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PREFACE

This report is thE second volume ®f a two-volume final report 

prepared by the School of Electrical Engineering, Purdue University, 
under USAF Contract No. AF 33(6l6)-6890s Project No 8225, Task No. -

82181. The contract is administered trader the direction of the

Flight Central Laboratory, Wright Air Development Division, Wright-  

Patterson Air Force Base, Dayton, Ohio, by Lt. P. C. Gregory, the 
initiator of the study.

The first volume preseated the development and analysis of a 

particular class of adaptive control trader the assumption of the 

availability of identification information* This second velum® deals 

■with the. limits on the identification time for linear systems for a 

number of identification techniques* • ■

For the past ■ year Purdue University has had partial support fey 

the Air Force i» a rather broad study of adaptive control system*
The study was initiated some two and one half years ago and is still 

continuing. During this general research effort a number of critical 

areas in the theory of adaptive central have been uncovered. In 

several of these areas specific research ®objectives were set and re­

sults obtained, while in ether areas work remains to be dose®'

One of these critical areas, covered in volume  1 of this final 

report by Gibson and Meditch, is the unnecessary restriction of the 

adjustment procedure to incremental or continuous adjustment of physical 

parameters* This is the parameter - adjustment solution to the control 
signal modification1' problem. The more general procedure, discussed ia 

Volume I, lies in control signal synthesis * in which a new signal is



generated with which to drive the plant s© as t© achieve optimum response 

A second critical area that has been raider investigation is the 

identification problem. This structure, which is reported in this volume of 

the final report, has established the minimum, time required to identify 

the impulse response of any linear system in the presence of random 

disturbances and in the absence of a priori knowledge. This result has 

been obtained for several different practical identification techniques 

as well as for the ideal identifier.

Independent of Air Fore® support, Schiewe has reported on his..,,,.. , 

analysis of multi-dimensional adaptive systems which measure not the 

' impulse response of the plant but only certain important aspects ,of 

that response, and Eveleigh has compared incremental vs, sinusoidal 

perturbation in multi-dimensional adaptive systems for speed, of re­

sponse and hunting loss, Tou and his co-workers, Joseph and Lewis, 

have been actively studying the digital adaptive problem and achieved 

very encouraging results,

...... Work is continuing now on new, fast identification schemes and

theoretical analyses of identification with a priori information, as 

well as in the newer and relatively unexplored area of systems which 

exhibit learning. These require memory capacity and extended logic in 

the adaptive loop and the capacity for modifying the control law in 

accord with generalized performance criteria.
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ABSTRACT

The problem, of estimating the impulse response of a linear system 
arises is adaptive, control problems and elsewhere. Often it is necessary 

to make the system identification in the presence of external seifs dis­

turbances. This work considers the problem of determining the time that 

is necessary- to estimate the impulse response of a linear- system with a 
specified variance. It is assumed that' essentially no a priori knowledge

 ' :
about the unknown system is available* and that the output -signal, of., thf. 
system is corrupted by an additive stationary noise signal.

.... An ideal identifier is defined as a device that yields * for a given 

identification time* minimum variance estimates of samples of the unknown 

impulse response function. Statistical parameter estimation techniques 

are used to determine the. identification time required by an ideal..,,,. 
identifier. The results show that* when the external disturbance is 

Gaussian and white, and the output signal energy is large compared, |f, 
the power spectral density of the noise, the identification time is. 
proportional to the power spectral density of the- noise* and inversely , 

proportional to -the variance of the estimate and the mean square value 

of the input test signal. The identification time is independent of the 
impulse reopens® being estimated. .

The identification times required by' several practical identification 
schemes are calculated and compared t© the identification time of ..the... 
ideal identifier. It is established that* when the input test signal, 
is optimised and the noise is white* the methods of crosscorrelation 
sampling input-output-data* and matched filter identification are all 

equivalent to the ideal identifier.



, Depending upon the size ©f the variance in the impulse response 

estimate that is required it is concluded that^, in the absence of a 

priori knowledge about the system^ and when the rms response of the 

system to the input test signal is of the same order of magnitude as 

the variance of the external noise, the time required to identify an 

unknown system is an order of magnitude or more greater than the 

significant length of the impulse response. It is also concluded 

that, when the noise is whit® and the test signal is optimized, no 

measurement technique will yield a smaller identification time than 

that of the ideal identifier, It is pointed out that further reduction 

in identification time Could probably be achieved by identification 

schemes making maximum use of all available a priori knowledge about 

the system.



CHAPTER 1

THE IDENTIFICATION FRQBIEM

The problem ®f system identification and its relation to th® current­

ly active area ©f adaptive systems is discussed in this introductory 
chapter* The framework# into which the primary problem considered in this 

research fits, is set by th# identification requirements of an adaptive 
system and the classification of identification techniques® The specific 

problem is stated# and th© basic assumptions# upon which th® analysis .if. 
built# are given® Finally# to provide a starting point, a review of some 

of the properties ©f impulse responses is presented.

1.1 The Identification Problem and its Relation to Adaptive Systems

The general identification problem consists of determining a complete

description ©f th® relationships between the input and output signals of 

an unknown system having input signals xj_# 35>># 0 ® ®# Xj and output sig­

nals y^# jg9 o ® ®# y^® la general the unknown system may be non-linear 

and time-varying and the number of input signals# j# need not equal the 

number of output signals# k® The behavior ©f the unknown system is. t© be 

determined by making suitable tests among the various inputs and outputs® 

This problem has been discussed by Zadek [33] # lee [If] # Woodrow [3©] # 
Moor®, [19] #■ and others® ©urremt interest in the identification problem 

has been stimulated by recent work in th® area ©f adaptive control systems 

..There is not# as yet# a generally accepted definition ©f an adaptive

©©m|rfl system# but one which has been widely used is th© following' ,MAn 

adaptive system is ©n®.which is provided with a means of continuously 

monitoring its own performance in relation to a given index of performance 

or optimum condition and a means of modifying Its own parameters by closed



loop aetiom s© as to approach this optimum®! [5*. Sooper* Gibson* ei* alj 

this definition implies that an adaptive system mast fee capable of per­

forming the following functionss provide continuous information about 

the present state of the system or identify the processi compare present 

system performance to the desired or optimum performance maif» a 

decision.- to adapt the system so as to achieve optimum performance! and 

finally* .initiate a proper modification so as to drive the control system 

to the optimum® These three principles* identification* decision* and 

modification are inherent in any adaptive system. This functional break­

down ©f an adaptive system is similar to that proposed by Aseltine et ,al® 

[2] ® Furthermore * this breakdown is a useful concept for the design of an 

adaptive system as it clearly places the adaptive mature in evidence!

An identification technique to be useful in adaptive control systems 

must meet two conditions? first*the identification must be made in the 

presence of normal operating signals* and any tests performed upon the 

system mast not unduly disturb the normal operation ©f the eontrolsystemj 

second* the identification must .be made relatively quickly if theinforma- 

tiom is:t© be useful.for the decision-making and modification phases of, the 

adaptive process* In ©rder to measure the characteristics ©f an unknown 

process it is necessary to supply energy t© the system® ...The former re­

quirement makes it necessary to us© low-level test signals er normal,......

operating'- signals to furnish the energy necessary for -system identifica­

tion* : As a result* the response of the system is small and the effects of 

noise disturbances become important® The influence of noise upon the 

observation of the system*# response determines the length of time that is 

required to identify the process* and hence* is directly related t© the 

latter requirement of an identification technique*.



Although this research has been motivated by the particular re­

quirements placed upon identification techniques by adaptive systems the 

results are. not restricted t® this particular application* In view of 

this, details of the theoretical work have not been specifically related 

to.the adaptive problem! however, the examples which are considered are 

discussed from the viewpoint ©f adaptive systems, and a section of the 

last ...chapter is devoted to the discussion ©f the significance of-the re­

sults .©f this - research for adaptive systems*

la any application requiring the identification of an unknown system 

it is ..necessary t© specify h@w the process is to be described, what prior 

knowledge is' available, and how'the system is to be excited* Theunknow® 

system may be described in a complete ©r partial manner* Examples of 

complete system specification include such items' as the values ©f. all in­

dependent parameters, and the time response ©r transfer function relation- 

ships between the various inputs and outputs* The latter two methods of 

description apply ©nly t® linear systems* • An unknown process' ©an be 

described in a partial manner by specifying such quantities as gain, rise 

time ,; aad overshoot, resonant frequency and relative damping ratio, ©r the

Identification techniques can als® be' classified in terns of whether 
Ihey require, seme a priori knowledge about the systems-characteristics 

ayailabiHty ©f a priori knowledge about the system t© be identified 

can range from a complete lack ©£ any prior knowledge at ©ne extreme t©.; 

©©mplet® knowledge ©f the system -behavior at the other* la most engineer­

ing situations same a priori, knowledge is available! in some instances the 

order,®# ike system is known, while in ©thers .the ranges and/or rates ..©#; 

change ®# the system parameter® may-be kn©wn*-;'

The source ®f energy used t@ excite the system offers a third useful



method ®f classifying: identification techniques* Identification can be,,., 

made from observations of the output signals due to the systems normal.,, 

operating signals* Alternatively^, a test signals designed solely-for, 

the purpose of identification^ ©an be applied to the; -input terminals, 

and-the system response observed*. Advantages and disadvantages; of 

each, method:, kav® been discussed by Gooper and Gibsonj eh*' al* [5] *

of the Problem and Basic

:fhe aim of this research is to. determine 'fundamental limits..on''the

time'that is''required to estimate,; with a specified ■ accuracy? thei; 

reipdhs® ©f a linear system when the measurement technique is corrupted 

by external noise signals* Thus* the problem'is one of making a complete 

identification as; opposed to- a partial identification* fhe analysis,for 

simplicityj, is restricted to systems with a single input and a single out­

put although the results.are applicablej with a suitable modification of 

notation, t© multidimensional systems* if primary interest is thf......deter­

mination of a 'Conservative ■ limit9 a greatest lower bounds on the identifi= 
cation■time* For■this reason only .identification techniques thai d© n®t„ 
require any a priori knowledge of the- system are considered* because.
prior.knowledges if properly used9 earn only serve to reduce the identifi­
cation time* As an example9 consider the limiting case where the, system 
is known exactly* then it is not even necessary to make a measurement. i© 

identify the system * * 0 0 Identification; can be achieved in zero time* 
lathef than tie. the identification process to the properties;- of normal .

operating signals9 which vary depending upon the particular application 
only ...identification techniques using- test signals are treated* ' In summary9 
the problem is. theinvestigation of the identification time requirements 

of the ©lass of identification techniques which 9 completely identify a
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linear system in terms ©f its impulse response, d© net require any 

a priori knowledge about the system, and receive their energy from

special test signals*

The basie identification problem is illustrated in Pig* 1-1 along 

with the notation used for the input test signal, output signal, external 

noise., and observed signal* The input 'test signal is- assumed, latinost 

instances, to be a'known deterministic quantity* Desireabl® properties 

of a test signal includes a small mean square value, and a small peak

power, so that the normal operation of the system is not seriously .dis- 

turbedi and a wide bandwidth, s© that the high frequency characteristics 
of the system earn be measured* Practical systems are not truly band-

limited (zero transmission above some cutoff frequency) so that it would 

be necessary, in theory, t® ms© an infinite bandwidth test signal..in .......

order to obtain an exact representation of the systems impulse response*

In practice, however, if the equivalent noise bandwidth [id, Middleton, 

p* 6$4] Of the test signal is wide compared to the equivalent moist band­

width, of the system, the errors in the estimate of the impulse, response, 

due to finite bandwidth test signals are small* • Since the main interest 

of,..this research is .the errors in the impulse response estimate dm©,t®. 

the,external disturbances it is assumed that any errors due t® the;,'., 

practical limitations of the test signal are much smaller than these 

caused by the -noise* Equivalently, the test signal bandwidth is assumed 

t® be., large compared to the' bandwidth of the known system*

The output signal is assumed i© be' unmeasureable thereby requiring 

the identification t® be based upon measurements ©f the observed signal* 

A stationary ergodi© random process, with zero mean, is assumed for .the

.external ntise disturbance* Chapter 4 illustrates h@w noise signals 

originating at the input, «r within the system, can b® represented by



External Noise

Output Signal 
w(t)

Observed Signal 
y(t)

Pig. 1-1

The Basie Identification Problem



equivalent noise signals introduced at the output as shown in Pig* 1-1®

Chapter M introduces the concept ©f an ideal identifier and deter­

mines th® identifieati©n time required by an. ideal identification technique 

the results are independent ©f the particular system that is being identic 

fled, and d© net depend upon any particular measurement technique* Thus 

th® identification time of the ideal identifier serves as a useful basis 
t® which practical identification schemes can be compared*

The effects ©f external noise upon the- identification time of three 
practical, identification techniques are analyzed in Chapters .3* 4* and.. 5* 
I® initial claim is' mad® with regard to whether or mot these techniques, 
are optimum or not, and it is gratifying that each of the three methods, 

eras©correlation, sampling, and matched filter,' turn out t® be equivalent 

to the ideal identifier*

Examples are considered in Chapter 6 in order that-the theoretical, 

results of the preceding chapters can be tied down t© some practical 

problems* fhe importance of the identification problem in adaptive 

systems justifies discussion of the examples from the adaptive view­

point* However, in keeping with the objective of this work, detailed 

analysis of the effects of normal operating signals upon the various 

identification techniques is not considered* fhe operating signals, 

from the viewpoint of the identification problem, are unwanted or noise 

signals which tend t© increase the identification time* fhe particular 

requirements of an identification technique for an adaptive system make 

it convenient to express, the identification, time in terms of th® systems 

gaia-bamdwidtfa product and the signal-t©-noise rati® found at th®.- output 

©£ th® system under test* Since the exact nature of the system is- 

generally unknown, It is only possible t© consider average values ©f the 

gain and bandwidth* fh© final chapter summarizes the work, ©©aments on



th@ equivalence of the various identification techniques, discusses the 

significance of this work with respect to adaptive systems, and presents 

some related problems0

"1»3 Characteristics and Representation of Impulse Responses

A review of some of the properties of impulse responses, along 'with 

several analytical- and - graphical techniques ©f representing impulse re­

sponses, is given in this section* This summary ©f facts .will serve "ah a 

■starting point for consideration of the identification problem outlined 

above*

A linear system is one whose input-output characteristics are describ­

ed by a linear differential equation of the form

m n-X
%tP.+ %-! P ' + »°»* &xP + &@ t ■ m-1+ V-iP +

- , ' . (1-1)
where x(t) is the input signal, w(t) is the output signal, and p,|s„%|f,„

operator d * The condition m^n is necessary for the physical realizabil- 

iiy @£ the system* In general the coefficients and are function® @f 

time.but are independent of x* The behavior of the system is completely 

determined if all the and are known as functions of time* A useful 

description of.a linear system is'the unit impulse response which, is the 

solution ©f'Eq* (1-1) for w(t) when the input signal is .a unit impulse, 
io©*, x(t) ■ S(t), where S(t) denotes the unit delta function* , A know­

ledge ©£ the impulse response of- a linear system gives a complete,, descrip­

tion ,of the system© Assuming there is n© initial stored energy, it.is- 

by means of - the integral equation ■

w(A)
A



to''.predict, the behavior ©f the system t© any input x(t) if the behavior is 
known when x(t) » &(t)® The impulse response is denoted by g(A ,t)> and 
is interpreted as the vain® ©f the output at time A when a unit impulse 
is applied at time t» When the system is time-invariant g(A ,t)’becomes 
gCA -t) and the impulse response may be represented graphically as- in 
Pig6 1-2® F©r the time-varying case g( A 9t) may be represented as the 
height of a surface above the A, t plane as shown in Fig® 1-3® It is..,a, 

property: of physical systems that g(A ,t) ■ 0 for A<t® This restriction 

is due to the fact that the system cannot'respond before the excitation,,., 
is applied® A second property of physically realizable systems is

|g(A,t)| dA (1-3)

la most practical cases expression (.1-3) implies that the impulse^ re­

sponse approaches zero as (A-t) becomes large® Thus in both Fig. 1-2 
and Fig. 1-3, g(A,t) is zer® forA<ts and the impulse response function 
is essentially'zer© for large values of (A-t)®

In the absence of external noise the time required to measure the"im­

pulse, respense of an unknown system is equal to the significant duration of 

the impulse response. The identification could be achieved by applying an 

impuls© to the system's input and observing the output# Information about 

the form ©f g(A*i) cannot be obtained any faster than the inherent delay 
®f the system allow®§ thus, the significant duration of g(A ,t) represents 
a lower limit on the identification time in the absence @f noise.;.,The, 

effects of external noise will-increase the identification time, and a., 

limitation ©a the identification time under these conditions is the,..main., 

result of this work. .

