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ABSTRACT 
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Title: A Longitudinal Analysis on the Feasibility of Iris Recognition Performance for Infants 0-2 

Years Old 

Committee Chair: Stephen Elliott 

 

 The focus of this study was to longitudinally evaluate iris recognition for infants between 

the ages of 0 to 2 years old. Image quality metrics of infant and adult irises acquired on the same 

iris camera were compared. Matching performance was evaluated for four groups, infants 0 to 6 

months, 7 to 12 months, 13 to 24 months, and adults. A mixed linear regression model was used 

to determine if infants’ genuine similarity scores changed over time. This study found that image 

quality metrics were different between infants and adults but in the older group, (13 to 24 months 

old) the image quality metric scores were more likely to be similar to adults. Infants 0 to 6 months 

old had worse performance at an FMR of 0.01% than infants 7 to 12 months, 13 to 24 months, and 

adults.  
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 INTRODUCTION 

 There are only two existing studies (at the time of writing) that examined infant iris 

recognition (Bachenheimer, 2016; Corby et al., 2006). Corby et al. (2006) was the only study that 

examined iris recognition accuracy, and both studies reported capture rates and image quality 

findings. The studies showed that it was difficult capturing irises from infants younger than three, 

but when the iris was acquired, the iris had good quality. Comparing the quality results from the 

studies was difficult because both defined image quality differently, interpreting what a “good” or 

“low” quality sample is versus an “acceptable,” “marginal,” or “unacceptable.”   

 Bachenheimer (2016) and Corby et al. (2006) used different iris recognition devices: the 

Iritech Binoculars and Panasonic Authenticam, respectively. The Iritech Binoculars are a portable, 

low-cost device which was priced at $480 (Fulcrum Biometrics LLC, 2018). The Panasonic 

Authenticam has been discontinued and was listed at $24.99 (eBay, 2018). Both studies attributed 

the low capture rates to the lack of cooperation from the younger infants, Bachenheimer mentioned 

that a more usable device may have improved the capture rate. Infants’ lack of cooperation could 

degrade image quality and subsequently be rejected.  

 Jain et al. (2004) expressed the iris pattern does not stabilize until after the first two years 

of life and collecting irises from infants is quite difficult and therefore not feasible as a usable 

biometric trait for infants. This has been cited by many as evidence of the challenges of iris 

recognition with infants (Barra, Casanova, De Marsico, & Riccio, 2014; Barra et al., 2014; Jain et 

al., 2004; Jia et al., 2012; Tiwari et al., 2015; Tiwari, Singh, & Singh, 2013; Tiwari et al., 2013; 

Tiwari & Singh, 2012; Weingaertner, Bellon, Silva, & Cat, 2008).  

 Anatomically, the iris is known, in part from the ophthalmology community’s research, to 

begin forming 6 weeks into gestation. The collagen fibrils, responsible for the pattern observed in 

the iris and used for biometric recognition (U.S. Patent No. 4,641,349, 1987), are fully formed 

before the end of the 7th month of gestation (Oyster, 1999; Remington, 2005). The formation of 

the collagen fibrils before birth make, at least theoretically, iris recognition performance feasible 

for infants directly after birth. 
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1.1 Statement of the Problem 

 Is iris recognition for infants between the ages 0-2 feasible? 

1.2 Significance of the Problem 

 Infant identification has been studied on many biometric modalities such as footprint (Jia 

et al., 2012; Jia, Hu, Gui, & Lei, 2010; Kotzerke, Arakala, Davis, Horadam, & McVernon, 2014; 

Kotzerke, Davis, Horadam, & McVernon, 2013; Weingaertner et al., 2008), face (Bachenheimer, 

2016; Bharadwaj, Bhatt, Singh, Vatsa, & Singh, 2010; Tiwari & Singh, 2012), fingerprint (Dutch 

Ministry of the Interior and Kingdom Relations, 2005; Jain et al., 2015, 2016; Jain, Arora, Cao, 

Best-Rowden, & Bhatnagar, 2017; Jain, Cao, & Arora, 2014), ear (Tiwari et al., 2015; Tiwari, 

Singh, & Singh, 2011, 2012c), and iris (Bachenheimer, 2016; Corby et al., 2006). There is an 

interest for infant biometrics for public health reasons such as biometric vaccination coverage 

which could potentially replace current methods such as identification cards, birth certificates, or 

where no identification method currently exists (Global Good Intellectual Ventures, 2017). 

Biometrics can also be used to find kidnapped or exploited children and thus it is important to find 

a biometric that remains stable over an individual’s lifespan (Cole, 2016). Most infant biometrics 

such as footprint, face, fingerprint, and ear exhibit true accept rates of 70%-90% (Bharadwaj et al., 

2010; Dutch Ministry of the Interior and Kingdom Relations, 2005; Jain et al., 2015, 2016, 2017, 

2014; Jia et al., 2012, 2010; Kotzerke et al., 2014, 2013; Tiwari et al., 2015, 2011, 2012c, 2012c; 

Weingaertner et al., 2008). However, most of the studies that examined the performance of these 

biometrics capture samples only days apart making it difficult to determine if the biometric is 

feasible for long-term use (Bharadwaj et al., 2010; Jain et al., 2015, 2016, Jia et al., 2012, 2010; 

Lemes, Bellon, Silva, & Jain, 2011; Tiwari et al., 2015; Tiwari & Singh, 2012; Weingaertner et 

al., 2008).  

 Many studies dismiss the use of iris recognition based on a passage in Jain et al. (2004) 

which stated the iris pattern stabilizes sometime within the first two years of life (Barra et al., 2014, 

2014; Jain et al., 2004; Jia et al., 2012; Tiwari et al., 2015, 2013, 2013; Tiwari & Singh, 2012; 

Weingaertner et al., 2008). To provide context, Jain’s comment suggests that an iris captured from 

a one-month old infant may have a different iris pattern than a sample collected from the same iris 

and infant at two years old, which would mean that infant iris recognition over time is not stable. 
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There are many studies that also subsequently cite Jain et al, (2004), stating iris recognition for 

infants is difficult because collecting irises from infants is extremely difficult (Barra et al., 2014, 

2014; Jain et al., 2004; Jia et al., 2012; Tiwari et al., 2015, 2013, 2013; Tiwari & Singh, 2012; 

Weingaertner et al., 2008). Though performance results reported by Corby et al. (2006), who 

correctly identified over 99% of infants between the ages of 1.5 to 8 years old a year after 

enrollment indicated that iris recognition for infants may be feasible. Neither, Bachenheimer (2016) 

or Corby et al. (2006), mentioned a change in iris patterns but they did have some difficulties 

capturing infant irises. In general, difficulty collecting biometric samples was a common theme 

that was highlighted throughout the infant biometric literature.  

 Additionally, Bachenheimer (2016) and Corby et al. (2006) used different iris recognition 

systems, with different image quality metrics, and different successful capture criteria. This study 

analyzed iris recognition performance using the same matching and quality assessment algorithm.  

This study was unique, it was the first infant iris recognition study that: 

• specifically examined infants 0 to 24 months old;  

• compared image quality metrics and matching performance of adults and infants; 

and 

• evaluated performance of different age groups. 

 

1.3 Scope 

 This study examined if iris recognition performance for infants was feasible by examining 

performance at different age groups, performance over time, and quality metrics. A commercially 

available algorithm was used to assess quality, extract templates, and match templates. This is a 

secondary data analysis, as the data in this study came from a pre-existing dataset collected 

longitudinally. 

1.4 Research Questions 

This study examined the following research questions: 

• Is there a difference between image quality metrics scores for adults and infants? 

• Is there a difference in matching performance for different age groups? 
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• Do genuine similarity scores change over elapsed time? 

1.5 Assumptions 

The assumptions for this study included: 

• All participants in this study were 0-2 years old; 

• The image quality assessment algorithm and performance algorithm operated the same on 

infant irises as adult irises; 

• All templates used in this study were large, a setting in the commercially available matcher; 

• The matching algorithm operated on its slowest setting; 

• The iris camera worked the same for infants as they do for adults; and 

• The infants did not have any eye diseases. 

 

1.6 Limitations 

The limitations for this study included: 

• The participants of this study may have been non-cooperative users; and 

• This is a secondary data analysis. 

1.7 Delimitations 

The delimitations of this study included: 

• Examining impostor similarity scores individually was outside the scope of this study; 

• Examining subjects older than 24 months were beyond the scope of this study; 

• Iris recognition algorithms and devices are designed for adults, which could impact how 

infant irises perform if they have different salient features than adult irises. This effect was 

beyond the scope of this study; and 

• Examining infant behavior was beyond the scope of this study. 
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1.8 Definitions of Key Terms 

Acceptable biometric capture attempt: “A capture attempt that fulfills the requirements of a 

biometric capture process” (JTC 1/SC 37, 2017, p. 12). 

Biometrics: “Automated recognition of individuals based on their biological and behavioral 

characteristics” (JTC 1/SC 37, 2017, p. 2). 

Biometric acquisition process: “Biometric capture process and additional processing to attempt to 

produce a suitable biometric sample(s) in accordance with the defined policy” (JTC 1/SC 

37, 2017, p. 9). 

Biometric permanence: “A biometric trait is permanent if it does not change over the lifetime of 

an individual” (Jain, Ross, & Nandakumar, 2011, p. 13). 

Biometric sample: “An analog or digital representation of a biometric characteristics prior to 

biometric feature extraction” (JTC 1/SC 37, 2017, p. 6).  

Captured biometric sample: “A biometric sample resulting from a biometric capture process” (JTC 

1/SC 37, 2017, p. 7). 

Character: “Contributor to quality if a sample attributable to inherent features of the source” (JTC 

1/SC 37, 2012, p. 2). 

Child: “A person 6 to 12 years of age. An individual 2 to 5 years old is a preschool child.” (Online 

Medical Dictionary, 2018a).  

False match rate: “Proportion of the completed biometric non-match trials that result in a false 

match” (JTC 1/SC 37, 2012, p. 3). 

False non-match rate: “Proportion of the completed biometric match trials that result in a false 

non-match” (JTC 1/SC 37, 2012, p. 3). 

Fidelity: “Expression of how accurately a biometric sample represents its source biometric 

characteristic” (JTC 1/SC 37, 2012, p. 2). 

Gestation: “The period of development in the uterus from conception until birth” (Farlex, 2018) 

Gray scale utilization: “Measures the overall iris image for evidence of a spread of intensity values 

in iris data” (JTC 1/SC 37, 2011, p. 6). 

Ground truth: “A set of data that is considered to be accurate and reliable, and is used to calibrate 

a model, algorithm, procedure, etc.” (Oxford Dictionary, 2018b). 

Infant: “A child between 1 and 23 months of age.” (Online Medical Dictionary, 2018b). 
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Iris boundary shape: “A mathematical expression of the iris sclera boundary and its deviation from 

circularity” (JTC 1/SC 37, 2011, p. 8). 

Iris-pupil boundary contrast: “Represents the image characteristics at the boundary between the 

iris region and the pupil” (JTC 1/SC 37, 2011, p. 9). 

Iris pupil concentricity: “The degree to which the pupil center and the iris center are in the same 

location” (JTC 1/SC 37, 2011, p. 10). 

Iris radius: “Represents the distance across the iris along the horizontal” (JTC 1/SC 37, 2011, p. 

11). 

Iris-sclera boundary contrast: “Represents the image characteristics at the boundary between the 

iris region and the sclera” (JTC 1/SC 37, 2011, p. 10). 

Quality: “Quantitative value of the fitness of a biometric sample to accomplish or fulfil the 

comparison decision” (JTC 1/SC 37, 2017, p. 21). 

Margin: “The degree to which the image achieves positioning of the iris portion of the image 

relative to the edges of the entire image” (JTC 1/SC 37, 2011, p. 12). 

Principal component analysis: “A method of analysis which involves finding the linear 

combination of a set of variables that has maximum variance and removing its effect, 

repeating this effectively (Oxford Dictionary, 2018a). 

Pupil boundary shape: “A mathematical expression of the iris pupil boundary and its deviation 

from circularity” (JTC 1/SC 37, 2011, p. 13). 

Pupil to iris ratio: “The degree to which the pupil is dilated or constricted... the pupil to iris radius 

(JTC 1/SC 37, 2011, pp. 13–14). 

Sameness: “Whether image pairs with similar quality values give lower FNMR than others” 

(Tabassi, Grother, & Salamon, 2011, p. 10). 

Sharpness: “The degree of defocus present in the image” (JTC 1/SC 37, 2011, p. 14). 

Soft biometrics: Soft biometrics are biometric traits that are not unique across the population e.g., 

height, weight, eye color. 

Stability: The change of performance with regards to a specified covariate (O’Connor, 2013). 

Usable iris area: “The percent of the iris portion of the image that is not occluded by eyelids, 

eyelashes, or saturating specular reflections, expressed as the percentage of area of an 

annulus modeling the iris without such occlusions” (JTC 1/SC 37, 2011, pp. 14–15). 
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Utility: “The observed performance of a biometric sample or set of samples in one or more 

biometric systems. The character of the sample source and the fidelity of the processed 

samples contribute to – or detract from – the utility of the sample” (JTC 1/SC 37, 2012, p. 

4). 
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 LITERATURE REVIEW 

 This chapter provides a review of literature that covers the following general topics: 

biometrics, biometric performance, biometric image quality, infant biometrics and their challenges, 

the structure and development of the eye, iris recognition, and iris aging. The literature review was 

used to identify gaps in the literature and build a methodology that examined the feasibility of 

infant iris recognition. 

2.1 Biometrics 

 Biometric recognition uses characteristics, behavioral or biological, to identify or verify an 

individual’s identity. For a biometric characteristic to be useful it must possess the following traits: 

remain similar throughout an individual’s life time (i.e. permanence), be a common characteristic 

of a population (i.e. universal), differ from individual to individual (i.e. uniqueness), suitable 

matching rates for a specified application (i.e. performance), easy to collect and measurable (i.e. 

measurability), generally accepted by the population (i.e. acceptability), and difficult to fake or 

alter, i.e. circumvention (Clarke, 1994). 

 A biometric system consists of subsystems that are present in most biometric systems and 

therefore can be generalized to fit a generic model for biometric systems. The general biometric 

model was created to explain the functions of a biometric system (Mansfield & Wayman, 2002). 

The subsystems of the general biometric model comprise of data capture, signal processing, data 

storage, matching, and decision making. 

 The data capture subsystem captures a raw biometric sample from a user’s presentation to 

the biometric sensor and sends the sample, as a signal, to the signal processing subsystem 

(Mansfield & Wayman, 2002). The signal processing system decides to reject or accept an image 

base off of a pre-set quality threshold (JTC 1/ SC 37, 2006; Mansfield & Wayman, 2002). If a 

sample is rejected, the biometric system may attempt to capture another biometric sample; 

otherwise, the extracted features are stored as a template in the data storage subsystem or used 

directly by the matching subsystem.  

 Templates are created and stored during enrollment. The extracted features are not stored 

directly during matching. Templates from the data storage subsystem are used in the matching 
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subsystem to generate similarity (or dissimilarity) scores to be used to verify or identify the user 

who has presented to the biometric system (Mansfield & Wayman, 2002).  

 Samples are acquired at the data capture subsystem and can be affected by an individual’s 

interaction with the device e.g., a non-cooperative subject. For example, a non-cooperative subject 

may look away from the iris camera making it difficult to capture an iris sample. Poor quality 

samples, without quality control, could propagate throughout the whole system making it difficult 

to correctly extract biometric features, match, and result in a false rejection or acceptance 

(Wayman, 2000). Therefore, it is important that infants’ iris image quality was examined, 

indicating whether samples of good quality can be given repeatedly. 

2.2 Performance 

 When a sample is collected, a comparison is attempted against an enrolled template. If the 

collected sample and enrolled template share the same ground-truthed identity, then it is 

considered a genuine match. Conversely, if they do not share a ground-truthed identity then it is 

considered an impostor match. In an operational setting, an individual’s identity cannot be ground-

truthed. When a biometric system performs matching it computes a similarity score that determines 

whether a user is accepted or rejected based off a predetermined threshold value. The decision 

subsystem of a biometric system determines a binary classification “yes” if the similarity score is 

above or equal to the threshold and “no” if the similarity score falls below the threshold (Mansfield 

& Wayman, 2002). The classification by the biometric system can result in four outcomes: an 

impostor match is correctly rejected, an impostor match is falsely accepted, a genuine match is 

correctly accepted, and a genuine match is falsely rejected. A false accept is analogous to a security 

breach and a false reject results in an inconvenience to the user. 

