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PREFAGE

This is a preliminary report on the state of the art of 
adaptive control. It in no way attempts to review all of the 
various adaptive systems which have been proposed or 
constructed® Probably the most complete effort in this 
direction is WADC TR 59-49# The Proceedings of the Self Adaptive 
Flight Control Systems Symposium, Edited by P. C. Gregory®
Rather this report attempts a synthesis of the present philosophy 
on adaptive control and is essentially a definition of the 
problem®

The report attempts to subdivide the adaptive control 
problem into three subdivisions and to assess present progress 
in each of these areas. Ideas that have been proposed by 
various authors are brought together and given unified treat
ment® In making this organization# various gaps in the present 
state of the art have become apparent and these are under 
intensive survey presently at Purdue.

The initial portion of the project# consisting of this 
organization terminated several months ago and at present the 
project personnel are engaged on original research along the 
lines indicated by the monthly progress reports to WADD,
Further interim reports will discuss these items and in 
accordance with present Air Force practice the final report 
will contain all of the information of the interim reports 
and will thus be self sufficient.
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INTRODUCTION TO THE PHILOSOPHY OF ADAPTIVE CONTROLS

1.0 Abstract‘.
This chapter serves as an introduction to this report by 

defining terms, discussing the philosophy, and presenting the 
Purdue viewpoint ©if adaptive controls. A breakdown of the

4
adaptive process into the functions of identification, 
decision, and modification is presented. A justification 
of the adaptive approach to control systems is also given.
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1.1 Introduction

This report is concerned with the background material 
necessary for a study of adaptive controls as well as a summary 
of the state of the art of adaptive control systems. It is 
intended that this will lead, in later reports, to detailed 
work in the various areas that show promise. The first 
chapter will define some of the terms to be used, discuss the 
philosophy of adaptive controls, and present the viewpoint of 
adaptive controls taken at Purdue University.



1»2 What is Meant by an Adaptive ControlSystem?

There is not, as jet, a generally accepted definition of 
an adaptive control system, hat ©me which has been used here 
at Purdue is the following! An adaptive system is one which 
is provided with a means of continuously monitoring its own 
performance in relation to a given index of performance ©r 
optimum condition and a means of modifying its own parameters 
by closed loop action so as to approach this optimum® This 
definition implies that an adaptive system must be capable 
of performing the following functions? provide continuous 
information about the present state of the system or identify 
the process; compare present system performance to the desired 
or optimum performance and make a decision to adapt the system 
so as to achieve optimum performance; and finally initiate a 
proper modification so as to. drive the control system to the 
optimum® These three principles, identification, decision, 
and modification are inherent in any adaptive system® This 
functional breakdown of an adaptive system is similar to that

(i)proposed by Aseltine et® al® Furthermore this breakdown is
a useful concept for the design of an adaptive system as it 
clearly places the adaptive nature in evidence and thus is in 
agreement with the philosophy of Truxal who states “An adaptive 
system is any physical system which has been designed with an 
adaptive viewpoint®’®1 J A detailed discussion ©f each ©f the 
three phases of the adaptive control problem is presented in 
the succeeding chapters of this report®



1.3 Justification of the Adaptive Approach

Upon careful consideration of the functions which aa 
adaptive e-oat roller mast performs, it is obvious that it will 
fee complex la nature and thus may well raise the cost of the 
overall system fey several orders of magnitude. It is, there
fore, certainly reasonable to ask why an adaptive control is 
necessary. A'- practical problem, which provided early moti
vation for investigating the adaptive approach, is that of the 
automatic flight control system. A typical high performance • 
aircraft must fee able to operate with satisfactory dynamic 
response characteristics over a performance envelope which 
varies from near stall speed t© well above the speed of sound, 
and from air pressures encountered at gromnd level t© the condition 
of virtually no air at all encountered at very high altitudes.
The range of control surface forces required and the variation 
in dynamic response to be expected over this envelope of perform
ance is extremely large. A possible answer to this problem is 
the Use of a control system whiUh continuously adjusts itself 
to compensate for these environmental changes, or a self 
adaptive system. An important Advantage of an adaptive system 
over a control system that is preprogramed to adjust to environ
mental changes is that it can operate in environments that 
cannot be predicted from prior knowledge of the flight envelope. 
This feature is a necessary requirement for exploratory space 
vehicles intended to operate in unknown environments. Many

-4-



simiiar exampless involving missiles, aircraft, chemical 
processes which are affected by environmental factors, etc® 
comid be cited. Even if no direct applications were immedi
ately apparent, however, a self adaptive system'would be ©f 
philosophical interest, since it wonld give greater insight 
into the problem of designing more “intelligent® systems, 
systems with a learning capacity®

-5-
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GHAPTEE II
TIE IDENTIFICATION PE@1I.EI

2®0 Abstract
This chapter summarizes the state of the art ©f the 

identification problem as it is related to the philosophy of 
adaptive systems® Bequiremeats of the identification process 
include the ability to identify the physical system without 
unduly disturbing its normal operation* and the ability to 
make the identification in a reasonable amount of time. To 
date* most of the effort has been devoted to identifying the 
impulse response or transfer function of linear systems. 
Eepresentation of an impulse response by means of an 
analytical function* a graph* sample points* an orthogonal 
series expansion* and a 'Taylor’s series are discussed.
Methods of specifying transfer functions in terms of pole- 
zero locations* the coefficients of the numerator and denominator 
polynomiaals* and by frequency response curves are presented.

Identification techniques proposed in the literature are 
presented and discussed. The distinction between methods 
utilizing normal operating signals for identification and those 
employing a separate test signal is pointed out® Advantages 
and disadvantages of both approaches are given® The role played 
by a priori knowledge about the system is discussed. Finally the 
effect of external noise is mentioned® It is suggested that 
noise considerations may ultimately determine the choice of an 
identification technique®



2,1 Introduction - Requirements of an Identification Technique

The general identification problem consists ©f determining
a complete description of the relationships between the input
and output signals of an unknown system haring input signals
x^, X2S * * * xj 0*tput signals y^, yg* • • • yk® la
general the unknown system may be non-linear and time-varying
and the number of input signals, j, need not equal the number
of output signals, k. The behavior of the unknown system is to
be determined by making suitable tests among the various inputs

(3)and outputs? This problem has been discussed by Zadeh,
Woodrow* Moore, and others*

\This chapter, which summarizes the state of the art of 
the identification problem as it pertains to adaptive control 
systems, will discuss a somewhat more restricted problem0 The 
system is assumed to be linear or at least the system is to be 
represented by an equivalent linear system and j - k ** 1, that 
is, the system has only one input and one output signal® lote, 
however, that time-varying systems are not excluded® An 
identification technique, to be useful in adaptive control 
systems, must meet two other conditionsi first, the identification 
must be made in the presence of normal operating signals and noise 
disturbances, and any tests performed upon the system must not 
unduly disturb the normal operation of the control system; 
second, the identification must be made relatively quickly if 
the information is to be useful for the decision-making and 
modification phases ©f the adaptive.process®



-8-

2.2 The Description of Linear - Systems

A linear system is one whose input-output characteristics
i

are described by a linear differential equation of the form
(anpH+an-l^a°°^+® t»+a1p+a0)x(t) Xb>P*+bBwlp1^’1*. •>+b1p+b0)y(t)

m < n (2-1)
where x(t) is the input signal, y(t) is the output signal, and

cl . ■p is the operator The condition m<n is necessary for
the physical realizability of the system. In general the 
coefficients a^ and b^ are functions of time but are independent 
of x. The behavior of the system is completely determined if
all the a^ and b^ are known as functions of time. A useful 
description of a linear system is the unit impulse response 
whieh is the solution of Iq. (2-1) for y(t) when the input signal 
is a unit impulse, i.ee,x(t) - $(t) where £ (t) denotes the

delta function.
The theory of linear systems tells us that a knowledge of 

the impulse response of a linear system gives a complete 
description of the system. It is possible, by means of the 
convolution integral, to predict the behavior of the system 
to any input x(t) if the behavior is known when x(t) = £(t).

