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ABSTRACT

This is the second part of a 2 volume feport on the specification
and data presentation in linear control systems. This volume deals with
Sample Data Systems, Linear Time Varable Parameter Systems, and Per-
formance Indices, which are respectively Chapter II, III, and IV of the
volume, Since these subjects are somewhat unrelatgd, a separate abstract
is given at the beginning of each chapter, with the exception of the
introductofy Chapter I. The separate chapter abstracts are repeated here
for the convenience of the reader,

Abstract = Linear Sampled Data Control Systems

The specifications recommended for use with sampled data control
systems are those recommended for linear, continuous systems [l] .
These specifications must be supplemented, as is dictated by the re-
quirements of a particular system, by compatibility considerations -
that are detailed in the following sections.

Abstract — The Specification of Linear Time Variable Parameter Systems

Linear time variable parameter (LTVP) systems are defined and
subdivided into those systems with fast or slow variations and/or
large or small variations., The methods of analysis of such systems

are reviewed, and the following recommendations are mades

Specifications ‘
1) Time Domain Specifications
(a) LIVP systéms with fast variation of barameterso
Simulated.unfrbzen system step function respenses should
all lie within a prescribed envelope, Whenever possible, the
actual system response should be obtained.,

(b) LIVP systems with slow variation of parameters,
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Simulated or actual frozen or unfrozen system step function
responses should all lie within a prescribed envelope.
2) Frequency Domain Specifications ‘
(a) LIVP system with fast variation of parameters,
Frequency domain specifications are not recomnended.,
(b) LIVP system with slow variation of parameters.,
The family of fréquency response curves of the system
frozen at different instants should all lie within a predetermined

envelope.

Data Presentgtion
| vIt ié récommended that the region of vafiation of élbsed'loop poles

of the frozen system be exhibited on the complex plane, Thué,<for ex~
ample, if the only varying parameter is an open loop gain, then the region '
of variation of the closed loop poles will ccrrespénd to the root loci
over the total range of variation of gain. - |

It is also recommended that a family of NyQuist diagrams correspond-
ing to the system frozen at different instants be displayed in the case of

system with slow variations of parameters,

Abstract - Performancé Index

This study was undertaken to determine whether or not Performance Indices
should be used to evaluate and specify control systems, It is recommended
that they not be used at this time byithe Air Force for the stated purpose,

A performance index is defined and detailed discussions are presented
for the various performance indices. Analytical methods for evaluating

performance indices are presented,
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CHAPIER 1

INTRODUCTION

Thls is thebsecond volume of the flnal report on thls contract and
this volume, as 1nd1cated by its tltle, is a contlnuatlon of Volume I,
"Specification and Data Presentation in Linear Control Systems", published
in October, 1960, Volume IlI, entitled ﬁStability of Nonlinear Control
Systems by thevSecond Metbod of Lispunov" is the third end last volume
of the final report and ‘is to be published along with Volume II, 4in
interim report on specificetions for nonlinear systems will be published
shortly. |

In this Volume II three topics of.cons1derable 1mportance in llnear
systems are dlscussed and these are Sampled Data System Llnear Time
Variable Parameter Systems, and Performance Indices.

Sampled data systems may be considered linear if amplltude quantlza~
tion distortion is neglected and thls is the position taken almost
universally in the analysis of such systems. Sampled data syscems have
received'considerable ettention'iu the technical‘literature in the past
decade. This attentiou has not alweys been because of the practical
importance of such systems, but often because of the interesting methe~
matics that are involved. In other words the aﬁalysis of sampled data
systems bas become an academic discipline much like uetmork synthesis in.
character, Tbe'sanpled data'system that is designed to compete with a
continuous system must be Judged by the same performance crlterla 1t
would seem, and this is the p01nt of view of this volume. In some cases
a sampled data subsystem is to be procured that must be compatible with

an overall syétem, Naturally, then, this subsystem must meet compati—
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bility requirements on sampling rate and so forth, over and above meeting
certain perfprmance speéifications. ComPatibility requirements must al-
ways be met, of course, but this is a specialized area and outside the
bounds of this study, and for this reéson‘that topic is not considered
here, |

The analysis and Specification of Linear Time Variable Parameter
(LTVP)sysﬁems is one of great interest and importance'to-the Air Force,
The sad state of this’art, even thoggh the almighty'laW'pf'sﬁperposition
still applies, should serve as a great source of embarréssment to;applied
' mathematiciénb and engineeringjscientists; Apparently it is only #ery
recently that attempté havé been made to‘apply'modern operational tech-
niques, to this problem. The'state.of the art in this aréa is discussed
in Chapter 3 of this volume.

One,of_the early hopes in this'reseafdh was that generalizéd Indices
of Performance;or Figures of MeritvCOuld be‘devéloped for 6ontrol systems.
It was hoped that Indices of Performance would do two things; First, per-
mit generalized design pfoéedufes based on these criﬁeria'to-be worked
out fqr llnear systems, and Second, permlt the comparison of two or more
competltlve systems by the Air Force, so as to aid in the objective
evaluation of competing de81gns. Some progress has been’made in this
-“direction and is reported in Chapter 3. vawever,‘it dées not éppear at
this time that such a procedure will ever be completeiy_sucCessful.

" This is so because the relative weighting of the varioﬁs factors that go

into such an index depend not only upon the oﬁerational re@uirements for

the system but also‘upon the design philoséphy and judgment of the vendor
and the buyer. This does not mean, however, that Performance Indices

will not become more widely used than they are at preSent as their merits
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become’bettef known.‘ if.is simply that in the opinion of the Purdue_
group no onercfiterion cénveﬁer be the univéfsal solvent or magic ﬁande
-Thé intefim fepbrt'bn'specificaﬁions fofvnénlihear control.sysﬁems
will outline én appréééﬁ*ﬁo the pfoblem.and will disduss the state of the
art, This reporf will then be circﬁlated ﬁo Air Fdrcé vendofs for critia
cisms, - This approach was first(sﬁggesﬁed by AFMDC ahd Was followéd in
“the first portion of this work. The reaction of the vendors was favor-
able and a number of changes were incorporated in the final report as a
reéult>of this feedback., It will not be possible te carry that work to
its conclusion and issue a final report on that material within the con-
fines of the preSent contract.
| For the convenience of the reader the specifications recommended in
‘Volume 1 of this Final Report [l] are reproduced here, These specifi-
cations fall into two groups: FreQuency Domain and Time Domain.
1) The frequency domain specifications are to be measured for sinu-
soidal input frequencies. The recommended specifications are:
M~Peak, M?
Peak Frequency,cup
Bandwidth, B. W.
Peak Output Impedance,»Zﬁ
II) The time domain specifications are to be measured at the output
terminals for step inputs., The recommended specifications are:
Delay Time, Tp
Rise Time, TR
Peak Overshoot, PO
Settling Time, T

S
Final Value of Error, FVE
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These sbécifications ¢an be expressed together with their toler- |
- ances in a ¢onvénient gra,bhical i‘orm_as a‘;ri"acéeptablev .‘rég‘iqn_ in the
magnitude~time or»magnitﬁdeﬁfrequency spaces ([l] , Figs. 3-5 and 4-1),
The system time and frequency responsés: can be[consvt‘z;'ained: in r_,e_gions ’
deﬁennihed from' the recomm,e_‘ﬁded' specifica,tiéns and with the. require& ‘

performance of 2 particular system in mind,
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CHAPTER 2
LINEAR SAMPLED DATA CONTROL SYSTEMS

Abstract

The specifications recommended for use with sampled data control
systems are thosé recommended for linear, continuous systems [l]o
These specifications must be supplemented, as is dictated by the re-
quirements of a particular system, by compatibility considerations that
afe detailed in the following sections.

2.1 Introduction

A Sampled Data Control System is defined (Tou [2];-p.5) as a system
tin which the control signal in a certain portion of the system is
supplied intermittently at a constant rate", Alternatively, systems
of this type are defined (Truxal [3], p. 500) as "systemé for which the in-
put (or the actuating signal) is represeﬁted by samﬁlés.at regular |
intervals of time, with the information ordinarily carried in the
amplitude of the samples", or by Msystems in which the data appear at
one or more points as a seguence of numbers or as pulses are known as
sampled data systems" (Ragazzini (4], p. 1). ‘These definitions cover the
group of systems under consideration; those due to Tou [2]Aand Ragazzini
and Franklin.[4] are the broadér definitions for they iﬁclude first,
those systems defined by Truxal [3] that are pulse amplitude modulated
and secondly, those systems that are pulse code modulated,

Amplitude modulated sampled data systems are those where the signal
is represented by a train of pulses, ideally impulses (Linvill [5]),
with the information contained in the magnitude of the impulse, Signals

of this type are generated from continuous or analog data by means of
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cyclic switches, and an analysis of the sampling opefation ([3], P. 509)
indicates that the sampler is a linear device.

A pulse code'modulated system is a sampled data system where the
signal values at the sampling instants are quantized and coded. The
signal information is thus transmitted in trains of pulse groups
during the sampling period, usually for procéssing by a digital computer.,
Systems with this type of signal representation aré.called digital
control systems, and the sequential procedure of sampling, Quantizing
andvcoding (usually binary codihg).is called analog-to-digital cbhver-
sion. It is apparent that systems including analotho—digital'convérsion
will usually include the inverse operation of digital-to—analog conversion.

The Quantization process necesséry for analog to digital conversion
is a nonlinear operation in the sense that only discrete levels of output
are possible, and conseqﬁently the principle of superpositionidoes not
apply; The nonlinearity of the quantiier can be measured in terms of
the r.m.s, quantization.error ([2],.p° 87), which in turn depends on the
size of the quantization step. Conversion units that are finely
quantized, thus reducing the quantizaﬁion error, can frequently be con-
sidered as linear eléments. Principlesvfor the determination of system
linearity have been outline in Chapter 2, Final Repbrt, Volume 1. EL] and
can be applied to the Over-éll system in which a éonversionvunit is
included.

Systems that fail to meet the specification for linearity are out=
side the scope of the‘chapter,

Sampled Date systems with digital computers included in the loop

for compensaﬁion or other purppses may have associated with them finite
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computing times, When viewed from the input-output terminals this
constiutes a time delay in the loop. Whether such systems are to be
considered as included for discuséion in this chapter rests, once again,
with the linearity principles of Chapter 2, Final Report, Volume 1 11 .

It is possible to conceive of other methods of coding; for example,
pulse width modulation with the signal information carried in the width
of the pulse or, perhaps, pulse frequency modulation with the signal
information carried in the frequency of the pulse transmission (Black [6],
p. 30-36). These alternatives do not appear to be used, except in
spe01a11zed applications (dlgltal to analog conversion units, for example,

Nelson [7]), and consequently will not be discussed here,

- Sampling is not thought to be used in connection with a control
system because of any advantage inherent in the sampling operation itself,
but rather because of external reasons, e.g. the time sharing of equipment
and the use of digital computers for control and compensation. An
exception to this philosophy is the use of sampling devices with instrument
servomechanisms which permits employment of highly sensitivéverror detectors
(Marshall [8], p. 153).

It is not anticipated that over-all systems for use by the Air Force
will receive digital input signals nor produce digital output signals,
but that signals of this special nature will be present only within the
control loop. As an example, a ground-to-air missile control system
may well transmit data in digital form, but the desired missile angle
of attack, to cite a variable to be controlled, will be initially in
analog form and so will the actual angle of attack. Sub~systems of the
main system may receive and produce digital signals, but these will be

specialized components and must be dealt with as such. Thus systems with
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either digital (i.e. coded) inputs, digital outputs or both digital
inputs and outputs will not be considered here,

A éampled data system with continuous or analog input and output,

when viewed from the input and output terminals, does not present a
special problem due to the presence of the sampier as far as measurement
of performance is concerned. In fact, the observer need never know that
the system'contains sampled or digital signals, as any peculiarity due
to the presence of the sampler etec. will be observed at the oﬁtput,
Conseduently a system can bévconsideréd satisfactory provided it can
meet the input-output specifications placed upon it. The systems under
consideration in this chapter musf.comply with the linéarity principles,
and it can bé concluded, therefore, that all specifications recommended
for use with linear continuous systems will be meaningful and shall be
applied to sampled déta systems,

The principal mathematical tools available for the analysis of

sampled data system models are:

1.  The z=transform (Ragazzini'[9}) (Jury [10]), which can be made
té yield é'continuous function as the output, but which is
valid only at the sampling instants,

2.  The modified z=transform (Baker [11]) (Jury [12] ); which yields
the output at all instants of time at the cost of some algebraic
complexity, :

3. The so-called ¥state transition method" of analysis, which is
possibly the most basic and has received attention in the
literature as such (Gilbert [13]) (Kurzweil [14]) (Kahnan [15]).
It is more general in application than the z—traﬁsform but has

not yet found general usage.
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Use of the z-transform has the obvious disadvantage that the system
response between the sampling instants is left in doubt. An analysis on,
this basis would fail to reveal oscillations that are entirely between
the sampling instants (Jury tlé]), thus use of the modified z~transform
is necessary in systems where such responses are possible. The conditlons
under which oscillations may occur and the methods of analysis in the
z-plane are, however, well known [12], [16], (Johnson [17]), (Schmidt[18])
and need not be detailed here. The important conclusion is that an output,
to which specifications can be applied, is available from a system mathe-
matical model,

The philosophy of Chapter 6 (Presentation of Data and System Perform-
ance Information), Final Report, Volume 1 [1] is also applicable here,

A éystem may meet all speéifications, bgt it is desirable that a prospective
customer (e.,g. the Air Force) be furnished with more details than are
presented by the system specifications alone.

This chapter is concerned with sampled data systems that have both
analog inputs and analog outputs and can be termed linear within the
principles éf Chapter 2, Final Report, Volume 1. The restriction to
linear systems is consistent with the state of the art, i.e. any attempt
to apply specifications to nonlinear sampled data systems would require
considerable further research, which, while very important, is outside
the scope of this work. The restriction of the input and output gquantities
to analog form thus excludes sub—sjstems that receive or transmit digitally
coded data,. These’subnsyStems, e;g. a digital computer, are considered
to be specialized components and are not discussed here,

The specifications to be used are those recommended for use with

linear continuous systems, supplemented, as is dictabed by the require=-
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ments of a particular system, by compatibility consideration peculiar to
sampled data systems as detailed in the next sectidns°

2,2 Recommended Specifications

- Sampled data systems that are linear and time-invariant withiﬁ the
principles of Chapter 2, Final Report, Volume 1 must be subdivided into
two classes. The sub-division is based upon the sampling device frequency,
0089 and the system bandwidth, BW,

Time varying, continuous systems are discussed in Chapter 3 of this
report, and the philosophy and principles discussed there can be extended
to time varying, sampled data systems with high sampling rates, The
problems that arise with time varying, continuous systems are multiplied,
however, when time varying sampled data systems.with slow sampling rates
are considered, Extension of the chapter on time varying continuous
systems to this latter case is not recommended,

Sub~division one:

Systems with high sampling rate i.e. for which ~§%§a2510

Sub~division two:’ ,

Systems with low sampling rate i.e. for which 2& %{Wi\g 10

The specifications recommended for linear continuous systems and
reproduced in Chapter 1 for reference are recommended for use in the
specification of all sampled data systems (i.e. both sub-divisions above)
whose output and input are available in”analog form, In addition certain
“compatability considerations! must be considered.

Compatability considerations must be considered in all automatic
control systems where subnsystéms of a larger s&stem.are constructed.

For example, impedance levels at the input and output of the system
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must be compatible with the systéms to which it 1s coupled and, in the
case of a.c. control systems, the carrier frequency must be compatible.
Such considerations are particularly important in sampled data systems.
The‘system sampiing frequency may well be determined by factors
external to the system or sub~-system and may need to be specified as a
compatibility specification for systems in both of the above sub-divisions.
‘Systems that fall in the second of the above sub-divisions can be
expected to give inferior performance to those in the first sub-division,
and consequently more care must be exercised with the specification of
these systems, Compatibility~considerations'in addition to the sampling
frequency already mentioned ares a) the amplitude, and the tolerance
on this amplitude, of the harmonic content of the output to a sinusoidal
input of fundamental frequency, and b) the maximum tolerable amplitude
of the sampling ripple.

2,2.1 Discussion of Recommended Specifications

Analog ocutput information is available for sampled data systems
that are in the design stage and represented by mathematical models,
and from systems that exist physically. The specifications already
recommended for use with linear, continuous systems can be used,

_therefore, to assess the performance of sampled data systems. If the
system response fits within the region of the output magnitude=time
or magnitude-frequency space, as defined from the recommended specifica-
tions, the system is satisfactory.

Systems that include the sampling device within the loop may,
however, exhibit behavior that can be attributed directly to the
presence of this device. The design techniques available for this

class of system, for example minimum finite settling time and zero
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steady state error design ([4], p. 151), suggest response chéracteristics
which sheuld be'contfolled. The procedure whereBy these additional quantities
are controlled will‘be called Ycompatibility cbnsiderations”. The presence
of the sampling device is thus ignored for overall performance specification,
but the peculiarities of the device are examined to eﬁsure sﬁb—system coms
patibility.* That is, the same.specifiCations must be met wﬁether or not
the system contains a sampler, |

One of the priﬁcipal characteristics associated with a sampling device
is the rate at which samples are obtained from the continuous data, The
rate of sampling may well be a specification in itself dictated by cir~ .
cumstancesboutside the control of the designef; It is.clear that the
rate of sampling chosen will affect the performande of the System; in
‘fact, as the sampling rate is increased, system performance will approach
gkat of a continuous systemv[lSJ (Brown [19]). it ié recommended, there-
fofe, that sémpied déta systems be sub—divided’according to the rate of
the sampling device. First, those with a'high sampling rate comprisé
‘sub~division one, where high sampling rate systems, as discussed Appendix
A, have been defined as those systems where the sampling freQuencyuUs
(GUS = —ﬂ%EL and T is the saﬁpling peried) is egual to, or more than,
ten times the bandwidth of the system.

Mathematically:

Ws, si10 W s - sampling frequency
BW ‘
BW - system bandwidth

The greatest input frequéncy a system will be expected to experience

#It is net the intention of the authors to enter inte a discussion at this
point whether continuous systems are contained in the class of sampled data
system or vice versa but rather to set satisfactory standards for the
specification of either type system. :
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at itsinput terminals should be related by the designer to the system
bandwidth, The system bandwidth and the greatest input frequency expected
wlill therefore be considered synorymous in this chapter.

Systems'that do not fall into the category covered by the above
restriction comprise the sub-division £wo. These latter systems are
defined in terms of the bandwidth and the sampling frequency by the

inequalitys

The lower limit is determined from the Nyquist Sampling Theorem, the
principle of which was first discussed in 1928 (Nyquist [20] ).
Shannon [21] proves this theorem in a concise fashion and states the
principle as "If a function £{t) contains no frequencies higher than

W cps, it is completely determined by giving its ordinates at a series

of points spaced seconds apart", The uppér limit is determined from

1
24
Appendix A.

Systems that fall into the class where the sampling frequency can
be considered high will be specified by means of the specifiéations
recommended for linear, continuous sjstéms and these specifications
will be sufficient input-—output specifications.

The linear, continuous frequency domain specifications remain fuily
meaningful for those sampled data systems that fall into the second sub=
division. A possible exception that should be mentioned is the assumption
that the system under consideration will possess lcwapasé filter charac=
teristics, and consequently the fundamental is the predominaht component
in the output signal, If this assumption is invalid, the frequency
specifications, which are based on the concept that‘ﬁhe output derived_

from a sinusoidal input is of the same frequency as the input, begin to



-
lose their meaning. In such cases the same specifications can be'applied
to the 1nput and Qutput of fundamental frequency. In addition the amplitudes
of the harmonlc content of the output together with the tolerance on
these amplitudes, should be 1nvest1gated as compatlblllty con31deratlons.

The llnear, continuous Time Domain speclflcatlens also remaln fully
meaningful when epplied to the analog'output data from systems in this'
second sub-division, Two characteristic diffiodltie_s agsociated with

this class of‘system,»n&melydinter-samplidg ripple, introdused by the
sampling device (‘[lJ 5 Do 336),'and hidden oscillaﬁions between the
sampling instents.’ﬁﬁﬂidust be cdﬁtrolled‘by-specificationso Care must
be exercised when‘theiQUtputisignal is derived from a z#ﬁransform' v
analysis. Such an analysis;land,theFSmooth curve through the sampling
instants that'it yields; may be misleading. Hidden oscillations and/or
exoessive‘inter-sampling ripplesrmay‘go"undeteéted; | o

The condltlons under which oselllatlons, contalned Wholly between
the sampling instants, w:.ll occur are well def:Lned [i6] ( Els ». 356)
and can be avoided, | | _

Interwsampling ripple is introdueed intolthe syéteﬁ by the higher
frequency compenents generated during the s&npling process. These com-
ponents are attenuated, frequently, by system elements that exhlblt
low-pass filter characterlstlcs, but some may remain at the output
terminals, This 1nter—sampllng ripple may not be troublesome during
syStem transients but_could be the only output after the trans1ent has
subsided ( [?] s Po 338). Control of suoh a ripple is ofteﬁ essential,

Some control of this ripple will have been allowed for already by

the Final Value of Error Speclflcatlon, which llmlts the actual output,
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to a region about the desired value of the output. The frequency doméin
specifications may also tend to limit the amplitude of the ripple.‘ The
frequency specifications are, however, based on input-output quantities
whereas the ripplé is produced internally. Direct control of the ripple
amplitude may often be desirable,

It is recommended,'therefofe, that the maximum tolerable amplitude
of the intersampling ripple be investigated as a compatibility consider~
ation, | |

Performance Indicies were not recommended as performance specifi~
- cations for linear, continuous systéms and are hot recommended for use

with sampled data systems.
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2e3 Daté Presentation
| It is-reCOmmended that Nyquist Diagrams'and Root Locus Diagrams be

used to display systeﬁ data when describing system‘pefformance forvthe
Aierorce. Thelrecommended methods are thése;recommended’for use with
linear, continuouSvsyétems. The diagrams will’be supplied to the Air
Force in addition to thé performande specifications already diséussed.

Performiance specifications and théir'tolerance can be summarized
in terms of timé and frequency domain graphs as is‘indicated'in Chaptef 1.
"Reference has been made to the neces31ty for llnearlty checks and the
prlnclples of Reference 1 Chapter P 1nd1cate that a need may arlse when
vthese graphs should be presented for . a number of 1nput'magn1tudes.
It is recommended, therefore, that actual time and frequency graphs
taken for thevsystem under consideration be présénted for different .
input magnitudes as discussed in Reférehcefl, Seétions 6.10‘and 6;11.

