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ABSTRACT 

Custead, Michelle R. M.S., Purdue University, August 2015. Application of Biodynamic 

Imaging for Personalized Chemotherapy in Canine Lymphoma. Major Professor: Michael 

Childress. 

 

 

Biodynamic imaging (BDI) is a novel phenotypic cancer profiling technology which 

characterizes changes in cellular and subcellular motion in living tumor tissue samples 

following in vitro or ex vivo treatment with chemotherapeutics.  The ability of BDI to 

predict clinical response to single-agent doxorubicin chemotherapy was tested in ten dogs 

with naturally-occurring non-Hodgkin’s lymphomas (NHL).  Pre-treatment tumor biopsy 

samples were obtained from all dogs and treated with doxorubicin (10 M) ex vivo.  BDI 

captured cellular and subcellular motility measures on all biopsy samples at baseline and 

at regular intervals for 9 hours following drug application.  All dogs subsequently 

received treatment with a standard single-agent doxorubicin protocol.  Objective response 

(OR) to doxorubicin and progression-free survival time (PFST) following chemotherapy 

were recorded for all dogs.  The dynamic biomarkers measured by BDI were entered into 

a multivariate logistic model to determine the extent to which BDI predicted OR and 

PFST following doxorubicin therapy.  The model showed that the sensitivity, specificity, 

and accuracy of BDI for predicting treatment outcome were 95%, 91%, and 93%, 

respectively.  To account for possible over-fitting of data to the predictive model, cross-

validation with a one-left-out analysis was performed, and the adjusted sensitivity, 
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specificity, and accuracy following this analysis were 93%, 87%, and 91%, respectively.  

These findings suggest that BDI can predict, with high accuracy, treatment outcome 

following single-agent doxorubicin chemotherapy in a relevant spontaneous canine 

cancer model, and is a promising novel technology for advancing personalized cancer 

medicine. 
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CHAPTER 1. INTRODUCTION 

1.1 Background on Lymphoma 

Multicentric lymphoma is among the most commonly diagnosed cancers in dogs
1,2

.  

Lymphoma, a cancer derived from lymphocytes, is sub-divided into a number of distinct 

clinical entities, with diffuse large B-cell lymphoma (DLBCL) being the most commonly 

diagnosed lymphoma in dogs and humans. Lymphoma most often presents with 

generalized peripheral lymphadenopathy. This presentation of the disease is referred to as 

multicentric and, in people, is a type of non-Hodgkin lymphoma. Another common 

subtype of multicentric lymphoma in dogs is peripheral T-cell lymphoma, not otherwise 

specified (PTCL-NOS).  This subtype is much more rarely encountered in humans.   

Multicentric lymphoma, because it is a cancer of the immune system, can develop 

anywhere but most often develops within lymphoid organs, including lymph nodes, 

spleen and liver. The cancer stage, which describes how many organs the cancer involves 

and has prognostic importance, is similar between both humans and dogs. In dogs, stage 

5 represents the most clinically advanced form and includes cancer located within the 

bone marrow and/or within non-lymphoid organs.  In stage 1, which is rarely documented 

in the dog, the cancer is located within only one lymph node. 
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Lymphoma is considered very responsive to chemotherapy and radiation therapy.  

However, for the vast majority of patients, localized treatments with radiation or surgery 

are not recommended as front-line treatment as the cancer is typically disseminated 

throughout the body.  Radiation and surgery are useful for cancers where the disease is 

restricted in location.  Therefore, chemotherapy is considered the treatment of choice as 

front-line therapy.  Chemotherapy protocols incorporating doxorubicin are considered the 

standard of care for both dogs and humans.  The protocol in humans, as compared to dogs, 

is often more intense, with all of the drugs being given on the same day and at higher 

doses.  For dogs, because the goal is to extend survival while providing a good quality of 

life with minimal side effects, the drugs are separated, given weekly, and the doses are 

lowered.   

Doxorubicin-based chemotherapy is the treatment of choice for this cancer.  It 

leads to affords high initial remission rates and extension of survival for affected dogs 

and high cure rates for people
3-7

.  However, the length of cancer remission and survival 

vary tremendously among individuals, with some dogs’ and peoples’ cancers not 

responding to chemotherapy at all.  In addition, chemotherapy is costly, and may cause 

serious side effects.  Therefore, only patients where a true need exists should receive 

therapy and, optimally, patients should be treated with drugs that are likely to work 

against their cancer.   

A method for predicting the responsiveness of each individual’s cancer to 

chemotherapy would be advantageous for identifying the patient that are most likely to 

experience benefit from chemotherapy.  Conversely, specifically for pet dogs and elderly 

or seriously ill human patients, such a method would ideally identify those that are 
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unlikely to benefit from standard chemotherapy, and could then guide informed choices 

to not pursue a course of expensive and potentially harmful treatment.  Furthermore, 

potentially knowing which chemotherapeutics are most likely to work against an 

individual’s cancer could lead to personalizing their protocol with the hope of extending 

survival in dogs or improving cure rates for people. Due to veterinarians’ focus on 

maintaining a good quality of life, dogs with lymphoma are rarely cured of their cancer. 

Because a large percentage of patients already benefit from standard of care, the greatest 

benefit may most likely be seen in that hidden sub-population that will not respond to 

front-line, standard of care therapy. Being able to detect this subpopulation with high 

accuracy and then knowing from which drugs they would most benefit would be 

extremely useful.  Unfortunately, there are currently no available assays which accurately 

predict the responsiveness of individuals’ cancers to chemotherapy and direct 

personalization of their treatment protocol.   The purpose of this research was therefore to 

determine the accuracy of a novel personalized medicine technology called biodynamic 

imaging (BDI) for predicting response to therapy in dogs with chemotherapy-treated 

NHL, with the expectation that the results would have translational relevance to other 

canine and human cancers.
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction to Personalized Medicine 

The application of diagnostic tests for predicting the responsiveness of individual 

patients’ cancers to chemotherapy is an import part of personalized cancer medicine 

