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 ABSTRACT

This paper treats the ‘solution of'the-Vector~He1mholt2~equationr
for the case of a plene -electromagnetic wave'atc‘nosé-on' ineidence on
.a perfectly-conducting cone of finite size. The solution:presented is
‘exact and in the form of an,infinite'series.of'sphericalihammonicsq:'Ehe
expansion ‘eoefficients of the-series.are"detefmined'by,a_set of an infinite
,numberéof'equations'invblVing’an‘infinite nuﬁber-of‘unkndwns@‘-A discussion
and nuierieal investigation of‘thé-fieid singulariﬁies‘atlthe tip and edge
of the cone are.ineluded; as well‘aé graphs of the\aSSOGiayed'Legendre

funetions of non-integral degree, Pt(cos,e), and their first derivatives.
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GLOSSARY OF SYMBOLS

z (x) .Any spherical Bessel function of erder o) and argument X,

‘\/;I/QX Z 41 (x)
2

JD(X) Spherical Bessel funetion of the first kind ofjorder

.V and argument x
hb(‘K) ' Spherical Hankel function of the second kind of order
' © and argument x, J, (x) - in (x)
nu(.;;) Spherical Neumann function (Bessel funetion of the
: second kind) of order v and argument x
Zu(x) : Cylindrieal Bessel function of any kind
oy 14
EY i =
.zb(x) : = [xz (x)]

Pir;( cos 0) Associated Legendré function of order m and degree v.

" T(x)  Gamma fu.nction of argwnent X, If X ='n, an integer,
a I'(n) (n-l)‘ .
7, Expansion coefficient in the vector expansion of
' _ i(at+kz).
the negative travelling plane wave P e §
"n = m
n g 1, men
6m | Kronecker deltg = [O, -
5(8) _ .
e( 6) Erre# funetions
‘ jfn v Ebcpansi@n coefficlen't in the vect@r expansion of
=4 A _ i(ottkz)
the nega.tlve travelling ‘plane wave, &, e »
P el
“n id 1711

€ Permittivity of free space, 311“5' x 1079 farad/meder
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I‘ntrinsic 1mpedance of free. space 3 J 'S / e

=Angular variable dn spherical coerdinates measured

from the positive z axis

‘Wayelength‘

‘anﬁintegral»degree~@f the aSSOciated Legendre .
function and‘a.root of‘the eqnation Pl(ees G- ) = ..
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«
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,where ris the radial spherical c@ordinate

| Infinite conductivity
' Tetal”backaSeattéring radar cress section

~ Any. general degree of the asseeiatea Legendre funeti@ny

Pm(aes ) R

'Angular variable in spherieal ce@rdinatss measured

from the X ax1sa

Angnlax freqnenéy

A solution of the scalar wave eqnatian
Positive. 1nteger O Zerey -

A vector

Ble¢trie field

"Magnetie field

v L
The average: Poynting wvector, % Re(E x H )

Unit vector in the 1B directi@n

Propagatien constanty 21/A
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THE SCATTERING OF A PLANE ELECTROMAGNETIG WAVE
BY A FINITE GONE

,-;IntrodueﬁiQn'

The scattering and/or~diffraction of'electromagnetic:naves by
various objects has long been of con31derable interest to’ scientlsts .
and engineers’ from both:a. practical and a theoretical viewpoint: Since,
however, - the exact determination of the scatterlng of electromagnetic.

waves by bodies other than those having very simple shapes 1nvolves

con31derable dlfficulty, a number of approximate theories have been develop-
ed whichvmay,generally be classed according»tO»the range of wavelength,to.
dimension~of-object ratio. Among these are the Rayleigh theory, Fock®
theory, Franz® (creeping wave) theory, and the theories of phy51cal and.
~ geometrical optigs. An excellent,summary an& application of . these methods
appears in a paper by K. M Siegel4 | |

-Approximate theories cannot be applied,. howerer, vhen the dimen81ons
of the scattering object are-ln.the neighborhood_of a,wavelength.--For;this
so-called "resonance" region,ronly;ekact’theory (i.e.,a solution of Maxwell's
equatlons) applies. |

Due to the difficulty of obtaining exact solutions; the problems which
-have‘been solved using exact theory are notably few. “Of: bodies which are
infinite in extent, solutions have been obtained for the cylinder by both
Seitz® and. Ignatowskys, the semi-infinite plane by Sommerfeld7 .the ‘wedge
by Oberhettingera, the cone by Hansen and, Schlffg,»and.the parabaloid by -
Horton and Karall©®. Finite bodies for which solutions exist are'the sphere
(by Miel), the prolate spheroid (by Schultz?Z), and the disk (by Moglich®,

Spence®#, and Meixner'S). The works of Siegel®® are also particularly



notable for the reduction of some of the above solutions to useff?

numerical results.:_'
One of the outstanding features of nearly all of these problems,v_‘

‘is the fact that the - surface of the scattering obgect may be described

by fixing one. coordinate of & coordinate’ system in which the Wave‘“”

equation is separable° Here, 1ndeed, lies one of the prime difficulties.

in obtaining exact solutions, the fact that one 1s persistently restrlct-f

ed to the use of a separable scalar wave equation, and consequently to f

the eleven coordinate systems in which this equation is separable. Furthers

more, only a fraction of these systems involve well-known functions for

which 1nformation is readlly avallable. E , | (v c

It was with “the foregoing thoughts in mind that & proaect was under-)t‘
taken to attempt to davelop: a method for the exact determinatlon of the ‘
f1elds scattered from 1rregularly shaped obgects.v ‘ '

As with all electromagnetic boundary-value problems, an exact solution,_
to Maxwell's equations consists of findlng a solution subgect to (l) the
boundsairy conditions at the surface of the obJect, (2) the radiatlon condition
at 1nf1nity, and (3) the finite energy ‘condition. For general 1rregular
scattering objects, the first two conditions introduceianiadditional
difficulty since the radiation condition is always ofra spherieal nature
(for finite-sized objects), and the surface of the scatterer,will not
in general be such. _Theithird condition is,usually-implied.When
singular functions are discarded from use in'the>fieldsexpansions about
smooth objects, .and becomes of much greater-concern when dealing with bodies

with sharp edges and tips.
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Preliminary Discussion Qﬁ t@é Problem

As a first step in the treatmént of irrégularly shaped objects, the
problem underfaken'hefeinvis concerned. with thevexact sQlution for thé
scattering of>a plane electromagnetic wave by & finite-sized perfectly
conducting cone. Paﬁers by Siegel4’l7land Kellerls;have previously
treated the finite cone using the approximate theories of Rayleigh and
physical optics, and geometrical optics, respectively. We consider
here only "hose-on" incidence (see.fig, 1), and, in order to retain &
spherical system throughout, the end~cap of the éone will be assumed
to be a spherical sector.

We seek a solution of the vector Helmholtz equation,

va + kT =0, (1)
vhere k = 2x/N and C may be either the electric or the magnetic field
~ vector, E or H. It is commonly,knownvthat if © is'a solution of the

scalar wave eguation,

V 20 + k20 = 0, ” - . (2)
then the functions, 1, E,‘and.ﬂ, defined by

l =grad 9,

gl

= curl 6Er, : " (3)
- 1 -
n =z curl m,
are solutions of (1) and form the basis for the most general solution
of (1) (Ref. 25, p, 1766). Here, E} is the unit radial vector in spherical

coordinates. Since, for the case under considefation, div E = div H =0,

and since div 1 # O, only m and n need to be used in the expansions



PHYSICAL CONFIGURATION

/

.

Figure |



of the field quantities,

In spherical coordinates, equation (2) becomes

19 o0 1 1 o '
= r? <)+ 6 ) +
r? or ( 8';) r® sins-gw (s1n '5' ra sin®o - 3R

which, when letting ®(3,6,¢)1= fl(r)fg(e)f§(9),.separates into .

d,r2- | |
. 'i (61n 8 gg? ) *e: ofv + ijr- ;;ﬂf;if'QQ'a“f -
Sn o 1l RS TSR SRr vl i)

as® ' ‘

(4

(5)

(6)

.

'~ where o(v * l) and m® are separation constants. The solutions of these

equations are, respectively,

F‘”‘"/ ) 2,

fl(r) = v+ 1/2 ) :
£2(6) = Pﬁ(cos 0, .
R,

- where Zo(kr) is a spherical Bessel or Hankel function of order 0, -

Zy + 1720

the associated Legendre functiOn of degreevu and order m.

fields in the complete ¢ domain, m must be zero or.an integer.
LN N n, . ‘cos mo |
o) = ‘ , T ) : .
®8tgf’e’ ) flfzfe = ZD(kr) Pﬁ(cos 6) [sin m¢].
vwhere we let "e" (even) or "o" (odd)'indicate cos m¢ or sin mm,

(8)

(9)
(10)

(kr) the corresponding cylindrical function, and Pm (cos g) i

For-phys1ca1

Consequently,

(11)

respectively, and n may take on the values 1, 2, 3, or h where these

numbers represent-Bessel funetions of the first and second kind,‘and
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Hankel functions of the first and second kind, respectively; that is

1 = j < ’ 2 ="
(k) = (kr), o zo(kr) = n (kr),
, (12)
3 = nl 4 = 13(kr).
zu(kr) hb(kr), zD(kr) hu(kr)
From (11) and (3), we obtain
*(n) = m n‘ m, sin m¢ — ‘
,mgmo =7 sin 6 zb(kr)Eb(cos e)cos mé 6 ' : » (13)
B
_ zn(kr) ~» cos m? =
V) 0. sin md ¢
Sy kO v Tsin mé Tr
‘ opt ‘ ,
n¥, . » cos md — ‘ : S =
+ :
Zo (K7) 33 gin mo %0 | - | (1k)
%;Eﬁﬁfvé‘zb' "ote08 ) o e a¢__.. S
where zni(kr) =2 & [rzn(kr)] and 3, &,, and a ‘are unit vectors.
v 7 krdr v 7 T Ty e SR ‘ o

For the.particular rgpreséntation of our fieldiquantiﬁies, it will
later become eviden£ that 1t is convenient to%splif‘the space surround-
ing the cone int0=various.regions;'however; there exist two logical
choices for such a division: ‘one corresponding to the physical regioﬁs
and the other to a.coordinaté surface:(see.fig,u2);,‘fhe,diQisidh:of
the surrounding space éorresponding to the ph&sical»regions has been used
by Sommerfeld™® in the treatment of the semi-infinite plane and by others
in the'treatment of semi-infinite‘bodies. Sipce.wé will be usiﬁg spherical
harmonic expansions, however,‘there are numerous'reasons for choosing
- the division utilizing the coordinate surface.

