Nonlinear Cain Element 57
2.6 Root-Loci of Third Order Systems Which WiIl Be

Rejected by the Simplified Criteria of Section 3;1 59
2.7 I l lustration of the Pple-Shi f'ting Technique 61
2.8 Illustration Of the 2ero-Shifting Technique 67
2.9 Limitson System Sain for SimplSfled Stabi l i ty

Criteria of the Second Canonic Form 89

3.1 A Possible Procedure for Constructing Liapunov’S
Functions for Linear Autonomous Systems 94

3.2 Linear Second Order System of Example 3*1 96
3.3 Block Diagram of the Nonlinear System of

Examp Ie 3*3 103
3.4 Input-Output Characteristics of the Nonlinear

Element of Example 3*3 104
3.5 Block DSagramlnterpretation of the Pseudo-

Canonic Form of System Differential Equations 115
3.6 Restriction of the Nonlinear Element Character

istic for Systems That Are Unstable fors
a) High Values of Gain 119
b) Low Values of Gain 119

4.1 Block Diagram of a System with the Non Iinear
Element in the Feedback Path 124

4.2 BIock Diagram of a System with Two Non Iinearities
in Series 126



i x ;

LIST OF TABLES

Number Title ''Page

2.1 Simp 11ffed Stabl11ty Crltaria fer Syatama
Deecr l bed by the Pi rat'. CehOhib Form of
Pifferentlal Equations 50



1

CHAPTER I

INTRODUCTION

The concept of stability of linear automatic control systems is hot 

only very useful in the analysis and qualitative evaluation of these sys

tems but also has yielded several very useful synthesis procedures, such 

as The Nyqulst Diagram, root-locus, etc. The conventional methods of analy

sis that are applicable to nonl inear systems, such as the describing function, 

phase space ana Iysls, etc., are more comp Iicated, 1 ess genera I Iy appIicab I e, 

and cannot always be used as synthesis procedures. The basic difficuI ty 

of the application of such methods is due to the fact that they represent 

an attempt to find the solutions of the nonlinear differential equations 

describing the system. In autonomous I inear systems one may prove that a 

system is stable (or unstable) without the need to find the response of 

the system, i.e., without the need to solve the differential equations 

describing the system. It would be very desirable to extend the applica

bility of such methods of I inear system stabiIity analysts to closed-loop 

systems that contain one or more nonlinear elements.

The importance of such an extension cannot be overemphasized, since 

any control system that can be considered linear in its normal mode of 

operation wi11 inevitab Iy become non Iinear for either sufficiently large 

or sufficient ly small values of its response or the inittai disturbances. 

Unfortunately, the concepts of linear system stabi11ty cannot be extended 

to nonlinear systems without considerable modification in both the defini

tion and the meaning of system stability.

A I inear system is defined as stable (see e.g., Bower and Schultheiss

0] , p. 104) if and only if i ts output in response to every bounded input 

remains bounded.



This stabi11ty definition has a very precise meaning in linear sys- 

terns. If a I inear system is stable* it automatically meets all of the 

following requirements!

a) its driven response is bounded for all bounded driving 

functions;

b) its disturbed response (i,e./ its response due to initial 

disturbances in thd absence of driving functions) approaches 

an equilibrium state* St which the response and all of its 

time derivatives are zero* asymptotical Iy with time t —> ao;

c) stabili ty is independent of the magnitude of either the initiaI 

disturbances or the continuously acting driving functions.

I n non l inear systems stabiIity may or may not imp)y that ail or any 

of the above requirements are satisfied in the entire phase space of 

system response variable M.e.* in the space of the system response and 

its first n-1 time derivatives* where n ?s the order of the system).

It is possible, for example* to have a bounded disturbed response and 

unbounded dr5ven response, or stabiIity may depend upon the magnitudes of 

initial disturbance and/or continuously acting driving function. The 

response of a system which is stable in some region A of the phase space, 

containing the origin, may either remain bounded or become unbounded out- 

side this region.

To differentiate between these possible modes pf nonlinear System 

behavior it becomes necessary to define different types of system sta

bi I i ty. This is done in Section 1,1 of this Chapter.

Once a suitable definition of stabiIity, applicable to both Iinear 

and non Iinear systems, has been agreed upon, it becomes necessary to find 

methods which can be used to prove stabiIjty or instabiI}ty of actual 

closed-loop systems. The methods of stabiIify analysis used in this

2



3 V

report are based upon the theory of physical system stabiIity developed at 

the turn of the century by the Russian mathematician A. M. Liapunov [2] .

Liapunov divides all the methods of solution of the stabiIity problem 

into two groups ([3], p. 13). The first approach consists of consideration 

of the disturbed responsei, i.e., of finding general or special solutions 

of the corresponding differential equation. These solutions are usually 

found in the form of series (finite or infinite). Liapunov refers to the 

entire grdup of alI such approaches as the first method. Hence, there is 

not a single procedure for attacking nonlinear problems that could be re

ferred to as Liapunov’s firsf:method/ but rather Liapunov refers to al l 

approaches that attempt to find the solution of the differential equations 

describing the system as the first method. Thus, for example, the Krylov 

and Bogoliubov transform (describing function) technique would fa,11 under 

Liapunov’s first method.

The second method is, in Liapunoy’s terminology, the sum of all the 

techniques and approaches whereby the system stabiIity (or instab LIity) 

is established by considering some special functions of the response 

variable and Its time derivatives. From the characteristics of these 

functions, together with the system differential eduation, conclusions 

can be drawn about system stabiI?ty* Since the second method deals with 

procedures which enable one to decide upon system stabi1 tty direct Iy from 

the system differential equation and some .arbitrary functions without 

finding the solution of the differential equation, it is sometimes referred 

to as Liapunov’s direct method,

The difficulties in the application of Liapunov’s method of stability 

analysis to practical control systems are due to th<» fact that it is 

necessary to cohstrucf a certain function of the system variables which 

satisfies the requirements of Liapunov’s theorems of stability or
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instability. These functions are not unique, and an infinite number of 

such functions may exist for a single system. However, no general methods 

of constructing such functions are known and in most cases St is very 

difficult to find a function satisfying the requirements of Liapunov's 

stability Cor instability! theorems. The object of this report is to 

find methods of constructing Liapunov's functions for autonomous closed- 

loop systems which contain a single nonlinear element.

Several methods of constructing Liapunov's functions for various 

types of physical systems have been reported by Lur'e [4], Letov [5]., 

Yakubovich [6], Aizerman [?], Krasovsky [s]], Chetaev [9], Barbashin [10J 

and Hahn [tl]. A disadvantage common to alI these methods is that they 

are applicable only to elther low order or to special types of physical 

systems. Lur'e [4] and Letov [§3 proposed several Liapunov's functions 

Ci.e,, functions that satisfy the requirements of Liapunov's stability 

or instability theorems! for two special groups of control systems that 

can be described mathematically by the so-called canonic forms of system 

differential equations. They have shown that two special groups of 

minor-loop systems, referred in the Russian Iiterature as the "direct 

control1' and the "indirect control" systems can be transformed into one 

of the two canonic forms. The transformation of system differential 

equations into the first canonic form is generalized in Chapter II of 

this report. It Is shown that any closed->loop system containing only 

one nonlinear element can be transformed into the first canonic form.

The formulae are developed for this transformat Son, enabling one to use 

Liapunov's functions- applicable'to- the first canonic form of system 

differential equations.

The transformation of Some actual control systems into the second 

canonic form is presented in Section 2.3. A critical evaluation of this



transformation reveals that it Is applicable only to a very small number 

of closed-loop systems,

A summary of the simplified stability criteria based on the first 

canonic form of system differential equations is presented in Section 3.1, 

This summary includes the latest simplified stability criteria reported 

in the current periodicals and some simplifications that result from the 

generalization of the first canonic transformation developed in Section

2.2 of this report.

It Is shown in Section 3.2 that a plot of the root-locus may be used 

to pred ict whi ch systems wiI I be rejected by these simp Iified stab?I ity 

criteria. The application of the root-locus concept reveals that these 

simplified stabiIity criteria select as stable only those systems that 

are stable for all positive values of the open-loop gain and reject all 

systems that may be actually stable for intermediate values of gain, but 

are unstabIe for su f ficien11y Iow and/or sufficien f I y h i gh'vaIues ©f gain. 

To avoid this difficulty, a pole-shifting technique and a zero-shifting 

technique are proposed In Chapter III, A modification of the first 

canonic form of system differential equations is proposed for use in 

connection with the zero-shlfting technique. Simplified stabiIity 

criteria based upon this modified canonic form of differential equations 

are developed in Section 3.4.

An a Iternate approach for achieving the same results as those ob

tained by the first canonic transformat ion without the need to introduce 

complex variables is presented in ChapterHl. Liapunov" s functions, to 

be used with this new canonic transformation, are also developed.

While the theory underlying the methods of stabiIity analysis pre

sented in the report is applicable to both time varying and time invariant 

nonlinear control systems, the methods of stabiIity analysis developed Sn

5



this report are appIicable directly Ci.e.# without modifications) only to 

autonomous non ISnear systems# i.e.# to systems that can be descri bed 

mathematically by one or a set of differential equations# the coefficients 

of which do not vary with time. The analysis of time varying parameter 

nonlinear systems falIs outside the scope of this report.

1.1 Definitions of $tabiI Sty

An autonomous physical system may be described mathematically by a 

set of simuItaneous first-order differentia! equations of the form

' dXj ;
I# x2# . o o' S = 1# 2# .«« n . C1.1)

Such a set Of differential equations Corresponds to a linear system^ 

if the functions Xj are 15 near. If the functions Xj are nonlinear# the 

system is said to be nonlinear.

If the set of differential equations represents a physically real5z- 

able system, the functionsXj must be defined in some fixed region 6 of 

the space of the variables x1# x«# ... x . This space wi11 be referred 

to as the state space of the variables Xj.

The eqUiIibfium states of the system Cal so referred to In the litera

ture as singular?ties or singular points) are given by the real roots of 

the equations

, Xj Cx^# x2# «...'XB) ®; Q'. S = T, 2, ... n . C1.21 .

These So-Called nutl solutions of Eq. 1.2

xj * Xj i «' 1, 2, ... n Cl .35

describe the statics of the control system. One of the important questions 

of the theory of automatic control is the question whether the equilibrium 

states Cl.31 represent physically realSzable operating conditions of the 

system. If the system is brought sufficiently close to an equilibrium

6
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state Xj and remains close to this state in the absence of external dis

turbances, then the equi I ibrium state is stable. If the system response 

moves away from an equiIibrium state without the action of any external 

disturbances, then the equilibrium state is unstable. In the case of an 

unstable equiIibrium state, the system response may either stay within 

some region (5® of the state space, containing the singularity, or i t may 

increase without bounds.

In physically realizable, linear, autonomous systems there is only 

one equiIibrium state, and that is at the origin of the normalized co

ordinate system of the state space. If this equiIibrium state is stable, 

the entire state space represents a stable region of the system response, 

and vice versa. Either of these tw© statements may or may not be true in 

a nonlinear control system, A nonlinear control system may have both 

stable and unstable equiIibrium states (singularities) and also both stable 

and unstable regions of response/ Consequently, stability in nonlinear 

systems is a local concept (Kalman [12] , p. 5). StabiIity makes sense 

only when associated with some region of the state space Containing a 

singularity. For the purpose of a stabiIity investigation, it is more 

convenient to normalize the differential equations describing the system, 

l.e., to place the singularity, at which stability is investigated, at the 

origin of the state space. This is accomplished by the change in variable

yj = X| - x5 I - 1, 2, ... n. (1.4)

The number of normal forms of the system differential equations

d>ri ...
"dT” — ^ S ^ ^i^ ^21 ®e® yni i * 1, 2, ... n (1.5)

Is equal to the number of equiIibrium states (singular!ties) of the un

disturbed system. Equation (1,4) represents a Iinear transformation 

which translates the origin of the coordinate system to an equiIibrium



state of the control system. The null solutions of equation 11,5)

Vj * 0 I = 1, 2,- .... n (1.6)

are referred to, according to LIapunov®s terminology (£5], p. 14) as the 

undisturbed response of the control system. At time t » 0, let the response 

of the control system have initial values, y1Q, -y^, ^no' a* least one 

of which is not equal to zero. For this type of given initial disturbance 

there exist Unique and real solutions

yi s yj?y1Q, y2G' ooe yno'n *' ■ 1* 2> ••• -t>. ©

■■■■. " (1.7) ■■

referred to as the disturbed response of the control system. According

to this terminology, stabiIity of non Iihear systems can be formuI ated In

the following way (Letov [5], p. 15), (Malkin [3}> p. 5)s

Definition 1s The undisturbed response (1.6) of the control system 

is stable if, for any given arbitrarily small real positive number £ , 

there can be found another posit?ve numberTj (6) such that, for all 

Initial disturbances yj inthe region S', defined by the inequality

© < uJ*1) f ® 1 , 2,-. ». n ,

the disturbed response U.7) will satisfy the inequality

© t■ l.yt'cti '* 1, 2,... n

(1,8)

(1,9)

. for any 11 me t > 0,

This defini11 on can be interpreted geometrically in the following 

ways for all initial disturbances contained within the hypersphere 

XdA) of the n~d?mensional state space, defined by the inequality

°< i y'u' < X- (1.101

1*1

the disturbed response for any time f> 0 after removal of the initial 

disturbances is contained within another hypersphere, defined as
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n o
2 yI <t> < A i = i# 2# ... n # (1.11)
i=l

provided X is chosen sufficiently swell.

The above definition of stabiIity does not guarantee that the system 

response will be bounded if the system is subjected tp continuously acting 

disturbances that are bounded in magnitude. Obviously the stability ques

tion is physically meaningless for unbounded driving functions (the term 

"driving function** wi 11 be used here to designate continuously acting 

bounded disturbances# and the response to such disturbances will be referred 

to as "driven response").

In the presence of driving functions# a system canbe described by a 

set of simultaneous first-order differential equations# which# by means of 

the linear transformation (1,4)# can be brought into the normal form

yss Ys<yl> y2' •*Vyn) + RsU' V y2' ••• yn*

s ^ 1 # 2 #.,»'• n , (1.12)

The functions Rs represent the driving functions and are assumed to be 

bounded. The stabi Iity definition has to be modified for driven systems 

in the fol lowing way ([5], p. 30), ( [3], p. 10) J

Definition 2s The driven response (1,12) is stable if# for any given 

arbitrary smalI real posifive number £ # there can be found two other 

posi five numbers# Fj -j ( € ) and 2< C i > such that for a 11 ini t i a I disturb- 

ances yg0 in the region

0 Iysq| s ■* 1# 2^• «* n (1.13)

the response (1.121 wi 11 satisfy the inequali ty

0 < |ys|< € s = 1# 2# ... n (1.14)

provided that at any time t> 0 the functions Rs satisfy the following 

inequality%
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| C t, (i ^ I ^ ^ ® s 2# ««o n » !1 ft1§l

The response ©fa system Is considered to be unstable if it does not 

satisfy either one of the above two definitions. To differentiate between 

control systems that exhibit sustained oscillations and systems that 

approach an equilibrium state asymptotically in the absence of driving 

functions, a new definltion becomes necessary.

Definition 3s If the undisturbed response of a system is stable in 

some region G“ according to Definition 1, and if, in addition, Sts re

sponse approaches the equiISbrium point y^ ® Y2 ~ ••• yR = 0 asymptotically, 

1 o e.,

jim-yjfti s O I » 1, 2, ... n , (1.16)

t -» CD V

then the undisturbed response 11.6) of the system is said to be asymp

totical Sy stable.

The above three definitions of stabiIity are mathematically sound and 

rigorous. They are, however, unsatisfactory from the engineering viewpoint 

since they describe the behavior only in a sufficiently small neighborhood 

of a singularity iequiIIbrium. state).. While an equilibrium state Cl.e., 

the undisturbed response) of a non I inear system may be stable, sufficiently 

large driving functions or initial disturbances may bring the system 

response outside the region of stability in the neighborhood of an equi

librium state and cause considerable osciI lotions or even self-destruction 

of the system.

While in linear systems stability of the equilibrium state li.e„, 

stability of the undisturbed response) Implies the stability of the system 

In the entire phase space of Its response variable CKalman [l2],p. 6), 

in nonlinear systems such an inference is invalid. The Important factor 

In the qualitative evaluation of a non I inear system is not the stability
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of an equilibrium state, but rather the size of the region of stability 

around an equ?Iibrium state. Consequently, the above three definitions of 

stability of an equilibrium state will not be used directly in this report, 

but rather they will serve the purpose of defining different types of 

stability of the system. The foI lowing terminology wi11 be used to describe 

the stability of time-invariant (autonomous) nonlinear systems in the 

report.

a) if a disturbed control system satisfies the stability Definition 

1 in the entire state space, it is called globally stable;

b) if stabiIity eonditions are satisfied in some Iimited region A of 

the state space enclosing the origin, the system is said to be locally 

stable;

c) if asymptotic stability conditions are satisfied in the entire 

state space the system is globally asymptotically stable;

d) if asymptotic stabiIity exists in some Iimited region A around 

the origin, the system is referred to as local Iy asymptotically stable;

e) a system may be stable in some region A of the state space around 

the origin and unstable outside this region, in which case the system 

should be referred to as both locally stable (or locally asymptotically 

stable if such is the case) and globally unstable.

If the system exh|bits stabiIity under every bounded continuously 

acting disturbing function (i.e,> if it is stable according to Defini- 

tion 2), it is referred tp as tota11y stable (Massera [13], pp. 182-184).

It should be noted that the stability concept is meaningful only 

with respect to a given set of variables. Hence, the stability specifi

cations and Investigation should be based on the actual variables of the 

physical system, or such transformations of these variables which do not
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change the quality of stability information. An example of a nonlinear 

transformation wi11 be used to illustrate this point.

Example 1.1

The undisturbed response of the system represented by the equation 

■ 2
+ «2 - 3x2) —- 2x3 = 0

. dt2

is unstable with respect to Its output variable x and its time 

derivatives. It has a first integral of the form

dx
dt

x3... K€=2t ,

from which it is easily shown that the output x increases without 

bounds. However, through the substitution

dx 3 
dt " x y

the differential equation is changed to 

ff + 2y - a .

Thus the system appears to be stable with respect to the variable 

y and its time derivatives/ even though }t is unstable in terms 

of its actual response.

The above example I ISustrates the danger of arriving at erroneous conclu

sions regard! ng the stabi I i ty of a system by the use of variables that do 

not appear in the system.

