
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

11-1-2018

Scheduling Transformation and Dependence Tests
for Recursive Programs
Kirshanthan Sundararajah
Purdue University, ksundar@purdue.edu

Milind Kulkarni
Purdue University, milind@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Sundararajah, Kirshanthan and Kulkarni, Milind, "Scheduling Transformation and Dependence Tests for Recursive Programs" (2018).
Department of Electrical and Computer Engineering Technical Reports. Paper 493.
https://docs.lib.purdue.edu/ecetr/493

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146430?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F493&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Scheduling Transformations and Dependence Tests for
Recursive Programs

KIRSHANTHAN SUNDARARAJAH, Purdue University, USA
MILIND KULKARNI, Purdue University, USA

Scheduling transformations reorder the execution of operations in a program to improve locality and/or
parallelism. The polyhedral model provides a general framework for performing instance-wise scheduling
transformations for regular programs, reordering the iterations of loops that operate over dense arrays
through transformations like tiling. There is no analogous framework for recursive programs—despite recent
interest in optimizations like tiling and fusion for recursive applications. This paper presents PolyRec,
the first general framework for applying scheduling transformations—like inlining, interchange, and code
motion—to nested recursive programs, and reasoning about their correctness. We describe the phases of
PolyRec—representing dynamic instances, applying transformations, reasoning about correctness—and show
that PolyRec is able to apply sophisticated, composed transformations to complex, nested recursive programs
and improve performance through enhanced locality.

Additional Key Words and Phrases: Dependence Analysis, Scheduling Transformations, Locality, Recursion

1 INTRODUCTION
Over the past few decades, researchers have developed a large catalog of transformations for regular
programs—loop-based programs that operate over arrays and matrices—such as loop tiling, loop
interchange, loop fusion, and unrolling [Kennedy and Allen 2002]. In recent years, many analogous
transformations have been developed for irregular programs that use recursion to manipulate
lists, trees and graphs [Jo and Kulkarni 2011, 2012; Rajbhandari et al. 2016a,b; Sakka et al. 2017;
Sundararajah et al. 2017]. As in the regular world, these transformations restructure and reschedule
the operations of a program to enhance locality by moving computations that touch the same
pieces of data closer together and exploit parallelism by locating independent computations.
Transformations that reschedule the operations of a program are not necessarily safe: if, for

example, operation y reads from a location x writes to, then these operations must be performed in
the same order to produce the correct result, and transformations that make y execute before x are
unsound. Hence, a transformation like tiling that is safe for one programmay not be safe for another.
In the world of loops and matrices, frameworks such as the polyhedral model [Feautrier 1992a,b]
tackle this problem through a unified representation of the schedule of computations in a program,
the dependences in the program, and transformations of those schedules, allowing compilers to
soundly apply loop transformations to programs [Bondhugula et al. 2008]. However, no such unifying
framework exists for analogous transformations in the irregular world—different optimizations each
use different, ad hoc dependence analysis frameworks to drive the transformations [Rajbhandari
et al. 2016a; Sakka et al. 2017; Weijiang et al. 2015], when dependence analyses are performed at all.
This paper presents PolyRec, the first framework for reasoning about, and soundly applying, a
large class of transformations on irregular, recursive programs—the first steps towards an analog
of the polyhedral framework for irregular programs.

Authors’ addresses: Kirshanthan Sundararajah, School of Electrical and Computer Engineering, Purdue University, 465
Northwestern Avenue, West Lafayette, IN, 47906, USA, ksundar@purdue.edu; Milind Kulkarni, School of Electrical and
Computer Engineering, Purdue University, 465 Northwestern Avenue, West Lafayette, IN, 47906, USA, milind@purdue.edu.

2018. 2475-1421/2018/11-ART1 $15.00
https://doi.org/

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

https://doi.org/

1:2 Kirshanthan Sundararajah and Milind Kulkarni

1.1 Dependence analysis frameworks
Following the structure of polyhedral compilers, we can think of a dependence analysis framework
as consisting of several elements. This paper presents novel instantiations of these elements that
work for recursive programs. These elements are:

A representation of the iteration space Because both loop-based and recursive programs
execute the same operation(s) repeatedly, an analysis framework needs an instance-wise
representation of the operations of a program, representing the dynamic instances of each
operation rather than just the static code. In the polyhedral framework, this representation
for a loop nest is a system of linear inequalities forming a polyhedron capturing the loop
bounds combined with a scheduling function enumerating the instances (integer points)
within that polyhedron. PolyRec targets “perfect” nesting of general iteration constructs
(recursive functions nested within loops [Jo and Kulkarni 2011] or vice versa, or even recur-
sion nested within other recursion [Sundararajah et al. 2017]). It uses multitape finite state
automata to represent the instances of statements of a recursive program—each instance is a
tuple generated by the automaton—with lexicographic order representing the schedule of
computation.

A representation of scheduling transformations In the polyhedral framework, transfor-
mations such as loop interchange can be represented as linear transformations of the instance
polyhedron, leading to a different schedule of computations when the polyhedron’s points
are enumerated. PolyRec represents scheduling transformations as multitape finite state
transducers, mapping each instance to another instance, with the new lexicographic order
representing the new schedule.

A representation of dependences and a dependence test To ensure the soundness of trans-
formations, a dependence analysis framework must represent any dependences in a program
in a form that enables a dependence test: checking whether a particular transformation violates
any dependences. In the polyhedral framework, dependences are represented with polyhedra.
The dependence test applies the transformation to these polyhedra to determine if any depen-
dent iterations get reordered. In PolyRec, dependences are represented by witness tuples that
capture sets of dependent instances. PolyRec’s dependence test applies the transformation
transducer to these witness tuples and applies a decision procedure to determine if any
dependences are violated—if none are, the transformation is sound.

Code generation Finally, the transformed schedule must be synthesized back into code that
can be efficiently executed. PolyRec performs code generation by incrementally applying
transformations to the original code—in essence, mimicking the transformations applied to
the iteration space automaton.

PolyRec is a first step towards a general framework for reasoning about and transforming
arbitrary combinations of loops and recursion. To demonstrate the utility of PolyRec, we show how
several specific transformations from the literature—inlining, interchange [Jo and Kulkarni 2011;
Sundararajah et al. 2017], code motion [Sakka et al. 2017], and strip-mining—can be represented
using PolyRec’s multitape transducers. This allows these transformations to be arbitrarily combined
and composed, generalizing their prior use.
In particular, we show that PolyRec can automatically apply, check, and synthesize fairly

sophisticated transformations of nested recursive programs, including transformations that are
equivalent to combinations of point blocking [Jo and Kulkarni 2011] and traversal splicing [Jo and
Kulkarni 2012].

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:3

1.2 Contributions
In summary, the contributions of this paper are:

(1) We develop a new framework, PolyRec, that can (a) lift perfectly nested recursive programs
into a high level, instance-wise representation; (b) represent and apply scheduling transforma-
tions on that representation; (c) represent dependences between instances of computations;
and (d) test whether these dependences are violated by transformations. PolyRec is the first
general scheduling transformation framework for recursive programs.

(2) We present instantiations of PolyRec to apply the composition of several basic transforma-
tions of recursive programs (inlining, interchange, strip mining, and code motion) and to
generate witness tuples—and hence check the soundness of transformations—for certain
types of programs.

(3) We show that we can use PolyRec to automatically analyze and soundly transform nested
recursive programs to improve locality and hence performance.

1.3 Outline
The rest of the paper is organized as follows. Section 2 provides background on instance-wise
analysis and transformation of recursive programs (including related work). Section 3 gives a high
level overview of PolyRec’s operations. Section 4 lays the groundwork for explaining PolyRec
in more detail by defining a core language of nested recursion that we target. Section 5 explains
PolyRec’s multitape automaton representation of iteration spaces for nested recursion. Section 6
presents the use of transducers to capture scheduling transformations, and shows how several
well-known transformations can be expressed as transducers. Section 7 describes the witness
tuple representation of dependences and shows how this representation can be used to check the
soundness of transformations; this section also describes an analysis for generating witness tuples
for certain kinds of programs. Section 8 presents PolyRec’s code generation strategy. Section 9
evaluates PolyRec by analyzing and transforming complex, nested-recursion programs and showing
that these transformations yield performance benefits. Finally, Section 10 concludes.

2 BACKGROUND
This section provides a brief background on the premise of schedule transformations for iteration
constructs (loops and recursion), an overview of recent work on analysis and transformations for
recursive programs, and a sketch of other related work.

2.1 Schedule Transformations
Performing scheduling transformations on code is one of the fundamental ways of improving its
performance: changing when an instruction executes can have deep impacts on locality (changing
when a memory location is touched can transform a cache miss into a cache hit) and parallelism
(moving operations around can increase the number of independent instructions that can be
executed simultaneously). Crucially, not all schedules of computation are legal. If statement s1
accesses a memory location l and statement s2 accesses that same memory location, with one of
those accesses being a write, this dependence constrains the possible legal schedules. In all legal
schedules of computation, s1 and s2 must appear in the same order to ensure that they produce the
correct result. The dependence must be preserved.
Traditional analyses, such as reaching definitions, consider the static behavior of statements,

without considering that statements that execute within a loop or recursive code have different

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:4 Kirshanthan Sundararajah and Milind Kulkarni

1 for (i = 0; i < N; i++)
2 for (j = 0; j < N; j++)
3 A[i+1][j] = A[i][j] //s1

(a) Doubly-nested loop

1 for (j = 0; j < N; j++)
2 for (i = 0; i < N; i++)
3 A[i+1][j] = A[i][j] //s1

(b) After loop interchange

1 for (i = 0; i < N; i++)
2 rec(i, root)

4 void rec(int i, Node n)
5 if (n == null) return
6 n.x += i //s1
7 rec(i, n.right)
8 rec(i, n.left)

(c) Recursion nested in loop

1 void rec(Node n)
2 if (n == null) return
3 for (i = 0; i < N; i++)
4 n.x += i //s1
5 rec(n.right)
6 rec(n.left)

(d) After recursion/loop interchange
Fig. 1. Examples of schedule transformations

behavior for each iteration. Consider the loop in Figure 1a, with a single statement s1. Reaching defi-
nitions analysis would (correctly) determine that s1 depends on itself, and hence would (incorrectly)
determine that a transformation such as loop interchange was not legal.
Looking deeper, we see that each time s1 executes, it takes on a different value for i and j from

the loops, and hence the dependences are more structured than “the statement depends on itself.”
An instance-wise analysis of this loop would parametrize the statement: s1(i, j), and would find that
the statement executing at instance (i, j) writes to the same location that a statement executing at
instance (i + 1, j) reads from. Armed with this information, a transformation framework like the
polyhedral model [Bondhugula et al. 2008; Feautrier 1992a,b] would correctly determine that loop
interchange was legal (Figure 1b).
The same considerations apply when considering code that mixes loops and recursion, as in

Figure 1c. Here, the function rec recurses over some tree structure, and the code s1 executes once for
each combination of i and n (where n essentially represents a node in the tree). Analyses that look
for dependences in statements that access recursive structures (e.g., [Ghiya et al. 1998; Hummel
et al. 1994; Larus and Hilfinger 1988; Rugina and Rinard 2005]) will correctly say that there is a
dependence from that statement to itself. But an instance-wise analysis of this code shows that s1
executing at (i,n) has a dependence with (i+1,n) (the second statement has a different value for the
loop induction variable, but executes at the same node in the tree), and hence can be interchanged to
produce the code in Figure 1d [Jo and Kulkarni 2011], yielding better performance due to increased
locality in the tree.

