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ABSTRACT 

Tajdaran, Kiarash. MSAA., Purdue University, December 2015. Incorporation of Mission 

Design Constraints in Floquet Mode and Hamiltonian Structure-Preserving Orbital 

Maintenance Strategies for Libration Point Orbits. Major Professor: Kathleen C. Howell. 

Libration point orbits are, in general, inherently unstable. Without the presence of 

corrective maneuvers a spacecraft will diverge from the vicinity of such trajectories. In this 

research effort, two orbital maintenance control strategies are studied: the impulsive 

Floquet Mode (FM) controller and the continuous Hamiltonian Structure-Preserving (HSP) 

controller. These two controllers are further developed to incorporate real-world mission 

design constraints. The FM controller is modified to accommodate feasible maneuver 

directions that are constrained to a plane or a line. This controller is shown to be applicable 

for orbital station-keeping of spin stabilized spacecraft that are only equipped with either 

tangential thrusters or axial thrusters. The HSP controller is extended for application to 

general three-dimensional hyperbolic libration point orbits, and then discretized to account 

for the minimum time required for orbit determination and/or scientific operations. Both 

controllers are applied to an unstable 𝐿1 halo orbit in the Sun-Earth/Moon system. The 

performances of these controllers are examined under the impacts of the spacecraft’s 

operation errors and mission design constraints. Simulation results suggest that the FM 

controller is capable of maintaining the motion of the spacecraft in the vicinity of the 

desired reference trajectory for the duration of the simulation, while satisfying all mission 

design constraints. The discrete-time MHSP controller proves to be able to improve the 

stability of the nominal trajectory by reducing the value of the unstable Poincare exponent 

of the reference orbit.      
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1. INTRODUCTION 

Libration point orbits in multi-body systems are increasingly being employed in space 

missions as they provide unique mission opportunities in a variety of space applications 

such as space weather, deep space observation platforms, and communication networks to 

facilitate missions in the solar system and beyond. Space missions around libration point 

orbits started with the launch of the third International Sun-Earth Explorer (ISEE–3) 

spacecraft in August 1978; one of the pioneers in studying solar winds and space weather. 

From November 1978 to June 1982, ISEE-3 completed 4 orbits around a quasi-periodic 

halo orbit in the vicinity of the Sun-Earth L1 libration point. This accomplishment made 

ISEE-3 the first spacecraft to be stationed in a libration point orbit [1]. Since ISEE-3, other 

space missions such as SOHO [2], ACE [3], Genesis [4], and MAP [5] are successful 

examples of missions operated in the vicinity of libration point orbits. Scheduled to be 

launched within this decade is the James Webb Space Telescope (JWST), which will be 

stationed in the vicinity of the Sun-Earth L2 libration point for the purpose of deep space 

observations [6].  

Despite the broad range of applications for libration point orbits, these trajectories are, 

generally, unstable. Thus, an orbiting spacecraft diverges from its desired trajectory even 

under small perturbations. To incorporate libration point trajectories in space missions, 

orbital maintenance strategies must be developed to compute and execute corrective 

maneuvers with a high level of accuracy. In this research investigation, impulsive as well 

as continuous orbital maintenance strategies are studied that exploit the naturally existing 

dynamical structures inherent in multi-body regimes to maintain the motion of the 

spacecraft in the vicinity of the nominal trajectory. However, previously developed orbital 

maintenance strategies in these dynamical environments do not accommodate mission 
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constraints, such as feasible spacecraft maneuver directions, minimum thrust level, or 

orbital determination time constraints. In this investigation, orbital maintenance strategies 

are examined and further developed that incorporate and satisfy a variety of mission design 

constraints. Results from this research investigation offer a step forward in developing the 

next generation of spacecraft control systems to accommodate increasingly complex space 

missions. 

1.1. Problem Definition  

In the traditional mission designs a two-body problem was often adopted which 

considers motion of two gravitational, centrobaric bodies. This model results in the familiar 

conic sections of Keplerian motion. In the Two-Body Problem (2BP) the effects of the 

gravitational fields of any additional bodies are then added to the model as perturbations 

to the conic solutions.  

A more general formulation of the problem is the Three-Body Problem (3BP) which 

incorporates the gravitational interaction of a third body. The 3BP, unlike the 2BP does not 

have an analytical solution for the differential equations governing the motion, however, 

the 3BP provides valuable insights into the qualitative nature of solutions in this system. 

In order to make the analysis of the 3BP more tractable, a number of simplifying 

assumptions are considered. The first assumption is that the gravitational effect of the third 

mass is negligible on the motion of the other two masses. For instance, in the case of Sun-

planet-spacecraft system the gravitational effect of the spacecraft is negligible. This 

permits a two-body solution for the motion of the two primary bodies such as the Sun and 

the planet in the Sun-planet-spacecraft system. This reduced model is denoted as the 

Restricted Three-Body Problem (R3BP). The problem is further simplified by containing 

the two primary bodies to move in circular orbits about their center of mass. The resulting 

simplified model is labelled Circular Restricted Three-Body Problem (CR3BP), which still 

does not possess an analytical solution, but particular solutions can be determined. 

The CR3BP has five equilibrium points denoted as the Lagrange or libration points 

which mark the locations in the plane of motion of the two primaries where all forces acting 
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on the infinitesimal third mass are balanced. Three of the libration points lie along the line 

connecting the two primary bodies, denoted as “collinear solutions”. The other two points 

form equilateral triangles with the two primary bodies in the primary plane of motion. The 

equilateral libration points are also denoted as “triangular solutions”.  Moreover, the 

existence of libration points implies the existence of periodic and quasi-periodic solutions 

in the vicinity of libration points.  

Libration point orbits create a variety of unique mission opportunities, however, the 

majority of these trajectories are categorized as unstable orbits, meaning that even small 

perturbations will cause the spacecraft to deviate from the “nominal” trajectory. Therefore, 

implementation of orbital station-keeping strategies that do not interfere with the scientific 

requirements and mission design constraints of the spacecraft is necessary. Numerous 

aspects of a mission design can directly influence the success of a station-keeping strategy. 

One important aspect is the sensitivity of scientific instruments on-board the spacecraft. 

Often corrective maneuvers can vitiate or interrupt the scientific measurements. Therefore, 

a suitable station-keeping strategy must be capable of handling the added constraint of a 

required minimum time between each maneuver, or a feasible maneuver direction to ensure 

the success of the science mission. Additionally, the propulsion system on-board a 

spacecraft has thresholds for maximum and minimum thrust levels.  Orbital determination 

time constraints and the accuracy level of the obtained states are also important aspects of 

mission constraints, which should be taken into account when implementing a station-

keeping strategy.  

1.2. Pervious Contributions  

1.2.1. A Brief History of Multibody Dynamics  

The first formulation of the n-Body Problem was inspired by Sir Isaac Newton’s 

Universal Law of Gravitation published in his Principia in 1687 [7]. In his work, Newton 

derived a geometrical solution to the relative 2BP. Johann Bernoulli, in 1710, demonstrated 

that the solution to the 2BP is described by conic sections. Later in 1772, Leonhard Euler, 

a student of Bernoulli, introduced a rotating frame to the 3BP in an attempt to understand 
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the motion of the Moon in the Sun-Earth-Moon 3BP. Simultaneously, Josef Louis 

Lagrange derived an analytical solution to the restricted Sun-Jupiter 3BP that led to the 

identification of the five equilibrium points, known as the Lagrange or libration points [8].  

Approximately fifty years later, in 1836, Carl Gustav Jacobi recognized a constant of 

integration associated with the rotating frame formulation of the 3BP, which was later 

named after him the Jacobi Constant [9]. In 1897, Heinrich Burns proved the non-existence 

of any other constant of integral in 3BP. Two years later, Jules Henri Poincare’ also proved 

that the R3BP is not integrable by showing that an algebraic constant of integral does not 

exist in this problem [8]. However, further computational progress beyond this point was 

hindered for over half a century due to the lack of computing powers and high speed 

computers. Fortunately, with the technological advancements in the mid-1900s, extensive 

numerical investigations into the 3BP were made possible. In 1966, Victor G. Szebehely 

made a significant contribution to the 3BP by revisiting the derivation of the problem and 

providing details on the particular solutions with extensive numerical results. In light of 

the new technological advancements and the needed improvements in numerical methods 

over the past 50 years, research in Multi-Body Dynamics and its application in mission 

design has given rise to a new generation of research efforts.   

1.2.2. Libration Point Orbits  

In the early 1900’s, before the advancements in high speed computers, Forest Moulton 

and Henry Plummer found analytical and numerical solutions for the two dimensional 

periodic orbits about the collinear libration points. In the 1960’s, with the advent of high 

speed computing techniques, John Breakwell pioneered a new wave of investigations into 

motion in the vicinity of libtation points.  Breakwell and his student Robert Farquhar, in 

the late 1960’s, discovered the key concept for periodic out-of-plane trajectories in the 

vicinity of the Earth-Moon L2 libration point. For the first time, Farquhar named these 

trajectories “halo” orbits. Later, Breakwell and Farquhar introduced higher order 

approximations to numerically produce halo orbits, and predicted the existence of natural 
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periodic solutions in the CR3BP. Ground breaking discoveries by Breakwell and Farquhar 

spurred new research efforts in the R3BP and its modern mission design applications [10].    

1.2.3. Libration Point Orbit Station-Keeping  

 Libration point orbits are, in general, inherently unstable, which makes the 

implementation of a station-keeping strategy necessary to maintain the nominal trajectory. 

Breakwell and Farquhar et al examined the station-keeping issue of unstable halo orbits for 

the first time. In 1970’s, they proposed the use of collinear libration point orbits for lunar 

communications in the Earth-Moon system, and they studied the associated station-keeping 

strategies and fuel costs [10]. Later, in 1980’s Gomez [11] and Simo et al [12] exploited 

the Invariant Manifolds Theory and Floquet Modes to design an impulsive station-keeping 

control law to maintain motion relative to unstable libration point orbits. Howell and 

Pernika [13] developed the impulsive Target Point station-keeping control law, which was 

then further modified by Gordon [14]. Both strategies, Floquet Mode control law and 

Target Point control law, were compared by Keeter and Howell [15]. Moreover, in the 

early 2000’s, Scheeres et al [16] proposed a continuous Hamiltonian-Structure Preserving 

(HSP) controller. This low thrust station-keeping strategy exploits the instantaneous stable 

and unstable manifolds of the trajectory to achieve local stability in the sense of Lyapunov. 

HSP control law was then extended for solar sail applications by M. Xu et al [17], and 

Soldini et al [18]. In her work, Soldini conducted a qualitative as well as quantitative 

comparison between the continuous HSP control law and the impulsive Floquet Mode 

control law. Soldini also extended the HSP control law to stabilize motion relative to planar 

libration orbits with complex and conjugate instantaneous eigenvalues. The HSP control 

law originally proposed by Scheeres could only control planar trajectories with 

instantaneous eigenvalues that are couples of real and pure imaginary.    

1.3. Present Work  

The main objective of this investigation is the incorporation of mission design 

constraints in orbital station-keeping strategies that utilize the natural dynamical structures 
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around a nominal trajectory. Specifically, two orbital station-keeping control laws, the 

impulsive Floquet Mode (FM) control law and the continuous Hamiltonian Structure-

Preserving (HSP) control law, are examined and modified to incorporate real-world 

mission design constraints. Both of these controllers exploit the knowledge obtained from 

the invariant manifold theory regarding the phase space around libration point orbits, and 

implement corrective maneuvers that aim to maintain the spacecraft in the vicinity of a 

nominal libration point orbit. These controllers are then applied for station-keeping around 

an unstable libration point orbit in the Sun-Earth/Moon system and their performances are 

examined under the impacts of the spacecraft’s operation errors and mission design 

constraints    

This analysis is organized as follows:  

 Chapter 2: Fundamental Background 

In this chapter, the equations of motion of a spacecraft in the CR3BP are derived. 

Libration points in the CR3BP are identified, and differential corrections algorithm 

to compute libration point orbits are developed. Lastly, invariant manifold theory 

and the characteristics of the phase space in the vicinity of libration point orbits are 

discussed.    

 Chapter 3: Orbital Station-Keeping Simulation Algorithm 

Orbital station-keeping control problem and the goal that must be achieved by the 

control strategies are defined. Nominal libration point orbit, as well as mission 

design constraints and operation errors that are used in the simulation algorithm are 

introduced. In this investigation, the operation errors are simulated as random 

perturbations. Therefore, Monte Carlo simulation is conducted to take the average 

of the total station-keeping costs.  

 Chapter 4: Impulsive Floquet Mode (FM) Station-Keeping Strategy  

Mathematical formulation for the FM control strategy is presented. This controller 

is then modified to incorporate feasible maneuver direction constraints. The 
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modified FM controller is applied for station-keeping of a spin-stabilized spacecraft 

equipped with only axial thrusters or tangential thrusters.   

 Chapter 5: Continuous Hamiltonian Structure-Preserving (HSP) Station-Keeping 

Strategy 

Mathematical formulation for the HSP controller, originally developed by Shceeres 

[16], is presented. A list of limitations of this controller is compiled. The HSP 

controller is then modified to overcome the identified limitations. Lastly, the 

proposed modified controller is applied for station-keeping around the nominal 

orbit selected in chapter 3.    

 Chapter 5: Summary and Recommendations  

The results of this research investigation are summarized, and potential future 

research areas are discussed.  
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2. FUNDAMENTAL BACKGROUND 

The purpose of this chapter is to provide the ground base and fundamental background 

required to understand the formulation and analysis of the orbital station-keeping strategies 

presented in this research effort. This chapter begins with the formulation of the CR3BP: 

its assumptions, equations of motions, and particular solutions. Next, differential 

corrections algorithm and numerical techniques are introduced to compute baseline 

libration point orbits for station-keeping simulations. Finally, the invariant manifolds and 

the natural characteristics of the phase space around a liberation point orbit in the CR3BP 

are introduced.      

2.1. The Circular Restricted Three-Body (CR3BP) Problem  

The CR3BP governs the motion of a spacecraft under the gravitational influence of two 

larger primary bodies. While no close form, analytical solution has been found for this 

problem, the CR3BP provides valuable qualitative insights as well as numerical solutions 

for the spacecraft’s trajectory under the gravitational attraction of the primary bodies and 

the external maneuver forces applied by thrusters on-board the spacecraft.   

2.1.1. Assumptions  

The general 3BP concerns three masses that are gravitationally interacting with each 

other. Figure 1 shows the three masses in the inertial frame. There are three simplifying 

assumptions to the 3BP that allows the CR3BP. First, the mass of the particle of interest 

𝑃3, that is  𝑚3, is negligible compared to the two primary bodies  𝑃1 and  𝑃2, that is  𝑚1 and  

𝑚2, respectively. This means that the motion of the spacecraft does not influence the motion 
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of either  𝑃1 or  𝑃2. Moreover, the two primaries represent a two-body system, hence the 

movement of  𝑃1 and 𝑃2 is planner. Lastly, 𝑃1 and 𝑃2 move in a circular orbit, with a 

constant angular velocity equal to the mean motion of the two primaries.   

 

Figure 2.1. General Three-Body Problem 

In this research effort, the dynamical system under investigation is the Sun-Earth/Moon 

system. In this system the larger primary (P1) is the Sun, and the smaller primary (P2) is 

the Earth-Moon barycenter.  

2.1.2. Geometry 

To formulate the mathematical expression for the motion of the spacecraft it is 

necessary to define two reference frames. The first reference frame is the inertially-fixed 

coordinate frame, I, located at the barycenter of the Sun and Earth/Moon system (B). This 

frame has unit vectors defined as �̂� − �̂� − �̂�, where the �̂� axis is parallel to the angular 

momentum vector of the two primaries. The second reference frame is the rotating frame, 

R, also located at B, with unit vectors �̂� − �̂� − �̂�. In this frame the �̂� axis is also parallel to 
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the angular momentum vector of the primaries. The �̂� axis connects the two primaries and 

is directed from the larger primary toward the smaller primary. The geometry of these two 

frames is illustrated in figure 2.2. The position of the spacecraft is described by vector 𝑟, 

and the positions of the two primaries is defined by vectors 𝑟1 and 𝑟2, respectively. The 

relative position vectors 𝑑1 and 𝑑2 describe the position of the spacecraft relative to the 

two primaries 𝑃1 and 𝑃2, respectively. Moreover, the rotating frame is oriented relative to 

the inertial frame with angle 𝜃 which has an angular velocity 𝜔. This angular velocity is 

equivalent to the mean motion of the Sun-Earth/Moon system given by:  

 
𝜔 = √𝐺(𝑚1 + 𝑚2)/𝑟12

3    
(2.4) 

Where G is the gravitational constant, and 𝑟12 = 𝑟1 + 𝑟2.  

 

Figure 2.2. Geometry of the Circular Restricted Three-Body Problem (CR3BP) 
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2.1.3. Equations of Motion 

The differential equations in the circular restricted three-body problem are the 

mathematical expressions describing the motion of the infinitesimal mass 𝑃3 or the 

spacecraft. The most dominant forces acting on the spacecraft are the gravitational forces 

exerted from the two primaries. Given the Newton's Law of Gravity, these forces can be 

represented in the following form, 

 
𝑓1 = −

𝐺𝑚1

𝑑1
3 𝑑1 

(2.2) 

 
𝑓2 = −

𝐺𝑚2

𝑑2
3 𝑑2 

(2.3) 

From Newton's Second Law, the general expression for motion of the spacecraft can be 

written as, 

 
�̈� =

𝑑2

𝑑𝑡2  𝑟 
𝐼

= ∑𝑓 =  𝑓1 + 𝑓2 = −
𝐺𝑚1

𝑑1
3 𝑑1 −

𝐺𝑚2

𝑑2
3 𝑑2   

(2.4) 

To simplify and generalize the solution of this equation, it is useful to non-dimensionalize 

the system of equations by employing quantities that are characteristic of the system. The 

characteristic quantities are chosen based on the three most basic dimensions which are 

length, mass and time. The choice of these three parameters, will result in characteristic 

quantities that are either constant or would cause other values to become constant. 

The characteristic length is defined to be the distance between the two primaries. This 

distance is constant as the primaries are in circular motion about their barycenter. Therefore 

the characteristic length is written as,   

 𝐿∗ = 𝑟1 + 𝑟2 (2.5) 

The characteristic mass is evaluated as the sum of the mass of the two primaries, that is, 
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 𝑀∗ = 𝑚1 + 𝑚2 (2.6) 

Lastly, the characteristic time, 𝜏∗, is defined such that the non-dimensional gravitational 

constant, �̃�, is unity. This is done by noting that 𝐺 has units of 𝑘𝑚3/𝑘𝑔𝑠2. Therefore, the 

non-dimensional gravitational constant, �̃�, should be,      

 
�̃� = 1 =

𝐺𝑀∗𝜏∗2

𝐿∗3  
(2.7) 

This yields that the characteristic time is formulated as,  

 
𝜏∗ = √

𝐿∗3

𝐺𝑀∗
 

(2.8) 

From the choice of the characteristic mass, length and time, it also follows that the non-

dimensional mean motion is equal to unity. Based on a conic definition, the dimensional 

mean motion is given by,  

 

𝑛 = √
𝐺𝑀∗

𝐿∗3   

(2.9) 

Using the characteristic time, 𝜏∗, it follows that the non-dimensional mean motion, 𝑁∗, is 

written as,  

 
𝑁∗  =  𝑛𝜏∗ = √𝐺𝑀∗/𝐿∗3 𝜏∗ = 1 

(2.10) 

As a consequence of a unity non-dimensional mean motion, the non-dimensional orbital 

period associated with the motion of the two primaries about their barycenter is 2𝜋 in non-

dimensional time units. By incorporating the characteristic quantities into equation (2.4), 

the non-dimensional equations of motion is written as follows,  
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�̈⃗� =

𝑑2

𝑑𝜏∗2  �⃗� 
𝐼

= −
(1− 𝜇)

𝑑1̅̅̅̅ 3 𝑑1
̅̅ ̅⃗⃗⃗⃗⃗  −

𝜇

𝑑2̅̅̅̅ 3 𝑑2
̅̅ ̅⃗⃗⃗⃗⃗   

(2.11) 

Where �⃗� =
𝑟

𝐿∗ is the non-dimensional position vector of the spacecraft, 𝑑1
̅̅ ̅ =

𝑑1

𝐿∗  ,  𝑑2
̅̅ ̅ =

𝑑2

𝐿∗  

, 𝜇 =
𝑚2

𝑀∗ , and 1 − 𝜇 =
𝑚1

𝑀∗.  

