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ABSTRACT

This is the second part of a 2 volume report on the specification 

and data presentation in linear control systems. This volume deals with 

Sample Data Systems, Linear Time Variable Parameter Systems, and Per­

formance Indices, which are respectively Chapter II, III, and I? of the 

volume. Since these, subjects are somewhat unrelated, a separate abstract 

is given at the beginning of each chapter, with the exception of the 

introductory Chapter I. The separate chapter abstracts are repeated here 

for the convenience of the reader*

Abstract - Linear Sampled Data Control Systems

The specifications recommended, for use with sampled data control 

systems are those recommended for linear, continuous systems [l].

These specifications must be supplemented, as is dictated by the re­

quirements of a particular system, by compatibility considerations 

that are detailed in the following sections.

Abstract - The Specification of Linear Time Variable Parameter Systems 

Linear time variable parameter (LTVP) systems are defined and 

subdivided into those systems with fast or slow variations and/or 

large or small variations. The methods of analysis of such systems 

are reviewed, and the. following recommendations are made*

Specifications

1) Time Domain Specifications

(a) LTVP systems with fast variation of parameters*

Simulated unfrozen system step function responses should

all lie within a prescribed envelope. Whenever possible, the

actual system response should be obtained.

(b) LTVP systems with slow variation of parameters.



Simulated or actual frozen or unfrozen system step function 

responses should all lie within a prescribed envelope*

2) Frequency Domain Specifications

(a) LTVP system with fast variation of parameters*

Frequency domain specifications are not recommended.

(b) LTFP system with slow variation of parameters*

The family of frequency response curves of the system 

frozen at different instants should all lie within a predetermined

Data Presentation

It is recommended that the region of variation of closed loop poles 

of the frozen system be exhibited on the complex plane* Thus, for ex- 

ample, if the only varying parameter is an open loop gain, then the region 

of variation of the closed loop poles will correspond to the root loci 
over the total range of variation of gain* '

It is also recommended that a family of Nyquist diagrams correspond­

ing to the system frozen at different instants be displayed in the case of 

system with slow variations of parameters*

Abstract - Performance Index

This study was undertaken to determine whether or not Performance Indices 

should be used to evaluate and specify control systems* It is recommended 

that they not be used at this time by the Air Force for the stated purpose.

A performance index is defined and detailed discussions are presented 

for the various performance indices. Analytical methods for evaluating 

performance indices are presented.
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CHAPTER 1

INTRODUCTION ,

This is the second, volume of the final report on this contract, and 

this volume, as indicated by its title, is a continuation of Volume I, 

"Specification and Data Presentation in Linear Control Systems", published 

in October, I960. Volume III, entitled "Stability of Nonlinear Control 

Systems by the Second Method of Liapunov” is the third and last volume 

of the final report and is to be published along with Volume II, An 

interim report on specifications for nonlinear systems will be published 

shortly.

In this Volume II three topics of considerable importance in linear 

systems are discussed, and these are Sampled Data Systems, Linear Time 

Variable Parameter Systems, and Performance Indices*

Sampled data systems may be considered linear if amplitude quantiza­

tion distortion is neglected, and this is the position taken almost 

universally in the analysis of such systems. Sampled data systems have 

received considerable attention in the technical literature in the past 

decade. This attention has not always been because of the practical 

importance of such systems, but often because of the interesting mathe­

matics that are involved. In other words the analysis of sampled data 

systems has become an academic discipline much like network synthesis in 

character. The sampled data system that is designed to,compete with a 

continuous system must be judged by the same performance criteria, it 

would seem, and this is the point of view of this volume. In some cases 

a sampled data subsystem is to be procured that must be compatible with 

an overall system* Naturally, then, this subsystem must meet compati-
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bility requirements on sampling rate and so forth, over and above meeting 

certain performance specifications. Compatibility requirements must al­
ways be met, of course, but this is a specialized area and outside the 
bounds of this study, and for this reason that topic is not considered 
here.

The analysis and specification of linear Time Variable Parameter 

(LTVP)systems is one of great interest and importance to the Air Force.

The sad state of this art, even, though the almighty law of superposition 

still applies, should serve as a great source of embarrassment to applied 

mathematicians and.engineering' scientists. Apparently it.is only very 

recently that attempts have been made to apply modern operational tech­

niques. to this problem. The State of the art in this apea is discussed 

in Chapter 3 of this volume.

, One of the early hopes in this research.was that generalized Indices 

of Performance or Figures of Merit couLd be developed for control systems. 

It was hoped that Indices of Performance would do two thingsj First, per­

mit generalized design procedures based on these criteria to be worked 

out for linear systems, and Second, permit the comparison of two or more 

competitive systems by the Air Force, so. as to aid in the objective 

evaluation of competing designs. Some progress has been made in this 

direction and is reported in Chapter 3. However, it does not appear at 

this time that such a procedure will ever be completely successful.

This is so because the relative weighting of the various factors that go 

into such an. index depend not only upon the operational requirements for 

the system but also upon the design philosophy and judgment of the vendor 

and the buyer* This does not mean, however, that Performance Indices 

will not become more .widely used than they are at present as1 their merits
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become better known. It is simply that in the opinion of the Purdue 

group no one criterion can ever be the universal solvent or magic wand.

The interim report on specifications for nonlinear control systems 

will outline an approach to the problem and will discuss the state of the 

art. This report will then be circulated to Air Force vendors for criti­

cisms,. . This approach was first suggested by AFM)C and.was followed in 

the first portion of this work. The reaction of the vendors was favor­

able and a number of changes were incorporated in the final report as a 

result of this feedback. It will not be possible to carry that work to 

its conclusion and issue a final report on that material within the con­

fines of the present contract.

For the convenience of the reader the specifications recommended in 

Volume 1 of this Final Report- [1] are reproduced here. These specifi­

cations fall into two groups: Frequency Domain and Time Domain.

I) The frequency domain specifications are to be measured for sinu­

soidal input frequencies. The recommended specifications are:

M-Peak,

Peak Frequency, OJ^ , .

Bandwidth,, B. ¥..

Peak. Output Impedance,

II) The time domain specifications are to be measured at the output 

terminals for step inputs. The recommended specifications are:

Delay Time, Tq

Rise Time, T .s R
Peak Overshoot, PO

Settling Time, T .S’
Final Value of Error, FVE
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ano^s an a, convenient graphical form as an acceptafele region in the 
magnitude-time or magnitude-frequency spaces ([l] , Figs. 3-5 and 4-1) 

The system time and frequency responses can be constrained in regions 

determined from the recommended specifications and with the required 
performance of a particular sysfem in mind.
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CHAPTER 2 .

LINEAR-'SAMPLED DATA CONTROL SYSTEMS

Abstract

The specifications recommended for use with sampled data control 

systems are those recommended for linear, continuous systems Cl].

These specifications must be supplemented, as is dictated by the re­

quirements of a particular system, by compatibility considerations that 

are detailed in the following sections.,

2.1 Introduction '

A Sampled Data Control System is defined (Tou [2], p,5) as a system 

“in which the control signal in a certain portion of the system is 

supplied intermittently at a constant rate”. Alternatively, systems 

of this type are. defined.(Truxal [3], p* 500) as “systems, for which the in 

put (or the actuating signal) is represented by samples.at regular 

intervals of time, with the information ordinarily carried in the 

amplitude of the samples*', or by “systems in which the data appear at 

one or more points as a sequence of numbers or as pulses are known as 

sampled data systems" (Ragazzini M, p. l)» These definitions cover the 

group of systems under consideration; those due to Tou [2] and Ragazzini 

and Franklin. W are the broader definitions for they include first, 

those systems defined by Truxal [3] that are pulse amplitude modulated 

and secondly, those systems that are pulse code modulated.

Amplitude modulated sampled data systems are those where the signal 

is represented by a train of pulses, ideally impulses (Linvill [ 5~\ ), 

with the information contained in.the magnitude of the impulse. Signals 

of this type are generated from continuous or analog data by means of
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cyclic switches, and an analysis of the sampling operation ([3], p. 50?) 

indicates that the sampler is a linear device.

A pulse code modulated system is a sampled data.system where the 

signal values at the sampling instants are quantized and coded. The 

signal information is thus transmitted in trains of pulse groups 

during the sampling period, usually for processing by a digital.computer. 

Systems with this type of signal representation are called digital 

control'systems, and the sequential procedure of sampling, quantizing 

and coding (usually binary coding) is called analog-t©-digital conver­

sion* It is apparent that, systems including analog-t©-digital conversion 

will usually include the inverse operation of digital-to-analog conversion.

The quantization process necessary for analog to digital conversion 

is a nonlinear operation in the sense that only discrete levels of output 

are possible, and.consequently the principle of superposition does not 

apply. The nonlinearity of the quantizer, can be measured in terms of 

the p.m.s. quantization error ([2], P. 87), which in turn depends on the 

size of the quantization step, Conversion units that are finely 

quantized, thus reducing the quantization error, can frequently be con­

sidered as linear elements. Principles for. the determination of system 
linearity have been outline in Chapter 2, Final Report, Volume 1 [lj and 

can be applied to the over-all system in which a conversion unit is 

included.

Systems that fail to meet: the specification for linearity are out­

side the scope' of the chapter*

Sampled Data systems with digital computers included in the loop 

for compensation or other purposes may have associated with them finite
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computing times. When viewed from the input-output terminals this 

constiutes a time delay in the loop. Whether such systems are to be 

considered as included for discussion in this chapter rests., once .again, 

with the linearity principles of Chapter 2,. Final Report, Volume 1 [1] .

... It is possible to conceive of other methods of coding, for example, 

pulse width modulation with the signal information carried in the width 

of the pulse or, perhaps, pulse frequency modulation with the signal 

information carried in the frequency, of the pulse transmission (Black [6], 

p. 30-36). These alternatives do not appear to be used, except in 

specialized applications (digital to analog conversion units, for example, 

Nelson [7]), and consequently will not be discussed here.

' Sampling is not thought to be used in connection with a control 

system because of any advantage inherent in the sampling operation itself, 

but rather because of external reasons, e.g. the time sharing of equipment 

and the use of digital computers for control and compensation. An 

exception to this philosophy is the use of sampling devices with instrument 

servomechanisms which permits employment of highly sensitive *error detectors 

(Marshall [$], p. 133).

It is not anticipated that over-all systems for use by the Air Force 

will receive digital input signals nor produce digital output signals, 

but that signals of this special nature will be present only within the 

control loop. As an example, a ground-to-air missile control system 

may well transmit data in digital form, but the desired missile angle 

of attack, to cite a variable to be controlled, will be initially in 

analog form and so will the actual angle of attack. Sub-systems of the 

main system may receive and produce digital signals, but these will be 

specialized components and must be dealt with as such. Thus systems with



either digital (i.e. coded) inputs, digital outputs or both digital 

inputs and outputs vri.ll not be considered here,

A sampled data system with continuous or analog input and output, 

when viewed from the input and output terminals, does not present a 

special problem due to the presence of the sampler as far as measurement 

of performance is concerned. In fact, the observer need never know that 

the system contains sampled or digital signals, ass any peculiarity due 

to the presence of the sampler etc, will be observed at the output. 

Consequently a system can be considered satisfactory provided it can 

meet the input-output specifications placed upon it. The systems under 

consideration in this chapter must comply with the linearity principles, 

and it can be concluded, therefore, that all specifications recommended 

for use with linear continuous systems will be meaningful and shall be 

applied to sampled data systems.

The principal mathematical tools available for the analysis of 

sampled data system models are:

1, The z-transform. (Ragazzini [9]) (Jury [10]), which can be made 

to yield a continuous function as the output, but which is 

valid only at the sampling instants,

2, The modified z-transform (Baker [11]) (Jury [12] ), which yields 

the output at all instants of time at the cost of some algebraic 

complexity,

3,. The so-called lsstate transition method" of analysis, which is 

possibly the most basic and has received attention in the 

literature as such (Gilbert [13]) (Kurzweil [14] ) (Kalman [15]). 

It is more general in application than the z-transform but has 

not yet found general usage.



Use of the z-transform has the obvious disadvantage that the system 

response between the sampling instants is left in doubt. An analysis on 

this basis would fail to reveal oscillations that are entirely between 

the sampling instants ' (jury [16]), thus use of the modified z-transfom 

is necessary in systems where such responses are possible. The conditions 

under which oscillations may occur and the methods of analysis in the 

z-plane are, however, well known [12], [16], (Johnson [17]), (Schmidt[18]) 

and need not be detailed here. The important conclusion is. that an output, 

to which specifications can be applied, is available from a system mathe­

matical model.

The philosophy of Chapter 6 (Presentation of Data and System Perform­

ance Information), Final Report, Volume 1 [1] is also applicable here,

A system'may meet all specifications, but it is desirable that a prospective 

customer (e.g. the Air Force) be furnished xcLth more details than are 

presented by the system specifications alone.

This chapter is concerned with sampled data systems that have both 

analog inputs and analog outputs and can be termed linear within the 

principles of Chapter 2, Final Report, Volume 1. The restriction to 

linear systems is consistent with the state of the art, i.e. any attempt 

to apply specifications to nonlinear sampled data systems would require 

■considerable further research, which, while very important, is outside 

the scope of this.work. The restriction of the input and output quantities 

to analog form thus excludes sub-systems that receive or transmit digitally 

coded data.,. These sub-systems, e.g. a digital computer, are considered 

to be specialized components and are not discussed here.

The specifications to be used are those recommended for use with 

linear continuous systems, supplemented, as is dictated by the require-

- 9 -



merits of a particular system* by compatibility consideration peculiar to 

sampled data systems as detailed in the next sections.

2.2 Beeommended Specifications

, Sampled data systems that are linear and time-invariant within the 

principles of Chapter 2, Final Report* Volume 1 must be subdivided into 

two classes. The sub-division is based upon the sampling device frequency* 

Ca>s* and the system bandwidth* BW,

Time varying*, continuous systems are discussed in Chapter 3 of this 

report* and the philosophy and principles discussed there can be extended 

to time varying* sampled data systems with high sampling rates. The 

problems that arise with time varying* continuous systems are multiplied* 

however* when time varying sampled data systems with slow sampling rates 

are considered. Extension of the chapter on time varying continuous, 

systems to this latter ease is not recommended.

Sub-division one: .
g

Systems with high sampling rate i.e. for which ’ ^ 10

Sub-division two:
, Os /Systems with low sampling rate i.e, for whieh 2^ gj-p10 

The specifications recommended for linear continuous systems and 

reproduced in Chapter 1 for reference are recommended for use in the 

.specification of all sampled data systems (i.e. both sub-divisions above) 

whose output and input are available in analog form* In addition certain 

"compatability considerations'1 must be considered.

Compatability considerations must be considered in all automatic 

control systems where sub-systems of a larger system are constructed.

For example, impedance levels at the input and output of the system
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must be compatible with the systems to which it is coupled-and, in the 

case of a.c. control systems, the carrier frequency must be compatible. 

Such considerations are particularly important in sampled data systems.

The system sampling frequency may well be determined by factors 

external to the system or sub-system and may need to be specified as a 

compatibility specification for systems in both of the above sub-divisions.

Systems that fall in the second of the above sub-divisions can be 

expected to give inferior, performance to those in the first sub-division, 

and consequently more care must be exercised with the specification of 

these systems. Compatibility considerations in addition to the sampling 

frequency already mentioned are? a) the amplitude, and the tolerance 

on this amplitude, of the harmonic content of the output to a sinusoidal 

input of fundamental frequency, and b) the maximum tolerable .amplitude 

of the sampling, ripple,

2,2,1 Discussion of Recommended Specifications

Analog output information is available for sampled data systems 

that are in the design stage and represented by mathematical.models, 

and from systems that exist physically. The specifications already 

recommended, for use with linear, continuous.systems can be used, 

therefore, to assess the performance of sampled data systems. If the 

system response fits within the region of the output magnitude-time 

or magnitude-frequency space, as defined from the recommended specifica­

tions, the system is satisfactory.

Systems that include the sampling device within the loop may, 

however, exhibit behavior that can be attributed directly to the 

presence of this device. The design techniques available for this 

class of. system, for example minimum finite settling time and zero
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steady state error design ([4], p. 151), suggest response characteristics 

which should be controlled* The procedure whereby these additional quantities 

are. controlled will be called “compatibility considerations". The presence 

of the sampling device.is thus ignored for overall performance specification, 

but the peculiarities of the device are examined to ensure sub-system com­

patibility,* That is, the same specifications must be met whether or not 

the system contains a sampler.

One of the principal characteristics associated with a sampling device 

is the rate at whieh samples are obtained from the continuous data, The 

rate of sampling may well be a specification in itself dictated by cir­

cumstances outside the control of the designer. It is clear that the 

rate of sampling chosen will affect the performance of the system; in 

fact, as the sampling rate is increased, system performance will.approach 

that of a continuous system [18] (Brown [If ]), It is recommended, there­

fore, that sampled data systems be sub-divided according to the rate of 

the sampling device. First, those with a high sampling rate comprise 

sub-division one, where high sampling rate systems, as diseussed Appendix 

A, have been defined as those systems where the sampling frequencylUs 

(60s = —-y -• and T is the sampling period) is equal to, or more than, 

ten times the bandwidth of the system.

Mathematically!

,s... ^ 10 ^ s - sampling frequency
0H

BW - system bandwidth

The greatest input, frequency a system will be expected to experience

*It.is not the intention of the authors to enter into a discussion at this 
point whether continuous systems are contained in the class of sampled data 
system.or vice versa but rather to set satisfactory standards for the 
specification of either type system.
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at itsinput terminals should be related by the designer to the system 

bandwidth* The system bandwidth and the greatest input frequency expected 

will therefore be considered synorymous in this chapter.

Systems that do not fall into the category covered by the above 

restriction comprise the sub-division two, These latter systems are 

defined in terms of the bandwidth and the sampling frequency by the 

inequality:

2< TT < 10 '
The lower limit is determined from the Nyquist Sampling Theorem, the 

principle of which was first discussed in 1928 (Nyquist [20] ).

Shannon [21] proves this theorem in a concise fashion and states the 

principle as "If a function f(t) contains no frequencies higher than 

¥ eps, it is completely determined by giving its ordinates at a series 

of points spaced seconds apart". The upper limit is determined from

Appendix A.