(PCM)
8
.  The goals of PCM in clinical oncology are to improve therapeutic response to 

chemotherapy by selecting drugs most likely to be active against an individual patient’s 

tumor, while at the same time decreasing health care costs and treatment-associated 

morbidity by avoiding the use of drugs that are unlikely to be effective.  Personalized 

cancer medicine has historically been based on the genomic and molecular profile of an 

individual patient’s tumor
9
.  For example, recently publicized disease “signatures” in 

human lymphoma, which segregate patients into prognostically favorable and 

unfavorable subsets, have been revealed utilizing gene microarrays and 

immunohistochemical algorithms
10-12

.  While this approach has yielded some remarkable 

successes, several challenges still limit the routine use of personalized medicine in the 

cancer clinic.  For example, cancer genomes are highly complex and chaotic, and 

genotypic aberrations may not completely predict response to drug therapy or other 

phenotypic tumor behaviors
13

.  Additionally, genomic approaches may not adequately 

model the communication existing between cancer cells themselves or between cancer 
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cells and stromal cells within the tumor microenvironment, and such cell-cell interactions 

are known to exert a powerful influence upon drug response
14

.  A PCM assay which 

characterizes the phenotypic response of cancer to drug therapy a priori, and which 

recapitulates cell-cell communications within the tumor at a three-dimensional tissue 

level, would be highly desirable for overcoming these limitations.  New strategies to 

predict drug response are therefore crucially needed to advance the personalization of 

cancer chemotherapy.  
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2.2 Introduction to Biodynamic Imaging (BDI) 

An innovative technology, called biodynamic imaging (BDI), has promise in 

predicting the responsiveness of an individual’s cancer to certain chemotherapeutics, thus 

being useful as a personalized cancer medicine assay.  BDI is a three-dimensional in vitro 

and ex vivo tissue imaging assay which uses laser-ranging and coherence-domain 

detection with digital holography to analyze living tissue for temporal fluctuations of 

intracellular motions.  Otherwise stated, it is an imaging approach that measures cellular 

and subcellular motion, with sensitivity to detect displacements at the sub-micron level
15

.  

Membrane and organelle motion are inherent properties of all living cells, and there are 

patterns of cellular and subcellular motion that are unique to specific cellular processes, 

such as mitosis or apoptosis.  These motion patterns are profoundly disturbed following 

the application of cytotoxic agents, such as cancer chemotherapy drugs, to living cells
15- 

19
.  The ability of BDI to capture cellular motion as a metric enables direct visualization 

of the effect of chemotherapeutics on living, three-dimensional tumor tissue, allowing 

rapid, real-time temporal measurements (2 – 9+ hours) of cellular and tissue response to 

drugs to be made.  The rapid turn-around time for this assay is optimal for enabling 

clinicians to make personalized, time-sensitive treatment decisions for their patients.   

BDI has been previously applied to the study of cellular drug responses in cultured three-

dimensional tumor spheroids and ex vivo biopsy samples from murine tumor 

xenografts
15,17,19,20

.  An et al. demonstrated that BDI can be used to differentiate tumor 
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spheroids derived from four different cell lines based upon their motility properties 

alone
19

.  As illustrated in Figure 1, the four distinct tumor spheroids were derived from 

UMR-106 rat osteogenic sarcoma cells, HT-29 human colon carcinoma cells, DLD-1 

human colon carcinoma cells, and PaCa2 human pancreatic cancer cells. When imaged 

with BDI, these tumor spheroids show clear differences in intracellular motion.  

Importantly, BDI data acquired from these tumor spheroids corresponded to the 

proliferative capacity of the cells from which the spheroids were derived; the cell lines 

with the greatest intracellular motility (PaCa2 and DLD-1) proliferate more rapidly in 

vitro than the cell lines showing lesser intracellular motion (UMR-106 and HT-29).  
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Figure 1 Motility contrast images of multicellular tumor spheroids derived from four 

cancer cell lines.  To the right is a false color scale which describes a motility metric 

(normalized standard deviation, or NSD) generated from BDI data.  Red pixels 

correspond to areas of lesser intracellular motility (and higher NSD values) and blue 

pixels correspond to areas of lesser intracellular motility (and lower NSD values). Note 

that the tumor spheroids derived from the rapidly proliferating DLD-1 and PaCa2 cell 

lines have greater average NSD values than spheroids derived from UMR-106 and HT-29 

cells, which proliferate more slowly. (From: An R, et al.  Appl Opt 2013;52:A300-9.)   

 

An et al. further demonstrated that BDI could be used to assess the effects of 

cytotoxic drugs upon cancer cells
17

.  In this experiment, tumor xenografts derived from 

two ovarian cancer cell lines were harvested from nude mice and analyzed ex vivo using 

BDI.  The two cell lines used were: (1) A2780, which is sensitive to platinum-based 
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chemotherapy, and (2) A2780-CP70, which is resistant to platinum-based chemotherapy.  

When xenografts derived from the two cell lines were exposed to cisplatin ex vivo, BDI 

showed a dramatic difference in the reduction in intracellular motion observed in the 

platinum-sensitive cells relative to the platinum-resistant cells (Figure 2). 

 

 

Figure 2 Graph depicting change in intracellular motility, measured using BDI, in ovarian 

cancer xenografts following application of cisplatin ex vivo.  The x-axis represents 

recorded NSD values (“Dynamic Motion”) and the y-axis represents time following 

application of cisplatin at time = 0.  The red line shows change in NSD value over time in  

xenografts derived from the platinum-resistant cell line A2780-CP70, and the green line 

that for xenografts derived from the platinum-sensitive cell line A2780.  Normal mouse 

tissue (which was physically adjacent to the tumor tissue when the xenografts were 

harvested) was used as a control.  As expected, there was a dramatic reduction in 

intracellular motility in the platinum-sensitive tumor, suggesting widespread tumor cell 

death following cisplatin application, with little apparent decrease in motility in the 

platinum-resistant tumor.  (From: An R, et al.  Appl Opt 2013;52:A300-9.)  
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In addition to measuring general cell motion as a whole within tissues, 

biodynamic imaging has also been used to characterize more discrete features of dynamic 

intracellular motion within tumor cells following exposure to cytotoxic agents.  Dynamic 

motion within a cell is attributable to morphological fluctuations in the cell membrane 

(e.g. ruffling, blebbing, vesicle formation), cytoplasmic streaming, and cytoskeletal 

reorganization, among other processes.  Each of these types of motion is detected by BDI 

as a specific frequency – for instance, large-scale motion, such as membrane blebbing 

which occurs during apoptosis, corresponds to low frequencies, while small-scale motion, 

such as that associated with internal organelle motility, corresponds to high frequencies
17

.  