Since the radiation condition must be satisfied*fbr,thé scattered
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fields, the use of Hankel‘fuﬁctions is immediateiyvsuggested since they
posseés the desired behavidr as r ‘-9'w; Thé Hankel functions possess a

. logarithmic singularity at r = O; howeverA;which is too large for satisfac-
tion of the finite energy conditiqn at the tip of the cone. Thus near the
tip, the use of Beséel functions is essential. As a resﬁlt, the behavior
of the radial functioné suggest a division at some finite value of r. |

If one further considers the behavior of ‘the associated 1egendre
functions, the problem‘suggests uéing functions of'integral degree
(i.e. polynomiais),for all r > b, since in this region the fieldéiekiét
and are finite throughout ﬁhe complete O domain, and any Legendre function
of non-integral degreevbecomeé infinite at either 0= O-or .. For r S‘b,
@ = = is not in the domain of interest, and consequently non-integrai
degree Legendre functions may.be usédf In addition, as‘may be seen later,
vthe proper selection of the'degree may be used for fhe satisfaction of the
boundary conditions at the surface of the_cone.

Thus the 6 functions also suggest a division of the exterior region -
at a finite value of r, namely r= b. We thus .choose this coordinate
division of the exterior space for the solution - of our problem. The
selection of the functions in the interior_fegion, r < b, is very similar
to that used by Hansen and Schiff® in theif treatment of the semi-infinite
cone. Also, the division of the exterior space by the coordinate surface
r=">is analogbus to the choice of Schelkunoff2° in treating the bi-
conical antenna.

One may theniraise the queétion as to whether or nbt a division of
the exterior region into»three.éub-regions as shown in figure 3bwould be

more advantageous. In such a case, the associated Legendre functions of
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non-integral degree and a positive argument (1.es PE(cos 8)) could be wused

in region II,kand similar functions with a negative'argument,‘Pg(-cos ),
could be used in region III, thus maintaining finite,funcfions throughout
all space. The primaryvadvantage~in such a choice ﬁltimatély ieads to the
use .of functions orthogonal-in both r and 6, and the resulting finality
of the expansion coefficients: certainly,rthis would be a most desirable
 feature. Although such a choice may be possible (see Appendix A), the
resulting equation for the determination of v in (11) becomes so involved
that it is believed to be less adaptable to numerical computation than
the non;finality,of the coefficients that.iS»ultimafelyvobtainéd in fhe
present. solution. |

We proceed,:théfefOre, with a regional sectionalizing as indicated
in figure 2b.

© Field Expansions

We begin by considering the expansions for the electric fields. A
. +4 )
time variation of e lost is assumed throughout.

In region II, the incident electric field may be expressed}(ref. 3y

p. 419) v »
i . o (1) (1)
= o % oikZ _ 7 ikr cos 0 _ - v '
Bpp = ae = 8° ﬁ (7nmoln * Y iPelin ? (15)
where , .
, —qREatl o __gmlZntl

n_ T n(n¥ 1) n . n(n +1)’

and E& is a unit vector in the x direction.

In this case, thé summation is‘over all of thevintegers, n, from one
to infinity. Consideration of the ¢ variation‘of the incident field

. led to the choice of the even.ﬁ and odd n functions for the expansion,
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and the ¢ variation also limits us tom = 1. As a result,,wé will use
even m and odd T functions with m = 1 for all expansions of the electric
fields.

In region I we are not necessarily interested in the separate
incident and . scattered fields, and will thus assume an-expansion‘of the
total field only. Consideration_of the previous arguments about the

™

radial functions and Legendre functions leads us to choose an expansion

of the form , »
_t - (1) (1) p
By = § 810 K bunelu < (16)

where ab.and bM are expansion,coéfficients to be determined by the

-boundary conditions of the problem, andp andv are the non-integral degrees
\ of the associabed Legendre functions which are also yet to be determined.
For the scattered field in the exterior reglon, the prior arguments

lead to the choice

_8 (1) MCON

BE..=3% (¢
n

IT (17)

o+
n"oln dnneln ?
wheré.cn and dn are constants to be determined. - Here we have selected

z;(kr) = hﬁ(kr),,the Hankel function of the second ¥ind, since it possesses

an agymptotic form

) » By () i s

kr - o
and. will thus represent an outward traveling:wave‘at infinity and satisfy
“the radiation condition. Hereafter, since we will use only the Hankel

function. of the sécond kind,  the superscript will be omitted and‘assumed

to be understood.
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The Prob;em Sclution

The equations (16) and (17) thus contain six'unknbwn sets of constants

n, and dn'

which must be determined; namely, K, v, au, b“, c
Through the judicious choice of functioﬁs, we have already insured
. the satisfaction of the finite energy condition at the tip‘of the cone

and the radiation condition at infinity. - There femain, then, the follow-

ing boundary conditions:

(1) [EI]r,d, =0at =6, r-g_.b; R (19=)
i - S v
+ = = ’ -
(2) [Bpp* Bpylyp=08tr=b 60 - (9w
i 8 L2 K . S
(3) [Bpp+Bpplge=lElgey (19¢)
| ‘ gatr=b,0<9<96;
i s ot '
1 . + = Lo :
[Hpp HII]6,¢ LHI]9,¢J (194)
(4) The finite energy condition at the edge of the cone,
r b, 66, i S (19£)

where b is the radius of the spheri_cal end cap and 6, 1s half of the
exterior apex angle.

The third cdnditiqn ingures the éontinuitybof the field_components
acroés the imaginary spherical boundary. “ |

For fufther reference, we state the Maxwell eqnafions,

curl E = -ion H,  curl i = iwe B , (20)
and ﬁhé relations,

:curl»ﬁv= Kn, curl n = km. | , I " (21)

From equations (15) thru (17), (20) and (21), and noting also that

k= w*fﬁggz, one easgily obtains the expressiohs for the magnetic fields:
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- , (1) (1)
HII g%\' l:Z‘,(')'n “o1n * jn eln’ :l 2

IR A CO N b I S
=3 [% %10 Ebu eln] | - (23)

(22)

B TR ST (S BRI SR e
By =7 ;Zi(-cﬁmoj.nf n eln) o (24)
where n is the ,:‘i.‘n"px;insic;é ,impedanc'e of“ free» space; »\/%7% s
Again for future refersnce s the field gquantities are expanded in

their entirety below..

t T o o ERR
EI o LE bp, TR J;(kr)P (cos 9):] cos ¢ &
[ P%(c@s 9) dPl 'F _ ,

-L%ag(kr +EbJH(M) »:l.,sm.cp a .

“Fin 0 T

7 = : nln+ 1) LNt ooay | o
EII B IZI'{ [jn mkr - Jn(kr)Pn(COSG) :I cos. ¢ a'r

:

Pl(cos 9) : 'dPi'— oo - :

r d.‘E‘i o Pl(cos 9) ;_
< |7t 7 __+ jnan(kr) A

“11 "1 (kr)Pl(cos 6) :l con ¢ .

Sln-G 44 h“(kr) :| QGS ¢ ’,aG . o .(27)

+ [_cnhgkr)
dPl Pl(cos 9) ' . R |
[c h (kr) + d h (k:r »=-=-=w=-=—=—=-=- ] sin. ¢ aq) A

sin 6




- i : 1)(1) -+ 1) 1 . L=
B — N —C————C———— ] q) )
HI,_= m_ [ R e (kr)P (cos 9) sin ar
P:'l(eos 9) , _
gin ¢ &g

| 51n9 L 3 __9“ (28) _

+ Dad (kr)de - Z o4, (kr)

' Pl(cos 6) d.Pl R
+ Fadl (kr) éb j (kr) cos ¢ a(J

7 =1L Con(n+1) o= . . =
ir=tE ["-n patl) ;n(kr)Pl(c_,os__ o) stme 3,

- _‘J&—_—m

kr .