*This chapter will use the notation x(t) Or X(s) to 
represent the input to the “black box’* under test and y(t) or 
T(s) to represent the output signal. This notation is adopted 
in order to emphasize the point that the signals used for 
system identification are in some cases unrelated to the 
operating signals usually denoted by c and r. The unknown 
system will be denoted by g(t) or 6(s).
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The impulse response is denoted toy g(t,-T') and is interpreted 
as the value of the output at time t when a unit impulse is applied 
to the input at time 7“'• When the system is time-invariant 
g(t,7") becomes gCt-T") and the impulse response may be represented 
graphically as in Fig® 2-1® For the time-varying case g(t#‘7^) 
may be represented as the height of a surface above the t, 

plane as shown in Fig® 2-2® It. is a property of physical 
systems that g(t,7~) ® 0 for t^^ Cdue to the fact that the 
system cannot respond before the excitation is applied) and 

as (t-“7(due to losses within the system)®
Thus, in both Fig® 2-1 and Fig® 2-2, g(t,7‘') is zero for t <7"®

Several of the techniques for system identification require 
that the system be, at most, slowly time-varying® In terms of 
Fig® 2-2 this means that variations in the height of the gCt,^”)
surface along lines parallel to the t = f line must be slow 
compared. t© the significant length ©f the impulse response®

Taking the Laplace transform of Eq® (2-1) and rearranging

terms results in an expression for the system transfer function

d(s) T(s
ITT

b s +b , s m m-1
m-1

© © © 0 s+b
mas +a

m m«=x . . x ©.
(2-2)

For.a time-varying system the coefficients a^ and b^ are 
functions of time, while for the time-invariant case they are 
constants® In the intermediate situation, the slowly varying 

ease, the coefficients are essentially constant during the time 

required t© identify the system®
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Ise Response of a Typical 
Time-Invariant System

Fig. 2-2
of a Typical Time^Varying System



-11-

A graphical representation of the transfer function may 
be obtained by factoring its numerator and denominator poly- 
nominals and plotting the poles and zeros of 6(s) on the complex 
frequency plane. (Fig. 2-3) The poles and zeros are fixed 
for a time—invariant system and describe a locus for time-varying 
systems. The movement of the poles and zeros is slow compared 
t© the required measurement time for slowly—varying systems®

Before continuing* it is important to mention that the 
time—domain description of the system* the impulse response* 
is entirely equivalent to the frequency domain description* the 
transfer function. Of the several identification techniques 
described in section 2*5* some will lend themselves to inter
pretation in terms of impulse response measurement* and others 
are more readily described in terms of the transfer function.
It is possible* however* to discuss each of the schemes in 
either the time domain or the frequency domain.

Two ways of describing the behavior of a time-varying linear 
system have boon presented! first* the impulse.response g(t*‘7’"'); 
second* the system transfer function G(s). The impulse response 
and the transfer function constitute a laplaee transform pair. 
This fact suggests that additional representations of system 
behavior could be generated by simply considering other types 
of transformations. The z transform* commonly used in describing 
saapled-data systems, is an example. Since nearly all of the 
work to date has dealt with impulse response measurement ©r



transfer function determination » the discussion in the remainder

12- ...

of this chapter will tend to emphasize these two methods of 
system description.

Ways of Expressing Impulse Responses

The impulse response of a system may he given as an ana
lytical function of time such as

g k e sin t:?- (2.3)

for a simple second-order system. Another common way of 
representing an impulse response is by means of a graph such as 
the one in Fig. 2-1 (or Fig. 2-2 for the time-varying ease). 

Sometimes* instead of a complete graph, only sample points of 
the impulse response curve are given. (Fig. 2—4) In practice 

some error is introduced hy the sampling process, but in most 
engineering applications this error approaches zero as the 
number of sampling points approaches infinity.

Another method of representing an impulse response is by 
a Taylor’s series expansion.

g(t) > g (t Q ■) * (t -t @ ) g9 (t e ) + (t-t 0 ) 2 g,,(t0)+ ... g(n)(t ) + _

. ■ 2? n» (2—4)

The nature of impulse responses of practical systems indicates 
that, in general, a large number of terms will be required in 
the Taylor’s series expansion to achieve a good approximation 
to the actual impulse response.



A different kind of series representation of the impulse
response, also useful in the identification problem, is a
series of orthogonal functions. g(t) may be expressed as

CO
g(t) = °i 4i (t) (2-5)

' n-l
where the ^L*s are a set of orthogonal functions satisfying

the conditions 
JJO

i,j =1,2,3,... (2-6)

i = 1,2,3,®•» (2—7)

-13-

J fif % dt = 0

and
A

dt ^ 0

and the constants, e^, are given by
rOO

c i
O

When the integral in Eq. (2-7) equals

«. J g(t) ^±(t) dt (2-8)

1 for all i, the set of
functions is said to be orthonormal. If the set of orthogonal 
functions, $ can be ehoosen properly the series, (2-5), will 

converge rapidly.

Wavs of Specifying Transfer Functions

The expression of a transfer function as a ratio of two 
polynominals in s was given in Eq. (2-2). If the coefficients 

of these polynominals are known as functions of time the ;
transfer function is completely specified.



■14-

A common graphical representation of a transfer function* 
the pole-zero plot, an example of which is shown in Pig* 2-3, 
is an alternate way of specifying a systems transfer function. 
A method of specification, which is closely related to the 
specification of pole—zero locations, is a knowledge of the , 
order and location of the poles of the transfer function and 
the residue associated with each pole*

©ften the form of the transfer function is not known; in 
these situations a refry useful graphical method of specifying 
a transfer function is by means of a frequency response emrre 
or lode plot. An example of a typical magnitude and phase 
plot is shown in Fig. 2-5. Very often it is not necessary to 
specify the complete frequency response emrre and only sample 
points on the curres are obtained©

The Laplace transform of Eq© (2-5) would result in an 
expansion of the system transfer function in a series of 
orthogonal complex functions© The coefficients of this series 
may be used to specify the transfer function in the same manner 
as the coefficients of Eq© (2-5) are used to specify the system 
impulse response©

This summary of methods of representing the impulse 
response and transfer function ©f a linear system will serre 
as a background for the discussion of the various identifi
cation techniques that hare been proposed in the literature©
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(b)
Time—invariant case Time-varying Case

Pig. 2-3
Typical Pole-Zero Plots

jg(t)|

0 ©
0 ' ' ©

© ©
o' : TQ c °

Fig. 2-4
Sample Points of an Impulse Response

An Example of Magnitude and Phase Plots
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2*3 Proposed Identification Techmioues

The purpose of this section is t© summarise the various 
techniques that have been proposed for solving the identification 
problem in adaptive.systems• Some of the techniques described 
have been developed with the adaptive control problem in mind, 
while others have considered the identification problem on its 
own merit* The discussion here will be from the adaptive 
control system viewpoint* All of the proposed methods are 
applicable to time-invariant or slowly-varying linear systems*

The basis for determining the impulse response of a linear 
system lies in the convolution integral

/ty(t) - j xC-T). g(tft) d^ 
-a? '

(2-9)

where x(t) and y(t) are the input and output signals respectively 
and g(ts,‘?“) is the impulse response which describes the system* 
For the time-invariant case, Uq® (2-9) becomes

y(t) - P x(7-)•■ g(.f-r> &T (2-l@a)

or9 upon a change in variable

y(t)
,<32

g(T) x(t-7) ir (2-10b)

This second formulation ©f the convolution integral is approxi
mately correct for slowly-varying systems $ i*e., systems whose 
parameters do not change appreciably during the time required 
to measure the impulse response*
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A direct graphical representation of the impulse response 
eould be obtained by simply applying an impulse at the input 
and observing the output signal* From a practical standpoint 
this scheme is unsuitable because in many cases an impulse 
applied at the input of the control system would seriously 
disrupt the normal operation of the system* Also, a system 
that can be adequately represented by a linear system for 
normal operation may often exhibit nonlinear characteristics 
for large input signals, such as impulses.

A special case of a more general result proposed by
f L \Turinv 1 is another way of obtaining a direct graphical 

representation of g(t). Fig. 2-6 illustrates Tunings method.
A known signal, x(t), is applied to the input of the system 
under test and the output signal is passed through a filter 
h(t). h(t) is designed so that its output signal is an 
estimate of g(t). The determination of h(t) is easily illus
trated if the order of g(t) and h(t) is reversed* (Fig* 2-7) 

For linear systems the order of operations is unimportant.
From Fig* 2-7 it is apparent that the signal w(t) must be an 
impulse if the signal on the far right is to equal g(t). Thus 
the function of h(t) is to convert the signal x(t) into an 

impulse. If the effects of noise in the system are neglected, 
the transfer function of h(t) is given by

_1__
X(s)

H(s) (2-11)
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of Step Functions
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The advantage of this technique is that, by using the arrange
ment of Fig. 2-6, one can obtain a direct graphical presentation 
of the system®s impulse response without the necessity of 
applying an impulse to the system.

Turin®s method of impulse response measurement is most 
easily used in interval control adaptive systems employing a 
fixed form of input signal. If the form of the control signal 
is not fixed the filter h(t) must vary with time in such a 
manner that I(s) is approximately equal to l/X(s).

An example of an interval control system employing a
control signal composed of step functions has been suggested by

(7)Braun® ' A typical input signal of this type is shown in 
Fig® 2-8. Consider the control interval beginning at t ■ 0.
The convolution integral relating the input and output of the 
system is divided into two intervals,

o
y(t) = j x(T) gCt-T”) d'7* + x(T) g(t-7") d?"