Lastly ﬁhe transfer function of the linear, continuous portién of
the system is recoﬁmendéd for inclusion as system data since it ex-

presses system characteristics in a concise way.

2.3.1 Discussion of Data Presentation Methods

Performance Specificationskqontain the‘informatibn needed to
évaluate a syStem in operaﬁion, as they describe the System‘on aﬁ inputa
output basis. vit is often necessary; howéver, to consider additional
- factors less tangible then the numerical values of the specifications
already recommended. Thé objective may be the evaluation of proposals
and the selection df.sﬁperiof designs with regard to such factors as,
for axample, simplicity of design or sensitivity of parametér vériation,

It is essential that this information (i.e. system data) be presented
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in a form that will be familiar to those who have to evaluate the SJstem.
Furthermore, the form of data presentatlon should be of one or more
specific forms so that the Air Force will have a common denomlnator for
system‘compafison.

This philosophy follows that expressed in connection with linear,
continuous systems. The‘prinoipal aﬁalysis, (design), techniques availe
able for use and currently used with sampled data systems will be enumer-
ated with the purpose of selecting the most appropriate method or methods
of data presentatlon.

243.2 The Routh-HurW1tz Criteria

These crlterla cannot be applied to the ‘characteristic equation of
a sampled data system, which is in terms of‘the complex,variable nsH,
associated with the Laplace Transforwbasxthe equation is transcendental
([3], pe 522) ([4], Ps 98). When the system characteristic equation is
expressed as a function of the complex‘variable ngh associéted}with the
z-transform where z = eTS, the criteria are not applicable either, as
‘the transformation maps a horizontal strip of the left<hand half-planq
of_the-é—plane into the‘interior of a unit circle centered at the origin
in the z-plane. Stability is now assﬁred»when the zercs of the charac~
teristic equation are inside this c¢ircle and clearly the Routh~Hurwitz
Criteria are not applicable, |

The criteria can be applied, however, in a maﬁnér identical to that
used with linear, continubus systemé if the characteristic equation iSex#
pressed'in terms of a complex variable w by means of thé Mbbius,or-

Fractional Linear Transformatlon (Hille [22], p. Aé)m

1+ W

5T,
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- This transformation maps the 1nterlor ef the unlt circle, centered at
~ the z-plane origin, 1nto the left-hand half—plane of the w~plane.
Stablllty is now assured if: all the zeros. of . the characterlstlc eduatlon
in terms of w are in the leftwhand halprlane of the w;plane and the
,,crlterla can now be applied. Gain margin information is avallable as
a»result of this analysis in the W—plane and the results can be trans-
ferred backtthrough the transformatioﬁs'to the s-plsne.; |

v The labor involved iﬁ this eperation may'well become extensive and
the information that results is only Gein Margin, which is inadequate
for system evaluatieh;_:ThevRsuth-HurWitz‘Griteria is not recemmended
for date presentatien. | | | :

2.3.3 The Schur-Cohn Criterion

The crlterla just descrlbed abore are able to detect the presence
v‘of roots Wlth positive: real parts of a polynemial expressed in terms

of a complex_var;able. In the case ef'sample data systems»the character-
istic eéuetioﬁbmust be”examined;for roots that‘lie outside the unit.
sirclevin the z-plane, The Schur~Cohn criterien ([2]; p. 238) comprises
an elegant test for theidetermination ofvsuch'reots. The-information
obtained from this test is, however, restricted to Gain'Mergin, as was
the case w1th the Routh~Hurwitz Crlter;a, and this information is not
sufflclent for system evaluat;on., The,Schur-Gehn Criterion is not ‘

recommended for use as a method of data presentatlen,

2,34 The, Bode Dlagrmn

The open: loop transfer functlon of a sampled data system, when
wrltten in terms of the Laplace Transform complex varlable “s", cannst
be expressed as the ratlo of - flnlte polynomlals. The-Bode Dlagram, ‘as

a logarlthmlc plet of magnltude agalnst frequency, thus loses the ime
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portant advantages it has for linear, continuous systems; that is, ease
.of construction and identification of time éonstants. The familiar
linéar éohtinuous equalizer pro:edufes,-should oné wish tobusé such an
equalizer, are not valid because the continuous transfer function of an
equalizer camnot be added directly to the open loop plot. on the diagram,
as 1s the case with linear;.coﬁtiﬁuous'syétems. The use of pulsed data
equalizatibn can be effected on the Bode Diagram, but the technique is
difficult to apply ([2], » 432).
| Iﬁ is possible to make use of the’familiar linear, cohtinuous
design techniques on the Bode Dlagram by apprOklmatlng the open loop
transfer function ([4], p. 124), but the approximation is 1naccurate
for low sampling frequ§n01es where accuracy is most desirable,

An alternatiVéfappréaCh is to transform the open loop transfer
‘ function to the' z-plane and then to the w-plane, The dee Diagram
technique is now directiy applicable; but phySical reality has been
lost by the sequence of tfansformations.. The principal advantagé of
this method of data presentation, that of insight into the system
capabilities, is thus lost also. |

v The Bode Diagram is not recommended as a method of Déta Presentation

for samplﬁidata‘systéms. '

2.3.5 The Nyqulst Diagram

The diagram, when used in connection with sampled data systems,
is constructed and can be used in a manner similar to that for linear;
continuous systems ([3], section 9.6).

The diagram is é polar plot of the’magniﬁude and the phase of the
open loop transfer function as a function of frequency. Where G (jw)

is the continuous forward transfer function, the transfer function in-
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cluding the sampling devicekbecomes:
+eo
2, 3 o l . ) . 2’"’ — . .
Gx (jw) = —= z G JW+ nw) =~ =W = sampling frequency
T ‘ S 5]

=3

~00
or in terms of the variable z merely G(z).
The transfer function can be plotted as the Nyquist diagram, approximately
fromthe first expression using only the first few terms of the series.
It may also be plotted exactly, directly from G{z), recailing that points
on the jw- axis of the s-plane correspond to points on the unit circle
centered at the origin in the z-plane, |

Mécircles (Chestnut [23], section 9.2) can be constructed and are
fully meaningful ([’2],, pP. 413) with the usual restriction that the system
must be one of unity feedback,

In conclusion, the diagram provides'the same information as it did
in the case of linear, continnous systems. It was recommended there for
use in the presentation‘of data and, therefore, is recommended for data
presentation with sampled déta systems,

243.6 Root Locus Plot

The root locus diagram can also be extended tb display the movements

of closed loop éoles, as a function of a system paraméter (Jury [24])
(Mbri [25})9with sampled data systems., In the s~plane there are infinitely
many open-loop singularities, but loci can be drawn. The root locué can
be drawn more simply in the z-plane, with‘the disadvantage that position
with respect to the unit circle and the origin of the z~plane is of
importance, rather than the more familiar concept of position with respect
to rectangular axes in the s-plane,

- The transient response is characterized by the position of the

closed loop poles in the z~plane, and hence by the position of the root
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’ioai.’ The lack of familiarity with the geometry associated with the
"z-plane can be overcome to some extent by, for example, constructing
'contours of peak overshoot [12] related to a partlcular system on the .
*F"z~plane, together w1th the. root locus plot.

| -Root, locl can also be drawn in the w;plane, using the transformatlon
dalready descrlbed, ‘but, as mentloned before, physlcal reallty is lost. |

Root locus dlagrams are recommended for use by the Air Force for
;v»data presentatlon.‘ The dlagrams should be plotted as a functlon.of one |
vor ‘more of the parameters that are of interest and in the zuplane.-

The dlagrams recommended for use by the Air Force are the Nyquist
;fDlagram and the Root Locus Dlagrams in the z-—plane° These diagrams are>
"those recommended for Alr Force use-ln connectlon with linear, continuous
d:systems. “A;factor used to aidiin the selection of these diagrams in
‘ gFlnal Report Volume 1 [1] was the possible exten51on to nonlinear sys—-
tems,: It is fortunate ‘that the advantages in using these diagrams with
sampled‘data‘systems‘lead to thelr recommendation here, and thus the
_»pessibilityfof using these disgrams with all systems exists.

| TnevN?qpist Diagramias drawnofor a sampled data system in the s-plane
‘can_be_comparedidirectly'With a’similiar diagram for a continuous systeﬁ.

: Gonsequentlj'continuous:and sampled syStems can be compared bybmeans of
:f avﬁyQpistvDiagram. This.comparison cannot be made as easily uhen the

-RooteLocus'Diagram is used.- The continuous system diagram will be drawn -

d-:ln the s—plane and the sampled systems dlagram in the z-plane and the

appearance of the two dlagrmms is quite different. The technique in the
 z~plane for sampled systems is the same, however, as the technique in

the s%plane for continuous systems. The z-plane technique is common in
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‘the literature and the transient response ini‘omation is available from
the digram (Jury [26]).’ The z-plane reot. logus is thus recommended in
order to provide 'th,j.s trari_sient information ‘des_pite't‘he difficulties

with such diagrams.
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CHAPTER 3

THE SPECIFICATION OF LINEAR TIME VARIABLE

PARAMETER SYSTEMS

Abstract

Linear time variable parameter (LIVP) systems are defined and sub~-
divided into those systems with fast or slow variations and/or large or
small variations. vThe methodsvof analyéis"of such systems are feviewed, 
and the following recommendatiohs are mades

Specifications

1) Time Domain Specifications
‘(a) LIVP systems with fast variation of pérameters.

Simulated unfrozen system stép function responses should
all lie within a prescribed enveloﬁe. Whenever possible; the
actual system response should be obtéihed;v |
(b) LTVP systems with slbw-variation of parameters,

Simulated or actual_frozen or ﬁnfrozen system step function
responses should all lie within é préscribed envelope.,

2) Frequency Domain Specifications
(a) LTVP system with fast variatioﬁ of pérameters,

Frequency domain specificationsare not recommended.
(b) LIVP system with slow variation of parameters.

The family of frequency response cufves of the system
frozen at different instants should all lie within a prede-

termined envelope.
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Data Presentation

It is recommended that the region of variatien-ef-closed-
~ loop peles of the frozen éystem be exhibited on thefeomplex
plane,  Thus, for example, if the only varying parameter'is an
open loop galn then the region of variation of the closed 1oop o
’ poles will correspond te the root Joei over the total range of
vvvarlatlon of gain, | |
’ It is also recommended that a family of Nyquist diagrams 

corresponding to the system frozen at different instants be |

displayed in the case of systensmdth.e}ewuvarietions ef'parameters.

3.1 Introduction

| Time'vefiablevparametef systems occur more often in pfectiqe ﬁhan '
>, one with a fair knowledge ef‘COntrol system theory might suspect; In
fact the statement that most practlcal systems are nonllnear and tlme'
variable is not very far from: the truth. However nothing: of velue is
known at the‘present moment regarding the analysis and,synthesis of
general nonlinear time varieble parameter Systems._ Gonsidefable_research
effort is being expeﬁded to solve.certain facets of»this problem,
particularly by workers involved with seif—adaptive Systems-which‘are,
in general, noniinear and time varying. Inasmuch as it is hlghly
de51rable to be able. to specify performance crlterla for general
systems of this klnd, the state of the art at ‘the moment 1eaves so much
to be desired that it does not appear te be feasible now,
R " This pafticular>reporteis restricted to the special case of linear
time variable parameter systems (henceforth referredvto as LTVP systems).
LTVP syStems are also sometimes referred as nonStationery 1inearvsystems.

There is not a very great loss of generality by>this restriction since



one will soon see‘that not ueryfmuoh moreiis,knoun'regarding possible
means of specifying LTIVP systems than nonlinear time-sariablejsystems.
It is possible toaaPproximately-describe-a-numhervof-ﬁractioal control
systems in such a fashion that’ they may be con31dered to be LTVP systems,
For example, a mlSSlle subgected to thrust due to fuel burnoutrnay be |
cons1dered as ‘a LTVP system by assumlng that the burnout rate is a

constant. ThlS latter assumptlon 1s, of course, qulte reasonable in
general, | ‘

_ The ‘analysis of'LTVP systems iS'also?imtortant SOmetimeS~from:the
' v1ewp01nt of study of spec1al characteristlcs of. certaln nonllnear
.systems, For example, ‘the study of the perlodlc solutlons of certain.
forced nonllnear systems (forrexample,ﬂsystemsvbelngvdescrlbed by
4equatlons of the Dufflng type) resolves 1nto studylng equatlons similarp
to the ones which govern LTVP such as Hathleu 'S equatlon (Stoker [27])

The study of the analys1s and synthe31s of LIVP systems is a rather
1nterest1ng, 1mportant and fa501nat1ng research top;c at the present
time, However the technloues avallable at the moment leave much to be
desired. Because of this, the complete spec1f1catlon of performance
criteria for LTVP systems’ presents a rather formldable problem that is
unsolved as yet.,

‘Before discuSSing the sPecificiproblem”of hothO'describe the per-
formance of LTVP systems, let us first consider'the general LTVP system

and ‘the several known methods ofpanalysis'of'them.ﬂ,'
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_ Definition 3.1

" A general 11near lumped par&meter tlme varlable system is des-

crlbed by a dlfferentlal equatlon of: the follow1ng type.

o n_l‘ o | |
| a(t)—-l«»a '1("’) i ++ al(t)dt+a(t)y

o dmx ml e '
bm(t)g{'ﬁ‘ 1(t) """"'T‘ ooeueooaot"’ bl(t) "'"" "' b (t) X (BOl)

In equatlon (3 l), y is the output and x the 1nput of the system._

i v The CoefflClen’bS a ’ a “_lo-ooob -8 l:co-olare fU.thlQnS Of tme alone

and are assumed to be plecew1se conblnuous over any flnlte sub;nterval.
Furthermore, 1t is assumed that a (t) does not vanlsh at any polnt in the
:Lnterval of 1nterest adt <b. o

: ~ Equation (3 l) may be represented ln‘the follow1ng operatlonsl form -

L (D,t) y = K(D,t) R (3 2)
Where S o i o o “;v‘ 7 | - " | _
| '. L (D,t) a (t) D +......+al(t)B+a (t) | " R vf i (3+3)
K (D,t) b (’c) D +......+bl(t)D+b (t) o o ' _(3'.4)
Lg
‘D ol

The quantlty n is. deflned as: the erder of the system and in general,
| fer a phys:Lcal system n? Mo |

| LTVP systems obey the powerful superpes1tlon theorem, due to the fact
that equatlon (3.1) is a linear dlfferentlal eqnatlon. At first glance, o
- this fact may lead ene to. belleve that the analy51s of LEVP systems is
~ not very dlfferent from the well known methods of analysls of llnear tlme

invariant systems. Uhfortunately,zthlsvls far from,the truth. Very few
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methods of analysis exist for LIVP systems, and even the methods that are
developed are‘applicable‘only to.specifiq typeSof:systems.b

~ A linear system is completely specified by 1ts 1mpulse response
_h(t,tl), Note that in general the 1mpulse response is a functlon of
two instants of time, t the time of observation of»ths output and %, the
time of application of thé input. ‘In the csse of time invariant systems,
the impulse résponse is a~funstion»on;y sf the‘ﬁége variable" t;t1 =T.
- It is this latter property Whish makestthe'analysis of linear time
invariant systems mathematiCally*tractaﬁle.:‘Mbresver, thetdependence of
the impulse réSponsé on one variable iS'tﬁe”rsasonjthat‘any significant
meaning may be attached to time~domain and‘trsnsientnresponsesspecifica_
tions for linear time invariant‘systems; ’The transisht respoﬁse‘charac-
teristics, such as the impulse response-or‘the step:funCtion response,
. for a linear time invariant sjstemfcan'bs dbtéinsd from a complete knoﬁl—
edge of the response of the system to any onettrsnsient’input applied at
an§7instant of times However, the transiéntvresponsé‘of-a LTVP system
implies, theoretiCally3‘kﬁowledge‘of‘aninfinity of’resPdnses obtained by
application of the tréhsisnt ihput at différent instants of time, This
makes the specification of LTVP systems in_terms»bf transient response
such as, fof'example, stép function response,'generally meaningless.,
Frequency domain speCifications have less mssning for LTVP systems since-
~a harmonic input ts a LIVP systemvdoes not in gensral résult'in a harmonic
or even periodic sutputs. | B -

It is ev1dent from the llterature in the area of dlfferentlal equations
(Ince [28]) (Bellman [29]) that con81derable effort has been spent in

| detenmlning the stabillty characteristlcs @f linear, tlme varlable dlffer—
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ential equations.; This is evidenged, for example, by the elegant'Floquet's
theory ([27], p. 193) in connection with Hillts e@uation and Mathieuts |
equation., This theory is appllcable to-a partlcular type of second order
dlfferentlal equatlon and despite its elegance, is useless as far as per-
formance specifications of LIVP systems are concerned, It should-be
nbted‘that‘it is possible to discuss the stability of a LIVP system only
in the absence of any inputs, whereas the perfonnance spec1f1catlons of
a system in general are based on some form of 1nput to the system. ‘

In this connection’it may be worthwhile to precisely define the
concept of stability for a LTVP system, The following definitions are
"emﬁwﬂam; | | . |

Definition 3.2

A LTVP system is defined as stéble ifithe cbmpleméntary ’;
‘soluticn'(ﬁranéiént solution) associatEd with its differential
equation, of the form of equation (3.1) identically approaches
zero when time inqreases'beyoﬁd allvbounds-for'any'arbitraryv
initial conditions, |

 Definition 3.3

A LTVP system is defined as stable if its impulse response -
h(t, tl) is absolutely integrable over the infinite range of t for

all values of ti. (Zadeh [30], P 403)

Note that the 1mpulse response h(t, tl) may be obtalned from equatlon
(3.2) as the solutlon of _
| L(nt)xh(t,t )“K(Dgt)xtg(’w’c ) R C I
“where K o

Sk - ty) is the D‘;Lrac-deita functions
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For LTVP systems, both the definitions imply quasi asymptotic
stability of the system and not necessarily quasi uniform stability
(Antosiewicz. [31], p. 147). However, for linear time invariant systems,
~a stable system on the basis of definitions 3.1 and 3.2 implies a
uniformly asymptotic stable system.

It is evident that these definitions of stability for LTVP systems
are not particularly useful for control system applications. Fof example,
the transient response”bf,a.“stéble"‘LTVP system (in the sense of de-
finitions 3.1 and 3.2) might exceed a safe value (possibly resulting in
a deétruction of the system) at some instant of time, despite the fact
that the respdnse appeared well behaved for a reasonable length of time

“after application of the input.  This is a problem fhat is not encountered
in a linear time invariant system. For example, the first maximum of the
step function response (corresponding to the overshoot) is the absolute
maximum for a stable linear time invariant system.

It is sometimes useful to define stability on the basis of uniformly

asymptotie stability.

Definition 3.4
Any uniformly bounded input should give rise to a uniformly
bounded output’in a uniformly asymptotically stable LTIVP systenm

(Kalman [32], p. 379)

VAccording to Massera's theorem (Massera [33], p. 204) in order for
the LTVP system to be totally stable, i.e., stable for every bounded ine
put, it should be uniformly asymptotically stable.

For certaln control system applications,’the stability of a LTVP
system may be specified on a short time basis. For example, a LIVP

system may be defined to be short time stable if the response to a
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specific type of input such as a step remains within certain tredetermined
bounds for a specified interval ofstime after the application_ofethe,in«
put. The behavior of the system outsidebthis interval is ofinonconseqnence,

It is realized that stability is a rather important and'interesting
'oharacteristic in the analysis of systems. However, the response of the
systems to certaln specific inputs is more 1mportant in specifying the
performance of the systems. Various authors hawve proposed specific
methods for determining the response of particular LTVP systeﬁs;.(cerardi
[381), (rirby [351), (kirby [36]), (Brodin [371), (Bemett [38]),
(Karamyshkin [39?), (Desoer.[hb]). 'Thisvsusgests tﬁe poSSibility.of
'trying to ola351fy LTVP systems on the basis of being amenable to the
various speCial methods, This raises a rather difflcult‘Problem which
shall be discussed later, |

3s2 Methods of Analysis

To determine the feas1b111ty of classifying LIVP systems, the
various methods that are available at the moment for studying their
stability or obtaining their responses are listed below with proper
references, Brief eiplanations of the methods are giveﬁ where necessary.
It should be noted that there is a certain amount of 0verlap between the
methods,

3.2.1_’Analysis Using Classical Differential Equatioﬁ Theory,[28]

From the theory of differential equations it is known that a unique
solution of equation (3.1) exists and consists of two parts, They are:
(a) The complementary solutlon, whioh is the solution of the

homogeneousequatlon

L(D,t)u=0 | . (3.6)



Thus, if u;, u,, ... uwoare the n distinct* solutions of equations

(3.6), then the solution
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U.(‘b) = ClU.l +. 02u2 + oaes F Cnu.n

containing n arbitrary cons
(v) The particular solutio
, vsatisfies the nonhomogeneou

of (3.1) is then given by

y(t) = 7,(6) + u(t)

It is generally difficult.t
differential equation of the for
: from the definition of stability

for the system is contained in ¢

tants is the complementary'solution.
n, which is any solution To(t) which

s equation (3,1). The complete solution

o obtain the complete solution of a

m (B.l)Ifor,any arbitrary-input. Note
that the complete stability information
he complementary solution, equation (3.7)

by Matrix Methods [29], (PipeSA[Al])

34202 MAnQLysis oﬁ LTVP Systems
The matrix analysis of LIVE

from the élassicalvmethod of ana

notation is simple ehoﬁgh to pr

algebra associated with the clas

sical method,

systems is not significantly different
lysis. The 6nly advantage is that the

event one from getting involved in the

* A sufficient coﬁdition'for thé
is the same as saying that they
functions Uy s u2,~§$.'un‘should
Uy ugl...c w,

u

li IJI-ZQC!‘O un’

(n=1)  (n-1)
U-l saos U.n

%0

Here

linear independence:of ul,uz,...un(which

not be identically zero, This means that

(3.7)

(3.8)

are distinct) is that the Wronskian of the
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. For exahple,.if one were just interested in'the stability'problem%,_

the nth order homogeneous-differential'eqpation, eqﬁation-(B.é),-may be

reduced by a suitable transformation te a set of n.firsteorder diffefentialf

equation$ of the form
4Y )y
H-uex
‘where Y is a column vector w1th n elements and A(t) is an x n square :
matrix whose elements are functlens of time in general, |
The homogeneaus equatlon assoclated w1th the system, eqnation (3.6),

may be - reduced to the form of eqnatlon (3.9) by deflnlng new variables

B for the output and its derlvatlves, as follews'

Lt
oy yi,' N
andf;,=f‘5jg=,?zq\;,,f
'§E"=,33"'>“v;'
'»§£;1.= Tn) -

»ﬁheﬁ’from,(B 6)

RS ORA T

where '
a. (%)
e (t) = —=
i vanZt}
Equations (3.ll) and(3.12) may be comblned and ertten in the form of

equatlon (3 9) by deflnlng Y (t) and A (t) sultably as follows

' (Bfg)

(3;;O>

‘(3.11)

(3.12)

(3.13)

#* This information is cpmpletelyeeontained in equation (3.,6).
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Let

w(t) =9 P | - o G

and

0 1 0 0 e O

Ae) = el 0 (3.15)

""c_ -C ~C.les¢
o 1 2

n-2 n-»-l ’

The yiié represent the so called state varlables of the system. In

general, any independent linear comblnatlon.of state varlables is also a

state variable., The n—dlmen81onal space with each state varlable represented
along a co-ordlnate axis is called the state space,

Theoretically, the stablllty of the time varying system is completely
1 . e Lo
determined by the matrix A(t). Fowever,_atvthe present moment, there

appears to be no generalized thebry which can be applied to every matrix
| i _ _

A(t). The stability of certain %ystems yielding'specific types-of matrices
J .