Following application of a cytotoxic agent to cells, BDI analyzes temporal fluctuations in 

intracellular motions occurring at these various frequencies, and thereby generates a 

spectrogram which corresponds to a “fingerprint” describing a drug’s mechanism of 

action.  An example of a drug response spectrogram generated using BDI is depicted in 

Figure 3.  Nolte, et al. demonstrated that different drugs generate specific drug response 

spectrograms when applied to tumor spheroids derived from UMR-106 rat osteogenic 

sarcoma cells
17

.  These spectrograms are unique descriptors of a particular drug’s effects 

on a tumor. Furthermore, tissues that respond (i.e. cell death or apoptosis) will have a 

unique spectrogram while a different and unique spectrogram showing little to no change 

in motility will be produced for those tissues that do not respond.  Failure of the drug to 

generate a change in motility over time with a characteristic spectrogram will likely 

predict resistance of that patient’s tumor to that drug. 

 



11 

 

1
1
 

Figure 3 Sample drug-response spectrogram describing changes in various types of 

intracellular motion within a tumor over time following application of a drug at time = 0.  

Time is on the y-axis and the frequency of motion recorded is on the x-axis.  Low-

frequency motion, (such as membrane blebbing or rupture, associated with apoptosis or 

necrosis, respectively) is measured on the left side of the x-axis, medium-frequency 

motion (such as small cell membrane undulations) is measured in the middle of the x-axis, 

and high-frequency motion (such as that associated with internal organelle movements) is 

measured on the right side of the x-axis.  The false color scale to the right describes 

increased motion as red and decreased motion as blue.  This spectrogram shows a drug 

response in which low-frequency motility increases over time, while mid- and high-

frequency motility decrease over time following drug exposure – this is consistent with 

an apoptotic response by the tumor cells.  (Image courtesy of Dr. David Nolte) 

 

To date, BDI has been applied only to multicellular tumor spheroids grown in 

vitro and to tumor xenografts harvested from rodents and exposed to chemotherapy drugs 

ex vivo.  There are no published data describing the use of BDI to predict responsiveness 

of a naturally-occurring small animal tumor to chemotherapy.  However, in preparation 

for the work described later in this thesis, we acquired preliminary BDI data from tumor 

biopsies from dogs with multicentric lymphoma.
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2.3 Preliminary BDI Data 

Preliminary work using ex vivo canine lymphoma samples suggests that BDI can 

be successfully applied to drug sensitivity screening, and personalized medicine in this 

cancer.  Figure 4 shows motility contrast images generated from BDI applied to canine 

lymphoma biopsy samples, specifically comparing unique images generated for two dogs, 

one whose cancer progressed despite being treated with chemotherapy compared to a dog 

whose cancer responded.  The top two images in panel A were produced from a tumor 

biopsy from a dog with high-grade peripheral T-cell lymphoma.  This dog’s lymphoma 

progressed in the face of doxorubicin in vivo.  In contrast, the images on the bottom of 

panel A were made from a tumor biopsy from a dog with diffuse large B-cell lymphoma; 

this dog’s lymphoma went into complete remission following doxorubicin chemotherapy 

in vivo.  All biopsy samples were imaged pre- and post-treatment with doxorubicin (10 

µM) ex vivo.  As can be seen in Figure 4, the effects of ex vivo doxorubicin treatment 

were dramatically different between the doxorubicin-resistant T-cell lymphoma and the 

doxorubicin-sensitive B-cell lymphoma.  There was a dramatic reduction in intracellular 

motility observed in the biopsy sample from the dog with the B-cell lymphoma, whereas 

there was no appreciable reduction in intracellular motion observed in the biopsy sample 

from the dog with the T-cell lymphoma. This same phenomenon is depicted in graph 

form in panel B of Figure 4.
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Figure 4 Panel A shows motility contrast images of tumor biopsy samples from two dogs 

with multicentric lymphoma.  Biopsy samples were exposed to doxorubicin (10 M) ex 

vivo, and images were taken both pre- and post-treatment.  A false color scale to the right 

describes a motility metric (NSD) for each pixel in the images, with red areas 

corresponding to areas of greater cellular motility, and blue areas corresponding to areas 

of lesser cellular motility.  The images at the top of the figure depict a tumor in which 

motility was not appreciably altered by ex vivo doxorubicin treatment.  This dog’s 

lymphoma progressed in the face of doxorubicin chemotherapy in vivo.  The images at 

the bottom of the figure depict a tumor in which intracellular motility was significantly 

decreased following ex vivo doxorubicin treatment.  This dog’s lymphoma went into 

complete remission when treated with doxorubicin chemotherapy in vivo.  Panel B 

depicts change in NSD values for the sensitive (red line) and insensitive (blue line) 

tumors graphically, with NSD plotted on the y-axis and time plotted on the x-axis.   This 

figure demonstrates the significant reduction in intracellular motion in the sensitive tumor 

relative to the insensitive tumor following ex vivo application of doxorubicin. 

 

BDI was also used to create drug response spectrograms describing the more detailed 

aspects of the change in intracellular motility in lymphoma biopsy samples exposed to 

doxorubicin ex vivo.  Figure 5 depicts drug response spectrograms specific to the 

previously described doxorubicin-resistant T-cell lymphoma and doxorubicin-sensitive 

B-cell lymphoma.  As can be seen from these images, ex vivo treatment with doxorubicin 

produces markedly different drug response spectrograms in the two samples.  In the dog 

with B-cell lymphoma which clinically responded to doxorubicin, exposure of the biopsy 

samples to doxorubicin enhanced low frequency motion and suppressed high frequency 
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motion, similar to what is depicted in Figure 3.  This spectrogram is associated with an 

apoptotic response to chemotherapy.  In the biopsy sample from the dog with T-cell 

lymphoma which did not clinically respond to doxorubicin, doxorubicin exposure elicited 

comparatively little change in intracellular motion, potentially predicting the insensitivity 

of this tumor to chemotherapy. 

Figure 5 Drug response spectrograms generated using BDI on lymphoma biopsy samples 

from two different dogs.  Time is plotted on the y-axis and frequency of motion detected 

is plotted on the x-axis.  False color scales to the right of each image describe a motility 

metric (NSD) for each pixel in the images, with red areas corresponding to areas of 

greater cellular motility, and blue areas corresponding to areas of lesser cellular motility. 