Much insight into the motion of the spacecraft is obtained by expressing the vector 

equations of motion, given in (2.11), in the scalar form. The position vector of the 

spacecraft in terms of non-dimensional components in the rotating frame is given by, 

 �⃗� = 𝑥�̂� + 𝑦�̂� + 𝑧�̂� (2.12) 

The acceleration of the spacecraft in non-dimensional units is derived using the basic 

kinematic equations, as the time derivative of the position vector is taken in the rotating 

frame R with respect to the inertial frame I. Hence, the velocity of the spacecraft in the 

rotating frame is obtained as follows, 

 𝑑

𝑑𝜏∗
 �⃗�

𝐼

= 
𝑑

𝑑𝜏∗
 �⃗� 

𝑅

+ �⃑⃗⃗�𝐼 𝑅 × �⃗� 
(2.13) 

Where 
𝑑

𝑑𝜏∗

𝐼

 is the derivative with respect to non-dimensional time 𝜏∗, as viewed by an 

inertial observer and expressed in terms of rotating frame coordinates. 
𝑑

𝑑𝜏∗

𝑅

 is the time 

derivative as viewed by an observer in the rotating frame. �⃑⃗⃗�𝐼 𝑅 is the angular acceleration 

of the rotating frame with respect to the inertial frame and is given by,   

 �⃗⃗⃗�𝐼 𝑅 = 𝑁∗�̂� =  �̂� (2.14) 

By substituting for ρ⃗⃑  and ω⃑⃗⃗I R into equation (2.13), the velocity of the spacecraft expressed 

in the rotating frame with respect to an inertial observer is as follows,    
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 𝑑

𝑑𝑡
 �⃗� 

𝐼

= �̇⃗� = (�̇� − 𝑦)�̂� + (�̇� − 𝑥)�̂� + (�̇�)�̂� 
(2.15) 

Next, the kinematic expansion for the inertial acceleration is written as,  

 𝑑

𝑑𝑡
 �̇⃗� 

𝐼

= 
𝑑

𝑑𝑡
 �̇⃗� 

𝑅

+ �⃗⃗⃗�𝐼 𝑅 × �̇⃗� 
(2.16) 

By substituting for �⃗�  and �⃗⃗⃗�𝐼 𝑅 into equation (2.15), the acceleration of the spacecraft 

expressed in the rotating frame with respect to an inertial observer is as follows,    

 �̈⃗� = (�̈� −  2�̇� − 𝑥)�̂� + (�̈� +  2�̇� − 𝑦)�̂� + �̈��̂� (2.17) 

Next, the non-dimensionalized positions of the primaries with respect to the barycenter are,  

 
�⃗�1 =

𝑟1
𝐿∗

= −
𝑚2

𝑚1 + 𝑚2
𝑥 = −𝜇�̂� 

(2.18) 

 
�⃗�2 =

𝑟2
𝐿∗

=
𝑚1

𝑚1 + 𝑚2
�̂� = (1 − 𝜇)�̂� 

(2.19) 

Hence, the non-dimensionalized position vectors of the spacecraft with respect to the 

primary bodies are written as, 

 𝑑1
̅̅ ̅⃗⃗⃗⃗⃗ = �⃗� − �⃗�1 =  (𝑥 + 𝜇)�̂� + 𝑦�̂� + 𝑧�̂� (2.20) 

 𝑑2
̅̅ ̅⃗⃗⃗⃗⃗ = �⃗� − �⃗�2 =  (𝑥 − (1 − 𝜇))�̂� + 𝑦�̂� + 𝑧�̂� (2.21) 
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By substituting equations (2.17), (2.20), and (2.21) into equation (2.11), the scalar from of 

the second order differential equations of motion for an infinitesimal mass in the CR3BP 

is given by: 

 
�̈� −  2�̇� − 𝑥 =  −

(1 − 𝜇)(𝑥 + 𝜇)

𝑑1
̅̅ ̅3 −

𝜇(𝑥 − (1 − 𝜇))

𝑑2
̅̅ ̅3     

(2.22) 

 
�̈� +  2�̇� − 𝑦 =  −

(1 − 𝜇)𝑦

𝑑1
̅̅ ̅3 −

𝜇𝑦

𝑑2
̅̅ ̅3    

(2.23) 

 
�̈� =  −

(1 − 𝜇)𝑧

𝑑1
̅̅ ̅3 −

𝜇𝑧

𝑑2
̅̅ ̅3    

(2.24) 

Where  𝑑1
̅̅ ̅ =  √(𝑥 + 𝜇)2 + 𝑦2  + 𝑧2  and 𝑑2

̅̅ ̅ =  √(𝑥 − (1 − 𝜇))
2
+ 𝑦2 + 𝑧2.  

A pseudo-potential function, 𝑈∗, is introduced that allows a more compact formulation 

of the equations of motion,  

 
𝑈∗ =

1 − 𝜇

𝑑1
̅̅ ̅

+
𝜇

𝑑2
̅̅ ̅

+
1

2
(𝑥2 + 𝑦2) 

(2.25) 

Therefore, the equations of motion given in (2.22), (2.23), and (2.23) can be written more 

concisely as,  

 
�̈� −  2�̇� =

𝜕𝑈∗

𝜕𝑥
     

(2.26) 

 
�̈� +  2�̇� =  

𝜕𝑈∗

𝜕𝑦
    

(2.27) 

 
�̈� =  

𝜕𝑈∗

𝜕𝑧
    

(2.28) 
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Equations (2.26), (2.27), and (2.28) comprise the equations of motion of a spacecraft in the 

CR3BP described in terms of rotating coordinates relative to barycenter of the primary 

bodies. These equations do not possess a close form analytical solution, however particular 

solutions can be determined.    

2.1.4. Libration Points 

The libration points are the equilibrium solutions to the equations of motion given in 

(2.26)-(2.28). These are in fact the equilibrium points of the CR3BP within the context of 

the rotating reference frame. These libration points are invariant solutions to the equations 

of motion, as they will appear constant relative to the rotating reference frame. Therefore, 

at the libration points the velocity and acceleration of the spacecraft is zero. The following 

equations govern the locations of the equilibrium points in the CR3BP,  

 

𝑥𝑒𝑞 −
(1 − 𝜇)(𝑥𝑒𝑞 + 𝜇)

𝑑1𝑒𝑞
̅̅ ̅̅ ̅3 −

𝜇 (𝑥𝑒𝑞 − (1 − 𝜇))

𝑑2𝑒𝑢
̅̅ ̅̅ ̅̅ 3  = 0   

(2.29) 

 
𝑦𝑒𝑞 −

(1 − 𝜇)𝑦𝑒𝑞

𝑑1𝑒𝑞
̅̅ ̅̅ ̅3 −

𝜇𝑦𝑒𝑞

𝑑2𝑒𝑞
̅̅ ̅̅ ̅̅ 3  = 0 

(2.30) 

 
−

(1 − 𝜇)𝑧𝑒𝑞

𝑑1𝑒𝑞
̅̅ ̅̅ ̅3 −

𝜇𝑧𝑒𝑞

𝑑2𝑒𝑞
̅̅ ̅̅ ̅̅ 3  = 0   

(2.31) 

Where 𝑥𝑒𝑞 , 𝑦𝑒𝑞 , and 𝑧𝑒𝑞 correspond to the position coordinates of the equilibrium 

points.  The solution to equation (2.31) is 𝑧𝑒𝑞 = 0, which indicates that all the equilibrium 

points lie in the plane of motion of the two primaries.  By inspection, two sets of solutions 

exist for equation (2.30): 𝑦𝑒𝑞 = 0, and 𝑦𝑒𝑞 = ±
√3

2
 (when  𝑑1𝑒𝑞

̅̅ ̅̅ ̅ =   𝑑2𝑒𝑞
̅̅ ̅̅ ̅̅ ). These two sets of 

solutions correspond to the collinear libration points and the triangular libration points, 

respectively.   
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Starting with the collinear solution, by substituting 𝑦𝑒𝑞 = 𝑧𝑒𝑞 = 0 into equation (2.29), 

the following equation is produced which governs the solution for 𝑥𝑒𝑞,  

 

𝑥𝑒𝑞 −
(1 − 𝜇)(𝑥𝑒𝑞 + 𝜇)

|𝑥𝑒𝑞 + 𝜇|3
−

𝜇 (𝑥𝑒𝑞 − (1 − 𝜇))

|𝑥𝑒𝑞 − 1 + 𝜇|3
 = 0   

(2.32) 

This non-linear quintic equation possesses three real solutions, which can be solved 

iteratively using a Newton-Raphson’s method. These three solutions are the three collinear 

libration points in the CR3BP, denoted as 𝐿1, 𝐿2, and 𝐿3. By conviction, 𝐿1 is located 

between the two primaries, 𝐿2 is located to the right of 𝑃2, and 𝐿3 is located to the left of 

𝑃1.  

The triangular libration points are found by setting 𝑑1𝑒𝑞
 ̅̅ ̅̅ ̅̅ =  𝑑2𝑒𝑞

̅̅ ̅̅ ̅̅  in equation (2.29) and 

(2.30). The coordinates for these points are given by 𝑥𝑒𝑞 =
1

2
− 𝜇, and 𝑦𝑒𝑞 = ±

√3

2
. These 

two point, which are conventionally named 𝐿4 and 𝐿5, form equilateral triangles with the 

two primaries. Figure 1.3 illustrates the locations of the libration points with respect to the 

primaries. 

2.2. Computation of Periodic Halo Libration Point Orbits  

In the CR3BP infinitely many periodic solutions exist. These periodic trajectories are 

important tools in understanding the dynamical environment since the equations of motion 

in the CR3BP do not possess a closed form analytical solution.  Halo orbits are one type of 

periodic orbits which are of particular interest due to their three-dimensional and 

symmetric trajectories that can facilitate a variety of space applications such as space 

observatory and the Geostorm warning mission as well as space platforms for 

communication networks. In this study, halo orbits will be used as baseline trajectories for 

station-keeping.    
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Figure 2.3. Libration Points in the CR3BP 

There are many different methods available for computation of periodic halo orbits. 

The technique used in this work is based on a numerical targeting scheme which utilizes 

differential corrections. This algorithm was originally developed by Breakwell, and Brown 

[10], and was later expanded by Farquhar [23] and Howell [24].      

2.2.1. Linearized Variational Equations of Motion 

Targeting schemes are frequently based on the linearized variational equations relative 

to a reference trajectory in the non-linear system. A first order Taylor series approximation 

of the non-linear equations of motion (in (2.26)-(2.28)) about a reference trajectory results 

in the linear variational equations of motion as follows,  
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 𝛿�̇⃗�(𝑡) =  𝐴(𝑡)𝛿�⃗�(𝑡) (2.33) 

Where 𝛿�⃗�(𝑡) = �⃗�(𝑡) −  �⃗�𝑟𝑒𝑓(𝑡) = [𝛿𝑥 𝛿𝑦 𝛿𝑧 𝛿�̇� 𝛿�̇� 𝛿�̇�]
𝑇
, denotes the state error vector 

relative to a reference trajectory �⃗�𝑟𝑒𝑓(𝑡). In this study, the reference trajectory is a periodic 

halo orbit. Therefore 𝐴(𝑡) is a time-varying matrix which is expressed as,  

 

𝐴(𝑡) =  

[
 
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

𝑈𝑥𝑥
∗ 𝑈𝑥𝑦

∗ 𝑈𝑥𝑧
∗ 0 2 0

𝑈𝑦𝑥
∗ 𝑈𝑦𝑦

∗ 𝑈𝑦𝑧
∗ −2 0 0

𝑈𝑧𝑥
∗ 𝑈𝑧𝑦

∗ 𝑈𝑧𝑧
∗ 0 0 0]

 
 
 
 
 
 

=  [
0 𝐼

𝑈𝑅𝑅
∗ 2𝐾

] 

 

 

(2.34) 

Where 𝐾 = [
0 1 0

−1 0 0
0 0 0

], 𝑈𝑅𝑅
∗ = [

𝑈𝑥𝑥
∗ 𝑈𝑥𝑦

∗ 𝑈∗
𝑥𝑧

𝑈𝑥𝑦
∗ 𝑈𝑦𝑦

∗ 𝑈∗
𝑦𝑧

𝑈𝑥𝑧
∗ 𝑈𝑦𝑧

∗ 𝑈𝑧𝑧
∗

], and 𝑈𝑚𝑛
∗ =

𝜕

𝜕𝑚
(
𝜕𝑈∗(𝑡)

𝜕𝑛
).  

The general solution to the linear variational equation in (2.33), is given by 𝛷(𝑡, 𝑡0), 

the State Transition Matrix (STM),   

 𝛿�⃗�(𝑡) = 𝛷(𝑡, 𝑡0) 𝛿�⃗�(𝑡0) (2.35) 

Where 𝛷(𝑡, 𝑡0) has the following form,  

 

𝛷(𝑡, 𝑡0) =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑥(𝑡)

𝜕𝑥(𝑡0)

𝜕𝑥(𝑡)

𝜕𝑦(𝑡0)

𝜕𝑥(𝑡)

𝜕𝑧(𝑡0)

𝜕𝑥(𝑡)

𝜕�̇�(𝑡0)

𝜕𝑥(𝑡)

𝜕�̇�(𝑡0)

𝜕𝑥(𝑡)

𝜕�̇�(𝑡0)

𝜕𝑥(𝑡)

𝜕𝑦(𝑡0)

𝜕𝑥(𝑡)

𝜕𝑦(𝑡0)

𝜕𝑥(𝑡)

𝜕𝑧(𝑡0)

𝜕𝑥(𝑡)

𝜕�̇�(𝑡0)

𝜕𝑥(𝑡)

𝜕�̇�(𝑡0)

𝜕𝑥(𝑡)

𝜕�̇�(𝑡0)

𝜕𝑥(𝑡)

𝜕𝑧(𝑡0)

𝜕𝑥(𝑡)

𝜕𝑦(𝑡0)

𝜕𝑥(𝑡)

𝜕𝑧(𝑡0)

𝜕𝑥(𝑡)

𝜕�̇�(𝑡0)

𝜕𝑥(𝑡)

𝜕�̇�(𝑡0)

𝜕𝑥(𝑡)

𝜕�̇�(𝑡0)

𝜕�̇�(𝑡)

𝜕𝑥(𝑡0)

𝜕�̇�(𝑡)

𝜕𝑦(𝑡0)

𝜕�̇�(𝑡)

𝜕𝑧(𝑡0)

𝜕�̇�(𝑡)

𝜕�̇�(𝑡0)

𝜕�̇�(𝑡)

𝜕�̇�(𝑡0)

𝜕�̇�(𝑡)

𝜕�̇�(𝑡0)

𝜕�̇�(𝑡)

𝜕𝑥(𝑡0)

𝜕�̇�(𝑡)

𝜕𝑦(𝑡0)

𝜕�̇�(𝑡)

𝜕𝑧(𝑡0)

𝜕�̇�(𝑡)

𝜕�̇�(𝑡0)

𝜕�̇�(𝑡)

𝜕�̇�(𝑡0)

𝜕�̇�(𝑡)

𝜕�̇�(𝑡0)

𝜕�̇�(𝑡)

𝜕𝑥(𝑡0)

𝜕�̇�(𝑡)

𝜕𝑦(𝑡0)

𝜕�̇�(𝑡)

𝜕𝑧(𝑡0)

𝜕�̇�(𝑡)

𝜕�̇�(𝑡0)

𝜕�̇�(𝑡)

𝜕�̇�(𝑡0)

𝜕�̇�(𝑡)

𝜕�̇�(𝑡0)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(2.36) 
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Evident from equation (2.35), STM offers a linear predication for the variation of the final 

state at time 𝑡, i.e. 𝛿�⃗�(𝑡), under the impact of an initial perturbation from the reference 

path, i.e. 𝛿�⃗�(𝑡0). By substituting 𝛷(𝑡, 𝑡0) into equation (2.33), the following differential 

equation is derived,  

 �̇�(𝑡, 𝑡0) = 𝐴(𝑡)𝛷(𝑡, 𝑡0) (2.37) 

With the initial condition,  

 𝛷(𝑡0, 𝑡0) = 𝐼6×6 (2.38) 

The STM can be solved numerically by simultaneously integrating equation (2.37) with 

the equations of motion in (2.26)-(2.28), which would result in integration of a total of 42 

differential equations.   

2.2.2. Differential Corrections Algorithm for Halo Orbits 

Halo orbits in the CR3BP are symmetric about the �̂� − �̂� plane, which means that they 

cross the �̂� − �̂� plane perpendicularly such that the velocity components at the crossings in 

the �̂� and �̂� directions are zero. This natural feature of the halo orbits can be utilized to 

formulate a differential corrections process. First, an initial guess, �⃗�(𝑡0), for the differential 

corrections algorithm needs to be chosen. This initial guess will be located in the �̂� − �̂� 

plane, and has an initial velocity perpendicular to the �̂� − �̂� plane. Therefore, �⃗�(𝑡0) may 

take the following form,  

 �⃗�(𝑡0) = [𝑥0 0 𝑧0 0 �̇�0 0]𝑇 (2.39) 

In general, if the initial guess in (2.39) is propagated forward in time, it may not create a 

second perpendicular crossing in the �̂� − �̂� plane. Therefore a differential corrections 
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algorithm needs to be employed to vary the initial guess such that the second �̂� − �̂� crossing 

also becomes perpendicular. 

The variational equations of motion given in (2.35) approximate state variations over a 

fixed time interval. These equations can be augmented to incorporate time variations as 

well,  

 𝛿�⃗�(𝑡𝑓) = 𝛷(𝑡𝑓, 𝑡0) 𝛿�⃗�(𝑡0) + �̇⃗�(𝑡)𝛿𝑡  (2.40) 

Where 𝑡𝑓 is half the orbital period when the �̂� − �̂� perpendicular crossing occurs. Next, the 

variational equations in (2.40) can be written in scalar form as follows,  

 𝛿𝑥𝑓 = 𝜙11𝛿𝑥0 + 𝜙12𝛿𝑦0 + 𝜙13𝛿𝑧0 + 𝜙14𝛿�̇�0 + 𝜙15𝛿�̇�0 + 𝜙16𝛿�̇�0 + �̇�𝛿𝑡 (2.41) 

 𝛿𝑦𝑓 = 𝜙21𝛿𝑥0 + 𝜙22𝛿𝑦0 + 𝜙23𝛿𝑧0 + 𝜙24𝛿�̇�0 + 𝜙25𝛿�̇�0 + 𝜙26𝛿�̇�0 + �̇�𝛿𝑡 (2.42) 

 𝛿𝑧𝑓 = 𝜙31𝛿𝑥0 + 𝜙32𝛿𝑦0 + 𝜙33𝛿𝑧0 + 𝜙34𝛿�̇�0 + 𝜙35𝛿�̇�0 + 𝜙36𝛿�̇�0 + �̇�𝛿𝑡 (2.43) 

 𝛿�̇�𝑓 = 𝜙41𝛿𝑥0 + 𝜙42𝛿𝑦0 + 𝜙43𝛿𝑧0 + 𝜙44𝛿�̇�0 + 𝜙45𝛿�̇�0 + 𝜙46𝛿�̇�0 + �̈�𝛿𝑡 (2.44) 

 𝛿�̇�𝑓 = 𝜙51𝛿𝑥0 + 𝜙52𝛿𝑦0 + 𝜙53𝛿𝑧0 + 𝜙54𝛿�̇�0 + 𝜙55𝛿�̇�0 + 𝜙56𝛿�̇�0 + �̈�𝛿𝑡 (2.45) 

 𝛿�̇�𝑓 = 𝜙61𝛿𝑥0 + 𝜙62𝛿𝑦0 + 𝜙63𝛿𝑧0 + 𝜙64𝛿�̇�0 + 𝜙65𝛿�̇�0 + 𝜙66𝛿�̇�0 + �̈�𝛿𝑡 (2.46) 

A differential corrections algorithm can be formulated by either fixing 𝑥0, or 𝑧0. If it is 

desired to fix 𝑥0, then 𝛿𝑥0 =  𝛿𝑥𝑓 = 0 in (2.41)-(2.42). Hence, the scalar variational 

equations can be written as,  

 0 = 𝜙23𝛿𝑧0 + 𝜙25𝛿�̇�0 + �̇�𝛿𝑡 (2.47) 

 𝛿�̇�𝑓 = 𝜙43𝛿𝑧0 + 𝜙45𝛿�̇�0 + �̈�𝛿𝑡 (2.48) 

 𝛿�̇�𝑓 = 𝜙63𝛿𝑧0 + 𝜙65𝛿�̇�0 + �̈�𝛿𝑡 (2.49) 

From (2.47), 𝛿𝑡 can be express as,   
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𝛿𝑡 = −

1

�̇�
[𝜙23𝛿𝑧0 + 𝜙25𝛿�̇�0] 

(2.50) 

By plugging equation (2.50) into equations (2.48) and (2.49), they can be written in matrix 

form as follows,  

 
[
𝛿�̇�𝑓

𝛿�̇�𝑓
] = [[

𝜙43 𝜙45

𝜙63 𝜙63
] −

1

�̇�
 [
�̈�
�̈�
]  [𝜙23 𝜙25]] [

𝛿𝑧0

𝛿�̇�0
] 

(2.51) 

Therefore, the differential corrections update equation for a symmetric periodic halo orbit 

with a fixed 𝑥0 is given by:  

 

[
𝛿𝑧0

𝛿�̇�0
] = [[

𝜙43 𝜙45

𝜙63 𝜙63
] −

1

�̇�
 [
�̈�
�̈�
]  [𝜙23 𝜙25]]

−1

[
𝛿�̇�𝑓

𝛿�̇�𝑓
] 

(2.52) 

By using equation (2.52) and (2.50), the initial states 𝑧0, �̇�0, and half the orbital period 𝑡𝑓 

are updated iteratively until  𝛿�̇�𝑓 < 𝜖 and 𝛿�̇�𝑓 < 𝜖, where 𝜖 is a small numerical tolerance  

Alternatively, if it is desired to fix 𝑧0, then 𝛿𝑧0 =  𝛿𝑧𝑓 = 0 in (2.41)-(2.42). Hence, the 

scalar variational equations can be written as,  

 0 = 𝜙21𝛿𝑥0 + 𝜙25𝛿�̇�0 + �̇�𝛿𝑡 (2.53) 

 𝛿�̇�𝑓 = 𝜙41𝛿𝑥0 + 𝜙45𝛿�̇�0 + �̈�𝛿𝑡 (2.54) 

 𝛿�̇�𝑓 = 𝜙61𝛿𝑥0 + 𝜙65𝛿�̇�0 + �̈�𝛿𝑡 (2.55) 

From (2.53), 𝛿𝑡 can be express as,   

 
𝛿𝑡 = −

1

�̇�
[𝜙21𝛿𝑥0 + 𝜙25𝛿�̇�0] 

(2.56) 
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By plugging equation (2.56) into equations (2.54) and (2.55), they can be written in matrix 

form as follows,  

 
[
𝛿�̇�𝑓

𝛿�̇�𝑓
] = [[

𝜙41 𝜙45

𝜙61 𝜙63
] −

1

�̇�
 [
�̈�
�̈�
]  [𝜙21 𝜙25]] [

𝛿𝑥0

𝛿�̇�0
] 

(2.57) 

Therefore, the differential corrections update equation for a symmetric periodic halo orbit 

with a fixed 𝑧0 is given by:  

 

[
𝛿𝑥0

𝛿�̇�0
] = [[

𝜙41 𝜙45

𝜙61 𝜙63
] −

1

�̇�
 [
�̈�
�̈�
]  [𝜙21 𝜙25]]

−1

[
𝛿�̇�𝑓

𝛿�̇�𝑓
] 

(2.58) 

By using equation (2.58) and (2.56), the initial states 𝑥0, �̇�0 and half the orbital period 𝑡𝑓 

are updated iteratively until  𝛿�̇�𝑓 < 𝜖 and 𝛿�̇�𝑓 < 𝜖. A full periodic halo orbit can then be 

obtained by propagating the corrected initial guess over the period 𝑇 = 2𝑡𝑓.  