4.

sin 6

Pl(cos 9) - o )dri;' . \">
j k:c' —=| cos ¢ @&,
j - ae . ‘ ¢J)

7J(ki')

+ ‘
n'n ' sine

. » P;"(cos 9)‘ R .
[7 M (kr) - 7 3 (e ,*""_'—" sin ¢ @, - (29)

- i ’n(n - ’ = ) —_—
H._= ;E ‘. [cn —Er—— hn(kr)}?;'l(cos 9):|_ sin ¢ 8, -
- d.'Pl ‘ ' P:’r'l(cos o)1 - _ ,
o) g - ahy () S| st 3, (30)
T Pl(cos 9) . . d_'Pl"' E S _ﬁq '
* [ eakal) Fgmg— - A () 5| con ¢ Br

-t ,/

We now begin by applying the boundary condltlons at the surface of

the conec L A R .
To. sat:.sfy (19&)”, 'we_equa'be" the rncomponen't of EIA'.bo' zero at 6 = ..90.,

25;%'—)‘3 (Iﬂ‘)Pl(GQS 6 ) ='0',  - (Bi)

and thus set

Pﬁ(cos 6.) =.'O‘. | o o - (32)



This equation thus determines the values of g. Equating the - ¢-component of
EI to zero gives

all Pﬁ(cos 66)"‘ B
% a’DJU(kr) dT p, b]J.Jp,(kr " sin @ § = Qo - S ’ (35)
9=60 ‘ o B

Since P;(cos 90)<= 0, we set
=0, (34)
T o0, ~ .

and thus determlne values of Ve

From (l9b),"(26), and (27), we have for v = by 6, S 0w,

o Peese)
B \7adn®0) *+ e (0] g

| o T
+ [.7‘,3 (Kb) + & h'(kb)] - 0,~.‘ s (38)
for the O -component, and,_f¢r<théf¢ cbmponént}-V  'mv |
, : dpl LT
{m (1) + 0.1, (1)) 7 B T I

+ 4 (kb) + dh'(kb)] —-W

These two equations contaln the unknowns.cn and-dﬁ~and_gpply,Qver‘avportion
“of the 6 domain. In order to obtain equstions involving él?ly one set of
coefficients, we Pirst miltiply (35) by sin @ end then differentiate with
-respeét to O; there reSﬁlts " . R
[ L
z {[7an(kb) | cnhn(_kb)] vt o
| o ' (57)
+ [, 9,00) + an) (kb)] 4
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The subtraction of-(57) from (37) ylelds

gpt vP;(cos )

d L N .
21 4 1] | — o— 3 ! 4 e Cp————
z E7£Jn(kb) dhhn(kb)] %{ ke (51n O] T

(38)

L
O.

Furthermore, since the Legendre equation may be expfessed as

d@p)v; Sigge" Pﬁ(cos 9)‘=’=>D(D+ i) S1n‘e Pm(coé 8); | (39)

a .
7 (sin 6

and noting that in this particular case, ¥=n, m = 1, (38) may be written

' i o A 1 = ; : )
z n(n + 1) Efggn(kb) + qnhn(kb)] sin 6 Pn(cos e)_ 0. (L0)

Since sin 6 does not depend on the summation index n, it may be
removed from'the‘summation and_candeled'from;thebéquatiqn; ‘Let us signify

the first N terms of the resulting series as SN(9)9 i°ee,

N - : o fn,  C . : '
SN(G) =z n(n + 1) ﬁf;jn(kb),+‘dnhﬁ(kb)1‘P;(00§je)9 v‘:': >v:  o (4;)v

8.(6) = 03 o e . <o< T
In a similar manner, wévmay multiply (36) by sin-eg.then difféfentiate

with respect to 6, and subtract the resulting equation from (35). There

Ve

results

N ' T R, -
TN(G) = I n(n + 1) [7njn(kb) % chhn(kb)l Pi(cos e), . ' (L42)

7(6)=0; o <es<m
We have thus obtained,twofequations involving»the’unkﬁown cdéffiéiénfs

c, and 4 for a portion of the range of 6.
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Next, we will apply (19¢c). From (25). through (27), we have for

the 9-componént, where r = b; 0< 6 <'663
P%(cos O) ‘ dPi
§ 2ol g * E ) g
| | (43)
_ Pi(cos o) ’ dPl
E-; 4 :.° ; - M T — +
z [7ngn(kb) + c‘nhn(kb)] =150 + [ M ' (kb) d b (kb)] 5
and for the ¢eeomponent9 , | |
' dPl‘ ’ ' P;(cos. 8) ,
% 2 590 kb) 2+ E b J '(kb) e P (44)

sin e

dPl ' Pl(cos 6)
{[73 (kb)+eh(kb)] .’3’[:73 (kb)+dh(kb)]=—=~=—-——-=—=-< .

In & manner ekactiyvanalogeus't@ that used in obtaining equation (40),

we -may first multiply (4%) by sin 6, diffefentiatevwith respect to.0,

and subtract the resulting_equatioh(from,(hB)ov There thén results

e g (kb) v(v + 1) I}ﬁ’@ Pl(ces 9)

=z [_7n;n(ko) +¢ b (kb)] n(n+ 1) M Pl(ces e) (45)

=T(0); 0<6<ae.

Performing the same operati@ns_oh (A§)'and subtracting the re$u1ts.from»

(L) yieids
’E b J (kb) p(p + 1) §;ﬂf@ (cos 0)

z E‘f J (k"b) + & h‘(k,b)] n(n .+ 1) §iﬂ:/9 ?i(cos ) : (46)
=8 ()3 ’0<e<e N |

£(0) =

Congidering (40) and_(h6), let us define a function £(8) as follows:

080 ) B 9, 05 0,
| | (47)
05 QQAélezi e
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We may now think of £(6) as a defined function which we would like to represent

as accurately as possible by a finite series, SN(Q), and then minimize a

weighted meah square error to find the.coefficientS‘dn in terms of the;b“
coefficients (Ref. 21, p. 1ff).

Let €(8) = £(6) - SN(G) represent the error, and then form the mean

square error weighted by an amount sin 6, thus:
10T . '
M= -iﬁ) €2(0) sin 6 4e. , L . - (48)

Since this weighting factor isbaIWays positive in the range of integration,
0 - x, it does not destroy the-primary~s1gnificéncevof M, bﬁt,only causesv
the error in the center of the‘range to be weighted‘more‘heavily than that
at the end points (Ref. 21, p. 26). |

In order to minimizé'the mean sduare error with respect to a

4particular'coefficiént dm, we form

; % -1 j: 212(6)-5,(6)] hy(Kb)m(m + L)B%(cos O)sin 6a0 = 0.  (49)

If we now insert the expression for SN(G) into the equation and move the

portion containing.thatréeries to the right-hand side, the orthogonality. of

the associated Legendre functions produces

f ﬂf(G)Pl(co's 0)sind ao (50)
o m - .

= [ 3, (kD) + dﬁhﬁ(k‘b)] m(m + 1) [tfs,in 6 [19;'1(003 9)12 ao,

after canceling % m(m + l)hﬁ(kb), Inserting the éxpression for £(6) and

evaluating the integral on the right side,‘one'obtains
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e
o) _
y + 1) i 1l ecos ) P*(
E b“JL(kb)H(H l)¥/;‘Sln 6 Pu(cps 0) Pm(cos 6) ae

] olm(m + 1) ]2
T '2.m{4_1 ot

= [?mjr;l( kb) + dmhm(vkb)

One may evaluate the integral on the left (Ref. 22, p. 431):
% , .

f P(cos 6) P (cos 6) sin 0 d@
o M . m ' i

6

sin 6, : » dPt 1 | 4B, o

S N )

Ty = (L) [»Pm(cosve) 15 P (cos 9) 0 } (52)
sin 90 - 1 : dPi'

mw) - WD) o %) T |,

After replacing the integral in (51) by (52)‘ahduthen solving for the

coefficient dm, one obtains -

3. (kb) [
2m+1 1 1
d 7 sin 6 F (cos 2] ) ‘ A
: m(m*l) hm(kb) , (5%)
. ' L v
£ T b '.Ju(kb)_ B pl) 1 ] gl
B ow g (kb)) m(mtl) m(m+1) - u(u+ 1)* de e—eo AR

In a similar manner,-we may define.a function g(e)nover fhe;range

0 - % by considering equations (42) and (45):

{ & 8,3, (k0)o(v+ 1)Pi(cos 6), 06 < 6,

g(6) =
(54)
.0, R 665 =,

We thus wish to represent g(6) by the Serieé T‘(G), and will, in an

. analogous manner to that used befong form an error, 8(9) = g(e) - TN(G),

and then minimize the mean square error,
‘ 7

M=l f 8 2(6) sin 6 4, | | (55)
ERNA
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with’respect to’avparticular coeffi&ienf,”eﬁ: there results e

M 1

% 7o o - o oo ) w6 10 =0 (9

Evaluating the integrals yields,'

Pl(cos o)

| apti [y 2[m(m+1) ]2
m . o o = [7 3 (kb)+ch( )]_____.____
0 % B 6=0 5 aUJD(kb)P(p+l) (V1) ~m(m+l) mme o omn m + 1
o ' o ‘ . o
and upon»solVing foricﬁ, oné,obtains
. g . . R :' "1 S
o o 2ml J,,( D) 1. o . 3., (kb) (o) 7 (cos o ) a
m m(mtl) h (RD)[ 2 °7° "o 9 B o g (k) T u(u+1)-m(m+1) °

log, -

£ (58)
Let us now apply the same technique to the tangentlal magnetlc fields

‘over the 1mag1nary spherical boundary By minimizlng the errors withx“espect

-‘to a, and bu, one may obtaln expre331ons for these coefflclents in terms

' of the coefflclents cn and d » which upon substitutlon 1nto equations (53)

and (58), will yield an infinite set of equatlons for the coefllcients en

‘and d . The reverse substitution w1ll also produce a s1milar set of equations j’

for the coeff1c1ents aD and b s To this end, we have from (l9d and (22)

thru (24) for the Gwcomponent in the region O <8< 6 52 f,ﬁ.fg .

o dpl ’ : P&(cos 9)
. 9 ' D e ]
@ aDJU( & kb) gin 6 _
_ | (59)
v | v'dP; . R P;(cos 9) '
_ ) Y ~n . » B
z [7n3n(kb) + ‘cnhn(kb)] W ‘[ Aan(kb)u_‘l" d b (kb)l e €2
and for the ®-component e | | P
- . P(cos 8) - ap
a8, 31 (kp) ,;2__-—- - Z b J (kb)7~ii
& % © sin © pep ae :
. - - , ST | : (60)
Pl(cos 6) ’ : =

{i 7 dn '(kb) + ¢ b (kb)]_ T3 [3' j ( kb) + dnhn(vkb)z] -55- ",_'
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Multiplying (59) by sin 6, differentiating with respect to 6, subtracting
the resulting equation from (60) and utilizing the Legendre equation (39)

produces
% a3t (kb)o(o+1)PL(cos” 6) o
5 “vvv v : (1)
= 3- 3 + l .