(2-12)
= 7s(t) + y^Ct)

where the first term represents the response of the system 
(for t > 0) due to its initial stored energy and the second 
term results from the step applied at t ■ ©. y (t) cannot be 
measured directly but must be computed from

yx(t) - 'y(t) - y8(t) (2-13)
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Henee it is necessary to determine the stored energy term 
y (t). This is achieved in Braun®s procedure by, so far as the 
stored energy term is concerned, approximating the unknown 
system by a model with fixed pole positions, s^® An approxi
mation to the stored energy term is then given by

ys(t) ^ ys(t) = p<j' € s3% (2-14)

The 0(.*s are picked so that y (t) is a good approximation of j s
y (t). This is achieved by choosing the <X.®s so that the first * 3
p derivatives of y“_(t) eqmal the first p derivatives of y (t)»■ s . .-.s
From Eq® (2-12), since yg(t) is continuous at t - 0, it follows
that

ys(0) * y(O-) 
ysr(o) 85 y9(o~)

y3(p) (o) = y(p) (0-)
(2-15)

Thus by measuring the first p derivatives of the output signal 
at t * and setting y^(0) - y(0-), y^,(@) = y?(©^)9 . ♦ .
yf^(©)• = y^(O-) one is able to obtain an approximation to 

y_(t) and hence to y (t), the system step response®p A
Braun proposed, at this point, to apply yx(t) to the 

input of an orthogonal spectrum analyser and use the coefficients 
of the resulting orthogonal series to identify the system® 
Alternatively, following Turim®s idea, the step response can 
be differentiated^ H(s) * s ) to obtain a direct repre
sentation of the system impulse response®
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The expansion of the impulse response in a Taylor^s series,
(8)also suggested by Braun,v ’ constitutes another means of repre

senting the system impulse response. Braun shows that one can 
compute a Taylor’s series expansion about a point t by applying 
an abrupt change in the input signal, Ax(t), at tQ and measuring 
the derivatives of the output signal just prior to, and just 
after t = t . In the example discussed by Braun Ax(t), the 

change in control signal applied at t = t , is a sum of 

singularity functions.
It is felt that here, as well as in Braun’s orthogonal 

expansion technique, the necessity of measuring the derivatives 

of the output signal imposes a serious practical limitation 

on the method.
The application of an impulse to the input of g(t), or 

the technique suggested by Turin, avoids the necessity of 
solving the integral equation Eq. (2-10). in alternate pro

cedure is. to apply a known signal to the input, measure the 
output signal, and actually solve Eq. (2-10). In general the 

exact solution is very difficult® A way of circumventing this 
difficulty has been suggested by Levine,x J Woodrow, / and 
Cooper.Instead of a continuous description of x(t), y(t), 
and g(t), these quantities are represented by sample points, 
spaced t. seconds apart. x(t) and y(t) are denoted by x(n)
.and. y(n), respectively, where, the n indicates the nth sampling 
point corresponding to the instant of time t - nt , and g(t) is



denoted by g(p) and is assumed to have the property n(p) * 0
when p<L 0 and also when p > P for some P >■ 0 where P is some 
positive integer* X and y are observed for I sample - periods* 
The results are more easily expressed if the following matrix 
notation is adopted*

y(?) g(0)
y(P+i)

©

•

[s] *
g(l)

- •

_y(Ptf)_ g(P)_

x(P) x(P-l) . * . x(@)
x(P+l)

o
x(P) x(l)

©

©

x(P+N) x(P+N-l) . . .
©

x(N)
Then

and

where

H - [x] w
'®3,:■ fej"1 W

is the inverse ©f the matrix

(2-16)

(2-17)
the

linear Independence of these eqmations it is necessary and 
siafficient that the x(n) sequence not be the solution of any
linear difference eqmation of order P ©r lowey for 
0^ n ^ I + P*

Sampling the operating signals at the inpmt and ontpmt of 
a control system^ forming the appropriate jxj”'*' and |V] matrices 

and rnsing Eq* (2-1?) is a means of identifying the characteristic 
of a linear adaptive control system*
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An identification technique which employs: ' :.5.;:a
samples of the input and output signals as well as a mathematical

• (12 )model of the unknown system has been proposed by Kalman® ;7 
Kalman choosesto describe the unknown system in terms ©f the
pulse transfer function, G(z)

G(z)
LLslL
xU)

+ a.z^1 + 
o x______ • o ^ a^i__ n

*n..

1 + b1z“1 + . . + b z n
-n (2-18)

The number n corresponds to the order of the system and is 
determined either from a priori knowledge of the system’s order 
or an engineering decision to represent the true system by an 
ntl1 order approximation.

The input and output are related by the difference equation

*k*Vk-l ♦ •".* Vk-n * Vk-l , * ••• * a *
which can be solved for y^ yielding

*k = *lVl + a2xk-2 + ••• * anXk-n ‘ b^yl^k-l

n k-n
(2-19)

h 7i m* k-n
(2-20)

At the I** sampling instant the coefficients will be denoted 
by ai(H) and b^(M). This set of coefficients and Iq. (2* 
can be used to calculate all past values of yk« The yk*s
computed in this way will be called *s and are given by

^k(N) ■l'"->*k-l * a2tH'xk-2 * + a.n xk-tt-'>i(")=rk-i-"-bn(»)j'k.

for k s 0,1,2, ..., M (2-21)
The a^(H)*s and b^(l)'s in this equation are chosen so that the 
mean square difference between the measured y^’s and the computed
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•s is minimized,, ' that is the' •'s'. and b, rs are
picked in a manner that will minimize the expression

iX

;--;kK6:
yk' “ *#*(»} (2-22)

Jr-

The a^(S)*s and b^(l)*s chosen in this manner serve t® identify
,ththe system at the sampling instant® The procedure is

repeated at ©ach successive sampling instant®
(13) ■Corbin has.proposed a method -of continuously measuring 

the location of the poles,■the■zeross and the gain factor of 
a system transfer function by analog techniques® The procedure 
will be illustrated for a first order system

><*>rrr <2-«>
where K and a are unknown® The corresponding differential 
equation is

flzlL) + , a y(t) - K x(t) 

Upon integration and solution for K and a
(2-24)

K(t)
& J j{X) dX ■ + y(t) - y(0)

(2-25)
7 :(A) dX

a(t)
x(^) dX + y(0) - y(t)

(2-26)

y(X) dA
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Eq. (2-25) and Eq* (2-26) show that, even in the first-order
case, there is eross-eoupling among the unknown constants, and,
in addition, the initial conditions of x(t) and y(t) must be
known* This is a particular drawback in the higher order
cases because it would require measuring the derivatives of
x(t) and y(t) at the beginning of each computation period.

A number of identification techniques whieh employ a model
of the physical system have been suggested. Margolis and
Leondes^^ propose the use of a ©learning model*® for system

(15)identification and Whitaker et. al. ' discuss an adaptive
flight control system employing a model that has been built
and flight tested by an H.I.T® research group. The general
approach using the model technique is the followings if the
order of the system to be measured is known, a model of the
same order is chosen; if the order is not known, the engineer

thdecides to represent the unknown system by an n order system 
where n is based upon some a priori knowledge about the system 
and perhaps a certain amount of engineering judgment. A block 
diagram showing an identification technique employing a model is 
proposed in Fig. 2-9. The difference between the output of the 
system under test and the output of the model is a measure of 
the degree of ©goodness** for the model. When the model is an 
exact replica of the unknown system the error signal will be zero. 
A parameter adjustment computer adjusts the parameters of the 
model until some function of the error signal is satisfied! 'The 

nature of the parameter adjustment computer varies with the 
application.
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Error

Fig. 2-9
Identification by Means of a Modal

Error 1

Error 2

Error N

Unknown

Model I

Model

Fig. 2-10
Identification Using N Models
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Fig# 2-9 is drawn from the identification problem viewpoint 
and the diagram emphasizes the identification operation by 
showing adjustment of the parameters of the model to track the 
system under test# In an actual adaptive control system the 
model may represent the optimum system and the computer may 
adjust several control system parameters in such a way as to / 
force the control system to follow the model# In such a system 
one cannot completely isolate the aspects of identification, 
decision, and modification for they are carried out simultane
ously#

An alternate model approach, useful if the range of 
parameter variations is known, is shown in Fig# 2-10# I models 
are used and the channel with the smallest error at any 
particular time is chosen to represent the system# If the 
range of parameter variations is large, or an accurate 
description of the unknown is desired, the number of models will 
be large, while if the control system is known to belong to a 
limited ©lass the number of models will be small#

The identification of a system can be achieved only if 
energy is supplied to the system and the response observed#
In all of the identification techniques mentioned above, the 
energy is supplied by the normal operating signals# A 
particular advantage of using the operating signals for process 
identification is that it is not necessary to disturb the normal 
performance of the system? a disadvantage is that if, in the
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course of normal operation, the input signal is identically 
zer© for any appreciable length of time, a© information about 
the system behavior can be obtained® These methods of identifi
cation are therefore limited to these cases where the input
signal is never zero for an appreciable length ©f time®

