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PREFACE

This report Is the first volume of a two-volume final report prepared 

by the School of Electrical Engineering, Purdue University;, under USAF 

Contract No. AF 33(616) -6890 Project No, 8225, Task No. 82181. The

contract is administered under the direction of the Flight Control Labora

tory, Wright Air Development Division,Wright-Patterson Air Force Base, 

Dayton, Ohio, by Lt. P.C. Gregory, the initiator of the study.

This volume presents the development and analysis of a particular 

class of adaptive controls under, the assumption of the availability of 

Identification Information. The second volume deals with the limits on 

the identification, time for 11 near systems for a number of identification 

techniques.

For the past year Purdue University has had partial support by the 

Air Force in a rather broad study of adaptive control systems. The 

study was initiated some two and one half years ago and is still con

tinuing. During this general research effort a number of critical areas 

in the theory of adaptive control have been uncovered. In several of 

these areas specific research objectives were set and results obtained, 

while In other areas work remains to be done.

One of these critical areas and that covered by this report is 

the unnecessary restrict ion' of the adjustment procedure to incremental 

©r continuous adjustment of physical parameters. This is the parameter 

adjustment solution to the control signal modification problem. The 

more general procedure, discussed here, lies in control signal synthesis, 

in which a new signal is generated with which to drive the plant so as 

to achieve optimum response.
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A second critical area that has been under investigation at Purdue 

is the identificat ion problem, in Volume 2 of this final report Cooper 

and Lindenlaub report on their study of the speed and accuracy of various 

identification schemes which do not require a priori information concern^' 

ing the plant,'

Independent of Air Force support, Schiewe has reported on his analysis 

of multi-dimensional adaptive systems which measure not the impuIse response 

of the plant but only certain important aspects of that response and 

Eveleigh has compared incremental vs, sinusoidal perturbation in multi

dimensional adaptive systems for speed of response and hunting loss, Tou 

and his co-workers, Joseph and Lewis, have been actively studying the 

digital adaptive problem and achieved very encouraging results.

Work is continuing now on new, fast identification schemes and 

theoretical analyses of identification with a priori information, As 

well as in the newer and relatively unexplored area of systems which ex- 

hibit learning. These require memory capacity and extended logic in the 

adaptive loop and the capacity for modi tying the control law in accord 

with generalized performance criteria.
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ABSTRACT

A new class of control systems termed predictive adaptive controls 

is deve I oped and the performance character! st i cs are i nvesti gated ana I y 11 », 

eafly and experimentally,.

The concepts of signal prediction, interval control* and synthesis 

of the control variable by a sum of orthonormal polynomials in t are 

intraduced and developed in relation to adaptive control. A modified 

least squares integral index of performance is formulated and used as 

the criter ion for system optimization. Control of dynamic processes is 

subdivided into intervals of a spec!ffed length T and prediction is used 

to obtain estimates of future values of system error.

Minimization of the index of performance leads to a fami Iy of control 

laws which specify the structure of the controlier. The resulting control 

configuration is optimum in a specific mathematical sense and is readily 

realizable with available physical components. The adapt!vecapabiIity 

is achieved through time-varying gains which are specific functions of 

the unit impulse response of the dynamic process being control led.

Predictor design is presented in terms of the classical Wiener^Lee 

theory, and a relationship for control interval length as a function of 

prediction accuracy is developed, ■ '

Preliminary design of the controller is considered from the viewpoints 

©f relative weighting of system error and con trot effort, control interval 

length T, and the number of terms needed In the orthonormal polynomial sum 

approximation of the control variable, A method of obtaining an engineer-* 

Sng estimate of the latter quantity is developed and 11 lustrated by three 

examples, two of which are investigated experimental Iy.
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Two applications of predictive adaptive control are investigated on 

an analog computer, The two dynamic processes used are a first-order proc- 

ess whose parameter varies over a range of ten to one and a second-order 

process whose parameter varies in such a manner that the process is un

stable at one extremum and heavily damped at the other, The results of 

three basic experiments which evaluate the steady-state adaptabiIity* 

transient response,, and statistical signal response of the two systems 

are reported# It is found that all three aspects of system performance 

improve with decreasing control interval length, but that the minimum 

value of the interval length which can be used is ISmited by the accuracy 

of the time-varying gain and controller circuitry. Improved performance 

which can be achieved by increasing the relative weighting Of System 

error and control effort, is limited by saturation considerations. 

Theoretical, resol ts that .point to the need., for keeping the controlin- 

terval length short to preserve stabiIity, prediction accuracy, and loss 

of control doe to process parameter drlf t are substantiated by the experi

mental results. For the two systems investigated it is found that satis

factory control Is achieved If the interval length is chosen so that 

process parameter drift Is no more than 4JS per control interval, A 

figure of 5% was estimated originally, :

A one-term approximation of the control variable is used to control 

.the first-order process- and Is found to'give satisfactory performance.

A four-term approximation Is found to give adequate control of the second- 

order process whereas the three-term approximation does not. These results 

'bear'out the predictions made: In the-theoretical analyses,'
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CHAPTER 1

INTRODUCTION

The need for precise control of dynamic processes has stimulated 

interest In the development of theories and methods for optimizing 

control systems. Hazen ft] in 1934 and Hall [2] in 1943 initiated what 

is today termed the cohventjonal design of feedback control systems. 

Their work was followed by that of Wiener [3] in 1949 which forms the 

foundation of classical analytical design theory of optimum controls.

As originally formulated, Wiener*s methods are applicable only to linear, 

time-invarfant dynamic processes which are to be optimized with respect 

to a least-squares figure of merit or performance index. Usually, the 

optimization amounts to specifying a compensation scheme which maxi

mizes, minimizes, or gives a particular value to the specified index of 

performance. Boston [4], in 1952, extended Wiener®s work further by 

using ensemble averages Instead of time averages. His results permit 

the optimization of linear, time-varying dynamic processes subjected to 

stochastic signals possessing either time-invariant or time-varying 

statistics. This is in contrast to Newton*s pi] methods which are re

stricted to time-invariant dynamic processes with deterministic and/or 

stochastic signals having time-invariant statistics.

Mathews and Steeg Jjs], and Booton [7], in 1956, studied the response 

characteristics of terminal, or final-value controls. Their work pre

sents the analytical design of a class of non-linear systems but is 

restrictive because only one point of the response, the terminal point.

Is considered,

1.1 Adaptive Controls

More recently, considerable interest has centered about a new class 

of control systems termed adaptive [s] or self-adaptive controls [9].
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The extent of this Interest Is.indicated In a lengthy bibliography on the 

•abject compiled by Stromfr [lef].

An adaptive control system is defined her® as a control system which 

is capable of monlforing its own performance with respect to a given 

indexof performance ©r optimum condition and modifying its behavior by 

closed-Ioop action in such a manner as to optimize the index ©f perform™ 

anee or approach the optimum condition* The necessity'of such systems is 

apparent in the control of dynamic processes whose operating character™

Ssties vary over a wide range during normal operation. For example, such 

dynamic processes as high-speed aircraft, space vehicles, and chemical 

plants.experience wide variations in their environments throughout their 

coarse of operation. This places heavy demands on their control systems 

which cannot be met in a completely satisfactory manner by conventional 

controllers* The reason for this is clear when one-recalls that conven

tional designs are based on satisfying one or more design criteria 

assumin§ the. dynamic process is linear and time-invariant throughout its 

performance envelope. An example in point here is the minimization of 

the integra1-square—error ©f a positional control system for a ramp in

put subject t© a constraint on the mean-square notse power in the output* 

At best, this problem could be treated by conventional methods only if a 

complete knowledge of.the time-invariant or time-varying character- of 

both the fixed elements and the signals Is available a priori. Unfortu

nately,. the dynamic processes mentioned above are cal led upon to function 

in environments.which are at most only partially known a priori* Hence, 

the information needed t© effect a conventional design for such a process 

is not available anti! the process has begun functioning* As a result, 

the use of- control systems, capable of moottoring, evaluating, pnd 

modifying their performance to-meet the demands of control dictated by a
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changing environment is mandatory for such dynamic processes,, Moreover, 

as a resuit of changing environment, the goal or task of the control 

system may change and the weighting of system error may become more or 

less important.

In summary, example si teat ions where the use of adaptive control is 

warranted may be classified broadly as follows;

1. The characterisation of the dynamic process is an unknown function 

of the environment to which the dynamic process is subjected,

2, The goal or task of the control system changes with environment. 

For example, the task of a chemical process controller during 

normal operation is to maintain such process parameters as 

temperatures, pressures, flow rates, and product qualities at 

their desired values. On the other hand, during startup the 

controller must change the process variables as rapidly as 

possible to achieve the desired steady-state.

30 The index of performance used to evaluate the performance of

the dynamic process changes with time. For example, small devl- 

ations from the desired trajectory of a ball1stic missile must 

be weighted more heaviIy during the terminal phase of the trajec

tory than they are during the earlier phases of the flight path.

1.2 Statement of the Adaptive Control Problem

The definition of an adaptive control system implies three functions 

which the system must be capable of performing [it] s

1. Provide information about the character of the dynamic process, 

i.e„, identi fy the dynamic process.

2. Evaluate the performance of the dynamic process with respect to 

an index of performance and make a decision on how to achieve 

optimum performance.
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3, Initiate modi fieation of signals and/or dynamic process para

meters in order to realize optimum performance.

Hence, the general problem of adaptive control divides logically 

info three basic problemss identifieat Son, decision, and modification. 

Each of these basic problems in itself represents a complete area of 

research. However, any research effort concerned with one of these can 

proceed logically only if the othef two aspects of the ©ver-a11 problem 

are kept In mind, A block diagram .'depleting the subdivision of the 

adaptive control problem into its three logical phases is shown in 

Fig, 1-1,...

This research is concerned wifh a new method for achieving modifl

ection assuming that identification information is available continuously, 

and that an Index of performance has been specified. The index of per

formance to be used in this research is formulated in Chapter 2,

Since this research deals with an approach to the modi fleet ion prob

lem, onSy- a summary of the salient features-of the identification and 

decision phases of the over-alI problem Is given here,

1,3 The Identification Problem

The identification problem is.-the problem of obtaining a descrip

tion of the relationship between the input raft! and the output Ct) of 

an unknown dynamic process as shown in Fig, 1-2, Mathematically, the 

problem is one of determining the functional transformation © between the 

variables'm(t! and elfS given by

c!tJ ■ S [»(f Q C1-1)

where t is the independent variable, time.

Two basic requirements of any identification procedure ares

1, It mast perform the identification function wi thout excess!veIy 

disturbing normal operation of the dynamic! process.
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It must perform the identification function in an interval of 

time comparable to the interval of time for which the 'significant 

■identification information Is valid*"

Both requirement! are essential In order to perform adaptation con

tinuously wi thout recourse to ha 111ng system operation, taking measurements 

and spending considerable effort in computation In order to obtain identi

fication i nf ormat Ion."

For the impulse response representation the functional transformation

G of Eq» 1-1 assumes the form :

•. - a" ^ + Vi P"~1 + ••• , (1-21

bn P" + b„-1 >"*’ +■••• + bl P > bo

where p is the' operator gp n^m is required for physical real izabi 1 i ty, 

and the Sj and bj are constants or slowly varying functions' of. time t.

Various identification schemes have been Investigated by Braun 02], 

Kalman 03], Turin 04j,. and Joseph, et al, 05]. These methods wi I I not 

be reviewed here because they are not relevant to the work which follows. 

However, the approach to the Identifieetion.problem given by levin 06] 

could be used' with the solution of the modification problem given in this 

research to form a. complete adaptive control system. Levin's procedure 

for identification is outlined below.

The method proposed by-Levin employs samp 1ing of the input and output 

signaIs of :the dynamic process,-and requires no special "test signal at the 

input to the process being identified. .This latter property permits 

identifleafion of dynamic processes within control loops, a feature which 

is needed -in the adaptive controls developed in this research. Since 

the procedure can fee-repeated periodically,' it- is-applicable to linear, 

slowly time-varying processes. The scheme is similar tp cross-correlation 

.07] since the result ©f each is a set "sample -points of the unit im

pulse response of the dynamic process.



The model assumed Is Indicated In Fig. 1--3, The process Input Is 

denoted by mini and the resulting output by efnS where n denotes the 

number of the sampling instant. The sampling Instants are assumed to be 

separated by some time interval ta so that the nth sampling Instant corre 

spends to time t = nt In order to develop a realistic identification 

procedure, Levin assumed the presence of uncertainty in the measured 

output. This Is denoted by the disturbance q(n) which Is assumed to be 

a stationary, Gaussian, white noise signal with zero mean.

In the discrete formulation, the sequence of output values of the 

assumed model becomes

s <o
c(rI s w(p) ra(n*pp) + u(n) (1.-3)

■ . p=o

for n ^ p.

Physically only a finite number of the w(pi can be determined and, 

hence, the impulse response is approximated by a finite set of values, 

w(Q), w(1J, ... , w(Pi where P is chosen such that w(p) 0 for p>P, 

This approximation is usually valid for most physical systems.

A typical set of input and output observations are shown In Fig. 1-4 

to indicate the relation of one to the other. The following assumptions 

were made by Levin in the derivation of the set of algebraic equations 

whose solution gives the W(nS s

1. w(p) = .© for p^P for some Pi>0.

2. mini is observed for O-^Tn^N and is not identically zero in

this interval.

3. c(n) Is observed for 0$ n^ N + P,

- 7 -
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The results of Levin* s derivation may be summarized readily if the 

following matrix notation is employed*

C{PS

ciP + 1)

cCP + NS

(1-4)

and

w* (0) 

w*«1 S

W#(P)

(1.-5)

mIPS m«P +1) . „ o m(P + NS

miP - 1) m(PS . , . ra(P + N -• 1)

m « # «
(1-6)

mfOS m(1) ml NS

where win) is the best mean-square estimate of wins, the latter being 

the exact value of the Impulse response w(tS at time t = nta<>

Then according to Levin®s development, the w#(nS satisfy the normal 

equations

[■IH'H'HH n-71

/ ’
where jjtfj is the transpose of the matrix [mQ,

A small special-purpose dig?taL computer could be designed and pre

programmed to solve the set of equations indicated in Eq. 1-7, This



Information could .then be -atfIized-by the modifScat ion portion of the 

adaptive system.

1.4 The Decision Problem

The decision problem deals with the development and specification 

of analytical methods by which dynamic process performance can be evalu

ated and from which a strategy to achieve adaptation can be evolved.

The most common method of process evaSeat ion utilizes the notion of an 

index of performance. An index of performance Ss defined as a functional 

relationship involving dynamic process characteristics in such a manner 

that the optimum operating characteristics can be determined from it.