Systems that fall into the class where the sampling frequency can 

be considered high will be specified by means of the specifications 

recommended, for linear, continuous systems and these specifications 

will be sufficient input-output specifications*

The linear, continuous frequency domain specifications remain fully 

meaningful for those sampled data systems that fall into the second sub­

division. A possible exception that should be mentioned is the assumption 

that the system under consideration will possess low-pass filter charac­

teristics, and consequently the fundamental is the predominant component 

in the output signal. If this assumption is invalid, the frequency 

specifications, which a re based on the concept that the output derived 

from a sinusoidal input is of the same frequency as the input, begin to



lose their meaning. In such cases the same specifications can he applied 
to the input and output of fundamental frequency. In addition the amplitudes 

of the harmonic content of the output, together with the tolerance on 

these amplitudes, should be investigated as compatibility considerations.

The linear, continuous Time lomain specifications also reiaain fully 
meaningful when applied to the analog output data from systems in this 

second sub-division. Two characteristic difficulties associated with 

this class of system, namely inter-sampling ripple, introduced by the 
sampling device ( w , p. 336 ), and hidden oscillations between the 

sampling instants (if] must be controlled by spediflcations. Care must 

be exercised when the output signal is derived from a z-transform 

analysis. Such an analysis, and the smooth curve through the sampling 
instants that it yields, may be misleading. Hidden oscillations and/or 

excessive inter-sampling ripples may go undetected.

The conditions under which oscillations, contained wholly between 

the sampling instants, will occur are well defined M ( JO, P. 356) 
and can be avoided*

Inter-sampling ripple is introduced into the system by the higher 
frequency components generated during the sampling process. These com­
ponents are attenuated, frequently, by system elements that exhibit 
low-pass filter characteristics, but some may remain at the output 

terminals. This inter-sampling ripple may not be troublesome during 

system transients but could be the only output after the transient has 
subsided ( [2] , P. 338) . Control of such a ripple is often essential.

Some control of this ripple will have been allowed for already by 

the Final Value of Error Specification, which limits the actual output.



to a region about the desired value of the output. The frequency domain 

specifications may also tend to limit the amplitude of the ripple. The 

frequency specifications are, however, based on input-output quantities 

whereas the ripple is produced internally. Direct control, of the- ripple 

amplitude may often be desirable,

It is recommended, therefore, that the maximum tolerable amplitude 

of the intersampling ripple be investigated as a compatibility consider­

ation.

Performance Indicies were not recommended as.performance specifi­

cations for linear, continuous systems and are not recommended for use 

with sampled data systems.

- 15 -
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2.3 Data Presentation

It is recommended that Hyquist Diagrams and Root Locus Diagrams be 

used to display system data when describing system performance for the 

Air Force. The. recommended methods are tRose recommended for use with 

linear, continuous systems. The diagrams will be supplied to the Air 
Force in addition to the performance specifications already discussed. 

Performance specifications and their tolerance can be summarized 

in terms of time and frequency domain graphs as is indicated in Chapter 1. 

Reference has been made to the necessity for linearity checks and the 

principles of Reference 1 Chapter 2 indicate that a need may arise when 

these graphs should be presented for a number.of input magnitudes.
It is recommended, therefore, that actual time and frequency graphs 

taken for the system under consideration be presented:for different 
input magnitudes as discussed in Reference 1, Sections 6,10 and 6,11.

Lastly the transfer function of the linear, continuous portion of 
the system is recommended for inclusion as system data since it ex­
presses system characteristics in a concise way.
2.3.1 Discussion of Data Presentation Methods .

Performance Specifications contain the information needed to 
evaluate a system in operation, as. they describe the system on an input- 
output basis. It is often necessary, however, to consider additional 

factors less tangible then the numerical values of the specifications 

already recommended. The objective may be the evaluation of proposals 

and the selection of superior designs with regard to such factors as, 

for example, simplicity of design or sensitivity of parameter variation,
It is essential that this information (i.e, system data) be presented
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in a form that will be familiar to those who have to evaluate the system. 

Furthermore, the form of data presentation should be of one or more 

specific forms so that the Air Force will have a common denominator for 

system comparison.

This philosophy follows that expressed in connection with linear, 

continuous systems. The principal analysis, (design), techniques avail­

able for use and- currently used with sampled data systems will be enumer­

ated With the purpose of selecting the most appropriate method or methods 

of data presentation.

2«3«2 The- Routh-Hurwitz Criteria.

These criteria cannot be applied to the characteristic equation of

a sampled data system, which is in terms of the complex variable '•s'*,

associated with the Laplace Transform as the equation is transcendental

([3], P. 522) ([43, P. 98). When the system characteristic equation is

expressed as a function of the complex variable nz" associated with the
Tsz-transform where z - e , the criteria are not applicable either, as 

the transformation maps a horizontal strip of the left-hand half-plane^ 

of the s-plane into the interior of a unit circle centered at the origin 

in the z-plane. Stability is now assured when the zercs of the charac­

teristic equation are inside this circle and clearly the Routh-Hurwitz 

Criteria are not applicable.

The criteria can be applied, however, in a manner identical to that 

used with linear, continuous systems if the characteristic equation is ex­

pressed Sn.terms of a Complex variable w by means of the Mobius or

Fractional Linear Transformation (Eille [22], p. 46),:
1 + w



Tills transformation maps the interior of the unit circle, centered at 
the z-plane origin, into the left-hand half-plane of the w-plane. 

Stability is now assured if all the zeros of the characteristic equation 

in terms of w are in the left-hand half-plane of the w-plane and the 
criteria can now be applied. Gain margin information is available as 

a result of this analysis in the w-plane and the results can be trans­
ferred bach through the transformations to the s-plane.

The labor,involved in this operation may wen become extensive and 

the information that results is only Gain Margin, which is inadequate 

for system evaluation* The Routh-Hurwitz Criteria is not recommended 

for data presentation.

2.3.3 The Schur-Cohn Criterion

The criteria 4nst described above ab® ahie to detect the presence 
;of roots with positive real parts of a polynomial expressed in terms 

of a complex variable. In the case of sample data systems the character­
istic equation must be examined for roots that lie outside the unit 
circle in the z-plane. The Schur-Cohn criterion ([2], p. 238) comprises 

an elegant test for the determination of such roots* The information 
obtained from this test is, however, restricted to Gain Margin, as was 
the case with the Routh-Hurwitz Criteria, and this information is not 
sufficient for system evaluation. The Schur-Cohn Criterion is not 

recommended for use as a method, of data presentation.

2.3*4 The. Bode Diagram

The open loop transfer function of a sampled data system, when 

written in terms of the Laplace Transform complex variable "s", cannot 

be expressed as the ratio of finite polynomials. The Bode Diagram, as 

a logarithmic plot of magnitude against frequency, thus loses the im-
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portant advantages it has for linear, continuous systems; that.is, ease 

of construction and identification of time constants. The familiar 

linear continuous equalizer procedures, should one wish to use such an 

equalizer, are not valid because the continuous transfer function of an 

equalizer cannot be added directly to the open loop plot on the diagram, 

as is the case with linear,. continuous systems. The use of pulsed data 

equalization can be effected on the.Bode Diagram, but the technique is 

difficult to apply ([2], p 432).

It is possible to make use of the familiar linear, continuous 

design techniques on the Bode Diagram by approximating the open loop 

transfer function ([4], p. 124), but the approximation is inaccurate 

for low sampling frequencies where accuracy is most desirable..

An alternative approach is to transform the. open loop transfer 

function to the z-plane and then to the w-plane. The Bode Diagram, 

technique is now directly applicable, but physical reality has been 

lost by the sequence of transformations. The principal advantage of 

this method of data presentation, that of insight into.the system 

capabilities, is thus lost also.

The Bode Diagram is not recommended as a method of Data Presentation 

for sampled data systems.

2.3 .5 The Kfyquist Diagram

The diagram, when used in connection with sampled data systems, 

is constructed and can be used in a manner similar to that for linear* 

continuous systems ([3], section 9.6).

The diagram is a polar plot of the magnitude and the phase of the 

open loop transfer function as a function of frequency. Where G (ju>) 

is the continuous forward transfer function, the transfer function in-
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eluding the sampling device becomes:
+00

G* (jto) = -i G j(C0 + ncu ) SJL =CU = sampling frequency 
^ s ^ s

~0G

or in terms of the variable z merely G(z).

The transfer function can be plotted as the Nyquist diagram, approximately 

from the first expression using only the first few terms of the series.

It may also be. plotted exactly, directly from G(z), recalling that points 

on the jU->- axis of the s-plane correspond to points on the unit circle 

centered at the origin in the z-plane.

M-eircles (Chestnut [23], section 9*2) can be constructed and are 

fully meaningful ([2], p, 413) with the usual restriction that the system 

must be one of unity feedback.

In conclusion, the diagram provides the same, information as it did 

in the ease of linear, continuous systems. It was recommended there for 

use in the presentation of data and, therefore, is recommended for data 

presentation with sampled data systems.

2.3*6 Root Locus Plot

The root locus diagram can also be extended to display the movements 

of closed loop poles, as a function of a system parameter (Jury [24])

(Mori [25}),with sampled data systems. In the s-plane there are infinitely 

many open-loop singularities, but loci can be drawn* The root locus can 

be drawn more simply in the z-plane, with the disadvantage that position 

with respect to the unit circle and the origin of the z-plane is of 

importance, rather than the more familiar concept of position with respect 

to rectangular axes in the s-plane.

The transient response is characterized by the position of the 

closed loop poles in the z-plane, and hence by the position of the root
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loci. The lack of familiarity with the geometry associated with the 

z-plane can be. overcome to some extent by, for example, constructing 

contours of peak overshoot [12] related to a particular system on the 

z-plane, together with the root locus plot#

Eoot loci can also be drawn in the w-plane, using the transformation 

already described, but,, as mentioned before, physical reality is lost.

Eoot locus diagrams are recommended for use by the Air Force for 

data presentation; The diagrams should be plotted as a function of one 

or more of the. parameters that ar© of interest and in the z-plane. :

The diagrasis recommended for use by the Air Force are the Nyquist 

Diagram:and the.Eoot Locus Diagrams in the z-plane. . These diagrams are 

those recommended for Air Force use in connection with linear, continuous 

systems. A factor used to aid in the selection of these diagrams in 

Final Report, Volume 1 III was the possible extension to nonlinear sys-- 

terns. It is fortunate that the advantages in using these diagrams with 

sampled data systems lead to their recommendation here, and thus the 

possibility of using these diagrams with all systems exists.

: The Nyquist Diagram as drawn, for a sampled data system in the s-plane

can be compared directly with a similiar diagram for a continuous system. 

Consequently continuous and sampled systems can.be compared by means of 

a Nyquist Diagram. This comparison cannot be made as easily when the 

Eoot Locus Diagram is used. The continuous system diagram will be drawn 

in the s-plane and the sampled systems diagram in the z-plane and the 

appearance of the two diagrams is quite different. The technique in the 

Z-plane for sampled systems is the same, however, as the technique in 

the s-plane for continuous systems. The z-plane technique is common in



the literature and the transient response information is available from 

the digram (Jury [26])* The z^-plane root locus is thus recommended in 

order to provide this transient information despite the difficulties 

with such diagrams.

- 22 -
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CHAFfER 3

THE SPECIFICATION OF LINEAR TIM. VARIABLE

PARAMETER SYSTEMS

Abstract

Linear time variable parameter (LTVP) systems are defined and' stab- 

divided into those systems with fast or slow variations and/or large or 

small variations. The methods of analysis of such systems are reviewed, 

and the following recommendations are made*

Specifications

1) Time Domain Specifications

(a) LTVP systems with fast variation of parameters*

. Simulated unfrozen system step function responses should

all lie within a prescribed envelope* Whenever, possible, the 

actual system response should be obtained,

(b) LTVP systems with slow variation of parameters,

• Simulated or actual frozen or unfrozen system step function 

responses should all lie within a prescribed envelope,

2) Frequency Domain Specifications .

(a) LTVP system with fast variation of parameters.

Frequency domain specificationsare not recommended,

•(b) LTVP system with slow variation of parameters.

The family of frequency response curves of the system 

frozen at different instants should all lie within a prede­

termined envelope.



It is recommended that the region of variation pf closed 

loop poles of the frozen system be exhibited on the complex 

plane. Thus, for example, if the only varying parameter is an 

open loop gain then the region of variation of the closed loop 

poles "will correspond to the root loci over the total range of 

variation of gain.

It is also recommended that a family of Nyquist diagrams 

corresponding to the system frozen at different instants be 
displayed in the ease of systems with slow variations of parameters

3.1 Introduction

Time variable parameter systems occur more ofijen in practice than 
one with a £air knowledge of control system theory might suspect. In 

fact, the statement that most practical systems are nonlinear and time 
variable is not very far from the truth. However nothing of value is 

known at the present moment regarding the analysis and synthesis of 

general nonlinear time variable parameter systems. Considerable research 
effort is being expended to solve certain facets of this problem, 
particularly by workers involved with self-adaptive systems which are, 
in general, nonlinear and time varying. Inasmuch as it is highly 

desirable to be able to specify performance criteria for general 

systems of this kind, the state of the art at the moment leaves so much 

to be desired that it does not appear to be feasible now.

This particular report is restricted to the special case of linear 
time variable parameter systems (henceforth referred to as ITYP systems). 

LTVP systems are also sometimes referred as nonstationary linear systems. 

There is not a very great loss of generality by this restriction since
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one will soon see that not very much more is known regarding possible 

means of specifying LTVP systems than nonlinear time variable systems.

It is possible to approximately describe a number of practical control 

systems in such a fashion that they may be considered to be LTVP systems. 

For example, a missile subjected to thrust due to fuel burnout may be 

considered as a LTVP system by assuming that the. burnout rate is a 

constant. This latter assumption is, of course, quite reasonable in 

general.

The analysis of LTVP systems is also important sometimes from the 

viewpoint of study of special characteristics of pertain nonlinear 

systems. For example, the study of the periodic solutions of certain 

forced nonlinear systems (for example, systems being described by. 

equations of the Duffing, type) resolves.. into studying equations similar 

to the ones which govern IT?P, such as !4athieu,s equation (Stoker [27]),

The study of the analysis and synthesis of LTVP systems is a rather 

interesting, important and fascinating research topic at the present 

time. However the techniques available at the moment leave much to be 

desired. Because of this, the complete specification of performance 

criteria for LTVP systems presents a rather formidable problem that is 

unsolved as yet.

Before discussing the specific problem of how. to describe the per­

formance of LTVP systems, let us first consider the general LTVP system 

and the several known methods of analysis of them.
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Definition 3.1

A general, linear lumped parameter time variable system is des* 

cribed by a differential equation of the following type. .

a (t)
T * A

+ a ,1n dt n n-1

bm(t)
,ml_i£ + 
dt m bm-l'

,n-l4...X, +
dtn_1

,m-ld x . »,**•* t * ^

dt o'

$£ + bdt Do

y =

In equation (3.1 )> y is the outputand x the input of the system.

The coefficients an, an^.*.,,b^, bffi(_2_?*»*»»ar® functions of time alone
and are assumed to be piecewise continuous over any finite subinterval. 

Furthermore, it is assumed that an(t) does not vanish at any point in the 

interval of interest a<t ^b. '

Equation (3.1) may be represented in the following operational form 

L (D,t ^ y = K(D,t ) x

where :
L (D#t ) ~ an(t) Dn+.,....+a^(t) 0*aQ(t)

K (D,t) ^ bm(t) Da+......+b1(t) D+b0(t)

and ;

The quantity n is defined as the order of the system and in general, 

for a physical system n^m,

LTVP systems obey the powerful superposition theorem, due to the fact 

that equation (3.1) is a linear differential equation# At first glance, 

this fact may lead one to believe that the analysis of LTVP systems is 

not very different from the well known methods of analysis of linear time 

invariant systems. Unfortunately, this is far from the truth. Very few

(3.1)

(3.2)

(3.3)

(3.4)
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methods of analysis exist for L^iTP-systems^ and even the methods that are 

developed are applicable only to specific types of systems*

A linear system is completely specified by its impulse response 

h(t,t-]_)? Mote that in general the impulse response is a function of 

two instants of time, t the time of observation of the output and the 

time of application of the input* In the case of time invariant systems, 

the impulse response is a function only of the ^a-ge variable" t-t^ ■ X• '

It is this latter property which makes the analysis of linear time 
invariant systems mathematically tractable. Moreover, the dependence of 

the impulse response on one variable is the reason that any significant 

meaning may be attached to time-domain and transient response specifica­

tions for linear time invariant systems. The transient response charac­

teristics, such as the impulse response or the step function response, 

for a linear time invariant system can be obtained from a complete knowl­

edge of the response of the system to any one transient input applied at 

any instant of time. However^ the transient response of a LTVP system 

implies, theoretically, knowledge of an infinity of responses obtained by 

application of the transient input at different instants of time. This 

makes the specification of 1TVP systems in terms of transient response 

such as, for example, step function response, generally meaningless. 

Frequency domain specifications have less meaning for ITVP systems since 

a harmonic input to a LT7P system does not in general result in a harmonic 

or even periodic output.

It is evident from the literature in the area of differential equations 

(Ince [2b]) (Bellman [29]) that considerable effort has been spent in 
determining the stability characteristics of linear, time variable differ-
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ential equations. This is evidenced, for example, by the elegant Floquet's 

theory ([27], p. 193) in connection with Hill's equation and Mathieu's 

equation. This theory is applicable to a particular type of second order 

differential equation and despite its elegance, is useless as far as per-' 

formance specifications of ITViP systems are concerned. It should be 

noted that it is possible to discuss the stability of a LTVP system only 

in the absence of any inputs, whereas the performance specifications of 

a system in general are based on some form of inpnt to the system.

In this connection it may be worthwhile to precisely define the 

concept of stability for a LTVP system. The following definitions are 

equivalent*

■ - Definition 3.2

A LTVP system is defined as stable if the complementary 

solution (transient solution) associated with its differencial 

equation, of the form of equation (3*1) identically approaches 

zero when time increases beyond all bounds for any arbitrary

initial conditions.

Definition 3.3

ALTVP system is defined as stable if its impulse response 

h(t, t^) is absolutely integrable over the infinite range of t for 

all values of t^. (zsdeh [3©], p. 4Q3)

Note that the impulse response h(t,t^) maybe obtained from equation 

(3.2) as the solution of

L (i^t) xh(t,t-^) = K (D,t) x^Ct-t^). (3.5)

where

(t - t.,) is the Dirac-delta function*
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For LTVP systems, both the definitions imply quasi asymptotic 

stability of the system and not necessarily quasi uniform stability 

(Antosiewicz [3l], p. 147)* However, for linear time invariant systems, 

a stable system on the basis of definitions 3*1 and 3.2 implies a 

uniformly asymptotic stable.system.