2.2 Instance-wise Analysis for Recursive Programs
As mentioned above, instance-wise analysis is common for regular programs that deal with nested
loop structures that operate over dense arrays. However, when it comes to irregular data structures
like trees and non-loop control structures like recursion, there has been far less work. Perhaps the
most comprehensive treatment of instance-wise analysis for recursive programs comes from Ami-
ranoff et al. [2006] (building on prior work by Cohen and Collard [1998] and Feautrier [1998]).
The key challenge in instance-wise analysis is providing a scheme that uniquely names the

individual dynamic instances of a static statement. (For example, in the world of loops, an instance
can be named by providing the values of the induction variables at that dynamic instance). Amiranoff
et al. [2006] generate a context-free language representation of a recursive program that uniquely
labels each dynamic instance of a statement using a trace string. Using these strings they can define

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:5

a dependence analysis that determines the set of dependent (dynamic) instances in a program,
using that information to parallelize the program.
Amiranoff et al. [2006]’s work is general in some ways, but has several drawbacks when con-

sidered for use in a transformation framework. Their work does not consider how to represent
scheduling transformations beyond parallelization (including simple transformations such as code
motion or inlining). While they handle complex control structures such as loops nested inside
recursion, they do not consider nested recursive methods, nor transformations over that nested
structure such as interchange [Jo and Kulkarni 2011]. As they do not consider representing these
transformations, they also do not provide a theory for reasoning about their correctness.

In recent years, there has been increasing interest in developing transformation frameworks for
recursive programs. These have ranged from frameworks to support interchange and blocking of
nested loops and recursion (as in the example in Figures 1c and 1d) [Jo and Kulkarni 2011, 2012;
Weijiang et al. 2015] to frameworks that target fusing multiple recursive traversals together [Pe-
trashko et al. 2017; Rajbhandari et al. 2016a,b; Sakka et al. 2017] to those that transform multiple
recursive functions nested inside one another [Sundararajah et al. 2017]. While some of these only
provide informal arguments for correctness, others provide dependence tests that can be used
to automatically determine when these transformations break dependences [Rajbhandari et al.
2016a,b; Sakka et al. 2017; Weijiang et al. 2015]. However, these frameworks are ad hoc: they do
not provide general ways of reasoning about combinations of recursion and loops, nor general,
composable ways for reasoning about transformation correctness, instead focusing on specific
techniques to prove the correctness of specific transformations.
This paper combines the best of both worlds. As in Amiranoff et al. [2006], we provide a

means of labeling every dynamic instance in a nest of recursive methods. (By transforming loops
into tail-recursion, we can also uniformly handle combinations of loops and recursion.) We go
further in providing machinery for representing and composing transformations on recursive codes
(including code motion and interchange). Finally, we define dependence representation that can be
used to reason about transformation soundness. We thus partially generalize the prior work on
transformations for recursive programs.1

2.3 Other Related Work
There are numerous frameworks that reason about nested loops with affine loop bounds and affine
array subscripts [Allen and Kennedy 1984; Bondhugula et al. 2008; Feautrier 1992a,b; Lam et al.
1991; Pugh 1991; Wolf and Lam 1991; Wolfe 1989]. As mentioned above, these approaches focus on
dense loops over dense arrays, so are not applicable to our domain. There has been work done in
the past to generalize the loop-based model to handle non-affine loop bounds and subscripts using
symbolic expressions [Pugh and Wonnacott 1994; van Engelen et al. 2004], and to handle sparse
matrices and arrays [Strout et al. 2003, 2016, 2014; Venkat et al. 2015], but these approaches still
only target loops, and hence do not generalize to the recursive constructs we consider.

3 OVERVIEW OF POLYREC
This section gives a quick overview of PolyRec’s representations and mechanisms. Sections 4
through 6 elaborate upon and formalize these facets of PolyRec.

1Because we focus on perfect nesting, we do not handle fusion, though we do handle Sakka et al. [2017]’s code motion. We
also do not handle the cases of Weijiang et al. [2015]’s Tree Dependence Analysis that require SMT reasoning. However,
our compositional framework means that we do handle situations like combining code motion, inlining, and interchange,
which no prior work does.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:6 Kirshanthan Sundararajah and Milind Kulkarni

3.1 Running Example
Figure 2a shows a simple program using nested recursion. The “outer” recursion (the function
defined in line 4) is actually a loop from 0 to N that has been transformed into a tail-recursion (this
is how PolyRec handles loops). The “inner” recursion (defined in line 9) is a recursive function
that traverses a binary tree. Within the inner recursion, an element of an array is accessed via the
induction variable of the outer recursion and is used to update fields of the current node the inner
recursion is visiting. Note that this example illustrates several aspects of the programs PolyRec
targets: (i) nested recursion; (ii) perfect nesting—only the inner recursion performs any work, while
the outer recursion merely enumerates an induction variable; and (iii) accesses to both regular and
irregular data structures through the induction variables and global heap variables. Note that this
example has poor locality: while a given element of A is accessed repeatedly while traversing the
tree rooted at T, the tree is fully traversed once for each element.

Figure 2c shows the result of applying a series of transformations using PolyRec (including some
cleanup to produce more readable code). These transformations, combined, give similar behavior to
applying point blocking [Jo and Kulkarni 2011] and traversal splicing [Jo and Kulkarni 2012]. Here,
a 4-element block of A traverses the tree simultaneously. At each node of the tree, this block visits
the node as well as its immediate children before continuing traversal. In this way, both chunks of
A and the tree rooted at T stay in cache, providing better locality.

To break down the transformations a little more concretely, first, the method outer was strip
mined (Section 6.3.4) to break it into two loops, outer1 (at line 4) and outer2 (at line 18); outer2
performs groups of 4 iterations from outer1. Second, the method innerwas changed from post-order
(as it was in Figure 2a) to pre-order using code motion 6.3.1. Then the call inner(i, n.left, j) was
inlined to operate on the left child before continuing recursion (resulting in two statements in
inner and two new recursive calls) (Section 6.3.3) and code motion was applied again. Finally,
inner and outer2 were interchanged (Section 6.3.2) so that inner iterates over the nodes in the tree
before outer2 iterates over its 4-element block of A. PolyRec can synthesize this complex series of
transformations, and check it for soundness, in a single representation.

3.2 Iteration Space Representation
The first task in PolyRec is to capture the iteration space of a piece of code. This means finding a
way to name each dynamic instance of a statement (be it a bounds check or a statement accessing
an array or a tree), and capture the ordering relationship between them. This is analogous to the
polytope representation of loop iteration spaces in the polyhedral model.
PolyRec uses a regular relation representation (i.e., a tuple of strings generated by a multitape

finite automaton) for its iteration space. Each statement in a k-deep nest of recursion is named
using a an instance tuple: a k-string (a k-tuple of strings), with each element in the k-string defining
a location in the iteration space for that dimension (read: level of recursion).

Figure 2b shows themultitape automaton that generates the instances for the (pre-transformation)
running example. The loop boxed in red represents the “iterations” of outer: each call to outer
appends a new r1 to the first dimension. The loop boxed in blue represents the iterations of
inner, two calls, which append either r l2 or r

r
2 to the second element. Finally, we represent the two

non-recursive statements of the two recursions: a transition that adds t1 to the first dimension,
representing switching to the inner recursion, and a transition that adds s1 to the second element,
representing executing the compound statement in inner. Because this execution is a complete
instance, this transition moves to an accept state (i.e., generates an instance tuple).

The instance tuple can be flattened (by concatenating its elements), and alphabetical order then
provides the iteration order of the dynamic statement instances. While we could carefully select

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:7

1 A[N] = /∗ initialize global array ∗/;
2 node T = /∗ initialize tree ∗/;

4 outer(int i, node n)
5 if (i < N)
6 inner(i, n) //t1
7 outer(i + 1, n) //r1

9 inner(int i, node n)
10 if (n != null)
11 inner(i, n.left) //r l2
12 inner(i, n.right) //r r2
13 n.x += A[i] //s1

15 main()
16 outer(0, T)

(a) Repeatedly traversing a tree
[r1,ε]

[t1,ε]

[ε,rl2] [ε,rr2]

[ε,s1]

(b) Multitape automaton for the above code.

1 A[N] = /∗ initialize global array ∗/;
2 node T = /∗ initialize tree ∗/;

4 outer1(int i, node n, int j)
5 if (i < N)
6 inner(i, n, j)
7 outer1(i + 4, n, j)

9 inner(int i, node n, int j)
10 outer2(i, n, j)
11 if (n != null && n.left != null)
12 inner(i, n.left.left, j)
13 if (n != null && n.left != null)
14 inner(i, n.left.right, j)
15 if (n != null)
16 inner(i, n.right, j)

18 outer2(int i, node n, int j)
19 if (j < 4 && (i + j) < N)
20 if (n != null)
21 n.x += A[i + j]
22 if (n != null && n.left != null)
23 n.left.x += A[i+j]
24 outer2(i, n, j + 1)

26 main()
27 outer1(0, T, 0)

(c) After applying transformations.
Fig. 2. Running example

the alphabets so that alphabetical order would correspond to the correct order, for convenience,
PolyRec instead defines a lexicographic order on the alphabet. In our running example, the ordering
is (t1, r1, r l2, r

r
2 , s1). Note that the order of the first two symbols corresponds to the order of the

statements in the outer recursion, and the order of the next three symbols corresponds to the
order of the inner recursion. Hence, we see that instance [r1r1t1, r l2r

r
2 s1], which corresponds to the

iteration space position i = 2 in the outer dimension and node = root.left.right in the inner dimension,
occurs before the instance [r1r1t1, s1] (which executes at the root node of the tree) because the inner
recursion is postorder. Note that PolyRec does not attempt to bound the iteration space, but merely
to order it. This is because most “bounds” in recursive applications are input-dependent and hence
not amenable to analysis.

3.3 Transformations
A scheduling transformation preserves which instances execute but merely restructures the it-
eration space so that the instances execute in a different order. In the polyhedral model, these
transformations are represented as linear transforms of the iteration space polytope. In PolyRec,
we represent a transformation as a multitape finite state transducers that rewrite instance tuples
(with k elements for k-dimension nests) to other instance tuples (that may have a different number
of dimensions). This transducer allows us to translate any instance in the original space to a new

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:8 Kirshanthan Sundararajah and Milind Kulkarni

instance in the transformed space, and the ordering in this new space (determined by lexicographic
order) represents the new schedule of computation.
For example, a code motion transformation, which changes the order in which, say, the three

calls and statements in inner execute, can be represented as a rewrite that changes the symbols
r l2, r

r
2 , and s1 so that they sort in a different order. Alternately, we can (as we do in PolyRec) simply

change the ordering. Note that this reordering, while seemingly simple, can change a post-order
traversal to a pre-order traversal. The new order of (t1, r1, s1, r l2, r

r
2) means that [r1r1t1, r l2r

r
2 s1] now

occurs after [r1r1t1, s1]. More complicatedly, we can implement interchange, swapping the inner
recursion and the outer recursion by building a transducer that rewrites the call symbols from one
dimension of the instance tuple to another.

Because PolyRec’s transformations are represented as finite state transducers, they can naturally
be composed (multitape FSTs are closed under composition) to produce compound transformations.

3.4 Dependences
When transformation transducers are applied to the regular relations representing a PolyRec
iteration space, the order (and hence schedule) of instances change (indeed, that is the point of
the transducer!). Not all schedules are valid however: if two instances where one is dependent on
the other change their order, the new schedule will produce incorrect results. Thus, to determine
whether transformations are sound, PolyRec (conservatively) determines whether any pair of
dependent instances can change their order when pushed through a transformation transducer.