Numerous indices of'performance have been treated In the literature' 

[is,. 19, 2(0. Hence, only the concepts-which underlie the Index of per-' 

formance to be developed in Chapter 2 and used in this research are given 

here0 -

The most common indices of performance used in present day control 

technology are those- which employ some arbitrary function of system error. 

In this context system error is defined to.be the difference between the 

desired value of the process state and the actual value of the process 

state. Symbolically,'

I ■ F^«t0 (1-8)

where I «*. index of performance

eft I ® system error

F * some arbitrary functional operation.

In applying the concepts of dynamic programming to.the optimization 

of control processes, SeIIman [210 postulated a rather broad class of 

indices of performance in terms of cost functions. Consider the dynamic 

process shown in Fig. 1-5 and let the state of the process be characterized 

by a vector* eft) and let mftj be the input or control vector. Further,

vector as used here is defined as a column matrix.
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let cQC t J represent the desired state of the process,. G j^e0lf I - c(t) 

be a function'measuring the cost of deviation of c(t) frote c^ft), and 

a ^tJf5c^'OR measuring the cost of control,, Then the total 

cost function or index of performance', denoted J pelt), »C17”| , becomes

H ^mC t

Observe that the total cost function consists of two parts,, The 

first is actually a measure of system error as discussed earlfer, while 

the second is a measure of the amount of control effort exerted in driving 

the process from its present state to the desired state,. While dynamic 

programming concepts are not used in this' research, the formulation of 

Eq» 1=9 and its interpretation as a compounded cost function is basic for 

the work to fol!©we 

1„5 The. Modi float ion Problem

After the.identificati©n and dec!si on problems have been solved,, the 

adaptive loop must adjust or modify the dynamic.process to bring it to the 

desired state,, Modification is usually based on the following informations

1. The desired state of the dynamic process,,

2» The present state of the dynamic process,,

3. The character of .the Input=output relationship of the dynamic • 

prOCOSSo

4* The Index of performance chosen as the measure of system per«?

formaneee

Conceptually, the modification phase of the adaptive control problem 

may be viewed as computer control of the dynamic process as shown In 

Fi-g-o IHJo Typical operations which might be replred of the computer eon«* 

troHer Include evaluation of the index of performance, generation of 

control signals for the adjustment'o-f parameters, and/or generation .of new 

signals to be applied directly to the input of the dynamic process*.

(1-9)0J eft), ra(-t) fc.Ct) - c<tQ
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The present approach to the modificat ion problem utiIizes a concept 

cal led control signal modif icatiori as shown In Fig* 1-7. Control signal 

modification Is defined as thp application of linear,-time-veryIng and/or 

non I Inear operations on the actual system Input to derive a control signal
J

which actuates the dynamic process. This approach lends itself to two in- 

■terpretations which are termed parameter adjustment and control signal 

synthesis, ’ ' ;,

Parameter Adjustment. This method performs modi fleet ion by adjusting 

the parameters of the dynamic process and/or a compensation scheme to sat

isfy the index of performance. See Fig. 1-8. Since the control require

ments vary with time due to changes in process dynamics and process 

signals,-the adjustment of the parameters is a time-varying operation. 

Clearly this approach achieves modification by. direct' recourse to the 

shaping of the dynamic process transient response. The work of Anderson, 

e, .1. [22] is one of the more interesting applications of the parameter 

adjustment method. • The system, which is shown in Fig-. 1-9, utilizes the 

impulse-response-area ratio as the index of performance. The technique 

provides a means for the system to adjust its parameters for optimum dy

namic response by using a null-type index of performance.

The parameter adjustment approach modifies the control signal 

Indirect l.y by manipulating'the parameters of the elements employed in the 

over-all system. Its. primary function is to shape the dynamic process 

transient response In accordance wi th the dictates of the index of per

formance..

Control Signal Synthesis. Rather than modify the control signal in

directly, this approach utiIizes the identification and decision inform

ation to synthesize a new control signal which is then used to actuate the 

dynamic process. The scheme is shown in block diagram for in Fig. 1=10.
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Basically, this approach is concerned with obtaining an optimum approxi

mation to the desired response by operating on the Information contained 

in the index of performance to derive the actuating signal.

In certain applications it may be impossible to alter the character 

of the dynamic process or of a compensation scheme in order to achieve 

optimum operation. This situation wi11 arise in those cases where process 

parameters must be control led indirectly because the process has no physi

cal adjustments available.

In summary, both approaches are concerned with altering the nature 

of the control signal which actuates the dynamic process being controlled. 

However, the first method achieves this goal indirectly by acting through 

the adjustable system parameters, whereas the second does it directly by 

creating a new control signal. While the parameter adjustment method 

shapes transient response directly, the control signal synthesis scheme 

treats it indirectly since the/process Impulse response wi11 Invariably 

appear in the formulation of the index of performance. In a sense, the 

two approaches are simiIar with the roles of transient response shaping 

and control signal generation inter-changed. However# it is useful to 

separate the twp in an operational sense.

1.6 Research Objectives

The first objective of this research is to develop a new class of 

adaptive controls*-' The ultimate result will be a control conf i guration 

which is optimum in a specific mathematical sense and is readily realize 

able with aval table physical components. The concepts of prediction and 

interval control, which are defined in Chapter 2, wi11 be employed to 

achieve this objective* The focal point of the first research objective 

'is'modification by control signal synthesis.

- 17 -
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The second objective of this work is to evaluate the performance1 

characteristics of this new class of edaptive controls* Analytical and 

experimental methods are employed to achieve this second objective. The 

results of the two methods are compared and used to evaluate the class of 

adaptive controls developed.
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CHAPTER 2

DEVELOPMENT OF THE MODIFICATION PROBLEM

The purpose of this chapter Is to develop the mod!fIcation problem 

In terras of the concepts of prediction and Interval control, and to 

formulate the Index of performance to he used In this research,

2.1 Prediction In Adapt Ive Control

A number of researchers £23, 24-j have i nvest I gated the use of predic

tion in conventional communication and control systems with reasonable 

success. It is to be expected, then, that the incorporation of prediction 

in adaptive controls might aid the over-all system in combating erratic 

and undesirable behavior in the dynamic process. By anticipating wide 

variations of the actual response from the desired response, the adaptive 

loop is given ,,leadM time to synthesize, with the aid of a specified 

index of performance, the control signal which wi11 offset the effects of 

these variations. Hence, prediction appears tp be a desirable feature in 

adaptive controls,

2.2 Concept of interval Control - •

Prediction must be based on the past history of the function being 

predicted. Also, we I (-known results from prediction theory p?sf] indicate 

that prediction accuracy deteriorates with an increasing prediction in

terval length. Hence, a finite prediction interval length T must be used 

to maintain a specified prediction accuracy.

Because of this prediction requirement, a reasonable engineering 

approach to the modification problem is to divide the process control 

into intervals of length T as shown in Fig. 2-1. Then, information 

gathered during the Interval - T^t^O can be used to achieve optimum 

control Over the interval 0 < tT, By letting t = 0 be the present
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time, the interval 0$ t-jg. T may be chosen as the reference interval over 

which the process is to be optimized. Hence, with respect to-actual sys

tem time, the point t « 0 corresponds to the beginning of a control 

interval of length T into the future. By using a fixed prediction inter

val length T and operating on data aS they occur in the interval -Tg t $ 0, 

a prediction of the desired response and actual response of the dynamic 

process for the interval 0 g tj? T can be obtained during the former in

terval. This result then permits the adaptive loop to take action at 

t * 0 to optimize dynamic process performance during the reference control 

.interval

This subdivision of the optimization into intervals wi11 permit the 

use of the classical z-transform method to analyze certain response

characteristics of the class of controls developed,

2,3 Formulation of an Index of Performance..  -V- •' I,.iin i, . i.  ■  ■ . . ■ i;

Consider the single-dimensional dynamic process shown in Fig, 2=2 

having the input variable mlt), the output variable clt), and external 

disturbance uit), and the unit impulse response wlt.,7' I which is time- 

varying as a function of environment E, The unit impulse response wit,?') 

is defined here as the response of the dynamic process at time t to an 

impulse applied at time “T» A modified least squares index of performance 

will be formulated fpr this process by considering an interval of length 

T in the future, where t=f 0 is taken as the present time. It will differ 

from conventional least squares indices of performance in the following 

wayss '

1, The process wilI be optimized over a future interval of time T 

and no errors before t =! O wf 11 be Weighted,

2, Provision wiIl be made for unequal weighting of system error 

during the control intervaI«
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3, The existence qf a model characterizing the desired input-output 

transformation of the dynamic process will be assumed.

4, Prediction will be used to establish the future values of the 

desired response.

5, The control variable m(f) wi11 be manipulated 5n the present 

(t » Q) to optimize process response in the future.

The reason for not weighting system errors in the past is because 

no control can be effected in the present or future to reduce these 

errors.:

In attempting to optimize the dynamic process of Fig, 2-2 overall 

time* the clssstcal index of performance is the Integra I-square-error 

"given, by;

rdo . ' 2
1 ^ 0 k0«tJ - c(tlj dt C2-1 >

*~00 ' "

where

cQ(t) » desired process response 

cit) » actual process response

t = dummy variable of integration, time.

However, since optimization is to be executed on a per interval basis and 

cQ f t > is available only for '0 -as tg T, Eq, 2-1 becomes

In order to provide for unequal weighting of response errors oyer the 

control interval, an arbi trary weighting factor \ (ti is introduced into 

the integrand of Eq, 2-2 to give

2
1= y X€ts 00^® “ dt .. C2-3»,
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This weighting factor is obtained from engineering considerations based 

on the goals or objectives of control, For example, if response errors 

are important only at the end of each control Interval, the choice 

XftS * & C t - T.J is made where ^ St I Is thp unit impulse function,, If 

equal- weighting is to be given to response errors, then \ C11 is simply 

a constant. An important restriction on \(tJ which is necessary to give 

meaningful engineering results is -)i (ti>'0: for'.0$ ■

Finally, a cost term accounting for the amount of control resources 

utilized to achieve modification is added to Eq. 2-3 to give

1 = J X") [c. ft) -eft)
']■«*.£

ft) dt (■2-4!

Clearly, .Eq, 2-4 Ss a member of the general class of Indices of perform

ance defined by BelIman !n Eq, 1-15.

The actual response cCt) of Eq, 2-4 Is comprised of three components. 

The first is due to the initial energy stored in the dynamic process at 

t * 0 and accounts for excitations prior to t * ©, This term is denoted 

by C|ftS, The second component of c(t). is that due to the disturbance 

uCti and the third is caused by the new excitation raifl, $ T, and

Is given.-by. the convolution integral ■

■ ' mi'T) wlf,^) df (2-5) "
°o

where 1* is the dummy variable of integration. Hence, the actual output 

c(t) is given by „ ,

eft) ■ Cj(t) + u(t) + V m.fT') w(t/y B dY C2—6S

Substltation of Eq. 2-6 into Ed. 2-4 yields the final form of the index 

of performance.

I ® tJ B (t) Cj (t) - u(t) -
^ m(T') W(t,f I dfj 4-m2«ti^dt

(2-7)

T
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where?

c0<t) = desired process response during the control interval.

Cj C't) * component of process response during the control interval 
due to initial conditions at the beginning of the control 
intervaI.

ult) = component of process response during control Interval due 
to external disturbance.

ra(t) = process input control variable to be chosen to minimize 
Eq. 2-7.

w( t, ) ^process unit impulse response for the control interval.

\<t) •• arbitrary system error weighting factor.

Eq. 2-7 is an index of performance comprised of two cost functions. 

The first term represents a measure of the deviation of the actual dynamic 

process response from the desired dynamic response. On the other hand, 

the second term measures the amount of control effort which is exerted.

The weighting factor ts provides considerable flexibility which is not 

a property of most integral indices of performance. Not only does it 

provide for unequal weighting of response errors on the control interval, 

but it also permits a relative weighting between the two terms of the 

index of performance. Moreover, depending on the control situations to 

be encountered, a judicious choice of X^l wi I I provide response superior 

to that of conventional indices of performance. As a result, the presence 

of \ct» provides the design engineer with considerable latitude In seek

ing optimuto designs,

2,4 The Complete System

The complete modification problem as developed in this chapter may 

be visualized in block diagram form as shown in Fig, 2-3. The function 

of the control unit and signal synthesizer is to utilize the indicated 

input information to generate the optimum control signal m(t). Clearly, 

such a task could be accompIished by a large digital computer. However,
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engineering factors such as size, weight, and cost often dictate the need 

for small, special-purpose computers to perform the control task. One of 

the objectives of this research is to develop a class of adaptive controls 

which can be realized readily from physical components. This objective 

requires keeping system complexity at a minimum.

In order to keep complex!ty and cost at a minimum, operation of the 

control unit in real-time is highly desirable. If real-time operation can 

be achieved, there wifi be no need for high-speed computing devices with 

their inherently complex input-output accessory equipment. Computations 

in the control unit could then be performed by analog components, e,g«, 

multipliers, integrators, summing amplifiers, and diode function generators 

operating at the same rate as the dynamic process.

2,5 General Considerations

Basically, the entire adaptive control process as developed here may 

be viewed as a sequence of decisions to be made every T units of time.

This decision for each interval T is based upon the present state of the 

dynamic process being control led and upon the desired behavior of that 

process over a future interval of time as obtained from a prediction 

operation.

Since all possible control signals mCH are not acceptable because 

of physical limitations imposed on the control problem, the actual re

sponse of the dynamic process cannot, in general, be expected to agree 

exactly with the desired response. Hence, an index of performance was 

developed to be used in selecting the optimum member from the class of 

acceptable control signals.
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CHAPTER 3

THE OPTIMIZATION PROBLEM

The optimization problem Is concerned with the selection of a physi

cally realizable control variable m(t) which will minimize the index of 

performance, Eq. 2-7. In other words, the problem of determining optimum 

control deals with the minimization of a particular integral over a fixed 

interval.

A number of minimization techniques are presented here as background 

material for the work which is to follow. Another purpose of this chapter 

is to point out the computational difficuI ties which arise when optimiza

tion of adaptive controls is considered. The minimization techniques 

treated ares

1. Calculus of variations.

2. Approximation of mltl by discrete segments.

3. Approximation of mlt) By a sum of orthonormal polynomials.

In order to simplify the mathematics and still indicate the concepts 

underlying the first two approaches, let the disturbance util =0 in 

Eq. 2-7.

3.1 Calculus of Variations

A fundamental problem in the calculus of variations is to determine 

a function such that a particular definite integral involving that func

tion and certain of its derivatives assumes a maximum or a minimum value 

The application pf thi4 mathematical tool to the optimization of 

control systems was a major step in the development of analytical control 

theory as shown in Newton p. 143],

The application of this technique wiIl be considered for the class of 

adaptive controls discussed in Chapter 2 and conclusions will be drawn as 

to the feasibiISty of the method for this class.