The techniques for system identification considered here require that
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Impmlse Response ©f' a.

iC X »t.)



the system be^ at most, slowly time-varying. I® terms of Fig® (1-3) this 

means that variations in the height of the g(A »t) surface along lines 
parallel t© the A ■ t line mast he slow compared t© the significant 
length of the impulse response®

The impnls® response of a system may he giYen as a mathematical

function of time sueh as

k e
-jw0 sia ur. (1-4)

for,-ai simple second-order system* Another ©ommon way of representing an 

impulse response is by means of a graph sack as the one in Fig* lr$._(©r 

Fig* 1-3 f@r the time-Yarying ease)* Sometimes instead of a complete 

graph only sample points of the impulse response eumre are giYen* (Fig* 

1-4) In practise some error is introduced by the sampling process^ bat 

in most engineering applications this error approaches zero as the number

of sampling points approaches infinity* The relation between the

rate and the test signal bandwidth is pointed -out at the end of Chapter 3* 

Another method of representing an impulse response is by a Taylor*®

series expansion*
g(.A) - g(A0) + (A-A@) g* (A@) g*i<A0) + * * * *^4^

(1-5)
The nature 'of impulse responses of practical systems indicates that*, An, 
generals a large number of terns will be required in the Taylor*® series, 

expansion t© aehieY© a good' approximation to the actual impulse response,*

As identification technique based upon a Taylor*s series expansion of- 

the impulse response has been suggested by Braun |[4] » la his paper Braun 

shows that a Taylor*® series expansion of the impulse response about a point 

t0 can be computed fey applying an abrupt change in the input signal2 Ax(t)}



a
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at t@ and measuring the derivatives of the output signal just prior to, 

and just after t = tQ. It is felt that the necessity of measuring th® 

derivatives of the output signal, especially in the presence of noise, 

imposes a serious practical limitation on the method. For this reason 

no farther consideration is given to this identification scheme.

4 different kind of series representation of the impulse response, 

also useful in the identification problem, is a series of orthonormal 

functions# g(A) maybe expressed as

g (A) » ^ °*±^t <A) (i-4)

i' ■ i

where the are a set of orthogonal functions satisfying the conditions

; ^C-AJ^CA ) . dA - 6 - 1,2,3... (1-7)

<00
M

andV (A) dA 1 i - 1,2,3,- (i-i)

the constants, are given by

^i “ \ s(A) ty^CA) dA (1-9)

Methods ©f measuring th® ’ coefficients of an ©rthomormal series expansion of 

as impulse response are.considered briefly in Chapter 7*



eiAPm 2

IDENTIFICATION TIME REQUIRED BX AN IDEAL IDENTIFIER

The concept of asa ideal identifier is introduced in this chapter * 

and the identification tine required by am ideal identifier is deter­

mined®. ' Ideal identification is based on statistical parameter estima­

tion $ -and9 therefores the results d© act depend upon any particular 

data processing technique® ..Following the definition of the ideal identi­

fier a discussion' on the estimation of P unknown parameters is given® 
These, results are applied-to the measurement of an'unknown impulse .re­

sponse,, and an expression for the corresponding identification time,Is 

derived® ■ The results obtained serve; as a basis t© which the practical 

identification techniques discussed in succeeding chapters ©an be com- .

2®1 The Ideal Identifier

-:.-Am ideal identification scheme is- one which9 for a given observa­

tion period called. the identification time B.. has as its output signal' a 

minimum variance estimate of the unknown impulse response® It is well 

known fjl s Bell®|that the mean value of the- a .posteriori probability. 

density function ©f an unknown .parameter is a minimum variance estimator® 

la-the context of ih® identification problem this a posteriori proba­

bility density function is

P [g(A) I y(t)* x(t)]; . . . (2-1)

This is'the conditional density function associated with the event g(A) 
being, present given the conditions that a test signal x(t) was applied to ' 
the input, of the system and a signal (plus noise) y(t) was observed at 

the- output® For any given' situation the test signal x(i)«, is not a random 

quantity as it is assumed t© be known exactly® Thus express!® (2-1) may



-15-

be replaced by
P Eg(X) | y(t)] (®-2)

The a posteriori probability density function ©f g(A ) may be ex­

pressed as
P[g{A)I y(tj - ptrf*p1 *(Ait

p[y(ill
(2-3)

= K p [g(A)] p [y(t) I g(A)]
where p[g(A )] is the prd©r probability density function ©f g(A ) and 
p[y(t). | g(A )] is the likelihood function*# In Eq* (2-3) and in what 
follows K is a constant chosen so that the area under the associated 
density function is normalized to unity*

Under certain rather general conditions* maximum likelihood estimates 
are very nearly equal to the minimum variance estimates obtained from the 
mean of the a posteriori probability density function* These conditions 

. are| first* the prior probability density function must not be sharply 
peaked* or it must at least be slowly varying compared to the a posteriori 
probability density function! second* the likelihood function musthavea 
center ©f symmetry at which its maximum is located* The first condition 
is satisfied here because a minimum of a priori knowledge is assumed about 
g(A ), which is equivalent to stating that all functions g(A) are equally 
likely a. priori* i* e«* the prior probability density function is a constanto 
It will be shown below that in the ease where the noise is additive and 
Gaussian the second condition is also satisfied*

#Th® tern likelihood function is preferred here because p[y (t) | g(A )] 
is considered to be a function ©f g(A) and* as such* is not interpreted 

as a density functiono'



In summary, an ideal identifier is one which, for a specified identi­
fication time, gives minimum variance estimates of the unknown impulse 
response* In many cases maximum likelihood estimates are equivalent to 
minimum variance estimates#
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2 <,2 The Joint Estimation of P Unknown Parameters

Consider a received signal w(t) which is a function of P unknown 

parameters q^, q2, qp* The observed signal, y(t), is equal to the

actual <(*>.Li> wa by letting q^ = q^ i 1>2>««*> P, where 

q^is the. actual ©r true value :©f q^), plus white Gaussian noise having 

a power spectral density § (@) watts per dps* Woodward has shewn
HI-':'.--.-"--'

[32, p« 66] that the likelihood function for this situation may be ex­

pressed as ’
|.»p [y(t)| {q^}] = K exp |°» I ^^^(t)ww(tl dt j*

(2-4)

The integration is to be carried out over the identification period T„, 

fnder the symmetry assumption made above the likelihood function is 

a maximum when all parameters take on their true value, Consequently,

^q 0 i * 1, 2, »o oP (2-

where, the subscript . indicates that the partial derivative is. to be 
evaluated., at.the. point where all parameters of the set {q^} take ei'their 
actual value. Substitution-of Eq, (2-4) into Eq* (2-5) results il the 
conditions

■ It shall be assumed that the received signal energy is- sufficiently large 
compared h® the power spectral density of. the noise that near the true
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valmes ©f the {q^ the received signal may be adequately represented ty

P
\ W +

1 fria]
Aft (2-7)

sthwhere 4|| a q^ *> % is the deviation of the i parameter from it® 

true . value 0 , -With this. substitution and making .use ©f the conditions 

of Eq» (2-6) the likelihood functions near its maximum value becomes

P P
,2

L ® K exp* .|f)* wa^3 + -fE ^An-A',^’r
i*l j*l

Aqj^qj dt

(2-#)
The term

nr [y (t) - wa (t)] it.
n Il­

ls not. a function of,the 

©©astamt K*

By defining the column matrix or vector

%

and ©an be absorbed into the normalizing

and the square matrix

q.

%li Ha o*®*0* Hp

*ax
■ t-

' f 
0
¥i 9 * « • 5pp

(2-ii)

(2-11)
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with elements

ij
iwmm dt

ike likelihood function can fee put into, the form

1 « K.exp l- }

idler® (Q)8 indicates the transpose of the matrix

the asstanpbion that the received signal energy is, large compared 

t® the power spectral density ©f the noise results in-a likelihood 

function which is a multivariate Gaussian distributionnear its maximum® 

The likelihood function is specified by the elements fe^ defined'in 

Eg® (2-12)$ the actual values of the parameters, and the power spectral 

density of-the noise® ■

, .From a single observation ©f■finite duration only an estimate of ' 

the,.likelihood function can be constructed® Thus the location ©f the 

maaduKSE, of L is itself a random variable® Since fg^lis being estimated

by the ©©ordinates ©£ the aaadmma value of, the likelihood function the 

variances and ©ovarian®®® associated with the estimates of the are 

given,, by the ©©variance-matrix describing the location of the mayf imy ©f 

the likelihood function® fnder the assumption that the prior probability 

density function of. \q^*j is constant in the neighborhood:'of the true values 

of the: |qjJ 0 the likelihood function is proportional t® the a posteriori 

prefeakiUty density function, p [ j yCt)] ®

p £ | y(t)] Aq^Aqg «*®.Aqp is the probability that the true

parameters lie in the interval s A q^ , but sine® the estimates 

of the 'true values ®>f the parameters are given by the set of q^*s that



makes L a maximimi this is als© equal to the probability that the maximm. 

value @f 1» lies in th® interval {%}> +Aq^} * The likelihood

function and.the location of the estimate of its maximm are described by 

. the same density function* ■ ■ Therefore, the covariance matrix associated 

with the maximum value of L is equal to the covariance matrix ©f the. 

■likelihood function*

Prom Eq» (2-13). and the above discussion it is clear that the co­

variance matrix associated with estimating the- set of parameters fq*l is

a m $a<0) (b)-i. (t-14)

where th® i, j.element 

is given by 1

f
ij

this matrix is the covariance' of and q and

I I
$ (®)Lm!

£} •
(l-l 5)

where |lj is th® determinant-.''of the matrix (I) and |B^| is the ©©factor 

@f the element b^j*

- ■_ Eq* (2-15)- ©aa be used t@: determine the variance - associated with the 

estimation @£ any of th® parameters, q^ , -or .the covariance associated with- 

ary pair of parameters , qj 0 The evaluation of th® determinants in ■■ 

Eq» (2-15) may fee difficult if the manber of parameters under consideration 

iH .large* Wes the ©ewariaae.es are zero, however, or equivalently.wher§ 

a single parameter is estimated under the assumption that all other- para­

meter!®'are known the variance can be expressed us

a*-*

since: j B| * b^ jl^jj when all ©f the elements not @» th® major diagonal 

are zer®* ■'

There is reason t® believe that in any event'Wen the ratio of re-



eeived signal energy to noise power spectral density is large Eq» (2-16) 

represents the theoretically minimum variance beearns® correlation he- 

tween errors can only increase the uncertainty of the estimate* '

A physical interpretation of the mlwiTmirn variance obtained in 

Eqa. (2-16) can be obtained by substituting the definition of b^ into 

the ©^nation, Thss. the minimum variance associated with the estimation': 

of..a1:single parameter is

The quantity
dt

(2-17)

(2-18)

may be'interpreted, as the received signal sensitivity with respect to the 

parameter q^* ' The .larger this sensitivity the' smaller the Variance* A 

parameter will be estimated, with a small variance if a small change in this 

parameter danses a large change in the' ■ received' signal* The role of $ (§)

ia Eq* (2-17) is clear s a'large noise power spectral density resnlts in 

a /large minimal. variance and vice versa*

2*3 A P Parameter Representation of an Impulse Response

/'In order i© apply the resnlts of the previous section to the esti­

mation ©f an impulse response function it is first necessary t© approxi­

mate the ©entianeis fumetios g(A) dd that it is describable by a finite

A convenient aad'ccmaon way of appro3dmating an impmXs© response 

function is t© represent1 If by a set of' nwbers obtained' by sampling the



function at internals of A A seconds* The sample values, g^, are takes 
at.the instants A « p = 0, 1, 2, 3,«o** A typical impulse..re-

x'
sponse and its sample values are shewn in Fig* 2-1* By taking A A
sufficiently small it is possible t© approximate g (A) to any degree of 
accuracy desired* If g(A ) is bamdlimited with maximsaa frequency '

per second the function my be represented exactly by sample, 

yalmbS' spaced at imtesvals. of JL- second® [21, Shannon]* It is 

assumed that any errors dm® to approximating g( A ) in this manner are ■ 

much (smaller than the estimation errors due t® the external noise* This ■ 

assumption is further justified by the fact that approximation errors are 

fundamentally deterministic in nature and ©am be compensated for if 

necessary, Pereas the errors due to', the presence ©f external noise sig- 

sals.are random in nature, and.hence cannot be predicted or compensated

for* /

, . s .....Physical realizability requires that g(A ) * © for A< 0 and $ii,,m®st 
practical cases impulse responses are essentially zer® for A greater 
than suae TV * ■ Therefore, g(A) may be. represented by the set of para­
meters-

^*-j i) ****, g^ C^""l^)

where P is an integer greater than

2*4 Identification Time Required by an Ideal Identifier
. In order t© estimate an unknown impulse response it is necessary t® 

excite the input of the system with-a test signal, x(t), and then observe 

the.:, output signal (plus noise), y{t) ■ w(t) + a(t)* The procedure anA- 

nomenclature is 'shown in Pig*. 1-1*

■The output signal is related to the input signal by the convolution

integral
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Am and Sample Values
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w(t) x(t -A) g(A ) dA

or using the sampling technique introduced in the last section 

P
w(t) = aA x(t -Ap) gp (2-21)

p=@ ;

In order t© apply the results ©f Eq. (2-15) and Eq. (2-16) it is necessary

„ From the definition ofto calculate the partial derivatives ^w(t)
^ii

the partial derivative K]

aA I 2 *(* “ Ap) (ip +^ii) - ^ x(t - Ap) gpi
4*. lim 'Jl±
^gi A«r*© Ag*

— AXx(t ~Aj^) (2—22)

Thus, the elements of the matrix in Eq. (2-15) are

feij * (aA)2 \ x(t - Ai) x(t - Aj) dt _ (2-23)

'TI

The problem of choosing a test signal in some optimum way so as if 

minimize the variances and covariances associated with estimating the 

parameters g@,gi,- «°» »gp is now considered. It is apparent from 

Eq. (2-15) and Eq. (2-23) that the variances become smaller as the ampli­

tude of the test signal increases. In a practical situation, however, 

the amplitudes of the test signal x(t), are restricted. It is, therefor®, 

of interest to determine the form of x(t) which minimizes the variances 

subject to some amplitude constraint. The constraint that the signal

energy



-24”

^ x2(t) dt - Ejj. « Tj? (2-24)

TI

remain fixed will be imposed. If, in addition to this, the test signal

is periodic with the identification time ,Tj, equal t® the fundamental 

period of x(t)«, then all elements along the major diagonal of the matrix 

(B) are equal. Note also that (B) is symmetric and positive definite.

