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ABSTRACT

This paper treats the solution of the -vector Helmholtz equation 

for the case of a plane electromagnetic wave at ’nose-on' incidence, on 

a perfectly-conducting cone of finite size* The solution presented is 

exact and in the form of an infinite series of spherical harmonics* The 

expansion coefficients of the series are determined by a set of an infinite 

number of equations involving an infinite number of unknowns. A discussion 

and numerical investigation of the field singularities at the tip and edge 

of the cone are included* as well as graphs of the associated Legendre 

functions of non-integral degree* P*(cos 0)> and their first derivatives*



GLOSSARY OF SYMBOLS

V*)

Vx)

^(x)

Vx)

Z^x)

zo(x) 

F^(cos 0)

r(x)

6nm
6(0)
€(0)

€O

Any spherical Bessel function of order *0 and argument

Spherical Bessel function of the first kind of order
0 and argument x

Spherical Hankel function of the second kind of order 
X) and argument x, ^(x) - in (x) *

Spherical Neumann function (Bessel function of the 
second kind) of order o and argument x

Cylindrical Bessel function of any kind

1 h
Associated Legendre function of order m and degree U*

Gamma function of argument x. If x » n, an integer, 
r(n) = (n-l)I

Expansion coefficient in the vector expansion of
^ i(o>t+kz)

the negative travelling plane wave, a^i 9i

7n
in 2n+l

Kronecker delta ®

Error functions

1, m=n 
0, m^n

Expansion coefficient, in the vector expansion of
_ i(cDt+kz)

the negative travelling plane wave, a © ?X
'■#

" n ®c4r • n

Permittivity of free space, x lO"9 farad/meier



Intrinsic impedance ©f free space,, */^0/€Q

Angular variable in spherical coordinates measured 
from the positive z axis

Wavelength

Won-integral degree of the associated Legendre 
function and a root of the equation P^eos 9 ) * 0.[A O

Won-integral degree of the associated Legendre 
function and a root of theequation ,pi ?|

■-■■■■ ' p J - = 0 ■
de f me '

O

Permeability of free space, 4n x 10”7 henry/meter

ladial coordinate in cylindrical coordinates, or hr, 
where r is the radial spherical coordinate

Infinite conductivity

Total hack-scattering radar cross section 

Any general- degree of the associated Legendre function,
P^(Cos Q)

Angular variable in spherical coordinates measured 
from the x axis.

Angular frequency

A solution of the scalar wave equation 

Positive integeror zero 

A vector 

Electric field 

Magnetic field

1 _ _*Hie average Poynting vector, ^ Ke(E x H )

Unit vector in the i^1 direction 

Propagation constant, 2n/%
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THE SCATTERING OF A PLANE EIECTROMAGWETIC WAVE 

BY A FINITE COHE 

Introduction

The scattering and/or diffraction of electromagnetic waves by 

various objects has long been of considerable interest to scientists 

and engineers from both a practical and a theoretical Viewpoint* Since * 

however* the exact determination of the scattering of electromagnetic 

waves by bodies other than those having very simple shapes involves 

considerable difficulty* a number of approximate theories have been develop­

ed which may generally be classed according to the range of wavelength to 

dimension-of-object ratio. Among these are the Rayleigh1 theory* Fock2 

theory* Franz3 (creeping wave) theory, and the theories of physical and 

geometrical optics. An excellent summary and application of these methods 

appears in a paper by K. M. Siegel4.

Approximate theories cannot be applied* however* when the dimensions 

of the scattering object are in the neighborhood of a wavelength. For this 

so-called "resonance" region, only exact theory (i.e.*a solution ofMaxwell's 

equations) applies.

Due to the difficulty of obtaining exact solutions, the problems which 

have been solved using exact theory are notably few. Of bodies which are 

infinite in extent, solutions have been obtained for the cylinder by both 

Seitz5 and Ignatowsky6, the semi-infinite plane by Sommerfeld7* the wedge 

by Oberhettinger8, the cone by Hansen and Schiff9* and the parabaloid by 

Horton and Karal10. Finite bodies for which solutions exist are the sphere 

(by Mie11)* the prolate spheroid (by Schultz1-)* and the disk (by Moglich13* 

Spence14* and Meixner15). The works of Siegel16 are also particularly

- 1 -



notable for the reduction of some of the above solutions to. useful 

numerical results. ;; ' . v

One of the outstanding features of nearly all of these problems

is the fact that the surface of the scattering object may be described 

by fixing one coordinate of a coordinate System in Which the wave 

equation is separable. Here, indeed, lies one of the prime difficulties 

in obtaining exact solutionsj the fact that one is persistently restrict­

ed to the use of a separable scalar wave equation, and consequently to 

the eleven coordinate systems in Which this equation is separable. Further­

more, only a fraction of these systems involve well-Shown functions for 

Which information is readily available.

It was with the foregoing thoughts in mind that a project was under­

taken to attempt to develop; a method for the exact determination of the 

fields scattered from irregularly shaped objects*

As with all electromagnetic boundary-value problems, an exact solution 

to Maxwell's equations consists of finding a solution Subject to (1) the 

boundary conditions at the surface of the object, (2) the radiation condition 

at infinity, and (3) the finite energy condition. For general irregular 

scattering objects, the first two conditions introduce an additional 

difficulty since the radiation condition is always of a spherical nature 

(for finite-sized objects), and the surface of the seatterer will not 

in general be such. The third condition is,usually implied when 

singular functions are discarded from use in the field expansions about 

smooth objects, and becomes of much greater concern when dealing with bodies 

with sharp edges and tips.
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Preliminary Discussion of the Problem 

As a first step in the treatment of irregularly shaped objects, the 

problem undertaken herein is concerned with the exact solution for the 

scattering of a plane electromagnetic wave by a finite-sized perfectly 

conducting cone. Papers by Siegel4'17 and Keller19 have previously 

treated the finite cone using the approximate theories of Rayleigh and 

physical optics, and geometrical optics/ respectively. We consider 

here only "nose-on” incidence (see fig. 1), and, in order to retain a 

spherical system throughout, the end-cap of the cone will be assumed 

to be a spherical sector.

We seek a solution of the vector Helmholtz equation,

V*C + k2? * 0, (1)

where k » 2x/\ and C may be either the electric or the magnetic field 

vector, E or H. It is commonly known that if f is a solution of the 

scalar wave equation,

V 2f + k2® = 0, (2)

then the functions, 1, m, and n, defined by

I = grad $,

m = curl fa , (3)r

n?7 curl m, k ’

are solutions of (l) and form the basis for the most general solution 

of (l) (Ref. 25, p. IT66). Here, a^ is the unit radial vector in spherical 

coordinates. Since, for the case under consideration, div E = div H = 0, 

and since div T ^ 0, only m and n need to be used in the expansions



-4-

PHYSICAL CONFIGURATION

/
y

Figure I



of the field quantities.

In spherical coordinates, equation (2) "becomes

1 8 d4>
7 ~ ^ + 7-—^ '81” "He r2 giri®0

=---- +L (Bin £} + ~~ ~ ^ + -0, (<*)

which, when letting O>(r,0,<t>) * fi(r)f2( 0)f3(<l>), separates into

1 d2( rfi)
r " , 2 !dr

k2 - pCo + 1) fi " 0, (5)

— ( sin 0 ) +sin 0 d0 K x 6.6 ... ‘ 0(0 > 1
f _ m2

sin20
fs * 0,

d2fc
d.02

+ m2f3 = 0, (7)

fi(

f2(0) « p“(cos 9),

where 0(0 + 1) and m2 are separation constants. The solutions of these 

equations are, respectively,

•) = z^(kr) = Jjc/(2kr) Z^+;L^2(kr), (8)

, (9)

(10)fat*) cos n# 
_sin m^,

where z^(kr) is a spherical Bessel or Hankel function pf order O,

\ + 1/2^^ corresponding cylindrical function, and (cos 0) is

the associated Legendre function of degree o and order m. For physical 

fields in the complete <t> domain, m must be zero or an integer. Consequently,

4>n (r, 0, •t*) = fxfsf3 *
gum

z^(kr) P“(cos 0) cos m* 
sin ij#

where we let "e" (even) or "o" (odd) indicate cos m<l> or sin m^, 

respectively, and n may take on the values 1, 2, 3> or 4, where these 

numbers represent Bessel functions of the first and second kind, and
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Hankel functions of* the first and second kind,

- %

z^(kr) - hj(kr),

zj(kr) '« n^(kr),

z.J(kr) « l^(kr)

From (ll) and (3)., we obtain 

(n)
mginb

= + m n
sin 9 x>

- z^(kr)

PI

Vi

kr e x>

+ z11 (kr)
•0 .