 If several matches have been conducted, a score histogram is created to plot the impostor 

and genuine scores. Figure 2.1 is an example of a score histogram with a genuine (blue) and 

impostor (red) distribution. The horizontal line represents a set arbitrary threshold of 50. Any 

match score at or above 50 is accepted into the system and any match score below is rejected. The 

farther the impostor and genuine score distributions are from each other the better the system is at 

discriminating genuine users from impostors. Moreover, if no overlap between the genuine and 

impostor distributions exists, then a threshold value can be chosen that results in no false accepts 

or rejects. 
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 The false match rate (FMR) is the proportion of impostor attempts that are greater than or 

equal to the threshold, where the false non-match rate (FNMR) represents the proportion of 

genuine attempts that are below the threshold (Dunstone & Yager, 2009; JTC 1/ SC 37, 2006). 

Equations 1 and 2, show the false match rate and false non-match rates for a given threshold t, 

respectively. 

FMR=
# of impostor attempts ≥ t

Total # of impostor attempts 
 (1) 

 

    FNMR=
# of genuine attempts<t

Total # of genuine attempts
 (2) 

 

 A failure-to-acquire (FTA) occurs when a system fails to capture a biometric sample. An 

acquisition can fail because the biometric characteristic could not be presented; a sample cannot 

be segmented; a sample’s features cannot be extracted; or a sample’s extracted features do not 

meet quality control thresholds. A FTA is the proportion of attempts the biometric system failed 

to capture a sample (JTC 1/ SC 37, 2006). The false reject rate (FRR) is the proportion of genuine 

transactions that were rejected by the system and the false accept rate (FAR) is the proportion of 

impostor transactions that were falsely accepted by the system (Dunstone & Yager, 2009; JTC 1/ 

SC 37, 2006). Equations 3 and 4  show the false reject rate and the false accept rate, respectively. 

Figure 2.1. Similarity Score Histogram 



11 

The FRR and FAR account for the genuine and impostor attempts and examine the number of 

images that failed to be acquired. 

 

FRR=FTA+FNMR*(1-FTA) (3) 

 

FAR=FMR*(1-FTA) (4) 

  

 There are two fundamental types of performance - verification and identification. 

Verification occurs when a person makes a claim to an identity and the captured biometric is 

compared to the template stored under the identity claimed. Identification occurs when all the 

templates stored in a database are compared to a captured biometric, returning a list of potential 

candidates. The number of potential candidates is pre-determined and is primarily denoted as a 

rank e.g., rank-1 identification returns the highest similarity score (JTC 1/ SC 37, 2006).  

 To evaluate biometric performance across all thresholds, a Detection Error Trade-off (DET) 

curve is used. A DET curve is a modified receiver operating characteristic curve (ROC) that plots 

the FNMR (or FRR) against the FMR (or FAR) of a biometric system (Dunstone & Yager, 2009; 

JTC 1/ SC 37, 2006). The DET curve represents the trade-off between FMR (or FAR) and FNMR 

(or FRR) as the threshold is varied. A higher threshold results in a lower FMR (or FAR) and a 

higher FNMR (or FRR) and vice versa for a lower threshold (Dunstone & Yager, 2009). An ideal 

DET curve will have a 0% false match rate for all possible false non-match rates, and a 0% false 

non-match rate for all possible false match rates. Graphically, the curve would lie directly on the 

x-axis and y-axis. 

 Studies show that iris recognition performance can be affected by blurriness or severely 

occluded irises; these defective iris images can be detected using image quality assessment tools 

or visual investigation from a test administrator. Performance of an iris recognition algorithm will 

vary based on an algorithm’s specific sensitivity to certain characteristics of an iris image. 

Algorithms may be more robust or sensitive to severely constricted and dilated pupils, poorly 

centered irises, saturated images, specular reflections, and high grey level images. It has also been 

observed that dilation differences between mated pairs of iris images can increase the false non-

match rate as well. Image quality is a useful quantitative measure that can be used to predict 
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performance. Images of higher quality would expect to have a higher similarity score between 

mated pairs than an image of low quality (Grother et al., 2012). 

2.3 Image Quality 

 It is important to discuss image quality, a metric meant to be a predictor of a biometric 

system or matcher’s performance. This section outlines the definition of image quality and its use 

in biometrics. Furthermore, it outlines iris image quality metrics, their measurement, and definition 

in accordance to ISO 29794-6. 

  Introduction to Image Quality 

 Image quality is a quantitative value used for predicting a biometric matcher’s performance 

e.g., a system with low quality images may have difficulty extracting features and would perform 

better with higher quality samples (Tabassi, Wilson, & Watson, 2004). Image quality can be used 

to reject low quality samples in favor of samples with higher quality, define quality thresholds for 

enrollment, and establish a higher weight for high quality samples in biometric fusion schemes 

(Maltoni, Maio, Jain, & Prabhakar, 2009; Tabassi et al., 2004). An image quality assessment 

algorithm can also be used to improve biometric samples by specifying a reason why a particular 

sample is poor and presenting corrective feedback to the user or operator.  

 Generally, there will only be a small number of low quality samples compared to high 

quality samples; the small proportion of low quality samples will still impact performance. 

Samples of low quality decrease the chances of a correct match and increase the number of false 

negatives. Samples of extremely low quality may not be able to attempt to verify or identify. Sensor 

and user interface design can improve the way a subject interacts or uses the device while 

simultaneously improving image quality. The illuminator and optics can also be improved to 

collect higher quality samples; restricting the environment and other confounding variables will 

increase consistency across collected samples. Better samples can also be collected by adhering to 

data collection best practices (Tabassi et al., 2011).  

 There are several image properties and iris characteristics that influence performance of 

iris recognition. The quality of an image can be determined with an overall scalar quality score or 

can be broken down into more detailed image quality metrics that represent various aspects of the 

iris image known to influence performance. The scalar quality score is used to identify poor quality 
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samples and exclude them by setting a quality threshold, and image quality metrics give more 

information that is actionable for feedback to the user or operator (Tabassi et al., 2011).  

 Iris image quality metrics recorded by Neurotechnology 10 SDK include: scalar quality, 

usable iris area, iris pupil contrast, iris sclera contrast, pupil boundary circularity, iris pupil 

concentricity, sharpness, pupil-to-iris ratio, interlace, grayscale spread utilization, iris radius, 

margin adequacy, and iris detection confidence. The image quality metrics provided by 

Neurotechnology, except for iris detection confidence, adhere to the image quality data standards 

outlined in ISO/IEC 29794-6 (Neurotechnology, 2017). 

 Description of Iris Image Quality Metrics 

 Scalar quality scores should predict performance metrics. All image quality assessment 

algorithms should compute a score so that the false non-match rate will increase for low quality 

samples and decrease for those of higher quality (Tabassi et al., 2011). Therefore, the highest 

image quality score should produce lower error rates than lower scores (Tabassi et al., 2011).  

 The amount of the iris that is not occluded by specular reflections, eyelids, or eyelashes is 

referred to as the usable iris area. A lower usable iris area indicates that there is less information 

to extract from the iris image for recognition. The usable iris area is represented as the percentage 

of the iris area that is not occluded and is recommended to be at least 70% (JTC 1/SC 37, 2011; 

Tabassi et al., 2011). Subject behavior and the collection environment may impact the usable iris 

area. The usable iris area can be improved by designing a better iris recognition system that reduces 

specular reflection from the system’s illuminator, employs automatic quality control, and improves 

subject interaction (Tabassi et al., 2011). 

 Iris pupil contrast is the degree of contrast at the boundary between the pupil and the iris. 

The higher degree of contrast between the iris and pupil the easier it is for an iris to be segmented; 

the contrast of the pupil and iris is less than the contrast between the iris and sclera. The degree of 

contrast between the pupil and iris will vary for each subject whether an image is captured in the 

visible light spectrum or the typical near-infrared spectrum. The contrast between the pupil and 

iris can also be affected by the iris recognition system; the level of contrast is dependent on the 

illuminator of the device (Tabassi et al., 2011). The measure of iris pupil contrast is dimensionless 

and is scored as the percentage of contrast between the pupil and the iris at the iris pupil boundary, 

a recommended iris pupil boundary score is 30% or higher (JTC 1/SC 37, 2011).  
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 The pupil shape is the regularity of the pupil iris boundary. The shape of the pupil is not 

expected to be completely circular or even elliptical but is measured as the deviation of the pupil 

boundary from a circular shape (JTC 1/SC 37, 2011; Tabassi et al., 2011). The circularity of the 

pupil boundary is a function of subject behavior and inherent anatomy. The shape of the pupil 

boundary will vary person to person and a non-circular boundary can also be caused by a non-

frontal gaze to the iris camera (Tabassi et al., 2011).  

 Iris sclera contrast is the degree of contrast at the boundary of the iris and sclera. The 

contrast between the iris and sclera is scored as a percentage of contrast between the iris and sclera 

at the boundary, the iris sclera contrast should be greater than 5% (JTC 1/SC 37, 2011; Tabassi et 

al., 2011). The iris sclera contrast varies for each person and is also dependent on illumination 

which is affected by the iris recognition system, surrounding environment, or both. The contrast 

between the iris and sclera can be improved by designing a better acquisition and capture process 

(Tabassi et al., 2011).  

 This iris pupil concentricity measures the degree that the pupil and iris share the same 

center. The center of the iris and pupil may not be the same and large deviations from concentricity 

can cause segmentation errors. The concentricity of the pupil and iris is measured by taking the 

distance between pupil and iris centers and dividing by the radius of the iris. The iris pupil 

concentricity should be less than a fifteenth of iris’s radius (JTC 1/SC 37, 2011). 

 Sharpness measures the absence of defocus blur in an image. An object outside of a 

camera’s depth of field would cause defocus blur and would become more pronounced as an object 

moves further away from the focal plane. The impairments caused by defocus blur is like motion 

blur; therefore, blur deficiencies caused by motion may be detected by sharpness. Camera 

characteristics such as the aperture size can affect the depth of field. Also, the user interface could 

be improved to guide the subject to a proper distance to reduce the chance of the iris being outside 

of the focal plan of the iris recognition system (Tabassi et al., 2011). 

 Pupil-to-iris ratio measures the degree of dilation by dividing the pupil radius by the iris 

radius. The recommended pupil to iris ratio is between 0.2 and 0.6 assuming that the average of 

an iris radius is 6 millimeters (JTC 1/SC 37, 2011; Tabassi et al., 2011). Iris recognition 

performance will tend to degrade for extreme values of pupil to iris ratio. Dilation depends on the 

subject’s behavior e.g., drugs or ambient light from the environment the iris images are acquired 

from (Tabassi et al., 2011). 
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 The dilation change is the difference between two iris samples, measured with pupil-to-iris 

ratios and accounting for magnification effects. The dilation change ∆D, as shown in Equation 5, 

is the ratio of the two iris radii, D1 and D2. Dilation change assumes that the iris remains a constant 

anatomical size and that the pupil-to-iris ratio D1, is greater than D2.  

 

∆D=
RI1

RI2

(
RI2-RP2

RI1-RP1

) =1 - 
1-D1

1-D2

(5) 

 

 The gray scale utilization is the degree in which an image is exposed to a wide range and 

distribution of intensity values of pixels. Underexposed images have few high intensity pixels 

which results in a darker, more blackish, image. Over exposed images have few low intensity 

pixels which results in a saturated, more whitish, image. Poor illumination or over saturation of an 

image can cause a small spread of intensity values. Gray scale utilization is measured in bits and 

is a result of the entropy obtained from an image’s pixel histogram. The higher the entropy the 

more exposed an image is. The gray scale utilization of an iris image should at least be 6 (JTC 

1/SC 37, 2011; Tabassi et al., 2011). Correcting an iris recognition system to produce images of 

higher contrast and dynamic range can improve gray scale utilization. Gray scale utilization is also 

impacted by the environment in which images are acquired (Tabassi et al., 2011). 

 The iris radius is measured by the number of the pixels across the radius of the iris. An iris 

should be at least 60 pixels across (JTC 1/SC 37, 2011). The iris radius can be affected by the 

sampling rate of the image acquisition device or the distance a subject is from the device. The iris 

radius can be improved by better positioning a user to the iris acquisition device. 

 Margin adequacy is the degree an iris is from the boundary of the image. Inadequate iris 

margin differentials occur from incorrect segmentation of the iris which can be caused by subject 

movement at the time of capture. A margin adequacy score of 100 indicates that the margin values 

are at least the margin values specified in ISO/IEC 19794-6:2011 (JTC 1/SC 37, 2011). Improving 

user interaction with a better user interface can improve margin adequacy. The underlying 

segmentation algorithm may also need changed to improve segmentation (Tabassi et al., 2011). 

 Interlacing artifacts are caused by misaligned odd and even rows of pixels and can result 

in loss of vertical resolution. Interlacing is typically an issue seen in legacy cameras and is a direct 

effect of the device used to acquire irises (Tabassi et al., 2011). Iris samples collected 
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independently from separate occasions for the same individual can differ from a change in 

acquisition environment (e.g., illumination), subject’s presentation to the system (e.g., behavior, 

habituation), physical changes of the biometric (e.g., pupil size, occlusion, disease, etc.), changes 

to the sensor itself (e.g., sensor aging, different sensors). These variations can influence the 

similarity score of an individual resulting in worse false non-match rates (Grother, Matey, Tabassi, 

Quinn, & Chumakov, 2013; Tabassi et al., 2011).  

 Table 2.1 summarizes image quality metrics and their effect on false non-match rates and 

if the pairwise quality1 also changed performance. Moreover, it indicates if an image quality 

metric is affected by behavior, environmental conditions, device specific characteristic, or natural 

anatomical variation (excluding diseases or defects) it is coded with a yes in Table 2.1. 

  

                                                 
1 Pairwise quality is calculated with the geometric mean of two samples from the same individual e.g., √𝑞1 ∗ 𝑞2 
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Table 2.1. 

Image quality metrics and its causes and effects on FNMR. This table was adapted from 

(Grother et al., 2012; Tabassi et al., 2011) 

 

                                                 
2 The impact varied based on the algorithm 

Quality Metric 
Does it affect 

FNMR 

Does 

Sameness 

Matter 

Source of 
Impairment 

Subject 
Behavior 

Subject 
Character 

(natural 

anatomical 
variation) 

Environment Device 

Scalar Quality 

 
Yes No - - - - - 

Usable Iris 

Area 
Yes Yes 

Occlusion 

(eyelids, 

eyelashes, 
specular 

reflections) 

Yes - Yes Yes 

Iris Pupil 

Contrast 

 

Yes 
 

Yes 
Intrinsic, 

Illumination 
- Yes Yes Yes 

Pupil 
Boundary 

Circularity 

Yes No 
Disease, Off 

Axis Disease 
Yes Yes - - 

Iris Sclera 

Contrast 
Yes Yes 

Intrinsic, 

Illumination 
- Yes Yes Yes 

Sharpness Yes No 
Defocus, 

Compression 
Yes - - Yes 

Dilation Yes Yes 
Ambient light, 

Intrinsic 
Yes Yes Yes Yes 

Interlace Yes No 

Loss of 

vertical 
resolution 

- - - Yes 

Gray Scale 
Spread 

Yes Yes2  
Illumination, 

Saturation 
- - Yes Yes 

Iris Radius Yes Yes 
Resolution, 
Distance to 

Camera 

Yes - - Yes 

Margin Yes No 

Improper 
Crop, Subject-

device 

Alignment 

Yes - - Yes 
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 Scalar quality is a quantitative indicator of performance (Tabassi et al., 2004). If an image 

has high scalar quality, then a lower FNMR would be experienced compared to images that have 

low quality. Image quality metrics can affect performance because of several factors such as: 

subject behavior, collection environment, device characteristics, and natural anatomical variation. 