It can be shown £16, levin] that if a symmetric positive definite

matrix (!) has for each element along its principal diagonal the value p

and arbitrary values elsewhere, then the elements along the principal
=1 will all reach their minimum value of 1/jf if and only 

if (!) » p (I), where (l) is the identity matrix.

In order t® satisfy these conditions the test signal mast satisfy 
the following set of conditions

to ■■ i i j

(f-25)

Bx ' .

The integral of Eq. (2-25) is proportional to the autocorrelation, functionof the test signal, and from the well known properties of autocorrelation 

functions the requirement ©f Eq. (2-25) is equivalent to requiring that the 

test signal be white. .

This result is not to© surprising since if the identification scheme 

is to. reproduce, the, fine structure of g(}\ ) it is neeessary that x(t) 

contain hi# frequency components. Also, since the external noise is white 

i! seems entirely reasonable to spread the test signal energy equally over

For the optimum test signal then
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i / 3

3ij (2-26)
Ex(aX)2 * Tj x2 (aA)2 j

and from Eq. (2-17), since the variances of each g are
P equal, the variance 

associated with the estimation of the impulse response g(A ) is

2 $n(°)

T 3? (aX)2

The corresponding identification time is

§n<0>

x2 Vr2 (^)2
(2-28)

It is important to note that the identification time required by the 

ideal identifier depends only upon the power spectral density of the ex­

ternal noisej the mean square value of the test signal, and the sampling 

interval, AX . The identification time is independent of the impulse re­

sponse being estimated, as long as the assumptions implied by Eq. (2-7) are 

valid; that is, as long as the received signal energy is large compared 

to the noise power density spectrum- It will be shown in Chapter 6 that 

this condition is generally satisfied in practical situations. One might 

suppose that it would be possible to reduce the settling time to any de- 

sired degree by simply increasing the mean square value of the test signal, 

or by increasing the sampling interval. In practice the mean squarevalue 

of the test signal is limited by such considerations as the effects of 

normal control signals, power limitations, and possible large signal non­
linear effects. The constraint upon x2 is determined by the particular 

application. aA. cannot be increased arbitrarily either, because then the 

errors due to sampling would become as large or larger than the errors re-



smiting from, ttoe external noise* This eonditionwould to contrary to 
tfa® assiamption made in Section 2-3®



CHAPTER 3

IBENTIFIGATI ON TIME REQUIRED BY GROSSGOIREOATIQN JDENTIFIGATIOH

The application ©f erosscorrelation techniques to system identifi­

cation is- analyzed.la'this, chapter# The sources' of errors associated 

with erosseorfelation identification are discussed at some length* and 

the u©ise terms of; the output signal are analyzed# Ihea a random test 

signal is used the' output signal has noise terms arising from two sources 

the external noise* and the test signal itself# It is pointed out* that 

by using a periodic test signal and an ideal finite-memory integrator 

for an averaging filter* that the latter noise-term can be eliminated 

entirely# A considerable saving.in identification time results# The 

identification- time requirement .of the c®rsscorrelatioa technique is 

compared to the requirement of an ideal identifier# Grosseorrelation 

is found t© be equivalent to'.the ideal identifier#-' -

3-#l Theoretical Basis for Grosscorrelation Identification .

The use of erosseorrelation techniques for the identification of 

linear systems is not new# It was probably first introduced by lee [if] 

and "the method has been applied t© the identification problem ©f adaptive 
systems by Anderson* Inland* and Cooper Ql] # Measurement of the impulse 

response of a time-invariant or slowly time-varying linear system., by - 

means of erosseorrelatioa is based upon the following theoretical,... 

development# A test signal* which for the present will be assumed t© 

be; a,sample ©f a stationary ergodie random process*-is applied to,„tti®,. 

input of the system under tost# The output signal of the system is then 

erosseorrelated with the input test signal# The details ©f the method 

are illustrated in Fig# 3-1#
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The output signal w(t) is given by the relation
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w(t) - V x(t-Ax) gCA^) dA-^ (3-D

It is assumed that w(t) is unmeasurable and that only y(t) = w(t) 

+'»(%). is available.for observation* n(t) is.an external noise signal 

assumed t® be from a zero mean stationary random process described fey,... . 

a noise autocorrelation function 0n (*C)* and corresponding power 

spectral density* $a(w)v The erosscorrelatiom of x(t) and y(t) is 

achieved fey the multiplier and averaging filter» The signal at th§ out­

put 'of the multiplier is

z(t) ■ \ x(t -T|_) x(i - A x) g( Ax) d A x + a(t) x (t -^Vg) (3-2)

The erosscorrelation function between the input and output signal*..

0 (*T), ©f the system under test- is the mathematical expectation of

Eq,(3*=2)o 'Under appropriate conditions the interchange of the inte­

gration and expectation operations is justified [9* loofe* Theorem 20?] 0

0^CT) -\ E[x(t -^x) x(t - Ax)]g( Ax) d Ax + E[m(t) x(t ^

■ - ® ,

Sine® the input test signal and the external noise are assumed t© fee 

statistically independent the last term in- Eq. (3-3) is zero* The 

expected value of--the product in the first term, of Eq* (3-3) is 

recognized" as the test signal autocorrelation function* 0 (T’)* s#Jib
that
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V'V ■ - At) g(An) dA (3-4)

A solution ©f this integral equation for g(A ) is difficult in general# 

bat 'when the test sigaal is wideband compared t© the bandwidth ©f the 
system. - A i) ©an be approximated as

>!r(T)' » §x Kt) (3-5)

where § is the area under the 0„(T) function and ^(T) is the unittisL tjtfa
delta function® Hth this appr©ximations Eqs (3-4) becomes

’^(1'i)lz l(T|) (3-4)

. ?It is etideat from Eq0 (3-4) that the ©r©sse@rrelati©n technique

shown in Fig0 3-1 ©an b® used t© measure a particular sample point ©f.

the unknown impulse 'response* Complete identification is achieved by 

using a number ©f such ®@rrelati®a channels. .in parallel^

3*2 Mature ©f the Errors. • Associated with Crosscorrelation Identification 

From the definition ©f the autocorrelation function ©f an 
random process [14# laming and Batting pe 1UU

'■+T
Xim-A* \ x(t). x(t + ) dt ,(3-7)

T —^ 00

-it is evident that the output of the averaging filter in. Fig® 3-1# 
iffX# will equal.0 (T^) only if the filter integration time is in-,' 

finite® When the integration time is finite# as it will be for any,., 
physically realizable filter# there are error ©r n©ise terms ia s(t)1, 

as well as the signal term# The errors arise from three

sources8 first# there is an error due to the randomness of the test 

signalf second# there is an error component resulting from, the presence



of the external noise § and third* there is an error introduced by, the 
assumption implied by Eqe {3-5)*

It will be shorn below that the error due to the randomness of 
x(t) ©an be eliminated by the mse of periodic test signal* and an 

ideal Haite-osmory integrator as an averaging filter# The external 

noise error cannot be eliminated completely#
.The approximation made in Eq#(3-J>) is equivalent to assuming that 

the test signal is white noise# It is not possible* in practice* .$». 
generate tealy white noise* bat .if the bandwidth of x(i) is mach wider*. 
say.. l@® times wider* than the bandwidth of g(A )j> the two fmotions . 

whose product is t® be integrated will resemble those shown in Fig# 3-2«, 

The exact aatare of the statistical properties of x(t) is animportant# 
If* however* the time duration of. 0X(<T) is mach smaller than the time 

daration of g(A)* as it is in the case shown in Fig# 3=2* then* from 
an., engineering viewpoint* the integral of the prodact of the two 
fanctions is adeqmately given by Eq*(3-4)*

.Th.m aat©correlation fanctions of'two practical noise signals which 
woald be suitable as test signals are illastrated in Fig* 3=3* Both,,, 

are,',biaary noise signals with states + X* The first signal has Poisson 
distribmted zero crossings and takes the valaes'+• X with eqmal .probabil­
ity.#.. The autocorrelation fanetion for this signal is

2 -*arn0CT)»Xe (3=8)

where a is the average amber of zero crossings per wait time* Th®..........
second signal is ©ailed discrete-interval binary noise [l* Anderson* 

•t»al«]# The signal ©Manges state only at the specific times -Pt^* 

where -P is aa integer and t^ is the minimum interval between changes in
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Convolmtioa ®f 0X(T) and, g(A )

b) Eftscrete-interval 
binary noise*

Hg* 3=3-

fw@ Practical Test Signal Amt©©©rrelation Functions
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statej the value in successive internals are independent, and, both states 

are equally probable«

The autocorrelation function for discrete-interval binary noise is 
[22, Truxal, p* 433]

It is evident from Fig* 3-3 that the autocorrelation functions of 

these signals cam be made as narrow as desired by a suitable choice of 

a ar.ii thereby making the error associated with the assumption, of 

Eq0 (3-5) as small as desired*

Since the size of the error due to the fact that the test signal 

bandwidth is not infinite.is to some extent controllable, and since 

the nature of the error allows its exact calculation from a knowledge 

of f^CT)? the error in Eq* (3-6) due t® assuming that x(t) is white 

noise will be assumed t© be negligible compared t® the error introduced 

by the. finite integration time of the averaging filter*

3 <3 Analysis of Output Noise
.' The noise components ©f z(i), the output signal of the multiplier, 

Can be studied by obtaining the autocorrelation function of z(t)» From 
-Eq*'i3-2)

s(t) z(i +*T ) ■ a(t) a(t + ) x(i - T3,) x(t + *t - T|_)

■ rm ■
* \ n(t) x(t => T j_) x(t ♦ T - *K i) x(t + T - A g) gC A g) dA

2
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+ \ a(t ) x<t + T - Ti) - Ti> xCt - A i) g(Ax) dAx

4 \ \ *(* ~ ^i) *<*' + <T -Ti.) *<i - A i> *(t + <T - A 2)g(A i)g( A 2)dA1d A 2

(3-1®)
The autocorrelation function 0 C"C) is ih® ensemble average ©f Eq« (3-10)®
Sine® m(t) 'and’ic(t): have been assumed t® be statistically independent the 
fourth product moments which r@sal% from the first three terms in Eq®

(3-1®) can b® factored® The expeetedvalue of the second and third terms J 

are zero since-l[a{t)] - §® Thus 0Z(\) becomes -

^i<T) -t<T) 4(T)

r@® \

♦-V ^ E[x(t -Ti) x(t +T-Ti)x(t -Al)ac(t ♦<T- g(A2) d A'jdA 2 
■ ■ (3-n) ■

la order t© simplify the rest «f the analysis x(t) mill be assumed 
to- be a Gaussian process® While this assumption probably is net valid 
£a general* @®nsid@rati©n ef this simplified problem mill permit the. 
study of the general behavior ®f the various a®ise terms in s(t) without 
unnecessarily e@mpHeat.ing the mathematics 0 This action is further justi­

fied by the fact that it will be shewn later that errors caused by .noise 

eempfnents resulting from the second tern' ©f Eq® (3-11) ©an be complete­
ly eliminated by a judicious choice of test signal and averaging filter® 

F©r a Gaussian process the fourth product moment appearing in 

Eq*-(3-ll) ©an be-factored into [l4, laaing and Battia* p® 111]
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E [x|t - <Ti) x(t +/C - E[x(t - A4) x(t + A 2)]
+ E [*(% - *r £) x(% - A l[x(t + *T - <Ti) x(t + T * A 2fl 
> slxCt - Tt) x(t + ■'r * A 2)] E[x(t +^r - T±) x{t - A *}]. (3-32)

Each factor in the above expression can be identified with an auto­
correlation function* Using Eq* (3-12) and Eq. (3-f) the expression for 
$ (*T) becomes

^,('0 - 4^)

■■¥ $' \ USW &(T+^-X^>i(T1-Ax) kxt-xz)

- A2) A( t + ax -Ti)! g( A x) g(A2) aAx aAj (3-13)

tarrying omt the over the delta functionsa

$J\) - L
% 2

,(/r) +5• « <
'X

g(Xi) g(Ai+T ) aA i

■+ $ gCT^'t) g<T£*T) (3-14)

The second term in Eq® (3-14) is recognized as stemming from the sig­

nal component ©f z(t)| the remaining terms represent noise®

The fLCT) pLC^T) term in the 0 C'T) expression results from the 

external noise, m(t), and this noise component in z(t) cannot, in general, 

b® entirely eliminated by the use of an averaging filter with a finite 

integration time® The other two noise terms are a result of the random



properties of the test signal alone* ' If instead of a- continuous noise . 

sample* x(t) is generated % taking a, noise sample of length fx seconds 

and repeating it periodically the ant©correlation fraction 0x(*t) as 

well as the noise components in z(t) due to x(t) will also fee periodic 

with period Hence* the average of these noise terms over one period

will,fee equal t® the average ©ver all time* If the test signal has a 

zero mean value this average win also-fee zero* The optimum averaging,,, 

filter for a periodic test signal is-.an ideal finite-memory integrator- 
with memory time ITx* where lis a positive integer*’ ly using a peri©*© 

test-signal and am" ideal finite-memory integrator all noise. terms except 

those resulting from the external- noise* can fee eliminated* - 

When x(t) is periodic 0X( ‘T ) takes the form

+©o . . ~

0J^) - : jC'C^-k V - ■ ' 1JL
k ■ - ®o. ■

where Tx is the period* and is zero outside the interval

“faE/|<'T< + T^/2* la order to preserve the quality.of the signal,,, 

component of z(t) the periodic, noise sample must fee chosen so that 

0K (T) is narrow compared to the time duration of the impulse re-.... 

sponge* and in addition the period* Tx* must be large compared to the 

-slpdficait length of g{ X ) so that only the k ■ § term in the output 

signal expression ,

x y «(.Ti - k fx) 
k ■ -so

(3-16)

is important, x(t.) is-periodic* §x is the'area under 0 (T)* )



A Practical Periodic Test Signal

The analysis above clearly points ©mb the noise reduction advantages 

that earn be gained by •using a periodic test signal* Other advantages of 

a periodic test signal are that* ©nee the test signal has been chosen* the 

problems ©f noise generation and delay are greatly simplified^ This 1®

particularly true if discrete interval binary noise is used. The discrete
/nature of the noise permit® the use of standard digital storage devices.to

obtain the ideal delay required for erosscorrelation* and* once chosen* 

the fundamental period of x(t) ©an be permanently stored in the delay 

mechanism thereby simplifying the noise generation problem. The binary 

property ©f x(t) also simplifies the multiplication operation! multi­

plication can now be achieved by a simple gating circuit*

.The problem of choosing a noise sample that will possess the desired 

is mot a simple one* A sample chosen at random may have statistics

that, differ widely from those of an ideal sample * and the resulting ^-(T)

may be entirely unsatisfactory* Mere again* discrete interval binary 

mofsf offers a considerable advantage over other types of excitation* It 

is possible* because of the binary nature of the noise* to synthesize a 

nearly ideal sample by computation- p<S7* WA1B Technical Beport 60-201* - 

Appendix A] * , •

3 *5 Identification Time Required by Crosscorrelation

"' "“’"The identification time of the eresseorreiation identification

technique is closely related to the mean square value of the noise"at
■■ “T '

the output of the averaging filter can be obtained from a' • ■

knowledge of the power spectral density of the noise components in z(i) 

.and the frequency characteristics of the averaging filter* Thus*
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/*+e©
■ V " JLl 5a@(w) F(-ui) dw (3-17)

nr |
A-®

where F(uj) is the transfer function ©f the averaging filter and (j)n0(uj) 

is the average output noise power spectral density* It is evident from 
Eq0 (3-14) that in the general ease the properties of the noise depends 

upon g(A) s® that it becomes neeessary to use am average noise power1 

•spectral density in Eq, (3-17)* The 'w'“ notation is used to emphasize 

the fact that the average is with respect to the ensemble of all possible 

impulse responses* In such applications as adaptive ©ontrol systems an 

approximate value of g( A ) is known if the adaptive loop is functioning 

properly0 If statistical data is not available the desired or optimum 

g(A) can be considered to be equal to the average value* When the test 

signal is periodic the output noise earn be made independent of g(A ) and 

th® averaging operation becomes trivial*

. Since the bandwidth ©f the averaging filter will be small compared 

t© the noise terms s the variance at the filter output is approximately 

equal t©

(3-18)

where Tj is the identification time defined in terms of the filters

equivalent.noise bandwidth9 Wp* by the relation

(3-lf)

In ©btaining Eq* (3-18) from Eq* (3-17) it was assumed that th® low



frequency gain of the filter is unity. I© l®ss in generality results 

from this assumption because both signal and noise terms are multiplied 

by the same gain factor.