Piooe e)sin m! ifl-V cos m<i> 9
dp® ,

X) cos itw —

nxCos m't’ — cos 9) . x a ' sin m<t> r

dpm .
X> cos m<P —

d'd' sin. m^ a0

$ that is

(12)

(13)

(14)

_ m . n1 
» sin 9 zo (kr)P^(cos 9) sin m^ 

Cos

where zn'(kr) = r-•!- [rzn(kr)] , and a , a., and a, are unit vectors, 
e kr dr e r 9' : <p

For the particular representation of our field quantities, it will 

later become evident that it is convenient to split the space surround­

ing the cone into various regions ^ however > there exist two logical 

choices for such a division: one corresponding to the physical regions 

and the other to a coordinate surface (see fig. 2). The division of 

the surrounding space corresponding to the physical regions has been used 

by Sommerfeld19 in the treatment of the semi-infinite plane and by others 

in the treatment of semi-infinite bodies. Since we will be using spherical 

harmonic expansions, however, there are numerous reasons..for choosing 

the division utilizing the coordinate surface.

Since the radiation condition must be satisfied for the scattered



fields, the use of Hankel functions is immediately suggested since they 

possess the desired behavior as r -» °°. The Hankel functions possess a 

logarithmic singularity at r = 0, however, which is too large for satisfac 

tion of the finite energy condition at the tip of the cone. Thus near the 

tip, the use of Bessel functions is essential. As a result, the behavior 

of the radial functions suggest a division at some finite value of r.

If one further considers the behavior of the associated Legendre 

functions, the problem suggests using functions of integral degree 

(i.e. polynomials) for all r > b, since in this region the fields exist 

and are finite throughout the complete 0 domain, and any Legendre function 

of non-integral degree becomes infinite at either 0=0 or it. For r < b,

0 = it is not in the domain of interest, and consequently non-*integral 

degree Legendre functions may be used. In addition, as may be seen later, 

the proper selection of the degree may be used for the satisfaction of the 

boundary conditions at the surface of the cone.

Thus the 0 functions also suggest a division of the exterior region 

at a finite value of r, namely r = b. We thus choose this coordinate 

division of the exterior space for the solution of our problem. The 

selection of the functions in the interior region, r < b, is very similar 

to that used by Hansen and Schiff9 in their treatment of the semi-infinite 

cone. Also, the division of the exterior space by the coordinate surface 

r = b is analogous to the choice of Sehelkunoff20 in treating the bi- 

conical antenna.

One may then raise the question as to whether or not a division of 

the exterior region into three sub-regions as shown in figure 3 would be 

more advantageous. In such a case, the associated Legendre functions of

- 7 -
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/ REGION I
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Figure 3
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non-integral degree and a positive argument (i*e* P^(cos 0)) could be used
/ : . :.,f

in region II, and similar functions with a negative argument, P^(-cos 0),

could he used in region III, thus maintaining finite functions throughout

all space. The primary advantage in such a choice ultimately leads to the

use of functions orthogonal in hoth r and 0, and the resulting finality

of the expansion coefficients: certainly, this would he a most desirable

feature* Although such a choice may he possible (see Appendix A), the

resulting equation for the determination of x> in (ll) becomes so involved

that it is believed to be less adaptable to numerical computation than

the non-finality of the coefficients that Is ultimately obtained in the

present solution.

We proceed, therefore, with a regional sectionalizing as indicated 

in figure 2b.

Field Expansions

We begin by considering the expansions for the electric fields. A 
time variation of e+iart' is assumed throughout.

In region II, the incident electric field may be expressed (ref. 3,

P*

i
EII

— lkz — lkr cos 0 a e * a e x x
JD

E < Wn +
n

> .a)* n - n eln (15)

where

n
_.n 2n + 1 
1 n(n"+”I)>

.n+1 2n +. l 
1 n(n + 1)"

and a is a unit vector in the x direction, x
In this case, the summation is over all of the integers, n, from one 

to infinity. Consideration of the <i> variation of the incident field 

led to the choice of the even m and odd n functions for the expansion,
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arid the ♦ variation also limits us to m - 1. As a result,. we will use 

even m and odd n functions with m =1 for all expansions Of the electric 

fields.

In region I we are not necessarily interested in the separate 

incident and scattered fields, and will thus assume an expansion of the 

total field only. Consideration of the previous arguments about the 

radial functions and Legendre functions leads us to choose an expansion 

of the form
_U) _(i)

EI ■■ S Vbl/ 5 Vein ’■ (16)
where a and b are expansion, coefficients to be determined by the o |-i

boundary conditions of the problem, andjJ. ando are the non-integral degrees

of the associated Legendre functions which are also yet to be determined.

For the scattered field in the exterior region, the prior arguments

lead to the choice
_S (4) _(4)
EII = g (°„moln '+ VW* (17)

where c and d are constants to be determined. Here we have selected n n
z4(kr) = h2(kr), the Hankel function of the second kind, since it possessesII I!

an asymptotic form

h2(kr) _ 1 e-lkr' (16)
XI JOr

kr oo

and will thus represent an outward traveling wave at infinity and satisfy 

the radiation condition. Hereafter, since we will use only the Hankel 

function, of. the second kind,the superscript will be oipitted and assumed 

to be -understood.
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The Problem Solution

The equations (16) and (IT) thus contain six unknown sets of constants

which must he determined: namely, a, 0, a-, h,,, c , and d .' o \x n' n

Through the judicious choice of functions, we have already insured 

the Satisfaction of the finite energy condition at the tip of the cone 

and the radiation condition at infinity. There remain, then, the follow­

ing boundary conditions:
_t

(1) DU o - Oats* e , r < b;IJr,< 
i s

(2) [Ejj + = 0 at r * b, &Q < 9 < jcj

(5) [Ejj + Ijj 3 e> $ * C?i'} 0,4.

>at r.» b, 0 < 9 < 9 \

[HII + HII^0,<1> “ ^®x^e,<t>

(V) The finite energy condition at the edge of the cone,

(19a)

(1913)

(19c)

(191)

b, 9 —>6

where b is the radius of the spherical end cap and SQ is half of the 

exterior apex angle.

The third condition insures the continuity of the field components 

across the imaginary spherical boundary*

For further reference, we state the Maxwell equations, 

curl E = -icon H, curl S - icoe^j (20)

and the relations,

curl m = kn, curl n » km. (21)

From equations (15) thru (IT), (20) and (21), and noting also that

k « CD v/hoV one easily obtains the expressions for the magnetic fields:



^ 1*11 * r\ |j?7hnoln * ' neln^

H.I “H
(1) JDi

| %nolo + 5 VW

_s , r J4) J4) I
l-r-r ^ ^ Z(e m „ + d m » )II tj yn n ©In n eln_ ■(84)

where is the intrinsic impedance of free spacer vaQ/ eQ

Again for future reference^ the field quantities are expanded

their entirety below.

t 
E"

in

cos <p arJti(fa-)pJ(ooB ®);

p|(e@a &)
.§ -sirr-+1 VStte) wm cos <t> a0 (25)

dP^ Ej(dos 0)
■5 r"^Wte)W- sm $ a

£__ - E"II n ^(kr)Ej(eos-0) cos <!> a:r

/rK‘
■P^(e©s0) ■ .

cod: 4 a0

7 d (hr) -/J
p-(cos e) i n

Ett " Z II n

.sin/d^'a-,.

4n y*r)l*(«*;.9} cos 4> a

c h n n
P^(cos 0) dP®
:■ *r*.f**frt^* d h* (hr) ~- sin 0 n nN d0

cos ct> '..a.
0

c h n n

dP1 Pl(eos 0)
nr* WWhxt:* sin 4 a.



g V'"g-- j^taOP^cos 0) sin <t> ar

dP*
* g Vp(kE)ir.- $ W(kr)

pHcos 0)
—  j.— sin <t> ansin 0 0

P*(eos 0)
+ S v;(tr) °sia-g cos* a'

i . M1TT - - S 4 fr n^n1‘h'1^ j (kr)P1(eos 0)
II T\ n n kr °n n '

dP1 P^(eos 0)i
7 J'(kr) ^ (kr) -£
n n d0 " n“n’ 

P1(cos 0)
ny i . ^ . n n sin 9

sin 0 _
dp1-

^n^*3^ d0~

sin ^ a

sin ♦ a.

cos * a. f .
■ j

(29)

Htt * - Z < II T| n
c n(n ,t „.-*-)I h (kr)P1(cos 0) 
n kr nv n sin $ a

f dP1 P^
c h' (kr) -rzr - d. h (kr) ™ [_ a ns d0 n nv si

P1(cos 0)-
sin 0

sin * a0 (30)

r P1(cos 0) dP1-
c bf(kr) . /w1'1 ■1 **■ d. la (kr) -ttt J_ n nv ■ sin 0 nn d0

cos 4* a.f .

We now begin by applying the boundary conditions at the surface of 

the none#:; -.
■ v'-". • ' _t

To satisfy (19a), we equate the r-component of to zero, at 0 - ,0 ?

Z -b ^*4* A) j (kr)pJ-(e0s 0 ) * 0, 
|i |i kr °|i U oV ’ (3D

and thus set

pHcos 0 ) - 0.
p».. o (32)



Ik

This equation thus determines the values of |x. Equating the <t>-component of

Ej to zero gives

dP1

5 aA(kr) ar Pi(cos 0O}+ T b j’(kr) -=--J?..:
0=0 P nV Sin e0 = 0.