Both biopsy samples were treated ex vivo with doxorubicin (10 µM) at time = 0.  The 

spectrogram in panel A shows minimal increase in low- and mid-frequency motion and 

essentially unchanged high-frequency motion over time, indicating that doxorubicin has 

minimal effect on intracellular motion in this tumor.  This spectrogram corresponds to a 

dog whose lymphoma progressed in the face of doxorubicin chemotherapy in vivo.  The 

spectrogram in panel B shows marked increase in low-frequency motion with marked 

suppression of mid- and high-frequency motion over time.  This is consistent with 

apoptosis or necrosis in the cells within this tumor.  This spectrogram corresponds to a 

dog whose tumor went into complete remission following doxorubicin chemotherapy in 

vivo. 
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2.4 Use of Dogs as a Model for Human Non-Hodgkin’s Lymphoma 

While BDI has been successfully used to characterize drug responses in tumor 

spheroids in vitro and biopsies from tumor xenografts ex vivo, it has not previously been 

applied for predicting treatment outcome in a spontaneous animal tumor model.  

Naturally-occurring non-Hodgkin’s lymphomas (NHL) in dogs represent a highly 

suitable preclinical animal tumor model in which to evaluate the predictive power of BDI.  

NHL in dogs are common tumors with histopathologic, molecular, and clinical features 

strikingly similar to NHL in humans
7
.  In both people and dogs, these cancers typically 

present with generalized peripheral lymphadenomegaly, with liver, spleen, and bone 

marrow also commonly affected.  In addition, doxorubicin-based combination 

chemotherapy is the standard of care for dogs and people with NHL. As previously 

mentioned, rather than to cure cancer, as is the common practice in human oncology, the 

treatment goal is to induce durable cancer remission and afford long-term disease 

palliation in dogs.  Important clinical endpoints can be more rapidly assessed in dogs than 

people with NHL – objective response (OR) to chemotherapy typically is evident within 

days of treatment, and progression-free survival time (PFST) following chemotherapy is 

approximately 4-9 months
21

.  Moreover, as is the case with human cancers, spontaneous 

NHL in dogs are both biologically and clinically diverse, and both OR and PFST 

following chemotherapy vary dramatically between individual patients.  Due to the 

similarities between human and canine NHL and the shorter time needed to assess
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clinical endpoints of disease in dogs with NHL, dogs are an excellent model in which to 

investigate BDI as a predictive assay for personalized cancer therapy
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CHAPTER 3. APPLICATION OF BIODYNAMIC IMAGING FOR PERSONALIZED 

CHEMOTHERAPY IN CANINE LYMPHOMA 

3.1 Statement of Purpose  

The purpose of this pilot study was to determine the extent to which BDI data, 

obtained by imaging tumor biopsies taken from dogs with NHL and treated with 

doxorubicin ex vivo, would predict OR and PFST following doxorubicin chemotherapy 

in vivo. 
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3.2 Materials and Methods 

3.2.1 Study Animals 

Ten dogs with untreated, naturally-occurring NHL were prospectively enrolled 

into this study.  All animals were privately-owned pet dogs seen at the Purdue University 

Veterinary Teaching Hospital (PUVTH), and enrolled between August 2013 and March 

2014.  The study protocol was approved by the Purdue Animal Care and Use Committee, 

and written informed consent was obtained from the owners of all dogs prior to 

enrollment.  Study eligibility was based upon a clinical presentation consistent with 

primary nodal NHL and fine needle aspirate cytologic evaluation of an affected lymph 

node consistent with intermediate-to-high grade lymphoma.  Additional inclusion criteria 

included body weight >15 kg, presence of at least one peripheral lymph node with 

longest diameter ≥ 2.5 cm, and expected survival of ≥4 weeks with treatment.  Exclusion 

criteria included primary extranodal NHL, neutrophils <2,500 µl, platelets <100,000 µl, 

clinically significant cardiac dysfunction (defined as any ventricular arrhythmia, 

atrioventricular block, cardiomyopathy, congestive heart failure, or other cardiac 

conditions which would reasonably preclude doxorubicin treatment), clinically 

significant hepatic dysfunction (defined as serum alanine aminotransferase activity ≥4X 

upper limit of normal, hyperbilirubinemia, or serum biochemical evidence of hepatic 

synthetic failure), and prior treatment of any kind for the lymphoma.
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3.2.2 Clinical Staging and Treatment of Study Animals 

At the time of study enrollment, all dogs underwent surgical biopsy of an affected 

peripheral lymph node to provide material for histopathologic confirmation of NHL and 

for BDI.  Nine dogs underwent incisional wedge biopsy of an affected lymph node, while 

one dog underwent multiple core biopsies using a 12 gauge biopsy needle (Magnum® 

disposable needle (12 G x 10 cm), Bard Medical).  A portion of each dog’s biopsy tissue 

(approximately 125 mm
3
) was transferred to RPMI 1640 (Mediatech, Inc.) and submitted 

for BDI, while the remainder was fixed in 10% neutral buffered formalin and submitted 

for histopathologic evaluation.  All lymphomas were histopathologically subtyped 

according to World Health Organization (WHO) criteria
22

, based upon histomorphology 

in hematoxylin and eosin-stained tissue sections as well as immunohistochemical 

detection of CD3 or CD79a, as previously described
23

.  All dogs underwent standardized 

cancer staging tests, including complete blood count, serum biochemistry profile, 

thoracic radiography, abdominal ultrasonography, bone marrow aspirate cytology, and 

electrocardiogram.  All dogs were assigned a tumor stage based upon WHO criteria
24

.  

Following completion of staging tests, all dogs were scheduled to receive single-agent 

doxorubicin chemotherapy at a dose of 30 mg/m
2
 administered intravenously once every 

3 weeks for a maximum of 5 doses.  While doxorubicin-based combination 

chemotherapy is considered standard for dogs with nodal NHL, single-agent doxorubicin 

treatment is a well-accepted and efficacious alternative to combination drug therapy
25,26
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3.2.3 Assessment of Clinical Endpoints 

Caliper-based measurement of peripheral lymph nodes was used to assess 

objective response (OR) to chemotherapy, in accordance with criteria established by Vail, 

et al
27

.  Briefly, complete remission (CR) was defined as the absence of measurable 

tumor burden; partial remission (PR) was defined as ≥30% reduction in the size of 

measurable tumor lesions; progressive disease (PD) was defined as ≥20% increase in the 

size of measurable tumor lesions, or the appearance of new lesions; and stable disease 