It is evident that these definitions of stability for LTVP systems 

are not particularly'useful for control system applications. For example, 

the transient response.of a. "stable" LTVP system (in the sense of de­

finitions. 3.1 and 3.2).might exceed a safe value (possibly resulting in 

a destruction of the system) at some instant of time, despite the fact 

that the response appeared well behaved for a reasonable length of time 

after application of the .input* . This, is a problem that is not encountered 

in a linear time invariant system. For example, the first maximum of the 

step function response (corresponding to the overshoot) is the absolute 

maximum for a stable linear time invariant system.

It is sometimes useful to define stability on the basis of uniformly 

asymptotic stability.

Definition 3*4

Any uniformly bounded input should give rise to a uniformly 

bounded output in a uniformly asymptotically stable LTVP system 

(Kalman [32], p. 379)

According to Massera!s theorem (Massera [33]# P« 204) in order for 

the LTVP system to be totally stable, i.e, stable, for every bounded in- 

put, it should be uniformly asymptotically stable*

For certain control system applications, the stability of a LTVP 

system may be specified on a short time basis. For example, a LTVP 

system may be defined to be short time stable if the response to a
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specific type of input such as a step remains within certain predetermined 

bounds for a specified interval of time, after the application of the in- 

put. The behavior of the system outside this-'.interval is of no consequence, 

It is realized that stability is a rather important and interesting 

characteristic in the analysis of systems. However, the response of the 

systems to certain specific inputs is more important in specifying the 

performance of the systems. Various authors have proposed specific 

methods.for determining the response of particular LTVP systems, (Gerardi 

[34] ), (Kirby [35] ), (Kirby [36] ), (Brodin [37]), (Bennett [3&]), 

(Karamyshkin [39]), (Desoer [40]). This suggests the possibility of 

trying to classify LTVP systems on the basis of being amenable to the 

various special methods. This raises a rather difficult problem which 

shall be discussed later.

3.2 . Methods of Analysis

To determine the feasibility of classifying LTVP systems, the 
various methods that are available at the moment for.studying their 

stability or obtaining their responses are listed below with proper 

references. Brief explanations of the methods are given where meeess&ry. 

It should be noted that there is a certain amount of overlap between the 

methods.

3.2,1 Analysis Using Classical Differential Equation Theory [20]

From the theory of differential equations it is known that a unique 

solution of equation (3.1) exists and consists of two parts. They are: 

(a) The complementary solution,, which is the solution of the 

homogeneous equation

L (D, t) u - 0 (3.6)
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Thus* if Up u2* ,.»* unare the n distinct* solutions of equations

.(3*6), then the solution

u(t) = + C2U2 + ... +

containing n arbitrary constants is the complementary solution,

(b) The particular solution* which is any solution yQ(t) which 

satisfies the. nonhomogeneous equation (3,1). The complete solution 

of (3*1) is then given by 

y(t) = y0(t) + u(t)
It is generally difficult.to obtain the complete solution of a 

differential equation of the'form (3.1) for. any arbitrary input. Note 

from the definition of stability that the complete stability information

he complementary solution, equation (3.7) 
by Matrix Methods [29], (Pip es [a])

for the system is contained in t 

3.2,2 Analysis of LT7P Systems

The matrix analysis of LTVP systems is not significantly different 

from the classical method of analysis. The only advantage is that the 

notation is simple enough to prevent one from getting involved in the 

algebra associated with the classical method.

(3.7)

(3.8)

* A sufficient condition for the linear independence of UpU2,.. ,un(which 

is the same as saying that they are distinct) is that the Wronskian of the 

functions Up Up* 1 •u should not be identically zero. This means that

n

U,! U0!.... U t12 . n.

u1
(n-1) (n-1)u,n

#0
Here

u u
dtfk
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For example, if one were just interested in the stability problem^ 

the nth order homogeneous differential equation, equation (3.6), may be 

reduced by a suitable transformation to a set of n first order differential 

equation? of the form
|^ = A(t) X (3.9)

where X is acolumn vector with n elements and A(t) is ain x n square 

matrix whose elements are functions of time in general,

fhe homogeneous equation associated with the system, equation (3.6),
may be reduced to the form of equation (3.9) by defining new variables 

for the output and its derivatives, as follows:

J =

then from (3*6)
* _*”a0(i^) al(t).

“ a (t) 71 ” alTJ 72
n / n 4

w “G0(t) yx - cx(t) y2

where

c^(t)
a±(t)
V (t)n

- an-lW . __
------ IJtT

n ■ ■

..... Vi^) yn

(3.10)

(3.11)

(3.12)

(3.13)

Equations (3.11) and(3.12) may be combined and written in the form of 

equation (3.9) by defining X (t) and A (t) suitably as follows

— _ ... '! ' ■ .....■ 111 ' "'".'I '!■ . ,M ' ........ .„| ) I I. I ;l|, ,|.

* This information is completely contained in equation (3,6).
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Let

T(t) =<

y.

7-

y.

and

A(t) =

n

0 1 0

0 0 1

0 0 0

-c -c ~cO 1 2

(3.14)

0 ... 0
0 *• * 0

-C —C n-2 n~l

(3.15)

The y^ig represent the so called state variables of the system. In 

general, any independent linearcombination of state variables is also a 

state variable. The n-dimensional space witheachstate variable represented 

along a co-ordinate axis is called the state space.

Theoretically, the stability of the time varying system is completely 

determined by the matrix A(t). However, at the present moment, there 

appears to be no generalised theory /which can be applied to every matrix 

A(t)» The stability of certain systems yielding specific types of matrices 

A(t) has been investigated in reference,^3]*

The matrix method could also be used for obtaining the response of 

some specific LTYP systems. However, this method does not possess any 

distinct advantage over the classical method.

3.2.3 Frequency Analysis Approach [30], (Zadeh [42] « [43]. [443. [45])
This is essentially an attempt to extend the familiar concept of



poles and zeros to LTVP systems. The theory developed in this ease 

closely parallels the system transfer function concept for linear time- 

invariant systems, However, the application of this method to any but 

the most trivial.eases is rather difficult. However, this method is not 

without advantages. With the transfer function concept for LTVP systems, 

one can intuitively picture poles and zeros of the LTVP system wandering 

in the complex plane as functions of time» The question of stability can 
immediately be settled for some intuitively obvious cases j38j»

The essence of the method hinges on obtaining the so called system 

function H(jgt?;t) which is an integral transformation quite analogous to 

Fourier transformation of the weighting function h(t,t^), defined by 

equation (3.5). The system function is defined by
Hlio^it) = e^^ fw(t,)) d]r (3

-00/

In general it is very difficult to obtain the system function, . 
Zadeh ([42], p. 295)shows that the system function satisfies the n on- 

homogeneous linear partial differential equation with complex coefficients

which are functions of time of the form

1 ^ ■-BX. _ ' 2^1 , .1 3 b 5 H
niL S (jiwF ^ *** L ^t + H K

~L (3

where L and K in equation (3.17) are obtained by replacing D by jCO in 

equation (3.3) and (3.4)*

It is seen that Zadeh*s frequency transformation is equivalent to 

going from the unsolvable equation (3.1) to a more difficult equation (3.17), 

Zadeh also points out the intuitively obvious case of a LTVP system 

with slow variation of parameters, in which case the. first approximation 

to the system function at any instant is the same as the transfer function
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obtained by freezing the parameters at that instant. This is then de-
' ■ I ■ ' . ■

fined as the frozen system functibn.

Zadeh also mentions the interesting possibility of the bifrequency
i •

transformation. This is essentially the Fourier transformation of the 

system function defined by equation (3.16) where the variable of trans-

formation is t. Ho particular use of the bifrequency function of a
.1 ’ ' ■ ’ ' ■

system is known at this time. ;

In summarizing, it is felt that the frequency analysis approach

transforms one unsolved problem in the time domain to another unsolved
|

problem in the frequency domain. !
3.2.4 The Transform Method([28].iChap. S), (Aseltine [46])

In this particular method, an equation of the form (3.1) is solved 

by defining a suitable integral.transformation, such that when both sides 

of equation (3.1) are operated on by this particular transform, a math-
! s

ematically tractable equation results. This method gets quite complicated 

even for a second order system [45].

Aseltine considers the solutions of a second order LTVP system of the
iform 'I

a(t) q" + b(t) q* + d^q = e(t) (3.IS)

where the primes refer to differentiation with respect to time.

Aseltine seeks an integral transformation of the form
tL [q (t)]-Q($) =j^q(t) h(£ #t) dt

where h(% ,t), the kernel, is a function of time and of the transform

variable ^ , and Q(^) is called

(3.19)

the transform of q(t)<

It is now required that the application of the transformation (3.19)
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to the LTVP system equation (3.18) results in
fK$ )Q($) + d Q(^ ) = E (Tj> ) +[terms involving initial

conditionsJ

where f(J( ) is an arbitrary function of the transform 'variable;.
By redefining the kernel to include a function g(t), which will 

make the differential operator of (3.12) self adjoint, one obtains 
h(J ,t) 4rg(t) xk (]p,t) 

it is shown that 

g(t} =

and k(]p ,t) satisfies the homogeneous partial differential equation

a(t)J^ k(},t) + b(t)A k(J)t) -ff^) k(>,t)

exp b(t) - a»(t)
a(t) dt

(3.20

(3.21

(3.22

(3.23

. The kernel function of the integral transformation depends on the 

coefficients of the homogeneous differential equation (3.23). Thus, 

use of this method, even for a simple second order LTVP system, involves 

constructing tables of transforms and their inverses for. each particular 

set of coefficients. It is seen that the work involved is monumental.

It can be shown that in the special case when the coefficients are. 

constants (corresponding to a time invariant system), the suitable 

Integral transform is the familiar Laplace transform.

3.2.5 Application of the Second Method of Liapunov [31]» [32] , [33I 
(Malkin [47?) (Szego [48])

The second method of Liapunov is useful only for determining the 

stability of a LTVP system. Ho information can be obtained regarding 

the response of the system to any inputs.

The following exposition of Liapunovas second method essentially 

follows reference [46]. In order to present the theorem, the following
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definitions are necessary,

Definition 3.5

A real scalar function V(l,t) is called, positive semidefinite

if

and

V(o,t) = o

V(Y,'t)> o

Note that Y refers to the state variables vector of the system, 

The vector of state variables Y is defined by equation (3.14). 

Definition 3,6

A real scalar function v(Y,t) is called negative semi-definite 

if ; . -V(Yst) is positive semi-definite,

Definition 3 .,7

A real scalar function V(Y,t) is called positive definite in. 

the Liapunovas sense if 

?(ost) = o

and V(Y,t)>,w(Y)

where

and w(.o) = o

Definition 3.8

A real,scalar function V(.Y*t) is called, negative definite.in 

Liapunov!s sense if - ?(Yst) Is positive definite.,

Liapunovas theorem

If for O tQ there exists a real scalar function: V(Y,t) in the 

neighborhood of the origin, V(Y5t) being continuous and possessing 

continuous partial derivatives with, respect to y^ and t, and satis­

fying some of the following conditions.

w(Y) > o for y, o 1

(3.24)

(3.23)



1* ¥(Y,t) is positive definite in Liapunov’s sense for t^ tQ
df2a0 ^ is not positive in some region S around the origin of 

the phase space for t!^t0,
d¥or 2b, ^ is negative definite in Liapunov’s sense in S for t^t„ 

2c, is positive definite in Liapunov*s sense in S for tS*t .CTO .. O
3* Lim ¥(X,t) = o uniformly on t, for t^t ,

l|T||-»© 0

where Hill refers to the Euclidean lorn of the vector Y»

4. Lim ¥(Y,t) *00 uniformly on t, for t^t_«
||r||-»oo 9

Then the trivial solution Y - 0 corresponding to the origin of 

the state space is:

a. Stable in S if the conditions 1 and 2a are satisfied#

b. Asymptotically stable in S if 1 and 2b are satisfied and

either A(t) is bounded or there exists a real scalar function <J"(t) 

which is defined, continuous and increasing for with<T‘(t0) =

such that
St ^ —cP*C^(lfor every t^tQ.

c. Uniformly Asymptotically stable in S if 1, 2b and 3 are 

satisfied.'

d. Unstable in S if 1, 2c and 3 are satisfied.

The crux of the Liapunov’s second method lies in obtaining a suitable 

¥ function which will yield useful answers„Except for the trivial case 

of a linear time invariant system (for which the Routh criterion could be 

used to determine stability), there is no general method for determing a 

suitable ¥ function.



3.2,6 Analysis by Simulation (Matyash [49]). (Laning [50l)
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This appears to be the most fruitful method for comparing LTVP 

systems,.. This essentially means that the system is simulated on the 

analog or.digital computer. The response of the system to any desired 

input may then be', determined. Here actual operation records of equivalent 

systems could be valuable,

3.2.7 Discussion of the Six Methods

The six methods for analyzing LTVP systems discussed so far have a 

common and serious disadvantage as far as performance specifications are 

concerned. The starting point for all these methods is the assumption 

that the time varying system can be mathematically described to a fair 

degree of accuracy. This assumption presupposes that it is possible to 

experimentally determine the mathematical description of a piece of hard­

ware. This is a severe assumption from a strictly theoretical viewpoint* 

There is no kno*m method whatsoever of obtaining the differential equation 

governing a piece of hardx-fare by any means, experimental or otherwise, 

even if there is a priori knowledge regarding the linearity of the system, 

if the system happens to have time varying parameters. - The last'state­

ment .is true only if the system is treated from a pedagogical viewpoint 

of a black box with an- input and output with no means of knowing what is

rarely true in practice where it is 

often possible to estimate the equations governing the system with a fair 

degree of accuracy.

It is apparent from the discussion of the first five methods that

response.of LTVP systems in any but the 

most trivial cases is a very.difficult matter. 1 However the simulation 

method could be used in almost all the cases where it is possible to

inside the box. However this is

analytical determination of the r



describe the system mathematically.

It is also evident from close examination.of the first five methods 

outlined here for analyzing systems that this area warrants con­

siderable research before any great progress can be expected in analyzing 

and synthesizing them, . Despite the fact that the stability of LOTP 

systems is a rather interesting and intriguing problem and a number of 

researchers are working on this facet, it is felt that more efforts should 

be concentrated on determining approximate, if not exact, methods of 

obtaining responses of LOT? systems to specific inputs. The solution 

of the latter problem may be the answer to the problem of specifying 

LOTP systems,

3*3 Recommended Specifications .

It is seen that the general problem of specifying LOTP systems is 

not an easy one to solve, However it is possible to classify certain 

IOTP systems so that some of the linear specification in reference [l] 

are.valid for them*.

It is difficult to obtain any specification for a LOTP system on 

the basis of absolute stability as defined earlier. However, for 

certain applications, it may be necessary to. specify that the system 

should be asymptotically stable. For Certain other applications 

(example; a control system for a "short life11 missile) a short time 

stability specification may be sufficient.

For purposes of performance specifications, the following definitions 

are made for LOTP systems.

Pafinition 3*9 Fast and Slow Variation of Parameters

A LOTP system will be. defined as fast varying, if the maximum rate 

of change of. any closed loop parameter (for example a closed loop pole



typical value for x is unity.

- 41 -

or zero) exceeds a predetermined value x per cent per second. A

If the rate of variation is less than

x, the LTVP system will be determined as slowly varying.

Definition 3.10 Large and Small Variation of Parameters,
n-->: ■ t-........ "'i1'1 11 1 " i 1 ''I -"V1 " 1 ■ 1 " Jl ,r L'r m: I;"™ r"" 11 '' " u

A LTVP system will be defind as having large variation of para­

meters if the maximum change in any closed loop parameter exceeds y 

per cent, A typical value for y is 10. If the maximum change is 

less than y5 then the LTVP system will be defined as having small 

variation of parameter.

The definitions here are made on the basis of variation of closed 

loop parameters. The variation of open loop parameters is of no consequence.

An example of a system with large, slowly varying parameters is an 

aircraft starting its flight with a full load of fuel. The initial 

mass of the aircraft and fuel is comparatively large, and a mass change 

of 2C$5 due to the fuel being used up over a period of 5 to 6 hours is 
typical. Here we see that the rate of change of mass is small whereas 

the change is mass is large.

3.3.1 Time Domain Specifications

(a) LTVP systems with fast variations of parameters.

It is recommended that for acceptance a family of step function re­

sponses of the simulated "unfrozen system" satisfy the transient response 

envelope specification [1]. The dimensions of the envelope shall depend 

on the applications. Whenever possible, it is recommended that the step 

function responses of the actual system be obtained. It is also recommended 

that the mathematical description of the simulated system be furnished 

along with the step responses.
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(b) LTVP systems with slow variation of parameters. "

It is recojtms.end.ed, that for acceptance a family of step function 

responses of the simulated or actual, frozen, or unfrozen system satisfy 

the transient, response envelope specification, the dimensions of the 

envelope again depending on the applications.. Whenever possible, it is 

recommended that the response of the actual system be used. If the 

system has been Simulated to obtain the response, it is recommended that 

the mathematical description of the system be furnished,

3.3,2 Frequency Domain Specifications

Frequency response does not have any significant meaning in the case 

of a general LTVP system. This is because a harmonic input to a LTVP 

system may not- even result in a harmonic output. This point is illus­

trated by the following simple example.

Consider the system shown in Fig. 3.1. Let e^; be the sinusoidal

input E sin Cut and e ■the output,, ©
It is seen that

e„ = iEn ando 1
e± =[E® * r f '(t) + rJ i ' .

Hence

■ e© 55 E-j+i^+rfCt^ ei
(3.26:

_ '1 “ ■Ri+R© 1+ ir+E',’r ■"

1 o

It is easy to see that equation (3.26) is similar to equation (3.1) 

and hence the system shown in Fig, 3.1 represents a LTVP system. Equation 

(3.26) may be rewritten as follows;



o
 <e

E sin uit

R0+ rf (1)

a Time Varying
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e;o
Ei

R,+F 1 ©

«t> + .-
R+R (R+R rX o 1 o

...» E sin&H (3.27

It is seen that in any but the most trivial case corresponding to 

f(b) “constant, the right hand side of equation (3.27) is not sinusoidal.

Frequency domain specifications are not recommended for systems 

with fast variation of parameters. For systems with slow variation of 

parameters, the '’envelope specification" HI on the frequency response 

of the "frozen" system is recommended. The dimensions of the envelope 

should depend on the applications.

