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PREFACE

~ This report is the setond velume of a two-velume final repers
prepa.:éed Ey tm S@hé@l of Electrical Engineering, Purdue Umiversi‘éy,
uader USAF Q@ntraé'@ No. AF 33(616)=6890, ijéét; No. 3225, Task No.,
82181, The contract is admimstered 'imder the directien of the
Flight 8@@%@@1 Lab@rat@ry, Wright Am D@velepmen"@ Diviﬂion, Wright- |
Pattersen Air Ferce Base, Dayton, Ohi@, 'by It. P, C. Gregory, *@h@
ixaimat@r ef the study. ,

The first velume presented the devei@pment aﬁd analysis ef a |
particular class ef a.daptim centrols under the assumptmn ef ‘bh@ '
availability of idemtification informatien. This secend V@lume deals
with the limits en the identification time f@r'uneag» systems fer a
nurber of idemtification techmiques.

) For the past year Purdue University has had partia'i suppert by
the Air Ferce im a rather bread study of adaptive 'céntrel mtmo
The Study was initiated seme twe and one half yeam age and is st,lll
@@nytmmﬁgo Dumng ‘thls gen@ral research effort a mzmber of emtmal
axﬁ@as iz@,.the theery of adaptlve contrel have been ume@vgrgdo Im
several of these areas speéific research @bj@@@iﬁ@é wer@‘seﬁ and Te-
sults @btalmd.,, while m. @t,h@zﬂ areas work remains t@ ’be d@me

., ne_ ef these @ritical areas, covered in Velume I of this flmal
r@p@m by Gibsen and M@d.m@hs is the unnecessary rest,ri@mma of the
adj@s‘@mét precedure te imcremental er cm’@mﬁ@m adjustment ef physical

parameters, This is the parameter 'adjustmn{% Mlu‘f;i@n to the contwrel

gﬁiﬁﬂ medification preblem, The mere gemeral procedure, discussed im

Velume I, lies in combrel signal symﬁhesia,, in which a new signal is
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génerated with which te drive»bh@ plant se as to achieve optimum resp@ns@;

A second eritical area that has been under investigation is the
identlflcatlan pr@blem.v This siudf, which is reported im this volume of
“the final repart has establlshed the minimum time required to identify
: th@ impulse respense @f any llnoar system in. bhe presence of randmm
. dlsturbances and in the absence of a Eusﬁﬁw kn@wledgeo This result has,
been @bbalneﬁ f@r several diff@rent practleal identlfieatlwn techniques
‘as well as f@r th@ ideal 1dent1fiero

Imdep@ndent of Alr Force suppert, S@hiewe has reported on h@s,_
analysiﬁ @fvmuitiwdimensiénai adaptive sjstams which measure nmtfﬁhe »;
’impulsg réspénéé of the plénb but only eerﬁain imp@rtanb’aspects;ef e
thab resﬁ&nSeﬁamé Eveieigh has éémpargd inerememhal VS, sinusoidqlv
perturbaﬁi@n in ﬁultiadimensi@mal adaptive systems for speed of re-
sponse and hunting 1@35. Tou and his c@awmrkers, Joseph and Lewis,
have béen actively siudying the digital adapti%e preblem and achieved
vgr& @ncauragimg resui£s¢
‘\‘ Wbrk is e@ntinning néﬁj@n new, fast identificatiom scﬁemzﬁ amd
'the@retical analyses of identification with 2 Egi@ﬂﬂ)lnfmrmahimna as
well as in the newer and relatlvely unexplored area of systems whlch
exhlblh learnlng, These requlre mem@ry capacity and extended logic 1n
the adaptlve loep and the capaclty for madify1ng the contrel law in

acc@rd‘w1th generallzed perf@rmanc@ crlterla.
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ABSTRACT -

The problem of estimating the impulée respense of a linear sysquu
arises in adaptive comtrol problems and elsewhere., Often it is necessary
te make the system identificaﬁi@n in the presence of exﬁernal m@ise dis-
turbances, This werk comsiders the prwblemlef determining the tiﬁm that
is necessary te estimate the impulse response of a linsar system with a

specified variance. It is assumed that essentially ne a prieri knowledge

abeut the w&hméwn system is available, and that the output sigﬁalwwf:th@
system is @@rruptéd/by.anuadditive staﬁimnarybn@ise signal, |
A;-Am ideal identifier is defiaed as a &wvic; that yields, f@;_%;giggg"
ide@tifi@atiwmvtimog’miﬂimgm.variamé§ o&ﬁimatés of samples of the unkngwn
impglse response funebion,. St#tisticél parameter estimation %@@h@%q?ggﬁ
areﬁused to determine thé,idemtificati@n time‘reqnired by an idmalmh_iﬁ;
‘identifier, The results show that, whem the external disturbamée is
Gaﬁssiam éﬁd white, and the eutput sigmalvem&rgy is large @ampared @@Lg;
the pewer 3p@@ﬁral d@nai@y of the noise, the idémtifi@abian time i@i,ﬁfﬁ
pr@p@rti@hal te the p@wér Spmctral density of the neise, and inversely
"pr@p@rti@nal 0 the variance of the estimate and the mean square value
ef th@‘imput‘tws@ signal. The identification time is iﬁdependmnﬁ @f tﬁ@
impulse response being estimated. |
The id@mtifi@ati@m‘tim@s required by $everai practical idemtification
gschemes are éal@vlhted am& compared to the idenbificati@m time @f.hh@_>
ideal identifisr, It is established that, whem the impub best signal
is optimized and the neise is white, the metheds of cresscerrelatien,
sampling imput-eoutpub datgg and matched filter idemtifi@ati@n are all

equivalent te the ideal identifer,
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. Depending upon the size of the variance in the 'iinpulse response
estimate that is required‘ it is 'c@zaclﬁdedb that, in the absence of a
priori knowledge about the systém, and when the rms response of the
system to the input test signal is of the same order of magnitude as
‘the variance of the external noise s the time required to identify m
unknown systaen; is an order of magnitude or more greater than the _—
significant length of the impulse response, It is also comcluded
that, when the noise is white and the test signal is optimized, no
| me§§urement technique will yield a smaller ‘idemificatieﬁ time tham
that of the ideal idenbifier; It is pointed out that further re@ag’gian
in identification time could probably be achieved by identificatien
schemes making maximum use of all available a knowledge abéu‘@

the system,



CHAPTER 1
THE IDENTIFICATION PROBLEM

The;prcbliem oi“ system identification and its relatio;z to the current-
ly active area @f adaptive .ss'rsltems is discussed inbthis introductory
chapter. The framework, into which the primary problem ccnsidered in this
research fits, is set by the idébn’c;ification requirements of aﬁ adaﬁtive
system and the classification of identifieation' techniques. The specific
problem is stated, and,‘ the basic assumptions, upon which thé 5,1‘&13’?513:'3'?;3
built, are given, Finally, to provide a starting point, a review _Qf some

of the properties of impulse responses is presented.

1,1 The Identification Problem and its Relation t@ 'Adéﬁtive' Systems

The generai identification problem consists of determining a”é@mpiﬂete
deseription of the relationships between the input and output sigﬁals_ of
an unknown sysben haviné input signals Xy Xp ;. ;,' o 0y vxj axid 'wtput sig-
nals Yys 372 s 0 ¢ o9 Tieo In general the unknown system may be non-linear
and time~varying and the number of input signals, j, need not equal ~‘the
nmumber of output signals 5 ke The behéffi@r éf fhe ‘unknown ‘system is to be
determined by ma.king sultable tests among the various inputé and outputs,
This problem has been discussed by Zadeh [33], Ise [15], Woodrow [30],

' Moore [1d] 5 and, others, Current interest in the identifiéation problem
has been stimulated by recent imrk in the area of adaptive centr@l systems.
. There is not;, as yet, a generally accepted definition of ‘an adaptiy?
control system, but one which has been widely used is the followings. "An
adaptive sysﬁem is one which is provided with a nis’ans of @ontinu@uély
monitoring its own perf@rmance in relation to a given index of perfermance

or optimum condition and a means of modifying its own parameters by cleosed



loop action so as to approach this optimumg§~ (5, Gcéﬁer, Gibson, et@'alJ'
This definition implies thét an édaptive>system.must be éapablg of per-
f@rming the following functions: provide continuous information about
the present state of the system or identlgz the process; cempare present
system perf@rmance to the de31red or ept;mum performanee amd make a
d@clslcn to adapt the systam so as to achleve eptlmnm performanee, aﬁ@n
flnallygvinltiate a preper-modlficatlom so as to drive the eentr@; aystem
té.th@ optimum, These thfee.prineiples;.idehtificati@n, deeisi@n%iégd'
ﬁ@difieation are inherent in any adaptive system, This'funetibnal.hreaku
dewn of an adaptive system is similar to that propased by Aseltinc et .al,
[é]e Furthermmre, this breakdewn is a useful eoneept far the des1gn of an
adaptlve system as it clearly places th@ adaptive nature in evidence¢ ?ﬁ
“An identzfieation technique t@ ‘be useful in adaptlve contrel systems
must meet two conditionmss: - first’ the 1dent1fication must be made;1a §§@v
presence of normal epefating signais, and any tests pefforméd upon theﬁ;
system must not unduly disturb the normal eperatlon of the contrel system%
seeand the 1dentif1cat1mn.mnst be made relatively quickly if the informa-
tion is to be useful for the declsion~mak1ng and modiflcation phases @f th@
adapt;ve processo> In order to measure the characteristics of an unknown
pr@cess it is necessary to supply energy'to the systemo The former re-
qnirement makes it necessary to use IQWblevel test signals or nermal -
@peratlng signals to furnish the energy neeessary for system,identifi@an
ti@nor As a result, the response of the system,ls small and the effects of
ncise‘dlgturbanees become important. The influence of noise upenﬂﬁhgﬂfw
‘@bseryation of the system®s resp@nse détermiﬁes the-lcnéth of £im§ that is
i@qui?@d to identify the process, énd hénce, is direetly relabéd §Qvthe

latter requirement of an identification technique.
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Altheugh this research has beén motivated by the particular re-
qulrements placed upon identlflcation techniqpes by adaptive systems. the
results are n@t restricted to this particular application. In view of
thls, dgtails of the the@r@tical work have not been specifically related
to the a&aptive problém;ih@ﬁevergfthe examples which:are considered are
di scussed ff@m the viewpoint of adaptive systems; and a section of the
1ést:@hapter is devoted to the diScussion ef’thé siéﬁificance of the re-
sultsgofithis‘resear@h for adaptive systems,

‘Im‘amy'applicati@n reqniringbthe identification bf an unknowp“syspgm
it igﬁﬁég@ssary tQHSp@@ify.h@w the process is to be déseribed, what prior
knowledge is available, and how the system is to be eﬁbiteda TheLunknows
system.may be described in a e@mplete or partlal manner, Examples of
@@mplete system speclfication 1nclade such 1tems as the values of all in-
dependent parameters, and the time response or transfer functian ;elation»
ships between the various inpuﬁs and outputs; The latter twm methods of
d@séripﬁi@ﬁ apply only to linear systemso An unknown pr@cess @an be ’
describ@d in a partial manner by specifyimg such quantlties as galn, rise
t;@egFand overshoot, resonant fr@queney and relative damping ratio; ervthe
describing function. | |

Id@ntiflcati@n t@@hniqn@s ean also be clas51£1ed in terms of whether
or n@t they r@qnlr@ some a.BE%Q,W kn@wledge about the systems characterlsticsw
Th@ avallablllty @f a Emmggg knowledge ab9n$ the system to be identlLlpd
‘can range fr@m a complete la@k ef any pri@r kn@wledge at one extrem@ to .
@Qmplgte knowledge of bhe Systemrbeh@v1gr'at the @there In most engineer-

ing situations sems a prio iori knowledge is availablegtiﬁ some insﬁaﬁc

@rd@r @f th@ system is known, while in others the ranges and/@r rates @f
change of the syst@m paramet@r@ may be Knowne

The source of energy used t@ excite the system offers a third useful
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method of ¢lassifying iderrblfication techniques, Identification cem be.
made from observati@ns of the eutpﬁt, signals due to the systems n@mal
operating signalso A,ltematively, a test signal, designed solely f@r
the purp@se @f 1dent1fleation,, can be applled to the input temﬂals s

_ and the system respmasa observed, Advantages and disadvantages .; of ,

ga@h% me"&;h@& have been discussed by Cooper and Gib,soﬁ, et, al, [5] o

igﬁ‘é‘&a‘bemenﬁ @f ﬁhe Pf@blem amdeaéie Aswmp@i@ns

‘:"i‘h@ aim,‘ @f thié research is to determine fundamental limits on the

| tim_eftha?b is required to estimate, with a specified accuracy, the impulse

i?éépoiis@ of a linear system when thé measnreﬁent te@hniq‘a@ is emﬁuﬁtéd

by external noise signals., Thus s the problem is one @fmakz.ng a @mnpl#t»e .b
idéﬁtifieéti@n as 'épp@sed. o a partial identification. The analysis, for

| s:u.mplm:.t,y,, is restm,cted t@ systems W‘;L'hh a s:.ngle :anut. and a single out=

put alth@ugh the results are app]ieables with a suitable m@difieatmn .of
@tati@ng to mltidmensmnal systomso O.f primary in‘berest is the detern

, minat;i@n of a conservative ilim.t, 5 & greatest Lower 'b@'ald,, on the identifi-

| eat:.on t:uneo For this reason enly identification '&;echniques that d@ n@t

krequlm any a E’P;Q;m, kn@wledg@ of the system are @ansldered A beeauso -

prior. uknms‘ledge , if properly used s can @nly serve to reduce the identif1=-

@ati@n timea As an example,, @@nsider the llmitlng case whers the system

is kn@wn exactlyo Then it is not even neeessary to make a measurgz\geg@@@

igeqpify the system o aa ;:v-identificatiican be aéhieved in zer'@time,

Rather than tie the identifieatiaﬁ‘ process to the properties of nermal

@pera,tmg s:.gnals s Which vary depending upon the partieular appllc:atien ,,‘

only 1dent1fmat10n techmques usmg test signa.ls are treat.ed.g In sf_ ulﬂ'."f“

the problem is -@h@, 1nvestiga‘bi@n @f t.he iontifieatiem time requirements-

of the class of identification techniques which, completely identify a
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llnear system in terms of its impulse response s do not rekquire any
a m knowledge about the system, and receive their energy from
special test signals; | |

.. The basic identification problem is illustrated inm Fig. 1-1 al@ﬁg
with the n’étatien used for the input test signal, output signal, external '
noise, and observed signal, The inpm‘b test. signal is assumed, in m@s’&s
instances, to be a lmown detemmistlc quantityo Desireable pmpert:n.es '
of a best. signal include: a small mean square value » a:nd a small peak
. power, so that the n@rmal operation of 'hhe system is not sez@i@usly d:.sw

- turbed; and a wide bandwidth, se that the h:l.gh »freqaen@y@haracte;_ris‘

of the system can be meaé‘ur@d¢ Practiéal systems are not tﬁuly bagd:_{,_
limted (zero transniissien above some eutéff frequenejr) so that it weuld,:
‘be necessary, in theory, to use an mﬁmte bandvd,d’@h test signal in -
erder te ea‘btain an exact repr@sentatlon of the systems impulse responseo
In p;f%ctlce s however s if the equivalent noise bandwidth 18, I«hdd;.e’geeni,,i
Po 684] eof the Itest, signal iél wide compared to the equivalent nois@ _band- |
;vigith,@f the system, theb errors in the estimate of the impulse response.
~due to ﬁnite bandwidth test signals are sma,ll. Since the main interest
" of this 'research-:i.s_ the errors in the impulse respense estimate due_te
the external disturbances it is assumed that any errers due to the .
prac*&;j,cval limitations of the test signal are much smaller than th@se__ )
caused by the neise, Equivalently, the test signal ‘b'andvﬁ,dth lis égsmp@d
to be_large compared to the bandwidth of thé known system, |

'fhe oubput signal is assumed to be unmeasureable thereby r@quiring
the iden‘bifmation teo be based upon measurements of th@ observed s:;.gmalg
A stationary ergedie random process, with zero mean, is assumed f@r_th@ :
@xtemal noise disturbance, Chapter 6 illustrates h@w;nc;ise signals

originating at the input, or within the system, can be répresented by



Input Test Signal
x(t)

Output Signal

| External Noise

| n(t)

Observed Signal
_yle)

 ﬁhkn¢ﬁhr3y$t§Q1“ wit)

T gl\)

Fig ° 1—1
ThevBasic‘Identificati@n Problem
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eqﬂivalent noise s:.gna,ls intreduced at the wtpta'b as shown in Fig. 1-1.