A(t) has been investigated in”referehce;lSJQ
| b .
The matrix method could also be used for obtaining the response of
some specific LTVP systems.. However, this method does net possess any

distinct advantage over the classical method.

\
30203 FrequenCy Analys1s Approach [30] (Zadeh [hiﬂ [h3] [hh] [AS]}

This is essentlally an atte%pt to extend the familiar concept of
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poles and zerss to LIVP systems, The theory develdped in this.case
Ccleosely sarallels the system transfer function coneept for lineaf time-
invariant systems. However, the application of this methpd'ﬁo aﬁy but
the most trivial cases is rather difficult., However, this methqd:is not
without advantsges, With the transfer funstion concept for LTVP systems,.
one can intuiﬁively picture poles and zeros of the‘LTVP system wandering
in the complex plane as functions of time, The question of stabiiity can
immediately be settled for some intuitively obvious cases [?8];

The esseénce of the method hinges on sbtaining the so called system
functlon H(Jﬁa,t) which is an integral transformatlon guite analogous to

Fourler transformation of the weighting functlon h(t,t ), defined by

equation (3.5). The system function is defined by‘

H(jwst) = et [w(t }) eﬁ af B (3.6

In general it is wvery dlfflcult to obtain the system functlon.
Zadeh ([@2] Pe 295) shows that the system function satlsfles the non~- .
homogeneous linear partial dlfferentlal equation with complex-coefflclents

which are functions of time of the form'

L 2%, .1 01
AL ST §at v TISGe ot ° - ew

where L and K in equation (3,17)_are obtained by replacing D by jw iﬁ'f
equation (3.3) and (3.4). |
It is seen that>Zadehfs frequency transformation is equivalsnt to
g01ng from the unsolvable equation (3.1) to a more dlfflcult equation (3. 17).
Zadeh also points out the 1ntu1t1vely obvious case of a LTVP system
with slow variation of parameters, in which case the first apprOleatlon

to the system functlon at any 1nstant is the same as the transfer functlon
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obtained by freezing the paramete%s at that instant; This is thén de-
fined as ihe frozen system functiéno |
Zadeh also mentiéné the inte?esting possibility of the bifrequency
transformation. This is eséentiaily thé Fourier transformation of the
system funcfion defined by equatlon (3 16) where the varlable of transe
formatibn is t. No partlcular use cf the blfrequency function of a
system is known at th;s time, |
In sumnarizing, it is felt t#at the frequency analysis approach
~ transforms one unsolved problem iﬁ the time domain to another unsolved
|

problem in the frequency domain. |

3.2¢h The Transform MBthod(tZS],%Chap{ 8), (Aseltipe [L61)

In this particular method, an equation of the férm (3.1) is solved
by defining a suitable integral,t?ansformation, such that Whén both sides
of equation (3.1) are operated oniby this particular transform, a mathe
anatlcally tractable equatlon.resulus. 'Thié method gets quite complicaﬁed
even for a second order system [45]. |

Aseltine considers the solutions of a second order LIVP system of the

form ‘

a(t) qn + b(t) qt + & q o) - (3.18)

where the primes refer to dlfferentlatlon with respect to tlmea
J

Aseltine seeks an integral transformation of the form

t . o
[q (t)]éQ(y) =-fq(’c.P n(},t) at - (3.19)

where h(§ st), the kernel, is a function of time and of the transform
variable'g 5 and.C)(}) is called>Fhe transform of a(t),

It is now required that the application of the tfansfofmatioh (3.19)



to tﬁé‘LTVP system equation (3318) results in :
 RRIQR) ¢+ Q) = B (B) +[terms involving initial
| | "’conditions] | (30
where f(:} ) is an arbitrary function of the transform varlable;
By redeflnlng the kernel to 1nclude a functlon g(t), which will

make the dlfferentlal operator of (3.12) self ad301nt, one obtalns

h('§ ,t) mg(t)xk (} ) | (321
1t is shown that . ‘ o S ‘ ’
U I RO TV ] L
‘ g(t) vxp [f ‘.a(t) , ‘dt R | (3.22
and- k(} t) satlsfles the homogeneovs ‘partial dlfferentlal equatlon
a(“é”? k(} ) *b‘%‘;k(} t) -f(})k(} =0 (G

The kernel functlon of the 1ntegral transformatlon aepends on the
coeff1c1ents of the homogeneous dlfferentlal eouatlon (3 23) Thus,
use of thls method even for a 31mple -second, order LTVP sysLen, 1nvolves
constructing tables of transforms and their inverses for each partlcular
set of coefflclents° ‘It is seen that the work involved is monumental,
- It cgn be shown that in the special case when the coefficients are.
dbnsténts (cbrresponding to a time invariant system), the suitable

1ntegral transform is the famlllar Laplace transformﬁ»-‘

"3 2.5 Appllcatlen of the Second Method of Llapunov [31] [32], [33],
(Malkin [A?I) (Szego [48])

| The second method of Liapunov’is useful~oniy for determining,thér
stability of a LIVP system. No information can be obtained regarding
the response of the system to any inputs. |

- The fellow1ng exposition. of Llapunov's second method essentlally

follows reference [h8ﬂ¢ In order to present ‘the theorem, the following



definitions are necessary.

Definition 3,5

-A real scalar function V(Y,t) lS eélléd posi‘ci\fe ‘semidefini"te'
if.
- V(o,t) = o ” | 7
and : | e R C W/
LS | | |
Note that Y refers to the state variable_s, véctbrv_»ofv the system,
The vector of state vaifj.able's' Y is defined by v“:equa,t»i'o‘n ‘(3:.'ll+).

Definition 3.6

A real scalar function V(Y,t) is called negé,tiVe semi-definite

if ¢ -W(Y,t) is positive semi-definite.

'%ﬁﬂRRHBJ
A real scalar function -V(Y,t)'.i's. calied,_positivé definite in
~ the Liapunov'!s sense if
. V(é,t) =0
and V(T,t) S w(y) :
, , , (3.25)
where w(Y)> o for y‘i;eo _
‘and w(o) = o

Definition 3.8

A real scalar function ’V(,Z,t) is caLlled_ negative defini_té', in '
Liapunov's sense if ~ V(Y¥,t)|is positive definite.

Liapunovis theorem

If for t3t, there exists a real scalar function V(Y,t) in the |
neighborhood of the origin, V(Y,t) being continuous and’ possessing
continuous partial derivatives with respect to y'i-ahd t,v,v and satis—

fying some of the following conditions.
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1, v(y,t) is pdsitive definite in Liapunov's sense for t3 to
23.9 SZ is not pos:.tlve in some region § around the origin of
the ;phase space for t3 toe

or 2b, %g is negative definite in Liapunov!s semse in 3 for t§t

2Ce iz is pesitive deflnlte 1n L:Lapunov's sense in 8 for t?t
3. Lim V(Y,t) =0 unlfomly on t, for t>t0.
Wzl —o » o
wWhere ||Y|| ~refers to ‘che Buclidean Norm of ‘the vector Y.

e Lim V(Y,t) =00 uniformly on t, for t>t
lIrll—>c0

Then the trivial solution ¥ = 0 corresponding to the origin of
the state space is: '
Qe S-table‘ in § if the conditions 1 and 2a are satisfied,

b. Asymptotically st.a.ble in S if land 2b are satisfied and

either A(t) is bounded or there exlsts a real scalar functlon g (t)
Wthh 1s deflned contlnuous and 1ncrea.s:.ng for t>to, w:Lth T (t )

such that

g}g —g {v(y, t)} for every t>t

C. Uniformly Asymptotically stable in S if 1, 2b and 3 are

satisfiedy
d. Unstable in S if 1, 2¢ and 3 are satisfied,
The crux of the Liapunov's second method lies in obtaining a suitable
V function which will yield useful answers,. Except for the trivial case
of a linear time invariant system (for which the Routh criterion coﬁld be
used tor‘determineb sﬁability), there is no general method for determing a

suitable V function,



3,2,6 Analysis by Simulation (Ma

9 -

tyash [49]), (Laning [50])

This appears to be the most
systems, This essentially means
analog or digital computer. The
input may then be determined, He
systems could be valuable,

3.2.7 Discussion of the Six Meth

fruitful method for comparing LIVP
that the system is simulated on the
response of the system to any desired

re actual operation records of equivalent

ods

The six methods for analyzin
common and serious disadvantage a
concerned. . The starting point fo
that the time varying system can
degree of accuracy. This assumpt
. experimentally determine the math
ware, ‘This is a severe assumptio
There is no known method whatsoev
governing a piece of hardware by
even if there is a priori knowled
if the system happens to have tim
ment is true only if the system i
of a black box with an input and
inside the box.
often possible to estimate the eq
degree of aceuracy,

It is apparent from the disc
analytical determination of the r
most trivial cases is a very diff

nethod could be used in almost al

However this is |

g LTVP systems discussed so far have a

s far as performance specifications are

r all these methods is the assumption

be mathematically described to a fair

ion presupposes that it is possible to
ematical description of a plece of hard-
n from a strictly theoretical viewpoint,
er of obtaining the differential equation

any means, experimental or otherwise,

ge regarding the linearity of the system,
e varying parameters. - The last state~

s treated from a pedagogical viewpoint
output with no means of knowing what is
rarely true in practice where it is

uations governing the system with a fair

ussion of the first five methods that
esponse .of LTVP systems in any but the
icult matter. - However the simulation

1 the cases where it 1s possible to
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deecribe the system mathemaﬁically,

It is also eviden£ from‘elose examihation of the first five methods
- outlined here for analyzinngTVPbsystems that this area warrants con- |
siderable research before any great progress can be expected 1n analy21ng
and syntheslzlng them. Despite the fact that the stablllty of LTVP
syetemsris“a rather interesting and intriguing problem and a number of
résearchers are working on this facet, it is felt‘that more'efforts should
be concentrated on determining approximate, if not‘exect, methods of
obtaining respenses of LIVP systems to specific inputs. The solution
of the latter pProblem may be the_answer to the problem of speCifying
LIVP systems.

3.3 Recommended Specifications

It is seen that the general problem of specifying LTVP systems is
. not an easy one to solve,, Hewevef it;is’possible to classify'certain
LTVP systems SOethat some of the lineaf specificaﬁion in referenee'[l]
are valid for them. | '

It is difficult to obtain any specification forva LTVP system on
~ the basis of absolute stabilitj as defined earlier; However, for
certain applications, it may be necessary to specify fhat the system
should be'asymptotically stable, For certaiﬁ other applications
(example: ‘a control System for a "short life" missile) a short time
stability specification may be sufficient,

For purposes of perfofmance‘specifications, the following definitions

are made for LIVP systems.

Deflnltlon 39 Fast and Slow Variation of Parameters

A LTVP system will be deflned as fast varylng if the max1mum rate

of change of any closed loop parameter (for example a closed loop pole



or zero) exceeds a predetermi:
typlical value for x is unfty.
x, the LTVP system will be de

Definition 3.10 Large and Sg,

- L1 -

ned value X per cent per second, A

If the rate of variation is less than

términed as slowly varying,

;ll‘VariatiQn of Parameters,

A LTVP system will be de

find as having large variation of para-

meters if the maximum change in anyvcloséd‘léop parameter exceeds vy

per cent,

l

A typical value for y is 10,

If the maximum change is

less than y, then the LTVP system will be defined as having small

variation of parameter.

The definitions here are made
loop parametérs, ‘The variation of

An example 6f a system with 1L
 aircraft starting its flight with
mass of the aircréft and fuel is ¢
of 20% due to the £uel being used 1
typicals, Here we see fhat the rat

the change is mass is large.

3,3.1 Time Domain Specifications
(a) LTVP systems with fast variat:
It is recommended that for ac

‘sponses of the simnlated "unfrozen

on thebbasis of variation of closed

open loop parameters is of no consequence.
arge, slcwly varying parameters is an

2 full load of fuel. The initial
amparatively large, and a, mass change

up over a period of 5 to 6 hours is

&
]

of change of mass is small whereas

ions of parameters;
ceptance a family of step functien re-

system" satisfy the transient response

envelope specification [1]. The dime

‘on the applications.
function responses of the actual s
that the mathematical description

along with the step responses,

Whenever possibl

J

nsions of the envelope shall depend

e, 1t 1s recommended that the step

|

stem be obtained. It is also recommended

|

O

f the simulatedvsystem be furnished
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(b) LTVP systems with slow variatien of-peramete;s."

It is'recem@ended that for acceptahee*a'family ofeétep function |
responses of the 31mnlated or actual, frozen or unfrozen system satlsfy
the transient. response envelope speclflcatlon, the dimensions of the
,envelepe agaln dependlng on the applicatlons, Whenever poesible, it is
fecommended that the reepehse of theAactual'System‘be'ﬁsed;'ﬂIffthe-
system has been simulated to obtain ﬁhe‘reeponse,.itbis recommended that
the mathematical'descriptien‘of the system be furnished,

3.3.2 Frequency Domain Specificatibni ’

Frequeney'reeponse does not have‘any‘significanﬁ‘meaningfin the case
of'e general LIVP syetem, This is‘becaﬁse a hefmonic input to a LIVP
system.may not-even result in a hanmenlc output. This point is illus~

trated by the follow1ng 31mple example. o
| Con31der the system shown 1n Fige 3 l. Le£ ei‘be-tﬁe sinuseidal‘
input E elncut and e the output,

It is seen that

Hence

Ry*Ry g £(6)
_ A ,

It is easy to see that equation (3 26) is gimilar to equation (3 1)

and hence the system shewn in Fig. 3 1 represents a LTVP system, _Equatlon'

(3.26) may be rewritten as follows:

(3426
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Ro+rf(t)
o _
N
e.=E sinwt
O
Figure 3-1

Simple Electrical Networl_: with

a Time Varyin,

g Parameter



ol -

Rl r 2 |
€0 = ““‘"‘"f(t)+*"—'——§f (’G)’_ sses | E sintit
E. 3 +R .
R R RS (R)*F )

It is seen that in any bqt the most trivial case corresponding tor
£(t) = constant, the right hand side of equation (3.27) is not sinusoidal,
Prequency domain speecificatiors are not recommended for systems
with fasi variation of parameters;. For systems with slow va,riation of
parameters, the "envelope specification" [1] on the frequency response
of the "frozen" system is recommended. The dimensions of the envelope

should depend on the appllcatlons. | |
- The general state of the art of speclfyq.ng LTVP systems is

schematically shown in Fig. 3. 2.

(3.27
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CHAPTER b4
PERPORMANCE INDICES

Abstract
Thie study:was undertaken to determine whether or'not Performance

Indices should be used to evaluaﬁe and spec1fy control syetems. It is
recommended that‘they not be used at thls time- by the Air Force for the
sbated purpose,

A A performance index’ls definedband detailed discuSSions are pre-
sented for the varlous performance lndlCGS., Analytical methods for
evaluatlng performance 1nd1ces are presented. |

1h 1 Introductlon and Recommendatlons S

- A Performance. Ind (Flgure of Merlt) has been defined by Anderson,
et al ([Sl], Pe 182) as-'“Some mathematlcal functlon of the measured re-
sponse, the function belng chosen to glve empha51s to the system spec1f1—
cations of 1nterest." Ideally for evaluatlon, a Performance Index is a
51ngle number 1n1wh1ch a de31gner attempts to place hlS englneerlng '
‘Judgment on the overall excellence of a system. The Perfonmance Index
may be chosen so,that only one or a few systemv prOperties’affect itsj
value, Or, it may be chosen so’that i£ is a function of all the important
__propertiesvof'a syetemfs response. This sé¢§nd't§pe of Performance Index
'ielphe one of,primary concern'injthis.workgi It is.realized that there

are many other criteria, such as reliability, size, weight, cost, etc,

wThe terms performance index and figure of merit are used interchangeably.
Most authors use the term Figure of Merit; but the termm Performance Index
will be used here because a Figure of Merlt is uswally a quantity to be
maximized, whereas almost all the criteria here included are to be mini-
mized, :



- L7 -

which mst be taken into account in selecting a system. Bellman [52],
for example, discusses a more general performance index, However,
these are oubside the scope of this project; The performance indices
covered in this report consider only system response,

- Control engineers have been interested in Performance Indices
for over a decade, This interest has recently received a new impetus
due to research on self adaptive systems., The purpose of using per-

formance indices in self adaptive |systems is the same gs for previous

work; namely, to determine the opgimum values of system parameters which
may be varied to optimize system performance. The unique factor in an
adaptive system is that the syste@ itself performs this optimization,

The Performance Index replac?s the usual design specifications for
a system, i.e., instead of specif&ing that a system have a certain band-
width, rise time, etcog it is only necessary to specify that the sy§tem
have a certain (usually minimum) value of performance index,

This study was undertaken to determine whether or not Performance

Indices should be used to evaluate and specify control systems. Per-
formance Indices are judged here on the basis of their ability’to select
systems with good overall transie%t response when such factors as rise
time, overshoot, and settling tim§ are considered, Thus, if a performance
index is rejected, this ié not meant ﬁo imply that it is not valuable or
acceptable for specific applicati%nsa

Almest all of the performanc% indices considéred are based on step
inputs. See the Final Report, Voiume 1 [1], for the ramifications of
using step inputs for system evaluation.

It is not possible to say th%t one performance index, such as ITAE

|
or IT3E, is the best because requirements vary. One index may be more
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applicable in certain applications than the others, Thus, it is desirable

to have a table of 1ndlces accompanled by data from which a de51gner can

choose the index most appllcable to his requirements,

There are a few general rules WhiCh'can be followed in the selection

of a generaluPerfOnnance'Index. However, the relative Weighting,of‘these

factors is difficult to determine in‘general. These rules are an

elaboration of comments by Graham and Lathrop [53].

l..

2o

A general performance index should lead to systems of higher
order, as well as second order, whlch Judgment 1ndlcates are
good systems when their overall response is con81dered. This

property 1slcalled rellabllltYs‘

~A perfofmance index should-be‘selective. .That~is, the optimum

value of system parameters should be clearly dlscernable from

some characterlstlc such as mlnlmum, ‘Zere, or max1mum value :

-of a,plot~of the performance index value versus‘system para-~

meters, - -

. The ease with which e‘pefformanceoindex can be applied is a

consideration,.

The following Performance Indices are considered in detail in this.

studys:

IRAR (ImpuisejResponse Aree Ratio)
Logafithmic Deorement |

Control Area

Welghted Conbrol Area

IAE (Integral Absolute Value of Error)
ISE (Integral Squared Error)

ms Error
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Solution Time

Fettts Criterion

|
Static Error Bandwidth Ratio

Gain Bandwidth Product
Beta
Bellmants Performance quex

GEF (Generalized Error Function)

|
Glovert!s Performance Index

Zaborszky and Diesells Index

ITAE (Integral of Time Multiplied by Absolute Error)
ITSE (Integral of Time ﬂnltiplied by Squared Error)
ISTSE (Integral of Squared Time Multiplied by Squared Error)

ISTAE (Integral of Squafed Time Multiplied by Absolute Value
of Error)

Aizermants Performence ﬁndex
Rekasiusts Performance Index
It was the original intent of this work to investigate the use of
performance indices as an important factor for general system evaluation.
It is now clear that this is impractical from the Air Force's point of view
at the present time, With the current state of the art performance indices
can be used only for system desigﬁ, and perhaps as an ald to engineering

judgment in the evaluation situation. It is hoped that in the future the

confidence that comes witH extensive use will make possible the appli~
cation of a performancé ih ex as ; major factor in the acceptance or
rejection of a control system; System specifications that were recom-—
mended in Vol. 1 [1] have been in|use for many years, while most perform-

ance indices are relatively new and still in the research stage. Thus

they fail to pass the test of familiarity and wide experience. It is
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hoped that the Air Force and industry‘will continue research in the pef—
formance index area, since it is obvious that this approach to system
specification is more general and versatile than that presently recommended,

Even though it is outside the scope of this project to make recome~
mendations in the design afea, it is de51raole to report developments
Wthh have occurred during the course of this research. With this preface
the following recommendations»can be made.P * The performance indices con~
51dered to be among the best of those presently in use for the general
synthesis of systems are: ITAE, ISTSE, ITSE, and ISTAE. Data are shown
for all these indices except ISTAE to support the position stated. The
inclusion of ISTAE is justified because of its similarity to ITAE, al-
though it pleces more emphasis on speed of response than ITAE, It is
realized that one-might want to use Alzerman's [5&] method’or consider
~such performance indices as the suggested by Bellman [52]. However; the
additional study required ﬁo make definite statements on their applica-
bility to design w1ll not be undertaken, since it is outside the scope of
the work at hand, and this additional work would net affect the recchmen~
dation on system.evaluatlon.’ Both of these last named methods appear
interesting at presentlevaluation, and it is important that further
research be undertaken to prove or disprove their utlllty,

The data presented for ITAE, ITSE, and ISTSE are limited in quantlty,
but they should prove adequate for the selection of one of the indices -
over the others, All of the data are based on systems of the unlty
numerator type° This allows a more dlrect COmparlson of the indices.,
of course, it would be essentlal to have sets of data for other types of

systems if these IP are to be used in practice.
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“When a system is optimized with a Performance Index, the parameters

of the system are usually adjusted until a minimum value of the Perform—

ance Index is obtained, Unfortunately, there is no assurance that only
one minimum point exists. If the%bptimization is performed on a computer,

one naturally wonders if another minimum point exists which has a smaller
|
|

value of the Performance Index. The logical approach to answer this
\

question is the mathematlcal solutlon of the problem, The problem of

finding the number of minimum p01nts, their value, and the rate of change

3
of Perfornance Index near the optlmum points presents no formal mathe-

matical difficulties. However, the labor involved in obtaining numerical

answers for even a fourth order sjstem is formidable if a digital computer
| _

is not used, Even the problem of preparing the algebraic equations re-
quired before a compuﬁer program ?an be started for higher order systéms

becomes very time consuming, and ﬁhis is after the Performance Index has

been obtained in terms of system parameters. It is practical to solve
) |

specific problems, such as designing a particular system, but the work

required to study a whole class oﬁ systems such as uhity numerator systems

through the eighth and on is too #arge to perform on the present project.
For completeness, this repor# includes some methods avallable in

the literature for obtaining the mathematical solutions of Performance

Indices., - ' | i |

In conclusion, it is emphasiged that this is a research area in

which it would be premature to ma%e recommendations for systems evaluation.
'Work’is currently being done in‘tgis area and it enjoys the attention of

the professional societies. Howe%er, much more work remains to be done.‘

It is believed that.further extension of Aizerman!é work would be especially

fruitful.
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4,2 Discussion of Available Performance Indices

4.2,1 TRAR (Impulse Response Area Ratio)

Abstract and Conclusions.