2.2.3. Numerical Example: 𝐿1 and 𝐿2 Halo Families  

By using the differential corrections algorithms developed in the previous section, a 

single periodic halo orbit can be generated from a given initial condition. To create a family 

of halo orbits, a continuation scheme needs to be employed to predict an initial guess for 

the next orbit in the family. For the fixed 𝑥0 differential corrections scheme in (2.52), the 

initial guess for the neighbouring halo orbit is obtained by, 

 

[
 
 
 
 
 
𝑥0

𝑦0

𝑧0

�̇�0

�̇�0

�̇�0]
 
 
 
 
 
𝑛+1

= 

[
 
 
 
 
 
𝑥0

𝑦0

𝑧0

�̇�0

�̇�0

�̇�0]
 
 
 
 
 
𝑛

+ 

[
 
 
 
 
 
Δ𝑥0

0
0
0
0
0 ]

 
 
 
 
 

 

(2.59) 
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Where [𝑥0 𝑦0 𝑧0 �̇�0 �̇�0 �̇�0]
𝑛𝑇

is the initial condition from a previously converged orbit, and 

Δ𝑥0 is a step size. This continuation scheme is also denoted as a single parameter 

continuation scheme since only one of the states is updated to predict the next initial guess. 

This initial guess is then corrected using the differential corrections algorithm in (2.52) to 

generate the next halo orbit in the family. Alternatively, for the fixed 𝑧0 differential 

corrections scheme in (2.58), the initial guess for the neighbouring halo orbit is obtained 

by, 

 

[
 
 
 
 
 
𝑥0

𝑦0

𝑧0

�̇�0

�̇�0

�̇�0]
 
 
 
 
 
𝑛+1

= 

[
 
 
 
 
 
𝑥0

𝑦0

𝑧0

�̇�0

�̇�0

�̇�0]
 
 
 
 
 
𝑛

+ 

[
 
 
 
 
 

0
0

Δ𝑧0

0
0
0 ]

 
 
 
 
 

 

(2.60) 

Next, a methodology needs to be established to choose a suitable correction and 

continuation scheme from either the fixed 𝑥0 or the fixed 𝑧0 schemes. This methodology 

is based on the fact that the developed differential corrections algorithms are essentially 

multi-dimensional sloped based, Newton-Raphson schemes. Therefore, in regions where 

𝑥0 is changing more rapidly than 𝑧0, i.e.,  

 |𝑥0
𝑛+1 − 𝑥0

𝑛| >  |𝑧0
𝑛+1 − 𝑧0

𝑛| (2.61) 

a fixed 𝑥0 correction and continuation scheme should be used to avoid running into a 

singularity. When (2.61) fails to be true, that is when 𝑧0 is changing more rapidly than 𝑥0, 

the correction and continuation scheme is then switched to a fixed 𝑧0 scheme. Figure 2.4 

illustrates the generated 𝐿1 and 𝐿2 halo families in the Sun-Earth/Moon system. As can be 

seen in figure 2.4, members of each family come in pairs that are reflection of each other 

relative to the �̂� − �̂� plane. Those member with the maximum out-of-plane excursion 

above the �̂� − �̂� plane are known as the “northern” halo orbits, and those orbit with 

maximum out-of-plane excursion below the �̂� − �̂� plane are known as the “southern” halo 

orbit 
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Figure 2.4. 𝐿1 and 𝐿2 Halo Families in the Sun-Earth/Moon 
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2.3. Global Invariant Manifolds  

The dynamical flow of the phase space in the vicinity of a periodic orbit in the CR3BP 

can be characterized by unique sets of trajectories, known as the invariant manifolds. The 

trajectories on an invariant manifold create surfaces that share similar stability properties. 

These surfaces are invariant in the six-dimensional phase space in a sense that a trajectory 

on an invariant manifold must remain on that manifold for all past and future times. In 

general, three types of invariant manifolds exist in the vicinity of a periodic orbit: stable, 

unstable, and center manifolds.  

2.3.1. Stable and Unstable Manifolds  

Stable and unstable manifolds are formally defined for a fixed point in a 

diffeomorphism. A diffeomorphism is a ono-to-one and on-to map which is both invertible 

and differentiable. A fixed point or invariant point is defined as a point �⃗�∗ that repeatedly 

maps on to itself. Therefore a periodic orbit is a fixed point under a diffeomorphism. Stable 

and unstable manifolds for a fixed point �⃗�∗ are defined as follows [26],   

Definition 2.1. The local stable manifold 𝑊𝑙𝑜𝑐
𝑆  of a fixed point �⃗�∗ is the set of all �⃗� in the 

neighborhood of �⃗�∗that approaches �⃗�∗ as 𝑗 → ∞.  

Definition 2.2. The local unstable manifold 𝑊𝑙𝑜𝑐
𝑈  of a fixed point �⃗�∗ is the set of all �⃗� in 

the neighborhood of �⃗�∗that departs �⃗�∗ as 𝑗 → ∞.  

In definitions 2.1 and 2.2, 𝑗 indicates the number of iterations on the map. The global stable 

manifold 𝑊𝑆 associated with the local stable manifold 𝑊𝑙𝑜𝑐
𝑆  is obtained by propagating 

points in 𝑊𝑙𝑜𝑐
𝑆  forward in time. Similarly, the global unstable manifold 𝑊𝑈 is obtained by 

propagating points in 𝑊𝑙𝑜𝑐
𝑈  backward in time.  

A relationship exists between the local invariant manifolds and the subspace of the 

monodramy matrix. This relationship can be exploited to numerically approximate and 

determine the invariant manifolds around a periodic orbit. In general, the eigenspace of the 
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monodromy matrix is expressed as follows. The eigenvalues and the associated 

eigenvectors of the monodromy matrix are denoted as 𝜖𝑖 and �⃗�𝑖, respectively. Let 𝑛𝑆 be the 

number of stable eigenvalues 𝜖𝑆,𝑖 with ||𝜖𝑆,𝑖|| < 1, 𝑛𝑈 be the number of unstable 

eigenvalues 𝜖𝑈,𝑖 with ||𝜖𝑈,𝑖|| > 1, 𝑛𝐶 be the number of center eigenvalues 𝜖𝐶,𝑖 with 

||𝜖𝐶,𝑖|| = 1, and, �⃗�𝑆,𝑖, �⃗�𝑈,𝑖, �⃗�𝐶,𝑖 be the associated eigenvectors. Then, the subspaces of the 

monodromy matrix are defined as,     

 𝐸𝑆 = 𝑠𝑝𝑎𝑛{�⃗�𝑆,𝑖}𝑖=1

𝑛𝑆
 (2.62) 

 𝐸𝑈 = 𝑠𝑝𝑎𝑛{�⃗�𝑈,𝑖}𝑖=1

𝑛𝑈
 (2.63) 

 𝐸𝐶 = 𝑠𝑝𝑎𝑛{�⃗�𝐶,𝑖}𝑖=1

𝑛𝐶
 (2.64) 

Where 𝐸𝑆, 𝐸𝑈, and 𝐸𝐶 are the stable, unstable, and center subspaces, respectively. For the 

halo orbits of interest in this study, 𝑛𝑆 and 𝑛𝑈 are equal to one, and 𝑛𝐶 is equal to four. 

From the four eigenvalues in the center subspace, two of them are exactly equal to one, 

and the remaining two are on the unitary circle and are complex conjugates of each other.    

Next, according to the Stable Manifold Theorem [27], the local stable and unstable 

manifolds, 𝑊𝑙𝑜𝑐
𝑆  and 𝑊𝑙𝑜𝑐

𝑈 , are tangent to the stable and unstable subspaces, 𝐸𝑆 and 𝐸𝑈, at 

the fix point, and have the same dimensions 𝑛𝑆 and 𝑛𝑈.  In other words, 𝐸𝑆 and 𝐸𝑈 are 

local linear approximations for 𝑊𝑙𝑜𝑐
𝑆  and 𝑊𝑙𝑜𝑐

𝑈 , respectively. This relationship can be used 

to numerically approximate the local stable and unstable manifolds for any point along a 

periodic orbit by perturbing the states in the directions of the stable an unstable 

eigenvectors, �⃗�𝑆,𝑖 and �⃗�𝑈,𝑖.[28]. Additionally, stable and unstable manifolds are unique, 

meaning that a manifold does not intersects itself or another manifold of the same type 

[27]. Figure 2.5 shows the stable and unstable manifolds for a southern 𝐿1 halo orbit in the 

Sun-Earth/Moon system. The blue trajectories which are approaching the halo orbit are 

located on the stable manifold. The red trajectories which are departing from the halo orbit 

are located on the unstable manifold.   
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Figure 2.5. Stable and Unstable Manifolds around an 𝐿1 Halo Orbit 
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2.3.2. Center Manifold and Floquet Analysis   

The center manifold of a fixed point under a diffeomorphism is defined as follows,  

Definition 2.3. The local center manifold 𝑊𝑙𝑜𝑐
𝐶  of a fixed point �⃗�∗ is the set of all �⃗� in the 

neighborhood of �⃗�∗that neither approaches nor departs �⃗�∗ as 𝑗 → ∞, rather it stays in the 

bounded vicinity of �⃗�∗.  

Based on definition 2.3, the center manifold comprises bounded motions relative to the 

periodic orbit such as quasi-periodic solutions. Similar to the stable and unstable manifolds, 

the center manifold is also related to the subspace of the monodramy matrix. According to 

the Center Manifold Theorem [27], the local center manifold, 𝑊𝑙𝑜𝑐
𝐶 , is tangent to the center 

subspace, 𝐸𝐶, and have the same dimension 𝑛𝐶. However, the center manifold is not 

necessarily unique [27]. The global center manifold 𝑊𝐶 associated with the local stable 

manifold 𝑊𝑙𝑜𝑐
𝐶  is also obtained by propagating points in 𝑊𝑙𝑜𝑐

𝐶  forward or backward in time. 

The natural characteristic of the phase space near a periodic orbit can be further 

analyzed through Floquet theory [29]: 

Theorem 2.1. The fundamental solution matrix 𝜙(𝑡, 𝑡0) for the time varying T-periodic 

system (2.33) can be decomposed as follows,  

 𝛷(𝑡, 0) = 𝐸(𝑡)𝑒𝐽𝑡𝐸−1(0) (2.65) 

Where 𝐸(𝑡) is non-singular, differentiable, and T-periodic matrix.  𝐽 is a constant diagonal 

matrix. Furthermore, 𝐸(0) is the matrix of eigenvecotrs of the monodromy matrix, 𝛷(𝑇, 0). 

The matrix 𝐽 in equation (2.65) is related to the eigenvalues of the monodromy matrix 

as follows,  

 𝛷(𝑇, 0) = 𝐸(𝑇)𝑒𝐽𝑡𝐸−1(0) (2.66) 
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Since 𝐸(𝑡) is a T-periodic matrix, then 𝐸(𝑇) = 𝐸(0). Therefore, from (2.66), 𝐸(𝑇) 

contains the eigenvectors of the monodrmy matrix and 𝑒𝐽𝑡 contains the eigenvalues of the 

monodromy matrix. The diagonal entries of 𝐽 are known as the Poincare exponents and 

have a general complex form as 𝑒𝑗
∗ = 𝑎𝑗 + 𝑖𝑏𝑗. The eigenvalues of the monodromy matrix, 

𝜖𝑗, and the Poincare exponents,  𝑒𝑗
∗, are related as follows,   

 𝜖𝑗 = exp (𝑒𝑗
∗𝑇) (2.67) 

Therefore, the Poincare exponents provide stability information about the associated 

periodic orbit. This stability information is summarized in table 2.1, which also is also 

compared with the stability information provided by the eigenvalues of the monodromy 

matrix.  

Table 2.1. Stability Information Provided by the Poincare Exponents and the Eigenvalues of the 

Monodromy Matrix 

 Poincare Exponents 

𝑒𝑗
∗ = 𝑎𝑗 + 𝑖𝑏𝑗 

Eigenvalues of 𝛷(𝑇, 0) 

𝜖𝑗 = exp (𝑒𝑗
∗𝑇) 

Unstable  𝑎𝑗 > 0 ||𝜖𝑗|| > 1 

Stable   𝑎𝑗 < 0 ||𝜖𝑗|| < 1 

Center  𝑎𝑗 = 0 ||𝜖𝑗|| = 1 
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3. ORBITAL STATION-KEEPING SIMULATION ALGORITHM 

A numerical simulation algorithm is employed to compute the spacecraft’s trajectory under 

the influence of the Sun-Earth/Moon gravitational force model in the CR3BP. The 

simulation algorithm allows implementation of station-keeping control strategies that aim 

to maintain the motion of the spacecraft in the vicinity of a nominal trajectory. In this 

investigation the performances of orbital station-keeping control laws are examined under 

the impacts of the spacecraft’s operation errors and design constraints. This simulation 

algorithm also provides groundwork for implementation of additional perturbations such 

as the solar radiation pressure and additional attracting bodies for future investigations. In 

this chapter, the orbital station-keeping control problem is elaborated. The nominal orbit 

as well as mission design constraints and operation errors that are used for this investigation 

are introduced.    

3.1. Definition of the Orbital Station-Keeping Problem  

In general, libration point orbits are inherently unstable and without the presence of 

corrective maneuvers a spacecraft will diverge from the vicinity of such orbits. Other 

perturbations such as an initial orbital injection error, spacecraft’s state tracking errors and 

maneuver execution errors will result in a faster divergence of the spacecraft. 

Consequently, orbital station-keeping strategies must be implemented to maintain the 

spacecraft’s trajectory in the vicinity of a desired nominal path. In this study, the “vicinity” 

of the nominal trajectory is defined as a torus of 10,000 km around the reference path. The 

performances of station-keeping strategies are examined through a numerical simulation 

that computes the station-keeping’s fuel consumption, and the spacecraft’s trajectory in the 

gravitational environment of the CR3BP in the Sun-Earth/Moon system. As one of the 
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primary objectives of this investigation, for more realistic station-keeping simulations, 

perturbations caused by operation errors as well as maneuver restrictions caused by mission 

design constraints are included in the simulation algorithm. The details on the mission 

operation errors and design constraints are elaborated in section 3.3 and 3.4, respectively.  

3.2. Nominal Orbit  

For this investigation, the nominal orbit is selected to be an 𝐿1 halo orbit in the Sun-

Earth/Moon system. This orbit is similar to the nominal trajectory used in ISEE-3 and 

SOHO missions. Keeter [15] and Marchand [21] also studied similar trajectories in their 

investigation which would provide a reference point for comparison of station-keeping 

performance results. 𝐿1 halo orbits have extensive applications for solar observatories, 

space weather, and Geostorm warning missions. Out of plane excursion of these orbits also 

allows for a continuous communication between the spacecraft and the Earth. Figure 3.1 

illustrates the nominal halo orbit used in this investigation. This plot includes the three 

projections of the nominal trajectory in �̂� − �̂�, �̂� − �̂�, and �̂� − �̂� planes. This nominal orbit 

is one of the “southern” members of the 𝐿1 halo family as the majority of the trajectory is 

below the plane of primary motion. Additionally, the maximum out of plane excursion 

amplitude, 𝐴𝑧, for this orbit is approximately equal to 223,992 km and the period of this 

orbit is approximately 5 months and 27 days. For this investigation, the station-keeping 

duration is chosen to be 10 periods of the nominal trajectory which is approximately 5 

years.   

3.3. Mission Operation Errors 

Upon arrival to a target location in the nominal orbit a maneuver is executed to “inject” 

the spacecraft into the nominal trajectory. This orbital injection maneuver adjusts the 

position and velocity of the spacecraft to match those of the nominal orbit. However, errors  
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Figure 3.1. Nominal Orbit 

are expected to occur in the execution of this maneuver which would result in an imperfect 

orbital injection. In the simulation algorithm, orbital injection errors are mimicked by 

perturbing the spacecraft’s initial state on the nominal orbit through a random perturbation. 

In this study, a random orbital injection error in position and velocity with variances of 1 

km and 1 cm/s, respectively, is employed [15, 20].    

Spacecraft’s orbital tracking data, which are computed by Earth-based tracking stations, 

are also influenced by various sources of errors [15, 22]. Thus these errors must be included 

in the station-keeping simulation algorithm, and a successful station-keeping control 

strategy must operate effectively under these errors. Similar to injection errors, orbital 

tracking errors are introduced in the simulation algorithm through random 1-𝜎 error of 1 

km and 1 cm/s in position and velocity, respectively [15, 20].     

Another important source of operation errors comes from inaccuracies of the propulsion 

system that implements the corrective maneuvers. Due to these inaccuracies, thrusters on-

board a spacecraft cannot implement a precise corrective maneuver based on the command 
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of the control system. Therefore, an effective station-keeping control strategy must also be 

capable of handling such maneuver execution errors. To include these errors in the station-

keeping simulation algorithm, a calculated corrective maneuver is randomly perturbed by 

a 1-𝜎 error of 1% of the maneuver [20].  

3.4. Mission Design Constraints 

In each mission, there are certain design constraints that restrict the implementation of 

corrective maneuvers. One such constraint is regulated by the minimum time required to 

obtain accurate post-burn orbit determination data, and/or the minimum time requirement 

for scientific operations. This constraint restricts the time between two successive 

impulsive maneuvers, or in the case of a continuous controller, it restricts the time elapsed 

until the continuous controller could be updated. In this study, this minimum time interval 

is denoted as Δ𝑡𝑚𝑖𝑛, and its value is chosen to be 3 weeks which corresponds to the value 

of Δ𝑡𝑚𝑖𝑛 for the DSCOVR mission [19].   

Another design constraint is the minimum allowable maneuver magnitude that can be 

implemented by the on-board propulsion system. In the simulation algorithm, if the 

magnitude of the calculated maneuver is less than a certain threshold, then the applied 

maneuver is set to zero. For an impulsive thruster, the minimum allowable maneuver 

magnitude is characterized by |Δ�⃗⃗�|
𝑚𝑖𝑛

 which has a magnitude of 0.025 m/s, chosen based 

on ISEE-3 mission data [15]. For a continuous thruster, the minimum allowable maneuver 

magnitude is characterized by the minimum thrust level which has a magnitude of 0.3 mN. 

This minimum thrust level is chosen based on an RIT-10 ionic propulsion system, and 

assumes a total mass of 1000 kg for the spacecraft [18].  

The last constraint is based on the rate of change of the magnitude of spacecraft’s 

position error vector relative to the nominal orbit. To avoid implementation of an 

unnecessary corrective maneuver, the magnitude of position error must be increasing 

between successive orbit tracking intervals. In the simulation algorithm, a corrective 

maneuver will be implemented only if all three constraints are simultaneously satisfied.  
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3.5. Monte Carlo Simulation  

Since the simulated operation errors are random perturbations, station-keeping result 

from one trail does not have a high statistical significance as it represents only one outcome 

from infinitely many station-keeping outcomes. To have a more representative solution 

space, station-keeping results must be presented as an average of multiple trials. The 

performance of a station-keeping control strategy is examined by the total amount of fuel 

consumption or Δ𝑉𝑇, and a Monte Carlo simulation is conducted to take the average of  

Δ𝑉𝑇 over multiple station-keeping trails. The sample size for the Monte Carlo simulation 

is chosen such that the moving average of Δ𝑉𝑇 stays constant or does not change 

significantly for further number of trails.  