= [7nJIfl(kb) + cnhlfl(kb)] n(n l)Pn(cos »9)

In a like manner, after performing the same operations on equation (60)

and subtracting the result from (59), one obtains

% buju(kb)u(u+l)Pt(qos 0)

| (62)

= %ﬁfnjn(kb) + dhhn(kb)} n(n + l)Pi(cos 6).
We now set
£(6) = £ 1T J (k0) + 4 h (kb)] n(n + 1)P (cos 6), (63a)
Sp(8) = F B (R0In(i 1)7,(cos 6), | - (630)
€(6) =£(6) - 5,(0); . (63¢)
g(6) = £ [y J: (ko) + ¢ n1(kb)] n(n + 1)PX(cos 6), . (6ha)

,'Dzv ‘

TV(Q) = % a, J (k) o( vt 1)Pt(cos 6), (64b)
3(6) = g(6) - T.(0). | | (6ke)
Forming the mean square errors.over the range O - 90, |

1 90 ‘ 1 90 A _ _ ' o
M =‘5_J[ €%(6) sin 6 a6, M' s-g—Jf " 87(6) sin 6 de, (65)

o] o-o

7

and minimizing these with respect to bB and &y, respectively, where B

is a particular ¢ and @ is a particular v, leads to the equations



s. ) o B . dP:é PI(COS 9 ) ‘. ‘

_ L (66)

= Ppdp(kR)B(AHL) fo sin @ PE(COS 9)1 de, A

and

'ﬁquZ [7 » (kb) +c h'(kb)] n(n + l) sin 6 _1(67) 

=8 11 (] o D M2 4
= gaaa(kb)a(oz+l) fo sin 6 [Po‘(cps 9)] d? .
Solving, we obtain

L a(w1) Sl ®
by = .miz (kb) +dh (kb)] B(B"“l),;ﬁ“';f

.

o _?’(16,8) |

] n( n«ial). o

= m—-—- = [y j kb) ¥ c, ! (kb) Oﬁ(OHP]_) _v (69)

: v}here B BRI . o
o é) u(u+1)' %(k"’) o o_)F
afor THWI) (@) B D e n(n+1)JLa(a+1)-n(n+1)J 0
0 o R 2L sin 6 PA(CQS %) dPll .  [ o) Ve
a'a O&(o&{l) O&(Ot+l)-n(n+l) .- dae i@sG h (kb) n

o

.(n

n' (kjo)

b

60
0

. ) = 40l : .
K= JU(_k-b)B'O_.’
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B n SV n ‘ L
B E Pulefus 7 05%00" B oup o
where ' : .
1, o : 3 o
én _ (n’,"é‘) H(M'H-) J[.'l.(k.b) hn( k.b) v Sll’l 9 [Pl(COS 2] ) ] ‘ d.P dP ]
b up  n(ntl) B(B+1) h (kb) (o(o+l) - p.(u+1).|ln(n+l) - 5(5*1)11_(19 T | ’

n .o+l oml SR eoP%l(°°é 9,) &gl [J (kD)

vlp = B(PFD) Ta(orl)-A(BF1)]  ae lo=o_ B_(E5) hy(k0) - 3 (kb)}
va“ = ju(kb) B“;
33 cn(cégm - K8 Y=-%% (W - x5 ), (72)
where - | ‘

g _ 1 N n(rr!-l) Jb(k’o) (kb) ' sin® [Pl(cos 6 )] 2 |’c’L‘E’l <ELPI:}l 1
e® QJu(kb)B m(m+l) h (kb) ['D(D*‘D-*n(nﬂ)] [D(U+l)-m(m+1) ]Ld9 B g -

. . . [»]

ym 40 ontl Jn(rkb) g T
c'v n(nt+l) h;l‘(kb)‘ c v’

n jn(kb_)
X = 1 : .
cn hnz kb) *
x = X ntl)
emn  2ntl ?
‘ nm _ nm v s : _
}l} 121 d’n( dgu dKnsnm) - E IZI: (dvl-l - dxnsmn)’ » ' ('73)
where . .

.- : . Bl I . 2
w2 (1) d(ED) o (i) siw .}GOP;(cbo,s; Gol)Pm(:cosv 9, 4B~
a7 25 (ED)E, m(wFl) B (kD) “n (n(ntl)=p(p+1) | [m(ocrd)-u(p+l)] 1 d0 §o o1

. o
g gl 2L 3, (kb) gim
a‘p n(ml) hn(kb) ap ?
o gutd JnlED)
&1 hlil( kb) ’
n(n+l)

amn © (ool
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Esch of the expressions (70) through (73) constitutes an infinite
set of egquations in an infinite number of unknowns for the particular
coefficients involved, and the four expressions constitute‘the formal
solution to the problem. |

A few points about the solutibn gre worﬁhy of notes One may
observe that in minimizing the mean sguare e?r@r in equétion (1L9)‘9 the
differentiation could have been carried out with respect to b“ instead

of dmo This procedure, however, would result in a non-orthogonal integral

over. the range 0 - 90§ furthermore, it would have necessitated the integra-

tion of the equations obtained from the megnetic field components over the
range 0 - =, and there exists no expansion for these components over the
range GO = 1, thus making the integration impossilble. .

Also, although the finite energy condition at the tip was
employed in the original.selegtion of the functional expansion, the
entire soluﬁion was obtained without the employment of the finite energy
condition at the edge of the cone. The approximate treatments of
Siegel®s'7 and Keller*® predict that the major contribution to the
scattered field arises from the singularity at the edge, and this
viewpoint has been supported experimentally by the work of Keys and
Primichggg who found that the radar cross-sections of 60U and 120 degree

finite cones correspond within 4 decibels (db = 10 log &), @ = radar
. AE i

crosg-section) to that of an anpular wire ring of the same base diameter
over a range of 0.5 - 3 wavelengths.
Since we know of no proof thet the series of spherical harmonic

functions used in this problem will properly display such an expected

“~\



- o4 -

singularity, the following section contains a numberical investigation
of the field components in the vicinity of the edge for an interior &pex‘

angle of 30° (i.e., o, = 165°).

Consideration of the arguments presented in Appendix B reveals
that a singularity of permissible order occurs in all components of the
magnetic field at the tip of the cone. No singularity occurs in the

electric field at the tip.

Numerical Investigation gg‘Singularities at theuEdge

Since the edge singuiarities may easily be investigated by approaching
the edge aléng-a line in region II, only the expansion coefficients,
ch and dn, of thé scattered fieid in that region have been computed. Knowing
these coefficients aiso enables one to compute the radar cross section and
~ hence make a comparison with experimentaliy measured.valﬁesa For convenience,
the edge was approached along the line 6 = 909 and since the ¢-variation is
easily removed from all series summations; the actual computation was made
for a particular field component divided by sin ¢ or cos‘¢, whichever
was applicable. Consequently, any desired value of ¢ may be insefted in
the results.

Before proceeding with the numerical work,.one must first choose
particular values ofbcone angle and radius with which to work. In this
case, our choices were primarily dietated by the information which is
available.

To the best of the authors® knowledge, the most imformation avail-
able on the roots, p and v, of equations (32) and (3&) is contained in

part IV of the University of Michigan reports "Studies in Radar Cross
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Sections" by Siegel_9 et.al.1® This report evaluates the radar cross

section for a semi-infinite cone and lists the first seven roots of each

of the equations (32) and (34) for a cone angle 6, = 165°. Consequently, this
angle was used in the following computations.

| In addition to the daté listed in thevaforementioned réport, the

L 1 :
values of Pb(cos 60) and dPu/de 6=90 ‘Were needed and have:been.

computed (See Appendix C). For this computation, and throughout the

analysis, the definition used for the associated Legendre function is

Pl cos 6) = (- yym I{l#otm) sino gFl(m-u,m%ﬂ;mﬂ;}:E%?-Q—) (7h)
2P (140-m) P 14m) : :

where 2F1 is the ordinary hypergeometric function

F1(0,85732) = F(a,B5752) = 1+ Zr 2 4 753135(21“1) BRI (75)

and for the purposes of compﬁting the derivative, the relation

sin 6 ﬁ=9= = (o= m+1)Pm ,(cos 6) = (v¥l) cos @ P (cos 6) - (76)
wag used. The roots given by Siegel and the computed values of the
functions are listed in Table II.

At the present time, even less information seems to be available
on the spherical Bessel and Hankel functions of non-integral order.
As a résult, a value of radius kb = 0.1 was chosen to facilitate
approximation.of the Bessel and Hankellfunctions.by.the first term in
their series expansions. The approximations of the ratios of the Bessel
functions listed in Table I are accurate to at least .four significant

figures for the value p = kb = 0.1. Though this wvalue places our
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TABLE.. T

BESSEL AND HANKEL FUNCTION APPROXIMATTIONS

FOR.p =»0
. 0
340 laﬁw 57 (5)
v-1
3(0) » T rh— (9
W . : 0 =(n+l)
ENC mmwii.n_.\mw.a T(-ori/2 3 | ()= senty A,.Mv
1 lH}\Mu.G DVIA.G+MV | pA. v IHAMSVu Dvlfivmv
hy(e) = sin(orl/2)n T(-0F1/2). (3 hote meim?-mv.w (3
ﬁwﬁbv uGADv .IEMAMBVNMNEINS..u& 0 n=n
MR CHRCSVHCTYREL
3p(e) 3.0e) . .-.§...§+t“mma+ms+uu Amvi.a.ﬁ
ﬁuomuuom (2m)!(2n#Fl)!(v+l) ‘2
Ba(P) 34(P) (1)1 (on)1(ua)pPnm2n NI
ENE)) u."tnﬂn& (2m)in! — \2

R+5+P

3p(e) 4(e)

n:(0) 3,0e) ~ ENHESHH

. -K?H:s:ﬁdmm%m?p (2)

_ym (2mtl) qEon |v “,_,.E.T“_.Asaﬂ_.vw,éw _;mma..u?w A.wvms.ﬂ.
EAE.“T“O .S.BADV _”ANBVMH_NAE.THV 2

mtl (2mdl) ﬁ@ o -1" [(m-1)!]3pemtd (£)2m+L

bomwr) B(e) T T UamlE 2



DATA USED IN COMPUTATION OF FIELD EXPANSION COEFFICIENTS

TABLE II

" NOTE:

Numberical Analysis » University of Galifornia
Values of v and B given by Ref. 16 Part ].V 3 e.nd computed by Willow Ru.n
Research Center, University of Michigan '- :
~ Values of Pl(cos 6 ) and d_Pl/ d@l o=6_ computed by School of Electrical

Engineering, Purdue University.