IRAR is derived for a second order system in terms of the system
damping rationg . The IRAR has been obtained‘for several systems and
used to define an equivalent by analogy to a second order system,

The percent overshoot of the system is compared to the percent overshoot
“of second'érder systGM-cﬁ the basis of equivalent Ff being edual to the
actual f of the second order system.  The results lead to the conciusion
that knowing the IRAR of a general system does not directly indicate
commnonly used‘system characteristics. It is nbt necéssary}to convert
the IRAR data to an eqﬁivalent :f., as is done in this study. The systems
could have béen compared to a:second ofder systeﬁ directly by using IRAR.
However, the IRAR is related to an equivalent damping ratio in this study
because of the mathematical rélationship between IRAR émd:f for second '
order.systéms, and to determine if F could be extended to higher order
systems by using IRAR. The results show that N cannot be extended using
IRAR, | P |

IRAR is not recommended for use as a general performance index.

Discusaion

IRAR is a measure of the relative stability of a system° It can be
deterﬁinedvmathemaﬁically as a function 5f thebdamping ratio, J , for a
seéond order system, or determined from response data for any systemg,
- It is defined as thé negative of the positive area under the impulse re-
sponse curve divided by the negative area under the impulse'response ‘
curve l.c.

IRAR = — &% . B o (L.1)

T =
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IRAR is derived in the fo‘lloﬁirig for a second order system with a
closed loop transfer fUnctién
v o,
: s + 2)'1413 + W
n
The weighting function of the system if obtained by taking the inverse
Laplace transform of - equation (4e2) ’
W(t) === e " (4e3)
V=g
The first' cyclé' of thé‘ response is c’omplet.ed when
-Tz =277
R —
Wy /1 -
" The Htth. cycle of response is completed when
'b = | 2//n ‘
1-3%
| The positive area uhder the :i.'mpul’sé respense curve of any cycle is
n'owv obtained by integration,
/] j’ (2n+1) N
A = l - . )
+tn = F -
| T 1-f2 tat
zf/ n a7
2 A = (2m+1)
Vs -
v j n/l -
| /_ 2 2 2,
} It (j%s:mw ], 1; Wy 1-J cos Wy, 1. 3’

Y wQ(l»f )




=
|

. +n -~

‘-»17'3’(2n+l) -21Tnf

Wm

;21Tn:f’]‘

'The negatlve area under the 1mpulse response curve of any cycle is now

Ay (balt)

obtalned by 1ntegratlona

w\-7= ‘
ony v - . v Lo
: ' e fﬁLEF  sinW laff? tdt

Teed)

: PR Py ,
Vi-¥ Lo ‘f w +wn (1-7%) |
o | S T(ana)

ufzﬂ(mi)  ‘fﬂK2m12 : v , ‘M% 1-3
\i-7° Nyt

B @ . ' - .
. «3“21T(n+1") -F M(2n+1)

o | \, - » \’ Y R
Z - ce U T (45)
n= o o |

The _IRAR ’is_ nQW obt_ainéd by applying the definition of Equation (4.1)
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[ —fmeen) - _2Ma¥
' i \]1-' 72 .\’1._.37
e + e
 IRAR = -~ =0 - i S, -
L[ tmen) - £ r(20+1)
'. T | 2
- 2 e 1-¥ - 8 1-¥
n=0 ' -
-2 P - TL
ﬁ 1-¥* \Jl V72 |
TRAR = - —2o '
o ® =2Mn¥ - -17':f - L
\i-r%  \i-r® \i-7 2
n=0 e l+e
Ty
1-7° |
- IRAR = e (4,6)

IRAR is plottéd in_Fig,‘ 4ol as a function of F for the second order
system of Eqs (4s2), For small values of F the criterion is insensitive,
ic€e, & rélaﬁively large changé in¥ yields g small change in IRAR with
the reéﬁlt that'knowing IRAR does not give an intuitive notion of the
relativé stability; For large values of IRAR the dpposite is true. Then
: the criterion is. extfemely sensitive, a small change in J results in
a large change in IRAR. The»exponenﬁial nature of Eq. (4.6) suggests
using a logarithmic plot; hoﬁever, the sensitivity appears as bad or
more inadequaté on é logarithmic plot. The seﬁsitivity is‘further
| illustrated in Fig. k.2 by plotting F versus the rate of change of IRAR
with ¥ . | | |

IRAR has been calculated from computer data for thé optimum ITAE
unity nnﬁerator systems through the eighth 6rder. It has been obtained

by graphical methods from the step fﬁnction response data given in refer-
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‘enee [55] for the’zerc—veloqity~error systems through,ﬁhe sixth order.
Although jfris defined ohly for a second order system, the value of IRAR.
‘for each system was used to obtain an equivalent F by using Fig. Q.l. |
ThiS’equivalent'j’ istplotted inﬁFig. 4.3 as a function of percent over;.
shoot for each system where the number by each point represents the order
of the system. The solld curve is exact data for a second order system
defined by Eq¢,(h;2)b The purPOSe of the data is to determine if, in
general, IRAR leads to an equivalent ¥ which is related to percent
-overshoot identiecal te'the reletionship existing between ¥ and percent
,overshoot'iﬁ.the second order system‘ef'Eq. (4e2), Fige 43 shows that

" a correiatioﬁ does eXiSt; Fige kol was derived from Fig. L3 to deter-
bmine the'accurecy~of the’criterion'in'predicting percent overshoot,

The percent overshoot error was’ determlned by the fonnula.

A%overshoot of general system - € overshoot of second order system,

~% error =

overshoot of second order system
(4e7)

Fig. kb, shows that the aceuracy of usi‘ﬁg IRAR to predict the percent
overshoot of a,general_system is inadequate. While other quantities sueh
as seﬁtling time, which are a measure of relaﬁive stability, could be
examined to determlne if better correlation exists between the IRAR of a
" second order system and 3 general system for determlnlng system character—
1stlcs, it is belleved that the work would not be frultful in view of the |

results that’ have been obtained,



% OVERSHOOT

60

50

40

30

20

=t
(&)

70k

- 59 -

PYeN
B
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Second Order IRAR -
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- Figure 4-3
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Optlmum ITAE Zero~P031t10n-Error Systems Data
: From Computer Study

mm’Im'-%f ,mmm£“mmmm % Overshoot

Order . L 0versh06t‘ S 1 o }Eq.@;Z) » error

2 o 19;A ,V‘_;.‘4.9,v S8 n8 o+ 2.1

- i?-é 13 Coem s -T2
3.2  5 203 'v.76 i“ o sa ﬁ,v S =313

,5 uB¢fV ;[2g9fJ__ B LT 406

S o128 a6 W28 1.6 -2
: 6Q5g' Coeek s 12 -k

- N R

= Optlmum ITAE Zero-Velocltthrror Systems
. Data Obtalned from Ref. [53], P 283..

System  IRAR %’ :'." Equivalent % Overshoot % Overshoot
~Order -~ - . Overshoot - - ¥ - - BSecond Order . -  error
T  System, Eq.(5.2) |

2 1.5 7 6563 6.35

‘ 08 | 37».9 . o : “h.05‘ _ . 24‘ - 57.8

3.87 379 38 21 +39.8
 ?2.61,, | ;55.5 S 31 o l | 35 ,‘ s 58,7
2.0, ". '56.8 R R 46;5‘ e 22.2

+

é\"\n3 = oW

'  \: Both sets of data are the average of two 1ndependent sets of graphlcal
| -éalculatlonsop The third 51gn1f1cant flgure of the above data is not Just1~
fied by the accuracy ‘of calculatlons. o |

| _ IRAR Data for Fig‘vh.B and Fig. hoA |
o Table Lol



ke2.2 Logarithmic Decrement

Abstract and Conclusiens

Logarithmic decrement is a measure of relative stablllty. Its use~
fulness is llmlted to second order systems. For a second order system it
.is equal to twice the logarlthm of TRAR. |

Logarithmic decrement is not recommended for use as a Cyeneral
perfomance 1ndex. |

- Discussion

Logarithmic decrement is defined as the naturalblogarithm‘of'the .
ratio of the maximum response.overshoot during oscillation to the
sllghtly smaller maximum response overshoot one cycle later (Skllllng
[56], . 108). R

The logarithmic decrement for a second opder system such as the one

defined by Eq. (4.2) is
2y

Le Dy = == (4+8)
Reference to Eq. (4.6) shows that logérithmic deéremenﬁ is equél to twice
the logarithm of IRAR, ioé,; | | | |

Lo D. = 2 log IRAR - o (4e9)

IRAR wés found to be inadequate as a performance index for systems
of order higher than two. IRAR is based on the area ﬁhder the impulse
response curve., Logarithmic decrement takes into account only the
amplitude of the response curve and thus is‘mbre sensitive to the shape
-’éf'the response curve than TRAR. The 1nadequacy of extendlng logarlthmle
decrement to general systems can be 1llustrated by ?ons1der1ng a practlcal
third order system with the‘welghtlng functlon

(b

W(t) = ke’ + Ko Poos (Wi +0), C (e10)
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| For;9>>ro( lt is easlly seen that the logarlthmlc decrements for any
‘ _twosCycles of respense are not equal.v Logarlthmlc deerement ‘has llmlted
‘ :usefulhessfas a performanoe’index. |

L 2.3 Control Area

Abstract and Conoluslons

The value of control area has been determlned analytlcally for a
"seCOnd order sysbem Wlth a unlt step 1nput to be' -~,’“"

Control Area 2:f : vf:, *i.a B _:ss._,i "; -:H-3;“ "'(h;ll)

'»'j:The extremal values of thls crlterlon are of no benefit ‘in determlnlng

whether or not a system 1s of value. The onLy way thls crlterlon could

be used Would be by analogy to some standard systenysuoh as a- second order

L system, however, it was shown for IRAR that thls leads to erroneous results.

 Control area 1s not recommended for use as’ a general performance index.
".}Disous31on | 'e o o :
v01denbourb, Sartor:.us ([57:], Pe 66 ) and Nims. ([58] y p, 606) have
' fsuggested the control area crlterlon based on the mlnlmlzatlon of the
'1ntegral v |
" Control Area = . ‘/, edt o o (Le12)
‘,fof zero4displacemeht¥error systems with'a’ste?>funCtion”inpﬁt. This
g integral glves the dlfference of the pos1t1ve and negatlve area under :
‘the errer versus tlme curvso

The analys1s that follows shows Lhe behavlor of thls crlterlen for

‘ a. seeond order system with the welghtlng function‘
-:ft . ' |

e e
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The output for a step of input with amplitude A is obtained by convolution:

o(t) = .__._é..._é. [: \!1_3’2 SELE (js:.n -2 - l«-:}";3 cos \ll—'-.fz t)]
” | b

1~
(h.lh)
The error can now be obtained by substracting the output frém the input:
- ft '
o(t) = R(T) - () = 2 (Poin \1-9%¢ + \[177 &
R
(h 15)
The control area may now be determined by 1ntegratlng Eq. (h.lS)
0o ' .
f edt = B ;fe'ft (~#sin\1- 7% ¢ - \Il_.,? \’1_,
S
+ Qngy "ft (- fcosVl—f2-t+ Vz?—§ sz—ﬂti}
Constrol Area = 2 fa ' ‘ (L,16)

Ege (L4.16) is plotted in Fig. 4.5 with A equal to unith’FControl
Area varies from zero for a system with a daﬁping ratio of zero to in-
finity for a system with ‘an infinite damping ratio. The extremal values
of this eriteria for a second order system in no way indiéate’an optimum
- system, i.e., the criteriom has no selectivity. For a second order system
(or any completely defined system) curves of control area versus any desired
system characteristic_can be plotted so that control area can be assigned
a meahing in terms of common conceﬁts; however, this is/precisely what one
wants to aveid for a general performance 1ndax, unless knowing the re=
latlonshlp of the criterion to a system characterlstlc for a partlcular
system leads to knowledge of this characterlsolc-of gystemsin general,
There is nothing unique about control area which would indicate that this

is true,
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L2, Weighted Control Area

Abstract and Conclusions

This criterion has been studied analytically and on an analog com-
puter, It has been shown that it yields an optimnm third order system
, which is unstable,

The‘weighted conﬁrol area performance index is not recommended as a
general performance index.

Discussion ‘

Nims ([58], p. 606) has suggested that the control area criterion :
ecould be modified byvtime weighting the error. as shown‘in Eq. (4.17)

o0
Weighted Control Area = 'f’ t e(t) db (kL)

0

Weighted contrel area as a function of damping ratio is plotted iﬁ
Fige 4.6 for a second order system with a step input. This graph is re<
produced from reference ([53], p. 276).

The extremal values of this criterion are of no value in selecting
a good system, but the zero value of the criterion selects a secoﬁd order
system with a damping ratio equal te 0.5, whiéh is usually considered -
satisfactory. This suggests the possibility of using the minimum #alue
of the absolute magnitude of the critefion»as a figure of merit, To this
end a third order system

o(s) . _ 1
RS P s gs el

was studied, Knothe (in an unpublished work) of AFMDC showed analytically
that the system has a zero value of performance index when

° =y
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Figure k-6

o Weighted Control Area (From»Graham,and Lathrop)
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This'rélation was verified by Haldeman of AFMDC who showed that when
£ =b=1a transient will not be damped; i.e. the‘system is on‘the
borderline between stability and instability even though it is optimum
in the weighted control area sense. |

This criterion is not recommended for use as a general.performance
index., Its iack of ability to select even a good third order system dis~
qualifies it.

Le2.5 IAE (Integral of the Absolute Value of Error)

Abstract and Conclusions
IAE is applicable to éecond order systems but has inadequate séleea-
tivity for higher order systems,
IAE is not recommended for use as a general performance index,
Discussion‘ _ |
The IAE (integral of the absolute value of error) is defined'By the
equations
o0
IAE = [ le(6)] at .
0

This criterion discriminates against total error independent of polarity,

since the absolute value of error is used. A system is considered optimum

(1.1-018)

in the IAE sense when it is adjusted to have minimum TAE to a step in?ut. A

method has been pointed out in the literature (Fiechesen [59]3 pe 241,) for

measuring this criterion with a standard rectifier type volmeter.

Graham and Lathrop ([53]9 Pe 277)‘have found that the IAE criterion
selects a secohd order system with a :f = O;7¢ A step input was used in
the study. The selectivity ié adequate for a second order system, but
their investigation of a third order system showed the selectivity to be

inadequate. The criterion value as a function of system parameters is
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shown in Fig. 4. QA. This‘picture shows that ﬁhere is ﬂo'chaoge in the
crlterlon value when the parameter b is varled from 1.25 to 2 Q0 and only

a lQ7 change in IAE for a2 to 1 change in- perameter Cu _Flg. A.SG_Shows

- the variation of the output as a functlon of these system parameters., |
bGraham.and Lathrop report that IAE is even less selectlve for h;gher order ‘
»systems. ‘ | v

-The 1nab111ty of thls crlterlon to make a deflnlte selectlon of good

ahlgh order systems dlsquallfles 1t for general use.

b 2 6 ISE (Integral of Squared Error)

Abstraot and Conclu81ons ‘

- ISE has been used prlmarllj beceuse of mathematicél convenlence.
It selects systems whlch are - underdamped. Ihe select;v;ty lS;alSO'
nadequate. | o - N
ISE ls not recommended for use as a generel performance 1ndex;
"Dlscu551on o : | ‘
The ISE (1ntegral of souared error) crlterlon is deflned by Eg. (h 19)
155 - F ,e‘2(t) . o (ke19)
R 3 - » . - o N |
Although the orlterlon can be used w1th any input for whlch the integral
converges, step 1nputs have been used 1n “this dlscu531on. Thls‘crlterlon
‘dlscrlmlnates agalnst total error 1ndependent of polarlty since error‘is
squared, - Hall [60] has shown fhat‘for a second order‘system-ISE_can be
determined as a function of :r“a.nd,wc-'ﬁith‘a step input. The relation-
évhvi'p iss | | - |
1+ 4T3

ISE = f"g?:;"f» . : B _ L o | (4.20)
b w, ‘ | o
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This equation is plotted in Fig. 4.7 with ng equal to unity. The criteri-
on has an optimum value when ¥ is eqnai toroi <A system is COnSidered
optimum when it is adjusted to have minimum ISEs . Hall [60] concluded
that ISE selects systems which are £oo undefdamped for many applications
and that selectivity is poor.

Graham and Lathrop ([53], p. 277) have also found that the selectivity
is poor. This is illustrated in Fig. 4.8A. Fig. 4.86 shows the output
response as a function of syétem parameters, illustrating the results of
inadequate selectivity., It can be seen in Fig. L.8A that a changé of
parameter ¢ from 1.6 to 2.4 results in only a 4.5% change in the criﬁerion
value, |

. ISE has been used primarily due to mathematical convenience, Using
Parsevalfs thecrem, frequency domain information can be used to evalﬁate
ISE, However, the results obtained may be misleading. Newton, Gould, -
and Kaiser ([61], p. 46) work an example which léads to an unstable system
for an optimum mathematical value of the criterion. The restrictiéns to
‘impose on the mathematiéai solution are obvious in this case. Interpreta—
tion of the mathematical result in a higher order system may be formidable
task.

Clark [62] has used ISE as a direct measure of the speed of response,
percent overshoot, settling time, and other salient characteristics of.
the transient response. He defineserror as being the difference between
the system response and a desired response. The ISE criterion is épplied
in t he same manner as others have used it but with the error as defined
above, When ISE is very small, the system must be similar to the known
model, hence, the characteristics of the systemare known. It isxrecogé

nized by Clark that the idea is wseful for evaluation only when ISE is small,
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If ISE isbsmall for the system under evaluation, (in the sense that
Clark uses ISE) ISE is hardly needed, since the actual response could be
superimposed on the desired response and an evaluation could be made,
However, if ISE is not small, the method fails, according to the authofg
Therefore, this idea must be rejected for system evaluatioﬁ in the sense
desired in this wofk¢

For self adaptive éystems, if the system can be made to respond
approximately like the model (i.e. the desired response), the use of ISE
would insure proper performance, and hence be good for system evaluation
or model identification, chevers it appears likely that éther criteria
could be used which are easier to instrument such as IAE. Fer-analysis,
it is advantageous to use ISE, but for building hardware, the case where
it is agreed that ISE performance is dcceptable, there is insufficient
evidence to justify a recommendation in favor of ISE over other perform~
ance eriteria, e,g. IAE.

System synthesis is another distinct use of the method that should
be considered, There is no reason why ISE can not be used in the éa.me
 manmer that Aizerman used a performance index; in fact, Clark has done
80, Whether or not ISE is superior in a synthesis application of this
type is not known,

It should be noted that Newbon, et., al. [61] expressed the same
philosophy as Clark when they said "the performance index is‘the integral-
square value of the error between the ideal output and the actual oﬁtput“;
They, of course, do not give.detailed treatment to cases where the ideal
sutput is é step function response, as Clark has done, | |

This criterion does not have sufficient merit to justify its recom-

mendation for general use., In particular, its inability to select a good
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“higher order system disqualifies it.

La2a 7'vrms Error'v‘

Abstract and Conclu81ons

hls crlterlon has been used prlmarlly due to mathematlcal convenlence.

,'Systems optlmlzed by this crlterlon are unsatlsfactory in many cases due

.to 1nadequate damplng. o

The rms error crlterlon 1s not recommended for use as a general per—_

‘formance 1ndex.-'
'Dlscu551on

~ The rms crlterlon is deflned ( [63],p. 309) by the equatlon, |

.TmS- eryor =

(4e21)

A large amount of llterature ( [63] 3 p. BCQ), [61] 5 (Truxal [64] " pptll-

4~74), ( [3] s Pe 413) is avallable concernlng thls crlterlon, not be-

cause of 1ts goodneos, but’ prlmarlly because of 1ts mathematlcal conven—' o

ience 1n systems concerned w1th stochastlc 1nputs, although any 1nput
could be used for whloh the deflnltlon has meanlng. Truxal ( [64] s PPe
4—7@) and ( [3] 3 ‘Pe AlB) p01nts out that optlmum nms error systems are
not stalsfactory 1n many cases, . He says HA system may be comparatively
unstable, belng effectlve in rapldly reduc1ng large errors but allowing
unde51rable long talls of error or exce331ve overshoot" : The rms error
crlterlonimay be a'good startlng p01nt but does not yleld'a”good final7
system."v ‘ S S L :

| ‘The reaSOn7this,cpiterloﬁseleote a system»with a‘relatiVely,low

degree'of'stabilityvis thatlthe{error is squared and,_hence, it weighs -

most'heavily theclargexerror and‘produces an’optimumISyeﬁem wﬁich rapidly
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reduces large error., ‘The'rapid reduction of'large error results in large
overshoots or low damping. N

James, Nichols, and Phillips ( [63]r, p; 309) were motivated to use
the rms criterion apparentlyjbecauseYWieher ‘[65] used it‘for the analysis
of stationary time series, rThey also boint out that its Wide‘usage is due
to its mathematlcal convenlence and because there is a hlghly developed
body of mathematlcal knowledge built around mean square values. In thelr
example on a rader automatic tracklng system.( [63] y P» 328) they ‘point
oub that using the rms crlterlon led to almost the same results that were
obtalned u31ng standard de81gn technlques aluS'some urlal-and«error .
adjustments, - In this sxample the crlterion d1d not 1mprove the deolmn
and, as already noted the crlterlon can result 1n unsatlsfactory systemsg
The fact that the flnal design 1s compared to the results from other '
methods may be goed eng;neerlng, but thls 1nd;cates3a lack oficonfldenoe
in the performance index, - | |

This'criterion”is not7recommended for‘use:es a general performance'b‘
iﬁdex, - - v,o T | S v l

L.2.8 Solution Time

_“Abstract and Conclusions

‘This -eriterion chooses a gOod second order sjstem0 It ohooses higher
order systems which are ﬁnderdamped..