Since P1(cos 0 ) = 0, we set 
M* o

dPA__O
de

= o. (3*0
0=0

and thus determine values of o*

From (19b), (26), and (27), we have for r ,= b, 0Q < 0 < it,

P1(cos 0)
E-X[:7 ,3 (Kb) + c h (kb)] ~
n 1 n n n n sin Q

+ [y j'(kb) + d h' nvn n n
dF* _n
d0 •* = 0, (35)

for the 0 -component, and, for the component,

dP1
MtrJjKb) + c h (kb)] ,, n 1 n 41 n n da

n

Px(cos 0)
n+ [y j'(kb) + d h'(kb) ] ... -fl.n n ■ n n sin 0 = 0.

These two equations contain the unknowns cn and dQ and apply over a portion 

of the 0 domain. In order to obtain equations involving only one set of 
coefficients, we first multiply (35) ly sin 0 and then differentiate with

respect to 0> there results
f dP1 .

E ll/ j (kb) + c h (kb)] 
n I n n n n d0

+ fe,A(]£b) + agtrtn e » o.n n
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The subtraction of (37) from (37) yields

Z E/ J'(Kb) + d h?(kb)] n n n n n
{ dP1nv,

?^(cos 0) 1 
sin 0 . J 0.

Furthermore, since the Legendre equation may be expressed as

d_ / . ffb,, mB
6.9 ^Sin 6 d0 ^ " sin 6 ""oFm(cos 0) - =■ b(,o+ 1) sin 9 Fm(cos 0):

(38)

(59)

and noting that in this particular case, V - n, m ~ 1, (3®) rriay be written

Z n(n + l) t/ j'(kb) + d h!(kb)] sin 0 P1(cos 0) - 0. n n°n n n n' (40)

Since sin 0 does not depend on the summation index n, it may be 

removed from the summation and canceled from the equation. Let us signify 

the first EF terms of the resulting series as S^(0), l.e.,

N
S.T(0) - IL n(n + 1) j (kb) :+ d h (kb)] P1(cos:.0)/, (4l)W n»l irnN . n n . n' \ .

S (0) - 0; 0 < 0 < it.

In a similar manner, we may multiply (36) by sin 0, then differentiate 

with respect to 9, and subtract the resulting equation ifom (35)L There 

results ■ : : .

■ N .;V- ""i:
Tn(0) n(n + 1) [7nJn(kb) + dh^kb)] Pjteos 0), . (42)

TJ0) -.0; eo < e < re.

We have thus obtained,two equations involving the unknown coefficients 

c and & for a portion of the range of 0.
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Nextj, we will' apply (19c.)«, From (25) through (2T)> we have for
the 0-component} where r - 0 <0 < 0-?

cos 0)
§ sin a + f Vi

* 5■{[’■ JjB>) 1 s.hjkb)] + t^j;(kb) + dnn;(kb)] _5|
n l n~n n n n^n n n

dPil

d?

(45)

and for the ♦-eompoaeat,
<3P| ; #(cos 0)

§ wti siw a ■■

dp1
(44)

sr £i [y 3 (kb) 4* c; h a I n n a a
Px(cos 0)

■—,+ £/ j '(kb) + d h' (kb) ] - n„- ■
d0 n°nv ■ a a% ' sin 0

In a manner exactly analogous t© that used in obtaining, equation (4o) ^ 

we may first multiply (44) by sin Qr differentiate with respect to'- 0* 

and subtract the resulting equation from(43)* There then results

S a^(kb) n(p 4 1) Pj(cos 0)

z [r yn L n°n + e h (kb)] n(n + 1) P1(eos 0)n nN J n ■ ■ (45)
0 < 0 <0 . — o* T„(e)}

Performing the same operations on (43) and subtracting the results from 

(44) yields

| b^j^kb) ».(» + 1) ^<0 Pj(cos 0)

)] n(n + l) gUtfPd P^(cos ©) (46)
AA AA AA .11

sj0b o < e < 0 „

Considering (4o) and.(46)5 let us define a function f(0) as follows

£ P j' (kb) + d h' n L nun n n

f(e)
z b j* (kb| n(^i + 1) P1(cos 0) f 0 < 0 < 6 ,p p, p |i — Q (47)

Oj. 9 < 0 < ic4
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We may now think of f(0) as a defined function which we would like to represent 

as accurately as possible by a finite series, 8^(0), and then minimize a

weighted meah. square error to find the coefficients d^ in terms of the b^ 

coefficients (Ref. 21, p. Iff).

Let e(e) ~ f (0) - S (0) represent the error, and then form the mean 

square error weighted by an amount sin 0, thus:

M - e2( 0) sin 0 d0. (^8)

Since this weighting factor is always positive in the range of integration,

0 - it, it does not destroy the primary significance of M, but.only causes 

the error in the center of the range to be weighted more heavily than that 

at the end points (Ref. 21, p. 26).

In order to minimize the mean square error with respect to a 

particular coefficient d^, we form

- r 2[f( 0)-S.,( 0) ] h> (kb)m(m + l)Pj;(cos 0)sin 0 d0 = 0. (^9)
oa jt jo 1M m mm

If we now insert the expression for S^(0) into the equation and move the

portion containing that series to the right-hand side, the orthogonality of 

the associated Legendre functions produces

f(0)P1(cos 0)sin0 d0 o m
(50)

■ [w^/kb) + djh^kb)] + ^ f i?in 9 [Pm^cos 9dS *

after canceling - m(m + l)h'(kb). Inserting the expression for f(0) and
it m

evaluating the integral on the right side, one obtains
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L Id ,J»(Kb)p(p* l) / sin 0 Px(eos 0) P1(cos 0) d0 
M* M* f-L vj o M", ^

- er'j.oa.) +■ ah (H>) 1 2[afe*iy=_ v
mm mm 2 m + 1

n9o

(5D

One may evaluate the integral on the left (Ref. 22.f p. 4jl) *

P0o
/ P1(eos 0) P1(cos 0) sin 0 d0 
J „ M- m

sin 0
m(nl+l) » p(p+l)

dP1 cLP-
P1(cos 0) ■---P1(cos 0)
m d0 p ' d@

m
J o

(52)

. 0sin o «!/ a \
m(m+l) - p(m.+1) , m COS o

dP-1I-
d0 0=0 . o

After replacing the integral in (51) "by- (52) andthen solving for the

coefficient d . one obtains mJ

2m+l
'm 'm(m+l) h" (Kb) 

m
7T sin 0 P1! cos 0 )2 o m ■ o' (55)

x y b J^(kb) 4n»i> I' ;
P p j^( Kb) m(m+l) m(mtl) - p( p* 1) - d0 0=0 + im#l.

In a similar manner^ we may define a function g( 0) over the range

0 - Jt by considering equations (h-2) and (b^):

£ a JiA(Kb)n(u+ DpJCcos 0), 0 < 9 < 9r

g(e)
ID vrt)

m
•os 0 < 0 < % . Q_ —

¥e thus wish to represent g( 0) by the series T^( 9)} and will* in an.

. analogous manner to that used before form an error, 6(0) - g( 0) - T^( 0)

and then minimize the mean square error,
it

M
. %

8 2( 0) sin 0 d.0, (55)
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with respect to a particular coefficient, c : there results■ • in

■pit .
■3- " 7 /o 2[g(0) - Tw(0)]hrri(k'b)m(iti+l)P^(cos 0) sine d.0
m m. m Go (56)

Evaluating the integrals yields

sin 0
dPx 
_m

o d0

P^(cos 0_) rt • /,vd v 7,vn 2[m(m+l)]2

and upon solving for c^, one obtains

(57)

2m+l ,L(kb)
C": " m(m+l) h (kb) 

mfit
. dPx1 . ^ m
2 £?ln ®o d0~

0 0

^(cos 0O)
-mi

.m

(58)

Let us .now apply the samb technique to the tangential magnetic fields 

over the imaginary spherical boundary. By minimizing the errors with respect 

to a^ and b^, one may obtain expressions for these coefficients in terms 

of the coefficients c ., and d , which upon substitution into equations (53) 

and (58), will yield an Infinite set of equations for the coefficients c 

and .d . The reverse substitution will also(produce a similar set of equations 

for the coefficients a^ and V. ; To this endV wehave;from (I9d) and (22) 

thru (24) for the 0-component in the region 0 < 0 < 0 ,

X)
x>

d0 - fr-V4
pJ(cos -e) 

sin 0

dPJ
T,#7 j'(kb) + c h’ (kb) 3 n I n n n n d 9

n W j (kb) + d h n-n : n n
P1(cos 0) n
sin 0

}
(59)

and for the ^-component
Pj(cos 0) dlj

5 V»( w>) sin e - 5

* si[ 7-y.
n| nfn

P1(cos 0)
(kb) + c h'(kb)l 3:■■.■"■->’3 j (kb) + d h' ■ v> sm t7 ^ ^ ^ -n n n n n n

K\
d0~ j '

(60)
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Multiplying (59) by sin 0, differentiating with respect to 9, subtracting 

the resulting equation from (66) and utilizing the Legendre equation (39) 

produces

Z a t3*(kh)u(u+l)P1(cos ■ 0) .
u U ° U £61)

= £ [7njg(Kh) + c^hg(kh)] n(n + l)P^(cos 0).