Values of K a.nd B given by Ref 16 . Part v, a.nd computed by the

(6, = 165°)
n | Pi(cos §) dP;/d9|9=en v | Bj(cos 6,) B, Lo dPﬁ/dG,e=Qm B,
1 | -0.2588192k | +0.96592579 | 0.9673 | -0.52217 | 1.35806 | 1.03163 | +1.88762 | 1.31078
2 | +0.75000000 | -2.5980742 1.9198 .+1.h0862 2.42491 2.08443 | -5,17961 = |. 2.34637
3 | -1.%228831 | +4.3396881 | 2.8894 7'—2.28915 3.37945 | 5.1&992 | +9.50825 - 3.34731
4 | +2.20693%09 | -5.4575812 3.89Qo f +2.98087 k.28564 | 4.22309 -1k.65581 | k.3h068
5 | -3.0177961 | +5.1518426 4;9180_wf-3 50544 | 5.18033 | 5.30108 |+20.49366 | 5.33218 |
6 +3.76h6396t  -2.6831313 5;9657f5ef5.92272 | 6.09038 - _6.3822h _-26;92&06_)f 6.%2433
7 »n-h;3581639 -2.556614 | 7;0264,;f;4.277u5 | :7.032}6' \7.&6557:'+3h.15183v' 7.31653 |
- ’_f 6o J' " \ R
B Bu =f [P:L(cos“e);]'_ sin ) de, B, —f [Pl(cos 9) ]2 sin 6 de.
0 Yo T ' »

Institute of .

ez -
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computations well into the Rayleiéh region (i.e., b = A/60), it is
satisfactory for,inﬁestigation of the edge fields.

Using these apprdximation's,' the equations for the coefficients .
c and d , (72) and (73), maydéonvenientlyxbe broken into»componeﬁt

parts and expressed as

n , Y , ' : v
z (8, - a Je =B +K, - : N (77)
where

‘1) : E%mfimi (ﬂ)m

ooy (2
F(m) ='[m(m#1)l2' (am) ¥ ,f§.

G(n) = -

520 (ngl)%  2 9

- Tein 6 P (cos 6.)12 r a* apt
" ? (U+l)BD To(vtHl) =m(m+l) J{o(w+l)=n(n+l) ] de - ae 6=0"

o

' 6o . fo
1pl s 1l s
h/;fPDPm sin 6 40 UL‘ PDPn sin 6 46 -

: 1y 2
(o11) j; (Pp)® sin 0 ao

. _ s s
By = § - 1 g

 Lanck (n-1)1 | 2 Pyombr
b = 7 24 [ 2n)2] (3)2n L

m-l)gm! (2)2m+1 .
; - i)

. _»im*124m%1(
™ [(2m)1]2 (1)

for equation (72), snd for (T3),
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n _ . v I
® (6m -’fmn) dy =Gy * Km ? o o (78)
vhere

’(ém+l)‘ 22m’1(m~1)! (2ym

m) = M (a2 ¢
_n(ntl) (2n)! py-n
J(n) -= - 2.'[1 " N (§) , |
- 1 1 12
Klm.n) = (1) s;ng,eoPn(cos G)Pm(cos ) —[d?
AR B [n(nt1)-u(p+l) [In(n+l)-p(0+l) ] | a6 |
- b M W L 40 Je=g_
90 oo . 90 S )
o PﬁPi;l sin 6 a6 f PiP; sin 6 de
= (u+l) : — o~ 3
8o
and JC (Pﬁ)z sin'€ 46
Y | |
Cp =51 &pp
g = _penty _me(m-l): (2)2m+1 -
n (m+1)[(2n)1]2 2 mn 7
. T m=1)' 1 2°
K&.s - ifodmtl [(méi)ij (%>?m#1

Equations (77) and (78) each represent one equation; however, by
letting m assume successive integral values, one obtains a set of
equations for,eaéh‘representation° Let (zmn) repreéent the element

of a matrix in the n® row and the nth.column, and let [xmn] represent
the matrix formed by these elements. Then the set of equatipns
represented by (77) and (78) may be represented in matrix form as

(- s ]le]= 5, + X1, | (79)

n . ’ ‘
: —[am - fmn] [dn] = [Gm + Km], - (80)
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respectively.

Throughout the computations, summations over seven terns were
used. The expanded T x T matrices aré shown in Table III, and the computed
matrix coefficients are listed_in Table IV. -

Utilizing these matrix coefficients, the electromagnetic
- field expansion-coefficients, c, and,qn,~were repeatedlyicomputed usingv
sets of seven, six, five, fqur,,andvthree»equétions.by sucgessively
eliminating the last row and éolumn of the matrices. _Thus,,by conparing
the solutions listed in Table V, an estimate of the. degree of accuracy
’may be obtained. In every case’tne magnitudes of the cdefficients computed
using three equations lie within fwo per-cent of the magnitudes of
those computed using seven equations. Also, an examination of Ecl/cgﬁ
and gdl/dgg yieids‘factors of 200 and 140, respectively, indicating
very rapid convergencé nf the series, as may be expected for such a ’
small value of kb, |

Having obtained the" field expansion coefficients, we -were thus
finally prepared to return to equations (17 and (27) fof computation
of the field'componentég For this purpose, each field component was

- geparated into its real and imaginary parts. vSince 3

B (o) = 3 (o) - in (o), N '
and |

a(?) = (D™ () (@
if we let |

L}

k() = (DR (o) (83)



(1-a131)
=821
=8g1
=841
-8s531
-as1

L-371

(1-f11)

~fa1
-f41
-fs1

-fa1

-f71

MATRIX FORM OF EXPANSION COEFFICIENT EQUATIONS

=812
(1-822)
-8a2
=842
-85z
~8a2

=872

~fi2
(1-f22)
-faz
~f42
~fs2
~fe2

-7

-813
-823
(1-aas)
=843
853
~8¢3

-ara

-flé
~f23
(1-f33)
~fasz
-fsa
-fg3

-f73

~814
=824
-834
(1-244)
-554
=884

=&74

-f14

-f24

=faq

(1-faq)
-f54
-fea

-frq

TABLE III1

-a15
=825
-aas
=845
(1-ass)
~ags

~a7sg

-fis
~fas
-fas
~fas
(1-fss)
-fas

g

-818

-aze

~aaze

~a48

~ase

(1-age)

-arg

-fi1e

~fag

-fas
-fae
~fze
(1-fes)

~f7e

-817
-ao7
=ag7
=847
-as7
-as7

(1-a77)

ff17

~fa7
'f4+
~fs7
-fa7

(1-f77)

ci

Cs

Cq

Cs

Cs

B1+Ki
BotK2
BatKs
BytKy
Bs*Ks

BetKe

ByHK7 -

G1+Ki

GotK:

GatK4

GgaHKL

GsHKL

GetK4

Ge Kt

- '[g—



o
B W

O\O\O\O\G\ONOY UTUTUTUTUTUTUTL 8 DD LDHBEBEW D O D D D R N HEHHKFKFPIB

e
8
=]

1l, men

N

SO EWNDHF O EWN K ~10W FURNH ~3 00 EFWR H —~30W 5W 0 H —1 0\ £\ HIS

" COMPUTED MATRIX COEFFICIENTS

n
(8,
A.
~. 15094515
-.16087902
- .22875915

-, 27292641

+25126402

-. 43697134
=.98911438 -

-.55171124
16874330
-.18685502
.20854942

-.13911531 -

-.21496838
+14642109

. 3660982 -
. -.B7199009

17783107
=.10617697
-.10066070

43267581
=0 17732992

-.18566424

4136939k

-. 45132954

.18190171
412758369
-.53985136
17443197
.61135626
-,98702126
-.15303994
45632737
.18287685
- 50559947

5,1h27926h T

-.31536T49
=, 45240369

.19512248 - -

-. 57273752
- 14997075

»18237081
-99545654

- 32 -

TABLE IV

- a ) s Ax lOp
nm :

b
¥1-

+3

+5-

-+
D
+11

Ry

+1
+1
+3

-+

+7

+10

-6

oy

41
+1
+2
+5
+8
-8
-6
=k
+1
+1
+3
e

]