Definitions of stability that are different from the’definitions of 

this report have also been used in literature. For example, Ku and Wolf 

l|j4], P« 1441 use the fol lowing def ini tions

**A nonlinear system is said to be stable If, to every bounded- 

decaying driving function or input and for all initial condi

tions, the response xft5 approaches zero as time increases to 

Infinity.*®



According to this definition, stabiIity is no longer a local concept. Such 

a definition will classify as unstable a 11 systems that fail to meet the 

requirements for global asymptotic stabiIity. The results of a stability 

analysis may, obviously, differ if different definitions are used for 

stabiIity. The reasons for selecting the definitions of stabiIity to be 

used in this report are the following:

a) these definitions are the most widely used in the Iiterature;

b) they define stabiIity as a property of the system which does 

not depend upon the type of input (driving functions) applied 

to the system;

c) they are applicable to all continuous, autonomous nonlinear 

systems;

d) a large amount of theoretical work, known as Liapunov's second 

(direct) method of stab?Iity analysis, is based on the preceding

.'.definitions, of stability, Liapunov's stabi I ity theory wi j I be 

used in the report to develop simplified stabiIity criteria and 

methods of stabiIity analysis for nonlinear systems.

All the preceding stabiIity definitions consider the stabiIityof 

the equilibrium state of the system in some bounded or unbounded region 

of the state space. In systems which exhibit periodic set f-sustained 

osci11 at ions (Iimit cycles) these definitions would only consider what 

happens around the equiIibrium state inside the limit cycle. If thus 

becomes necessary to introduce a new def?nit ion for the stability of 

I imi t cycles..

Let y|Ct) represent the periodic response of the system (1,5). The 

minimum distance, in the state space, between the actual and the periodic 

response of the disturbed system is given by
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.... yR) = inf \|^>-ty'iiV - €1*17)

Definition 4s (Zubov [vs], p» 207) The limit cycle (= periodic 

response) of the system (1.5) is asymptotically stable if for any given 

real positive number £ there can be found another real positive number 

/^«£) such that if

5 ly^ CO), . ... yn(0> < Tj

then ■

^ (yjlt), .... yR(t) < €

for any time t > 0 and

I lm (y.| (t), .... yR( t) * 0 *

; t-^-> + do

The limit cycle is global iy asymptotically stable if the above eonditions 

are satisfied in the entire state space (S.e.V in the entire space of the 

variables y^ .... yn).

1.2 Liapunovls Direct (Second) Method of Stability Analysis

Liapunov has shown that the stabiIity of a physical system, described 

by a set of first order differential equations

dyi '
^ j 5 y j f y-j p yg» o • ® i i i s i» . a (1.5)

can be determined analytically if It is possible to establish the so-called 

V-function of the variables yj, such that these functions and their time 

derivatives possess certain characteristic properties. A necessary condi

tion Is that the system be Continuous, i.e., the functions Yj are continuous 

with respect to all the variables yj. The continuity restriction is pri- 

mari ly of theoretical importance, since any changes In practical physical



15

systems wiII take a finite, even though possibly a very small, amount of 

t ime.

The results of Liapunov's StahMity Theory are expressed in his 

theorems on stability and instability. These theorems, together with a 

few additional theorems by other researchers, that w|11 be used in this 

report, are presented in this section. The proofs of these theorems are 

contained in numerous references and wi11 not be repeated here.

Theorem 1.1s If there exists a real-valued function V(.y , y , ,. ly 2 y >n
with the following propertiess

a) Vty.j, y2, ... yh) is continuous through first partial 

derivatives; .

b) V is positive definite, i.e.,

v(yv y2/ ... yn i > ° for *! i |yj | > o,

V(0) ■ 0;

c)* I im ... y ) = ® for a I In

yi Qjj

then

T) the system (1,5) is stable with respect to the

variable yj if there is some region 6, defined by

0 < |yj| < L, where t is some real posi tive constant,
dvsuch that in this region the derivative ^ is 

negative semidefinite, i.e..

*Some authors (Malkin, etc.) do not include condition (c) in the stabi 
theorems and, hence, do not el?minate the possibiIity of V—^0 as |yj
For an example where this may lead to erroneous resuIts see Letov ([5 r P» 21),
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dV s ^ ^ V d?»
dt '** M &yi- # dt

for all yj £ 0, t > 0;

2) the system (1.5) fs asymptotically stable with 

respect to the variable yj If In the above region

dV
dt < 0;

or

dV ^ dV— CO and the curve — = 0 is not a trajectory dt dt
(solution) of the system (1.5).

3) the system (1.5) is global(y asymptotically stable 

wjth respect to the variable yj lf condition 2) above 

is satisfied in the entire state space of the -vsri* 

able yj.

This theorem is proved in [l2]. Its appl ication is iI lostrated here 

by an example.

Example 1,2j

Consider the system described by the differential equation

ix + 0.2 [l + <*!2 1 ^ ♦ y = 0 , 
dt2 L dt J dt

To transform this differential equation into a set of two Simula 

faneous fIrst~order differential equations let

y-y,. ». . ■ /' - ■"■

and

dy
dt " y2 *

' Then
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dt“ y2 '

dy2 2
IT * ”*2(y2 + 1,y2 “ Vi •

Select as the V-function the quadratic form

1 2 2 v - \ ty/ t y/> .

The time derivative of this V-fuhctibn is

3T ® =*2(y2 ' + Hy2. .#

which is negatfve semidefinite everywhere (?,e», ^ 0) and non

zero along any trajectory. Consequently* according to Theorem 1.1, 

the system is globally asymptotically stable. The experimental 

phase plane solution of this system is shown in Fig. 1.1.

Fig. 1.1 also iIlustrates the geometrical interpretation of Liapunov’s 

stability theorem. A post five definite V-function represents a 

family of closed surfaces, represented in Fig, 1,1 by the dotted 

lines, A negative semidefinite time derivative of such a V- 

function implies that the trajectories of the response will 

either stay on a closed surface or intersect these closed sur

faces in an inward direction.

As illustrated by the preceding example, a quadratic form, defined 

by

v = 2; 2 "ikVk l1-'81
}«1 k=i

is requently used as the V-function for the system, Jt has been shown*

that a quadratic form can always be used as a Liapunov'$ function for

*See, e.g Malkin { [3], p. 57),
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Figure 1.1

Phase Plane Portralt of the System of Example 1,2
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linear autonomous systems. It is easy to prove the definiteness of sign 

of a quadratic form. A quadratic form is positive definite if and only if 

ail the determinants

*21 ' *22

are positive. This theorem, known as the Sylvester theorem, (see, e.g., 

Lefschetz ([isl, p. 113), can be used not only to select a positive definite 

V-function, but also to check its time derivative for values of yj for 

which it is negative definite,

For unstable systems a regiqh of insfablIity can be estabIished by 

means of the folIowing theorem.

Theorem 1.2*: If there exists a real^valued function Vify Tj#;.***' yR)

with the following properties:

a) Vty^, y^, i.. yR) is continuous;

b) the time derivative of V is negative definite, 

i « © • #

dV .= W(y_, ... y ) < 0, for al I at 1 n

y. A O, W(0) = 0;

c) lim W(y , ... y )1 n

y,|—»a>

for all yj,

aiT ®12' *13

a21/ *22' *23

31 * 32' 33

etc,

* . _
The proof of this theorem is given by Zubov ([l5j,p, 48).
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then -

1) the system M.5J is unsteblewith respect to the 

.Variable y^ in the region 6 in which'-V-fy > ... yR)

is not positive serai definite;

2) the system M.5) is globally unstable with respect 

to the variable yj it Vty^, yR) is not positive 

seraidefinite in the entire state space.

The app I i cat ion of Theorem 1 ,,2 wi I I be illustrated by fhe following example.

Example t*3s

Consider a third~order closed-loop systemwith a saturating amp Ii- 

fier, as shown In Fig. 1.2 and Fig. 1.3. Let

G( s J m

6 5 s J
: e.,

100
1 + 0.1s

and the saturation characteristics of the amplifier be described 

by (see Fig. 1.31

■ y = f (xt 'V xg.(x! ■ ' r'--:

where the function gixt satisfies the inequality

0.001 <g(x)< 1 .

Then, if the disturbance is removed at time t * 0# V 

r(M s o f©r a 11 t >0 ,

and

elft = - z(ft .

The differential equation describing this system is 

3 g
0.1 ■ -TOOxgJx) »

dr dt .



Figure 1.2

Block Diagram of the System of Example 1.3



22

Amplifier Saturation Characteristics

of the System of Example 1„3
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Let

x * x.

dx
dt 2

d2x
dt2 *3 •

Then a set of simultaneous first order differentiel equations 

describing this system is

; f^i ■
.'dt " x2 '

" dX2
"dt* = X3 '

and

dx,

If

-tt" * -1O0X, - 1O,OO0xi g(x.) . dt 3 • i

v**1«x2'x3> * ®11X12 + a12x1x2 + ®13X1x3 + ®22x2*

+ Q23^2x3 * ®33x3 + ®4t X g(x) dx

is selected as a Liapunov's function for this system, then 

[-1G,OO0g(x1)a13] Xl2 +[2av1 -■ ■lO^ODOffCx-)a23

20.

dVIn order to make •gj negative definite, let

+ g<x1)a4j Xlx2 4 [_al2 f 1 OGQ-j

:1,a33] x1x3 + (®12,x22 + (®13 +
2,x3 + <a23 - 200a33)x3 0

®11 3 0

a33 s 0 p
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a 13 ■0.0001

®12 ^ °*01 *

a23 = 1,000

a22 * 50,000o00005 ,

a4 = 10,000,000

Then

VIx1,x2,x3» = 0.01x1x2

+ 1,000x2>

Consequently, applying the Sylvester1 theorem, one finds 

gtx^ 9 > 0 ,

. 0.019<X1 i - 0 > 0

' and '

. 10g.(x'0.000004 >0 . 

dv oHence la posi tive definite while V Is not negative, which

proves that the system is globally unstable.

The preceding example illustrates the procedure of finding Liapunov 

functions developed by Aizerman [7j.

it should be noted that Theorem 1.2 is much more powerful than 

Theorem 1.1, since it is always possible to selecta negative definite 

function W. Then, if the conditions of Theorem 1.2 are not satisfied.

This procedure is discussed in detail in Chapter III.
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theW-function automatically meets the requirements of Theorem 1.1 and shows 

that the system is stable, whi le the converse is not true (i.e., violation 

of requirements of Theorem 1.1 does not necessarily imply instabiIity5,

0nfortunately, in most cases it is much more difficult to find the V-function 

for a given W - -gj than to find W for a given V-function, In view of this 

difficulty, it sometimes is more convenient to use a modification of Theorem

1,2 which is given here as Theorem 1,3.

Theorem 1.3 s If there exist two real valued functions V(y„, ... y )i ' n
and Wty^, ... ynJ such that

aS the function V is continuous;
b) HXv + w ,

where X is a positive constant;

cl the function W is negative semidefinite IW'^ 0);

dl lira W{y.j, ... yn) * - <e as [yj | ->oo 

for al1 yj, .

then

1) the system (1.5) is unstable with respect to the 

variable y^ in the region G in which Vfy^, ... yR) 

is not positive definite

21 the system J1.55 is globally unstable with respect 

to the variable y| if Vfy^, ... yn5 is not positive 

definite in the entire state space.

The above three theorems can be used to provide an answer to the 

question of the stability of a control system provided that a V-function 

satisfying the requirements of any one of the above three Liapunov*s

#
For the proof of this theorem see, e.g., Zubov ([15J, p. 46).



theorems (henceforth referred to as Liapunov®s function) can be found. A 

trial and error procedure was used to find suitable Liapunov’s functions 

in Examples 1.2 and 1.?. Such a procedure is very difficult even in low 

order systems (n < 3) and cannot in general be applied to higher order 

systems where a quadratic form (Eq. 1.18) cannot be used as a Liapunov’s 

function for the system* This iIluftrates the need of a systematic 

approach to find Liapunov’s functions that would be applicable to large 

groups of control systems of a particular type. Such an approach, appli~ 

cable to a large group pf practical control systems* is developed in 

Chapter II of this report.

The ultimate goal in the stabiIi ty analysis of non I inear control 

systems is the estimate Cor even an exact determination) of the region 

of either asymptotic stabiIity or instabiIity. Thls will be accomplished 

i f a Liapunov's function for the system is found. In view of the d? f f i*> 

cuities involved in finding a Liapunov's function for the system, even 

when systematic approaches to find these functions are avaitable, it Is 

very desirable to know in advance whether to look for a Liapunov’s func= 

tion satisfying the requirements of The stabiIity theorem or a Liapunov's 

function satisfying the requirements of an instabiIity theorem. Fortp^ 

nately, in many practical systems, this question can be answered easily 

by the methods pf linear system stabiIity enalysis (such as Routh-Hurwitz 

table) to the equations of the first approximation of the system. This 

question is discussed in more detail in Section 1,3.

The preceding three theorems are applicable to Systems which are 

described by a set of simultaneous differential equations of the type of

#A control system that exhibits a range of stabi1ity and not asymptotic 
stability around an equilibrium state wi11 act as an osciIlator and can 
hardly be considered as satisfactory.



Eq„ 1.5, Since Y.j In Eq. 1,5 is not an explicit function of time, Eq, 1,5 

can represent a closed-loop control system only if the driving function 

r(t) is (see Fig, 1.2) a constant, or if it Is removed at time t * 0, 

Consequently, the Theorems 1.1 through 1.3 deal with stab!I?ty of control 

systems in the absence of a driving function, A much more important 

question than the question of stability in the absence of a driving func^ 

tion is that of the response of the system in the presence of a bounded 

driving function. It is obvious that a direct analysis of the stab!Iity 

of a closed-loop system in the presence of a bounded driving function 

ii.e,, total stability) would require the use pf Liapunov's functions 

which should be explicit functions of time. The available systematic 

methods of construction of Liapunov's functions, discussed in Chapter II 

of this report, would no longer be appIicable if the system were subjected 

to the continuously acting input {driving function). Furthermore, in 

automatic control systems the exact nature of the input (driving function) 

is usually unknown. Only the maximum value of the magni tude of the input to 

which the system will be subjected during its operation can be estimated 

in many cases. Fortunately* It is possible to prove total stability (i.e., 

stability in the presence of continuously acting inputs, as defined by 

Definition 3 of Section 1,1) for systems that are globally asymptotically 

stable in the absence of inputs (driving functions). The follow?ng theorem 

due to Malkin, can be used to prove total stability of systems that satisfy 

the requirements of Theorem 1,1 for global asymptotic stability.

Theorem 1,4s The system (1.12) js totally stable (i,e., St is stable 

In the presence of continuously acting bounded inputs, 

according to Definition 3 of Section 1.1) if all of 

the following holds
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a) i t Is global ly asymptotically stable in the absence 

of an input (driving function);

b) the terms Rg (Eg. 1.12), representing the input 

{driving functiqn), are bounded;

e) the terms R_ (Eq. 1.12), representing the input §
{driving function) can be separated from the terms 

Y_, representing the system in the absence of the 

input (driving function);

dl the terns YsCEq. 1.121, representing the system 

in the absence of input (driving function, possess 

conti nuous partial derI vati ves with respect to the 

variable yj (i =1, 2, ... n).

The proof of Theorem 1.4 is given by Malkin ( [3], pp. '304*318)* The 

above theorem enables one to use Theorem 1,1 to prove not only global 

asymptotic stabiITty but also total stabiIity of systems in which it is 

possible to separate the Y_ and R terms In Eq. T,12» It eliminates the 

need to use Liapunov11 s functions which are exp lie S t functions of time to 

prove total stability of such systems. The systematic methods of 

Chapter II for finding Liapunov11 s functions satisfying the requirements 

of Theorem 1.1 can thus be applied to prove total stability of many non* 

linear autonomous closed*loop systems.

1,3 StabiIity Investigation From Equations of First Approximation

In the majority of the problems of control theory, the functions 

yj of Eq. 1,5 can be expanded into power series, converging in some 

region about the origin of the coordinate system, e.g.,

I, W<H (1.191
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provided the constant H is sufficientIy smalI. In such cases, the equa* 

tions describing the non 11 near system can always be rearranged in the form

dy,

dt y +ri + a s y + in'n f,<y, 1, 2 , .. t. n 11#20I

where a.,ik
expansion

(N, 5 * 1, ... n) are the constants of the I inear portion of the 

, and the functions Fj do not qontpin terms of lower then second

To decide on stability of the equiIibrium state, of ten only the so- 

called equations of the first approximation

- dyi ^ ^
“dF “ ai1y1 + ••• + ainyn * = *, ... n (1.21)

need be investigated.

Since the equations of first approximation represent a set of linear 

homogeneous differential equations, the problem of stability of the equilib

rium state is reduced to the problem of stability of a linear system. Conse 

quently, it becomes sufficient to investigate the characteristic equation

' <« - X.) (s - X.) ... (s - Xj * 0 (1.22)

of the linearized system, where the X*s are the roots of this character

istic equation. If the system represents a so-called noncritiqaI case,

i.e., if none of the roots of the characteristic equation of its first 

approximation i5e on the imaginary axis of the s-pI ape whiIe all other 

roots have negative real parts, then the fol lowing two Liapunov11 s theorems 

(Malkin £3], pp. dl-63) can be used:

Theorem 1,5s If the real parts of all the roots X- of the character-
i

istic equation (Eq. 1.21) of the first approximation

This restriction represents the essential difference between the method 
of first approximation and the above out Iined method of direct stability 
investigation.



higher than 

Theorem 1,6: If among th

<Eq. 1.21) 

real part> 

Independent 

The concept of structural 

discussed critical cases.- Str 

[1?], p„ 2821 as **the property 

qya11 tat Ive netare of 11s pper 

the system are subject to smal

preceding theorems are applIce 

In structuraljy unstable syste 

turbed response Is determined

and If then becomes neeessary

are negative, then the equilIbrlum state Is asymp

totical ly stable, independent of the terms of F| 

the first degree.

e roots X| of the characteristic equation 

there Is at least one root with positive 

then the equiI?briurn state is unstable, 

of terms of higher than the first degree. 

Stability Is closely related to the above 

uctural stability is defined ICunningham 

of a physical system such that the 

at ion remains unchanged If parameters of 

I variations*'. In structural ly unstable

systems an equilibrium state represents the critical case. Hence# the

able only to structurally stable systems, 

sms stabiIity |instabi1ity) of the undis- 

by the function Fj of the nonlinear form, 

to investigate Eq. 1,20 in its original form. 