In a like manner, after performing the same operations on equation (6o) 

and subtracting the result from (59)* one obtains

g b(_lj(a(kb)h(ki+l)Pj;(cos 0)

SB*. i (kh) + d h (kb)] n(n + l)p1(cos 0), n rrrr n n n

(62)

We now set
f(0) *Z t/j (kb) + dh (kh)] n(n + I)P1(cos 0), 

sn(0) - g bjaj|_i(kb)a(a+ i)P^(cos 0), 

e(0) ~ f_( 0) - 8^(0)}

g(0) s S ^n^1^) + ^n^^ Q(n + l)P^(eos 0),
xm

Tv(0) - Z l)pJ(cos 0),

S( 0) - _g( 0) - Iv.( 0).

(63a)

(65b)

(63c)

(64a)

(64b)

(64c)

Forming the mean square errors oyer the range 0 - 0q,

00 oZ f
0M ■■0 e2( 0) sin 0 d0, M* ~jpj ° 5a( 0) sin 0 d0, (65)

and minimizing these with respect to b^ and a^, respectively, where P 

is a particular a and cc is a particular u, leads to the equations
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dP)
Z [Cf j (Kb) + dh. (kb)] . n( n,+• 1) sinjp; n xi n xi u cic/

0

0=0

pHeos 0 ) n . o
n(n+l)-0(0+l)

(66)
= -bpjp( kb)0(0+1) / sin 0[P^(cos 0)'Fd0,

and
dP2

n ^n^n^^ + Cn'^n^J^3^ n(n + 1) sin 0o d0n
v COS 0 ) ■ 

OC O" >
6N0 ■•nvn*

n G
= aaj^(kb)Q:(Q:+1) Jo ° sin 0 [p*(cos 0)]2 d0 

Solving> we obtain

bft " • VV-kS-d 1 ' s j (kb) + d h0 jp(kb)Bp n n n n n

& -r-^r7£vs ■■‘ •S'ty ^‘(kb) + c h' Q! jcx(kb)BQ, n n n n n

n(n*i) sin 0 P^(cos 0 )
■ ■■: . 0

0(0+1) : d0p a=0n^] 
0,

q+1) - 0(0+1)

n(n+l)
;4P*J

n i ;;0 a Va(c0S @o]

a(Q!+l) d0 e-ea.(tx+1) - n(n+l)

t

(68)

where
0B^ ,-*/ 7 HpHcos 0 )]2 sin 0 d0»Cv /. Q ^ O

After the appropriate substitutions, we filially obtain

g| *.,( n
’'Ov,aJ,ocu a £n aya (70)

■where

tn" _ 'O('CH'l) ,,,/ .V. V w y. ,
a5TO n( n+1) a(0!+l) h ( kb) ni ; [0(0+1)-n(n+l) JLa(a:+l)-n(n+l) ]

sin2 0 pH cos 0 ) pH cos 0 ) o p o TO : ,: ^ o
n

sin 0 pH cos 0 ) dPjf . n _ .n 2n+l , p Qp o nr
a/a “ 1 a(a+l) a(a+l)-.n(n+l) >' d0 (3® 6

j0(»)
h: n

h1'ii ■n

“ -dP1n
d0 GWc*

J :9-

,1- X)*

XXX
®Pv £ a

a
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Z Z b (, ina - ,K S ft)= E 'tnQ?n |4 |i'b nP b |j. |4fr n b |4fr (Tl)

where
in . («4> I»(n+1) Jll(kb) h (Kb) sl°2 e0 Pi<cos 6q) i*

b^nP “ n( n+1) g( P+l) h^(kb) n Ln(n+1) - M-(M-+1) J Ln(rrfl) - £( P+l) J
-dP1 dP^ 
de de

9-e
sin 0 P’-Ccos 0 ) dPi . n . n+1 2n+l On o  p

bVP “ X [n(n+i)-f3(|3+l)] d0 0=0 LFW hi(kb) ’
^ n

J£ - j (kb) B :b |4 °|4V ' |4#

E c ( I™11 - KB ) s-ZZ( C'x 8 ) #
B n c ® c n mn t5 n a 45 n nm 7

,nm
b n ne^ c 

where

(T2)

. , ,.v j.dkb) sin2 0 [P^(cos . 0 ) ] 2 rdP3- dP1;.nm 1__ n(n+1) • bv ' % o tr o' m ni
e »

IX”J-) \ V ■ f ( 1WU ^ _ _ _ _ _ W_ _ _ _ _ U_ _ _ _ _ _ _ _ _ _ KJ _ _ _ _ ^ Hi _ _ _ ,m(nrH) hm(kb) Vkb [b(v>+l)-n(n+l) ] [bCD+l) -m(m+l) ]Ld0 d0
QssQ

n JL1 j ' (kb),, nm . n 2n+l °n
o’|,n * 1 S( . .

32
-4.x * j. xx fe nm
i(n+1) h' (kb) e o *

n Jj1*) y _ ,-n .h
c n ~ h (kb) *

Ke n

*1
n(n+l) 
2n+l :

5 I dn(dC - dKnW - 5 g <dC " &>>

where

fcnm 1___ n(n+l) u xx ______w m_______
d-[4 21’ (kb)B m(m+l) h! (kb) zl [ n( n+1) -(4(d+l) ] [m(m+l) -|4(p+l) ]!-*» l-i m

.nm .n+1 2n+l ^n^kb^ enm 
"X ..............»•

x 3in+X^kb)
cbm _ h' (kb) ’

n

sin2 0 P1(coS 0 )P1(cos 0 ) o nv o' nr o'

(73)

rdP1
d0 0=0-r\

dm-J. “n gnmn(n+l) h (kb) d5|4 *

JC - d n
n(n+l)



(
** 2J ^

lash, ©f the expressions (fO) through (73) constitutes an infinite 

set of -equations in an infinite number of unknowns for the particular 

coefficients involved., and the four expressions constitute the formal 

.solution to the problem,

A few points about the solution are worthy of note, One may

observe that in minimizing the mean square error in equation (I9K the

differentiation could have been carried out with respect to b insteadM*
of dm« This procedurehowever9 would result in a non-orthogonal integral 

over -the range 0 - 0 j furthermore <, it would have necessitated the integra­

tion of the equations obtained from the magnetic field components over the 

range 0 - and there exists no expansion for these components over the 

range 0q -■ % thus making the integration impossible, .

Also* although the finite energy condition at the tip was 

employed in the original selection of the functional expansion^ the 

entire solution was obtained 'Without the' employment of the finite energy 

condition at the edge.of the cone. The approximate treatments of 
Siegel4f1T and Keller18 predict that the major contribution to the 

scattered field arises from the singularity at .the -edge* and. this 

viewpoint has been supported experimentally by the work of Keys and 
Primieh23, who-found that the radar cross-sections of 60 and 180 degree

finite cones correspond within k decibels (db * 10 log &L), * radar
\2

cross-section) to that of an anpular wire ring of the same base diameter 

over a range of 0,5 - 3 wavelengths.

Since we know of no proof that the series of spherical harmonic 

functions used in this problem will properly display such an expected



singularity, the following section contains a numberical investigation 

of the field components in the vicinity of the edge for an interior apex 

angle of 30° (i,e., 9 -165*-).

Consideration of the arguments presented in Appendix B reveals 

that a singularity of permissible order occurs in all components of the 

magnetic field at the tip of the cone, No singularity occurs in the 

electric field at the tip.

Numerical Investigation of Singularities at the Edge

Since the edge singularities may easily he investigated by approaching 

the edge along a line in region II, only the expansion coefficients, 

en and d^, of the scattered field in that region have been computed. Knowing 

these coefficients also enables one to compute the radar cross section and 

hence make a comparison With experimentally measured values. For convenience, 

the edge was approached along the line Q ~ and since the ^-variation is 

easily removed from all series summations, the actual computation was made 

for a particular field component divided by sin or cos <t>, whichever 

was applicable. Consequently, any desired value of <t> may be inserted in 

the results.

Before proceeding with the numerical work, one must first choose 

particular values of cone angle and radius with which to work. In this 

case, our choices were primarily dictated by the information which is 

available.

To the best of the authors’ knowledge, the most imformation avail­

able on the roots, u and t>, of equations (32) and (34) is contained in 

part I? of the University of Michigan reports "Studies in Eadar Cross

- 24 -
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Sections" by Siegel, et.al*16 This report evaluates the radar cross 

section for a semi-infinite cone and lists the first seven roots of each 

of the equations (J2) and (j4) for a cone angle 0Q - l65°. Consequently, this 

angle was used in the following computations!.

In addition to the data listed in the aforementioned report, the

values of P1(cos 0 ) and dPVde 0*0 were needed and have been

computed (See Appendix C)» For this computation, and throughout the 

analysis, the definition used for the associated Legendre function is

p“(eos e) - (-i)m it1*'*"') a . 9 ) (74)
u /^(i+o-kjrd+m) d 1 .

where ^F^ is the ordinary hypergeometric function

^(a.Pi^sz) » F(a,ej7;z) * i+2£j. 2 +
7(7+1) 21 3 (75)

and for the purposes of computing the derivative, the relation

sin 9 m (u-ir3-l)P^-J_^( cos 0) - (b+l) cos 0 F^(eos 0) (j6)

was used* The roots given by Siegel and the computed values of the 

functions are listed in Table II.