The identification time required t© obtain a specified variance*,
2 ■ ' . ■

*, in the estimation of g(A ) can be computed from Eq. (3=1#). Ee-
g©ailing from Eq. (3=16) that the signal term is gCT^) it follows

that

2 J2(t)
s ,g .2

'+ ir

2
2Tr<§

$ (OJ) dw^mo (3-2®)

x x /_ ^

In the general ease*, it is n©t possible t© ©btaim an analytical

f©r Tj*, and it is necessary to"compute Tj by numerical techniques. How­

ever. when $ (iu) is constant and equal t© 5 (§) ©ver the frequency1

range -Wp t© + Wp cps Eq. (3-2©) can be simplified so that the identifica­

tion time becomes

(3-21)

The- above condition ®m $H@(w) is nearly always satisfied ia practical 

eases if a'wideband periodic test signal and optimum averaging filter are 
used. (See' discussion in Section 6.5.)

A comparison of the identification times required by white Gaussian, 

and periodic test signals will now be mad®. From the noise terms ©f 

Eq. (3-14-) -§a®(@) £@r the Gaussian case is ’ ■



+QO '00
4CT) jzy'f) cn + § |g{ A )f dX

2 r+w
+ l 1 g^i + ^ > iC^Ti -/T ) dT 0-2S)

Am tapper bound cm the third integral may he obtained by the use of the 
Schwars inequality [&<, £5©urant* p« 1313.

gCti ■+ 'r)-g('t1 - t ) d*C

(3-23)

[g( X)] dX

is finite. it. is easy to see that $ n@(Q) is bounded by

It Is - convenient at this point to introduce the concept of the 

signal“t®~n©is© rati© appearing, at the output- of g(X )» As discussed 

in Chapter 1 this is an .especially important concept in adaptive system

GsU)] ax (3-
r+«®

$m# 0^)dT +2§



applications as it allows the mean, square value of the test signal to 

b® specified in terns ©f its effect at the output ©f the system being ; 
identifiede Sine® the mean square value ©f the output signal, w^, de­

pends mp©n the transmission characteristics ©f g(A ) as well as the 
test signal properties it'is neeessary to consider ensemble averages.

©nee again« In terms ©f the average equivalent n©ise bandwidth ©f the 

system, ;W^, and the average lew frequency p©wer gain# K^, the mean 

square value ©f w(t),is-

r "TQ) '**=**“ *'***• ■
■ ■ _ x W K

w5 ■ * & f 0-25)
wx

where x^ is the mean square value, and Wx is the equivalent noise band- 

■width ©£ the test -signal*
The ©utput sigmal-t©-n©is© rati©, $ , is defined as the rati© ©£ 

w^ t© the effective mean square Value of the external noise, . ■

*2 .. is, in turn, defined as 
-eff

r+2irwx
?_pr.a-l - \ dto (3-26)

- ®ff air )• n
7- 2TN^'. ■.

This'definition is prompted by the fact that any practical test signal 

will, have a finite bandwidthj hence the system’s ©utput signal will be 

bandlimited, and the signal component ©f. y(t) will n©t be affected if-the 

observed signal is filtered s© as t© eliminate all components above the* . 

frequency
When the external m©ise is whit® equals 2 $a(@) Wx| and when

the external noise bandwidth Is small compared to the test signal band­



width n2ef£ equals n2, the mean square value of the external disturbance. 

For either ©f these conditions and a Gaussian test signal the identifica­

tion time becomes.'
/***>• /v^

H * 2-”°-.a * an v (3-27,

f ' g
This expression was obtained fey . substituting Eq, (3-24) into Bq, (3-21), ' 

introducing the output sigmal-to-aoise rati© constraint, and usfng the 

fact that $ can be expressed as x^/SW ,

■ When the test' signal is periodic and an ideal' finite-memory into?*...: ■; 

grator is used as an averaging filter the only noise term remaining is 

due to the external disturbance. For the two special cases cited above 

the zero frequency power spectral density of this term is

$ (©) - JSlL
^---2 W_

and the corresponding identification' time is

(3-28)

tr » a\ff 2 2 %% (3_29)
■a ’T' . 2

, -x <?* $
i I

. i A comparison of Eq, (3-2$) and Eq, (3-27) shows that the identi­

fication time required by ©rosscorrelation 'techniques using period!© 

test signals ©an fee as small as l/(l +. 2 & ) times the required identifi­

cation time using an arbitrary random test, signal. Even if If Is only of 

the order of unity, as it probably would be in most adaptive control 

applications, there is a threefold saving in identification-time,,. .For
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applications 'which allow & to b® larger the saving is even greater*

3*6 Equivalence of Crosseorrelation Identification and the Ideal Identifier

It is extremely interesting and important to note that when the ex­

ternal disturbance5 a(i), is white the identification time required by 

crosseorrelation using a periodic test signal and an optimum averaging 

filter Is equal to the Identification time required by an ideal identi­

fier* This can be shown by first recalling that when the noise is,white 
a^eff $a(®)2 and Eq* (3-2f) Can be put into the fom

§B(®) (2
_ ■' 2 ' '

2 0*1X g

(3-3©)

AH that remains to establish the equivalence is to relate the test 

signal bandwidth to the impulse response samplingintervalg and this 
is easily done by means of the sampling theorem [j21, Shannon]* la 

order to be able to independently specif individual sample points® 
©paced at intervals of a\ seconds® it is necessary that the observed 

signal contain frequency components at least as great as 1/2 aX*

Thus the minimum allowable test signal bandwidth is 1/2 aX s and with 

this substitution Eq* (3-3®) equals the identification time of the 

ideal identifier as given in Chapter 2S Eq* (2-28)»



CHAPTER 4

, SI STM IDENTIFICATION USING SAMPLING TECHNIQUES

This chapter deals with th@ identification technique which estimates 

the impulse response of the unknown system from data obtained by sampling 

the system input and output signals* least squares estimates of the im­

pulse response sample points are obtained* The identification time is 

derived for the case of a white external noise and an optimum test signal* 

The sampling, method of system identification is shown to have an identifi­

cation time which is equal to that of an ideal identifier*

4*1 11ntroduction v

The computation of estimates of points of an unknown impulse re­

sponse function from data obtained fey sampling the input and output 

signals of the unknown system will now be considered# The continuous 

signals x(t)i, w(t)> and y(t) are sampled every ta seconds and the 

values of these signals at the instants mtaS where a is an integer*, 

will be denoted fey x(a)> wCmJj and y{m) respectively* The sequence 

Of random variable® m(m)a obtained fey sampling the zero mean stationary 

random process a(t), are described statistically by the covariance 

matrix1 whose i9 j element is given by

2 ■
^ - B[a(i) n(j)] (4-1)

The sampling procedure and notation is summarized schematically in 

Fig* .4-1*

The sampled data representation of the unknown systems impulse 

response will be denoted fey g(p)» In order t© fee able to reproduce the 

fine structure ©f g(X) it is necessary that the sampling rate fee large
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Fig* 4-1

Idemtifieatien by Sampling Techniques



compared t© the systems bandwidth <> Sene err©r in the estimation of 

g(A ) 191115 of coarse, bi introduced by the sampling procedure, bat by 
using a sufficiently large sampling rate this error eaa b® mad© *n».n 

compared t© the errors introduced by the external disturbance0 The 

fact that impulse responses of practical systems approach zero as A 

approaches infinity permits g(p) to be represented, to a good approxi­

mation, by the Teeter

(4-2)

where P is chosen so that P* ta is greater than the significant duration

®f g(A )* ^

Am estimate of (g) is computed from data obtained by recording a 

sequence of M samples ®f the signal y(t) ahd a corresponding sequence 

©f samples derived from-the test signal x(t)0 The delay ©amsed by the 

systfm being identified ink®® it necessary te record, M> P sample 

Tallies of x(i)* fhe number ©f data points, M, required to aehievb the 

specified variances of the g(p) estimates-will determine the identi- ' 

fieation time*■ It is convenient to introduce the following notation -
rw(P) 

w(P + 1)
(w)

<m)

w(P + I) 

a (P) 

n(P + 1)

m(P + M)

(4-3a)

(4-3b)
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(y) ■ (w) + (a)

y(P)

y(P + 1)

y(P + M)

(4-3®)

and. the matrix

GO

x(P) x(P-l) * *• '* ,

x(P+l) x(P) , * « * x(l)
(4-34)

x(P+M) x(P+M-l) * «„ x(M)

With, this notation the sample data version of the convolution integral

P

w(m)x(m-p) g(p) ta • m«P,P + !»..• » •> P + M (4-4)

P - ®

©an. be replaced by the matrix equation
GO » ta (x) (g) . (4-5)

The external, disturbance prohibits the direct measurement of (w) and it 
is necessary t© estimate (g) fr©m the equati©a

(y) * ta (x) (g) (4-6)

4<>2 least Squares Estimates of the. Impulse'Response

A criterion for ©hosing estimates ©f the g(p) that is mathematically 

reasonable j amdj, in addition$ leads t® expressions whieh* fr®m a computa- 

iiemkl standpoint j are easy t® inclement is t® eh®®se these values of 

g(p) which minimize the sum ©f squared deviations

^ 1 . t.
- 5 «(p) ta3 ■ E(w) - ta(x) (g)] [(w)-ta(x)(g)]

pss©
ffl--® (4-7)



Imvim- [16] shows that these estimates are given by the set of so sailed 

normal equations '
ta(x)f(x) (g) - (x)*(y) (4-8)

where (x)9 is the transpose of the matrix (x) and (g) is the estimate ■

•*■(«)•

;_.;y.:jfhe set of normal equations ©anhe put into a;more familiar form 

by defining empirical correlation functions

M
jy*) 35 -■■■ -3t ■ >> x(a) x(m + r). ..(4-9a)

■ ■ M + 1
m 33 ©

and

M
tLr(r) - 1
*7- m x(a) y(m + r) (k-%)

a » ©’

Then the g(p) ©an be obtained' from the sot.of linear simultaneous 

equations 

P
K /"Serf

(4-i@)0X(P -.1). t “ ©;1|2$ «a»^P

Eqa (4-1©) appears to‘be similar, to the sample data Wiener-Hopf equation/
rv ‘but dn this ©as® the . quantities 0xCr) and 0gy(r) •,are not correlation 

funetions in the usual sensei, 0x(r) and ^.(r) are empirieal ©orrelation 

funetions calculated from the finite sequences of x(m) and y(m)* If ' -

x(b) is frem a stationary random process then

lia |L(r) £.(?) (4“Ha)I^e® x . . *
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and
;lim ^y(r) = 0xy(r) (4-llb)
M-^oo

where 0 (r) and 0 (r) are obtained by sampling 0 (T) and 0 ( T), the

correlation functions defined in the usual manner [l4> Laning and Battin, 

p. 113].

The covariance matrix ©f (g) which by definition is equal to

^ = E[(|) (g)'] - l[(g)] l[(g)»] (4-12)

can be shown to be equal to
$A - [(x) * (x)] 1 (x)8 (x) [(x)* (x)]"1 1 (4-13)
g V

““l Jrwhere [(x)8 (x)] is the inverse of the matrix [(x)' (x)J and

is the covariance matrix of the external noise. Mhen the noise samples

n(m) are uncorrelated
4

and
4 = n2eff (4-15)

V

4.3 Optimum Test Signals

Up to this point nothing has been said about the test signal to be 

used for the identification of g(X ), and indeed whether or not a solution 

to the set of equations Eq. (4-8) or Eq. (4-10) even exists. Premultiply­
ing both sides of Eq. (4-8) by [(x) * (x)]-'1' gives

\(g) "■ [(x)1 (x)] 1 (x)9(y) (4-16)



fT<m this expression it is elear that in. order for a nniqme solution to 
these' equations to exist (x)*(x) must met be singular* i.e** [(x)'(xl]”1 

must exist*- Sixes (x)*(x) is proportional to a correlation matrix it is 

positive definite [7* Cramer* p» 295] and its inverse’ always exists 
[7* Cramer* p« Uf]* la order that the solution fee non-trivial the 

column matrix (x)’(y) must not fee identically zero [ll* Guillemin* p.18 

and ,X©5]« 5© insure this condition it is necessary and. sufficient that 

:(y.) .not fee identically zero* and that the row rectors of (x) fee linearly 

independent*

, In> Section 4*1 it was pointed ©ut that the sampling rat®, must .fee ' 

large■ compared.to the bandwidth ©f the system! under-test* This condi­

tion is necessary- if the fine structure of g.(A) is to be adequately 
reproduced* but it is not sufficient* In addition* the test'signal... ... 

must, contain components, at these higher frequencies*’ The. most logical . 

bandwidth t© choose for the test signal is Wx equal to l/2ta» Be­

cause ©f the sampling process* components in x(t) at frequencies higher 

than l/2ta will not contribute to the estimate of g(A)* and a test 
signal bandwidth less than l/2ta will not make full use of the possi­

bilities offered by the sampling rate l/%a* In what follows will 

be.assumed t© be equal t® l/2ta«

She expression fer the covariance matrix of (g)* Eq. (4=13)* shows 

that the mean square errors in the measurement of (g) can be reduced by 

increasing the amplitude of the.test, signal* In physical applications • 

the amplitude of x(t) will'be limited by practical considerations* If 

the mean square value of w(t)* the system1® response to the test signal* 

is t® be equal t®' K times the effective mean square value of tb® ex— ■ 

temal noise* as defined by Eq0 (3-26)* the following 'eenditiem mnst .be
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a <w
x ta 2 WG % y 2fi a ®ff (4-17)

where,, as in the previous chapter j, is the average equivalent n©ise

bandwidths and % is the average lew frequency power gain ©f the system 

being identified* 2fca is recognized as being equal t© the reciprocal ©f 

the test signal bandwidth s© that Iq*' (4-1?) is equivalent t© the ©ut~ 

put slgnal“t®“B©is© rati© constraint imp©sed in the preceding chapter. ■' 

The constraint mp©n the test signal can be expressed as a constraint 

upon the mean square value ©f x(t) s

*
2

(4-18)

The ©©aditioms that the optimum test signal must satisfy can be 

determined by expressing the ©©variance matrix as

«*!
m [t(x) 9(x)] [(x)5 $a (x)] [(x)'(x)]] (4=19)

Sine© [(x)V(x)] [(x)*^ (x)] ^ [(x)*(x)] is symmetric and positive

definite it follows from the discussion ia Section 2*4 that the 
variances associated with the g(p) will be minimized if

[(x)9(x)] L(x)S^a(x)] [(x/Cx)] - k(X) (4-20)

where k is a e®astant that is determined by the constraint Eq® (4=18)»

The important property ©f the ©ptimaaa test signal is that it is a signal 
whiehj, when acting ia e@3*iaati@a with the external a©is®j, causes the



estimates ©f the impulse response to be uncorrelated, with ©me another* .. 