Solution time is not recommended for use as a general performance
index., | | |

Discussion\i »

This criterion has been defined in reference (Guillemin [66] ) as
follows: | - |

"After a unit step function is applied,lthe time for the solution to
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reach + 5% of final value and not exceed it shall be a minimum for the
.!opmimﬁmt transient résponse.of systems of a given ordef."‘ The criterion
name. is abbreviated as ST. ‘

‘This criterion chooses a second order systém'with a,:fl= 0.7, which
is cbnsidéred good. Fdr higher ofder-systems the responSe ghosen as |
optimum becbmes.increasingly oscillatqry and approaéhes neutral stability
for a sixthrorder unity.nﬁmerator zeroédisplécement—error system according
to J.vW. Froggaﬁb, Jr. ( [67] , p. 20). He also found that the critefion
is not-alﬁays precisely reprbdugaﬁle’due to the:nature of ﬁhe criterion
‘and its selectivity. | N

Thislcriterien is unacceptable for systems above the fourth order.

4,2,9 Fett's Criteria

Abéﬁradﬁ and'Conclusions‘:I

The cfitérié have no méaning for aﬁ overdampéd system. They have
inadequate selectivity‘ahd are difficult to apply for an underdamped
system. ‘ |

Fettls criteria are not recomﬁended for use asvgeneral-performance.
vindiées. . | | B | -

- Discussion |

This criterion was ’suggésted by G. H, Fett in the discussion of a
paper'by‘D._Graham.aﬁd R. Lathrop ( [53] , p. 287) on ITAE. He.défined
fhé criterion as being the value of thevoutput displacement at thé first
| oVerShoot, when a unit étepvdisplacement‘ié app1ied to the input, multi-
plied by the time required to reach thevmaximum deflection, The cfiterion
value then is. a measure of the area on the displacement time curve‘of the
rectahgle bounded by the maximum deflection and the overshoot time,

Due to the vagueness of the statement of the criterion, the meaning of
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oVershoot is not explicit. Froggatt con31dered four pes31ble definitions
of the crlterlon, all of which led te a second order system with a:f = 0.5.
He did not 1nvest1gate systems hlgher than the thlrd order because it was
felt that at best the criteria would choose responses s1mller to the solu~
tion time prlterlon, which responses are unaoceptable. The crlterlon has
no meaning for a,system>Witheut ovefShoot. For a thlrd erder system a
small;change.ih.thea0pﬁimum éritefioh value results in a large and
_irregular change in the~natufe of the-#esoonse}j:Biseoﬁtihuities and
irregularities‘eXist when the'cfiterien'velue isvplotted as avfunctioh‘

| ef system paremeters;a This makes it difficﬁlt to:determige”the optimﬁm‘
value of'the.criterien.' o o |

4.2,10 Static Error BandW1dth Ratio

- This performance 1ndex 1s dlscussed in the frequenoy domaln spec;-;
fication sectlon-(Sectlon 3.7) of Vol, l» [l] . It 1S'not_recommendedg

for use as a general performance index,

he2e11 Gain BandWidth Product

, This_performanoe index is disoussed‘inttheiffeQueney domein speci~
'fication‘section,_Sectioh 346 of Voi; 1[1] . It is not fecommen@ed
for use as»aegeneral ?erformance inde#, |

4,2.12"Beta-»r

Abstrac+ and Gonclusions

Beta is the transfer function from the output to the 1nput of a
system; 1l.e., it is a functlon of the elements in the feedback path.
This qnantlty is often des1gnated as "H" in control systems. No reference
has been found in the literature where beta is used in an electromechanlcal
'system other than thosevlnvolv;ng meter movements. It 1s.used principally

in feedback amplifiers. Beta used by itself has nofmeaning as a;perfefm—
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ance index, Beta mﬁltiplied by the system open loop gain is a performance
index in thet»it‘is a measure of system error.f The mdrevgeneralderrer |
constants:contain the same information, hence; there_is ﬁe’jﬁstification
dfor using beta.

Beta is not recommended for use as a general perfermance 1ndex.

ﬂ_Dlscu331onc

The»earliest'reference‘to beta_foundvih.the‘literatﬁ:e is by H. Black

( [68]‘, p;:llh) (193h) whcvdefined beta'as the "propagation of feedback o

Circuit“ Black used the quantlty beta multiplled by the forward part of
the Systemfopen loop galn.. Nyqulst ( [69] » Do 126) used a product equal
- to thls quantlty but ‘did not define’ beta.v Ge Happell and W, Hesselberth
( [7@] s Do 302) have deflned beta as the voltage feedback te the 1nput

divided by the output voltage.

This is identical to thevquantity:.whj’.ch is often denéte‘d"as WHY in cone
ventlonal system block dlagrams. |
Beta is used extensively in the llterature in cengunct;on Wlth
feedback empllflers.. No references have heen found where;thls quantity
is used with'electroimechanicai syctemsethefvthan systems involving
’meter movememts. The prduct of system‘gaiﬁ and betaiis’used in feed~
back ampllflers as’' a perfonmance index because the feedback reduces ‘7,
dlstortlon, effect of component varlatlon, etc.  This product is somew»»
times expressed in decibels and the number of de01bels belng fed back
visvuSed-as‘a>perfo:mance index.' Since eystem gain 13’ajfunctlen of -

frequency, the usé of this performance index can lead to erroneous

(4.22)
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conclusions, .unless it is used only.at‘the freéuency at which the gain-
beta product is specified. This is often: done using the de gain, -in
Which case the same information is available from the error constants
¢ [1] s Section 4.8). The error constants are more general and are

recommended specifications,

4.2.13 TTAE (Integral of Time Multiplied by the Absolute Value of Error)

Abstract and Conclusions -

This criterion has been treated extensi&ely in the literature by
Graham and Léthrop (‘[53] > Pe 273), ( [71] , De 10), ( [72], »p. 153).
Onlyvthe essentials are repeated in this rebort;. ITAE chooses good
unity numeratorvzero—position#error systems; The optimun ITAE zer§~
Velocityaerror systems have excessive overshoot., ITAE is considered to
be one of the best performance indices évailable, bﬁt it is not recom=-
mended for system evaluation (see the ihtrodﬁctiqh for further disdﬁssioh),'

Q}§cu53ion

‘Graham and Lathrop ( [53] s pe 273) have suggested using a perform-
ancé index defined by equation (4s23),

. . : |
- IT4E = & |e(t)] at . | (4.23)
0

A system ié optimized using a step of position input and is optimum when

ITAE is a minimum. In words, the criterion is cailed the integral of
>time multiplied by the absolute value of error, ITAE evaluates system

error in a weighted manner which is intuitively good, in that it dise

counts initial error, which is a basic limitation of all systems, and

magnifies error which persists in time. It discriminates against both

positive and negative error and evaluates all three of the important
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quantltles e speed,‘stablllty, and accuracy.'

ITAE can be evaluated by referring to data whlch 1s reproduced from
,reference [53] Flg. 4+ 8B 1llustrates the»super;or'selectlvlty.of this
criterion. The selectivity may be: compared‘to two other criteria which
are more selectlve than most other crlterla, by referring to Fig. h 8A,
Although thls data 1s for a thlrd order systen, Graham and Lathrop have
~ found that the select1v1ty is good through the elghth order systems,

:the hlghest on‘wh;ch theyvreported, Fige 4.9A shows the step function
response‘of'the optimum ITAE.unitj numerator'syStems through‘the eighthv

: order.. The criterlon chooses a second order system’w1th a j? = Q7.

Flg. A 9B shows .the step functlon response of the cptlmum zero~veloc1ty§
berror systemS'through the 31xth order, and.Flg.qh 90 shows the step
function response of the optlmum zero-acceleratlon~crror systems from -
rthe thlrd through the 51xth order.v The overshoot is excess1ve. ThlS
fact is sufflclent to negate the posslblllty of uslng ITAE by itself to
select systems. of any type other then the zero~p031tlonaerror type.’

On the bas1s of select1v1ty and the ablllty to select good zero- -
osrtion—error unlty numerator systems, ITAE demonstrates that 1t 1s a’
superlor performance 1ndex. It is also shown that ITAE does not lead to
zero~veloc1ty~and_Zero—acceleratlonaerror systems which one would con-
sider superior or even as good as those obtained by cOnventional design
procedures. - In addition,- it is felt that results with unity numerator |
systems are‘notrsufficient to insure good evaluation regults with allv
non-unity‘numerator sjstemss This comment is appllcable to all perform~

'ance indices, and feW'have been studled as thoroughly as ITAE.
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LeR,14 ITSE (Integral of Time Multiplied by Squared Error)

Abstract and Conclusions

ITSE is considered to be one of the best performance indices. How-
ever, it is not recommended to the Air Force for system evaluation,(see
the intreduction for qualifications).

 Discussion

ITSE is defined by the equation

ITSE =f. £ e(t)dt (4a20)
.

A system is considered optimum when the above integral is a minimum,
A step input is used for the evaluation,

This ériterion weights time error in the same manner as ITAE, bub
weighs large errbr more than ITAE due to error being squared, ITSE
proved to be satisfactory in two studies (Gibson [73] ) (Gibson [74] )
at Purdue University with adaptive systems.,

ITSE has not received exhaustive study, but it has proved adequate
in all cases where it has been used or studied. Daﬁa for unity numerator
zero position error systems are shown in Fig. 4.10, This data is re~
produced from work by (Stone [75] )¢ From this data and from the re-
sults in reference [73] and [74] , it is concluded that ITSE is one of
the best criteria considered in this report.

4o2,15 TISTSE (Integral of Squared Time Multiplied by Squared Value of Error)

Abstract and Conclusions

" ISTSE is one of the best performance indices considered in this study.
It has been thoroughly studied by Crow [76] for type one unity numerator

systems. However, as indicated in the introduction, it is not recommended
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for system evaluation.

Discussioni

This performance index is defined by the equation | |

o0 | - o
ISTSE j///ABQ o (t)at , ‘ . (4e25)
4 :

A system is considered optimﬁm when the above integral is a minimum,
A step input is used for the evalvation,. |

Crow obtained optimum tyﬁe one uniﬁity numerator systéms through
the eighth order by an analog computer study. These are not reproduced
here, see [ké]. .The step respbnses of the systems are judged to be good.
On the basis of this work ISTSE is éonsidered to be one of the best per-.
formance indices available. However, for system evélnation on specifica-
tion it can not be recommended for use'by'ﬁhe Air Force., See the intro-
duction for details of this decision,

hs2.16 ISTAE (Integral of Squared Pime Multiplied by Absolute Value of Error)

Abstract and Conclusions

ISTAE»is cansidered to be a Valuable performance index because of its
similarity to ITAE, ISTSE and ITSE. It has receiQed little abtention; but
it is believed that ISTAE is of value for those appliéations where minimiza-
tion of persistent error is especially importantg For ﬁhe,reasons given in
the introduetion it is not recommended fof system‘evaluation.
Discussion
This perfeormance index is'defiﬁed by the equation
o0 ‘
ISTAE = | +°  e(t) at | | (b.26)
0
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vA system is 00n31dered optlmum'when the above 1ntegral is a minimum,

B 4 step 1nput is used for the evaluatlon.

The_sallent feature of this performance index which makes it'valué

able is its ability to heavily'penalize"persistent error; i;e. the Systam'

: must approach equilibrium rapidly; ‘This- statement is not based on data
but by analogy to ITAE, ITSE and ISTSE.

4;2Ml7 Rldeout and Schnltz werk

Abstract and Conclusions '

Rldeout and Schultz [77] have worked with performance criteria of

the general form,

g

PI ‘? f F [e(t), t]f it
o o |
They point out thatfcriteria:euch ae.ISE;;ITAE;’e#c. are apecial cases cf
equation (h.’z’?) In their'Work : vii:"is emphasized Ithatbcriteria_ should
not ‘be chosen‘because they- make the analy51s problem easy. The avail~
ability of computers enables a de51gner to use compllcated crlterla.
No new performance»indicesﬂarevpresented,which shOuld be considered in
‘this work;‘henee, no reconmendatione'erelneCeseary. -
‘Discuesion _ ‘ |
: Schultz and Rideout ‘[77] “have publishedvone of the nostbcompreu
'henéive”papere on,performanoe;indiceee ‘They,divide‘the area on a histori_
cal basis and classify the work as past, presenﬁ and fuﬁure..‘The main

value of the paper ﬁc.a reader of this reportvis one organization of the

i material. The materlal was wrltten with a different motlvatlon than thls

report, It is a survey of the area, a claSSLflcatlon of the dlfferent

criteria, and an approach,tovperformance criteria from an overall philo-

(427)
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sphical view, while'in thisireport it isvdesired primarily to examine the
different critefié fer their utility in system evaluatioh. Rideout and
Schultz report on three papers [78] R [79] » [80] s TO% included in this
report which are con51dered to be of unportance to. researchers working in
thls area, Their papers will not be dlscussed here because the ideas
expressed are abt the gennihal etage and‘ha§e not been developed sufficiently

for the application of system evaluation.

12,18 _Alzerman's Work and Iterxpension '

Abstract and Conclusiens

ThisAwork is intereeting and is a fruitful area‘fer further research,
however, it can not be used fof system evaluatidn ehd specification at the
present time By‘the’Air Force. | | .

Discussion

’Aizermah's‘approach to sysfemvsjnthesie’vie'peffpﬁmeﬁce indices is
not philosophically different from what‘éthers have done, e.g. see Newton
et. al., [61] . Aizerman ﬁeesVe perfermanee index‘te minimize the
difference between s&stem'reeponse and a desired_fesponse; For fhe desired
response he uses a model whiCh éould‘be called e model perfonmanoe index,
To avoid confusion the performance index used to null the sysﬁem‘and model
will bevreferfed to as the minimizing perfqrmance'index.

A translation of Aizerman's [5h]>work.is‘conﬁained in Appendix B,
‘so0 that enly a brief description need be‘included'here-as a intreduction
to more recent Werk by Rekasius [81] .

Aizerman proposed the minimizing performance index
' 6 0] : ’ ‘

I=[ [82+'C252+’C4é"2+,.. - | (b2

O

2n fa% S
LT (i—%) 2] db i=1,2,444en
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which he used to mipimize thé difference between the actual‘system're-
sponse ahd the model, where N | |
¢ is the error of the actual system
1:1 are constants available'from thé differéntial equation of
the model.. | | |
It has been shown that when i=l‘(£h¢ simplest case), thensystem can be
made to approach a first order model’with‘the characteristic equation

x+Tyx=0 (4.29)

Unfortunately, the Characteristic\equation alone does not deseribe a
system, so this result is misleading, It was also shown that the maximum
deviation of the system from the model is -
I. I, .. 4 _ ~ : -
|ax| €|t | - o (k30)
; v 4:12 | , S _

"where,  |
Ax is the maximum differen@e between the actual response x(t) of
“the aptimum Sjstem'and the m¢dei;v |

Imin is the value of the minimizing péfférmancé index when the
system'isvadjusted‘as clése.to the model pbssible.‘

Imin wn is the value of the minimizing performance index férfﬁhe
model when it is ideal in the performance index sense.
This;fesult is o£YQuestionaﬁbvalue because it éstabliShes an upper
bound value Which is teo large to be of pracﬁical‘use.

Rekasius [81] has suggested the following minimizing performance

index,
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oo | -
2 dx2 '
:k:_f x+§’c Gl 2x§’€‘:r,-5-+ |
' o l“l ‘ . ‘ '
2 ’C - d’x d—JE 'at k<n . | | - (ABH)
:EE :Ei RS IS - PR el
i=1  j=i+2 . : '

where n is the order of the actual system and k is the order of the
ideal»model. x(t)‘is‘system error, Which'is‘defined as the difference
between the desired value of the steady state response C g and the

actual response of the closed loop system.‘ if the system 1s asymptotioaily
stable (and this is true for a stable. llnear system) the performance |

vlndex becomes

‘ d x(o Dy : : _
¥ i§~1’ti T 51 nESE e - (5.32)

Synthesis Procedure

The model is described by the ‘oharacteris‘tic equation
dx d S o l g
X’P,Cl'd'.‘_g‘ ..-.f",c dl.?]:: "'  S . ) (‘,'"‘33)
The mininmm value of this P. I. Equatlon (4.32) corresponds to the

closed loop transfer functlon for the model.

o) . 1
k

70 o — o (838

s + = T oeoe 0 o t s+l
T, T RS "Cl.
| Hence this P. I. is applicable only if the model can be described

by a unity numerator equation, which, in general, is not the case. To
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specify the perfoﬁnance index in detail the model response must be described

in the form

k
) =c -S4 VA , ~ (4.35)
or Tk , .
x(8) = > 4, 6 /M O (136)
i=l |

From this equation the /Z:i's are obtained, It may be necessary to
resort to a graphical technique (Storer [82] , PP, 333-315).toobtain a -
mathematical description of the system.

Next to determine the performance index let

t k o
I =lin [ w(x,gf s e e %Eﬁ) dt = lim V(t) - V(o) (4.37)
t=»00 o i b0

In order to evaluate V(t) one may assume it to be of the quadratic

form 0 n
. l__ 'j"'lx
= x X 4
v ) z U dtJ-l +§ z %13 dtl"l a1 (h:38)
i=2 331
Since
W= g (4.39)

dt

it is nedessary to differentiate the V function and r'eplace i—n% by
_ dt
the lower order derivative of x to obtain W. The characteristic

equation of the system is

n n-1 .

d'x d X ax

— D Dol Y o 0 o T b, =+ Dbbx=0 (1+ol+o)
at? n-nldtn—l o ldt o

and the indicated process yields a W of the form
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3 _ n o s s
| 2 ad-1y n e e
Wedpx v hyxTemr 0 Ayt T
| doogd™ M @
j=R i=2 §j 1 ,

Equating Aij to the corresponding terms of the Ik (performance index

equation) yields g set of
n+ (n-1) + (h-Z) Fea et 1

squations which are solved for all Aij's; V is now définea; For thé
answer to have meaning itvis/necessary thaﬁ the'SYStem be stable. Inci-
dentally the procedure used to:evaluate Ik (as shown:hére) is identical
to the procedure of»constfucting’Liapunavis.functions for linear, autono-
mous systems 83 so that a che¢k on Stability'is-available‘ Routhts
criterion could al$o be used on‘fhe final system. | |

The procedure suggested'forfevéluating’a»perférmance index’here is
the’method éf evaluatihg integrals'by the use of’éxa¢t differentials.,
The meth§d is illustrated by the fo;lcwing éxample.'-

Example 4,1 |

Cénsider a unity feedback system with‘the open'loop tfanéfer

function

Let. the modei response be assumed_as the following unity
numerator second order system. That is, it'ié_assumed that the
step response of this‘éecdnd order model is éiveﬁ as ideal. In
general, the designer is free to pick the order of his model,
which in tufn determines the order of the systém, as:the model must
be of ofder one less than the system. | |

X+2X+x=0

By comparing equation (4.43) with equation (4.28), it is seen

(Leb1

(Loh2

(Leh3
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that

T
1

T,-1

From aquéation (4.31) the performance index becomes

2

00 :
f[x +’C23%2+/C2'2+2/E23§x]dt
) .
00 ’ 2‘ ' ' _
[ X+!.;x+x +2xx] dt N (Lolidy)
A .
Since n=3 the V function equation (4.38) is
V=allx2+ alzm:;+ a13:c;c‘b+ 35, 5;2 + a23§c:§.+ aB?:;?‘ (hoh5)
and
dV . - o2
=Y = xt+ta _ Xxta X +ta XX
at ll 12 : 1
S o 3, (Lehs6)
+a XX+2a xX+a xX+a X +2a ‘&%
13 © %22 23 23 7 a3
The closed loop transfer function for this systém is'
Cls) _ k n :
° s3 + 232 +8 + k S : (4o47)
and the characteristic equation is
X +2x+xrkx=0 (Lok8)
This equation is solved for'%’and substituted into dV/dt to
obtain
av 2 ‘
L =W=(k alB)X + (Zall-aB -k 323)3:&
+(a,, =2a,_ -2ka _)xx+ (a -~)5z;2
\Bqp =8y 337 * 12 7 %3
+(a_ +2 ~2a =23 )xx-+ (a ;-L;a P ’
13 22 23 33 23 33 (Le49)

Compéring this with the inﬁegrand of I, one may write



at -

3 12 3
3.12 - 3.23 = Ll' = 28‘11 - 3'13 - k. 3.23 = Q- (L]-a50)
a2 - ha - =1 . a + 2 =23 m2 = 0

23 33 A , B 23 - 33

Simultaneous solution of these yields

. _-lé_+l.k2+3k.+2 :a.;kg’f.ék,
2P ox) R Pl
a. . = 5k2 ~ 8k flﬁ.‘ a_ = kz N AE§+'A
22 B2 i (4.51)
a, = i = m&?'—k ) : a,v o -——————-—-———1‘5k b l
B Pl 0B P
The initial conditions for a stép‘are
x(0) =1 | |
%(0) = 0
- Then , : .
10 4 4K2 + 3k + 2 %2 (0)
I, =v(0) = he 2k r2x (0)
2(6% - 2k) |
. ” (La52)
B k3 +T4k + 3k +l2_*
Lk - 2K°

The minimum value of I, yields the optimum system and it is

K = 43

Iz . = 30014-
mnin

The response of_the.syStem'iSLShown in Eig.}h¢12f

The numerical valuq of the performance index for the model is

, I = 2000’



In this example only one system parameter was vafied. The rise
time:is leWer.thanvtﬁat éf the model and the éystem has 2C%.everb
shoot, Better‘résults can be obtainéd by allowing more parametérs
to vary. |
In conclusion, the phildsophy of this approach is quite interesting.