. . - 29 •-

With the substitution u(t) = 0 Eq. 2-7 becomes;

1 X
(3-1 )

In order to determine the optimum control variable, it is assumed that a

solution does exist and is denoted by m CM. A variation of nr Ct) is then7 o o

constructed by letting

n('t)"»'jn ft) + £ m (t) 13-2)

where € is a parameter independent of t end mg(tl is the variation of 

m(t). If ra0(ti is the optimum control variable which therefore minimizes 

Eq. 3-1, then any variation of £ from zero in Eq. 3=2 must cause an in

crease in the value of Eq. 3-1 from its minimum. Hence, if Eq. 3-2 is 

substituted into Eq. 3=1, the derivative of the resultant equation with 

respect to € for € set equal to zero must be zero.

Substituting Eq. 3-2 into Eq. 3-1 and differentinting With respect 

to € gives

miyi Wit,^ 1 d^J
+ r (t) \ dt

"b I 2 J j |ce(t) - C|«t) - J [m0«Vi +€ ,nr( q'ij w(t/r I d^

£
L vo

m (t) w«t,Y 5 dT
€

+ :Q»p(-tl +6 m^itjJ m^tJ f dt 83-31

From the argument gi yen above, i f € = 0, the right hand side of Eq. 3=3 

must be zero. Hence,

83=45
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Although Eq. 3=4 expresses the condition for a minimum, it is Pot In 

a form in which the variation ra^C tt Js separable. The solution of varia

tional problems of this tyde is usually expressed in the form of a differ

ential equatioh Ccommonly termed the Euler equation I with boundary condi

tions. For an Nth order dynamic process It Is necessary to integrate

Eq. 3=4 by parts N times to obtain the Euler relation. Hence, without a 

knowledge of the order of the dynamic process, solution of Eq. 3-=4 is 

impossible. Moreover, the presence of boundary conditions, a natural 

consequence of this type of variational problem, poses additIona I diffi

culties. In particular, for an Nth order dynamic process, there wi 11 be 

N natural boundary conditions which the solution must satisfy.■

In most physical Situations the order of the dynamic process is 

known. Nevertheless, the solution of Eq. 3=4 will give no insight into 

the structural form of the adaptive loop other than to indicate the need 

for a complex, high-speed digital computer for the generation of mQ1t),

In addition, the presence of boundary conditions will not permit sequential 

compu tat ions, but wi 1.1 require "trial and error calculations for.solution

of «0.C t 5.

Clearly, the calculus of variations approach imposes heavy demands 

on the computational ability of the adaptive loop in order to optimize 

the dynamic process response. Extensive numerical computations are 

necessary which will, obscure the relationship between adapt!ve and non- 

adaptive controls. As a result, this approach is not tractable from 

either an analytical or experimental viewpoint for the purposes discussed 

8n Chapter 2.

More recently Bellman [28, Ch. 9] has developed a new approach to 

calculus of variations problems in terms of dynamic programming. Although 

the method offers some hope for the application of the calculus of varia

tions to the adaptive control problem, it is computationally cumbersome.
v
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3.2 Discrete Segment Approximation

In this section the continuous control optimization problem which 

was discussed in the last section will be replaced by an approximately 

equivalent discrete formulation. The interval from t = 0 to t = T is 

partitioned by a sequence of points CtQ*t|, ... ,t^i separated by a 

distance A where A ~ tr and N equals the number of partition points.

The control variable is then approximated by a sequence of discrete levels 

mB as shown in Fig, 3=1. The integral

c«tl * j m<f) w«t,r ) dT (3=5)

is approximated by the sum

cn “ A it- wnj *n n > J <3"6)
. J«V

c = 0 j >■ n ' (3=71n • •• • •

because wRj = 0 for j> -h; that is, the system does not have access to 

its future values. Hence* the output becomes a sequence of values

(c„ • be

The component of the output due to initial conditions Cj(t), and the

system error weighting factor )^(tJ are also approximated by sequences of

values* <C|* cj , ... * Cj I and ( X-p \ 2* ... * X Ni* respectively, 
i 2 N

The same Is done for the desired response c0(t),

Using the above definitions and approximating the index of perform

ance* Eq. 3=1„ by a sum gives

I + m. (3=8)

The optimization problem for this case deals with the choice of the 

mn such that Eq, 3=8 Is a minimum. Therefore* for any integer k, the con

dition for a minimum value of Eq. 3-8 is
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I
^mk

0 (3-9)

for all k, k = 1, 2, ..,>N. Performing the indicated differentiation 

and setting the result equal to zero gives

for k ® 1# 2/. ^ ^ ;

Since ,

~b c .'■'"'V'-.;.;
—-& • wnk k
£ mk

and

"b m .
SB 0

~a",ri

>'"V

n < k

n * k

a»k
0 n jfe k

13-11i

C 3-12 >

the condition for a minimum becomes

(3-13)

wi th

JL
h wnj m. 13-14)

Eqt 3=13 actual!y represents N linear algebraic equations in N 

unknowns. The equations must be solved simultaneously at the beginning 

of each control interval to give the optimum control variable as a



sequence of values■ (m., ,>2, , mN) for that control interval. This

- formula!ion'; is-more amenable to digital computation than the first 

method considered, but stiIS obscures any real insight which one may 

hope to gain about the structure of the adaptive loop.

An approach to the simultaneous solution of Eq. 3-13 is obtained by 

considering the last member ©f this set «k'« N) which Is

. A \ [coM “ cm ~ WNN "n'J wNN>>N = 0 13-15)

Since mN is the only unknown, Eq. 3-15 is easy to solve. The solution of 

Eq. 3=15 may then be subsfituted Into Eq. 3=13 for k «* N = 1, and the re

sulting equation,solved'for-its-only .unknown, m . Hence, the solution 

of the set of equations given by Eq. 3=13 propagates backward through the 

set. The use of high-speed digital computation Is again mandatory to 

determine the optimum control variable. Here again no insight into the 

real nature of adaptive control can be gained.

3.3 Orthonormal Polynomial Sum Approximation

For a large class of adaptive control problems the use of a high-speed 

digital computing facility Is undesirable. Such factors as size, weight, 

and cost are paramount in practical applications. Unfortunately, the neces 

sity of high-speed digital computation has been a natural consequence of 

the two optimization procedures considered thus far. While these mathe

matical procedures for optimization are well-defined, the end results do 

not lend themselves to a well-defIned engineering interpretation. The only 

interpretation has been that large-scale digital computation is necessary.

What is really sought here Is a set of reasonable assumptions based 

on engineering considerations which will simplify the optimization proce

dure, keep the complex!ty of the adaptive loop at a minimum, give reason

able over-all system performance, and- be consistent with the objectives 

of adaptive control as.discussed in Chapter 2.



First, the optimum control signal w(t) should be one that is physi

cal ly realizable. That is, it should not consist of impulses or higher 

order signularity function? which wi11 invalidate the assumption that 

the dynamic process can be;characterized by a linear, time-varying, 

weighting function wlt,^). Secondly, m(t) should be relatively simple 

to synthesize during norma! operation of the system. This second factor 

implies simp Ileity of the adaptive loop. Third!y, the mathematleaI for

mulation of mtt) should lend itself readily to an optimization procedure

which is simple and which gives physical insight into the form of the 

adaptive loop,..

The approximation of m(t) by an N-term sum of orthonormal polynomials 

in t is considered in this section. This approximation is defined by

m«t)
N

n =
w.v

0
(3-16)

where the mn are the coefficients which are to be determined, and the 

p ft) are polynomials in t whichare otthpnormal over the interval [o,t].

In other words, the set of polynomials satisfies the following two con- 

di t i.onss

(a) ft) is a polynomial in t of degree n,

CT ' .1 : k = n
(b) V PiJtS p_«11 dt ■» (3-17)

■ . J0 k ;■ ■ k * n

where T is the control interval length. These polynomials are the Legendre 

polynomials with their usual interval of orthonormal Ity £-1, 1J trans

formed into the interval £0, T^ .

The input signal thus becomes a polynomial in t whose degree Is 

dictated by the particular N chosen. The coefficients m^, m^, m^, etc., 

wi11 be generated by the adaptive Ioop in response to changes in process 

dynamics and the desired response.



The motivation for using Orthonorms I polynomials in t, rather than a 

Taylor series expansion Os in Braun |l2j, for m(t) is the hope that the 

coefficients mn can be genei'ated independently for each control interval 

in the former case, if this can be done, the signaI synthesis port ion 

of the adaptive loop can assume the form shown in Fig. 3-2.

11 Vwi I I be shown that independent generation of the mR is possible 

in real-time by means of time-varying gains and integrators. Clearly, 

such a scheme wi11 avoid the necessity of complex high-speed digital com

putation, and wiI(offer considerable simp!icity in system design. The 

detailed treatment Of this approach is prespnted in Chapter 4;
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CHAPTER 4

DERIVATION AND ANALYSIS OF THE OPTIMUM CONTROL CONFIGURATION

The purpose of this chapter ip to Investigate the last approach to 

the optimization problem which is given in Chapter 3, The control equa- 

tions are developed and the optimum control configuration is derived.

In addition* a theoretical analysis of certain characteristics of 

the class of adaptive controls developed is presented. A theoretical 

system transfer function is derived and applied to a stability analysis. 

Limitations of the transfer function approach are a I§p discussed. 

Finally* since this class of adaptive controls employs prediction* accu

racy requirements in terms of the prediction operations are discussed 

briefly.

4.1 General Condition for Optimum

The three equations from which the genera I condition for optimum 

control will be derived are repeated be lows

'2 ■}

r
(2-4)

(2-6)

' m(15 ■ y* m_ pK(t) (3-16)e _ n n 
n ■ @

for 0 ^ t-4l T. The terras in these equations have been defined previously 

It is assumed here that the disturbance is a stationary* Gaussian* white 

noise process which is independent of the input signal m(t)»

The values of the various m , n • 0, 1* ... , N* needed to minimize 

Eq. 2-4 are obtained by differentiating the equation w?th respect to
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mk, k = 0, 1, ... / N, and setting the result equal to zero. Thus,

B^k 40
1 X «f > JcC- i t} — c (t )1 P + m (t) -

■3 mk_

3 m (t)

for k - 0, 1, ,.. , N. 

From Eq. 3-16

1_mm -
m.

d t = 0

C 4-1 )

14-2)

and from Eq. 2-6,

B c( t) % mi'Ti

B mk 4Q B mk
w( t,r) aY

for k * 0, 1,..., N,

Substituting Eq. 4-2 into Eg. 4-3 yields

^ :* '"■% Pjf) Wlt,f) <1^
B mk 0Q *

c( t)

(4-31

(4-4)

for k ® 0, 1, *,,, H*

From Eqs* 3-16, 3-17, and 4-2, the last term of Eq. 4-1 becomes

£■"” V£rd* = 1 | 2_. ^"*1 '■k"’ «

;o B mk 

which simplifies to

r

T P N _ I0 Ln = 0

B m( t)

«4-5)

m( t? 1" 1 dt'«.rtiL
B V.

(4*6)

because of the qrthonormaIity of the polynomials for k * 0, 1, N*

Substituting Eqs, 4-4 and 4-6 into Eq, 4-1 gives

^ X(t). Jtep(-:t) -cm] - ^ pk(r> vy(t,r) 6rj
dt + mk * 0

(4-7)

for k *' 0, 1, N, Eq* 4-7 actual!y represents N I inear algebraic
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equations Ib as many unknowns since clt) is also a function of the mk as 

seen from Eqs. 2=6 and 3=16. These equations can be solved explicitIy 

for the mk providing cjtt), ult), and wlt/T*) are known. Such a solution 

would again require the use of a high-speed digital computer in the adap

tive loop in order to control the dynamic process. However, an approximate 

solution can be obtained by considering an estimate or prediction of the 

quantity jc0?t) - .

The coefficients mk which are needed for a particular control inter

val must be available at the beginning of that interval according to 

Eq. 3=16. But Eqs. 2=6 and 4=7 indicate the m^ depend upon the responses 

c0ftl and e(tJ during the same interval. However, i f the quantity 

Je ttl - c(t)J can be estimated T units of time in advance, it is possible 

to employ Eq. 4=7 directly to estimate the values of the m^ for the succeed 

ing interval. That is, the coefficients mk for the Pth.interval can be 

generated by real-time operations during the (P-1)th interval,,

In order to apply the notion of prediction, define

' Jc^ltl e(t)j * = best available estimate of • ^ttr - cCtTJ

T units of time in advance

Eqi 4=7 can then be solved directly for the estimated mk to give

T
pk«r j wct,r 5 drm :ti Jc0t-tr- cxt-Q dt (4=8)

for-k- « 0, 1, H. .

Let, a time-varying gain K^lt) be defined by

KkCt!
x«-t» r

■0
jYi wit,r) dT 14=9)

for k « 0,1, ..., N where © ^ T,
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When Eq. 4-9 Is substituted Into Eq. 4-8, the result is

m. £vn E° ft) - e(t)| dt
0'

U-10)

for k = 0, 1, .N. With a change in the index of summation, Eq» 3-16 

becomes

ml tl Pkit) (4—11>

for 0 ^ t ^ T,

Eq. 4-10 is the general condition for the optimum. The combination 

©f Eqs. 4“10 and 4=11 constitutes the control laws for a class of predic

tive adaptive controls. Eq. 4-10 indicates how the coefficients!!^ for 

any control interval P can be obtained by real-time computation during the 

preceding control interval, IP-1). Eq. 4-11 indicates how these coeffi

cients are combined with their correspond!ng polynomials p^it) to generate

the optimum control variable. The fact that the optimization procedure

presented here renders the index of performance Eq. 2-4 a minimum is

demonstrated in Appendix B.

Eq. 4-10 suggests a formal synthesis procedure for the generation of 

the mk which is shown in Fig.. 4-1. Each of the mk Is then multiplied by 

Its corresponding p^ft) and the results summed to give mlt) according to 

Eq, 4-11. The complete control configuration then assumes the form given 

in Fig. 4-2. Th® configuration of Fig. 4-2 Is optimum on a per interval 

basis. Hence, the time-varying gains and integrators must be. reset at 

the end of each control interval to initiate computation for the next in

terval. The function of the sample and hold devices Is to read out the

values of the various ®k at the. end of each Interval and to maintain these

values throughout the new Interval
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In terms of the information flow in the over=aII system, (t Ss clear 

that the controller operates on the quentity

jcQ(tJ - e(tl| * (4=121

to derive the control variable m(t), The quantity in (4-125 is simply 

the predicted system error. In other words, the function of- the predictor 

is to present the controller with an estimate of the future system error. 