This property is expressed mathematically in Eq. (4-20) *

When the external disturbance is white Eq* (4-20) is simplified 

considerably, and' becomes ■

®2©ff CW’Cx)] -k(I) (4-21)

The i, . jf element of- (x)®(x) is equal to . .

• .CM'* 1), _fe(i-ji ■ .,(4-22)

s@:,;ffr.th® case of white noise, the optimum test'signal must satisfy the 

conditions

^C®) * # $ • .. (4-23a)

^.(r) ■ 0 l<rsp. (4-23b)
that is, the x(m) values .must be white over a range of P samples*

If x(m) is a 'Stationary Tandem-process with zero mean, then a"reason­

able. choice would be to cheese x(m) so that
E [&(0)]•&((>) ^0 . ; .(4^24*)

. E [j^(r)]»* 0x(r) 0<r«P (4-24$)
Additional errors are introduced in the estimates of g(p) when x(m) is an 

arbitrary random process because even if j&g(r) satisfies.the optimum condi­
tions the empirical correlation function, 0x(r)g obtained for a .particular 

observation of M sample points, may not be optimum and hence the variapes 
of |(p) will not -be minimized* It is, therefore, concluded that a periodic 

test signal, chosen in such a manner se as to satisfy the. optimum, eondi— 
tions o® .J^Cr), is better than an arbitrary test- signal ■pose empirical 

.autocorrelation functions is only optimum ©a the average*
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Some of the practical advantages of a periodic test signal have 

been mentioned above (Section 3*4)* A periodic test signal can also 

be msed in the sampling technique for system identification provided 

the period of the test signal is large compared to the significant 

length of the impulse response* The synthesis of an optimum test 

signal is greatly simplified if the test signal is periodic and the 

number of sample points observed, M, is chosen so that the identifi­

cation time is am integral number of periods of the test signal*,

When the external noise is white, periodic discrete interval binary 

noise can be used, as a test signal* Another class of zero-correlation 

.©odes, useful when the noise is white, has been disemssed by Tompkins
M.

4*4 identification Time Using Sampling Techniques

. Computation of the identification time will be illustrated for the 

case when the external noise is white and the test signal is optimized* 

The insight gained from the results of this simple case will then be 

used to establish, in a heuristic manner, that a similar result holds 

in general when the test signal is optimized*

When the noise is white and the test signal is optimized all of the 

terms of the correlation matrix, Eq® (4-15), are zero* In 

addition, the variances associated with the estimation of each g(p), ■ 

p = ®, 1, 2 *** P, are equal* Substituting from expression (4-22) and 

Eq® (4-23) into Eq* (4-15) gives

2
<n

%
\tt

at +1) ?
(4-25)



where 0? is the. variance . associated with the. estimate ■ ©f a 'single 

sample point, g(p), p ■ ©, 1, 2 ... P, The corresponding identifi­

cation time is

% * CM + 1) \ ~ ^ ■ (4-26)

isiig the constraint Eq„ (4-18) the identification time may also "fee 

expressed as :

?I * 21>a 2* (4-27)
'* “T

la arriving at these expressions for Tj the computation time required 

to solve the. set ©f equations, Eq# (4-8) or Eq# (4-1©), has been 

neglected# Thms, in this respect, Tj as given by Eq. (4-26) or Eq»

(4-27). is'a lower bound#

la the .general case optimization of the test signal has the effect * 

of patting the covariance' matrix in the form

(4-28)

that is, the estimates ©f sample points of g(X) are aneorrelated with
' -v .

each other, and the variances ©f each estimate are equal0 A similar re- 

salt is obtained for the special case of white external noise# .Since, in 

each'ease, signal optimization leads t© estimates:of g(A ) which are m- 

eorrelated it is reasonable t® expect that-the form of Eq# (4-25).and 

Eq» (4-26)' is valid in .the general case also#'

Very often the exact • nature of the external noise correlation 

function is not known# If. this is the case, it is convenient to pick a



test- signal satisfying the condition of Eq. (4-23) because then 

only the p = i term in Eq* (4-10) is important? and tee computa­

tion of the impulse response estimates is greatly simplified* Choosing 

a test signal in this manner is equivalent to using an optimum test 

signal under the assumption teat the external disturbance is white*

4*5 Equivalence to the Ideal Identifier

the expression for the identification time using sampling techniques. 

Eq. (4-26) @r Eq* (4-2?) is equivalent to the identification time ex­

pression obtained for crosscorrelation identification* It was shown pre­

viously that crosscorrelation identification time is equal to the time 

required by an ideal identifier to estimate the impulse response * Hence 

it is concluded that identification by sampling techniques is also equiva­

lent to an ideal identifier*
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IBB1TIPICIATI0I THE REQUIRED BT MATCHED FILTER IDENTIFICATION

■ A third identification technique is- described and analyzed in this 

chapter* The variance Ik the impulse response estimate resulting from, 

matched filter identification is determined, and a means' ©f reducing the 

variance by the use ©f a periodic test signal and a comb niter is de­

veloped* The matched filter identification time is determined, and upon 

comparison with the resalts ©f Chapter 2, it is established that matched 

filtfr identification is also ideal* . The chapter ends with a brief dis­

cussion ©n the snythesis ©f saitable test signals , matched filters, amd 

e®mb filters*

5*1 Description of the Matched Filter Identification Te«hirirmn ■ "v 

The erntpat.''Signal resulting from the application of a unit impulse • 

t© an unknown system would be the impalse response of the system* A 

distinct advantage of this identification scheme would be that the result­

ing @ut put signal is a eoniimmows, representation of th® impulse response, 

not just sample points of this function* An adaptive system using this, 

type-®f Identification scheme has been discussed by Aseltime, et*al«- 
[2]*,, From a practical standpoint this apparently simple method ®f, 

Idfatifieation has serious drawback®! s®m® systems that ©an'be repre- 
sented adequately by a linear model under normal operating condition® 

may exhibit non-linear. character!sties for large input sisals, smch:.,af, 

impulses* Als©, in situations ■ where it is necessary t@ make th® identifi­

cation in the presence of normal operating signals, such as in adaptive 

e@ntr®l applications, large amplitude, test signals may not be tolerable*
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A technique, suggested by Twin [25 j , for obtaining a continuous 

real time estimation of an -unknown impulse response that does net re- 

quire the ms© of - impulse type 'test signals is illustrated in Fig*,. 5-1 „ 

The input test signal is deterministic in nature, and .for the moment, 

will-be assumed t® be sere outside the interval This signal-.,

will be. denoted by x^Ct) to distinguish it from a test signal which 

exists' for all value® of t* The observed signal, y(t), which is equal 

to.the system output signal, w(t), plus a sure-mean stationary noise, 
signal,' n(t)|> is passed through an estimating filter, h( X )Q The es­

timating filter is designed so that its output signal is _aa estimate./ 

of the unknown system*

It is established below that if h( X ) is proportional t© *j(A,-X ), 

and 3£j(t) has a bandwidth which is .wide compared to the bandwidth of the 

system being identified, then the signal component at the output of ,,-the 

estimating filter is proportional t© g(t -A )* Such a filter is called 

a matched filter [24, Turin] * The delay, A , must be greater than' or

equal t® ®ac in order to guarantee the physical realizability of the. esti= 

filtero ' e:\.

Referring t® Fig* 5=1 it ©an be seen that

w(A2) s I X1CX2 - Xx) g(Xi) dA 1 (5=1)

andjgj; the ©wkpii .of tho eetimatiBg filter due to the test signal

i

A
Si y(* - AJ h.( X«) dA 9(£& <& d&i



Unknown System
..»(t)J s y(t) ^ Estimating Filter I/t)

g(x) y -* h{ A) ■ fc^A-A)

O

Matched Filter Identification



(5-3)
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By combining Eq* (5-1) and Eq* (5-2) and using the fact that
y(t) - w(t) + m(t)

h(A ) ■ k 3£^(A - X )
the output of the estimating filter ©an he expressed as

(5-4)

f ‘4’^©

ijf%) - k \ gC Xi) dA i X^t “X g ” X j^) x^( A " A g)

+ k'\ a(t -Ag) Xj_( A - A g) dAg (5-5)

J~m ■

In this expression k is an arbitrary ©onstant of proportionality*

few5, for a m«m®nts focus attention on the integral within the curly 

brackets ©f Iq. '{5-5) a&d introduce the change ©f variables = t - Ag - \^s

This integral then becomes 

r+ee
\ x^CXj) x^CX^ 4 ^ +A^_ - t) dXj , (5-6)

^-9®

Using Parseval’s Theorem expression (5-6) can also be put into the.form,.

1
2ir

i(Xi - t + * ) dcu (5-7)

where X^(uj) Is the Fourier transform ®f x^(t) and the asterisk denotes 

the complex conjugate* If x^(t) is a wide band signal and X^(a>) .is, 

nearly ©onstant and equal t© X^(@) expression (5-7) becomes



which* fr«a the properties ef Fourier transformsa is recognized as being 
equal te

A ^ — t + a ) (5-9)

Th® same result ©as be obtained by noting that expression (5-6) is th® 
anfcetranslatien function [20* Newton^ Goulds and. Kaiser^ p0 5l] of the 
test signal^ and recalling that the amt ©translation function of a wide­
band signal is approximately equal t® a delta function* The derivation 
is similar te the on® given in Section Jvl ef the chapter ©a ©r@ss— 
correlation identification© -

Replacing th® term in early brackets in Eq© (5-5) by its equivalenta 
egression (5-t)* and integrating with respect t® A^ yields

n(t — A g) ,mj_( A «® A g) d Ag

(5-10)

Th® first ter® ia Eq0 (5-1©) is th® signal exponent ef g^(t)# and,,|ts
was indicated previously it is proportional t® g(t - A )© F®r eonvenienee

2throughout the-rest ©f the chapter k will be set equal te 1/X^ (©)©

k X, A

5a2 Variance ef th® Impulse Response Bsti«a.te
Th® ©racial assumption that was made in deriving Eq© (5-10) was .that 

th® test-signal spectrum is white© la reality signals with a perfectly
flat spectrum cannot b® and this fact leads t© an error in th®
signal term ef 6 This error is? however. deterministic in fiat®8®
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ar.ri uitk a knowledge ©f the exact test signal spectrum it can be 

compensated for* Furthermore, since there is usually a considerable 

amount of freedom in the choice of x-|_(t), by selecting a test signal 

with a wide spectrum the effects of this error can be minimized* Pri­

mary consideration will be given to the effects of the random noise 

errors in g^(t) by assuming that deterministic errors, duo to a finite 

bandwidth test signal, are small compared to the random errors* _

.. fh* second ter® in Eq* (5-10) represents the error in the estimate

®f g(^ ) due. t© the external noise, n(t)* The contribution of this, 

term t® the variance of g^( A) can be eeaputed from a knowledge of the 

noise power spectral density and the frequency characteristics of the

estimating filter* Thus,

f*m -2
0~ - ^ \ §,(«» |h(“')| dw

'■ J

1
airXj^C©)

$a(u>)|x1(w)[ dw (5-11)

fh@ irarian©e ©an be put ini® a form that is more nearly related t# 

the egression mf preflems ©hapters by defining mei, the mean sqmare 

Talee ef the moise at the ontpnt of a nnity-gain matohed filler *.

+«e
$m(w) K<tu)|*:*u»

With this new notation 0$ becomessi

(5-12)

O
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. There are two special eases of interests, First, if the test signal 

is wide hand with respect to n(t), as well as'being wide band with respect 
to g(A }, X|(uj) in Eq, (f-lt) is constant and

~7Ta* , (5-14)
la this ©as© the estimating filter doe® a good job in producing a signal 

ter® la 8j_(t) that is proportional to the unknown impulse response, but

3,,% is ©f. no value x,n reducmg the. effects of the external noise, because 

all ©# the frequency components of the external .noise'are transmitted.,: 

through h( A )■ without .distortion* The gain factor l/%2(0) has no .u, 

effept.upon the signal—to—nois© rati© because both the signal and noise 

semgjenents ®f-y($)' are multiplied by the' same gain* For this situation 

the signal-i©-nois® ratio at the output of th© estimating filter is, 

equal to the signal-to-noise rati© at. the input*' fhis. ratio, If, is,,: 

determined by the restriction placed ©n the test signal*

The second important special ©ase occurs when th® bandwidth of the 
eternal noise'is:wide compared to the bandwidth of the test signal. Of 

course, a^(t) is .still wide band compared to g(A ), Then $ (w), i®

Eq, (5-13) is-approximately constant and equal t®' $n(0), and the. 
normalised output noise is

' '- s §n(@) 2Wx ' ' (5-15)

where Wx is the equivalent noise bandwidth.of the test sigaal. In this 

type of situation the estimating filter reduces the effective'bandwidth



of the random noise as well as producing a signal term proportional t© 

g( X )0 N@w only those noise frequency components within the pass-band 

of the estimating filter appear in and sine® h(X) « k x(a - A ) s

it is easy t© see that, the @ffestive bandwidth #f the random noise term 

in g3_(t) is equal to Wx<1
■ The reader may ask if it is m®t possible t© design the estimating •' 

filter to reduce the total error in g^(t) * the “smear88 error $ due tothe 

faettthat x^(t) does not have an infinite bandwidths as well as the.. 

error due t© n(t)* .This pr@bl@m has been considered in detail by. Turin 

[253o In his paper Twin shews that when the test signal is optimized 

and the external nois® is white the ©ptimurn estimating filter is a..... 

matched filter0 Ihem the n©ise is not white, the expression for the, 

©piimam filter is g©m®what m®r@ complicated* The present work is,„e@a=* . 

earned with finding Malts mp©m the identification time due to externa^ 

noises and5 therefor® has not considered im detail the errors imt^edueed 

by.the practical limitations of the test signal* The optimum estimating

the shape ©f the

§03Eedmetion of Tarianae by Periodic Ibceltatiis
The identification time required to obtain the impulse response-bsti*» 

mate' variance given by Eq0 (5“13)j> is' equal to the delay necessary t® 

make h(A) physically realizable* A is of the ©rder ©f magnitude. ©f 

the. duration of the test signal* ©ftea the variance given by this equati® 

will be much larger than ©an be tolerated* This will be true especially 

if the signal*=4@-m®is® rati® at the output of the unknown system is' r@~ 

quired t® be small* In order to. achieve a smaller variance it booemos



necessary t® average over/several observations ©f the impulse response., 

estimate* If an average is taken ©ver M-observations the general ex­

pression for th® variance become®

_
n

H X-i

M@t@- the subscript on,g has been dropped t® indicate that the variance 

n® :l#nger corresponds-t© a single observation*

©f the nice features of the matched filter identification 

technique is that a continuous real time'estimate of g(A ) is' presented ... 
at, the output of-the matched filter*- A continuous train of impulse re- 

sponge estimates can be generated at the output of the estimating ./filter 

by 'using a suitable periodic test signal,, 3e(t)<, where
+€©

i • .-e©

f^ea, averaging ©ver M observations is simply equivalent t© 'averaging'.'.;'

M periods, of the output signal* It is shown below that ©he method 

®f mechanising the averaging; operation is. to place a comb filter in 

cascade with the estimating filter*.

... -to arbitrary periodic test, signal will not give a:satisfa©t©ry 

estimate ©f g(A):* x(t) mast be rich in harmonic content" and-in addition 

the period Tx mast be larger than the significant length of g(A )* The 

generation ©f .a train of impulse response estimate® can be visualized 

with-the aid ©f Fig* 5—2* Since x(t) is periodic the autocorrelation ■ 

function of x(t) will also, be-periodic with the properties



0X(T) « 0X1 (» iTx) (5-lSa)
£ 88 —®®

and

0Xl(T) - © |T|>JiL (5-lib)

As t increases the pulse labeled (jg (A -t ) in Fig* 5-2 sweeps over 
the impulse response g( A ) e The output signal is proportional to the 
integral of the product of 0^(t -A,) and g(A) s© that if ) is
narrow ©©spared t© the significant length of g(A ) and Tx is large 
enough so that only a single pulse @f ) overlaps g(A ) at any
single instant ©f time -toe output signal is a go©d estimate ©f g(A)»

As time progresses the labeled pulse passes beyond the overlap region^ 

and the next pul.se in the train, begins to contribute t© the output*.-.