Image quality metrics can affect performance for extremely low or high values (e.g., pupil to iris 

ratio) or if the pairwise quality of the samples being matched differ (e.g., usable iris area). It is also 

important to note that different performance and image quality assessment algorithms can be more 

robust or sensitive to certain image quality metrics. In summary, an assessment of genuine 

similarity scores or false non-match rates should consider individual image quality metrics and if 

they stay the same between different samples from the same individual. 

2.4 Infant Biometric Performance 

 Footprint Recognition 

 Two studies, Jia et al. (2010) and Jia et al. (2012), tested the biometric performance of 

several algorithms for infant footprint recognition. Footprint samples were captured during one 

session within the first two days following birth, approximately 19-20 samples were collected from 

each infant (Jia et al., 2012, 2010). 

 Jia et al. (2010) examined an algorithm with three different similarity score measures. The 

best identification rate was 97% with an EER of 3.82%, a false accept rate was not disclosed. Jia 

et al. (2012) examined the performance, verification rate, and four different footprint algorithms. 

The best performing footprint algorithm had a verification of 98% with a FAR of 0.001%. Both 

studies stated collecting footprint samples from newborns was difficult because they were 

extremely irritated due to hunger or tiredness and would cry often. When the infants were sleeping 

or calm acquiring images was much easier than when they were upset (Jia et al., 2012). 

 Weingaertner et al. (2008) attempted collecting footprints and palmprints using the 

traditional ink and paper method, optical fingerprint/palmprint scanners, and high-resolution light 

scanner. The ink and paper method did not provide much information, the footprint samples did 

not have many visible ridges rendering the inked prints unsuitable for identification. The optical 

fingerprint/palmprint scanners, 250dpi to 500dpi, also lacked usable ridge patterns making the 

prints unsuitable for recognition. Additionally, a high-resolution light scanner was tested at 
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1200dpi and 2400dpi, resulting in higher quality samples. However, the infants’ feet/palms had to 

be held still for approximately two minutes or else the images would get distorted, and the contrast 

between the ridges and valleys was low, making it difficult to segment features. Due to the failure 

of the other devices, a 1400dpi sensor was developed using an 8-megapixel camera that was 

attached to an optical glass prism. Using this sensor, two prints were collected – within the first 24 

hours and second 24 hours after birth – from each infant’s palm and foot. The best palmprint and 

footprint sample was taken from the first 24-hour visit and classified into five different quality 

categories. A quality rating of excellent was rewarded when the ridge pattern, deltas, and minutiae 

points were clearly visible, and a good quality rating when the ridge pattern and delta(s) were 

visible, but minutiae points were not. Only 37.7% of the infants had good or excellent quality 

rating and were not sufficient to attempt matching. 

 Kotzerke et al. (2013) created an algorithm that extracts the flexure creases on the bottom 

of the foot instead of the ridge patterns for infant verification. The flexure creases are represented 

by the darker lines on the bottom of the foot in Figure 2.2. Fifty-four sets of footprints were 

collected at 0-3 days, 8 weeks, and 6 months old. After flexure creases were extracted, matching 

was performed manually with 20 footprint pairs, 11 from the same infant and 9 from different 

infants. Seven individuals, classified as non-experts in biometrics, correctly verified the infants 

55% of the time, two ride-based biometric experts correctly verified 95% of the flexure crease 

pairs. The algorithm was able extract flexure creases but there was a trade-off for the optimal 

contrast threshold. If the contrast is set too low than some creases cannot be extracted and creates 

false creases if the contrast threshold is set too high. 

 Using the same data set from Kotzerke et al. (2013), the area under the big toe (i.e. the ball 

print) was used to identify infants, which is a ridge-based biometric that uses minutiae points like 

fingerprint recognition – Figure 2.2 outlines the ball of the foot with a black box (Kotzerke et al., 

2014). Neurotechnology’s VeriFinger software development kit (SDK), a commercially available 

fingerprint software, was used to extract and match minutiae from infants’ ball prints. The ball 

prints were collected with the NEC PU900-10, a commercial fingerprint sensor. Ball prints 

collected during the first visit were low quality and excluded from the performance analysis. The 

intra- and inter-visit performance was examined for visit 2 and visit 3, and inter-visit performance 

was analyzed by treating visit 3 as the stored image and visit 2 as the matching image. In an 

operational scenario, visit 2 would be the stored image and would yield worse equal error rates 
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from the lower quality samples collected at a younger age. Intra-visit performance was calculated 

for visit 2 and visit 3 and inter-visit performance between visit 2 and visit 3. 

 

 

 The intra-visit performance, using the Neurotechnology VeriFinger SDK, produced an 

EER of 16.60% and 14.28% for visit 2 and 3, respectively and EER of 29.34% for inter-visit 

performance. The infant’s ball print ridges were smaller than a typical adult’s fingerprint ridges, 

therefore the resolution was reduced to accommodate the difference in ridge sizes. Reducing the 

resolution improved the intra-visit performance EER’s to 0% for visit 2 and visit 3 and 7.28% for 

inter-visit performance. Two additional matching algorithms were used to perform matching with 

minutiae data that was extracted by Neurotechnology VeriFinger SDK. Both algorithms did not 

perform as well as the matching algorithm implemented by Neurotechnology. 

2.4.1.1 Performance Summary 

 Infant footprint recognition performance was affected by infants becoming agitated and 

crying. It was easier to collect samples when the infants were calm or upset. One device took 

around two minutes to capture a sample which may increase the chance in infant becomes agitated. 

Table 2.2 summarizes the performance results for each foot-based biometric infant study and 

specifies the part of the foot used. The footprint algorithm implementation is also listed and is 

followed by the FAR, EER, performance type (e.g., identification or verification), and the quality 

metrics reported. To simplify comparisons the number of visits and the respective age in each visit 

is denoted inside the parentheses e.g., 2 (first 24 hours, second 24 hours). 

Figure 2.2. Ball of the Foot. The ball of the foot is highlighted in black. This image was 

modified from the original image (Pexels, 2018). 



 

 

Table 2.2. 

Performance summary results for infant foot-based biometrics 

 

 

Article  Modality Algorithm 

Acceptance Rate/Performance 

EER Type Quality 
# Of Visits 

(age(s)) 
FAR = 
0.001% 

FAR = 
0.01% 

FAR = 
0.1% 

Unspecified 

Jia et al., 2010 Footprint 

BLPOC w/ 

Peak 
- - - 95.05% 4.34% 

Acceptance Rate 

(Identification), EER 

(Verification) 

- 

1 
BLPOC w/ 

PCE 
- - - 93.30% 4.52% - 

BLPOC w/ 

PSR 
- - - 97% 3.82% - 

Jia et al., 2012 Footprint 

Ordinal Code 96.2% 96.6% 97.2% - 1.5 

Verification 

- 

1 

Competitive 

Code 
95% 95.8% 96.2% - 2.2 - 

BOCV 98% 98.2% 98.5% - 1.34 - 

RLOC  96.8% 97.5% 98% - 1.77 - 

Weingaertner et 
al., 2008 

Footprint n/a - - - - - - 
37% excellent or 

good quality 
2 (1st 24hrs, 
2nd 24hrs) 

Kotzerke et al., 

2013 

Flexure 

Creases 

Manual 

Inspection 
- - - 

55% (Non-

expert) - Verification - 

3 (0-3 days, 8 

weeks, 6 
months) 95% (Expert) 

Kotzerke et al., 
2014 

Ballprint 

Verifinger  - - - - 

16.6% (V2, V2) 

Verification 

- 

3 (0-3 days, 8 

weeks, 6 
months 

14.28% (V3, V3) 

29.34% 

(V3, V2) 

Verifinger 
(re-scaled 

resolution) 

- - - - 
0% (V2, V2) 

- 0 (V3, V3) 

7.28% (V3, V2) 

ICP - - - - 

45.75% (V2, V2) 

40.72% (V3, V3) 

44.9% (V3, V2) 

- 

BGM - - - - 

14.66% (V2, V2) 

16.01% (V3, V3) 

40.08% (V3, V2) 

 - 

 

2
1
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 Palmprint Recognition 

 Weingaertner et al. (2008) also collected two palmprints over two separate visits, the first 

24 hours after birth and the second 24 hours after birth. The best palmprint sample from each infant 

was classified into 5 distinct levels of quality, excellent and good quality classifications are defined 

in Section 2.4.1, and 83% of the collected palmprint samples had a quality classification of 

excellent or good. Three fingerprint examination experts manually matched two sets consisting of 

30 randomly selected infant palmprint pairs. The fingerprint experts correctly verified 63.3% and 

67.7% of the first and second set of the palmprint pairs, respectively. 

 Another palmprint data collection occurred at the same hospital as Weingaertner et al. 

(2008) and collected 1,221 samples from 250 newborns between 1-48 hours after birth. Five sets 

containing three samples from each infant’s right palm were collected using the Crossmatch 

LSCAN 1000P, a commercially available fingerprint/palmprint scanner. Palmprint quality was 

assessed automatically from classifications methods proposed in Wu, Tulyakov, and Govindaraju, 

(2006), which include good, normal, dry, wet, and spoiled. Moreover, good quality is defined by 

the traits “clear ridge/valley contrast; easily-detected ridges; precisely-located minutiae; easily 

segmented” (Wu et al., 2006, p. 217). Of the infants, only 5% (i.e. 20 out of 250 newborns) had 

good quality palmprint samples, consequently, the same proportion of infants’ samples were 

sufficient for matching. Many of the palmprint samples did not have visible ridge structures, 

minutiae points, or deltas making it difficult to perform matching on most of the images. The best 

performing algorithm, simulated annealing (SA), had a verification rate of 78% at a FAR of 1%. 

Moreover, the rank-3 identification rate was 98% and identification rates at ranks larger than three 

were 100% (Rhcastilhos, 2018). 

2.4.2.1 Performance Summary 

 The performance of palmprint recognition for infants was increased from a manual 

verification rate of 63.33-67% to 78% with the SA matching algorithm. However, 5% of the infants 

had palmprints that had enough quality for matching, furthermore, manual assessment of image 

quality resulted in 83% of good or excellent quality palmprint images which may be influenced by 

the subjective quality measurements of the examiners. Table 2.3 conveys the performance and 

image quality results of each palmprint recognition study. Additionally, Table 2.3 reports the 
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corresponding FAR, algorithm, and performance type (i.e. verification or identification). 

Comparisons between studies is simplified by reporting the number of visits and respective age 

for each study e.g., 2 (first 24 hours, second 24 hours). 

Table 2.3. 

Performance summary results for infant palmprint recognition 

Article  Modality Algorithm 

Acceptance Rate/Performance 

EER Type Quality 

# Of 
Visits 

(age(s)) 
FAR = 

0.1% 

FAR 

= 1% 

FAR 
= 

10% 

Unspecified 

Weingaertner et 

al., 2008 
Palmprint 

Manual 

Inspection 

- - - 
63.33% 

- Verification 

83% of 

good and 

excellent 
quality 

2 (1st 

24hrs, 

2nd 
24hrs) 

- - - 

- - - 67% 

 Lemes et al., 

2011 
Palmprint SA 

- 78% - - - Verification 
5% good 

quality 
1 

- 98% - - - 
Rank 3 
Identification 

 

 Face Recognition 

 Bharadwaj et al. (2010) collected face images from 34 newborn infants over two sessions, 

two hours after birth and again at the infant’s discharge from the hospital. A face recognition 

algorithm that combines the scale and rotation invariant descriptors algorithm (SURF) and texture 

operator algorithm (LBP) was proposed. The proposed algorithm performance was compared to 

PCA, LDA, ICA, SURF, and LBP algorithms. In fact, the proposed algorithm had the best rank-1 

identification rate 86.9%; in comparison, the worst performing algorithm was LBP with a rank-1 

identification rate of 80.1%. 

 Another study using the same algorithms in Bharadwaj et al. (2010) collected face images 

in two sessions, first four hours after birth and again 20-70 hours after birth (Tiwari & Singh, 2012). 

Infants were crying, sleeping, or agitated making it difficult to capture face images with a neutral 

expression. Each algorithm was trained and tested with face images based on the classified 

expressions neutral, crying, and screaming. The proposed algorithm had the best rank-1 

identification for all training and testing combinations. When neutral faces were used for training 

and testing the proposed algorithm had a rank-1 identification rate of 87.04% and outperformed 

the rank-1 identification rate observed by Bharadwaj et al. (2010). Moreover, training the 

algorithm with neutral faces and testing with sleeping or crying resulted in a higher rank-1 

identification rate than when crying or sleeping expressions were used for training. 
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 Bachenheimer (2016), using a low-cost and portable biometric system, observed that 57% 

of infants’ face samples from ages 0-3 years old produced good quality images. Moreover, 42% 

of the face samples were of low quality and 1% failed to acquire an image at all. Image quality for 

infants four years and older increased the proportion of good quality samples to 79% and decreased 

the proportion of low quality and non-acquired samples to 20% and 1%, respectively. 

2.4.3.1 Performance Summary 

 Table 2.4 summarizes the performance and image quality results from each infant face 

recognition study and face recognition algorithms. Moreover, the table denotes the testing-training 

combinations and the number of visits and respective age e.g., 2 (first two hours, at discharge). 
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Table 2.4. 

Performance summary results for infant face recognition 

  

                                                 
3 The notation refers to the training and testing set, training-testing. Neutral, sleeping, and crying facial expressions 

are abbreviated with N, S, and C.  

Article Algorithm 

Rank-1 Identification Accuracy 

Quality 
# of Visits 

(age) 
N-N3 N-C N-S C-N S-N  C-S 

Not 

Categorized 

Bharadwaj et 

al., 2010 

PCA - - - - - - 81.3% - 

2 (First 2 

hours, at 

discharge) 

LDA - - - - - - 80.7% - 

ICA - - - - - - 84.6% - 

LBP - - - - - - 82.4% - 

SURF - - - - - - 80.1% - 

Proposed - - - - - - 86.9% - 

Tiwari & 

Singh, 2012 

PCA 81.88% 74.58% 80.38% 75.58% 77.58% 68.38% - - 

2 (First 

four 

hours, 20-
70 hours 

after 

birth) 

LDA 83.19% 81.39% 85.39% 81.29% 81.39% 71.29% - - 

ICA 83.34% 81.64% 84.14% 80.15% 81.35% 72.64% - - 

LBP 83.84% 79.64% 81.54% 77.34% 80.34% 75.24% - - 

SURF 82.16% 80.36% 81.46% 80.36% 80.36% 78.35% - - 

Proposed 87.04% 85.14% 86.34% 84.34% 85.84% 81.34% - - 

Bachenheimer, 

2016 

n/a - - - - - - - 

Good 

(57%) 

Low (42%) 

 Not 

Captured 

(1%) 

1 (0-3yrs) 

n/a - - - - - - - 

Good 

(79%) 

 Low (20%) 

 Not 

Captured 

(1%) 

1(4+ yrs) 
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 Ear Recognition 

 Tiwari, Singh, and Singh (2011) initially investigated ear recognition for infants with four 

algorithms, collecting 5 samples of the left and right ear from 125 subjects. The highest performing 

algorithm, geometrical feature extraction (GF), had a rank-1 identification rate of 83.67%. In 

2012b, Tiwari, Singh, and Singh compared the performance of infant and adult ear recognition. 

The infant database consisted of 210 subjects with 5 samples per ear, and the adult database had 

121 different subjects, 14-58 years old, with 471 images total. Seven separate algorithms were also 

compared, the best performing algorithm for infants, HAAR, had a rank-1 identification rate of 

91.23% and 93.5% for infants and adults, respectively. The lowest performing algorithm for 

infants, PCA, had a rank-1 identification accuracy of 81.14% and 83.32% for infants and adults, 

respectively. The results of this study indicate that ear recognition for infants and adults have 

similar rank-1 identification rates. However, the adult database did not have as many subjects as 

the infants and the time between samples was not given, potentially resulting in misconstrued 

conclusions. 