PolyRec’s representation for pairs of dependent instances is a witness tuple. This is a 3-tuple of
regular relations that captures pairs of dependent instances in three parts: (i) the common prefix
of a pair of dependent instances; (ii) the suffix(es) of the first of each pair; and (iii) the suffix(es)
of the second of each pair. This tuple, which we write < Rα , (Rβ ,Rγ) > functions as a generator
for instance pairs: each pair can be formed by choosing an element from Rα , then appending an
element from Rβ to form the first instance and an element from Rγ to form the second instance.
In our running example, there are dependences from any instance that executes at a particular

node n of the tree to any later instance that executes at the same node n of the tree (but with a
different value of i). Hence, the witness tuple for this program is:

< [(r1)
∗, (r l2 |r

r
2)

∗], ([t1, s1], [(r1)
+t1, s1]) > .

So, for example, [r1r1t1, r l2r
r
2 s1] is dependent on [r1t1, r

l
2r

r
2 s1].

PolyRec provides a decision procedure for determining whether a witness tuple is preserved by
a transformation (intuitively, whether all pairs generated by the tuple preserve their order when
transformed by a transducer), allowing us to check the validity of arbitrary composed transforma-
tions. In our running example, the witness tuple is preserved by the proposed transformation. Note,
however, that a different transformation that turns outer into a post-order traversal—the analog of
loop reversal—by swapping t1 and r1 in the symbol ordering would not be sound. It would reverse
dependences generated by the witness tuple (including the one given above).

3.5 Code Generation
The final step of PolyRec is to generate code from a transformed program. This is straightforward:
because each transformation on the iteration space automaton is analogous to a specific transfor-
mation on recursive code, and each transformation preserves the nested recursive structure of
the code, we can simply apply the transformations one by one to the original code—each of these
transformations has well-specified rewrites at the level of source code, as they have been presented
in the literature before. Note that any individual transformation may be unsound (meaning that the
code generator may temporarily produce incorrect code); PolyRec’s dependence test guarantees

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:9

v ∈ InductionVars ::= i1 | i2 | . . . | ik
r ∈ RecursiveMethods ::= r1 | r2 | . . . | rk

h ∈ HeapVars ::= h1 | h2 | . . .

“Outer” recursions : r j (i1, i2, . . . , ik){bd } : p
“Innermost” recursion : rk (i1, i2, . . . , ik){ibd } : p

p ∈ BoundsCheck ::= fb (i1, i2, . . . , ik) | true
c ∈ Calls ::= r j (i1, i2, . . . , finvup(i j), . . . , ik) : p

t ∈ TransferCall ::= r j+1(i1, i2, . . . , ik)
s ∈ Stmts ::= scomp(i1, i2, . . . , ik , h1, h2, . . .) : p

bd ∈ Body ::= c∗ t c∗

ibd ∈ InnerBody ::= (s |c)∗

(a) Language for defining tree traversal

1 A[N] = /∗ initialize global array ∗/;
2 node T = /∗ initialize tree ∗/;

4 r1(i, n) : (i < N)
5 r2(i, n)
6 r1(i + 1, n)

8 r2(i, n) : (n != null)
9 r2(i, n.left)
10 r2(i, n.right)
11 scomp(n, i, A) //scomp = n .x+ = A[i]

(b) Expressing Figure 2a in core language
Fig. 3. Target language and example.

that the composition of all the transformations is, eventually, sound. This process produces the code
in Figure 2c.

4 CORE LANGUAGE
Our eventual goal is for PolyRec to be able to handle all programs that manipulate arrays and
pointer-based structures using loops and recursion. However, as a start, PolyRec operates on a
subset of these programs: perfectly nested recursion. Informally, PolyRec targets programs with the
following structure:
(1) The control structures are a set of nested recursive functions. Each function takes as arguments

a series of induction variables, one associated with each recursive function. A given recursive
function can do one of three things: (i) call itself recursively, manipulating its induction
variable during the recursive call; (ii) perform a (read only) test to determine whether the
recursion should end (i.e., whether the function should return); (iii) make a single call to a
different recursive function, moving to a deeper level of the “nest”. Each recursive function
should appear in this nest only one time (i.e., there is no mutual recursion). Analogizing with
loops, operations (i) and (ii) are the equivalent of the loop bounds, and operation (iii) is the
equivalent of executing the loop body.

(2) The last recursive function in the nest has no other recursive functions that it can call (due to
the requirement of non-mutuality of recursion). This “innermost” function can execute other
statements that allow the overall recursive structure to perform computations. Unlike “bounds
check” statements, these computations can write to the heap. Note that these computations
can depend on all the induction variables from all the recursive functions.

These restrictions mean that all the “real work” is performed in the deepest-nested recursive
function, while all the other recursive functions work to provide different values for the induction
variables (which may, for example, effectively traverse a tree or a list) that the statements in the
inner function can use during computation. This is a direct analog for perfectly nested loops, where
the outer loops enumerate the values of induction variables while the innermost loop performs the
actual computation. Indeed, the way that PolyRec handles loops is through a simple transformation
to a tail-recursive function. A perfectly-nested loop nest that is transformed in this way will form a
recursion nest that matches the two restrictions from above.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:10 Kirshanthan Sundararajah and Milind Kulkarni

To formalize these restrictions, Figure 3a provides the syntax of a simple core language that
captures the nesting structure of k recursive methods. Figure 3b shows our running example
expressed in this core language. We note a few quirks of our language:
(1) Functions, calls, statements, etc. are predicated by bounds checks.2 Recursive methods are

predicated with bounds that affect all statements and calls within the method. They are
checked when the method is called and the method returns immediately if the check fails.
(These are the “loop bounds,” such as n != null.) Statements and calls can be further predicated
with bounds checks (we do not write out predicates that are true). The bounds checks are
pure functions of the induction variables in the program and do not read from memory that
can ever be written to by statements in the recursion nest. (This is analogous to allowing
loop bounds like i < N but not A[i] < B[j]).

(2) Our language does not have explicit return statements. Predication on the recursive method,
or predication of individual statements and calls, can substitute for returns. This restriction
simplifies our handling of some code transformations, as described in Section 6. It is not
fundamental to PolyRec.

(3) Each “outer” recursive function, r j with j < k consists of a series of recursive calls (to itself),
as well as exactly one transfer call that invokes the next recursive function, r j+1.

(4) Each recursive call updates the recursive method’s induction variable using simple uninter-
preted pure functions called finvup (for example, λi . i + 1 or λn. n.right). All other arguments
to the recursion remain constant.
At this stage, we do not constrain what these functions do, because PolyRec’s iteration
space representation (Section 5 and transformations (Section 6) are independent of these
updates. The specific form of these induction variable updates only affects the behavior of
any dependence analysis, which PolyRec can be parameterized on.

(5) The innermost recursion, rk can also perform computational statements. Computational
statements are compound statements. They can, in fact, be a series of statements themselves,
including with control flow. They can, unlike bounds checks, access writeable memory,
allowing computation by storing intermediate results in the heap. As a result, the innermost
recursive method (the only one that contains computational statements) can be thought of
as a sequence of compound statements and recursive calls. This treatment is similar to that
of Sakka et al. [2017].
The exact structure of the computations performed by a computational statement only affects
the behavior of any dependence analysis PolyRec is instantiated with (Section 7), so for now
we leave them as uninterpreted operations, scomp.

5 REPRESENTING RECURSIVE ITERATION SPACES
The unsurprising first step in any scheduling framework is designing a representation to capture
the schedule. In traditional scheduling settings, like instruction scheduling, representations like
Directed Acyclic Graphs of instructions suffice. However, in instance-wise settings, where we are
concerned with the dynamic instances of static statements, more sophisticated representations are
required: DAG representations rely on using the static instructions to “name” each operation, while
in instance-wise analyses we must find a way to name each dynamic operation. In the case of the
polyhedral model [Bondhugula et al. 2008; Feautrier 1992a,b], this representation takes the form
of a polytope. The polytope is a system of linear inequalities across multiple dimensions, where
each dimension represents one loop in the nest, and the inequalities capture the loop bounds. The

2Note that the code in Figures 2a and 2c do not use predication, but rather use explicit if statements—this is a straightforward
desugaring that we apply for exposition purposes.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:11

integer points within that polytope represent the individual instances, and they can be named with
a multidimensional vector. The order of computations is represented by a simple lexicographic
ordering of these vectors.
In the case of recursive programs, the story is not quite so simple. Amiranoff et al. [2006] use

control words to name instances of recursive programs. They transform a recursive program into
a context-free language (using the straightforward mechanism of replacing functions with non-
terminals and statements with terminals, plus some special handling for loops) that generates
strings. Each string naturally captures a trace of one possible execution of the program. Because
each dynamic instance of an operation in a program can only be produced by one possible trace
through the program, these strings uniquely name each instance in the program. By carefully
choosing the alphabet, ordering on the control words is also lexicographic ordering.
While Amiranoff et al. [2006]’s work seems sufficient for handling our problem of naming and

ordering the instances of nested recursive programs, it is not quite suitable for our setting, since,
unlike them, we are interested in transformations of nested recursive spaces. In particular, the
control word abstraction for instances creates a single string for each instance, without concern for
the distinctions between dimensions. This limitation means that their automata are not suitable for
applying transformations that focus on particular dimensions or the interaction between dimensions
(as we will see in Section 6). To overcome this problem, PolyRec uses a novel representation, based
on regular relations that are generated by non-deterministic multitape finite automata [Rabin and
Scott 1959].

5.1 Preliminaries
Intuitively, a non-deterministic, multitape finite automaton is akin to a regular NFA that reads over
multiple input tapes, rather than one. The transition function, rather than providing transitions
between states when observing a single symbol from Σ∗ (i.e., transitioning when seeing a symbol,
or non-deterministically transitioning on ε) instead transitions based on a tuple of symbols drawn
from (Σ ∪ ε)k that matches symbols from k tapes.
More formally, let Σ be an alphabet of symbols, with Σ∗ representing the set of words and ε

denoting the empty word. For two wordsw1,w2 ∈ Σ∗,w1 ·w2 is their concatenation. A k-word is
a k-tuple from the set (Σ∗ ∪ ε)k . For two k-words, v = [v1,v2, . . . ,vk] and w = [w1,w2, . . . ,wk],
their elementwise concatenation, v ⊙w is [v1 ·w1,v2 ·w2, . . . ,vk ·wk].
We can thus define:

Definition 5.1. A non-deterministic, k-tape finite automaton is a 6-tuple A =< k, Σ,Q,q0, F ,E >
where:

• k is the number of tapes
• Σ is the finite alphabet
• Q is a finite set of states
• q0 ∈ Q is the start state
• F ⊆ Q is a set of accept states
• E ⊆ Q × (Σ ∪ ε)k × Q is a finite set of labeled transitions (each labeled with a k-tuple of
symbols and/or ε)

A recognizes the k-word v ∈ (Σ∗ ∪ ε)k iff there exists a path q0a1q1a2q2 . . . anqn where q0 is the
initial state, qn ∈ F , for each 0 < i ≤ n, < qi−1,ai ,qi >∈ E, and v = a1 ⊙ a2 ⊙ · · · ⊙ an

The relation R(A) ⊆ (Σ∗ ∪ ε)k is the set of k-words recognized by A, and is a regular relation; all
regular relations have multitape automata that recognize them [Kaplan and Kay 1994].