The task of the contra!ier is then to synthesize a control signal which 

wi11 minimize the actual system error in the succeeding control Interval. 

Hence, over-a11 system operation may be viewed as data processing of the 

predicted system error to derive the optimum control signal. The charac

ter of the data processing changes to accommodate changes in the dynamic 

process w(t,7* ), changes in the desired response c0(ti, and changes In the 

index of performance which are governed by X !t>, the system error weight

ing factor. ;

An important feature of this class of adaptive controls is the nature 

of the time-varying gains which are given by fq. 4-9,

- Kk(tJ = X’ct) f pklf) ' (4-95

: VO ■

for k * 0, 1, N, Since the polynomials (t> are linear combina

tions of the singularity functions, i.e.:, the step, ramp, and parabolic 

functions, etc,, the tirae-varyihg gainsare simply the products of the 

error weighting factor X^i and the response of the process w(t,‘7>5 t©

I i near combi net i ©ns of these same singe I ari ty functions, Theref ore, the 

time-varying gains Kjjtt) are easy t® generate given a knowledge of the 

dynamic process impulse w(t,T 5.

The adaptive nature of the optimum control configuration Is clear 

from Eqs, 4=9 and 4-10, The time-varying gains K^tt5 are related directly 

to the error weighting factor X'O) end the dynamic process unit impulse
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response wlt/7'). Hence, the adaptive loop has a means of changing the 

index of performance by changing \ (t) as the goals of control change, 

and is also capable of accounting for changes in process dynamics w?t,T?5 

all through the time-varying gains K^tti.

Examination of the control laws and the control configuration reveals 

three important features of this class of adaptive controls!

1, The control ter can be realized using simple analog components,

2, The controller operates in real-time,

3, Complex computational operations have been avoided.

These three items satisfy the original goals which were established in 

the formulation of the 'modification problem {Chapter 2). Item 3 is 

actually an outgrowth of the first two, but is included for emphasis.

In conclusion, the control laws of Eqs, 4-10 and 4-11, and the con

trol configuration of Fig, 4=2 completely specify the class of adaptive 

controls to be studied in this work* Their derivation has been based on 

the specified index of performance, the assumption of the general functional 

form of the optimum control variable, and on the use of prediction to ob

tain the predicted error signal,

4,2 Theoretical System Transfer Function

In the analysis of feedback control systems, it is often desirable 

to determine the system transfer function if it exists, In this section, 

it wi11 be shown that a system transfer function does exist theoretical ly, 

but is impossible to obtain in general. However, a slight modification 

of the results developed in this section will permit the derivation of 

stability results for a particular sub-class of these systems.

Under the assumption of a linear, time-invariant dynamic process 

and ideal prediction, the block diagram of Fig. 4-2 becomes that shown 

in Fig. 4=3. The assumption that the controller portion of the system
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can be characterized by a transfer function Gc(s), in principle at least, 

will be demonstrated later In this section.

Using standard block diagram reduction techniques, the diagram of 

Fig. 4-3 reduces to that shown in Fig. 4-4 where Gfs) is given by

6( s)
Ts

e ■' 0 ls» WCs) (4-13)

The closed-loop transfer function is then defined by the relation

C(s)
CQ(s)

e 0 (.s) W(s)

1 + eTs 6c(s) W(s)
(4-14)

This equation may also be. written

C (s) 

C0(s)

G_(s) W(s)C ■ ,
e”Ts -»■ §G(s) W(s)

(4-15)

Attehtion is now directed to the development of the transfer function 

Gc(s) characterizing the controller. Since the input to each channel of 

the controller of Fig. 4-2 which computes the coefficients m^, k * 0,1,.., N 

is je0(t) - ©(tr| , and the outputs of all the channels are summed to form 

m(t), it is necessary to consider only the nth channel, n an integer, such 

that O f n ,g> M, and sura the transfer functions of the N channels to obtain

Ggfs). The nth channel may be represented as in Fig. 4-5.

The channel of Fig. 4-5 will be subdivided into three parts for pur

poses of analysis? (1) the pre-multiplier, (2) the integrator, sampler 

and zero-order hold, and (3) the post-multiplier.

letting e(t? * [c@(t5 ” cftQ be the input and yR(f) the output of

the pre-mult5p!ier (Fig. 4-6), the output is given by

. « Kft(t) • e(t). (4-16)

Since multiplication in the time domain corresponds to convolution in 

the frequency domain, the Laplace transform of the pre-mu I tipiier output 

Y0('s) Is determined by the relation [29, p. 275^,
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Ecu 4-17 indicates the basib difficuIty associated with obtaining the

pot Els) within the comp lex convoiution of Eg. 4-17 makes obtaining the

transfer function .CL Is I' impossible in the general case.c

The combination of integrator, sampler, and zero-order hold is given 

in Fig. 4-7 where the inputs and outputs of each device have been defined. 

As pointed out in Section 4*1, sincethe optimization process is executed 

on a per interval basis, the integration in the controller channel must 

be reset to zero at the end of a given control interval and the beginning 

of the following interval. That is, at the end of the kth control inter

val, the output of the integrator must be

integration basis because the sampler is synchronized with the time-varying 

gains kR(t). Thus, if the output of the integration process at any time t, 

t-3>'.0 Is

transfer function of the cohtroller. The presence of the controller in

iR(kt) = \

0<k-1)T
yf,(t1) dt^ k f 1, 2, ... 14-18)

It is possible to view this process of reset integration on a continuous

4.4-19-
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then at the kth samp I i ng i nstant t V kx Eq# 4-19 reduces to Eq, 4-18. 

Eq. 4-19 may also be written

rt pt-T
+ \ yn<V d^ - \ yrt«fi > <4-ao)

V V

Letting

fR(t) * \ yFl«t1J df^ (4-21'J
^ . ■ .

Eq, 4-20 becomes

iRrtJ » fn«t): =■ fn«t - ts «4-22)

The Laplace transform of Eq* 4-22 is simply

I'■■(») = <1 - e”Ts) F„(s) : ' 14-23)
fi n

But

Fisi = - ris) - -(4-24).. n ■: s n .

where Tn(s) is the Laplace transform of yRCt). Substituting Eq, 4-24 

into Eq* 4-23 -gives the transfer function of the reset integration

IRCs)
Vs7

-Ts. (4-25)

From Truxal [30/ p. §03] the transfer function between rRCt) and lft(t) 

is expressed by

, RBSs? r . ln«s + j/*«g) «4-26)
../<=- 00 2

2 W 'where ^ ig an integer and « ~rv Substi tuting IRSs) from Eq. 4=25 

into Eq.-4-26 gives

1 . e-T,* + •’>“>/] rnis + .j/itf.i'

/4 m- CD " . .

Rnis) s +

(4-27)



The transfer function for the zero-order hold, Truxal [30, p# 507], I a

Q_1s! , _
_D___ __ J. (1 „ e“Tsi
R (s j s 5

n
(4-28)

OaTSm
Combining Eqs. 4-27 and 4-28 and recalling there results

+ ®g„(5) . i M - .-T»)

which simp!3 fies to

? =■ — dD

T~I [’ * •'J27r'“ •'T* /.>«• + J".’]

(4-29)

Q„(s) -i (1 - .-TsI2 Yn(» + (4-30)

' /4 “i ■

Eq. 4-30 represents the transfer function of the integrator, sampler, and 

zero-order hold combination.

The post-multiplier with Its inputs qn(t) and pR(t)> and Its output 

mn(t) Is shown In Fig, 4-8, By definition the output of this multiplier

.Is
mR (t) * Pn«ti • qR(t) (4-31)

Again, since multipiIcation In the time domain corresponds to complex 

convolution In the frequency domain, the Laplace transform of .the multi

plier output is expressed by

S
Cj + j op

PjjjJs-w) Qn(s) dw (4-325

Cg - J 00

where max ( sr8t|, r^, + sra2) < «T, c2 < O’- <ra,

in which ®2 Is a real constant, 0“ * Rep*}, and CTa , CTa are the
I ■ *6

abscissas of absolute convergence of the time functions pn(f) and qn(tS, 

respectively, j29, p, 27.5], .

Eqs, 4-17, 4-30, and 4-32 are the three basic relations for deter

mining the transfer function
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JL„ M_ 8 s 5• fl ■
E8s5

of the controller. The Inherent difficulties in obtaining s 8s) are 

brought out by these three equations# The presence of complex convolu- 

In Eqs# 4=17 and 4=32, and infinite sum of Eq# 4-30 render solution for 

the general case impossible as mentioned earlier# The main obstacle to 

the use of the transfer function approach for this class of adaptive con

trols- 'appears to be the presence of the pre-multip!ler having inputs e(t) 

and Kn(t). This mul tip! Icatiqn operation forces the iaplace transform 

of the input variable, E8s)> to appear under a complex convolution#

The results developed in this section will.be modified slightly In 

the next section and appI led to a stabl l1ty analysis of a particular 

sub-class of the class of adaptive controls under investigation in this 

research#

The work of this section is summarized In the block diagram given 

In Fig# 4=9# -

4#3 Some Stability Results

In some adaptive control applications if may be possible to use 

only one channel In the controller and still get satlsfoctory perform

ance# For this sub=cI ass of predictive adaptive controls, in which a 

one-term approximation of the control variable mlt) is employed, it is 

possible to utilize the results of the preceding section to effect an 

analytical stability analysis#

The basic block diagram for the system using a one-term approxima

tion of the control variable is shown in Fig. 4-10# From Appendix A the 

external Input to the post-multiplier Is

84-345
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for alit. Hence, the post-multiplier is replaced by a gain of 

From Eq. 4-9

K0lt) * X Ctl fp0c^i wit/?' ) dT (4-35)
; ■ J0 j

where alI of the symbols have been defined prevIouslyv

The;analysis which follows is hot exact. It ie based on a linear

ization ofthecon troll er I norder to determine bounds on KQ(t) for 

stability. The fimp-varying gain K^tt) Is replaced by a constant gain

K0 and the resulting system is analyzed to determine the range of values 
, **

on K0 for which the closed loop system is stable. K0<11 is then con

strained to lie within this range for each control interval 0 < t < T, 

That Is, the actual range on K0(t) is compared wSth the required range
(fW

©n Ke to establish requirements on the system parameters and/or the 

control interval length for ciosed-lpop system stability.

Utilizing the resuIts of Section 4.2 and the simpllections discussed 

above, and replacing the ideal prediction operation eT® by the approxima

tion 1 + Ts, the frequency domain block diagram becomes that shown In 

Pig, 4-11, After a few simple block diagram manipulations. Fig, 4-11 

reduces to Pig, 4=12,

Since the system employs sampling, use of the z-transform instead 

of complex frequency swill facl I Ifate the analysis considerably and 

wlM, therefore, be used In the work which follows. Letting

KJTs + DM - e“T8l
I• I s i.g 1 ; 'l r ■■■'■ (4-36)

■ v ' ”
and

®2«sS
(1 - e^8) W(a)

V? s (4-371
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St Is known that the stability |26> Ch. e] of the configurat§ on of 

Fig. 4-15 is governed by the locations of the zeros of 1 + 61. Sjlil, 

where 6-j Gjii) is the z-transform of S^is) • &2(S). In particular, if 

the zeros of 1 + §2(2) lie within the unit circle of the complex z-

plane, the closed loop configuration wiII be stable. It remains then to 

determine the conditionson K in order that the zeros of 1 + G.j Gjlil 

lie within the unit circle.

The exact procedure is best clarified by a specific example.

Example. The transfer function of the dynamic process is assumed to 

be of the form

- WKsi * T”TT C4-381s 4* a

where K and a are the process parameters. It is further assumed that K 

and a are both positive wi th K fixed, but a variable. Assuming also 

that system error i s weighted uni form!y over each interval, that is,

X ® t) a XQ = constant, (4-3P)

the time-varying gain K(t) is given by

"X 0
X its « ’.Mm m = e~at)

a “ff1-
C4-40)

for each interval.

For this example. Fig. 4-12 assumes the form given in Fig. 4-13. 

The next step in the stabi!ity analysis is to determihe the z-transform

of .. .
Ka K .Ts 9 T« 4. 1

(4-41)G1 (si G2«s) a (1e“Ts)2 Ts + 1
1 4 Yt1

Expanding G^(s) S2(s) in b partial fraction expansion and employing a 

fable of z-fransforms |30,: p. SIlJ to identify the corresponding z-

transforms gives

S(s- + a)
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KK ' 9
6-69CZ) « -=-■ n - 22^+ -z“4i1 2

aTz ^ Cl - 9TI2 + C1 - aT)z 
«z - 152 z - 1 z - e"aT ]

C4-425

Simp Iifyirag, Eq. 4=42 yields

■ 4* ■

KoK (2aT - 1 + ef’aT- aTe°a"hz.- CaT - 1 + e°aTl
®lG2*i>- 2

aiff . ■' -aTtz(z = e 5
{4=43 8

Adding unity to Eq. 4-43 and combining terms gives the result.

1 + 6162(Z)'

■4- [I JU2aT - 1 + e"aT= aTe^aT5 - a2-{? e"aTl z

Lo J

.y-fp

z.Cz - e“i,aTi

1 ■ *** «,flT' K KCaT.+ e a - 1)

—aTzCz = e 5 j 4—44 5

Since the numerator ©f Eq„ 4-44 is quadratic, the Schur-Gohn test 

[§0, p. 523J oil! be utilized to determine the conditions for stability, 

Let plzi be the numerator polynomial of 1 + S^G^izi. The Schur-Gohn 

test then requires:

U 5 |pC05| <1

«2S p«15 =» 0

135. pC-1 5 > 0.

of the t2 ■ term of |where the coefficient ■ of the t2 term of pCi5 is unity. For this example,

KJC=aT __-aT,pCzl • z2 + -J_ fnK«2aT - l -f ©~a,= aTe M,S 
2j^ [ °

2 - CaT + e“aT= 15
a2-£7

14-455

The three eonditions of the Schur-Gohn test are now examined.



Condition (1) < 1. This condition becomes

K K
(4-46)Cat + e

From the problem specif cations K is positive and so AI so, it

s clear that

1) >0 tor aT > ©

Hence, condition may be writtee

The' actual time-varying §ain K-lt) given t

) O^t^T (4-49)

which is a posi 11 v® This gain is a exponential which reaches

its maximum value aT t

K_( t) (4-50)

max

Hence, condi tion (1) wi 11 be satisfied if

K(aT + e 1)

Eg, 4-51 may be; simplified to give

1) < aHTHaT + e

This is a transcendental inequality which can be solved to determine a 

condition on T if \ A specificand the bounds on a and K are known
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numerical; example wi11 be considered after,the other two conditione have 

been examined.