In regard to the stabiIity investigation from the equations of first 

approximation, the fact that stabiIity of the equilibrium state is a 

local concept must be re-emphasized. No conclusion about system sta

bi l i ty outside the region defined by Eq. 1.19 may be drawn from the 

equations of first approximation. Nevertheless, this approach enables 

one to decide the type of V-function that may be applicable to a parti

cular problem {i.e., whether the V-function should satisfy Laipunov,s 

'Stability theorem or Instabi1ity theorems), •

Although It is easy to find sultable V-functions for the linear 

equation of first approximation, a much faster procedure is to apply 

the Roufh-Hurwitz criterion to the linearized system of first approximation



Figure 1.4

Block Diagram of the System of Examp Ie 1,4
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Example 1,4s

Consider a third order system with backlash, as shown in Fig* 1,4,

' .'Let ■

. Xl$) 10 11 + 0,2s8 
ESsl s2 11 + 0,1s)

or
.3 .2 ■'A <9 ^ ^ d x A ^6 . *8-'7? 7?-2* *10e'

Removal of the input rl tJ yields

@CtJ ■■■9 «=: yl t}. - 

.and ;■

* 10 4- 2 |f * 10y * 0 .
dr dr °-

The gear backlash characteristics can be expressed as 

v t= 0,1x1 t} = 0.01
dx
it

m
In order to overcome the di ffiquI ties due to the discontinuity 

of |oxi or
dt I

(jX 1
at tt ss 0, let the function be approximated lasIdxl dt

dt ' . \ :
dxshown in Fig, 1.51, for small values of , by

-i.diffl2
tOOe .-■■■* 100 4iOl|fl -t ... .

Then the equation of the system first approximation becomes 

. 3 2-d x . „ d x _ _ dx ■ _g = 908 + x ® O' .
dr ■ . dt.'

Obviously, the corresponding. characteristic equation

3 . 9 "s + 8s = 9.8$ +1*0

has roots in the right=half of the s=plane and the equilibrium
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100 €

10 X

Figure 1.5

Approximation Used In Connection with Backlash

Characteristles of the System of Example 1
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state y » x® 0 is unstable, according to Theorem 1.6, If ft 

were desirable to estimate the region In the phase apace In which 

this system Is unstable, one coaid try to find a Liapunov's 

function satisfying the requirements of Theorem 1.2 rather than 

the requirements of Theorem 1,1.

Thus* the preceding example Illustrates the use of the theorems on 

stability from equations of firsf approximation in deciding whether to 

look Tor Liapunov's functions satisfying the stability or the instability 

theorems for the purpose of estimating the region of stability or insta

bility in the phase space.

1,4 Stability of Limit Cycles .

The analysis of limit cycle stability represents an extension of 

Liapunov's Second Method to systems for which only local asymptotic 

stability or instability could be proved by direct application-of the 

"second method". The folSowing theorem, due to Zubov ,{[l5]f p. 208), can 

be used to prove that a system has a stable limit cycle.

Theorem 1,7s In order that the Iimit cycle {periodic solution)

of the system U.3) be asymptotically stable, it is 

necessary and sufficient that there exist two functions 

V and W satisfying the following conditions;

1) the function Vly^, ... yRJ is defined and continuous 

in some region of the state space containing the 

limit cycle; the function W{y1# ... y) is defined 

in the entire state space;

2) the function VCy^, ... yR) is negative everywhere 

In the above region except on the limit cycle 

{periodic solution) of {1.5); the function



W|y,j, ... yR) is positive everywhere except on the 

Ifm?t cycle of (1.5);

3) the functions V and W are equal to zero at every 

point on the limit cycle of (1.5);
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5) lim VIy , y„> = = ® (1=1, 2,FI n)

y\-*y\

where y», represent any potnt oh the boundary 

of stabiIity region.

6)lim V(y., ... y_) = Iim Vly,, ... y,) * - ® i n i • Ft
|yi|^»® jyjt"—»o

must be satisfied for global asymptotic stabiIity 

of the IImit cycle (periodic solution) qf (1.5). 

This theorem represents one of the first attempts to extend the ideas 

of Liapunov® s Second Method to systems with sel f-sustained osci11at.ions. 

Its application, however, runs into considerable difficulty even where 

the equations of the limit cycle are known.

Example 1.5;

Consider the system described by the following equations
0 '■ w . .a y' 71 12 .

y2 -.(r-y,2 - y22,y2 - jj •

Chose as a tentative V-function

o

Differentiating, the above equation with respect to time and 

substituting the differential equations of the system one finds



Note that 4t can take on zero value at points which are not on 
d t

the limit cycle.

■■■"■ 2 " -2' . ■
yr +

. dV ,It appears that the requirement for positiveness of in Theorem 1.5 

could he relaxed, allowing

as long as the curve-rr = 0 Is not a trajectory of the system off the■ d t ■
Ifmlt cycle. The mathematical proof of such weaker theorem Is, however,

not avallable at the present tlmev This limits considerably the applica

tion of Theorem 1.5 to practical (physically realizable) systems.
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CHAPTER II

STABILITY OF CANONIC SYSTEMS

2.1 Introduction

The major difficulty in applying Liapunov’s "Second Method” to the 

analysis of practical control systems is due to the lack of a straight

forward procedure of finding a Liapunov’s function (i.e., a function of 

the system variables satisfying Liapunov* s stabi1ity or instabi11ty 

theorems}. However, several Liapunov’s functions have been developed 

that apply to a large group of control systems that can be described by 

the so-cal led ’’first canonic forth” or the ’’second canonic form” of system 

differential equations. The transformations which change the form of 

system differential equations into a set of canonic differential equations 

are cal led the canonic transf ormat ions. Hence, canonic trahsformat ions 

represent a systematic appraoch for finding Liaponuv’s functions for a 

large number of non!inear control systems.

2.2 The First Canonic Transformation

The Russian automatic control !iterature, in particular the books 

by Lur’e [4^ and Letov [[s], contains detailed discussions of the appli

cation of canonic transformation for ’’direct control” and ’’indirect 

control” systems. There Is no equivalent English terminology to differ

entiate between direct and Indirect control, while the Iiferal translation 

of Russian terms does not convey much information. In either of the two 

cases, however, the system may be represented by the block diagram shown 

in Fig, 2.1. In either case, the nonlinear element Is retained in the

forward path of the minor loop. Consequently, it is possible to combine 
the linear feedback paths of both loops into an equivalent single-loop

system, as shown in Fig. 2.2 It is not always possible, however, to
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Figure 2.2

Block Diagram of a Closed System

W5 th a Si ng le Non Iinear E lement



transform a single-loop system with a single nonlinear element, as shown 

In Fig, 2.2 Into elther an equivalent direct control or Indirect control 

system which Is physically realSzable (f.e,, which Is described by differ

ential equations with real coefficients). Consequently, the canonic trans= 

formation of either direct control or Indirect control systems represents 

only a special case of canonic transformations of singIe-loop systems with 

a single nonlinear element, as shown In Fig, 2,2, Since the first canonic 

transformation is applicable to the more general case of systems with a 

single nonlSnear element, there is little, if any, justification to discuss 

the special cases of direct and indirect control systems.

The systems to which the procedure of stabi1ity analysis presented in 

this chapter is applicable can be represented by the block diagram shown 

in Fig. 2.2, ■

It is assumed that the input into the system, r(t), is removed at

time t > ©, l,e„

r«t) o- : ■ • for oil t > 0.

Under the above assumption the block diagram of the system can be simpli

fied as shown In F!g„ 2.3, '

It will also be assumed that the input-ourput characteristics of the 

nonlinear gain element can be described by a continuous function 

ysflxt? . fio) = 0,;

where x .Is the input into and y the output of the nonlinear element. The 

function fix! is assumed to be single-valued and analytical in a suffi

ciently small neighborhood of the point x ® 0,

The following equations GLur' e [ll8 3, p, 1357) represent the first 

canonic form of system differential equations?
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6 (S) = G,(S) GJS)

Figure 2.3

Simplified Block Diagram of a Closed-loop 

System with a Single Nonlinear Element.
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dt X + f(sc) i 1 , 2, ««« h (2.1a)

and

n
(2.1b)

where and o(. j are Constanta, x Is the variable representing the input 

into the nonlinear element and Zj's are the variables obtained from the 

canonic transformations. The variables Zj wi11 be referred to as the canonic 

variables:,'

0ifferenfiation of Eq. 2.1b with respect to time, followed by the 

subdtitution of Eq. 2,1 a y lelds

where

and

C2.1c)

1 * 1, 2, ... n 12.2)

- r -s 6^1, 2, • •. n . (2.3)
i=1

Eq, 2,1a is called the principal part, while Eq. 2,1b and Eq. 2.1c are 

called the complementary part of the first canonic form of system differ^ 

ent.ia'I equations.

To show that Eq. 2,1 actually represents thesystem qf Fig. 2.3, let

_ d ■D b ,... dt. ■

Then, from Eq. 2,1® and Eq. 2.1b one finds
ID ■= X|) Z| = y i *..1, 2, ... n (2.4)

and



where

y * fix)

represents the nonlinear element characteristic.

Solving Eq. 2.4 for Zj and substituting into Eq. 2,1b, one obtains

x
Y

y °^i

ui XI
(2,5)

Note that the loop transfer function of the system of Fig, 2,3 is

0(si * 6,(8) G0(s) ■ - 211®! . (2.6)
1 ■■■; Z ' YIS)

Consequently, from Eq, 2,5 and Eq, 2,6 the loop transfer function is

6(s)
i?1

cL i
® “ X?

(2,7)

Equation 2,7 indicates that the constants Xj are the poles of the 

loop transfer function G(s) and the constantsoCj are the negative values

of the residues of Sis) at the corresponding poles. Thus, the first 

canonic form of differential equations for the system of Fig, 2,3 (or 

that of Fig. 2,2 with either constant or zero input) can be obtained 

from the partial fraction expansion of the loop transfer function S(s)4 

It is also apparent from Eq. 2.7 that the number of poles n and zeros m 

of the transfer function 6(s), representing the linear part of the loop, 

must satisfy the requirement that m < n. (2,8)

The above discussion shows that every set of canonic differential 

equations represents a closecMpop system wi th a single nonlinear 

element. Unfortunately, not alT closed-loop systems with a single
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nonlinear element are transformable into the first canonic form. It has 

been shown (Rekasiys fl9]l that the canonic variables Zj are defined by 

the following equation

zi WT.

1 , 1 p o © © i ^ p / T / • • © p 1

^14*1 p 9 99 9 X.

© © © ® a « a ® ® ©' ©. © a ® © • <y • «a © © © © © • © a,© © ©©©©©«* © © © « © © © .<

o oo o ©« o > © © .© © © © © « © © © © © © o © © © © © © © © e © © © © © © © © © <

n~2 . * n~2: ■ \ n^*2 k \n-2
1 ■: * A 2 ■*■•> * ■i-1 ' ?_ . * A. , * n-1 n-1

n-1
k1 ? ; A2 P ©> © p x£ • c \n“1fn Ai+i '

n»2
vn

Dr1
vn (2.9)

where the constant C is the so-caSled Vandermonde determinant 

C = J | ( ■ .Xkj | (2.10)

and

•d^xV. 1-1 a

2 2
k*=1 j=1

X}-1 <*j
dt •1-k (2.11)

The above equation indicates that the first canonic form does not 

exist if the transfer function §(s) has multiple poles.

Fig. 2.4 shows the block diagram interpretation of the first canonic 

transformation as applied to the system of Fig. 2.3. From this diagram 

one can readily see that every system with only simple poles in S(s) and 

with the number of such poles exceeding the number of its zeros c®n be 

transformed into the first canonic form.



Figure 2,4

Block Diagram Representation of Canonic Transformation,
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2.3 Simp!jfled StabiIity Criteria

Lur® e[ig ] considered the function

n

i + \jx /
o

f(x)dx (2.12)

as a possible Liapunov's function for systems described by the first 

canonic form of differential equations. It can be shown (Lur® e[l8], 

pp. 4b-47) that this function Is negative semidefinite if the nonlinear 

element characteristic satisfies the following inequalttys-

7 f(a)da >0 (2.13)

provided that the constants aj are real for corresponding real Xj's 

and are In pairs of complex conjugates for corresponding complex cqnju^ 

gate pairs of X'|*s and that Re Xi<>*

The time derivative of this Liapunov's function, in connection with 

the first canonic form of system differential equations, is

dV
dt

rf(xi2 + i ,alZ|r

- f(x);- 2 Zi(/5i - 2aj 2 V'' "*r\ I • '12.14)
i^1 ,js1 -'i +. j

The time derivative of this Liapunov's function (Eq. 2.14) can be made 

positive semidefinite by letting

n a .
2a| ^ —i—> i m 1, 2, ... n . (2.155

fry Xi + Xj /

Lur®e has also shown that by adding to the Liapunov's function of Eq. 2.12, 

the term
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“I* A2• • • + *SZS + zs1 zs+1 zs+2

(2,16)

where the constants A and C are inf Initesrmally small negative numbers, 

the time derivative of the Liapunov's function (Eq. 2,14) can be made 

positive definite. The constants Aj are associated with the real canonic 

variables Zj (i * 1, 2, s) and the constants Cj are associated wi th 

complex canonic variables zj(5 = s, s+1, » n). Consequently, the appli

cation of Liapunov's stabiIity theorem leads to the following stability 

theorem known as Lur® e® s Theorems

Theorem 2.1s (Lur' e®s Theorem) If a system described by Eq. 2.1 

satisfies the following conditionss

a) there exists at least one solution of a set of 

stability equations (Iq. 2,15) such that aj are

The preceding stabiIity equation (Eq. 2.15) may frequently reject 

systems that are actua1ly stable, si nee it puts too many restrictions

real for corresponding real Xj's and are in pairs 

of complex conjugates for corresponding complex 

conjugate pairs of Xjj

x
b) f f(a)da > 0; f(o) = 0;

o

c) the constant r^ 0;

d) Re Xj < 0 for alI I = 1, 2, , n;

then the system is globally asymptotically stable*

Local asymptotic stability can a I so be estab11 shed

by means of Lur'e's Theorem, if there is a range of 

values of x, containing the equilibrium state, over 

which Eq, 2,13 is satisfied.
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on the system. Since Lur'e"s theorem represents sufficient conditions for 

asymptotic stability, which may not always be necessary conditions for 

stability, It is possible to relax the requirements of tar'e* s. theorem 

considerably# thus making itappIicab Ie to a greater number of stable 

■systems.

By adding to and subtracting from Eq, 2,14 the quantity
' ■■ ’-o''. n. ■ v ■ ■■■■:

2 v/r1 fix) ' ■ ;a;|zy 
■; i=1

and then selecting as stability equations

. ;' n ' '■ "■■
^atl S> i >. 1# 2, ... n

A} + Aj / ^ (2.17)

Lur"e obtained

~ = j^\P f(x) + 2 a1zi j v (2.18)

Consequent Iy> Eq, 2.17 can a Iso be used as a stab)Iity equation in Lur'e"s 

Theorem, in other words, the roots ay of Eq. 2,17 can be used instead of 

the roots aj©f Eq. 2,15 to prove that a system is stable by the use of 

Lur®e"s Theorem.

Lur'e a I so considered the function

n n
'=5 5 ai ai ZtZizJ (2.19)

^ ^ Xi + Aj

as a possible LSapunov's function in connection with the first canonic 

form of differential equations and obtained the stabiIity equation

2a i
X* + A j

i * 1, 2, ... n (2.20)
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A system is asymptotically stable If:.

a) the roots aj of Eq. 2.20 satisfy the requirements of Lur* e's 

stability theorem,

b) Re X j <0 for a II i = 1, 2, .., n,

c) the nonlinear element characteristic satisfies the inequality

xf(xJ >0 for all |x| > 0; f(o) = 0. (2.21)

Various other simpl|fied stabiIity criteria (l.e., other stabiIity 

equations* based on the above two Liapunov's functions as well as other 

V-functions) have baen successfully applied to prove stability of closed- 

loop systems with a single nonlinear element. The books by Lur' e [4] 

and Letov [5] contain many examples of such simplified stability criteria.

A summary of these simplified stabiIitycrjteria, applicable to systems 

expressed in the first canonic form of differential equations, is presented 

in Table 2.1. Since none of these criteria represent necessary conditions 

for asymptotic stabiIity, one criterion may succeed where another fails.

The system may be stable even if all of these simplified criteria fail.

The choice of the criter ion to be tried first depends to a great extent 

upon one's experience and intuition.

The use of the simpl i fied stabi l.i ty criteria described above wi II 

be iI lustrated by the following example.

Example 2,1s Consider the closed-loop system shown in Fig. 2.2.

Let the loop transfer function for this system be

gjsj a = HU * s+i
Y(s) (s+2)(s+3)(s+5) *'

# 'The solution of these stabiIity equations for second and third order 
systems is given in Appendix A.
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. TABLE 2.1
Simplified StabiIity Criteria for Systems Described 
by the First Canonic Form of Differential Equations.

StabiIi ty Equation Conditions for Asymptotic StabiIity Reference

1.

2 a.

* 1, 2/ ... n

la) The roots a. are reaI for real Xj*s;
a.' s are in pairs of complex .conju
gates for complex conjugate pairs of

lb) Re Xj <0 for ali i - 1, 2, ... n. 

(c) The constant r ^ 0.
Id) The non linear element satisfTes the 

inequality j- f(x)dx^ 0, floi* 0.

ILur»e [4J, p. 50)

3.

2a . '■*¥-A* I I

1=1/2, ..

2a
' £ x‘+ XJ '

« = 1, 2, ..

(a), lb), (c) and Id) the same as under 
No. 1.

lei Aj's are any real posifive constants

(a) and (b) the same as under No. 1.

Cc) The nonlinear element satisfies the 
inepuaiitV^ x flxl^O;

ILur'e [4], p. 50)

Itur*e [4J, p. 52)

50



No. Stab11 tty Equalion

2a.. -v---- :—:— = A. + OC.
‘ Xi + Xj ' ‘

J=1 ■■ ■.
^ 1 2* 9 0 9 'R

2 b. ^ . J .
* Xi + Xj

oC i

"1;?*. 1> 2> ... n

2b.
b .J i+Ai

>1 A‘ Aj Ai

-.I.#.' 2/ 15

.<vi
j=i

i=i

i ®-:ir:2■9 - ^.9 » » a

TABLE 2,1 - Continued

Conditions for Asymptotic Stability

(a), (b) and fc) same as under No. 3.