It is believed that this method is a fruitful area for‘further research.
It indicates the possibility for the developmentbof‘indices of performance,

It is important that investigations be continued in this area,

Le2,19 Bellmants Performance Inde;

Abstract and Conclusions

Bellman's criterion is a general formulation rather than a quanity

which can be used for system specification and evaluation,

Discussion o
Bellman [52]‘has proposed a general performance index of thé form
PI = G[?@d(ﬁ) - ‘c':_('t)]‘ + 'H'["zi?(t)] | | (4.53)

‘Eg(t) is a vector representing the desired state'of‘the control system,
¢(t) is the output in vector form, and m(t) is the cogfrol or input
vector, (}[Eg(t).égﬂtﬂ is a function.which measures the cost of
deviation from the ideal or desired state and H [ﬁ(ti] is a function
which is a measure of the cost of control, Performance indicies such

as ISE, IAE, etc., are special cases of this general formulation.

Lo2,20 Generalized Error Function (GEF)

Abstract and {onclusions

This criterion is not satisfactory for system specifications and
evaluation at the present time.

Discussion ..
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Spooner and Rldeout [8&] have worked w1th a performance index called
the ngeneralized error funtion (GEF)" which is defined by equation (4 54)

- T e
g [ r) e

vtﬁ»oe T
where ‘
e(t,T) = r(t~T) ~o(t)
The delayed inpaé r(téﬁ:) is a‘stationary,rgndomesignal.

b42.21 Glovef's‘Perforﬁénce Index

Abstract and Ccnelusion.

This criterion is used with Stochastic inputs, Sufficient results
are not available to recommend the use at this criterion.

Discussion

Glover [85] has proposed a cr;terlon called "the mean weighted square

error? for filters. The crlterlen is expressed mathematlcaﬂg'as

PI = lim ‘..l T [f(t) - fd(t)] :

b0 “t f__ [£, (6] %2

where f(t) is the obtained function of time and fd(t) is the des1red
function of tlme,d' dictates the 1owest absolute accuracy of interest,
In this criterion, error is weighted in a per cent manner, since error is
divided by the desired’valﬁe of the function., It ispGlover's belief
that it is mereﬁreasonable to consider error on g percentage_basis than
on an absolute basis, as would be obtained by the mean-square error
crlterlono The quanltycj' keeps the 1ntegrand flnlte and is chesen
small enough to be essentlally ZerQe |

Murphy and Bold [86] coneidered'a'mean weighted square error previ-

ous to Glover's‘worké but they used-a.determiniStie_function of t for

(Le54)

(455)
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welghting. ‘

This method is inﬁeresting and mathematically tractable if adequate
assumptions can be made concerning the statistical properties of the input.
. Sufficient results aré not available at this time to predict the usefulness
of the criterion. | | |

42,22 Zaborszky and Diesel's Performance Index

 Abstract and Conclusions

This criterion‘can not be used at the present time for system
specification and evaluation as‘desired by the Aif Force,

Discussion

Zaborszky and Diesel [87] have proposed a generallzed error criterion
which can be used with determlnlstlc and random 1nputs, Many other
criteria are special cases of‘their criterion,which is

0. -

PI;ff ?Te(t),'t,vl,vz,....,vl]p(t)dt" |
o | o (hes6)

where the penalty function F 1sla functlon of e (t), time t, and parameters
associated with the system Vs vé cecescense, ¥ o The quantity p (t) is
the probability density function’of the times elapsing from activating the
system to all times of utilizatién of its outpﬁt, The bar indicates an

averaging process over an ensemble of different types of inpﬁts.

Le3 Analytical Determination of Performance Indices

l—|—03 ) 1 IntrOdUCtion

With the exception of ISE (integral of error squared ) mest work re-
ported in the: llterature on perfonzance 1nd1ces has been done with com~
puters; typically, a 31mulated system or famlly of systems has been studied

by varying parameters until opﬁlmum values are obtained, The reason for
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this approach is that mestjcriteria are very cumbersome to handle
analytically.  Some mathematical methods that are appropfiate for perform-
dncé index problems will‘bé presentéd,énd illustraﬁed with examples ini
this section, | | |

The mathemétical appfoach to determining performance index values
can be used to obtain the performance index of a specific system eon-
vfiguration or fervthe purbose of détermining the optimum value of system
parameters, There are two cases té consider in ﬁhe optimization problem

_ae Y%Semi-freeYSystem configurations i.e, some of the sysﬁem para-
meters are fixed..v‘

b. Free system configuration i,e., all system pérameters-are vari-
able. An opiimum‘free configufati@n‘is the best possible in the perform-
ance index seﬁse; ‘ |

For fixed ¢0nfigufationé the only information désired is the value
of the performance index and @ossibly its rate of change as different
parameters are varied. For free and stiafree configurations it is
desirable teo know the numberbof minimnm pointsgithe'perfermance index
at‘these points and the gradient near the points.,

| The maﬁerial presented- here ié primarily inﬁended for the class of

integral performance indices of the form
f 0 62(t) at n=0,1,2 -~ (457)
0 o v

Le3.2 Parsevalls Theorem

% Note that semi«free and free configurations are defined here. The
definition differs from that of Newton, Gould and Kaiser [61] .
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Parseval's theorem [61J is not directly applicable to the whole
family of performance indices described by equatioh (4.57), but with
modification it can be applied to the whole family, The main wbtility
of Parsevall's theorem is that it yields timevdomain answers from fre-
quency domain information, making‘it unnecessary to obtain system error

as a function of time. If system error is

e(s) = %%S%-

the performance index for the case where n = 0 is
. : Joo _
PI = J"e(w at =gz [ SRS e  (4.58)
0 ‘ =Jjoo ‘
by Parsevalls theorem,
The integral on the right side of equation (L.58) can be solved by‘

detérmining the residues of the integrand and its solution has been

tabulated [61] for equations up to the tenth order of the form

S
a(s
where p(s) and q(s) are polynomials. The solution is in terms of thé
coefficients of the polynomials. - This makes it unnecessary to determine
the roots of the polynomials.

Thus, it ié eaéy‘to obtain the performance index value of a fixed
configuration system where n = O in equation (h.S?); However, when a
~system is to be optimized the computational difficultieé may be formi-
dable, since the solutions available are only a starting point for the
optimization process, To determine analytically the optimum system
paramebers it is necessary to take the partial derivative of the per-

formance index with respect to each parameter and set the resulting
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equations equal to zero oOr use some other process, . A naive approach is
to vary one parameter at a. time until the desired minimum is obtained.
This méy actually require less work than the analytical solutibn, If
the o@timum‘values~are not finite or if ﬁhey aré zerp, it is nécéSséry '
to introduce constraints to obtain a non-trivial solution.. |

The optimization problem is easier for’pragtiqal_systéms:of a semi-
free configuration than for’free cgnfigurations because fewer parameters
‘vary. Most pfactical syétems will have semifréefconfigurations because
a motor or control surface ete. w1ll have fixed characterlstlcs. 'In
many cages. it is only necessary to vary the parameters of an equallzer.

A 51mple second order system will serve the purpose of 1llustrat1ng
the use of Parseval's theorem. Assume a system with the open loop trans—
fer functlon‘ | , , ’ S 4 _ , - ‘
R xay LR LT (4.59)
is to be optimized [61] . First, an'equation of the error must be

obﬁained, which, if r(t) isa unit step, becomes

e(s> = .;b_.s2—+.~_ . . . . _ (13—060)
ts” + s+l - :
Then from equation (4.58) joo
oy J°
l -
PI = e (t) dt = 21TJ (- T2s tL oy g s+ 1 Jds  (4.61)
s o Ts +s+k PTs ~s+k
‘0 » R =Joo
2 2
c d + dn
Y1 ‘0 . 2\»'» ' . (4 62)
2ddld2 | -
where_
d2=T cl= T
dl'= 1 ¢Q =1
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Since, the general solutlons are avallable for equatlons such as (h 61)
up to the tenth order, obtalnlng the solutlon is routlne. The perform-

ance index becomes

ST+ 1/K
R

At this point in the analysis-it is necessary to cohsider stabilityﬁ
Slnce thls method does not insure stablllty and Parseval's theorem 1s

appllcable only for stable systems the results are meanlngless unless

" they lead to a stable system. In this example it is obv1ous that K must

be p031t1ve to insure stablllty assumlng T is a p051t1ve quantlty.

From eqnatlon (4.63) it can be seen that the PI approaches 1nf1n1ty

(4,63)

as K approaches zero and approacnes the value T/2 as K approaches 1nf1n1ty.

Thls dlfflculty can be overcome. in. thls example by relatlng T. and K to

:f in the usual second order system tenmlnologgz'-

g1
o AmR

W, . & *
e )7
Then, from equation (4.63)
. 1 1y
PL =% (—Z7=+7%)
SRR <8

Thus, the optimum second order system in an ISE sense has a f = 0,5,

In this sjstem‘it was only necessary to relate T and K toj?to'obw

Km&)

(4.65)

xa%y
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tain\clssed.ccntours of;performanee-index versus'sysbem parameters. In
more complicated systems the procedure may not be 8o obvlsus and this
becomes a 11m1t1ng factor in analytlcal de81gn. For exampls, 1t'1S obvi-
ous that the ideal system in the sense of equatlon (h 57) should have

R infinite bandw1dth and hence, the analytical. selutlon may force time
constants to zere if proper constraints are not 1nqluded to obtaln non-
trival solutlons.' In practical semlfree cenflguratlens the: prcblem is
less difficult than for free conflguratlcn systems because only a few
zZeros and poles are varied. Even in thls case, howsver, 1t may be -

A necessary to add constraints.

be3e3 Analytlcal Sslutlon of ITSE

Westcott [88] has shewn that Parseval's theorem can: be axtended to
| solve for the 1ntegral of Tlme Mhltlplled by Squared Error, Thls makes '
it p0831ble to utlllze the - solutlons that have been tabulated fer the
use @f.Parsevalis theorem, The follswlng derivatlon:follows_Westcott.
It is desired to express. - |
' _ - | | R L - ’ ’
IT:SE’=I sfe)a e
in terms of the coefficients of the polynsmlals p(s) and q(s) of the error

transfex~functlsn o 3 ST % e o
R
Lt the Iaplace transform of e2(t) be P@ ), teer

- Fy) =’f~x.___,e2(‘t) eT a (h69)
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Then o ' o0 o
2 2 ~07 4 o
t e (t)dt = - lim %—- e (t) e 1% at 3 (L4.70)
v g0 o _
o) 5
= =~ lim & AR g : v . ' L.71)
ol 5% ‘[I'(ﬂ".l )] | | B (ho71)
By the Laplace transform theory _it may be shown that
| . c+ joo | | | o
F(o~ 5= - 472
(071) 3773 e(s) e(ﬂ’l'_ s) ds | (4.72)
and it follows that c-Jjoo
) 1 g+ Joo PRI |
ITSE= « lim S e(s) e(a"l -s) ds (4.73)
>0 dr | T / S |

& not symmetrical, as desired, but may be made symmetrical
by choosing the proper path of integration, After choosing ‘the proper
path of integration a,hd making a change of variable the desired | |

symmetrical form is

s

a 1 +_jw .
ITSE = _(I']‘-i—n;O —é—&: m ‘e(s_-i-i" Yelo —s)vds (La74)
‘ I -jo : » _.J

To illustrate the method two examples will be presented. ( LSSJ, Pe 479).

Example a2

Consider a system with the error transfer function

’ d :
P« .
e(s) 2, s * ay | | o (4e75)
Ihen } , &'fjoo L2 |
i L 0y ds ; : _
» =] sl : ] o v
ITSE a—_f(% ar L » [ao(s+.g‘" )+al] [ ao(a- - )+a’j] (14--76_)

- Tar-jo
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By determining the,residue at'the pole

s (2 e e

o
the quantity

‘ a2 - o :
IISE = - lim gr[ 2 ] R (4.78)

>0 hao( a o ¥ al)

is obtained. Then

42
ITSE = - lim ———a— - (4.79)
7=>0 4(a 0+ a;)
o 1
after taking the indicated partial derivative. Upon taking the limit
 the answer becomes v | - o
o dg o R : o o
ITSE = -~ — T - - | (4.80)
Example 4.3
Consider the system defined by equ&tion‘(h,ﬁ?),fd?Vthe second
example, Using the procedure ihdicated above it'is fou@d,that
ITSE = 5 LB Lo e (4.81)
‘ LK 2 T :
After normalizing to make the system avunity numeratdr type
(i.e. T=K) and differentiating ITSE to obtain the optimum, it is found
that '
F = 0.658 ,
Westcottt!s work may be extended to InTSE.  Using the methed outlined
by Westcott | ‘ -
Q0 -\ n -0 _T" -b
f t%e%(t) dt = (-1)P lim g — [ Pt)e T oat
0 {—)O =" (4.82)

0

5 :_; bn_;m én x o v |



where F( 'a"'l) is the Laplace transform of ez(t).
It follows from the preﬁous derivation that
+joo

: n »
InTSE = ~(-7—];L r__hjg aaa_ 2#:’ e(s+d~ Jelg— -s )ds (Lo8L)

g =jo

h.B.L; Analytical Solution for ISTSE
The results of the last section can be used to obtain ISTSE. When

n equals 2, equation (4. 82) becomes

» & 2 1. 0+ joo .
“ ISTSE = % lim Ry 21T e(s+6 el ~s)ds (L.85)
. S0 I~ J v : :
10 =joo
Example 4.4
Consider a system which has the error transfer function
d .
o(s) = T |
(a s + a ) | » (4.86)
Then -

2

2 r+j® 4 °ds
ISTSE = 3 1 f SN

a-_>o 002 | nrr j [ao(s+a-)+a1]"[a0(m -5 5-+al]
-joo '
2 - 2

9 %
;'—13030-2 . ha, (aoo- * all)

::Ldl2
0.0

(4.87)

= lim
=0 2(aa“+a)

2
- a4y

. (4.88)
2&13

- As an alternate method to obtain ISTSE it is noted that

X {t[e(t)Bz - _q_;[g_g_s_l]__» | ‘ |  (4.89)

from the laplace transform theory, Thus it is only necessary to differ-
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entiate «e(s) and insert it in the integral of Parseval's theorem instead

of e(s) to make use of tabulated results. That is,
o c+Jjoo

- 22 - 1 de(s) de(=s) '
ISTSE t9e%(t) ab = == S el s (4.90)

c~Jjoo

~ The system defined by equation (4.59) will be used to illustrate this

method.
_ de _ T282 +‘2 Ts + (lf-TK . o (4.91)
ds 2 4 3 2, 2 2 - ,
Ts™ + 2Ds” + (1427 ) s~ + 25T+T

Using solution tables for ISE and setting T equal to K as done previously

yields .
4T6 A '
ISTSE = , - _ ' (4.92)
v , | -

Then .

aasmse) et r®os Lo | O (493)

aT ‘ ATh ' '

and

T = .75
which yields
T = .66

Lo3.5 Analytical Solution of Performance Indices Using Liapunov V Function

Another analytical method for determining the value of a performance
index is available from the relationship of the V and W functions used in

the second method of Liapunov (see Final Report Vol. 3). By definition

d v
)= : (4o9%)

W(X X 600009k
l.’ 29 3 n

Integrating this expression with respect to time yields
: t

V(xi, Xé"°'°’xn)‘—v(xlO’ X20’°°'°’Xno) =.j; 'w(x1;x2,..,xh)dt (4.95)
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where the zero subscripts indicate the initial values of the state varia-
‘ble X, at t=0, i.,e. the initial conditions, If time is allowed to approach
infinity in equation (4.95) (the case for most integral performance indices),

the equation becomes

t-»00

®
V(xicPX2c9‘°"xno) - lim V(xl, Xé""’xn) = ~‘f” W(Xl,XZ,...xn)dt
o (4.96)

By definition, in an asymptotically stable system

lim x, = 0 1= 1,2,00005n (4.97)
t—>w®
and
V (0500050) = 0 (4-98)
Then
v (chPXZC?.goo,Xno) - W(xl, Xy eeesX )b (4499)
8]

If the state variables Xs represent system error and its n-1 time
derivatives, and if W is a positive definite quadratic form, equation (4.99)
is an integral error type performance index, where

PL = V(%0 xzc?,.,xng) _ (4,100)

In general, any Liapunov function which has a negative definite or
negative semidefinite derivative can be used as a perfermance index.

For time weighted performance inaices (eq. ITE) it is necessary to
assume the proper V function e.g,

V=T,(e, e5000) + £V (e50,..0) (4.101)
No examples of this type are available at the present time.

Example 4,5

Consider the following example of this method where a unity
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feedback system has thé open loop transfer function

- _K | | - !
G(S) = m . - (1-1—0102):
and where it is desired to obtain
. A2 : : : ‘
P.I. =f &*(t)dt | - (4.13)
The error transfef function is
e(s_) = -‘l ‘ ’ _ | S , . .(.’.p,lO/.p)-
R(s) 1. K » -

s(s+a)
If a step function R (the input) is removed at t=0 the follow=—

ing is obtained from equation (4.104)

e(t) + a e(t) + Ke(t) = 0 - £>0 (4.105)
Let ,

x = e(t) CE T \ O (4.106)

x, = &(t) R | | (4.207)
then

x, = -a X, =Kx, | | . (4.109)

Assume the general quadratic form

= 2 2 c 0

VS apgXy *R8)9%0%, ¥ ayXy | | (4,110)

From equation (4.94) and (4.10)

[ = 2 s+ . + 2 + 2 » ‘.' 111

W alixl 1 Zalg(xlgz; xi§2) ,;22x2x2 (4 ; )
and

2 | | ' )
= 2% . ...2 - -, : o Ty 2
W= ( Zialz)xl + (Zall a8 2Ka22)x1;2+>(2a12 2aa22)x2 (4.112)
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Since W must be the integrand of equation (4.103) it is necces-

sary that

2 2
We=x =e (t)

Using equation (4.112) and the above condition yields

a12 = é%K
3.22 = F‘%Ka
o kel
11 2Ka
Then ' . 2
et 2 1% %o

Vo“%ka *1 -T % ~Zka

To find the initial values of x. and X, it is only necessary

1
- to apply the initial value theorem to eéuation (4.,104) and the de~
rivative of equation (4.104)and obtain =

Xl(O)

1
XZ(O)’= 0
From equation (4.99) and (4.115) it is found that

K+ a

FL = 2Ka,

For this simple problem it would be easier to use Parseval's

this method is superior,

(4.113)

(4e114)

(L.115)

(4e116)

(44117)

(4.118)

theorem, however, for more general performance indiges (e.g. PI = f(e,e~—))



1.

2

b

2

Te

8.

9o

10,

1.

- 108 —

BIBLIOGRAPHY
Je Eo Gibson, E. 3. McVey, C, D. Leedham, Z. V. Reka81us and R. Sridhar,
nSpecification and Data Presentation in Linear Control Systems," vol, 1

Final Report on project AF 29(600)-1933, Purdue University, 1960.

Jeo Te Tou, Digital and Sampled Dapa'ContPOleystems;vMhGraWhHill Book
Co., New York, N. Y., 1959, |

de Ge T ruxal Automatlc Feedback Control System Synthes1s, MbGraw&Hlll

Book Co., New York, M. Y.;‘l955~

Js Re Ragazzihi and G, F, Franklin, Sampléd Data Control Systems,

MpGrawéHill Book Co,, New York, New York, 1958,

W, K, Linvill, "Sampled~data‘Control Systems Studied'Through Comparison

‘of Sampling with Amplltude Modulatlon," Trans. AIEE, vol, 70, part 2,

pe 179, 19510

Ho S. Black, Modulation'Thgory; D..Vaﬁ Nbétrand and Company Inc.,
New York, New York, 1960, |

W. L. Nelson, "Pulse Width Control of Sampled Data Systems“ Technical
Rebort No. T-35/B Columbia Univérsity, New York, ‘New York . ‘

R. B, Marshall, Measurements in Electrlcal Englneerlng, vol 1,

John S. Swift Co., Clnclnnatl, Ohlo, 1948,

Js Roe Raga221n1 and L. A. Zadeh, "The Analy51s of Sampled Data Systems,"

Trans. AIEE, vol, 71 part 2,'p,.225, 1952,

E;_I. Jury, "Analysis and Snythesis of Sampled Data Control Systems,"
Trans, ATEE, vol 73, part 1, pe 332, 1954,
R. He Barker, "The Pulse Transfer Function and its Application to

Sampling Serve Systems," Proc. I.E.B. (Engla'nd) vol, 99, po 1, 1952,



13.

15.

" 16,

17.

- 18,

- 109 -

E. I. Jury, “Synﬁhesis and Gritical Study of Sampled. Data Control
Systems," Trans. AIEE, vol. 75, part 2, p. lil, 1956. | ,

'E. 0. Gilbert, "A Method for the Symbolic Representation and Analysis

of Linear’Periédic Feedback Systems;ﬁ,Trans.lAIEE, vol. 78, part 2,
po 512, Jano’ 19600

Fe Kurzwell Jr., "The Analy31s and Synthesis of Nonlinear Gontlnuous

‘and Sampled-Data Systems," Technical Report No. 2101-1, November, 1959,

Stanford Electronics Laboratories, Stanford University, California,

R. E. Kalman and J, E. Bertram, "A Unified Approach to the Theory of
Sampling Systems," Jo.ufﬁal‘ of the Franklin Instit.uté, vbl‘, 267,

b 405, 1959,

E. L. Jury;'“Hidden Oscillations in Sampled Data Conﬁrol Systems,®
Trans, ATEE, vol. 75, part 2, b. 391, 1956. |

G. W, Johnson, Lindorff and Nordling;,ﬁEktensioﬁ’of Continuous Dafa
Design Technique to Sampled Data Control Systems," Trans. ATEE,

vol. 74y part 2, p. 252, 1955,

Schmidt, nApplication of Continuous System Design Goncepts“tofﬁhe

Design of Sampled Data Systems," Trans. AIEE, vol. 78, part 2,

| » p0'7ll—; 1959.

19.

20,

21s

R. G. Brown and G. J, Murphy, "An approximate Transfer Functlon for

“the Analysls and Design of Pulsed Servos," Trans. AIEE, vol.. 71,

part 2, p. 436, 1952,

He Nyqulst HGertain toplcs 1n Telegraph Transmisslon Theory"
ATEE Transactlon Do 617, April 1928.