At the present time, even less information seems to be available 

on the spherical Bessel and Hankel functions of non-integral order*

As a result, a value of radius kb ~ 0*1 was chosen to facilitate 
approximation of the Bessel and Hankel functions by the first term in 

their series expansions* Hie approximations of the ratios of the Bessel 

functions listed in Table I are accurate to at least four significant 

figures for the value p * kb = 0*1* Though this value places our
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TABLE II

DATA USED IN COMPUTATION OF FIELD EXPANSION COEFFICIENTS

(eo - 165°)

n P'KcOS 0 ) n' o *0 l£(cos 0Q)
n

Bd

i -0.25881924 +O.96592579 0.9673 -0.52217 1.55806 1.05165 +1.88762 1.51078

2 +0.75000000 -2.5980742 1.9198 +1.40862 2.42491 2.08445 -5.17961 . 2.54657
3 -1.4228851 +4.5596881 2.8894 -2.28915 307945 5.14992 +9.50825 3.34731
4 +2.2069509 -5.4575812 5.8900 +2.98087 4.28564 4.22509 -14.65581 4.54068
5 -5.0177961 +5.1518426 4.9180 -5.50544 5.18055 5.5OIO8 +20.49566 5.55248
6 +5.7646596 -2.6851515 5.9657 +5.92272 6.09058 6.58224 -26.92406 6.52455
7 -4.5581659 -2.5566144 7.0264 -4.27745 7.05256 7-46557 ! +54.15185 7.31653

p @0 . , p Qq
B - / [P*(cos0)]2 sin 0 d0j B * / [p^(cos 0)]2 sin 9 d0.

NOTE: Values of n and B given By Ref. 16, Part IV, and computed "by the Institute of
r

Numberical Analysis, University of California.
Values of x> and B given hy Ref. 16, Part IV, and computed by Willow Run 
Research Center, University of Michigan.
Values of P^(cos 0 ) and dP1/d0jg_0 computed by School of Electrical 

Engineering, Purdue University.
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computations well into the Rayleigh region (i.e., h » \/6o), it is 

satisfactory-for.investigation of the edge fields.

Using these approximations, the equations for the coefficients

cn and.d > (72) and (73)* may, conveniently be broken into component 

parts and expressed as

S (8n - a )e . B + K , 
n m mn n m m7

where

amn s F(m)G(n) § H(m,n*t>),

F(m) ml nr 2
2^ra-~-Lm’ rP\m■fwcrr [w >

G(n) n(nfcl) (2n)l /Pv~n
2?;2h (n-1)l

(gT* ,

l(m,n,'o) ("0+1) B,p

[sin cos &Q) Y 
)-m(m-KL) ] [o(

dP1 dP1! m n
d9 dfl e^e'

9q p
P3^ sin 9 d0 / P^P1 sin 9 d0

O' Pm to on
9r

(P+l) (P3:)2 sin 9 d9o vj-p

and

B - z - tr¥\ ' 9':m n mrr

„ ’ 04n^i (n-l)Sb. mn ^ — d •• L THTT,

K ~
im+l24m+i (m-l) iml

m [(2m)1] 2 (m-KL)

2 (£,) an+x a
mn7

(-)'

for equation (72), and for (73)>

(77)
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Z (5n - f ) d n m mn n G + K’ , m m 9
(78)

where

^ (2m+l) 22m"1(m-l)! /-P\mI(m) " ----- (ST,---  {2> ’

,\ _ n(rc»l) (2n) I /-P\-n'■H11' - « , >n

, .. n sin2 0 P’Kcos 0)P1(cos 0) rdPH 2\ (p+1) o n nr _____ ___
K(m,n?p) - g Ln(n+l)-|i(ia+l) JLn(n+l)-^(|i+l) J [d0 J e=

M* 0=0

yl 0Q P
P^P1 sin 0 d0 / P1?1 sin 0 d0

0 ^ n ^ m

and

Q

L s^-n ®
G„-■* 2 i° g' ,m n mn

g.mn
o4h+i n!(n-l)! /P\2n+i r
d “ _2 \2' *(n+l)[(2n)J] mn

m
(m-1) I
(2m) I pNsm+i(f)

Equations .(IT) and (78) each represent one equation) however$ by 

letting m assume successive integral values^ one obtains a set of 

equations for each representation* Let (x^) represent the element 
of a matrix in the m^1 row and the n^ column^ and let [x^] represent 

the matrix formed hy these elements* Then the set of equations 

represented by (77) and (78) may be represented in matrix form as

[8n - a ] [e ] = [B + K J, m mn n m m
[8n - f ] [d ] - [G + K’ ], 
m mn n m m

(79)

(80)
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respectively.

Throughout the computations* summations over seven terms were 

used. The expanded 7 x 7 matrices are shown in Table III* and the computed 
matrix coefficients are listed in Table 17.

Utilizing these matrix coefficients* the electromagnetic 

field expansion coefficients* c^ and d^* were repeatedly computed using 

sets of seven* six* five* four* and three equations by successively 

eliminating the last row and column of the matrices. Thus* by comparing 

the solutions listed in Table 7* an estimate of the degree of accuracy 

may be obtained. In every ease the magnitudes of the coefficients computed 

using three equations lie within two per-cent of the magnitudes of 
those computed using seven equations. Also* an examination of jcx/csf 

and |di/d2| yields factors of 200 and ihO* respectively* indicating 
very rapid convergence of the series* as may be expected for such a ■ 

small value of kb.

Having obtained the" field expansion coefficients* we were thus 

finally prepared to return to equations (17) and (27) for computation 

of the field components. For this purpose* each field component was 

separated into its real and imaginary parts. Since

hn(p) 33 «3n(p) ~ inn(p)* (81)

and
nn(p) = (-l)n+1j_n(e>; (82)

if we let

Vp) - (83)



TABLE III
MATRIX FORM OF EXPANSION COEFFICIENT EQUATIONS

(l-an) ~ai 2 ”aX3 “a14 ”a15 “a16 ”a17 Ci B1+K1

-&si (l-a22) ”a23 -a24 “a25 ”a26 “a27 C2 b2+k2

-a3i “a32 (1-333) -a.34 “a35 “a36 ”a37 C3 B3+K3

-a.41 -a42 -a43 (1-&44) -8,45 _a48 -a47 C4 S3 B4+K4

"a51 -a52 -a53 ”a54 (l-a55) -a5e ”a57 C5 b5+k5

-aei -ae2 -a63 _a64 -a65 (l-aes) -aS7 Ce Bg+Ke

“a71 "a72 “a73 -a.74 “a75 ”a7S (1-377) C7 B7+K7

-fl2 “^13 “^14 -fxs -fie -fl7 di Gl+Ki "

(l-f22) -f23 -fa4 ~f25 ~fs6 “f 27 d2 G2+Ki>

-f32 (l-f'33) “f34 -f35 ”*36 ”^37 d-3 G3+K4

-f41 -f42 "f43 (l-f44) "^45 "f46 -f47 d4 S g4+k4

-*51 -f52 -f53 -f54 (1-^55) "^56 ”^57 d5 g5+k^

-fei -fe2 “^63 -fs4 -fes (l-fss) -fe7 de
c

Ge+U

-^71 “*72 -f73 “£74 “f75 “^76 (l“f77) d.7 G6+K-f
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TABLE IV

COMPUTED MATRIX COEFFICIENTS

m-n (5. - a ) s m nm A x 10p (8 - f ) sm run F x 10*
m n A P F
i i •15094515 +1 .30369545 +1
i 2 -016087902 +1 -.65378349 +1
i 3 . .22875915 +3 .86326182 +3
i b -.27292641 +5 -.10182327 +6
i 5 425126402 +7 .99152403 +7
i 6 -.43697134 +7 -.21936376 +9
i 7 -.98911438 +11 -.34144258 +12
2 1 -.55171124 -4 -.22420560 -3
2 2 .16874330 +1 .25430143 +1
2 3 -.18685502 +1 >..54724578 +1
2 4 .20854942 +3 .59734267 +3
2 5 -.13911531 +5 -.41698784 +5
2 6 -.21496838 +7 -.57300361 +7
2 7 .14642109 +10 .4440880O +10
3 1 . 366098251 -6 .13815346 -5
3 2 . -.87199009 -4 -.25538139 -3
3 3 .17783107 +1 .23657812 +1
3 ■4 -.10617697 +1 -.26795574 +1
3 5 -.10066070 +2 -.47242174 +2
3 6 .43267581 +5 .12306150 +6
3 7 -.17732992 +8 -.53186446 +8
4 1 -.18566424 -8 -.69267537 -8
4 2 .41569394 -6 .11849328 -5
4 3 -.45132954 -4 -.11390072 -34 4 .18190171 +1 .22521805 +1
k 5 .12758369 +1 .36978912 +1
b 6 -.53985136 +3 -.15565716 +4
4 7 .17443197 +6 .53260609 +6