The general state of the art of specifying LTFP systems is 

schematically shown in Fig. 3*2*
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CHAPTER 4

PERFORMANCE INDICES

Abstract

This study.was undertaken to determine whether or not Performance 

Indices should be used to evaluate and specify control systems.- It is 

recommended that they not be used at this time/by the Air Force for the 

stated purpose,

A performance index is defined and detailed discussions are pre­

sented for the various performance indices. : Analytical methods for 

evaluating performance, indices are .presented.

4.1 Introduction and Recommendations

A Performance-,Index* (Figure of Merit) has been defined by Anderson* 

et al ([51], p.,182) as: "Some mathematical function of the measured re­

sponse* the function being chosen to give emphasis to the system specifi­

cations of interest." Ideally for evaluation* a Performance Index is a 

single: number in which a designer attempts to place his engineering 

judgment on the overall excellence of a system. The Performance Index 

may be chosen so that only one or a few system- properties affect its 

value. Or* it may be chosen so that it Is a function of all the important 

properties of a system»s response. This second type of Performance Index 

is the one of primary concern in this work. It is realised that there 

are many other criteria* such as reliability* size, weight* cost* etc,

*The terms performance index and figure of merit are used interchangeably. 
Most authors use the term Figure of Mepit* but the term Performance Index 
will-be used here because a Figure of Merit is usually a quantity to be 
maximized* whereas almost all the criteria here included are to be mini­
mized.
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which must be taken into account in selecting a system. Bellman [52], 

for example, discusses a more general performance index. However, 
these are outside the scope of this project. The performance indices 

covered in this report consider only system response.

Control engineers have been interested in Performance Indices 

for over a decade. This interest has recently received a new impetus 

due to research on self adaptive systems. The purpose of using per­

formance indices in self adaptive systems is the same as for previous 

workj namely, to determine the optimum values of system parameters which 

may be varied to optimize system performance. The unique factor in an 

adaptive system is that the system itself performs this optimization.

The Performance Index replaces the usual design specifications for 

a system, i,e,, instead of specifying that a system have a certain band­

width, rise time, etc,, it is only necessary to specify that the system 

have a certain (usually minimum) value of performance index;,

determine whether or not Performance 

Indices should be used to evaluate and specify control systems. Per­

formance Indices are judged here on the basis of their ability to select 

systems with good overall transient response when such factors as rise 

time, overshoot, and settling time are considered. Thus, if a performance 

index is rejected, this is not meant to imply that it is not valuable or 

acceptable for specific applications.

Almost all of the performance indices considered are based on step 

inputs. See the Final Report, folume 1 [l], for the ramifications of 

using step inputs for system evaluation.

It is not possible to say that one performance index, such as ITAE 

or ITSE, is the best because requirements vary. One index may be more

This study was undertaken to



applicable in certain applications than the others./ Thus, it is desirable 

to have a table of indices accompanied by .data from which a designer can 

choose the.index most applicable to his requirements. /

There are a few general rales which can be followed in the selection 

of a general Performance Index. However, the relative weighting,of these, 

factors,is difficult to determine in general...These rules are an 

elaboration .of .comments by frraham and Lathrop [53] *

1. A general performance index should lead to systems of■higher 

order, as well as second order, which judgment indicates are 

good Systems when their overall response is considered. This 

; ’ .property is called reliability,; - 

: 2. A performance index should be,selective* That is,, the optimum 

value of system parameters should be clearly discernable from 

some characteristic, such as minimum, zero, or maximum value 

of a. plot'of the performance index value versus System para- 

meters* /;:/ '.

3. .The; ease: with which a performance index can;.be applied is a 

consideration*:

The following Performance Indices.' are .considered in. detail in this 

studys,

IRAR: (impulse Eespqnse Area Ratio ).

Logarithmic Decrement

Control Area

Weighted Control Area

IAE (integral Absolute Talue of Emor)

: ISE (Integral Squared Error)

ms .Error..



Solution Time

Sett's Criterion 

Static Error Bandwidth Ratio 

Gain Bandwidth Product 

Beta

Bellman*s Performance Index
[

QSF (Generalized Error function)

Glovers Performance Indjex 

Zaborszky and Diesel*s Index

ITAE (integral of Time Multiplied by Absolute Error)

ITSE (Integral of Time Multiplied by Squared Error)

ISTSE (Integral of Squared Time Multiplied by Squared Error).
|

ISTAE (integral of Squared Time Multiplied by Absolute Value 
of Error) I

Aizerman*s Performance Index
i

Rekasius!b Performance jIndexj
It was the original intent of this work to investigate the use of 

performance indices as an important factor for general system evaluation.

It is now clear that this is impractical from the Air Force*s point of view 

at the present time. With the current state of the art performance indices 

can be used only for. system design, and perhaps as an aid to engineering 
judgment in the evaluation situation. It is hoped that in the future the 

confidence that comes with( extensive use will make possible the appli­
cation of a performance inliex as d major factor in the acceptance or

lI . '
rejection of a control system, System specifications that were recom-

mended in Vol. 1 [1] have been in

they fail to pass the test of fami

use for many years, while most perform­

ance indices are relatively new and still in the research stage. Thus

liarity and wide experience. It is



hoped that the Air Force and industry will continue research in the per­

formance index area, since it is obvious that this approach to system 

specification is more general and versatile than that presently recommended

Even though it is outside the scope of this project to make recom­

mendations in the design area, it is desirable.to report developments 

which have occurred during the course of this research* With this preface 

the following recommendations.can be made* ' The performance indices con­

sidered to be among the best of those presently in use for the general 

synthesis of systems ares ITAE, IST3E, ITSE, and ISTAE. Data are shown 

for all those indices except ISTAE to support the position stated. The 

inclusion of ISTAE is justified because of its similarity to ITAE, al­

though it places more emphasis on speed of response than ITAE. It is 

realised that one might.want to use Aizerman’s \5k\ method or consider 

such performance indices as the suggested by Bellman [52], However* the 

additional study required to make definite statements on their.applica­

bility to design will not be undertaken, since it is outside the scope of 

the work at hand, and this additional work would not affect the recommen­

dation on system evaluation. Both of these last named methods appear

interesting at present evaluation, and it is important that further

research be undertaken to prove or disprove their utility.

The data presented for ITAE, ITSE, and ISTSE are limited in quantity,. 

but they should prove adequate for the selection of one of the indices 

over the others. All. of the data are based on systems of the unity 

numerator type. This allows a more direct comparison of the indices.

Of course, it would be essential to have sets of data.for other types of 

systems if these IP are to be used in practice,.
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When a system is optimized with a Performance Index, the parameters

of the system are usually adjusted until a minimum -value of the Perform­

ance Index is obtained. Unfortunately, there is no assurance that only

one minimum point exists. If the joptimization is performed on a computer, 

one naturally wonders If another minimum point exists which has a smaller

value of the Performance Index. The logical approach to answer this 

question is the mathematical solution of the problem. The problem of 

finding the number of minimum points, their value, and the rate of change 

of Performance Index near the optimum points presents no formal mathe-
. ' ' I 'I ...

matical difficulties. However, the labor involved in obtaining numerical

ansitfers for even a fourth order system is formidable if a digital computer
| • ’ '

is not used* Even the problem of;preparing the algebraic equations re-
i ■ .

quired before a computer program can be started for higher order systems
i ■

becomes very time consuming, and this is after the Performance Index has
I ' ’ ■

been obtained in terms of system parameters. It is practical to solve
II

specific problems, such as designing a particular system, but the work 

required to study a whole class of systems such as unity numerator systems 

through the eighth and on is too large to perform on the present project. 

For completeness, this report includes some methods available in 
the literature for obtaining the iaathematieal solutions of Performance

Indices,

In conclusion, it is emphasized that this is a research area in

which it would be premature to ma 

Work is currently being done in t 

the professional societies, Howe 

It is believed that further exten

se recommendations for systems evaluation, 

iis area and it enjoys the attention of 

yer, much more work remains to be done* 

lion of Aizerman*s work would be especially

fruitful,
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4.2 Biseussion of Available Performance Indices

4.2.1 IRAR (Impulse Response Area Ratio)

Abstract and Conclusions■

IRAK is derived for a second order system in terms of the system 

damping ratio,- « The IRAS has been obtained for several systems and 

used to define an equivalent f by analogy to a second order system*

The percent overshoot of the system is compared to the percent overshoot 

of second order system on the basis of equivalentbeing equal to the 

actual^ ©f the second order system. The results lead to the conclusion 

that knowing the ISAS of a general system does not directly indicate 

commonly used system characteristics. It is not necessary to convert 

the IRAS data to an equivalent 'S s as is done in this study. The systems 

could have been compared to a second order system directly by using IRAR, 
However, the TEAR Is related to an equivalent damping ratio in this study 

because of the mathematical relationship between IRAR and Cf for second 

order systems, and to determine if could be extended to higher order 

systems by using IRAR. The results show that cannot be extended using 

IRAR*

IRAR Is not recommended for use as' a general performance index.

Biscussion

IRAR is a measure of the relative stability of a system. It can be 

determined'mathematically as a function of the damping ratio, J , for a 

second order system, or determined from response data for any system.

It is defined as the negative:of the positive area under the impulse re­

sponse curve divided by the negative area under the impulse response 

curve i.e*
IRAR = - &

Ikr* (4.1)



THAT? is derived, in the following for a second order system with a
closed loop transfer ftraction

The weighting function of the system if obtained by 

Laplace transform of equation (4.2)

the inverse

of the response is completed when

of response is completed whenThe "n"th

The positive area under the impulse response curve of any cycle is

now obtained integration;

(2n+l)

(jr*b8in VnfirJ t MJ]

2
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The negative area.under the impulse response curve of any cycle is now 

obtained, by integration.
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The IRAR is. now obtained by applying the definition of Equation (4.1)
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IRAR is plotted in Fig* 4.1 as a function of if for the second order 

system of Eq. (4.2), For small values of $ the criterion is insensitive, 

i.e., a relatively large change in^f yields a small change in IRAR with 

the result that knowing IRAR does not give an intuitive notion of the 

relative stability* For large values of IRAR the opposite is true* Then 

the criterion is extremely sensitive, a small change in results in 

a large change in IRAR* The exponential nature of Eq* (4*6) suggests 

using a logarithmic plotj however, the sensitivity appears as bad or 

more inadequate on a logarithmic plot* The sensitivity is further 

illustrated in Fig. 4»2 by plotting versus the rate of change of IRAR 

with y *

IRAR has been calculated from computer data for the optimum ITAE 

unity numerator systems through the eighth order. It has been obtained 

by graphical methods from the step function response data given in refer-

(4.6)



ts »y Second. Order System



700

600

500

400

300

200

100

0

- 57 -

d(lRAE)
d y vs, y for a Second Order System



ence [25] for the sero-velocity^error systems through the sixth order*

Although Zf is defined only for a second order'system, the value of IBAR 

for each System was used to obtain an equivalent by using Fig* 4*1*

This equivalent qf is plotted in Fig. 4*3 as a function of percent over­

shoot for each system where the number by each point represents the order 

of the system.: The solid curve is exact data for a second order system

defined by Eq. (4*2)» The purpose of the data is to determine if, in 

general, 1RAR leads to an equivalent which is related to percent 

overshoot identical to the relationship existing between and percent 

overshoot in the seeond order system of Eq. (4.2). Fig. 4.3 shows that 

a correlation does exist. Fig. 4.4 was derived from Fig. 4.3 to deter­

mine the accuracy of the criterion in predicting percent overshoot.

The percent overshoot error was doterained by the formula:
% error- ^OYershoot of general system - % overshoot of second order system* 

\ ? . ■' j '■'■■■"I' -1 ■^ overshoot of second order system ■" ^

. . ' u*7)

Fig* 4*4 shows that the accuracy of using IRAS to predict the percent 

overshoot of a general system is inadequate* While other quantities such 

as settling time, which are:..a measure of relative stability, could be 

examined; to: determine if better correlation exists between the IRAR of a 

second order system and a general system, for determining system character­

istics,. it is believed that the work would not be fruitful in view of the 

results that have been, obtained.
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Optimum ITAE Zero-Position-Error Systems Data 
From Computer Study

System
Order

IRAR %
Overshoot

Equivalent % Overshoot 
Eq.i.2)

% Overshoot 
error

2 19.4 4.9 .688 4.8 + 2.1

3 17.6 1.3 .671 5.7 - 77.2

4 37.2 2.13 ; .76 V 3.1 ' - 31.3

16S;4 : : 2.39 ; .83 , . 1.7 ,■ + 40.6

■ 6 12.8 5.46 .628 7.6 : - 28.2

7 6*5’ 8.94 15.2 - 41.2

■■ a . 7.44 8.16 .532 12.7 ■ - 35.8

Optimum ITAE Zero-Velocity-Error Systems 
Data Obtained from Ref. [53]> p. 283.

System
Order

IRAR %
Overshoot

Equivalent % Overshoot 
Second Order 
System, Eq. (4.2

% Overshoot 
error

0

2 . 15*5 7 :': . . .655 6.3 + 6.35

3 4.08 37.9 . .405 ■, 24 + 57.6

4 3.87 ' 37.9 .38 27.1 + 39.8

5 2.61 55.5 .31 ' 35 + 58.7
: -'6 2.0 - 56.8 .23 , ' 46.5 , + 22.2

Both , sets, of data are the average of two independent sets of graphical

calculations** The third significant figure of the above data is not justi­

fied by the accuracy of calculations*
IRAR Data for Fig* 4.3 and Pig, 4.4 

Table 4,1



- 62 -

4»2»2 Logarithmic Decrement

Abstract and Conclusions

logarithmic decrement is a measure ©f relative stability. Its use­
fulness is limited to second order systems. For a second.order system it 

is equal to twice the logarithm of IRAR.

Logarithmic decrement is not recommended for use as a general 
performance index,;

Discussion

Logarithmic decrement is defined as the natural logarithm of the 
ratio of the maximum response overshoot during oscillation to the 

slightly smaller maximum response overshoot one cycle later (Skilling
[56], p, 108').

The logarithmic decrement for a second order system such as the one 
defined by Eq,(4*2) is

Reference to Eq. (4*6) shows that logarithmic decrement is equal to twice 

the logarithm of IRAR, i.e.-,

IRAR was found to be inadequate as a performance, index for systems 
of order higher than two* IRAR is based on the area under the impulse 

response curve. Logarithmic decrement takes into account only the 
amplitude of the response curve and thus is more sensitive to the shape

(4*£>)

L, D, = 2 log IRAR (4.9)

of the response curve than IRAR, The inadequacy of extending logarithmic 

decrement to general systems can be illustrated by dpnsidering a practical 

third order system with the weighting function

W(t) = K-^e + K^e ""^eos +©), (4.10)



For ^>>06 it is easily seen that the logarithmic decrements for any 
two cycles of response are not equal, Logarithmic decrement ha? limited 

usefulness as a performance index,

4,2,3 Control Area

Abstract and Conclusions
the value of control area has been determined analytically for a 

second order system with a unit step input to be: ... -

' Control Area ~ 2lf (4*11)

Theextremal values of this criterion are of no benefit in determining 

whether or not a system is of value. The only way this criterion could 

be used would be by analogy to some standard system, such as a second order 

system; however, it was shown for IRAR that this leads to erroneons results.

Control area is not recommended for use. as a. general performance index.

- Discussion
Oldenbourg, Sartorius ([37], p» 66 ) and Nims ([58], p, 606) have 

suggested the control area criterion based on the minimization of the

Control Area. (4.12)

for zero^displacement^error. systems with a step function input. This 
integral gives the difference of the positive and negative area -under 

the error versus.time curve.
The analysis that follows shows the behavior of this criterion for 

a second order system with the weighting, function:
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The output for a step of input with amplitude A is obtained by convolution:
(fsinC(t) - oc fT?*'

(4.14)

The error can now be obtained by substracting the output from the input:

■fte(t) = S(T) - G(t) ■ -A-g—( f Sin \jl~ f2' t + \Jl -f2' cos \jl~f2 t

(4.15)

The control area may now be determined by integrating Eq. (4.15)
oo
f . edt 
^0

A f e~n (~fslxi _ \|l- ^2‘ cos \jl~f2't >
\f77

\(TF e “ ^ (- j* eos \jl-f2’ t + Vl-cf2'
sm

oo

Constrol Area = 2 f A 

Eq. (4.16) is plotted in Fig. 4*5 with A equal to unity. Control 

Area varies from zero for a system with a damping ratio of zero to in­

finity for a system with an infinite damping ratio. The extremal values 

of this criteria for a second order system in no way indicate an optimum 

system* i.e. the criterion has no selectivity. For a second order system 

(or any completely defined system) curves of control area versus any desired 

system characteristic can be plotted so that control area can be assigned 

a meaning in terms of common conceptsj however* this is precisely what one 

wants to avoid for a general performance index* unless knowing the re­

lationship of the criterion to a system characteristic for a particular 

system leads to knowledge of this characteristic of systems in general.

There is nothing unique about control area which would indicate that this 

is true.

0

(4.16)



Damping Ratio, y

Control Area vs
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4,2.4 Weighted, Control Area

Abstract and Conclusions

This criterion has been studied analytically and on an analog com­

puter, It has been shown that it yields an optimum third order system 

which is unstable.

The weighted control area performance index is not recommended as a 

general performance index.

Discussion

Nims (M, p* 606) has suggested that the control area criterion 

could be modified by time weighting the error, as shown in El* (4*1?)

oo
Weighted Control

Weighted control area as a function of damping ratio, is plotted in 

Fig* 4*6 for a second order system with a step input. This graph is re­

produced from reference ([53], p. 276).

Area ( t e(t) dt (4*17)

The extremal values of this criterion are of no value in selecting

a good system, but the zero value of the criterion selects a second order

system with a damping ratio equal to 0.5, which is usually considered

satisfactory. This suggests the possibility of using.the minimum value

of the absolute magnitude of the criterion as a figure of merit. To this

end a third order system

s3 + bs2 + f s + 1

was studied* Knothe (in an unpublished work) of AFMDG showed analytically 

that the system has a zero value of performance index when 

f2 -b ‘
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Graham apd Lathrop)Weighted Control Area



This relation was verified by Haldeman of AF1DG who showed that when 

f = b = 1 a transient will not be damped! i, e, the system is on the 

borderline between stability and instability even though it is optimum 

in the weighted eontrol area, sense.