(SD) was defined as measurable tumor burden which was neither PR nor PD.  OR was 

assessed once every three weeks during the course of treatment, and then once monthly 

following completion of treatment.  Exceptions to this protocol were allowed if rapid 

disease progression necessitated prompt medical attention during the interval between 

scheduled rechecks.  Progression-free survival time (PFST) was defined as the time 

elapsed between administration of the first doxorubicin treatment and the first detection 

of PD, or death due to any cause, whichever came first.  All dogs were considered off 

study at the time that PD was first detected.  Given that treatment outcome of canine 

NHL is strongly dependent upon the ability of chemotherapy to induce PR or CR early in 

the course of therapy, owners of dogs experiencing SD following the first dose of 

doxorubicin were given the option to withdraw their dogs from the study in order to 

pursue alternative treatment options.
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3.2.4 Biodynamic Imaging 

At the time of study enrollment, a portion of each dog’s biopsy was placed in 

RPMI 1640 and transported immediately to a nearby laboratory for BDI.  Each dog’s 

biopsy was processed into approximately 16 (range 8-32) individual tissue samples of 

approximately 1 mm
3 

size.  These samples were mounted in in 8-well biomicroscopy 

slides (Lab-Tek), with each well containing several tumor samples.  A thin layer of low-

gel temperature porous agarose (Sigma-Aldrich) immobilized the tumor samples within 

the wells, and all samples were then overlaid with RPMI 1640.  BDI was subsequently 

performed on all tissue samples, using previously described methods
15-17,19,20

.  A 

schematic diagram of the BDI instrument is provided in Figure 6.  The BDI system is a 

short-coherence Mach Zender interferometer with digital holographic acquisition and 

reconstruction.  The three-dimensional capabilities are provided by coherence-gated 

detection that is equivalent to laser ranging using time-of-flight detection of 

backscattered light
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Figure 6 Schematic diagram of the BDI instrument.  Low-coherence light is provided by 

a super luminescent diode (SLD, not depicted in the figure).  A polarizing beam splitter 

separates light from the SLD into an object beam and a reference beam. The object beam 

is projected onto the tumor sample, and back scattered light from the tumor sample is 

Fourier transformed by the lenses (L1 and L2) before interfering with the reference beam 

at the Fourier plane (FP) of the object beam.  Interference of the object beam with 

reference beam produces a speckle pattern which changes over time as a function of 

dynamic cellular motion within the tumor sample.  The speckle pattern is captured by a 

charge-coupled device (CCD) camera as a reconstructed digital hologram for subsequent 

image analysis.  BS = Beam splitter, IP = Image plane. 

 

Baseline BDI data were recorded from all samples in each dog for approximately 

4 hours, and then doxorubicin (10 µM) was applied to all samples.  The concentration of 

doxorubicin applied is comparable to that which is achievable in plasma following 

intravenous administration of clinically-relevant doses of doxorubicin to dogs
28,29

.  

Following ex vivo doxorubicin treatment, BDI was performed continuously on all 

samples for approximately 9 hours.  Motility contrast images
15-17

 and drug response 

spectrograms 
16-19

 were acquired from all tissue samples using BDI. Motility contrast 

images are spatial maps of temporal fluctuations at a fixed depth inside the tissue set by 

the coherence gate (typically 400 microns inside the sample).  Drug response 

spectrograms are time-frequency representations of the change in fluctuation of spectral 
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content in response to an applied drug.  The frequency range spans from 0.01 Hz to 12.5 

Hz.   

Dynamic motility biomarkers measured by BDI included: 1.) Baseline normalized 

standard deviation (NSD), which describes baseline aggregate pixel intensity in motility 

contrast images, averaged over time; 2.) Change in NSD from baseline (ΔNSD), which 

describes the change in aggregate pixel intensity in motility contrast images, averaged 

over time, following ex vivo doxorubicin application; 3.) Blue tail (BLUTAIL), which 

describes the extent to which marked reduction in cellular motion was apparent in any of 

the samples at any frequency on drug response spectrograms; 4.) Mid-frequency 

assessment (MEM), which describes changes in motion apparent within the middle 

frequency range (0.1 Hz to 1 Hz) on drug response spectrograms; 5.) Non-linear 

frequency assessment (APOP), which describes changes in motion occurring at both high 

(> 1 Hz) and low (< 0.1 Hz) frequencies in drug response spectrograms, and for which 

specific spectral patterns have previously been correlated with an apoptotic response
17,18

 

and 6.) All frequencies (ALLF), in which data from the full frequency range (0.01 Hz to 

12.5 Hz) are considered collectively. To account for heterogeneity in cellular and 

subcellular motility within the biopsy samples, data from each dog’s biopsy samples were 

averaged to generate mean biomarker values for each dog.  Mean biomarker values were 

used for all subsequent statistical analyses.



24 

 

2
4
 

3.2.5 Statistical Analysis 

Descriptive statistics, including best OR to chemotherapy and PFST, were 

recorded for each dog.  The Kaplan-Meier method was used to generate survival curves 

and estimate median PFST for responders and non-responders.  For the purposes of 

analysis, OR was dichotomously classified as either response (CR) or non-response (PR, 

SD, PD) to doxorubicin.    A multivariate logistic model describing the correlation of 

averaged BDI data from each dog with OR and PFST was constructed.  To allow PFST, a 

continuous variable, to be treated as a binary variable in the logistic model, the PFST 

values for all ten dogs were analyzed using k-means clustering, and the values were 

segregated into two groups based upon clustering results. Five of the six BDI-measured 

biomarkers (NSD, BLUTAIL, MEM, APOP, and ALLF) were entered into the model 

and then the model was adjusted using backwards elimination.  The values of all 5 

biomarkers are given in Table 1.  Each biomarker has been adjusted to zero mean and 

unity standard deviation across all 10 dogs.  
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Table 1 Five dynamic motility biomarkers for responsive (6) and non-responsive (4) dogs.  

Each biomarker has zero mean and unity standard deviation across all 10 dogs.  The 

standard deviations of the biomarkers among the non-responsive dogs are smaller than 

for the responsive dogs.  The biomarkers used in Fig. 12 are APOP, MEM, and 

BLUTAIL.  The mean values and standard deviations from these three biomarkers are 

used to construct the input argument to the logistic function. 