In this study two types of control strategies, impulsive and continuous, are examined. 

Δ𝑉𝑇 for an impulsive control strategy is calculated as, 

 
Δ𝑉𝑇 = ∑ |𝛥�⃗⃗�𝑘|

𝑚

𝑘=1

 
(3.1) 

Where |𝛥�⃗⃗�𝑘| is the magnitude of an impulsive corrective maneuver velocity vector, and 𝑚 

the number of maneuvers. For a continuous control strategy, Δ𝑉𝑇 is calculated as follows,  

 
Δ𝑉𝑇 = ∫ |�⃗⃗�(𝜏)|

𝑡

0

𝑑𝜏 
(3.1) 

Where |�⃗⃗�| is the magnitude of a continuous corrective maneuver acceleration vector, and 

𝑡 is the duration of the mission.  
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4. IMPULSIVE FLOQUET MODE (FM) STATION-KEEPING STRATEGY 

The Floquet Mode (FM) control strategy is an instantaneous or impulsive state-feedback 

control law that exploits the natural dynamical characteristic of the phase space near 

periodic orbits. This controller utilizes the Invariant Manifold Theorem to compute the 

corrective maneuvers. Floquet Modes are used to compute the unstable components of the 

state error vector, by using the eigenstructure of the STM after one period (i.e. the 

monodromy matrix). A corrective maneuver is then calculated that aims to cancel the 

unstable component of the state error vector, and places the spacecraft in a bounded and 

quasi-periodic motion around the nominal trajectory. Such control strategy has applications 

in formation flight of spacecraft and interferometry imaging which would benefit from the 

spiral-like and bounded motion provided by the controller. In this chapter, the 

mathematical formulation of the Floquet Mode controller is presented. Next, a modified 

formulation for this controller is derived that incorporates feasible maneuver direction 

constraints into the design of the controller. Lastly, the modified Floquet Mode controller 

is applied for station-keeping around the nominal halo orbit, presented in chapter 3, under 

mission design constraint and operation errors. 

4.1. FM Controller Formulation  

As discussed in section 2.3.2, by using the Floque Thoery the state transition matrix of 

a time-varying periodic linear system can be decomposed as follows,  

 Φ(𝑡, 0) = 𝐸(𝑡)𝑒𝐽𝑡𝐸−1(0) (4.1) 
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Where 𝐸(𝑡) is the periodic Floquet Modal matrix,  𝐽 is a constant diagonal matrix in which 

the diagonal entries are the Poincare exponents, and 𝐸(0) is the matrix of eigenvecotrs of 

the monodromy matrix, Φ(𝑇, 0). Furthermore, columns of 𝐸(𝑡), 𝑒𝑗, form a six dimensional, 

non-orthogonal basis that are defined as Floquet modes. At any point along the nominal 

orbit, the state error vector, 𝛿�⃗�(𝑡), can be expressed in terms of the Floquet mode basis as 

follows,   

  

𝛿�⃗�(𝑡) = ∑𝑐𝑗(𝑡)𝑒𝑗(𝑡)

6

𝑗=1

  
(4.2) 

 𝛿�⃗�(𝑡) =  𝛿�⃗�1 + 𝛿�⃗�2 + 𝛿�⃗�3 + 𝛿�⃗�4 + 𝛿�⃗�5 + 𝛿�⃗�6 (4.3) 

Where 𝛿�⃗�1 and 𝛿�⃗�2 are the components of 𝛿�⃗�(𝑡) along the stable and unstable Floquet 

modes, respectively. 𝛿�⃗�3 through 𝛿�⃗�6 are the components along the oscillatory Floquet 

modes. The coefficients 𝑐𝑗(𝑡) are the elements of vector 𝑐(𝑡) defined as,   

 𝑐(𝑡) = 𝐸−1(𝑡)𝛿�⃗�(𝑡) (4.4) 

In the FM controller, a corrective maneuver in the form of Δ�⃗⃗� = [0,0,0, Δ𝑉𝑥 , Δ𝑉𝑦 , Δ𝑉𝑧]
𝑇
is 

implemented that aims to remove the unstable component of the error vector. That is,  

 𝛿�⃗�(𝑡) + 𝛥�⃗⃗� = 𝛼2𝛿�⃗�2 + 𝛼3𝛿�⃗�3 + ⋯+ 𝛼6𝛿�⃗�6 (4.5) 

Where 𝛼𝑖’s are the coefficients of 𝛿�⃗�𝑖’s once the corrective maneuver is applied. (4.5) is a 

system of six linear equations with eight unknowns. The unknowns of (4.5) are Δ𝑉𝑥, Δ𝑉𝑦, 

Δ𝑉𝑧, and 𝛼𝑖’s (𝑖 = 2,3,…6). This underdetermined system of equations does not possess a 

unique solution. In [15], Keeter solves for the required Δ�⃗⃗�  maneuver through a minimum 

norm solution. The fact that these equations do not have an exact solution provides an 
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opportunity that allows additional implementation of constraints on the corrective 

maneuver.  

4.2. Incorporation of Feasible Maneuver Directions in the FM Controller Design  

Often, requirements of scientific instruments or the spacecraft’s manufacturing design, 

constraints the directions that a corrective maneuver can be executed. Therefore, a suitable 

station-keeping control strategy must be capable of handling the added constraint of a 

feasible maneuver direction to ensure the success of the mission. An example of a mission 

with such constraints on the maneuver direction is the ARTEMIS (Acceleration 

Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun) 

mission. The ARTEMIS spacecraft are spin stabilized vehicles and the thrusters in these 

spacecraft are mounted in such a way that corrective maneuvers can only be implemented 

along the spin axis toward the south ecliptic pole direction, or in the plane perpendicular 

to the spin axis [20].  

By exploiting the non-unique solution space of the FM controller, additional constraints 

on the direction of the corrective maneuvers can be implemented which enables station-

keeping for mission scenarios such as the ARTEMIS. In this study two constraint scenarios 

will be addressed: 1) plane constraint, where all maneuvers are implemented in a desired 

plane, 2) line constraint, where all maneuvers are along a desired axis.  

4.2.1. Plane Constraint 

To constrain a corrective maneuvers in a desired plane, the following equation must 

hold,  

 𝛥𝑉𝑥 × 𝑁𝑥 + 𝛥𝑉𝑦 × 𝑁𝑦 + 𝛥𝑉𝑧 × 𝑁𝑧 = 0 (4.6) 

Where �⃗⃗⃗� = [𝑁𝑥 , 𝑁𝑦, 𝑁𝑧]
𝑇
is the plane normal. For example, in the case of the ARTEMIS 

mission the plane normal is defined as the spin axis of the spacecraft. To solve for a 
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corrective maneuver using the FM controller, equation (4.5) is augmented with equation 

(4.6), 

 𝛿�⃗�(𝑡) + 𝛥�⃗⃗� = 𝛼2𝛿�⃗�2 + 𝛼3𝛿�⃗�3 + ⋯+ 𝛼6𝛿�⃗�6 

𝛥𝑉𝑥 × 𝑁𝑥 + 𝛥𝑉𝑦 × 𝑁𝑦 + 𝛥𝑉𝑧 × 𝑁𝑧 = 0 

   

(4.7) 

System of equations in (4.7), consists of seven linear equations with eight unknown. A 

minimum norm solution to these equations can be found through a simple Newton-

Raphson algorithm. MATLAB’s fsolve command can also be used to provide a solution.  

4.2.2. Line Constraint 

To constrain a corrective maneuvers along a desired axis, the following equations must 

hold, 

 𝐿𝑥 − 𝛥𝑉𝑥

𝐿𝑥
=

𝐿𝑦− 𝛥𝑉𝑦

𝐿𝑦
  

(4.8) 

 𝐿𝑥 − 𝛥𝑉𝑥

𝐿𝑥
=

𝐿𝑧− 𝛥𝑉𝑧

𝐿𝑧
  

(4.9) 

Where �⃗⃗� = [𝐿𝑥, 𝐿𝑦, 𝐿𝑧]
𝑇
is the desired axis along which the corrective maneuver is 

constrained. In the case of the ARTEMIS mission, �⃗⃗� is defined as the spin axis. To solve 

for a corrective maneuver using the FM controller, equation (4.5) is augmented with 

equations (4.8) and (4.9), 

 𝛿�⃗�(𝑡) + 𝛥�⃗⃗� = 𝛼2𝛿�⃗�2 + 𝛼3𝛿�⃗�3 + ⋯+ 𝛼6𝛿�⃗�6 

𝐿𝑥 −  𝛥𝑉𝑥
𝐿𝑥

=
𝐿𝑦 −  𝛥𝑉𝑦

𝐿𝑦
 

 

 

(4.10) 

   

 𝐿𝑥 −  𝛥𝑉𝑥
𝐿𝑥

=
𝐿𝑧 −  𝛥𝑉𝑧

𝐿𝑧
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System of equations in (4.10), consists of eight linear equations with eight unknown which 

holds an exact solution that can be easily solved through a Newton-Raphson method or 

MATLAB’s fsolve command.   

4.3. Simulation Results  

In this section, the FM controller is applied for station-keeping in the non-linear 

dynamics around the nominal 𝐿1 halo orbit introduced in section 3.2. Orbital station-

keeping for spin-stabilized spacecraft with two types of maneuver constraints are studied: 

1) spin-stabilized spacecraft with only tangential thrusters, 2) spin-stabilized spacecraft 

with only axial thrusters. In each scenario the spin axis is defined by vector �⃗⃗�𝑠 which is 

characterized by an in-plane angle 𝛾, and an out-of-plane angle 𝜙, as shown in figure 4.1. 

Moreover, the spin axis, �⃗⃗�𝑠, can be fixed in either the rotating frame or the inertial frame. 

Next, the modified FM controllers, derived in equations (4.7) and (4.10), will be applied 

for station-keeping, and the performance of the modified controllers are assessed under the 

mission design constrains, and operation errors introduced in chapter 3. Table 4.1 

summarizes mission specifications, design constraints, and operation errors that are used 

in this analysis.  

 

Figure 4.1. Spin Stabilization Axis  
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Table 4.1. Mission Specifications, Design Constraints, and Operation Errors for the FM Controller 

Mission 

Specifications 

- Nominal orbit: 𝐿1 southern halo orbit (𝐴𝑧 ~ 223,992 km) 

- Mission duration: 10 revolutions (~ 5 years) 

- Spin axis: fixed in the rotating/inertial frame 

Mission Design 

Constraints  

- Minimum Thrust Level: 0.3 mN 

- Δ𝑡𝑚𝑖𝑛: 3 weeks  

- No corrective maneuver if magnitude of position error vector is 

decreasing  

Operation Errors - Orbit injection and tracking errors: 1-σ errors of 1 km and 1 cm/s  

- Maneuver execution error: 1-σ error of  %1  

4.3.1. Orbital Station-Keeping for a Spin-Stabilized Spacecraft with Tangential 

Thrusters  

The FM controller augmented with a plane constraint on the direction of the corrective 

maneuvers, as presented in (4.7), can be applied for station-keeping of a spin stabilized 

spacecraft that is only equipped with tangential thrusters. Such spacecraft can only produce 

thrust directions that are in a perpendicular plane to the spacecraft’s spin axis, �⃗⃗�𝑠, as 

illustrated in figure 4.2. For this analysis, the spin axis is assumed to have an in-plane angle, 

𝛾, equal to 57 degrees, and an out-of-plane angle, 𝜙, equal to 15 degrees. These angles are 

chosen arbitrarily and for demonstration purposes. Additionally, two scenarios are 

considered where the spin axis, �⃗⃗�𝑠, is either fixed in the rotating frame, or it is fixed in the 

inertial frame.   

To evaluate the performance of the FM controller in (4.7), a Monte Carlo simulation is 

conducted and the average station-keeping cost for 10 revolutions of the nominal orbit is 

calculated. A sample size of 300 trails proves to be sufficient as additional trails do not 

change the average station-keeping cost significantly. Figure 4.3 shows station-keeping 

costs for the Monte Carlo simulation conducted for the spin stabilized spacecraft in figure 

4.2, with the spin axis fixed in the rotating frame. The blue dots denote the station-keeping 
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Figure 4.2. Spin Axis Direction for a Spin Stabilized Spacecraft with Tangential Thrusters 

cost for each individual trails, and the red asterisks denote the moving average of the data 

up to that point in the simulation. Based on figure 4.3, there is minimal change in the 

moving average by the end of the 300th trail.   

Station-keeping results for a spin stabilized spacecraft with only tangential thrusters 

and a fixed spin axis in the rotating frame as well as the inertial frame are presented in table 

4.2. This table includes the average station-keeping cost, 𝛥�̅�𝑇, over 10 revolutions around 

the nominal orbit, and the average cost over one year. An average divergence rate is also 

calculated which is the slope of a linear curve fit to the time history of the magnitude of 

the position error vector of the spacecraft relative to the nominal orbit, as illustrated in 

figure 4.4. The average linear divergence rate indicates whether or not the spacecraft is 

deviating from the nominal orbit, and how much the deviating rate is per period of the 

nominal trajectory. The station-keeping results, presented in table 4.2, show no significant 

differences between the performances of the FM controller with a fixed spin axis in the 

rotating frame compared to that the inertial frame. The station-keeping costs are roughly 

in agreement with other published results [11, 12, 15, 18]. However, a meaningful 

comparison cannot be made as these references do not include the same mission design 

constraints and operation errors. Furthermore, table 4.4 indicates that the spacecraft may 

not stay indefinitely around the nominal orbit as the value of the average linear divergence  
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Figure 4.3. Monte Carlo Simulation (300 Trials) 

rate is positive in both scenarios. In [15], Keeter, too, observed a positive deviation rate 

using the FM controller, which he associated with the fact that the error vector is calculated 

based on an isochronous correspondence, and the positive slope of divergence could merely 

represent a shift along the nominal orbit. This positive divergence rate is further explored 

in Appendix A by examining the performance of the FM controller with and without 

operation errors and and mission design constraints. The results from Appendix A indicate 

that the deviation of the spacecraft is mostly related to the addition of operation errors and 

mission design constraints on the minimum allowable thrust and Δ𝑡𝑚𝑖𝑛. These results also 

suggest that operation errors influence the divergence rate more adversely than the mission 

design constraints. 

For purposes of illustration, figures 4.5 and 4.6 show representative station-keeping 

trails from the Monte Carlo simulation for a spin stabilized spacecraft with tangential 

thrusters, with a fixed spin axis in the rotating frame as well as the inertial frame, 

respectively. This figure includes the controlled trajectory in the rotating frame, the motion 

relative to the nominal orbit expressed in the three position components as well as the 

direction and magnitude of the corrective maneuvers. 
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Table 4.2. Station-Keeping Performance for a Spin Stabilized Spacecraft with only Tangential Thrusters 

�⃗⃗�𝑆 fixed in 𝛥�̅�𝑇 for 10 

revolutions 

[m/s] 

𝛥�̅�𝑇/ year 

[m/s] 

Average Linear 

Divergence 

Rate 

[km/rev] 

Rotating Frame  7.2611 1.4237 +0.0219 

Inertial Frame  7.0682 1.3859 +0.0379 

 

 

Figure 4.4. Time History of the Spacecraft’s Position Deviation with Respect to the Nominal Orbit 

(Controlled by FM Controller with a Plane Constraint Fixed in the Inertial Frame) 
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Figure 4.5. Orbital Station-Keeping for the Nominal 𝐿1 Halo Orbit Using the FM controller for a Spin 

Stabilized Spacecraft with Tangential Thrusters and a Fixed Spin Axis in the Rotating Frame 
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Figure 4.6 Orbital Station-Keeping for the Nominal 𝐿1 Halo Orbit Using the FM controller for a Spin 

Stabilized Spacecraft with Tangential Thrusters and a Fixed Spin Axis in the Inertial Frame 
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4.3.2.  Orbital Station-Keeping for a Spin-Stabilized Spacecraft with Axial Thrusters  

The FM controller augmented with a line constraint on the direction of the corrective 

maneuver, as presented in (4.10), can be applied for station-keeping of a spin stabilized 

spacecraft that is only equipped with axial thrusters. Such spacecraft can only produce 

thrust directions that are aligned with the spacecraft’s spin axis, �⃗⃗�𝑠, as illustrated in figure 

4.7. As in the previous section, the spin axis is assumed to have an in-plane angle, 𝛾, equal 

to 57 degrees, and an out-of-plane angle, 𝜙, equal to 15 degrees. Similarly, two scenarios 

are considered where the spin axis, �⃗⃗�𝑠, is either fixed in the rotating frame, or it is fixed in 

the inertial frame. To evaluate the performance of the FM controller in (4.10), a Monte 

Carlo simulation is conducted and the average station-keeping cost for 10 revolutions of 

the nominal orbit is calculated. For this simulation, a sample size of 300 trails would also 

provide a stable moving average of the station-keeping costs.  

Table 4.3 summarizes the station-keeping results for a spin stabilized spacecraft with 

only axial thrusters and a fixed spin axis in the rotating frame as well as the inertial frame.  

 

Figure 4.7. Spin Axis Direction for a Spin Stabilized Spacecraft with Tangential Thrusters 

As in the previous section, the results from this table indicate no significant difference 

between the station-keeping performances of the FM in the rotating frame compared to the 

inertial frame. A small positive divergence rate still exists which is mostly related to the 
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incorporation of operation errors and mission design constraint, as explained in Appendix 

A. Moreover, the results from tables 4.2 and 4.3, indicate that the average station-keeping 

cost increases when the corrective maneuvers are constrained to a line compared to the 

case when they are constrained to a plane. This observation is analogous to the published 

results by Keeter in [15], where an increase in the total station-keeping cost was observed 

for an x-axis FM controller compared to a three-axis FM controller. Both results in this 

study and in [15], suggest that the station-keeping cost of the FM controller increases as 

more constrained are applied to the corrective maneuvers. Furthermore, comparison 

between tables 4.2 and 4.3 also shows a slight increase in the spacecraft’s divergence rate 

for a line-constrained FM controller. For purposes of illustration, figures 4.8 and 4.9 show 

representative station-keeping trails for a spin stabilized spacecraft with tangential 

thrusters, with a fixed spin axis in the rotating frame as well as the inertial frame, 

respectively.  

Table 4.3. Station-Keeping Performance for a Spin Stabilized Spacecraft with only Axial Thrusters 

�⃗⃗�𝑆 fixed in 𝛥�̅�𝑇 for 10 

revolutions 

[m/s] 

𝛥�̅�𝑇/ year 

[m/s] 

Average Linear 

Divergence 

Rate 

[km/rev] 

Rotating Frame  9.0365 1.7718 +0.2067 

Inertial Frame  8.7457 1.7148 +0.1674 
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Figure 4.8. Orbital Station-Keeping for the Nominal 𝐿1 Halo Orbit Using the FM controller for a Spin 

Stabilized Spacecraft with Axial Thrusters and a Fixed Spin Axis in the Rotating Frame 
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Figure 4.9. Orbital Station-Keeping for the Nominal 𝐿1 Halo Orbit Using the FM controller for a Spin 

Stabilized Spacecraft with Axial Thrusters and a Fixed Spin Axis in the Inertial Frame 
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5. CONTINUOUS HAMILTONIAN STRUCTURE-PRESERVING (HSP) 

STATION-KEEPING STRATEGY  

The Hamiltonian Structure-Preserving (HSP) controller is a state feedback control law that 

aims to place a spacecraft in an oscillatory motion about a nominal trajectory. Similar to 

the FM controller, the HSP control strategy is also applicable for formation flight of 

spacecraft and interferometry imaging. Due to a continuous and low acceleration level 

produced by this controller, low-thrust propulsion systems can be used for implementation 

of this controller. In this chapter, the original formulation of the HSP controller is 

presented, and its limitations are identified. Next, modifications to the original formulation 

are proposed that are capable of overcoming the identified limitations.  A stability analysis, 

using the Floquet theory, is conducted to assess the stability of the proposed modified HSP 

controller. Lastly, the modified controller is applied to the nominal halo orbit, presented in 

chapter 3, and the motion of the spacecraft is simulated in the non-linear dynamics under 

mission design constraints and operation errors.   

5.1. HSP Controller Formulation  

The HSP control strategy is a state feedback control law that uses the subspaces of the 

linearized variational equations of motion (i.e. the eigenstructure of 𝐴(𝑡) in equation 

(2.33)). This controller projects the state position error vector along the directions of stable 

and unstable eigenvectors of 𝐴(𝑡). The aim of this controller is to place the poles of the 

linearized variational equations along the imaginary axis, and create an artificial center 

manifold that places the spacecraft in an oscillatory motion about the nominal orbit. In 

[16], Scheeres argues that the proposed HSP controller creates a local bounded stability 
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that impacts the periodic orbit stability by changing the eigenvalues of the monodromy 

matrix. 