' chapter 2 introduces the concept of an ideal identifier and deter-
mines the identification time required by an  ideal idemtification technique.
The results ére_ indepehdent of the particular system that is Eei identi-
fied, and do not depend upon any particular measurement vtechnique;. ‘Thus
‘th,@ »idemtifi@atian time of the ideal identifier serves as a ﬁsefu;l_. ‘bagia ,‘
t,@bwhjich practieai. identification schemes éan be éempamd; e

“ Tm effects of extermal noise nperi the identifigati@n time @fthree

‘practical identification teehniques are analyzed in Chapters 3, h,_,ar.?;j‘;

No initial claim ié' made with regard to whether or not these techniques
are >.@‘ptimum or ﬁ@t » and iﬁ is gratifying that _ea@h' of the three metheds 5
@f@ﬁseerrelatior% sampliﬁg » and matched filter, turn out te .be équiﬁaient
‘to the ideal idemtifier, | -

_ Examples are considered in Chapter 6 in. @rder that the theereti@al
res%ﬂ_jts of the preceding @hapters can be tied down to some praeti'eal‘
pr@bl_ems, The importance of the identification preblem in adaptijve‘ -
sjg;&gms Jjustifies discussion éi" the examples from the adaptive vi;eivy'ebf
into However, in keeping with the objeeﬁ.ve of this work, detailed
analysm of the effects of normal epera‘ting s;gnals upon the va.m@u@
identifmatmn techniques is net eonsideredo The @perating s:z.gnal@,, -
i’fr@;g_uthe viewpoint of the iderrbificatlen pr@blem, are unwanted @rn@ise ‘
signé;a which tend to inémase the identification time. The particﬂlar
rteq?;;ireﬁents of an identification technique for an adaptive syste{ié‘-_:m;é,k@:‘
A ;t__»@@mvenient to express the identifieation, ﬁime in terms of {,he g;gstem@
gaiﬂ»bandﬁidth preduct and the signal=t6=neis‘@ ratie found at the:-fwataﬁﬁt
of the system under testo Simce the exact nature of the system is
generally unknown, it is only pessible te consider average valﬁeg of the

gain and bandwidth. The final chapter simmarizes the work, comments onm
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-%h@ equivalence of the various identifieatien te@hniejues, discusses. ﬁhe |
3igniflcan@a of this work with respect to adaptive systems s and presents

vs@me related problems,

”103 Gharaeteristics and Representati@n @f Impfalse Respenses

A review ef s@me of the pmpert:.es of mpulse responses s aleong with
several analy‘hical and graphical teehmques of representing impulse re-
sponses s is given in this seci:i@na This smnmary of facts will serve as a
atarting p@int for consideration @f the identifmatian problem outlined
a’b@vea |

A Hn@a,r aystem is one Whos& :.nputemtput charact@eristms are. descr:\.b-

ed by a linmear differemtlal eqtaatim of the form

(8P apog B+ auut agp + ay) x(t) = (bgb ™+ b 1P # wue + byptbe Jw(t)
- | vm:‘,n - - - - (1-1)
where x(t) is the input signal, w(t) is the output signal,, and p 45 the.
@pera;t,@r d o The condition m2n is necessary for th@ physical reallzabllu
ity @f’ thgtsysteﬁzo In gemeral the coefficients a; | axad by are functions of
'@im “but are ind@p@ndent of x, The behamor of th@ system is e@mpletely

deter

mined if all t,he ay and b; are knmm as f‘amti@ms of tim@« A useful
demriptoi@m @f a limear wstem is the nnit impulse response which. is th@
s@lut»mn of qu (l=1) for wit) when the mput signal is a wnit impulse,.
0oy x(t) = S(t) 5 where S{t) denates ‘the unit delta function. . A know-
ledge of th@ impulse response of a hnear syatem gives a @@mplete deserip=
ti@n of the system, Assummg them is no initial stored @nergyg 1’6 iw .
p@ssible s by means of the integral equation

} w(A) = glA; £) x(t) 4t o (1-2)
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to prediet the behavier of the system to any input x(t) if the behavior is
known when x(t) = $(t). The impulse response is denoted by g\ ,t), 'afnd
is interpreted as the value of the output at time A when a unit impulse
is applied at time t, When the system is time-invariant g()\ ,t)é‘:"'becam‘es
-, g{A -t) and the impulse response may be represented gfaphi@aujr aé»'_ in
Fig, 1=2s For the time-varying case g‘(/\ »t) may be represented asthe
heibght of a surface above the As plax;e as shown in Fig, 1-3, It is a
p:;;@pe?tyj of physical systems that g{\ ,t) = 0 for A< t‘; This res‘g,g;ci‘ti_iign
is due to the fact that the system ca.n\not' respond before the exci?gﬁigpg
is applied. A second property of ysicail'y realizable systems is |
v . : -
5 S
le(A,t)] aA < o0 (1-3)
. © | .
In most practical cases expressien (1-3) implies that the impulse, re-
spons@ apprea@hes zero as (A -t) becomes largeo Thus in both Fig. 1-2
and Fig. 1-3, g{A,b) is zero for A<t, and the impulse response functmn
is @ssentially Zero fer large values of (}\ -t),

In the absence @f external noise the time required to mea.sure the ime

pﬂs@;mspense of an "'if.ﬁa system is equal to the significant dura,t:.on of
the impulse fesp@nseo The identification could be achieved by applyiu an
impuiée to the system!s input and observing the output. Ini’omatiqg va;pq}rls
the form of g(A,t) cannot be obtained any faster than the inherent delay

of the system allowss thus, the sig

nificant duration of g(A,t) represents
a »l@wer limit 6n the identification time in the absen@é of neise.,_vv{ The
eff@_@s of external noise will increase the identification time, and a
lmtation _én the identification time under these conditions is thfe; ‘main
result of this work, |

The techniques for system identification considered here require that
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a(ht)

 Fige 1.2 |
Impulse Re&pmée of a Typical Time-Invariant System

g{At)

t=A

: S Figo 1“3 ' e
- Impulse Response of a Typical Time-Varying System
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the system be, at most, g]_.gm time-varying In terms of F:Lgo (1-3) this
means that variations in the height of the g(A ,t) surface along ]ines
parallel to th@ A=t line must be slow cempared to the signifieant
1ength ef the impulse resmaeo "

The :mpuls@ respense of a system may be given as a mathematmal

f\in@ti@n mf time such as

gU\) =ke e sinw, Jl«- )\ : (1-4)

for.a: éihaple second-order sys:bem, Another common way of representmg an
impulse response is by means of a graph such as the one in Figo 1=2. (@m?
Fig. 1-3 for the ti_mevam:ag case)s Sometimes instead of a complete
graph only sample peints of the impulse fespbnse ‘curve are ‘ﬁ?em : (Fig.
l«»l&) An practi@e some error is intreduced by t,hé sampling précess 2 But
in m@s’s engineering apph@ations this error approa@hes Zero as the number
of samphng points approaehes infimty. The rela‘bima between 'bhe sampling
rate and the test signal bandm.dt.h is poin’sed out at the end of Cha.pter 3.
Another method ef representlng an impulse response is by a Tayloﬂ@

series expansi@no N

g(A) = g(A,) + (A=A 2 et (A,) + (A /\e> A . 0&‘ *\@)n (n) (Mg)+eos

(1.-;5)
The nature of impulse responses of practmal systems indma’oes ’c.hat,, in
general,, a large number of terms will be reqmr@d in the Tayl@r' 8 series
expanslen te achieve a good approximation to the actual mpmlse re_sp@msao
. An identification technique based upon a Tayleris series exp@@éi@n;@f
/ the i:inﬁulse regponse has been suggested by Braun [&] ° Im his paper ﬁrmm
shows that é, Tayl@r”s series eSion ef_ the impulse r‘epmnsé a‘b@u‘b a point

t, can be computed by applying an abrupt change in the input sigmalg, Ax(t),
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| Fige b o ,.
Sample Peinb Aﬁpremti@n of -é,n"’ulse Besp@nse
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at “E.@ and meésuring the derivatives of the eutput signal just prior te,
and just after t = t,. It is felt that the hecessity of measuring the

derivatives of the output signal, especially :m the presence ef noise,

imposes a serious practical limitation on the method. F@r this reason
no further consideration is given to this identification scheme,

o ‘A;_ different kind éf series representation of the impulse response,
also useful in the identification problem, is a series of erthm@;fmal_'

functions. g{\) may be expressed as

. ' oo |
g(A)= oWy (M) S (-6)
' i=1.

where the \J; are a set of orthogonal functions satisfying the ecﬁciitioﬁs

©

: 8 W OOW0) ah =0 14 54,5=1,2,3... @)

2
W, (A) dA =1 i =1,2,3.0e (1-8)
and the constants, oL i; are given 'by‘
N o , : {
o<, =\ g(A) W (A)dA | (3-9)
; | (c) o ' : : ‘
Methods @f‘ measuring thé '@@effi;ients éf ‘an orthonormal series expa::ision of

an inpulse response are considered briefly in Chapter 7.
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CHAPTER 2
VIEENTIFICATION TIME EEQUIRED BY AN IDEAL IDENTIFIER

The concept of an ideal identifier is introduced in this chapter,
and the identification time required.by‘an.ideal identifier is deter-

mined, - Ideal identification is based on statistical parameter estima-

"tion, and, therefore, the results do not depend upon any particular

data processing technique., Following the definition of thé ideal idenbiw
fier a discussion on the estimation of P unknawn parameters is given,
These, results are applied-to t&e‘mﬁasurement of an unknown impalsé f@—
sponseg and an expres51on for the cerrespondmng identlflcatlem tmm@ is
d@rivedo- The results @btalned serve as a basis to which the pracﬁical
identification techniques discussed in sueceeding @hapters can be com-

pared,

2od. The Ideal Identifier

' “An ideal identification schemé is one ﬁhichs for a given cﬁserva-
tion period ealled the identification time, has as ité @uﬁput signal a
minimim varianee'estimate of the unknown impulse respenséa It is w@iiiﬁ
kn@ﬁn [3, Bells] that the mean value of the a 3@§§§§iggi prebability

variance estimator,

density function of aﬁ unknewn parameter is a minimum
i;n ‘the combext of the idembification problem this a posteriori preba-
biiity density fmm@tion is S

| ple(r)|re), =63 | ()
This is the conditional demsity function associated with the event g(A)
being present given the conditions that a test signél x(t) was applied to
the input of the system and a signal (plus noise) y(t) was observed at

the @uﬁputa For any given situation the test 51gna1 x(t), is not a random

gquantity as it is assuped to be known exactly. Thus expression (2-1) may
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be replaced by SR ', :
p [g(X)] y(t)] S »  (2-2)
The a p esteri@ri pr@bability density‘ function of g()\ ) may be ex~

pressed as

p[gmam)] =z_[_z(z\)] [ye) LA
pLy(s]] |

(2-3)
=K p [g(/\ ] p[y(t)l g(A ]l

where P[gU\ ) is the prier probability dens:.ty function of g()\) and.
p[_y(t) | (M)} is the Llikelihood function.* In Eq. (2-3) and in what
fellews Kis a eonstant ch@sen so that the area under the asseclated
density functien is normalized _to unity. |

‘Under @ertairi rather generél eenditidns o maximum likeliheood estimates
are very nearly equal to the minimum variance estimates obtained f;jgm the
~mean of the a p osteﬁérﬁ., probabzi.lity density funetion, These conditions
. are; first, the prier probability density function must not be shg.:?ply

peaked, or it must at least be slowly varying cempared tc the a posteriori
probability density fm@@'ﬁ;iox;gﬁ second, the likelihood functign must_iaagqia
center of syﬁnnetry at which its maximm is‘ located, 'The first condition

is sétisfied here because a minimum of 2 prieri knowledge is assumed about
g(A ), which is equivalent to stating that all functions g(A) are equally
likely a prieri, i. e., the pmer probability density functien is a eenstanto
It will be shown below that in the case where the noise is additive and

Gaussian the second condition is also satisfied.

#The term likelihoed function is preferred here bscause ply (t) ] g(A )]
is considered to be a function of g(\) and, as such, is not interpreted

as a density fumetion.
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“In summary, an ideal identifier is one which, foi" a specified identi-
fication time, gives minimum variance estimates of thé unknown impulse
respoiase. In many cases maximum likelihood esmmates are equiValea‘a to

minimm variance estimates,

2.2 The_ Jé.-ént Esf&?imat«ion of . P Unknown Parameters

Consider a recé:".ved signai w(ﬁj whieh is a funetien of P unknown |
pa,ramehers a1 q2,, ceos Qpo The observed signal, y(t), is equal to 'bhe
actual sﬁ.gna.l, a(‘b) (mbtalned by lett:’mg qi i 1 = 1-2,”‘;, P, where
qlais the aetual or true value o:f ql) s plus white Gaussian nmise having
a wer spectral density @ (0) Watt.s per cps. Woodward has shown
[32, Po 66] that the 1ike1:|.hood ftmct:.on for this situatiem may be ex-

pressed as

L=p[y®)] {ul] = Kexp{ iﬁ'(t)-W(t)] dt} O ew

The integration is to be carried out ever the identn.ﬁeatmn peried TI

Hnder the syzmnetry assumptmn made abeve the hkehheod fumtmn is-

m when all parameters take on thea.r true value, consequentlyg

3L =0 i=1, 2, cacP | (2-5)
393 e : :
T}
Where th@ subsc:ript {qi } indicates th.at t}he partial derivative is te be
evaluated at the po:_nt where all paramet.ers of the set {ql} take on their
actual valus, Substitution of Eq. (2-4) inmto vK.> (2-5). results in ’@h@
éenditiom

[y() e (e)] W de0 Sel20p (26
95 T |

{ad

T
It shall be assumed that the received signal enér@‘ is safﬁeieﬁﬁly large

compared to the power spectral density of the noise ﬁha{r. near the true
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Values of the {q} the received signal may be adequately represented ‘by

w(t) =w, (8) + 'Zl ggﬂ. - Ag . (2-7)
| i ‘

{as }
where Agg = qi - Q3 is the dev:iation of t;he iﬁh parame’éer from its
true. iralu@o _ m—m 'bh.is subsmt.utian a.nd mak:i.ng use of the ceﬁditieﬂs
| of Eq., (2~=é) the hkelih@od ftmctn.on, near i’es maximm value becemes

[Ev(t) -, {t)] 2 2 Ainqjéw I{ éwk ]d~h

i=1 jsl G5
) )
(2-8)
‘ .iﬁﬁe”ﬁerm
exp 1 ® vl al | @9
| TI [y(,:. wy (t)] L 9)
is net a funeti@n of the {ql} and can be absorbed iﬁhe the narma]izing
5
@@nstant Ko _ |
By d@fimng the solum matrix or vector
@
(@ = . | (2-10)
&
and the square matrix -
. bll blz ‘booooc b]_P
b21
() = . . - (2-11)
: 3 ‘ ' I )
bPl a . . bPPJ



=18=
with elemeiits
dw & (2-12)
o Aq o . ,

the like].ih@@d fr‘mwi@n ¢an be put irat@n vthe form

39y

- mxp{ ﬁm - m") (Q)} - ew

where (Q)' indi@ates the t.ransp@se of the ma.trix (Q)o
) Th@ assumpti that the reeeived signal emv@* is large eed

’;t«@ tha mr sp@etral d@nsity of the noise results ixi a likelihood
funetmn whz.ch is a m&l’eivariate Gaussian dlstribubim near ita maxcimame
The likellh@ fmmti@n is specified by ‘the elements bij d@fizaed in

| | ‘Eq, (2«12)9 the actual values of the parameters . and the pewer sw@tral
densi‘ty of the noise. | ' ’ :

-Fr@m a single observation of finite d‘ﬁiﬁa'bim- @niy an estimats of

‘the likelihwd

,;-s-: @an‘B@ constructed, Thus the lscation of the .

mam. of 1 is itself a randem variable, Since iqj}ig being estimated

by the e@@rdimates @f the 0 .’fﬁ,ﬁ”m value @f the likehheod fmcti,@m the
variances and @@varian@@s associated with the estimatw of tha {qi} are

given by 'bhe @@vaflan@@ mabrix d@scribing the l@@ati@n of the mascinm

th@ Eikalj_h@@d fmm*bi@m Under th@ assnmptiw that the pm@r pmbability
d@nsity fmctim of. {qi} is @@nstant in the neighbwhe ‘ef the t.rue values
@f the iqig 5 the likelihood function is pr@portional to the a ‘steri@ri

'pmba)llity density fma@'ﬁzi@ﬁ 5 P [{qi'gl y(t)] -
Now p [ fagh | y(fe;)] -Aqiﬁq,@ coslAgp is the prebability mg the trus
param@ters lde in the imterval iqi'g {ﬁli* aagd, but since the as”bimates

@f bhe true value& @f ‘%;h@ parameters are given by the set of qi“s that
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makes, L a maximm this is also equal to the probability that the maximm
?alue @fL lies in the interval {qi}, {qi +Aqi} o The ]ikeiih@@d
function and the location of the estimate of its maximm are described by
the sa;né density fﬁn@ﬁm. Therefore » the covariance matm,x asS@éiated

with the maximw ira,l'a@ of L is equal to the eevariamde-‘ matrix of ﬁhe,

ikelihood function, |
F’r@m Eq, {2-13) and bhe abeve discussion 1t is clear tha‘ﬁ; the co-

variam@ matrix assoeiated with estimating the set of parameters {ql} :«..s

£ csom O ew
v Whe;:é@f the i, j @llemeﬁt of this matrix is the covariance of 9 and qa and
is given by
o, = ¢ ()T-%?m— | | o (2-15)

where |B| is the determinant of the matrix (B) and iBl ;jl is the eofactor
of the elemen‘tz. by ;}

o Eq., (2=15) can b@ used “t.@ detemne the Variance associated with the
estmati@n of -any @f the pamme‘bem » qi s OF the @@V&mame asseciated with
any pa:m.r ef parameters qi 9 qj o The evaluation of ‘bh@ detemmants in
Eq.. (2-=»15) may be difficult if the number of parameters u.nd@r @onsa.dera.t.ien
is large. Wh@n the covariances are zero, however, or @quivalently wher@

a single parameter 313 estimated under the asswnpti@ﬁ that all other para=-
meters are known the variance can be expressed as
gp-h@ (a8
ii :
‘since, |[B] = bli EBME when all of the elements not om the major da.ag@nal

are Z@I‘@o

There is reason to believe that in any event when the ratio of re-
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-c:ierived_b signal energy to noise power spectral density is large Eq. (2-16)
répresénts ‘the theoretically min:tm‘tm variance because co:rrelati__.ota be- .
tween errors can only im;fease the. ﬁncertaintyvof the estimate;

A physical ;nﬁerpretation.of the minimum variance obtained in
Eq. (2-16) can be obtained by substituting the definition of by 5 into
the equation. Thus the minimm variance associated with the estimation:

of a single parameter is

0‘5.2 = : @E() . ; (2-17)
S [,.ésg | ]2%
Tq ,
The quantlty | 2 |
| Mﬁ. fou éS] dt | (2-18)
T

' may‘ be interpreted as the r@@eived éighal sensitivity mt.h respéet to the
parametei% qia The larger this sensitivity the smaller the variance, A
parameter will ‘be"ﬁestimted with a small variance if:' a small change in thié‘ '
parameter causes a large ehange in the received signala The role of @ (0)

in qu (2=17) is clear, a larg@ neise power spectr'a.l density results in

- a large minimm variance and vice versa.