Responsive 

Dog APOP ALLF MEM BLUTAIL NSD 

1 

3 

5 

6 

7 

9 

-2.50 

-0.24 

0.00 

-0.72 

0.39 

0.40 

-2.20 

-0.62 

0.88 

-1.10 

-0.05 

0.13 

-2.30 

-0.17 

0.16 

-0.88 

0.32 

-0.57 

-1.70 

-1.60 

0.52 

-0.98 

0.86 

-0.29 

-0.76 

-1.58 

0.79 

-0.91 

0.87 

-1.00 

Avg -0.44 -0.49 -0.57 -0.53 -0.43 

Std 1.09 1.07 0.96 1.08 1.02 

 

Non-Responsive 

Dog APOP ALLF MEM BLUTAIL NSD 

2 

4 

8 

10 

0.07 

1.00 

0.46 

1.20 

1.30 

0.70 

0.20 

0.77 

1.40 

0.56 

0.47 

1.00 

0.72 

0.83 

0.78 

0.84 

1.28 

-0.06 

0.12 

1.12 

Avg 0.68 0.74 0.86 0.79 0.62 

Std 0.52 0.45 0.43 0.06 0.68 

 

The argument to the logistic function is constructed from the mean values and 

standard deviations of these biomarkers to construct a multivariable logistic predictor of 

drug response as: 


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Where Ln is the logistic drug response predictor for the n
th

 dog, m varies over the selected 

biomarkers, M is the number of biomarkers, bnm is the value of the m
th

 biomarker for the 
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n
th

 dog, m is the standard deviation of the m
th

 biomarker, and Bm is the binary threshold 

between the two populations (responsive and non-responsive) for the m
th

 biomarker.  To 

account for possible over-fitting of clinical data to the model, cross-validation using one-

left-out analysis was also performed.  The logistic values for the responder and non-

responder populations were fitted with a continuous-valued Gaussian distribution to 

generate a receiver operating characteristic curve in order to calculate sensitivity, 

specificity, and accuracy of BDI for predicting treatment outcome.
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3.3 Results 

Eight dogs with B-cell NHL and two dogs with T-cell NHL were enrolled.  Seven of 

the eight dogs with B-cell NHL had DLBCL, while in the eighth dog, WHO subtyping 

was not performed because the biopsy method (needle core) provided inadequate tissue 

for this purpose.  Both dogs with T-cell NHL had PTCL-NOS.  Doxorubicin 

chemotherapy was tolerated well by all dogs, and treatment-related adverse events were 

mild, in keeping with previous reports
37, 38

. Demographic and treatment response data are 

summarized in Table 2.  Objective response to chemotherapy was classified as response 

in 6 dogs experiencing CR of their NHL, and non-response in 4 dogs experiencing PR (1), 

SD (2) or PD (1).  Two responder dogs were still alive with their NHL in CR at the time 

of data analysis.  A Kaplan-Meier plot describing cumulative PFST over the study period 

in responder vs. non-responder dogs is presented in Figure 7.
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Table 2 Demographic and treatment response variables for 10 dogs with naturally 

occurring non-Hodgkin’s lymphomas treated with single-agent doxorubicin 

chemotherapy.  WHO – World Health Organization; DLBCL – Diffuse large B-cell 

lymphoma; PTCL-NOS – Peripheral T- cell lymphoma, not otherwise specified; OR – 

best objective response to chemotherapy; CR – complete remission; PR – partial 

remission; SD – stable disease; PD – progressive disease; PFST – progression-free 

survival time; N/A – Not evaluable due to biopsy method (needle core). 

Dog Breed Tumor 

Immunophenotype 

WHO 

subtype 

WHO 

Stage 

OR PFST 

(days) 

1 Golden 

retriever 

B-cell N/A 5 CR 154 

2 Boxer B-cell DLBCL 4 PR 37 

3 Mixed B-cell DLBCL 4 CR 301 

4 Mixed B-cell DLBCL 4 SD 21 

5 Mixed B-cell DLBCL 4 CR 174 

6 Labrador 

retriever 

B-cell DLBCL 4 CR 180 

7 Golden 

retriever 

B-cell DLBCL 4 CR >196 

8 Mixed T-cell PTCL-

NOS 

5 PD 21 

9 Mixed B-cell DLBCL 4 CR >176 

10 Rhodesian 

ridgeback 

T-cell PTCL-

NOS 

5 SD 22 
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Figure 7 Kaplan-Meier plot describing progression-free survival time (PFST) in 10 dogs 

with NHL treated with single-agent doxorubicin chemotherapy.  Cumulative PFST for 

responder dogs (Dox-sensitive) is plotted in blue, and that for non-responder dogs (Dox- 

insensitive) is plotted in red. 

 

Representative averaged motility contrast images generated by BDI on biopsy 

samples obtained from two study dogs are depicted in Figure 8.  Many of the tumor 

biopsy samples from the dogs which were responsive to doxorubicin in vivo showed a 

dramatic reduction in aggregate intracellular motility following ex vivo application of 

doxorubicin.  In contrast, in tumors from dogs which were non-responsive to doxorubicin 
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in vivo, nearly all biopsy samples demonstrated minimal change in aggregate intracellular 

motility following ex vivo doxorubicin treatment.  Figure 9 shows the averaged NSD 

values of tumor biopsies for the responsive and non-responsive populations plotted as a 

function of time.  The mean decrease in NSD for tumors from responsive dogs was 

ΔNSD = -0.55, and that for tumors from non-responsive dogs was ΔNSD = -0.13. 

Therefore, following ex vivo application of doxorubicin, a drop in NSD from baseline 

was apparent in tumors from the dogs experiencing CR of their NHL to doxorubicin in 

vivo.  In contrast, NSD did not deviate substantially from baseline in tumors from the 

dogs experiencing PR, SD, or PD of their NHL following doxorubicin chemotherapy.   
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Figure 8 Characteristic motility contrast images, which depict aggregate cellular motion 

averaged over time, of tumor biopsy samples obtained from two dogs with NHL.  The 

two images in the top row depict a tumor from a non-responder dog (Dog 10) in which 

aggregate cellular motion was unaltered to slightly increased following ex vivo 

doxorubicin treatment.  The two images in the bottom row depict a tumor from a 

responder dog (Dog 3) in which aggregate cellular motion was markedly decreased 

following ex vivo doxorubicin treatment. 
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Figure 9 Graphical representation of change in aggregate cellular motion (ΔNSD) 

following ex vivo application of doxorubicin to tumor biopsies taken from all 10 study 

dogs.  Mean NSD (y-axis) for the 6 responder dogs (red line) and 4 non-responder dogs 

(blue line) is plotted as a function of time (x-axis). The mean ΔNSD for the 6 responder 

dogs (-0.55) was greater than that for the 4 non-responder dogs (-0.13). 