Co B. Shannon, "Communication in the presénce‘of Noise,"®

Proc. IRE, vole 37, No. 1, Jah,_l949.'



22,

3.

2L’-o

25,

26,

27,

28,

29.

30,

31.

32.

33

=110 -

E. Hille,‘Analy;ic:Functioanheory:vol. 1, Ginn & Go., Boston, Mass.

H, Chestnut and R. W. Mayer, Servomechanism and Regulating System

Design, vol. II, John Wiley and Sens, Inc,, New York, N. Y., 1955.

E. L. Jufy; "The Correlatioanetween Root Locus and Transient Respohse

of Sampled Data Control Systems," Trans. AIEE, vol. 75, part 2,

Jan,, 1956.

M. Mori, "Root Locus Method of Pulse Transfer Function for Sampled
Data Control Systéms,ﬂ Trans IRE, PGAC 3, November 1957.
E. I. Jury, "The Effect of Pole ahdeero locations on the Transient

Response of Sampled Data SyStems,"vTrans.‘AIEE, vol’?h,'part 2, 1955, .

Jo. J. Stoker, Nonlinear Vibrations, Interscience_publishef. New'York, 1950

E. L. Ince, Ordinary,Differential'Equaﬁions, Dovér, 1956.

R. E. Bellman, Stability Theory of Differential Equations. MéGraw-Hiu
Book Co., 1953, : -

L. A, Zadeh, "0n Stability.of Linear,Varying»Parameter.Systems,ﬁ

JuAP. vol. 22, pp,L»QZ.é 5405, Apiil 1951. |

He A. Antosiewicz, "A éurvey of Liapunovts second method," Centributions
to the theory of nonlinéar Oscillatrions IV, Annals of Matheﬁatics Studies,

No. 41, Princeton University Press, 1958,

Re E. Kalman, and J. E. Bertram, "Control System Analysisvand Design via

the "Second Methodﬁ of Liapunov," Journal of Basié Engineering, Trans,
ASME, part D, pp371-393, dJune 1960. |

Je L. Massera, "Contributions to stability theory," Annals of Mathematics,
vol. 6k, No, 1, pp, 182 - 206, July 1956. |

Fo Ro Gerardi, “Application of Mellin and Hankel Transforms to . Networks

with Time Varying Parameters," PGCT, vol, CT6, No. 3, p. 197, June 1959.



35

36.

37,

38.

39.

40,

L1,

L2,

43

Lly.

L5

'Ll'éc

o 111 -

M. Je Kirby, "Stability of Servomechanisms with Linearly Varying

Elements," Trans AIEE, vol 69, pt. 2, 1950, PR, 1662 ~ 1668 ,

M. J. Kirby and R. M. Giulianelli, "Stability of Varying Element
Servomechanisms with Polynomial Coefficients," Trans. AIEE vol. 70, -
part 2, pp,1hk7 - 1451, 1951.

Js Brodin, “Analysis of Time Dependent Linear Networks," PGCT

March 1955,pp,12 - 16.

W. R. Bemnett, "Steady State Transmission Through Networks Conﬁaining
Periodically QOperated Switches,® PGCT March 1955, pp, 17 - <l.

Vo Vo Kafémyshkin, uTransformation of a Linear Differential Equation
with Polynomial Coefficients into»an Integral Equation with'the aid
of Operational'Calculus,” #Prekladnays Mﬁthemética, i Mexanike"

vol 22, No. hy DPP,774 = T76, 1958

Ce Ao Desoer, USteady State Tfansmission Through a. Network Containing
a Siﬁgle Time Varying Element," PGCT 1959, PP;ZAA - 252,

L. As Pipes, "Matrix Analysis of Linear Time Varying Systems," PGCT
December 1953, pp.91 = 10h

L. A. Zadeh; "Frequency Analysis of Variable Networks," Proc. of IRE,
vol. 38, pp,291 - 299, March 1950.

L. A, Zadeh, "The Determination of Impulsive Response of Vériable Net-
works,® J.A.P,, vol, 21, pp, 642 = 645, July 1950,

L. A, Zadeh, "Initial Conditions in Linear Varying Parameter Systems,"
Johs Poy, vol 22, pp,782 ~ 786, July 1951,

Lo A. Zadeh, "Circuit Analysis of Linear Varying Parameter Networks,®
JebePoy vol, 21, pp, 1171 - 1177, Nov. 1950

Jo A, Aseltine, s Transform Method for Linear Time Varying Systems,"

JOAOPO, VQlQ 259 N@o 69 ppo 7619 Ju.n,e 19514.5



47

48;

49,

50,

51,

o2

53,

5k

504

56.

57,

58.

=112 -

I. G. Malkin, "Theory of Stability of Motion," AEC Translation 3352
UsDe, 1958. | -

G. P. Szego, WA Stability Investigation of Time Varying Linear Systems,“

To be presented at the AIEE general meeting, Summer 1961,

J. Matyash, "The Analog Computer Setup Procedure for Solving Linear
Differential Equations with Variable Coefficients," Automatika i

Telemexanika, vol, 10, No. 7.

‘Js He Laning and R. H. Battin, "Random Processes in Autbmatic Control,“

Chapter 6, McGraw-Hill Book’Cb., New York, New York, 1956,
G.'Wq'Anderson, Je Ao Aseltine, A, R. Mancini, and G. W.Sarture,

"A Self-Adjusting System for Optimum Dynamic Performance," IRE Con-

- vention Record, part 4, AC 1958, pp. 182 - 190, 1958,

Re B, Bellman, Dynamic Programming, Princeton University Press,

Princeton, N. J., 1957. ,

D. Graham and R. C. Lathrop, "The Synthésis of !'Optimum! Transient
Response: Criteria and Standard Forms," Transactions AIEE, vol, 72,
part 2, A & I, pp. 273 ~ 288, 1954.

M, Ao Aizerman, Lectures on the Theory of Automatic Conmtrel, in

Russian, second ed., Gostekizdat, pp. 302 - 320, 1958,

Re Lo Cosgriff, Nonlinear Control Systems,  John Wiley and Sons, Inc.,
New York, N. Y., 1958. |

H, H. Skilling, Transient Electric Circuits, McGraw-Hill Book Co.,

New Y@rk, N. Yag 19520

R. C. Oldenbourg and H., Sartorius, The Dynamics of Automatic Controls,
The American Society of M. E., New York, New York, 1948,
Po To Nims, "Some Design Criteria for Autematic Centrels," Transactions

ATEE, vol. 70, part 1, pp. 606 - 611, 1951,



59.

600'

61.

62,

63.

blie

65,

66

67.

68,

69,

—113 ""‘v

F., C, Fiechesen and T, M. Stout, "Analogue Methods for Optimum
Servomechanism Designy" Transactions' ATEE, A & I; vol. 71, pRr 244~250,
1952.

A, C. Hall, The Analysis and Synthesis of Linear Servomechanisms,
Technology Press, MIT, 1947.

Ge C. Newton, L. A.. Gould and J. R. Kaiser, Analytical Design of

Llnear Feedback Controls, John'wlley and Sons, Inc., New York, N. Y.

1957.

R+ N, Clark, “Integral\ef the Error Squared as a. Perfcrmance Index

for Automatic Control Systems,“ Trans. AIEE, A and I, pp. 467 - 471,
Ja-nt lgéle

Ho M. James, N. V. Nichols, and R. S. Phillips, Theory of Servo-

mechénisms, MbGrawaHill,Book,Cq., New York, N. Y., 1947.

Je G Truxal'(Editor); Gontrol Engineers Handbook, McGraw-Hill Book
Co., New York, New York, 1958, .»
N.'Weinér,-"The Extrapolation, Interﬁolation, and Smoothing eof -

Stationary Time Series,” John Wiley and Sons, Inc,, New York, 1948,

E. A, Guillemin, Communication MNetwork, vols 1, John Wiley and Sons,
Inc., New York, No Y, 1931. | | |

Jo We Froggatti, ﬁlnvestigatioﬁ of:Severai Criteria for the Synthesis
of Optimum Transient Response of‘Servgmechanism Systems of Highér
Orders,” Air University, U;AQA.F. Inst. ofiTecha,'Wright-Patterson
AF Base, Ohio, 195ks |

Ho Se Black, "Stabilized Féedback,Amplifiers,B Transactions AIEE,

’VOlv 53’ PPe 11k - 120 1934,

H. Nyqplst, ¥Regeneration Theory," BeSeTedsy Vol ll, ‘PPe 126 - 147,

1932,



70,

7.

72,

(ED

The

754

76.

7.

: -'ilh -

"G+ E. Happell énd W, M. Hesselberth, EngineéringlElgq@ronics,

MEGTaW*Hill BQQK GOQ, NeW‘YQrk;_NO Y','1953~

D. Graham and R, C. Lathrop, "The Transient Performance of Servo-

- mechanisms with Derivative and Integral Centrbl,“.Transactions ATEE,

vol, 72, part 2, A & I, pp. 10 - 17, 195k,

 D. Grahamaand Re Ce Lathrop, "The Influence of Time Scales and Gain

on Criteria for Servomechanlsm Perfonmance,“ Transactlons AIEE, vol. 72,

part 2, A & I, PPe. 153 - 158, l95h.

- Gibson, J., McVey, E.y- "Mhltldlmen31onal Adaptlve Contrel," Proc,

NEC, vol. 15, Octe 1959,

Je Bes Gibson, "Making Sense out of the Adapti#e Prineiple,® Control
Engineering, vol‘7. PPe 113 = 117, August, 1960,
R. C. Stone, "A Mathematical Method for Optimizing the Gains of A

.‘Llnear System, " Aero Report 49174-21 TR1, Mlnneapolls Honeywell Reg.

Co., Minneapolls, Minn,; Feb., 1957,

Js Crow, "An Integral Criterion for Optimizing Duplicator Syétems on

the Basis. of TranSient Response,ﬂ-Doctoral Diséertatien, Washington

. Unlver31ty, St. Louis, Mo., 1956,

Ve C. Rldeout and W; C. Schultz, "Control - System Performance Measured:

‘Past Present, and Future," IRE, PGAC, vel. AC-6m pp, 22 - 35: Feb,

: 1961.

78,

79«

He M, Paynter, "On An Anaiogy Between’Stochasﬁic Proceés ‘and Monatone
Dynamic Systems," Regelvngstechnlk Modern. Theorlem und Ihre Vernendbor-
heir, Oldenbavng, Mnnlch, Germany; 1957,

Te Po Goodman and R. H. Hillsley, "Continuous measurement of Character-

istics ef,Systems with Random'Iﬁputs:>A step toward Self-optimizing

- Control," Trans, ASME, vol. 80, pp. 1839 - 1848; Nov. 1958.




- 115 -

80, R. F., Kalman and R. W. Koepeke, "Optimal Synthesis of Linear Sampling
Systems Using Generalized Performance," Trans. ASME, vol. 80, DPp.
1820 - 18263 Nov. 1958,

’81. Zo Vo Rekasius, "A General Performance Index for Analytical Design of
Control Systems," to be présented at JACC, June 1961,

82, J, E. Storer, Passive Network Synthesis, McGraw-Hill Book Co., New

York, New York, pp. 303 - 315, 1959.

83. J. E. Gibson, et. al., "Stability of Nonl%near Control Sysﬁems by The
Second Meﬁhod of Liapunov, " vol’lll of Final Report on project
AF 29(600)~1933, Purdue University, May 1961.

8ks M. G. Spooner and V. C, Rideout, "Correlation Studies of Linear and
Nonlinear Systems," paper presented at The National Electronies
Conference Chicago, Illinois, October, 1956,

85. Go Ce Glover, “Cptimon Prediction with a Mean Weighted Square Error
Criterion," IRE, PGAC, pp. 43 — 48, Feb., 1961,

86 Geo Jo Murphy and N. T. Bold, "Optimization Based on a Square Error
Criterion With an Arbitrary Weighting Function," IRE PGAC, vol. AC-5,
ppe 24 30; Jan., 1960. |

87s Je Zaborsﬁky énko. We biesel, "Probabilistic Error as a Measure of
Control System Performance," Trans, AIEE, A and I, no. 43, pp. 163 - 168,
July 1959. |

88, Westcott, "The MinimumyMbment—of-ErrorﬁSquared Criterion,® Proc. IEE,

part 2, p. 4805 1954,



- 116 ~
APPENDIX A

A DISCUSSION OF SAMPLING FREQUENCY

A.l Introduction

This éppendix is included to supplement the material used‘in making
the recommendations of Chapter 2 (Sampled Data Systems).

A guestion foeh asked by engineers when dealing with sampled data
systems is the following: "Given a system, is there a sampling fre-
kquency above which the system can be donsideredlcoﬁtinuous for most
purposes?® This appendix provides a- partial answer to this specifie
question, which was put to the project staff by Mr, J. H. Gengelbach,
the initiator of this study. |

The research project, of which this volume is a part, is not designed
as a proJject in basie sampled-data s&stem reseafch. The ekamples choosen
in the following discussion are, therefore, féStricted to the simplest
examples (second ordervsystems) possible.

A,2 Discussion

One of the principle characteristics associated with a sampled
data system 1s the periodicity with which samples aréIthained from
continuous data., It is clear that the sam?ling frequency will affect
the performance of a given system, and therefore quéstions will arise
naturally as to what is.the best sampling.frequenéy. Alternatively,
given a sampling frequency and a system, what performance can be ex~
pected, and how shall it be assessed. It is recognized that the
frequency at which samples can be obtained ig often Qutside»a designerts

control and dictated by external factors. The purpose of this appendix
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will be to investigate the performance of a system as a function of

sampling period, T, (sampling frequency,Lug = ;qr)’vassuming this
quantity can be vafiedkcontinuéusly from zero to a high'figure; and
to answer the question posed above, |

A standafd must be chosen to which the performmance of the sampled
data system can be compared, It is suggested, intuitively, that the
ultimate performance of a given sampled system is the performance of
the same system, but.without the‘samp;er and agsociated circuits
present., For example, consider the error sampled system shown in
- Figure A.l. There the sampler is considered to bevrepresented by an
impulse modulation deviée, and the zero order hold circuit, GHO’ is-
introduced to make the system realistic, After removing the saﬁpler
and hold circuit, the system becomes a continuous system as in Figure
A.2. This system can, in turn, bé'reduged mafhematiqally teva traQSfef,

function which has the familiar form:

C(s) _ K/Ta v o u)02
R(S) s+ ll s + l{_ s + '2fw08+wo :
'Ta Ta
| _ 1 K >
where KT, = ~ and. T; -lL)o
g
This expression is that of a second order system and the response
at the output terminalsto a stepepf magnitude A at the input is: .
. T VE=Tt ]
o(t) = A ~2\[KT "4 g=T* sin[.._.?.:;..._.. +¢l (A.2)
' & . L2t \ :

1

where Qb= tan \'hKTa -1

provided 0< P<lor 0L ~l<l
lq.KTa
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-Figure A-l

An Error Sampled Seqond' Order System
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- Figure A-2

The Eqﬁivalent Continuous 'Sys'tem




The step responseof the system shown in Figure A.l, which includes
the sampling device, is to be compared with equation(42). The two
responses could be of the form shown in Figure A.3.

The work contained in this volume on‘performance indicies suggests
that an index could be used for cbmpai‘ison purposes and that the index
should be representative of the area enclosed between the two curves in
Figure A.3. 'Both positive and negative ’afeé. will be genérated; but the
absoluteﬂ’area is ‘the meaningful ‘quantity,' and a squaredkindex willl be
choosen, The simplest suitable index is:

P.I. = f’[cc(t) -cs(t)] % at SR : (4.3)
© .

where ¢, (t) ... the output from the continuous system to a step.
cs(t) oes the output from the sampled system to the same step.
For convenience, let
cc(t) - cs(_t)-= ce(t).,
Then

PJI. = /O'O ce2(t) dt, - (AL)
L % |

Recalling Parseval IsTheorem (rei' .[25:L Pe AB) ~the expression may also

be put in the forms

P\ — @ 2 d - l v ja) 5
oI ‘f— e (t) dt = 23 J . Ce(S)Ce(—S) ds (4.5)
o f Y =Joo

where s is the complex variable associated with the Laplace Transform.
It is recognized that other performance indicies exist that are

suitable for the comparison of these two systems, for example:

P,I. = ﬁ [cc(nT) - cs(nT)]2 , | (A.6)

n=9o

. but attention will be focussed here on that index in ‘equation (4,5) which
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is considered as good a yardstick as any other.

With reference to Figure A.1l

=Ts :
K 1-€ :
Gls) G._.(s) = : o
(s) HO( ) s(l+sTa) S : (&.7)
using the z~transform one can obtains .
) _ T ' (Z"‘l) Ta .
Wiyp(2) = K [Z_l R 74 - (4.8)
Therefore |
o(z) - _®H0 (2) | (8.9)
R(Z) l + mﬁo(z) ‘ v
and ' v |
c(z) =e (z +f) | ' (A.10)

R(z) z%+gz+h

where e, £, g and h are functions of the basic variables K, T; and T
.and are constant for a particular choice of these variables,

The characteristic equation that results from a particular choice of
the basic constants must now be checked for stability, for, though a
segond order continuous system can never be unstable for positive con=
stants, it is possible for the same system, when sampled, to be unstable,

The solution at the output terminals for the sampled system using
z-transform analysis consists of a sequence of impulses c¢(nT). The
continuous time function ¢(t) that results from the inverse z~transform
operation on G(z) may be used as a good approximatibn to the analog out-
put [l7], as it automatically joins the points indicated by the imbulse
sequence,

With the step input used to derive the output from the continuous

Az
o] . 2

the continuous time function derived from a z~transform analysis is:

system, equation (A.2), i.e., R(s) = §=or R (z) =

cé(t} = A +P'éQt cos (Rt +Y), | (4.11)
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here P, Q, R and*+’are agaln functlons of the ba51c varlables K, T, and v

T, Rewrlting eqpatlon (A, 2) as o N , v :
Cog(t) = A - Bg sin (m +¢>) j-. TR (A 12)'

5, ¢, D andgéfunctions of K, T “and T, and substltuting (A 11) and (A, 12)

'1nto (A, 3) the perf¢rmanqe 1ndex becomes' .‘]; ST
- P,I.:i ) f [—B € & sm (Dt+¢) Pe cos (Rt+ ‘P)] | 7 (4.13)
R ‘o . g _ ,

Whlch is clearly 1ntegrable. |
A dlgltal computer program was written tc 1nstrument the algebralc
operatlons necessary‘b@ Qheck stablllty, determine the constants associ—
' ated w1th the analog outputs of both systems, and determlne the. 1nt@gral
| (A.lB) as a pumber, The data taken from ‘the computer runs are plotted as
Va functlon of the sampllng perlod 1n Flgures A.h, A.5 and 4., 6 The basic '
' varlables K and” T were iterated as 1nd1cated 1n Flgure A, 7 to malntaln
i flxed damplng ratle,J’ for dlfferent system natural frequen01es.:
| ~In order tg 1nterpret these graphs 1t 1s flrst necessary to examine
equatlon(A 5)an analytlc expres31on fer the performance 1ndex, The
’Laplace iransform,of the: ¢cnt;nuous system»output;can‘beiwritten from
equation 4,1 as:. e - e "7 ‘ ‘
IR AK/T R T T E T T . ) ‘
Cols) = = e e (A
: s(s ok g _M) o S : :
-Ta , a

| The Laplace T%ansform of the tlme funct;on representlng the output of the
sampled system, l.e. the smaoth curve through the sample points, can be

vderlved from equatlQn(A lO)uSlng the relation z 7 gTS »

?,-—l);,(g S* a +h)

(4,15)
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Consequentlys | v
| AK /T Ts Ts '
¢ (s) s| B Ee(e®er) | (026)
s(s + 2o+ &) (gl%1) (FT+aen)
T, T, ' ‘ :
and thereforé ‘cov ' .
: AK/T : T
PeIo = - l . - / a‘ - -—eTSAe (g S+‘f) - ” e
‘ 29735 , ‘
TIJ a2k ook ) (e7-1)(e¥rge™en)
-Co _Ta Ty
3 1
hetg™(eT+ 7 ) - AK/Ta ds (4.17)

h(l—g?s)(s?TS+5 eTs+ 1y ) 5(82;';6+§ )
h h ~Ta T °

EXaminatioﬁ of the integrand.in equation (A.l?) reveals that this
quantity approaches infinity as T approaches Zéro,v This result is
directly due to the:effect of the hold circuit in equation (4,17) and
can be checked réadily. The validty of this limiting érocess is in
dotbt, howevef; due to the method of modulation used in connection |
with the sampling device ([1], p. 568); but, as attention will not be
focussed in this region (T-»0) the method is acceptable,

Examinatiﬁn of the integrand reveals also that the quantity vénishes
‘as the complex variable of integration approaches infinity. The integral
can thus’bé considered as-a contour integral with the path of integration
choosen to include all poles of the integrand function. A suitable
contour ih the complex plane will be the imaginary axis together With:a
semi-circle of infinite radius in the left half-plane, or in the right
half-plane, a5 is appropriate to the pole under consideration. The
section of this path at infinity will not ccntribﬁte to the integral,

thus leaving the value of the contour integral equal to that of the

original line integral, equation (A.17). The contour integral can now
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be evaluated from residue theory:
P.I. = E residue of [Cc(s) Ce(-—s)] o (A.18)

The two parts of the integrand of equation (A,17) can be expressed
in factored‘férm and then multiplied out., The partial fractias that
result ‘are quite numerous (many Wlll have an infinite number of poles
due to the exponentlal terms present) and the. calculatlon of the residues
is, in all but a few cases, a complicated procedure.r This analytical
approach will not be pursued in this report, as the yleld would be the
equation of the curves already plotted. The characteristics of these
curves, for the second order system chdosen, can be seen satisfactorily
from the graphs plotted. | |

The graph of Figure A.hbshows that, as might be expected, the per-
formance index increases with increase in sampling period. It further
shows that plots of P.I. versus T afe confined within a region of the
P.I. - T space with the region béundary defined.by é curve tangent to
the plots. 1In Figure A.4 the boundary-éurve appears to be a straight
line. The Figures A.5 and A.6 havé exactly similar characteristics,
but in these cases the boundary curves are lines with a large radius of
curvature,

The question of perférmance is now raised, and a sampling périod is
sought below which the sampled.system is “nearly" equal in performance
to the continuous éystem, and above which £his is not so. It is apparent
that any such point must be somewhat arbitary as the system characteristics
cannot change in ahy manner resembling a stepvfunction.