 In another study, infant ear recognition was tested using six different matching algorithms 

PCA, FLDA, ICA, HAAR, GF, and an algorithm proposed by Tiwari et al. (2015) that, in fact, 

fuses the similarity scores from GF and HAAR. Ten samples were collected from 210 infants over 

two sessions, the first within four hours after birth and another within the next 20-70 hours. Tiwari 

et al.’s algorithm obtained the highest rank-1 identification rate, 87.78%, whereas PCA, the lowest 

performing algorithm, had a rank-1 identification rate of 73.27%. Table 2.5 compares the highest 

rank-1 identification performance for each ear algorithm. To simplify comparison to other infant 

biometric studies the number of visits and corresponding age are reported as well e.g., 2 (first four 

hours, 20-70 hours after birth). 

2.4.4.1 Performance Summary 

 Ear recognition for infants appears to perform on-par with ear recognition of adults, with 

some caveats. The adult database did not has have as many subjects as the infant database and the 

time between samples is unknown. As show in Table 2.5, it appears that the best performing 

algorithms for infants tend to be geometric based algorithms: GF, HARR, and the proposed 

algorithm by Tiwari et al. (2015) which combines GF and HARR. Infants were uncooperative, 
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they often were sleeping or crying. Another obstacle to collecting data was getting willing parents 

to allow their children to take part in the study. 

Table 2.5. 

Summary performance results for infant ear recognition 

Article Algorithm Rank-1 Identification Accuracy # of Visits (age) 

Tiwari et al., 2011 

PCA 78.56% 

1 (Not Reported) 

FLDA 80.57% 

ICA 71.75% 

GF 83.67% 

Tiwari et al., 2012b 

PCA 
Infants: 81.14%  

Adults: 83.32% 

Infants: 

2 (48 hrs apart) 

Adults: Unknown 

ICA 
Infants: 82.42% 

 Adults: 85.13% 

FLDA 
Infants: 87.15%  

Adults: 89.13% 

GF 
Infants: 89.35%  

Adults: 91.13% 

HAAR 
Infants: 91.23% 

 Adults: 93.35% 

LBP 
Infants: 90.23%  

Adults: 92.35%  

SIFT 
Infants: 89.35%  

Adults: 91.13% 

Tiwari et al., 2015 

PCA 73.27% 
2 (First 4 hours, 20-70 

hrs after birth) 

FLDA 80.62% 

2 (First 4 hours, 20-70 

hrs after birth) 

ICA 75.32% 

HAAR 83.24% 

GF 83.14% 

Proposed 87.78% 
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 Fingerprint Recognition 

 Jain et al. (2014) collected infant fingerprint samples in a controlled lab environment 

(Michigan State University) at East Lansing, MI and in two health clinics, rural and urban, located 

in Benin (the city was not mentioned). The lighting at the urban health clinic was fixed in a closed 

room, whereas the collection at the rural urban clinic occurred at an open-air shelter in sunlight. 

Fingerprints were collected from infants, 0-4 years old, using the Digital Persona U.are.U 4500, a 

commercially available device. Both, the left and right, index fingers and thumbs were collected 

over five sessions, one week apart, at MSU. In Benin, at both health clinics, three left index fingers 

and thumbs were collected in a single session. Verification and identification performance were 

evaluated using live-scan and latent fingerprint algorithms from commercially available SDKs. 

Both verification and identification were evaluated at a baseline, of which, a single template was 

enrolled per infant. Other matching strategies – to increase performance – were evaluated, namely: 

the similarity scores from multiple templates were fused; the similarity scores from two fingers 

were fused together; and templates were updated from additional sessions then the similarity scores 

were fused from two fingers. 

 Template updating was only used for identification and the fingerprint samples collected 

at MSU. The verification rates and rank-1 identification rates from using the latent algorithm 

outperformed the live-scan algorithm in every matching strategy, regardless of collection location. 

The latent algorithm performed so well because Jain et al. (2014) observed that infant’s 

fingerprints and adult latent fingerprints have similar challenges. On average, infants’ fingerprints 

were of better quality than adults’ according to the NFIQ quality algorithm, although visually the 

infants’ fingerprints appeared to be of poor quality. The inconsistency between the visual 

interpretation of quality and image quality algorithm may be because the algorithm was in fact 

designed for adults. Both fusion methodologies improved the performance rates, and there was 

noticeable difference in performance between fingerprints collected at MSU and in Benin. The 

less constrained environment in Benin may have made it more difficult to collect usable fingerprint 

samples and therefore lowering performance. 

 Two commercial off the shelf fingerprint SDKs, tenprint and latent, were used to evaluate 

fingerprint recognition performance using similar matching strategies outlined in Jain et al. (2014), 

and verification rates and rank-1 identification rates were reported for three age groups: 0-6 months, 
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6-12 months, and 12 months and older. At an FAR of .1%, the verification rates4 for the tenprint 

algorithm improved from 69.19% to 100% for the age groups 0-6 months and 12 months and older, 

respectively. A similar improvement was seen for the latent algorithm, 73.74% and 100%. The 

rank-1 identification for infants 0-6 months was 54% and increased to 99% for the 12 months and 

older age group. However, the latent algorithm had a rank-1 identification of 91% for infants 0-6 

months which is higher than what was observed for the latent verification rate and the tenprint 

identification rate. Moreover, the identification rate for infants 12 months and older improved to 

100%. The verification rates and rank-1 identification rates for infants younger than 6 months was 

significantly lower than those observed for the older ager groups, primarily due to poorer quality 

samples from younger group. for older infants, primarily due to poorer quality samples collected 

from the younger group. A custom-made fingerprint sensor designed specifically for infants was 

created to counter the low-quality fingerprints that were collected with an off-the-shelf commercial 

fingerprint sensor (Jain et al., 2016). More specifically, the custom fingerprint sensor has a higher 

resolution of 1270ppi with custom-made dimensions and features to increase the infants’ comfort. 

The custom-made fingerprint sensor was tested by collecting three fingerprint samples from the 

left and right thumbs over two sessions, 2-4 days apart. The verification rates (at a FAR of 0.1% 

and 1%) for infants four weeks old and younger were 43.43% and 54.55%, respectively and 79.72% 

and 83.55% for infants older than four weeks old. The rank-1 identification rates for infants four 

weeks old and younger and infants older than four weeks were 38.44% and 73.98%, respectively. 

The verification rates and the rank-1 identification rate for infants older than four weeks were 

significantly higher than the rates reported for the younger age group. 

 A longitudinal study by Jain et al. (2017) examined infant fingerprint recognition over time 

with a 1270ppi custom-made fingerprint sensor described and tested in Jain et al. (2016) and a 

commercially available device. The study used three sets of data: set A collected three left and 

right thumb samples using both fingerprint sensors (except the custom sensor in session 1) over a 

year in four separate session; set B consisted primarily of infants 0-6 months old using only the 

custom-made sensor in three sessions; and set C also collected primarily from infants 0-6 months 

using only the custom fingerprint sensor but only over two sessions. Set A collected fingerprint 

                                                 
4 The reported verification rates for infants 6-12 months was interpreted from the reported ROC curves because it was 

excluded from the text. 
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samples from 204 infants, 161 completed all four sessions, moreover, subset B had 65 infants and 

another 40 infants in subset C. 

 Performance rates were compared for the commercial and custom fingerprint sensors using 

the 162 subjects in session two and four from set A. At a FAR of 0.1%, the verification rates of 

the commercial and custom sensor for infants 6-12 months were 95% and 98.9%, respectively and 

99.5% and 100% for infants 12-60 months. Infants 0-12 months initially experienced increasing 

verification rates as more time elapsed between the enrollment and verification images. The 

verification rates (at a FAR 0.1%) for the commercial sensor at 6 months between enrollment and 

verification images was lower than the verification rates observed 10 months after enrollment, 

indicating that image quality could have improved and in turn improving overall performance. The 

verification rates did not change much between enrollment and verification images with the custom 

fingerprint sensor, but at a FAR of 0.1%, set B verification rates decreased from 18.0% to 9.8% as 

the time after enrollment increased from 4 months to 6. 

 A mixed-effects regression model was used to observe the trend in genuine similarity 

scores as the time after enrollment and the infant’s age at enrollment. The regression model was 

conducted on the commercially available and custom-made sensor separately. The mixed-effects 

regression model of the commercially available sensor, with a 12-month time lapse between 

enrollment and verification images, indicated an increase in genuine similarity scores from 6 to 10 

months. The modeled regression line for each age group was parallel which indicated that the age 

group was not a statistically significant predictor for determining the rate of change in genuine 

similarity scores over time. Analysis of the mixed regression model for the custom sensor indicated 

that the mean genuine similarity score was constant between 4- to 6-months after enrollment. The 

mean genuine similarity scores were significantly different for each age group with significantly 

lower genuine similarity scores for infants 0-6 months old.  The study states that “the mean 

genuine similarity scores actually increase from 6 to 10 months’ time lapse … because the quality 

of the fingerprints acquired improves as the subject ages” (Jain et al., 2017, p. 1551).  

 The Dutch Ministry of the Interior and Kingdom Relations (2005) could not capture quality 

fingerprint samples from infants younger than four. In fact, the capture rate of infants did not 

surpass 50% until around four years old, and fingerprints could not be captured from infants 
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younger than three. The conclusion of the trial was that obtaining fingerprints from infants was 

“virtually impossible” (Dutch Ministry of the Interior and Kingdom Relations, 2005, p. 25). 

2.4.5.1 Performance Summary 

 Performance results for infant fingerprint recognition are listed in Table 2.6, additionally, 

the age, sensor, algorithm, number of visits, and recognition type are listed. After an initial 

investigation by Jain et al. (2014), two fingers are fused together in subsequent studies because the 

verifications rates and rank-1 identification rates were higher than the other matching strategies, a 

single template and fusing multiple templates. Additionally, fingerprints collected outside in an 

uncontrolled environment performed worse than fingerprints collected in controlled environments. 

Infants’ fingerprints performed poorly on traditional live-scan algorithms compared to a latent 

fingerprint algorithm, because infants and adults’ latent fingerprints exhibit similar challenges. 

Infants’ fingerprints had a better average NFIQ score than adults, creating two discrepancies: 1) 

visually infants’ fingerprints appeared to be of poor quality; and 2) infants’ fingerprints performed 

more poorly than adult fingerprint recognition. To put the performance differences in perspective, 

an adult fingerprint study, fusing two fingers, had rank-1 identification rates of 90% and 99.8% 

for the lowest and highest performing algorithms (Watson et al., 2014). Fusing two fingers for 

infant fingerprint recognition resulted in a range of rank-1 identification rates, 40-90% (Jain et al., 

2014).  

 Capturing infants’ fingerprints with adult fingerprint sensors proved to be difficult. Infants’ 

fingerprints are smaller than adults’, making it difficult to even acquire an image. The condition 

of infants’ fingerprints is unpredictable and could be dry, wet, or dirty. The custom-made, 1240ppi 

fingerprint sensor allowed samples with distinguishable ridge spacing to be captured, regardless 

of age. Infants’ fingerprint samples had to be enhanced and similarity scores were fused together 

yet using an adult fingerprint recognition algorithm was not sufficient (Jain et al., 2016).  

 Fingerprint recognition is designed for adults. Consequently, the quality assessment 

algorithms, image enhancement algorithms, matching algorithms, and fingerprint sensors are 

designed for adult fingerprints. A major assumption of infant fingerprint recognition is that proven 

fingerprint recognition methods will work for infants. The infant fingerprint literature suggests 

otherwise: it is difficult to capture fingerprints with distinguishable ridge spacing; infants’ 

fingerprints appear to be of poor quality, but an image quality assessment algorithm indicates 
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infants’ fingerprints are better than adults’; and infants’ fingerprints require different image 

enhancement techniques (e.g., adjusting ridge spacing). Therefore, infant fingerprints may in fact 

possess different salient features for recognition than adult fingerprints. 

Table 2.7 describes the results from the longitudinal analysis conducted by Jain et al. 

(2017), which observed that as time increases between enrollment and verification that the genuine 

similarity scores of a commercial fingerprint sensor, the Digital Persona U.are.U 4500, temporarily 

increased and leveled off after an additional two months. More specifically, infants’ genuine 

similarity scores showed an initial increase from 6 to 10 months’ time lapse after enrollment. Jain 

et al. (2017) stated that the initial increase was due to the improvement of image quality. The 

mixed regression analysis does not include image quality as a predictor suggesting that the claim 

is based off the median NFIQ2 score which was only reported for three age groups. Or, the claim 

is purely speculative and based off a visual analysis of subjects’ fingerprints. In turn, Jain et al.'s 

(2017) conclusion is inappropriate and misleading. The performance of the custom-made sensor 

found that there was no difference in genuine similarity scores two months after enrollment, but 

there was a significant difference between similarity scores for the three infant age groups. The 

older the infants were at enrollment the higher the similarity scores. 
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Table 2.6. 

Summary performance results for infant fingerprint recognition 

Article Location Sensor Age 
Recognition 

Type 
Algorithm 

Single 
Template 

(baseline) 

Fused 

Templates  

Two 
Fused 

Fingers 

Two 
Fused 

Fingers 

w/ 
Template 

Updating 

# of 

Visits 

Jain et 

al., 

2014 

East 

Lansing 
U.Are.U 

4500 

(512ppi) 

0-4 
years 

Verification 

(FAR .1%) 

Live-scan 62.25% 71.01% 86,34% - 

5 (1 

week 
apart) 

Latent 78.52% 82.52% 95.04% - 

Rank-1 
Identification 

 

Live-scan 46.38% 64.16% 73.98% 83.67 

Latent 75.46% 85.8% 95.52% 98.97% 

Benin 

Verification 

(FAR .1%) 

Live-scan 30.24% 41.67% 57.5% - 

1 
Latent 44.29% 50.24% 64.27% - 

Rank-1 
Identification 

Commercial 20.00% 29.29% 40.00% - 
Live-scan 42.86% 55.72% 67.14% - 

Jain et 
al., 

2015 

- 

U.Are.U 

4500 

(512ppi) 
 

0-6 

months 

Verification 

(FAR .1%) 

Tenprint 

- - 69.19% - 

1 

6-12 

months 
- - 94% - 

>12 
months 

- - 100% - 

0-6 

months 

Latent 

- - 73.74% - 

6-12 

months 
- - 96% - 

>12 

months 
- - 100% - 

0-6 
months 

Rank-1 

Identification 

Tenprint 

 - 54% - 

6-12 

months 
 - 81% - 

>12 

months 
- - 99% - 

0-6 

months 

Latent 

- - 91% - 

6-12 

months 
- - 99% - 

>12 

months 
- - 100% - 

Jain et 
al., 

2016 

- 
Custom 

1270ppi  

<=4 

weeks 

Verification 
(FAR .1%) 

Not-

Specified 

- - 43.43%  - 

2(2-4 
days 

apart) 

Verification 

(FAR 1%) 
- - 54.55% - 

Rank-1 

Identification 
- - 38.44% - 

> 4 

weeks 

Verification 
(FAR .1%) 

- - 79.72%  - 

Verification 

(FAR 1%) 
- - 83.55% - 

Rank-1 

Identification 
- - 73.98% - 

Jain et 

al., 

2017 

- 

U.Are.U 

4500 
(512ppi) 

0-6 

months 

Verification 

(FAR .1%) 

 

Not-
Specified 

- - 95% - 

2 (6 

months 

apart) 

12-60 

months 
- - 99.5% - 

Custom 

1270ppi 

0-6 

months 
- - 98.9% - 

12-60 
months 

- - 100% - 
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Table 2.7. 

Longitudinal performance results for infant fingerprint recognition 

Article Sensor ppi Performance Type Age 
Time Lapse (Months) 

4 6 10 12 

Jain et 

al., 

2017 

U.Are.U 

4500 
512 

Verification Rate 

(FAR =.1%) 

 

0-6 months n/a 66.7% 77.3% 71.1% 

6-12 

months 
n/a 92.8% 96.2% 94.9% 

12-60 

months 
n/a 100% 100% 100% 

Rank-1 Identification 

Rate 

 

0-6 months n/a 66.7% 77.3% 72.8% 

6-12 

months 
n/a 99.0% 96.2% 95.8% 

12-60 

months 
n/a 100% 100% 100% 

Custom 1270 

Verification Rate 

(FAR=.1%) 

6-12 

months 
98.9% 98.9% n/a n/a 

12-60 

months 
100% 100% n/a n/a 

Rank-1 Identification 

Rate 

6-12 

months 
100% 99.4% n/a n/a 

12-60 

months 
100% 100% n/a n/a 

 Iris Recognition 

 Corby et al. (2006) implemented an iris-based recognition system to identify subjects 

participating in genetic medical study using the Panasonic Authenticam, a commercial iris 

recognition device, and Iridian Technologies’s PrivateID V1.5 iris recognition software was used 

to enroll and identify participants. The study included 1170 subjects, 646 infants and 524 adults. 