 

Representative drug response spectrograms generated by BDI on tumor biopsy 

samples obtained from study dogs are depicted in Figures 10 and 11.  Figure 10 shows a 

schematic representation of how spectral signatures generated by imaging all twelve of 

the 1 mm
3
 biopsy samples obtained from an individual dog’s (Dog 9) tumor were merged 

to create an averaged spectrogram.  Figure 11 shows averaged drug response 

spectrograms from two different dogs with NHL.  Panel A of the figure depicts an 

averaged drug response spectrogram for a non-responsive dog (Dog 10), in which 

motions at all frequencies are essentially unchanged or slightly enhanced following ex 
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vivo application of doxorubicin; this spectrogram corresponds to a dog that experienced 

PD of its NHL following doxorubicin treatment in vivo.  Panel B depicts an averaged 

drug response spectrogram from a responsive dog (Dog 9), in which motions at all 

recorded frequencies are significantly suppressed following ex vivo application of 

doxorubicin; this spectrogram corresponds to a dog that experienced CR of its NHL 

following doxorubicin treatment in vivo. 

 

Figure 10 Drug response spectrograms depicting alterations in various aspects of cellular 

and intracellular motion occurring across a range of frequencies over time in ex vivo 

tumor biopsies from a dog (Dog 9) with NHL.  Frequency of motion detected is plotted 

on the x-axis of each panel and time is plotted on the y-axis.  BDI generated a unique 

drug response spectrogram from each of the 12 tumor biopsy samples from this dog.  

There is marked variability in spectral data obtained by imaging each biopsy sample, and 

thus data from all 12 spectrograms were averaged (larger panel on the right side of the 

figure) for the purposes of statistical analysis. 
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Figure 11 Characteristic averaged drug response spectrograms from a non-responder dog 

(Dog 10; Panel A) and a responder dog (Dog 9; Panel B).  Frequency of motion detected 

is plotted on the x-axis, and time is plotted on the y-axis in each panel.  Doxorubicin (10 

µM) was applied at time = 0. 

 

K-means clustering of the 10 dogs according to PFST showed the 4 non-

responder dogs to cluster around a PFST of approximately 20-30 days, while the 6 

responder dogs clustered around a PFST of >100 days; therefore, in this population of 

dogs, the binary classification of response vs. non-response was the same regardless of 

whether OR or PFST was the basis for classification.  Results of the multivariate logistic 

analysis are depicted graphically in Figure 12 (solid color bars).  The average logistic 

values for each population (responsive and non-responsive are shown as dashed lines on 

the graph.  Using backwards elimination, a logistic model was constructed which 

incorporated three biomarkers (M=3): nonlinear (APOP), mid-frequency (MEM), and 

blue tail (BLUTAIL).  These three metrics correlated most strongly with PFST and OR.  

By combining the three biomarkers in a multivariate logistic function, the combined 
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group predicted OR to doxorubicin chemotherapy in 100% of cases using a binary 

classifier (response vs. non-response) that fully separates the two groups.  The separation 

(±SD) between the mean values of the two groups is 0.73 (±0.39).  The sensitivity, 

specificity, and accuracy for the complete data set in Figure 6 are 95%, 91%, and 93%, 

respectively.  To test against over-fitting, cross-validation with a one-left out analysis was 

performed.  Thresholds for the binary classifier were set using nine of the ten dogs, and 

then the tenth dog was tested against the classifier.  This procedure was repeated for each 

dog.  The response of each left-out dog is plotted in Figure 12 as the half-tone bars.  Dog 

7 had a weak sensitive signature in the full set, but was classified as resistant in the one-

left-out analysis.  The sensitivity, specificity, and accuracy for this combination of three 

dynamic motility metrics were 93%, 87%, and 91%, respectively.  Increasing the number 

of biomarkers in the logistic model improved the accuracy for the full set, but beyond the 

optimum combination, the one-left-out analysis became less accurate.  Therefore, in this 

study, the optimum combination was provided by the three biomarkers most 

representative of overall response. 
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Figure 12 Graphical representation of the relationship between BDI data and treatment 

outcome in 10 dogs with NHL.  Individual dogs are plotted on the x-axis and the value of 

the logistic drug response predictor is plotted on the y-axis.  Blue bars denote responder 

dogs (sensitive) and red bars denote non-responders (resistant).  Solid color bars denote 

the results of initial multivariate logistic modeling and the half-tone bars denote the 

results of cross-validation with one-left-out analysis. 
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CHAPTER 4. CONCLUSION 

In this report, we show for the first time that a novel live-tissue imaging technology, 

BDI, can be effectively use to predict treatment outcome with high accuracy following 

doxorubicin chemotherapy in a relevant, naturally-occurring animal model of non-

Hodgkin’s lymphoma.  Although the sample size of 10 dogs in this study was small, the 

lymphoma in the 10 dogs was fairly representative for NHL in dogs as a whole.  

Approximately 75-80% of NHL in dogs are B-cell tumors, and the remaining 20-25% are 

T-cell tumors.  Tumor immunophenotype is among the most powerful predictors of 

therapeutic response in dogs with NHL, in that dogs with T-cell NHL typically 

experience less robust and less durable responses to doxorubicin-based chemotherapy 

than dogs with B-cell NHL
32-34

.  When treated with single-agent doxorubicin, fewer than 

20% of dogs with T-cell NHL will experience CR of their lymphoma; in contrast, over 80% 

of dogs with B-cell NHL experience CR following doxorubicin treatment
32

.  Thus, the 

poor response to doxorubicin chemotherapy in the two dogs with T-cell NHL in this 

study could have been predicted to some degree based upon immunophenotype alone.  

Nevertheless, BDI accurately predicted response to doxorubicin in these two dogs.  

Perhaps more significantly, BDI accurately identified the 2/8 dogs with B-cell NHL 

which would fail to exhibit CR to doxorubicin chemotherapy despite belonging to a 
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prognostically favorable subgroup.  Although these data require confirmation in a larger 

sample set, they suggest that BDI may more accurately predict response to therapy in this 

dog model of NHL than is possible using traditional clinical or pathological indices.   