The original HSP controller was proposed for planar periodic orbits. The linearized 

dynamics relative to a planar periodic trajectory is given by,  

 
𝛿�̇⃗�(𝑡) =  𝐴(𝑡)𝛿�⃗�(𝑡) = [

0 𝐼
𝑈𝑅𝑅

∗ 2𝐾
] 𝛿�⃗�(𝑡)     

(5.1) 

Where 𝐾 = [
0 1

−1 0
], 𝑈𝑅𝑅

∗ = [
𝑈𝑥𝑥

∗ 𝑈𝑥𝑦
∗

𝑈𝑥𝑦
∗ 𝑈𝑦𝑦

∗ ], and 𝛿�⃗�(𝑡) = [𝛿𝑟 𝛿�̇�]
𝑇
. The poles of the 

linearized dynamics are given by the characteristic polynomial of 𝐴(𝑡),  

 |𝐴(𝑡) − 𝜆𝐼| = 𝜆4 + 𝑏𝜆2 + 𝑐 = Λ2 + 𝑏Λ + 𝑐 = 0 (5.2) 

And the general solutions to the characteristic equation are,  

 Λ1 = 𝜆1,2
2 =

−𝑏+√Δ

2
,    Λ2 = 𝜆3,4

2 =
−𝑏−√Δ

2
 

(5.3) 

Where 𝑏 = 4 − 𝑈𝑥𝑥
∗ − 𝑈𝑦𝑦

∗ , Δ = 𝑏2 − 4𝑐, and 𝑐 = 𝑈𝑥𝑥
∗ 𝑈𝑦𝑦

∗  − 𝑈∗
𝑥𝑦
2

. The original HSP 

controller was proposed for planar periodic orbits with hyperbolic instability i.e. Δ > 0. 

These are trajectories in which 𝐴(𝑡) possesses couples of real and pure imaginary 

eigenvalues.    

The aim of the HSP controller is to modify the coefficients 𝑏 and 𝑐 to ensure that the 

roots of the characteristic equation (5.2) are placed on the imaginary axis. This will create 

a locally bounded stable motion, which will also impact onto the periodic orbit stability 

[16, 18].  The HSP controller is constructed by projecting the position component of the 

error vector along the directions of both stable and unstable eigenvectors of 𝐴(𝑡). 

Therefore, the control acceleration has the following formulation,  

 �⃗⃗�(𝑡) = (−𝜎2𝑔[�⃗�1�⃗�1
𝑇 + �⃗�2�⃗�2

𝑇])𝛿𝑟 (5.4) 
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Where 𝜎 is the unstable eigenvalue of 𝐴(𝑡), 𝑔 is a constant gain parameter, and �⃗�1 and �⃗�2 

are position components of the unstable and stable eigenvectors of 𝐴(𝑡), respectively. 𝛿𝑟 

is the position component of the error vector between the controlled trajectory and the 

nominal orbit. Additionally, the controller presented in (5.4) is for a hyperbolic two-

dimensional periodic trajectory in which 𝐴(𝑡) possesses one real pair and one complex 

conjugate pair of eigenvalues (i.e. Δ > 0). In [18], Soldini extends this controller for the 

case when Δ < 0.  

Implementing the HSP controller has the effect of modifying the linearized dynamics 

by changing the Jacobian matrix of the potential acceleration, or 𝑈𝑅𝑅
∗ , as follows,   

 𝛿�̇⃗�(𝑡) =  𝐴(𝑡)𝛿�⃗�(𝑡) + 𝐵�⃗⃗�(𝑡) (5.5) 

 
𝛿�̇⃗�(𝑡) = [

0 𝐼
𝑈𝑅𝑅

∗ − 𝜎2𝑔[�⃗�1�⃗�1
𝑇 + �⃗�2�⃗�2

𝑇] 2𝐾
] 𝛿�⃗�(𝑡)     

(5.6) 

 
𝛿�̇⃗�(𝑡) = [

0 𝐼
�̃�∗

𝑅𝑅 2𝐾
] 𝛿�⃗�(𝑡) =  �̃�(𝑡)𝛿�⃗�(𝑡)    

(5.7) 

Where 𝐵 = [
0 0 1 0
0 0 0 1

]
𝑇

, and �̃�∗
𝑅𝑅 = [

�̃�∗
𝑥𝑥 �̃�∗

𝑥𝑦

�̃�∗
𝑥𝑦 �̃�∗

𝑦𝑦

]. Thus, the characteristic 

polynomial for the modified dynamics is given by,   

 |�̃�(𝑡) − 𝜆𝐼| = 𝜆4 + �̃�𝜆2 + �̃� = Λ2 + �̃�Λ + �̃� = 0 (5.8) 

In order for the modified characteristic equation (5.8) to have pure imaginary roots, the 

following three conditions must hold,   

 �̃�(𝑔, 𝑡) = 4 − �̃�∗
𝑥𝑥 − �̃�∗

𝑦𝑦 > 0 (5.9) 

 �̃�(𝑔, 𝑡) = �̃�∗
𝑥𝑥�̃�

∗
𝑦𝑦  − �̃�∗

𝑥𝑦
2

> 0 (5.10) 

 �̃� (𝑔, 𝑡) = �̃�2 − 4�̃� > 0  (5.11) 
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These are sufficient conditions for local bounded stability of a planar periodic trajectory 

with hyperbolic instability.   In [16, 17, 18], it is demonstrated that for large enough control 

gain 𝑔, conditions (5.9)-(5.11) are satisfied. Lastly, in Appendix B, it is shown that due to 

the symmetric formulation of this controller, the modified dynamical environment stays an 

autonomous and Hamiltonian system once the HSP controller is applied. Hence the choice 

for the name of this controller.  

5.2. Identifying Limitations of the HSP Controller  

The aim of this section is to identify limitations of the HSP controller proposed by 

Scheeres in [16], and set a groundwork for developing modifications to overcome those 

limitations. As previously mentioned in section 5.1, the original HSP controller was 

proposed for station-keeping about planar periodic trajectories with hyperbolic instability, 

where the eigenstructure of the linearized variational equations of motion in (5.1) possesses 

couples of real and pure imaginary eigenvalues. Another possibility for the eigenstructure 

of (5.1) is the case where the eigenvalues are two couples of complex and conjugates pairs. 

In [18], Soldini has extended the original HSP controller for planar periodic trajectories 

with such eigenstructure.  

Nevertheless, the HSP controllers proposed by previous authors are designed only 

based on the linearized variational equations for a planar periodic trajectory. These 

controllers do not guarantee the same stability results for general three dimensional orbits. 

This is evident by the fact that the characteristic polynomial for the linearized variational 

equations for a three dimensional periodic trajectory is different from that of a planar 

trajectory. Therefore, the local bounded stability conditions presented in (5.9)-(5.11) may 

not be sufficient for achieving local bounded stability in the three dimensional case. In this 

research effort, a modified HSP controller is proposed that is designed based on the 

linearized variational equations for a three dimensional periodic trajectory. A new set of 

conditions are derived to place the poles of the three dimensional linearized variational 

equations on the imaginary axis.  
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Additionally, in equation (5.4), the control gain 𝑔 is assumed to be constant. Under this 

assumption, the control gain has to be large enough to ensure that equations (5.9)-(5.11) 

are satisfied throughout the orbit. This will have an adverse effect on the total station-

keeping cost due to an unnecessarily high acceleration level produced by the controller. 

Therefore, a methodology needs to be developed to calculate a time-varying control gain 

based on the location of the spacecraft around the nominal orbit. A variable-gain HSP 

controller is expected to have a lower and more efficient total station-keeping cost.    

Lastly, previously proposed HSP controllers are designed based on the assumption that 

the spacecraft is provided with continuous orbital determination information, or that the 

spacecraft can perform the corrective maneuvers at any time. As explained in section 3.4, 

there is often a minimum time requirement between station-keeping maneuvers due to 

scientific observations, or due to the minimum time to achieve an accurate post-burn orbital 

determination [19]. Under these constraints, the dynamical model is no longer continuous 

in time, rather it is a discrete-time dynamical model. Therefore, a new HSP controller must 

be designed for the discretized variational equations of motion.     

5.3. Modified HSP (MHSP) Controller: Application to 3-D Orbits  

Previously proposed HSP controllers were designed based on the linearized variational 

equations for a planar periodic trajectory. However, the majority of the trajectories used 

for missions around libration points are three dimensional orbits with out-of-plane 

excursions. Therefore, the original HSP controller must be extended and modified to be 

applicable to three dimensional equations of motion.  

In this section, a modified HSP controller (MHSP) is proposed that aims to place the 

poles of the three dimensional linearized variational equations along the imaginary axis. 

The linearized dynamics relative to a three-dimensional periodic trajectory is given by,  

 
𝛿�̇⃗�(𝑡) =  𝐴(𝑡)𝛿�⃗�(𝑡) = [

0 𝐼
𝑈𝑅𝑅

∗ 2𝐾
] 𝛿�⃗�(𝑡)     

(5.12) 
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Where 𝐾 = [
0 1 0

−1 0 0
0 0 0

], 𝑈𝑅𝑅
∗ = [

𝑈𝑥𝑥
∗ 𝑈𝑥𝑦

∗ 𝑈∗
𝑥𝑧

𝑈𝑥𝑦
∗ 𝑈𝑦𝑦

∗ 𝑈∗
𝑦𝑧

𝑈𝑥𝑧
∗ 𝑈𝑦𝑧

∗ 𝑈𝑧𝑧
∗

], and 𝛿�⃗�(𝑡) = [𝛿𝑟 𝛿�̇�]
𝑇
. The poles 

of the linearized dynamics are given by the characteristic polynomial of 𝐴(𝑡),  

 |𝐴(𝑡) − 𝜆𝐼| = 𝜆6 + 𝑏𝜆4 + 𝑐𝜆2 + 𝑑 = 𝛬3 + 𝑏𝛬2 + 𝑐𝛬 + 𝑑 = 0 (5.13) 

In order for equation (5.13) to have pure imaginary roots, the following three conditions 

must hold,  

 𝑏 =  4 − 𝑈𝑥𝑥
∗ − 𝑈𝑦𝑦

∗ − 𝑈𝑧𝑧
∗ > 0  (5.14) 

 𝑑 = |𝑈𝑅𝑅
∗ | > 0 (5.15) 

 𝑏𝑐 − 𝑑 = (4 − 𝑈𝑥𝑥
∗ − 𝑈𝑦𝑦

∗ − 𝑈𝑧𝑧
∗ ) × 

(−𝑈∗
𝑥𝑦
2 −𝑈∗

𝑥𝑧
2 + 𝑈𝑥𝑥

∗ 𝑈𝑦𝑦
∗ −𝑈∗

𝑦𝑧
2 − 4𝑈𝑧𝑧

∗ + 𝑈𝑥𝑥
∗ 𝑈𝑧𝑧

∗ + 𝑈𝑦𝑦
∗ 𝑈𝑧𝑧

∗ )

− |𝑈𝑅𝑅
∗ | > 0 

 

 

(5.16) 

The aim of the MHSP controller is to alter the coefficients of the characteristic 

polynomial given in (5.13) such that equations (5.14)-(5.16) are satisfied. Following a 

similar methodology as in the formulation of the original HSP controller, the MHSP 

controller is designed to be a state feedback control law that projects the position 

component of the error vector along the directions of the eigenvectors of 𝐴(𝑡). However, 

in the MHSP controller, in addition to projecting the position error vector along the stable 

and unstable eigenvectors, it is projected along the center subspace eigenvectors as well. 

In this investigation, the MHSP controller is designed for periodic trajectories in which 

𝐴(𝑡) possesses two real eigenvalues, two imaginary eigenvalues, and two complex and 

conjugate eigenvalues. The extension of this controller to other eigenstuctures has not been 

included in this analysis and is left for future investigations.  
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 Therefore, the control acceleration produced by the MHSP controller has the following 

formulation:  

 �⃗⃗�(𝑡) = (−𝜎2𝑔[�⃗�1𝑣1
𝑇 + �⃗�2�⃗�2

𝑇] − 𝛾2𝑔𝑐[�⃗�𝑐�⃗�𝑐
𝑇 + �⃗̅�𝑐 �⃗̅�𝑐

𝑇])𝛿𝑟 (5.17) 

Where 𝛾 is the eigenvalue and �⃗�𝑐 is the position component of the associated eigenvector 

for one of the center subspaces of 𝐴(𝑡). �⃗̅�𝑐 is the complex conjugate vector of �⃗�𝑐. 𝑔𝑐 is a 

gain parameter for the center subspace projection tensor.  

As in the original HSP controller, implementation of the MHSP controller has the effect 

of modifying the linearized dynamics by changing the Jacobian matrix of the potential 

acceleration, 𝑈𝑅𝑅
∗ , which impacts the coefficients of the characteristic polynomial in (5.13). 

This effect is as follows,  

 𝛿�̇⃗�(𝑡) =  𝐴(𝑡)𝛿�⃗�(𝑡) + 𝐵�⃗⃗�(𝑡) (5.18) 

 
𝛿�̇⃗�(𝑡) = [

0 𝐼

𝑈𝑅𝑅
∗ − 𝜎2𝑔[�⃗�1𝑣1

𝑇 + �⃗�2�⃗�2
𝑇] − 𝛾2𝑔𝑐[�⃗�𝑐�⃗�𝑐

𝑇 + �⃗̅�𝑐 �⃗̅�𝑐
𝑇] 2𝐾

] 𝛿�⃗�(𝑡) 
(5.19) 

 
𝛿�̇⃗�(𝑡) = [

0 𝐼
�̃�∗

𝑅𝑅 2𝐾
] 𝛿�⃗�(𝑡) =  �̃�(𝑡)𝛿�⃗�(𝑡) 

(5.20) 

Where = [03×3 𝐼3×3] �̃�
∗
𝑅𝑅 = [

�̃�𝑥𝑥
∗ �̃�𝑥𝑦

∗ �̃�∗
𝑥𝑧

�̃�𝑥𝑦
∗ �̃�𝑦𝑦

∗ �̃�∗
𝑦𝑧

�̃�𝑥𝑧
∗ �̃�𝑦𝑧

∗ �̃�𝑧𝑧
∗

]. Thus, the characteristic polynomial 

for the modified dynamics is given by,    

 |𝐴(𝑡) − 𝜆𝐼| = 𝜆6 + �̃�𝜆4 + �̃�𝜆2 + �̃� = 𝛬3 + �̃�𝛬2 + �̃�𝛬 + �̃� = 0 (5.21) 

Similar to equations (5.14)-(5.16), in order for equation (5.21) to have pure imaginary 

roots, the following three conditions must hold for �̃�, �̃�, and �̃�,  
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 �̃�(𝐺, 𝐺𝑐 , 𝑡) =  4 − �̃�𝑥𝑥
∗ − �̃�𝑦𝑦

∗ − �̃�𝑧𝑧
∗ > 0  (5.22) 

 �̃�(𝐺, 𝐺𝑐 , 𝑡) = |�̃�𝑅𝑅
∗ | > 0 (5.23) 

 �̃��̃� − �̃�(𝐺, 𝐺𝑐 , 𝑡) = (4 − �̃�𝑥𝑥
∗ − �̃�𝑦𝑦

∗ − �̃�𝑧𝑧
∗ ) ×… 

(−�̃�∗
𝑥𝑦
2

−�̃�∗
𝑥𝑧
2

+ �̃�𝑥𝑥
∗ �̃�𝑦𝑦

∗ −�̃�∗
𝑦𝑧
2

− 4�̃�𝑧𝑧
∗ + �̃�𝑥𝑥

∗ �̃�𝑧𝑧
∗ + �̃�𝑦𝑦

∗ �̃�𝑧𝑧
∗ )

− |�̃�𝑅𝑅
∗ | > 0 

(5.24) 

In Appendix C, it is demonstrated that equations (5.22)-(5.24) are always satisfied for large 

enough control gains 𝑔 and 𝑔𝑐.  

5.3.1. Methodology for Variable-Gain MHSP Controller 

Equations (5.22)-(5.24) can also be re-written in terms of 𝐺 and 𝐺𝑐 as follows,  

 
𝑔 + 𝑔𝑐 >

(𝑈𝑥𝑥
∗ + 𝑈𝑦𝑦

∗ + 𝑈𝑧𝑧
∗ − 4)

2
 

(5.25) 

 𝑔𝑐 > 𝛼(𝑡)𝑔 (5.26) 

 𝑔𝑐 > 𝛽(𝑡)𝑔 (5.27) 

Where 𝛼(𝑡) and 𝛽(𝑡) are time varying, periodic coefficient. The derivation for these 

equations are presented in Appendix C. Equations (5.25)-(5.27) provide sufficient 

conditions on the minimum values of the control gains to ensure local bounded stability. 

Since these conditions are functions of time, they provide a basis for a variable-gain MHSP 

controller where the control gains 𝑔 and 𝑔𝑐 are chosen based on the location of the 

spacecraft around the nominal orbit.  
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5.3.2. Performance Comparison between HSP and MHSP Controllers   

In this section the station-keeping performance of the original HSP and the MHSP 

controller are compared. In [16], the original HSP controller is applied for station-keeping 

around a northern 𝐿2 halo orbit. However, as previously mentioned in section 5.2, this 

controller does not necessarily guarantee the local bounded stability conditions for a three 

dimensional periodic trajectory, given in (5.22)-(5.24). This can be seen in figure 5.1, 

where the local bounded stability conditions are assessed after applying the original HSP 

controller to some members of the northern 𝐿2 halo family. It is also important to note that 

all the halo orbits presented in this figure are hyperbolically unstable i.e. 𝐴(𝑡) possesses 

one real pair of eigenvalues and two imaginary and conjugate pairs.  In figure 5.1.(a), blue 

dots indicate regions where the original HSP controller is capable of satisfying equations 

(5.22)-(5.24), and therefore local bounded stability is achieved. Moreover, in this figure, 

the 𝐿2 halo orbit presented in [16] is one of the lower 𝐴𝑧 amplitude orbits, where the 

bounded stability conditions are satisfied throughout the entire orbit. Red dots, on the other 

hand, indicate regions where the original HSP controller does not satisfy the bounded 

stability conditions. From figure 5.1, these regions of instability occur around the 

maximum z-excursion of the higher amplitude halo orbits. In figure 5.1.(b), the station-

keeping result is shown for the highest amplitude member of the 𝐿2 halo family in 5.1.(a). 

This simulation is done using the non-linear dynamics, under an initial random perturbation 

(1-𝜎 error of 1km and 1 cm/s in position and velocity), and propagated for approximately 

two revolutions about the nominal orbit. As predicted by the linear stability analysis in 

5.1.(a), the original HSP controller is not able to maintain the motion of the spacecraft in 

the vicinity of this high amplitude nominal orbit.  

A similar set of analyses is conducted for the MHSP controller. In figure 5.2.(a), the 

local bounded stability conditions in (5.22)-(5.24) are assessed under the implementation 

of the MHSP controller. Figure 5.2.(a) shows that this controller is capable of satisfying 

equations (5.22)-(5.24) throughout the presented members of the 𝐿2 halo family. In figure 

5.2.(b), the MHSP controller is applied to the same halo orbit as in 5.1.(b), for 10 

revolutions around the nominal orbit, and under the same random initial perturbation. The 
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Figure 5.1. Station-Keeping Performance of the Original HSP Controller Using Linear Stability Analysis 

and Non-Linear Simulation 

 

 

Figure 5.2. Station-Keeping Performance of the MHSP Controller Using Linear Stability Analysis and 

Non-Linear Simulation 

control gains 𝑔 and 𝑔𝑐 are chosen to be constant and equal to 20 and 100, respectively.  

This non-linear simulation shows that the modified controller improves the performance 

of the original HSP controller, and is successful in maintaining the spacecraft in the vicinity 

of the high amplitude nominal orbit throughout the duration of the simulation.  

(a) Linear Stability Analysis  (b) Non-Linear Simulation  

(a) Linear Stability Analysis  (b) Non-Linear Simulation  
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5.3.3. Performance Comparison between Constant-Gain HSP and Variable-Gain MHSP 

Controllers   

Equations (5.25)-(5.27) are sufficient conditions on the minimum values of the control 

gains 𝑔 and 𝑔𝑐 to provide local bounded stability in the linearized dynamics. Using these 

conditions a time-varying, periodic set of control gains can be obtained. The station-

keeping performance for the variable-gain MHSP controller is then compared with the 

constant-gain MHSP controller. For this comparison, nominal orbit is chosen to be the 

same high amplitude 𝐿2 halo orbit used in the previous section as in figures 5.1 and 5.2. 

Applying equations (5.25)-(5.27) to this nominal orbit, will result in a minimum 

boundary for the values of the control gains 𝑔 and 𝑔𝑐. Figure 5.3 shows the calculated 

minimum boundary on the control gains for the nominal halo orbit. Values of 𝑔 and 𝑔𝑐 

chosen above the minimum boundary curves will guarantee that local bounded stability 

conditions, given in equations (5.22)-(5.24), are satisfied.  Note that equations (5.25)-(5.27) 

are time-periodic, and they can be calculated for only one period and used for the duration 

of the simulation. In figure 5.3, dashed lines indicate the lower boundary on the control 

gains, and the solid lines indicate the chosen values for the control gains. To compare the 

station-keeping performance under a constant and a variable-gain MHSP controller, total 

station-keeping cost for 10 revolutions (~ 5 years) around the nominal orbit is calculated 

using both control strategies. For the constant-gain MHSP controller, control gains 𝑔 and 

𝑔𝑐 are chosen to be equal to 5 and 20, respectively. Compared with figure 5.3, these 

constant control gains are large enough to ensure that the local bounded stability conditions 

are satisfied throughout the orbit. In this comparison, an initial random injection error is 

applied, which is a 1-𝜎 error of 1 km and 1 cm/s in position and velocity, respectively. 