Condition (2). Substituting zr® 1 into Eq. 4-45 for condition (2) gives

1 + _i_
a2VT

C4-531

K K(2aT o 1 - aTe”aT+ -aT * aNT' e -aT K K(aT + o
-aT 1 i > 0

After some simp Iification, Eq, 4-50 becomes

ttK aT(1 - e”0T) + a2"/r",«1 - e“aTJ> 0 C4-S4.1
Q

Since 1 - e“a^ is greater than zero for all aT greater than zero, Eq, 4-54

■ ^ '

is solved for* the condi tion on K0 to gi ve

■ ' 4C > - -^1=- :: S4-55I
Kt/T1

Therefore, since K0(t) as given by Eq. 4-40 Is always positive, the second

condition of theSchur-Gohntest is automatically satisfied.

Condition (3). p(-1)> 0. Substitutihg z = -1 into Eq. 4-45 and applying

condition (3) gives the requirement

.2-f?
K0K(2aT- 1 + e -aT a.Te -aT, T e -aT K0K«aT + e -aT 15 > 0

(-4-56)

i, 4-56 can be simplified to the inequality

%<■
(1 + e“aTl

K(3aT 2 + 2e"aT- aTe"aTl
C 4-571

As in condition (1), this condition imposes an upper bound on KQSt> in 

order to assure stabMity. Hence, in terms of the maximum value of K0StS 

Eq. 4-57 becomes

X pK ,, “aTV a2-/?;! + e°aTS

air KJ3aT - 2 + 2e - aTe 5
(4-58!
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Rewriting Eq. 4-58 into the form of a transcendental inequality yields

- e°”aT) (3aT - 2 + 2e“aT-aTe”aT) < a3Tn + e”aT) (4-598

Thus, for this example, Eqs„ 4-52 and 4-59 are the two inequalities 

which must be satisfied to insure closed loop stabiIity. Given bounds 

on a and K, and the value of X^, it is necessary to determine the values 

Of T, 5 f tliey exist, which wi 11 satisfy these two inequalities,

Assum# for the system considered here that X ® 2, K « 2, and a
o

varies between 2 and 8, Since Eqs. ■ 4-5£ And 4-59 are transcendental, a 

range of values of T which will satisfy them both for the extreme varia

tions of a roust be found by trial and error,, Considering first the value 

of a » 2, 5t is found after a number of trials that for

. T = 0,4 ' (4-60)

Eqs. 4-52 and 4-59 are

Condition 118! . .4*13<".4,64. '■ ■ (4-618

V ■CeBdit1o»\('3VsV' "\.:i>:i.^-><''3v2 '. v. ■'■■■■ " ' (4-628 '

It was found that for T <0,4, the two conditions were also satisfied. 

Considering next the other extreme value of a, a» 8, 1t was found that 

the two conditions were also satisfied for T^.0,4. In particular, for 

T a 0,4, the two conditions were

Condition (Us / ' .5,79 < 213.5(4-638 

' Condition (28s; ::17,2: <■ 204.8 - ' : (4-648

Therefore, the closed-loop system will be stable for*.Variations of a 

in the range [2, 8] if a control interval length less than or equal to 

0,4 is used, .

It should be pointed out that the results obtained above are con

servative, By constraining T to be less than some specified value, KQ(t)
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has been held to the range of values for which the poles of the cIosed-Ioop 

system are wlthin the unit circle of the z-pfane. However, since the system 

is time-varying, it may be possible for the system to be stable even if 

KqIt1 exceeds the bounds imposed above. In terms of the complex plane, 

this means the poles of the system may move outside the unit circle during 

a portion of the time of system operation. As long as these poles do not 

remain outside of the unit circle, however, it is sti11 possible for the 

closed-loop system to be stable.

This section has indicated a method for analytical stability analysis 

of the sub-class of predictive adaptive controls in which a one-'term approxi 

mation of the control variable is used. It is clear that other methods 

such as the Nyquist criterion could also have been used, and the presenta

tion here is by no means exhaustive.

For the general class of predictive adaptive controls, however, no 

known analytical methods of stab!111y analysis are applicable. The diffi

culty 1les primarily in the fact that St is not possible to obtain a 

transfer function for the controller portion of the system. Hence, in a 

particular application where more than a one-term approximation of the 

control variable is used, ana log or digltaI computer studies may be 

employed to study stabiIity characteristics.

4.4 Prediction Accuracy Limitat ions

Reference to the optimum control configuration of Fig. 4-2 indicates 

it is necessary to consider another factor in addition to stability to 

establish the control interval length. This second factor is prediction 

accuracy.

The basic function of the controller is to generate the control vari

able by operating upon an estimate of future system error. Hence, the 

accuracy of this estimate is a primary consideration in system design.



Whi le ’the - subjects- of prediction end prediction accuracy are treated in 

detail In Chapter 5, the sal lent features of prediction accuracy will be

discussed here since control interval length is related to prediction

accuracy as well as to stabiIity as shown in Section 4,3.

For purposes of iIIustration, on Iy a functional solution of the pre- 

diction accuracy requirement wiI I pe given in this section with the details 

left to Chapter 5» Consider the predictor in Fig. 4-14 which has an input

xlt), an actual output ylt),. and the desired output xlt + T)f where T is

thp prediction interval length. The instantaneous error In prediction is 

defined by -■

© (t) « xlt + T) - ylt.) ' I4-63)- ■

The mean-square predi ct ion error i s then given by

* 62 t ' '

■ 11 ep2«f) *■ [xltTS - y< 11] f ■ 14-66)

where the bar indicates the averaging operation. If the input signal 

xlt) can be characterized by a f ini te nurnber of parameters I 3 , ,««, 3 

8 an integer, the output signal ylt) will also depend upon these parameters.

and, in addition, upon the set of parameters C^1 ^ Q ah integer,

character 1 zing the prediction operation, and upon the prediction interval 

length T [25, p. 432^, Thus, the mean-square prediction error will be

some function of these same quantities and wS11 be defined by some rela

tion'

•pVt) • fl C* R, pr, T1 ~ 14-67)

Let L be an upper bound on the amount of mean-square error which can be

tolerated in the predictor output,

e 2«tr ^ L 14-68)
P-
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xC 11
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Fig. 4-14

Prediction Operation Block Diagram,
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Output



Then, from Eq„ 4=67, 

HCjy

~ 64

the prediction accuracy requirement becomes 

• d |3^# • • • / |3qj T) ^ L (4—69)

Wi th the input signal parameters (»•«/ d g) and the predictor para**

me ters i ^-jY ».<►> ^«) known, Eq. 4=69 represents a relation with one

unknown quantity T,, If this re Iation can fee solved to find values of T 

for which it Is satisfied, it is clear this solution will in general de

pend upon the parameters■"(<*'^,, .,Ol _|Y ( fl, > Y and upon L.

Usually functions of the form given In Eq, 4-67 are monotonic non- 

decreasing functions of T for signals encountered in practice. There

fore, the solution of Eq„ 4-69 can be indicated formally by

T $ |l H e, @ i-1 (4—70)

where § is some function such that

f * * ® 9 ^ * • » ® > $q9 9® ^ ^ 9 . . . , * * * •* (3 g, ^ ^

■ ■■ 14-Tli ■ '

Iq. 4-70 places an upper bound on the control interval length in 

order to satisfy the prediction accuracy requirement. In any design 

problem it is necessary to consider both stabiIity and prediction accu

racy in selecting the control interval length.



. CHAPTERS

PREDICTOR AND CONTROLLER DESIGN CONSIDERATIONS

This chapter presents the salient features of the predictor and 

controller designs for predictive adaptive controls. Predictor design 

is outlined on the basis of the classical Wiener-Lee [25] theory and 

linear extrapolation. Controller design is presented in terms of the 

fundamental controller parameters which ares (1) the system error weight

ing factor ^It), 12) the control interval length T, and 13} the order N 

of the polynomial sum approximation of the control variable mlt).

5.1 Predictor Design

For statistical input signals the design of the predictors needed 

for the class of adaptive controls developed Sn this work will be based 

on the classical Wiener-Lee theory.

Since Wiener-Lee prediction theory leads to the design of linear 

predictors,, the operations of prediction and difference commute and the 

predicted error signals may be written

[c0lt> - elt)] *> c0*«tl - c*lt) 15-11

Hence, the block diagram of fig, 4-2 may be redrawn as in Fig. 5-1.

In order to effect the design of the predictors in terms of Wiener- 

Lee theory, the spectral densities of the two signals to be- predicted 

must be known a priori. In any practical design problem Involving

statistical signals, the spectral density of the desired response cQ(t)

will be known. Let It be denoted by c Is), However, the spectral
0 0

density ^)C€lsT of the dynamic process response Is not know a priori, 

Since clt) is the controlled variable and the primary function of con

trolling it is to make the difference E.m - ="!] as small as possible
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over

is

long interval of time a reasonable first assumption on

G C 0 0
(Si (5-2)

This assumption will permit a first design of the feedback predictor of 

the adaptive system.. Then, as experience Is gained with the system, 

normal operating records may be employed to obtain better information 

about the spectral properties of the dynamic process response c(t)*

[25, 'Ch. 10] and re-design of the feedback predictor may then be based 

on this new Information* Of course, if operating records of the dynamic 

process to be controlled are available a priori, these should be employed 

to carry out the first design,

A review of the design of Wiener-Lee predictors is given in 

Appendix C with al! of the necessary equations. These results will now 

be applied to obtain the design of the predictors to be used in the 

experimental work of Chapter 6.

The spectra to be used in this research are of the form

(5-3)

where s is the complex variable CT + j By spectral factorization

(5-4)+ „ .. a
) (S ) * ■ " ',-1.
9 b + .

Substituting.Cq. 5-4 into'Eq, C-16 gives

OD+jV|. .

b + js
-—• ej(f+T,w dw (5-5)

go - jvT

which when evaluated becomes

2Tfae' btt+TS

t + TS
t > " T
t < - T , (5-6)

0



-68

Substitution of Eq. 5-6 into Eq. C-15 yIeIds

»oo
Hopt?sS

tv
h= r

+ js 1

2*ae“*(t+T> e^st dt (5-7)

%tC ® J “ ®"bT ' C5—81

Hence, the optimum predictor for the spectra to be used in the experi

mental studies- is a simple attenuator.

To determine how prediction error varies with control interval 

length T, the mean-square prediction error will also be evaluated herd 

ati 11 zI ng .the resuIts glven in Appendix C.

.From 6q* 5-6,.

, . ^ 2«'.:tSV 4fr2 a2 e"2b* t > 0 (5-9) .

SubstI tuting Eq, 5-9 into Eq, C-27 gives the minimum mean^sqyare pr’ucl (c*** 

t ion error, , Thus,, .

g,2«t I - 27fa
SmSn

■2b t igj f

= 2tra2{-1 - e"2bT) (5-10)

Eq, 5-10 Is plotted in Fig, 5—2 to shqw the Variation of prediction error 

-with .control interval length. The'necessity of keep!ng the control

interval length small is-obvious,

Eq, 5=10 wi IT ' how be used with the resu Its-of-Section 4,4 to deter- 

mine control Interval length In terms of prediction accuracy. Assume it 

os. desired that the mean-square prediction error be less than some number 

A, This condition then places an upper bound on the prediction error

which is expressed by , ■

' 2TTa2«1 - e~2bT) ^ A (5-11).
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which readily simplifies to

e-2bT > ,
27Ta‘

Taking the natural logarithm of both sides gives

A=2bT ^ In 1
2TTa

*5-12)

(5-13)

2bT >< In 1
-

A
9

2TT^
(5-14)

Assuming the signal spectrum parameters a and b are known,the condition 

on the. control .interval length T becomes

T (5r15)

5«2 Extrapolation

In some design applications, the spectral density of c^tt) may not 

be available a priori,. Moreover, it may be known that c0(t) is a poly

nomial type signal, In such eases, extrapolation may be usedto obtain

Ic0«t) - c(t)l *. .

■Since an ideal lead having the transfer function e Is not physi

cally rea11zable, it is necessary to employ an approximation to this 

ideal lead./If 'the control interval length is kept small and the fre«- 

queueies of the signals'- wi thin the system are Iow such that jTs| < <1 

where s § f + the first two terms of the .expansion Til, p.

eIs m (Ts)n
n". (5-16)

may be used as the approximation.

The transfer■function, of■ the first two terms of Eg, 5-16 can be 

approximated by a passive lead network such as shown in Fig, 5-3, The

actual transfer function of this network is-
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Y(s)
X(s) d

1 4* T-j s 

1 4 T2S T1 > r2 (5=17)

where .01. ®
R1 '+ R2 > 0od T

^1^2
-a . p C1# Since the d=e gain 

k2 1

of the network Ss 1 ess than unity, a gain pf =”■ must be introduced to 

compensate for the attenuation. If T^> > Tj Is chosen, Eq. 5-17' becomes

approximately •

fls?
Xts) 1 + T„ (5=18)

which ip-the desired transfer function.

When the network of Fig, 5-3 is used in the over-al1 system, the 

control configuration assumes the form depicted In Fig. 5=4.

An important factor to consider in using extrapolation is the 

difficulty which arises when there is appreciable noise present in the 

control loop. Eq. 5=16 indicates that the approximation of the ideal 

lead produces an extrapolated signal comprised of the original signal 

plus T times the first derivative of the original signal. The presence 

of the differentiation will always worsen the noise condi tions in the 

system and may even cause amplifier saturation.

The use of extrapolation has been presented here as an alternative 

to Wiener-Lee predictor design. The purpose of this section has been 

to give a treatment of the predictor design in terms of extrapolation, 

and to point out the difficulty associated with its use. For the experi

mental investigations to be given in the next chapter, it will be assumed 

that the spectrum of e0CtS Is known. Hence, extrapolation wi11 not be 

investigated experIroentaItyv

5.3 Controller Design

With the predictor design known, the basis of the synthesis proce

dure is clear and the over-all aystem assumes the configuration of
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Fi§« 4~2. However, before the synthesis of the system can be completed, 

it Is necessary to consider the selection of three fundamental parameters 

of the controller. These parameters ares

1, The system error weighting factor \ ItJ.

-' 2. The. control interval length T.

3. The order N of the approximation of the control variable*

The,purpose of this section Is to present a goalStative and quanti

tative. discussion of how. these 'parameters can be selected*,

System Error Weighflng Factor. Examination of the control equations,

Eqs. 4-9 - 4=11, and the optimum, control configuration, Fig. 4-2, reveals 

that the choice of -X It I is somewhat arbitrary. The only quantitative 

restriction, .which was given in Section 2,3, is that X ItJ ^ 0.