An identification technique employing erosseorrelation
which does not depend upon the operating signal has been pro-

(16 17)posed by Anderson et® *1.v 9 1 A noise signal, whose
amplitude is small compared to normal control signals* is 
applied to the input ©f the systemo The output signal is 
then crosscorrelated with the input® When the noise is 
suitably chosen, the input-output ©rosseorrelatiom function has 
the same form as the impulse response of the system under test®
A block diagram of a crosscorrelator is shown in Pig® 2-11®

The output of g(t) is related t© the input by the convolution
integral

y(t) xCt-^) giX 1) A x (2-27)

The output of the multiplier y(t) x(t«7“j) is given by

z±(t)

^OD

=>©©

x(t-T^) x(t-^1) gC Aj^) d Ax (2-28)

The smoothing filter has the effect of taking the average value 
of z(t)
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1^ (t)

r

/ ■J -<© L

E
+0©/ x(t-T\) xCt-^) g(Ai)

/«»C3D
1 (2-29)

xCt-?^) x(t-Ax) g(Ax) *■ A i

E £x(t-7^) xCt-A^. >] is recognized as the input noise auto- 

eorrelation function 0xx^i~^l^9 If *(*?■*• assumed to he 
white noise (7“*) = $ (“T") and

(2-3©)

In practice, it is never possible to generate white noise, but 
if tlie bandwidth of the noise is wide compared to the bandwidth 
of g(t), Eq„ (2<f3©) is approximately correct.. Anderson, et® al« 
discuss the use of discrete interval binary noise as an input 
test signal. Each channel of the correlator shown in Fig. 2-11 
furnishes one sample point on the impulse response.

A variation of the correlation technique, suggested by 
©coper is illustrated in Fig. 2-12. The ideal delay is replaced 
by a filter with impulse response h^(t). y(t) is again given by 
Eq. (2-27) and c©

Wi(t) - j x(t-A2) hi(A2) dA2 (2-31)

The average value of the multiplied output is
+ m

(16)

w^U) y(tj
*** r* -if E x(t-A2)x(t-A1) hi(A2)g(A1)dA1dA2 

/•» L J
__ (2-32)

^■Personal discussion with lr. !<> Sooper, May, 196©.
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Assuming a white noise input
+oo

w±Ct) y(tT f i (3-33)

Comparing Eq. (2-33) and Eq® (2-8) shows that if h^(t) is made 
equal t© <t> ^(t), the arrangement of Fig. 2-12 can he used to 
measure the coefficients ©f an orthogonal function series 
expansion of g(t). Fig. 2-12 is, in effect, a single channel
of an orthogonal spectrum analyzer.

A spectrum analyzer with a set of filters, h^(t), having 
transfer functions sin cos O) ^t, sin d/J^t, cos 0)
. . ® sin (a)cos U)Rt, . o . could be used to obtain sample

vs CO and vs otpoints for the curves of
The advantage of a correlation type identification scheme 

is that the measurement does not depend upon the presence of 
a control signal. The correlator outputs furnish continuous 
information about g(t) even if the input control signal is zero.
Also, the correlator outputs are not effected by the presence of 
normal input signals as long as the test signals, x(t), and the
normal inputs are statistically independent.
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2®A Summary and Conclusions

The methods of identifying the characteristics of a slowly- 
varying linear system that have been discussed in the last 

-■'seetiVh/May';:;.bd;'gt©a^ed':'l'n''.-t‘wr© ways | methods that depend upon 
the normal inpmt eontrol signal for system identification as 
compared to methods that make use' of a.test signal for system 
identlficatidhp'/or Methods', that'reqmire no a priori knowledge 
of the system vse methods that require a knowledge of the form 
©r order of the system®

The Organization of the material in section 2®3 followed 
the first type of classification® All of the methods proposed, 
except those employing correlation techniques, used energy 
supplied by the normal operating signals to identify the 
system® These methods are not satisfactory if the control system 
is of such a nature that the input is aero for appreciable lengths 
of time® The correlation techniques employ a noise type test 
signal and do not rely on eontrol signals to supply the energy 
necessary for. identification®

The identification methods suggested by Kalman, and Corbin, 
as well as the model techniques, all required a knowledge of 
at least the order of the system® All of the other techniques 
required no a priori knowledge of the system®

The first of the two basic requirements of an identification 
scheme mentioned at the beginning of this chapter was that the 
identification process must not disturb the normal operation
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of the system. Each of the methods mentioned above satisfies
this requirement. Ho mention has been made of the ability of
the various techniques t© satisfy the second requirement, that
of making the identification in a relatively short amount of
time. Each of the schemes discussed requires a certain minimum
time to measure, with a specified accuracy, the characteristics
of the unknown system, and this minimum measurement time is
closely related to the effects of external noise upon the
system* While Anderson et. al. 1 discuss the minimum smoothing

(9)time required in the crosscorrelator, and Levine gives an 
expression for the variance of the estimate of the impulse response 
sample points, the problem of the effects of external noise upon 
the various identification techniques has been, for the most 
part, ignored in the literature.

The effects of external noise upon th® identification of 
a linear system is currently under study at Purim® University.
While no detailed conclusions can be drawn at this time, the 
following statements can be made. The identification time is 
inversely proportional t© the accuracy demanded of the measure- 
mentf i.e. greater accuracy must be paid for by longer identifi* 
cation time. Also, the measurement time is inversely related 
to th® a priori knowledge of the system! i.e. the greater thb a 
priori knowledge, the shorter the measurement time required.
As an example, consider the limiting case where the system is 
known exactly. : Then it is not even necessary to .make a
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measurement to identify the system . ® ® identification can be 
achieved in zero time. The nature of the relationship between 
meastirement time and a priori knowledge is not known at present 
but the example just mentioned does illustrate the point that 
the ultimate rapid identification scheme must make use of all 
availablea priori knowledge about the system®

The effects of noise cannot be ignored by the engineer 
and should be one of the factors influencing the choice of an 
identification procedure for any particular application® The 
methods suggested by Braun and Corbin, which require the 
measurement of higher order derivatives, will be particularly 
susceptible to noise problems® Because of this, these methods 
are not deemed practical for most situations® All of the 
other identification techniques will work in the presence of 
noise, but a critical comparison of the various methods cannot 
be made at this time®

The aim of the identification problem, as presented in 
this chapter and as presented in the literature to date, has 
been to obtain a complete description ©f the input^output 
relationships ©fa linear system® A very important and basic 
question arises at this point® Is a complete description of 
the adaptive control system necessary? True, knowing the impulse 
response or transfer function enables the engineer to.compute 
any other properties of the system he might desire® Perhaps, 
however, it would be easier and faster to measure these other



quantities directly. Anderson et. al. have suggested
that the three quantities, gain, rise time, and overshoot, 
might serve to describe a system in so far as adaptive control 
is concerned. Is it easier and faster to measure these 
quantities directly, or is there an advantage to calculating 
these quantities from a knowledge of the transfer function or 
impulse response? These and other questions relating to the 
fundamental nature of adaptive control systems provide 
sufficient motivation for continued research in the area.
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3®Q Abstract
with the development and 

specification of analytical methods by which system per
formance can he evaluated and from which a strategy to 
achieve adaptation can he evolved®. The most common method 
©f system, evalmation is the,.mse of an index of performance 
which is 'defined as a functional relationship involving: 
system; characteristics in such a manner that the optimum 
■operating' characteristics may'be determined' from it®

In this chapter a number of indices of performance 
are reviewed proceeding from a general formulation to 
particular cases which have been treated in detail in the 
literature® A review of the literature is presented to 
establish the present status of the decision problem® 
Finally* three important limitations of indices ©f 
performance are discusseds usefulness* uniqueness* and 
selectivity®
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3.1 Introduction

Once the dynamic elements to be controlled have been 
identified or characterized, a more or less complex decision 
process must be involved in deciding how to readjust the
system.' J fhis decision process involves an index of

<■|^performance to which the present performance mnst be 
compared in order to evolve a plan of action® The physical 
means for evaluating the index of performance nay be 
instrumented into the adaptive loop directly or the system 
may be required to develop its own index of performance by 
a goal-seeking or learning process. Hence, the decision 
problem is concerned with the development and specification 
of analytical methods by which system performance can be 
evaluated and from which a strategy to achieve adaptation 
can be evolvedo In order to be of any practical significance 
of course, such methods must be capable of instrumentation.

kn index of performance is defined as a functional relationship involving system characteristics in such a manner that the optimum operating characteristics may be 
determined from it.