Mission design constraint and other operation errors are not included in this comparison, 

as the aim is to understand the influence of a time-varying control gain on the station-

keeping performance of the MHSP controller. Furthermore, since a random injection error 

is used, a Monte Carlo simulation of 300 trials is conducted to take the average of the 

overall station-keeping cost for both controllers. In this Monte Carlo simulation, 300 trails  
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Figure 5.3. Variable Control Gains for the MHSP Controller      

will provide a suitable sample size as it ensures a minimal change in the moving average 

of the total station-keeping cost. Table 5.1, shows the station-keeping performance for the 

constant-gain and the variable-gain MHSP controllers. This table includes the average total 

station-keeping cost, 𝛥�̅�𝑇, over 10 revolutions around the nominal orbit, as well as the 

average cost over one year. The average linear divergence rate is also included. The linear 

divergence rate is calculated based on the slope of a linear fit to the spacecraft’s position 

error vector relative to the nominal orbit. According to the results shown in table 5.1, a 

variable-gain MHSP controller has a more fuel efficient total station-keeping cost. This is 

most likely due to the fact that the chosen constant control gains for a constant-gain MHSP 

controller would need to be large enough to ensure that equations (5.22)-(5.24) are satisfied 

throughout the entire nominal orbit. Consequently, the larger the control gains the higher 

the control acceleration, which will effectively increase the overall station-keeping cost. 

Furthermore, table 5.1 shows that both control strategies have a small positive linear 

divergence rate, which is in the order of meters per revolution. This positive slope of 

deviation indicates that the spacecraft may not stay indefinitely in the vicinity of the 

nominal orbit. As further explored in Appendix A, the underlying reason for this deviation 

                𝑔 

                min 𝑔  

  𝑔𝑐 

                min 𝑔𝑐  
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Table 5.1. Station-Keeping Performance Comparison for the Constant and Variable-Gain MHSP 

Controllers (300 trials) 

 𝛥�̅�𝑇 for 10 

revolutions 

[m/s] 

𝛥�̅�𝑇/ year 

[m/s] 

Average Linear 

Divergence 

Rate 

[km/rev] 

Constant-Gain 

MHSP Controller 

47.7301 9.3588 +0.0031 

Variable-Gain 

MHSP Controller 

31.8948 6.2538 +0.0024 

is most likely due to the fact that the HSP controller aims to achieve local bounded stability 

in the linearized dynamics, which does not necessarily guarantee a bounded stability in the 

non-linear dynamics. This diverging behaviour was also acknowledged by Scheeres [16] 

and Soldini [17]. Nevertheless, by using an HSP controller the decay of the spacecraft is 

no longer exponential, as in an uncontrolled motion, rather the spacecraft undergoes a slow 

polynomial decay.  

5.4. Discrete-Time MHSP Controller  

So far, the dynamical system under consideration has been continuous in time. In reality 

the spacecraft operates in a discrete-time dynamical environment due to the minimum time 

constraint to obtain an accurate orbit determination, or due to the time requirements for 

scientific operations. Therefore, the MHSP controller must be re-designed for a discrete-

time dynamical system. However, a direct approach does not exist to design the discrete-

time controller as the MHSP controller was never derived, rather it was proposed. 

Therefore, the discrete-time MHSP controller will be designed based on an approximation 

from the continuous-time controller.   

The discrete-time variational equations relative to a reference trajectory is given by,  

 𝛿�⃗�𝑘+1 = 𝐴𝐷𝑘
𝛿�⃗�𝑘 (5.28) 
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Where 𝛿�⃗�𝑘 is the state error vector at time 𝑡𝑘, and,   

 
𝐴𝐷𝑘

= 𝑒
∫ 𝐴(𝜏)𝑑𝜏

𝑡𝑘+1
𝑡𝑘 =  𝛷(𝑡𝑘+1,  𝑡𝑘) 

(5.29) 

Where 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡𝑘, and Δ𝑡𝑘 is the discretization time step or the sampling time in the 

discrete-time system. The poles of the discrete-time linearized dynamics are given by the 

roots of the characteristic polynomial,  

 |𝐴𝐷𝑘
− 𝜔𝐼| = 𝜔6 + 𝑏𝜔5 + 𝑐𝜔4 + 𝑑𝜔3 + 𝑒𝜔2 + 𝜔 + 𝑔 = 0 (5.30) 

To design an MHSP controller for the discrete-time system, the same methodologies 

will be used as in the continuous-time system. Therefore, the discrete-time controller aims 

to achieve local bounded stability by placing the poles of the discrete-time linearized 

variational equations, i.e. the roots of equation (5.30), on the unitary circle of the complex 

plane. The discrete-time MHSP controller is also constructed by projecting the position 

component of the error vector along the directions of the eigenvectors of 𝐴𝐷𝑘
. Furthermore, 

due to the fact that the discrete-time dynamics converges to the continuous-time dynamics 

as the discretization time step, Δ𝑡𝑘, approaches zero; the discrete-time controller must also 

converge to the continuous-time controller as Δ𝑡𝑘 approaches zero. That is,   

 lim
𝛥𝑡𝑘→0 

�⃗⃗�𝑘 = �⃗⃗�(𝑡) (5.31) 

To ensure that (5.31) holds, the following relationships between the eigenstructure of 𝐴𝐷𝑘
 

and 𝐴(𝑡) are exploited to construct the discrete-time MHSP controller. These relationships 

are derived from a first order Taylor series expansion of equation (5.29),  

 lim
𝛥𝑡𝑘→0 

𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝐴𝐷𝑘
) = 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝐴(𝑡)) (5.32) 

 
lim

𝛥𝑡𝑘→0 

𝑙𝑛(𝜔𝑖)

𝛥𝑡𝑘
= 𝜆𝑖 

(5.33) 
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Where 𝜔𝑖 is an eigenvalue of 𝐴𝐷𝑘
, and 𝜆𝑖 is an eigenvalue of 𝐴(𝑡). By using equations 

(5.31), (5.32) and (5.33), the following is proposed as the discrete-time MHSP controller,  

 �⃗⃗�𝑘 = (−𝜎𝑘
2𝑔[�⃗�1𝑘

�⃗�1𝑘

𝑇 + 𝑣2𝑘
�⃗�2𝑘

𝑇 ] − 𝛾𝑘
2𝑔𝑐[�⃗�𝑐𝑘

�⃗�𝑐𝑘
𝑇 + �⃗̅�𝑐𝑘

�⃗̅�𝑐𝑘
𝑇 ])𝛿𝑟𝑘⃗⃗⃗⃗  (5.34) 

Where 𝜎𝑘 =
𝑙𝑛(𝜔1)

𝛥𝑡𝑘
  and 𝜔1 is the unstable eigenvalue of 𝐴𝐷𝑘

. �⃗�1𝑘
 and �⃗�2𝑘

 are position 

components of the unstable and stable eigenvectors of 𝐴𝐷𝑘
, respectively. 𝛾𝑘 = 

𝑙𝑛(𝜔𝑐)

𝛥𝑡𝑘
  

where 𝜔𝑐 is one of the center eigenvalues of 𝐴𝐷𝑘
, and �⃗�𝑐 is the associated eigenvector. 

As in the continuous-time MHSP controller, implementation of the discrete-time 

controller impacts the coefficients of the characteristic polynomial in (5.30). This effect is 

as follows,  

 𝛿�⃗�𝑘+1 = 𝐴𝐷𝑘
𝛿�⃗�𝑘 + 𝐵𝐷𝑘

�⃗⃗�𝑘 (5.35) 

 𝛿�⃗�𝑘+1 = (𝐴𝐷𝑘
+ ⋯ 

𝐵𝐷𝑘
([(−𝜎𝑘

2𝑔[�⃗�1𝑘
�⃗�1𝑘

𝑇 + 𝑣2𝑘
�⃗�2𝑘

𝑇 ] − 𝛾𝑘
2𝑔𝑐[�⃗�𝑐𝑘

�⃗�𝑐𝑘
𝑇 + �⃗̅�𝑐𝑘

�⃗̅�𝑐𝑘
𝑇 ]) 03×3]) 𝛿�⃗�𝑘 

(5.36) 

 𝛿�⃗�𝑘+1 = 𝐴𝐷𝑘
̃ 𝛿�⃗�𝑘 (5.37) 

Where 𝐵𝐷 =  ∫ 𝛷(𝑡𝑘+1, 𝜏)
𝑡𝑘+1

𝑡𝑘
𝐵𝑑𝜏. Then, the characteristic polynomial for the modified 

dynamics is given by,    

 |𝐴𝐷𝑘
̃ − 𝜔𝐼| = 𝜔6 + �̃�𝜔5 + �̃�𝜔 + �̃�𝜔3 + �̃�𝜔2 + 𝑓𝜔 + �̃� = 0 (5.38) 

In order for the discrete-time MHSP controller to achieve local bounded stability, control 

gains 𝑔 and 𝑔𝑐 must be chosen such that all the roots of equation (5.38) are placed on the 

unitary circle. The following equations governs the choice of 𝑔 and 𝑔𝑐,  
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   𝑓𝑖:   𝜔𝑖�̅�𝑖(𝑔, 𝑔𝑐 , 𝑡𝑘, 𝛥𝑡𝑘) − 1 = 0, 𝑖 = 1,2, . . ,6 (5.39) 

By solving equations (5.39) at each time 𝑡𝑘 and step size Δ𝑡𝑘, a set of control gains (𝑔, 𝑔𝑐) 

can be determined to ensure that all the roots of the characteristic polynomial (5.38) have 

a magnitude equal to one. Equations (5.39) are also periodic in time and the resultant 

control gains will be periodic as well.  

5.5. Stability of the Controlled Linear System 

In this section a methodology is presented to assess the impact of the MHSP controller 

on the stability of the periodic orbit. Under the hypothesis of Floquet theory, a time-varying 

periodic linearized dynamics, such as equation (5.1), can be transformed to a time-invariant 

linear system with constant coefficients [29]. Through the following linear transformation,  

 𝜂(𝑡) =  𝐸−1(𝑡)𝛿�⃗�(𝑡) (5.40) 

the linearized time-varying system,   

 𝛿�̇⃗�(𝑡) =  𝐴(𝑡)𝛿�⃗�(𝑡) (5.41) 

is transformed to the following linear time-invariant system, 

 �̇�(𝑡) = 𝐽𝜂(𝑡) (5.42) 

Where 𝐸(𝑡) is the periodic Flouqet modal matrix. 𝐽 is a diagonal matrix containing the 

Poincare exponents as its diagonal entries. Poincare exponents include the stability 

information associated with the periodic trajectory in the linearized sense. By applying the 

linear transformation in (5.40) to the following state feedback controlled linear system,   

 𝛿�̇⃗�(𝑡) =  𝐴(𝑡)𝛿�⃗�(𝑡) + 𝐵�⃗⃗�(𝑡) =  [𝐴(𝑡) + 𝐵𝐾(𝑡)]𝛿�⃗�(𝑡) (5.43) 
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equation (5.43) will transform to the following linear system,  

 �̇�(𝑡) = [𝐽 + 𝐸−1(𝑡)𝐵𝐾(𝑡)]𝜂(𝑡) (5.44) 

Where the eigenvalues of [𝐽 + 𝐸−1(𝑡)𝐵𝐾(𝑡)], i.e. the modified Poincare exponents, will 

contain stability information associated with the controlled linear system.   

5.6. Simulation Results  

In this section, the discrete-time MHSP controller, proposed in section 5.4, is applied 

for station-keeping in the non-linear dynamics around the nominal 𝐿1 halo orbit. The goal 

of this analysis is to assess the station-keeping performance for the discrete-time MHSP 

controller under the mission design constraints and operation errors introduced in chapter 

3. Table 5.2 summarizes mission specifications, design constraints, and operation errors 

that is tended to be used for this simulation.   

Firstly, suitable control gains must be selected that would ensure the discrete-time local 

bounded stability conditions in (5.39) are satisfied. System of equations in (5.39) is a non-

linear over-constrained set of equations which can be solved through a least squares 

optimization as follows,   

Table 5.2. Mission Specifications, Design Constraints, and Operation Errors for the MHSP Controller 

Mission 

Specifications 

- Nominal orbit: 𝐿1 southern halo orbit (𝐴𝑧 ~ 223,992 km) 

- Mission duration: 10 revolutions (~ 5 years) 

Mission Design 

Constraints  

- Minimum Thrust Level: 0.3 mN 

- Δ𝑡𝑚𝑖𝑛: 3 weeks  

- No corrective maneuver if magnitude of position error vector is 

decreasing  

Operation Errors - Orbit injection and tracking errors: 1-σ errors of 1 km and 1 cm/s  

- Maneuver execution error: 1-σ error of  %1  
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�⃗� =  

[
 
 
 
 
 
 
 𝑓1:   𝜔1�̅�1(𝑔, 𝑔𝑐 , 𝑡𝑘, 𝛥𝑡𝑘) − 1

𝑓2:   𝜔2�̅�2(𝑔, 𝑔𝑐 , 𝑡𝑘, 𝛥𝑡𝑘) − 1

𝑓2:   𝜔3�̅�3(𝑔, 𝑔𝑐 , 𝑡𝑘, 𝛥𝑡𝑘) − 1

𝑓3:   𝜔4�̅�4(𝑔, 𝑔𝑐 , 𝑡𝑘, 𝛥𝑡𝑘) − 1

𝑓4:   𝜔5�̅�5(𝑔, 𝑔𝑐 , 𝑡𝑘, 𝛥𝑡𝑘) − 1

𝑓5:   𝜔6�̅�6(𝑔, 𝑔𝑐 , 𝑡𝑘, 𝛥𝑡𝑘) − 1]
 
 
 
 
 
 
 

 

 

 

(5.45) 

At each time 𝑡𝑘 and for a step size Δ𝑡𝑘, control gains 𝑔 and 𝑔𝑐 are chosen such that the 2-

norm of �⃗� is minimized. That is,  

 min
𝑔, 𝑔𝑐

|| �⃗�||2
2 = min

𝑔, 𝑔𝑐

(𝑓1
2 + 𝑓2

2 + ⋯+ 𝑓6
2) (5.46) 

The desired outcome of this optimization problem is the choice of 𝑔 and 𝑔𝑐 that would 

result in || �⃗�||2
2 = 0, regardless of the values of 𝑡𝑘 and Δ𝑡𝑘. Nevertheless, this may not 

always be the outcome. Without loss of generality 𝑡𝑘 is set to 𝑡0, as illustrated in the figure 

5.4. The optimization problem (5.46) is then solved for different values of Δ𝑡𝑘. Figure 5.5 

shows the minimum value of || �⃗�||2
2 at 𝑡𝑘 = 𝑡0 for increasing values of Δ𝑡𝑘. This figure 

suggests that for small discretization time steps (less than 2 hours), the discrete-time MHSP 

controller is capable of satisfying the discrete-time local bounded stability conditions at 

𝑡𝑘 = 𝑡0, since || �⃗�||2
2 = 0 (with numerical tolerance of 10-12). However, for Δ𝑡𝑘 values 

larger than 2 hours, the minimum value of || �⃗�||2
2 increases which indicates that the 

discrete-time controller does not satisfy the local bounded stability conditions anymore. 

Despite of this limitation, it is still possible to find an optimal set of control gains by solving 

the optimization problem (5.46) that does not necessarily satisfy the discrete-time local 

bounded stability conditions in (5.39), but it does offer an improvement on the stability of 

the nominal orbit. This effect can be seen by analyzing the stability of the controlled linear 

dynamics using the method developed in section 5.5.  
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By solving the optimization problem (5.46) throughout the orbit and for a specified 

step size Δ𝑡𝑘, optimal sets of control gains 𝑔 and 𝑔𝑐 are computed for the entire orbit. Using 

these optimal control gains in the discrete-time MHSP controller, the stability of the 

controlled linear system can then be analyzed by evaluating the modified Poincare 

exponents from equation (5.44). Figure 5.6 shows the values of the optimal control gains 

calculated for a discretization step size, Δ𝑡𝑘, equal to 1 hour. Poincare exponents of the 

nominal orbit as well as the modified Poincare exponents are plotted in figure 5.7. From 

this figure, the nominal orbit possesses two pairs of pure real and imaginary Poincare 

exponents as well as two pairs of zero Poincare exponents, which are shown in red dots. 

The existence of the real and positive Poincare exponent indicates that the nominal orbit is 

unstable. On the other hand, the modified Poincare exponents by the discrete-time MHSP 

controller are all located on the imaginary axis which are shown in blue. Therefore, the 

modified linear system is bounded stable which is the aim of the MHSP controller. 

However, as discretization step size increases the discrete-time controller is no longer able 

to place the Poincare exponents on the imaginary axis, which corresponds to the fact that 

the discrete-time controller is not able to satisfy the local bounded stability conditions when 

Δ𝑡𝑘 is larger than 1 hour. Figures 5.8 and 5.10 show the optimal control gains for the 

discrete-time MHSP controller calculated for Δ𝑡𝑘 equal to 48 hours and 3 weeks, 

respectively. Figures 5.9 and 5.11 show the associated modified Poincare exponents by the 

Figure 5.4. Location of 𝑡0 on the nominal 

orbit 

Figure 5.5. || �⃗�||2
2 at 𝑡0 as a function of 

discretization step size 
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Figure 5.6. Optimal Control Gains 

for 𝛥𝑡𝑘 = 1 hour                                             

Figure 5.7. Poincare Exponents of the Controlled 

and Uncontrolled Linear System (𝛥𝑡𝑘 = 1 hour) 

Figure 5.8. Optimal Control Gains 

for 𝛥𝑡𝑘 = 48 hours                                          

Figure 5.9. Poincare Exponents of the Controlled 

and Uncontrolled Linear System (𝛥𝑡𝑘 = 48 hours) 

Figure 5.10. Optimal Control Gains 

for 𝛥𝑡𝑘 = 3 weeks                                         

Figure 5.11. Poincare Exponents of the Controlled 

and Uncontrolled Linear System (𝛥𝑡𝑘 = 3 weeks) 
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discrete-time MHSP controller.  These figures indicate that although the discrete-time 

controller is not able to place the Poincare exponents on the imaginary axis, the stability of 

the orbit has improved in the linear sense as the magnitude of the positive Poincare 

exponent has decreased. Such improvement in the linear stability can also be verified by 

non-linear simulations.       

The discrete-time MSHP controller is then applied for station-keeping around the 

nominal 𝐿1 halo orbit. The simulations are done in the non-linear dynamics, using mission 

specifications, design constraints and operation errors listed in table 5.2. As in the linear 

stability analysis, the station-keeping performance for three discretization step sizes are 

evaluated: Δ𝑡𝑘 = 1 hour, Δ𝑡𝑘 = 48 hours, and Δ𝑡𝑘 = 3 weeks. For each case, control gains 

are chosen based on the optimal values plotted in figures 5.6, 5.8 and 5.10, respectively. A 

Monte Carlo simulation of 300 trials is conducted to evaluate the average station-keeping 

costs. A sample size of 300 is sufficient to ensure that there is minimal change in the 

moving average of the total station-keeping costs. 

The average station-keeping cost for 10 revolutions of the nominal orbit and the 

average cost per year as well as the linear divergence rate from the nominal orbit for Δ𝑡𝑘 

equal to 1 hour and Δ𝑡𝑘 equal to 48 hours are presented in table 5.3. For purposes of 

illustration, figures 5.12 and 5.13 show representative station-keeping trails from the 

Monte Carlo simulations for Δ𝑡𝑘 equal to 1 hour and Δ𝑡𝑘 equal to 48 hours, respectively. 

These figures include the controlled nominal orbit in the rotating frame, the acceleration 

history of the discrete-time MHSP controller, and the motion relative to the nominal orbit 

expressed in the three position components as well as the distance between the spacecraft  

Table 5.3. Station-Keeping Performance for the Discrete-Time MHSP Controller 

 with 𝛥𝑡𝑘 = 1 hour and 𝛥𝑡𝑘 = 48 hours (300 trials) 

 𝛥�̅�𝑇 for 10 

revolutions 

[m/s] 

𝛥�̅�𝑇/ year 

[m/s] 

Average Linear 

Divergence 

Rate 

[km/rev] 

Δ𝑡𝑘 = 1 hour 8.6127 2.6381 +2.5991 

Δ𝑡𝑘 = 48 hours 29.1516 3.0126 +14.6609 
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and the nominal orbit over time. In figures 5.12(a) and 5.13(a), blue lines indicate parts of 

the trajectory where the controller is on, and magenta lines correspond to parts of the 

trajectory where controller is turned off since either the mission design constraints 

(minimum thrust level and Δ𝑡𝑚𝑖𝑛) are not satisfied, or the magnitude of the position error 

vector is not increasing.   