Id) A. • S are any real posit ? ve constan t^

(a) The roots b. are reel for real Xj’s 
;and are in pairs of complex conjugates 
for complex conjugate pairs of Xj**•

lb)., le) and Id) the same as under
No. 1. This criterion yields iden~ 
tical results as criter?on No. 1.

la) Same as under No. 5.

lb) , 1c), Id) and (e) same as under
No. 2. This criterion yields 
the same results as criterion 
No. .2.': •

(a) The constants Xj are real nega*
tive, i.e.,

?i':/«;l.:.'2' r<0 for all
9- ^ 9 ' ® • * <*■

lb) The constant r is non-negati ve
tr>0).

lc) The non Iinear e l ement character- 
isties satisfy the inequality

fls) dx>0; f(o) = 0.

Reference

(Lur* e [43, p» 52)

(Rekasius [19],
p. 80)

This criterion 
can be derived 
from criterion 
No. 1 following 
exact Iy the same 
procedure as in 
the derivation of 
critenon No. 5.

(Rekasius [19], 
P. 89)



TABLE 2,1- Continued
Condi11 ©ns for Asyrnptotic $tabi ReferenceStab1111y Equat1 on

ic) and (d) same as under2a. a

X i + X (e) The order of the system h must he 
/even,"'

(Letov [5l 
p. 176)

Same as under No, 8, except that the 
non I inear element must satlsfy the 
i©equali ty

(Letov i 
P, 1761

Same as under No. 82a. a
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According to Eg. 2.1,the first canonic form of system differential 

equations is

. d*i ■ .> - ■~ - = 2z% 4 Hx) ■ • . .

dz2
-rr- 9 - 3z~ 4 fix)df 2

dz, ■■■
— 5z, 4 Hx)
dt 3

and

x - £5.333z^ — Zg 4 0.667Zj

«■— 0.667z1 4 3.0Q0z2 - 3.333z3 4 O.QOOftx) .

The time' derivative of the V-fynction (Eg* 2.12) is found by

substituting the canonic equations into Eq. 2.14;

dy 2 2 ■■gy - la^Zi 4 a2Z2 4 ajZj) 4 2A1z1

'■■■.,,..,4- 3A2z22 4 5A3z32 » f«x5[«A1 - 0,667

4 0.500a^ 4 0*4008 a^- 4 0.2868^82)2^

4 «A2 4 3.000 4 0,4008^2 4 0.333a22

4 0„2§0a2a^z2 4 JA3 - 3.333 4;0.2868,8

■ 2 1 --4 0.2§0a2a3 4. 0.200a3 Jz^j *

d¥11 wi11 be observed that of the preceding equation can be 

made positive definite by setting the terms In fix) equal to 

zero and by selecting the values of the constants A,, Ag, and Aj 

as sufficiently amid 11 positive -numbers. Hence let

A1 s'A2 * A3 a °»

Furthermore, from Eq. 2.17 one obtains



0.500a,^ + 0.400a,a_ + 0.286a,a, = 0.667,
: 1 1 2 1 3 .

0.400a1a? + 0.333a2^ + Q.25082a3 - <*3.000,

2 '0.286a.,a3 + 0.250a2a3 * 0»20083 = 3.333.

Simultaneous solution of the above equations yield the constants

a-.,-.** +3,333,.' .'..

-.Sg ■ W —12,0OO> ■

.8j = +11.667.

Thus, from Egi 2,12, the V-fundtion Is

V - - / f(x)dx- 2.778z^4 + 8.0002 ^2 - 5,555z123
'/•/': :■ • V-

+ 24,0OO222 + 17*500z2?3 - 13,61123?

and, from Eq. 2,18/ ;• "v-

dv 2— = {3.333z1 - 12.000z2 + 11,667z3) .

■ ' V ■ dV ’Since V Is negative definite and js positive semidefinite,

the system is globally Stable, provided that the aaturating ampli

fier characteristics satisfy Eq. 2.13. Furthermore, the nature of 

the roots 8j will not change if the constants A.,, A2 and A3 are

chosen ps sufficient(ysmal I posi tive numbers, thus making -««■dt
posifive defipite. Hence, one concludesthpt this system is 

stable H the nonlinear gain element characteristic is confined 

to the first and third quadrantsof Fig. 2,5,

The preceding example also illustrates the following important ad

vantages of Liapunov's second method over other methods of nonlinear 

system analysiss

a? the second method of Liapunov can be applied to higher order 

systems described by the first canonic form of differential



equations,while the phase plane analysis and graphical integra

tion methods are restricted essentially to first and second order 

' systeras.'; '

bJ Liapunov’s functions used in stability analysis of systems de

scribed by the first canonic form of differential equations do 

not require the knowledge of the exact input-output character

istics of the nonl inear element. It is sufficient to show that 

the non!Inear element characteristic satisfies Eq. 2,13 and is 

centinuous with respect to the input variable x. The describing 

function analysis, for example, would require a more precise 

knowledge of the nonlinear element characteristics.

The Input-output characteristics of the nonlinear element of a closed- 

loop system containing a single nonlinear element were subjected to some 

restriction in al l the simpl i f ied stabi I i ty cri tieria considered In the 

previous sections. These restrictions were mathematically expressed by 

Eq. 2.13 or Eq. 2.21. The range of values of x over which these restric

tions were satisfied by the nonlinear element determined the region of the 

state space of the variables Zj in which stabiIity of a system could be 

proved by the simptifled stabiIity criteria. The restriction expressed 

by Eq. 2.21 is illustrated by the shaded region of Fig. 2.5. Eq. 2.13 

imposes somewhat weaker restrictions on the input-output characteristic 

of the non!inear element. These are included in the restrictions imposed 

by Eq. 2.21. Since the simp!i f led stabi-Iity criteria of the preceding 

section do not impose any restrictions on the nonlinear element charac

teristics other than those expressed by either Eq. 2.13 or Eq<> 2,21, 

these simp!if led stabiIity criteria cannot different late between systems 

that differ only in their non I inear element characteristics as long as 

these characteristSes fall within thea!lowable region of Eq. 2.21.

55



56

That Is, If a simplified stabiIity erfterlon has proved that a system Is 

stable, then the same criterion will still prove stability if the non

linear element Is replaced by another nonlinear element whose character

istics . fa 11 within the unshaded area of Fig. 2.5.

Now It is possible to determine the reasons why such simplified 

criteria will reject many systems that are actually stable. By replacing 

the actual nonlinear element of a system by a I inear element that still 

satisfies Eq. 2.21 (i.e», by applying slmplifled stabiIity criteria to 

11 near!zed systems) the analysis is not changed. The characteristics of 

such a linear element

y ® kx 0<k<GD

could fall anywhere in the first and third quadrants of the input-output 

plane of the actual non!inear element (Fig, 2.5), Hence, it is apparent 

that, in the case of a linearized system, the simplified stability criteria 

would select as stable only those systems that are stable for all positive 

values of the open-loop gain k. If the root-locus of the loop transfer 

function S(st is not confined to the left-half of the s-plane, a linearized 

system wiI I, for some positive values of gain, be unstable. Hence, the 

simpfifled stabiIity crjteria will reject all those systems of the type 

of Fig. 2,6 which have the root-locus of their loop transfer function 

GlsJ crossing the j<u -axis of the s-pIane. Consequent Iy, it is possible 

to predict which systems wilI be rejected by the simplified stability 

criteria of this section by inspection of the root-locus of the transfer 

function of the I inear portion of the loop, Gfsl. It must be emphasized, 

however, that?

a! the fact that the root-locus of a system with a single non

linear gain element is confined to the left-half of the s-plane 

does not imply that the system must be stable;
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Output, y = flx)

A) linear

B) saturation

hard spring

Figure 2.5

Characterist5cs of a Non I i near Gain Eiement.



b) the fact that the root-locus of a system with a single non-' 

linear gain element is not confined to the left-half of the 

s-plane does not imply that the system may not be stable.

The importance of the root-Ibcos plot (or sketch) In systems with a 

single nonlinear gain element is Its ability to predict which systems will 

definitely be rejected by the simpllfied Liapunov stabiIity criteria. 

Several such practical systems that will be rejected are shown in Fig. 2.6

The reasons why a stable system, containing a single nonlinear gain 

element may be rejected by the simplified stability criteria can be 

summarized ast

1) Some of the open-loop poles are in the right-half of the 

s—pIane.

2) Some of the open-loop zeros are in the right-half of the 

s-plane.

3) The root-1 ecus of the system Is not confined to the left-half

of the s-plane. ;

4) ©pen-loop poles are at the origin of the s-plane.

5) Open-loop transfer function has multip|e poles.

6) The difference between open-loop poles and zeros is equal or 

greater than 2 (?.e>, n - m^>2).

7) The constant r Is non-positive.

The above IIsted reasons indicate that the majority of stable linear 

closed-loop systems would be rejected by the simplifled stabiIity criteria 

based on the first canonic form of system differential equations. Hence,

Other methods of 11 near system analysis^ such as Nyquist Diagram could 
also be used for this purpose. If is more convenient, however, to use 
the root-locus in connection with Liapunov's Second Method which 
analyzes the system behavior in time rather than in frequency domain.
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Figure 2,6
Roof-loci of Third Order Systems Which Would be 
Rejected by the Simplified StabiIity Criterias

a Stable for Low Values of Sain 
b Stable for High Values of Gain 
c - Stable for Intermediate Values of Gain.



it may be seen that the so-called advantage (h) above might be considered 

a disadvantage in disguise© It is essential to include a better definitlon 

of the nonlinearity than the mere fact that it is included in the first and 

third quadrants if heretofore excluded stable systems are to be properly 

identified0

It would be very desirable to modify the simplified stabiSity criteria 

In order to increase their' applicability .(He,,, decrease the number of 

stable systems that these criteria reject for one or several of the reasons 

listed above)•© An obvious way to accomplish this is by restricting the 

gain characteristics of the nonlinear element to only a fraction of the 

first and third quadrants of the input-output plane of the nonlinear 

element^ as shown in Fig© 205 by the dotted Iines© ,

204 The Pole Shifting Technique •

The purpose of the pole-shifting technique is to put restrictions on 

the minimum gain of the non!inear element in order that the simplified 

stability criterSa will no longer reject stable systems whose gain does 

not fall below such a minimum value• In order to accomplish this* the 

horizontal Cfnputl axis of the Input^output characteristic plane of the 

nonlinear element is rotated In the counterclockwise direction through an 

angle j^0 The rotation of the Input CxJ^axis is equivalent to the change 

from the original output variable y to. a new variable y® * defined as

yfl « g(x) *’y'CpX ■ . (2’-022)

where Cp Is a real constant and determines the angle fi of rotation of 

the horizontal axis In the input-output plane, of the nonlinear- element*

This change in the variable y* representing the output of the nonlinear 

element* is illustrated graphically in Fig© 2 ©7 for a positive value of 

the constant Cp© The angle fi. is expressed as
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Figure 2.7

Illustration of Polo-Shifting Technique.
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/6 » arctan Cp . (2.231

The maximum value of the angle /6, and consequently, the maximum value of 

Cp, is determined by the angle through which the horizontal axis of the 

x-y plane (Fig. 2.7) can be rotated before intersecting the nonlinear 

element characteristic curve.

The new variable y* will be used in the first canonic form of system 

differentia I equations and thus wi11 be contained in the equations of the 

simplified stability criteria.

To accomplish the purpose of the pole-$hifting technique (i.e., to 

Iimlt the mi nimum valus of non Iinear element gain) this new variable 

must satisfy the inequality

x gtxl ^ Cj g<0) ft 0 (2.24)

in the region of the state space in which stabiIity can be proved by the 

simptlfiep stability crlteria of Section 2.3, In the case of global 

stabiI|ty, the above inequality must hold in the entire state space of 

the variables Zj. It is important to note that the original system vari

able x, representing the input into the nonlinear element, is retained in 

the hew canonic equations resulting from the pole-shifting. The simpli

fied criteria based on the canonic equations prove the existence of a 

Uapunov's function of the variable x and 5 is time deri vatives. Thus, it 

Is obvious that the proofs of stability based upon the new canonic vari

ables Z| after the pole-shifting are still valid as long as Eq» 2.24 is 

satisfied.'

The original transfer function of the 1 inear portion of the loop

0|s) '» XCsi
YUJ

®m + . -m-1 .
■ am-1 8 + :<■»». + a, s + a_ i o

fil ,
8 + Ws

n-1 n > m
e«o “t b^ S 4* p0

(2.25)



is changed, as the result of the change in the variable y caused by the 

pole-shifting procedure, to
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G» is) xis)
V Is)

S'm-1 + ... 4- a1 s + a
sn + b '' s0”1 + ... + b. s + b + C( sm + am .!n-i i o p m-l

.m-1 + .. • + a )
; n> m

12.26)

CpG®Is)
CpG(s)

1 + CpG(s) (2.27)

Eq„ 2.27 makes it possible to interpret the effect of pole-shifting 

procedures on the root-locus. It will be observed that a change in the 

numerical value of the constant Cp does hot atfeet the zeros LUj of the 

transfer function G® (s)«, It does, however, affect the poles Xj of the 

transfer function G®Is) inan exactly analogous way as the change in the 

value of open-loop gain. The poles of the loop transfer function G* (sf 

move, for increasing positive value of Cp, in the s-plane along the root- 

locus correspond!ng to increasing loop gain. The root-locus for negative 

values of the constant Cp corresponds to root-locus of negative loop-gain 

(positive feedback).

If is obvious that an arbitrarily smalI change in the constant Cp 

will separate any multiple poles of the transfer function. Thus, the 

pole-shifting technque enables one to perform canonic transformations 

for systems with multiple open-loop poles. Also, if the system is open- 

loop unstable (open-loop poles on the jw-axis or in the right-half of 

the s-plane), it may be possible to move the poles of G'(s) into the 

left-half of the s-plane by a suifable choice of the constant Cp*
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The canonic transformation of the new loop transfer function S'(s) 

is performed in the same pnner as discussed previously for the original 

loop transfer function Gist. The coefficients X j and oC | .'of the new 

first canonic form of system differential equations obtained from the new 

loop transfer function Sfsl can be determined from the root-locus of G’ (s). 

The root-*-locus of G* Is? can be constructed by using the well-known tech

niques from linear control system -theory,' In the construction of the root- 

locus of Gtfsl, the coefficient Cp is treated as a loop gain in the 

construction of root-loci for 1Snear systems. It must, however, be 

emphasized that the root-locus of GM.sl is due entirely to the linear 

transformatjon ,CEq»' -2*?2) defining the new variable y" while the actual 

gain of the system does not vary.

In many cases an arbitrarily small positive value of Cp will violate 

Eq» 2,23 for sufficiently large absolute values of input variable x. 

Examples of nonlinear characteristics that may not admit any positive 

values of Cp due to restriction of Eq. 2.23 are perfect saturation, 

negative resistance characteristics of vacuum tubes, etc. In such cases 

a small negative value of Cp may be used to separate mu!tiple poles, pro

vided none of the poles are close to the ju>-axl s or in the right-half of 

the s-plane« The application of pole-shifting technique to prove stability 

of systems that would be rejected by the simplified stability criteria of 

Section 2.2 without the. pol-e-shi f ting is illustrated by the following 

example.

Example ;2.*2s Consider a non I inear system shown in Fig. 2,3 with

GIsS > ;
6«s2 + 2s - 11 \

and the .honlinear'element‘wifh the hard-sprfng characteristIcs

such that-'
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|f Cx)| > 16x| for al l |x| >0, f CO) = 0 ,

This means that the x-axis of the non!I near element characteristic 

plane can be rotated by an angle /6/ where 

Cp «■aretan fi < 6;,

before intersecting the non I inear element Input-output characterise 

tic curve (see Fig. 2,7), It is obvious that the first canonic 

transformation of G(s) cannot be performed directly because of the 

poles of S(s) in the right-half s-plane. Hence/ it is necessary 

to apply the pole-shifting technique to this system, before simpli- 

fied stability cri teria can be used to prove stability*

Selecting Cp » 6 and substituting into Eq. 2.26 one finds

G8(s) = X(s) s + 3
Y(s) 6(s + 1)(s +2)

Application of the first canonic transformation to G8 (s) yields 

the following canonic equations!

dt

dz„

= - zr + g(x)

dt 2z2 +

- - 0»33321 + G.167z2., ■

Thus • .

X) ® 1 ; X2 s 2 ; cL 1 = 0.333 ; o( 2 = ~ 0,167 ,

Applying these values to the simplIfled stability criterion 

(Ecj. 2.20)/ one obtains

a.j a 1 $ ®2 « — 1 .

Hence the requirements of Lur8e8s Theorem are satisfied and, 

consequently/ this system is globally asymptotically stable.



The above example i t Iustrates the procedure of pote-shi f ting and 

certain of. its advantages. It enabled one to prove stabi lity of a system 

which contained poles of Gist with positive real parts and thus was not 

applicable directly to any one of the simplified stability criteria,

2,5 The Zero-Shifting Technique

A procedure, simi iar to the pole-shiftfng technique, is proposed in 

this section to shift the zeros of the transfer function of the linear 

portion of the loop, Gist, The purpose of the zero-shifting technique is 

to put restrictions on the maximum gain of the non!inear element in order 

that the simp!i f led stabi !S ty criter fa wi11 h© longer reject stab le systems 

whose gain does not exceed the maximum value. In order to accomplish this, 

the vertical Coutputi axis of the input-output characteristic plane of the 

nonlinear-.element.:-is rotated in the clockwise direction through an angle @ 

as illustrated In Fig, 2,8, This rotation of the putput lyj-axis is equiv

alent to the change from the original input variable x to a new variable x8 

defined as

:X« * hlyl x —' Czy : 12,281

where Cz Is a real positive constant and determines the angle © of 

rotation of the vertical axis In the.input-output plane of nonlinear 

element. This' angle © Is expressed as

© * 'arctap C - . 12,291
<1*

The maximum value of the angle © and, consequently, the maximum value of 

are'determined by the. angle through which the vertical axis of the x-y 

plane IFIg, 2,81 can be rotated before intersecting the nonlinear element 

characteristic curve. The actual value of the constant C must be just, 

less than this maximum value determined above. This will make the new 

function fix8I, which represents, the output, y, of the non!inear element
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Y=f (X)

Figure 2.8

Illustration of the Zero=Shlfti ng Technique.



In terms of the new variable x®, single-valued for sufficiently small 

absolute values of the variable x*» Theoretically, the constant C2 

could also be a negative numbers However, this would result in zeros of 

the loop transfer function being added in the right-half of the s-plane, 

Hence, negative values of C,, would yield canonic forms that are unsuitable 

'•"■for stabiMty invest!gatipn.