- F
50300545
-.65378349
. 86326182
-10182327
.99152403
.21936376
. 34144258

22420560
25430143
&, 54724578
-59734267
. 41698784
57300361
. 44408800

.13815346
25538139
. 23657812
. 26T7955Th
LAToUo1Th
+ 12306150
.53186446

.11849328
»11390072
.22521805
- 36978912
.15565716

1

. 53260609

24124998

.29585232
. 71824845

. .13226212
" .21528669

14933190

12058933
.55496672
.16513928

2 L bhogl782

.20498085
. 33061918

69267537 -

45071280
- =.15831749

(88 -f ) =Fx 10%
m nm

9
+1
Fl

+3

+6

3
Q
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Ilb
1

~N 1333338

o EWNDRE ] B

o, m;én
1, m=n-

A
= 17624170
. 76076983

.45688357
-.10456922
2457652,
- .1846ThOT

—~ OV WO B

= 4+ K
G.'(I]. Km

.12102484[-5] + i.18445300[-4]
-.T79629000[-8]-1.11190013[-6]

. LOU 7280693 [-10]41.68956550[-9]
-.3821715450[-12]~1. 34591569 [-11]
5484 TU16[-15]+1.12065140[-13]
.22256242[-17]-1.81212522[=17]

-, 42665968[-19]-1.30200151[~-18]

-. 19743535

TABLE IV

(82 -a )= A x 10P
m nm

e

-15
-13
=10
-8
=5
-3
+1

5 - f ) =F x 109
m nm’

F g
-.60838698 -i5
- «23073779 =12
-.59216661 -10

213950367 -7
-.33006392 -5
. 81625573 =3
19255892 +1
B +XK

m m

-9LL02300[-5] =1, 446T73140[-6]
.55078856[-T7]+1.57672100[=-8]

. 36470023[=9]-1.23215924[-10]
.18544132[-11 ]+1.11480715([-12]
.61143160[=14]-1.27443110[-15]
-41165708[-18]-1.12534308[-17]
. 17526716[-18]+1.21106598[-19]



TABLE V

EXPANSION COEFFICIENTS OF THE ELECTROMAGNETIC FIELD

= (x)[-p] = x 107

* c1L Cp cé . C% _
T | ( 6.160-10.288)[-6] | (-3.199+10.337)[- ( 2.008-10.132)[-10] | (-9.951+10.606)[-13]
6x6 | ( 6.166-10.289) (=3.207+10.338) ( 2.017-10.133) (=10.04+10.616) -
5x5 | ( 6.166-10.289) (=3.206+10. 338) ( 2.017-10.134) (~10.03+10.618)
hxk } ( 6.171-10.289) (-3.209+10.339) ( 2.016-10.134) (~10.01+10.617)
3x3 | ( 6.189-10.290) (-3.221+10.339) ( 2.022-10.134)
* Cx : Cs : Cr
7x7 | ( 3.266-10.138)[-15] (=6.281-16.994)[-19]} (-8.646+11.099)[-20]
6x6 | ( 3.335-10.147) (=11.09-16.332) .
55 § ( 3.332-10.149) -q

= (y)l-a] = y 2077,
* ds do da - . dg
TxT | ( 0.381+15.823)[-6] | (-0.299~1k.226)[-8] | ( 0.188+12.796[-10] (-0.087-11.466) [-12]
6x6 | ( 0.383+15.833) (=0.303=-14,245) ( 0.193+i2.823) (=0.093~11.496)
5x5 | ( 0.382+15.834) (=0.303-14,24)) ( 0.193+12.819) (=0.093-11,491)
bxk | ( 0.383+15.852) (=0.303-1k.253) ( 0.193+12.818) (=0,093-11. 1:81)
3x3 | ( 0.386+i5.901) (=0.306-14.287) ( 0.194+i2,834)
* dS d6 d7 .
Tx7 | ( 0.201+15.368) [-15]1 ( 1.239-15.340)[-18] | (-0.206-11.193)[-19]
6x6 | ( 0.246+15,633) ( 0.891-17.353)
5x5 | ( 0.253+15.582)

¥ Size of Matrix

o
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the Hankel function becomes

hn(p) = J (p) + ik (p). (8

Using this notation, one obtains . from (27)

Re(,) = cos ¢ £ 2EL) (4% (p)alx (p)] Pi(cos 0) ()
In(E ) = cos ¢z Hiﬁill [dijn(p)+d;kn(p)] P (cos 6) | (86)
| [ 1 Pl(cos.e) lk

Re(E,) = cos ¢ % v[cngn(p)jcnkh(p)] 5 + & Jr(p)-a i (p)] (87)

| ' Pi(cos ) ‘vi,

Im(Ee),% cos ¢ % ‘{}c 3, (p)+c k (p)] TR +‘[dnq (p )+d kst (p)] ‘ 88)

, ’ i dP; ¥ .4 ‘ Pi(cos )

Re(E,) = -sin ¢ Z [cnjn(p)~chkh(p)] 5 ¢ [dnjﬁ(p)*dnkﬁ(P) 5 (89)
. dPl Pl(cos e)jL

IIH(E¢) = =gin ¢. %{[C;jn(p)"ﬁcz}{n(p) de + [d J (p)+d kl(p) W} 90)

where p = kr, cn,g ol + ici.and a =a + idi;'the superscripts 'r' and
'i' representing the real and imaginary parts, respectively. For the
computation of the field components, only spherical Bessel functions of
integral order were needed, and for these functions, data are readily
available (Ref. 27).

The results of these computations are listed in,Table VI and are
illustrated in figures 4 and 5. Althéugh one .could not expect to obtain -
a true singuiarity at the edge of the cone by using only a finite number
of ferms, figure 4 clearly indicates that‘the spherical harmbnic functions
used in the field expansions do represent the edge singularity. Furthermore,

not ohly does the singularity lie well within the (kR)-l'limit imposed
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| TABLE VI |
ELECTRIC FIELD COMPONENTS NEAR THE EDGE OF A FINITE CONE

kR Ero : IErol }Eeo |Eeo| E¢o |E¢o|
0.00 | (2.42-10.07) 2,43 2.26-10.26 | 2.28 -2.68+10.2k4 2.69
lo.01 | (1.56-10.07) 1.56 | 1.48-10.19 | 1.49 -1.75+10.18 1.76
0.02 (1.03-10.05) 1.04 1.01-10.1k4 1.02 -1.20+i0.1% | 1.20
0.03 (0.72-10.0k4) 0.72 | 0.72-i0.11 | 0.73 -0.85+10.10 0.85
0.0k (0.51-10.03) 0.51 | 0.53-10.08 0.5k4 -0.62+10.08 0.62
0.05 | (0.38-10.02) | -0.38 0.40-10.07 0.41 -0, 4T+10.07 0.47
0.06 (0.28-10.02) 0.28 0.31-10.06 0.32 © =0.36+10.06 0.36
0.07 | (0.22-i10.01) -| o0.22 0.24-10.05 0.25 -0;28+1o.o5 0.28
0.08 | (0.17-10.01) 0.17 0.20-10. 0k 0.20 | -0.22+10.0k4 0.23
0.09 (0.14-10.01) 0.1k 0.16-10.03 0.16 -0.18+10.03 0.18
0.10 | (0.11-10.01) 0.11 0.13-10.03 0.1k -0.15+i0.03 0.15

kR = distance from edge at 6 = 6, = 165°

E =E  cos ¢ x 1072
r X0

Ee = Eeo cos o x 10 2

- -2
E¢ E¢O sin ¢ x 10

- 8¢ -
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by the finite energy condition, but it closely approximates the (kR)g(l/é)
singularity which‘woﬁld be predicted ffdm the considerations presented in
Appendix B for a 90° edge. It is interesting to note that.in a.check
coﬁputation using a desk calculator, six of the first seven terms in the
expansion of Re(Er),ad&ed,up in phase; and that each of the terms was of
the same order of magnitude, indicating that the series was diverging at
that point. |

Consideration of the results of appendix B reveals that similar

gingularities will also occur in the magnetic field components.

Radar Cross Section

Within recent years, a few experimental measurements of the radar
cross section of finite cones have been made, thus proﬁiding an
experimental check on our theoretical results. The radar cross section,

@ 1is defined to be

gs
& = Unr® limit :%5 5 , (91)
T~ © SII

vhere S =<% Re(E x i#), the average Poynting vector (ﬁ# represents the
complex conjugate of H). For the coordinate system with which we have
been concerned (figure 1), the radar cross section, when evaluated for

6 = 0, is more precisely termed the back~scattering radér cfoss sectiori°
Herein,'we have concerned bufselves with only fhis casey although the
fact will not be explicifely mentioned with each referénce to the cross.'

.section.

From equations (7&) and (75); it may be seen that
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. v
Pn(eos 9)

d_Pl
- N I —_—
sin 6 ae i

= (@) o (92)

(93)

a 1® _ip ‘ )\
Eﬁ[phn(p)] - - . (9k)

Noticing that the present.case, S = l/2q, and utilizing the

IT
above relations in equations (17) and (24), the radar cross section

may be expressed (after some algebra),

@““-)‘22111(4»1)(’ id)2 ' (95)
= 17 |3 n( nt e - 1d )} - 95

' UtiliZiﬁg the coefficients listed in table V, one obtains

&= 0.459 x 10719 A2,
Siegel® has postulated that the cross section of any body of revolution

in the Rayleigh region may be expressed as

Lo ey 2 :
o = = k4 (1+ ?37“) i (96)
where k = 2n/h, V = volume of -the body,; and for a finite cone,

-y = hfbr (h_g height of cone; r = radius of base). For a 30° cone

with kb = 0.1 (b = b/cos 15°), this result yields

T = 1.875 x 107*° A%,
which 1s greater than our results by a factor of 4.1,

The authors know of no measurements which have beéen made on finite
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cones of such small cross section, however, Brysk, Hiatt, Weston, and
Siegel®® have approached the Rayleigh region with a finite cone of 24°.
Their results are shown in figure 6. The Rayleigh line shownnis
approximately
S 212 (omm)* | , - (97)
nr? : -
where n = r/\, r = radius of the base. Using (96) to predict the
ratio betwéen a 24° and a 30° finite cone of the same base radius, one

obtains

4 o - ,
12 [+] l ° )'"7 150 - ( ?8)
From (97) and (98), one may predict the cross section of the 30° finite

cone to be

O = 1,959 x 107 %0 A%,
this value being approximately 4.2 times that obtained by (95)m

A comparison with the redar cross section of a sphere, givén by

L 21003 (x/M)% x 10% | (99(

o } | , 7

i(Refo 29, p. 452), was also made by finding the ratio 6f.thevcross

gection bf‘a sphere to that of a cone of the same volume fof the cases

of the 50°‘cone and the experiﬁental measurements 6f figuré 6. These

results also indicate that the cross section computed from.(95) using the

datawlistéd in table II is low by a factor of approximately four.
-Investigation.of (95) and (77) reveals that the cross section of the

case under consideration is predominantly determined bylthe coefficient cy,

which is in turn»predominately.determined by the equation

(1 - &21) e1 =(-a11 - 0.5) x 1072, : (100)
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where aiy = ~-0.50945154, This equation, as well as all terms of (79)
and (80) are very sensitive to the precise value of V.