2,3 A P Parameter Representation of an Impulse Response

“In order to apply the results of the previous section to the’esti‘-"?
maticn of an impulse response function it is first necessary to approxi-
mate the contimueus function g()\) so that 1t is describsble by a fimite
set of parameters,

‘A convenient and cemmon way of appm:d,mating an impulse response

fun@tmn is to represent it by a set @i‘ mzmbers obtained by samphng the
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function at intervals of A\ seconds, The s'ample values, gp , are taken
at the instants A, = pa), p =0, 1, 2, 3,.c00 A typical impulse pe- |
sponse and its sample valaeé are shown in Fig. 2-=l@ Byv taking A>\
suffiéiently small it is pessible to approximate g (A) to any degree of
accuracy desired; if g{A) is bandlimited with maximm frequeﬁ@j Wy o
cycles p@r second the funetion may be represented exactly by sample

values spaced at imtervals of 21 . seconds [21, ‘Shamn@m]; It is

assumed that any errors due te approximating g(/\) in this inamaer are
niﬁ@h smaller thaﬁ the estimaﬁion erreré due ’ée ﬁh@ external ﬁ@iaeé;.._,_ﬂfhj}gu
aséﬁmptidn is further justified by the fact that appl;;@:dmati@ errors é;re
fundamentally deterministic in nature and can be cempensated for if

necessary, whereas the errors due to the presence of external ncise sig-

nals are randem in nature, and heunce camot be predicted or compensated
fors | . | |

_Physical realizability requires that g()\ ) = 0 for A< 0 and in most,
practical cases impulse responses are eésentially zero for A greater
t,ha.;f; ‘seme /\, o Therefore, g{}\) nay be. represented by the set of paréa
meters | |

gg g19 0600y gP | (2—19)

where P iz an integer greater than Nfak,

2.4 Identification Time Bequired by an Ideal Identifier

In order to estimate an unknown impulse response it is n@@@sséry'ﬁe
excite the input of the system with a test signal, x(t), and then cbserve

the cutput sig

nal {plus noise), y(t) = w(t) + n(t), The procedure and
nomenclature is shown in Fig, 1-1, | |
~ The output signal is related to the input signal by the convolution

integral



g(A)

—a
o 'Figo 2~1

An Impulse Régpéhsew and Sample Values
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w(s) =\ =(t-2) g(A)ar | | (2-20)
. |

or using thE'sampling technique introduced in the last sectien

P |
w(t) = 2k Z x(t ))& - | (2-21)
LT o o

In order to apply the results of Eq. (2-15) and Eq. (2-16) it is mecessary

to calculate the partial derivatives aw(t) . Frem the definition of

| g |
the partial derivative ' {gi }

- : ’ a

P R o : P »
AA{Z =t -Ap) (gp vag) - = x(t - )p) g
légﬁ, 2870 | Al
= ahx(b -hy) o (2-22)

Tﬁus, the elements of the matrix in Eq. (2-15) are

byj = (an?\ x ~Ag) x(t -X4) at - (2-23)

The problem of choosing a test signallin some eptimum way se as teo
minimize the variances and{cavariances associated with estimating thé
parameters g,,81s o-- s8p is now considered; It is apparent from
Eq. (2-15) and Eq. (2-23) that the variancgs become smaller as the ampli-
‘tude of the test signél increases. In a practical situatioﬁ, h@wevgr,
" the amplitudés of the test signal x(t), are r’estricte&° It is, thergfgre;
@f_interest to determine'the form of x(t) which minimizes the variances
subjeect to some amplitude constraint. The constraint that the signal

energy
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5 x2(t) dt = B = Typx* | - (2-21,)
| remain fixed'will.be imposed., If, in addition to this, the test signal
is periodic with the identification time, Ty, equal to the fundsmental
"period of x(t), then all elements along the major diagonal of the matrix
(B) are equal. MNote also that (B) is symmetric and positive definite. -

It can be shown [16, Levin] that if a symmetric positive definite
matrix (M) has for each element along its principal diagenal the value g
aqd_arbiprary values elsewhere, then;the'elements along the,prinqipa;ﬁ
diag@nal of (M)°1 will all reach tﬁeir minimum value @fll/@. if and_@nly
if (M) = @ (1), where (I) is the identity matrix.

In grdér to satisfy thesé,cbnditiohs the test signai mast sa;i§£y

the following set of conditions

0 iy
x(t =y ) x(t ;.xj) dt = . o (2-25)
Ty | B 1=

Thé integral of Eq. (2-25) is propertional to the autocorrelation;rungtion
of the test signal, and from the well known properties of autocorrelation
functions the requiremenp.@f Eq. £3725) is equivalent to requiriﬁg that the
~ test signal be white. | |

This result is not too surprising since if the identification scheme
is to repro&tc@ the fine structure of g()) it is necessary that%x(t)rfL
contain high freqnemcy compeneﬁtso Also, sincé thebexﬁernal noisgiishﬁhite
it seems entirely reasonable to spread the test signal energy equally over
all frequencies.

For the optimum test signal then
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by - | N )
E(ad =1 (aN)? i=y

and from Eq. (2-17); since the variances of each g, are equal, the variance

asseéiatedAwith the estimation of the impulse respense g(As) is

2 6,00
G = —= (2-27)
g T, F (aM)?
The ecorresponding identification time is
$,(0)

e e | 598
TI <2 6:2 (A)‘)E (_ 26)
: g

It is important to note that the identification time required by the
ideal identifier depends only upen the powér spectral demsity of the ex-
ternal noise, the mean square falﬁe of tﬁg ﬁest signal, and th§ sampling
intervaiq AN. The idénbifigation time is‘imdépendent of the impulse re-
sponse being estimated, as long as the assﬁmptiens implied by Eq. (2-7) are
valid; that is, as long as the‘received signal energy is large cqmpgreqﬁ
. to the néise power density spectrumo'llt‘ﬁill be shown in Chaptervé that
this e@n@iti&n is generally satisfied in practical situations. Qngﬂmiggb
s@pp@sg)ﬁhat it would be possible to reduce the settling timsvtexggyﬁdgil
sired degree by simply increasing the mean sQuaré véluev@f the t@sﬁ,signal,
or by_increasing the sampling intervalob In practice the mean sqggr&yyglue
of the tést sigrpal is 1imi£ed by sueh considerations'as ﬁhe’effeqtgbogziv
n@gmal,gqntrol signals, pever limitations; ahd pessible large siggalﬁg?g—
1§néaf effectso The constraint upen Z? is determined by the ﬁarﬁ%g@i§g¥
applicaﬁionﬂ AN cannot be ihcreaSéd arbiﬁrarily either, beeanseq@ﬁ;@iﬁge

errgrs.dqe to sampling would become aé large or larger than the qrfers,rea
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sulting from the external noise, This condition would be contrary to
the assumption made in Section 2-3, |
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AP 3
IDENTIFICATION TIME REQUIRED BY GROSSCORREOATION IDENTIFICATION

The application of er@sse@r;:felatién teeh_niélues to sjfstém ident:j.fi«;-
cation is analyéed in this éﬁapﬁéfé ; The souz;ces" of efr@rs asséeiated
with cr@ss@@rrelatien 1dent1flcatlom are discussed at some length, and
the noise terms of the eutput signal are analyzed¢ When a randam test _
signal is used ‘the output signal has noise terms arising ffemx_l twdvs@furc:es,
the external n@lseg and the test signal itselfo It is pointed éuﬁg that
by using & periodic test signal and an ideal fimteememory integrator
f@r an averagiﬁg filter,»thatvthe latter noise-term can bg eliminated
@ntir@ly; A é@msid@rable_saving in identifieati@n.timé results, The
idenﬁifieétiénlﬁimg_reépifement @f th@uc@fsscerrelati@n ﬁe@hmiquz is
compared to the réquiremenﬁ of an ideal identifier, Qg@ssé@rrelati&n‘_’

is found to be equivalent t@;the ideal identifier,

3,1 Thecretical Basis for Grosscorrelation Idemtification

The ﬁSe of @r@sscwrrelati@n techniques fér the identifiecation of
linear systems is not mew, It was probably first introduced by Lee [15]
aﬁa;éhé methed has been applied to the identification problem of édéptive

systems by Anderson, Bﬁiand,‘and Gooper [1] . Measurement of théuimpulse

response of a tlm@ainvarlant or slowly timeev»;??~f linear system. by.
means @f crosscorrelation is based upen the fcllﬁwing theoretical ‘
deye;@pmgntob A test signal, which for the present will be assumeﬁjto:i
b@-agsample of a statienaéy ergedic raﬂd@m pr@ee&s;-is apﬁli@d téfth@,_w
input of the system under test. The output signal of tﬁe syétem is then
erosscorrslated with the imput test signal. Thé details éf the m@ﬁh@d

are illustrated in Fig; 3510
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‘x‘('@) | Unknown Syaten w(t) y y)
—T1 . 8&lA. &

'.A'éle!rai,ging '
Filter

Ll 1deal petay [ X(&-T) _

Fige 3-1

Crosscorrelation Identificatien B
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The output Signal w(t) is given by the relation

x(t =Aq) g(Ay) dAy (3-1)

It is aésumsd that w(t) is uﬁmeasurable and that only y(ﬁ) = w(t)
+ n(t) is available f@r @bservatione n(t) is an external noise sigmal
assumed to be from a zero mean stationary randem pr@eess described by
a noise aubocorrelation function ¢n (”F), and correspending power
sp@ctral density, @ {w), The'er@sscerrelatien of x(t) and y(t) is
achieved by the multiplier and averaging filter., The signal at the gﬁﬁn :
put @f the mnltipller is

x(b =T3) x(b = A 1) g(Ay) AA g+ n(t) x (4 -;)  (3-2)

The c¢rosscorrelation function between the input and output signal,
¢ (“T)g of the system under test is the mathematleal expeetati@n of
Eq.(3=2), Under appropriate conditions the interchange of the inte- »
gration and expectation operations is Justified [9, DeobslTheorem#2§?1;;
Thus

o €0 , ’ _ S
B (T =\ Ex(t =Ty) x(6 = A)a(Ay) g + Eln(e) x(s 'Tiﬂ*<3-s>

©

$ig@§ the input test signal and the eiternal noise ére assumcd t@_?ev
statistically independent the last term in Eq. (3~3) is ZEeX0, Th@
expected value of the product in the first term of Eq. (3-3) is

‘recognized as the test signal autocorrelation fun@ﬁien9 QX(%“)Q -0)

that



. ..
B (T =) BTy - A shp) “ah, (3-4)
® ' 7
A solution of this integral eqnai;‘iom for g()\) is diffiéult in general,
but . When the test signal is w:.,deband @ompared to the bandwidth of the
system ¢x(”( 4 = A1) can be approximated as .
AT 2 8 ST (3-5)
whers @ is the area under th@ g, ("(‘) functi@n and $ (T) is the unit
delta fma@tlono With this appm:d,mationa Eq. (3<4) becomes
%(’T )= B, g(Ti) - (3-6)
,.;It is evident from Eq, (Baé) that the erosscorrelation technique
shown ‘

in Fig. 3«=-1 can b@l used to measure a particular sample point @f ;
the unknown impulse response, Gomplete identification is achieved by

using a mumber of such cerrelation chanmels in pa.rallel;

3.2 Natur@ @f the Errmm Assmla‘ﬁed ‘m.th cr@sscormlatl@m Ideﬁtiﬂ@ati@n

From ’&he defa,mtl@n of the au‘t@c@rrelatﬁ.en f‘tmction ef’ an erg@dl@ '
fandom process | 1k, Laning and Battin, p. 113] |
. - :

1
(T = | Mmo

T-=¢o

x(t) x(t +T) dt - (3-7)
4% is evident that the oubpub of the averaging filter in Fig. 31, .
mg will equal ¢xy( Ti) only if the filter integration time is im»
finite, When the ixtegration time is finite, as it will be for any
physically realizable filt@r,, thér@ aré error or noise terms inm;:
as well as the signal term, @Xg( ‘Ti)e The errors arise frem three
sources: first, there is an error due to the randommess of the test

signals se@@ﬁd; there is an errer component resulting from the presence
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of the external noise; and third, there is an érr@r introduced by.the
| assumpbion implied by qu (3-5). )
It will be éh'own below that the error due to the randomness of
x(t) can be eliminated by the use of periodic test éignal,_ and an
ideal finite-memory integrator as an averaging filter, The external
noise error cannot be eliminated completely, _
.The approximation made in Eq.(3-5) is equivalent to assuming that
the test signal is white noise, It is not possible, in pra@tice,‘__:b@_
gensrate truly white noise, but if the ba.ndwidt»h of x(t) is much wider,
s@;‘»_—;;:g, times wider, than the bandwidth of g(/\ ), the two functions .
wl;?;se; preduct is to be integrated will resemble those shown in PFig,. 3-»2.;
The exact nature of the statistical properties of x(t) is unimportant.
If, however, the time duration of g.(7T) is much smaller than the ‘time
duration of g(A), as it is in the case shown in Fig, 3-2, then, ;ﬁ’min
an engineering viewpoint, the integral of the product of the two
functions is adequately given by Eq.(3-6). |
.The aut@@@rrelatmn functions of two practical no:Lse s:igna,ls- which
would be swi‘&;able as test signals are illustrated in Fz.go 3=3, B@‘ﬁblg.ﬁ,___ _
aré_:_i?inary noise .signals with states + X. The first signal has P?ig%pﬂ |
distributed zero crossings and takes the values + X with equal pr@babii=
ity.. The aut@e@rr@latin funéﬁion for this signal is |
2 =2a|T| R
#(T) =Xe ' ‘ o (3-8)
where a i3 the average number of zer@emssings per um.t timeo‘ The
second signal is called discrete-interval binary noise [1, Andersgﬁ,f,_h -,
etﬁal‘g]; The signal changes sta,te only at the specifi@ times / t1s |

where £ is an integer and ty is the minimum interval between changes in



Fig. 3-2
Convelution of B (T) and g(A)

BN GO T BCY)

T "-'-ti" L T

a) Binary mise wit,h-l’@issom ' b) Discreteaihtervai
distributed zere crossings. binary neise,
Figs 3-=3

Twe Practical Test Signal Autocerrelation Functions
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state; the value in successive intervals are independent, and both states
are equally probable,
The autoc@rrelation function feor discrete~interval binary neise is

['.22,9 Truxal, po 433]

E2(1 -'-»J%L) ] £ tq -
gy = | -9
17> 4,
| It is evident from Fig. 3-3 that the autocorrelation functions of
these signals can be made as narrow as desired by a su;tabl@ choice of
a or %3] thereby making the error associated with the assumption of
qu (3=5) as small as desired,

Slnce the slze of the error due to the fact that the test smgnal
bandwidth is not infinite is to some extent contrellable, and 31ngg .
the mature of the error allows its exact @al@ulatién from a knowledge
of (T}, the error in Eq, (3-6) due to assuming that x(t) is white
noise will be assumed to be negligible compared to the error introduced

by thﬁ finite integration time of the averaging filter.

3.3 Analysis of Output Noise

" The noise componemts of z(t)g the output signal of the mnltiﬁliér, 
can be studied by ebtaining the autocorrelation function of z(t),iiFr@m
Eq. (3-2)

() 2(t +T ) =n(t) nlt +T) =(t - T3) x(t +%T = T4)

o\ ms) x(t = Ty) xlb + T =T 4) x(b+ T =Az) glAz) dhs



+\ nle +T) x(t + T = Ty) x(b =Tyg) x(t = A7) glhy) dAg

) , | .

oe] <@ : .
s x(6 = Tg) x(t + 70 =) x(6 = X 1) x(b + T = A Rgld el Ap)andA,
‘e

(3-10)
The autéc@rrelati@n funetienﬂz(’() is the ensemble average of Eq. (3—1);
Since n(t,) and %(t) have been assumed to be statistically indepeadent the
fourth preduct mements which msul'@ from the first thres terms in Eq, |

- (3~10) can be factored, The expected value of the second and third terms
are zere since E[n(t)] = 0, Thus ¢ {T) vecomes -

¢ (‘T) =¢(‘TM3("U

el Elx(e = Ta) x(b +T-T)xls = A1)x(t +T-A2)] e( A1)e(A2) d A1,
© %0 | | | G

iﬂ order to simplify the rest of the analysis x(t) will be a,ssﬁmed

to be a Gaussian pr@c:swsu;~ While this assumption probably is not valid ”

in general, consideration of this simpjified problem will permit the

' 7 study of the general behavier of the wvarious ﬁ@ise terms in zz-(t) withmt

unnecessarily c@mp]iéatimg the mathematics, This action is further justi-

¥

fied by

the fact that it will be shewn later that errers caused bynmse

cemponents resulting frem the second term of Eqo (3-11) can be complete~

ly ela"minated by a Jjudicious cheice of teé’@ signél and averaging filter,
For a Gaussian precess the fourth p:éedu@t moment appea,riﬁg iﬁ

Eqo {3-11) cam be factored inte [14, Laning and Battin, p. 161]
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Elx(t - Tg) x(b + T~ Tg)] Elx(t - 2p) x(t + T Aol
+E[x(t =T ) x(t = A 1)] Elx(t +T - T,) x(t +’Y~/\2)] |
+ELx(b - T3) x(6 + T = A )] Blxt +T = Tg) x(b = A )] (3-12)

;Ea@h factor in the above expression can be identified with an m@-
correlation function, Using Eq. {(3-12) and Eq. {3-5) the expression for
¢%(’() becomes

8,(7) = g,(T) g.(T)

{5(«') §(Tehy <A + 80T = Ap) 6Ty =A))

P TR - A) ST, DeAy ey ahy oy Ga3)

Garry:.mg out the integrations over the delta funetienss

2 2 2 0o -
¢%<T) = ¢X(¢C>¢m(¢() +§x g (T_‘_) *@x S(T)S g()\l) g()\r&’(’) dAl
N ) ‘ . . @
2 ) | - |
+ @ g(Ty + ) (T - 7) | (3-14)
X )

The second t@rm in BEqe (3-14) is recognized as st.em:‘i from the sig-
' I

nal cmnpenent of z(t)s the remaining terms represent neise., . ‘

The g () ¢ (T) term in the §, 1) expression results fmm the

external noise, n(t), and this noise component in z(t) cannot, in ggzngré.l,

be entirely eliminated by the use afvaﬁ .averagin‘g filter with a finite

integration time, The other two noise terms are a result of the randem
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properties of the test signal é,l@ne, ir instead of a continuous noise .
sample, x(t) is generated by taking a noise sampie of i@ngth- Ty seconds
and repeati.ﬁg 1t periodically the autocerrelation fumction g.(T) as
well as the noise @@mponents in z(t) due to x(t) will alsc be periodic
with pefi@d ‘1“ : Henca s the average of these noise terms over one period
m,ll be eqmal to the average over all time, If the test signal has a
zero mean value this average will also be 2ere. The optimum averaging. |
filter for a periodié test Signai is an ideal finite-memory inﬁegltat@r
withmam@ry time «Q’Ei,, where 2 is a positive integér; By using a periodie
test signal and an ideal finite-memory integrator all noise terms except
ﬁhes@ resulting frem the iexbemal-‘nisep can be eliminated,

| When x(t) is periedic @, (7) takes the form

+00
B(7) = Z g mf en 15)

k == go

where T, is the period, and @El(”“( ) is zero outside the interval

uTx/§2<T< + TX/Q, In @rdér to preserve the qua]it,yf@lf the signal
compenent of z(t) the periedic noise sample must be .chosen so that
ﬁx (T) is narrew cmﬁared to the time duration of the impulse re-
@p@me s a.nd in addition the per:ud,, ‘}.‘X, must, be large compared to the

&

SN

fl@mt length of g }\) so that only the k = O term in the output

sig

s:.gnal expression

g@x ’ Z g(’(’l, k Tyx) ’ ' (3-16)
k = o

is impertant. (When x(%) is periodic, § x 1s the area under P, (‘T'). )
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‘3;&,;A Practical Periodic Test Signal

The analysis above clearly points out the noise reduction advantages
that @an:be gaiﬁed by using a periodic test signal, Other advantages of
awpefiodic test signal'are that, once the test signal has been ehosén, the
problems of n@ise»gemeration and delay are greatly simplified, Thia is
particvlarly’true 1f discrete interval binary noise is used. The discrete
nature of the noise permlts the use of standard dig;tal storage dev1ces to
@b@ain the 1dea1 delay required for crosscorrelation, and, once chesen?
th@ﬂgvndamental pério@ of #(t) can be permanently stored in the dg}g{ :
mscpamism thereby simplifying thé noise generation probiem, The ?ina#y
Qggpgfty of x{(t) alse simplifies the mnltiplication operationg mul%if“
éii@atien can mow be achieved by a simple gating circuit,

The problem of choosing a noise sample that will possess the desired
.uﬁx (ﬂY) is not a simple one, A sample ehosen at random may have statistics
that. differ widely from those of an ideal sample, and the resultlng Qxl(’r)
may’be entlrely unsatisfa@toryo Here again, discrete interval binary
nols@ @ff@rs a considerable advantage»@ver éther types of excitatiéﬁeA It
is possible, because of the binary nature of the noise, to synthesize a.
nearly ideal sample by computatien [ 27, WADD Technical Report, 60~201 ~

Appendix Al .