The infants, ranging from 1.5 to 8 years old, were enrolled in the system during their first visit and 

identified during their second – a year later. The infants’ iris samples were categorized into four 

groups: full, partial, marginal, or failed enrollment based on both iris samples having acceptable 

quality, a single iris sample having acceptable quality, both iris samples having marginal quality, 

and iris samples having unacceptable quality, respectively. Out of the 1170 participants, 184 of 

them failed to enroll – 155 infants and 29 adults. Furthermore, 495 adults and 491 infants were 

successfully enrolled at a rate of 94% and 76%, respectively. 

 Table 2.8 shows the age range, number of infants in each age range (n), and their 

enrollment classification rates (Corby et al., 2006). 
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Table 2.8. 

Infant iris recognition enrollment percentages based on age range (Corby et al., 2006)

Age Range (yr) n Full Enrollment Partial Enrollment 
Marginal 

Enrollment 
Failed Enrollment 

1.5-3 257 26.84% 10.89% 6.23% 56.03% 

3-6 295 81.02% 9.83% 5.76% 3.39% 

7-8 94 91.5% 6.38% 1.06% 1.06% 

 

 The result of an ANOVA test indicated that the infants’ mean age for enrollment qualities– 

acceptable, marginal, and unacceptable were statistically different. Table 2.9 shows the number of 

infants n, the mean age, and age standard deviation σ at a specific enrollment quality. 

 

Table 2.9. 

Infant iris recognition enrollment image qualities and mean age (Corby et al., 2006) 

n Avg. Age σ Enrollment Quality 

457 5.4 0.07 Acceptable 

34 4.0 0.25 Marginal 

155 2.5 0.12 Unacceptable 

 

 The iris recognition system provided the identity of a captured iris which was cross checked 

with the subject’s identification card to ground truth the results; this identification technique is 

referred to as the rank-1 identification because it returns the identity of the stored template that 

produced the highest similarity score when matched to a captured iris. A year after the first 

screening, the iris recognition system correctly identified 488 out of the 491 infants (99.4%) whose 

enrollment images were classified as acceptable quality. The three infants that were not 

successfully identified had marginal quality irises – the 31 infants that had marginal enrollment 

quality images were still identified successfully. The infants that failed to enroll during the first 

screening half were able to successfully enroll in the second session. 

 A low-cost iris recognition camera was used as part of a biometric capture system to enroll 

and verify refugees across multiple locations – adults and infants were both enrolled 

(Bachenheimer, 2016). The device is currently $480.00 (Fulcrum Biometrics LLC, 2018). The iris 

recognition device failed to capture irises 85.9% of the time from infants younger than four years 
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old and 2% for infants older than four. Moreover, the majority of infants, approximately 1%, had 

two low-quality irises. Bachenheimer (2016) mentioned that the iris device could have had a high 

failure to capture rate for the younger age group, because the device, which resembles binoculars, 

had to be directly held up to the infant’s face long enough to capture an iris. Additionally, he states 

that a more usable iris device may improve the capture rate. 

2.4.6.1 Performance Summary 

 The literature for infant iris recognition is limited. However, studies do indicate that iris 

images of good quality can be captured – only Bachenheimer (2016) and Corby et al. (2006) have 

conducted iris recognition research with infants. Furthermore, iris recognition can correctly 

identify 99.4% of infants a year later, that is, of the samples that could be captured. Both studies’ 

results show that capture rates for young infants are fairly low and improve substantially with age. 

When examining infant iris recognition, the device and age could significantly impact performance. 

It is important observe these factors when examining infant iris recognition. It is interesting to note 

the infant iris recognition literature does not mention any evidence to support that the iris pattern 

does not stabilize for the first two years after birth – which other authors have unsubstantially 

claimed (Barra et al., 2014, 2014; Jain et al., 2004; Jia et al., 2012; Tiwari et al., 2015, 2013, 2013; 

Tiwari & Singh, 2012; Weingaertner et al., 2008).  

 Multimodal Biometrics 

 Tiwari et al. (2012) observed that a rank-1 identification rate for face recognition was 

80.42%. By combining the infant’s face with additionally collected soft biometric data, the rank-

1 identification rate improved. The rank-1 identification rates were evaluated with the face 

combined with all the collected soft biometric data and a single soft biometric. Adding an infant’s 

sex, blood group, weight, and height increased the rank-1 identification rate by approximately 2%, 

3%, 2%, and 3%, respectively. When the face was combined with all four soft biometrics the 

identification rate increased by 6%. 

 Infant ear recognition had a rank-1 identification rate of 83.67% and when fused with a 

single soft biometric (sex, blood group, weight, and height) improved by approximately 2%, 2%, 

3%, and 3%. When the ear was fused with all four soft biometrics, the identification rate improved 

by approximately 6% (Tiwari et al., 2012c). The improvements to rank-1 identification rate 
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improved by the same rate when fusing face with all four soft biometrics. However, ear 

recognition, by a small margin, outperformed face recognition. 

 Madhu et al. (2017) combined the footprint of an infant and its mother’s fingerprint to 

improve performance. The similarity scores from the infant’s foot and mother’s fingerprint were 

fused independently. The fusion methodology achieved an FNMR of 12.3% at an FMR of 0.01%. 

2.4.7.1 Performance Summary  

 Multimodal biometrics could be useful for improving recognition accuracy for infants 

when little information can be extracted to discriminate between infants’ biometric samples. 

Combining an infant’s biometric with their mothers can also increase recognition accuracy. 

Although soft biometric data is easy to record, an infant’s height and weight can change. 

Additionally, multimodal techniques combining the infant’s and mother’s biometrics depends on 

the mother always being present to successfully identify or verify an infant’s identity. The mother 

may not always be present, therefore combining an infant’s biometric with its mother is not 

realistically sustainable. Table 2.10 summarizes the studies that use multiple biometric modalities 

for infant recognition. 
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Table 2.10. 

Summary of Multimodal Biometrics 

Article Performance Type Fused Biometrics Performance 

Tiwari et al., 2012 

 

Rank-1 Identification Rate Face + Sex 82% 

Rank-1 Identification Rate Face + Blood Group 83% 

Rank-1 Identification Rate Face + Weight 82% 

Rank-1 Identification Rate Face + Height 83% 

Rank-1 Identification Rate Face + All Four 86% 

Tiwari et al., 2012c 

Rank-1 Identification Rate Ear + Sex 85.12% 

Rank-1 Identification Rate Ear + Blood Group 85.16% 

Rank-1 Identification Rate Ear + Weight 86.16% 

Rank-1 Identification Rate Ear + Height 86.46% 

Rank-1 Identification Rate Ear + All Four 89.26% 

Madhu et al., 2017 Identification (0.01% FMR) 
Mother’s Finger + Infant’s 

Foot 
87.7% 

2.5 Challenges of Infant Biometrics 

 Infant biometrics, regardless of modality, exhibit special or exaggerated challenges due to 

the natural non-cooperative behavior of infants (Bharadwaj et al., 2010; Corby et al., 2006; Jain et 

al., 2015, 2016, 2017, 2014; Jia et al., 2012; Lemes et al., 2011; Tiwari et al., 2015; Weingaertner 

et al., 2008). Other challenges suggested by Jain et al. (2014), Jia et al. (2010), Joun et al. (2003), 

and Lemes et al. (2011) arise due to inherit traits of the biometric at infancy, and the unique 

challenge of using a device that is designed for and used by the adult population (Bachenheimer, 

2016; Jain et al., 2014; Weingaertner et al., 2008).  
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 Infants’ fingers are known to be excessively oily or wet from natural characteristics or from 

behavior e.g., placing fingers in their mouth. In addition infants tend to keep their fists balled and 

may become agitated when they are opened (Jain et al., 2014). The ridge spacing of infants’ 

fingerprints is smaller than an adult which must be adjusted to match the ridge spacing of an adult’s 

fingerprint before extracting features (Jain et al., 2015, 2014; Joun et al., 2003). A fingerprint 

sensor may not detect an infant’s finger due to its small size compared to an adult for which the 

sensor was designed. A high resolution custom made fingerprint sensor has shown promise by 

mitigating challenges due to ridge spacing and wet or oily fingers (Jain et al., 2017). Adults are 

primarily the target population of fingerprint recognition. Quality assessment algorithms, image 

enhancement algorithms, matching algorithms, and fingerprint sensors are designed for adult 

fingerprints. Infant fingerprint literature posed unique challenges: it is difficult to capture 

fingerprints with distinguishable ridge spacing; infants’ fingerprints appear to be of poor quality, 

but an image quality assessment algorithm indicates infants’ fingerprints are better than adults’; 

and infants’ fingerprints require different image enhancement techniques (e.g., adjusting ridge 

spacing). Adult fingerprints may in fact possess different salient features than infant fingerprints, 

essentially rendering adult fingerprint matching algorithms, image quality assessment algorithms, 

and fingerprint sensors practically unusable for infant fingerprint recognition.  

 Palmprint recognition and footprint recognition both use ridge based biometric which is 

also used in fingerprint recognition. Therefore, they exhibit the same challenges as fingerprint 

recognition. Due to the characteristics of infant’s skin it was difficult to apply the right amount of 

pressure to mitigate deformation of the palm’s ridges. Infants would also get extremely irritated 

due to hunger or tiredness and would often cry making it difficult to capture palm images (Jia et 

al., 2012). Footprint recognition also had difficult capturing usable ridges and had to test multiple 

sensors which all resulted in poor quality samples (Weingaertner et al., 2008). Ridge based 

biometric matching and quality assessment algorithms are designed for adults, suggesting that 

important features for palmprint and footprint recognition may be different for adults and infants. 

 Face recognition, which is sensitive to facial expression, typically requires images with 

neutral expressions. It was challenging to obtain face images with neutral expressions from infants. 

Infants were consistently crying or sleeping and had difficulty fully opening their eyes, making it 

difficult to detect their face. Typically, the eyes are used in face detection algorithm. In fact, that 
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would indicate that infants’ and adults’ faces possess different distinguishing features necessary 

for successful face recognition. Infant’s also had difficulty keeping still which could introduce 

motion blur into the image (Bharadwaj et al., 2010). Ear recognition was also challenged by infant 

movement making it difficult to capture good quality ear images (Tiwari et al., 2012a).  

 Iris recognition exhibited similar problems to other biometrics. According to 

Bachenheimer (2016), it was difficult to capture images because of the usability of the device 

which had to be held up to an infant’s face to capture iris images. Infants also exhibited difficulty 

properly positioning their head, keeping it still, or opening their eyes making it difficult to capture 

iris images (Corby et al., 2006). About half of the infants during enrollment were younger than 

four years old and consequently had the lowest image qualities and capture rates. Regardless, 99% 

of the infants that could be enrolled were correctly identified one year later. Table 2.11 indicates 

that most challenges associated with infant biometrics stem from their uncooperative behavior. 

Each biometric has difficulty getting infants to cooperate, leading to issues of capturing a biometric. 

All biometrics are susceptible to sleeping, crying, and screaming all of which making correctly 

positioning a biometric more difficult and can also lead to more subject movement. Ridge based 

biometrics had difficulty overcoming wet and oily fingers. The size of an infant’s fingerprint and 

ridge spacing also makes it difficult to capture infant fingerprint samples using devices made for 

adults. This is because the sensors are designed, ergonomically and algorithmically, for adults’ 

fingerprints, and the sensors are expecting larger fingerprints and ridge spacing. Creating a custom-

made fingerprint sensor for infants seemed to mitigate some of these challenges. Iris recognition 

devices are made for adults, however, the challenges associated with the device do not seem to be 

physical, like fingerprint recognition, but seem to be associated with the usability of the device. 

Bachenheimer's (2016) device required the infant’s head to be pressed against the device, whereas, 

Corby et al.'s (2006) device required infants to be some distance away, approximately 19-21 inches. 

However, there have not been enough infant iris recognition studies to conclude anything about 

the device but there is some anecdotal evidence to support a more thorough investigation. 
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Table 2.11. 

Infant Biometric Challenges 

2.6 The Eye 

 This section outlines the basic structure and formation of the eye. Furthermore, it also gives 

a detailed account of the iris structure and describes the features in the iris that contribute to its 

uniqueness. To understand the unique challenges of infant iris recognition, this section also gives 

a detailed account into the development of the iris. 

 Structure and Formation of the Eye 

 The eye, displayed in Figure 2.3, has three layers: the outer layer, uvea (i.e. the middle 

layer), and the inner neural layer. The outer layer’s two main components are the cornea and the 

sclera which are made of collagen fibers that assist in protecting the inner parts of the eye. The 

primary function of the cornea – which is transparent – is to refract light onto the retina while the 

sclera – the white opaque area of the eye – is the dense, white, fibrous tissue that surrounds the iris 

(Bridges, 2015; Oyster, 1999; Remington, 2005). 

 The middle layer of the eye, listed from the posterior to the anterior, is comprised of the 

choroid, ciliary body, and iris. The choroid is made up of blood cells and melanin pigments that 

absorb light to prevent the scattering of light inside of the eye. The ciliary body is next to the lens 

Challenge Face Finger Foot Iris Palm Ear 

Oily and Wet Skin - X - - X - 

Balled Fists - X - - X - 

Ridge Spacing - X X - X - 

Facial Expression X - - - - - 

Difficulty Keeping Still X X X X X X 

Properly Positioning 

Biometric Characteristic 
X X X X X X 

Acquisition Device Was 

Designed for Adults 
- X - X X - 

Crying X X X X X X 

Sleeping X X X X X X 

Screaming X X X X X X 
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and includes the ciliary muscle that controls the shape of the lens. Furthermore, the ciliary body 

assists in producing parts of the aqueous humor. The iris is the colored area that is visible through 

the cornea. There are two muscles in the iris that help control the size of the pupil, the sphincter 

and dilator muscles (Bridges, 2015; Oyster, 1999; Remington, 2005).  

 The inner layer of the eye contains three parts: the anterior chamber, posterior chamber, 

and vitreous chamber. The anterior and posterior chamber are connected through the pupil which 

contains aqueous humor. The vitreous chamber contains the vitreous humor which is a gel-like 

substance. Additionally, the inner layer of the eye contains the retina which detects light and sends 

information to the brain through the optic nerve (Bridges, 2015; Oyster, 1999; Remington, 2005). 

 

 

 In the third week of gestation, the primary germ layers are formed, and the development of 

eye structures begin with the ectoderm and mesoderm. A month into the embryonic period, the eye 

begins to develop and within another month it develops into a miniature version of the adult eye, 

with some basic elements. The eye begins to develop its important structures such as the cornea, 

lens, optic nerve, and retina six weeks into gestation and the eye is roughly two thirds of its final 

size. The optic cup and optic stalk are the beginning of the retina and optic nerve. The outer rim 

of the optic cup develops into the epithelial layers for the iris, ciliary body, and iris muscles. The 

iris is complete five months into the gestation period but the epithelial layers do not progress to 

the center which causes the pupil to not be fully formed until seven months into the gestation 

period (Oyster, 1999; Remington, 2005).  

Figure 2.3. Structure of the Eye (Rhcastilhos, 2018) 
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 The cornea begins to form after the first month of gestation. All the layers of the corneal 

epithelium are complete by the sixth month and all its structures are complete by the end of the 

seventh month. The cornea is almost fully grown at birth and will finish growing within the first 

couple years. Although the structure is fully formed, an infant’s cornea is thicker and more curved 

than an adult’s. The cornea accounts for about 15% of the surface of an adult’s eye and 25% for 

an infant’s (Oyster, 1999; Remington, 2005). 