5 1 .61135626 -11 .24124998 -10
5 2 -.98702126 -9 -.29585232 -8
5 3 -.15303994 -7 -.71824845 -7
5 4 .45632737 !-4 .13226212 -3
5 5 .18287685 +1 .21528669 +1
5 6 .50559947 +1 .14933190 +2
5 7 -.14279264 :■ +4 -.45071280 +4
6 r 1 -.31536749 -15 -.15831749 -13
6 2 -.45240369 -11' -.12058935 -10
6 3 .19512248 -8 .55496672 -8
6 4 -.57273732 -6 -.16513928 -5
6 5 .14997075 -3 .44294782 -3
6 6 .1823708! +1 .20498085 +1
6 7 .99545654 +1 .33061918 +2
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TABLE IV

6n» 0, m^n (5n - a ) ® A x 10P (8n - f ) - 
m nm F X 10qm m-n m run

m n A _£ F S-157 1 -.17824170 -15 -.60838698
17 2 .76076983 -13 ,23073779 -1217 3 -•19743535 -10 -.59216661 -10
7 4 .45688357 -8 .13950367 -717 5 -.10456922 -5 -,33006392 -5
f7 6 .2457652/ -3 .81625573 -3
7 7 . .18467407 +1 .19255892 +1

m 6 +■m m
v B + K m m

.12l02484[-5] + i.18445300[-4]
-.79629000[-8]-io11190013[ - 6 ] 
.4047280693[-10]+1.68956550[-9]

-.3821715450[-12]-l.34591569[-11]
.54847416[-15]+i.12065140[-13]

.22256242[-17]-i,81212522[-17]
-.42665968[-19 j-%„30200151[-18]

.94402300[ ■-5]-i.44673140[-6]
-.55078856[-7J+1.57672100[-8]
.36470023[ -9 ]-i.23215924[ -10 ]

-.18544132[-ll]+i.11480715[-12 3 
.61143160[-14]-i.27443110[-15 3 

-.41165708[-18]-i.12534308[-17] 
-.17526716[-l8]+i.21106598[-19]



TABLE V

EXPANSION COEFFICIENTS OF THE ELECTROMAGNETIC FIELD 
■Cn * (x) [-p] « x 10"P

* Cl c2 C3 c4
7xT
6x6
5x54x4
5x5

( 6.l6o-io.288)[-6]
( 6.166-10.289)
( 6.166-10.289)
( 6.171-10.289)
( 6.189-10.290)

(-3.199+10.357)[-8] ,
(-3.207+10.338)
(-3.206+10.338)
(-3-209+10.359)
(-3.221+10.339)

( 2.008-10.132)[-10]
( 2.017-10.133)
( 2.017-10.134)
( 2.016-10.134)
( 2.022-10.134)

(-9.951+10.606)[-13] 
(-10.04+10.616) 
(-10.03+10.618) 
(-10.01+10.617)

* c5 cs c T
7x7
6x6
5x5

( 3.266-10.138)[-15]
( 5-555-10.147)
( 5-552-10.149)

(-6.281-16.994)[-19] 
(-H.09-l6.332)

(-8.646+11.099)[-20]

d__ = (y)[-a] * y 10”^’* di d2 n ds d4
7x7
6x6
5x5
4x4
5x5

( 0.381+15.823)[-6]
( 0.383+15.833)
( 0.382+15.834)
( 0.383+15.852)
( 0.386+15.901)

(-0.299-14.226)[-8] 
(-0.303-14.245) 
(-0.303-14.244) 
(-0.303-l4.253) 
(-0.306-i4.287)

( 0.188+12.796[-io]
( 0.193+12.823)
( 0.193+12.819)
( 0.193+12.818)
( 0.194+12.834)

(-O.087-H. 466) [-12] 
(-0.093-11.496) 
(-0.093-11.491)
(-0.093-11.481)

* d.5 da dT
7x76x6
5x5

( 0.201+15.368)[-15]
( 0.246+15.633)
( 0.253+15.582)

( 1.239-15.340)[-18]
( 0.891-17.353)

(-0.206-11.193)[-19]

* Size of Matrix



- 35 -

the Hankel function becomes

Vp)s ^n^ + ikn(p^°

Using this notation, one obtains . from (27)

Re(Er) cos * g n(p+l) [d^n(p)-d\n(p)] Pj(cos 0)
XX n-

'(84)

(85)

^r)

Re(R0)

- =°s * [<3n(p)+4nkn(p)] ^ COB U) (86)

f • P1(cos 0) . dP^
COB * g 1t<Jn(p)-oJkn(p)] + Ianjg(p)-aV(p)] ^ r (87)

I«l(E0) . COB * g ik^PJ+P^p)] P1(eos 0)n... „—„ + [a1,!' (p)+d1k> (p) ]
sin 0 ■ nJnVH' n nv ' d0

dP1
n (88)

. . . dP1 . P^eos 0)
Re(Ej - -Sin <t> 2< [crj, (pl-c^k (p)] -~ + [drj'(p^d3!'(p) ] ° ... f (89)

' n I n n n n d0 n n n n sxn 0 “

f . dP1 . Px(cos 0)*■<*♦> - -el“ * 8 |torf,n(p)+pnkn(p)1 IT* ^(p)+anki(p) 1 "ffiT"
r i piwhere p.* kr, c - c + ic and d - d + id ; the superscripts ' r' and ^ n n n n n n’

’is representing the real and imaginary,parts, respectively. For the 

computation of the field components, only spherical Bessel functions of 

integral order were needed,, and for these functions* data are readily 

available (Ref. 27)«

(90)

The results of these computations are listed in Table VI and are 

illustrated in figures 4 and 5- Although one could not expect to obtain 

a true singularity at the edge of the cone by using only a finite number 

of terms, figure k clearly indicates that the spherical harmonic functions 

used in the field expansions do represent the edge singularity. Furthermore, 

not only does the singularity lie well within the (kR) 1 limit imposed
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TABLE VI
ELECTRIC FIELD COMPONENTS NEAR THE EDGE OF A FINITE CONE

kR Ero Ero Eeo lEeo| E<1)0 E.ol
0.00 (2.42-10.07) 2.43 2.26-10.26 2.28 -2.68+10.24 2.69
0.01 (1.56-10.07) I.56 1.48-10.19 1.49 -1.75+10.18 1.76
0.02 (1.03-10.05) 1.04 1.01-10.14 1.02 -1.20+10.14 1.20
0.03 (0.72-10.04) 0.72 0.72-10.11 0.73 -0.85+10.10 O.85
0.04 (0.51-i0.03) O.51 0.53-10.08 0.54 -0.62+10.08 0.62
0.05 (0.38-10.02) 0.38 0.40-10.07 0.4l -0.47+10.07 0.47
0.06 (0.28-i0.02) 0.28 0.31-10.06 O.32 -0.36+10.06 O.36
0.07 (0.22-10.01) 0.22 0.24-i0.05 0.25 -0.28+10.05 0.28
0.08 (0.17-10.01) 0.17 0.20-10.04 0.20 -0.22+10.04 0.23
0.09 (0.14-10.01) o.l4 0.16-10.03 0,16 -0.l8+i0.03 0.18
0.10 (0.11-10.01) 0.11 0.13-i0.03 0.14 -0.15+i0.03 0.15

kR = distance from edge at 9 =. = 1650

E = E cos <t> x 10"2 r ro
cos <t> x 10~2

E<t " e<do sin * x 10"2
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by the finite energy condition, but it closely approximates the (kR) 

singularity which would be predicted from the considerations presented in 

Appendix B for a 90° edge. It is interesting to note that in a check 

computation using a desk calculator, six of the first seven terms in the 

expansion of Re(E^) added up in phase, and that each of the terms was of 

the same order of magnitude, indicating that the series was diverging at 

that point.

Consideration of the results of appendix B reveals that similar 

singularities will also occur in the magnetic field components.

’ Radar Cross Section

Within recent years, a few experimental measurements of the radar 

cross section of finite cones have been made, thus providing an 

experimental check on our theoretical results. The radar cross section, 

CT, is defined to be

cr kitr2 limit 
r-» <>°

(91)

where S * ^ Re(E x H ), the average Poynting vector (H represents the 

complex conjugate of H). For the coordinate system with which we have 

been concerned (figure 1), the radar cross section, when evaluated for 

9 » 0, is more precisely termed the back-scattering radar cross section. 

Herein, we have concerned ourselves with only this case, although the 

fact will not be explicitely mentioned with each reference to the cross 

section.