3.2 The Index of Performance

The notion of andindex pfi^er'f'ormanee:.;hah1already-bee?- 
defined* but before elaborating on some of the work that has 
been done on the decision problem* it will be worth while to 
comment briefly on certain ideas which mnderlie the 
f©rmulation of ah; index :©f performance. '•

The purpose of an index of performance (hereafter 
abbreviated I.P.) is to define the present, state of the dynamic 
process or elements with respect t© an optimum state thereby 
supplying information which indicates where the dynamic 
process is with respect to;this optimum. Moreover* it should 
indicate what must be done to achieve the optimum state. The 
I.P. may be either a minimumi, a maximum? a null* or simply a 
particular nnmber at the optimum® While analytically tract-* 
ables a large number of I.P® ®s are impossible to construct 
during normal system operation without disturbing the system 
excessively. Henee*r in. designing the decision portion of the 
adaptive loops the engineer may have to accept an inferior 
I.P. which does not supply all the information required but 
is easy to measure in preference to an ideal I.P« which 
supplies all the information required but is impossible to 
measure experimentally.

The nse of only one I.P. is a rather common practice in
(19) ;present day analytical design theory. However* because

of the inherent complexity of adaptive control systems* it is 
felt that more than one I.P. will be required for purposes
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of evaluating these systems® For example the use of a given 
l.P® may be very adequate t© evaluate the dynamics ©fa 
supersonic aireraft near stall conditions but totally useless 
to give a measure of the aircraft*s dynamics under level 
flight at Mach 2®©® Under such circumstances a proper 
weighting of a number of I.P0?s as a function ©f environment 
will be necessary to evaluate the aircraft's characteristics 
over the entire range of its flight envelope® In essence, this 
is goal-seeking as mentioned in Section 3®1® The system changes 
the IoP® or switches from one I®P® to another in accordance 
with some higher goal®

The most common I®P» *s used are those which employ some 
arbitrary function of system error® System error is defined 
to be the difference between the desired value of the system 
response and the actual value of the system response® 
Symbolically,

IoP® - P
where

M (3—1)

e(t) = system error as a function of time,
F = some arbitrary functional operation®

The extension of Sq. (3=1) to the multi-dimensional case 
follows by considering a number of error signals representa
tive of the same number of system aspects which are to be
controlled® For this case the I®P® becomes

IoP ®15i *F o o o (3-2)



where
e^(t) th= the i error signal for i 1,2,

As an example of (3-2) consider a dynamic process
characterized by the parameters a , a , a_ with 0(1 2 n
CX2» oeWcX}| *’ePr’®®®Bting the desired values of these

1 »

parameters, respectively® If P is chosen as a quadratic 
function for each parameter, Eq® (3-2) becomes

IoPo Ax((Yi“ai)2 + A2^2"a2^2 + + AN^N“aBp (3-3)

where the A^a^e arbitrary weighting factors of each aspect 
ofsystem performance®

In applying the concepts of dynamic programming to the
(20)optimisation of control processes, Bellman has postulated 

a rather broad ©lass of I®Po*s in terms of cost functions.
Bellman^s development will be sketched here to add insight 
into the discussion to follow® It will become apparent to 
the reader that I®P®?s presently being used in control theory 
are particular eases of Bellman®s formulation®

Consider a dynamic process shown in Fig® 3-1 And let the 
state of the process be characterised by a vector c(t) and 
let m(t) be the control or input vector® Further, let cQ(t)

o
be a function measuring the cost of deviation of c(t) from 
c@(t), and H|i(t)j be a function measuring the cost of control® 
Then the total cost function or I®P®, denoted jfe(t), m(t)] , 

becomes

represent the desired state of the process, Ge*
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Scheme for Obtaining System Error in Terms 
of Step Response
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Observe that the total cost function is compounded into two 
partsj the first is actually a measure of system error as 
discussed earlier in this section® and the second is a measure
of the amount of control effort to be exerted in driving the 
system from its present state to the desired' state* Depending 
upon the classes of functions chosen for 0 and H® the
optimization of Eq® (3-4) represents a variatioiial problem of 
greater or lesser, difficulty® .. .

For application of Bellman^s work to adaptive controls 
Merriam'1 3 has '..specialised- Eq® (3-4) to a ©ne^dimensional 
1®P® involving integrals of arbitrary functions of two system 
errors over a finite interval of time® Consider the dynamic
process of Fig® 3“2 having a single output q(0") and a single 
input m ((T)® Let t equal the present time® and consider the 
interval t £ ^ t + where is some constant® Further®
let Q(r’) and M(f“) represent the best available estimates of 
the desired output and the desired input® respectively® over 
the specified interval® Using the above definitions® Merriam 
specifies the I®Po®

♦ fm d or (3-5)

where
XOr) - arbitrary weighting factor and f (x) and f (x) 
n > , . • q m( 22)are strictly convex functions® { Mote that Merriam does

not consider the cost of control resources as. does Bellman®
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but rather incorporates it into a second error term as
indicated by the second term in the integrand of Eq_. (3-5).
Finally he specializes Eg. (3-5) by ehoosing f (x) and f (x)q m
to be quadratic functions.

The I.P. in which the functional operator F of Eq. (3-1) 
has been chosen to be the integral over all time of the square 
of systea error (abbreviated ISE) has been widely used as a
means of defining system characteristics for deterministic 

(23)input signals. This I.P. is represented symbolically 1

I.P. e '(t) dt (3-6)
-oo

For stochastic inputs this I.P. is termed the mean-square-error 
I.P., and is given by »

I.P.

Mof'e recently

lim
T-voo 2T e (t) dt (3-7)

(25) an arbitrary weighting factor has been
added to the integrands of Eqs. (3-6) and (3-7) to give

CD /
I.P. / \ (t) e2(t) dt (3-a)

>©s

and

(3-9)

respectively, where \ (t) is the arbitrary weighting factor 

and has been introduced to allow unequal weighting of response 
errors as determined from engineering considerations.

(24)
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Typical choices for the weighting factor A(t) have 
included powers of t and simple exponentials.

Other integral forms of I,Pors which have been treated 
in the .literaiur©.^^9 are ,

lof 6,
t°: e.(t) dt (3-10)

-,X.P n e(t) dt (3-11)

Further discussion of results obtained using the above I.P»*s
will be given in Section 3* 3 •

The use of the step function as a test signal for
evaluating •'electronic amplifier performance in the 1940*s

( 29 ).carried over into the area-of servomechanisms, Throughout
the 1950.*© th© use ©f step response as a means of defining 
system characteristics came to be rather widespread primarily 
because it was experimentally tractable as well as analytically 
easy to treat. As a result many X«P.*s are defined directly 
in terms of step response. For linear, time-invariant» 
lumped parameter dynamic processes, the process transfer 
function is defined completely by the process impulse response, 
step response, or frequency response, each being directly obtain 
able from the other. In terms of step response the system 
error is obtained by utilizing a model to specify the desired 
transfer function, applying a unit step function to both the 
model and the actual dynamic process, and comparing the two
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output variables. Often the model is only implied by demanding 
ideally, perfect performance® In this case, the transfer 
function of the model is unity® The scheme is depicted in 
Pig. 3-3® The system error signal obtained is then substituted 
into the I.P. chosen and the I.P. minimised with respect to the 
system parameter adjustments which are available.

With respect to step function response, it may be desir
able t© control rise time, peak overshoot, rate of decay of 
oscillations, often termed relative damping factor, steady- 
state error, time for error to become less than some particular
magnitude, which is sometimes called the solution time criterion

(30or other aspects of system performance. For example, Sehiewe 
has considered a second order system in which the natural 
frequency, the peak overshoot, and the steady-state error to 
a step function input are all controlled to equal a set ©f 
predetermined values. For the second order ease, the above 
set of parameters define?, the dynamic response of the. system 
precisely. As systems of higher order are considered, however, 
it becomes necessary to impose more constraints upon the system 
to define its dynamic response adequately. The instrumentation 
is the same for higher order systems as it is for the second 
order system. If it is absolutely necessary that rise time, 
peak overshoot, and perhaps other aspects of performance be 
controlled, this approach offers one possible way to achieve 
this control.



3.3 Discussion of Some Resultsand Examples

If, in a particular application, it is require# that a 
system have a step response which displays certain general 
characteristics, but which need not have a definite rise 
time or peak overshoot, it is possible to use an I.P. 
having the simple^orm

ooI.P. - / tn e2(t) dt (3-12)

The valne of h chosen (msnaliy an integer) will determine, 
to some extent, the type of dynamic response to be expected®
The amount of control of dynamic response available will 
depend on the number of parameters available for adjustment 
and the range Over whieh they may be adjusted. The I.P. of 
Eq. (3-12) is applicable only to those dynamic processes whose 
error for a step input goes to zero at least at the rate 
t"* ns t-^o©where A is arbitrarily small.

When it is desired to instrument the evaluation of 
this integral, it will be necessary to use some value of time T 
as the upper limit of integration. This upper limit must be 
chosen such that the essential transients due to the application 
of the step function have subsided. Otherwise, the value of 
the approximation ©f the integral to the exact value using the 
upper limit of infinity will be poor.