While the designer has some freedom in the choice of XltS, his 

selection should be governed primarily by the aims or, goals.of control, 

(.See- Sections T.1 and 2.31. For example, if. errors occurring near the 

end of; each control Interval-are more important than those near the 

beginning of the. finterval, then \ ItJ could assume the, forms

\ ItS - Atn 15-191

'X € 11 - - Be .15-201

where A* B, and V are positive. constants* Li-near and nonlinear combi^ 

'nations of Eqa* §«19 and 5«20 are also possible* Because of the infinity 

©f combi mat i©is which exist as. choices, of only one wl i l be selected

for use in the experimental work which follows* System error wlll be 

weighted uniformly over each control interval by taking

X ftl » \ 0 f 5^215

wfcere X 0 "is a constant* -Response characteristics for. different values

of X@ will then be investigated*
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Controi Interval Length, Quant!.tatIve determination of the control Interval 

length T to be used In a particular design application has been presented 

in detail in Sections 4*3 and 4*4* The two basic considerations used In 

the analyses presented were stability and prediction accuracy/ respectively* 

A third factor which depends on parameter drift is discussed here*

This third factor which comes to bear on the problem of selecting the 

control Interval length is the drift rate of the process parameters*

Since the control coefficients are generated during one interval for 

use at the beginning of and throughout the succeeding intervaIp the 

samp 11n§ instants are actuaMy the points in time at which adaptation 

occurs* .Hence/ the choice of T governs the frequency of adaptation* If 

the process parameters change considerably during a control interval/ it 

is clear the adaptation which occurred at the beginning of that interval 

will be inadequate for the parameter changes* Deciding how much para® 

meter drift should be tolerated during a given control interval is, as in 

the case of choosing X CtS> somewhat subjective* However/ it seems reason® 

able that T should be chosen small enough so that parameter drift is less 

than 5% per control interval* _ •

Number of Terms in'Polynomial Approximations* The optimisation procedure 

given in Section 4*1 provides no means of choosing the order N of the 

control variable approKimatfon

. N
ml tl> t ) , - (4-11)

k^Q .

Intuitively, one would expect a higher-border dynamIc process to require 

more channels in the controller than would a lower-order process.

Actually,'Eq. 4-1-1 represents an infinite series and the optimiza

tion of Section 4,1 is valid only if the series Eq,-4—11 converges abso

lutely, Thus, the question of absolute convergence is a basic considera

tion in the design of the control ler,
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The answer to the question of absolute convergence of the series,

Eg*'4-1.1, Is.not at all. obvious for the genera! case from the control 

equations

■ kktti ■ X (ti

and

aT
mk ! KkC-t)[e@Sf8 - efts] dt C4-10J

.0

for k s g, 1, 0 0 0 i>. n« The prob.lem is. compounded further by the increas

ing complexity of the polynomials pklf8 for increasing values of k„ ISee 

Appendix A„)

A method for determining an approximate value of the number of. 

controller channel's heeded for a particular control application will be 

presented'here'and illustrated Wf th examptes0 Two of these examples 

wiIT be investigated experimental Iy, The objective of the method is to 

obtain an engineering estimate of the number of terms needed In Eq, 4-11 

In order to achieve adequate control,, '

The method is based on a direct application of Eqs„ 4-9.- 4-11.and 

the following assumptions^

1,, The dynamic process is assumed to be at the extremum of its 

character5stics correspond Ih§' to. the most unstable process 

configuration,

■ 2„ • The predicted system error, [c0(t) ~e(ti] , is assumed to be 

bounded by some number A during the control interval'.

In practice, these two assumptions correspond to a step function input- 

of desired response at the same time that the poles of the dynamic 

process transfer function are in the right-half plan© or on the j«#-axis„

pkcr» w«t,r» dY 14-98
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In applying the method, the coefficients m^, k =* 0, 1, N, are

evaluated under assumptions 11 and 2, and the series Eg, 4-11 expanded in 

a power series in t to examine the behavior of the latter series' co- 

efficient** Examples for a first-order, a second-order, and a third- 

order dynamic process are presented below.

Example 5.1

Consider the dynamic process characterized by the differential 

equation

“> ait) ctt) ■»; K mft)

where K is a constant and 0 sS aCt) ^ 1, The process is on the 

verge of instabiIity when a(t) = ,0,

Assuming system error is weighted uniformly over each control 

interval so that X '<t! » 0 constant, and employing Eqs. 4-9

and 4-10 for k » G, 1, 2, 3, 4 gives the first five coefficientss

■ 1 ■ 1 . ■ ■ ' .
% >oAI<T2

"-3
m „ i? \ AtrJ■ mi - - T VKT .
tf>2 s 0

»3 s 0.

m4 = .0 •

These resuIts .indicate a two terra approximation in Eq« 4-11 

should be sufficient to control the first-order process. Expanding

Eq, 4-11 gives ■

m« tt «. «I X 0AKT + | X0AKT ft0 - X QAKt^
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where the two terms in the coefficient of t° are dae to and 

respectively. These two terms are equal in magnitude indicating 

that m.j is as important as mQ in generating the control signal. In

terms of classical control system design, however, it is known that 

this first~prder process can be compensated by a pure gain which can 

be provided by using only a one-term approximation of the control 

signal.

Example 5,2

Consider the second-order dynamic process characterized by the 

differential^equation 

2
^ a 115 “ 4" 4c 11 i ® 4m 11 idt2 ' dt

where 0 ^aCtS ^ .8, The process is on the verge of !nstabiIity 

when alt! ® 0 which corresponds to zero damping, The locus of the 

poles of the transfer function of the process is given in Fig, 5-5, 

Again assuming uniform weighting of system error and employing 

Eqs, 4-9 and 4-10 under assumptions 1 and 2 above for k.® 0, 1, 2,

3, 4, gives the first five coefficients?

m. 1 ■sfn 2TJ

m1 Icos 2T-1 i + sin 2T

6 X 0A'/5*
' t*Vf

2T5
t VT

+ ilcos 2T-1 i 
4

“•sin 2T1 
2
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Locus of Poles ©f Second-order Process 
as a Function of Process Parameter',
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60 X0AVT

m3 * 3
rVf 

12X0aVT 

tVT

T4 T2 1
12 8

(qos2T'»1!
J T

30^oA^7* -j-3 x i
..~ f~- = = + =sin2TJ
2_.nr> 3 2 4!yr

-y- + ~Ccos2T~1>
J VT

X0A-\fT , 
f Q.V-- IT..- |sin2TI

mA ■4

0A y5 j3 j -j 1260 \0A
<ir «T5 -t + 5 —

t4VT t5V^

T4 T2 1
12 8

Ccos2T=>1)

270 X_A *3 T 1 » ®0 X0A
+ „ 0 ™ + is!n2T)-----------—

T2fr 3 2 4 tvtv

3 X«A , .
+ «T ^ isin2T)

2

y2 -j
+ VL<cos2T»1)

Because of the complexity of these expressions, ft Is not

possible to draw any conclusions about the behavior of coefficients

for all values of T, However, because of stabiI tty and prediction

accuracy requirements as discussed earl Ier, only the shorter control

interval lengths are of interest. Therefore, making the assumption

T < <1, the coefficients are given approximately by the expressions?

5 
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Observe that the coeffieients mQ, m.,, and mg are of order T2,
9

whereas the coefficients m3 and m4 are of order T2® Since the 

above expressions are valid for T< <1, It is clear the m3 and ra4 

are significantly less than the first three coefficients®

By substituting the above set of coefficients into Eq® 4=11, 

expanding,' and summing the coefficients of like powers of t, the 

power series expansion for rait) based on a five-terra approximation 

is obtained® It is then possible to determine the contribution of 

each k * f, 1, 2, 3, 4 to the power series for raitJ. The 

results are summarized in Table 5-1 where the contribution of each 

t© each coefficient of tn, n = 0, 1, 2, 3, 4 is made clear. 

Thus, the coefficient of t® is the sura of the terras ip the first 

column, that of t^ the sum of the terras in the second column, and 

so on®

5

Since T< <1, observe that only the top three terms of column 

1 are signifipant in the coeff5cient of t®, the top two terms of 

c©luran 2 are significant in the coefficient of tV, and only the top 

terra of column 3 is significant in the coefficient of t2, Observe

also that the terras in the fourth and fifth columns are multiplied

'34'by t and t , respectively, where © ^ t § T, and, therefore, their 

maximum and minimum values are of order T*, whereas the above co

efficients have maxima and minima of order T2.

These results indicate a three-term approximation, N = 2, in 

Eq® 4-11 will give adequate control for this second-order process® 

However, assumption 2 assumes a constant predicted error and does 

not account for rapid but continuous changes in predicted error in

the control interval® Hence, the result N = 2 is a conservative

figure and it is to be expected that N =. 3, 5«e®, four channels in



Contribution of control coefficient 
to total coefficient in power series of ro(t)

Control
t1

'

Coefficient t° t2 t3

m0 |X0AT2

1
XpAT2..: - 2 XqAT

m2
IVt2 - 2 X0*T 2X0A

” T5 Vt4 | Vt3 2 f VT

m4
- ik K"4 - f Vt2 !Vt

41

TABLE 5-1

Tabulation of the Contribution of Each 
Control Coefficient to the Total Coefficient 
In the Power Series of the Control Variable 
raCtl:forT<.<l.
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the controller, wi11 be needed. This fact will be demonstrated 

experimentally.

Example 5.3

Consider the third-order dynamic process characterized by the 

differential equation

fi
Ldt + alt)

_dt
+ bit)

XL+41

dt J clt) = 4mlt)

where O ^alt)^ 10 and O^blt)^ 8. The process is on the verge 

of insfabiIity when alt) = bit) =0. The movement of the poles of 

the dynamic process transfer function may be assumed as in Fig. 5-6.

Assuming Xit) * X0 and uti l izing lqs. 4-9 and 4-11 under 

assumptions land 2 for k= 0,1,2, 3, 4, 5 gives the first six 

coeffiqientss

m
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o
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|t2 + |lC0S2T-1ij

p 1 
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XoAvrr.3 r . j2 .
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3X0A- 
m2 = 2

MVS’ Ft2
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Locus of Poles of Third-order process 
as a Function of Process Parameters.
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As for the second-order case, these expressions do not permit one 

to draw any conclusionsabout the behavior of the coefficients for 

a!I values of the control interval length T, However, for the faster 

sampling rates, T ,'C.<;1, the above express? ohs s?mp I i f y to?

7
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7
2Observe that the coefficients m0, m.j, ra2, and m^ are of order T ,

U_
whereas m^ and m,- are of order T . Hence, wi th T < <1 only the f»rst 

four coefficients are significant. The contribution of each 

k = 0; 1, 2/3, 4, 5 to each coefficient of the power series of m( t)

Is given in Table 5-2,

Arguing as in the case of the second-border process, only the top 

four terms of column 1, the top three terms of column 2, the top two 

terms of column 3, and the topmost term of column 4 are significant 

In the formation of the coefficients of the power series of ra(t) since 

T <c <1, Hence, Table 5-2 gives the conservative value of N = 3, i,e., 

four channels in the controller. Again, because of assumption 2 

and experience with the second-order case, it is to be expected that 

five channels in the controller will be needed to assure adequate 

control.

It must be emphasized that the method illustrated in the above three 

examples Is not a technique for determining the value of N which is neces

sary and sufficient to insure absolute convergence of the series Eq. 4-11, 

Rather It is a method by which it Is possible to obtain an engineering 

estimate of the number of channels needed in the controller to give adequate 

control of a given dynamic process.
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CHAPTER 6

EXPERIMENTAL STUDIES

The function of the present chapter is to investigate experimentally 

the response characteristics of some typical control systems employing 

predictive adaptive control. Various aspects of predictive adaptive con«* 

trol systems11 behavior are presented graphical ly to depict certain I imi- 

tafions as well as advantages of this class of controls,

6,1 Outline of Procedure

The control of a first-order and a second-order dynamic process

using predictive adaptive control wi11 be investigated with the aid of an
' ■ # " ’

analog computer. The exact nature of the process parameter variations 

will be given as each system is considered. Also, in order to emphasize 

the results rather than the details of the simulations, the circuitry 

necessary to perform the operations of reset integration and sample-and- 

hold, as well as the complete analog computer diagrams, will be given in 

Appendix D.

Three basic experiments are performed on each of the systems to evalu 

ate the quality of predictive adaptive control In essentially three differ 

ent control situations. These experiments are outlined below and measure 

the following three aspects of controls 11) the abiIity of the adaptive 

system to maintain the output at a predetermined constant level, <29 the 

quality of system transient response for step functions of desired 

response, and J3J the ability of the system to follow statistical sig

nals, all in the presence of extreme variations of the dynamic process 

parameters.

1. The first experiment Is performed by making the desired response 

c0ltl a constant and observing the deviation of the output cltl
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from the desired value as the dynamic process parameters vary 

between their extreme values. The per cent deviation of the 

output from the desired value }s defined by the relation

extreme value of c(t) - desired value of c_(tl
% deviation * ———-  ....... —■■..................................... ................... < '■"■■■    x 100% -

desired value of c©(t)
(6-11

and places a measure on the abfIIty of the system to cope with 

process parameter variations in the steady-state. This type of 

control is Important for chemical processes where it is desired 

to maintain the quality of output products constant within 

prescribed limits,

2. The second experiment is performed by applying a step function 

of desired response c0(t) to the system and evaluating the 

character of the transient response in terms of rise time and 

per cent overshoot. Since process parameters vary during the 

operations, each test is performed at least three times in 

order to obtain an average behavior.

Rise time is defined as the total elapsed time from the 

application of the step to the time at which the response

first reaches the desired level. Per cent overshoot is defined 

by the relation

maximum value of e(t) during transient - desired value of c6(tl 
% overshoot = -  ■ ■■■ ----- ———, . » .'//■ ■ ■—-—•:------ ... . i —S—— x 100!

des 5 red vaIue of c«(tl

(6-2)

These two quantities measure the ability of the controller 

to drive the dynamic process from one equiIibrium state to 

another in the presence of parameter variations.

3. The third experiment is performed by shaping the output of a 

noise generator to obtain a signal with a known spectrum for
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g0(tJ. Typical response records are presented to indicate system 

response for a statistical input signal.

As mentioned in Chapter 5 it will be assumed that system error is to 

be weighted uniformly over each control interval so that X ft} * X0, 
a constant, will be used in the experiments. Reference to Eq. 4-11 

reveals that X@ will then be a scale factor in each of the time-varying 

gains. Therefore, various values of XQ will, .be used to point out how 

the response characteristics of predictive adaptive controls depend upon 

this factor which governs the relative weighting of system error with 

respect to control effort in the index of performance, Eq. 2-4.