The mechanization of the matched filter identification scheme using a 

periodic test signal is identical to that used when x(t) is aperiodic* 

The block diagram is shown in Fig* 5~1<*

Averaging of the impulse response estimate over several periods of

x(t) could be accomplished fey replacing the estimating filter that is 

matched to a single period of x(t) by a filter.that is matched to M . 

periods of the test signal5 i*e0 use a new estimating filter h®(A ) 
with am impulse response

h®( A ) « kf( A )x( - A)
+»

i
»L<- A +■«*)

a
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where

f(\)
© * A * hi.

Lo A< © i A> ht„JL
The construction ©f such a filter is easier t® view in the frequency 

domain than in the time domain* If a periodic function, with funda­

mental period Tj is multiplied by an envelope function, fa(t )> then the 

product, fj(t), can be represented in the frequency domain by [29, 

Reference Data f©r Radi© Engineers, p«

P3(^) ® IX- F^u)) Fa(u>- i 2It) (5-21)
Ti > % 7

i = -©©

where F^(iu) is the Fourier transform of a single period ©f the periodic 

function. Thus, by analogy with Eq» (5-21), it ean be seen that h*(A ) 
earn be considered as being made up of two filters in cascade, ©ne filter 

is matched to a single period of the test signal and has a transform 

X|(«uo)| the other filter is a eomb filter with pass-bands centered around 

the harmonic frequencies ©f x(t)» The frequency resp©nse ©f the pfss-,'.,. 

bands are determined by F(tu), The frequency response ©f the two. filters 

in cascade is shown- in Fig, 5“3,

la the limiting case as M approaches infinity f ( A) is equal to unity, 

F(uj) becomes a delta function, and the frequency response reduces t® a 

UW; spectra proportional t© the test signal spectra. The addition of a 

comb, filter t© Fig, 5-1 is all that is. required t® account for the process 

of averaging over Mjgeriods, The output of the comb filter, g(t), is a 

train of fstimates of g( A), each .impulse response estimate being the



average over th® past M periods of g^t)« Both signal and noise terms 

pass through th® eomb filter so- th® gain has a© effect upon the signal^ 

t#“»n©ise ratios l@mees. without less ©f generality s the gain may b®

'the

Th® n©is®'redaction p

ig Fig« 5-4 and

is a t

©f th® ©©mb filter' become evident by 

signal term at the ©mtpmi ©f k( A ) 
response estimatess the fundamental 

serried of th® test signal® The frt- 

>f the signal is3 as a result ©f its 

a with components at the harmonic fp®-; ,.w:. 

signal® Th® spectrum ©f .th® external noise 4 a6-: in 
<> eontinmoms s® that th® frequency eharaeteristics of the mois® tern 

fat the ©mtpat of h(X ) is als© eontinmoms aad is given by

qmeiicies

■ The comb filter 

band® with nsitj 

bandwidth e# P(t
@p8®-$ thi

sf Fig* 5-4 Ig® 5-5 is the .fre*
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Matched Filter Spectrum far a Periodic Test Signal

Fig® 5-4

Signal and Noise Frequency Charaetesasties

Ideal Comb Filter Frequency Characteristics

l'.



Mm<§ associated. with the e@mib filter is equal to. ome-half times the 

reciprocal .©f the bandwidth ©r ML seconds*

Th® identification time may b® ©pressed in terms ©f the desired 

■varlenee aid the preperties of the test signal and external disturbance 
fey using Eq„ (5=16 j and relating X^(0) to the mean square Tain® and the 

■ ■•e^ivalent nedse- bandwidth^ ©£■ afoft)* The result i&

W,th the introduction ©f the output signal=t©~noise ratio constraint 
Tj can also be written in terms of If and the aTerage power gain 
bandwidth of the system being identified* .This,

*1

■Q /Vfa-
a 2 w : K

..9 „ f
•? J -?

eff

Ihe^ the bandwidth ©f the external distirfe&ac® i». smaller than that ©£
the test signal fig* M■a eff and Eq0 (5-24) reduces t®

✓W*5a

Similarlys if th® noise i® white with respect t© the test Migwai „



Matched filter id®atifieati©a can als® be show to b® equivalent
T "r' ’g

t® the ideal identifier© ' This fact is established by replacing'. 

in Eq0 (j>«=23) with its equivalent egression for the whit® noise ease,, 
^■(@) 2M£S and ®«apariag the resulting expression for the identifica­
tion time t® the results ©btained f®r th® ideal identifier ia Chapter 2*

.5*5 Comparison with the Meal Identifier

synthesising. a test signals th® matched filterf and 

th# ©©mb filter has b«« carefully avoided up t® this point with th®.re­

sult that It has bee® possible te establish the fact that matched filter 

identification is theoretically possible <, and is indeed equivalent t®.. 

the ideal identifier when the external disturbance is white© Synthesis 

®£ a suitable test signal f@r identifying g( \) is a® mere difficult 3# 

this, ease than it is £®r identification by erosseerrelatleh er sampling 

?.© This t©pie has been discussed in th® previous chapters©...

It might appear that the construction ©f a suitable matched filter ■

practical limitation upon this identification,., ' 

becauses in general^ th® synthesis of a matched filter is 

difficult© Th® problem^, h<w®v@?5 may be partially avoided in this ,. . , 

application by bwildisig the wide band estimating filter first and. then 

synthesising th® test signal by simply applying an impulse to the. filter® 

The.filters impulse response9 reversed in tim% would be the ©orrespondi* 

test signal© F@r ms® in adaptive systems it would be desirable to., chose 

a filter whose impulse response did not have large peaks$ otherwise the



struetiig the eomb filter,. As. is generally the case, the comb filter 

would be a rather complex device t© build, particularly with regard t® 

the amount ef hardware that would be required.
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CHAPTER 6 

EXAMPLES

The previous chapters have developed and presented expressions 

for the identification time required by an ideal identifier and the; 

identification techniques employing cr©sscorrelations sampling* and 

matched filters* Tj was expressed in term® of the test signal and 

noise parameters* and also in terms of the unknown system*® gain- 

bandwidth product and the .signal-to-noise rati© at the output of ^jhe 

system* Several temples' are presented in this chapter in order that 

some insight may be .gained as to the order:of magnitude of Tg for 

practical' situations'*. The results, are presented in such a manner;, that 

the .identification time tan be obtained from either a knowledge of the 
noise and test signal parameters* or from a specification of the gain- 

bandwidth product and output signal-io-noise ratio* In the absence,of 

any knowledge about the system under test the'.identification time can 

oily, be specified in terms of the systems measurement environment* i*e., 

in terms of.the test signal and noise parameters* ©a the other hand* . 

there.are situations when it is meaningful to discuss such things as 

the average impulse response* average, gain* or average bandwidth* . This 

would be, true particularly in adaptive control problems where the de- ■ 

sign or optima# impulse response may be taken as the average response* 

The importance, of the identification problem in the adaptive control 

field warrants slanting the ■ discussion of the example® presented her# 

towards that area* ,.
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6*1..' Introduction

, Til® results for the identification tia® that have been obtained do 

not depend upon the particular system that is being identified* For 

simplicity two second order examples will be considered* on#'being...a 

aoiaainimum phase system* While seemingly restrictive* second order... 

systems have impulse responses that are typical of a'large class of 

higher .order systems,characterized-by a single dominant pole pair*,-,,,,. 

Thus.,, the results of these examples nay be used as a guide to what may 

. b@.,.«pEpeeted from higher order systems* When suitably placed* the:...right- 

half-plane .zero; ©f the nonminimum phase system has the effect of widen-, 

■lag the systems bandwidth while .retaining the oscillatory properties of 

the,.impulse response* ■ The .identification time.-.is highly dependent upon 

the bandwidth 'so. that .an interesting comparison of the identification 
times of the minimum phase and nonmimimum phase systems can be made* 

White noise introduced at'the output of the unknown system is an 

important example to consider because it represents the worst possible,-- 

Case, insofar as. the identification time is ■ concerned* If the noise 

autocorrelation function has a non-zero width* and the nature of the ., v 

correlation is known*- this ’additional knowledge .©an be used to reduce 

the identification, time.*.. .Am example' of this is discussed for the. special 

case, of a narrowband noise process .. in- Section 6-5* White noise intro­

duced within the feedback loop* a*- illustrated in.Fig* 6-1* is more 

realistic in some cases than white noise at the output of the system.! 

therefor®* examples ®f this type are; also treated* An approximation to 

this kind of situation, occurs when the'actuators ©f a control system are 

subjected to broadband disturbances*, such as wind gusts acting upon the 

eeaferel surfaces ©£ an aircraft traveling at high speeds* The equivalent



©utput noise ©a® b® determined by c©asidering the power transmission feo- 

twee® the point where the noise is applied and the ©mtpmt ®f the system* 

Th® results obtained in Chapter 2 for the ideal identifier ar@ 

valid only if th® signal energy at the ©mtpmt of the system being 
identified is large, .©.©apared to the power spectral density of the ex™, 
iernal noise* Before considering specific examples it will be establish­

ed that this ©©ndiM®s does exist for a large class of problemse The

(6-1)

and the rati© E^/ ean^ by using th® output sigmal-t©-noise rati©

constraint5 be expressed as

Tt ¥«x ■2)

It was pointed out in Chapter 1 that fj is at least of th® order ©f ' 

magnitude ©f th® significant duration ©f the impulse reopens®* By relat­

ing th® significant duration of g(A ) to the system bandwidth and using 
the fact that Wx is meek larger than W@ it can be shown that Eq® (6-2) 

is, in moot practical eases$ a large number if K > 1* If , for instance, 
Tj is considered to fe@ at least as large as 2 system time constants.,and 

Wx100 Wq th® ratio is greater than or equal to l®i * These condi­

tions will b® satisfied in all the examples presented in this chapter m 
that th® results may be considered t© be equivalent to those that would 
fe® obtained by an ideal identifier*
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Fig« 6-1
Whit® M©is® Within the Feedback Loop and Equivalent Output N©is@



-77-

6*2 Tj for a Jp.sim.tna Phase Second Order System - White Output Noise

As an example of the type of problem that might be encountered 

in the design of an adaptive control system a second order system with 

a pole-zero configuration as shown in Fig* 6-2 will be considered* 

the impulse response has the form

wu« e 7 *' • r----s\
g(A) r: ■■ ■ ...— —■----— sMuj0yl-j A (6-3)

Vi - j 2“

where % is the zero frequency power gain* u)0 is the undamped natural 

frequency* and j is the relative damping ratio* The average or nominal 
values of % and uj>@ will be considered to be unity* Frequency and/or 

magnitude scaling may be applied to the final results if the identifi­

cation time is desired for the more general case of arbitrary values . 

for Kq and U)@* Hie figure j « 1/2 is a convenient value to choose for 

the. .average damping -ratioj a ^ of 1/2 results in a step response: with, 

a moderate amount of overshoot (l6.36$)0 The average impulse response 

is plotted in Fig* 6=4* the vertical bars have been added to illustrate 

the size of the standard deviations associated with three different 

values'of the variance of the impulse response estimate* Note that* for 

engineering purposes* the impulse response may be considered essentially 
zero, for values of A greater than ten seconds*

The equivalent noise bandwidth of the average system must be calcu­

lated if Tj is to be expressed in terms of the output sigmal-to-noise 
rati®* By definition [it* Middleton* p* 664] the equivalent noise 

bandwidth is equal to
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12 A

Figo 6-4
8®©©ad Order % 1, l/t
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#r by using Parseval*s Theorem

\ - \ [g(A >] dA 

'e

F#r this example appM©ati©»' of Eq0 (6-4) ©r Eq0 (6=5) yields

The bandwidth ©f the 4®®% signal must b® large compared to the band- 

■width of the system feeing identified if the errors in the estimate da® ... 

t© the. limitations of the test signal are to be small compared t© the 

errors from, the external noise® Therefore3 before the bandwidth of.the 

test signal ©an be specified with any degree of assurance it is necessary 

t® consider the' rang® of parameter variations. and the effects of thesi,,u 

variations apon the bandwidth of the.system* Suppose the resonant fl*®“ 

...qieney is allowed t© vary between the values ®*2| and hs and 4hat tfe® : 

relative damping .rati® varies from ©*2f to $*75» These Malts ®n.,the,.. , 

parameters allow a 16si ©hang® ia and impulse responses, ranging from 

highly oscillatory te near eritieal damping* A eempletely arbitrary bat 

reasonable starting point for the specification of the test signal band­

width would be to set equal t@ 1®§ times the average system bandwidth* 

In this example'the maxim* system bandwidth oeears whom W# is at,its 

largest value5 and j takes ©m its minimum value* For uj# ■ 4 ant 4 ®.©025



■-*L-

Wgl.-is equal t© 2 eps® Ira. this case
Smset

¥J
-iSS »> (6-7)
%

s# that if Wx equals' 100 the test signal bandwidth is at least 12,5 

time® the bandwidth ©f th® system being identified^ and this choice ©f

Idestifi'©ati@s techniques using a periodic test signal' require that 
th® test signal period be large compared to the significant duration, ©f 
the impulse response*. An indication of the test signal period that. . 

would be required fer this example may be Obtained by defining the signi­
ficant duration of the 'impulse response to be equal to five times the 
reciprocal of the damping factor (here equal to. ^ujq) and computing the; 

maximum and average value of this figure* The maximum significant du­

ration ©f .,g( A ) is i® seconds j, while-the significant duration of the 

average system is iG seconds,, Ifs for instances Tx is taken as two.. .... .. . 

times -the .maximum significant duration ©f g(X)s Txw©uld equal 160

•The identification time 1®
(^x)

(6-G)
7

This expression is valid for any of the identification techniques,,:;
in Chapters $0 k$ and when the external noise is white^ and 

'represents the identification time of an ideal identifier® The 
identification time* multiplied by a,constant e$-is shown plotted vs the 
variance ©f -the impulse response estimate in Fig® 6-f® © may be ex­

pressed either in terms of the gain-bandwidth product and output signal-
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t©-noise ratio* or in terns of the noise and test signal parameters 
<^(©)s x2* and

The curve is used as follows % suppose design requirements ©all

for the mean square value of the -signal at the output of g(A ). due
to the test signal to be equal to the mean square value ©f the effective

output noise* that is ¥ * 1* The average gain for this example is

unity#.-and from Eq* (6=6) the average bandwidth is 0*25 ops® Thus, the

■constant © is equal to 2* If.the desired variance is 25*1® (see

Fig,, 6=4) the identification time* as obtained from Fig* 6=5* is equal

to 200 seconds* A smaller variance* sueh as 6*25*1® * would require ,.,w
-4an identification time- of 800 seconds whereas a variance of 100°10

would require only 5® seconds* These identification time® are: dt^eeffte 

ly proportional t® ¥ se that if.a larger sigmal=t®=noise. rati® ©an be

tolerated the identification times ©an be reduced substantially*’ For.
ess^

instance if | ~ 3 and 6*25*1® ■is taken as the variance Tj is

seconds*

., Before leaving this example the identification time required, by :: 

crofseorrelation identification; using Gaussian noise as a test signal.

will be compared with the identification time required, by the same 

technique using a periodic test signal* fsimg Eq*: (3=2?) ■ the upper 

bound ©a the id®nbification time for a Gaussian test signal is plotted 
for ¥ * 1* ¥* 2* and ¥ ®«s in Fig* 6=6* Als# plotted on the same.