From equations (7^0 and (75), it may be seen that
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Px(eos 0) rr
sin 0

9 = 0

dP1 
___n
d0 0 = 0

and the limiting form of the Hankel function and its derivative are 

.n+1 .

p -»«>
h;<p>- r e'ip-

p —> 00 p 00

Noticing that the present case, = l/2q, and utilizing the

above relations in equations (17) and (24), the radar cross section 
may be expressed (after some algebra),

^ jg in n(n+l) (cn - id^j -

Utilizing the coefficients listed in table Vj one obtains

(92)

(95)

(94)

(95)

<T* 0,459 x ior*° X2,

Siegel4 has postulated that the cross section of any body of revolution 

in the Rayleigh region may be expressed as

or* - k4?2 (1+ —)2, (96)3t ?cy

where k * 2jt/X, Y - volume of the body, and for a finite cone, 

y * h/4r (h :* height of cone, r ■ radius of base). For a 30° cone 

•with kb * 0,1 (b = h/eos 15°), this result yields

1,875 x IO'10 X2,

■which is greater than our results by a factor of 4,1,

The authors know of no measurements ‘which have been made on finite



cones of such small cross section, however, Brysk, Hiatt, Weston, and 

Siegel28 have approached the Rayleigh region with .a finite cone of 24°. 
Their results are shown in figure 6. The Rayleigh line shown is 

approximately

—12:(2rtn)4 (97)
nr2

where n » r/\, r - radius of the Base* Using (96) to predict the 

ratio between a 24° and a 30° finite cone of the same base radius, one 
obtains

1-1‘7®i5« (98)

Prom (97) and (98), one may predict the cross section of the 30° finite 

cone to be

<T:* 1»949 X 10"*° \Z,
this value being approximately 4.2 times that obtained by (95)»

A comparison with the radar cross section of a sphere, given by

= 1.403 (r/k)4 x 104 (99(
nr2

(Ref. 29, p. 452), was also made by finding the ratio of the cross 
section of a sphere to that of a cone of the same volume for the cases 

of the 30s cone and the experimental measurements of figure 6. These 
results also indicate that the cross section computed from (95) using the 

data listed in table II is: low by a factor of approximately four.

Investigation of (95) ancL (77) reveals that the cross section of the 

case under consideration is predominantly determined by the coefficient c*> 

which is in turn predominately determined by the equation

- 41 -

(l - an) Cr'*(“aj,i - 0.5) x 10 (100)
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EXPERIMENTAL MEASUREMENT OF THE 
RADAR CROSS SECTION OF A FINITE CONE 

FROM 8RYSK, HIATT, WESTON, B SIEGEL
"the nose-on radar cross sections of finite cones"

CANADIAN JOURNAL OF PHYSICS, VOL. 37, 1959

CIRCUMFERENCE OF CONE BASE IN WAVE LENGTHS

Figure 6
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where an* -0.50945154. This equation, as well as all terms of (79) 

and (8o) are very sensitive to the precise value of p.
Siegel16 has also noted:this sensitivity in the computation of the 

cross section of a semi-infinite cone from the Hansen and Schiff solution 

Although two computations for the values of u are not available for 

comparison, a comparison of the first four values of n are computed by 

the University of Michigan and the University of California is as

U of C Difference

1.05165 ,000052.08445 .000825.14992 . .004o44.22509 .00519-
The authors of Ref. l6 further note that the California resists are 

the more accurate.

Further investigation of (100) reveals that if the first root,

Ui ~ 0.9675, were larger by an amount 0.0005, the radar cross section 
would increase by a factor of four. Consequently, knowledge of the 

roots of (52) and (54) to at least six decimal places seems to be an 

absolute necessity if one is to accurately compute the radar cross 

section for such small cone angles. Since the more accurate computations 

for the first four values of n are in each case higher than the 

approximate computation, the result predicted using (95) should be some­

what low if accurate values of x> are also higher than those used in the 

computation.

In view of these facts, it is believed that the foregoing results 

are as accurate as can be reasonably expected with the data that are

follows;

U of M

1.051582.08651
5.14588
4.21990

presently available.



Summary and Conclusions
An exact solution to the scattering of a plane electromagnetic 

wave by a finite cone has been obtained using a relatively straight­
forward procedure* It is believed that the techniques used herein may 
be further applied to aid in obtaining exact solutions for other 
irregularly-shaped scatterers whose surfaces are not described by fixing 
only one coordinate. Although the numerical computation of results 
form the solution is not simple, it is also certainly not prohibitive 
with modern digital computers, and the ability to obtain numerical 
results for the "resonance" region is only hindered by the lack of 
functional data of well-known functions.

The singularities which may occur in electromagnetic fields have 
also been investigated, and their theoretical existence using vector 
solutions of the wave equation has been demonstrated*

It is intended that work on other irregularly-shaped objects will 
continue, as well as the further computation of necessary functional 
data for use in obtaining more precise and extended results from the 
present solution.

- 44 -
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APPENDIX A

SELECTION. OF OBTHOGQNAL FUNCTIONS

For mathematical solutions of the type which, we are concerned,

. it is always desirable -that the uhknownexpansion coefficients he 

finally deterrrnned,.rather than appearing in a set,of an infinite 

number of equations. In the latter cage, the value obtained for an 

expansion coefficient depends on the number of equations used in the 

solution, whereas coefficients which possess finality may he determined 

explicitly and exactly from a single equation without the use of a set 

of equations involving several unknowns#

For such a finality, however,■it becomes necessary to obtain 

orthogonal expansions for the fields on e&oh Side of a matching boundary# 

For instance, in the case;illustrated by figure 3, the expansions in 

both regions I and II must he orthogonal over the range 9 m- 0 -> 0q 
when matching the fields across the imaginary spherical boundary, 

r « b« Also, the field expansions in regions II and III must he 

orthogonal over the range r = b -> «> when matching the fields across 

the imaginary conical boundary,

Although such ah orthogonalization may still present numerous 

questions, it seems that the proper selection of the degree, v, of the 

associated Legendre functions will produce functions orthogonal to both 

r and 9 for the configuration shown in figure 3#

Toshow this, consider the associated Legendre equations of degree 

t and t?, respectively!



. ap”
d©(Sin 6 dP~) - (r'+l)sin 0 + m2

Sin 0 * (A-2)

Multiplying (A-JL) lay p“, (cos 0) and (A-2) by F^(cos 0) and thenT T

subtracting the second from the first, , one obtains

. ^ dP111, -j
If (T’«)*T(r*l) ] sin 0 E^t = §g sin 0 (I^^ - P^ ^5-)

which, after integrating from 0i to 02, becomes
02

[t' ( t *#14-t( f^l) ] / sin 0 P^E^,d0 » sin 0
J 0i T T

pm J , pm ,:f
f d0 r T d0

(A-3)

_ J%
y »#

J1%
If we now add and subtractk1p“pm. from the right Side of this

X T

equation, where k' is a constant, it may be expressed thus:

ez

sin 0
^ +t'p?} - ^ - y<’}] (A-5)

It is thus evident that if the t's are distinct roots of the equation,

a#1T40 + k' F ( cos 0), * 0,T (A*6)

at each of the limits, 0i and 02, then the function^ are orthogonal. 

It may be further noted that the value of k' may be different at the 

two limits (Ref. 2^, p» kjl).
Using an analogous procedure for the equation for the spherical

Hankel functions.

d_
dp

[t(tI-1)-p2] hT, (A-T)
one obtains

(A4)
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[t1(t'+1)-t(t+l)] / h ,h d = p2
t ’ t p

dli , dli
li. ------ h -—t dp t dp (A-8)

and finds that the Hankel functions will he orthogonal between two 

arbitrary limits, P= e, f, if at each limit the equation,

dh
dp

t + k"h = 0,- T ’ (A-9)

is satisfied.

By referring to figure 3, it may be seen that the appropriate 

limits to use for the finite cone are 0 = 0, 0<$, and r * b, 00 (p”-kr).
For 0* 0 and r = °° , however, the expressions on the right-hand sides of 

equations (A-k) and (A-8) are zero, and equations (A-6) and (A-9) need 

to be considered only for 0 * 0o, r ** b, respectively.

Let us further choose k' = k", and then let k’ and f be the 

simultaneous solution of the equations

dPJi
d0

dh
dp

+ k'P^(cos @o) = 0,
9=Qq

+ k'h (kb) - 0.T

(A-10)

(A-U)
P=kb

Then t must be a root of the equation,

dP1 __
d0

P^(cos Qo) dhX______ X
h (kb) dp

- o,
ps*kb

(A-12)

and thus the function h (kr)Pm(cos 0) would be orthogonal between both

sets of limits, r » b, °°j 0*0, 0o. This procedure thus provides

orthogonal integrations when matching the fields across the imaginary 

spherical and conical boundaries indicated in figure 3-



For such an attack ©n the problem, one could then choose for 

the function $ in equation (2),
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sin <t> 
cos

sin <t> 
@©s ♦

sin •)>.■■
COS <l>

The foregoing method of 

though perhaps providing the

j (kr)P*(eoe 0)T t . .