This criterion is not recommended for use as a general performance 

index. Its lack of ability to select even a good third order system dis- 

qualifies it,

4,2,5. IAE (integral of the Absolute Value of Error)

Abstract and Conclusions

IAE is applicable to seeond order systems but has inadequate selec­

tivity for higher order systems,

IAE is not recommended for use as a general performance index# 

Discussion

The IAE (integral of the absolute value of error.) is defined by the

This criterion discriminates against total error independent of polarity, 

since the absolute value of error is used, A system is considered optimum 

in the IAE sense when it is adjusted to have minimum IAE to a step input, A 

method has been pointed out in the literature (Fiechesen [59], p. 244) for 

measuring this criterion with a standard rectifier type volmeter,

Graham and Lathrop ([53], p, 277) have found that the IAE criterion 

selects a second order system with a T = 0,7, A step input was used in 

the study# The selectivity is adequate for a second order system, but 

their investigation of a third order system showed the selectivity to be 

inadequate# The criterion value as a function of system parameters is

equation;
oo

(4,



shown in Fig* 4»$A, This picture shows that there is no change in the 

criterion value when the parameter b is varied from 1.25 to 2.0 and only 

a 1QC change in IAE for a 2 to 1 change in parameter c. Fig. 4.&C shows 

the variation of the output as a function of these system parameters. 

Graham and Lathrop report that IAS is even less selective for higher order 

systems.

The inability of this criterion to make a definite selection of good 

high order systems disqualifies it for general use,

4.2,6 ISE (integral of Squared Error)

Abstract and Conclusions

ISE has been used, primarily-because of mathematical convenience.

It selects systems which are underdamped. The selectivity is also 

inadequate.

ISE is;not recommended for use. as a general performance index, 

■'.Discussion.

The ISE (integral of squared error) criterion is defined by Eq. (4.19)

ISE = e2(t) dt. (4.19)

Although the criterion can be used with any input for which the integral, 

converges, step inputs have been used in this discussion. This criterion 

discriminates against total error independent of polarity since error is 

squared. Hall [60] has shown that for a second order system ISE can be 

determined as a function of andWQ with a step input. The relation­

ship is

ISE - -.* •4^2 (4.20)
©



This equation is plotted in Fig. 4.7 with W equal to unity® The criteri-o
on has an optimum value when ~f is equal to ,5. *.A system is considered 

optimum. when it is adjusted to have minimum ISE* P Hall [60] concluded 

that ISE selects systems which are too underdamped for many applications 

and that selectivity is poor®

Graham and Lathrop ([53]* p» 277) have also found that the selectivity 

is poor® This is illustrated in Fig® 4,$A® Fig, 4«SC shows the output 

response as a function of system parameters, illustrating the results of 

inadequate selectivity® It can be seen in Fig® 4*8A that a change of 

parameter c from 1,6 to 2,4 results in only a 4*5$ change in the criterion 

value®

. ISE lias been used primarily due to mathematical convenience. Using 

Parseval»s theorem, frequency domain information can be used to evaluate 

ISE.J However, the results obtained may be misleading. Hewton, Gould, 

and Kaiser ([6l], p. 46) work an example which leads to an unstable system 

for an optimum mathematical value of the criterion. The restrictions to 

impose on the mathematical solution are obvious in this case® Interpreta­

tion of the mathematical result in a higher order system may be formidable 

task® '

Clark [62] has used ISE as a direct measure of the speed of response, 

percent overshoot, settling time, and other salient characteristics of 

the transient response® He defines error as being the difference between 

the system response and a desired response® The ISE criterion is applied 

in the same manner as others have used it but with the error as defined 

above® When ISE is very small, the system must be similar to the known 

model, hence, the characteristics of the system a re known. It is recog­

nized by Clark that the idea is useful for evaluation only when ISE is small
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Figure 4-7

of Squared Error vs.for a Second Order



If ISE Is small for the system tinder evaluation, (in the sense that 

Clark uses ISE) ISE is hardly needed, since the actual response could be 

superimposed on the desired response and an evaluation could be made* 

However, if ISE is not small, the method fails, according to the author. 

Therefore, this idea must be . rejected for system evaluation in the sense 

desired in this work.

For self adaptive systems, if the system can be made to respond 

approximately like the model (i.e. the desired response), the use of ISE 

would insure proper performance, and hence be good for system evaluation 

or model identification. However, it appears likely that other criteria 

could be used which are easier to instrument sueh as IAE. For analysis,, 

it is advantageous to use ISE, but for building hardware, the case where 

it is agreed that IS! performance is acceptable, there is insufficient 

evidence to justify a recommendation in favor of ISE over other perform­

ance criteria, e.g. IAE.

System synthesis is another distinct use of the method that should 

be considered. There is no reason why ISE can not be used in the same 

manner that Aizerman used a performance indexj in fact, Glark has done 

so. Whether or not ISE is superior in a synthesis application of this 

type is not known.

It should be noted that lewtom, et.al. [6l] expressed the same 

philosophy as Glark when they said 11 the performance index is the integral- 

square value of the error between the ideal output and the actual output*1. 

They, of course, do not give detailed treatment to cases where the ideal 

output is a step function response, as Glark has done.

This criterion does not have sufficient merit to justify its recom­

mendation for general use. In particular, its inability to select a good



higher order system disqualifies it*

4.2*7 rms Error ■ •
I, !■ ■ I I ■ V 1 '       

Abstract and Conclusions

This criterion, has beer;'.used primarily due to mathematical convenience. 

Systems optimized by this criterion are unsatisfactory in many cases due 

to inadequate damping.

The rms error criterion is not recommended for use as a general per­

formance index.

Bjscussion

The rms criterion is defined ( [63],p. 3 09) by the equation,

rms error = , .lim
T->oo

A large amount of literature ( [63] , p. 309), [6l] , (fruxal [64] , pp. 

4-74), ( [3] p. 413 ) is available concerning this criterion, not be­

cause of its goodness, but primarily because of its mathematical conven­

ience in systems concerned /with stochastic inputs, although any input 

could be used for which the definition has meaning. Truxal ( [64] , pp. 

4-74) and ( [3] , p. 413) points out that optimum rms error systems are 

not staisfactory in many cases. He says "A system may be comparatively 

unstable, being effective in rapidly reducing large errors but allowing 

undesirable long tails of error or excessive overshoot". The rms error 

criterion may be a good starting point but does not yield a good final 

system.

The reason this criterion selects a system with a relatively low 

degree of stability is that the error is squared and, hence, it weighs 

most heavily the large error and produces an optimum system which rapidly

'(t) dt
i

(4
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reduces large error* The rapid reduction of large error results in large 

overshoots or low damping.

James, Nichols, and Phillips ( [63] , p» 309.) were motivated to use 

the ms criterion apparently because Wiener [65] used it for the analysis 
of stationary time series. . They also point out that its wide usage is due 

to its mathematical convenience and because there is a highly developed 

body of mathematical knowledge built around mean square values # In their 

example on a radar automatic tracking system (.[63] , p. 328) they point 

out that using the rms criterion led to almost the same results that were 

obtained using standard design techniques, plus some; triai»and~error 

adjustments. In this example the criterion did.not improve the design 

and, as already noted, the criterion can result in unsatisfactory systems. 

The fact that the final design is compared to the results from other 

methods may be good engineering, but this indicates■a lack of confidence 

in the performance index.

This criterion is not recommended for use as a general performance 

index. ^

4.2.8 Solution Time

-Abstract and Conclusions

This criterion chooses a good second order system. It chooses higher 

order systems which are underdamped.

Solution time is not recommended for use as a general performance 

index.

Discussion, '

This criterion has been defined in reference (Guillemin [66] ) as 

follows 5

“After a unit step function is applied, the time for the solution to
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reach + 5$ of final value and not exceed it shall be a minimum for the 

•optimum! transient response of systems of a given order*" The criterion 

name is abbreviated as ST.
This criterion chooses a second order system with a zf - 0.7, which 

is considered good. For higher order systems the response chosen as 

optimum becomes.increasingly oscillatory apd approaches neutral stability 

for a sixth order unity numerator zero-displacement-error system according 

to J. ff. Froggatt, Jr. ( [6?] , p. 20). He also found that the criterion 

is not always precisely reproducible due to the .nature of the criterion 

and its selectivity.

This criterion is unacceptable for systems above the fourth order.

4.2.9 Fett *s Criteria

Abstract and Conclusions

The criteria have no meaning for an overdamped system. They have 

inadequate selectivity and are difficult to apply for an underdamped 

system.

Fett*s criteria are not recommended for use as general performance, 

indices. .

Discussion
" ... '■ ' ■

This criterion was suggested by G . H. Fett in the discussion of a 

paper by D. Graham and R. Lathrop ( [53] ., p. 28?)on ITAE. He defined 

the criterion as being the value of the output displacement at the first 

overshoot, when a unit step displacement is applied to the input, multi­

plied by the time required to reach tihe maximum deflection. The criterion 

value then is a measure of the area on the displacement time curve of the 

rectangle bounded by the maximum deflection and the overshoot time.

Due to the vagueness of the statement of the criterion, the meaning of



overshoot is not explicit, Froggatt considered four possible definitions 
of the: criterion, all of which led. to a second order system with a == , 0.5. 
He, did not investigate systems higher than the third order because it was 
felt that at best the criteria would choose responses similar to the solu­
tion time criterion, which responses are unaoeeptahi©. The criterion has 
no meaning; for a. system without overshoot. For a third order system a 
small change in the optimum criterion value results in a large and 
irregular change in the nature of the response. Biscontinuities and 
irregularities exist when the criterion yalue is plotted as a function 
of system parameters. This makes it difficult to determine the optimum 
value of the criterion.
4.2.10 Static Error Bandwidth.Rati© ^

This performance index is discussed in the frequency domain speci­
fication section (Section 3.7) of Vol. 1 [l] . It is not recommended 
for use as a general performance; index.
4.2.11 Gain Bandwidth Product

. This performance index is discussed in the.frequency domain speci­
fication section, Section 3.6 of Vol, 1 [l] . It is not recommended
for use as a general performance index.
4.2.12 Beta

Abstract and Conclusions
Beta is the transfer function from the output to the input of a 

system; i.e., it is a function of the elements in the feedback path.
This quantity is often designated as "H" in control systems. I© reference 
has been found in the literature where beta is used in an electromechanical 
system other than those involving meter movements* It is used principally 
in feedback amplifiers. Beta used by itself'has no meaning as a;perform-
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anee index, Beta multiplied by the system open loop gain is a performance 
index; in that it is a measure of system error. The more general error 
constants contain the same infomation* hence, there is no justification 
for using beta.

Beta is not recommended for use as a general performance, index*

- Discussion
The earliest reference to beta found in the literature Is by H. Black 

( [6S] , p. 114) (1934) *Jho defined beta as the "propagation of feedback 

circuit"* Blaek used the quantity beta multiplied by the forward part of 

the system open loop gain, Nyquist ( [69] > P* 126) used a product equal 

to this quantity but did not define beta, G. Happell and W, Hesselberth 

( [70] , p. 302) have defined beta as the voltage feedback to the input 

divided by the output voltage.

This is identical to the quantity which is often denoted as "H" in con­
(4.22)

ventional system block diagrams.
Beta is used extensively in the literature in conjunction with 

feedback amplifiers. I© references have been found where this quantity 
is used with electro-mechanical systems other than systems involving 
meter movements. The product of system gain and beta is used in feed­
back amplifiers as a performance index because the feedback reduces 
distortion* effect of component variation* etc. This product is some­
times expressed in deeibels and the number ©f decibels being fed back 
is used as a performance index. Since system gain is a function of 
frequency* the use of this performance index can lead to erroneous
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conclusions, unless it is \ised only at the frequency at which the gain 

beta product.is specified. This is often;done using the dc gain,-in 

which case the same information is available from the error constants 

( [1] , Section 4.S). The error constants are more general and are 

recommended specifications.

4.2.13 ITAE (Integral of Time Multiplied by the Absolute Value of Error) 
Abstract and Conclusions
This criterion has been treated extensively in the literature by 

Graham and Lathrop ( [53] ,p. 273), ( [?l] , p. 10), ( [72] , p. 153).

Only the essentials are repeated in .this, report. ITAE chooses .good 

unity numerator zero-position-error systems. The optimum ITAE zero- 

veloeity-error systems have excessive overshoot, ITAE is considered to 

be one of the best performance indices available, but it is not recom­

mended for system evaluation (see the introduction for further discussion). 

Discussion

Graham and Lathrop ( [53] , p, 273) have suggested using a perform­

ance index defined by equation (4.23),

(4.23)

A system is optimized.using a step of position input and is optimum when 

ITAE is a minimum. In words, the criterion is called the integral of 

time multiplied by the absolute value of error1, ITAE evaluates system 

error in a weighted manner which is intuitively good, in that it dis­

counts initial error, which is a basic limitation of all systems, and . 

magnifies error which persists in time. It discriminates against both 

positive and negative error and evaluates all three of the important

ITAE s(t)| dt



quantifies — speed, stability, and accuracy.
ITAE can be evaluated by referring to data which is reproduced from 

reference [53] . Fig* 4*SB illustrates the superior selectivity of this 

criterion. The selectivity may be . compared, to two other criteria which 

are more selective than most other criteria, by referring to Fig* 4»BA. 

Although this data is.for a third order system, Graham apd Lathrop have 

found that the selectivity is good through the eighth order systems, 

the highest on which they- reported. Fig* 4*9A shows the step function 

response of the optimum ITAE unity numerator systems through the eighth 
order* The criterion chooses a second order system with a ^ “ 0.7.

Fig, 4.9B shows the step function Response of the optimum zero-velocity- 

error systems through the sixth order, and Fig* .4*fG shows the step 

function response of the optimum zero-acceleration-error systems from 

the third through the sixth order* The overshoot .is excessive. This 

fact is sufficient to negate the possibility of using ITAE by itself to 

select systems of any type other then the zero-position-error type.

On the basis of selectivity and the ability to select good zero- 
position-error unity numerator systems, ITAE demonstrates that it is a 
superior performance index. It is also shown that ITAE does not lead to 
zero-velocity-and zero-acceleration-error systems which one would con­
sider superior or even as good as those obtained by conventional design 
procedures. In addition, it is felt that results with unity numerator 
systems are not. sufficient to insure good evaluation results with all 
non-unity numerator systems. This comment is applicable to all perform­
ance indices, and few have been studied as thoroughly as ITAE.
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COEFFICIENT c

COEFFICIENT c

Integral' of squared error and integral of absolute value of 
error criteria applied to the step-function responses of third-order systems

The integral of time-multiplied absolute value of error cri­
terion applied to the step-function responses of third-order systems

A B

C?

Step-function responses of third-order systems with the transfer function
C(s) __1_______
i^s' s^ + bs2 + cs + 1

C

Fig. 4-8

Selectivity of Some Criteria 
(From Graham & Lathrop)
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NONDIMENSIONAL TIME

Step-functions responses of the optimum unit- numerator transfer systems, second to eighth orders. These responses have a minimum integral of time-multiplied abso­lute value of error

NONDIMENSIONAL TIME
Step-function responses of the 

optimum 2.ero-veIocity-error systems, second 
to sixth orders

B

NONDIMENSIONALTIME
Fig. 26. Step-function responses of the opti­
mum zero-acceleration-error systems, third to 

sixth orders

c
Fig. 4-9

Step Function Response of Optimum ITAE Systems (From Graham & Lathrop)



4*2*14 ITSE (integral of Time Multiplied by Squared Error)

Abstract and Conclusions

ITSE is considered to be one of the best perfonaan.ce indices. How­

ever, it is not recommended to the Air Force for system evaluation (see 

the introduction for qualifications).

Discussion

ITSE is defined by the equation

A system is considered optimum when the above integral is a tnim'itmm,

A step input is used for the evaluation.

This criterion weights time error in the same manner as ITAE, but 

weighs large error more than ITAE due to error being squared* ITSE 

proved to be satisfactory in two studies (Gibson [73] ), (Gibson [74] ) 

at Purdue University with adaptive systems.

ITSE has not received exhaustive study, but it has. proved adequate 

in all cases where it has been used or studied. Data for unity numerator 

zero position error systems are shown in Fig* 4.10. This data is re­

produced from work by (Stone [75] ). From this data and from the re­

sults in reference [73] and [74] , it is concluded that ITSE is one of 

the best criteria considered in this report*

4.2.15 ISTSE (Integral of Squared Time Multiplied by Squared Value of Error)

Abstract and Conclusions

ISTSE is one of the best performance indices considered in this study.

It has been thoroughly studied by Grow [76] for type one unity numerator 

systems* However, as indicated in the introduction, it is not recommended

00
(4*
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for system evaluation.

Ms cus s ion

This performance index is defined by the equation

■O©

ISTS1 ■/
§

(4.25)

A system is considered optimum when the above integral is a tnim'wmni,

A step input is used for the evaluation.

§row obtained optimum type one unitity numerator systems through 

the eighth order by an analog computer study. These are not reproduced 
he re 3 see JWJ * The step responses of the systems are judged to be good.

Cto the basis of this work 1STSE is considered to be one of the best per­

formance indices available. However, for system evaluation on specifica­

tion it can not be recommended for use by the Air Force. See the intro­

duction for details ©f this decision.

4.2.14 ISTAE (Integral ©f Squared Time Multiplied by Absolute Value of Error)

Abstract and Conclusions
ISTAE is considered to be a valuable performance index because of its 

similarity to ITAE, ISTSE and ITSE. It has received little attention, but 

it is believed that ISTAE Is of value for those applications where minimiza­

tion ©f persistent error is especially important. For the reasons given in 

the introduction it is not recommended for system evaluation.

Mscussion '
m irwr.wiwwir irgi ■■ w:;;.—

This performance index is defined by the equation

m
ISTAE = / t2 e(t) dt (4.24)
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A system .is considered, optimum, when the above integral, is a minimum.

A step input is. used for the evaluation,

the .salient feature of this performance index whieh makes it valu­

able is its ability to heavily penalise persistent errorj i.e, the system 
must approach equilibrium rapidly. This statement is not based ©n data 
but by analogy to ITAE, ITSE and ISTSE.

4*2,17 Hideout and Schultz work

Abstract and Conclusions
Rideout and Schultz; [77] have worked with performance criteria of 

the general form.

• oo

They point out that criteria such as ISE, ITAE, etc. are special cases of 

equation (4.27). In their work, it is emphasized that criteria should 

not be chosen because they make the analysis problem easy* The avail­

ability of computers•enables a designer.to use complicated criteria.. . 

No new performance indices are presented which should be considered in 

this work| hence, no recommendations are necessary. ...