3.5 "Tdentification Time Requifed by-Grosss@frelatien

"' The jdentification time of the creosscorrelation identification

té@hﬁiqﬁe is closely related to the mean squaré value of the noise at

4 emerery

the putput of the averaging filter H@ZQ n 2

o Gan be cbtained fr@m 5

knowledge of the power spectral demsity of the noise components in z(t)

~ and the frequency charactsristiecs of the averaging filter, Thus,
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+60
2 = ,
: = 1 (w) F F(-w) 4d (3-17
n, = e @m w) F(w) F(-w) dw | )

=00
AAAAA

where F(w) is the transfer function of the averaging filter and @ne(w)
is the average output noise power spectral demsity. It is evident from
Eq. (3=14) thafg in the general case the properties of the noise depénds
upon g(A) so that it becemeé necessary to use an average noise power
spectral density in Eq. (3-17). The “notation is used to emphasize
the fact that the average' is with respect to the ensemble of all passible
impulse responses. In such app]icatiohs ‘as adaptive comtrol systems .an
approximate value of g(A ) is known if the adaptive loop is functioning
properly, If statis*bical data is not available the desired or optixm:m A
g(_)\_) gan be eonsidere‘d“to be equal to the‘ average value, Vhen t.he jesﬁ
signal is periodic the output noise can be made independent of g(A) and
theJaveraging operation becémes triviale .

... Since the bandwidth of the averaging filter will be small compared

to the noise terms, the variance at the filter output is approﬁmaﬁé_lﬁ.jm

gQﬁal to
g3 f_[_r;
o , -
= 1. Pro(w) dw (3-18)
27
-1 |
T

where Ty is the identification time defined in terms of the filters
@'q{ﬁ%?alent noise bandwidth s Wps, by the relation

Tr = 1 510
I T _ (3-19)

In obtaining Eq. (3-18)from Eq. (3-17) it was assumed that the low
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frequency gain of the filter is unity. No less in generality‘results
from this assumption because both signal and noise terms are mlﬁiplied
by the same gain factor,

The identifi@atién time required to obtain a specified variance,
.@is in the estimation of g(/\ ) can be computed from Eq. {3-18), Re-
callmg from Eq. (3-16) that the signal term is @ g('('i) it .f@llows‘

th‘a‘b

I

2 27(t) oy T~
= 0 = =20
G"é : > $ (W) dw (3-20)
3 27
x X J= 1
1

In v‘th@ general case, it is not ﬁossible. to obtain an analytical expression
‘fer T, and it is necessary to.fcempmté Ty by numerical techniques. How-
ever, when m ) is constant and equal to over the frequency :
range ~Wp to + WF' cps Eq. (3-2) can be simplified so that the identifica~

tion time becomes

2 (3-21)

TI“ @

m:?

. ) Ea T S T VLY
The-above condition en in@( w) is nearly always satisfied in practical

cases if a mi&@band pericdic test signal and optimum averaging filter are
used, (See discussion in Se@tioxi 65.)

A comparison of the identificatien times required by white Gauséién
and periedic test signals will now be made, From the noise terms of

Lo = S N2

‘Eq. (3-14) @m() for the Gaussian case is



o ,, . L
8,0 =\ B(T) gt) at + &\ (AN ax
o) x ° :
4 @xs 8Ty +x ) gl Ty -T) av {3-22)
) '

An upper bound on the third integral may be obtained by the use of the
Schwarsz imquality'[69 Courant, p. 131].

+op

g(Ti +r(-) g(‘)\'i ‘.-”T) a7

-0
o +eo | S +’v
T -‘[8(?('5_ + ’TJ_)]Q a1ty | [e( ’g'.. '(’2)]2 4T,
/on | - Jeeo B
’ (3-23)
[etX)] aX
@

N N

is finite it is easy to see that @ _(0) is bounded by
‘ Ll ‘ oD '
Ao 2 A D
B s\ BT BLT) ar 28 | [N ek G-
b ; *® .
-@h o
It is convenient at this point te in‘é-r@duee» the concept of the
signal-to-noise ratio app@arimg. at the cutput ef 'g()\ ); As discussed

in Chapter 1 this is an especially important concept in adaptive system



appl:j,ea‘éians as it allows the mean square value of the test signal 1:.@
‘b;ej___slaeeified in terms of its effec;t at the output of the system being
'i‘dventified; Sihee the mean square value of the output signal, ;2‘,‘ de-
pends upen the transmission characteristics of g:.(/\') as well as the
test signal properties it is neeesbsary to consider ensemble averages
once. again, In terms of the average equivalent noise bazadwidi;h of the

PoeFeus?

systgmg,ng,, and the averagellew frequency power gain, Kg, the mean

square value of w(t) is

g

- :cz W K o ( )
= G_G - o : 325

Wwhere x2 is the mean square va.lue', and W, is the equivalent noise band-
width of the test signal,
Tﬁe output signal-to-noise ratio, 25‘ s is defined as the ratio of

w2 to the effective mean square value of the external neise;,' nzeff; o

. ? 3 ° . e , ° .
ne pp 185 in turn, defined as :
+2 Tl e
mi - w w . 5
e ‘}2?’1"?? | ¢, (w) a (3-26)
AL

‘i‘h‘isi defiﬁi‘bion is promp-héd by the fact that any pfactieél test signal
mll have a finite bandwidth; hence the sysﬁe’m's output signél will be
E&ndlimitedg and the signal component of y(t) will not be affected if.the
observed signal is filt;é:red so as to ehmlnate all e@rﬁponents above t,hée,-;;
frequenéy Weo | » s
When the external noise is white ;:ieff equals 2§ (0) W s and when

the external noise bandwidth is small compared to the test signal band--
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width n? off equals n®, the mean square value of the external disturbance.
For either of these conditions and a Gaussian test signal the identifica-

tion time béee;nes

2 W. X , . R
s &% a.2v) - (321
o, ¥ ' |
z

Thia express:.on was obtained by substituting Eq. (3-24) into Eq. (3-21), '
introducing the output s:.gnal-’w»nmse ratio Genstraint, and using the
 fact ‘that. @ can be expressed as. x2/2W .

When the test s:n.gna.l is periodic a,nd an ideal f:.nite«memery inte-.
grator is used as an averaging fllter the only noise term remaining is
due to thé external disturbance, For the 'bwo special cases cited above

t,he zero frequency pewer spectral dens:.ty of this term is

e X

éne(o) = (3-28)
x A
and the corresponding identification time is
T = Terr 2 Wy 2 W K (3-29)
2 T3 2
gx x cx
g g

(A»‘eomparisen of Eqe (3-29) and Eq, (3-27) shows that the identi- |
fication time required by ersscorrelatiéﬁ'techniques using periodi@
test signals can be as small as 1/(1 + 2 ¥ ) times the required identifn.c-
cation time using an arbltrar’y ra.nd@m te% signal, Even if ¥ is only @f
the order of unity, as it probably would be in most adaptive control

é,ppji@atiens , there is a threefold saving in idemﬁifiéatim time .;;__Fvor
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~ applications vwhich allow § to be la.rger the saving is even greatere

) 3¢é Equivalence ef Gresscorrelation Identiflcatien and the Ideal Identifler

. Ib is exbremely interesting and important te nete that when the ex~"
ternal disturbame » n(t), is white the identifieation tine reqm.red by
'emssc@rrelatien 'as:.ng a pem@die test slgnal and an @ptinmm avera
f‘ilter is equal to the 1deatificatien time required by an ideal identi-
f:.er, Thls ¢can be shown by f:.rst reeallmg that when the n@ise is white

2z ors 15 eaual to B (0)2 W, and By, (3-29) can be pu‘b into the form _

r - 8O @ W)

(3-30)
= 2 e
3 oy
X g

‘ All that remains to establish the eqmvalence is to relate the tesb |
signal bandwidth te the z.mpulse resp@nse sampling mterval ‘and 'bhia

is easily d@ne by means of the sampllng the@rem [21 Sharan@nja

order to be able to independently spem.fy' individual sample i_nt,s,_ A
épaeed at iszervals of A)\ seconds, it ia ne‘eessar:} that the @bser'ved

sigaal centaln frequeney ‘ecomponents at 1east as great as 1/2 A)\

: Thus th@ ,g_,,mﬁ all@wable test 31gna1 bandwid’sh is 1/2AX and with
. this substituti«m Eaq. (smse) equals the iderrhifa.catlon time of the

ideal identifier as given in Chapter 2, Eq. (2-28).
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' CHAPTER 4
SYSTRM IDENTIFIGA’I’ION tisim sAMPLING TEGHNIQUES

ThlS chapter deals wi‘bh *hh@ idemt:.ficatien teahmque whmh estmatea
the impulse response @f the unkn@wn sys‘oem fmm data obtained by sampling
’the system impmt and matput s:Lgnalso Ekasﬁ squares est.mates ef t.he im-
pulse maponse sample- p@ints are eb‘&.ained, The 1dentif1eat.1 time is
der:..ved f@r the ease @f a white external noise and an @ptinmm tes’o signal.

The :«..;-; meth of sys‘bem ident:.fmation :.l.s sh@wn to have an 1dent1£1-

' cation time which is equal ta that of an ideal :Ldentiﬁor.

4ol Introduction

'"The computation of eétﬁmates:of points of an unknown impulse ré-—‘
sponse i fﬁnctién from data @‘bﬁaii;ed by samp]ing the input an& ouﬁéuﬁ
signé,ls of the unknown sy’stm will ‘néwbé considered. The continuous
signals x(t) ,w(t); and y(t) are samialéd‘gvery t, seconds and the -
va.lues‘ of these ,signals‘ at the‘inééan"'@s'mﬁa; vhere m is an integer5~
will be demted by x(m) F wim), » and y(m) respectively, The sequence
@f randem variables n(m}, @btamed by alz.ng the zero mean stationary
rad@m precess n(vt),) e.r@ described sta‘bis‘tically by the cevarianeg
matrix $_ whoss 1,  element is given by i

2 o
75 = El@) n(3)] | e
Tkxxet éamp]ing preocedure and notation is sumariied s'éhématicall;y i_nb. o
- Figo h=1s | o
. The sampled d,ata representatien of' the mknown syst.mns mpulso 7
resp@nse will be dem@ﬁed bY g(P)o In order to be able to reproduce the

fine structure of g{A\) it is necess&rythat the sampling ra’w be la,rge



x(t) Unknown System | w(t) y(t)

€(>\)5 g(p)

. ‘Ideal . | Ideal
Sampleyr , . Sampler

x(m) - S ; y{(m)

Fig. =1

Identification by Sampling Techniques
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@@npar@dgta the systems bandwidth, Some error in thg e3tima€ien of
g()Q) will, @f course, be introduced by the sampling procedure, but by
using a sufficiently large sampling rate this error can be made small
@@mpared to the errors 1ntr@duced by the external disturbance, The
fact that impulse respenses of practical systems approach zero as A
appr@a@h@s infinity permlts g(p) %o be represemted, to a good appr@x1= |
mation, by the vecter |
£(0) |
. | (&) = f(l) | | ' (4=2)

]

e®)|
where P is chosen so that Pty is’greater than the'signifi@ant duration
of g\ )e " e

An estimaée of (g) is'@émputed fr@ﬁ data obtained by recording a
sequeﬁc@ of M samples of the &igﬁal-y(%) and a @@rrespending éequ9nc@
of samples derived frém'the t@sﬁ signal x(t), Th@'délay caused by the
system being identified mak@s 1t necessary to record M + P wampls
values of x(t), The nnmber @f data peints, M, required t@ achleve the
specified variances of the g(p) estimates will determing the identi-
fi@atien.timﬁo It is éonvagi@nt to introduce the f@li@wing notation
r:rfa’(P) T
w(P + 1)
w) = . S | (4-3a)
I : L
';f(P + M) ]
[n (P)
n(P +1)
(n) = o - (4-3p)

©

n(P + M)J



(y) = (w) + (n) = . (h=3c)

mci the mabﬁx _
_X(P) x(P1) o o o o x()-
X(P+l) X(P> o 06 6 o X(l)
9 N (L!-""Bd)
(X) sa o . ‘

}(P;M) ;g(PfM—l) o o o x(m)|

Withébhis notation thg‘sample data version of the convolution integral
. . _ |
w(m) = E x(m-p) g(p) t, ; m=P,P + 15 0 0 o5 P+ M | (hebs)
p=o0 | P o
can;bé replaced by the matrix equatioﬁ
) =ty ) (&) L (4-5)
The external disturbance prohibits the direct measurement of (w) and it
is necessary to estimate (g) from the equation
| (5) =ty () (&) (1-6)

&02 Isast Squares Estimates of the Imbulse'Respwnse

A eriterion for chesing estimates of the g(p) that is mathematieally
reas%na’bleg and, in addit.ion, leads to eipressions which, from a computa=-
ti@ﬁé.l staamdint s are easy to implement is to choose those Valueé of
g(p) which minimize the sum of squared deviations
P |
- 2 | i |

> @) - 2 xwp) glp) ta] = [@) - t,x) ()]  [(0)=t, (x)(g)]
— pg . :
(b=7)
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levin [16] shows that these estimates are given by the set éf so maileci
normal équations | . | |

| '@ @ - @@ (h-8)
whers (x)' is the transpese of the matrix (x) and (§) is the estimé.t;
of (g)o |
| y The set of normal equa‘t»i@ns can be pub inte a more familiar ferm

by defining empirical correlation functions

E;(r) = ﬁ 1 Z x(m) x(m + r) | - (h=9a)
m =0 |
and
| x |
fg®) = 1 > 2w v+ x) o)
me=0 ' .

'i-‘hen the g(p) can be obtained from ﬁhe éet éf’ linear simltaneoués
gq@tions | - | |

. 4 : _

> Be-0EE 6, =G 1) 1-01,2 .., (4-10)

qu (4=10) appsars to be similar to the sample data Wiener-—HPf eqﬁatibn;
but in this case the quantities a;(r) and %(r) .are net correlatiom
functions in the usual sense, E;:(r) and %(r) are empirical correlation
Punctions calculated frem the finite ‘sequences of x(m) and y(m), If
x(t) is ffm a stationary random process théia

Lim B;C(r) =g (r)  (41la)
Moo
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and

Lrm T = fgle) | (4-110)

where ¢x(r) and ¢xy(r) are obtained by sampling ¢x(’(') and ¢xy(”[' ), the
correlation functions defined in the usual manner [lb, , Laning and Battin,
p. 113].

The covariance matrix of (g) which by definition is equal to

£ -sl® ®7 - =@)] =B | (b-12)
can be shown to be equal to ‘ : ,
%, - (0] @ £, @ @I L (6-13).
, o |

. -1 v ’ .
where [(x)'(x)] ~ is the inverse of the matrix [(x)*(x)] and $n
is the covariance matrix of the external noise. When the noise samples
n(m) are uncorrelated

£, =0 m (4-14)

and

.

(4-15)

%

;iff [(X) ! (X)j = 12
o

4,3 Optimum Test Signals

Up to this point nothing has been said about the test signal te be
used for the identification of g(A), and indeed whether or not a solution
to the set of equations Eq. (4-8) or Eq. (4-10) even exists. Premultiply-

 ing both sides of Eq. (4-8) by [(x)’(x)]_l gives

@ - (@@ @@ G
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From this expréssicn it is clear that in order for a unique smlﬁﬁi@om to
these equations to exist (x)'(x) must not be ﬁrigula;‘, TN [(x)'(x)]°1
. must exist. Since (x)'(x) is proportional to a correlation matrix it is
positive d@finite (7, éramef s Po 295] a,nd its inverse always exists
| [79 Cramer, ﬁ; 115]. In order that the solution be n@»trivial #h#oe
colwmn matrix (x) ! (y) must not be identically zém [11, Guillemin,v;p. 18
and 105], To insure this cénditi@n it is mcemsary- and sufficient ﬁhlat
(y) not be ici@ntieally zero, and that lhh@ row vectors of (x) be hnearly
ind@p@n&@hte v | | »

| In Section L.l it was pointed out that the sampling rate must be :
1ar;g@~ sompared to the bandwidth of the system under test. This condi-
tion is necessary if the fine structure of g(\) is to be adequately
reproduced, but 1t is not sufficient, In addition, the test signal |
mnst contain components at these higher frequencies, The most logical
bandwidth to choose for the test signal is W, equal to 1/2t,. Be- .
' cause of the sampling precess, components in x(t)‘ at frequencies higher
than 1/2‘@a will not comtribute to the estimate of g(\), and a test
signal bandwidth less than 126, will not make full use of the possi-
bilities @ffered’ by the sampling rate 1'/%0 In what follows W will
be assumed to be equal;t@ 1/2bg. ' |

. The expr@ssi@n for th@ cevariance matrix of (g), Eq. (l;.=-13) 5. shows
‘ thé;t the mean @qﬁar@ @rrm in the measurement of (g) can be reduced by
iné;_r@asing the amplitude of the test sigﬂalo In physical appli@a‘biém
the amplitude of x(t) will be limited by practical considerations. If
the mean square value of W(t), the system-‘fg response to the test signal,
is to be equal to ¥ times the effective mean square value of the ex~
ternal noise, as defined by Eq. (3-26), the following conditien must be
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met

Pty 2Wg kg = ¥ nlepr (4=17)

where, as in the previous ehapters)ﬁé is the average equivalent noiss“
bandwidth, amdlfé is the average low frequency power gain of the system
being identified, 2t, is recognized és being equal to the reciprocal of
the test signal bandwidth so that Eq. (4-17) is equivalemt to the out-
put signal-te-noise ratic eonstraint imposed in the preceding chapter,
The @@nsbraint upon the test signal can be expressed as a comstraint

upon the mean square valus of x(t),

X = (l!"’18)
2ty Wg fz
The conditions that the optimum test signal must satisfy can be

déﬁefmimed by expressing the cevariance matrix as

- | o . o
% - [le0'el (0%, @017 [e'e] (5-19)

s 2

Since [(x)'(x)] [(x)g.im ()] -l [(x)*(x)] is symmetrie and positive
definite it fellows from the discussion in Section 2.4 that the

variances associated with the 2{p) will be minimized if

(60" @] [60'E, 6] (@' G)] = k(D  Ge20)

where k is‘a constant that is determined by the constraint Eq. (4-18).
The important property of the optimm test signal is that it is a signal

which, when acting in combimation with the external ncise, causes the
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estimates of the impulse respense to be uncorrelated w:,t.h one amthez?;
This property is expressed mathematically im Eq. {4~-20),
When the external disturbance is white Eq. (4-20) is simplified

considerably, and becemes

| e [@'@] k@  ea)
The i, 3 element of (x)'(x) is equal te . \ .