*1T( kr)P1( c©s $)

h (kr)p1(-cos &)T i ; /'•

in region I,

in region II,

in region III*

to the solution of the problem* 

of the coefficients, raises

other problems •which cause additional difficulty* In each region, 

field expansions must be obtained for the incident wave in terms of 

the non-integral degree Legendre functions, and Since the value of 

the degree has been determined, it can no longer be chosen SO as to 

satisfy the boundary condition at the surface of the cone, as was done 

in the present solution. Furthermore, the determination of the roots 

of equation (A-12), if they do exist, presents a problem in itself.
In addition, the equation Is. complfx and one may then expect complex 

roots, which, in turn, lead to resultant difficulties in determining
the Bessel, Hankel, and associated legendre functions. For these 

reasons, the method used in this paper was that in •which the expansion 

coefficients do not possess finality, hut appear in an infinite 

set of equations.
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4PEEEEI 3X B 
FIELD SimH^lTIES

A. Sharp Edges

Consider the electromagnetic fields which may possibly exist 

in the vicinity of a sharp edge? Since* for the time harmonic case* 

Maxwell’s equations Become

curl E * - iopS* (B-I)

curl H ss +■ iuieE^

and since the vector functions listed in equation (j) are related in 

this manner;

curl m * ' kn, 

curl n m km,

where k * 2«/\, these vector; functions may he used to represent 
the electromagnetic field quantities. Furthermore* if we assume 

that they form a complete set of functions*, then we may represent 

any time-harmonic electromagnetic field by an appropriate sum. For 

the illustration shown in figure T> these functions become

P ir
sin oei
COS p z (Ip)dp -ov '

cos
sin

(B~4)
where h is the wave constant for the z-direetion £i.e.* ^(“t-hz), ^

is the wave constant for the radial direction* Z^(ip) is a cylindrical

Bessel function of any kind* and a * a., and a are unit vectors.
‘•P & %
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SHARP EDGE

SHARP TIP

Figure 8



In cylindrical coordinates* the finite energy condition becomes

(€0e2 + M-qH2)dV - J (€qS2 + noH2)pdpd0dz -»finite, (B-5)

and thus the fields may possess at most a singularity of order p^"^ 

where P > 0. Thus* in using (B-5) or (B-4) to represent the fields* 

one observes that x> must always be positive* since the first term in
the series expansions of Z^( £p) and dZ^(gp) vary as p^"1^,

P dp
If we assume that the wedge is perfectly conducting* then E ~ E

° p z

-t Hg “ 0 at 0 “ 0* If we first let E be represented by mg (here we

must choose the even function due to the 6 variation)* then B will be 

represented by ng. Ihe boundary conditions are then satisfied by

sin t>0 * 0* n0 * nit*o 7 o '
where n is zero or an integer. Since we are particularly interested 

in the case for /o < 1* this only occurs for n ~ 1*

: (b-6).
.o

Referring to (B-J) and (B-4) we see then that Ep* E0* Hp* and EQ may 
be singular of order p^^”1.

Again* if we let E be represented by n^ and H by m^* we arrive at 

precisely the same conclusion. These results precisely agree with 

those of Meixner26* Who used a power series expansion for the field 

components.

Furthermore* the above results seem physically reasonable since a 

series of point charges flowing along the edge constitute a finite current 

in an infinitesimal volume* or an infinite current d®n®ity* Which is*
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of course, integrable* ;

B» Sharp 5ips
Although the conclusions for a conical tip are hot as -well 

defined, as those for the hedge, a few interesting results may he 

observed.. Let us apply the same reasoning to a conical tip in 

spherical coordinates. Here the finite energy condition becomes

E2 + u H2)dV - / (e E2 + M. H2) r2 sin 0 dr d© > o ' ■ J o o '

irmitting

d<*> finite,
' (B-T)

ttnitting singluarities of order -where p > Q, For

jnce, he repeat the m and n functions

F .mfl z (kr)Fm(cos 9) sln m^a - z (kr) C?S m<t>a., (B-8)
sin© o o cos 0 o' d© sin v '

z ,ID
(kr)Fm(cos ©) C?S m<t>a 
d' y x> ■ sm i

and note that the leading term ia z^( kr) /r and z*(kr) is of the 

order r (See notation after equation 14) „

If he let E be represented by n, and H by m, then the boundary

conditions E * E, = H« - 0 at ©= © are satisfied by r <p u o

^(cos ©o) - 0,. (B-10)

hhere m is again integral. Due to the finite energy condition, he 

are interested in the values -0.5 < n < 1. Hohever, equation (B-IQ) 

has no roots for \x>\ < m (Ref. 24, p, 386), and consequently has roots 
in the region of our immediate interest only for m * 0. For this case, 

a glance at (B-8) and (B-9). reveals that singularities occur in all



"but in none of the components

of the magnetic field (m)* ana in the electric field only for ♦* 

independent field variations*

02ie foregoing result also seems physically reasonable* since 

the presence of a point charge at the tip of the cone would produce 

singular electric fields with no <t> variation* One might reasonably 

expect that if a material were chosen which was assumed to contain

field with a COS'
sin variation

Left to consider* then* is the ease for which E is represented by 

m* and. H by n, Reference to (B-8) and (B-9) reveals that the boundary 

conditions E^ * E^ ■ H0 * 0 at 9 • 9q are satisfied by

® 0* (Bs-ll)
9 w9 :o ■

. .... ' • . • V
Because of the finite energy condition, equation (B~7)* and the
behavior of the leading radial term* any roots of (B-ll) where

-u»p <• ® < 1 will produce permissible singularities* For ~0»5 < c < 1*. 
however* P^(cos 9) is either a monotonieally increasing function (for 

o motive) or a monotonieally decreasing function (for o positive)* and 

thus its first derivative possesses no zeros (except 9 ~ 0) in our 

immediate range of interest*.

From m * 1* -0*5 < x> < 0* reference to figure 11 reveals that no . 

zeros Of the first derivative oqcur (all values of o in this range lie 
between the zero axis and the o.,* -0„5 curve plotted in figure 11)* One 

observe that zeros do occur for 0*8 < o < l„ Reference aga.ir> t®
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(B-9) reveals singularities in all components of the magnetic field*

Since* in this case* the electric field is represented by m* which
X)possesses a leading radial term of r * we should perhaps consider roots 

of (B-ll) as low as -1*5 for only the electric field* Since

cos 0)* however* the graphs of figure 11 for 0*5 < o

< -0.5 may he also interpreted as those for -Is,5 < o < -0.5*
f ■

respectively* and no additional zeros occur*

Here again* singular magnetic field components seem reasonablej 

since a finite surface current flows over an infinitesimal area at 

the tip of the cone*, producing a singularity of current density* One 

may further observe from figure 9 that this current would produce a 

Singular magnetic field in the y-direetion* producing the resulting

*
00

In summary* we have found that?

(a) at a perfectly conducting sharp edge* singularities of order

1 may occur in all components of the electric and magnetic fields

?
(b) at a perfectly conducting sharp tip* a singularity may occur

in the electric field for only <t>-independent fields*

(c) at a perfectly conducting sharp tip* a singularity nay occur

in the magnetic field if it possesses a cos <t> 
sin <J>

singularity will not occur in the magnetic field if it is <t> independent*
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SURFACE CURRENTS AT A CONICAL TIP

Figure 9
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APPENDIX C

A NOTE OH THE COMPUTATION OF THE ASSOCIATED LEGENDRE FUNCTION

In order to compute the associated Legendre functions to a desired 

degree of accuracy, the hypergeometric series, equation (75), was used;

*«, sm») - * * 2£^ga2. * - • •. .
For the associated Legendre function, we have

a = m-u
P sr m+O+l
y a mtl'
_ „ l-.COS 6Z a .. ,

(e-i)

and since z is always positive and less than unity, the magnitude of the 

ratio of the succeeding terms will he less than unity if

< 1 (G-2)(a+N)(fr»N)
(y+N)(WT)

For P^(eos 0), it may easily he shown that (C-2) is satisfied for 

any N if o . is positive, and if o is negative one must have

(m)(N+2) > .... (c-3)

Thus, if N satisfies (G—3), an upper limit on the remainder of the series 
after N terms may he obtained hy assuming each term to have the coefficient 

of the Nth term. Thus, if

F(a,P|7,z) ® 1 '3- 2-jt % + 

where R(N) iS the remainder, then

. a* * ° (a+R) e*»»( b+n) n & B(N), tc-k)
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R(N) < g. ».(oa-U)ft. ■> if" nSlif+1 %n

oc° ® ° (aH-N) (3° * ® (prj-u) JN+l oo _n“ Z 4i_ Zn«0!r+N)(sH-i) (C-5)
a. • •(OH-W)p* •«(B+W) _:N 
/•••(MPl)! Z z

1-z

Thus, "by multiplying the last computed term of the series "by 1-z*
one may be certain of the accuracy obtained.

Using this procedure, tables were computed, accurate to six decimal 

places, for the following associated Legendre functions:

P^(eos 0) 0 -»(5*[50]l65°) o ^(-0.5[°-l]5»0)

dP^(cos 0) 
d0

0 (50[50]165°)
u ->(-0»5[0»l]2».0)

Utilizing the relation P01^ ^ - P^, the range of x> may be further

extended-

All computations included in this report were performed on the 

Burroughs Datatron 205* Total time required was approximately sixteen 

hours, including computation of the tables cited above.

It is anticipated that more computations will be made on the 

determination of the roots of equations (32) and (j4), as well as for 
the corresponding spherical Bessel functions, thus enabling theoretical

determination of the radar cross sections of finite cones in the resonance 

region-
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