Discussion
Schultz and Rideout [77] have published one of the most compre­

hensive papers on performance indices. They divide the area on a histori­

cal basis and classify the work as past, present and future. The main 

value of the paper to a reader of this report is one organization of the 

material. The material was written with a different motivation than this 

report. It is a survey of the area, a classification of the different 

criteria, and an approach to performance criteria from an overall philo-

(4.27)



sphieal view, while in this report it is desired, primarily to examine the 

different criteria for their utility in system evaluation. Rideout and 

Schultz report on three paper? [78] , [79] , [SO] , not included in this 

report which are considered to be of importance to researchers working in 

this area. Their papers will not be discussed here because the ideas 

expressed are at the germinal stage and have not been developed sufficiently 

for the application of system evaluation,

4.2.18 Aizerman*s Work and Its Extension ( .

Abstract and Conclusions

This work is interesting and is a fruitful area for further research, 

however, it can not be used for system evaluation and specification at the 

present time by the Air Force,

Discussion

.. Aizerman*? approach to system synthesis via performance indices is 

not philosophically different from what others have done, e.g, see Newton 
et. al», [61] , Aizerman uses a performance index to minimize the 

difference between system response and a desired response. For the desired 

response he uses a model which could be called a model performance index.

To avoid confusion the performance index used to null the system and model 

will be referred to as the minimizing performance index.

A translation of Aizerman*s [54] work, is contained in Appendix B, 

so that only a brief description need be included here as a introduction 

to more recent work by Rekasius [3lJ .
Aizerman proposed the minimizing performance index

GO
I 53 X2 f + x 4 (4.5

1 2
O

+.. L. 

h

2n 2 dt . i3*l,2,>.,.,n
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which he used to minimize the difference between the actual system re­

sponse and the model, where

e is the error of the actual system 
X ^ are constants available from the differential equation of 

the model.

It has been shown that when i=l(the simplest case), the system can be 

made to approach a first order model with the characteristic equation
'■■■' a- 2 .
X +■ U ^ ;.X = 0 ;.'

Unfortunately, the characteristic equation alone does not describe a
(4.29)

system, so.: this, result is. misleading, ft was also shown that the maximum

deviation of the system from the model is

mm - rain man
/C12 (4.30)

where:

Ax is the maximum difference between the actual response x(t) of 

the optimum, system and the modei.

Iw,.m is the value of the minimizing performance index when the 

system is adjusted as elose to the model possible,

I . .is the value of the minimizing performance index for thenmxi 21XB
model when it is ideal in the performance index sense.

This result is of questionaSifevaiue because it establishes an upper 

bound value which is too large,to be of practicaluse..

Rekasius [8l] has suggested the following minimising performance

index,
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I, - k

oor 2x +

k k
2 2 2*-
i=l j=i+2

^ 2 ,d1x
i=l 1 dt

,i
~ d x d^x

■ j dt1 dt^

i-2

dt k<n (4.31)

where n is the order of the actual system and k is the order of the 
ideal model, x(t) is system error, which is defined as the difference 

between the desired value of the steady state response Ggs and the 

actual response of the closed loop system. If the system is asymptotically 
stable (and this is true for a stable linear system) the performance 

index; becomes
oo r

x +
1=1
r *4V i dt1:

2 dt + x^( 0) +

k ■ r
1 °i+l dt1 k< n

■ ' i=l

Synthesis Procedure .
The model is described by the characteristic equation

x * ^l If + * * * t = 0
k dtk

(4.32)

(4.33)

The minimum value of this P. I, Equation (4< 

closed loop transfer function for the model.

■die) . 
S(s)

corresponds to the

^ k ^ k-1f s. + X. s +k k-1

(4.34)
. . . + <tr ^s+i

Hence this P* I. is applicable only if the model can be described 

by a unity numerator equation, which, in general, is not the case. To
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specify the performance index in detail the model response must be described 

in the form.

C(t) = C “ A. (4.35)
SS 1

i=l

or k
x(t) - A. e -t/ti

i=l
From this equation the 't/ Js are obtained. It may be necessary to 

resort to a graphical technique (Storer [82] , pp, 3 03-315)-to obtain a - 

mathematical description of the system.

Next to determine the performance index let

1^. = lim
w(x,|j|,:i , ..^|) dt - lim V(t) - V(o) 

t*->00 j t—>00r
In order to evaluate V(t) one may assume it to be of the quadratic

form n
V = a^x + a,, x

•i_i n n dJ x
a.

j=2 i=2 j ?i

di"h d-^~t 
1J dt1-1 dtJ'1

Since
m - dv W “ dt

d1^it is necessary to differentiate the V function and replace by
dtn

the lower order derivative of x to obtain ¥. The characteristic 

equation of the system is

,n ,n-ld x d x,,n ‘ ^n-1,, n-1 
dt dt

J , dx+ bi at+ v0

(4.36)

(4.37)

(4»33)

(4.39)

(4.40)

and the indicated process yields a. ¥ of the form



n
¥ *» A^ x + ■*».*"£*

n n
A.

di-1x c^"1* 
^dt1"1 df*’1

j=2 ' i=2 j . i

Equating A.^ to the corresponding terms of the 1^ (performance index

equation) yields a set of
• a + (n-1) + (n-2) + , . , . + 1

equations which are solved for all A..*s* V is now defined# For the
■■

answer to have meaning it is necessary that the system he stable. Inci­
dentally the procedure used to evaluate I, (as shown here) is identical 

to the procedure of constructing Liapunov*s functions for linear, autono­

mous systems 83 so that a check on stability is available. Routh’s 

criterion could also be used on the final system.

The procedure suggested for evaluating a performance index here is 

the method of evaluating integrals by the use of exact differentials.
The method is illustrated by the following example.

Example 4.1 ... —
Consider a unity feedback system with the open loop transfer

function 
G(s ) k

s(l+s)2
Let the model response be assumed as the following unity 

numerator second order system. That is, it is assumed that the 

step response of this second order model is given as ideal. In 

general, the designer is free to pick the order ©I his model, 

which in turn determines the order of the system, as the model must 

be of order one less than the system, 

x + 2x + x 5=5 ©
By comparing equation (4*43) with equation (4.28), it is seen

(4.41

(4.42

(4.43
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V*

V1

From equation (4.31) the performance index becomes 
I9 =* [x2 +‘£-12 ;£2 + ^02 &2 + 2 x x] dt

o
00■ r [x2 + 4x2 + X2 + 2xxJ dt

*C\

Since n=3 the V function equation (4.38) is;
V - au *2 ial2 ** + al3 ** * a22 i2 + a23 i * + “33**

and

3t“W-2a11XX+ai25CX + aX2X +VXX

+ a x x + 2 a x x + a x x + a x + 2a x x 
13 22 23 23 33

The closed loop transfer function for this system is

C(s) _ k2^7 " 3 ■ TT * 
s + 2s + s + k

and the characteristic equation is 

x + 2.x + x+ kx=0

This equation is solved for *x* and substituted into dv/dt to

obtain
dYdt = w = ai3 )s + (2a1;L - a13 - k a^) x ±

+ (d-^2 2anQ - 2k aQ<a) x x + (a13 33* 12 - ®23 )
+ (a + 2a - 2a - 2a ) x x + (a ~ 4& ) x^
.13 22 23 33 23 33'

Comparing this mth the integrand of I2 pne may write

(4.44)

(4.43)

(4.46)

(4.47)

(4.48)

(4.49)
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-k a = 1 
13

a —2a - 2 k a = 212 13 33
8, -«* 3» *“» 412 23 2a - a . - k a„ =5 011 33 23 .(4*50)

a - 4a =1 
23 33

a 2a ** 2a r* 2a 13 22 23 33
- 0

Simultaneous solution of these yields

a.. —
Is3 t. 4k2 + 3k + 2

a
2

e k +
11 2 (k2 - 2k) 22 k2 - 2k

a 5k "
aX2 2 . "rj 1 1 ir

k - 2k
^ k 4k + 4

(4.51)

*-1 2 - k 1.5 k + 1al3 * k ” k2 — 2k a23= k2 - 2k

The initial conditions for a step are

■AO) = 1
x(0) = 0 

x(0) = 0

Then

I2“
k3 + 4k2 + 3k + 2 x2 (0)

2(k2 - 2k)

k3 + 4k2 + 3k + 2
4k *- 2k2

(4.52)

The minimum value of I^, yields the optimum system and it is 

k = .43 

at

i2 . = 3.04 .;
min ■ -

The response of the system , is . shoivn in fig. , 4*12 - -

The-numerical value of the performance index for the model is

I = 2.00*
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In this example only ope system parameter was varied* The rise 

time is slower than that of the model.and the system has 2Q& over­

shoot* Better results can be obtained by allowing more parameters 

to vary*

In conclusion, the philosophy of this approach is quite interesting. 

It is believed that this method is a fruitful area for further research.

It indicates the possibility for the development of indices of performance, 

It is important that investigations be continued in this area.

4.2.19 Bellmanfs Performance Index

Abstract and Conclusions

Bellman*s criterion is a general formulation rather than a quanity 

which can be used for system specification and evaluation.

Discussion- - - ——- . /"
Bellman [52] has proposed a general performance index of the form

PI = G[%(t) ^ c(t)] + H[m(t)J

c0(t) is a vector representing the desired state of the control system,
; \

c(t) is the output.in vector form,, and m(t) is the control or input 
vector. G £ c0(t) *-c (t)l is a function which measures the cost of 

deviation from the ideal or desired state and H £m(t)J is a function 

which is a measure of the cost of control. Performance indieies such 

as ISE, IAE, etc., are special cases of this general formulation. .

4.2.20 Generalized Error Function (GEF)

Abstract and Conclusions

This criterion is not satisfactory for system specifications and 

evaluation at the present time.

Discussion

(4.53)
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Spooner and Rideout [843 have worked with a performance index called 

the ''generalized error funtion (GEF)" which is defined by equation (4.54)

GEF = lim 2T
t®M>©

(4.54)

where

) = rJ^WtT) -c(t)

The delayed input r(t-%) is a stationary random signal.

4.2.21 Glover's Performance Index

Abstract and Conclusion.. ... ... .—.........1 '■
This criterion is used with Stochastic inputs. Sufficient results 

are not available to recommend the use at this criterion.

Discussion

Glover [85] has proposed a criterion called "the mean weighted square

error" for filters. The criterion is expressed mathematicaHy as

PI » lim 
t-»oo

_1
2T

? &Ct) •>- fd(t)] 2

* W-<rz
(4.55)

where f(t) is the obtained function of time and f^(t) is the desired 
function of time.£ ^dictates the lowest absolute accuracy of interest.

In this criterion, error is weighted in a per cent manner, since error is 

divided by the desired value of the function. It is Glover's belief 

that it is more reasonable to consider error on a percentage basis than 

on an absolute basis, as would be obtained by the mean-square error 

criterion. The quanity I keeps the integrand finite and is chosen 

small enough to be essentially zero*

Murphy and Bold [86] considered a mean weighted square error previ­

ous to Glover*s work, but they used a deterministic function of t for
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weighting.

This method is interesting and mathematically traetable if adequate 

assumptions ean be made concerning the statistical properties of the input.

Sufficient results are not available at this time to predict the usefulness 

of the criterion*

4.2.22 Zabonszky and Diesel’s Performance Index .

Abstract and Conclusions

This criterion can not be used at the present time for system 

specification and evaluation as desired by the Air Force.

Discussion

Zaborszky and Diesel [87l have proposed' a generalized error criterion 

which can be used with deterministic and random inputs. Many other 

criteria are special cases of their criterion,which is

where the penalty function F is a function of e (t), time t, and parameters 

associated with the system v-^, v^ ..........,-v^ . The quantity p (t) is

the probability density function of the times elapsing from activating the 

system to all times of utilization of its output* The ban indicates an 

averaging process over an ensemble of different types of inputs,

4.3 Analytical Determination of Performance Indices

4.3.1 Introduction

With the exception of I3E (integral of error squared) most work re­

ported in the: literature on performance indices has been done with com­

puters; typically, a simulated system or family of systems has been studied 

by varying parameters until optimum values are obtained. The reason for

F[e(t),t,vi,v2
(4.56)



this approach is that most criteria are Tory cumbersome to handle 

analytically. Some mathematical methods that are appropriate for perform­

ance index problems will be presented, and Illustrated with examples in 

this section, 1

The mathematical approach to determining performance index values 

can be used to obtain the performance index of a specific system con­

figuration or for the purpose of determining the optimum value of system 

parameters. There are two cases to consider in the optimisation problem

a, ^Seai-free system configurations i.e, some of the system para­

meters are fixed,.

b. Free system configuration i,e, all system parameters are vari­

able, An optimum free configuration is the best possible in the perform­

ance index sense.

For fixed configurations the only information desired is the value 

of the performance index and possibly its rate of change as different 

parameters are varied* For free and semi—free configurations it is 

desirable to know the number of minimum points, the performance index 

at these points and the gradient near the points.

The material presented here is primarily intended for the class of

integral performance indices of the form 
©0 ,
/ tm e2(t) dt n = 0,1,2 - - -

© :

4*3Parseval* s Theorem

■* Sbt© that semi-free and free configurations are defined here. The 
definition differs from that of lewton, Gould and Kaiser [6l] ,

(4*57)
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Parseval's theorem [61] is not directly applicable to the whole 

family of performance indices described by equation (4.57), but with

modification it can be.applied to the whole family. The main utility 

of Parseval’s theorem is that it yields time domain answers from fre­

quency domain information, making it unnecessary to obtain system error 

as a function of time. If system error is

by Parseval»s theorem.

The integral on the right side of equation (4*58) can be solved by 

determining the residues of the integrand and its solution has been 

tabulated [61] for equations up to the tenth order of the form

where p(s) and q(s) are polynomials* The solution is in terms of the 

coefficients of the polynomials. This makes it unnecessary to determine 

the roots of the polynomials.

Thus, it is easy to obtain the performance index value of a fixed 

configuration system where n = 0 in equation (4.57). However, when a 

system is to be optimized the computational difficulties may be formi­

dable, since the solutions available are only a starting point for the 

optimization process. To determine.analytically the optimum system 

parameters it is necessary to take the partial derivative of the per­

formance index with respect to each parameter and set the resulting

the performance index for the case where n - 0 is

0 ■ -joo

(4.58)
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equations equal to zero or use some other process. A naive approach is 

to vary one parameter at a. time until the desired minimum is obtained.

This may actually require less work than the analytical solution If 

the optimum'values are not finite or if they are zero, it is necessary 

to introduce constraints to obtain a nonr-trivial solution.

The optimization problem is easier for practical systems of a semi- 

free configuration than for free configurations because fewer parameters 

vary., lost practical systems mil have semifree configurations because 

a motor or control surfa.ce etc. will have fixed characteristics. In 

many cases it is only necessary to vary the pai-ameters of an equalizer.

A simple second order system will serve the purpose of illustrating 

the use of Parseval*s theorem. Assume a system with the open loop trans­

fer function,

A = s(Ts + 1) ' - (^*59)

Is to be optimized [6l] . First, an equation of the error must be 

obtained, which, if r(t) is a unit step, becomes

e(s)
ts ~ + s+1

(4.60)

Then from equation (4.50)
O? 2 i

PI-r eCtJdtvjjij
joo

f.
'; T s + 1 - T s> 1
V 2 A 2
T s + s + k T s — s + k

2, 2 , c-, d + c dnloo 2
" ”. ' 2' d d-,d0© 12

•)ds (4.61)

(4.62)
where

d2 - T = T

d^l

T K

1
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Since, the general solutions are available for equations such as (4.61) 

up to the tenth order, obtaining the solution is routine. The perform­

ance index becomes

PJ = (4.63)

At this point in the analysis it is necessary to consider stability#- 

Since this method does not insure stability and Parseval*s theorem in­

applicable only for stable systems, the results are meaningless unless 

they lead to a stable system. In this example it is obvious that K must 

be positive to insure stability assuming T is a positive quantity.

Prom equation (4.63) it can be seen that the PI approaches infinity 

as K approaches zero and approaches the value T/2 as K approaches infinity.

This difficulty can be overcome.in this example by relating T.and K to 

in the usual second order system terminology.

f 37J

<4,. ©n

Then, from equation (4.63)

Pi - hi
4 tf \ + P

(4.64)

(4.65)

2W> 2*n v
2 ;f)

d(lSE) 1 ( JL
d *f " 2U/ 2in

(4.66)

Thus, the optimum second order system in an ISE sense has a ^ = 0,5. 

In this system it was only necessary to relate T and K to;f to ob-



tain, closed, contours of performance index versus system parameters. In 

more complicated systems the procedure may not fee so obvious and this 

becomes a limiting factor in analytical design. For example, it is obvi­

ous that the ideal system in the sense of equation (4.57) should Have 

infinite bandwidth and hence, the analytical solution may force time, 

constants to zero if proper constraints are not included to obtain non- 

trival solutions. In practical semifree configurations the problem is 

less difficult than for free configuration systems because only a few 

zeros and poles are varied. Even in this case, however^ it may be 

necessary to add constraints.

4.3.3 Analytical Solution of ITSE ’

Westeott [88] has shown that Parseval's theorem can be extended to 

solve for: the integral of fnae Multiplied by Squared Error. This makes 

it possible to utilize the solutions that have been tabulated for the 

use of Parseval*s theorem. The following derivation follows Westeott*

It is desired to express

in terms of the coefficients of the polynomials p(s) and q(s) of the error 

transfer function ■

(4.67)

e(s) (4.68)

©

(4.6f)
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t e (t) dt = - lim —•
a-?*o or.-

00

1 / .. . -0~j te (t) e ■ dt

= - lim 0'
A D'^i']

(4,70)

(4.71)

By.the Laplace transform theory it may be shown that
c+joo

*rl>--2Wi f 81

11 owes -f-.l->a+. C*“j00

e(s) e((T^ -s) ds (4.72)

and it follows that

ITS$= *- lim
c+joo2^fJ J" e(s) e(<T^ -s) ds (4.73)

c-joo

This integral is not symmetrical, as desired, but may be made symmetrical 

by choosing the .proper path of integration. After choosing the proper 

path of integration and making a change of variable the desired 

symmetrical form is

ITSE = - lim
<r-K) ^<r 4TT j e(s+r )e((T -s) ds

<r -joo

(4.74)

To illustrate the method two examples.will be presented, p. 479).

Example 4.2 •

Consider a system with the error transfer function

e(s) = aQ s + a-L

Then

ITSE - - lim
Si

- -L-Li.il Sy
<TL>o

<r+joo do| ds
47Tj I [a0(s+#’)+aiJ [ ao((p-s)+a£j

<T-jco

(4.75)

(4.76)
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By dete;mining the. residue at the pole 

s =
ctn(-i +<r)
Cl#o

the quantity

ITSE = - lim —
d.