A large number of I.P.Js have been, and are currently 
being, investigated by a research group in the School of 
Electrical Engineering at Purdue Iniversity under Air Force 
sponsorship.^2®^ While this work is not directly concerned



wit h the application of I.P.’$ adaptive control systems, 
it will be worthwhile to review some of the results because 
of their possible applicability for the evaluation of adaptive 
controls*

The Impulse Response Area Rati© (IRAR), which is the 
ratio of positive area to negative area in the impulse 
response, was not found to be of general use. It is useful 
for second order systems, where it is directly related to 
the damping ratio, but has limited application for higher 
order systems since it does not necessarily yield direct 
information about damping in these cases. Slight modification 
of this l.P. may be of value, however, even in higher order 
systems. For example, if the area of the impulse response to 
the first zero is compared with the total area, this gives 
the peak over-shoot of the system in response to a step 
input. Also, it is a null type I.P., or, at least, can 
readily be converted to yield a null at the desired value.
This is an advantage since the optimum value is then known 
exactly. This type of l.P. shows promise for adaptive systems 
of higher order, although it is only of limited use as a general 
l.P.

The Logarithmic Decrement was found to be of no general 
use. It has significance only for second order systems.

The §omtfol Area, given by Eq. (3-1©) for n == 0, was 
found to be of no general use. It has significance only for 
second order systems.
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■ . Time Weighted. Geatrol 'Area's: given by Eq. (3«?10) for, 
n■■ X," 2:s. »:,;,; was-.found to be of ns general use. ■

The Integral■-;©f- .'the 'AbsoluteValue-' of Error (IAE) 
defined bj Bq® ■ :(3®11-) ■ was . f fnad .t© be of-- use f.or see©ad- 
order systems, bat it has inadequate selectivity to be ©f. 
general use for higher ord.er systems®

The Integral of Squared Error (ISE) defined by Eq. (3-6)
‘... ' was found to be of particular interest primarily
because it is mathematically convenient to apply® It has 
inadequate seieet.ivib^ tq be of general usefor higher 
order systems.

, - The;/'®^ :^t'r,br;r.wa.s: not/:recommended ■ as a .general figure
of merit (I.E.) because it gives rise to lightly damped 
systems. It has often been used for mathematical convenience. 

SolutionTimey'-which 'is. ^defined-as the time for the step
response.■.err'©r.;;:magnitudie^ t®:;,dr©:p-below a particular levels
was not generally recommended because it gives rise to 
higher order-. systems which are underdamped. A relatively 

. small, amplitude.;■'osciliatiqh';:may\ persist., f or..;a: long period 
of 'time-.

The Integral;of iime Multiplied By the Absolute Value 
of Er.r'o.r, (ITAE j, defined by Eq. (3“ll) for n * 1, was recom

mended as a general I.F. because it yields higher order systems 
with reasonable response eharacteristies> such as relatively 
small overshoot and a comparatively high degree of damping.



-49-

The results are not yet complete for a number of other 
I.P.’s, among them, Integral of Time Multiplied By Squared 
Error (ITSE) defined by Eq. (3-12) for n = 1, Integral of 
Squared Time Multiplied By Squared Error, (ISTSE), defined 
by Eq. (-3-12) for n = 2, and Integral of Squared Time Times 
Absolute Error, (XSTAE), defined by Eq. (3-11) for n = 2. 
Each of these I.P.’s '.seen to hold some promise, and further 
conclusions will be given later.

It should be pointed out that some of the I«P.»s which 
are not generally recommended may be useful in a particular 
application. For example, IRAR has been used in an adaptive

(Ol )comtrol system proposed and built by Aeronutronie«%J
(26)Graham and Lathrop' 1 have carried out extensive work 

on the type of step response obtained using various IoP«?s 
for systems having transfer functions of the form

where G(s) is the Laplace transform of the output and R(s) 
the Laplace transform of the input. I.P.9s which they consid
ered include Eqso (3-10) and (3-11) for the lower values of 
n, e®g., n = 0, 1, 2, 3« Examination of Eq, (3-13) reveals that 
their results are restricted to systems having only poles in 
the transfer function. That is, all the systems considered 
have a transfer function whose numerator is unity. Also in 
specifying the values of the coefficients a ,, a a.,
which will give optimum step response with respect to the 
particular I.P. used, Graham and Lathrop do not consider

1
+ a^s + 1

(3-13)



th© cross^coupling between these coefficients which exists 
for almostall physical systems* The values of the various 
system parameters which can be adjusted enter into each ©f 
the coefficients of Eq® (3-13)° As a result it may be 
necessary to adjust many or all of these parameters to 

.. change■■'©ne^.adefficient'O'-:1'' Ih practice then, the adjustment 
of all of the coefficients to their optimum values as 
dictated by themipimisatioh of the I.P« may prove impossible 
thereby requiring a compromise choice of the coefficients*
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3.4 Some Limitations of Indices of Performance

The formulation ©f what might be termed the ideal I.P. 
has not yet been done. By the ideal I.P. we imply here one 
which ean be applied to all control problems and which will 
lead to over-all system operation which is satisfactory to 
the Beer. In other words, the inexperienced systems designer 
shomld be able to apply this ideal I.Po to any problem with 
confidence that it will yield a reasonable answer. She rnse 
of any particular I.P. must be restricted to those ©lasses 
of problems in which the I»P. has been known to- give reason
able resnlts for problems belonging to that class;. Infer- 
tmmately, there does not exist any analytical means by which 
an I.P. may be selected for a given problem and be giaaran- 
teed to give meaningfwl resnlts when interpreted physically 
in terms of aetmal system response. The difficulty arises 
beeamse optimization of the system is execmted,with respect 
to the I.P. itself while the aetmal response iss.evalmated 
afterward in terms of other measmres of performance which 
have been analytically impossible t© inelmde in-the I.P.
For example, the mse of IS1 (Eq.. 3-6) to ©ptimime the step 
response ©f third and higher order systems has led t© “optimum** 
values of system parameters whieh produce a system whose step 
response has proven too oscillatory for most aj%lie.ati©ms<> In 
this example while the parameter values as obtained from opti
mizing the I.P. will render the IBS a minimum for a step in
put, they his© prodmee a system whose step response is
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unsatisfactory with respect to damping. Damping, of egurse, 
is a ?ery important measure of the quality of the step response 
of most systems,/huh-'is, 'unfortunately, impossible to express 
explicitly in an ;I.F« for higher order systems® leaee, if one 
is interested in optimizing the step response of such systems 
with respect to measures like damping, rise time, and steady- 
state err©?® the application of ISE is not to be recommended®

The ability to chose an I.P® which can be handled 
analytically and still satisfy all system specifications which 
cannot be included in the I»P® explicitly is at present a 
matter of experience® in I®P® which yields good results for 
some systems may lead to poor response for others, and the 
system^s designer must be aware of such contingencies® In a 
sense then, analytical design theory for automatic control 
systems is hot completely analytical, but requires a subjective 
analysis of the original problem specifications in order to 
proceed analytically*

IoP®«8 whieh do not give unique results, that is, unique 
values for parameter adjustments, when optimized are not of 
general use® Such situations do not normally arise when a given 
I.P. is minimized, but may arise when it is specified that the 
I®P® be maintained at or below some fixed value. For example, 
consider the system having transfer function

eTs
1

8^'.+ 2 X s + 1 (3~14)
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where X, is the parameter to be adjusted to constrain the

value of
I.P. e(t) dt (3-15)

to be between one and two for a step input® For this example* 
Graham and Lathropv ' have plotted the curve of I®P® vs® f 

which has been reproduced in Fig® 3-4* Clearly* constraining 
the I-.P. between the values of one and two leads to two values
of f0 \ However* the dynamic responses of the two systems 

will differ considerably* one being more oscillatory than the 
other® ©bserve that had the specification been to determine 
the which minimized the I®P®* then the solution would have 
been unique®

The selectivity of an I.P® is a function of its ability 
to indicate small changes in system parameters or system 
dynamic performance® As an example* the ability of various 
IoP®«s to indicate changes in the damping factor of a 
seeond=>©rder dynamic process might be considered® If small 
changes in from the optimum are reflected by large changes 
in the I.P., the I.P® is considered to be selective® The more 
selective an I®P. is, the easier it will be to use it as a 
design tool* since the optimum parameter values will be more 
sharply defined®

In summary three limitations of I.P.»s have been indicated®
The first is the usefulness, or equivalently, the applicability* 
of a given I.P® to a particular problem. It has been argued 
that the usefulness of an I®P® is some function of the original 
problem specifications and the choice of an I®P® for that
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e dt

.Ratio

• : pig.. 3”4 ..