The new variable x” wit 1 be used In the first canonic form of the 

system di fferenti el equations and thus will be contained in the stability 

equations ©f the simplified stabiIity criteria. Consequently, to accom- 

plish the purpose of the zero-sh?ftihg technique fS,e., to limit the 

maximum value of the nonlinear element gain) this new variable x® must 

satisfy-the inequality’".

■ flx:t 5 ■> 0, f«0) = 0 C2.30i

in the regSon of its phase space jn which stabi|ity can be proved by the 

simp!Ified stabiIity criteria of this section. In the case of global 

stabi.11ty, the above inequal i ty must hold in the entire phase space of

..the. variable x®.

As a result of the change in the variable x, the original transfer 

function Cfs5 of the I inear portion of the loop fEq. 2.255 is changed to

S® Csl X® (si
YtsS

®m+am=.i «o+b-j s*fao+C2 C*B+b ^ sn“1+,, ,4-b1 a+b 1

+ Vi $R’1 + 4 bi 8 + V
n > m .

(2.311

Eq, .2,31 Indicates, that the clockwise rotation of the vertical axis in 

the input-output plane of the nonlinearity introduces additional zeros 

in the loop transfer function, such that the new transfer function con

tains an equal number of poles and zeros. It also introduces a scale



69

factor C2 in the n^w loop transfer function G* (s). Consequently, the new 

transfer function (Iq, 2,31) cannot be transformed into the first canonic 

form of system differential equations. The scale factor Cz of this ne*v 

transfer function could be incorporated in the characteristics of the non

linear element. However, the transfer function would still violate the 

requirement that the number of poles of a transfer function be greater than 

the number of Sts zeros in order that the transfer function be transformable 

into the first canonic form of system differential equations. To overcome 

this difficulty, and hence to retain the advantages of simplitied stability 

criteria based on the first canonic form of system differential equations, 

requires some modifications in the first canonic form of differential 

equations. Let the modified first canonic form of system differential 

equations be

(2.32)

^ oCjZi (2.33)
1

and

<

(2.34)

y a f(x" ) (2.358

represents the characteristics of the nonlinear element after the zero' 

shifting. Rewriting the above equations in operational notation and 

then hubst** a ** c- *,35 into Eq. 2.33, one obtains

(2.36)
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let" ■' :: "■■■■
, . g « r_ ■

P ..

Then, substitution of Eq. 2.37 and Eq, 2.28 into Eq, 2.36 yields

C2.37 5

^ .V
Y *f” 0 '** X i (2,38i

X(s?
Y is) 5 m\:

dL i
* -vX'i

12.39)

Consequent I y, the coefficients Xg, and in the rood? f ? ed canonic

form of system differehtiai equations are obtained from the original loop 

transfer function Sis) and do not change due to zerof-sh? ft ? ng. The constant 

rQ can be computed from Eh. 2.29 as

rQ = f an © (2.40)

where © Is the an|le of rotation of the y-axis in the Input-output plane 

of the non I i near elament.

It is necessary to modify the simplified stebiIify criteria if these 

cri teria are .to be used wi th the modi f led canonic form of system differen= 

flat equations. The remainder of this section will be devoted to the 

development ©f such modified stability criteria.

The function

•y
x" ■- ■ n. ■ :'-.n . _ a ;

x+ ^ 2 Vj ' j
t, f, X|*XJflxld C2.41)

cannot sSrve as a Liapunov's function in connection with the mod!fied 

canonic form of system differentiaf equations, since the time derivative

of the variable x9 depends upon the slope of the nonlinear element charac^ 

teristfe curve. This becomes apparent if Eq. 2.34 is rewritten as
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dx1
dt

izi fix' )

r + r.
d f f x* ) (2.42!

o dx'

Substltot ion of the above equation Into the time-derivative of the 

assumed V-function (Eq. ■2.41) yields

dV
dt

r r«x» )

1 + r.

f(X° 1

d f(x' > 
dx'

+ ( / a | z |)
i=1

n
Z|(- i

1 + r d f ( x») * 2a 1 Xi + Xj .
j=1

. (2.43)
Li=1 ’ ’ ‘ o dx'

Previously stab!Iity equat1ons were obtained from Liapunov's functions 

which are analogous to Eq. 2.41 by setting the last term of the time deri

vative of such Liapunov's functions (which are analogous to the last term 

of Eq. 2.43) equal to zero. Such a procedure of obtaining stabiIi ty equa

tions is not applicable In this case, since the last term of Eq. 2.43 is 

not constant, but rather depends upon the slope of the nonlinear element 

characteristic curve. The V-function of Eq. 2.41 was considered here only 

to show that every V-function that contains the variable x' explicitly 

will be subject to the same weakness and hence cannot be used as a 

Liapunov's function in connection with the mqdifled canonic form of system 

differential equations.

Consider next the function* 

n n
v° 2 2 a8 aj zi *j (2.44)

. A, + A:
N1 j=1 ■ . J

as a possible Liapunov's function to be used in connection with the

*A suitably small F-term CEq. 2.16) may be added to this Liapunov*s function 
to prove asymptotic stability of a system.



modified canonic form of system dl ffereritlal equations. Differentiation 

of Iq. 2.44 with respect to time and qubstltutlon of Eq. 2*32 yields

dV
dt = « if25r -f- 2f«x' )

i»1 1=1 j=1
C2.45)

By adding to and subtracting fromEq. 2.45, the quantity

f . rQ f(xn + 2 a{^f
fs'! . ■ ■ ■ |®1 ■

one obtains F ^

dV
dt f l x9 5 + a | z {) + x9 fix* I

n
LL+ fix9) 2 a? + 2af ^ v . v

■l=r j=i A| XJ
: I I

C2.4d)

A set of sfabl11fy equatIons may be obtained from Eq. 2.46 by sett 1ng Its 

last term equaI to zero, I.e..

2as
X| + X;

J*1. ■ J
\|^» = <*i 1=1, 2p 4-p o o ©

C2.47)

Consider next the function

¥
£$ 2 2 ' % ' 2

aj zj t alti. Zi+T ■■ 2®iai+1 Zizi+1—------ - - - - - - ff i •• I  "

1=1 Xi 2X i+i Xi + Xi+i
I =1,3, 5, ... n-1

{2.481

as a possible Liapunov9s function for systems described by the modi fled 

canonic form of differentia! equations* Its time derivative in connection 

with the modifIed canonic form of system differentia! equations is

# •
For systems of even order Cn even). If a system Is of an odd order, a 

term 1/2kz^2, where k Is a negative constant, may be added to Eq. 2»48.
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n-1
dv
dt i =1

!aizi + ai+1 i 2 *1+.i>4

’sT" ai Z
+ f(x* ) ("T"" + “T------ . ; ....) z.

. i®

n-1 J2

+ fix' ) ("V""  ■ +

i=1

; Xs Xi +Xi+i f

a?+1 2aiai+i
Xi+1 Xf + Xf+i ) Zj^ V * n-1

(2.49)

By adding to and subtracting from Eq, 2.49 the quantity

[
n-1 n-1

fix' ) I ^ oL|Zj + ^ J iv.z

1=1 ’ 1=1
i+1 “ ro f(x,)

M n-1
^ 2VI ^ ^ 8jZj + z) I 1 =1/ 3, 5, . *. n-1

i=1 r*v -*

one obtains

dV
dt

n-1
- ^

i

±i r + o,.,z,., + \ —- fix’ )j
i+1 i+1 M n 

n-1 2

+ x' fix')

+ f (x° )
ai 2asa

'T7 + xrn:
Pi+1

i=1 i+1 n ai - oCs)

sf+i 2Q1014.1
+ fix'! > (”■/■■■■■■■ - 2

i=1 Xi+1 Xi + Xi+i a i+i ~ oC i+i* zi+i

i = 1, 3, 5, ... n-1 (2.50)

A set of stability equations may be obtained from Eq. 2.50 by setting its 

last two terms equal to zero, i.e.,

2 ; 2aiai+i 2 r
+ -—r.. v  „ - 2^-^f af = oC j I = 1, 3, 5, ... n-1

(2.51)

Xi Xi + Xf+i

and
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9f+t Y 2®ia?+l 

A i+i Xi + Xi+i
1 D ? t -5 /

C2052]

The followi simp!if led sfability erfterlon for systems expressed by 

the mod!fied canonic form of their differential equations {after performing 

the Esro=sh!fting procedureJ can be formulated from the stability equations 

developed In this section:

Theorem 2,2: A disturbed system, described by Eq. 2,32 and Eq. 2,33,

is asymptotically stable in the region of state space 

in which the inequality 

’ ■ ' x1 fix" ! > 0 f«0j » 0

is satisfied, provided that?

a) Re Xj 0 for all Aj

b) >0>6'-

c) The roots of a set of stabi11ty equations dj are 

realtor real corresponding . X-j’s and are in pairs 

of complex conjugates for corresponding complex 

conjugate pairs of \s9 s.

The function y* fix” I in the preceding theorem represents the 

characteristics of the non I Sneer element after the zero^shlf ting {l0e„, 

after rotation of the vertical axis of Fig. 2.S by the angle © 5. The 

stability equations that can be used in the above theorem are either 

Eq, 2.47 or Eqs, 2,51 and 2,52. In order to prove the above theorem it

wiiI be assumed that the conditions si through el of the theorem are 

satisfied by a system described by Eqs, 2,32 and 2.33. Then the V- 

fuacflob from which the particular set of stability equations was derived 

is a negative definite function. Conditions at through cl of the theorem 

also cause the time derivative of the V-function, from which the particular
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set of stability equations was derived, to be a positive definite function 

In the region of phase space pf the variable in which

X» fix' ) >0 o

Consequently, according to Theorem 1.1, the system is asymptotically stable

in the above region of the phase space,

The above theorem represents sufficient but not necessary conditions 

for asymptotic stabi11ty. Hence, it still may reject some systems that 

were previously rejected because the root-locus of ths system transfer 

function GIsJ enters the right-half of the s-plane for sufficiently large 

values of gain. The application of the zero-shifting technique and the 

associated simplified stability criterion (Theorem 2.2) 5s iI lustrated by 

means of an example.

Example 2,3s Consider a non 11 near system shown in Fig. 2,3 with

and the nonlinear element with saturation characteristic such that

(s+1 H-s+2J

fCx) < 2x| for all |x| >0 ; f(0) * 0 ,

This system Is unstable for high values of loop gain. However,

after performing the iero-shift?ng procedure, Eq. 2.31 gives

the new transfer function

€• «ss XMsI C_«s+1l Hs+2) + (s-1)■ 2 . .
S Cs-fl)(s+2)

or

«s - U) 1 Hs - UJ ■ i

Is+1)(s+2I

where



Hence, If the constant C2 satisfies the inequality 

Cz >0.5 ,

alI the poles and zeros of G(s) wi11 be confined to the left-half 

of the s-plane, and, consequently, a simplified stability criterion 

may be applfcable. This means that stability for this system could 

be estabIished by means of the simplified criteria only If the non

linear element gain (including the scale factor of the loop trans

fer function) does not exceed the value of 2, i,e.,

|f(x)|< |?x| ,

The modiffed canonic form for this system is obtained from Eqs. 2.32 

and. 2.33 as ■

' dz!
. • -g-p = - Z.j + f (X* )

76

2z2 + f(x?)

and

x» -■ 2z1 - 3z2 - r0 f(x«)

the stability equation (Eq, 2,47) yields the following rootss

■; T ■'
a1 * “ 2 + [<#o + 2 f o- Q^ ,2 + 6]2

■ l
a2 ^ + 4 \Po + 2 yrQ " 0.5* + [(4 + 2 \|ro - 0.5’ |2' + is]2 .

Consequently, this system is stable as long as rQ = Cz >0.5, or 

as long as the non I inear element characteristics satisfy the in- 

■ equality,

|f fix? | < |2x| .

Hence, this system is stable as long as the root-locus of its 

loop transfer function SCs) is confined to the left-half of the
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s-pTane. ' In general, however, a system need not be stable even 

If Its root-locus' Is confined to the left-half of the s-plane and 

an application of simplified stab!Iity criteria may Impose more 

severe restrictions on the equivalent loop gain.

The preceding example illustrates the fact that the zero-shifting 

technique and the associated simp!ified stab!Iity cr!terla represent power- 

ful tools for stability analysis. They may be used to prove the stability 

of systems with a single non!Snear gain element that are stable for Sow 

values of gain only. If a system is stable for some Intermediate values 

of equivalent loop gain and unstable for both low and high values of 

equivalent gain, it may be possible to prove stab!Iity by the application 

of both pole- and zero-shifting techniques. In such cases it is advanta

geous to apply the pole-shifting technique first, since the zero-shifting 

technique modifies the canonic form of system differential equations, and, 

consequently, the formulae used to perform the pole-shifting are no longer 

applIcable after the application of the zero-shifting technique. The 

simultaneous applIcation of both pole- and zero-shifting techniques is 

iI lustrated by the following example.

Example 2,4? Consider a non!inear system shown in Fig, 2,2 with

ts—1S
■f.S+1 S .

and the nonlShear gain element whose input-output characteristic 

.satisfies the inequality

j 0,5x j < | f IxS | §x| for all |x| >0, HOI * 0 .

The simplified stability criteria cannot be applied to this-system 

because-Sis) has a double pole. It is necessary to use the pole- 

shifting technique to separate this double pole. The zero of 

Sts) in the right-half of the s-plane indicates that a linearized
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system will be unstable for high values of gain, Thus* pole- 

shifting must be employed to limit the maximum equivalent non

linear element gain*

The nonlinear element characteristic applied to Eq, 2.23 yields

the maximum allowable value of 0.9 for the constant C . With thisP
value of Cp,Eq. 2,29 yields the nevy transfer function 

I s-1 S'0® (SI B- ".... ■■■■' ............ ..  • .. .
Cs+2,28)Is+0.22S

The maximum value of the constant I* r^S is obtained from 

Eq, 2,40 as 5.0. Hence the modified canonic form of the system 

differential equations is obtained from Eqs. 2,32 - 2.33 as

d?. "
■—- 2,25 Jz1 + f i x' )dt•. ' ,

d z0
a - 0.2: + fix' 1dt

and

X* w - 1.592*., + 0.592z2 - 5.000f(x' ) .

Applying the stability equations (Eq. 2.47) to the above canonic 

equations, one obtains

0.4380^ + 0.8000^82 + 4.470ar»p 1.592

and.
4,495a22 + 0.8008^02 + 4.47082 - 0.592 .

Simultaneous solution of these stabiIity equations yields 

a., * 0.400

and

&2 s 0.174 . ;

Consequently, according the Theorem 2.2, this system is globally 

asymptotically stable.'
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The preceding example illustrates how the stability of a system can 

be proved by utilizing both the pole- and zero-ShiftIng techniques*

2*6 Analysis by Means of the Second Canonic Form of System Differential

Equations

Much I ess at tention has been devoted in the literature to the second 

canonic form of system differential equations than to the first canonic 

form0 Letov ([sj, p. 101) points out that the second canonic form of 

system differential equations is useful in the stabiIity analysis of 

systems that contain multiple poles in their loop transfer function G(s), 

and also in systems which are "Inherently unstable", (i.e.^ in systems 

which are open-loop unstable since some of their open-loop poles lie in 

the right-half of the s-plane).

An answer to the question, what systems possess the second canonic 

form of their differential equations,could not be found in the literature. 

Hence, an attempt to establish the applicabiIity of the second canonic 

form to non!inear closed-loop systems is made in this section.

The second canonic form of differential equations for the disturbed 

system is

6z „

- li jZ|' + x '-*'1,.- 2, *.. m : (2*53).

dx
dt

m
jZj + cT*x - f(x) (2,54)

where | are the open-loop zeros of system transfer function, and 

<f are constants to be defined taster and

y - f(x)

represents the input-output characteristics of the non I inear element with 

x representing the Input and y the output of the nonlinear element.



Eq. 2.53 and Eq. 2.54 can fee rewritten in operational notation as

' = x j w 1, 2, ... m (2.55)
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and

Dx = 2 TjZf + <f x T. y
i=i

(2.56)

Solution of Eq. 2.55 for Zj and substitut ion int© Eq. 2.56 yields

P in • m ■ m ~i
(D - xf ) PI CD - LM .) - 2 ft j □ ID - O) t) x 

L |a-| J j*i I, j=1 J J

* - J1 (D.-'U) |Ty . (2,57)

If the operator D in Eq. 2.57 is replaced by the Laplace transform 

variable s, the transfer function Gts) of the linear portion of the loop 

for the system represented by the second canonic form of differential 

equations is obtained as

GCs) Xis)
Y(s)

mn <si=i W S>

(s -cTi
m

„n (s 5=1 UJ j)
mx | n (s 

«1 j=1
jj&l

UJ j)

(2.58)

Inspection of this transfer function (Eq. 2.58) reveals that the 

number of 5ts poles m is related to the number of zeros by the equality 

n « m + 1 . (2,59)

Eq, 2.59 represents a necessary condition for a closed-loop system 

with a single nonlinear element, shown in Fig, 2.2, to be transformable 

Into the second canonic form. This restriction to the applicability of 

the second canonic form of differential equations, imposed by Eq. 2.59 

limits the use of second canonic form in stability analysis to only a 

small fraction of single-loop, single nonlinear element feedback systems. 

In the case of linear systems, however, Eq. 2,59 indicates that the



second canonic form of system differential equations is applicable to 

those systems which will very likely be stable. It thus appears intui

tively that nonlinear systems which possess the second canonic form of 

differential equations are also very likely to be stable. This is why 

the discussion ©f the use of the second canonic form in the stability 

analysis of nonlinear systems is included in this report even though 

their applicability is limited to only a small number of control systems.

The constant <f in the second canonic form of system differential 

equations CS.e.* in Eq. 2.54) is obtained by equating the coefficient of 

the second~hlghest term of the denominator in Eq. 2.58 to the corre

spond! ng term of the denomi nator of the loop transfer function 6(s) of 

the system shown in Fig. 2.2. Thus
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m
C2.60I

where X s are the poles and UJs are the zeros of the loop ■ transfer

function ©Is).