figure is Tj as determined.from lq»' (3-2f) (or equivalently from Eq* 

(6=§)) -f«*> ¥ ■ 1/2*: ¥ =1* and ¥ * 2* For ¥ s 1 the technique usiJig

the Gaussian signal takes three times longer, to identify the system 

than the method using a. periodic test signals, for If s 2 it takes' five 

times longer* The smallest- identification time obtainable with, a
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Gamssiaa test signal occurs when if. approaches infinity 3 and this 
fain® for Tj. equals th® identification tine obtained by using a 

pifiodir test signal and. a X of l/t« Th® adfantage of periodic .. 

test signals ®f@r ©ther random test signals is obfious*

4*3 ’ Tj for a MeiraaSMaasaa Phase ’ Second Order System ■<= White Output Hois®;

'Th® p@l®<=zer<§ (Configuration for th® nonminimum phase3 second order 
example is show in H,g<> 6-3 o The corresponding impulse response is

1 A
_42'^_ioe

Vi-/
COSUJ,A ■f2X

Th® aferag® falmes for cu@ sad will again be taken as uaity5 
andf the aferag® relatif® damping-ratio* f * will be set equal id -l/20 
Th® location ©£ th® right-half plane zero for this example will b® 

c4 m 2#- Th® impulse response 3 Eq<> (6-9)3 is plotted for this set :®f 
parameters in Pige 4-7 <> and 'th® fertieal bars again indicate the size 

of the standard deviation for seferal falmes of<r^6 In this example
A Vs*g ■ ■ -

alse.3 i(A ) i® essentially zer® for falmes of A greater than tern seconds
-Th® equifalent »@is® bandwidth for th® nomndriirraa phase example ©an 

be obtained-, from Eq0 (4=4) ©r Eq* (4-f ) * The result is

if^V c*Zr *4J-

if ©C

are

allowed t@ fary wer th® same ranges as in th® prefioms example substi­

tution of a few numbers into Eq,, (6-1®)- quickly establishes that'the

If it is-' assumed that the zer® l@©ati®m is fixed aid and j

maximum Wg. again ©eaars when UJ@ 88 4 and f ■ Q025o %jma^. ■ I® ©P®



Impulse !esp©mse - Nonminlmum Phase System



as compared to Wq « 0,3125 cps« la this case choosing Wx equal to 

10© Wq, may mot be very satisfactory because the test signal bandwidth 

would only be about three times the system bandwidth when the parameters 

approached, the values given above« This condition can* of course9 be 

improved-by using a test signal with a wider bandwidth»

Consideration of the significant duration of the.impulse response 

for this example yields results, that' are identical to those for th§..... 

mi rximum phase example. The maximum significant duration is 80 seconds;, 

and. the period- of.the test signal must be picked accordingly.

Fig, 6=5 may be used for this example also* Here c * 1,6 s® that 
the identification time is 25© seconds whea^ » 25*1© \ 62,5© seconds
when e*? • l®©*!©"’^;, and .100© seconds when <y^ » 6o25610~^ if &is

' g g
unity, ©eaparing these results with those of the previous example shows

th,at a %%% longer identification time is required because of the increase

in-the-average system bandwidth, -

. The results ©f these two examples 5 which are typical of systems ,e£ 
any order with impulse responses resembling those' of Fig, 6=4 or Fig, 6=7^ 

show that for output signal=t®=noise ratios- of the order of unity the ,, 

iidehtifieatfon time ranges from about 1© t® 1®@ times the significant 

length of the impulse response depending upon the degree of. -accuracy that. 

is required. With signal=t®=a@ise-ratios of 1© to 2© dfe the identification 

time could fee reduced-to the order of magnitude of the significant length 

•f. the impulse response.

the' Feedback 'Loop- 

This work has considered the problem of Identifying-an unknown 

linear system in the presence of an external disturbance intr#dtt@@4
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at the output ©f the system, The results that have been «fetai»@d..as.y 
be extended t© situations where disturbances are introduced at other 
points ef the system'by determining the ©wfcpmt disturbance that is 
equivalent t® the actual disturbance [t®® Newton^ Qeuld^ aad Kaiser* 
p* 37]* This may b® achieved by considering the power transfer 
function from the ©rigia .ef the-noise to the output ®f. the system*,,,,. 

The techniques will b® illustrated her® f©r the ©as® «f whit® n®is<® 
introduced within the feedback l@#p ef a e#ntr©l system as illustrated 
in Flgo 6-X(a)« Mdebaad disturbances acting ©a the actuators ®f a 
e©»tr®X system ©#uM fee represented in this manner*

Hi® signal transfer function from the origin ef the external 
noise to the output ©f the system is

1 + 0
It is the-impulse response relating the signal w(t) t® x(t) that is 
t® be determined by the ldeatifieati®a technique, By ©ailing the Fourier 
transform ef this: impulse response fJ(u?) it is easy to show that Eq, (6-11) 
may fee put late the £@m

1

'let the power spectral density ©f the exfeem&X noise b@ Is them the 
power spectral density ©f the equivalent output noise is given fey the.'

and is sketched f®r a typical 
The effects ®£ this kind

the filter will mow he
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the noise and signal spectra at the output of the matched, filter will 
facilitate the analysis. These spectra are plotted in Fig* 6-9„ The 
variance e£ the impulse response estimate is determined by the total 
aaemt ®f noise energy that is accepted by the comb filter* Sine® 

is much larger than Wg. the noise out of the comb filter is nearly equal 
t© that which would be sfetaiaed if the white noise were introduced at 
th« output «£ the system instead @f within the feedback loop* This,; is 

because the noise spectra in Fig* 6—9 differs from that shows in Jig* 5"4

Actuallyj..fer a filter bandwidths the variant# is r®-.
dueed a small amount and this reduction' eould be reflected in a reduced 
identifieati« time* An indication of the difference in variance (@r.
identification time) between the ease of introducing white noise within 
the feedback loop he that of a whit® output noise ©an be ©btained by 
considering the equivalent output »©ise sp® ctrtm, Eq« (6-13)? t © be sere 
within the equivalent »®ip« bandwidth of g(A )s and equal -he M sutsidt. 
the . equivalent noise bandwidth* Th@a the variance is proportional. te 

(Wx - Wg) when ths mmim idAfeim tit® and is . pr#p0rti©pal
t#

i«§>

wigiiafces al tkm fto rati® <§f th<# varianets

(6-14)

I r ■ ■ '

Th® saving is negligible if

F®r @r®s@©®rr®lati#n id@atifieati©n the power spectral density e£ 
the noise at the output ef the multipler# (UJ)j> determines the identi­
fication time* The power spectral density of the component of this noise



dm© to ill® external distmrbanee ©an' be obtained by convolvimg the 

spectrum of the external noise with' that of the test signal.[ 10* 

Gardner and Barnes* p® 275] *. This conrolmtion is pictured in Fig*

6-1® for a value of w whi®h is less than the order of 2irW„*«2£
$a#(w)..is proportional to the area milder the product ©f these two 

function®- and is given by

“3^ J $n(ui -H ) $x(&> dil (6-15)

It is apparent that will be constant from w»§ i®s value of

uj near 21TWX if By using the sane approximation for §ft(u>)

that was msed above* and th© faet established in Gfaapfcer 3* that Tj is-, 

proportional to ^h®» ©an be considered to be constant.,

over th® passbamd of. the averaging filter* the. following relationships 

©an be established s fj is proportional to (Wx - Wg) if the external 

noise is introduced withim the feedback leopj and Tj is proportional to 

if the external noise i® introduced at the omtpmt of the system® The 

result is equivalent to that obtained'for matched filter identification® 

Detailed analysis of the sampling -identification technique when, 

white noise is. Introduced within the feedback loop is not as easy,be­

cause of the relative eea&pLexity of the covariance matrix* Eq® (4-13)® 

However* by establishing the fact'-that the covariance matrix of the 

omtpmt noise is nearly diagonal it can be argued that the renults.f. 
this case are approximately equal to the results obtained when white 

noise.is iairodmted at the omtpmt®
The external noise correlation matrix* j|.a* is obtained by sampling 

the continuous. noise correlation function® If it can be shown that



4ni ■»lia.. raueh smaller than 0n(O) fer all m-1 it fellows that all.

elements @f off the major diagonal are much smaller than the. major 

diagonal elements*

Consider as external noise with an autocorrelation fumetion @f the

for®

-g|T|N/3e P ' <6-16)
1 2 ■

introduced within the feedback loop- of a system which is being identi­
fied by the sampling technique*- As f approaches infinity* the aster.;... 
correlation function. approaches I SC^T), i*©**: the noise becomes white* 
For this ©as® the power spectral density of the equivalent ©mtpmt noise 
expressed in terms ©f the complex frequency* s* is

| (s) . - §<s)][l - 0<-s)]
8 • 2(s+p){*®+p) J

Mff2 P(h) P(-s)

2', U + £ ) (-s + £ ) Q(s) Q(-s)

where P<«)--and ,Q(s} -are p#1y*«minals in s* The equivalent output noise 
autocorrelation function* 0a(T) * ©an b® obtained by taking the inverse 
lapl&ee transform @f Eq* (4-1?)* $a('T) will fee composed of a sup, ©£. 
tern** the relative amplitudes' of these terms are determined by the,',resi­
dues associated with the pales ©f ^(s)* ; Evaluatien ©£ these residues 
shows that the ■ residues associated with the poles located at s *: * p 
approach ^ times a c#Mta«t as. |§ approaches infinity^ whereas the 
residues Associated with the roots of Q(s) and Q(-s) simply approach 
a constant as ^ apprtathes infinity:* Thus in th® limit as the external



- Figo 6-10
Convolution ©f ^(u->) and ^ (w)



disturbance became® white becomes much smaller than 0m(O) s© that
th@ ©e>vam,aH@@ matrix ®f th® external disturbance is nearly numerically 

equal t® that obtained when white noise is introduced at th® ©utput ©f'

the system. It f©ll«ws £rm this, that and th® identification time 
will be nearly equivalent in the two cases also®

.©of Cteaoideration ®f a layr»wband l®±g© Process ’ ■ ' i!
' fp to now primary eemidoratLe* has been given it problems where the 

bandwidth ©f th® external noise is wide compared t® the system being ‘' 

identified® If the bandwidth of th® external disturbance is narrow 

compared t® the u®l»@wa system th© identification tin© can be reduced • 
in some cases® If th® disturbance occurs at frequencies that are well 

©mtsid® ©f the pass-band @f g(\) the effects of th® noise upon the 
■ identification could b© almost completely eliminated by filtering the 
observed signal before performing any identification operations® (See 

Fig« &”ll) She filter @©uld be designed with a stop-band centered 
ab©it the noised frequencies if they ar® known, ©r, if exact knowledge

ab@i® s«a@ lower eut«ff frequency could be eliminated provided the.cut- 

®ff .frequency is high enough t© permit th© fine structure ©f r(A) t® .

unknown system the somewhat mere
of, th<g 

If,,the
disturbance bandwidth is sufficiently narrow t® the trans­
mission spectrum «£ the system being identified, and if the range ©f 

n©is@ frequencies is knew®, then th® unwanted signals can be eliminated

by a^suitable filter as shown in Fig® 6-U® The filter will als© suppress 

th® signal which cam©® information about th® unknown system, but if the
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x(t)

Fig. 6-11

Elimination of Narrowband Noise by Filtering



filter has a marrow st@p“basd the less ©f signal information over this 

band of frequencies will'net in general have a serioms effect upon the 

impml.se response estimate® Men the noise can be filtered im this 

manner the identification time becomes the same'order ©f magnitude.as 

the significant durati©® ©f the impulse response®

.The seise .cannot be filtered ©mt before performing the identifi-. 

eat^en operations if th® frequency l©eati©n of the disturbance is, n©t 

known, and the techniques @f th® previous chapters mast be used® ....The 

identification time may still be redhead, however, if because @f the 

narrowband properties ®f thf noise,: a-larger output sigmaX-t©-n©ise 

rati®'can be used® .



CHAPTER. 7

SUMMARY OF RESULTSa CONCLUSIONS5 AND RELATED PROBLEMS

This final chapter discusses th® significance ©£ the ideal identi­

fier and its relation. to practical identification techniques* Th® 

eresseerrelation* sampling^ and matched filter identification, methods 

ar® compared from a mathematical^ »©ise immunity p aad ©peratiomal 

standpoint* Th® importan©© ®f th® results ©£ this research. for adap­

tive systems is discussed4 and seme suggestions are given f®r future 
work ©a the problem ®f system identification*

of th® Ideal Identifier

Th® concept ©£ th® ideal identifier pr@vid®s a e®mm©n basis Tor 

©©mpariag all'Conceivable identification techniques* Th® problem'"©! ■ 

system identification ©an be stripped of all considerations of hard­

ware and implementation aid eonsidored solely from th® point of view 
of statistical parameter estiaatiaa by introdueing' the ideal identifier*

Th® ideal identifier has been defined in smeh a manner that m® a

knowledge e®ne@im»g th® uskstewt impulse response is required* In,,;.,

effect$ this means

all

® value of g( A) is ©©mpletely .fade- 

* As a result9 th® express!®* .,©b=?
th® particular,.

impulse response that is being measured^ and depends ©sly upon the 

measurement environment■parameters and th® degree of aeeura©y that .is., 

desired* The measurement environment is specified by the power spectral 
density of th® external »©isse aad the mean square value ©f th® test sig­

nal* The @v@raH aeewaey ©£ the impuls® respens® estimate is determined



by the variance aad the sampling interval aA d Tfe@ variance 4s a 
I

direct measure ©f th® errors 'resulting fr®m external a©ises a»4 a 
trad* ©£f between rariaae® and id®ntifieati©ii time can be made* Although 
the sampling rate is »#t a direct Measure ©f the ®rr@r i»tr®dmeed fey 
approximating g(\ ) by a finite @@t~ ©f parameters $ it determines a:®mt*» 
®£f .frequency above wfeieh irferaati©* about g{A ) is lest* Wmm a 
priori information about th® makaown system1 s bandwidth is available aA

.... Th® id<§»ii£ieati©» time as ietendnei by th® Ideal identifier if: a
conservative estimate ©f th® time that weald fee required t# identify an 
h«to|®wa system in a practical situation 0 It is conservative is few© re­
spects., Firsta ideal identification is performed i» aa @mviy®HE@»t ®f 
white a@is#j, and thus represents a condition where it i® impossible t© 
mse th® autocorrelation properties ®£ the a©is® t® redmee th® identifi­
cation tins®* la practice the m®>is« is sever irmly white j. aad th® ©@rr®- 
lat4« properties ©f the m®is® ©©mid theeretieally be msed to reduce the

*arr®wfeaad. aois® in Chapter i><> Th® problem ef hew te best ms® the ami©- 
©errelatioa properties @f th® mats© t® r®dm® identification tlma has 
aoi-fe®®® @ffl»sid@r«4<, ideal ideatifieatioa yields a ©©asarva-

knowledge afeomt the k»®w-
*e«ag® a,® <M0.suuL,y amiaBJj* rr@per wpiiaxa files. ®r wia a prion know-, 
ledg® should result in a reduced identification tim®e

AXtiterngh the ideatificatien time @f the ideal identifier represents 
a' greatest lower bound ©it the identification time obtainable fey practical



techniques it is am important result because many of the methods in., use; 

or proposed is the literatures are equivalent t© the ideal identifierj 

it is9 therefore9 applicable to a vide ©lass of current problems0 In 

addition; a© mentioned previously; the result of the ideal identifies? 