An important consideration in the design of predictive adaptive 

controls is the control interval length T* To demonstrate the effects 

of this design parameter,' the data of experiments 1 and 2 will be pre

sented graphically as a function of T, The error weighting factor X0 

will then be used as a parameter in the presentation of these data.

Since the basic work of this research deals with the modification 

problem, the identification portion of the complete system is simulated 

using a model of the process from which the time-varying gains are 

derived. A block diagram is given in Fig. 6-1 to show the flow of 

information in the stimulation studies.

6.2 First-order Dynamic Process

The first system to be considered Is one involving the control of a 

dynamic process characterized by the differential equation

+ aft} eft} * mill 16-3}

The parameter aft! varies between 1 and 0.1, a range of 10 to 1, in 

a sawtooth manner at a frequency of 0.08 cps as shown In Fig. 6-2.

The predictor Is designed on the assumption that the spectrum of 

the input'c ft! is.of the form
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$ (u>)
o»21 4)2

16-4)

giving the predictor impulseresponse

hp(t) w e
T
5 «<ti (6-51

where T is the control interval length and & It I is the unit impulse

function. A spectrum of the form Eq* 6-4 is used in the statistical 

signal measurements. Moreover, Lee |*26, Ch. sj has shown that a Poisson 

square wave with an average zero crossing frequency of — also has a spec

trum of the form Eq. 6-4. A Poisson square wdve is defined here as a wave

form which alternates between two values E and -E at event points which 

are statistically independent* The probability of finding n event points 

in an interval ^ is given by the Poisson distribution £2$, p. 22Tj .

Thus, the step functions applied to the system can be considered as seg

ments of such a waveform.

Using a one-term approximation of m(t),

mltl » m p (tJ (6-610 0

1 1 I 3
data were obtained for control interval lengths T » , -r, 1 sec.*

P 4 4 4
and for X Q as 2, 3,4, 6. The resit Its for these values for the first 

two experiments are Shown in Figs. 6-3, 6-4, and 6-5.

Since it is possible to compensate the first-order process with a 

pare gain, the curves of Figs. 6-3 and 6-4 indicate improved system per

formance with increasing X f°r 6'M values of control interval length f.
V . -

However, the data for per cent overshoot is not as well-behaved and indi

cates the need for making the control interval length less than ~ sec. to 

keep the overshoot for a step input below 20%.

The amount of deviation in the output with a constant input is 

excessively large for the lower values of and the control interval
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Per Cent Deviation of Output 
from Desired Constant
Ouput

Control Interval Length

Fig. 6-3

Steady-state Adaptability of First-order Dynamic
Process for One-term Approximation of Control Variable.
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R? se Time 
for Step 
Input

Control Interval Length

Fig, 6-4

Rise Time for First-order Dynamic Process
fpr Qne-term Approximation of Control Variable,
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Per Cent
Overshoot
for
Step Input.

Control Interval Length

.. Fig. 6-5 .

Per Cent Overshoot for First-order Dynamic
Process for One-term Approximation of Control Variable*



lengths above — see. The reason for this was discussed in Section 9,3 

where it was pointed out that the choice of control interval length is 

dependent upon the parameter drift rate, for example, reference to 

Fig, 6-*3 indicates that for X @ ® 2 the control interval length must be 

leas than @,9 sec, in orderthat the output not deviate by more than 

2©f, Since the parameter drifts between its extrema in 6.25 sec, (Fig,

6-2), a control interval length of 0,5 sec, corresponds to letting the 

parameter drift ©SF between adaptation points. TO keep the output from 

deviating more than 10a, however, values of \0 ^ 4 and T ^ ^ sec, 

are necessary, values of T 4^ sec. correspond to a parameter drift 

less than or ecuaI to 4% per control interval.

Examination of Figs, 6-3, 6-4, and 6-'5 reveals that the quality of 

control continual Iy improves wi th increasing XQ and decreasing T, From 

a theoretical viewpoint this js gratifying, but from a practical view

point it is misleading, Arbitrarily increasing X@, which is a factor 

in the time-varying gain, will cause saturation at the input to the 

dynamic process* Thus, there exi sts a practi ca l Iim?tat i on on the 

value of X Q which wi l l depend upon the range of input values of mlt) 

for which the dynamic process is linear.

The minimum value of T which may be used is governed by the accuracy 

of the components used in the time-varying gain generator. For a given 

value a of the parameter alt), the time-varying gain is given by

%(tl 11 - e"at) (6-75
■ °..V: >VT

for •©*£ t Se T. Using Taylor's formula with Lagrange's form of the 

remainder [j32, p, 114], Eq, 6-7 is
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where 0^ <Tr ^ t ^ T. Simplifying Eq. 6-8 gives

KJti = t + R S6-98

where R is the remainder term

a Xa o
■R w;:- -—2= ,e a t- 86-108

2l/T
Y ofor 0^ t ^ I. Since e~ and tz are positive in the intervai

of interest, the magnitude of the remainder term is bounded from above by

|r| < T2 86-118
2 Vf1

Note from Eqs. 6-9 and 6-10 that only tha remainder term depends 

on the process parameter a» Thus, if the components used to generate 

and detect K08t8 are insensitive to this remainder term, the controller 

will be unable to detect variations in the dynamic process and the 

adaptive capability wiIl be lost. An upper bound on the per cent 

accuracy required in the equipment may be determined by talking the 

ratio-of the maximum value of |r| and the maximum value of the first 

term to give

% accuracy required^, ~ * 100% 86-128

1For a nominal value ©fas g„§ and T * see. Eq. 6-12 gives

% accuracy required^ 1 <,56% 16-138

Two typical step responses for the first-order dynamic process

are given in Figs. 6-6 and 6=7 for X0 35 2, T « seco, and 3 6,
1

T * — sec., respectively. The desired response c 1t1 and the para- 

meter variation a8tl are'also included. Fig. 6-6 shows the large 

deviations which occur in the response as a result of parameter varia

tion in the steady-state. Fig. 6-7 indicates system response for a 

number of step changes in the desired response.
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A typical system response for a statistical signal c It) having a 

spectrum of the form Eq. 6=4 is given in Fig. 6-8 for XQ = 6, T * yg sec. 

The parameter variations are the same as before. Although there is con

siderable smoothing, the ability of the system to follow rapid variations 

in the desired response such as In the sample of Fig. 6-8 appears good.

The actual response lags the desired response by approximately one control 

interval. Larger values of T which were tried yielded poorer response 

giving more smoothing and missing the sharper peaks in the statistical 

signal.

6.3 Second-order Dynamic Process

The second system investigated deals with the control of a second-

order dynamic process whose differential equation is

^Ml + aCtS ~ + 4cltJ ■ 4ml 18 (6-14)
dr dt

The parameter aSt8 is assumed to vary between 0 and 8 in a sawtooth

manner at a frequency of 0.08 cps as shown in Fig. 6-9.

The predictor is designed under the same assumptions as for the 

first-order dynamic process and is given by Eq. 6=5.

The results of Section 5.3 indicate a four-term approximation of

ml t),

3
ml18 - m,

k=0
(6-158

is needed to give adequate control. Both a four-term and a three-term 

approximation are used to obtain a comparison between their abilities 

to give adequate control. Since the analysis of Section 5.3 is valid 

for the shorter control intervals, it is to be expected that neither

approximatSon will be adequate for control interval lengths greater than

1.-7 sec.4 ....
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For the four-term.approximation of ratt) data were obtained for
■T .!'■ v 3--1'.- " j y ■

' S* 4* 8* 2 S®G* ar,cl ''© “ 8# 10c The results for these values

for the first tw© experiments are presented in Figs, 6-10, 6-11, 6-12,

and 6-13. Fig. f-11 is presented to i Il lustrate more clearly steady-state

adaptability for Tgv and | sec;

Figs. 6-10 and 6=11 clearly indicate the improved steady-state

adaptabi11ty for decreasing T and Increased X0. The adapt!ve eapabi11fy

is, however, completely lost for T>| sec. This is attributed to tw©

factors. First, as menttoned above, the four-terra approximation of mlt)

is valid only for the shorter control intervals. Second, the dynamic

process ns known to become unstable during the course of:its parameter

variation. Thus, in the vicinity of this unstable state, the frequency

of adaptation must be fast so that the process being controlled has less

tirae to manifest its instability before correction occurs. Since the

parameter drifts between its extrema in 6.25 sec, CFfg, 6=9) and the data

of Fig. 6-10 indicate the control interval must be less than = see. to
8

keep the output from drift5ng more than 20%> this means the control inter

val length must be chosen so that parameter drift is less than or equal 

to 6* per control interval.

The transient data also indicates a trend toward incontrollability

for T^, | sec. with the four-term approximation. Examination of the rise

time data of Fig. 6-12 without reference to the per cent overshoot data

of Fig. 6-13 would lead on® to believe that transient response improves

with Jncreaslng T. However, for T /g sec. only the system employing

= 4 can be considered to give-satisfactory step response if it Is

desired that per cent overshoot be kept below 20%. In fact. Fig. 6-13

clearly denotes a rather sharp degradation of control for T> i sec. A
4

comparison of Fig. 6=5 for the first-order process with Fig. 6=13 for
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the second-order process points out the need for a control interval length 
1
4 see. for satisfactory transient response for both systems. This 

figure amounts to letting the parameter drift,4% between adaptation points 

for the control of these dynamic processes.

A typical step response for one of the better behaved systems using 

a four-term approximation of mftJ with X = 8 and T s i sec. to control
© O

the second-order process is shown in Fig. 6-14. The parameter variation 

ait.) is shown to indicate the behavior of the process parameter during the 

transient.

The step response for the same system using the same value of * 8, 

but a control interval three times as long, T = ^ sec., is given in Fig. 

6-15. The quality of the response has clearly degenerated as a result of 

tripling the interval length. Not only is the per cent overshoot large, 

but the ripple in the output after the transient has subsided is of the 

order of 5%.

A typical response for a statistical signal having a spectrum of 

the form of Eq. 6-4 is shown in Fig. 6-16 for X * 10 and T « i see.© O

The smoothing introduced by the second-order process is much greater

tharn that for the first~order process and the former system is only able

to follow the slower, well-defined variations In © (tl. Even for the
©

slower variations in the response eft} lags by approximately four

control intervals.

In prder to show the inadequacy of the three-term approximation of 

rnltl and to obtain a comparison with the four-term approximation, experi

ments 1 and 2 were repeated for the second-order case using the three- 

term approximation

2
16-16)
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The .gate arg shown If Figs. 6-17, 6-18, and 6-19. Bata were not obtained
■ f

for T * j sec. because the resulting systems were unstable. Despite the

reasonable behavior of the steady-state addptgbi•ity and the rise time

characteristics, the?lack of control for the three-term approximation is

brought out clearly |y the per cent overshoot characteristics. None of

the systems investigated exhibits a per cent overshoot for a step input

less than 35JS. In most cases there was a tendency of the system to become

unstable for-transient . i nputs.-. it is clear that on the basis of transient

response, the three-term approximation is completely inadequate even for

the shortest control interval length, T » see. A comparison of the per

cent overphopt fpr a step Input for- the three-term and the four-term
-5

approximations is gf.yen in Table 6-1 for T a j sec.

6.;4 . Summary and Conclusions

A number of response characteristics were found to be common to the 

two systems investigated. The most important of these is the continued 

improvement of performance with decreasing control interval length. This 

feature was anticipated1 theoretically and found to be limited in practice 

by .the inforaatton hand 1ing capabilities of the components used in the 

tirae-varying gain.generator and the controlIfr.

For the sawtooth type of parameter variations used it is found that . 

adequate' control of both processes is realized by choosing the control 

Interval length T such that the process parameter drifts by no more 

than' 4% per control interval.

; The; factor X 0 governs the relative- weighting of system error-and ' 

control effort. It was found that steady-state adaptability improves with 

increasing \ ... Hence, as X is increased, the controller places more 

emphasis on system error than on control effort, and therefore, has less 

regard for the problem of saturation.
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Per Cent Overshoot

for

X 0 Three Terms Four Terms

4 41.5 4.5

6 35 11.25

8 45 15.7

TABLE 6-1

Comparison of Per Cent Overshoot for 
Three and Four-term Approximations 
of Control VarIabIe for Second-order 
Dynamic Process,
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The results obtained here indicate the method presented Sn Section

5.3 for estimating the number of terms needed in mft) 5s sound. The 

statement that the method is valid only for the faster adaptation fre« 

quencies has also been substantiated.
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CHAPTER 7

CCNCtiSICNS AND RECCWftENDATIOHS

7.1 Summary of ResuIt s

This work has presented the development and investigation of a new 

class of control systems termed predictive adaptive controls. The develop

ment was based on the assumptions of predl et Ion, intervaI control, and 

synthesis of the control variable by a spm Of orthonormal polynomials in 

t, The optimization procedure led to the formation of a family of control 

laws from which the synthesis of the optimum control Ier was Specified,

It was shown that while the transfer function of the controller could not 

be derived inpractice, a quasi-linear model of the controller could be 

used to obtain a semi-quantitative stabiHty analysis.

Predictor design was presented in terms of the classical Wiener-Lee 

theory^ and relationships for control interval length in terms of predic

tion accuracy were developed. Pro Iiminary controller design was considered 

from the viewpoints of system error weighting factor, control interval 

length, and the number of terms needed in the orthonormal polynomial sum 

approximation of the control yariable. A method for obtaining an engineer

ing estimate of the latter quanti ty was developed and 11 lustrated by three 

examples, two of which were investigated experimental Iy.

Control of first-order and second-order dynamic processes was inves

tigated on an analog computer# Three basic experiments which evaluated 

the steady-state adaptability# transient response# and the statistical 

signal response of the two systems in the presence of extreme parameter 

variations were performed. In general# itwas found that alI three 

aspects of performance improved with decreasing control interval length, 

but that the minimum value of interval length which could be used was
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limited by the accuracy of the time-varying gain and controller circuitry,, 

Improved performance which could be obtained by increasing the system 

error weighting factor was limited by the useful linear range of the 

dynamic process input. For the two systems investigated It was pointed 

out that the control interval length should be chosen so that the process 

parameters do not drift by more than 4% per Interval In order to assure 

adequate control, Theoretical results pointing to the need for keeping 

the control interval length short to preserve stability, prediction acca~ 

racy, and loss of control due to process parameter drift were substantiated 

by the simulation results.

Investigation of the number of terms needed in the control variable 

revealed that the four-term approximation was adequate for control of a 

second-order process whereas the three-term approximation was not. This 

result was anticipated by the preliminary design of the controller.

One of the unique features of the class of adaptive controls present

ed here was that explicit evaluation of the index of performance In order 

for the controller to effect a control policy was not necessary. The 

system did not execute a hunting procedure to perform system optimization. 