These results show that the total station-keeping cost and the linear divergence rate 

increase as discretization step size, Δ𝑡𝑘, increases from 1 hour to 48 hours. These results 

are also in agreement with the predications from the linear stability analysis in figures 5.7 

and 5.9. Additionally, although the linear stability analysis in figure 5.7 indicates that the 

modified linearized system with Δ𝑡𝑘 equal to 1 hour is bounded stable, the average linear 

divergence rate is positive. As explained in Appendix A, this positive slope of divergence 

is due to the following two reasons. One contributing factor is that local bounded stability 

in the linearized dynamics does not guarantee bounded stability in the non-linear dynamics. 

Another contributing factor is the incorporation of operation errors and mission constraints 

which seem to accelerate the deviation rate. However, despite of the deviation of the 

spacecraft, the MHSP controller is able maintain the spacecraft in the vicinity of the 

nominal orbit for the duration of the mission, and create a spiral-like motion around the 

nominal trajectory which has variety applications in formation flight of spacecraft and 

interferometry imaging.  

A Monte Carlo simulation was also conducted for station-keeping with discretization 

step size of 3 weeks. However, in none of the 300 trials the discrete-time MHSP controller 

was able to maintain the spacecraft in the vicinity of the nominal orbit for 10 revolutions. 

Instead, for these trails the average divergence time was calculated and compared with the 

average divergence time of the uncontrolled motion under an initial random injection error. 

In this analysis, divergence time is defined as the time that the magnitude of the position 

error vector of the spacecraft relative to the nominal orbit reaches 10,000 km. These results 

are shown in table 5.4. Figure 5.14 is a representative simulation out of the 300 conducted 

trials. In this figure, the red line shows the deviation of the uncontrolled motion which has 

an exponential growth. The blue and magenta line shows the controlled motion under the 

discrete-time MHSP controller with Δ𝑡𝑘 equal to 3 weeks, where blue lines indicate regions  
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Figure 5.12. Orbital Station-Keeping for the Nominal 𝐿1 Halo Orbit Using the Discrete-time MHSP 

Controller (𝛥𝑡𝑘 = 1 hour) 
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Figure 5.13. Orbital Station-Keeping for the Nominal 𝐿1 Halo Orbit Using the Discrete-time MHSP 

Controller (𝛥𝑡𝑘 = 48 hours) 
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where the spacecraft is thrusting and magenta lines indicate regions where the controller is 

off as the mission design constraints are not satisfied. Based on table 5.4 and figure 5.14, 

although the discrete-time controller is not able to indefinitely maintain the spacecraft in 

the vicinity of the orbit, it does, however, prolong the divergence time of the spacecraft by 

approximately 76%. These results are also in agreement with the linear stability analysis 

in figure 5.11, which indicates that the controlled trajectory under the discrete-time MHSP 

controller with Δ𝑡𝑘 equal to 3 weeks, is able to improve the stability of the nominal orbit 

by decreasing the value of the orbit’s positive Poincare exponent.   
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Table 5.4. Station-Keeping Performance of the Discrete-time MHSP controller with 𝛥𝑡𝑘 = 3 weeks   

 𝛥�̅�𝑇 [m/s] Average Divergence Time 

[revs] [months] 

Controlled Motion 

(Δ𝑡𝑘 = 3 weeks) 

147.9052 1.772 10.5090 

Uncontrolled 

Motion 

-  1.0061 5.9621 

 

 

 

Figure 5.14. Uncontrolled vs Controlled Position Error Vector Using the Discrete-time MHSP Controller 

with 𝛥𝑡𝑘 = 3 weeks   

  

 

 

Uncontrolled Motion 

Controlled Motion  

(by the discrete-time MHSP 

with Δ𝑡𝑘 = 3 weeks) 
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6. SUMMARY AND RECOMMENDATIONS 

6.1. Summary  

In this investigation, orbital maintenance strategies for unstable libration point orbits 

are examined under the influence of real-world mission design constraints and operation 

errors. The control strategies studied in this investigation exploit the natural dynamical 

characteristics of the phase space surrounding the nominal orbit in the CR3BP in order to 

maintain the spacecraft in the vicinity of the desired nominal trajectory. In this study, two 

control strategies are studied and further developed: the impulsive Floquet Mode (FM) 

controller and the continuous Hamiltonian Structure-Preserving (HSP) controller. The FM 

controller is modified to accommodate feasible maneuver directions that are constrained to 

a plane or a line. This controller is shown to be applicable for orbital station-keeping of 

spin stabilized spacecraft that are only equipped with either tangential thrusters or axial 

thrusters. The continuous HSP controller, originally designed for planar trajectories, is 

extended for application to three-dimensional libration point orbits with hyperbolic 

instability. The HSP controller is then discretized to account for the minimum time required 

to obtain accurate post-burn orbit determination data, and/or the minimum time 

requirement for scientific operations. Both controllers, the FM controller and HSP 

controller, are applied to an unstable 𝐿1 Halo orbit in the Sun-Earth/Moon system and the 

performances of these controllers are examined for 10 orbital periods (approximately 5 

years), under the impacts of the spacecraft’s operation errors and mission design 

constraints. The operation errors used in this analysis include orbit injection error, orbit 

tracking error, and maneuver execution error. The mission design constraints incorporated 

in this study include the minimum time constraint for orbit determination and/or scientific 

operations, the minimum allowable maneuver magnitude, and a constraint that only 
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implements corrective maneuvers if the magnitude of spacecraft’s position error vector is 

increasing between two successive orbit tracking intervals. The main conclusions of this 

investigation are as follow:  

(i) The FM controller, augmented with feasible maneuver direction constraints, and 

the Modified HSP (MHSP) controller are capable of successfully improving the 

stability of an unstable libration point orbit.  

(ii) This work emphasizes the importance of incorporation of mission design 

constraints in station-keeping simulation algorithms, which has led to fundamental 

modifications to the design of the original controllers studied in this investigation.   

(iii) Each of the controllers presented in this investigating, offers unique mission 

capabilities that is applicable to a specific flight hardware.         

6.2. Recommendations for Future Work 

Orbital maintenance control strategies developed in this research investigation provide 

groundwork for next generation of spacecraft control systems to accommodate increasingly 

complex space missions. Potential areas for future research development are as follows: 

(i) Higher fidelity force models may be applied to the simulation algorithm. In this 

investigation, the orbital maintenance control strategies are simulated under the 

assumptions of the CR3BP. This simplified force model provides useful insights 

into the performance of the control strategies; however, the spacecraft’s motion is 

not only subjected to the forces modeled by the CR3BP. It is of interest to examine 

the controllers’ performance under additional perturbations such as the solar 

radiation pressure and additional attracting bodies.     

(ii) In this study, the MHSP controller is proposed for libration point orbits with 

hyperbolic instability. Such orbits consist of one stable subspace, one unstable 

subspace, and four center subspaces. It may be of interest to extend this controller 

for other types of libration point orbits.   
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(iii) Methods to optimize the station-keeping fuel consumption are of interest. The two 

control strategies employed in this investigation result in encouraging low fuel 

consumptions, although no claim can be made that the results are optimal. Previous 

studies by Keeter [15] suggest that the location of corrective maneuvers on the 

nominal orbit and the timing between them impact the station-keeping fuel cost. 

For future studies, it may be of interest to investigate optimal timing and orbital 

locations to implement maneuvers in order to minimize station-keeping fuel 

consumption. In the MHSP controller the choice of the control gains also has an 

impact on the fuel cost. Optimization methods may be investigated to choose an 

optimal set of control gains.    
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A. Trajectory Deviation in FM and MHSP Control Strategy 

Results from chapters 4 and 5 showed that the motion of the spacecraft, controlled by 

the FM controller and the MHSP controller, undergoes a deviation from the nominal 

trajectory. To better understand the underlying reasons for this deviation, the station-

keeping performance for each controller is examined under the following four scenarios:  

Table A.1. Simulation Scenarios for the FM and MHSP controllers 

  Scenario 

(1) 

Scenario 

(2) 

Scenario 

(3) 

Scenario 

(4) 

O
p
er

at
io

n
 

E
rr

o
rs

 

Orbit injection error: 
(1-σ error of 1 km and 1 cm/s) 

    −   

Orbit tracking error:  
(1-σ error of 1 km and 1 cm/s) 

−   −   

Maneuver execution error: 
(1-σ error of  %1) 

−   −   

M
is

si
o
n
 D

es
ig

n
 

C
o
n
st

ra
in

ts
  

Minimum Thrust Level: 
(FM: 0.025 m/s, MHSP: 0.3 mN) 

− −     

Δ𝑡𝑚𝑖𝑛: 

(FM: 3 weeks, MHSP: 1 hour)  

− −     

Controller Off: 
(if magnitude of position error 

vector is decreasing) 

− −     

In scenario (1), station-keeping simulations are propagated with only an initial orbit 

injection error. In scenario (2), all operation errors all included in the trails, but no mission 

design constraints are included. In scenario (3), only mission design constraints are 

included. Lastly, in scenario (4), all operation errors and mission design constraints are 

included in the trails. To assess the station-keeping performance in each scenario, the 

average linear divergence rate over 10 revolutions around the nominal orbit, as well as the 

average divergence time is evaluated. These measurements are averaged over a 300-trail 

Monte Carlo simulation. As defined in chapter 5, the divergence time is defined as the time 
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that the magnitude of the position error vector of the spacecraft relative to the nominal orbit 

exceeds 10,000 km.   

A.I. Trajectory Deviation under FM Controller  

To better understand the position deviation of a spacecraft controlled by the FM control 

law, the station-keeping performance for the FM controller is assessed under the four 

scenarios given in table A.1. The FM controller used for this analysis is consistence with 

equation (4.7) in which the maneuvers are constrained to a plane fixed in the rotating frame. 

Similar results should hold for the FM controller with a line constraint. Table A.2 

summarizes the station-keeping results, presented in terms of the average linear divergence 

rate for 10 revolutions around the nominal orbit, as well as the average divergence time.  

Table A.2. Station-keeping Performance for the FM Controller 

 Scenario 

(1) 

Scenario 

(2) 

Scenario 

(3) 

Scenario 

(4) 

Average Linear Divergence Rate 

[km/rev]  
(divergence rate over 10 revolutions) 

~ 0 +0.0167 +0.0093 +0.0219 

Average Divergence Time 

[rev]  

>100 56.7182 83.6471 47.9146 

The results from scenario (1) shows no deviation from the nominal orbit as the average 

linear divergence rate is approximately zero within numerical tolerance and the spacecraft 

stays in the vicinity of the nominal trajectory for more than 100 periods.  In scenario (2), 

the addition of operation errors appears to cause the spacecraft to deviate with a positive 

rate of 0.0167 km/rev, and the divergence time in this case is about 56.7 revolutions around 

the nominal orbit. Scenario (3) indicates that incorporation of mission design constraints 

also results in position deviation. A comparison between scenario (2) and scenario (3) 

shows that incorporation of operation errors affects the position deviation more adversely 

than incorporation of mission design constraints. Lastly, scenario (4) shows that the 
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combination of both operation errors and mission design constraints will cause the 

spacecraft to diverge more rapidly when compared to scenarios (2) and (3). 

In [15], Keeter suggested that the reason for such divergence is because the position 

deviations are measured based on an isochronous correspondence, and the deviation could 

merely represent a shift along the nominal orbit. To assess this effect further, station-

keeping results are analyzed by examining the Poincare map of the controlled motion for 

a one-sided hypersurface fixed in the �̂� − �̂� plane. Such Poincare map is defined by 

intersection of the controlled motion with the hypersurface when 𝑧 component of the flow 

changes from positive to negative. The pattern of the return points on this map will contain 

clues on the behavior of the controlled motion in the non-linear dynamics. For instance, if 

all the return points coincide at exactly one point on the map, this indicates that the 

controlled motion is a periodic trajectory. If the return points form a closed curve on the 

map, this is an indication that the controlled motion is quasi-periodic. Lastly, if they from 

an outward spiral pattern, this is an indication that the controlled motion is unstable and is 

deviation from the nominal orbit. The benefit of analyzing Poincare maps is that the relative 

controlled motion is no longer measured based on an isochronous correspondence.   

Figures A.1 and A.3 are the representative Poincare maps generated for scenarios (1) 

and (4). Figures A.2 and A.4 are the corresponding position deviation history for figures 

A.1 and A.3, respectively. The Poincare map in figure A.1 is propagate for 100 revolutions 

of the nominal orbit, and it indicates a quasi-periodic controlled trajectory as the return 

points form a closed curve on the map. On the other hand, the Poincare map in figure A.3 

shows that the return points are spiraling outward, which indicates that the spacecraft is in 

fact deviating from the nominal orbit. 

 Consequently, a spacecraft controlled by the FM controller may not stay indefinitely 

around the nominal orbit due to the incorporation of operation errors and mission design 

constraints. Nevertheless, the FM controller is able to maintain the spacecraft in the vicinity 

of the nominal orbit over a short time span of about 10 revolutions, which is still an 

acceptable duration for the majority of mission applications.     
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Figure A.1. Poincare Map (X-Y 

Hyperplane) for the FM Controller 

(Scenario (1)) 

Figure A.2. Spacecraft’s Position Deviation 

with respect to the Nominal Orbit for the FM 

Controller (Scenario (1)) 

Figure A.3. Poincare Map (X-Y 

Hyperplane) for the FM Controller 

(Scenario (4)) 

Figure A.4. Spacecraft’s Position Deviation 

with respect to the Nominal Orbit for the 

FM Controller (Scenario (4)) 

Nominal 𝐿1Orbit 

Nominal 𝐿1Orbit 
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A.II. Trajectory Deviation under MHSP Controller  

The station-keeping performance of the MSHP controller is examined under the four 

scenarios given in table A.1. For this analysis, a discrete-time MSHP controller with a 

discretization step size, Δ𝑡𝑘, equal to 1 hour is used. Table A.3 summarizes the station-

keeping results, presented in terms of the average linear divergence rate for 10 revolutions 

around the nominal orbit, as well as the average divergence time.  

Table A.3. Station-keeping Performance for the MHSP Controller 

 Scenario 

(1) 

Scenario 

(2) 

Scenario 

(3) 

Scenario 

(4) 

Average Linear Divergence Rate 

[km/rev]  
(divergence rate over 10 revolutions) 

+0.0040 +1.7125 +0.1581 +2.5991 

Average Divergence Time 

[rev]  

95.5121 44.3710 76.7112 24.6800 

The results from scenario (1) shows that the spacecraft undergoes a gradual divergence 

with a small average divergence rate of 0.004 km/rev, measured over 10 revolutions of the 

nominal orbit. The spacecraft will eventually escape the vicinity of the orbit after 95.5 

revolutions.  This divergence is most likely due to the fact that the MHSP controller aims 

to achieve local bounded stability in the linearized dynamics, which does not guarantee 

bounded stability in the non-linear dynamics. As in the FM controller, when operation 

errors and mission design constraints are included in the simulation, the spacecraft will 

diverge more rapidly than in scenario (1). Comparison between scenarios (2) and (3) also 

suggests that incorporation of operation errors results in a higher divergence rate than the 

incorporation of mission design constraints. Figures A.5 and A.7 are the representative 

Poincare maps generated for scenarios (1) and (4). Figures A.6 and A.8 are the 

corresponding position deviation history for figures A.1 and A.3, respectively. These plots 

show that a spacecraft controlled by the MHSP controller will eventually diverge from the 

vicinity of the nominal orbit, and the divergence rate becomes faster when operation errors 

and mission design constraint are included in the simulation.  
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Figure A.5. Poincare Map (X-Y 

Hyperplane) for the MHSP 

Controller (Scenario (1)) 

Figure A.6. Spacecraft’s Position Deviation 

with respect to the Nominal Orbit for the 

MHSP Controller (Scenario (1)) 

Figure A.7. Poincare Map (X-Y 

Hyperplane) for the MHSP 

Controller (Scenario (4)) 

Figure A.8. Spacecraft’s Position Deviation 

with respect to the Nominal Orbit for the 

MHSP Controller (Scenario (4)) 

Nominal 𝐿1Orbit 

Nominal 𝐿1Orbit 
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B. Effect of MHSP Control Strategy on the Hamiltonian 

By definition, a Hamiltonian system is the set of 2n ordinary differential equations 

written as,    

 
�̇� = 𝐾

𝜕𝐻

𝜕𝑍
 

(B.1) 

Where equations in (B.1) are known as the Hamilton’s equations of motion. 𝐾 =

 [
0 𝐼𝑛

−𝐼𝑛 0
], and  𝐻 is the Hamiltonian of the dynamical system.  

The CR3BP is a Hamiltonian system as the equations of motion of a spacecraft in this 

dynamical environment can be represented in the form of the Hamilton’s equations of 

motion in (B.1). In this appendix, the derivation of the non-dimensional Hamilton’s 

equations of motion in the CR3BP is presented. Then the effect of the MHSP controller on 

the Hamiltonian is examined.   

The derivation of the non-dimensional Hamilton’s equations of motion is as follows. 

First, the kinetic energy associated with the spacecraft is given by,  

 
𝑇 =

1

2
�̇⃗�. �̇⃗� 

(B.2) 

Where ( . ) operator is the dot product. The expression for �̇⃗� is given in equation (2.15). By 

substituting the kinematic expression from (2.15) into (B.2), the kinetic energy of the 

spacecraft can be written in the following form,  

 
𝑇 =

1

2
((�̇� − 𝑦)2 + (�̇� + 𝑥)2 + �̇�2) 

(B.3) 

Next, the potential energy of a spacecraft in the CR3BP is expressed,  
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𝑈 = − 

1 − 𝜇

𝑑1
̅̅ ̅

−
𝜇

𝑑2
̅̅ ̅

 
(B.4) 

Given the kinetic and the potential energy, the Lagrangian 𝐿 is defined as follows [25],  

 𝐿 = 𝑇 − 𝑈 (B.5) 

In a general sense, the Lagrangian can be expressed in terms of the generalized coordinate 

vectors �⃗� and �̇⃗�, which are defined as,  

 �⃗� = (𝑞1, 𝑞2, 𝑞3)
𝑇 ≡ (𝑥, 𝑦, 𝑧) (B.6) 

 �̇⃗� = (�̇�1, �̇�2, �̇�3)
𝑇 ≡ (�̇�, �̇�, �̇�) (B.7) 

By using (B.6) and (B.7), the Lagranginan in (B.5) can be written as, 

 
𝐿(�⃗�, �̇⃗�) =

1

2
((�̇�1 − 𝑞2)

2 + (�̇�2 + 𝑞1)
2 + �̇�3

2) +
1 − 𝜇

𝑑1
̅̅ ̅

+
𝜇

𝑑2
̅̅ ̅

 
(B.8) 

Next, a generalized momentum vector �⃗� is defined,  

 �⃗� = (𝑝1, 𝑝2, 𝑝3)
𝑇 (B.9) 

Such that,  

 
�⃗� =

𝜕𝐿

𝜕�̇⃗�
 

(B.10) 

By substituting the Lagrangian 𝐿 into (B.10), the following relationships between 𝑝𝑖, 𝑞𝑖, 

and �̇�1can be derived for the application in the CR3BP,  
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 �̇�1 = 𝑝1 + 𝑞2 (B.11) 

 �̇�2 = 𝑝2 − 𝑞1 (B.12) 

 �̇�3 = 𝑝3 (B.13) 

In general, the Hamiltonian 𝐻 is defined as [25],   

 𝐻(�⃗�, �̇⃗�, 𝜏∗) = �⃗�. �̇⃗� −  𝐿(�⃗�, �̇⃗�, 𝜏∗) (B.14) 

By applying equations (B.11)-(B.13), as well as substituting the expression for the 

Lagrangian from (B.8) into (B.14), the Hamiltonian in the CR3BP can be written as,  

 
𝐻(�⃗�, 𝑝) =

1

2
(𝑝1

2 + 𝑝2
2 + 𝑝3

2) + 𝑝1𝑞2 − 𝑝2𝑞1 − 𝑈(�⃗�) 
(B.15) 

Therefore the Hamilton’s equations of motion for the CR3BP are expressed as follows 

[25], 

 
�̇⃗�𝑇 =

𝜕𝐻

𝜕�⃗�
 

       (B.16) 

 
�̇⃗�𝑇 = −

𝜕𝐻

𝜕�⃗�
 

(B.17) 

The expression for the Hamiltonian in (B.15) is not an explicit function of time, and thus 

𝐻 is time-invariant. This indicates that the CR3BP is an autonomous Hamiltonian system.  

The effect of the MHSP controller on the Hamiltonian of the CR3BP can be examined 

by re-deriving the Hamiltonian from the equations of motion of the spacecraft augmented 

by the MHSP controller. From chapter 5, the expression for the continuous-time MHSP 

controller is given by,  

 �⃗⃗�(𝑡) = (−𝜎2𝐺[�⃗�1�⃗�1
𝑇 + �⃗�2�⃗�2

𝑇] − 𝛾2𝐺𝑐[�⃗⃗�𝑐 �⃗⃗�𝑐
𝑇 + �⃗⃗̅�𝑐 �⃗⃗̅�𝑐

𝑇])𝛿𝑟 (B.18) 
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 �⃗⃗�(𝑡) = 𝑇𝑐𝛿𝑟 (B.19) 

Where, 

 
𝑇𝑐 = [

𝑇11 𝑇12 𝑇13

𝑇21 𝑇22 𝑇23

𝑇31 𝑇32 𝑇33

] 
(B.20) 

From equation (B.18) it is clear that 𝑇𝑐 is a symmetric matrix, which means that,   

 𝑇12 = 𝑇21 (B.21) 

 𝑇13 = 𝑇31 (B.22) 

 𝑇23 = 𝑇32 (B.23) 

It should be noted that the same results holds for the discrete-time MHSP controller.  