serves as a base point to which other identification'.methods ©an be 

compared*

7*2 Equivalence ©f (frosseorrelatiom* Sampling,, and Matched Filter

Identification

- There is an inherent mathematical similarity between the three " 

practical identification techniques that'have been considered in this 

work* That, this .is the ease is not surprising because; after all;-.-each;, 

technique has the same objective - that of identifying; in terms of the 

impulse response; an unknown linear system* The mathematical unity of 

the three methods is provided by the Wiemer-Hopf equation

<VT) "\ g(X) dA (7-1)

The .^solutiom88 of this equation is accomplished in crosseorrelation - 

identification by using a test signal with an impulse-like autocorrela­

tion function and measuring the value of the input-output crosseorrela- 

tion function at the desired values of delay* Matched filter identifica­

tion also uses a.white test signal and approximates a solution t® Eq*

(7-1) in a similar manner* The two techniques differ in that the matched 

filter output' signal displays an estimate of g( A ) as a function of real 
time; whereas the crosieorrelation method presents its information as a 

function of the' erosseorrelator delay parameter; *C *
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. Th© identifieation technique based on samples of input-output data 

approaches th© solution of the Wiener—Hopf equation in a different 

manner* la this ease th© integral in Eq. (7-1) is approximated by a 

fipite sum*. aad a set ©f linear algebra!® equations is formed "with.,, 

sample points .©£ g(A ) as .the variables* Am estimate of g(A) is ob­

tained by solving this set ©f algebraic equations* The solution is.., 

greatly simplified if th© test signal is white* for then the equations 

becpae-independent*. : '

Will® th# underlying mathematical equivalence of these identifi­

cation t®©Uniques may.be. apparent the statistical equivalence is .net*

In qrosseorrelation identification the external m©ise is multiplied by 

■ th® ..delayed test signal resulting in a noise term in the signal at ..the 

output of th® multiplier*. .Since the-inf®rmati©a»beariag part ©f this 

signal is th® average value* noise reduction is accomplished by mean®

©f a.low-pass, averaging'filter* .The. external noise.is for th® large 

part unaffected by the matched, filter ia that identification techniquej 

the variance in th© estimate is reduced in this ease by averaging 'over 

several individual estimates of the impulse response * This type of 

noise reduetio® may b® achieved by using a cento filter*
, Sample point® @£ the estimate of g(A) in @r®sse©rr®lati©n identi­

fication, may b® thought of as being measured in parallel* each ehqm*a$. 

of the ©errelator providing an estimate ©f a single sample point* Jtt.® 

parallel type ©f operation allows- th® use of low-pass filters t© rfdue® 

the,effects ,®£ th® external, noise* The matched filter method provides a 

©ontiamwa estimate •£ g(A ). as a. fuaetto* ef ’ real tdae; estimates' @f 

g( A) may be thought of - as being-measured la series* la this ease it is 

only by th© ms® ®>f- a repetitive test signal aad averaging over a number



©f estimates, that the effects ©f the external moise ©am be reduced,,

The sampling method ©f system identification incorporates both 

series and parallel type ©f operations. In general the input aid out­

put, sisals are observed for a length of time that is equal to an inte­

gral number of periods of the test signal* Thus, in computing the em­

pirical . correlation functions, a real time ©r series type- of averaging 

Is performed. The solution of the set of algebraic equations provides', 

estimates of each sample point simultaneously, a parallel type of 

operation, • '

Although each identification scheme is based upon the solution of 

the Wiener-Hopf equation the external noise enters the problem different­

ly in each method, and different, techniques are used to reduce the vari­

ance of. the impulse response estimate-j nevertheless, each type of identi­

fier yields exactly the same results, for the identification time, While 

the mutual equivalence of these practical identification operations if 

important, of even greater importance is the result that these methods 

are equivalent to an ideal identifier! they represent the best that can 

he dome when no a priori knowledge of the unknown system is available,

7,3 Operational Similarities and Relative Advantages of the Various .

Identification Methods

There is in addition t® the similarities of the identification.., 

techniques mentioned above an operational similarity which is particular­

ly evident when the external noise is white aid the test signals ar@..:.ic.i, 

©ptimized. In order to guarantee a satisfactory estimate ®f g(\) both 

■erosseorrelation and matched filter identification 'techniques require 

a wideband test signal, on© that, from the standpoint ©f the unknown



system,, approximates a white spectrum. The optimum test signal for the 

sampling technique is white only when the external disturbance is white 

noise* Wiile the sampling procedure offers the advantage ©f being able 

to operate with non-white test signals the computational advantages 

gained by using a white test signal often outweigh ary advantages that 

might be gained by optimizing the test signal for a non-white external 

;noise* .:

. Another similarity regarding the test signals used by the' vafifpb, 

identification methods is that in each ease it is advantageous to use 

aperiodic■:test signal* for;, crosscorrelation the use of a periodic,.,..,; 

test signal^ and an ideal finite-memory integrator as an averaging 

- filter5 -eliminates the noise terms in the impulse response: estimate 

that would normally result iron the random character.of the test signal 

Averaging, over a number ©£ independent .estimates is easily .accomplished 

in, the matched filter method if the test sigmal is periodic* The ad- 

vantage of. using a periodic test signal$ and observing x(t) and y(t) • 

for., an integral number of periods s in the identification technique 

using sampling is that.the test signal correlation matrix is inde­

pendent of the particular time at which the sequence of sample points. „ 

begins, o This, property makes it possible to permanently store the test 

signal correlation information^ thereby simplifying the computational' 

problem*

, Bach identification method' offers some unique feature .with regard 

to. the'way the impulse response estimate is presented* The-matched.. ■ 

filter method offers the advantage ©f producing a''continuous' estimate 

®f gCA )s dad is particularly useful when analog computations are to be 
performed* The sampling technique■presents a set of equally spaced •



sample points which lead themself®® t© digital computation*, Hewevery, 

the sampling method requires some digital ©amputation im order t® ...ob­

tain the estimates whereas both the matched, filter and er©ss@®rrelati©m 

methods yield impulse response estimates directly*. The output of the.

filter f®r each ©hansel in the eros seorrelatioa identifier 

lostisuons signal representing the estimate of a single sample 

©f the umkaowa impulse response® Output data in this f@m ©am 

for eertais types ®f analog computations and it .is 

digital fora* Another advantage ©£ erossssorrela- 

is that the distance between sample points is determined by the 

in each channel and need not be equally spaced® This property 

as grouping a, large number ®f sample points where „

rapidly with respect to A , . 

where the value of g(X ) is expected

,'It is extremely difficult t® assess the relative advantages of .the 

identification techniques from the standpoint ®f equipment complexity 

unless the assessment is mad® in relation t© a particular application* 

■For.i»stas®«5 the ©@astrmeti©h ©f a suitable matched filter and eea# 

filter may seem much more ■complicated than a er#sse@rrelat#r mit* H®w— 

everif a ©©ntimueus visual display af the impulse response estimate.,., 

is needed im a certain application it earn be obtained directly with th* 

matched filter identifier and a ordinary oscilloscope j, whereas the., 

erosseerrelation method would require additional electronic equipment 

t® transform its output data ist® a ©©ntinmoms display of g(A)« la 

the absene# «f a well-defined application a© general ©©meXapioss regard- 

lag the relative merits ®f the.various methods earn, be made fra® the



equipment standpoint*

7*4- Significance of Identification Time Results for Adaptive Systems

The results for the identification time of a linear system that hare
.... ■ • >

been established; in this work indicate that any of the identification 

schemes that have been shown to be equivalent to the ideal identifier, are 

practical for use in'adaptive systems provided the environmental condi­

tions s or system parameters* are slowly varying with respect't® the,,., 

significant length of the impulse response* ■ Although the identif i©atioa 

time.is highly dependent, upon the output sigmal-t©-noise rati© and.the 

variance of the estimate* 'the identification time is of the order., of. ,,1@, 

t® 1®® times the significant duration of’-the impulse, response* As a, re- 

erupts these identification techniques will not-..provide accurate data -for 

rapidly varying systems*

. The concept ©f . using the output sigmaf-to-noise rati® as a criterion 

for establishing the mean square value of the test signal is a reasonable 

on®:if.the external noise'bandwidth is-at least of the order, of magnitude 

®f the. system bandwidth* , In- such..situations the effects of the noise upoa 

the system .can be used, as a basis fir assigning a value of $ so that the- 

test signal will not'unduly -disturb the.normal, operation of the system*,,. 

l®wever*'if-the-external disturbance is confined to a relatively small., 

frequency band the.. signnl-te-nsise rati® concept must be used with more,, 

care* The frequency distribution of the output signal'due to x(t),-.is 
determined by-the transmission characteristics of.the unknown system! ,. 

hence* .when the noise is narrowband* the signal energy is distributed... 

ever & wider band ©f frequencies than the- noise* This condition may re­

sult in' an allowable value of £ that is appreciably different £rm that 

which would be ejected for wideband noise* In-eases.ef low intensity'



wideband noise* ©r when the noise is narrowband* it may be possible t® 

increase the output signal=t®*=n©ise rati© enough t© reduce the identifica­

tion time t© the ©rder ©f magnitude of the impulse response *s significant 

length*- In the absence ©f a priori knowledge this is the best that can 

be done by ad measurement technique* • '

?*S' Belated Problems

This research has studied the problem of Identifying an unknown..

linear system by means of. its impulse response function. Estimates of"'"" 

the ■ system transfer function or' other transforms (such as the Z-tramsf ©sm) 

which completely describe the system may be obtained from the impulse re­

sponse estimate* However* there is no guarantee that the transform of an 

impulse response estimate will be 'a. good. estimate of the true tramsf©i® - 
[l2a Guillemia* p» 642]*. Consequently* a problem worthy, .of eonsideraiion 

if.the identification time required to obtain estimates of the system 

transfer function directly* ' .

* 'In addition to the impulse response* transfer function* and Z=irams- 
form* a complete description of the unknown system .©an be obtained, by, 

specifying the coefficients of a series expansion of the impulse response* 

The,^representation of g(A) by a series of orthogonal functions is, ®f 
particular interest because the practical identification techniques that 

have been considered are readily adapted to the measurement ©f the . 

efficients ©f such a aeries*

As an example* the crosscorrelation identification method can.be...,.....' 

modified t® measure the coefficients of an orthogonal expansion ©f g.( A ) 

by replacing the ideal delay in Fig* 3-1 by a -filter with am impulse re- 

U With this change the expected value of the multiplier out-



signal is

E[x(b-Aj) x(t -A j)] %(Ag) g(A j) dA^ £Va (7-2)

ami if the 'test signal is white this becomes proportional t©

(7-3)

Comparing Eq„ (7-3) to Eq* (1-9) shews that if h^C X) is made equal t<» ^; 

%(A) the .modified erosscorrelation technique can be used to measure 
'the coefficients ©f an. ©rthonormal -series. expansion of g(A )„ ©f e©wrse, 

-each ©©efficient would be measured by a different ehannel of the corre­

lator 6 *.

. ... I@ change in the mechanization is required to adapt the sampling 

identification method to estimate.the. coefficients of an ©rthohormal. 

series expansion of the impulse response0 'the necessary.modifications 

©ccur only in the manner in which the data is processed* If g(p) is

i-Vi(p)

Where the 4V are members - of a set ©f orthogonal functions, the normal



where

4^(0) y2(o) . . . . (|)Q(o)
4^(1) 4>2(D

(4^) ■■ (7-6)

and

^(P) %(?) 4<q(P)

A
<*2

(7-7)

A,_^Q

AI® order to assure the existence of a unique solution for the c*£. the. 

4^(p) mast be linearly independent and Q = P + 1,

■ fhe matched filter'technique using a periodic- test signal can be ' 

adapted i© measuring'the.'coefficients of an orthogonal series expansion 

of the unknown impulse response by feeding the output signal of the 

matched filter into a spectrum analyser* ' A simple spectrum analyzer con­

sisting of a bank of narrowband' band-pass filters may be used to obtain

the Fourier series coefficients of the matched filter output. signal, 

the effects of external noise upon the measurement of orthogonal......

function coefficients has.not been considered in detail. Howevera..be­

cause such an expansion can be interpreted' as a change in coordinates it 

does not seam likely that the identification time associated with the esti­

mation of the coefficients will differ appreciably from the results obtain-



, 'The @xfcea®i@a ©f the results ef this research t® mnltidia@*®i@mal 
systems^ i«®oS systems with several input signals arid several ©utpmt 
signals9 can b® achieved by using a suitable matrix s®tat±©»„ Identi­
fication ef mdLtLdimeseienal systems by sampling techniques has been

The limits ©a the 14®*tifi©ati©a time that.have been established 
by this w«?k were obtained under the assumption that n© a priori .knew- 
ledge about the system was available* la practice the engineer usually 
has .seme knowledge ef the properties. ef the system he is werktag wibhs

If an
it is felt that
knowledge. ..about. the

this statement raises

reduction ia the identification time is possible 
obtained ®aly if the available a 
is msed ia aa eptimam manner 0 
questions than it answers,, lhat typ®.:©f 

about the unknown system1 will b® most useful ia. re~ 
time? §aa th@\a priori knowledge be stressed

l®@wX®dge t® be la­in a ■useful mathematical manner? Hew is the a

at this 'point 
in the area®

amount ef a

method a

All ef these question® ...are., 
and should serve te stimulate future researeh

identifieati©a techniques that require a limited, 
about the system^ usually the «rd@yj> have, 

literatureo’ Kalman has suggested an ideatifieati®* ' 
the coefficients of the ntaaerat#!’ and dew(Bari.»at.«» 

system'8's puls® transfer fuaeti®n [13 s Kalaaa]o, This 
about the order ef the unkneen syst«®«



A ntsnber ©f identification techniques which employ a m@del ©f the physical 
system have bee® suggested, Margolis and leondes [if] propose the mse ©f 

a “learning model** f®r system identificati©®, and Whitakers et^al,'discuss 

an adaptive flight @©ntr©l system employing a model ©f the system t© be 
identified [2§J, The general approach using the model technique is the 

followings if the order ©f the system t© be measured is known, a model 

©f the' same ©rder is eh©se®| if the order is not known, tits engineer ...de­

cides t© represent the unknown system by. an ©rder system where n is 

based mp©n .seme.a priori, knowledge about the system and perhaps a..certain 

amount of engineering judgmentA,block, diagram, of a typical identifica­

tion technique employing.a model is shown in Jig* 7-1, The difference 

between the output of the- system under test and the • output. '®f the model 

is... f measure ®f the degree @f ng®odn®ss” f@r the model, When the, m©d#l 

is . an exact' replica. of the unknown system the error signal will be zer®,

. A;,.parameter'adjustment computer adjusts the parameters ©f the modfl until 

s«me function of the error signal is satisfied* The nature ©f the. ..parameter 

adjustment computer varies with the application, . . .

. , The effects ®f .external n©ise- up©n the identification time required 

by techniques which make use ©f some a priori knowledge have not been 

studied, An analysis ©f this problem would perhaps provide a elme,t®.-.. 

thf.savings in identificati©n time that could be.achieved.by optimally 

utilising a, priori information about the system, ■

The aim ©f the id@ntificati©n techniques that have been presented'In 

this work has been to obtain a complete description of the input-tmtpwt 

relationships of a linear system,' .A very important and basic question 

arises at this point. In the applications, particularly, in adaptive 

e®mir@l applications, is a complete description @f the system mf pessary?
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enables the

compute any other properties of the system he

smh as gain* rise time, or overshoot* Perhaps, however, it would be ■ 

easier and faster to measure the other quantities directly* The general 

problem of identification time requirements and measurement techniques 

for partial identification of systems has: not--been investigated, and it 

'is-felt that this problem warrants attention* Insights gained 'from the' 

consideration of partial identification of linear systems may open the 

way to solving the identification problem of rapidly time-varying or 

non-linear systemswhere complete identification becomes impractical.
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