In order to determine the remaining n-1 coefficients in the 

complementary part of the second canonic form of system differential 

equations* it is more convenient to introduce an auziIiary function H(s)*

defined as

Hts) A iS <f) 61 s) - 1
61s) <2.61 *

Si nee, however,

m
F! is -u)|)

■ 6 C S) at' ---- - . "12.62)n '
n I*" xi®
1=1

{where the scale factor of the loop transfer function 61s) is included in 

the characteristics of the non!inear element* ■ i.e.* in y * fix)* H(s) can



be expressed as

H (s)

m
is - cT ) | | (s j)

. . i*1

ts rW j)

Substitution of Eq. 2.58 into Eq, 2.61 yields

m
fl (s -U/f)
1=1 ' 1

(2.63)

(2.64)

or

11
(2.65)

Eq. 2.65 shows that the constants are the residues of the corresponding 

poles IaJj of H(s). Consequently, the partial fraction expansion of the 

reciprocal of Eq. 2,62 yields

V iw« - XJ’
Of*" 1 ® 1, 2,: ... ri 0. (2.66)

n «cus - u)|)
■j=i ■";

. jj£ j ■

Eqs.2.60 and 2.66 enabIe one to calculate the coefficients of the 

second canonic form of system differential equations from the poles and 

zeros of the system loop transfer function 6(s).' These equations also 

show that the restriction (Eq, 2,59) on the number of poles and zeros of 

loop transfer function ©Is) represent not only a necessary but also a 

sufficient condition for the equations of a closed-loop system of Fig. 2,2 

to be transformabte to the second canonic form> since alt the coefficients 

i <f~ and Y j') of the canonic equations can be found by means of Eq. 2.60 

and Eq. 2.66 as long as the system satisfies Eq. 2.59.
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The formulae relating the canonic variables Zj directly to the original 

system variables x and y and their time derivatives has been derived [l-SQ' 

as

(8 «■ cf*p ■*■ r^ix + Py •»*«*»»• |

1 , 1 .. . . (D - ef )x

w, ,W2 .... (D2 - cTp

Ul2
1 'W2 .... <p3 cTd2 r D - r.)x + 0 y eee* • 91 ' ; 2

1 o o © e o ooo • a o ooo © o © o 0090000000000900990000 «• obqoooooooe©

w* m 
2 
m

o oooo e.o oo o o © © <

to "f-’.w*-1

O o o ooo© 0 o a o o. © © ©, < > © o o ©oo © oo o o© ©o o 9 <

. (Dk+1 Dk“JVj) X + Dky CJ

Z S 35
1 , 1 OOOO o . 1

LU 1 CM

3 
,

■' 
O
k b oo o o

U)2 
■ v >2 0 9 0 0 0 ^

• ,.Mi*.i ! ■'i.n..b......, m ; ..........in. ....... .....11 1 " 'i"MH..........
p ' 'O O O O © O O O O O O © O O' © O •©'. O' 0 0 0 0 0 0 9 0 0 0 O O © © *1

/ 0 0 0.^0 0 O oooo o o o o © o o oooo © o o o o o o o o o

p o o o o o o i > o o o d o o o o o o oooo o o e o o o o o o

O o 0 O 0 O O O I

OOO 0000900 O O 0.0 O I

.0:0' o "O '©■ 0 © O O © j

>'.00099.01

uT', m-1 , m=10, 0 9 U/ 2 / 9 « OOOO OOO O f» o o o o <

>000 0 0 0 0 94

>..«'• e • o o • b s

(2,67»

where the constants rj are defined as

To =J
m M2 <4 ?. j = 1, 2,

The denominator of the above equation contains the Vandermonde de-term.!* 

nant which can be written as

JCU* Utj)J1 < j <r<m.

From Eq. 2.66 one can easily see that the constants are 

zero Sf and on Iy I f

LU | = UJj f,-j ■* 1, 2, ...m .

(2.63i

equal to

12.69}
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Likewise, the above equation represents the necessary and sufficient condi ■= 

tions, for the Vandemonde determinant IEq» 2,68J to he equal to zero,, These 

results can then be summarized in the following theorem.

Theorem 2,3s A single loop, single non 11 near element system can be 

described by the second canonic form of differential 

equations if and only if the following conditions holds 

aS all the zeros GMj of the transfer function 6(f) 

of the linear portion of the loop are simple; 

b> the number of poles n of <5(s) Is greater by one 

than the number of its zeros n, i.e., if 

nm + 1,

The second canonic transformation can be completed by means of 

Eq0 2,60 and Eq. 2,66 without the need to compute the canonic variables 

Z| from Eq, 2,67. In systems that are locally and not globally stable 

Eq, 2,67 may be substituted into the Liapunov's function to find the region 

of stability in the phase space of the variable x.

The procedure of transforming the mathematical description of a 

system of Fig, 2,2 from the loop transfer function SfsJ into the second 

canonic form of system differential equations is illustrated by the 

following example.

Example 2,5s Consider the system of Fig, 2.2 with the loop transfer

function

6(s) Cs+1_Hs+2Hs+3}__ 
s^ls+1+jl Hs+1-j1 J °

The poles and zeros of this transfer function ares 
X n = X g 82 0 ,

^ 2 s » 1 = ji ^



05

X 4 = - 1 + ji » 

co 1 = - i ,

lo2 - -2 ,

and . ■ .

C03 = - 3 .

From Eq. 2,60 one finds 

' cT = + 4 .

From Eq. 2,66 one obtains 

)("| ®. “ 0,5 ,

^2 “ + 8#0 >

and

~ 22.§

Hence, t he second canonic form of dIfferen11 a I equatIons for this 

system is ■

■ 'dz,T 
dt

d z~

- - Z, + X ,

“dF = - 2z2 + x ,

dz3 
d t = - 3z3 + x >

. and ■

— » *r Q.5z, "-f 8,0ZO — 22.5Z, + 4* - f Cxi » dt \ s

Simplified stability criteria of Section 2,6 can now be applied 

to the above equat i ons tp i nvest I gate the stab 11ity of thi s system 

-It-should be noted that the number of equations in the principal part 

of the second canonic form ?Eq,2>53) [s one less than the order of the 

system which those equations represent. Consequently, the complementary
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part of the second canonic form (Eq. 2.54) is an independent equation in 

the set of n independent canonic equations. This means that the variable 

x Ss also an independent variable and must be used in stabiIity analysis 

by means of Liapunov0s functions in connection with the second canonic 

form of system differential equations.

Letov pp. 192-195) considers the following Liapunov's function

which yields useful simplified stabi11ty .criteria' in connection with the 

second canonic form of system differential equations*

ai ai 21 zi
W . + 0Ui j

As z. C1?s+1zs+2 C3zs+3zs+4 Cm-s-1zm-1zm (2.70)

where A, B, C and a^, aj, ag are real constants, and ag+^, as+2' am 

are complex constants appearing in pairs of conjugates. This V-function 

is negative definite for positive values of the constants A, B and C and 

for COf's with negative real parts only. The time derivative of Eq. 2*70 

Ss, according to Eq. 2.53

dV m m
= +

■1. j-1
ajaj2|Zj + 2x

m

i-1

m as
<f- tU| + 0(js 
j-T * J

- ^ <"|A|*|2
11^1 ...

^ j z j + cf x

^S+1 + ^ s+25zs+1zs+2 C e , (CU . + U) )z ,zm-1 n m-1 m

m
x ,2 As^ kizS “ K [C1zs+1z%|2 + + WiV

Adding and subtracting the quantity

1zm J (2.71)

+ 2x
m

l«1 aS2f
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and subst!tuting

m m m
2 2 °!”jz!zj ’ * -2
i=1 , j=1 i=1;

Into Eq. 2,71 changes the time derivative of the Liapunov's function 

CEq„ 2,701 to

* (J> a3 zs + x)2(cfB2 + 1)x2 + B2x f ix)
'i»T 8 8 '

S
" 2 tU|A|Z52 + c, ILOg^f +Ws+2,|s+1zs+2 + ’**
.; 1*1

s r
+ C.m~s=1 m~1 _) z_ , z_ + x m i m

i=1

m

; <zl uu, +
j*1 8 J

- b2 i+, - 2ai+5 (2.72)

The V-funetion (Eq, 2.70) ywi11 be negative definite even if the terms 

containing the constants A| and are omitted. Its time derivative.

however, could only be posifive semldefInite without the terms containing 

Aj and |*f the constants'Aj and G21 are chosen as sufficiently 

smal l posi tive numbers, they wi11 not affect the roots of the stabiIity 

equations. Hence, If the stability equation is chosen as

J-1

a8 aj
Wt + UJj 1 2 $ oee | (2o73)

Edo 2072 becomes

m
H *.«]> ajjtj.)2 + B2x..(fCx)Vcfx) . (2.74)

i=1 -

Consequently, the system is asymptotically stable in the region in which 

x(ffx) -cT x) >0 for a! I jx| >0 ; f SO) = 0 - (2,75)

is satisfied, provided that;



a 8 UJjj and ^j are real for 1 ^ f ^ s ;

UJ | and ^ appear in pairs of complex conjugates for s<is^m ; 

bl Re CU| < o for i =1, 2, ... m ;

c) The roofs of Eq« 2.73, a^, a2, ... ag are real and ag+1, 

as+2/> *°* % are Pa*rs °* complex conjugates.

Furthermore, if the stability equation is chosen as 

m ea«
2 1> uTi W. ' B Tj - 2»| ° 0 , (2.761

j.l 1 J

then, from Eq. 2.72 one obtains

H ■»-Ift Si?} + x)2 + xjx « cTb2x + i2f(x)] . (2.77)

Consequently, the system is asymptotically stable in the region in which 

the following inequality holds;
x(x •= </i2x '+ B2 fix! I >0 for al 1 |x| >0; f(0) « 0 (2.78)

provided the following conditions are satisfied;

a) UJ 5 and )f j are real for 1 ^ i ^ s ;

^ I and X| appear In pairs of complex conjugates for s < i ^ m

b) Re UJj < 0 for S = 1, 2, ... m ; .

cl The roots of Eq. 2.76, a^, a2, ... ag are real and ag+.j,

®s+2* ••• ®m are pairs of complex conjugates.

It is also possible to establish asymptotic stability by letting

A| s - B' $| (2.79)

for all negative XjBs, so that the correspond!ng roots aj are zero.

This choice decreases the number of simultaneous stability equations 

whose'solution yields the sufficient stability conditions mentioned above 

It may be observed that both simplified stability criteria restrict

the minimum values of the equivalent gain of non I inear element, as

Illustrated in Flg.« 2*9*.
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Limf ts on System Stab!!Ity

Crfter|a of the Second Canonic Form



The angle © of clockwise rotation of the input axis of the nonlinear

element characteristic plane, which determines the minimum value of non

linear element equivalent gain, is

©.w arctan cf , {2.80)

if Eq. 2.73 is used as simp Iffied stabi15ty criterion, or

© n arctan ( <J~B2 ~ 1)
{2.81)

Sf Eq* 2.76 is used as simplified stabiSity criterion. Obvious!y, there 

are many Stable systems that violate the restrictions of Eq. '2.80 and 

2.81, a further limitation of the applicabiIity of the second canonic 

form In stabiIify ana lysis. It is possible to avoid these difficulties 

and extend the applicabiIity of the simplified stability criterion to 

many mpre systems that are either rejected by or not applicable to the 

simplified stabiSity criteria based on the second canonic form by the use 

of the zero-sh?fting technique proposed in Section 2.5. The only justi

fication for presenting the second canonic form and the simplified 

stability criteria associated with thp second canonic form is the possi

bility that in a few systems the simplified stabiIfty.criteria of this

sectioh may yield useful stabiIity information that is not obtainable 

from other slmplSfied stabi I i ty cri teria. This possibility must be 

considered in view of the fact that:none of the known simplified sta

bi I i t-y xri teria for systems with a single gain nonlinearity represent 

necessary conditions for stability. It is, however, very unlikely that 

the approach of the stability analysis presented in this section would 

yield stability information which is not obtainable from the pole- and 

zero-shifting techniques of Section 2,4 and Section 2.5.
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CHAPTER JII

METHODS OF CONSTRUCTING LIAPUNOVS FUNCTIONS

3,1 Introduction

There is no generally applicable, straightforward procedure of con

struct i ng Liapunov's functions for autonomous nonlinear systems. All the 

known techniques of finding Liapunov's functions for different types of 

nonlinear control systems are similar to the procedure of finding Liapunov's 

functions for linear autonomous systems. All these techniques involve the 

use of a quadratic form as part of the Liapunov's function. Hence, the 

success in findlng a suitable Liapunov's function for a given nonlinear 

system depends not only upon one's intuition and experience, but also 

upon thorough knowledge of the methods of finding Liapunov's functions 

for linear autonomous systems,.

The basic difficulty limiting the application of the "second method" 

in nonlinear system analysis at the present time is the lack of theorems 

to determine the definiteness Cw?th respect to sign) of higher order forms 

U.e., the lack of theorems, simitar to Sylvester's Theorem, for higher 

order forms).

One of the best known procedures of constructing Liapunov's functions 

has been presented in Chapter II, In cases where canonic transformations 

either are not applicable or faiI to prove stabi11ty, one may try several 

other known techniques of constructing Liapunov's functions. Some of 

these procedures may also be advantageous in higher order systems in 

which solution of the stability equations of Chapter II may become d1ffi- 

cult and time consuming.

Several other better known methods of finding Liapunov's functions 

for autonomous nonlinear systems will be presented in this chapter.



These methods ere:

The method of Alderman 

The method of PIf ss

Krasovski's Theorem 

Pseudo^Ganpnlc forms (Purdue)

3.2 StabiIIty of Linear Autonomous Systems

The Routh-Hurwitz criterion provides an easy and eonvenient way of 

proving stab!Ifty orinstabiIity of linear autonomous systems, Liapunov's 

Second Method in turn can be used to prove the Routh=>Hurwi tz cri terion £11] 

While the "Second Method" offers no advantages over Routh-Hurwitz in the

stabiIity analysis of a particular linear system, there are several reasons 

for studing the method of constructing Liapunov's functions for linear

systems. These ares

a) An infinite number of suitable Liapunov's functions can a Iways 

be found for a linear autonomous system.

b) Liapunov's functions provide a convenient method of computing 

the "intergral of error" type performance indices for linear 

autonomous systems.

cl Liapunov's functions for linear systems can frequent Iy be used 

to investigate stabi(ity of non I inear autonomous systems.

d) In the case ofstructure I Iy stable non I inear autonomous systems, 

local stabiIity or instabiIity can always be proved by means of 

L?apunov's functions for linear autonomous systems,

e) The few known methods of constructing Liapunov's functions for 

nonlinear autonomous Systems depend upon the knowledge of 

Liapunov's functions for linear autonomous systems.
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A possible procedure for constructing Liapunov's function for linear

autonomous systems Is shown in Fig, 3,1, This procedure of constructing

Liapunov's functions for linear autonomous systems is by no means the

most convenient one, It reveals, however, that any quadratic form

fix,* ... x 1 of the state variables x.,, ... x will yield the function i n I n
W(X , ... X I * ■—1 n dr

which is also a quadratic form of the state variables x^» ... xR> as long 

as the system is described by a set of linear autonomous differential 

equations. Hence, there is no need to solve the differential equations 

of the system In order to find a suitable Liapunov's function for a 

linear autonomous system. Liapunov has shown J/3] that the fol lowing pro

cedure can always be used to construct a Liapunov's function for linear 

autonomous systems?

a) Assume a general quadratic form, defined as
n ■ n

Vlx^ O O O XR 5 5 “ijVj - °ij -■ °jt (3.1)
i j=1 ■ v \ './•

for the V-function of the state variables x,, ... x .1 n
bi Pifferentiate this V-function with respect to time f, i.e,, find

c

dv 3 v dxi
^> 3 x. dt
i*i 1

(3.21

dX|
Substitute the system differential equations for--j— in Eq, 3.2. 

One may recall that the system is described by a set of first

order differentia! equations

x. « X. <x x I i » 1. 2, ... n . (3.3)'

In the ease of linear autonomous systems, these equations are

of the form

j“1
1 r 2, .«> n (3.4)



Figure 3.1

A Possible Procedure for Constructing

Liapunov's Functions for Linear Autonomous Systems

Constrain the co
efficients of the 
matrix A to make the 
matrix B negative 
definite

Substitute the 
solutions into V 
i.e., find V(tr

Solve system 
differential equa
tions, i.e., final 
x xC t)

dlfferentiation

Substitute again 
the solutipns 
x * x?t) into WCti 
to find W> x'Bx



dl Substf totlion of Eq. 3.4 Into Eq. 3.2 yields another .quadratic

form of the state variables x„, ... xi n

■ hv/ ■ n3t> WCV V 2 2 bif iXi ; bi|' bjl * (?‘5,
' IpT j=1

el Constraining now the quadratic form Wfx,., ... x ) to be positiveI n
definite tor negative definite) wi 11^. in the case of either un

stable or asymptotically stable systems, yield the coefficients 

ajj of Eq. 3.1. such that Eq. 3.1 and Eq, 3.5 wi11 satisfy either 

the instability or the stabiIity theorems. In the caseof stable 

but not asymptotically stable systems, the above procedure wi11

yield a definite V-function, and the corresponding time deriva-
’ dV ■ -tive^will be Identically equal to zero.

The positive definiteness of V tor W) can be proved by means of 

Sylvester's Theorem.

Example 3.1s -

Consider the linear system, shown in Fig. 3.2. A d?fferential 

equation describing this system is 

c + ac + be = ke « - kc .

Let the state variables be 

c = x1 , 

c * x2 .

Then •
oX as ¥ ■ ■ ■

. *1 X2

and

x« « - ax2 - tk+blx^ . .

From Eq. 3.1 one can write

V s ai1+ 2ai2x1x2 + a22x2^ *

95
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s2 4- as 4- b

Figure 3.2

Linear Second Order System of Example 3.1
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The .differentiation and substitut ion of Xj's yields

|j * W = [= 2a12<b+k)] + [28^ ■» 2al2e — 2a22(b+k) ] x^x2

[2a12 2a22aJX2

Constrain Eq. 3.5 to be

dV 2 2
dt = xr ♦ x2

This gives

fe11 = 1

bi2>®

-2al2(b+k) * 1

or 2a 11 2a12a— 2a22<b+k) * 0

''22 1 2al2 " 2a22a *■ 1

Thus the coefficients of the Liapunov's function (Eq. 3*1) are 

■ 1
12

22

2(b+k)

1+b+k
2Cb+k)a ■ ■

; 1+b+k .
al1 "■ 2(b+k) " 2a » ■ ;; :

Hence, from Sylvester's Theorem, the system is asymptotical|y stable 

f and only if the fpllowingholdss 

. 1+b+k

bS
['

___ a
2a -+ 2Sb+k)

1+b+k .

> 0

1+b+k
2a 21b+k)J L2a(b+k)

The preceding two inequalities can be simplified to yield conditions 

for asymptotic stability identical to those of Routh-Hurwitz.