The sampling period correspondlng to the p01nt of tangenCy with the

boundary curve is clearly a choice for the point sought. For sampling
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periods smaller than that corresponding to the point‘of tangency; the
rate of change of PI with respect to T is small, Above the point of>
tangency the rate of change becomes larger,'rapidly.”;

The saﬁpling frequency associated witﬁ each poiof of tangency is

4:] 1
2

‘ : 2o\ R
plotted against the system bandwidth, BW =W [1_2j~¥ ht&;ﬁy i3

of the system in queétion in Figure A.8. The points plotted define

straight lines forbeaCh different system dam@ing ratio, and the slope

of these lines increases with the magnitude of the damping ratio.
"Along any one line the relation between sampling frequency and band-.

width is: | | | | |

W, = K . B S | | (4.19)
where K is a‘function of the systan.
Thls result indicates that for the performance of a sampled data

system to be equal "nearly", to that of the identical continuous system

the samplingvfrequency must be at least K times as great as the system
bendwidth. Acknowledging that this investigation has been concerned

with second order‘systems and that a syStem'BendWidth is related only
empirically_to.the greatest input frequency anticipated, this result

cannot be ihterpreted literally with systems of any order. Flgure A, 8
shows, however, that a relationship exists between the sampling fre—

quency and the system bandwidth (and consequently the 1nput frequency)

and that a "turnlng p01nt“ exists,

Systems that can be considered approximately second order are

designed frequehtly for e:f of the order of 0.7, The graph of Flgure A, 8
indicates that K should be of the order of 3° To allow for varlatlons

of the des1gn criteria and to allow for systems of higher order a
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ufactor of safety" is incorporated thus increasing the value of K,
‘It is recommended that this factor of safety be of the order of
3 to 4, and thus equation(A.19)is rewritten as:

wg = 10w or 1080, | |  (4.20)
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APPENDIX B

Abbreviated Translation of the Section
on Performance Indices from The Book

by

Me As Aizerman

LECTURES ON THE THEORY
OF AUTOMATIC CONTROL
Segond Fdition

Moscow, 1958

2)  Generel Remarks

In thevprecedihg anélysis the values of Qoordinates of the response
with respect to zero, i.e., with respect to:the original equilibrium
state of the control process were calculated., The response of the system
was caused by the initial action of disturbances. In this paragraph we
are interested in calculating the changes of the wvalues of coordinates
with respeét to a new equilibrium state, occufring in the system as a
result of existing disturbances. Only unit step function disturbances,
1, will be considered. This limitation is, however, not essential for

~the application of the integral performance indices. Except for com=
putational complications they can be easily extended to different functions
of disturbances, In restricting the investigation to the performance
indices of transient responses, we Will.replace the unit step disturb-
ances 1 by their equivalent initial conditions.

A transient response would be ideal if, at the instant of the

application ¢f unit step disturbance, the coordinate under consideration
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would instantaneously take on its new steady state wvalue and remain at
this value until the application of a new disturbance (Fig. 165)., In
actual systems such response is impossible. However, the smaller the
area (shaded in Fig, 166) between the actual and ideal responses, the
-less does»the actual response differ from the idedl response. If there
is no overshoot (if the system is position control, see Fig. 167) or if
the curve X(t) does not repeatedly intersect the time éxis t (if the

system is not position control) this area is defined by the integral
© _
f x (t) dt. (4430)
o :

In other cases the above integral does not define the above considered
area, since in the evaluation of the integral the consecutive areas are
added up with opposite signs (Fig. 168),

Thus, for example, in the case of slowly decaying oscillations the
integral would be small, regardless of the amplitudes, while the area
describing the deviation between the actual and the ideal response may
be arbitrarily large,

In the above discussed cases, when the integral (4.30)defines the
given area, it serves as a convenient means to select the system para-
meters, The pérameters are selected in such a way as to minimize this
integral, It is obvious that such a performance index is indirect
(unreliable, Z.V.R.) and can only be used for preliminary selection of
parameters, since it admits perfect oscillations with equal positive and
negative areas in the response, Nevertheless such a performance index
frequently enables one to make a rapid initial estimate of the system

parameters, Thé validity of such selection of parameters can be proved
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later from the recording of the response,
“To evaluate the integral (4.30) 1let ﬁs note that the Laplace transform

of the function x; (t) is, by definition

o9
Lo = an
and consequentlf S co
, f x; (t) dt = 15.mI[x )] .
“o p—>0 o

The'praétiéal application of such a simple performance index is not
feasable, sincebit ié seldom apparent in advance that'the respounse does
not overshoot or that in non-positional systems the cohtrblled‘coordinate
does not reach zero value several times during the course of the response.

If the response is oscillatory, the proximity of the tranéient re~
sponse to the idea1-§né méy bévestiméted from the integral .ZQ lx(t)[ dts
this integral is, however, difficult to compute, It is more convenient
to use the integral |

f x(t) dt S (431>

o
as a performance index of the response, If the system parameters are
selected by minimizing this integfal5 the transient reéponse thus obav
tainéd is usually excessively oscillatory,

In order to avoid toe oscillatory responses, it was proposed to

select the system parameters by minimizing the integral
”' " g 9 . »
fRe+t? R2e)] o o (4.32)

)

where T - a real arbitrary constant.,
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The selection of system parameters by minimizing the value of this  '
integral (if one can decide upon the value of the constant T ) yields
sufficiently good transient response with small overshoot, frequently
even a monotonic response. Occasionally one makes use of a more complex

performance index

'. f [Xz(t) +T ':Q‘L z’tz (t) +’Cg % (t)T at

or, in a more general form,

FEo e .

1 Vo Lat?
o 2n ( 2 2 :
+T:N‘[!d = -t-] ] dt
abat™ 1/

We will restrict ourselves to the simplies£ performénce index (4.32).
In order to maké‘use‘of this intégral perforﬁancé»index in the design 6f
systems the following questions have to be answereds

1. How does one select the constant ’I: in (4.32) in the analysis
of actual automatic coﬁtrol systems?

2. How does one find the parameters of the system such that the
selected performance index is minimized?

3. How close will the transient response, obtained by selecting the
parameters in this fashien, approach the response which bestvsatisfies

the specifications?

'b) Selection of the Integral Performance Index

Let us write the integral

| .I_= z [x2 _(t.)f T 253@)] dt
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in the form of the difference of two integrals:
(o)

f- 2 )+ THR (6)  a -

0

0
{ x(t) +/Cx (t)] dt = Z/Cfx (’c) x (t) dt
o

[X(t) LT % (t)]' 2 a4t wIZTfX(-t) %X; dt =

oTNg o'——g

[X(t) +T x (t)] at - 27:[ x(t) dx, )

Let us evaluate the iast integral

00 2. 0 M0 . o
2’Cfx(t) ax=2T ’Z—M ] ='C{z<2 () *K?(Q)] .
If the system is stable then x(co) = 0, smce it was assumed at the be=-

glnning of this paragraph that the value of x approaches Xyg 38 t->»00. Then

JEECE OIS f [x(t)*’(.’x(t)l a6+ T (o).
o : Q

The last term on the right, Side is a constant quantity determined by the
initial conditions on the system. = The original integral

[ ForEo]e

will take on its mmmum value 1if the integral on the right s_ide‘ of the
previous equation approaches gzero,
‘ 00 o, 2 : )
f' [x(t) « T X(t)] 4t = 0,
o .

Since the integrand is alwéys. positive, this can be satisfied only

_ if the integrand function is equal to zero, i.é.’, if
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]
O

EXO +’l','_§c(t)] :
or

x (t) +T z(¢) 0

]

Hence the original integral is a minimum if x(t) satisfies the differ-

ential equation (4.33). Its lowest minimum value I ) ) is equal to
] min min

I, . = x?(o).
min min

The differential equation (4.33) defines the transient response which can
be approached'in the limit, if it is possible to select the parameters i'n

such a way that I = I, This optimum response is described by the

min min®

exponential x(t) = x(o)¢ '% .

Ihe value of {7 shall be selected in such a way that the exponential

X,(t) = x(o)e-‘% will satisfy the specifications of the transient re=-
sponse. The selection §f the cbnstarit ’C fixes the integral performance
index., Henceforth the system parameters are séiected in such a"way as to
minimize the adoptefd, integral perfomaﬁce index, Imin'. The numerical
values of Imin obtained »in every actual case are obviously greater than
min min® and the system response will differ from thév indicated expo=«
nential., Of all possible system parameters R howéver, the parameters
determined in this way will yield the response which is clésest to the

exponential,

It can be shown that the minimization of a simplier quadratic inte-
00

gral performance index f x (t) dt guarantees that the response will
. (o]
approach '
' - sin wct o
X(t) = X(O) wct .

The plot of this function is shown in Fig. 169.

(433)
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Figure 169



Hence it is apparent that the selection of system parameters by minimi-
o0
zation of the 1ntegral 1; £2dt yields systems with excessive oscillations

in the transient response.,

By making use of the more complex performance indices, it is possible,
by minimiéing thém,'to apprdach the responses of,a.more’complexvfgrm, for
example, the response con31st1ng of several exponentlal terms.

Let us consider now the evaluation of j” (x +T ig) dt in terms
of the system_parameterS»and the selection of system parameters to mini¥>
mize this integral. o _ .

c) Determination of System Parameters which Minimize the Integral Per-
formance Index., )

Consider the system of linear differential equatiens of the'general

form¥*
n

oS e
j= Jd J

and the most general form of the quadratic performance index

®»
I= [ vat,
' o]
where
Vo= A X2'+A x2+ +A1X2’—= ﬁA X2
171 22"'nn,,‘li'i
1=,

The particular performance index (4.32) which is of interest here is

¥* If the system is of order higher than one it is easy to arrange it
in the above form by designating the derivatives of the origiﬁal variables
as new variables B.g., thé equation aﬁl_+ bﬁl + Cxl = 0 is x:arranged as

X1=X

°
X, = =
<
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obtained by let?ing Xl = x? x, = %l’ Al -JC and A.3 AH? ies = Ah=0.
Let us select another quadratic form U suqh,that

av _ vy, | | | - 34y
< v . | o | (43&){

Then it is easy to calculate the integral I = ?"’f“v,dt.‘ Obviously

)
Vit = -4y
il.e., ‘ ‘ - e :
= = - o . Fo=- : X )." (
I fo vt = - fc av U]<> - [U (c0) = U(o)]

In a stable system X, = X, = .00 =X = Oat t = 00 and hence U(oo)
Thus . e

I =f v dt = u(o)

i.e., in order to evaluate I it is:n¢c95sary tQ substitute into U the

initial values of Xqs x2,;,,. X"

In order to evaluate U we will assume it to be of the type:
n i . R

i, 3=1

1l

U

where all Bijisafevthe numbers which have tq be sélected in such a way as

to satisfy the equation

au . <
T v

or . e
. .
> QU : -y
=1dx

Substituting into this the expressions for U and V we get’
n

Z

i=1
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ential equations yields R

$[Ene) [Eun] - 3ut-
= 1J J lJ J i 1
J=-

i=1 J=1 i=1

Both the left and the right-hand side of the above equation consist

2 2

of quadratic forms. By equating the coefficients of x 2 y oo xh of

l
both sides and by setting the coefficients of the x; Xj - terms (i # j)
equal to zero (since there are‘no such terms on the right side of the
equation), we get a set of linear algebraicvequations containing all

B o The solution of these equations yields the coefficients B _of U,
agg ihen, if the initial conditions are given, one finds U as a fiﬂctlon
of system parameters (i.e., of the coefflclents ay ) which is then sub-
Ject to minimizations |

Example l. We illustrate the method of finding U for the example of

equation .

LA

a,Xl'l'ale 8‘23{13»0,

which we arrange as

1T%R
° a a
k= ox -2 x
ag ag 1
Let
2 2 2
V= Xl +ﬂ: XQ.
We are trying to find U of the type
2 .
U=B =x +B X X +B x
Xq ; Xy %, 1 2 X, 2

From the relationship

au - .y
dt
we find
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aaxz XZL ax 0= (ZBX

%) + By xQ) X+

1 0%
: aq a,
; _ 'y
+ (2B x +B oz ) ( -a-‘-»:%-'»x - ) =
| X 2 X%y 1 Ay 2 a1l
2 2 2 "
=-x L Xoe
Bquating the coefficients on both sides we get the system of equations -
e B R l . : ) . . !
3 *1% : . :
. a
B._ . =2-%B '=-
% % *2
g T
2B - _i B = __2, B = 0,
*1 ao Xlxz %0 X2

S

N a2 2 " a 2 g
X:L 2a.- a, ;2 ;-2‘ | a

al 2 o o . "o
p =20 o+ ?
X, 2a a,.

from which

-

2 2.2 |
I (x_l + T x; )‘d’o_éU(o)

. i
o © N8

12 a 2

: 2 2 . y
a_ a 2 LAy as | Ry
= [ L« —-——-] G-
O o .0 N B

+

ag 8 | '
o :

The values of parameters a ? al,' and 'a,z for minimum I can now be

found easily by the general rules for f:mdmg the absolute mlmmum of a

funct:l.on of several arguments.
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Example g. “Let the system under consideration be described by the second

order equation

2
i% s+ n & 4 o3x=0
dt at
Let, at t =0 ,x =1, %% = O, The integral performance index is
o9)
. 2 292
I =J(~ (x" +T°%") dt. In the case under consideration
Q .
= =‘% = =
X, TX X T xl(o) 1, XZ(O) 0,
a a
1 _ 2 _ 2 _
Lon 2=3,7%-2
o o ‘
Hence

or 2
reg [@ )] - By

The problem requires to find an h=h , at which I =1I ., , To accomplish

min min
this we set the derivative %% equal to zero.
gu'-:niv':;l;—u—?-nn 20-
>
dh 6 2n°
hi lationship yields th tity h . as h , = \[21' and conse-
This relationship yields e quantity  in s ST £
_or o N, 7
Imin—Bx~——z+m = 1l.53,
In this case
= \2l =1,
min min ' .

Consequently, when h =_V21, the response falls closest to exponential
with the exponent of - q%v t; however it still differs from this ideal
response.

~d) Estimate of the Deviation from the Optimum Response.

In the solution of practical problems, it is frequently desirable to
estimate the deviation of the actual system response from the response to

which one strives by minimizing the integral performance index,
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Leﬁ the value of the integral, Imin’ ‘be evaluated for the selected
values of system parameters., \
Also kn’own is the value, I , s of this integral perfomance in-
min Hlln
dex, at wh:Lch the transmnt response coincides w:Lth the exponentlal
- == C 6 P
It has been shown above that ﬁhe valuge of I =1 . 1s determined

mln min
by the square of the initial deviation x (o) and't

"T:x (o).

min min _ .
~ Let us investigate the difference between the two integral perform-

‘ance indices »
E=1. -1

min In:n.n m:Ln
Let Ax = x -x¥%, where x is the varlatlon of the cocrdlnate under consider-
ation for the chosen values of para.met,ers and x#* - variation of the ‘same
coordinate at I = I . .

: min , _ .

We substitute the new variables into the general expression for I .. :

min
T2 “, déx‘ ]dt,

Tnin = f [+ A“X) ( Tt

Q

or I. =

(b T2 & >2] [Ax 1 <-ar>2]

»+2(X*Ax+'t2 dx* g-a-%é-}i) .dt‘-—-’

""f["*ltz( ,v:ld’a*-' [f‘x *’C (dAX.]dta-

+2,f (o Bx 42 %’;—*ﬁﬁx )dt

By substituting
x* =0 € ',%
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into the above integral and integrating by parts it can be shown that the

last integral is equal to zero,

The first integral is equal to I | e | ‘Consequently
v v min min
‘ _ 00,
- 2 ,d Ax |2
Imin Imin min f [ Ax +,C (. ) J
o

Transposing I . . to the left hand side we get
min min ‘
@] .
> _ 2 2 d AX
£ - Tnin = Tnin min f[AX % ) ]
©

Consequently the difference of the two integx_:al performance indices is
defined by the same integral; only the variables x and é‘% have to be
replac_ed by Ax and Ld%—x. In the further evaluation we will make use
of the well-known Buniakovski's inequality: '

f fl(t) fz(t) dt<_£ f12 (t)»dtfz fi (t) dt.

a3

We apply it to estimate the quantity E « We express the quantity Ax

as [ = ™ . —
A =2 ( ax 8% g APa 200 t‘(dAX);d;I
f; at ! J; T .

Multlpllcaulon and division of the right side by the qua.ntlty ’t yields

L

APE 2 \lf Axf?dtf/c (257 o .

Jince the integrand functions are positive the inequality is still further

strenghtened if the upper limit of integration is increased to infinity:

Ax* < Sz 2 \jf Ax"‘dnf (d )2 dt,
From the obvious inequality

2 W( a+b
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ft f 2 (dAx>] %

Hence the deviation ofithe actual response from the optimum response does

not exceed the quantlt:y' \ ’,—é &
Ax \| &
ISEa

Example 3, In a preceding numerical example we'found
| \[5'#1.:,1 and I . A= 1.53.
: , min R .

it follows that

min min

Then

1.53 ~'1."'1* 0,12
lAXl < \I 5 l.hl ’+ l l;.l NO 292

In other words the selectwon of system parameters, by means of mini-
mizing the integral performance 1ndex,
. Q- 5
I= f' (x° r’t 2° )dt,
. A ‘
guaranties‘that the transient respohée of the system does not leave the
boundaries of an area between the curves(Fig. 170)
y(")6 T ”\j;‘{:’ |
=t \[E?
X(O e - Y= ..
(o) % %

If not only the exponential x = x(o)é:%.‘but also any’gther curve conw-

il

X

U

X

tained inside this area satisfies the‘technical specifi¢ations for the

transient response, then the selection of system'parameters is completed.
The greater the value of 1: s the smaller'is»ﬁhe'deviation of the

actual response from the ex ponentlal one, to which the attempt was made

to bring the actual response by Selécting the parameters.' Thus the exX=—

ponential curve towards which the response is:optimized cannot be specified

with too small 1: .



x|

Figure‘l70

Vv

Figure 171
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Let the specifications be such that the transient response does not
leave the boundaries of the shaded region of Fig. 171,
It is conceivable that the: original ‘exponential
—t ‘ ‘ S
x = x(o =
(o)e Tt
may be selected :,n such a way that it remains in this reglon, however,

one of +the curves

x‘=vx(o)€'*t +

| crosses the boundary.‘ In such a case. the value 't has to be cha.nged (by'
,select:v.ng a new exponential con?c,a:,ned with:m_ the shaded ‘reglon) and the
pro.cedurev repeated., |

It is,however, more convenient not to.fix the value of T at the
beginning and to define all unknom quanﬁities a,.‘,s’ ftinctions of ’C e
We W:Lll illustrate th:Ls procedure by means of an example. o
Example 4. Referring aga.:l.n to Example 2 we will not deflne h and ’C up
to the end but rather we will find them by satisfying the spec:.flcatlons"

in the best manpner, For this purpose we will express hm:,n’ n? and

mi

|AK| as function of ,C .

We return to the differential equation
2

d™x dx
SE 4+ h=4+3x=0
a2 dt 3

and the ofiginal initial conditions
x (o) =1, x (0) = 0.

Let us select the integral pei'formance index
I= f v dt

]

where

v=xt s TR
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In this case

A=1,A='E2,X(o) lx(o)

1 2

Substituting these values into the previously determined equatiorswe get:

1 T2, 1 n,3C?+1
xx, 37 %k, TF B T T
12 -2 ]
and consequently
2 h 3’C2+'1
I =BX Xl (O) =-6~'l‘ ~—-§—H-——- .

1

dh

el

Substituting hmin into the above determined expression for I we get:

However, I (o) =T ., since x (o) 1. Hence
min min

B R

Now by varying T: , Ve flnd such 7: U that both curves -

Taking the derivative al and setbting it equal to zero we find hmin as a

function of 1:7

and

M
1

x(o)g

de not leave the boundaries Qf the shaded area of Fig, 171.

is the desired value of h.

Then

e) Computional Procedure

‘The selection of system parameters, following from the integral per-
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formance index } : ,
1=fﬂ(x2+'t'“’;:2) at,
J _ »
can be accomplished by two computational procedures,
The firstvprecedure:
1. The constant 4: is selected in such a way that the exponential
xé'r-*-'x(o)e "‘;1-;-.- v
would»meet the specifications ﬁnder the given initial conditions
x(o) (which depeﬁd upon the initial diSturbances).
2. U(o) is determined as a fgneﬁion'of;the variable system para-
meters (i.e., parameters which have to:be'choeen);

3. U(o) is minimized; i.e., the variable parameters are adjusted
to yield the absolute minimum of this function, Ui pl0)e
Le £ = Umin (o) .. !{: x.2(o) is‘determined and \‘-:%\ calculated,
5. The region bounded 5} the cqrvesbx = x¥ + \ﬁ%ﬁand i:= X% - \J%?
is consfructed, |
The sjst%m parameﬁers are determined when every curye inside this
region meets the specifications. 'If this is not the cage, ﬁhevprocedure
ie}repeated with a smaller 1: « In eases where it is net‘poesible to
choose T such that every curve‘in‘ihe indicated region meets the speci-
ficationg it. is necessary to change other. [ixed system parameters and
again repeat the procedure. The second procedure: |
1. Considering T as one of the variable parameters, U(o) is de-
termined as‘function of T and other variable parameters,
2. This function is minimized with respect to the variable para-

meters, i.e., the values of the variable parameters which yield
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a minimun value of U(o) are determined while U(o) is a function
of, T .
3. The constant £ is determined, as a function of T.

Le The regions bounded by the curves

x(0)e “,ié- +\E

X:
and
-t
x*—"x(o)e z -

are constructed in the x, t plané for different values of fC .

If it is possible to find g T = T * such that any curve in this
region meets the specifications of the transient response, the values of
variable parameters are considered to be optimal at ’C = T %,

The selection of parameters based on the integral performance indices
is considerably more reliable (trustworthy) than the selection based on
the degree of stability qonsideratio,n. The computa.tioris required with.
the‘utilization of integral performance indices are, however, more cumber—
some, |

Neveétheless, except in cases where the system performance specj‘.fif
cations are expressed in terms of the response equations (transfer func-
tlon), the integral performance indices frequently repfesentvthe simplest -

way of selecting the optimal parameters,

[ N
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