Siegel'® has also noted: this sensitivity in the computation of the
cross section of a semi-infinite cone from the Hansen and Schiff solution.
Although two computations for the values of ¥ are not available,forvi

- comparison,. a comparison of the first four values of p are computed by

the University of Michigan and the University of California is as

follows:
U of .M : Uof C . Difference
1.03158 - 1.03163 00005
2,08631 2.08443 .00082
3.14588 3.14992 . .00kok
4,21990 k. 22309 .00319.

The authors of Ref. 16 fufthef note that the California results are
the more eceurateo |

Further investigation of (100) reveals that if ‘the first root,
vy = 0. 9673, were larger by an amount 0- 0003, the radar cross sectlon‘
would increase by a factor:of four. Coneequently, knowledge of the
roots of (5?) and (Bh) to at least six decimai blaees seems to be an
absolute necessity if one is to accurately compute the radaf cross
section for such small cone englesn Since the more accurate computations
for the first four values of p are in each case higher than the
approximate computation,:the result predicted usingb(95) shouild be some-
what low if accurate values of © are aleo higher than those used in the
computation. | |

In view of these facts, it is believed that the foregoing results
are as accurate as can be reasonably expected with the data that are

presently available.
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Summary and Conclusions

An exact solution'to the scattering of a plane electromagnetic
wave by a'finite cone has been obtained using a relatively straight-
forward procedure. It is believed that the techniques used'herein may
be further applied to aid in obtaining exact solutions for other
irregularly-shaped scatterers whose surfaces are not described by fixing
only one éoordingte,’ Althougﬁ the numerical computation of results
form the solution is not simple, it is also certainl& not prohibitive
with modern digital computers, and the ability to obtain numerical
results for the "resonance" region is only hindered by the lack of
functioﬁal data of well-known functions.

The singularities which may occur in electromagnetic fiéids have
also been inveétigated, and their theoretical existence using vector
solutions of the wave equation has been demonstrated.

It is intended thatbwork on other irreéularly-shaped objects will
continue, as well as the further compﬁtation of necessary functional
data for use in obtaining more precise'and extended résults from the

present solution.
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_ "APPENDIX A
- SELECTION: OF ORTHOGONAL JFUNGTIONS

'Eer.mathématical solutiénasf of the type which we are concerned,
|1t is alvays desirable -that the unknown expansion coefficients be
finally detérmined,;rather than appearing in-a get of an infinite
number of equations. In the 1attericase;.the value obtained for an
expansibn coefficient dependé 6ﬁ the:numbér:of~eguations‘used in the
soiution,ﬁwhereas.eoeffiéients which possess fiﬁality,may;be determinedr
explicitly and exadtly‘ffom.ahsingle=equati§n without the uéeAOf a.sef
of équations involving several unknewns.

For such a finality,-howeVer,~it becomes necesﬁary,ﬂo obtain
‘orfhogonal expansions for the fields on‘each side of a matching boundary.
For instanee,.in the case: illustrated by figure 5ﬁ,fhe~expansibns'in
both regions I and II mugt be orthogonai over the fahge 6 =0 - 90 .
when mﬁtching the fields across the imaginary spherical boundary;

r =7b. Also, the field expansions in regions II and III must be
orthogonal over the rahgevr =D - w»when matchingithe.fields aérosg,
the ‘imaginazy contesl boundary, 6=6,_. | | |

Although gughYaﬂ:orthesonalizatiogzmgy“still preseﬁt‘npmgreus
quéstions, it seems that the proper ??}13%1011 of the degree, T, "off the
associated Legendre functions will prodngg,fuﬁctigns orthogonal to both
r and 6 for the eonfiguration_shown in figure 3. |

‘To show this, gansidgr the:asﬁociated Legendﬁg equations of degree

T and T', respectively:

E_(Sin eﬂ) =| - t(++l)sin 6 + n? P L (A=1)
@t vag T T T T sme T : aes
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m .
ar v _ v -
S(etn 6 550 = [‘"“’H'-*”Bin o ﬁ‘ﬁ'a]%m (a-2)

Multiplying (Aﬁl);bva?,v(ces 0) and (A-2) by Pf(cas,e) and then

subtracting the second from the first, one obtains

de ar,
[* (t#1)=7(™+1)] sin 6 PmP - 5 [sln ) (P’;‘, = P’f =z )] (A~3)
which, after integrating frem 61 te 62, becomes |
* - o | " | dr‘f;, o
[ (T-séklj).-'f‘(,‘ﬁ'l) l/‘%sineP?P?,de = gin 6 I:Pm '—5'* - :E’n,t1 ’a’é‘_ :l ela (Aa-)-l-)

If we now add and subtract k'PTP., from the right side of this

equation,,where k' is 8 consiant, it may be expresﬁed thus:

sin e {de + k‘Pm} { T+ k'Pm} (a-5)

It is thus evident that if the 7's are disﬁinct roots of the equation,
ar’ |
E?" + k'Pm(GOIE 8) = Oy v (A=6)
at eachaof the 1imits, 61 and Oz, then the functions are orthogonal.
It may be further noted that the value of k' may be different at the
two limits (Ref. 22, p. 431).
Using an analog@uﬁ.procédure’for the egquation for the spherical
Hankel funcétions,

dh_ | o
% [pz(.EEI)J = [t(w1)-p%} b, o (A-T)

one obtains
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£

: . an_, dn_
1 1 - —— m— -
[t (1 +l)-T(T+l)]U/; hohd =0 [ L b, 35 ] 7 (A-8)

and finds that the Hankel functions will be orthogonal between two

arbitrary limits, p= e, £, if at each limit the equation,

dh 4 k"h_= 0, | (A-9)
do

is satisfied.
By referring to figure 3, iﬁ may be seen that.the appropriate
limits‘to use for the finite cone are 6 = O, 6?, and r = b, » (p=kr).
For é = 0 and r = » , however, the expressions 6nAthe ?ight-hénd sides of
equations (A-4) and (Ar8) are zero, aﬁd equations (A-6) and (A-9) need
to be considered only for 6 = 65, T ='Db, respectively.
Let us further choose k' = k", and then let k' and T be the

simultaneous solution of the equations

gpt

t|  + wPl(cos o) =0, - (a-10)
e P
dh, +k'h (kb) = 0: C(a-11)
L R

Then T must be a root of the equation,

apt]  _ Pi(cos 6) dn_ =0, (A-12)

3 |p=g, B, (KD) & |p=kb

and thus the function hT(kr)P?(cos 6) would be orthogonal between both

sets of limits, r = b, »; 6 = O, 6. This procedure thus provides
orthogbnal integrations‘when matching the fields across the imaginary

spherical and conical boundaries indicated in figure 3.
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For such an attack on the problgm,:oné could then choose for

the funetion ¢ in equation (2),

¢
3 kr)Pf;(cqsz‘_G)[iig o . in region I,

sin ¢

cos. ¢ in region II,

hx(kr)Pi(ceste)[

- (e Y PL( e | sin ¢
hr(k")P_—r‘( -cos G)L_Qs‘ o in region IIT.

The forgéoing methpd‘@f approach ta,the»so;uxipnvgf the prpblgmi
though perhaps providing the finality of thg éﬁeffig;gntg, rﬁises. -
other pﬁbblems.which cause,additi@nai diffieulty. In each region,
field expansions must be obtained for the incident weve in terms of
the»nonrintegggi degree Legendre fungtiongﬁlandisingg the maluelof
the dggrge has been dgte:mined;'it ean ne 1ong§r be chosen so as to
- satisfy the boundary génditiOn:gt the,surface of th§ 9on§, as was done-
in the present solution, Furthermore, the deﬁermingﬁionggf‘the rpot§V
of equation (__A-ﬁl2‘):_f,,_}if they do exist, presents g problem in itself.
In.additién,_thg QQFQPiOQ_iS;QOmPl¢; and‘Qnevmﬂy thgn_gxpect cgmpigx,
roots, which, in turn, lead to res_ultax_it difficulties in determiniﬁg
the Bésffs?l.; Hankel, and. associated Legendre fu.m,tiqmsg For these -
regg@ns,‘thg mgth@d used ig thisnpapgr'wasjthatgin.which theanpanSien
coetricients do not possess finality, but sppesr in an infinite |

set of equations.-
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APPENDIX B
FIELD SINGULARITIES
4. Sharp Edges
Consider_'the electromagnetic fields which may possibly exist
in the vicinity of a sharp edge. BSince, for the time harmenic ‘case,
Maxwell's equations become | | |
| eurl E = - iapH, = (B-1)
curl 'ﬁ = + icnéﬁ
a.nd since ‘the veetor functlons 1isted in equa.tion (3) are related in
‘this manners: v |
eurl m = ¥n, (B-2)
curl n= ktT;, }
where k = 2n/A, these vecter functions may be use‘c‘ivb,te rep;r'esent
the eléctromagnetic field quantities. Furthermore, if ve assune.
that they form a complete set of funez'bions, then we may represent
| any time-harmonic ele,c.ztmm:a‘.gne:ticv fie,il__.d vby‘ an .ayprppriatg sum. For
the illustration ShQWn in figure T, the-sé .functioﬁé become |

W, =%27 () ] Sin oo - L.z <gp) cos

gob p os ~p " dp T sin peae o (37?)