In general, to find a Liapunov's function for an autonomous linear 

system, one wf11 have to solve

n +(h-1 S + (n<=2) + ... + 2 + 1

inear algebraic equations for the constants ajj of the Liapunov's function
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3.3 Performance Indices — 'A’Method of Their Computation

The procedure of constructing Liapunov" s functions for linear autono

mous systems offers a convenient method of computing the "'integral of 

error" type performance indices. For this purpose consider again Eqs. 3.1 

and 3.5.

Integrating Eq. 3.5 with respect to time, t, one obtains
l

VCxr ... xn).-Vtx10> ... Xn0» J W(x , ...;'x.)dt (3.6)

where x^0 represents the initial values of the state variables Xj (at time

t - os.
As the time t—the above equation becomes

VCx 10'
CD

... *_«)•- lim VCx^ ... xn) -m-f -WCx,, ... xR)dtn0 t- '-$>00

Since, however, for asymptotically stable systems

•.lira 'Xi * 0 1 .* 1, 2, ... n
t—»<D

and '
< v«0, ... O) = 0 ,

Eq. 3.7 becomes

n
(3.7)

(3.8)

(3.9)

VCx10' o © o x , ... x )dt o 1 n (3.10)

If the state variables x^ represent system error and its n-1 time 

derivatives, and If W’(Eq. 3.51 Is a positive definite quadratic form, 

then Eq. 3.10 Is an integral of error type performance index for the

system, i.e..

= f W«e, e, ...Idt . 
Jo ■

PI (3.11)
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In general, then, the limit as time t—>od of any Liapunov's function 

that has a negative definite or negative semidefinite time derivative can 

be used as an index of performance for the system.

Example 3.2s

Computation of the performance index PI » f e^dt .
''o

Consider a unity feedback system (linear) with

Sts) w .■s(s+a)

■ Let

R( S) 1
s

or
r(t) ■ 1 for t> 0

rtt) = 0 for t < 0 ,

Then one may write
• • 9 '• .e + ac s ke ;

and

e■ 1c (t > o)

e -f ae + ke = 0 «

Let

x2 = e .

Then the system equations become
9

Consider a general quadratic form 

V = a^x^ + 2al2X^X2 + Q22*2
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This quadratic form yields, in connection with the system equations,

dV 2 2
dt“ * = (-2k»12lX| + <2at1- 2a<,)2 . Ska^lx^j + «»12-2m22I«2

Constrain W to be

u., 22W a . X .*» e »

This constraint yields the coefficients of the quadratic form V 

-»2ka12 1

2a^ ^ ^ 2aa^ 2 pa 2ka22 * ®

2a^2 2aa22 *■ 0 ■

or

ss o —»12 2k-

1
. *22 * "■ 2ka

a ' = k-ta^ 
11 2ka

Hence*

V k+a2 2 1 1 2
2ka *1 “ ¥ *1*2 " 2ka *2

The Initial values of jc<j and x2 can be found from the system

transfer function

El si Rfst s2 .+ as 
...... . ■ ..g ' 1—I1 + Glsl sis ' + as + k)

elol Mm ..jft t a«,
2s—»® s + as + k

P

L.i kewi se.

el ol 1 tm
s-_»®

=sk ■ 0
+ as +' k



101

Hence,

x.j < o S = 1 ,

X (o ® 0 .

Then, from Eq. 3.10 and Eq. 3.11 the performance index is

PI = J" e2dt = f x^2dt s - Vfx1(oi,x2(o) ) 
o o

or

PI
2k 4- az 

2ka

The preceding discussion also suggests a convenient and simple proce

dure for calculating the numerical values of the integral of error type

performance indices. At I one has to do is to find Vtx., ... x ) corre-i n
spending to the particular W-function of Eq, 3.11 by the procedure out

lined in Section 3.2 of this chapter, and then substitute the initial

values for Xg(o|.

In the case of time-weighted integral of error performance index

PI e, e, ... )dt (3.12)

one can assume a V-functSon of the type

V * V^fe, e, ... ) + tV2(e, e, ... ) , (3,13)

where both and V2 are positive definite or positive semidefinite quad

ratic forms of the error variable e and its n-1 time derivatives, and use 

exactly the same procedure as before to compute the numerical values of 

the performance index PI (Eq. 3.12).

3.4 Aizerman8s Method

Aizerman [7] proposed a procedure of constructing Liapunov's functions 

for nonlinear autonomous systems which is very similar to the procedure
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of construction of Liapunov" s functions for linear autonomous systems.

Basically, the method consists of approximating the nonlinear elements of

an actual system by straight line character?stics, then finding a Liapunov" s

function for the resulting linear system of differential equations. The V-

function obtained in this way is then applied to the actual {nonlinear) sys-
dVtern and the resulting time derivative ■jjjr gives a range of deviation of the 

nonlinear element characteristic from the straight line over which stability 

Cor instabMity* as the case may be) pan be proved by the particular quad" 

ratio V-form '(I'.e,, by the V-function obtained from the straight line 

approximation),,

, Example 3,3s

As an example of Aizerman" s Method consider the system shown in 

Fig, 3,3, In the absence of input {r{t) = Q for t > o) this 

system can be described by the equations?

V+ 2x .r y ~ 0 

y- = fCx.) , ■

A possible set of state variables is

x „

Then the differential equations for this system become

*2 2X2 fix,) 1

A straight-line approximation of the non I inear element character

istic Is shown in Fig, 3,4, This approximation is expressed 

raathematica11y as

y * f Cx^) ^ 2x •, -
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Figure 3.3 ■

Bloels Diagram of the Nor! 1 Rear System of Example 3.3,
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FIfure 3.4

Input-Outpyt Characteristics of the 
Nonlinear Element of Example 3.3#
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Then

X1 = X2

*2 = “ 2x2 “ 2X1 *

The V-function for this linearized system is a general quadratic 

form
2 2 = a11x1 + 2a12x1x2'+ a22x2 „

This yields

qy ■ 2 2
•— *' W(x|X2) s C^a^x-j + 82a^ — 4a^ - 4822 *xi *2 + *2®12 ” 4a22*x2

Constrain W to be
2 2 W = + x2

Then

or

“4al2 “ 11

2aT2 “ 4a22 *

2®i1 “ 4an2 " 4a22 “ 0

12

0 as
22

a11 4

Thus ¥ is a negative definite quadratic form

. 5 2 1 3 2
1*K2J “ “ 4 *t “ 2 k1k2 ~ 8 X2

this V«=functfon to the actual CnonfinearS system differ- 

ential equation one finds 

dV
d'f ~ wlxix2

,1 ' ' . 2 . „3 f ?X15 3. . 2
"2 x, ,X1 + 4 x., : " 2 X1 x2 + X2 . *
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Applying the Sylvester Theorem to this W-function, one finds a 

set of sufficient conditions for global asymptotic stabilitys

or >0

and

f f x, S
0.612 < < 6„95 „

These restrictions on the characteristic of the nonlinearity 

are shown in Fig. :3-.4.

The advantages of Aizerman®s Method ares 

1 „ Its simp!ieity.

2. Its applicabi I i ty to systems with more than one nonlinear 

elemento

30 It can be used to justify approximation of a s11ghtly non- 

linear system by S inear di fferentia! equations f i * © 0 it puts 

bounds on the non! inea'ri ty to assure that, at least stability 

wise, the system does not differ appreciably from Sts linear 

mathematical model.).,,

The disadvantages of this method ares

1, It is appIicable on5y if the ?npuf~output characteristics of 

the nonlinear elements do not deviate tqo far from a straight 

line ii0e„, the system may be ©n8y siightly non Iinear).

2# If the system contains dSfferentSation fzeros in the transfer 

function of the linear part of the system), the method puts 

rather comp I Seated restrict ions on non I inear element charac= 

teristics in terms of y, , etc0

It is important to note that a system may not be globally stable 

even if its linearized model Cy.= kx) is.stable for all values of the



equivalent linear gain k. Stability cannot be assumed for granted but 

must be proved even If the nonlinear element Input-output characteristic 

is confined to a narrow region of the x-y plane, as in Fig. 3,4.

The following two rules are helpful in applying Aizerman*s Method? 

ai The straight-line approximation y = kx shall be selected in 

such a way that the input-output characteristic of the non

linear element deviates from this straight Iine by an equal

angular distance in both directions. 
dVb) The W-functlon 1= should preferably be constrained to 

a Euclidian Norm, i.e.,

... fl|.x12 .

V;
This will, in most cases, yield the widest (least severe! 

restrictions on the input-output characteristic of the non

linear' element,.
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3.5 Krasovski® s Theorem

Consider an autonomous nonlinear system described by the equations

i w 1, 2, ... n 13.14)XI ® X| ( X^ , . . • xJn

where the right-hand sides Xj are continuous and differentiable functions

in the entire state space - <x><, X|<co and the equi I ibrium state is at

the origin of the state space coordinates.
XLet us designate by the Jacobian matrix of the function X , i.e.. 1

^ *

V1
1 .8

OoOOOOOOOOOOOOOO

90000000 0 0000000

<3.15)

‘n
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Theorem 3,1; IXk In order that the system (Eq, 3,14) 

asymptotically stable, it is sufficient 

exist a positive symmetric matrix

a 11 a1n

* « o * eoeoeooeee

e» - oo ee Q____nl nn

be gIobaIS y 

that there

J3.16)

with positive eigenvalues and such that the symmetric 

matrix of the products 

1
I

has the eigenvalues Xjlx^, xn) which satisfy the inequal
i ty '

< k2 i =1, 2, n , (3,18)

<A <9 x Ik
«A

ki.
(3,17)

where k is a reaI constant®

In order to apply the above theorem to practical systems to

fjnd the positive matrix A?^ one may observe that the conditions of the 

theorem are satisfied by a positive definite quadratic form*

• n n
. v - 2 AijXiXj ' Ai j s Ajj <3.19)

i=1 j=i

of the functions X., oco X_ (not the state variables x.., x S) whoseB uo ■ | Fa
time derivative

In English literature CKalman <Cunningham [20]) St has been stated 
that the Liapunov function resulting from Krasovski1 s Theorem will be the 
square of Euclidian Norm,

V = o

This, however, represents only a special case of Krasovski's original 
theorem and severely limits its applicability. This special case is in
cluded in the more general Liapunov's function of Eq, 3.19, See Appendix B)



Is a negative definite function of the functions X., X for all real• n

where the coefficients By are not constant but rather are functions of 

the state variables Xj. Hence* the procedure of applying Krasovski's 

Theorem is to assume a general quadratic form (Eq» 3,19), find its time 

derivative W* and then (if possible? constrain this time derivative W 

iq. 3,215 to be a negative deftnlte quadratic form in X^, ,,, X^ for all 

real values of the state variables x^,xR#

Example 3.4 s \ '

Consider again the system of Example 3,3 (Aizerman's Method),

The dIfferentiaI equations for this system were found to be

values of the state variables x^, x■ 1 . i
be of the form

The time derivative |j“ will

1 j*1

x 1 *X1Cx1,x2l = x.2

0

let

Differentiating the above equatI on with respect to time t and 

then substituting the differential equations describing the

system one finds

W • (=2 A 1X^2 + I2A12 » 4A22)X22

Constraining W to be
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one f f nds

“2A12 “ 2

2A12 ~ 4A22 *

4A12 3
2

A11 4

A s —
■ '' 22 . 8

A „-1v :
■ 12 ;.v.

Sylvester® s Theorem shows that wi th these values of Ay the 

V-funetion is positive definite. Likewise, is negative defi- 

ni te i f ■

’ df(x.) ■
^ . 0.573 <

This inequality represents the sufficient (but not necessary) 

conditions for global asymptotic stability of the system of this 

example.

Krasovski's Theorem enjoys the same advantages and disadvantages as 

the Aizerman®s Method. It is possible, however, that a system which fails 

to meet Aizerman's test may be proved to be globally asymptotically stable 

by means of Krasovski's Theorem, and vice versa.

3.6 The Work of Pliss

p i i ss [21] considered non I inear autonomous systems with a single non-* 

linear element described by the set of differential equations

. n ■
Xj * bjjxk + hjf «T ) j » 1> 2, ... n (3.22)
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n
<T * *5" a.x. <3.231

J J
j“1

where a, b and h are constants and the non!inear element is defined by 

the functions! relationship

f<0) = 0 ; rilfX c2«r2 . <3.24)

To construct a Liapunov's function for this system, Pliss first 

analyzes the linearized system, described by the set of linear differential 

equations
n

x. = ^>' bj.x. + h.c<r j * 1, 2, ... n <3.25)
J J' ! J

n
<T” = a jx | . <3.26)

: J=1

He then shows that the linearized system may be stable for all 

values of c in the interval

. C1 ^ C < e2

and yet the nonlinear system <Eqs. 3.21 and 3.22) may not be globally 

stable. ■

To find sufficient conditions for global asymptotic stability of 

the non!Snear system <Eqs. 3.21 and 3.22) Pliss uses as the Liapunov's 

function

Vs 2 2 2 PijVj + 2 cr v <3.278
. ■ " 1=1 . j*1

By means of this Liapunov's function he arrives at the following results? 

The system (Eqs, 3.21 and 3.228 is globally asymptotically stable if 

a) for all c = c„ -t £ and c = c_6 , where € is an arbitrary

smal l real constant, the I inear{zed system <Eqs. 3.25 and 3.26) 

is asymptoticaliy stable
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b) real numbers

and f>j = 1, 2/ n

exist such that the quadratic form

n n
.oo x^) » r-|jX|xj (3.28)

i=1 >1 .

is either positive definite or negative definite, where the

coefficients r.. are calculated from the equation ’ J

r ij
n

k«*1
*ik^kj

n
2 mkjl?kj 
k=1

+ c,aj S'S'i'N+ °i J[ "VjV
■ k«i-' ■ k»iv

*C^|!J * Vkj
. k=i. ,\,r : k«l

2■ c .Bp a * J
n
2
k»l

w C>l ^ c ^ Gg • f 3#29)

The principal disadvantage of thIs result is its complexity* It is 

felt that the same results could he achieved in a simpler manner by means 

of po!@^ and zero^shlfting in connection with the first canonic trans

formation (see Chapter IX}*

3*7 Pseudo^Ganonic Transformation
-ia.^.4-^. WnM,r. n |. .... ■||.,1.T .n.rtnvi'iii'i I, ■I.lr.;rr. i Lr. .i......, i ,i i ir    / ml-

The basic advantage of the first canonic transformation and the 

assocI ated Liapunov* s fonet? ons (Chapter IIS is the simp I? city of restric- 

tions which these Liapunov- s functions place upon the input^-output charac= 

terlstie of the non!inearlty for global asymptotic stabiIity. Among the 

disadvantages of the first canonic form and the associated simplified 

stabiISty criter I a were the necessity to deal with complex variables and
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the need to solve nonlinear stability equations wl thoqt an a priori knowl- 

edge that these long and tedious computations wiI I yield useful results.

In order to retain the advantages of the canonic transformations and 

at the same time eliminate some, if not all, of its disadvantages, a 

pseudo-canonic transformation was developed at Purdue.

Consider the feedback system shown in Fig. 2.2 with a nonlinear 

element whose character!Stic is confined to the first and third quadrants 

of the input-output plane (Fig. 2.55o Removing the input rIt) at time 

t = © one may write

■ [^1 (s — W |)

Gfsl s,G !sl G0ls5 -s» -.... - ■>—'——<—-
H (s-X.)

s=i 6

m < n . (3.305

Expansion of the above transfer function into quadratic factors 

yields

2
6(sS X(s5.

YCs)
kj® + Bj 5 (3.315

2, „ (s + a. s + b. 5 !=1 ! 1

Defining the canonic variables as

YSs)V * - 1 = 1, 3, 5, ... n-1 (3.32)
s + a. s + b.i f

one wiII obtain the following set of differential equations describing 

the systems

zV= - a.i. = b.z. + yi it rt

y = f(x5 " . i = 1, 3, 5, ... n-1 (3.33)

n-1
x - - A|Z| + BjZ|

1=1

or
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zl*1 * -.Vt+i;- blzi + r

y = f(x)

n-1 ■
** *:2 Vitt * B'2i

. 8»1 .

x * 2 CAjaj - + AjbjZj « A}y ^
■. 5*1.

Thispseudo-canoni ^transformation can also be interpreted on the 

block diagram of the system as shown in pig. 3.5.

3,8 Construction of Liapunov's Functions Eased on Pseudo-Canonic Transformation!

Consider as a possible Liapunov's function, the general quadratic form 

n n ‘ :
¥ CijZiZj cij “ cji * (3.35)

■ v--jiii.

Differentiating Iq, 3.35 wi th respeci to time# t# and substituting 

the pseudo-canonic equations (3.34) one gets 4r of the form

n n
dt

dv
dt

ij»r
dij2izj* 5.V' dij • djt (3.36)

i=1

where

dij = dijsV V cijJ

®i s etCar bp cijJ

d¥Constrain (Eg. 3,36) such that

5 eili ■ * • |3-371
Js1 ■■

Then Eg, 3.36 becomes
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FI gore 3.9

Block Diagram Interpretation of the Pseudo^ 

Canonic Form of System Differential Equations



>
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where

dV
dt

n n

1=1 j*i
fjjZjZj + x fix) 9 j | 13»38)

91 j * 91 j I ® j y t> 11' C j j / A j, B j l •

If If Is then possible to constrain the f unct I on W to be positive semi*-

def ini te,. i »e,, ; " •

W|z., ... zn)> g, .ZjZ ,> 0 . 13.39)
n ?»T j*T J J

Then, according to Liapunov1 s Theorems, the system is globally asymp 

totleatfy stable if V is negative definite, |.e,, if

Viz. zR)< 0 for z. > 0 ; V(o) = 0

and is unstable if V Is not negative definite.

'€xample/3.b't-

Consider the non Iinear system shown in Fig. 2,2 wi th 

Si s) * (S) Ggis) =
*■ + S '■

and the nonlinear element having input-outputcharacteristic 

of Fig. 2.5 . From Eq. 3.34 one obtains
'r a

■■■ 21 = Z2 '■■■■

Z2 z2 ;+ T ' ■ ■

y * fix) ■

■ x,.-= tz'j ■+;5z1) v..