This predictive capability of BDI sets it apart from other real-time living tissue 

imaging modalities which have recently emerged as tools for the clinical evaluation of 

cancer.  Among these are confocal laser endomicroscopy, narrow band imaging, Raman 

laser spectroscopy, and optical coherence tomography (OCT)
 35-39

. By evaluating 

alterations in tissue structure and chemical composition, these techniques can distinguish 

cancerous tissues from normal ones at the histologic level with excellent accuracy.  To 

date, these techniques have been applied most commonly to cancer detection, and can be 

used to reveal occult premalignant lesions, to discern cancerous from precancerous 

lesions, or to measure minute tumor volumes.  OCT has also been used to characterize 

tumor response to therapy in preclinical models by measuring changes in tumor volume 

or vascularity following anti-angiogenic drug treatment
39

.  BDI shares many features with 

OCT – for example, both rely upon collection of back-scattered short-coherence light to 

define depth and spatial resolution within tissues.  However, the reconstructed images 

produced by BDI are a product of dynamic coherent speckle of the back-scattered light.  

Coherent speckle results from interference of many light waves with similar frequency, 

but with different phases and amplitudes, which superpose to produce a complex 

wavefront of randomly varying amplitude and intensity.  This speckle effect is 

detrimental to OCT because it limits optical resolution and blurs the boundaries between 

microanatomical planes
40

, but it is essential to BDI because it provides contrast by which 

to discern dynamic changes in cellular and subcellular motion within 3-dimensional 
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tissues in response to drugs.  By analyzing temporal fluctuations in dynamic cellular 

motion within drug-treated tumor tissue samples, BDI defines physiologic rather than 

anatomic properties of tumors.  Therefore, whereas other real-time tumor imaging 

technologies have been largely applied as diagnostic tools, BDI can function as a 

predictive tool in cancer medicine. 

This predictive ability of BDI suggests its possible application to PCM.  BDI may 

have some advantages over previously described PCM assays, which generally attempt to 

predict response to therapy by characterizing genotypic derangements within individual 

patients’ tumors.  As such, existing PCM assays attempt to correlate genotypic data, such 

as patterns of gene expression or presence of well-characterized gene mutations, with a 

phenotypic response, i.e. tumor remission.  But while it is genes and proteins which 

provide the blueprints and structural framework for living cells, the ultimate phenotypic 

expression of all cellular activity is motion.  By phenotypically profiling tumors using 

detailed probing of cellular and subcellular motion, BDI may have significant potential to 

enhance the prediction of tumor response to drug therapy and inform the selection of 

optimal treatments for individual patients relative to what is possible using genotypic 

PCM approaches.  For example, while molecularly-targeted therapies, such as BRAF 

inhibitors in patients with melanoma bearing the V600E mutation
41

 or ALK inhibitors in 

patients with non-small cell lung cancer bearing ALK/EML4 translocations
42

, afford high 

initial response rates, cancer resistance to these therapies usually develops within several 

months.  Moreover, druggable molecular targets are not identifiable using genotypic 

methods on tumors from many patients at the time of cancer diagnosis
43,44

.  A phenotypic 

profiling method, such as BDI, may be useful for selecting drugs for patients in which 
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targeted therapy has failed or whose tumors do not express a known molecular target for 

drug therapy, in that BDI could predict phenotypic response in the absence of validated 

genotypic biomarkers.  While the present study involved the treatment of a spontaneous 

animal tumor with doxorubicin, a non-targeted drug, BDI has been used to evaluate the 

effects of targeted drugs in in vitro models
19

.  It is therefore plausible that BDI would be 

useful to predict phenotypic response to targeted and non-targeted therapies in human 

cancer patients by imaging tumor biopsy samples ex vivo, such as was described in the 

present study. 

The three dynamic biomarkers most predictive of overall response in this study 

were APOP, MEM, and BLUTAIL.  APOP is a signature correlated with apoptosis
17

, 

which is a desired outcome of cancer therapy.  MEM is related to membrane transport, 

which can exhibit activation upon exposure of neoplastic tissues to chemotherapy, and is 

possibly reflective of active drug transport by membrane-associated efflux proteins 

induced as a protective strategy for cancer cells.  BLUTAIL specifically measures the 

presence of a subset of biopsy samples that show strong inhibition of motion in response 

to therapy, even if the response averaged over all the tumor samples is weak.  These three 

dynamic biomarkers have specific connections with the physiological response of tissues 

to applied anti-proliferative or cytotoxic drugs. 

While predicting clinical response to doxorubicin in the dogs in this study was 

possible using these three biomarkers, considerable heterogeneity in cellular motility was 

observed in processed biopsy samples from all dogs, both prior to and following ex vivo 

application of doxorubicin (Figure 10).  This may be due to inherent biological 

heterogeneity of the neoplastic cell population comprising individual dogs’ tumors.  It is 
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well documented that tumors are composed of heterogeneous subpopulations of cells 

with distinct genomic identities and functional properties
45,46

.  It is likely that these 

subpopulations exhibit variable motility profiles as well.  However, another possible 

explanation for the heterogeneity in motility profiles within each tumor sample could be 

that motility varied based upon histologic composition of the tissue (i.e. tumor cells vs. 

stroma) or tissue viability (i.e. live tumor cells vs. apoptotic or necrotic cells). We 

attempted to account for heterogeneity in cellular motion by averaging motility metrics 

from all processed biopsy samples in each patient, and submitting the averaged data to 

statistical analysis.  Future investigations are needed to determine the optimal number of 

samples to be analyzed in order to maximize the predictive power of BDI, and to better 

define the mechanisms underlying the heterogeneous motility profiles observed within 

processed biopsy samples from the same tumor.  Because BDI is performed on minimally 

disrupted living tissue, it also could be easily paired with post-hoc assays to determine 

the extent to which motility differences (in untreated tissue samples) correlate with 

genomic and proteomic alterations within multiple, anatomically confined regions of a 

tumor.  Furthermore, post-hoc histopathologic evaluation of tumor tissues, which was not 

part of the current study design, would be an invaluable component of future studies to 

evaluate whether tissue composition is a significant determinant of heterogeneous 

motility properties within ex vivo tumor biopsy samples.    

The data presented here provide proof-of-concept to justify further investigation of 

BDI as a viable method for personalized cancer therapy.  The most significant limitations 

of the present study include its small sample size and that only a single drug was 

investigated.  These data require confirmation in a larger study population and in the 
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context of multiple or combination drug therapies.  Nonetheless, these results suggest that 

BDI may have significant power to predict tumor response to chemotherapy a priori, and 

could therefore serve as an important tool for therapeutic drug selection in individual 

cancer patients. 
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