The iris begins to form around the third month of gestation, which begins as the outer layer 

of the optic cup (Remington, 2005). The iris sphincter muscle begins to form in the fifth month 

and both, the dilator and sphincter muscles, is fully developed before birth (Remington, 2005). 

Pigmentation in the anterior epithelium and dilator muscle begins to appear at week 10 and are 

complete by the end of the seventh month (Remington, 2005). The formation of the anterior border 

layer and stroma are completed before birth; according to Oyster (1999), “viewed from the front, 

the iris is nearly complete by the end of the fifth month of gestation, with recognizable muscle and 

epithelial layers, blood vessels, and so on, but it still lacks a pupil” (p. 442). The epithelial layers 

have not completely converged to the center of the iris and will do so at 7 months into gestation. 

The pigmentation of the stroma and anterior border layer continues to develop after birth and varies 

significantly, and it is the most significant change of the iris after birth (Oyster, 1999; Remington, 

2005). 

Figure 2.4. Development of the human eye timeline 
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 Structure and Surface of the Iris 

 The iris is divided into four layers. From the posterior portion of the iris to the anterior the 

layers are: the posterior epithelium, the anterior epithelium and dilator muscle, the stroma and 

sphincter muscles, and the anterior border layer – sometimes the border layer is grouped with the 

stroma. The posterior epithelium is a single layer of pigmented cells which curls around to the 

surface of the iris, encircling the pupil, which forms the pupillary ruff. The anterior iris epithelium 

is anterior to the posterior epithelium and lies closest to the stroma of the iris. The top portion of 

the anterior iris epithelium is pigmented, and the bottom portion is made up of muscle processes. 

The dilator muscle – runs from the midportion of the sphincter muscle to the iris root – consists of 

radial fibers, when dilated they pull the pupillary portion of the iris outwards in the direction of 

the iris root (Remington, 2005).  

 The iris stroma is made up of connective tissue which contains collagen fibers and cells 

that are pigmented and non-pigmented. Within the stroma lies the sphincter muscle which is a 

circular muscle in the pupillary zone, and it constricts the pupil when the muscle is contracted. The 

anterior border layer is composed of interweaving meshwork with fibroblasts directly on the 

surface and pigmented melanocytes below. The melanocyte layer’s characteristics vary among 

irises and contribute to iris color – the meshwork density, arrangement, and thickness. 

Additionally, the collagen fibers are arranged radially and weave between the melanocytes and 

fibroblasts which can also be seen in lighter colored irises. Iris crypts are the areas of the iris which 

do not have the anterior border layer (Remington, 2005). 

 The color of the iris comes from the density of the anterior border layer and stroma’s tissue, 

pigment density in a melanocyte, and the density of the melanocyte itself. If an iris is light the 

collagen fibers are visible, whereas dark irises appear smooth from the density of the anterior 

border layer (Remington, 2005). 

 The iris surface has several distinct features such as the crypts (i.e. crypts of Fuchs), 

collarette, radial furrows, and concentric furrows (U.S. Patent No. 4,641,349, 1987). The iris is 

divided into two areas the ciliary area and pupillary area which divides the iris from the collarette 

to the pupil and the collarette to the outer boundary of the iris, respectively. The basic structure of 

the iris contains the posterior and anterior layers. The posterior layer of the iris is darkly pigmented, 

and the anterior layer’s pigment ranges from light to dark but never reaching the same level of 
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darkness as the posterior layer of the iris. The anterior layer of the iris has strands of tissue that 

weave and create gaps and holes which are referred to as the crypts of Fuchs. The crypts of Fuchs 

vary for all irises, and contribute to the individuality of the iris, they can be used as a unique 

identifier (U.S. Patent No. 4,641,349, 1987; Oyster, 1999). The collarette is the area that lies 

between the ciliary and pupillary areas and has a wave shaped line. The radial furrows are creases 

in the tissue and bulge outward which allows the iris to dilate or contract to control the size of the 

pupil. The creases in the tissue extend out like rays of light from the pupil through the collarette. 

The concentric furrows appear close to the outer boundary of the iris and are creases in the tissue 

that bulge outward in a circular manner. The concentric furrows assist in the expansion and 

contraction of the iris in different directions than the radial furrows (U.S. Patent No. 4,641,349, 

1987). Figure 2.5 displays a diagram of the regions and distinct features that make up the iris. 

 

Figure 2.5. Annotated iris image displaying characteristics and features of the iris. This image 

was modified from the original image (Drewes, 2007)  
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2.7 Iris Recognition 

 Iris recognition is a method of biometric authentication that uses the pattern of the iris to 

identify an individual. The iris is the colored area of the eye, which is externally visible, but is an 

internal organ which is well protected from damage. Resistance to damage makes the iris an ideal 

biometric compared to biometrics that are more susceptible to damage such as fingerprints. Some 

believe that iris patterns are stable over time, even from birth.  

 To perform iris recognition, the iris must first be segmented from the rest of the eye. 

Segmentation is done by detecting the boundary of the pupil and the boundary that separates the 

sclera and the iris. Next, the iris must be interpolated by remapping each point in the iris region 

from a Cartesian coordinate system to a polar one. This remapping automatically normalizes the 

area from the pupil boundary and iris sclera boundary of the iris. Normalizing the iris reconciles 

any deformation of the iris due to constriction or dilation of the pupil and makes iris recognition 

mostly resistant to changes in size of the iris. The iris code is generated from the normalized iris 

image by extracting phase information of the iris pattern. A masking code is calculated to indicate 

the area of where iris obstructions are located and circumvents errors from obstructing features 

such as eyelids, eyelashes, and specular reflections. To compare two irises to each other, a 

similarity or dissimilarity score between the two irises is calculated by using the two iris codes and 

masking codes generated during feature extraction (Daugman, 2004). 

 History of Iris Recognition 

 One of the earliest recorded accounts for using irises to recognize individuals was in 1886 

and was implemented to identify repeat offenders in France (Bertillon, 1886). Flom and Safir 

obtained a patent for the first iris recognition framework which described the use of an iris’s unique 

features for the identification of individuals by comparing an obtained image to stored reference 

images (U.S. Patent No. 4,641,349, 1987). After Flom and Safir’s patent was published, a study 

was conducted to determine if the use of an iris to recognize individuals is feasible and if the 

features of the iris remain stable. The study collected approximately 1000 iris images from 650 

individuals and concluded that the iris pattern is stable over time, moreover, the iris pattern is 

unique between an individual’s left and right eyes and between individuals (Johnston, 1991). 

Daugman was granted a patent in 1994 for developing the first operational iris recognition system. 
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Daugman’s approach to iris recognition is an influential step in iris-based biometrics and remains 

a primary driver in iris biometric technology today. The company that owned the patent rights to 

Flom and Safir’s iris recognition framework also owned Daugman’s patent for the first operational 

iris recognition system (U.S. Patent No. 5,291,560, 1994; U.S. Patent No. 4,641,349, 1987). 

 Iris Acquisition 

 All commercial iris recognition systems follow these basic principles: illumination from 

controlled and ambient light sources, a camera and light source from a standoff distance, 

acquisition of the iris image through the camera, and then the iris is segmented, normalized, and 

generated into an iris code – proprietary software such as Neurotechnology may use other methods 

apart from iris code. Iris systems can capture one or both irises at the same time. A good quality 

iris should have a resolution of at least 60 pixels or more across which may require some devices 

to be in very close proximity to subjects (JTC 1/SC 37, 2011). Typical commercial iris recognition 

devices require cooperation from its users; slight movements from subjects could produce motion 

blurred iris images. Iris on the move attempts to offset reduced subject cooperation while 

continuing to capture high-quality iris images (Matey et al., 2006). 

 The reflectivity of the iris is dependent on the wavelength of ambient and controlled light 

sources. Near-infrared reflectance (NIR) illuminators produce the best reflectivity of the iris which 

in turn reveals rich iris features, even for darkly pigmented irises. A wavelength of 700-900nm is 

typically used in most iris recognition systems (Ackerman, 2016). There are three types of iris 

recognition devices: NIR cameras, high-resolution color cameras, and telescope cameras. The NIR 

camera illuminates the iris at the wavelength 700-900nm and typically captures at short distances 

which requires cooperation from users of the iris recognition system. NIR cameras are most 

commonly used because of its ability to distinguish features and textures for darkly pigmented 

irises. High-resolution color iris cameras are typically used in research to analyze iris patterns and 

require very high-level cooperation from users because acquisition takes place at a very close 

range. Getting well defined features from the iris in the color spectrum is difficult especially for 

darkly pigmented irises because light is absorbed and not reflected as well as lighter colored irises. 

Telescope iris cameras can capture irises at long distances (i.e. 10ft) and use a stronger NIR 

illuminator than typical NIR cameras. Telescope iris cameras also have strong de-blurring 
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capabilities to enhance images that make it ideal for capturing irises from non-cooperative users 

(Du, 2006). 

 Iris Segmentation 

 Iris acquisition captures an image of an eye which includes features such the sclera, pupil, 

eyelids, and eyelashes. Segmentation locates and removes just the iris from the rest of the eye by 

detecting the boundaries of the pupil and iris and removing occluded portions of the iris (Jillela & 

Ross, 2016; Roy & Soni, 2016).  

 Several factors can impact the accuracy of iris segmentation such as occlusion and 

illumination. Inaccurate segmentation of the iris can in turn degrade performance of an iris 

recognition system. Eyelids or eyelashes that occlude the iris can make segmentation difficult, but 

most segmentation processes aim to additionally detect the boundaries of eyelids and eyelash 

occlusions and remove them during segmentation. Illumination can also be problematic for iris 

segmentation. Low contrast between the boundaries and iris region can be caused by poorly 

illuminated irises, and specular reflections can occur from poorly aligned illuminators. Poor 

illumination makes it difficult to distinguish iris textures from each other and specular, reflections 

near the boundaries cause high intensity pixels in the iris resulting in abrupt changes in pixel 

values. Iris segmentation accuracy is also affected by lack of user cooperation which can cause 

off-angled iris images and motion blur. Motion blur can also be caused by moving cameras or the 

eye itself. The most common iris segmentation algorithms are the integro-differential operator 

(Daugman’s classic approach) and the Hough transform (Jillela & Ross, 2016). 

 Iris Normalization 

 The iris changes and becomes deformed when the pupil constricts and dilates. This causes 

iris features to become unaligned if images are acquired in different conditions that could cause 

variation in pupil size. Iris normalization attempts to compensate for this deformation and remaps 

the segmented iris to account for variations in scale and rotation of iris features. The most popular 

method is Daugman’s rubber sheet model that transforms the segmented iris from a Cartesian polar 

coordinate system to a dimensionless polar coordinate system and normalizes the scale of the iris. 

Rotation variations are accounted for during matching by selecting the best matching results from 

shifting the rubber sheet model’s x-axis which represents the rotation of an iris in Cartesian 
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coordinates. Other methods of iris normalization account for iris deformation by using image 

registration techniques. A newer method of iris normalization uses non-linear transformations to 

better model an iris’s natural deformation response from different lighting intensities and the 

distribution of iris muscles that control the constriction and dilation of the pupil (Thainimit, 

Alexandre, & de Almeida, 2013). 

 A proposed non-linear iris normalization technique combines a non-linear transformation 

and linear unwrapping of the iris to normalize the iris images. Using the ratio of the inner and outer 

boundaries of the iris, a reference ratio is calculated for all iris images to be scaled to. Connecting 

a point on the pupil boundary with another on the outer iris boundary creates an arc that changes 

in length (angular direction) and radius. However, the changes in angular direction are ignored and 

the radial changes are favored to deform the image nonlinearly to the referenced annular zone. 

After the iris is transformed nonlinearly it is unwrapped to linearly fit a fix-sized rectangular model 

(Yuan & Shi, 2005). 

 Iris Feature Extraction 

 An iris code is a mathematical representation of the extracted iris features. Creating an iris 

code according to Daugman's method is done by demodulating an iris image using 2-D Gabor 

wavelets. The quadrant that the phasor of the 2-D Gabor wavelets lie in determines a 1 or 0 

depending on the sign of the value returned by the wavelet function. The iris code is cyclic meaning 

that it is represented by a single bit change. The bit stream is 2,048 bits long. Masking bits are also 

computed to signify areas of the iris that are occluded from eyelids, eyelashes, or poor signal noise 

ratio. The independence of two iris codes is calculated as a Boolean logic exclusive-or, in which, 

the hamming distance is calculated and represents the similarity between any two irises. The lower 

the hamming distance between two irises the more similar they are to each other (J. Daugman, 

2004). 

 Summary 

 The process of iris recognition includes acquiring an image of the eye, segmenting the iris, 

normalizing the iris image to account of scale and rotation variations, and create an iris code that 

is used to match two irises together. Iris acquisition can be problematic for non-cooperative users 

because in general iris devices require users to be near to and looking at the camera, and remaining 
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still. Some of these issues can be addressed with telescopic iris devices that acquire iris images 

quickly and retrieve iris images of the highest quality. Having too little or too much illumination 

can make it difficult to distinguish important features of the iris and cause segmentation or feature 

extraction failure. Uncooperative subjects can also impact segmentation accuracy by not looking 

directly at the iris camera which causes off-angled iris images making proper segmentation 

difficult. Furthermore, uncooperative subjects can also cause blurred images by moving during 

acquisitions or severe occlusions resulting from eyes that are not fully open. Blurry images can 

also be caused by movement of the iris camera or the eye itself.  

2.8 Iris Aging Effects 

 Decreased genuine match scores overtime is a phenomenon known as template aging (JTC 

1/SC 37, 2017). In iris recognition an template aging affect occurs when “the quality of the match 

between an enrolled biometric sample and a sample to be verified degrades with increased elapsed 

time between samples” (Fenker & Bowyer, 2011, p. 232). Whereas, an iris aging effect “would be 

some definite change in the iris texture pattern due to human aging” (Fenker & Bowyer, 2011, p. 

232). Iris template aging research is dedicated to determining what factors cause genuine similarity 

scores to change over time. In the iris recognition literature, aging effects are a contentious topic. 

Some literature claims that they observed an aging effect and continues to do so. However, those 

claims have been heavily disputed (Grother, Matey, & Quinn, 2015; Grother et al., 2013; Mehrotra, 

Vatsa, Singh, & Majhi, 2013; Sazonova et al., 2012; Trokielewicz, 2015), primarily because of 

large variations in the pupil-to-iris ratios over multiple samples which, in turn, lowered 

performance.  

 Another definition for iris ageing is “irreversible changes to the healthy iris or neighboring 

anatomy that yield mated dissimilarity scores that increase monotonically with time-separation of 

compared images” (Grother et al., 2013, p. 9). This definition of iris aging is dependent on the use 

of a biometric matching algorithm to detect permanent changes in the iris. Different from the 

definition of template aging, iris aging requires a permanent change in the iris or neighboring 

anatomy and that the similarity scores would continuously decrease. For example, large variations 

in pupil-to-iris ratios over multiple samples would be caused by variation in lighting. Therefore, 

the changes in genuine match scores would not be permanent and would not be considered as an 
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iris aging effect. Another study emphasized that an aging effect would cause genuine similarity 

scores to continuously and gradually decrease (Mehrotra et al., 2013).  

 In addition to iris aging and template aging, iris stability is another metric that examines 

changes in an iris’s genuine and impostor similarity scores over time (Petry, 2015). The Stability 

Score Index was developed by (O’Connor, 2013), and is used to understand how much an 

individual’s genuine similarity scores and impostor scores vary over two different samples in 

reference to the maximum variation for all individuals. Examining the stability of adults’ irises 

over 6 visits and one month apart resulted in a slight change in similarity scores but the stability 

score index did not change. In conclusion, with samples collected one month apart the iris 

remained statistically stable over all 6 visits (Petry, 2015).  

 Biometric permanence is another metric that can be used to determine the stability of 

genuine similarity scores over time. The metric considers causes of variability by examining the 

difference between intra-visit and inter-visit genuine similarity scores. Therefore, the change in 

genuine similarity scores would then be due to only template aging. Biometric permanence is 

measured as a ratio of the complement FNMR after some time-frame and the complement FNMR 

at verification (Harvey, Campbell, Elliott, Brockly, & Adler, 2017). Iris or template aging affects 

has some challenges which biometric permanence attempts to solve (Fenker & Bowyer, 2011; 

Grother et al., 2015, 2013).  