Instead, the optimization was performed directly by generating time- 

varying gains. The tSme-varySng gain circuitry requ1 red as its input 

the unit impulse response of the dynamic process being control led. This 

information must be supp1 led by a suitable identification procedure.

Hence, it is clear that the decision step was built into the controller 

from the optimization of the index of performance from which the control 

Iaws.were specified.

7,2 Recommendations

A number of interesting problems which merit further research have 

arisen as a resuIt of this work.
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The index pf performance used to develop the class of controls in

vestigated in this research dealt with process optimization over the 

immediate future, i ,e., the interval {0,t]» This approach may possibly 

be extended to include an optimization over the entire future by a slight 

alteration of the index of performance. The new index of performance 

would assume the form

I <7-1 5

for n * 0, 1# .«», where T is the control interval length. The optimi

zation would then deal with specifying the controller to generate the 

control coefficients m^ of

N ■ ■
W|tC t) * y m^p^i U (3-16J

k=o

at each samp Iing instant, * nT. Control is sti II executed on a per

interval basis but the coefficients m^ spec?fied at each sampling or 

adaptation point would be optimum for all time in the future instead of 

only for the immediate future jjb,T 

with this new formulation is prediction of system error, je0(tI - c(t}J. 

Since prediction accuracy usually becomes poorer as the prediction in

terval increases, it may be advisable to place an arbitrary weighting on 

the prediction operation in which the distant future is weighted less 

heavily than the immediate future.

Another problem worthy of consideration is the choice of the class

One of the problems associated

of polynomials used in the control variable m(t) given by Eg. 3-16,

The Legendre polynomials were chosen for this research primariIy because 

they are polynomials in t. Therefore, the resulting control signal was 

itself a polynomial in t which Is a common type of driving signal for
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dynamic processes* For statistical signals* of course* the m^ were random 

variables* In general* there exists no method for choosing the particular 

class of polynomials which would be optimum* In some prescribed sense* 

for a given application* Some work has been done by Lee [33] on the syn

thesis of networks in terras of orthonoraa! polynomials* and more recently* 

some .new results in the representatIon of signals have been, presented by 

Lerner [34]* However* very little effort has been devoted to the develop

ment. of criteria for optimum synthesis of signals or classes 6f signals 

especially, as applied in control systems*

•The stahiUfy ana Iys?s given. jn Section 4*3 is restricted to systems 

employing a one-term approximation of the control variable* Hence* 

further-work is needed to determine more precisely stability requirements 

for the more general class of systems which use an N-term IM> 11 approxi

mation of the control variable*

Finally* a- comparison of the class of adaptive controls developed 

here with equivalent' nph^adaptive systems wquId be desirable* The non- 

adaptive system could be designed by classical methods [5] for the nomi

nal values.of the dynamic process parameters* and the response character

istics of.the resulting system investigated'- for the extrema of the process 

parameters*
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APPENDIX A

A CLASS OF ORTHONORMAL POLYNOMIALS

In this research the optimum control variable was approximated by a 

sura of polynomials in t

raft} ® > ra

k=0

N
Z < A—1)

for 0^ f^L T where the p^ft} are the polynomials. By making the poly

nomials orthonormal over the interval jo,f] , considerable simplification 

resulted in the final control equations. The orthonormal property of the 

polynomials p^ftS, k = 0, 1, is given by

l'T 0 k # n
pkCtJ pn{tJ dt “ ' , «A-2}

K n 1 k w ni
where p^ftJ is a polynomial in t of degree k.

The class of polynomials satisfying Eq. A-2 and forming a complete 

©rfhonormal system with respect to functions integrable on [®>t] Is the 

class of Legendre polynomials . (35]• The Legendre polynomials are usual I' 

defined on the interval hut, by the change of variable

a, 2
T

SA-3J

where t® is the independent variable of the original polynomials, become 

the class of polynomials needed in this work.

Making the change of variable.Eq. A-3 in the original Legendre po!y= 

nomials, the p^Ctl are given by the relation

P«Jtl CA-4J
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for 0^f ^ T wherf the first pix P^lt) are

p0m « 1

p1c t j • y t - 1

“ ^2 f2 * f * > 1

P3 fit? 20 .3 
T3

30 .2 . 12 .
r2 * T

70 140 .3
”T

90;..2 
_2

20 t + 1

252 f5 630 4,4 560 *3T t + ^3": f 
T4 Tp

210 f2 + 30 f

Iqs. A-5 are plotted in Figs. A-1, A-2, and A~3.

CA-S)
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0.8 --

Transformed Legendre Polynomials P_Ct> and P.(t)
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P,(t)

P^C 11

Fig., A«-2

Transformed Legendre Polynomials P2C11 and PjCtS.
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Transformed Legendre Polynomials P^Jt! and Pglt)
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APPENDIX B

GUARANTEE OF OPTIMUM SOLUTION

Strictly speaking, the solution of the set of equations given by 

Eq. 4-7 merely produces a stationary value of the index of performance, 

Eq, 2-4. Intuitively, if a solution exists, it would seem that it must 

render Eq. 2-4 a minimum since the latter equation can be made a maxi

mum by choosf ng the mk arb|trarily large. For the sake of completeness, 

however, an analytical argument is presented below to show the mk of 

Eq. 4-7 do minimize the index of performance.

The requirement that Eq. 2-4 be a minimum is

I
> 0 IB-1»

for k » 0, 1, ..., N.

Differentiating Eq. 4-7'with respect to mk gives

3 mk2 It) - c(t)Q

Xin -teiU.
L * k [-1 -

S' pkc T> w(t,T ) dT dt + mk

«T) wit,r i dT dt + 1

(B-2)

for k * 0, 1, ..., H, 

From Eq. 4-4

clt9
mt f Pk«T) w«t,T) dT (4-4)

for k = 0, 1, N.
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Hence, substituting Eq, 4=4 into Eq. B^2 yields

221 rT

mh
>Ct) ^ Pkcrfr') w{t,n dr 

o

dt + 1 «B=3i

for k - 0, 1p *«Qp N*

.Since-'X (t)> 0 was specified in Chapter 2, the first term of Eq. B»3 

has the property

»T

0

1pb«r> wft/rj df dt >. 0 (B-4)

Therefore, the right-hand side of Eq, B=3 is always greater than 

zero giving the result

^ 2 T
•2—4 >0 CB-5)
»-v2

for k ® 0, 1, ..., N and thereby insuring a minimum.
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APPENDIX C

SUMMARY OF WIENER-LEE PREDICTION THEORY

The prediction problem may be viewed as a linear fiI tering problem 

as shown in Fig. G-1, The filter is characterized by its unit impulse 

response hit), and has an input xlt), an output y 11), and a desired out 

put zlt). The filter hit) is to be determined so that the mean-square 

difference between the actual output ylt) and the desired output zlt) is 

a minimum. In terms of Fig. C~1 the problem is one of finding a physi

cally realizable filter hit) such that

■ o’ " = mini mum■■■filin' l v» — I I

where the bar denotes an averaging over all time.

It has been shown that there exists a unique, physically realizable

fi Iter hQlt) which wi I I render—« minimum T25, Ch. 14T. This
■. e2(t) L v ■■■■■W'.::.:-

filter is determined from a solution of the Wiener—Hopf equation

■op»(r' 9xx,T - r,' “r, ^xz
I?') r^o IC-2)

where

xz ir»
„C.r.» is the autocorrelation function of the input xlt), and 

is the crosscorrelation function of the input xlt) and the de?

sired response z<ft. These two functions are defined by the relations

fT
lira J- I xlt) xlt + T ) dt
- 2T 1T-woo

IG-3.)

and

J

xlt - ^ ) zlt) dt 

•T

IC-4)
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xl t >
Filter

y 111
+

, 1 ' . 4**
hit)

; 'f

€ (t)

Fig. C-1

BI ock Diagram for LI near FI I ter I rig

z( t)

ProbIera.
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Solution of Eq. C*?2 can be effected readily in the frequency domain 

provided 0*x<ri a"d (^)x2(‘t1') are Fourier transformable. The technique 

was developed by Wiener and is termed spectrum factorization [25, p. 376] 

The results are summarized below where appropriate definitions have been 

given to each of the functions used.

The complex Fourier transform pair Is defined by

FIs)
AGO

• 35? I fit) e^St dt (C-=5)

and

fit) 5
^QD +J0’1

+j ^

F|s)ejtSds I C-f>)

Now, let
$xxls, = complex Fourier transform of ^xxIT )/

and

fxzls) * complex Fourier transform of y)xzI T).

Also, let

,xx!s) = any factor of ^^X<S) which contains all the poles 

and zeros of Q) Is) which lie in the upper half of the complex plane*xx

and

,xxls) « the remaining factor of ©xxla) which contains all 

the poles and zeros of which lie in the lower half of the complex

plane.

Then, the Fourier transform Hop|Cs| of thf optimum fiI ter hQ(t) 

which satisfies Eq. C*=2 is given by

*00
H |®8 « ------1——

opt -r + ■
2Wb (*)

xx

It) e"^®* dt IG-7 5
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where

>pm

,+QD +JV^

-00 +jv^

ejwt dw (C-8)

In which the complex variable of Integration w is W « u + jv with u and v 

the independent real variables [25/ p, 392],

This result wi11 now be specialized for the cases of pure prediction. 

Rare Prediction.

Consider the situation where c( t), which is the signal to be predicted# 

is relatively free from noise contamination. Then, in terms of the nota

tion of Fig, C-1

xtt) * c(t) (C-9J

and z(t) » c(t + T) ■ c#(t) (C-10J

where Tie the prediction intervaI length. For this case

rsor1- * ® e(t) c(t +Tr ie-11}
'r>

where the bar denotes the averaging operation of Eq, C-3. Hence,
• Qcc'T'

The input®deslred output autocorrelation function Is

0
MI frj..VetH «(t + r + t)

■0«,r+Ti (C*13J

where the bar denotes the averaging operation of Iq, C®4* This result

gives
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© « T+ TJ e“ js T d r

= e (s)

< C—141

Hence, the optimum Wiener predictor Is given by the relations

HoptC*S * 2tr$.c,s' -o
(t + T) e^st dt CC-15)

where
®'+jy1 jwT

<p«t -t T)
$cc'"' j

=»GD +jv.
$cc

■ tw' 
e dw

Iw)

®+jv, .■* 1 X? jit +
CD Iw) e

■ ■■■ : . Ice :
OB+jv, '

T)w
dw (C-1i)

Prediction Errors,

Because the entire adaptation process is based on the predicted 

error signal, an analysis of prediction accuracy is a paramount consider

ation in the design of predictive adaptive controls. Hence, the equations 

necessary to determine mean-square prediction accuracy are reviewed below, 

tee |25, p> 429^ has shown that the minimum mean-square error for the 

optimum Wiener filter given in Eqs, C-7 and C-8 is

£2«t) *

rain
< C—17)

where ft) is given by Eq, C-8 and (0) 5s the value of the auto-

correlation function

diction interval length T*

T'\ for Tw o* For pure prediction with pre- 

Eq, C-17 becomes



- 135

2
€ it) £* ^Cc(0J

1 T) dt (C-18)
rain 0

where $Mf + T) is given by Eq. 0-16 and 0ccI0) Is the value of the auto

correlation function ^6ecJ7') for T = 0. After a change of variable In 

th© second terra, Eq, 0-18 becomes

€ «tl,| = ^CCJ0J > 
rain

1
2TT

) dt

If has been shown |25, p, 434^| that

if
105 =

27r
'2Cfl dt

Hence, substituting Eq, C=20 into Eq. 0-19 gives

€ 2(t)
min 2'"' v0J> If.5 dt

,IO»19)

(0=20)

■10-215

for pure prediction where Wit) Is given by Eq, 0=16 for T » 0,
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DESCRIPTION OF EXPERIMENTAL APPARATUS

The results presented In Chapter 6 were obtained using the Berkeley 

EASE Model 1032 Analog Computer and standard simulation techniques*

The operations of resetting the Integrators and ©f sampling were per

formed wl th relays. Two 650 ohm DPST relays which were driven by the 

transistor circuit of Fig. D-1 were used to drive two larger relays whose 

contacts were used for resetting and sampling* The control interval 

length was changed by varying the frequency of the square wave input to 

the transistor drive circuit. The reset operation was then achieved by 

using a pair of relay contacts in series with a 1000 ohm resistor between 

grid and output of the integrator. The gain of the reset integrator shown 

is ten. This is needed to compensate partial Iy for the attenuation In 

the multipliers since the output of each multiplier is 0.01 times the pro- 

duct of the two input signals. In order to simplIfy the computer diagrams 

given below, reset jntegrators will be shown as conventional integrators 

but will be marked “reset'*.

The sample and hold circuit used is shown in Fig. D-3. A second 

pair of contacts which are normally closed were used to provide proper 

sequencing so that the output of the reset integrator was sampled before 

the integrator was reset. The Interconnection of relays and contacts is 

shown in Fig. §<=4. Because R^ Is energized first, the sampling circuit 

Is closed just as R^ is energized. The.gull-Sn time which R2 requires 

to close the reset contacts is long enough so that sampling is completed 

before reset occurs. To simplify the complete simulation diagrams further 

the sample and hold circuit wi.ll.be indicated by a block where it is under 

stood the circuit in the block is that of Fig. D=3.
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In order to avoid exceeding the frequency response limits of the re- 

lays, the systems simulated were time seated to operate at 1/8 of real 

time. That 5s, if t is real time and is simulation time, the relation 

between the two time scales Ist = %r .
O

The polynomial generator used is given in Fig. D-5. Since the first 

polynomial 5s a constant, it is supplied in the first channel of

the controller by a gain adjustment*

The control ler for the f irst-order dynamic process using a two-term 

approximation of the control variable is shown in Fig. D-6. The one-term 

approximation is obtained by breaking the upper channel at the input to 

the summing amplifier.

The complete simulation diagram for control of the first-order process 

is given in Fig. 0-7. The identification operation is simulated by using 

a model indentica! to the process. The parameter of the model and the 

process are driven by the same source with the output of the model as the 

input to the time-varying gain generator. The controller, given in Fig. 0-6, 

is indicated as a block with its external inputs -10Ko«'7'}, -IG^fT'J, and 

-10p.j IT I. As mentioned above, the extra factors of 10 are needed to 

compensate for multiplier attenuation.

The time—varying gain generator and the controller for the second- 

order dynamic process with a four-term approximation of the control vari

able are given in Figs. D-8 and 0—9, respectively. A model of the dynamic 

process is again used to simulate identification.

With the polynomial generator, time-varying gain generator and con

troller indicated by blocks, the complete second-order system assumes 

the form of Fig. D-10.
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