. M+ 1) Gli-g)  (4-22)
se, for th@ case of white noise s the @iptim;m test signal must satisfy the

cenditions

g0 =2 40 | (h-23a)

gle)=0  o<rsep | (4-23b)
that is, the x(m) values must be white over a range of P samples,

- If x(vm)» ié a stationary random process with zere mean, then a reé.sééii;»

able cheice would be e choose x(m) so that ‘ v |

E [ F(0)]= g(0) # L Gea)

E[F()]=g () =0 o<rsp (4-245)
Additinal errors are inmbroduced in the estimates of g(p) when x(m) is an
arbitmry r@d@ni precess because even if ﬁx(r) gsatisfies the @ptimg%dim
tions the -empirieal cerrelation function, Tﬁ;(r) s ébtaiaed for é.parti@aiar
observatien of M sampl%e points, may not be optimum and hence the variances
of 'g‘(pj will not be minimized, It is s therefore, concluded that a periedic
test signal, chosen iﬁ such a manner so as to satisfy the optimm condi-
tions em ﬁ;c(r)g is betﬁ@r than an arbitrary test sigmil whose empirical.

-autecerrelation functions is only optimum on the average,
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Scme of the -practicé,l advan‘bages;* of a ﬁeriédic test signal have
been menté.éned’ above (Sectiom 3.4), A periodic test signal can alse
 be used in the sampling technique for system ident;ificatien ’i:aﬁded
the period of the test signél is large compared to the sigﬁifieam
length of the impulse response, The synthesis éf an optimum test
signal is greatly simplified if the test signal is periedic and the
number of samplé peints observed, M, is chosen se that the identifi-
cation time is an inﬁegrai number of perieds of the test signal, s
Whea,. the external noise islwhvite, periodic discrete interval binary
'n@ise can be used.as a test s:.gnalo Another class of zerewc@MMtion

@@des , useful when the noise is white 9 has been discussed by T@mpkins

[%]9 .

ol Tdentification Time Using Sampling Techniques

Cempu‘ha‘bién ef the identifieatien time will be iilustratod for the
@aw when the external noise is white and the test signal is optimizeéo
The insight gained from the results of this simple case will then be
used to establish, in a heuristi@ manner s that a similar result holds
in gemerai when the teét signal 'isv v@ptimizedo’ |

When the noise is white and the test signal is apt:i.m:.zed all ef the

@ffﬁag@nal terms of the corrqlati@n matrix, Eq. (4-15), are zero,. In
addlti@ng the variances associated with the estimation of each glp),
p=, 1, 2 see 'P‘,, aﬁe equal, ‘Substituti‘ from expression (‘h«-22)» and

Eqo (4-23) into Bqo (4-15) gives -

3 |
2 n o o
oy - eff __ (4-25)

Rl TR
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wher@mag. .igsa the varianee associated with the estimate of a single
- sample poim; gp)s P=0, 1, 2 ... P._‘ The correspending idéntifi-»‘
cation time is | |
| , . Mepr
Tp o= M), =g
t, x?a'w |

(4=26)

Cg

Using the @anstramt Eq. (A—l&) the ident:.fmation time may also be
expmssed. as
Tr = ' : | (=27
In arm.v:.zag at these exprossiens for ‘I‘I the cemputahim time required

%o mlva the set of equatiens, Eq. (4-8) or Eq. (4-10), has been
negleeted. ‘Ihus, in this respect ’ TI as glven by Eq. (h«%) or Eq,
(4~27) is a lower bound, | | ,

In the general case optimization of the test signal has the effect

of putting the covariance matrix in the form
§ 2 S
Fa ™ 73 (1) , (4-28)

_ that, is, the @stmates of sample peints of g(/\) are uneorrelated with
‘each other s and the vam:mees of ‘each estimate are equal. A s:unllarz_ re~
sult is @bhaiaeé .f@r *ahe sp%i&l case of white external noise. Since, in
each case, signal optimizatien leads to eatma’ees of g(A ) which are un~
correlated it is reasonable to expect that the form of Eq. (21,«25) and
Eq, (l;,«-?.é) is valid in the general case also,

Very often the exact mature of the external n@ilse'eerrelati@_g L

fumti@nv is not known, If this is the case, 1t. is convenient %o pick a



test-signal satigfying the condition of Eq; (h¢23)_becau$e then

only the p = i term in Eq. {L-10) is imp®rtanh; and ﬁhg computa-

tion of the impulse response estiéates is greatly simplified; Gh@osiﬁg
a test $igﬁal in this mannef>is equivalent t@ using an optimum test
signal under the assﬁmptien that the external distmrbam@e‘is white.,

hsi;uﬁnﬁivalehe§ t@%the_ideél>Idemtifier

' The expression fer tha identification tima nsing aamplin; techniqnss,
Eq, (4-26) or Ea.. {(4=27) is equivalent te the identlficati@a time 6x- -
pressi@n obtained for eresseerrelatien identification. It was 8h$WE pre-
viously that erosscorrelation identificaii&n time is eqaal te the time
reqnired by an ideal idenbifier to esﬁimate the impulse respeﬁseo Hence
ituia concluded that identification by sampling techniques‘ib also equiva-
lent to an ideal identifier, - |
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GHAPTER 5° - - . .
 IDENTIFICATION TIME REQUIRED BY MATCHED FILTER IDENTIFIGATION

A third 1dentification technique is described and analyzed in this
@hapber;é The variance in the impﬁlse' reépénse estimate résulting from
mamhed filter identificatiu is det.ermmed,, and a means of reducing the
var:i.am@ by the use of a peri@dic test signa.l and a e@mb mlt@r is de==
:vel@peda The mat,ched Pilter idemtifieatim time is demrm:a.med, and un
@@mparism with the res&l’bs @f ﬁhapher 2, it is established that matehed ‘
filter idemtification is also ide;l;- The | ehapt,er ends with a brief dis-
cuss:wm on the snyhhesis of suitable test sigmls, matched fz.ltem 3 amd
@@mb filtemo

5:1 Description of the Matched Filter Identification Technique

* The @u%agmh signal resulting frem the application of a umit impuls@
+o an unknown system wmld be the impulse response of the system, .A.. .
distinet aqlvarr&sage of this identifi@ation schems would be that the result-

not Just sample points of this fm@‘@ino An ,adapt:x.ve system using this..
type of identification scheme has been diseussed‘by Aseltine ; et.al..
[2], From a pmeti@al standp@:_nt this apparently simple method of .
identification has seri@us drawba@kag seme systems that can be repre- .
ﬁgnt;ed adequately ‘by a linear model under n@mal operating @@ndiﬁi@ag__ .
may @xhlblt mmmlimar characteristics for large input signals, sn@h. as
ﬁ.mpulses, Alse»s, in situations where it is necessary to make the %dentlfi=

@atmn in the presen@@ @f mrmal operating signals, sueh as in adaptlve

@@mml applications, large amplitude t.es%, 31gna1$ may not be tolgrable,
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.4 technique, suggested by Turin [25] , for obbaining a continuous
real time estimation of an ummmm impulse response that does not re-
quire the use of impulse type test signals is illustrated in Fig, 5-1,
The input test signal is deterministiec in nature, and for the moment,
will bé assumed to be zere outside the interval 0£%<T,, This signal - |
Will be denoted by x(t) to distinguish it from a best signal which, .
exists for all values of t, The observed signal, y(t), which is equal
to the system output signal, w(t), plus a zero-mean stationary noise
signal, n(t), is passed through an estimating filter, h(A )9 The ex-
timating filt@r is designed so that its output signal is an estirqgj;:g
- of the unknown system. o
It is established below that if h(A) is pr@pert.ianal to xl(A }\ ) 5

and xl(t) has a bandwidth which is wide compared to the bandwidth of the
system being identified, then the signal component at the output ef__‘.»tho
estmting filter is proportional to g(t =A ), Such a filter is ealled
a matched filter [26 , Turin], The delay, A , must be greater than or
squal to T, in order to guarantee the physical realizability of the esti-
mating filter, -
hiReferring to F“igo 5-1 it ean be Qeén that
+00

w(hp) = 2o - A1) g(hg) dhy - (5-1)

,a,nd‘_ﬁl(t); the output of the es’éimating filter due to the test signal
xq(8), 18
+@D
gle) =)  yl=hdn(dy) ar, (5-2)

=00
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Fige 5-1

Matched Filter Identification

-
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By cembiming Eq. {5-=1) and Eq. (5-2) and using the fact that

y(6) = w(t) + n(t) | (5-3)
and » | v
| B(A) =k (& =X) (5-4)
the output of the estimating filter can be expressed as
("5" +0D
) =k} ghpPdarg ) mE=hy =)1) mla=Ay) dr,y
400 7 ,
b\ omlE=hy) xla-X,) dh, - (5-5)
=G0

In thls expresslon k is an arbitrary constant of pmpertmmahty.

New, for a moment, focus attention on the integral mthln the curly
brackets of Eq. (5-5) and introduce the change of variable, )\3 =t - )\2 -3 1e
This integral then becomes

+eo
x(g) Ay + & +Ay =8) dhg - (5-6)
) ‘ '
Using Parsevalls Theersm expression (5-6) can also be put into the form.
+@©>

1 ) X (w)
= | 1™h

@j(A1“t+A> d w (5=7)

=00
where .Xil( w) is the Pourier transform of xl(t) and the agt.eris%k denotes
the complex conjugate. If xl(t) is a wide band signal and Xl(w),'ig",

A

nearly constant and equal to Xl((}) expression (5-7) becomes .
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0 )
2 HAp-t=+a .
L. X% (0) S | dw - (5-8)
2

which, frem the properties of Fourier transforms, is recognized as being

equal te

5%0) §(hy~1+4) (5-9)
The same result can be @b%ained by neting that expression (5-6) is the
aut@tmmslatlom function [20 Newbon, Gould, and Kaiser, p. 51] of th@
test Slgna,l 3 ane‘l recalling that the au‘t@tramlatwn function of a w:.dew |
band signal is approximately equal t@ a delta fimemem The derivation
is similar to “bhe one given in S@@mn 301 of the chapter on Crogs-
: @@rr@lati@n id@ntifi@ati.@na | 5
~ Replacing the term in @wly.braeke@s in v;qu (5-5) by its equijralgg;t $
expression (5-9), .a,nd integrating with respect te )\1 yieids
| teo v oo
£1(t) =k %,%(0) glb = A ) +k nls = A o) mla =X, dis
~6o | (5-10)
The first term in Eq. (5-10) is the signal component of é\l('&;)» and as . .
was indicated previcusly it is prepertional te g(t - A ), F@r convenience

throughout the rest of th@ chapter k will be set equal to l/Xl (0),

5e2 V@ian@@ of the Impulse Response Estimate

The cruclal assumption that was made im deriving Eqo (5-10) was that
the test signal spectrum is white, In reality signals with a @rf@@tly
flat spectrum cannot be generated, and this fact leads to an errer in the

| _

signal term of §1 (t)o This errer is, however, deterministic in mature
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and with 2 knéwledge ‘of the exact test signal speef.rum it can be
compensated for, Furthermore, since there is usually a considerable
amount of freedem in the choice of %, (t), by selecting a test signal
with a wide specatm the effects @f_ this erroer can be minimized, Pri-
mary consideration will be given to the effects of the random noise
errors in §1(t) by assumiﬁg that determimistic errors s due to a finite
bandwidth test signal, are small campared‘ to the randem errorse .
. The second term in Eq. (5-10) represents the error in the estimate
of g(A) due to the external noise, ‘r\;(t). The contributﬁ.en__ofrthis.
term to the variance of §1( \) can be compﬁtéd from a knowledge @fth@
noise power spectral density and the frequency chafaeterisﬁies ef -.’@he
esﬁimatimgj filter., Thus, ﬂ B

+@5

R | ). lu(
AR RN B 4w
- )
+@
1 2 ‘
i S . | e
275 °(0) Bl e e
=9

Th@ variance ¢an be pt:rb into a form that is more nearly related teo

cotmes

 the expression @f previous chapters by defining n‘? » the mean square

value of the néise at the output ef a unity-gain matched filter.

* e
S 5 (w) |5 (w)? aw  (512)
2Mx,%(0) - _

With this new netation @E? bacomes



g = 9 e : _v o (5-13)

_ Thers are tv}o special cases of interest, F‘:i.rstg if the tesﬁ signal
is wide band with respect to n(t), as well as- bemg wide bamd with respeet
t gl(A), Xl(w) in Eq. (5-12) is constant and

iy, .= n" . | ' . (5~1A)
In this case the estmating filter does a good job :Ln pr@daemg a signal
"t@m im gl(’@.) that is preportional to the unknown impulse reSptmse s buﬁ
it is of ne value in reducing the effects of the external noise, begause
all é.f the frequency eemponentvs of the external moise are ’ex?ansmit,ted__;_,;
through h() ) without distortion. The gain factor 1/%;2(0) has no
effect upon the s:.,gnalam=n@ise ratie because b@‘%zh the s:.gnal and m@ise
@«smp@nents of y(t) are multiplied by t.he same gain, Por this sittaa‘ki@za
the .signalmt@amlse ratio at the mutt of t.he estimating filter is
equal to the sa.gnalnt@-on@:.se ratio at the 1npata This raﬁe § K is
d@termned by the restriction placed on the test signa,la

The second impertant special case ocecurs when 'lahe baﬁdwid'kié ei’ h_@

@xt@rnal noise is. mde compared to the bandwidth of the test sigmla ot
@@urse, xl(‘t) is still wide band @ompared te g(A ). Then @ (w) im ;
Eq. (5-13) is appreximately constant and equal te @ (0) , and 'blm

‘ normalized @ﬁtpu*s noise is

e

= & (0) 2w, - (5-15)
- where Wy is the equivalent noise bandwidth of the test signal, In this

type of situation the estimating filter reduces the effeétiv@baxadwidth
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of the randem noise as well as producing a signal term preportional te
g(A), Now only those noise frequency cemponents within the paSs=bénd
of the estimabing filter appear in gl.m, and since hO\) =k x(A <A )s
ﬁn is easy to seé that the effective bandwidth of the random noise term
in By(t) is equal be Weo
’Ih@ reader may ésk if it is not possible to design the estimating

filto@zr*"ﬁs@ reduce the tetal errer in gl(t), ﬁh@ ugmear" error, due to the
fact; that xi(ﬂb) dees not have an infinite bandwidth, as well as the ,
‘error due %6 n(t). This pmbiﬁm has -been considered in detail by Turin
[25](, In his papsyr Turin shows that when the tes‘h signal is optimized
and the external noise is white the optimum estimating filter is a
matched filter, When the noise is not white the expression feor "hh@. L
optimmm filter is semewhat more complicated, The present work is..con-
cerned with finding limits upon the identifieation time due te ext;@rnal
noise, and, therefore has not considered in detail the @fr@m intr@du@ed
by the practical limitations of the test signal, The optimum @Stmtim
filter for the problem considersd here is a matched filtézv regardlesé:@f

the shape of the noise spectium,

5,3  Reduction ef Variance by Pericdis Excitation

The identification time required to obtain the impulse response l:estia
mate variance given bﬁ‘ Eqo (5-13), is equal te A, the delay necessary to
‘make h(A ) physically realizable, A is of the order of magritude of T,
the duration of the test sigmlo Often the variance giveri byv this equation
will be much larger than can be tolerated. This will be true especially
if the signal=te-noise ratio at the output of the unikmown system is re-

quired to be small, In order to achieve a smaller variance it becomes

~/
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necegsary’ to average over several observations of the impulse response.
esmmatee If an average is taken over M @bservatlons the gemeral ex=

pressmn fer the variance becemes

g ’ 2 . , '(5 16)
M Xl (0)

Neta. th@ subscmpt on g has be@n dropped to indicate that the var:.ance
no 1@nger @@rrespmds to a single ebservaueno |

One of ‘the nice features of the matehed filter iéi'entifieatidm
te@hm,que is that a contimuous real time estimate of g(}\ ) is presented
at, the @u‘hpﬂt @f the matched filter, A cmtinueus train of impulse. re-»
sp@nse es’m.mateﬁ can be generated at the output of the est:.mating fa.lter
by using a suitable periodic ‘test signal, x(t),, where

ﬁ(@)v.’f E x]_(ﬁ - iTx)vv' R (5"17)
i = | -
Then, averagimg over M observations is simply equivalent to ave‘fagﬁ.ng‘_
over M periods of the output signal, It is shown below that one method
of mechanizing the averaging éperati@n is te plaee é -c filter in
cascade with the estimating filter, '.