 Healthy individuals’ genuine match scores may vary because of changes in the sensor, 

environment, subject behavior, or the physical iris itself (Grother et al., 2013). Iris camera optics 

can degrade over time, potentially increasing error rates (Bergmuller, Debiasi, Uhl, & Sun, 2014). 

Changes in lighting condition or an iris camera’s illuminator can directly affect genuine match 

scores. Environmental related effects can be due to changes in ambient or infrared illumination to 

a user’s iris. The lack of cooperation of a subject or increased familiarity with a device can also 

impact genuine match scores. The iris itself can also exhibit changes, permanent or temporary, that 

could cause genuine match scores to change. The temporary changes of genuine match scores can 

be attributed to changes in environmental conditions, device characteristics, or subject behavior. 

Permanent changes would be reflected by irreversible changes to the iris and surrounding anatomy 

of the eye. For a healthy individual, physical eye changes may be seen in the cornea shape, iris 
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texture, or natural pupil dilation changes that can occur over a person’s lifetime (Grother et al., 

2013). 

 A longitudinal study examining iris aging for adults in an operational scenario used a 

general linear mixed model because it can handle “multiple responses that are imaged irregularly 

over time, and potentially correlated over time…fixed effects model population-wide variation… 

random effects give subject-specific regression effects” (Grother et al., 2013, p. 26). Dissimilarity 

scores increased over time but, the rate of change was a magnitude less than what is expected for 

an average individual’s expected variation. Some individuals experience a greater increase in 

dissimilarity scores.  

 The same study, using datasets collected by researchers at Notre Dame, concluded that the 

observed performance degrades with increased time between matched samples because of varying 

environmental conditions which caused variations in pupil dilation, usable iris area, and their joint 

effect. The generalized linear mixed effects regression modeled the dilation and usable iris area 

effects on genuine match scores to obtain an individual specific rate of change. The modeled 

effects were subtracted from the observed genuine match score for each pairwise match and the 

false non-match rate performance was revaluated. The adjusted performance for dilation and 

usable iris area affects exposed an absence of a detectable age effect (Grother et al., 2013).   

 An additional study, using robust regression, determined that local contrast, occlusion, 

illumination, and sharpness were all significant predictors in the regression model. Given the four 

quality factors, the elapsed time between samples was still a significant predictor for the regression 

model. Therefore, the elapsed time between samples are significant for observed changes in 

genuine match scores and, in part, attributed to image quality metrics. The researchers also mention 

that the change of genuine match scores over time could be caused by pupil dilation or sensor 

aging (Sazonova et al., 2012). A multiple linear regression analysis also concluded that the time 

elapsed between matched sample is significant and image quality metrics are also significant 

factors for modeling the variation of match scores. The inclusion of image quality metrics in the 

model lowered the rate of change due to elapsed time and significant predictors varied depending 

on the iris recognition algorithm used. Aging effects may be separate from image quality but image 

quality metrics should remain in models because of their observed significance for impacting 

genuine match scores (Trokielewicz, 2015).  
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 Another study observed an aging affect that caused a degradation of high genuine match 

scores from elapsed time between samples. A correlation between mean pupil-to-iris ratios and 

genuine match scores was not observed. Additionally, no physical changes to the iris texture were 

observed (Baker, Bowyer, & Flynn, 2009). Averaging the differences in pupil-to-iris ratios may 

hide high variations between pupil-to-iris ratios thus, explaining why no correlation was observed 

(Grother et al., 2013). It is has been debated by the research community in more than one occasion 

that the observed aging effect in the Notre Dame studies are due to pupil dilation differences 

between matched pairs (Grother et al., 2013; Mehrotra et al., 2013).  

 Another study attempted to control for changes in pupil dilation by excluding images that 

had an observed dilation greater than 0.1. The increase of dissimilarity scores differed between 

algorithms, concluding that there is a template aging effect but that it was smaller than what was 

observed in other studies because large changes in pupil dilation were excluded from analysis 

(Fenker & Bowyer, 2011). When examining intra- and inter-session error rates from four sessions 

ranging from one to four weeks apart, the false reject rate increased as time between samples 

increase, leveling off in the fourth and final session (Tome-Gonzalez, Alonso-Fernandez, & 

Ortega-Garcia, 2008).  
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 METHODOLOGY 

 This study determined if iris recognition performance for infants between the age 0-2 years 

old is feasible by answering three main research questions: 1) is there a difference between image 

quality metric scores for adults and infants; 2) is there a difference in matching performance for 

different age groups; and 3) do genuine similarity scores change over elapsed time? This study 

analyzed adults because performance and image quality results are well known for this population. 

Therefore, adults were used as a baseline when examining the performance and image quality of 

iris recognition for infants. 

3.1 Infant Data Collection  

 The data used in this study were captured in multiple visits as part of a longitudinal 

multimodal collection on infants.  Thus, this data is used in secondary analysis.  

3.2 Adult Data Collection Methodology 

Again, to compare with infants, the data used in the secondary analysis came data came 

from an existing dataset collected in 2013, for more details see (Petry, 2015). Only one of the 6 

visits from the adult data collection was used in this study. 

3.3 Iris Camera 

 Both the adult and infant irises were collected with the same iris camera. The camera is 

stationary and can capture irises from up to 8 feet away. It also captures the left and right iris and 

face of an individual simultaneously; iris images are captured at the NIR spectrum (AOptix, 2011). 

Table 3.1 summarizes additional parameters of the used in this study. 

  



55 

 

Table 3.1. 

Iris Camera Specifications 

Parameter Value /Functionality 

Stand-off distance range 4.9-8.2ft 

Image capture cycle time (2 irises and face) 4 seconds 

Illumination 820-860nm (NIR) 

Capture volume 1ft deep, 3.3ft high x 2.46 wide at a standoff of 6.6ft 

Dual-iris capture Yes 

 

3.4 Hypothesis 1 

 There is no difference between image quality metrics for adults and infants. To address this 

hypothesis, a comparison between means of four groups were conducted for each image quality 

metric. The four groups were infants 0 to 6 months old, 7 to 12 months old, 13 to 24 months old, 

and adults. These infant age groups were selected because they were similar to what was chosen 

in a longitudinal infant fingerprint recognition study by Jain et al. (2017); the age groups used by 

Jain et al. were 0-6 months, 6-12 months, and 12 months and older. The Neurotechnology 10 SDK 

was used to compute the image quality metrics and extract templates from the raw images. A 

quality assessment algorithm may fail to compute quality metrics, these images were removed 

from analysis. 

3.5 Hypothesis 2 

 There is no difference in matching performance for different age groups. Four groups were 

compared: infants 0 to 6 months, 7 to 12 months, 13 to 24 months, and adults. 

3.6 Hypothesis 3 

 This hypothesis determined if the time between samples had a significant effect on genuine 

similarity scores. To determine if elapsed time is a significant predictor a linear mixed model was 

used. Other image quality metrics were used in the model to obtain an adequate fitting model. 

Also, the additional image quality metrics gave a comparison for the effect that elapsed time had 
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on genuine similarity scores in relation to the other metrics in the model. If the genuine similarity 

scores did change over elapsed time, then the null hypothesis (β∆T = 0) was rejected in favor of the 

alternative hypothesis (β∆T ≠ 0). 

3.7 Generalized Linear Mixed Model 

 A linear regression model consists of coefficients that are considered fixed and explain a 

population-wide variation. However, in some cases it may be necessary to incorporate random 

effects, especially if the observations are correlated. A regression model that has both random and 

fixed effects is considered a mixed model (Jiang, 2007). 
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 RESULTS 

 The analysis is divided into three sections: analysis of image quality metrics and 

performance between age groups; and an analysis of genuine similarity scores and if they change 

over time. 

4.1 Data Cleaning Procedure 

 Image quality metrics were processed using Neurotechnology 10 SDK. Irises that failed to 

compute quality were removed. Subsequently, templates were created. The settings of the 

Neurotechnology 10 SDK were set so that all images produced templates. Four samples were 

removed due to a processing error, in which the resolution of the images was abnormal resulting 

in very small iris images. After cleaning there were 233 images for the 0-6 months group, 479 

images for the 7-12 months group, 541 images for the 13-24 months group, and 339 images for 

adult group. The adult group contained subjects between the ages of 19 to 66 years old.  

4.2 Hypothesis 1 

 This hypothesis determined if there was a difference between image quality metrics of 

infants 0 to 6 months, 7 to 12 months, 13 to 24 months, and adults. A Welch’s ANOVA was used 

to test if the means of the four groups were equivalent for each image quality metric, where H0 

denotes the null hypothesis and H1 the alternative. The null hypothesis stated that the means for 

each group were equivalent and the alternative that at least one of the group’s mean was different 

from the others. Or, more specifically: 

 

𝐻0: 𝜇0𝑡𝑜6 = 𝜇7𝑡𝑜12 = 𝜇13𝑡𝑜24 = 𝜇𝐴𝑑𝑢𝑙𝑡 

H1: Means are not all equal 

 

 A Welch’s ANOVA was used because the residuals did not appear to be homogenous and 

the Type I error is robust to non-homogenous variances (Liu, 2015). The residuals did not appear 

to be homogenous for any of the image quality metrics, making the Welch’s ANOVA more 
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appropriate. A Welch’s ANOVA determined that at least one group’s mean differed from the 

others. A post hoc comparison identified exactly which groups were statistically different and their 

respective confidence intervals. Like the Welch’s ANOVA, the Games-Howell post hoc 

comparison of means did not assume equal sample sizes and homogeneity of variance. 

 Welch’s ANOVA Results 

 A quantile-quantile plot (QQ) compares two distributions to each other (Marden, 2004). 

For all image quality metrics, a QQ plot was used to compare the residuals of the Welch’s ANOVA 

to that of a normal distribution. If the residuals have a normal distribution, then the points in the 

QQ plot would form a straight line. Furthermore, a QQ plot can be used to detect potential outliers, 

heavy-tailed distributions, and skewness (Marden, 2004). The central limit theorem states that the 

distribution of a large random sample will converge to an approximately normal distribution, even 

if the real population is not normally distributed (Upton & Cook, 2008). Additionally, various 

studies have been conducted assessing the impact of non-normality of the Welch’s ANOVA. The 

studies concluded that Type I and II error rates can be inflated by extreme non-normality such as 

an exponential distribution. However, when the group sizes were large, the residuals are 

heterogenous, and the residuals were approximately normal, even in cases of heavily tailed 

distributions, the Welch’s ANOVA is quite robust. 

 The QQ plots for gray scale utilization, sharpness, pupil boundary circularity, and pupil to 

iris ratio revealed slightly skewed distributions. There was also some evidence of potential outliers 

in this study. The outliers were not caused from data collection errors and were believed to be 

representative of the population overall. Therefore, outliers were only removed if they were both 

a univariate and multivariate outlier. Univariate outliers were detected using a Grubbs outlier test, 

and multivariate outliers were detected using Mahalanobi’s distance (Tabachnick & Fidell, 2013). 

A total of 22 outliers were removed, 5 from the 0 to 6 months group, 6 from the 7 to 12 months 

group, 8 from the 13 to 24 months group, and three from the adult group. The residual distributions 

for the image quality metrics were approximated as normal. The QQ plots and fitted vs residual 

plots for each image quality metric can be found in Appendix A. Margin adequacy and interlace 

had a score of 100 for all iris samples, regardless of group. 

 At a significance level of α = 0.01, a significant difference was detected between groups 

for all image quality metrics. The effect size, ω2, for the iris pupil concentricity and pupil boundary 
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circularity was 0.01, indicating that the difference detected may not be practically significant. The 

group means, p-value, and effect size are reported in Table 4.1.  

Table 4.1.  

Welch’s ANOVA Result Summary 

 

 A Games-Howell post-hoc analysis was used to determine which group means differed for 

each image quality metric. The Games-Howell post-hoc analysis is summarized in Table 4.2, the 

bolded values highlight the groups where a significant difference was not detected, at a 

significance level of 0.01. Further examination of the metrics that had a small effect size for the 

Welch’s ANOVA indicated that the pupil boundary circularity means were not statistically 

different for all the groups, but the pupil concentricity mean for infants 7 to 12 months old was 

statistically different from infants 13 to 24 months old and adults.  

 

  

 
0to6 7to12 13to24 Adult 

p-value ω2 
Mean 

Gray Scale 

Utilization 
2.57 2.82 3.14 7.07 < 0.001 0.89 

Iris Pupil 

Concentricity 
97.32 97.4 97.21 97.21 0.002 0.01 

Iris Pupil Contrast 65.54 74.85 78.57 66.66 < 0.001 0.13 

Iris Radius 138.84 141.78 142.88 147.16 < 0.001 0.21 

Iris Sclera Contrast 39.58 39.58 37.52 22.44 < 0.001 0.52 
Pupil Boundary 

Circularity 
95.63 96.03 95.42 96.09 0.004 0.01 

Pupil to Iris Ratio 28.31 29.30 30.41 26.29 < 0.001 0.11 
Scalar Quality 80.45 88.28 91.98 90.62 < 0.001 0.10 

Sharpness 4.62 6.06 9.948 9.988 < 0.001 0.07 

Usable Iris Area 79.60 81.15 81.07 85.35 < 0.001 0.04 
Iris Detection 

Confidence 
72.40 77.50 79.24 74.66 < 0.001 0.03 
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Table 4.2.  

Games-Howell Post-Hoc Summary 

Quality Metric 

7to12- 
0to6 

13to24- 
0to6 

Adult- 
0to6 

13to24- 
7to12 

Adult- 
7to12 

Adult- 
13to24 

p g* p g* p g* p g* p g* p g* 

Gray Scale 

Utilization 
<0.001 0.38 <0.001 0.90 <0.001 11.35 <0.001 0.47 <0.001 7.59 <0.001 7.15 

Iris Pupil 

Concentricity 
0.642 0.09 .428 -0.12 0.499 -0.12 0.004 -0.21 0.012 -0.22 1.000 0.00 

Iris Pupil 

Contrast 
<0.001 0.56 <0.001 0.90 0.844 0.08 <0.001 0.28 <0.001 -0.64 <0.001 -1.12 

Iris Radius <0.001 0.57 <0.001 0.80 <0.001 1.64 0.002 0.23 <0.001 1.11 <0.001 0.89 

Iris Sclera 

Contrast 
1.00 0.00 <0.001 -0.37 <0.001 -2.12 <0.001 -0.38 <0.001 -2.36 <0.001 -2.06 

Pupil Boundary 

Circularity 
0.380 0.13 0.841 -0.06 0.288 0.15 0.015 -0.19 0.990 0.02 0.011 0.21 

Pupil to Iris 

Ratio 
0.099 0.19 <0.001 0.44 <0.001 -0.50 0.001 0.24 <0.001 -0.74 <0.001 -1.10 

Quality <0.001 0.55 <0.001 0.96 <0.001 0.79 <0.001 0.36 0.005 0.22 0.074 -0.17 

Sharpness 0.001 0.29 <0.001 0.55 <0.001 0.80 <0.001 0.44 <0.001 0.60 1.000 0.00 

Usable Iris 

Area 
0.149 0.17 0.159 0.17 <0.001 0.63 0.999 -0.01 <0.001 0.45 <0.001 0.48 

Iris Detection 

Confidence 
<0.001 0.37 <0.001 0.55 0.253 0.16 0.104 0.14 0.009 -0.22 <0.001 -0.39 

 

 Table 4.3 offers a better understanding how the groups differed. The letters denote which 

groups differed and which groups did not. If two groups share the same letter than no difference 

was detected between them. 

Table 4.3.  