= = dh d cos 3 iho sin £2 cos -
* 2

no E SF o5 2 S 80) o eap B 2 H(E0). cos. 68, Z(£0)oqy V68,5

where h is the wave constant for the z-direction [i.e., _,ei("“‘t"’hjz‘i ¢

is the wave eonstant for the radial direction, Z (&p) is & cylindrical

Bessel function of any kind, and Ep , 59; and Ez are unit vectors.
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SHARP EDGE

Figure 7

SHARP TIP

Figure 8
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In eylindrical coordinates, the finite energy condition becomes

f (eOE2 + MOHE)dvg f (e032‘+ ung)pdpdez - finite, (B-5)

and thus the fields msy possess at most a singularity of order p“'l,
where p > 0. Thus, in using (B-3) or (B-4) to represent the fields,
one observes that v must always be positive, since the first term in

the series expansions of Zu(gp) and dZD(gp) vary as p(u—l)’
‘ "‘“"““““p mdp -

If we assume that the wedge is perfectly conducting, then E-p ="EZ
=Hy=0at 6=0, 6. If we first let E be represented by Eé (here we

must choose the even function due to the 6 variation), then H will be

represented by’E;, The boundary conditions are then satisfied byrl'
sin v6 = 0, VO = nm,
o] 0

where n is zero or an integer. Since we are particularly interested

in the case for v < 1, this only occurs for n = 1,

Ve = <1. : , - (B-6)

vBeferring to (B=3) and (B-4) we see theﬁ that Ep, E, Hp, and H, may
be singular of order p(“/eo)wl,

Again, if we let E be represented by‘zg and H by ng we arrive at
precisely the same conclusion. These results precisely agree with
those of MEixnerzs, who used a power series expansion fgr the field
components. "

Furthermore, the above results seem physically reasonable since a
series of point charges flowing along the edge constitute a finite current

in an infinitesimal volume, or an infinite current density, which is,
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of c@u::s‘e » integrable.
B. Sharp Tips |

Although the- cenclusiens. fm‘- a2 veenieal tip are not as. ’well
defined as those for the wedge 5 8 few 1nteresting results may be ,
observed, Let us apply the same reasoning to a conieal tip in
spherieal,comrdinatesg , He‘rev the ‘fiunl_te er;ergy eondition becemes

f (eoEz + ueﬁz‘)dvs f C-% E2 +;u0112.) = sin 6 dar a6 4 —>finite,
- g e a (B=T)

 thus pemitt_ing'Singluarit;lgs\ of order r(‘gfiﬁ/ 2) vhere p.> 0. For
véonveniénce s We repeat the m and n functions '

Ee Do b zZ, (kr)Pm(cos 9) sin m¢a

U cos . =
ey sin@ 0 mbe

sin 2% (B-8)

-z(kr)

ol : @ -
=2 (m-)Pm(fms e) CO% noE + % L) 5 > S ez, (B-9)

 Bmo kr

o 9 7 (kr)Pm(cos 9) on mcpaw

and note that the lea.ding term inz (kr)/ r and Z (kr) is of the
order T (See notation after equation 1’+)
If we let T be represented by 1, and T by T, then the boundary
.c,gndit-iéns E_ _-—:E;, =H,=0at 0=0_ are ga‘tjisfied(by
Fi(eos 6) = 0, - (3
where m is -aﬁgai'n‘ integral. Due to the finite energy condition, e

are interested in the values -0.5 < v.< 1. However, equation (B-10)

has no rogts. for IDI < m (Ref. 2k po 386) é and conseguently has ropts
in the ‘region' of our immediste interest ,enly for m = 0, Fo‘rf this casge,

a glance at (B-8) and (B-9) reveals that _singularitie*s. Oecur" in 511



' inde den‘b f:l.eld vzan:n:‘zl.a:l;ifanﬁ,s

regoing reﬁult a.lse seems physically reasanable 5 s:tnce

the pre ; @f a p@int charge a,t 'bhe tip of the cone W@Uld ‘produce

o singular electrﬁ.t: fields with no ¢ varia‘tiem _ One might reasonably

. exp £ 'l; if\s, matel a;l. Werg eh@ﬁen Whieh Was agsumed to c@ntam ‘

int d.ip@leg, - singular gleetrm f’ield With p:) [Q?S i ] % -ris;’c,in

"vmuld re Bt o
| ’ I’, ft te @ﬁéider; then, zl.s the case for wh&eh E :I.s represen’ced by
__ m, a.nd H by n,' Referenc:e to (B-‘) and - B—9) revea,ls that 'the bound.axy_
" T’fconditztens E = E - HG =0zt o= e are satisfied by

—ag | =0 (m1)

the leading radia.l term, any. m@ts of (Bwll) Where :

,»< '0 < :L will pmd.ucfe pemissible singlﬂ.amtiem F@r ~O 5 < < 13

_(—ﬁ'@g 9) i;s eithgr a m@n@t@nieally m@masing fune’blgn (f@r

m "r@B (ﬁxeegt 9 = O) in @m:’

' zems c»f the firs‘b d.eriva;tive pecur (a.ll values ©of v in this range lie
‘ -betwaﬂn the» zem axls a.nd tih:e Wit S »-0#5 eurve plotted in figure 11)@ One-

sls0 observe that zerps do geeur £or 0,8 < v < 1. ‘Reference again to



-‘57_

(B-9) reveals singularities in all components of the magnetic field.
Since, in this case; the electric field is represented_by'EL which
possesses & leading radisl term.of rb, we should perhaps consider roots.

‘of (B-11) as low as -1.5 for only the electric field. Since

Eﬁ(cos g) = PTD_

,(cos 6), however, the graphs of figure 11 for 0.5 < ©

< -0.5 may be also interpreted as those for -1:5 < © < 0.5,
fespectively, and4ﬁo additional zéfos occurs |

Here again, singular'magnetic field components Seem reaspnable;
since a finite surface current flows over an infinitesimal area at
the tip of the cene;ﬁproducing a singularity of current density. One
may further observe from figure 9 that this current would produce &
singular magnetié*field in the ypdirectiong,prd&ucing the resulting
singularities in all of the spherical components.

In swmiary, we have found that:

(a) at a perfectly conducting sharp edge; singularities of order

%g -1 may occur in all compenents of the electric and magnetic fields

0. ‘ f _ ’
except those tangential to the edge;
_ : ;

(b) at a perféctly conducting sharp tip; a singularityvmay occur
in the electric field for only ¢-independent fields;

(e) at a perfectly conducting sharp tip, a singularity may occur 5[

cosg ¢

in the magnetic‘field if it possassés a [sin ¢.] dependénceq A

singularity will not oceur in the magnetic field if it is ¢ independent.
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SURFACE CURRENTS AT A CONICAL TIP |

Figure 9
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APPENDIX C ‘
A.NOTE~ON THE COMPUTATION OF THE ASSOGIATED'LEGENDRE FUNCTION
‘In -order to compute the associated Legendre~funetions,teia‘deSired

degree . of accuracy, . the hypergeemetric,series,jequaﬁicn (75),Twas used:

F(a,s,y;z) 1.+ 3?2 7 +,a(3F%i§§gT1) 2.4 00,
For the associated Legendre function, we have
O = m=0
B mEoFl
y = mél
Z =vi:§2§—2,

n.

(c-1)

and since z is always positive and less than unity, the magnitude of the
ratio. of the succeeding terms will be less than unity if

o+N) (B+N) -
YN (L < 3 » ' (c-2)
For P%(CQS»G)y it may easily be shown that (C-2) is satisfied for

any N if v is pesitive, and if v is negative one must have

(1) (w2) > D(Dzl) ;u . - ' (C=-3)

Thus, if N satisfies (€=-3), an upper limit on the remainder of the series
after N terms may be obtained by assuming’ each term to have the coefficient

~_of the Nth term. Thus, if

F(%BS?’;?) =1+ (ﬁa Z o+ o +3E3:118?N+1§B+N) + R(N) o (ew)

where R(N) is the remaindgr, then
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Qo oo (Q4N)Bs o= (BFN) &

R(N) < 7,,,(7+N)(1\T+1)‘ nzl\H-l
- 06°°°(06+N) ° 2 o ( BHN) ® :
T Yeea(7AN) (W1)! 2" n§o z" . (C-S)
Qs o o (QFN) Be » » ( BHN) iN-[-E—]
o (74N) (1) ! l-z | °

Thus, by multiplying the last computed term of the series by T%E’
one may be certain of the accuracy obtained.
Using this procedure, tables were computed, accurate to six decimal

places, for the following associated lLegendre functions:

| 6 = (5°[5°]165°)
Fy(cos ) [u ~(=0,5[0.1]3.0)

“aP(cos 6) [0 - (5°[5°1165°)
— Lo ~(-0.5[0.1]2:0)

Utilizing the relation Pmb_l = Pg, the range of v may be further

extended.

All computations 1nc1uded in this report were performed on the
Burroughs Datatron 205, Total time required was approximately élxteen
hours, including computation of the tables cited above,

It is anticipated that more computations will be made on the
determination of the roots of equations (32) and (34), as well as for N
the corresponding sphéirical Bessel functigns,vthus enabling théoretical
determination of the ra&ar'cross sections of finite cones in the resonance

region.
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