An arbltrary pemodl@ tes‘t signal will not give a saﬁlsfactory
estimate of g( A )o x(t) must be rich in harmonic content and in addltion
th@ peried Ty mst be larger than the significant length of g\ ), ’I’he
gen@ratl of a train of mpulse response estimates can be visuslized
mth the aid of Fig. 5-=2° S‘mce x(t) is periodie the autocorrelation

function of x(t) will a,lse be perledi@ with the properties
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+D ‘
B(T) = > fy (T a1 | -
i=-m |
and
G IGTI>£’§" o | (5-18b)

As t increases the pulse ‘labeled ¢X1()\ =t ) in Fig. 5-2 sweeps over
th;v impulse response g(A )o The output signal is pr@peﬂiemail to the
integral of the product of f(t =) ) and g(\) so that if e, (7) is
narrow celﬁpared to the significant length of g(A) and Ty is 1arge‘
enough so that only é single pulse of @ (V) overlaps g(\) at any
single instant of time the output signal is a good estimate of g()\,);
As time progresses the labeled pulse passes béyond t.he everlap region,
and the next pulse in the train begins to contribute to the Qia‘bpnt_;-
-Thec.mechanization of the matched filter idemtification scheme uging a
pei‘ie test signal is identical to that used when x{t) is aper:‘i,‘l@diéva
The ;bleék diagram is shown in Fig, 5-=1,

. Averaging of the impulse response estimate over several periads of
x(t). could be accomplished by replacing the estimating filter th'a.ﬁ is
matched to a single peried of x(@}‘ by a filter that ‘:Zli’.s inétched toM
perieds of the test signal, i.e., use a new estimating filter h! (A)
with an impulse réspmnéef

RI(A) = k(A )x( = A)
+@o .
= kt(h) Z %1 (= A ¢ iT,)

ig

- (5-19)



b6

g(A )

Pz e - 4)

beTe s

' Generation of Output Signal when x(t) is Péri@@ﬁ_@ o

‘vt«»+‘15'i A



67

ﬁrhere
. z
1 04 AL Mr_ |
2(A) = | (5-20)

CA<0 g A>ur
‘I‘he eonstruétiea of such a filter is éasier to view in the frequency
domain than in the time domain. If a periodic function, with funda-
mental peried Ty is miltiplied by an envelope funetion, f,(t )s then the
'pmdﬁ@t,, £q (t), can be represented in the frequency domain by [29,
Reference Data for 'R‘.adio Engineers, p. 1018]

+€9

) s BLRW) D> pw- gam) G
i= 00 '

where Fl(w) is the Fourier tranéform of a ’singlé period of the pefigdi@
fumtiaa; _ Thus, by mlggy with'Eci, (5-21), it can be seen ‘.t.hat. ht(h)
ean be e@nsidered as. being made up éf two filt-ers in cascade, One fii’l*;er

is ma‘b@h@d to a single peried of the tes‘b signal and haa a transfem -
Xl.(”w) s the other filter 1s a comb filter with pass-bands centered areund
the harmonie frequencies of x(t). The frequency respense of the passf‘-“ .
bands are determined by F(Uu).;. The .frequoncy response of the tw}e?ﬁfav.ltgrs
in easczade is shown in Fig. 3-3. A

. In the limiting case as M approaches imfinity £(\) is oqual to umty,

F(w) becomes a delta fumtmn, the frequency resp@mse_ reduces to a_
line gp@@tm pr@p@rti@nal to the test signal 3pectra¢ Tha addi’sien ef a
copb filter t@ Fig. 5=1 is all tha’e is requ:.md to accmnt fer tho pr@eess
. of averaging over M periods, The @utput of the comb filter, g(t.) s is a

train of @st.iﬁa’aes‘ of g( A), each impulse response estimate being the
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average over the past M periods of §§t)g Both signal and noise terms
pass threugh the cenb filter so the gain has ne effect upon the signal-
to-noise ratio. Hence, With@ut l@éé of generality, the gain may be

taken as unity,

Boly Id@ntiflcatf’i@n T:Lma R@q‘uif@d by the Matehed Fllt@r Te@hmique

The nelse reducticn pmp@rﬁl@s of the comb filter beceme evident by
studying Fig. 5-4 and Fig, 5-5, The signal term at the output of h(\')
is a periecdie display eof impulse respense @étimates , the fmdamenﬁal
period being determined by T,, the period of the test signal, The fre-
quency domain representation of the signal is, as é result of its
periodic nature 5 a line spectra with @empémnts at the harmonie fm-
qmcies of the test szlgnalo The spectrum of the external noise is, in
general, @@ntinu@us 80 that the frequency characteristics of the mo'% se term
present at the @ntput of h()\) is also continuom and i$ given ‘by
§(w)lu(w)|?,

- The cemb filter may be represented ideally by recbangular pass-

- bands with wnity gain and width 1/2 MI_ eps., the equivalent noise
bandwidth of F(w). The preduct ef Fig, 5-4 and Fig. 5-5 is the fre-

and noise terms of g(t), The

quency demain representation of the signal
signal term spectra of g(4) is idemtiecal %o the signal speectra at the

imput of the comb filter if g(A) is not changing, but the neise spectrum

is altered considersbly, Assuming that @E(W)ﬁﬂ(w)ﬂ is nearly constant
over any frequency range W < wew *W/B@X where W is arbitrary, the
mean square value of the neise at the oubput of the comb filber is

P P - S (522
Mt = | )

times the mean square value of the noise inte the filter., The settling
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“bim@ associated with the comb filter is equal te one-half times the
m@ipmeal of th@ bamdwidth or MI se@dﬁs:.:

| The id@ntificati time may be expressed in terms of the desired
vaman% and the pmper‘bies of the test signal and, external dlsturbanee
by ‘asizag Eq. ( 5==16 ) and relating Xl *(0) to the mean squa.re value and the
z equivalen%; mois;@ bandwid‘th @f x(t)o -The result is"

P = 0 2 | | - (5-23)
' @:2 'xg -‘ A “ :

With the intreduction of the ocutput signal-to-noise ratio @en;st,mimﬁ
Ty can alse be written in terms of ¥ and the average power gain and

~ bandwidth of the system being identified, .Thus,

) (5"2“ |

Wh@n the bandwidth @f the external disturbance is smaller than that of

L ol

the test signal n@ = n zgff =" njez and Eqo' (5=-21p,) reducss teo

| 2 Wy K | s
TI a mza-_ﬁafg..@ . | (5‘,25)

Similarly, if the noise is white with respect to the test signal .-

= .7 L co
By = Bgpp = o, (0) My, and Ty is again given by Eq. (5-25). |
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5e5 @bmpa?isam with the Ideal Identifier

Matched filter identification can alse be shown to be equivalent

to the ideal identifier. This faect is established by'repla@ing’n@2

in Eq, (5-23) with its equivalent expression for the white noise case,
@h(@) M, and esmparing the resulting expressiom for the identifi@a;‘:

ti@m time to the results cbtained for the ideal identifier in Chapter 2.

5.6 Scms Practicsl Gonsiderations

~ The subject of synthesizing a test signal, the matched filtéﬁ; and |
the cemb filter has been earefully aveided Up'ﬁ® this point with the re-
sult that it has been posgible te establish the fact that mabched filter
identification is theowetleally possible, and is indeed equivalent teo
the ideal identifier when the extgrna1 di$turban@@ is white, Synthesis
of a sultable test signal for identifying g( A\ ) is no more diffiecult in
this case than it is for identification by @r@sée@rralati@m er 5amplingn
techniques, This teplie has been discussed in the previous @hapters;”“

. It might appear that the construction of a suitable matched filter
weuld impose the primary practical limitatien upon this identifiqapion?'
t@@hniqu@, because, in general, the synthesis of a matched filter:ia
difficult, The problem, however, may be partially aveided in this .. .
appli@ati@m by building the wide band estimating filter first and‘thwm”
synthesizing the test signal by simply applying an impulse te the‘filtmr;
Th@yfilt@?% impulse response, reversed in time, would be the @@rrespgnding
test signal, For use in adaptive systems it would be desirable t@‘@h@@@
a filter whose impulse response did not have large peaks, otherwiss the
t@@@ﬁsignal might disburb the systems normal operation, |

 The identification problem dees not suggest any shert cuts for con-
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structing the comb filter, As is generally the case, the comb filter
would be a rather complex device to build, particularly with regard’t@

the amount of hardware that would be required.,
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CHAPTER 6
EXAMPLES

The previeus chapters have developed and presented expressions
for the identification time required by an ideal identifier and the:
identifi@ation techniques employing crosscorrelation, sampling, and
matched filters, Ty was expressed in terms of the best‘sigml and
noise parameters, aﬁd alse in terms of the unknown system's gain-
bamdwidth product and the signal-te-noise ratie at the output ef the
syst&éo Several examples are presented in this chapter in @rd@rsﬁhaﬁ
swﬁ@,imsight may b®»gained as to the order of magﬁihuda of TI f@p»u
practical situations. The results are presented im such a manner that
the identification time can be obtained from either a knewledge of the
noise and test signal parameters, or from a specification of 'the' gain-
bandﬁdth product and ou‘@pﬁ‘t@ signaldbeanoise raﬁi;" In the absence of
‘any knowledge about the system under test the identification time can
@nly%be specified in terms of the systems measursment emvironment,»igéob
im terms of the test signal and ncise parameters, On the other hgnda
therp.ar@ situations when it is meaningful to discuss such hhimgsﬂgs_
the average impulse response, averags gaim, or average banﬁwidthﬁt”This
would be true particularly in adaptive contrel pr@blsmg where the d@»
&ign or @p@iﬁﬂm-impulse response may be taken as the avpfage response.
The importance of the identificatien prwbl@mﬁin the adaptive @@nt%@% |
field warrants slanting the discussion of the eiampl@g presented ﬁer@

tewards that area,
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. The results for the identification time that have been @btaiﬁed de
not depend upen the particular syétem that is being identified, Fer
si@plieity two second erder eﬁamples will be considered, one beiﬁgva
nonminimum phase system. While seemimglybrestriebivn; second order
syst@ms have impulse responses that are typical @f a large class of
highar order systems chafaeherized'by é single dominant pole pairgf&lfi
Thus, the results of these examples may be used as a guide to what may
be, @Xp@@t@d fr@ﬁ higher order systems, When suitably placed, the. rlghtw_
half-plane zero of the n@nmﬁnlmnm phase system has the effect of widen-
ing the systems bamdwadth while retaining the escillatery pr@pert;gs of
th@yimpulse response, -Thezidentificatieﬁ'tima is highly dependent upen
the bandwidth so that an interesting comparison of the identifiea&i@aw
times of the minimum phase and nonminimum phase systems eém be made, .

.Whitﬁ,nmise introduced at the oatﬁut of the unknown system is an.
impwrﬁant‘exnmple to éensider beéamse it represents the weorst p@s@iblgm
case imsefar as the idemtification time is comeernedo If the noise, .
aut@@@rrelation funetl@n has a non-gzero width, and the nature of the .
cerrslation is known; this additionmal knowledge can be used to reduce
the identification time, An example of this is discussed for thévépééial
@ase of a marrowband noise préeess in-Séetién 65, White noise intre-
du@ﬂd within the feedback loop, as illustrated in Figo b-1, is more
reallstl@ in some cases than white neise at the output of the systems
ther@f@r@g exmm@les of this type ar@»alse treated. An apprax1mat1@n te
this kind of situation occurs when the ‘actuators of a contrel system are
aubgeeted to br@adband disturban@as» such as wind gﬁsts aetlng upon the

@@Eﬁr@l surfaees of an alrcraft traveling at high speeds, The eqnivaleat
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output noise can be determimed by cemsidering the power transmission be-

tween the peint where the noise is applied and the output of the system,
. The results obbtaimed in Chapter 2 for the ideal identifier are
valid only if the signal energy at the output of the system béiﬁg
identified is‘larg@ eompared to the p@wef spectral demnsity of thé eX=
ternal noise. Bef@m. considering specific examples it will be establishm
@d@h&t this condition does sxist for a vlarg_e class of problems, Th@ )

energy of the cbserved signal may be expressed as

By = % G v (6-1)
Wy
and the ratic B,/ $,(0) can, by using the cutput signal-te-noise ratio

constraint, be expressed as

STy WY | (6-2)

Tt was pointed out in Chapber 1 that Ty is at least of the order of :
maguitude of the significant duration of the impulse re@poﬁs@; By relat-
ing the sigm‘ifi@anﬁ duration ef g(A) te the system bandwidth and using
the fact that WX is mmeh larger than Wg it can be shown that Eq. (6=2) |
is, in most practical cases, a large mumber if § > 1. If, for instance,
Ty is considersed to be at least as large as 2 é’sym@ml'time constants .and
W, = 100 Wg the ratic is greater than or squal be 100 ¥ . These condi-
‘tiém; will be satisfied im all the examples présem%@d in this chapter se
tha,t the results may be censidered to be equivalent te these that _tfaﬂld

be obbained by an ideal identifier.
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| Fig, 6-1
White Noise Within the Peedback Loop and Equivalent Output Noise
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6.2 Ty for alﬁmh Phage Second Order System - White Oubtput H@isé
As an example of ‘the type of problem ﬁhak m:.ght, be encountered

in the design of an adaptive combrol system a second order system with

a pole-zere configuration as ‘shown in Fﬁ;g; 6-2 will be comsidered,

‘fhe impulse response has the ferm |

—fulo A

fB5 oo

1-42

g(A) = sinw A1 -5% A (6-3)
where KG is the zero freq'aen@y" power gaihg W, is the undamped m‘-turjal A
frequency, and /-’z is the relative damping ratio. The average or neminal
values of Kg and W w;.,ll be considered ‘m be mity’; Frequeﬁey and/@r
magnitude sealing may be applied to the final fesults'if the identifi |
cation time is desired for the more general case of arbitrary valuea : |
for KG alad Wye The figm'*o 4 = 1/2 is'a convenient value o chgoge for
the _:average img ratio; a ; of 1/2 result.s_ in a step response mﬁh
a moderate amount of évershwﬁ (16.36%) o The average impulse msiﬁmse
is plotted in Fige 6=k, the vertical bars have been added to illus’erato '
the size of the standard deviatiens asseclated with three different |
values of the variance of the impulse rgspemse GS‘Elm‘be. Note th-_ay » for
‘ eggigeeﬁmg purpéses s theu impulse response may bes considered esseﬁﬁ%gl%y
zZero for values of A\ greater than ten seconds. _— |
_ The equivalent noise bandwidth of the average system must b@__@al@;za
lated if TI is to be expressed in terms of the @ﬁhpﬂé sigmlet.é@a@ise
ratio, By definition [18, Middlsten, p. 684] the equivalent neise
bandwidth is equal te 'b | | -
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(AT Hw) olw)aw (6-4)
LT Eg |
=00
or by using Parseval'ls The@rém
W \ [e(X)]”  a)  (6=5)

For this example application of Eq. (6-4) or Eq. (6-5) yields

Egé‘%gw - 0.25ps B O (6)

~ The bandwidth of the test signal must be large compared to the band-
mdth of the system being identified if the err@rs in the estimate due .
te th@limitati@ns of the best signal ére to be small @emparedvm the
errors from the external noise, Therefore, before the bandwidth éf the
test signal can be @p@cified with any dog‘re.@ 'éf éssurame it is ne@os{saﬁy
to comsider the mnga of parameter variations and the effects of these...
vagéﬁ:atiéns upon the bandwidth of th@ system. Suppose the resmmn‘@; .g%?@a
- gueney is allewed o vary between t,he values 0.25 and 4, and that the
relative damping ratie v@iw from 0,25 to 0,75, These limits on the
parameters allow a 16:1 @hangé in W, anc% impulse réspmw@s ramgimgfrm
highly eseillatery te mear critical damping, A cempletely arbitrary but
r@as;semable starting péizaﬁ for the specification of the test sigm;:i bmde

width would be to seb Wy @@1&1 "E;@ 100 times the average system bandﬁd‘@h;

'In this example the maximmm system bandwidth occurs whem W, is at. its

_lafgest value, and f takes on its mimm value, For we = L and ?; = 0,25
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We -—-ig squal to 2 cps;‘ In this case
e ' :
g

L.~ - ' (6=7)
Ve

se that if w&iequals lﬁe'ﬁaﬁ the test signal bandwidth is at 1easb712;5
times the b#mdwidth of the system being identifiedb-aﬁd this ehaice @f
W, is justified, |

| Id@ntifiéati@n teehmiques.usimg a'periadie'tgst sigﬁal reqﬁire that
the test signal peried be large cempared to thé significant duration of
the @mpu}g@ response. An indicatien of the test signél perioed théﬁmf_
would be required for this example may be obtained by defimimg‘thq‘signi=
ficant duration of the impulse response to be equal to five times the
reciprecal of the damping factor (here equal te 7(”6) and eampﬁting thg{

aximm and average value of this figure, The maxiimm significamt du-

ration @fjg(}\) is gﬁ‘segands, whilevbhe.signifiéanb duration of the
averag@‘system is 10 secends. If, for instance, T, is taken as twe,
times the maximum significant duration ef g(A ), Ty 'would equal 160, "
seconds.
" The identification tims is
2ily By §O@ @)
5 _

Ty = - = O (6-8)
I = 5 = 6-8)
g g

This eﬁpr@séiﬁﬂ is valid for any of the idsntifieatién'teehniqﬁesF;
discussed in Chapters SQ’hD and 5, when the'exxernai noise is Wﬁite» and
2lse represents the idemtification time of an ideal identifier, The
identification time, multiplied by & constant ¢, .is shéwn ﬁl@tted vé the
variance of the impulse respenmse estimate in Fig, 6-5. ¢ may be ex-

pressed either in terms eof the gain-bandwidth preduct and ocutput signal=-
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to-noise ratm, or in terms @f the noise and test signa.l parameters
@h(.), x’ » and W

The curve is used aé f@llwss suppose design réq'ﬂirémemt cail
f@r the mean square value of the signal at the cutput of g(X_ ) due
%o the test signal to be equal to the mean ‘squazfé. value of the effective
output moise, that is § = 1, The average gain for this example is |
‘unityﬁ, and from Bq, (6-6) th@ average bandwidth is 0,25 cps. Thiag, _'ohe |
- constant @ is equal %o 2 If th@ desu‘ed variance is 250195&’ (see _
Fig. 6-k) the :.,dez:rblfmatmm time, as ebtained from Fig, 6=5, is equal
te 200 seconds, A smaller‘ variam% guch as 6025610 z“’,, would reqnﬁﬁ;'iqf
an 'ideétifi@at,i@n time of seconds whereas a variance of 160?17&’
would require only 50 seconds. Theée identificatien times are directs.
ly,ﬂgrép@rtien@i te K s t,ha‘g if a largez? ‘sigmal=t@==neise, rati@ ean be
t@lerate& the identification times can be r@du@ed subsﬁantialiya For
imstance if ¥ =3 and 6e2561®3&is taken as the variance Ty is 267 o
seconds.