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:12 Kirshanthan Sundararajah and Milind Kulkarni

The class of regular relations is closed under concatenation, union, and Cartesian product. Regular
relations are also closed under projection. Suppose R is a k-dimension relation, and 0 < i ≤ k :

R ⊖ i := {[w1, . . . ,wi−1,wi+1, . . . ,wk] | ∃w : [w1, . . . ,wi−1,w,wi+1, . . . ,wk] ∈ R}

In other words, we can “remove” a dimension from a regular relation. This can extended to projecting
out multiple dimensions, R ⊖ I , in the obvious way. Another important closure property for regular
relations is composition:

R1 ◦ R2 := {[w1, . . . ,wk+l−2] | ∃w : [w1, . . . ,wk−1,w] ∈ R1, [w,wk , . . . ,wk+l−2] ∈ R2}

which allows us to “match up” words from two relations to form a new relation. Note that com-
position itself composes: we can repeat composition to match up arbitrary dimensions from two
regular relations to create a new regular relation.

5.2 Capturing Instances with a Multitape Automaton
PolyRec uniquely names and orders instances of statements in recursive programs using k-tuples
of symbols generated by a k-tape automaton, where k is the number of recursion dimensions in
the source code. The intuition behind PolyRec’s labeling is straightforward: we are interested in
naming the instances of statements that perform computation that could incur dependences (i.e.,
any statement that reads or writes from the heap)—statements that cannot incur dependences are
irrelevant, since they can be executed in any order without affecting correctness.3 Each statement
that executes does so at a unique combination of call stack and static statement location (since our
language replaces loops with recursion). Hence, this information is sufficient to uniquely name
each dynamic instance.
We can readily construct a multi-tape finite automaton A that enumerates a k-tuple of strings

representing every possible call stack and static statement for a program. Let |S | be the number of
compound statements in the innermost recursion. Let k be the number of recursive methods in the
program. Let |Ci | be the number of recursive calls in recursive function ri .

A is a 6-tuple, < k, Σ,Q,q0, F ,E >, defined as follows:
• k is simply the number of dimensions of the loop nest.
• Σ is the union of the following set of symbols:
– {si |0 < i ≤ |S |}. One symbol per compound statement in the program, with the ith
compound statement getting the symbol si

– {ti |0 < i < k}. One symbol per transfer call in the program (note that there are k − 1 total
such calls).

– {r ji |0 < i ≤ k ∧ 0 < j ≤ |Ci |}. One symbol per recursive call in the program, with the jth
recursive call made by the ith recursive function labeled r ji .

• Q has k + |s | states: {q0,q1, . . .qk−1} ∪ {qsi |0 < i ≤ |S |} The first set of states are associated
with the recursion levels, while the second set of states are associated with the compound
statements.

• q0, the start state, is, simply, q0.
• F is {qsi |0 < i ≤ |S |}. In other words, every state associated with a compound statement is
an accept state.

3Note that we do not consider control dependences in this paper. Control dependences are either part of the predicates
on statements or embedded in control structures that are part of compound statements in the innermost recursion. In the
former case, our language does not allow predicates that depend on writeable heap data, so this control dependence is
independent of the order of computation, while in the latter case, the scope of control dependence does not escape outside
the compound statement, so can be ignored.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:13

• E includes the following edges. For notational convenience, we will let the transition label
ℓi [x] be a k-tuple with ε in every dimension except dimension i , which has the value x .4

– {< q0, ℓi [r
j
i],q0 > |0 < i ≤ k ∧ 0 < j ≤ |Ci |}. In other words, a self loop with the label

ℓi [r
j
i] for the jth recursive call from the ith level of recursion. Note that this label is only

non-ε in dimension i .
– {< qi−1, ℓi [ti],qi |0 < i < k}. In other words, a sequence of edges from q0 . . .qk labeled
with the transfer calls. Each call only adds a symbol to the dimension of its recursion level.

– {< qk , ℓk [si],qsi > |0 < i ≤ |S |}. In other words, a transition from qk to the state associated
with each compound statement, labeled with that compound statement’s symbol.

This construction procedure produces an automaton that produces the regular relation RA . Each
dimension of the relation corresponds to one recursion level. The set of strings generated by each
dimension is a sequence of recursive calls (that stay at that recursion level) followed by a transfer
call that signals the end of that recursion level. The set of strings generated by the innermost
recursion, at the last dimension, is a sequence of recursive calls followed by a single compound
statement. Note that the “flattened” language of RA , which we will call LA corresponds to strings
that represent all possible dynamic statement instances as a call stack (with the “transfer” recursive
call that begins the execution of a level of recursion distinguished from recursive calls that stay at
that level of recursion) plus the static statement in the innermost recursion. If the symbols of Σ are
ordered by the order the calls and statements appear in each recursive function, it is also clear that
the lexicographic ordering of the strings in LA corresponds to the order in which their respective
instances would execute.
Note that this automaton does not consider bounds checks in any way: it generates an infi-

nite relation. Nevertheless, any real execution of the program, which requires that all recursive
functions terminate, will generate a finite subset of RA , whose flattened, ordered set of strings
can be embedded in the (infinite) ordered sequence of the strings of LA . Hence, RA is a sound
overapproximation of the set of dynamic instances of a program (and their order)—and, indeed, is
the only sound thing to do if we cannot reason about recursion termination.

Remark. The language LA we can derive from flattening RA is not particularly different from the
language of control words defined by Amiranoff et al. [2006]. Amiranoff and Cohen note that while
they use context-free languages to generate their control words, for their programs, the languages are
actually regular.

We note that all the automata we build share a common structure: a series of “loops” capturing
the recursive calls at state q0, then a sequence of transfer transitions representing the end of each
recursion dimension, followed by a set of final states representing the compound statements in
the innermost recursion. Indeed, because of the close correspondence of this structure to the call
structure of nested recursion, any relation R that generates the iteration space for perfectly nested
recursion can be captured with an automaton of this structure.

6 REPRESENTING SCHEDULING TRANSFORMATIONS
Armed with a representation for the iteration space, described in Section 5, the next step for
PolyRec is to provide a representation for scheduling transformations of the iteration space. A
scheduling transformation provides a new order of execution for instances, and can be used to, for
example, improve locality. Scheduling transformations in the polyhedral framework are represented
using transformations of the iteration space polytope [Bondhugula et al. 2008]; transforming one
polytope into another creates new loop bounds (because the polytope boundaries change) and
4For example, in a two-dimensional nest, ℓ1[r 11] = [r 11 , ε], while ℓ2[s1] = [ε, s1].

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:14 Kirshanthan Sundararajah and Milind Kulkarni

a new schedule (because the lexicographic enumeration order of the points inside the polytope
changes). Interestingly, these transformations can even change the number of dimensions of the
polytope to implement optimizations such as strip mining and tiling.
PolyRec uses multitape finite state transducers [Kaplan and Kay 1994; Rabin and Scott 1959] to

represent its transformations (Section 6.1). Transducers are naturally composable, meaning that
PolyRec can synthesize compound transformations that apply multiple rewrites to a recursive loop
nest, analogous to multiplying multiple transformation matrices to synthesize a single polytope
transformation in the polyhedral model (Section 6.2). Finally, PolyRec provides support for gener-
ating transducers that apply specific transformations to nested recursion: code motion, inlining,
strip mining, and interchange (Section 6.3).

6.1 Transformations as Multitape Transducers
A scheduling transformation is a bijective function that maps instances in one iteration space to
instances in a different, transformed iteration space. Of course, not all such functions are useful to
consider as transformations. We would like scheduling functions to meet the following criteria:

• The co-domain of the scheduling function should also be a regular relation of strings. This
means that PolyRec can keep iteration spaces in the world of regular relations and rea-
son about schedules using flattening and lexicographic ordering—the universe of PolyRec
iteration spaces will be closed under scheduling transformations.

• Scheduling transformations should be easily composable—it should be possible to combine
multiple transformation functions to produce a composite function that transforms an input
schedule to an output schedule.

• Scheduling transformations should preserve perfect nesting: if an iteration space is perfectly
nested, applying the transformation should result in a new perfectly nested space.5 Note that
this means that the transformation should not alter the general structure of the iteration
space automaton—a series of self loops at q0 representing all the recursive calls in different
dimensions, a sequence of transfer transitions, and a set of final states representing the
computations of the innermost recursion.

• Transformation transducers should be order-free rewrites. This is a structural restriction
that we place to support a decidable dependence test (Section 7). In short, there are two
restrictions: (i) any state in the transducer that has an input transition accepting a recursive
symbol (on any tape) must also have transitions that accept all other recursive symbols6;
and (ii) any such state must have a transition to a tail: a sequence of states that accepts the
transition call symbols one after another, followed by states that accept any of the innermost
compound statements. These conditions combined essentially mean that the transformation
should be able to rewrite the recursive calls in any order it wants; consuming a recursive
call off of one input tape cannot preclude either consuming recursive calls on other tapes
or ending the rewrite by entering the tail. This general structure is easy to maintain for
transformations that preserve perfect nesting. Figure 4a gives an example of what one of
these order-free rewrites looks like. Note that both “looping” states have rewrites for [r1, ε].

To satisfy the first two properties, PolyRec usesmultitape, non-deterministic, finite-state transduc-
ers to represent scheduling transformations. These multi-tape automata act as string rewriters, and
can rewrite the (multi-dimensional) strings representing one iteration space into (multi-dimensional)
strings from another iteration space.

5Not all scheduling functions that meet the first two requirements meet this third one (indeed, well-understood transforma-
tions like fission break this requirement). But PolyRec currently only handles perfect nesting.
6Either directly or through an ε transition.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:15

A multi-tape transducer is just a specific way of thinking about a multi-tape automaton where
some subset of the tapes are consider “input” tapes—the multi-dimensional string inputs to
the transformation—and another subset of the tapes are considered “output” tapes—the multi-
dimensional string outputs to the transformation. As with all multi-tape finite automata, these
transducers define regular relations.
Consider an input iteration space with k dimensions over symbols (calls and statements) Σ,

RL ∈ (Σ∪ ε)k . A transformation that reschedules it to k dimensions with new symbols, Σ′ would be
a transducerT ∈ (Σ∪ ε)k × (Σ′∪ ε)k . We can useT as a functionT : (Σ∪ ε)k → (Σ′∪ ε)k defined in
the obvious way, provided thatT ’s first k dimensions are a superset of RL (makingT total) and that
each tuple in RL only “matches” a single tuple in T ’s second k dimensions (making T a function).

Remark. The properties required for T to be used as a function are, in general, undecidable for
multitape finite automata [Griffiths 1968]. However, we build our transformations in a constructive
manner that makes it straightforward to see that T acts as expected.

We can think of an edge label in a transformation transducer T as having the following form
(we show a 2-dimension to 2-dimension transformation, but this generalizes in the obvious way to
multiple dimensions):

[i1, i2] → [j1, j2]

This transition rewrites the symbols [i1, i2] from the input tape into [j1, j2] on the output tape
(alternatively, we could view this as a four tape transition with the label [i1, i2, j1, j2]).

Applying a transformation transducer is straightforward: we simply project out the output
dimensions of the transducer, and apply ε elimination to simplify the resulting multitape automaton.
The result is an automaton that produces the transformed iteration space. Note, though, that it is
important that the transformation be implemented as a transducer, rather than simply giving the
transformed iteration space. We are not just interested in the final schedule of computation, but
how we got there: which specific instances in the original schedule got mapped to which specific
instances in the transformed schedule7. It is this information that allows us to check the soundness
of schedules (Section 7). This also means that any transformation transducer must not only rewrite
one iteration space to another, but do so faithfully—it should correspond to the way instances in
the original program are mapped to instances in the transformed program. The transformations
we present in Section 6.3 all do this translation faithfully, although in general there is no way for
us to automatically verify this for an arbitrary transformation.