Game-Howell Groupings 

 Group 

Gray 

Scale 

Utilization 

Iris Pupil 

Concentricity 

Iris 

Pupil 

Contrast 

Iris 

Radius 

Iris 

Sclera 

Contrast 

Pupil 

Boundary 

Circularity 

Pupil 

to 

Iris 
Ratio 

Quality Sharpness 

Usable 

Iris 

Area 

Iris 

Detection 

Confidence 

0 to 6 A AB A A A A A A A A A 

7 to 12 B A B B A A A B B A B 

13 to 24 C B C C B A B C C A B 

Adult D AB A D C A C C C B A 
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 Hypothesis 1 Summary  

 In summary, there was at least one group that had a different mean for all the image quality 

metrics, except for pupil boundary circularity. A further investigation revealed that gray scale 

utilization and iris radius was the only quality metrics in which all groups differed. There was 

evidence that other image quality metrics were different for infants than adults such as pupil to iris 

ratio and usable iris area which are metrics that could be impacted by behavior or environment. 

Interestingly, iris radius was different for all four groups but improved with age which suggests 

that behavior might have played a crucial role in the differences detected. Other quality metrics 

that were impacted by behavior had this pattern observed as well. As this study did not record 

infant behavior the exact impact cannot be defined but there was substantial evidence that it played 

a role in the difference of image quality metrics for the infant groups. Scalar quality and sharpness 

were different for infants 0 to 6 months old and infants 7 to 12 months old but there was no 

difference detected between infants 13 to 24 months old and adults. 

4.3 Hypothesis 2 

 This hypothesis tested if there was a difference in matching performance for infants and 

adults. Infants were split into three age groups 0 to 6 months, 7 to 12 months, and 13 to 24 months 

old. For the infants each age group was selected separately from the other groups, resulting in an 

infant’s iris that appeared in more than one age group. Because there were multiple visits in the 

infant data collection, an infant may have had irises from two separate visits that fell within the 

same age group. If an infant had an iris collected in two separate visits at an age where it fell within 

the same age group, the earliest visit was used. If an infant had only one unique iris sample in a 

particular visit, it was removed. Infants’ unique irises were also removed if they were not collected 

in at least two visits. No further cleaning was conducted for the adult irises. After the data were 

cleaned, the 0 to 6 months group had 29 unique irises with a total of 77 iris samples. The 7 to 12 

months group had 141 samples from 52 unique irises, and the 13 to 24 months group had 162 

samples from 57 unique irises. The adult iris group had 339 total samples from 113 unique irises. 
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 By default, the iris camera used in this study had internal quality control measures to 

circumvent collecting poor quality irises which were not altered while acquiring the irises for both 

the infant and adult data collections. Quality control measures can be set while attempting to 

extract a template from an iris image. This hypothesis looked at iris images matching performance 

based on templates that were extracted with no quality control criteria in place. The scalar quality 

was determined by the Neurotechnology SDK. The templates used in this study were large and 

matching speed was slow – the Neurotechnology documentation recommended these settings to 

obtain the best matching accuracy. Figure 4.1 shows the DET curves for all four groups. The EERs 

reported were 1.54%, 0%, 0%, and 0% for the 0 to 6, 7 to 12, 13 to 24, and adult groups, 

respectively. 

 

 

 Table 4.4 shows the FNMRs for all groups at different FMRs. Examining the overall 

performance of each group, infants 0 to 6 months old had the lowest performance with a FNMR 

of 3% at an FMR of 0.01%. At the same FMR, the FNMRs for the 7 to 12, 13 to 24, and adult 

groups were 0%, 0%, and 0%, respectively. 

 

Figure 4.1. Performance by Age Group 
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Table 4.4.  

FNMRs by Age Group 

FMR 0to6 7to12 13to24 Adult 

0.01% 2.99% 0% 0% 0.6% 

0.10% 2.99% 0% 0% 0.6% 

1% 1.49% 0% 0% 0.6% 

10% 1.49% 0% 0% 0.6% 

 

 The performance results indicated that iris recognition for infants and adults were similar. 

However, the youngest age group, infants 0 to 6 months old, did have slightly worse performance 

and in fact, the only group that did not have a FNMR of 0% at a FMR of 0.01%, 0.1%, 1%, and 

10%.  

 Hypothesis 2 Summary 

 In summary, there was no difference between infant and adult iris recognition performance, 

except for infants 0 to 6 months old. However, at an FMR of 0.01% the FNMR of the 0 to 6 months 

old age group was 3%. Obviously, the desired FMR or FNMR is operational scenario driven, but 

in many scenarios this performance should be adequate, regardless of age. For example, in IREX 

IV the Neurotechnology SDK had a FNMR of 3% and 4% at an FMR of 0.01% for enrolled 

population sizes of 10,000 and 1,600,000, respectively (Quinn, Grother, & Ngan, 2013). 

Additionally, the report mentions that accuracy is less dependent on enrolled population size than 

other biometric modalities and that the number of enrolled users can be increased without inflating 

false match and non-match rates (Quinn et al., 2013). Another important conclusion from this 

hypothesis is that scalar quality was an adequate predictor for performance for both adult and 

infant iris recognition. 

4.4 Hypothesis 3 

 This hypothesis evaluated if genuine similarity scores change over time using a mixed 

linear regression model. The mixed linear regression represented in Equation 6 models the genuine 

similarity score, sij, for the i-th eye and the j-th score of the iris camera:  

 

sij= β
0
+β

ΔT
ΔTij+β

ΔD
ΔDij+β

S
Sij+β

A
Aij+bi0+bΔTΔTij+biΔDΔDij+β

S
Sij+biAAij+eij (6) 
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Where, βk represents the fixed effects of the k-th predictor variable and bik denotes a random effect 

of the i-th eye for the k-th predictor variable; the elapsed time in 30-day increments between when 

two iris samples were captured is denoted as ΔT; Dilation differences, ΔD, is a measure of the 

differences between the pupil to iris ratio of two iris images; S, is the smallest sharpness value 

between two images; A, is the smallest usable iris area between two images; eij are the residuals. 

These covariates were selected based on their parsimony and Bayesian information criterion, 

which optimizes the model complexity and model’s ability to fit the data (Upton & Cook, 2008). 

This hypothesis only evaluated infant irises that were acquired in more than one visit and had more 

than one unique iris acquired for a particular visit.  

 This research was particularly interested in the fixed effect predictor elapsed time (in 30-

day intervals), which represents the population average rate of change in similarity scores over 

time. It is important to note that this rate of change cannot be generalized to another set of infants, 

a replication will need to be conducted to strengthen this research and understanding of how infants’ 

genuine similarity scores change over time for iris recognition. As seen in Figure 4.2, each unique 

eye seemed to have a different similarity score rate of change over time. Most irises observed a 

downward trend in similarity scores over time, whereas, some subjects had an increase in similarity 

scores such as 02333LE, 02040RE, 02023RE, 01982LE.  
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 The regression coefficients for the fixed effects of the iris camera are shown in Table 4.5. 

Each fixed effect shows the average population rate of change in genuine similarity score for a 

given covariate. The p-values were given by a t-test, where the null hypothesis βk = 0 versus the 

alternative, βk ≠ 0, given all the other covariates in the model. At an α = 0.01 and the p-value < 

0.001, the null hypothesis was rejected in favor of the alternative, that given all the other predictors 

in the model βΔT is not equal to zero and that the average rate of change in genuine similarity score 

over time was significant. 

 

Figure 4.2. Subject Specific Similarity Scores Over Time 
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Table 4.5.  

Fixed Effect Coefficients 

Coefficient Fixed Effect p-value 

Intercept -227.93 < 0.001 

βΔT -5.16 < 0.001 

βS 58.50 < 0.001 

 βA 6.40 < 0.001 

βΔD -5.22 < 0.001 

 

 The random effects’ standard deviation across the subjects are listed in Table 4.6. A 

variance of zero would indicate that the corresponding fixed effects alone were able to fit all of the 

subjects perfectly. As shown, none of the standard deviations of the random effects is zero 

suggesting that the random effects were relevant to the model. The random effects implied that 

each unique iris had its own rate of change for each covariate in the model.  

Table 4.6.  

Random Effect Standard Deviations 

Coefficient SD 

Intercept 108.88 

βΔT 2.05 

βS 43.92 

 βA 1.46 

βΔD 2.01 

 

 Regression diagnostics showed that the residuals were homogenous and normally 

distributed. Given that βΔT ≠ 0, there is an evident downward trend per 30 days’ lapse in time. The 

βΔT coefficient indicated that for every 30 days’ lapse that, on average, the similarity score will 

decrease by approximately a score 5. Within approximately one year, the similarity score can be 

expected to drop, on average, by 60. Again, this rate of change only serves as a first step in what 

should be a replication of this analysis on another group of infants, but the outcome is encouraging 

because a change of 5 in a genuine similarity score is not a large change. 

 Hypothesis 3 Summary 

 The average rate of change of the genuine similarity scores over elapsed time was 

statistically significant for the iris camera, however, the observed change over time does not appear 

to be practically significant. The average rate of change was a decrease of 5 in genuine similarity 

scores for every elapsed 30 days. It is important to note that this rate of change at this time only 
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applies to this particular sample of infants. This analysis would have to be replicated on a separate 

sample of infants before any generalizations to the population can be made. 

 The most significant finding of this hypothesis was that the biggest impact on performance 

was not the time between samples but the change in dilation, the difference of sharpness between 

two images, and the amount of usable area in an iris image. The outcomes of this study agree and 

support the conclusions and results from IREX 6 report (Grother et al., 2015). Except that, in this 

study the subjects were infants that were uncooperative and resulted in varying degrees of poor 

quality images. 
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 CONCLUSIONS AND FUTURE WORK 

 This chapter is divided into two sections. The first section makes inferences and 

conclusions about the three hypotheses examined in this study. The second section outlines future 

work to be done in infant iris recognition, including recommendations based on this study’s 

findings, and recommendations based on what this study has not covered.  

5.1 Conclusions 

 Many conclusions can be drawn from this study: the first, image quality metrics such as, 

usable iris area, sharpness, dilation, and iris radius were impacted by a subject’s age. These metrics 

can also be affected by behavior. For example, there was a clear difference between all groups’ 

iris radii. As age increased the iris radii increased and the values were more consistent. It is known 

that from birth to about two years old infants undergo a major transformation in their attentive and 

visual ability, which would indicate that as an infant gets older they would be more cooperative. 

For example, with sharpness, which measures the degree of blur in an iris image, there were 

differences observed for infants 0 to 12 months compared infants 13 to 24 months old and adults. 

The average sharpness score was higher for infants 13 to 24 months old and adults than infants 0 

to 12 months (the 0 to 6 months and 7 to 12 months groups were not different), indicating that the 

amount of blur in an iris image improved as a subject gets older. Again, pupil to iris ratio was 

different for infants 0 to 12 months old compared to adults or infants 13 to 24. The pupil to iris 

ratio variance decreased as age increased, indicating that cooperation improved with age. Finally, 

usable iris area was different for infants and adults. This metric could be affected by behavior or 

environment, because the collection environment was different for the adult and infant collections, 

it is hard to infer if the differences were attributed to the device, environment, or a combination of 

both factors.  

 There were many challenges with infant cooperativeness during data collection. The 

general interaction for the iris camera was the same, regardless if a subject was an infant or adult. 

The infants most certainly behaved differently during acquisition. The infants were held by their 

parents during this interaction, but the infants were sometimes crying, moving, or looking away. 

The parents themselves could have moved. In some cases, parents had to stand in various places 
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because of the way they held the infants, the parent’s height, or a combination of both. As this was 

a secondary analysis, in the infant collection, many devices were used, and the subjects had to 

interact with several devices which may have overstimulated them. The iris collection was always 

the last modality to collect, therefore if the infant was sleeping, they were not awoken for collection, 

and if they just awoken from a nap and were sometimes irritable. 

 The second conclusion, in general, infants 0 to 6 months old had worse recognition 

performance than infants older than 6 months old and adults. After 6 months old, the performance 

was the same as adult iris recognition. At FMR of 0.01%, infants 0 to 6 months old had a FNMR 

of 3% where the other groups had a FNMR of 0%. It is important to note that a FNMR of 3% is 

not bad. For example, in the IREX IV report, the Neurotechnology SDK had a FNMR of 3% and 

4% for adults in an operation scenario and enrollment populations of 10,000 and 1,600,00, 

respectively (Quinn et al., 2013). These are promising results for infants of all ages, because iris 

recognition is known to scale well without increasing error rates substantially (Quinn et al., 2013). 

 Scalar image quality was a good predictor of performance. The image quality assessment 

algorithm appeared to work properly for the iris camera. Performance of infant iris recognition 

may be susceptible to an infant’s behavior, however, no adjustments to iris recognition algorithms, 

quality assessment algorithms, or the iris images themselves was necessary. Because there were 

differences detected which appeared to be caused by age, testing infant iris recognition on robust 

cameras meant to capture irises in non-ideal situations may be beneficial – specifically devices 

that are used for iris recognition on the move or that allow for discrete capture of iris without a 

subject’s participation or knowledge. 

 There has only been one other infant iris study that evaluated matching performance. Corby 

et al. (2006) studied iris recognition in infants between the ages of 1.5 to 8 years old. The 

performance of this study was evaluated a year after enrollment. About 99.4% of the infants 

between the ages of 1.5 to 8 years old were correctly identified. In this study, infants at a younger 

age had similar performance. For example, infants 7 to 24 months had a FNMR of 0% at a FMR 

of 0.01%, and infants 0 to 6 months old had a FNMR of 3%.  

 Finally, the biggest impact on performance was not the time between samples but the 

change in dilation, the difference of sharpness between two images, and the amount of usable area 

in an iris image.  
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5.2 Future Work 

The first recommendation for future work is to collect more infant iris data longitudinally 

and on a wider selection of iris cameras. The work in this study is the first publicly available 

research that extensively examined infant iris recognition performance longitudinally for infants 0 

to 24 months old. Replication of this research and the methods used will support and aid in 

furthering infant iris recognition research. 

 This study did not record an infant’s behavior or interactions with an iris recognition 

camera. Doing so would provide a strong understanding of an infant’s behavior and a certain 

behavior’s impact on performance.  

 A comparison of the same subjects across different biometric modalities will help the 

biometric research community understand the most suitable biometrics for infants. One important 

question that remains unanswered is whether an infant’s physical iris pattern changes over time. 

All though the insignificant decrease in biometric performance is a strong indicator that is not the 

case, a further investigation is warranted.  

 All the data in this study was collected in a controlled lab environment. A further 

investigation of infant iris recognition in unconstrained environments may have significant impact 

on understanding the practical uses of infant iris recognition for identifying infants in healthcare, 

police, vaccination coverage, or homeland security applications. 

 A major challenge in this study was to compare performance and image quality results to 

other infant biometric studies. For example, one study defines image quality as good or poor and 

another defined image quality as failed enrollment, partial enrollment, and marginal enrollment. 

Without knowing exactly what “good” or “partial enrollment” means a proper comparison of 

results is difficult. These same challenges can also be seen in current biometric definitions, such 

as acceptable biometric capture attempt or quality. These definitions are well known for adults but 

not so much for infants. Updating or re-defining biometric definitions to include infants will create 

a common language for future infant biometric studies and will simplify comparisons and 

references to other studies.  

 Finally, it is important to put in place best practices for collecting iris samples from infants. 

A best practices document will help guide future research studies, improve quality of samples, and 

really should be considered for all biometric modalities of infants. Test or lab administrators may 
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be able to provide helpful insight for improving image quality and strengthening the biometric 

communities understanding of the challenges of having infants as test subjects. This could also 

lead to iris cameras or other biometric systems designed specifically for infants. 
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APPENDIX A. HYPOTHESIS 1 DIAGNOSTIC PLOTS 

 

 

  

Figure A.1. Gray scale utilization diagnostic plots 

Figure A.2. Iris pupil concentricity diagnostic plots 
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Figure A.3. Iris pupil contrast diagnostic plots 

Figure A.4. Iris radius diagnostic plots 
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Figure A.5. Iris sclera contrast diagnostic plots 

Figure A.6. Pupil boundary circularity diagnostic plots 
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Figure A.7. Pupil to iris ratio diagnostic plots 

Figure A.8. Scalar quality diagnostic plots 
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Figure A.9. Sharpness diagnostic plots 

Figure A.10. Usable iris area diagnostic plots 
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Figure A.11. Iris detection confidence diagnostic plots 
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