By applying the MHSP controller to the equations of motion of a spacecraft in the 

CR3BP, as derived in chapter 2 in equations (2.26)-(2.28), the modified equations of 

motions can be written as follows,   

 
�̈� −  2�̇� =

𝜕𝑈∗

𝜕𝑥
+ 𝑇11𝛿𝑥 + 𝑇12𝛿𝑦 + 𝑇13𝛿𝑧     

(B.24) 

 
�̈� +  2�̇� =  

𝜕𝑈∗

𝜕𝑦
+ 𝑇21𝛿𝑥 + 𝑇22𝛿𝑦 + 𝑇23𝛿𝑧  

(B.25) 

 
�̈� =  

𝜕𝑈∗

𝜕𝑧
+ 𝑇31𝛿𝑥 + 𝑇32𝛿𝑦 + 𝑇33𝛿𝑧   

(B.26) 

Next, through the following coordinate transformation,  

 𝑥 = 𝑞1 (B.27) 

 𝑦 = 𝑞2 (B.28) 



90 

 

 

9
0
 

 𝑧 = 𝑞3 (B.29) 

 �̇� = 𝑝1 + 𝑞2 (B.30) 

 �̇� = 𝑝2 − 𝑞1 (B.31) 

 �̇� = 𝑝3 (B.32) 

the equations of motion in (B.24)-(B.26) can be expressed as 6 ordinary differential 

equations in terms of the generalized coordinate vectors (�⃗�, �⃗�),  

 �̇�1 = 𝑝1 + 𝑞2 (B.30) 

 �̇�2 = 𝑝2 − 𝑞1 (B.31) 

 �̇�3 = 𝑝3 (B.32) 

 
�̇�1 = 𝑝2 +

𝜕𝑈∗

𝜕𝑞1
+ 𝑇11𝛿𝑞1 + 𝑇12𝛿𝑞2 + 𝑇13𝛿𝑞3     

(B.33) 

 
�̇�2 = −𝑝1 +

𝜕𝑈∗

𝜕𝑞2
+ 𝑇21𝛿𝑞1 + 𝑇22𝛿𝑞2 + 𝑇23𝛿𝑞3     

(B.34) 

 �̇�3 = 𝑝3 + 𝑇31𝛿𝑞1 + 𝑇32𝛿𝑞2 + 𝑇33𝛿𝑞3     (B.35) 

In order for the equations of motion in (B.30)-(B.35) to represent a Hamiltonian system, a 

modified Hamiltonian �̃� must exist such that,  

 
�̇⃗�𝑇 =

𝜕�̃�

𝜕�⃗�
 

       (B.36) 

 
�̇⃗�𝑇 = −

𝜕�̃�

𝜕�⃗�
 

(B.37) 

By equating (B.30)-(B.35) with (B.36)-(B.37), the modified Hamiltonian �̃� must satisfy 

the following conditions,  



91 

 

 

9
1
 

 𝜕�̃�

𝜕𝑝1
= 𝑝1 + 𝑞2 

(B.38) 

 𝜕�̃�

𝜕𝑝2
= 𝑝2 − 𝑞1 

(B.39) 

 𝜕�̃�

𝜕𝑝3
= 𝑝3 

(B.40) 

 𝜕�̃�

𝜕𝑞1
= −𝑝2 −

𝜕𝑈∗

𝜕𝑞1
− 𝑇11𝛿𝑞1 − 𝑇12𝛿𝑞2 − 𝑇13𝛿𝑞3     

(B.41) 

 𝜕�̃�

𝜕𝑞2
= 𝑝1 −

𝜕𝑈∗

𝜕𝑞2
− 𝑇21𝛿𝑞1 − 𝑇22𝛿𝑞2 − 𝑇23𝛿𝑞3     

(B.42) 

 𝜕�̃�

𝜕𝑞3
= −𝑝3 − 𝑇31𝛿𝑞1 − 𝑇32𝛿𝑞2 − 𝑇33𝛿𝑞3     

(B.43) 

After some algebra, it is trivial to show that in order for �̃� to exist the following three 

conditions must hold,   

 𝑇12 = 𝑇21 (B.44) 

 𝑇13 = 𝑇31 (B.45) 

 𝑇23 = 𝑇32 (B.46) 

These three conditions are automatically satisfied by the MHSP controller since 𝑇𝑐 is a 

symmetric matrix. The modified Hamiltonian �̃� is derived from equations (B.38)-(B.43) 

and is equal to,  

 
�̃� (�⃗�, �⃗�) =

1

2
(𝑝1

2 + 𝑝2
2 + 𝑝3

2) + 𝑝1𝑞2 − 𝑝2𝑞1 − 𝑈(�⃗�) −
1

2
𝛿�⃗�𝑇𝑐𝛿�⃗� 

(B.47) 

Note that �̃� is not an explicit function of time. Therefore the modified dynamics by the 

MHSP controllers remains an autonomous and Hamiltonian system as the CR3BP. Hence 

it is called a Hamiltonian Structure-Preserving Controller. 
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C. MHSP Control Strategy to Stabilize Hyperbolic Periodic Systems 

In chapter 5 the Modified Hamiltonian Structure-Preserving (MHSP) controller is 

proposed which aims to place the roots of the characteristic polynomial for a three-

dimensional hyperbolic periodic system on the imaginary axis. Three conditions are 

derived for the coefficients of the characteristic polynomial in (5.21) to ensure that the 

roots are purely imaginary. These three conditions are presented below and must be 

satisfied by the MHSP controller,  

 �̃�(𝑔, 𝑔𝑐 , 𝑡) =  4 − �̃�𝑥𝑥
∗ − �̃�𝑦𝑦

∗ − �̃�𝑧𝑧
∗ > 0  (C.1) 

 �̃�(𝑔, 𝑔𝑐 , 𝑡) = |�̃�𝑅𝑅
∗ | > 0 (C.2) 

 �̃��̃� − �̃�(𝑔, 𝑔, 𝑡) = (4 − �̃�𝑥𝑥
∗ − �̃�𝑦𝑦

∗ − �̃�𝑧𝑧
∗ ) ×… 

(−�̃�∗
𝑥𝑦
2

−�̃�∗
𝑥𝑧
2

+ �̃�𝑥𝑥
∗ �̃�𝑦𝑦

∗ −�̃�∗
𝑦𝑧
2

− 4�̃�𝑧𝑧
∗ + �̃�𝑥𝑥

∗ �̃�𝑧𝑧
∗ + �̃�𝑦𝑦

∗ �̃�𝑧𝑧
∗ )

− |�̃�𝑅𝑅
∗ | > 0 

(C.3) 

Where �̃�∗
𝑅𝑅 = 𝑈𝑅𝑅

∗ − 𝜎2𝑔[�⃗�𝑢�⃗�𝑢
𝑇 + �⃗�𝑠�⃗�𝑠

𝑇] − 𝛾2𝑔𝑐[�⃗�𝑐�⃗�𝑐
𝑇 + �⃗̅�𝑐 �⃗̅�𝑐

𝑇] =  [

�̃�𝑥𝑥
∗ �̃�𝑥𝑦

∗ �̃�∗
𝑥𝑧

�̃�𝑥𝑦
∗ �̃�𝑦𝑦

∗ �̃�∗
𝑦𝑧

�̃�𝑥𝑧
∗ �̃�𝑦𝑧

∗ �̃�𝑧𝑧
∗

].  

Without loss of generality, the position component eigenvectors �⃗�𝑢, �⃗�𝑠, and �⃗�𝑐 can be written 

as the following unit vectors,  

 
�⃗�𝑢 = (1/√1 + 𝑣𝑢1

2 + 𝑣𝑢2
2 ) [

1
𝑣𝑢1

𝑣𝑢2

]   
(C.4) 

 
�⃗�𝑠 = (1/√1 + 𝑣𝑠1

2 + 𝑣𝑠2
2 ) [

1
𝑣𝑠1

𝑣𝑠2

] 
(C.5) 

 
�⃗�𝑐 = (1/√1 + 𝑣𝑐1𝑣𝑐1̅̅ ̅̅ + 𝑣𝑐2𝑣𝑐2̅̅ ̅̅ )  [

1
𝑣𝑐1

𝑣𝑐2

];  
(C.6) 
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Where 𝑣𝑐1 and 𝑣𝑐2 are complex numbers written as,  

 𝑣𝑐1 = 𝑎𝑐1 + 𝑖𝑏𝑐1 (C.7) 

 𝑣𝑐2 = 𝑎𝑐2 + 𝑖𝑏𝑐2 (C.8) 

Next, equation (C.1) can be expanded as a polynomial function of 𝑔 and 𝑔𝑐 as follows,  

 �̃�(𝑔, 𝑔𝑐 , 𝑡) =  2𝑔 + 2𝑔𝑐  − (𝑈𝑥𝑥
∗ + 𝑈𝑦𝑦

∗ + 𝑈𝑧𝑧
∗ − 4) (C.9) 

From equation (C.9) it is clear that for large enough control gains 𝑔 and 𝑔𝑐, �̃� will be 

positive. In order for equation (C.9) to be always positive, the following conditions must 

hold for 𝑔 and 𝑔𝑐,  

 
𝑔 + 𝑔𝑐 >

(𝑈𝑥𝑥
∗ + 𝑈𝑦𝑦

∗ + 𝑈𝑧𝑧
∗ − 4)

2
 

(C.10) 

Next, equation (C.2) is also expanded as a polynomial function of 𝑔 and 𝑔𝑐 as follows, 

 �̃�(𝑔, 𝑔𝑐 , 𝑡) = 𝑔3(𝛼3𝑐0(𝑡)) + 𝑔𝑐
3(𝛼0𝑐3(𝑡)) + ⋯ 

                               𝑔𝑔𝑐
2(𝛼1𝑐2(𝑡)) + ⋯ 

                               𝑔2𝑔𝑐(𝛼2𝑐1(𝑡)) + ⋯ 

                              𝑔𝑐𝑔(𝛼1𝑐1(𝑡)) + 𝑔(𝛼1𝑐0(𝑡)) + ⋯ 

𝑔𝑐(𝛼0𝑐1(𝑡)) + 𝛼0𝑐0(𝑡) 

 

(C.11) 

In equation (C.11), the coefficients 𝛼𝑖𝑐𝑗 are functions of the time varying elements of �̃�𝑅𝑅
∗ . 

Additionally, 𝛼0𝑐3(𝑡) and 𝛼1𝑐2(𝑡) are,  

 𝛼0𝑐3(𝑡) = 0 (C.12) 
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α1𝑐2(t) =

(𝑎𝑐1𝑏𝑐2 − 𝑎𝑐2𝑏𝑐1 − 𝑏𝑐2𝑣11 + 𝑏𝑐1𝑣12)
2

||�⃗⃗�𝑐||
4
||�⃗⃗�𝑢||

2 + ⋯ 

          
(𝑎𝑐1𝑏𝑐2 − 𝑎𝑐2𝑏𝑐1 − 𝑏𝑐2𝑣21 + 𝑏𝑐1𝑣22)

2

||�⃗⃗�𝑐||
4
||�⃗⃗�𝑢||

2  

(C.13) 

Note that in (C.13), α1𝑐2(t), which is the coefficient of 𝑔𝑔𝑐
2 term, is always positive. 

Therefore, to ensure that �̃� is always greater than zero, 𝑔 and 𝑔𝑐 must be chosen such that,  

 𝑔𝑔𝑐
2(𝛼1𝑐2(𝑡)) > |𝑔3(𝛼3𝑐0(𝑡))+𝑔2𝑔𝑐(𝛼2𝑐1(𝑡))+… 

                                𝑔𝑐𝑔(𝛼1𝑐1(𝑡)) + 𝑔(𝛼1𝑐0(𝑡)) + ⋯ 

                               𝑔𝑐(𝛼0𝑐1(𝑡)) + 𝛼0𝑐0(𝑡)| 

(C.14) 

Furthermore, from equation (C.14) a sufficient condition can be written for the minimum 

value of 𝑔𝑐 as a function of 𝑔 to ensure that �̃� is always positive,  

 𝑔𝑐  > (
|𝛼3𝑐0|+|𝛼2𝑐1(𝑡)|+|𝛼1𝑐1(𝑡)|+|𝛼1𝑐0(𝑡)|+|𝛼0𝑐1(𝑡)|+|𝛼0𝑐0(𝑡)|)

𝛼1𝑐2(𝑡)
)𝑔 (C.15) 

Next, equation (C.3) is expanded as a polynomial function of 𝑔 and 𝑔𝑐 as follows, 

 �̃��̃� − �̃�(𝑔, 𝑔, 𝑡) = 𝑔3(𝛽3𝑐0(𝑡)) + 𝑔𝑐
3(𝛽0𝑐3(𝑡)) + ⋯ 

                               𝑔𝑔𝑐
2(𝛽1𝑐2(𝑡)) + ⋯ 

                               𝑔2𝑔𝑐(𝛽2𝑐1(𝑡)) + ⋯ 

                              𝑔𝑐𝑔(𝛽1𝑐1(𝑡)) + 𝑔(𝛽1𝑐0(𝑡)) + ⋯ 

𝑔𝑐(𝛽0𝑐1(𝑡)) + 𝛽0𝑐0(𝑡) 

 

(C.16) 

In equation (C.16), the coefficients 𝛼𝑖𝑐𝑗 are functions of the time varying elements of �̃�𝑅𝑅
∗ . 

Additionally, 𝛽0𝑐3(𝑡) is given by,  
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𝛽0𝑐3(𝑡) =

4(𝑎𝑐1𝑏𝑐2 + 𝑎𝑐2𝑏𝑐1)
2 + 4𝑏𝑐1

2 + 4𝑏𝑐2
2

||𝑢𝑐||
6  

(C.17) 

Note that in (C.17), 𝛽0𝑐3(𝑡), which is the coefficient of 𝑔𝑐
3 term, is always positive. 

Therefore, to ensure that �̃��̃� − �̃� is always greater than zero, 𝑔 and 𝑔𝑐 must be chosen such 

that,  

 𝑔𝑐
3(𝛽0𝑐3(𝑡)) > |𝑔3(𝛽3𝑐0(𝑡))+𝑔𝑔𝑐

2(𝛽1𝑐2(𝑡))+ … 

                            𝑔2𝐺𝑐(𝛽2𝑐1(𝑡))+𝐺𝑐𝐺(𝛽1𝑐1(𝑡)) +… 

                           𝑔(𝛽1𝑐0(𝑡)) + 𝑔𝑐(𝛽0𝑐1(𝑡)) + 𝛽0𝑐0(𝑡)| 

 

(C.18) 

From equation (C.18) a sufficient condition can be written for the minimum value of 𝑔𝑐 as 

a function of 𝑔 to ensure that �̃��̃� − �̃� is always positive,  

 𝑔𝑐 > (
|𝛽3𝑐0(𝑡)|+|𝛽2𝑐1(𝑡)|+|𝛽2𝑐1(𝑡)|+|𝛽1𝑐1(𝑡)|+|𝛽1𝑐0(𝑡)|+|𝛽0𝑐1(𝑡)|+|𝛽0𝑐0(𝑡)|)

𝛽0𝑐3(𝑡)
)𝑔 

 

(C.16) 
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D. Application of FM and MHSP controllers to NRO 

In this section, the FM controller and the discrete-time MHSP controller are applied for 

station-keeping around a Near Rectilinear Orbit (NRO) in the Earth-Moon system. NROs 

are relatively stable liberation point orbits as they generally possess small unstable 

Poincare exponents. In recent years, these trajectories are becoming attractive candidates 

for variety of space applications around the Moon [30]. Nevertheless, due to the existence 

of a positive Poincare exponent, an orbiting spacecraft will eventually diverge from the 

unstable NROs. Therefore, orbital station-keeping strategies must be implemented. In this 

section, an 𝐿2 NRO in the Earth-Moon system is considered as a baseline for station-

keeping. This particular NRO, shown in figure D.1, has an orbital period of about 7 days 

and a lunar periapsis of 2000 km.  

 

 

Figure D.9. Nominal 𝐿2 NRO 
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D.1. NRO Station-Keeping under FM controller 

For demonstration purposes, the FM controller augmented with a plane constraint, as 

presented in equation (4.7), is applied for station-keeping of a spin stabilized spacecraft 

that is only equipped with tangential thrusters. For this analysis, it is assumed that the spin 

axis is fixed in the rotating frame and the spacecraft has a similar configuration as in figure 

4.2. Table D.1 summarizes mission specifications, design constraints, and operation errors 

that are used in this analysis.  

Table D.4. Mission Specifications, Design Constraints, and Operation Errors for the FM Controller 

Mission 

Specifications 

- Nominal orbit: 𝐿2 southern NRO in Earth-Moon system 

- Mission duration: 10 revolutions (~ 2 months) 

- Spin axis: fixed in the rotating 

Mission Design 

Constraints  
- Minimum |Δ�⃗⃗�|: 0.025 m/s 

- Δ𝑡𝑚𝑖𝑛: 48 hours  

- No corrective maneuver if magnitude of position error vector is 

decreasing  

Operation Errors - Orbit injection and tracking errors: 1-σ errors of 1 km and 1 cm/s  

- Maneuver execution error: 1-σ error of  %1  

Figure D.2 shows representative simulation plots for station-keeping around the 

nominal NRO using the FM controller. According to plots D.2.(a) and D.2.(b), the FM 

controller is able to maintain the motion of the spacecraft in the vicinity of the nominal 

orbit for the duration of the simulation. It is interesting to see that all the corrective 

maneuvers are implemented near the lunar periapsis. This is due to the fact that over each 

lunar passage the spacecraft undergoes sudden position fluctuation from the nominal orbit. 

The control algorithm is able to detect these fluctuations and implement a corrective 

maneuver when necessary. Based on plot D.2.(c), all the directions of corrective maneuvers  
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Figure D.10. Orbital Station-Keeping for the Nominal 𝐿2 NRO Using the FM controller for a Spin 

Stabilized Spacecraft with Tangential Thrusters and a Fixed Spin Axis in the Rotating Frame 
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are constrained to the plane perpendicular to the spacecraft’s spin axis. Moreover, plot 

D.2.(d) shows that the magnitudes of all the corrective maneuvers satisfy the minimum 

allowable Δ�⃗⃗� magnitude. Table D.2 summarizes Monte Carlo simulations results. This 

table includes the average station-keeping cost over 10 orbital periods, the average cost 

over month, as well as the linear divergence rate from the nominal NRO.  

Table D.5. Station-Keeping Performance for the FM Controller around an 𝐿2 NRO 

Thrusters on-

board 
�⃗⃗�𝑠 fixed in 𝛥�̅�𝑇 for 10 

revolutions 

[m/s] 

𝛥�̅�𝑇/ 

month 

[m/s] 

Average Linear 

Divergence 

Rate 

[km/rev] 

Tangential Rotating 

Frame  

2.1294 0.9549 +0.1346 

D.2. NRO Station-Keeping under Discrete-time MHSP controller 

The discrete-time MSHP controller, developed in chapter 5, is applied for station-

keeping around the nominal 𝐿2 NRO. For demonstration purposes, the discretization step 

size is set to 48 hours. Table D.1 summarizes mission specifications, design constraints, 

and operation errors that are used in this analysis.  

Table D.6. Mission Specifications, Design Constraints, and Operation Errors for the Discrete-time MHSP 

Controller  

Mission 

Specifications 

- Nominal orbit: 𝐿2 southern NRO in Earth-Moon system 

- Mission duration: 10 revolutions (~ 2 months) 

- Spin axis: fixed in the rotating 

Mission Design 

Constraints  

- Minimum Thrust: 0.3 mN 

- Δ𝑡𝑚𝑖𝑛: 48 hours  

- No corrective maneuver if magnitude of position error vector is 

decreasing  

Operation Errors - Orbit injection and tracking errors: 1-σ errors of 1 km and 1 cm/s  

- Maneuver execution error: 1-σ error of  %1  
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Figure D.3 shows representative simulation plots for station-keeping around the 

nominal NRO using the discreet-time MHSP controller. According to this figure, the 

controller is able to improve the stability of the nominal orbit as the divergence rate of the 

controlled motion is smaller than the uncontrolled motion. Plot D.3.(b) also shows that the 

controller is able to reduce the amplitude of the position fluctuations caused at lunar 

periapsis. Table D.2 summarizes Monte Carlo simulations results. This table includes the 

average station-keeping cost over 10 orbital periods, the average cost over month, as well 

as the linear divergence rate from the nominal NRO. 

Table D.7. Station-Keeping Performance for the Discrete-time MHSP Controller around an 𝐿2 NRO 

𝛥�̅�𝑇 for 10 

revolutions 

[m/s] 

𝛥�̅�𝑇/ 

month 

[m/s] 

Average Linear Divergence 

Rate 

[km/rev] 

33.1009 14.8434 +18.2891 

 



101 

 

 

1
0
1
 

 

Figure D.11. Orbital Station-Keeping for the Nominal 𝐿2 NRO Using the Discrete-time MHSP Controller 

(𝛥𝑡𝑘 = 48 hours) 
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