LPs vssi/ fe?;a Normalized- Second-Order System
° (26)• (Reproduced from Graham and Lathropv ■ )



problem is largely a matter of engineering judgment based on 
previous experience. Secondly, I.P.’s which do not give unique 
results are to be avoided unless all the results but one can be 
discounted by further analysis. Finally, the problem of selec^ 
tivity is paramount if I«P®*s are to be used in adaptive control 
systems. If an I.P. is not selective t© parameter changes 
about the optimum, its use in the adaptive loop will destroy 
the purpose of the adaptive loop itself.
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4a® Abstract
The modifieation problem deals with methods and 

techniques for physically bringing the dynamic process to the 
©ptimmm or desired stateo This adaptation is achieved by 
performing- linearnonlinear, and/or time.®varying operations 
on the control signal and is termed control signal modifi
cation® eontrol signal modification results from system 
parameter adjnstments or from the synthesis of completely new 
control-signals ® i

Adaptation specifications are given in terms of decision 
requirements which give the types of adaptation to be performed 
and in terms of actuation requirements which state the types 
of adjustments to be made t© realize adaptation* ■

This chapter includes a review of a number of recent 
papers representative of the state of the adaptive control 
science® In most cases these papers are extensions and 
generalizations of the earlier work completed in this area®
The last section compares the two types of eontrol-signal 
modification and points ©at the economic and spatial require^ 
memts of each®
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4.1 Introduction

After the identification problem and the decision 
problem have been solved, the actual adjustment or 
adaptation of the dynamic process to be controlled must be 
executed. The modification problem deals with methods and 
techniques for physically bringing the complete system to 
the optimum or desired state. Modification is based on a 
knowledge of the present state of the system as given by the 
identification process and on a set of predetermined indices 
of performance as derived from the decision process. The 
latter process will implicitly include a form of the 
desired dynamic response, usually a mathematical model used 
as a standard with which the actual dynamic process is compared.

In general, the modification process may be viewed as 
computer control of a dynamic process as shown in Fig. 4”1.
The operations of the computer may range from simple arith
metic operations for the computation of indices of performance 
to adjustment of system parameters and then to the generation 
of signals used to actuate the dynamic process under control. 
Thus, if the computer controller of Fig. 4=1 is to be capable 
of performing modification over a wide range of changes in 
process dynamics and process signals and is, in addition, to 
be capable of adapting a chemical process as well as a space 
probe, the use of a computer the size of an IBM 704 might be 
required. Hence, Fig. 4-1 gives a conceptual scheme for the 
formulation of the modification problem, but is itself far
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too general to fee of any practical significance for the 
solution of the problem.

The approach to the solution of the modification 
problem presently taken by researchers working in this area 
is the one which employs control signal modification as 
depicted in Fig. 4=2. Gontrol signal modification is defined 
as the application of linear, nonlinear, and/or time- varying 
operations to the aetual system input to derive a control signal 
which actuates the dynamic process being controlled. This 
approach may be subdivided into two areas of research which 
have been treated in the literature but have not been 
distinctly defined previous to this report. These two areas 
are termed parameter adjustment and control signal synthesis.

Parameter Adjustment

This approach performs modification by the adjustment 
of the parameters of the dynamic process or a compensation 
network to satisfy the indices of performance as specified 
by the decision process. (See Fig. 4=3) Since the control 
requirements vary in time due to changes in process dynamics 
and process signals, the compensation network must have time- 
varying coefficients. This case is treated in detail in 
Section 4®3 where a literature review of the present status 
of the approach is given.
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Control Signal Synthesis

Rather than perform linear, nonlinear, and/or time- 
varying operations on the actual system input, an alternate 
approach to adapting the system by control signal modification 
utilizes the information derived from the identification and 
decision processes to synthesize a new control signal which 
is used to actuate the dynamic proeess® This scheme is shown 
in block diagram form in Fig® 4-4® It is to be expected that 
the *®signal synthesizer*® in the system will be comprised of 
linear, nonlinear;, and time-varying elements which may be 
digital and/or analog devices® This ease is also treated 
in Section 4®3 where a literature review is included®
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&®2 Adaptability Requirements

Before embarking upon a detailed treatment of the two 

means for achieving control signal modification, it will be 
worth while to review some of the underlying concepts and 
ideas from which the modification problem arises® Such a 
review will also aid the reader in understanding the 
motivation for the various approaches to the problem taken 
by different authors® These ideas and concepts are embodied 
in a set of adaptability requirements or specification's which 
plays an integral role in the formulation of the modification 
problem® Adaptability requirements fall into two categoriess 
the first dealing .with the types of system changes to which 
it is- desired to adapt, and the second delineating the types 
of adjustments to be made to achieve adaptation® These 
requirements will be termed decision requirements and.

actuation requirements0 respectively®

Decision Requirement's

The physical realization of adaptation cannot be 
initiated until a decision has-been made as to the types of 

changes to which the system is to adapt® These types of 

changes are categorized ass
1® Gh&nges in process dynamics®

2® Changes in the statistics or deterministic 
character of the signals present in the 
dyE<amie process®
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3® Changes in the type of internal and 

external disturbances present in the 
dynamic process®

More generally, these changes may be viewed as changes in 
the system^s environment®

In any practical application the system may be called 
upon to ada-pt to any one or any combination of the types 
of changes listed above® Once this specification has been 
made, the choice of just how to achieve adaptation to the 
different changes must be selected® This leads naturally to 
the specification of actuation requirements.

Actuation Requirements

The diversity of applications of adaptive control 
systems mandates the subdivision of actuation requirements 
into the following three classes which represent the current 
approaches to adjustments for realizing adaptation® These 
eases ares

1® Adjustment to optimum operating points®
2® Adjustment of system parameters to achieve 

a desired dynamic response according to 
predetermined indices of performance®

3® Adjustment of system signals to cause a
desired response according to predetermined 
indices of performance®

As in the ease of decision requirements, any practical adaptive 
control configuration may be called upon to satisfy any one or 
any combination of the above actuation requirements®



Case 1 requires knowledge ©f the desired operating 
points® For example, consider control ©f a chemical process®
Once the transients have subsided, the requirements of control
are essentially those■of maintaining steady-state operating 
points, e®g®, temperatures, pressures, and flow rates, to achieve 
the desired quantity and quality of the process products®
Adaptive control in this case would he concerned with 
achieving and maintaining the desired steady-state operation 

in a minimum time: with ;a minimum.of loss'in output products®' ' 
&ase 2 is "actually an extension" of- Case" 1 and is con- 

corned with '-control in order to achieve a desired dynamic , 
response rather than a steady-state behavior® An example 
in point, here would be the adjustment of the parameters of 
a radar detection system to maximise the signal—to-noise rati© 
in the output : And at the same time minimise integral-square 
error t© a ramp input:in the presence of:sporadic atmospheric 
disturbances and changes in the types of objects: being tracked® 
That is ' the '-.system: Should possess enough adaptability to. . 
track ■ a., high altitude “reconnaissance 'plane5 as ■ well as it/dbes ' 
a space vehicle despite the. presence of"noise inputs whose 
statistics aritime-varying® Clearly, :.this 'ease deals with 
adjuptment of1;'system parameters themselves "rather than system

signals, although it" is obvious that adjustment of system:. '..

parameters'will alter: the behavior of .signals® 'The use vof ,a 

mathematical model specifying the optimum adjustment of., 
system, parameters to.,achieve the desired, dynamic response;: 
is implicit in'Case ; ?® '
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Case 3 is in contrast to Case 2 because it deals with 
altering the signals present directly, rather than attempting 
to adjust parameters of the system*. In many applications it 
may be impossible to alter the character ©f the. dynamic process 
®r ©fa compensation scheme' in order to'achieve -optimum operation,® 
Under such circumstances, adaptation can be realized by devel=- 
oping new signals which may be used as corrections to those 
already present or as alternate sources ©f excitation for 
the dynamic process. Since adjustment is made so that the 
actual output of the process follows a desired response, the 
presence of a model for the dynamic process is explicit in 
this case.
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4.3 Sontrol Signal Modification

laving defined control signal modification and reviewed ■
the requirements which underlie adaptation* we now examine the
current solutions proposed for the modification problem. The
emphasis here will be on the more recent developments, more
particularly, on work completed within the last two years.
For a detailed bibliography of the research done in the
adaptive control area the reader is referred to a paper by 

( oo }Stromer.v ' The presentation of the material here will 
parallel the subdivision of control signal modification into 
the two areas of research as given in Section 4°1. It will 
become apparent as the work is presented that almost without 
exception the authors rely on the use of only one index of 
performance as a means of evaluating system behavior. As the 
adaptive control science progresses, it is felt that the use 
of more than one index of performance will be necessary in 
those cases where more than one aspect of system performance 
is to be controlled.