Example. Figure 4a shows a transformation transducer that inlines the call inner(i, n.left) from
Figure 2a, with Figure 4b representing the transformed iteration space. (Section 6.3.3 explains how
this transducer would get constructed) Consider what the actual inlining transformation does:
inner(i, n.left) got replaced with n.left.x += A[i] : n.left != null; inner(i, n.left.left) : n.left != null;
inner(i, n.left.right) : n.left != null. In the iteration space, we see how that gets captured with, for
example, [t1, r l2r

r
2 s1] being rewritten to [t1, r

lr
2 s1].

6.2 Composing Transformations
Our process for composing transformations is straightforward. To apply one transformation, we
take the input automaton and construct the necessary transducer that applies the transformation
(see Section 6.3 for specific examples of these constructions). We project out the output tapes of the
transducer to generate a new iteration space automaton, as described in the previous section.
7By way of analogy, in the polyhedral model, an interchanged iteration space polytope can easily be formulated; but the
fact that interchange is produced by a specific linear transformation also captures how specific instances are mapped from
the original iteration space to the interchanged space.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:16 Kirshanthan Sundararajah and Milind Kulkarni

1

[r1,ε] → [r1,ε]

2[t1,ε] → [t1,ε]

[ε,rl
2] → [ε,ε]

[ε,rr
2] → [ε,rr

2]

3[ε,s1] → [ε,s1]

4 5[t1,ε] → [t1,ε] 6[ε,s1] → [ε,s1’]

[ε,rl
2] → [ε,rll

2]

[ε,rr
2] → [ε,rlr

2]

[r1,ε] → [r1,ε]

1

[r1,ε]

[t1,ε]

[ε,rr
2]

3[ε,s1]

2

4[ε,s1’]

[ε,rll
2]

[ε,rlr
2]

(a) Transducer implementing inlining of inner(i,
n.left).

(b) Projecting the output tapes of Figure 4a, yield-
ing a new iteration space automaton.

Fig. 4. Inlining using transducers.

Because the transformation transducer preserves perfect nesting, this new iteration space au-
tomaton looks, from the perspective of PolyRec, no different than a valid iteration space automaton
generated from a piece of input source code. So we can simply repeat this process of generating a
new transducer and applying it to compose transformations.

We note two important things about this process. First, every time a transformation transducer
is applied to an iteration space automaton, we can reflect that transformation in the original
input code (e.g., by applying the usual inlining transformation to a piece of code). In this way, the
PolyRec transformation framework keeps the iteration space automaton and the underlying code
in sync with each other: as we apply transducers to generate new automata, we apply regular code
transformations to generate the corresponding code (Section 8 elaborates on this approach).

Second, while the transformed iteration space automaton captures the new schedule of computa-
tion, by itself, it loses the mapping of the original iteration space to the transformed space. Without
this mapping, it is not possible to tell if dependences are violated: we cannot tell if any dependences
in the original space are “flipped” in the transformed space. Thus, while the transformations are
being applied, the original sequence of transducers that represent the transformations are saved,
and composed using multitape automaton composition (see Section 5.1). Hence, after a sequence of
transformations are applied, in addition to the transformed code, PolyRec has a transducer that
maps the input automaton (the original code) to the output automaton (the fully transformed code).
As we will see in Section 7, this is sufficient information for PolyRec to test whether dependences
are violated.

6.3 Representing Specific Transformations
In previous sections we have presented the machinery to represent and compose transformations.
In this section we provide four well-defined transformations—code motion, recursion interchange,
inlining, and strip mining—and methods to construct their respective transducers. These basic
transformations are simple, but powerful enough to construct transformations such as point block-
ing [Jo and Kulkarni 2011] (a combination of strip mining and interchange) and traversal splicing [Jo
and Kulkarni 2012] (a combination of all four transformations) when combined in the right way.
For each transformation, we describe the basic change the transformation makes to the iteration
space, and provide a procedure for constructing a transducer in PolyRec that implements the
transformation. Transformations are applied one at a time in PolyRec (so each transducer is built

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:17

1

[r1,ε] → [ε, r2]

2
[t1,ε] → [t1,ε]

[ε,rr2] → [rr1,ε]

3
[ε,s1] → [ε,s1]

[ε,rl2] → [rl1,ε]

Fig. 5. Transducer implementing interchange of first and second dimensions.

starting from a perfectly-nested iteration space), but the composition of transducers is used to
check transformation soundness (Section 7).

6.3.1 Code motion. As its name would suggest, code motion simply reorders the statements in
the code around. In non-innermost recursions, this changes the order of the recursive calls and
the transfer calls, while in the innermost recursion, this changes the order of the recursive calls
and leaf compound statements. Note that because code motion applies within each dimension, it
does not change the recursive structure of the iteration space. Note that code motion reorders the
execution schedule, so can break dependences.
The transducer representing code motion looks exactly the same as the multitape automaton

representing the iteration space with output tuples same as the input ones at every edge of transition,
with one-to-one replacements of symbols in the input alphabet with symbols in the output alphabet;
the output alphabet merely has a different lexicographical order than the input one. Because
PolyRec represents the lexicographic order separately, it does not explicitly build a transducer for
code motion; it just records the new lexicographic order. Section 3.3 gave an example of how code
motion might be used to change a post-order recursion to a pre-order recursion.

6.3.2 Interchange. Interchange is a seemingly-complex transformation—changing the nesting
order of recursion—with a simple corresponding transducer. As a code transformation, interchange
is well-understood for loops [Allen and Kennedy 1984], and interchange of loops and more general
recursion [Jo and Kulkarni 2011] and general recursive methods [Sundararajah et al. 2017] have been
studied in the literature. The transducer for interchange is straightforward to construct. Figure 5
shows the transducer for interchanging first and second dimensions of the code in Figure 2a. To
interchange dimensions i and j , the transducer begins with a single state with a set of self-transitions
that (a) rewrite every recursive call in dimension i to dimension j, and vice versa; and (b) leave
recursive calls in other dimensions in their original dimension. We then add a tail of transitions
that leave all transfer and compound statements alone. Note that this transformation is obviously
order-free as defined above. Like code motion, interchange changes the schedule of computation,
so can break dependences.

In our example, transition [r1, ε] → [ε, r2] switch r1 from dimension one to two, and transitions
[ε, r l2] → [r l1, ε] and [ε, r r2] → [r r1 , ε] switch r

r
2 and r l2 from dimension two to one.

6.3.3 Inlining. Inlining is a standard compiler transformation that nevertheless forms an in-
tegral part of more sophisticated transformations that we want to apply to recursive programs,
such as traversal splicing [Jo and Kulkarni 2012]. While applying the transformation directly to
code is straightforward, it is slightly more tricky to construct the transducer that captures this
transformation (an example of which is in Figure 4a).

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:18 Kirshanthan Sundararajah and Milind Kulkarni

Our construction for inlining only applies to the innermost dimension, due to the perfect
nesting requirement (though note that other dimensions can be essentially inlined by composing
interchange, then inlining, then interchange again). For the innermost dimension, we specify which
recursive call c should be inlined. We then duplicate all the states in the iteration space automaton,
creating a new recursive state and a new set of tail states. For the tail states, we leave identity
rewrites for all the transfer statements, but for transitions for compound statements s4 produce
rewrites that map them to new copies of those compound statements s ′i (representing the code that
was inlined). For the recursive state, we keep self-loops with identity rewrites for non-innermost
recursive calls. We then add the following transitions between the original recursive state qr and
the new recursive state qr ′ :
(1) A transition from qr to qr ′ that rewrites the inlined call c to ε : [ε, r l2] → [ε, ε] in our example.
(2) For each innermost recursive call in the original dimension, add a transition from qr ′ back to

qr that rewrites that call into a new recursive call (representing the inlined versions of those
calls). In our example, that creates new recursive calls r l l2 and r lr2 .

Note that, as expected, inlining increases the number of calls and compound statements in the
innermost recursive call. Unlike code motion and interchange, inlining on its own does not change
the schedule of execution—but instances that used to be labeled with strings of the form (rl |rr)

∗si
may now be labeled with strings of the form (rl l |rr l |rr)

∗(si |s
′
i).

6.3.4 Strip Mining. While inlining as implemented in PolyRec only applies to innermost re-
cursions, we present another inlining-like transformation that can apply to any recursion that
are loop-like (i.e., they only have a single recursive call—though that call may be pre-order or
post-order): strip mining. Strip mining is a well-known transformation for loops that is a precursor
to loop tiling [Wolfe 1989]; it also appears in transformations for recursive codes [Jo and Kulkarni
2011, 2012]. We show how PolyRec can represent the transformation as a transducer.

Conceptually, strip mining looks like inlining a single recursive call multiple times, then collecting
those calls into a new recursive function in a new dimension of recursion. In other words, strip
mining is essentially inlining a “linear recursion” (recursion expressible as an affine loop) multiple
times and expresses the inlined piece of code as a new linear recursion which get called from the
original one. In the below presentation, strip size is the number of times original recursion gets
inlined. A general procedure for constructing strip mining transducer is parameterized over the
strip size. Following steps are taken to construct the transducer in Figure 6:

Replicate states and transitions We replicate all the states and transitions as many times as
strip size except the dimension that gets split.

Shift dimensions We shift all transitions corresponding to the dimensions occurring after the
dimension that gets split to one lower In this example, we shift dimensions using transitions
like [ε, r r2] → [ε, ε, r r3], [t1, ε] → [ε, t2, ε] and [ε, s1] → [ε, ε, s1].

Add transfer statements We need new transfer statement for the newly constructed dimen-
sion due to strip mining; we add the transition [ε, ε] → [t1, ε, ε] to every replica.

Adding entering transition We add transitions that switch between the original set of states
and the replicas. These transitions rewrite the recursive call from the strip-mined dimension
to one dimension deeper: [r1, ε] → [ε, r2, ε].

Adding exiting transition We add the transition [ε, ε] → [r1, ε, ε] from the last replica to the
first. Essentially this transition represents the newly constructed recursive dimension.

This transducer is fairly tricky. Intuitively, it creates a new dimension representing the “outer”
part of the strip-mined loop which executes once every strip-size calls. Note that the transducer
does not directly capture the size of the strip in the “inner” part of the strip-mined loop—PolyRec

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:19

1 2
[ε,ε] → [t1,ε,ε]

4
[ε,s1] → [ε,ε,s1]

[ε,rl2] → [ε,ε,rl3]

3
[t1, ε] → [ε,t2,ε]

[ε,rr2] → [ε,ε,rr3]

5 6
[ε,ε] → [t1,ε,ε] 8

[ε,s1] → [ε,ε,s1]

[ε,rl2] → [ε,ε,rl3]

7
[t1, ε] → [ε,t2,ε]

[ε,rr2] → [ε,ε,rr3]

9 10
[ε,ε] → [t1,ε,ε]

12
[ε,s1] → [ε,ε,s1]

[ε,rl2] → [ε,ε,rl3]

11
[t1, ε] → [ε,t2,ε]

[ε,rr2] → [ε,ε,rr3]

[r1,ε] → [ε, r2,ε]

[ε,ε] → [r1,ε ,ε]

[r1,ε] → [ε, r2,ε]

Fig. 6. Transducer implementing strip size of two on first dimension.

does not consider loop bounds, leaving that to the transformed code itself. Like inlining, strip
mining does not change the relative ordering of instances; but instances that used to be labeled
with k dimensions will now be labeled with k + 1 dimensions.