The Liapunov®s function is, from Eq, 3.35,

V. ■ 'll2/ + Scl2V2 * C22Z2J •
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Differentiating and substttuffng Eq. 3.34 one finds

dV
at' ,2cn 2'l2!ZlZ2 + l2C12 2C22IZ2 +/*2c12Z1 + 2C22Z2 *

Application of the constraint (Eq., 3.37) yields

2c22

2C12 * B ,

and

dV 2— * I2cu + B)*|Z2 + <- B + 1)z2 + xy .

dVIn order .to make -gy positive semidefinite. let

' - 2cT1 B i ■■ B < 1 . '■

Then -
V« - O.SBz^2 - ~ 0*5z22

■■and

dV -■■■■■' 2■ =. (i - b)z2z f xy

Consequently, the system is globally asymptotically stable If 

0 ^ B ^1 and globally unstable If B < 0 . More Information 

about the characteristics of the non 11 nearity Is necessary to 

predict global qtabiISty or instabiIity for values of B> 1.

It is interesting to note that, at least for this example, 

exactly the same stabi11fy information Is obtained from the 

.'■■'.■.■•"/.'first canonic transformation (Chapter ID.

The preceding examp!e ilIustrates the simp Iiclty of construction 

of Liapunov's functions for pseudo-canonfc systems of differential 

equations. At the same time, the need for stronger restrictions on the 

non I inear element characteristic becomes apparent since the particular 

Liapunov's function (Eq. 3.351 would reject many stable systems. For ex

ample. stable linear systems fy a kx. k> 0) would be rejected if B> 1.
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........To increase the applicabi!Ity of the method, consider another pos

sible Liapunov's function

n n

=1 J*1
c.f jz^z. + k J f(x)dx Jf cjj * Cjj . (3.40)

This yields

n nc3 Vdt " .2.5 dijzizj + y(k* + 2 eiZi ’ ; dij “ dji
S ssl js=1. ' . i =i

(3.41)

Substituting Eq. 3.34 for x in the above equation, one finds

■ n "■ n ndV
dt W

i»1 j=1
9ijzi2j + y< 2 hizi ' A2i-iy’ ;

l =1

9ij * 9ji * (3.42)

dVConstrain •gj IEq. 3.42) such that

2 v, = (3.43)

Then dV
dt becomes

dV
dt

n n

1*1 j=1

[x f f(x)] ,
j

(3.44)

Ftg. 3.6a illustrates the restriction placed by Eq. 3.44 on the 

input-output characteristic of the non I i near elament. Hence, by con-

straining

n n
*'• 2 2E 9ijZiZj^ 0 (3.45)

s *1. j*i ' \V-.

one may be abie to prove stability of the systems which are unstable for

high values of gain. If the system is unstable for low values of gain,,,
■ ■ ' '

then the constraf rat on ~ CEq0 3043) may be replaced by
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Figure 3.6a

Figure 3.6
Restriction of the Nor*I Inear Element Characteristic 
for Systems That Are Unstable fort

a) High Values of Gain 
.. bl Low Values of Gain
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■ R-
^ hjZ? * - x , ■ . (3,46)
W ' ■ . ■

This yields

2 2 9UZ}Zj + f(x,[.f nx)^x] , (3.47)

l ==1 j»1

Fi g, 3,6b i I fustrates the constrai nf on non I i Rear element inputf-output 

characteristic by Eg, 3,47,

It Is copceivable that other V-functions for pseudo-canonic systems 

of differentia! equations could be found, thus extending the appIicabiIity 

of the pseudo-canonic transformat i on sf i11 further, Even at the present 

time it appears that pseudo-canonic transformation yields usefuI stabiIity 

Snformation for the raajority of the systems for which stabiIity can be 

proved by the methods of Chapter II (canonic transformation) and also in 

some cases in which the Canonic transformations are not appI(cable (e.g,, 

multiple poles of <3(s), poles of the origin, etc,), A distinct advantage 

of the pseudo-canonic transformation over most of the other methods of 

constructing Liapunov*s functions is Its ability to predict instability 

as well as stability. These observations lead one to the conclusion that 

further research in this direction may yield more useful results.
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CHAPTER IV

CONCLUSIONS

Liapunov's "Second Method" of stability analysis is a very powerful 

tool in the analysis of certain nonlinear control systems. Its applica

bility is limited at the present time to a relatively small percentage of 

all practical closed-loop systems. This limitation is due to the lack of 

straightforward procedures for finding Liapunov's functions that apply 

to most practical systems. The canonic transformations, developed by 

Lur®e, enable one to find suitable Liapunov®s functions, and, conse

quently, find sufficient condi tions for asymptotic stability of certain 

practical systems with a single non!inear gain element. The results of 

this report extend the applicabiIity of the canonic transformations to 

all closed-loop systems with a single nonlinear element. This means 

that the number of systems which may be analyzed for stability by means 

Of known Liapunov's functions for the canonic forms of system differen

tial equations, has been substantially increased,

A critical evaluation of the second canonic form of system differ

ential equations reveals that the applicability of this form of differ

ential equations (and consequently, the associated simp Iifled stabiI ity 

criteriaS is limited to a very small percentage of actual control systems 

in contrast to the first canonic form of system differential equations 

which enjoys a much greater applicabiIity. Consequently, the attention 

has been focused on the first canonic form.

An inherent weakness of all the Liapunov®s functions that have been 

used in the literature in connection with the first canonic form of 

system differential equations is the fact that these Liapunov's functions 

yield simplified stabi18ty criteria which select as stable only those



systems that are actualiy stable for all positive values of the loop gain. 

In this report attempts have been made toward developing methods of pre- 

dieting the' conditions under which actually stable systems will be rejected 

by the simplified stability criteria and also attempts have been made to- 

ward eliminating these undesirable rejections. It is found that the root- 

locus of the linear portion of the loop transfer function SCsJ Is a use

ful tool in predicting which systems wi11 definitely be rejected by the 

simp!ified stabiIity criteria, as based on the first canonic form of 

differential equations. The root-locus also enables the designer t© 

design an equalizer, by means of linear system design techniques, which 

will make the aval table simptifled stabiIity criterSa applicable in 

proving the stabiIity of many closed-loop systems. Needless to say, 

this approach will in many cases yield systems that are complex, costly, 

and difficult to build.

A somewhat more significant advance is the generalization of the 

pole-shifting technique which enables one to prove stabiIity by means 

of the known simp 11fied stabiISty criteria for systems, the loop gain 

of which never falls below a certain value.

It is obvious that no practical-system .wf. 11 have an infinite loop 

gain. Hence, the inability ®f the simplified stability criteria to put 

restrictions on the maximum value of loop gain represents the most 

serious disadvantage of the hithert© known simplified stabiIity erfteria. 

The zero-shffting technique developed In this report eliminates this 

disadvantage. Even though it has been necessary to.modify the first 

canonic form of - the system differential equations in order to accom

plish the zero-shiftirag, new simplified stability cr!teria have been 

developed which can be used to establish sufficient conditions for
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asymptotic stability In systems where the maximum value of the equiva

lent gain of the nonlinear element Is known.

A new method of constructing Liapunov's functions by means of 

pseudo-canonic transformations has been presented. It appears that the 

pseudo-canonic transformatSon retains the advantages of the canonic 

transformat ion, and at the same time simptifies the mathematical analy

sts considerably. . ....

All the methods discussed In this report may be used to prove sta

bility Sor asymptotic stability} or to design an equalizer which will 

make an autonomous system stable lor asymptotically stable). While 

asymptotic stability of systems in the presence of initial disturbances 

only is a very important control system quality, the total stability 

<i.e., stability in the presence of bounded driving functions) is most 

frequently the desired system qua 11ty. For systems In which the nonlinear 

element appears at the end of the feedback path las shown in Fig. 4.1), 

a proof of global asymptotic stab!11ty is, according the Theorem 1.4, 

equivalent to a proof of total stab! I i ty. In other cases where the non

linear element is followed by some linear elements, it may not be possible 

to separate the terms describing the driving function from the remainder 

of the system different fal equations, and, consequently, Theorem 1.4 may 

not be applicable. Even though it could be argued intuitively that asymp

totic stabil5ty stilI implIes total stability in such single nonlinear 

element systems, no theoretical proof to this effect Is available at the 

present time.

While Liapunov's "Second Method" appears to be one of the most 

promising advances in the area of non!inear control system analysis, its 

applicabiIity is at the present time limited to a relatively small per

centage of practical control systems. This report represents an attempt



figure 4.1

BIock Diagram of a Sysfera wIth the 

Non linear Element j n the Feedback Path
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fro Increase the appI icabi 11 fry of the '’Second Method**, Any farther results 

In this direction would be a most welcome addition to the limited number 

of nonlinear system analysis methods available fro control engineers. If 

would bejmpossible fro list all possible extensions of the method to all 

possible system configurations. Thus, only a few directions of extension 

of the "Second Method" for autonomous nonlinear systems will be suggested,

1. A majorSfry of the known Liapunov's functions that are applicable 

to higher order systems yield sufficient and not necessary condi

tions for stabiISty. It seems that at least in systems with a 

single nonlinear gain element suitable Liapunov1 s functions, 

together wifrh the utilization of the root-?locus concept for the 

linear part of the system, may also yield necessary conditions 

for stab?Ii ty.

2. While the first canonic transformation is applicable directly 

to systems with two or more nonlinear elements in series las 

shown In: Fig. 4.25 there are no known methods of findings 

suitable Liapunov*s function for such systems. Lefrov [s] 

proposes a canonic form of system differential equations and 

a Liapunov*s function for systems with two actuators (in 

parallel)''. If is to be hoped that a simi Iar procedure could

be found for systems with several nonlinear elements in aeries.

3. While Liapunov*s theorems are applicable directly fro only the 

disturbed system responses wifrh respect to static equilibrium 

states (singularities!, it can easily be seen that an equation 

describing the boundary of the stability Cor instability) region 

could as we 11 serve the purpose of a Liapunov's function for systems 

exhibiting stable Cor unstable) limit cycle oscillations [l§], [22]0



N.E.I

Figure 4.2

BIpck Diagram of a System with 

Two Non Iinearities in Ser ies.
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From the engineering viewpoint, the exact determination of the 

limit cycle Is frequently unnecessary. In most cases, It would 

he sufficient to estimate a region in the phase space in which 

a limit cycle is located. To accomplish this, the Liapunov®s 

functions would not have to match exactly the path of the limit 

cycle. If one could find methods to construct such functions, 

then it would be possible to analyze the majority of practical 

control systems by the '•second method". Once this analysis 

problem is solved, it will inevitably yield useful nonlinear 

synthesis procedures. The knowledge about nonlinear systems 

gsined by such analytical methods could then be utiIized t© 

define important and meaningful specifications for nonlinear 

control systems.
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APPENDIX A

So Iution of StabII? ty Equations for

The Second and Third Order Systems

1
1. The stab?I!ty equation of the type

n

2a. '2

j=1
1, 2,

can be simp 11fl ed by means of the expressi on

n'

■;;; ?=1

(2.20)

(A-1)

which Is obtalned by mu)tiplying Eq. 2.20 by h. and perform?ng the 

summation fro® 1^1 to n. By dividing Eq. 2.20 by hj and then 

add!ng the equations from Nl through n> one obtaiiis

Substltutibn of the above two equations into Eq. 2.20 yields for 

a third order system 4n» 3)

-X,2a+B+ ^[x^a-b]2-^, x,fXrX2>' XrX3" X,+ X,'' X,+ X3>'
:• : . ■. • ; ' I. ' / '- ' ; " • ' \ ; " v. p

( X1»X2)( X,- X3)
■ .... .....

: CA-3). ■

-X22a + b+ 1 X?2A-b]2-c(2X2'X2-X1"
X2" X3*( X2+ Xl * * X 2+ X3*

* .X2” X-} x2“ Xs^
; ", / "■ ---- ■ p

- CA-4> \

~ X32A + B + \j~\3 A-b] o(.3 Xjf )\5° Xl *{ X3“X2i«X3+ V<X3+^2*

c \1) ( X X 21
■<A-5).
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where
A * \J^>1 + ' CA-6)

and

B Xr X2 x3\l ^ + 0I2 , pf.31
X2 X3

(A-7)

2. For the second order systems (n = 2) the solutions of Eq. 2.20

a2

1

3. The solution of the equatlon

(A-9)

2a
Xj

i*1/ 2, (2.15)

can be obtained from the solutions of the preceding equation (Eq. 2,20) 

by replacing oC| by and j by Xj/?j in the above solutions.

Solutions of other stability equations# such as Eq, 2.17, can be 

obtained in an analogous fashion by making appropriate substitutions 

in the solution of Eq. 2.20.
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A criterion for'sta.bf.lfty, under any inttial conditions, of the trivial 

solution of a system of n nonlinear equations, the right-hand sides of which 

are Independent of time, Is described in this paper. This criterion repre

sents some extension to non 11near equations of the well-known theorem of 

A. M. Liapunov ? £1],p. 107S for I inear systems; thus the sufficient condi

tions for global stabiIity, developed }n this paper become necessary and 

sufficient In the case of 11 near systems.

Consider the system of equations

■ dX. ; ; ' ■ ' ■ ’
= Xj (Xp .... xr) (i > 1, ... n) CB—1

where the right-hand sides X.( are continuous and differentiable functions

in the entire space - m< x.( < 00 (i - 1, ... n), converging to zero at 
the poinf 0 (o, ».. . o).

9xLet us designate by ■=“ the Jacobian matrix of the function Xs, s. e.,

CB-2)

Translated by Z„ ¥„ Rekasfus from "Prikladnaja AAatematika i Mekanika 
(P.M.M.4, VoS. 18, 1954, pp. 735-737.
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Theorem, In order that the trivial solution of Eg, B-1 be globally 

asymptotically stable, it Is sufficient that there exist a positive sym

metric matrix

CB-3)

with positive eigenvalues, such that the symmetric matrix of the products 

ik L J ki
al-
I X (B-4)

has the eigenvalues \5 <-xT, I,. (1;«. 1, n), which satisfy, }n

the entire space [*|] > the inequality"

\j < “</* 11 * 1, 111 Rl (B^3)

where <f is a ppsitive constant.

Proof, According to the Liapunov8s theorem I [1] , p, 02) the point 0 

is asymptotically stable in the sense of Liapunov if condition (B-5) is

satisfied. Let us start with the converse assumption that the region 6 

of convergence towards point 0 does not enclose the entire space 

- ® < x <ao (1 >• T, n).

Let us investigate the point p located on the boundary of 6, The 

trajectory flp,f) that goes through the point p at t = 0 is completely 

contained within the boundaries of S (Erugin [2]), Consider two

possS bl1ities.

1, The trajectory f(p,t) is inside the sphere 

2 2 2 2X, x^ ,«, x_ 38 R 1 2 n (B-6)

for all t > 0, where R is a sufficiently large number. Only a finite 

number of singulars ties of the system IB-11 can be contained inside the 

sphere IB-61, Every singularity of the system IB-1) is, obviously,
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asymptotically stable In thf sense of 1.1 apqnov. This fact can be estab

lished for every singularity In the same way as has been done for the 

point 0. Consequently, every singularity of the system IB-1) possesses 

some region of convergence, i,e.,.-remains'Isolated. Let us number the

singular?ties which are inside and on the boundary of the sphere (B-6)

as q. q, and surround each of these singularities by a neighborhood

Oj' Cj ® 1, ... kl contained entirely In the region of convergence of the

respective singtiIarfty, The trajectory f(p,t) remains Insi de the sphere

IB-61 and outside the neighborhood u. (j - 1, ... k), since the boundaryJ
trajectory of 6 cannot belong to the region of convergence of the singu

larity qs because the region of convergence is an open quantity. Hence, 

the trajectory flp,t) remains, for t > 0, In a region governed by the

inequality.

■ x.2 + ... + x„2 IB-7) :■

Jl Is a posttlye constant. Let us evaluate the time derivative

along flp,t) of the function

coo X ^ s
•8 Ft.

JB-8 5

The matrix CB~2fl has posi t ive el genvalues, hence !n the region under 

consideration- the form as a result of C P—7 J > does not converge

to zer©0 Hence, we

dv
dt • . .. xn)XjXj J i I 2^ a, tX,Xi | CB-9)

where the coefficients ..for* s Cx,,V . x_) of the form are equal to the

correspond!ng elements of the matrix (B-4). Thus, as a result of {B-5)

and CB-7) in the region under consideration the following holds
dv < 7 C'B-10)
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2
where k is a positive constant* In the region under consideration the 

trajectory ftp,tl is continuous in the interval (N^ t <od .

Integrating CB-10) we obtain vtt) - v(0) < - k t, which contradicts 

the inequality vtx^, ... xR) ^ 0 at sufficiently large values of t.

2. let us consider the second possibiIity« As before, it is possible 

to show that the trajectory f(p,t) can only be in the region in which the 

inequal!ty

X.j2 + ... + Xr2 > 0 (8-11)

holds. As a resul t of SB—5;l the form of the numerator of (B-9) remai ns 

negative definite, i.e., it satisfies the condition

£v < B»2ix12 f >«» * **); 2. 2 ■ . 2 A
dt <” 2 . . 2-i < ” X1 * Xn (B-12)

Ml X + x_ 1

.2 , . ... . ..2
1 n

wherea4 Is the minimum and the maximum of the corresponding quadratic

forms on the sphere,

2 2 
X1 + OH * = 1 p

Integrating (B-12) along ftp,t) we get

v(t) .= vtO) <C j" n
o

2... 2 2,i s
(X^ + ... + XR‘)Z dt * - J n4 d$ (B-13)

where s is the length of the curve f(p,t) on the interval (0,t); conse

quent ! y, .

ds = (X.2 + ... + X 2ii dt . 
i n

■ Under the assumed conditions s—>ea as time increases, hence it follows■'HZ? • ■ '

from (B-131 that vtsi—os as s-%>® , which contradicts the inequali ty

1 , ...■■■.x ) ^ G. This proves the theorem.

If an identity matrix 1 is selected in place of A then from the proven 

theorem it follows that, for global stabiIity, it is sufficient that the
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symmetric Jacobian matrix of the right-hand sides of the system of equations 

(B-1) has negative eigenvalues satisfying inequality CB-5) in the entire

space*

We.will show now that in ease of linear systems, the proven theorem 

becomes the referenced theorem of Liapunov ([l] , pp. 82, 107). It is 

obvious that in the linear case all the quadratif forms of the variables 

X, of this paper, after the substitutipn

X|. ® C«- X- 4* * * #0«_ x . , (I s* 1, ... n).. . (EM 4)si i in n

become quadratic forms of the variables x^, xfi, which satisfy Liapunov's 

theorems, and vice versa. In particular, the resolution of equation (B~14)

with respect to Xj in case of asymptotic stability of the trivial solution 

of the I inear differentlal equations folIqws from the fact that in this

case the deferminant , differs from zero.
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