Parameter Adjustment

One of the most noteworthy efforts in this area is
(33)presented in a paper by Anderson, et. al. ' The system 

which is shown in Fig. 4-5 utilizes the impulse response 
area rati© (See chapter III) as the index of performance.
A detailed study of this method as applied to a second-order 
system gave very good results. The technique provides means 
for the system to adjust its parameters for optimum dynamic 
response by using a null-type index of performance.
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(nL\KalmanKJt*J optimizes the complete system by calculating 

the pulse transfer function and adjusting parameters in order 
to achieve zero error in minimum time for a step .input* The 
pulse transfer function is used as an approximation to the 
system impulse response. The system is restricted severely
because only step inputs can be handled.

Margolis and Leondes^^ employ a “learning model** in

a parameter tracking adaptive control configuration. The
scheme is shown in the block diagram of Fig. 4-6.• The same
signal is applied to both the learning model and the physical
process whose outputs are compared to obtain an error signalo
A function of this error is used to adjust the parameters of
the learning model. The purpose of the adaptive loop is to
track the physical process parameters continuously as they
change in order to supply information to the controller
programmer which then adjusts the feedforward and the feedback
controllers, and the prefilter to achieve a prescribed dynamic

(3 5)response. The method of steepest descent ' is used to adjust 
parameters. The paper treats only the first order physical 
processes, but w®rk, to extend the method to higher order 
processes is under consideration.

The problem of applying techniques from dynamic pro
gramming' 1 to realize parameter adjustment is considered

(36)by Bellman and.Kalaba. , ' The authors illustrate the 
concepts by considering a process which is governed by the 
inhomogeneous ?am der Pol equation
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x' * j/te (x? -' 1) X.r(t'), 0 £ t < T, (4-1)

The adaptive loop ii called upon to maintain the process near 
the state x - 0$ x. ■= O'^'bjr adjustisg , The function r(t) 
is a random ‘•function' whose' 'statist!cal: prop-drtids..'are not - 
completely known at the outsets As the process - Unfolds^. the . 
adaptive loop is able to obtain more information about the 
statistioai'•properti@s.-' of rt:t) and- tKereforeimprove the 
ad|;hs:tmenf" of v^:: toi:; maintain.'-ijhe.'-desired ■•st'ate;'of the process. 
The particular example considered is. basic in'dVs driving s''-'- 
relaxation oscillations in vacuum tube oscillators and inj
-multivibratpre>:'v-; '' ' ' • •

•••' /37S'. •

Chang ■‘■'has utilized Z-1ransform -methods to achieve 
parameter adjustment. The problem of maintaining a parameter 
at a prescribed value or at some unknown.extremal value is 
considered. The index of performance used for maintaining 
the parameter at a prescribed value is rms error; that for y 
extremil“seeking? syi'fims is least reduction .in the parameter.
The author considers the problems associated with finite 
measuring: timis phobahle error.of measurement^5and effects of 
large changes or disturbances in the parametei1, being controlled.

Control Signal Synthesis

As pointed out earlier^ it maybe impossible to perform 
modification by parameter adjustment In a large number of 
applications. This situation will arise in those cases where 
system parameters must be measured and controlled indirectly
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because the dynamic process has n© physical adjustments avail
able. It will also arise in those cases where the adaptation 
requirements are so severe that adjustment of the parameters 
of a compensation scheme is also inadequate to account for 
all contingencies. The application of control signal synthesis 
has provided a powerful means of performing modification under 
the above conditions.

The philosophy of control signal synthesis as presented 
in Section 4.1 is the foundation upon which the research efforts 
reviewed below are predicated. A. number of the plans proposed 
do not consider constraints on the control variable to prevent 
saturation. As a result, their applications are limitedo

However, in contrast to the work done in the parameter
adjustment area, the research done in the control signal
synthesis area has been concerned with the overall system
response as well as the response of the adaptive portion of
the system. Little research effort has been devoted t© the
response of the overall system in the former area.

($)Braua’s v '' method makes use of the Maclaurin series 
expansion for the dynamic process impulse response, the process 
forcing function, and the process output. With this knowledge, 
the adaptive loop proceeds to synthesize a new signal which 
when added to the actual process forcing function will constitute 
the necessary correction to force the process output to follow 
the desired process output exactly. The corrective signal is the 
form of a sum of a finite number of singularity functions and
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includes an impulse whichp of course^, if applied will violate 

the linearity of the dynamic process. The procedure is repeated 
every T seconds where T is the amount of time necessary to 
determine whether ©r not a change has occurred in the process 
impulse response© A recursion relation is developed from 
which the coefficients of the terms in the corrective signal 
are computed by digital means© The effects of computation 
time and computation errors are not considered© Moreover,
Braun does not state the source from which the desired process 
reponse is obtained©

An extension of the concepts of dynamic programming has
(38) -been made by Merriam 1 to obtain an optimum adaptive control 

configuration which employs time«=varying gains in a feed~ 
forward and feedback scheme to achieve modification© A
modified least squares index of performance is postulated^, and 
dynamic programming procedures are applied to determine what 
the dynamic process input must be in order that the actual 
process output will approximate the desired process output in 
the least squares sense© It is found that the optimum process 
input can be derived from the desired process response and the 
actual process response through time^varying gains© Unfortu->

i® time= must be obtained

a set of simultaneous nonlinear differential equations© ■ In 
(39)his thesis' ' Merriam considers third and higher order

dynamic processes t© which the above scheme can be applied



Ifowever, only for first-order processes does he consider 
constraints on the process input®

Freimer^0^ has also applied dynamic programming notions 

to a class of control processes which obey a differential 
equation of the form

x(t) + A(t) x(t) = y(t) (4-2)
where x(t) is a real s-dimensi©nal control vector and A(t) 
is a known s x s matrix function of time® The problem is one 
of choosing y(t) to minimize an error functional. Stochastic 
and deterministic control situations are treated and then 
specialized for a quadratic error functional to illustrate the 
theory®

The papers reviewed in this section were selected with 
the intent of summarizing the present status of the modification 
problem® They represent the more recent results and in most 
cases are extensions and generalizations of the earlier efforts 
in this area.

It is/ interesting to observe that no work has been done 
on the stability analysis of any of the proposed modification 
schemes® Clearly, the question of stability will, of necessity, 
arise in the evaluation of any closed-loop control configuration® 
Since the adaptive loops employed in these systems are at best 
nonlinear, stability analysis will not be simple® Indeed, 
many of the configurations employ computation as a control 
element of the adaptive loop® Before any stability analysis
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can be effected, a suitable characterization of that portion 
of the adaptive loop must be developed*

In addition, more analytical and experimental work is 
needed to compare the overall system response or behavior 
with that of conventional control systems*
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4.4 A Comparison of Parameter Adjustment and Control
Signal Synthesis

In summarizing the results of this chapter, it will be 
worth while t© give a brief comparison of the two current 
approaches to the solution of the modification problem. In 
principle the two are equivalent since they are both particular 
eases of the general notion of control signal modification. 
However, there do exist differences which make one approach more 
facile than the other in a given application. A particular 
class of applications in which control signal synthesis is 
to be preferred to parameter adjustment has already been 
indicated in Section 4®3° Even where parameter adjustments 
are available, they may not provide the flexibility necessary 
to obtain the type of dynamic or steady-state behavior required 
by the indices of performance. The type of control signal 
modification to be used in any engineering application will 
depend in part on the type of adaptation to be performed.
In addition, it will depend on economic and spatial consid
erations as discussed in the following three paragraphs.
Under severe adaptation requirements, a combination of the two 
approaches may prove to be the only solution.

Present day adaptive control technology places heavy 
demands on digital and/or analog computation. The questions 
of economies and space requirements are explicit in the choice 
of the computational facility which forms the nucleus of the 
adaptive loop. One is faced with the choice between a large 
digital facility capable of accurate, high-speed computations
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and an analog facility which would employ nonlinear and time- 
varying operations with consequential losses in accuracy# In 
addition to representing a large financial investments the 
digital facility will generally be quite heavy and require 
considerable space# Hence* unless a small* special purpose* 
solid-state digital computer capable of performing the 
required operations can be built* adaptive control systems 
employing digital computation are impractical for airborne 
applications# On the other hand* if moderate losses in 
computing accuracy can be tolerated* analog facilities can be 
built which would keep weight and size at a minimum# In some 
instances a compromise engineering design utilizing both 
digital and analog devices may be possible# Clearly* weight 
and size are crucial factors if the system is to be airborne#

In addition* a choice between rapid and real-time 
computation must be made with the latter offering more 
simplicity of design* but again poorer accuracy than the 
former# Here again a compromise engineering design whieh 
sacrifices accuracy and speed for size* weight* and cost 
may prove necessary#

By way of a comparison* the system of Anderson* et. al#^^ 
proves to be far easier to instrument than Merriam*s^^ 

configuration which will require a high-speed digital facility 
for the solution of the differential equations from which the
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time-varying gains are determined. However, the range of 
environmental changes over which Merriam’s system will 
adapt is far greater than that which the system of Anderson, 
et« al., spans.
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