7 REPRESENTING DEPENDENCES AND CHECKING SOUNDNESS
The previous section presented an approach for transforming perfectly nested recursive programs
into other perfectly nested programs by chaining together a series of simple transformations. How-
ever, the transformation strategy we presented does not necessarily produce sound transformations:
there is no guarantee that the final transformed program produces the same result as the original
program. As an example, consider the double recursive example from Figure 3b. Changing the
outer recursion from a pre-order traversal to a post-order traversal can be easily implemented by a
code motion transformation that swaps lines 5 and 11. However, doing so means that the updates
to each tree node’s n.x field in line 11 will occur in the opposite order of the original program,
potentially changing the result of the program (e.g., if the addition in line 11 were floating point).
Just because PolyRec can synthesize a transformation does not mean that it is legal.

The general principle behind any scheduling transformation (whether it be something as simple
as instruction scheduling or as complicated as the polyhedral model) is that any transformation
must respect all dependences in the program. Two instances, i and j, where i executes before j in
a schedule have a dependence if (i) j is data dependent on i—they both access the same memory
locationm, and at least one of i or j writes tom—or (ii) j is control dependent on i [Ferrante et al.
1987].8 Give a set of instances I , a schedule of those instances SI that totally orders I , and a set of
dependences D ⊆ I × I , a transformation that produces the schedule S ′I is sound if and only if all
pairs in D appear in the same order in SI as in S ′I .

So how can we tell whether a given transformation breaks dependences?

8Note that the restrictions we place on our core language means that we need not consider control dependences.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:20 Kirshanthan Sundararajah and Milind Kulkarni

7.1 Witness Tuples to Represent Dependences
The first step in reasoning about dependences is representing the set of dependences in a program.
Recall that we want to think about dependences as a set of pairs of instances. Because PolyRec does
not reason about the bounds of programs, the set of instances it considers is infinite, as is, potentially,
the set of dependence pairs. This representation problem arises in other instance-wise analyses.
In the world of loops and matrices, dependences are represented with abstractions ranging from
distance and direction vectors [Kennedy and Allen 2002] to dependence polytopes [Bondhugula
et al. 2008]. In the world of irregular programs, Amiranoff et al. [2006] uses a series of dependence
transducers to represent and reason about dependences in irregular programs.

The representation PolyRec uses to capture the potentially infinite set of dependences is witness
tuples, a rough analog of distance vectors.

Definition 7.1. A witness tuple is a 3-tuple of regular relations over the alphabet Σ ∪ ε of symbols
in a given iteration space RA , written < Rα , (Rβ ,Rγ) > such that:
(1) Rα ⊙ Rβ ∈ RA and Rα ⊙ Rγ ∈ RA (essentially, Rα generates prefixes of instances that, when

suffixed with members of Rβ or Rγ , are instances of the iteration space).
(2) Rα ’s individual elements are either ε or of the form (r 1i |r

2
i | . . .)

∗—a sequence of recursive calls
from a given dimension. (Note that this means the prefix contains no transfer statements ti
or leaf compound statements si .)

(3) If a ∈ Rα , then ∀b ∈ (a ⊙ Rβ), c ∈ (a ⊙ Rγ).b ≺ c . In other words, for all instances generated
by concatenating a prefix a from Rα with suffixes from Rβ and Rγ , the instances generated
from a ⊙ Rβ lexicographically precede those generated from a ⊙ Rγ—they occur earlier in
the schedule

Essentially, a witness tuple acts as a generator for pairs of instances with a common prefix that
arise in a specific lexicographic order.

Definition 7.2. A witness tuple < Rα , (Rβ ,Rγ) > captures a set of dependences D ∈ RA × RA

(pairs of instances from RA) if: ∀(x ,y) ∈ D.∃a ∈ Rα ,b ∈ Rβ , c ∈ Rγ .x = a ⊙ b ∧ y = a ⊙ c . In other
words, if the witness tuple can generate all dependence pairs in D.

We can generalize this notion of captures to sets of witness tuples if, for any dependence pair in
D, at least one witness tuple generates the pair.

We note two things. First, a given set of static statements that have dynamic instances that are
dependent on one another may require multiple witness tuples to capture the dependences, since a
given witness tuple requires that all generated pairs have the same lexicographic order. Second,
any set of dependences can be (conservatively) captured by one or more witness tuples. This is
because we can always generate degenerate witness tuples that capture all pairs of instances in an
iteration space. For example, the following set of witness tuples captures all pairs of instances from
the iteration space in Figure 2b:

< [(r1)
∗, ε], ([t1, (r

l
2 |r

r
2)

∗s1], [(r1)
+t1, (r

l
2 |r

r
2)

∗s1]) >
< [(r1)

∗, (r l2 |r
r
2)

∗], ([t1, r
l
2(r

l
2 |r

r
2)

∗s1)], [t1, s1 |(r
r
2 (r

l
2 |r

r
2)

∗s1))])
< [(r1)

∗, (r l2 |r
r
2)

∗], ([t1, r
r
2 (r

l
2 |r

r
2)

∗s1)], [t1, s1])

Note that this paper does not focus on procedures to generate witness tuples, as PolyRec is
agnostic towhere the witness tuples come from. Many prior works present dependence analyses that
could be modified to produce witness tuples [Amiranoff et al. 2006; Rajbhandari et al. 2016b; Sakka
et al. 2017; Weijiang et al. 2015]. Section 7.3 sketches a possible procedure for generating witness
tuples for some recursive programs. The next section explains how witness tuples, regardless of
how they are obtained, can be used to verify that a transformation is sound.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:21

7.2 Checking Soundness
Once we have represented the dependences in the program with one or more witness pairs, we can
use these pairs to test for transformation soundness. The basic premise of the approach is as follows:
we generate a dependence pair, then push each instance tuple through the transducer representing
the composed program (AT producing regular relation RT). If the transformed instances are still in
the same lexicographic order, the dependence is preserved. The primary question is to determine
how to test a possibly infinite set of dependences.
Our dependence test process proceeds using the following approach. For a given witness tuple
< Rα , (Rβ ,Rγ) >, we generate a single k-string w from Rα . Recall that by the definition of the
witness tuple, ∀b ∈ w ⊙Rβ , c ∈ w ⊙Rγ .b ≺ c . If we can determine whether ∀b ′ ∈ (w ⊙Rβ)◦RT , c

′ ∈

(w⊙Rγ)◦RT .b
′ ≺ c ′, then we will know that for the prefixw from the witness tuple, all dependences

are preserved by the transformation. This is decidable as follows:
We run AT =< k, Σ,Q,q0, F ,E > withw as its input (i.e., we trace all paths through AT from

the start state q0 that acceptw), arriving in a set of statesQw ⊆ Q . WithQw , we construct a derived
automaton Aw

T =< k, Σ,Q ′,q′0, F
′,E ′ > as follows:

(1) k and Σ are the same as in AT
(2) Q ′ = Q ∪ q′0 (i.e., Q

′ is the set of states from AT plus a fresh state q′0, which is the new start
state.)

(3) F ′ = F (i.e., Aw
T has the same final states as AT)

(4) E ′ = E ∪ {< q′0, ε
k ,qi |qi ∈ Qw }. In other words, we add a null transition from the new start

state to all the states of AT we arrived at after reading inw .
Intuitively, the automaton Aw

T captures the effect of restarting AT after executingw through it.
In particular, note that Aw

T accepts some k-string x iff AT acceptsw ⊙ x . Moreover, because the
transformations all act as functions from instances to instances, the output of running x through
Aw

T is what AT generates by running x after runningw .
Note that these two properties are not generally true for non-deterministic multitape finite automata.

However, because our transformation transducers have the order-free structural property (Section 6)
and the prefixesw are only combinations of recursive calls, these properties hold.
We use Aw

T as follows. We derive two new regular relations, Rw,β and Rw,γ by composing Rβ
and Rγ respectively with the relation from Aw

T . Note that these relations are the equivalent of
runningw ⊙ Rβ andw ⊙ Rγ through the original transformation transducer AT .
For Rw,β , we create the lexicographically latest k-string by tracing along the first tape. At each

state, we trace (keep) all paths with ε transitions on the first tape. From this set of states, we then
trace (keep) the transitions with the lexicographically latest symbol and remove the remaining
transitions. We continue this process until we have visited or disconnected all the states. This
new machine either reaches a final state, in which case it matches some finite string α on the first
tape, or it loops, in which case it consumes some infinite string α∗ on the first tape. We repeat this
process for the second tape, and so on. For Rw,γ , we create the lexicographically earliest k-string in
a similar fashion, looking for the earliest string on each tape, with the added condition that we
disconnect all outgoing transitions from final states (since extending the string past a final state can
only create a lexicographically later string). Again, this machine will either match some finite string
α on a tape or loop, consuming some infinite string α∗. It is straightforward, then, to compare the
k-strings generated in this manner to determine whether the latest k-string from Rw,β precedes
the earliest k-string from Rw,γ .
Note that thus far, we have only shown that the order is preserved for one prefix w from the

witness tuple. However, we can enumerate all possible prefixesw , discarding any prefixes that lead
to the same set of states Qw during the construction of Aw

T (since that prefix will give the same

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:22 Kirshanthan Sundararajah and Milind Kulkarni

behavior as one already explored). Hence, we can for example extend the first dimension of the
prefix until we repeat a set ofQw states, then extend the second dimension of the prefix and restart
the first from ε , and so forth. Because there is a finite set of states Q in AT , there is a finite set
of differentiated prefixes that this enumeration will eventually find. Thus, the overall process of
determining if dependences are preserved is decidable.

Proof Sketch of Soundness. The soundness of this dependence test is straightforward. First, because
each individual transducer that goes into the composition correctly maps the input iteration space to
the output iteration space for that transformation, the composition correctly changes the schedule
of the input program to the schedule of the output program. Hence, given any pair of instances i1
and i2, with i1 ≺ i2, running them through the composed transducer will reveal if their order is
preserved in the transformed schedule.
Second, the decision procedure we provide for witness tuples determines that for all wα that

arrive at Qw (the set of states in the composed transducer), ∀wβ ∈ β ,wγ ∈ γ .wα ⊙wβ ≺ wα ⊙wγ .
Because there is only a finite set of Qw configurations, we can check all these configurations to
determine that ∀wα ∈ α ,wβ ∈ β ,wγ ∈ γ .wα ⊙wβ ≺ wα ⊙wγ
As long as the set of witness tuples D covers the set of dependences D (i.e., there is not a

dependence (i1, i2) ∈ D that cannot be generated by at least one witness tuple in D), we have that
if each witness tuple is preserved, all dependences must be preserved.

Example. Recall from Section 3 that the witness tuple for our running example is:

< [(r1)
∗, (r l2 |r

r
2)

∗], ([t1, s1], [(r1)
+t1, s1]) >

We will use this witness tuple to check whether the inlining transformation from Figure 4a is
sound. There are two possible states in the transformation transducer that a prefix drawn from
[(r1)

∗, (r l2 |r
r
2)

∗] can end up in, {1} and {4}, so those are the two configurations we need to consider
when testing soundness.

Configuration {1} The latest string produced by the suffix [t1, s1] is, simply, [t1, s1], and the
earliest string produced by the suffix [(r1)+t1, s1] is [r1t1, s1], which preserves the order.

Configuration {4} From here, the analysis is the same, and the order is preserved.
Because both prefix configurations preserve the dependence order, the transformation is sound.

7.3 Generating Witness Tuples
Any dependence analysis that can generate witness tuples can be used with PolyRec. This section
sketches out how the dependence analysis from Weijiang et al. [2015] can be used to generate
witness tuples for programs that operate over trees. (A similar procedure could be used to generate
witness tuples from the analyses from Rajbhandari et al. [2016b] and Sakka et al. [2017].)