<n-»o ^ao^aofl~ + a^) 

is obtained.. Then 

ITSE »■- lim

]
(4,77)

(4,70)

A 2

4(a (T + a. T o 1

after taking the indicated partial derivative. Upon taking the limit

the answer becomes 
dITSE * - ■—2~-

(4,79)

(4,00)
4a-j_

Example 4,3

Consider the system defined,by equation (4.59) for the second

example. Using the procedure indicated above it is found that
ITSE - -i» + —

4K2 2

After normalizing to make the system a unity numerator type 

(i.e. T=K) and differentiating ITSE to obtain the optinnm, it is found 

that

T =0.650

Westeott»s work may be extended to InTSE. Using the method outlined 

by Westeott
oo

j tne2(t) dt = (-l)n lim

(4.01)

n

0 ,n

GO( 9 -r’lt
e^t) e dt

(~L) lim A n

d'<T“^ n
[FCr-L)]

(4.02)

(4.03)



where F((T"^) is the Laplace transform, of e^t).

It follows from the previous derivation that
+jco

InTSE
a: (~l)n ligl ol n

2 (T^O W 2fTj e(s+d~ )e(p~ -s )ds
<T-joo

4*3.4 Analytical Solution for ISTSE

The results of the last section can be used to obtain ISTSE, When

n equals 2, equation (4.S2) becomes
1 /^r"+j°°2

ISTSE * h lim
(T-*Q 21Tj

e(s+<T )e(<r -s)ds

<T-joo

Example 4,4

Consider a system which has the error transfer function 
d^

e(s) = (as + a-)

Then

ISTSE = lim
O~-*0 c9<T4

-cr+joo d dso

= lim —

4tTc | f-o^+^+aJ [aQ(r -s j+aj
<r-jco

2 „ 2
4 a (a f + a,)^ o v o 1' J

a d 4 o o1 lira
2 (a <r~ + a.)' o 1

a.dn* o o
2a ^

(4.34)

(4.35)

(4.36)

(4.07)

(4.83)

As an alternate method to obtain ISTSE it is noted that

from the Laplace transform theory. Thus it is only necessary to differ-

(4.89)
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entiate ~e(s) and Insert it in the integral of Parseval's theorem instead

of e(s) to make use of tabulated results. That is,
>c+joo00

ISTSE = t2e2(t) dt -
'■0

Mr?,), dsds ds as (4.90)

C-JOO
The system defined by equation (4.59) will be used to illustrate this 

method.
_ de = T2s2 + 2 Ts + (1-TK ______ r^___

ds T2s^ + 2Ts^ + (1+2T2) s2 + 2sT+T2

Using solution tables for ISE and setting T equal to K as done previously 

yields

(4.91)

ISTSE
6 4 2 4T + 1 - T f 1

4T

Then
d(ISTSE) = 12T6 + T^ + T2 -3

0
dT

(4,92)

(4.93)
k?

and

T = .75 

which yields

= .666

4.3.5 Analytical Solution of Performance Indices Using Liapunov ¥ Function

Another analytical method for determining the value of a performance

index is available from the relationship of the ? and ¥ functions used in

the second method of Liapunov (see Pinal Report Vol. 3). By definition

W (x , x ,.....,x ) = S (4.94)
12 n uu

Integrating this expression with respect to time yields
/t

^(^s9 •^-)**®*.j2- ).—7(x . x ^.*• ,,x ) ~ ( ¥(x ,x ,..,x )dt (4.95)
12 n xu 2U no / 12 n

J0



where the zero subscripts indicate the initial values of the state varia­

ble at t=0, i.e, the initial conditions. If time is allowed to approach 

infinity in equation (4*95) (the case for most integral performance indices),

the equation becomes

7(xio>x2cr' ) - lim V(x_, X_,..,,X ) 
no , 12 m■b-*©o

oo
i W(x ,x ,.. .x )dt 

± z n (4.96)

By definition, in an asymptotically stable system

and

Then

lim x. = § i = 1,2,....,n
t—>oo 1

V (o,«.»,o) " 0

(xio>x • $ 0 * §2C )■ m x2,...,xn)dt

(4.97)

(4.9S)

(4.99)

If the state variables x^ represent system error and its n-1 time

derivatives, and if ¥ is a positive definite quadratic form, equation (4.99)

is an integral error type performance index, where

PI » Y(x10, x20?*,,Xno^ (4.100)

In general, any Liapunov function which has a negative definite or

negative semidefinite derivative can be used as a performance index.

For time weighted performance indices (eq. ITE) it is necessary to

assume the proper 7 function e,g»
* *

? = f^e, e,...) + t?2(e,e,...) (4.101)

Ho examples of this type are available at the present time.

Example 4.5

Consider the following example of this method where a unity



feedback system has the open loop transfer function
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G(s) "

and where it is desired to obtain

(4.102):

P.I. * | e2(t)dt (4.103)

fhe error transfer imctien is
e(s) _ 1

s(s+a)

(4.104)

If a step function R (the input) is removed at t=0 the follow­

ing is obtained from equation (4.1C4)
O* * VI.

e(t) + a e(t) + Ke(t) 0 t >0

Let

(4.105)

: =' e(t). ; (4.106)

Xg = e(t) (4.107)

then

X1 = x2 (4.108)'

x2 = -a Xg -Kx^

Assume the general quadratic form ;

(4.109)

2 „ ■ 2 ' 
y a^x^ + ^a^^Xg + ag^ (4.110)

From equation (4.94) and (4.10)
« « ♦ *

¥ - 2a x x + 2a (x x +xx) + 2a xx11 11 12v 1 2 1 2- 1 22 2 2 (4.111)

and.
w'(-2Xa!2>i2 * (4.112)



Since W must be the integrand of equation (4.1Q3) it is necces- 

sary that
W = = e^(t)

Using equation (4.112) and the above condition yields

a>22 ^
k+a2 ■ 

aU “ ~ 2Ka

Then 2
K+a2 2 fl_5. S_

■ " 2Ka X1 “ K ' “ 2Ka

To find the initial values of and x0 it is only necessary

to apply the initial value theorem to equation (4.104) and the de­

rivative of equation (4.104)and obtain 

x(0) = i

x2(0) = 0

From equation (4.99) and (4.115) it is found that

FI
2K + a

2Ka

For this simple problem it would be easier to use Parseval*s 

theorem, however, for more general performance indices (e.g. PI = f(e,e— 

this method is superior.

(4.113)

(4.114)

(4.115)

(4.116) 
(4.H7)

(4.H8)

))
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APPENDIX A

A DISCUSSION OF SAMPLING FEEQUENCT

A.l Introduction

This appendix is included to supplement the material, used in making 

the recommendations of Chapter 2 (Sampled Data Systems).

A question often asked by engineers when dealing with sampled data 

systems is the following; “Qiven a system, is there a sampling fre­

quency above which the system can be considered .continuous for most 

purposes?" This appendix provides a partial answer to this specific 

question, which was put to the projectstaff by Mr, J. H. Gengelbach, 

the initiator of this study.

The research project, of which this volume is a part, is not designed 

as a project in basic sampled^data system, research... The examples chooser 

in the following discussion are, therefore, restricted to the simplest 

examples (second order systems) possible.

A«2 Discussion

One of the principle characteristics associated with a sampled 

data system is-the periodicity with which samples are obtained from 

continuous data. It is clear that the sampling frequency will affect 

the performance of a given system, and therefore questions will arise 

naturally as to what is the best sampling frequency. Alternatively, 

given a sampling frequency and a system, what performance can be ex*- 

pected, and how shall it be assessed. It is recognized that the 

frequency at which samples can be obtained is often outside a designer's 

control and dictated by external factors. The purpose of this appendix
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■will be to investigate the performance of a system a? a function of
2'jrsampling period, T, (sampling frequency,6Ug = —-—), assuming this 

quantity can be varied continuously from zero to a high figure, and 

to answer the question posed above*

A standard must be chosen to which the performance of the sampled 

data system can be compared, Jt is suggested, intuitively, that the 

ultimate performance of a given sampled system is the performance of 

the same system, but without the sampler and associated circuits 

present* For example, consider the error sampled system shown in 

Figure A.l, There the sampler is considered to be represented by an 

impulse modulation device, and the zero order hold circuit, G^, is 

introduced to make the system realistic. After removing the sampler : 

and hold circuit, the system becomes a. continuous system as in Figure 

A.2. This system Can, in turn, be reduced mathematically to a transfer

function which has the familiar form:
COO . 
RCO

K/T,a UJ
s + Is + K

f|l
2s + " 2 

o o
(A.l)

a

where **a -
4 r

and |L = CU 
m oa

This expression is that of a second order system and the response

at the output terminals to: a step of magnitude A .at the input is:
■t r __ j__• v-'i. ~i

where 0 = tan

c(t) - a -2 'Jet"1 a €v a
-i

sm
2T

(A.2)

JUKT - 1a

provided 0 < f <1 or 0 <—i-<a
UKT



Figure A-l

; k

s(Tas+l)

7TT

The Equivalent Continuous System



The step response of the system shown in Figure A.l, which includes-
the sampling device, is to be compared with equation(A.2). The two

responses could be of the fora shown in Figure A.3.

The work contained in this volume on performance indicies suggests

that an index could be used for comparison purposes and that the index

should be representative of the area.enclosed between the two curves in

Figure A.3. Both positive and negative area will be generated, but the

absolute area is the meaningful quantity, and a squared index will be

choosen. The simplest suitable index is:
P.I. - j[cc(t) - cs(t)] 2 dt (A,3)

o

where c.(t) ... the output fvom the continuous system to a step*
v

e (t:) ... the output from the sampled system to the same step. 

For convenience, let

Gc(t) - cdCt) = Ge(t).

Then
oo 2P.I. • ■ f c_ (t) dt. (A.4)
o e

Recalling Parseval *sTheorem |ref.[25j, p. 43) the expression may also

be put in the form:
GO 2 1 ijoo

P*1* = f ce (*) dt = 27FJ / Ce(s)Ge(-s) ds (A,$)

where s is the complex variable associated with the Laplace Transform.
It is recognized that other performance indicies exist that are 

suitable for the comparison of these two systems, for example:
® -2P.I. = 2 [cc(nT)> os(nT)J (A.6)

n=o

but attention will be focussed here on that index in equation <X5) which
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Figure k-3>
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is considered as good a yardstick as any other. 

With reference to Figure A.l
KG(S) Gn0(s) - -

HU s(l+sT-)
x- eTs

using the z-transform one can obtains
T ~ (z_l) Ta

0?H()(z) - K

Therefore
G(z
B(z)

Z—1
—X +-a zrpn

C(z) = ^HO (z)
1 + ^HO(z)

and
C(z) e^(z +f)
E(z) z +gz+h

where e, f , g and h are functions of the basic variables K, T^ and T 

and are constant for a particular choice of these variables.

(A.7)

(A,8)

(A.9)

(A,10)

The characteristic equation that results from a particular choice of 

the basic constants must now be checked for stability, for, though a 

second order continuous system can never be unstable for positive con­

stants, it is possible for the same system, when sampled, to be unstable.

The solution at the output terminals for the sampled system using 

z-transform analysis consists of a sequence of impulses c(nT). The 

continuous time function c(t) that results from the inverse z-transform 

operation on G(z) may be used as a good approximation to the analog out­

put [17], as it automatically joins the points indicated by the impulse 

sequence.

With the step input used to derive.the output from the continuous
system, equation (A.2), i.e., R(s) = ^ or E (z) = -~f— ,

s z-1
the continuous time function derived from a 9-transform analysis is;

-Qtcs(t) = A +F 8 cos (Rt +¥). (A.XI)



here P,. Q, R and are again functions of the-basic variables K, Ta and

T. Rewriting equation (A.2) as

cc(t) ^ A - BC^sin (Dt + 0) (A. 12)

B, C, D and^)functions of K, Ta and T, / and.substituting (A,11) and (A.12) 

into (A,3) the performance index becomes: :

PfI. «. -B 'sin.-^Dt+ . —Qt 
p£ ■ . COS dt. (A.13)

which is clearly integrable,

A digital computer program was written to instrument the algebraic 

operations necessary to check stability, determine the constants associ­

ated with the analog outputs of both , systems, . and determine the. integral 

(A.13) as a number. The. data taken from .the computer runs are plotted as 

a function of the sampling period in Figures A.4, A.5 and A.6. The basic 

variables K and Ta were iterated, as indicated in figure A.7 to maintain 
a fixed damping ratio,^, for different system natural frequencies»

In order to interpret these graphs it is first necessary fo examine

equation(A.5^an analytic expression for the. performance index. The 

Laplace Transform, of the continuous system output, can be written from

equation A.1 as:

Ce(s) * a
s(s +_i s+ -S)

.'V

(A. 14)

The Laplace .Transform of the time function representing the output of the

sampled system, i.e. the smooth curve through the sample points, can be

derived from equation(A.1© )using the relation z -
S^sAe (gfo+f )
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Piet of Performance Index Against Sampling Period



Figure A-5

Plot of P erfomance
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Second Order System Parameters



Consequently 
C (s) =

AK /I1., g^AeC £Ts+f )

s(s + - s+ - )
T T Aa -a

CeT^i) (£2Ts*gers+h)
(A.

and therefore esq, 
P.I. - 1 . 

I

Ts , Ts .6 Ae ( s +£ )
s(s^+i s+- )
L w; (eT5-i)(£2t3+g£.T3'

E13* S' f I AK/Ta
-A

Ml-pKf**** £TS+ i) s(s^. )
h h Ta V

ds (A.

Examination of the integrand in equation (A.17) reveals that this

quantity approaches infinity as T approaches zero* This result is 

directly due to the effect of the hold circuit in equation (A,17) and 

can be checked readily. The validty of this limiting process is in 

doubt, however, due to the method of modulation used in connection 

with the sampling device ([l], p, 56S)j but, as attention will not be 

focussed in this region (T-»0) the method is acceptable.

Examination of the integrand reveals also that the quantity vanishes 

as the complex variable of integration approaches infinity. The integral 

can thus be considered as a contour integral with the path of integration 

choosen to include all poles of the integrand function. A suitable 

contour in the complex plane will be the imaginary axis together with a 

semi-circle of infinite radius in the left half-plane, or in the right 

half-plane, as is appropriate to the pole under consideration. The 

section of this path at infinity will not contribute to the integral, 

thus leaving the value of the contour integral equal to that of the 

original line integral/ equation (A.17). The contour integral can now
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be evaluated from residue theory;

P.I. residue of
[o^s) Ce(-s)]

(A.18)

The two parts of the integrand of equation (A.17) can be expressed 

in factored form and then multiplied out. The partial fraction that 

result are quite numerous (many will have an infinite number of poles 

due to the exponential terms present) and the calculation of the,residues 

is, in all but a few eases, a complicated procedure. This analytical 

approach will not be pursued in this report, as the- yield would be the 

equation of the curves already plotted.- The characteristics of these 

curves, for the second order system choosen, can be seen satisfactorily 

from the graphs plotted.

The graph of Figure A.4 shows that, as might be expected, the per­

formance index increases with increase in sampling period. It further 

shows that plots of P.I, versus T are confined within a region of the 

P.I. — T space with the region boundary defined by a curve tangent to 

the plots. In Figure A.4 the boundary curve appears to be a straight 

line. The Figures A.5 and A,6 have exactly similar characteristics, 

but in these cases the boundary curves are lines wifh a large radius of 

curvature.

The question of performance is now raised, and a sampling period is 

sought below which the sampled system is "nearly” equal in performance 

to the continuous system, and above which this is not so. It is apparent 

that any such point must be somewhat arbitary as the system characteristics 

cannot change in any manner resembling a step function.

The sampling period corresponding to the point of tangency with the 

boundary curve is clearly a choice for the point sought. For sampling



periods smaller than that corresponding to the point of tangency, the 

rate of change of PI with respect to T is small. Above the point of

tangency the rate of change becomes larger, rapidly.

The sampling frequency associated with each point of tangency is

plotted against the system bandwidth, BW

of the system in question in Figure A.S. The points plotted define 

straight lines for each different system damping ratio, and the slope 

of these lines increases with the magnitude of the damping ratio.

Along any one line the relation between sampling frequency and band­

width isj

C0S = K . BW (A

where K is a function of the system.

This result indicates that for the performance of a sampled data 

system to be equal "nearly" to that of the identical continuous system 

the sampling frequency must be at least K times as great as the system 

bandwidth. Acknowledging that this investigation has been concerned 

with second order systems and that a system bandwidth is related only 

empirically to the greatest input frequency anticipated, this result 

cannot be interpreted literally with systems of any order* Figure A.S 

shows, however, that a .relationship exists between the sampling fre­

quency and the system bandwidth (and consequently the input frequency) 

and that a "turning point” exists.

Systems that can be considered approximately second order are 

designed frequently for a f of the order of 0.7* The graph of Figure A.&

indicates that K should be of the order of 3. To allow for variations

of the design criteria and to allow for systems of higher order a



Sampling Frequency Plotted Against In-put Frequency



- 131 -

••factor of safety•• is incorporate! thus increasing the value of K*

It is recommended that this factor of safety be of:the order of 

3 to kf and thus equation(4.19)is rewritten as:

(jj s = 10o^ or 10 B¥, (A.20)



. APPENDIX B

Abbreviated Translation of the Section 

on Performance Indices from The Book

by

M# A# Aizerman

LECTURES ON THE THEORY 

OF AUTOMATIC CONTROL 

Second Edition 

Moscow, 1953

a) General Remarks

In the preceding analysis the values of coordinates of the response 

with respect to zero, i.e., with respect to the original equilibrium 

state of the control process were calculated. The response of the system 

was caused by the initial action of disturbances. In.this paragraph we 

are interested in calculating the changes of the values of coordinates 

with respect to a new equilibrium state,, occurring in the system as a 

result of existing disturbances. Only ianit step function disturbances,

1, will be considered. This limitation is, however, not essential for 

the application of the integral performance indices. Except for com­

putational complications they can be easily extended to different functions 

of disturbances. In restricting the investigation to the performance 

indices of transient responses, we will.replace the unit step disturb­

ances 1 by their equivalent initial conditions.