.., Before leaving this example the idemtification time required by
@f@g_é@@rf@latim identification using Gau&sim n@isé_ as a teéta signal
will be @@Baparcéd with the id@ntifi@ati@m time required by the same
teéhniqu@ ‘using a periodic test signalo Using Eq. (3-27) the upper
bmmd on the 1dentifi@ati , time fer a Gaus&ian test mgmﬁ 13 pl@tted
f@i@ ¥ = 1 ¥= 2, and ¥ =eo in Figo 6-6. Als@ pl@'hted on the. sams.
:E’:.g‘a:m is TT as det@mined from Eqe (3=29) (@r equivalently fr@m Eq.
(&8)) tor ¥=1/2, ¥ =1, and ¥ = 2, Fer =1 the technique using
the Gaussiam signal takes thrse times longer. to identify the syst@m
than the methed using a periodic test signals for § = 2 i‘b takes five
times longer, The smallest i@mfbifi@a,ti@ﬁ time obtainable m‘bha
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Gaussian test signal occurs whem ¥ approaches iafmity, a.ﬁd this
value .f@r TI equals the idemtifi@amom tinme @btamed by usmg a
périodie t@st signal and a § of 1/2, The a,dvamtage of p@ﬁ.@dic ,

test signals @V@r other rand@m test signals is @bﬂ@uso

603 TI for a :f..;r_ﬁ‘,eur'aa Phasc 3@@@21@1 Order System, Whi'be (mtp‘ah H@im

. The pole-zere @@mﬁgmmﬁ@m for the n@mmmimmn phase, second order

sxampls is shown inm Fig. 63, The corresponding impulse ‘response is

R ’ -5y A _ ' .
K w.e -
gl}) g“’“‘&mw«/:{@ (ot sfe datnuglt =5 Amwy coswg VL =5 A
. 17 . (6-9)
The average values for w and KG will again be-fﬁakeﬁ as unity, -

and the average relative pmg ratio, j P mll be set eqml to 1/2,

The lecation of the mghtahalf plane zere for thls exampla will be

ot = 2, The impulse response, Eq. (6=~9) s is pl@tted for this set of
parameters im Fige 6-7, and the vertical bars agam imdiciafaé rﬁm size. .
of the standard deviation f@é s@vérai valueé of @:26 In this example. ..
alse, g(A ) is essemtially zero for values of ) ggmate:r@ than tem »;sg;_@@ndag
| The @ﬁ‘ﬂivalem% m@iss bandwidth fer the newninimum phase example can
be obbained frem Eq. (6-4) or Eqe (6-5), The result is

8 §ok

If 1’@ is assumed that the zere lecation is fixed and w and 7 a,r@

allowed to vary over the same ranges as in the previous @.xampl@ substia- .
tution of a few numbers inve Eqe (éwl(-)) quickly est@blishes that the

maximum WG again eccurs when W, = b and j = 025; W@Hm = 10 eps
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as compared to :k% = 0,3125 cps. In this case choosing W, equal te
l"ﬁ\é may not be very satisfactory because the test signal bandﬁdth
would only be about three times the system bandwidth when thé parameters
approached the values given abmreo This cénditiém can, of course, be
improved by using a test signal with a wider bandwidth. |

Censideration of the significant dura'blon ef the . mpulse responso
f@r tbhl_s example yu.@lds result,s_ that are identical to these for the
minimum phase example, The mammmn significant duration is 80 squﬁd&k
and the period of the test signal must be picked aec@rdmglyo

Tig. 6-5 may be used for this example also, Here ¢ = 1.6 so t,hat
2 =y

the identification time is 250 seconds wheno™ = 25°10 , 62, 50 see.@nds
}' ° Y | - OB
when oA\g = 100010 l’}, and 1000 seconds when ﬂz = '6025"1“&" if ¥ is
-4 : g

unity, Comparing these results with those of the previ@ué example. shows
that a 25% longer identifi@ati@n time is reqaired because of the increase
in the average system bandwidth, - A

The results of these two examples, which are typical of systems of
any order with impulse responses resembling these of Fig. é-4 er Fig° 6=7 9
@how that fer eutput signal-to-noise rati@s of the order of 'tmity tho
id@n‘blficatlon time ranges from aboubt 10 te 100 times the sigm.flcant .
1@ngth of the impulse response depending upon the degree of accuracy that ‘
is required, With signal-te-neise raties eof 10 t@ ‘ db the id@ﬁbi,fi@@tiém

time could be redused to the order of magnitude of the significant length

of the impulse response.

6.4 White Neise 1gmating Within the Feedba@k I@@E

This work ha,s c@nwld@rcd the preblem of ldentifying an unknown

linear system in the presen@c of an oxbemal di sturbance mtmdu@@d
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.atw‘ the eutput of the system, The results that have been cbtained may
be extended to situations where disturbances are imtreduced at other
peints of the system by determining the eubtput disturbance that is
equivalent to the actual disturbance [20, Newton, Gould, and Kaiser,
Pe 37]s This may be achieved by considering the power 'ﬂ;;ramsf@z?
function from the origin of the noise to the output of the system,
'i'he ;t,ecehmiqﬁes will be illustrated here for the case of white noise
introduced within the feedback loop of a control system as illustrated
in Fig . 6-1(a) o Wideband Idiﬁ*fmz?ban@@ﬁs acting on ‘th@ actuaters of a
@ém‘@r@l system could be represemted im this manner, |
The signal traunsfer function from the origin of the @x@@rﬁal

noise to the ocutput of the system is

1+ G;(w) | a(é_m
It is the impulse respense f@la‘@iﬁg the signal w(t) to x(t) that is
to be determined by the identification technique, By calling the Fourise
transform of this impulse response G{w) it is easy to show that Eq, (6«»11)
may be put inte the foirm A

1 @(w) , | O (e13)
‘Let the power spectral demnsity ef the exbernal noise be N, ‘thm "&;l:jm.@_ 7
fmwar spectral density of the egquivalent output mis@ is givc@m‘by the
expmssim

ﬂi@

By() = 1 - &(w) (6-13)
and is sketched f@r a typical unity-gain system in Fig, 6-8,
The effects of this kind eof neise upen the identification timi@v fer

the matched filter technique will mow be determined, Cﬁ@ﬂ@i&l@m‘hi@m of
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the noise and signal spectra at the output of the matched filter w:l,ll
facilitate the analysis. These spectra are plotted in Fig. 6=9, The
,‘vaﬁam@@ of the impulse response estimate is determined by the tétal
am@uﬁt of neise eﬁ@i&gy that is accepted by the comb filter, Sines W,
is much larger than WG the noise out of the comb filter is nearly equal

to that wiich would be ebbained if the white noise were intreduced. at

the output of the system imstead of within the feedback loop. This is

because the noise spectra in Fig, 6=~9 differs from that shown

im Fige 5=
é;gly in the lew fmquem@y mgién@ |

. Actually, for a fixed comb £ilter bandwidth, the varianes is re-
u@@d aA small smeunt and this reduction could be reflected im a I‘j@du@@d
identification time. Am imdication of the difference in variance (er,

ide;:;%iﬁ@a“@i@m time ) b@"m@@m the case of introducing white noise mthm

the feedback loop te that of a white @utpu‘% mise can be ebtained 1a:-;:~:
considering the equivalent @ﬁﬁpuﬁmisa spectium, Eq., (6~=13 ) to be z6re
witshim the equivalent noise ba;nd;width of g(\ ), and equal te N @a@ﬁ:dg;\
the equivalent néiS@ bahdwidthq Then the variance is pr@pémi@ml e

(W - WG) when the neise originates within th@ loop and is pr@p@rm@nal

‘t@ IE when the noise eriginates at the oubpub, The ratio of the v;@rian@@s

is
2 . . ¢ Toos : N
05 |neise feedback loe W =W SRS
g i | P L X .8 (6=14)
20 : o K W
0§ neise at oubtput v X

The saving is negligible if W >> Wg.
For crosecorrslatien idemtification the pewer spectral demsity of
the noise at the outpub ef the multipler, @m;(w); determines the identi-

ficatiom time, The power spectral demsity of the component ef this neise
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du@t@ the external disturbance can be obtained by convolving the
spectrum of the external noise with that of the test rsignal [1@9
Gardner and Barmes, p. 275]. This convolution is pictured in Figo
6-10 for a value of (v which is less than the erder of 2Ty
@n@(w) is preopertional te the area under the preduet of thess twe
functions and is given by
+ 60 .
PuolW) = % ) Gw-02),(R) a2 (615)

It is appavent that $yo(w) will be constaut frem W= 0 to a value of

mation for @ (w)

w 'neazﬂ 2T, 1f Wp << Wee By using the same apprexir
that was used above, and tlﬁ@ fact established in Chapter 3, that Ty is-
~ proportional e @m(o)» when @n@( W) can be considered to be @enstan‘b
over the passband of the a,veragmg filter, the following relahlnshlps
can be established: Ty is prepertional to (Wy - W@,) if the external
noise is intreduced within the feedback loop; and TI is pmpmrtimnal t@
Wx if the external noise is mtmdu@ed at the output of the system, The
result is equivalent te that @btained for matched filter idemﬁifi@a‘bim;zm;'
Detailed analysis of the sampling identification technique when
| white noise is intreduced within the feea@k loep is not as easy 'b@;
cause of the relétive cemplexity of the ceovariance matrix, Eq. (‘Z‘,"’?TB);:
However, by establishing the fact that the cevariance matrix of the
eutput noise is n@aﬂy diagenal it can be argued that the results ;@?t;;
this case are approximately equal to the results cbtained when whn.t@
noise is imbtroduced at the outpube.
The external noiss correlation matrix, %W is cbtained by sampling

the ¢pntinuous neise cerrelation fumetion. If it can be shown that
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¢n< n_jis much smaller than #,(0) for all m21 it folluws that all
T, o | |

elements of ﬁ_ﬁ off the major diagonal are much smaller than the majer
diagonal elements.
Consider an external noise with an auteceorrelation function ef the

form |

| It A o
" NBe AL v _ (6-16) -
L 2 o
im‘@mducad wiﬁhiﬁ the feedback 1@@13 of a system which is being idenbi-
fied 'by the sampling te@hmqaeg A@ B approaches inflnity, the aut@-a
c@rmlati@m function appr@achw N S(T ), :Le@f, s the noise becomes whitm

For this @ase the power sp@@tral density of t.he equivalent cutpub noise

expressed in terms of the @@mplex'freqmmy; s, is

3.(s) Nﬁ *[1 - o(e)][2 - o(-s)] _"1-(5;1@ |
" 2(s+p)(~s+;¢) : .

_Ng® P(s) P-s)
2{(s+p) (- +§3) o) a(es)

wherse P(s) and Q{s) are p@lymmim&ls in 8, The equivalent output neise
autocormlatim function, ¢ (T), can be @btain@el by taking the 1ﬁvers@
La,pla,@@ transform of Bge (6=17). ¢ {r) will be compessd of a sum of |
t@,, the relative amplitudes of these tom are determined by th@ I“@$.1.=-

dues w%@mﬁ@d with the poles of @ (s)o Emlua’@mm of thesé residues

shews that the residues asseciated m%h the peles leocated at s = 2 g

approach § times a constant as ﬁ approaches imnfimity, whereas the
residues asseciated with the reots of Q(s) and Q(-s) simply appreach

a censtant as g approaches infinity, Thus in the limit as the external
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disturbance becomes Whlt@ ﬁﬂ( ) becemes much smaller than ¢m(.) s0 that
~ the covariance matrix of the ez$erma1 disturbance is nearly mmerically
@qual to that cbtained when white noise is introduced at the sutput of
the system, It follews from this, that ;£§ and the identification time

will be nearly equivalent inm the two cases alse,

6,5 Consideration of a Narrowband Noise Process

- Up to mow primary @@méid@rati@m has been given teo problems whgre the
bandwidth of th@\@xt@rmal neiss is wide cempared to the system béimg
identified, If the Eandwidth of the external disturbance is narrow
compared to the unknewn system the identifi@ati@n time cam be reduced
in seme cases, Jf the disturban@Q‘@ccnrs at frequencies thaﬁ are weil '
@ﬁtéid@ of the pass-band eof g()\) the effects of the noise upon the
1dent1f1catiom could be almest completely eliminated by fllterlng the
@bservad signal - b@f@r@ perferming any identification eperations, (See
Fige 6-11) The filber could be designed with a sbop-band centered
ab®§t the noised frequeneies if th@y'ar@ knewn, or, if exact kﬁ@wledge ,
concerning the fr@qu@n@i@gv@f the disturbance is lacking, all signals
above some lower cuteff frequency could be eliminabed previded the cut4’
off frequency*ls high enough to permit th@ fine structure of g \) to.
be. repr@du@@do

- When the neise @@@uﬁ@ at frequencies within the pass—band of. th@
unknown system the preblem becomes somewhat more complicated, lf the
dlsturban@@ bamdw1dth is @afflelently’marr@w compared to the trans—gf‘,

mission spectrum of the system being 1d@ntifled and if the range of

noise frequencies is known, then the wwanbted signals can be elimimated
by & suitable filter as shown in Fig. 6»11; The filter will alse suppress

the signal which carries infermation about the unkmown system, bub if the
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filter has a r@w stop-band the loss of signal infermation over this
band of frequencies will net in general have a serious effect upon the
impulse response es’@imate; When the noise can be filtered in this
manner the idemtification time bewmes the same @rder of magmtude as
the sigmflcamt duration of the impulse mspemseo |

le noise camnet be flltered out befors performing t.he identifi-
@amon opemtmms if the fr@quen@y 1@cati®m of the disturbance is not
known and the techniques of the previous chapters must be used., The
identifi@atim time may still be redm@d however, if ‘be@éuée of the
narmwband pr@p@rtles of the noise, a larger ocutput signal-te-noise

ra‘tl® can b@ usede
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CHAPTER. 7
SUMMARY OF RESULTS, CONCLUSIONS, AND RELATED PROBLEMS

This final chapter discusses the sigmifi@an@@'@f the ideal identi-
fier and its relatien to practical idemtificatiom techniques, The
crosscerrelation, sampling, and matched filter jdemtification methods
- are compared frem a mathematical, noise immunity, amnd @p&rati@ﬁal
sbandpeint, The impertamce ef the results of this research fer adap~ .
tivé gsystems is diseusé@dg and some suggestions are givem for fubure

work on the problem of system identification.

7.l Significauce of the Ideal Idembtifier

The cecnecept of the ideal idemtifier prevides a common basis fer

comparing all conceivable idemtificabtion t@chniqﬁaae The pr@blmﬁ”@f

system identification can be stripped of all coensiderations of hard-
ware and implementaticn and censidered selely from the point of view

of statistical parameter estimstion by intreducing the ideal identifier.
The i&@al idemtifier has been defined in such a manner that ne gygggggg‘
knowledge concerning the upkmown impulse response is required. ‘xmi; |
effect, this means that sach sample value of g{\) is @@mpl@%@ly;indea
pendent of all ether sample values, As a result, the expression ob-
tained for the idemtification time is independent of the parti@ula:~
impulse respense that is being m@a#ur@ds and depends only upen th@_;
m@agﬁremgnﬁ envirenment parameters and the degree of é@@uracy thaﬁﬁiér
desired, The measurement enviremment is specified by the power spectral
density of the external noise and the mean square value of the test sig-

nal. The overall accuracy of the impulse response estimate is determined
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by the variam@@@§2 and the sampling imterval 4AA , The variance is a
direct measure @g the errers resulting from external noise, and a

ﬁrad@ off between variance and identification time cam be made. Altheugh
thé-@ampling rate is net a direct measure of the error imbroduced by .
approximating g( A\ ) by a finite set of p;rameterss it determines a eut-
@ffgfrequ@mgy above which information about g(A ) is lest. Wh@@;g;>

priori information about the unknewn system!s bandwidth is avaiiable AN

can . be chegen so that this cuteff fr@qu@néy’i@ large cempar
system bandwidth, |

The identification tims as determined by the ideal idemtifier is a
conservative estimate of the time that would be required %o identify an
umkn@wn gystem in a practical situatiom, It i3 comservative in tﬁ@ T
spects. First, ideal idemtificatiom is performed in an @mvirwmmem& of
white noise, and thus represents a condition where it iz impossible to
use the autecorrelation prepsrties ef the neise te reduce the idémtifi—
@a@i@ﬁ.tim@e In practice the neise is never truly white, and the corre-
lation properties of the noise esuld theoretically be used to redu@e,the
identification time, This was illustrated fer the spsecial case of a
marreowband noise in Chapter 6, The problem of how te best use the aute-
correlation @r@p@fti@g of the nolse to reduce identifiecation tim@vhag ,
not. been eonsidersd, Secend, ideal identification yields a comserva- .
ive estimate of idembification bime because it assumes no a prieri
knewledge about the system, when in practice at least seme prier Knigi-
ledge is usually available, Preper exploitation of this a prieri know=
ledge should result inm a reduced identification bime,

Although the identification time of ih@ ideal idemtifier represents

a grsatest lower bound on the {dentification time obtainable by praetical
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teé@miqﬁcs it is an important result because many @f the methods in. use,
or pr@posed in the literature, are equivalent to thé:ideal identifier;
it is, therefore, applicable to a wide class ef current preblems. im
addition, as mentioned previously,‘the result of the ideal identifier
éerves as a base point to which eother idenhifieatién’meth@ds can be

emmpare&,

7.2 Equivalencs of Crosscorrelation, Sampling, and Matched Filter

Identifieati@n

. There is an inherent mathematical similarity between the thres
practical idenmtification techniques that have been considered im this
work, That this is the case is not surprising because, after all, esach.
technique has the same objective - that of identifying, in terms of. the
i@?glse response, an unknown linear system. The mathematical unihy of

the three methods is provided by the Wiener-Hopf equation

By (T) = P (T =2) g(X) dA (7=

: o ,
The "sclution® of this equation is accomplished in cr@ss@@rrelati@m
ideﬁtifi@atian by using a test signai wiﬁh an impulse-like autecerrela-
tion functien and msasurimg the value ef the input-output crosscerrela-
tion functien at the desired values of delay. Matched filter idemtifica-
" tien alse uses a white test signal and approximates a saluﬁi@n to Eq;
(7%1) in & similar manner, The two techniques differ iﬁ that the matched
filter ouﬁput signal displays an estimate of g{ )\ ) as a functiom of real
time, whereas the crogscorralation method presents its infeormation as a

© funetlon of the crosscorrelator delay parameter, 7T,
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- The idegtificati@n‘techniqnﬁ based on samples @f‘iﬁput-®ntput data
appreaches the sclution of the WEenef-H@pf,equati@n in a different
manner, In this case the-integral in Eq. (7-1) is approximated by a
fiﬁibe sum, and a set of 1iﬁear algebraic equations is formed with .
sample points of g(A ) as the variables, An estimate of g{A) is ob=
taiaed by selving this set of algebraic eqﬁéti@nso The solpti@n;iﬁﬁ‘_h
greatly simplified if the test signal is white, for them the equations
'bge@n® ind@p@mdemh. .