Weijiang et al. [2015] target programs where recursive functions are used to traverse tree
structures; in other words the induction variables represent nodes in the tree (the finvup function for
a recursive call might look like λn.n.left) and the compound statements in the innermost recursion
access fields of the tree indexed by the induction variables. Weijiang et al. use a variant of Larus
and Hilfinger [1988]’s dependence analysis to find compound statements where there may be some
instantiation of the induction variable (in two different instances) such that the accesses depend on
each other. For example, statement s1 might be n.x = ... while statement s2 might be ... = n.left.x.
These two statements depend on each other when s2 executes at some node n, and s1 executes at
n.left—Weijiang et al. determine this “distance” information by looking at the common prefixes of
node accesses in the two statements. The sequence of recursive calls that separate an instance at n
from an instance at n.left is straightforward to determine from the recursive calls in the method.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:23

This information can then be directly used to construct a witness tuple: the dependence occurs
between instances separated by left along the dimension with the induction variable n, and any
value for the other dimensions (i.e., the witness tuple should consider all possible pairs of values in
those other dimensions).
Note that in general, generating witness tuples is akin to identifying distance vectors between

instances in the polyhedral approach. This means that if operations on induction variables are
linear, with affine access functions (for example, n.x[i] where i is an induction variable), we can
combine an analysis in the style of Weijiang et al. [2015] with an analysis to find distance vectors
(using, e.g., the Omega calculator [Pugh 1991]) to build more discriminating witness pairs for
additional dimensions. In this way, PolyRec can handle programs that use a combination of trees
and arrays. We leave a full development of this style of dependence analysis to future work.

8 CODE GENERATION
PolyRec provides a systematic code generation strategy to build complex transformations that
are composed of basic transformations. To do so, PolyRec maintains three representations: the
code, C , the iteration space automaton A, and the transducer representing the composition of all
transformations thus far applied to generate A, AT ∗ , which begins as the identity transducer.
To apply a transformation, PolyRec (a) builds the specific transducer AT that transforms the

iteration space according to the transformation (Section 6.3); (b) applies AT to A and projects
out the output tapes to derive the transformed iteration space, A ′; (c) updates AT ∗ to AT ∗ ◦ AT
(capturing the updated composed transformation); and (d) directly applies the code transformation to
C . At the end of this process, PolyRec still has three representations: the new codeC ′, the iteration
space A ′ that represents C ′, and the transducer AT ∗ representing all the transformations needed to
transform the original iteration space A to A ′. This process is repeated for each transformation.

Note that throughout this process, the code C is kept in sync with the iteration space automaton
A—PolyRec does not attempt to synthesize code from the iteration space automaton (as would
be analogous to polyhedral code generators [Bastoul 2004]). Note, too, that each transformation
preserves the perfectly nested structure of the code and the iteration space. That means that
each subsequent transformation can be applied without considering what transformations were
performed earlier, simplifying the code generation process—the basic transformations PolyRec
supports are all variants of known code transformations—and the process of constructing transfor-
mation transducers.

Once all the desired transformations have been applied—and only then—PolyRec performs the
dependence test (Section 7) on AT ∗ to see whether the overall composed transformation is sound.
Because PolyRec waits until all transformations have been applied before checking soundness, it is
possible that some intermediate states of the code actually represent unsound transformations that
are later fixed by other transformations. (For example, interchange can break dependences that are
fixed by code motion that changes the recursion order of a function, analogous to situations where
loop interchange in regular codes breaks unless loop reversal is also applied.)
Note that while the transformations PolyRec supports exist in the literature, we place some

syntactic restrictions on when they can be applied, to ensure that the transformed code can still be
expressed using the core language of Section 4. We now briefly describe how code generation for
the various transformations is performed.

Code motion Code motion is applied as expected. The guards on a statement move with the
statement. We do not need to consider control dependences on the guards as they do not
read from memory writeable by the recursion nest.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:24 Kirshanthan Sundararajah and Milind Kulkarni

Interchange PolyRec uses a generalization of interchange that works for any perfectly-nested
recursion [Sundararajah et al. 2017]. Note that this general transformation uses complex
bounds check code in certain situations that breaks perfect nesting [Sundararajah et al. 2017,
Section 4]. Hence, PolyRec only performs interchange for recursion when the guards on the
statements for levels at or above the deepest recursion being interchanged all depend only on
the current level they are at.

Inlining Inlining is the standard inlining procedure. PolyRec will only inline innermost recur-
sive calls. Note that the functional form of induction variable updates makes it straightforward
to perform inlining (by composing the update function for inlined code).

Strip mining Strip mining only applies to linear recursion, and hence is applied as it is in
standard loop transformations.

9 EVALUATION
We evaluate PolyRec on nested traversals similar to the ones used in prior work [Jo and Kulkarni
2011, 2012; Sundararajah et al. 2017]. Our focus of this case study is to show that PolyRec is
capable of performing the types of scheduling transformations for nested recursive code structures
proposed as specific transformations in literature, but in a unified manner.

Prototype Implementation. Since our framework has well-defined rewrite rules to realize all
basic transformations, we implemented it as a source-to-source translator in Clang. The prototype
takes a program written in C with annotations indicating the nested recursive structure. The
prototype also takes in a configuration file with an order of transformations to perform. In lieu of
performing dependence analysis (as we do not contribute a new dependence analysis, as explained
in Section 7.3), the witness tuples are provided in a configuration file.
The prototype (i) lifts the C code to the automaton abstraction; (ii) constructs and composes

transducers for transformations as mentioned in Section 6.3; and (iii) generates code as mentioned
in Section 8. At the end it performs the soundness check using the final transducer and the witness
tuple(s) provided. If the provided witness tuples pass the dependence test, our prototype outputs
the transformed code.

Experimental Platform. Our nested recursive traversals are written in C with annotations to aid
our tool. We used ICC Compiler 16.0.3 to compile our traversals and transformed traversals. The
execution platform for the various performance runs is a dual 12-core, Intel Xeon 2.7 GHz Core
with 32 KB of L1 cache, 256 KB of L2 cache and 20 MB of L3 cache.

Case Study. We have evaluated PolyRec on four cases, all of which have at least one general
recursion. The first three cases use a recursive traversal over a tree structure nested within a loop
(which is rewritten into tail-recursion prior to transformation); this is the computation structure
examined in several previous papers [Jo and Kulkarni 2011, 2012; Zhang and Chien 1997]. The
last case uses two trees, with a recursion over tree B nested inside a recursion over tree A; this
is the computation structure used in Sundararajah et al. [2017]. In each of the cases, we vary the
dependence structure through different instantiations of the leaf statements. We perform Code
Motion (CM), Inlining (IL), Interchange (IC) and Strip Mining (SM) when possible and we report
runtimes and cache behavior of the original and changed codes. For space reasons, we describe
only the dependence structure of the cases here. Appendix A of the supplemental material includes
pseudocode, detailed dependence information, and transformation examples for the various cases.
Unless otherwise specified, the tree(s) traversed have 220 − 1 nodes, loops run for 1,000 iterations,
and strip mining uses a strip size of 100.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

Scheduling Transformations and Dependence Tests for Recursive Programs 1:25

Table 1. Performance Results of the Case Study

Case Transform Runtime(s) Normalized L2 Cache Access Normalized L2 Cache Miss

Case 1

Baseline 79.95 1.00 1.00
IC 0.96 0.03 0.01

IC-SM-CM 0.59 0.01 0.01
IC-SM-IL-CM 0.62 0.01 0.01

IL 93.38 0.99 0.99

Case 2

Baseline 61.61 1.00 1.00
IC 1.04 0.02 0.01

IC-SM 2.92 0.04 0.04
IC-SM-IL 0.77 0.01 0.01

IL 54.08 0.98 0.98

Case 3

Baseline 61.48 1.00 1.00
IC-CM 1.05 0.02 0.01

IC-SM-CM 3.04 0.04 0.03
IC-SM-IL-CM 0.56 0.01 0.01

Case 4 Baseline 5.89 1.00 1.00
IC 2.92 0.98 0.00

Case 1 In each instance, the recursion nest performs an update of the form n.x[i] += n.x[i+1],
where n is the induction variable of the tree traversal. Thus, there are dependences across the
loop, but in a given traversal, node updates are independent. Here, all basic transformations
for the general recursion are legal.

Case 2 In each instance, the computation is of the form n.x[i] = n.l.x[i] + n.r.x[i], where i is
the induction variable of the loop. Here, there are no dependences across the loop, but each
instance depends on the computation at its parent in the tree. Here, some code motion is not
legal because it may cause the tree nodes to be visited in the wrong order. The dependence
structure in this case and the previous one can be analyzed using Tree Dependence Analysis,
as discussed in Section 7.3.

Case 3 In this case, the updates create dependences across both recursions: n.x[i] += n.left.x[i +
1] + n.right.x[i + 1]. The dependence structure prevents interchange from occurring if the
inner recursion is post-order, but code motion can change the recursion to pre-order, at which
point interchange is legal. This type of code can be analyzed by the extended dependence
analysis that handles trees and arrays described in Section 7.3

Case 4 In this case, we primarily show that PolyRec can transform general nested recursion.
We know of no existing dependence analysis that can automatically analyze such codes. For
this special case, the other general recursion traverses a tree of size 210 − 1.

Table 1 summarizes the results of applying various transformations to the case studies. We see
that in cases 1–3, interchange improves performance dramatically. This is partly due to increased
locality and partly due to the fact that once the loop is moved to the inner level of the nest, ICC is
able to recognize it as a dense loop and perform additional optimization. In case 4, interchange
causes a substantial improvement in locality, but because both levels are general recursion, it
does not benefit from additional optimizations by ICC. We note that in all cases, composing
additional transformations such as inlining or code motion either enables interchange (in case
3, without code motion interchange is illegal) or enhances interchange (in all three cases where
we perform composed transformations, the best performance is derived from combining multiple
transformations). Notably, IC+SM in case 1 is equivalent to point blocking [Jo and Kulkarni 2011],
and IC+SM+IL in cases 2 and 3 is similar to traversal splicing [Jo and Kulkarni 2012]. Note that
transformations do not always improve performance—e.g., adding strip mining to interchange in

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

1:26 Kirshanthan Sundararajah and Milind Kulkarni

cases 2 and 3—emphasizing the utility of being able to explore a large space of transformations
with PolyRec.

10 CONCLUSIONS
Despite the long history of dependence analysis and transformation frameworks for loop-based
programs, there are no comparable frameworks for programs that use recursion. PolyRec is the
first comprehensive framework for recursive programs that provides an end-to-end strategy for
representing programs, transformations of those programs, and dependences in those programs, al-
lowing for nested recursive programs (including combinations of recursion and loops) to be soundly
transformed. This paper showed that PolyRec, through the composition of simple transformations,
is able to represent and check fairly complex transformations from the recent literature, and yield
substantial performance improvements.