A transient response would be ideal if, at the instant of the 

application of unit step disturbance, the coordinate under consideration
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would, instantaneously take on its new steady state value and remain at 

this value until the application of a new disturbance (Fig* 165). In 

actual systems such response is impossible* However, the smaller the 

area (shaded in Fig, 166) between the actual and ideal responses, the 

less does the actual response differ from the ideal response* If there 

is no overshoot (if the system is position control, see Fig. 16?) or if 

the cupve x(t) does not repeatedly intersect the time axis t (if the 

system is not position control) this area is defined by the integral

In other cases the above integral does not define the above considered 

area, since in the evaluation of the integral the consecutive areas are 

added up with opposite signs (Fig* 168)*

Thus, for example, in the ease of slowly decaying oscillations the 

integral would be small, regardless of the amplitudes, while the area 

describing the deviation between the actual and the. ideal response may 

be arbitrarily large*

In the above discussed cases, when the integral (4.30)defines the 

given area, it serves as a convenient means to select the system para­

meters* The parameters are selected in such a way as to minimize this 

integral* It is obvious that such a performance index is indirect 

(unreliable, Z«V*R.) and can only be used for preliminary selection of 

parameters, since it admits perfect oscillations with equal positive and 

negative areas in the response. Nevertheless such a performance index 

frequently enables one to make a rapid initial estimate of the system 

parameters. The validity of such selection of parameters can be proved

03

O
(4.30)
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Figure



Figure

x(t)A
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later from the recording of the response*

To evaluate the integral (4.3 Q) let us note that the Laplace transform 

of the function x. (t) is, by definition
00

IX. x.(t)gr,Pt dt

and consequently 
oo

x± (t) dt = limj_[x (t)] .

P” >0

00/
Tho practical application of such a simple performance index is not 

leasable^ since it is seldom apparent in advance that the response does 

not overshoot or that in non-positional systems the controlled coordinate 

does not reach aero value several times during the course of the response* 

If the response is oscillatory* the proximity of the transient re~
00 isponse to the ideal one may be estimated from the integral j |x(t)| dt|

this integral is, however, difficult to compute. It is more convenient 

to use the integral
oo 2/J x4(t) dt (4.31;

as a performance index of the response* If the system parameters are 

selected by minimizing this integral, the transient response thus ob­

tained is usually excessively oscillatory*

In order to avoid too oscillatory responses, it was proposed to 

select the system parameters by minimizing the integral
©o [x2 (t) + t2 i:2 (t)] dt

(4.32)

where X - a real arbitrary constant.
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'The selection of system parameters by minimizing the value of this 

integral (if one can, decide upon the value of the constant %. ) yields 

sufficiently good transient response with small overshoot, frequently 

even a monotonic response. Occasionally one makes use of a more complex 

performance index

^ (t);+%2& (t) +x4 %2 (t)J dt

O

or* in a more general form*

(x2 (t) +t^ dx(t) ~i 2

dt > t
rd2x(t) 

2
,T2n\.±^ll2 )
u .,,n }
n

2 Ldf

dt

2

dt

We mil restrict ourselves to the simpliest performance index (4.32). 

In order to make' use of this integral performance index in the design of 

systems the following questions have to be answered:
1. How does one select the constant 7T in (4.32) in the analysis 

of actual automatic control systems?

2. How does one find the parameters of the system such that the 

selected performance index is minimized?

3. How close will the transient response, obtained by selecting the 

parameters in this fashion, approach the response which best satisfies 

the specifications?

b) Selection of the Integral Performance Index

Let us write the integral

I * . r ¥(t)] dt



in the form of the difference of two integrals: 
oo
C x2 (t) + 'C 2x2 (t) dt =
Jo r . co

^ [x(t) + % x (t)J dt 2% J x (t) x (t) dt -

o
oo
^ jx(t) + % x (t) J dt :«• 2%j?xfc

©
00

©
00

£x(t) + % x (t)J dt - 2Tj~

dx
dt

dx

dt =

Let us evaluate the last integral
oo ' . 2 -| oo

2%/^(t) dx = 2X> "Tr -[x2 (oo) - x2(o)j . 

o ; : -*

If the system is stable then x(oo ) = 0, since it was assumed at the be­

ginning of this paragraph that the value of x approaches x^ as t-»oo. Thenss
00 r ^ rs rs 00f

The last term on the right side is a constant quantity determined by the

J Jx2(t) +X 2 x2(t)] dt = J |x(t) + f x(t)J 2 dt +<tx2 (o),

initial conditions on the system. The original integral 
co IV. V . V I

dtf [x2 (t) +1 2 x2 (t) ] 
Jo

will take on its minimum value ff the integral on the right side of the

previous equation approaches zero, 
o© - - 2J~ [x(t) + T x(t)J dt * 0,

Since the integrand is always positive, this can be satisfied only 

if the integrand function is equal to zero, i*e*, if
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[x (t) + X x(t)] =0

or

X (t) + % x(t) = 0

Hence the original integral is a minimum if x(t) satisfies the differ­

ential equation (4*33)• Its lowest minimum value I is equal to
min min

I . ■ . min min
x2(o).

(4.33)

The differential equation (4.33) defines the transient response which can 

be approached in the limit, if it is possible to select the parameters in 

such a way that I = 1^^ ^ This, optimum response is described by the 

exponential x(t)= x(o)£ .

Ihe value of shall be selected in such a way that the exponential 

x(t) = x(o)£ ^ will satisfy the specifications of the transient re­

sponse, The selection of the constant 'C fixes the integral performance

index. Henceforth the system parameters are selected in such a way as to

minimize the adopted integral performance index, I . The numerical
min

values of 1^,.^ obtained in every actual case are obviously greater than

^min rain* anc^ syst©m response will differ from the indicated expo- . 

nential. Of all possible system parameters, however, the parameters 

determined in this way will yield the response which is closest to the

exponential.

It can be shown that the minimization of a simplier quadratic inte-
oo

gral performance index / x (t) dt guarantees that the response will
©

approach

x(t) = x(o)
sin UJQt

UJ t©
The plot of this function is shown in Fig. 169.



Figure 169
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Hence it is apparent that the selection of system parameters by minimi-
P 2

zation of the integral jh x dt yields systems with excessive oscillations 

in the transient response.

By making use of the more complex performance indices, it is possible,

by minimizing them, to approach the responses of a more complex form, for

example, the response consisting of several exponential terms.
QP ^ 2 2

Let us consider now the evaluation of j (x + V x ) dt in termso
of the system parameters and the selection of system parameters to mini­

mize this integral* * .

c) Determination of System Parameters which Minimize the Integral Per­
formance Index,. v

Consider the system of linear differential equations of the general

form*
n

and the most general form of the quadratic performance index
GO

I = f Y dt,
©

where
Y = A. x 2 + A x2 + ... + A X2 = A. x2

11 2 2 n n l l
i=l

The particular performance index (4.32) which is of interest here is

* If the system is of order higher than one it is easy to arrange it

in the above form by designating the derivatives of the original variables

as new variablea E.g., the equation ax^.+ bx^ + cx^ = 0 is rearranged as
*X. 5S

X2
k- 2T „ 
a 2 a i



obtained by letting x = x, x = x , A * 1, A =G and A 55 A^= ... * A =0,
^ ~l '2 ”1' **1 ’’2

Let us select another quadratic form U such that

' ■ -V.
dt

Then it is easy to calculate the integral I = 7* V dt. Obviously
; Jo

. Vdt « -du

(4.34)

00 00 .00 rI = f Vdt - -T dU = -Ul [u (oo)00

C
In a stable system x, =" x .<» = x * 0 at t **. oo and hence U(oo ) 0.1 £ n

Thus
00

X w J" V dt. - U(o)

i.e., in order to evaluate I it is necessary to substitute into U the 

initial values of x^, x^, x^.

In order to evaluate U we will assume it to be of the type n
U =

i» j-1

where all B. .. are the numbers which have to be selected in such a way as 2.J Js ......
to satisfy the equation

dU = -V ^
■' dt .

or
n
= L dx: x. = -V

Substituting.into this the expressions for U uni Y wo get:
nn

s:
i=l

3 . .x.
3

. ' n „ ■ 2x. A. x. ..X «*£.. '.ju 1 • ■

Substitution for X- the original, linear first order system differ-
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ential equations yields
^ x i r^a x ifc Ifi ljti ,.I& iJ 3J

A x^ 
i 1

Both the left and the right-hand side of the above equation consist
of quadratic forms. By equating the coefficients of x,2.x„2* . .yx 2 of

1 2 n
both sides and by setting the coefficients of the x. x. - terns (i ^ 1)i j

equal to zero (since there are no such terms on the right side of the

equation), we get a set of linear algebraic equations containing all

B ♦ The solution of these equations yields the coefficients B of U, 
iO*s . ij

and then, if the initial conditions are given, one finds U as a function

of system parameters (i.e., of the coefficients a.. ) which is then sub-

ject to minimization.

Example 1. We illustrate the method of finding U for the example; of 

equation.

a© X1 + al *1 + *2 xl. “

which we arrange as

1

C2

Xg
« a-i

*L

Let

1
2 ^2 2 x, + C x. 12

We are trying to find U of the type

U = B x + B
■*i i

Prom the relationship
dU _ «_y 
dt

x x + B x_1 2 Xg 2

we find
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^ X1 +a^2 *2 = (2BXl X1 + BxlX2 x2^> *2'

x2 2
2 /■=? _, x
1

x. + B
3»1 3*2 '

X ) ( *■■■■*«•. x-- - X ) *l' v a 2 a x 1 0 o
>2 2x,'2 *

Equating the.. coeTficients on both side? we get the system of equations
■ clo

■ -!• -!■*•* B ■ -* 1 ■
ao

B — Bao x2

2 BXn
a.

Bao xlx2

■i ao2 -£ B
*2

0.

The solution of the above system of equations yields
a„

■. b r". = -2.

2
BX.1 2a^ag

. 2 2 ■ ar\ 2 a _ a0

cl cl 8.O 0 0

b ao
x 2a 2 1

from which GO
I ?

2 . 2.
( x-^ + T ^x ) dt = U(o) =

a.
2ala2 L a

a2 O'2 + (al + a2 S
a 2 a 

o o J

X1 (o) +

Set
a 2

1 La2

2 a
x^ (o) + — xn (o) x^ (o')*

a22 a„ 1 ' ' 2

The values of parameters a^, a^, and a2 for minimum I can now be 
found easily by the general rules for finding the absolute minimum of a 

function of several arguments.
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Example 2, Let the system under consideration be described by the second

order equation
9d x. . . dx , _ A—Tjv + h —• + 3x = 0

dt dt
dxLet* at t = o ,.x = 1* ^ 

2 ^2.2
= 0. The integral performance index is

00 2 2 S
X = j (x +1/ i ) dto In the case under consideration 

Jo
V SB "ST ( fb\ SB 1X^ ~ X X^ =2 w xi^ = l>'x^ " °*

a.
tu

f2
.a.o

- 3, X 2 5:5 2«

Hence
[(9)<2) * (3 + h2)] - 21 + If

—5K~

The problem requires to find an h = h . at which I = 1mm man
dlthis we set the derivative ^ equal to zero.

dl
dh

1
6 2h‘

3i - © .
2W S>

This relationship yields the quantity, h . as h .mm mm

To accomplish

21 and conse-

1 . = Bmm x

In this case 

I . = tf'.2
man mm

rVw ■1*53*

*1,41.

Consequently* when h = . the response falls closest to exponential 

with the exponent of ~ tj however it etill differs from this ideal

response*

d) Estimate of the Deviation from the Optimum Response*.

In the solution of practical problems* it is frequently desirable to 

estimate the deviation of the actual system response from, the response to 

which one strives by minimizing the integral performance index.



Let the .value of the integral, I^n, he evaluated for the selected 

values ©f system parameters. :

Also known is the value, I , of this integral performance in­
rain rain

dex, at which the transient response coincides with the exponential

It has been shown above that the value of I * I . , is determined. - man min.
by the square of the initial deviation x2(o) and i

'■I ' ... = 1Tx2(o).
min min . ' . '

Let us investigate the difference between the two integral perform­

ance indices

€ = I I'
min..- min ...min . :;

Let Ax x -x&, where x is the variation of the coordinate tinder consider­

ation for the chosen values of parameters and x& - variationof the same

I . .mincoordinate at I

We substitute the new variables into the general expression for X... : min

■^min / [(**.♦a*)2 *t2 (ga s^-)3]

By substituting
-t
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into the above integral and integrating by parts it can be shown that the 
last integral is equal to zero.

The first integral is equal to I . Consequentlymin min
I , = I . . +min min min

[ Ax2 +T2 ( d Ax
dt

>2] dt

Transposing I . .to the left hand side we get min min
£ = i . -1

min mm min
/[a*2 * -c2 f^)2]

dt,

Consequently the difference of the two integral performance indices is
defined by the same integral}' only the variables x and have to bedt
replaced by Ax and In the further evaluation we will make use

of the well“known Buniakovski*s inequality?
/ fl(t) f2(t) dtt\lf fl dtf f2 (t) dt'*

(3l \i n ■

¥e apply it to estimate the quantity £ .» We express the quantity Ax^
as

Ax
t2 y Ax.2 ^ s- a d Ax r 2

dt dt<\ rAx at
—----- 1
d Axn,2 dt-

O ^0 -o

Multiplication and division of the right side by the quantity yields
Ax2< | A^dijO^2

dt .

Sinee the integrand functions are positive the inequality is still further 
strenghtened if the upper limit of integration is increased to infinity?

A x2< 2
00 ©o'[ f Axzdt J X2

X

From the obvious inequality 
2 ^jab1 ^ a + b
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it follows that GO
f [A*2 *'t2 (!^)2 dt =■£■ .

Hence the deviation of. the actual response from the optimum response does 

not exceed the quantity

x <

Example 3» In a preceding numerical example we found

mxn min and I . 1.53» min

Then
|Ax| ^ 1.53 - 1.41

1.41
0.12
1.41^°*

In other words the selection of system parameters* by means of mini­

mizing the integral performance index,
no 2 ±2 ) dt,

guaranties that the transient response of the system does not leave the 

boundaries of an area between, the curves (Fig... 17 Q)

x ■ x(oie t VI’x"x(°)e ’4 - \ff-
' ■' ,-Tr-Tj*

If not only the exponential x = x(o)^ ;g. but also any other curve con­

tained inside this area satisfies the technical specifications for the 

transient response, then the selection of system parameters is completed.

The greater the value of ^ , the smaller is the deviation of the 

actual response from the exponential one, to which the attempt was made . 

to bring the actual response by selecting the parameters* Thus the. ex­

ponential curve towards which the response is optimized cannot be specified 

with too small ^ *
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Figure 170

Figure 171

->
t



Let the specifications be such that the transient response does not 

leave the boundaries of the shaded region of Fig. 171*
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It is conceivable that the original exponential 

X = x(o)g

may be selected in such a way that it remains in this region, however.

one of the. curves
x = x(o)€~|- + or X = x(o)€ r.0

crosses the boundary* In soph a case the value X has to be changed (by 

selecting a new exponential contained within the shaded region) and the 

procedure repeated.

It is,however, more convenient not to fix the value of X at the 

beginning and to define all unknown quantities as functions of X •

We will illustrate this procedure by. means of an example.

"Example 4* Referring again to Example .2 we will not define h and X up 

to the end but rather we will find them by satisfying the specifications

in the best manner. For this purpose we will express n, 

|Ax| as function of X .

We return to the differential equation

0 ' '■
,2d x
dttf

h — + 3x dt

.in* and

and the original initial conditions 

x (o) = 1, x (o) = 0 .

Let us select the integral performance index 
oo

©

where

V xz



- 151 -

In this case

A1 = 1# A2 = Xl^°^ = lf X2^ = °‘

Substituting these values into the previously-' determined equations we get;
•2
~2h

R = i R + -I R - h' , 3V* + 1
XjXg 3 9 x2 2h 6h * Bx1 Z

and consequently
I = B x^ (o) *4 + ^ +[l

x1 1 s 6

dl

2h

Taking the derivative and setting it equal to zero we find h_._ as amin

function of

u, - \I
nrua

9 t + 3

Substituting h . into the above determined expression for I we get;nun °
I. mm

P 1!
+ j

However, I . . = X x (o) = u, since x (o) = 1. Hence
mm min 1 1

^xi 11 + ~" ~2 *■ 1.
3T

Now by varying £, > fe find such X - X* that both curves
—i

and

x - x(o)£ \ ^

X = x(o

1 +
1

3Xi

“t 
• X 1 +

3%?

do not leave the boundaries of the shaded area of Fig. 171.

Then
H = ^ 9 X + 3

is the desired value of h» 

e) Computional Procedure

The selection of system parameters, following from the integral per-*
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formance index
I = r (x2 + t 2 X 2) dt,

- “o

can be accomplished by two computational procedures.

The first procedure:

,1. The constant % is selected in such a way that, the exponential 

2* 53 x(o)g

would meet the specifications under the given initial conditions 

x(o) (which depend upon the initial disturbances).

2, U(o) is determined as a function of the variable system para­

meters (i*e., parameters which have to be chosen).

3. U(o) is minimised; i.e., the variable parameters are adjusted 

to yield the absolute minimum of this function, U^^o).

d,

w
is constructed,.

The systbm parameters are determined when every curve inside this 

region meets the specifications. Jf this is not the ease, the procedure 

is repeated with a smaller ^ . In cases where it is not possible to 

choose T such that every curve in the indicated region meets the speci­

fication^ ,it is necessary to change other- fixed system parameters and 

again repeat the procedure. The second procedure;
1* Considering ^ as one of the variable parameters, U(o) is de­

termined as function of 'V and other variable parameters.
2, This function is minimized with respect to the variable para­

meters, i.e,, the values of the variable parameters which yield

4. U . (o) - x'(o) is determined and \ -^ calculate
ihiel ;.Ty \|

5. The region bounded by the curves x = x*' + and x = x*
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a minimum value of U(o) are determined while U(o) is a function

of •
3. The constant £ is determined, as a function of ^ • 

4* The regions bounded by the curves

and

are constructed in the x, t plane for different values of % .

If it Is possible to find a X. = T * such that any curve in this 

region meets the specifications of the transient response, the values of

The selection of parameters based on the integral performance indices 

is considerably more reliable (trustworthy) than the selection based on 

the degree of stability consideration. The computations required with 

the utilization of integral performance indices are, however, more cumber­

some.

Nevertheless, except in cases where the system performance specific 

cations are expressed in terms of the response equations (transfer func­

tion), the integral performance indices frequently represent the simplest 

way of selecting the optimal parameters.

variable parameters are considered to be optimal at % = 'C "*•
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