 VWhile the underlying mathematical equivalence of these iden@ifin'
cation techniques may be apparent the statistical equivalence is net,
; I§ Qr@ss@@rre1ati®m identification the external noise is‘mnitipligd by
'the_delayed test signal resulting in a noise term in the sigmal aﬁ;?h@
' @ugput of the multiplier, Since the imf@mationebearimg part of this
signal is the average value, noise reduetien'is a@é@mplished Ey‘meams
of a low=pass averaging‘fiiter‘ The @xtefnal noise is fer the large
part umaff@@t@d by the matched filter in that idemtification techmique;
the variance in the agtiﬁate is reduced in this case by averaging over
several individual estimates of the impulse response. This type of .
noise reduction may be achieved by}usimg a comb filter, |

. Sample points of the estimate @flg(x') in eresscerrelation idemti-
fi@atien may be thought of as belng measured in parallel, each @hann@l
of th@ @@f%@l&tor pf@vidlmg an @@timat@ of a eingle sample p@imto Thls
'parallel type of operation allow& the use of 1@W=p&ss filters to r@duc@
the @ff@@ts of the @xﬁ@wm&l neise, Th@ matehed filt@r method prevides a
'@@mtlmm@ns esbimate of g(\) as a fun@ti@m of real time: estimabes of
gl A) nm@’be thought @f'as being measured in series, Im this case it is |

only by the use of a rep@titi?@ test signal and averéging ever a mumb@r
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of estimaﬁes, that the effects of the external noise can be reduced.

Th§ sampling method of sysﬁem identifiecation incorporates both
series and parallel type of operations, In general the input‘and.@ut;'
put.signals are ocbserved for a length of time that is equal to an inte?
gral mnnber of periods of the test signal; Thus s in computing the em-
pirical e@rrelatlan functions a real time or series type of averaging
is perf@rmed. The solution of the set of algebrai@ equations provides
estimates of each sample»pgint éimultaneeasly; a parallel type of.“u
operation, | |

_Although each identification scheme is baéedyup@m the selutiem of
the Wiener—Hépf equation the external noise enters the pr@biam diffefént—
ly in each methed, and different techniques are used to reduce the vari-
anee of the 1mpulse response estimate; nevertheless, each type of identi-
fier yields exaetly*@h@ same resultskf@r the identifi@ation time, While
the mutual equivalence of these practical identification @perationsbia
important, of even greater importance is the result that these mgthodax_
areiequivalent to an ideal identifierglthey represént the best thét-eam

be d@me when no a prieri knowledge of the unknown system is availaﬁle;>z

Te3. Gperatlemal Slmllarltles and. Relatlve Advantages of the Vari@us

’Idenblflaatlom Mbth@ds
~ There is in addition te the siml_ar1t1e$ of the 1denﬁifi@ati®m
techniques mentioned above an eperatimnal similarity which is particulare
1y évident when the external noise is wﬁiﬁe and the test signala'éf@“ﬁw;
@ptimiZéd; In erder to guarantes a satisfactery estimaté of g()\)_b@th
‘erosscorrelation and matched £ilter id@ﬁbifi@ati@m”téehmiqués requiré

a wideband test signal; one that, frem the standpeint of the unknewn
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system, approximates a white spsctrum, The optimm test signal for the
sampling teehnique is white only when the external disturbénc'e is white
‘noise., .While the sampling pmcedure/ offers the ad\faﬁtage of ‘beimg'able
- be or)erate with nen»ﬁhﬁ.te test signals the computatim@al advantages
gained by using a white ‘test signal often outweigh any advantages that
m:.gh.‘t be gained by optimizing the test sigm.l far a non-white ext&mal
‘noise, | , ‘ | L
.. Another siﬁilari’ey mgarding the test signals used by the #ai,iri@us_}:
identification methods is that in each case it is advantageous te use
a periodic test signal, Fer @msmérrelatian the use a periedic. .

test signé'l,, and an ideal finite-memory integrator as an averaging .

s 8
JNLY

filter, ates the 'n_misé terms in the impulse response estimate

i

that would normally result froam the randam character of the test _signé.lo
‘ Avéragi over a number of imd@peﬁdent; ‘estimates is easily accomp]ighed
._imt,h@ nié.tehed filter ’met»ho;d if the test signal is periodic. Thg ad-
vantage of using a peﬁodi@ test signal; and cbserving x(t) and y(h)
for an integral nmnber of pelfi@dsg in the identifieation’ tech@iqu@ |
using sampling is {;ha’s the test signal cerrelation matrix is inde- .
pendent @f thai' particular time at which fhe sequence of sample peint;sv .
begj,m,o This preperty makes it possible to perm.nentlj store the test
signgl eorrelation information, thereby simplifying the é@mputatioﬁal
: préblam; | |
‘Bach identification method offers some unique feature vwith: rrejgardv

ﬁ@ the way the :"mpwlsvé response estimate is presented, The matched |
filter methmd @ff@rs the advmtage of prdueing a entinuéu& @s‘@imét@
of g(A), and is particularly useful when m:.@ﬁg computations are to be

performed, The sampling technique presents a set of equally spaced -



sampl® p@ints which lend themselves te digital computation. However,
the sampling method requires some digital @emputati@n in erder o cb-
tain the estimates whereas both the matched filter and cresscorrelation
methods yield impulse response estiﬁates directly, The autpﬁt of the.
averagiﬁg filter for each channel in the cfess@mrrelation identifier
is a comtinuous signal representing the estiméte of a single sample
p@inﬁ of the wnknown impulse r@spoms@; Output data in this f@nm,gan
be used directly for certain types ef analog cemputations, and it 13
simple t@ convert te digitel form. Another advantage of @r@ss&@rrela-
tiom is that the éistaﬁee bebween sample points is determined by the
:d@layﬁ im each channel and need net be eqnally*gpae@da This pr®pérﬁy
p@rmlt$ such things as grouping a large number of sample points wher@

g()\) is large er expescted to be changing rapldly’w1th respect t@ A_,

and placing fewer sample peints whers the value of g( ) ) is expeéte@
to be evershadowed by noise or slewly varying.

. It is extremely dlffl@ult to assess the relative advantages of the
ldeptification techniques from the standpeint of equipment @omplgxity
unless the assessment is made in relation to a parti@ular application,
‘F@r instance, the construction ef a suitable matched filter and comb
filter may seem mm@h more cemplicated than a eresscorrelator wnit, How-
ever, if a continuous visual display ef the impulse response @s@imét@_
is needed im a cerbain application it can be cbtained directly with the
matched filter idemtifier and an erdinary oscilloscope, whereas the
ecrosseorrelaticn method would require additienél electronic equipmeﬁ%
to transform its oubtput data inte a combtinuous display of g( ). In
the absence of a well-defined applicaticm ne general conclusions regard-

ing the relative merite ef the various methods can be made frem the



equipment sbandpoint., |
7ol Significance of Idemtification Time Results for Adaptive Systems

 The results for the identification time of a linear system that have
been established in this work indieate that any{af the identification
schemes that have been shown to be equivalent to the ideal i&ez::tii‘ier are
praétﬁ,cal for use in va',dapt»i.ve systems provided the eﬁvimmemtsal condi-
tions s O system parameters, are slwly vary:.ng with respect te 'tvh@
smgmficant length of the :meulse reésponse, Althemgh the identifi@atwm
t;ime is hn.ghly dependent upor the @u‘tput signal-to-noise rati@ and the
variance of the eﬁt.lmat.e s the identlflcati@n tm@ is eof "bhe @rder @f 10
‘i&:@ 100 times the s:Lgnificant duration of the impulge response, ASs.a ,:;feia
sult) s theéé idemtifi@ati techniques will néﬁ provide accurate data :fér
rapidly varying systems, | ‘ | -
, The cencept of usmg the output signalc-ta&mis'e ratio as a ériterivéﬁ
f@r estabhﬁhmg the mean ssquare value of the test signal is a rea3ona.ble
one if the external noise bandm.dth is. a:b least of the erder of magmtud@
of the system bandwid“ﬁsho In su@h situations the effects of the n@ise upon
the s‘yst@m can be used as a ‘basis for assigmng a value @f § se 'thab the
test, signal will n@t undnly distmr‘b the mrmal @pam‘tlon of the systema
Heowever, if the external dmturbame is confinmed o a relatively mll
fziequmc;y band the $1gna1c—t@=mm@ ram@ @on@@pt mast be used with more .
care. The frequency distribution ef the @ﬁﬁput signal due to x‘('%)‘ is
determned, by the trmsmission charaeteristics of the unknown systems
hem@@ 9 ‘when the noise is narmw‘ba,nd, s the s:z,gnal energy is distmbuted
ever a wider band of frequencies than the noise. Tlns condition may re-
sult in an a'll@wabi@ value of { ﬁhat is appreciably different fz:%@m' tha%

which would be expected for wideband moise. Im cases of low intensity H
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wideband neise, er when the noise is narrowband, it may be poss:,ble t®
inerease th@ output. signaln'b@«mise ratio enough to reduce the identifica-
tion time to the @rder @f magritude of the 1mpulse resp@mse‘s significant
length., In the absence @f & priori knowledge this is the best that can

be done by any measuremen‘h technique.

M Related Pr@blenis

This resear@h has studied the pr@blem of iden’sifying an unlmmm
limear system by means of its i ulse response fumtim, Eamma‘@es of
the - syst@m hransf’er fune’mon or other transferms (snch, as th@ thranmferm)
: thh e@mple‘tely descrlbe the aystam may be @bt}ained from the impulse re-

spemse estimate., _ However 97 there is no guara;a*bee that the ’sra.nsforxﬁ of an
impulse respomse estma'be mll be ‘a gewd estmate of the true transf@m
(12, Gmllemin,, Po 6623 G@naequentlyg a pm‘blem W@rthy of consideration
13 the id@ntlfieatlom ’e:una reqmred ta @‘btain estlmates @f the system _
transfer fun@tim dire@tl:ya

. In addltwn to the impulse response, transfer fun@tmn, and Z«=tram=
form, a cemplete description of the unknewn system can be o‘btainedj‘by

specifying the coefficients V@fv a seﬁés expansion of the impulse ».;l?g#p@ﬁ%@o
The ?r@preéentat,ion of g(\) by a series of orthogonal functions i;s:, @f
particular interest because the practical identification ‘techmiquea‘ thaﬁ
-have been considered are readily adapted to the measurement of th@ co=
effi@ients of such a semeSo

. As an empla,, the crosscerrelation identification methed can b@
mﬁdg.fled to measvre the coefficients @f an @thog@ml expansion @f g( )\)
by replacing the ideal delay in F’m.g. 3-1 by awfllter with an __impulse ré-

nge the expected valué of the multiplier out~

sponse hy () ). With this chas
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put signal is

S 5 Blx(t <Ay) x(b =25 ny(Ay) a(Ay) dry dA, (7=2)
4 @ ® - - ' ‘ : . . .

and if the test signal is white this becomes propertional to

N |
5 mOD s Ay | )

®
Gmmp@rihg Eq. (7-3) te Bq. (1-9) shews that if hbi‘( A\ ) is made equal ‘@@ ‘
W;(A) the modified ermsserrélatim technique can be used w- measure
‘the ceefficients ef an orthomormal series expansion of g(\), Of course,
each coefficient would be méasured by a different channel of the cerre-
istor, - | )

. Neo change in the mechani zation ie; required to édapt» the saﬁpiimg_ N
{dentification methed ‘&sd estimate the coefficients of an wtmmml
séﬁ@@ expansion of the impulsé resmnmo- The meeesséry mdificatiém,
ecour emly in the manner in which the data ié processed, If g(f») is

r@presemeid o
glp) = :>: ocs Wilp) : (k)

Where the Yy arve members of a set of erthegonal functions s the héfmal
" equatiens, Eq. (l;-=~8}, can be pubt inte the form ”
%(ﬁxﬂ(x‘)»} () @)= @@ - (=8)
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vwhere . A o
[Wr0) W00« s o o)
- W 1) Wa(1) .
(L[J) = , o, . | ‘_ o (7-6)

* . ] ©

L

Ve ge -wQ(mj

and

A . °

(&) = | . ' | (7-7)

In erder to ass‘uré the e;d.stenc;e of a méique solution f@r. the é'ii ’eh@v ;
Wi(P).mnét be linearly imdependent and Q = P + 1,

The matched filter "beehmivque'us‘ing a periedic test ‘rsiémlb can be
adapted to measuring the ceefficients of an er%.h@géml series expansion |
of the umkmown :‘i.mpuls.e response by feeding the eutput 'éig;aal of the
matehed filter inte a spectrum analyzer. A simple spsctrum analyzer com-
i sistimg of a bank of narrowband band-pass filters may be used teo ebtain
the Fourier series coefficients of the matched filter output sial.

L ’l‘im effec‘bs* of external moise upon the measurement of érthagggal -
function ceefficients has not been ee;nsidemd in detail. Hwevér% be-
cause such an ‘expmSi%n can be interpreted as a change in céerciimahes it
does not seem likely that the identification time associated with the esti-

mation of the wef.ficieats will differ appreciably frem the results obtain-
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ed fer estimating peints of the impulé@ response functien,

. The extension of the results of this research te multidimemsicnal
systems, 1.8.,; sysbems with several inpub signals and several eutput
signals, can be achieved b&’uaiﬁg a suitable matrix netation., Identi-
fication of mmlbidim@mﬁiénal systems by.samplimg techniques has be@ﬁ
discussed by W@@dj:“@w [31]. | | .

The limits en the idemtificatiom time that have been @stabli@h@é
by this werk were cbtained under the assumption that ne a ggiggg;km@Wh
1@dg® about the system was available, In practice the engineer qually
has seme knewledge of the pr@p@rti@$,®f the system he is werking with,
even if it is enly an estimate, |

If an appreciable reduction in the identification time is pgsgikla
iﬁ is felt that it will be ehibained only if the available a priori
k@@@l@dg@.ab@ﬁt the system is used im an eptimum mammer, Eﬁf@?ﬁﬁm@%@;y
‘thig statement raises more questions than it amsw&fﬁo What typ@vgf’
QWBQQQEE knowledge about the umknown system will be mest useful im re-
ducing the identification time? Can the a Egi@gg)km@wi@dge be expressed
in a useful mathematical mammer? How is the §;£gg@g§ knewledgs to be in-
corperated im the identification techmique? ALl of these questi@ﬁé)ap@
at this peint unanswered and should serve to stimulate future research
im‘th@ areac | | |

Several practical identification techmiques that require a 1imit@@¢
amount of a prieri knewledge about the system, usually the @zﬁc’l@mH_IzlaV@.)__‘E
besn preposed im the literature, Kalman has suggested an idemtificatiem -
technique that estimates the coefficients of the wumerater an& deneminater
palyn
methed requires gigggggg knewledge about the order of the unknown sysbem,

eminals of the system's pulse transfer functiom [13, Kalmam]. This
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A mumber of identification techniques which émpley a model of the »ph.ys;ieal
system have been s‘uggested; Margelis and leendes [17] pmpése the use of
a "learning model® for system identificatien, and Whitaker, et ;sal;,'.discuss
an ‘adap‘tive flight e@ratrél system employing a model of the systeém,r te be |
identified [28];,' The general appreach using the medel teehﬁique is ‘the
follewing: if the order -éf the system te be measured is -lmmm,' & model
of, ‘g-;ho‘ same order is chosem; if .t,he‘ order is not lm.mm, the engigqépj_@e:
cidq;s to i'epfesant. the unlnewn system b‘y an n‘t’h order syétém where u is
based upon seme. a gﬂum wledge ab@ut, the system and perhaps a. eertaim ’
am&unt of engineemng Jud@nems@ A bl@ck diagram of a typical idemtifica~
, ti@a 'keehnique empleylng a m@del is shown im Figo. 7-1, The difference. |
be’cmen the eutpnt. of the syam under test and the eutput of ’eha model
is a measure of t.he degree of "g@odmss” f@r the el. Wheza the m@d@l
is an exach repliea of the ‘Emkmmm system the errer signal will be zem,
| ,A;.p@rametver ‘ad justment '@@mputw a,dj*usts the pammetaers- ef the mdgluntil
seme function of the errer 'siéml is satisfied, The nature of tha, V:paxjam‘eﬁer
ad justment e@mputei- varies with the applicatiom. o

. The effects of external meise upen the identifieat:.@m time reqmred
by twhmques which make use @f some a 2225-:_2_‘, k‘mewledge have marh been |
| studied. Am aﬂalysis of bhis problem would perhapﬁ pr@vide a elue t@ :
‘%h@ savimgs in identifieatlm time that eould be aehieved by @ptimally

‘samhzing a pri

@ri infermation about the syshem, :

The aim of the id@ntifi@ati@n tz,eehz@iques that have been presgnfg@d:fj?a
this ‘wwk has been to @tzain 2 @:@;nple‘ﬁz’e description of the inpute@i;iﬁpu&
reiamﬁshipS‘éf a linear system, A very impertant and basic question
arises ab this point. In the applications, particularly in édagpim

contrel appli@ati@mg is a gcomplete description of the siystexa mg@@asary;?
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x(t) 5| Unknown System
- 8(M)

Paramemr ,
Adjustment = |je—
Cemputer

. Model
gu(A)

Fig ' 7‘=l

Identification by Means of a Medel



True, kwwimg th_o impulss, mspmése' or transfer £un¢ti®m enables the
engineer to eemputéb‘aﬁy eﬁh_er properties of the éystem he might desire,
such as gain, rise time , oi' wershwb._ Perhaps',’ however, it would be
easier and faster to measure the other quantities di‘rccblyq‘ The general
Préblem of identificatien‘ tiﬁe~reqvirsmsat§' and measurement teehmiqués |
for. partial identificati@n ‘of sy\stems has not been investig‘ated, _a‘,md i{*.
is felt 'bhat this preblem wafré.nts v’a‘bten’bien'. v Inspigh'bs”gaimd from ths.
consideration of partial identification of hneér sy‘sl’éems may epen the
way to selvixag;the‘ idgntifi%ti}@n ﬁréblem: ‘@f fapidlyt,img-varyiag or

nom-linear systetas' wh’erev complete identification becomes impractical,
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