REFERENCES
John R. Allen and Ken Kennedy. 1984. Automatic Loop Interchange. In Proceedings of the 1984 SIGPLAN Symposium on

Compiler Construction (SIGPLAN ’84). ACM, New York, NY, USA, 233–246. https://doi.org/10.1145/502874.502897
Pierre Amiranoff, Albert Cohen, and Paul Feautrier. 2006. Beyond Iteration Vectors: Instancewise Relational Abstract

Domains. In Static Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, 161–180.
Cedric Bastoul. 2004. Code Generation in the Polyhedral Model Is Easier Than You Think. In Proceedings of the 13th Interna-

tional Conference on Parallel Architectures and Compilation Techniques (PACT ’04). IEEE Computer Society, Washington,
DC, USA, 7–16. https://doi.org/10.1109/PACT.2004.11

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A Practical Automatic Polyhedral Parallelizer
and Locality Optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’08). ACM, New York, NY, USA, 101–113. https://doi.org/10.1145/1375581.1375595

Albert Cohen and Jean-François Collard. 1998. Instance-Wise Reaching Definition Analysis for Recursive Programs Using
Context-Free Transductions. In Proceedings of the 1998 International Conference on Parallel Architectures and Compilation
Techniques (PACT ’98). IEEE Computer Society, Washington, DC, USA, 332–. http://dl.acm.org/citation.cfm?id=522344.
825716

Paul Feautrier. 1992a. Some efficient solutions to the affine scheduling problem. I. One-dimensional time. International
Journal of Parallel Programming 21, 5 (01 Oct 1992), 313–347. https://doi.org/10.1007/BF01407835

Paul Feautrier. 1992b. Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time. International
Journal of Parallel Programming 21, 6 (01 Dec 1992), 389–420. https://doi.org/10.1007/BF01379404

Paul Feautrier. 1998. A Parallelization Framework for Recursive Tree Programs. In Proceedings of the 4th International
Euro-Par Conference on Parallel Processing (Euro-Par ’98). Springer-Verlag, London, UK, UK, 470–479. http://dl.acm.org/
citation.cfm?id=646663.700133

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program Dependence Graph and Its Use in Optimization.
ACM Trans. Program. Lang. Syst. 9, 3 (July 1987), 319–349. https://doi.org/10.1145/24039.24041

Rakesh Ghiya, Laurie J. Hendren, and Yingchun Zhu. 1998. Detecting parallelism in C programs with recursive data structures.
Springer Berlin Heidelberg, Berlin, Heidelberg, 159–173. https://doi.org/10.1007/BFb0026429

T. V. Griffiths. 1968. The Unsolvability of the Equivalence Problem for Λ-Free Nondeterministic Generalized Machines. J.
ACM 15, 3 (July 1968), 409–413. https://doi.org/10.1145/321466.321473

Joseph Hummel, Laurie J. Hendren, and Alexandru Nicolau. 1994. A General Data Dependence Test for Dynamic, Pointer-
based Data Structures. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation (PLDI ’94). ACM, New York, NY, USA, 218–229. https://doi.org/10.1145/178243.178262

Youngjoon Jo and Milind Kulkarni. 2011. Enhancing Locality for Recursive Traversals of Recursive Structures. In Proceedings
of the 2011 ACM International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA
’11). ACM, New York, NY, USA, 463–482. https://doi.org/10.1145/2048066.2048104

Youngjoon Jo and Milind Kulkarni. 2012. Automatically Enhancing Locality for Tree Traversals with Traversal Splicing. In
Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’12). ACM, New York, NY, USA, 355–374. https://doi.org/10.1145/2384616.2384643

Ronald M. Kaplan and Martin Kay. 1994. Regular Models of Phonological Rule Systems. Comput. Linguist. 20, 3 (Sept. 1994),
331–378. http://dl.acm.org/citation.cfm?id=204915.204917

Ken Kennedy and John R. Allen. 2002. Optimizing Compilers for Modern Architectures: A Dependence-based Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

https://doi.org/10.1145/502874.502897
https://doi.org/10.1109/PACT.2004.11
https://doi.org/10.1145/1375581.1375595
http://dl.acm.org/citation.cfm?id=522344.825716
http://dl.acm.org/citation.cfm?id=522344.825716
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF01379404
http://dl.acm.org/citation.cfm?id=646663.700133
http://dl.acm.org/citation.cfm?id=646663.700133
https://doi.org/10.1145/24039.24041
https://doi.org/10.1007/BFb0026429
https://doi.org/10.1145/321466.321473
https://doi.org/10.1145/178243.178262
https://doi.org/10.1145/2048066.2048104
https://doi.org/10.1145/2384616.2384643
http://dl.acm.org/citation.cfm?id=204915.204917

Scheduling Transformations and Dependence Tests for Recursive Programs 1:27

Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. 1991. The Cache Performance and Optimizations of Blocked
Algorithms. In Proceedings of the Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS IV). ACM, New York, NY, USA, 63–74. https://doi.org/10.1145/106972.106981

J. R. Larus and P. N. Hilfinger. 1988. Detecting Conflicts Between Structure Accesses. In Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementation (PLDI ’88). ACM, New York, NY, USA, 24–31.
https://doi.org/10.1145/53990.53993

Dmitry Petrashko, Ondřej Lhoták, and Martin Odersky. 2017. Miniphases: Compilation Using Modular and Efficient
Tree Transformations. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2017). ACM, New York, NY, USA, 201–216. https://doi.org/10.1145/3062341.3062346

William Pugh. 1991. The Omega Test: A Fast and Practical Integer Programming Algorithm for Dependence Analysis. In
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing ’91). ACM, New York, NY, USA, 4–13.
https://doi.org/10.1145/125826.125848

William Pugh and David Wonnacott. 1994. Nonlinear Array Dependence Analysis. Technical Report. College Park, MD, USA.
M. O. Rabin and D. Scott. 1959. Finite Automata and Their Decision Problems. IBM Journal of Research and Development 3, 2

(April 1959), 114–125. https://doi.org/10.1147/rd.32.0114
Samyam Rajbhandari, Jinsung Kim, Sriram Krishnamoorthy, Louis-Noel Pouchet, Fabrice Rastello, Robert J. Harrison,

and P. Sadayappan. 2016a. A Domain-specific Compiler for a Parallel Multiresolution Adaptive Numerical Simulation
Environment. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’16). IEEE Press, Piscataway, NJ, USA, Article 40, 12 pages. http://dl.acm.org/citation.cfm?id=3014904.3014958

Samyam Rajbhandari, Jinsung Kim, Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, Robert J. Harrison, and P.
Sadayappan. 2016b. On Fusing Recursive Traversals of K-d Trees. In Proceedings of the 25th International Conference on
Compiler Construction (CC 2016). ACM, New York, NY, USA, 152–162. https://doi.org/10.1145/2892208.2892228

Radu Rugina and Martin C. Rinard. 2005. Symbolic Bounds Analysis of Pointers, Array Indices, and Accessed Memory
Regions. ACM Trans. Program. Lang. Syst. 27, 2 (March 2005), 185–235. https://doi.org/10.1145/1057387.1057388

Laith Sakka, Kirshanthan Sundararajah, and Milind Kulkarni. 2017. TreeFuser: A Framework for Analyzing and Fusing
General Recursive Tree Traversals. Proc. ACM Program. Lang. 1, OOPSLA, Article 76 (Oct. 2017), 30 pages. https:
//doi.org/10.1145/3133900

Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. 2003. Compile-time Composition of Run-time Data and Iteration
Reorderings. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation
(PLDI ’03). ACM, New York, NY, USA, 91–102. https://doi.org/10.1145/781131.781142

Michelle Mills Strout, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara Kreaseck, and Catherine Olschanowsky. 2016.
An Approach for Code Generation in the Sparse Polyhedral Framework. Parallel Comput. 53, C (April 2016), 32–57.
https://doi.org/10.1016/j.parco.2016.02.004

M. M. Strout, F. Luporini, C. D. Krieger, C. Bertolli, G. T. Bercea, C. Olschanowsky, J. Ramanujam, and P. H. J. Kelly. 2014.
Generalizing Run-Time Tiling with the Loop Chain Abstraction. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. 1136–1145. https://doi.org/10.1109/IPDPS.2014.118

Kirshanthan Sundararajah, Laith Sakka, and Milind Kulkarni. 2017. Locality Transformations for Nested Recursive Iteration
Spaces. SIGARCH Comput. Archit. News 45, 1 (April 2017), 281–295. https://doi.org/10.1145/3093337.3037720

Robert A. van Engelen, J. Birch, Y. Shou, B. Walsh, and Kyle A. Gallivan. 2004. A Unified Framework for Nonlinear
Dependence Testing and Symbolic Analysis. In Proceedings of the 18th Annual International Conference on Supercomputing
(ICS ’04). ACM, New York, NY, USA, 106–115. https://doi.org/10.1145/1006209.1006226

Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data Transformations for Sparse Matrix Code. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15). ACM, New York,
NY, USA, 521–532. https://doi.org/10.1145/2737924.2738003

Yusheng Weijiang, Shruthi Balakrishna, Jianqiao Liu, and Milind Kulkarni. 2015. Tree Dependence Analysis. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15). ACM, New York,
NY, USA, 314–325. https://doi.org/10.1145/2737924.2737972

Michael E. Wolf and Monica S. Lam. 1991. A Data Locality Optimizing Algorithm. In Proceedings of the ACM SIGPLAN
1991 Conference on Programming Language Design and Implementation (PLDI ’91). ACM, New York, NY, USA, 30–44.
https://doi.org/10.1145/113445.113449

M. Wolfe. 1989. More Iteration Space Tiling. In Proceedings of the 1989 ACM/IEEE Conference on Supercomputing (Supercom-
puting ’89). ACM, New York, NY, USA, 655–664. https://doi.org/10.1145/76263.76337

Xingbin Zhang and Andrew A. Chien. 1997. Dynamic Pointer Alignment: Tiling and Communication Optimizations for
Parallel Pointer-based Computations. In Proceedings of the Sixth ACM SIGPLAN Symposium on Principles & Practice of
Parallel Programming (PPOPP), Las Vegas, Nevada, USA, June 18-21, 1997. 37–47. https://doi.org/10.1145/263764.263771

Proceedings of the ACM on Programming Languages, Vol. 1, No. 1, Article 1. Publication date: November 2018.

https://doi.org/10.1145/106972.106981
https://doi.org/10.1145/53990.53993
https://doi.org/10.1145/3062341.3062346
https://doi.org/10.1145/125826.125848
https://doi.org/10.1147/rd.32.0114
http://dl.acm.org/citation.cfm?id=3014904.3014958
https://doi.org/10.1145/2892208.2892228
https://doi.org/10.1145/1057387.1057388
https://doi.org/10.1145/3133900
https://doi.org/10.1145/3133900
https://doi.org/10.1145/781131.781142
https://doi.org/10.1016/j.parco.2016.02.004
https://doi.org/10.1109/IPDPS.2014.118
https://doi.org/10.1145/3093337.3037720
https://doi.org/10.1145/1006209.1006226
https://doi.org/10.1145/2737924.2738003
https://doi.org/10.1145/2737924.2737972
https://doi.org/10.1145/113445.113449
https://doi.org/10.1145/76263.76337
https://doi.org/10.1145/263764.263771

	Purdue University
	Purdue e-Pubs
	11-1-2018

	Scheduling Transformation and Dependence Tests for Recursive Programs
	Kirshanthan Sundararajah
	Milind Kulkarni

	Abstract
	1 Introduction
	1.1 Dependence analysis frameworks
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Schedule Transformations
	2.2 Instance-wise Analysis for Recursive Programs
	2.3 Other Related Work

	3 Overview of PolyRec
	3.1 Running Example
	3.2 Iteration Space Representation
	3.3 Transformations
	3.4 Dependences
	3.5 Code Generation

	4 Core Language
	5 Representing Recursive Iteration Spaces
	5.1 Preliminaries
	5.2 Capturing Instances with a Multitape Automaton

	6 Representing Scheduling Transformations
	6.1 Transformations as Multitape Transducers
	6.2 Composing Transformations
	6.3 Representing Specific Transformations

	7 Representing Dependences and Checking Soundness
	7.1 Witness Tuples to Represent Dependences
	7.2 Checking Soundness
	7.3 Generating Witness Tuples

	8 Code Generation
	9 Evaluation
	10 Conclusions
	References

