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ABSTRACT

Zaidy, Aliasger T. M.S.E.C.E., Purdue University, August 2016. Accuracy and Per-
formance Improvements in custom CNN Architectures. Major Professor: Eugenio
Culurciello.

Convolutional Neural Networks (CNNs) are biologically inspired feed forward ar-

tificial neural networks. The artificial neurons in CNNs are connected in a manner

similar to the neurons in the mammalian visual system. CNNs are currently used

for image recognition, semantic segmentation, natural language processing, playing

video games and many other applications. A CNN can consist of millions of neurons

that require billions of computations to produce a single output.

Currently CNN workloads are accelerated by GPUs. While fast, GPUs are power

hungry and are not feasible in mobile and embedded applications like car, home au-

tomation, etc. Recently interest has surged in developing FPGA/ASIC based novel

architectures for processing using CNNs in real time while keeping the power bud-

get low. The current generation of custom architectures utilize either single or half

precision floating point or 16bit Q8.8 fixed point processing elements.

However, floating point hardware is larger and slower than fixed point hardware,

especially in FPGAs, which have dedicated fixed point units but no floating point

units. Due to this, choosing a number format becomes a performance vs accuracy

tradeo↵. In this work, we aim to test various number representation schemes and their

e↵ect on the bandwidth requirements and accuracy of a custom CNN architecture.

We also test architectural changes that improve the throughput of the processing

elements. Together, we expect to improve both accuracy and performance of a custom

CNN accelerator architecture. The system is prototyped on the Xilinx Zynq Series

Devices.
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1. INTRODUCTION

Over the past few years embedded vision systems utilizing convolutional neural net-

works [1–5] have grown extensively. These networks have a wide variety of applica-

tions in fields like robotics, self driving vehicles, home automation, etc. Apart from

object classification and detection from images, nowadays these networks are also ca-

pable of pixel wise classification/semantic segmentation, object localization, natural

language processing, video processing and playing games.

Due to their popularity and state of the art performance, convolutional neural

networks have been widely accepted in the industry with companies like Google

and Microsoft contributing to their proliferation via networks like Inception [6],

GoogLeNet [7] and Resnet [8]. Bing image searches are being performed using CNNs,

self driving cars use semantic segmentation CNNs for parsing video feed [9–11], CNNs

are being fitted into intruder detection systems. There are many more such examples.

One of the major bottlenecks in improving the performance of CNNs has been

computational power using conventional resources such as CPUs and GPUs. CPUs

are control based and fail to e�ciently handle the computationally intensive CNN

workload. The recent advancement in GPU architecture and process technology make

them suitable for CNNs but they end up consuming a lot of power (around 300W).

GPUs also require a batch of data (say 16/32 images) in order to optimally utilize their

computational capability. While power and data requirement for optimal utilization

are not important in a research setting, they become a major consideration when

designing real life systems such as mobile chips, automotive controllers and server

chips. Power consumption requirement in servers might seem counter-intuitive but

one must remember that reducing power consumption in servers has an exponential

benefit since it reduces the cost and power required to cool the servers also.
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Due to these reasons, FPGAs are finding increased use in accelerating CNNs

[12–15]. FPGAs are flexible and hence can be reprogrammed with a new architecture

unlike GPUs which need to be replaced (incurring a high cost). FPGAs also consume

much less power compared to GPUs. It is evident that the flexibility comes with the

cost of being less computationally powerful than GPUs. However, number of Giga

operations per second per watt are far larger for an FPGA compared to a GPU.

Given these advantages of FPGAs, a number of novel architectures utilizing FP-

GAs for running CNN workloads have been developed such as Neuflow [16], nn-X [17],

Catapult [18] and Snowflake to name a few. Neuflow was one of the first neuromorphic

chips developed by Fabaret et al. nn-X is the successor of Neuflow that overcomes a lot

of the bandwidth limitations present in the Neuflow convolver units. Catapult is a sys-

tem developed by Microsoft Research using Altera FPGAs and is currently employed

in running Bing image searches and for scientific research at the Texas Advanced

Computing Center in Austin. Snowflake is an architecture developed by Gokhale et

al at Purdue University that achieves state of the art performance for CNNs. In this

thesis, we analyze and propose improvements with reference to the Snowflake archi-

tecture that would enable it to perform at a better accuracy and greatly increase it

computational capability. The improvements aim at utilizing FPGA resources e�-

ciently and harnessing resources left currently unused by Snowflake. We experiment

with various numeric representation techniques and optimizations to achieve a final

accuracy of 0.84% compared to 6.92% obtained with conventional snowflake. The to-

tal power consumption on the Zedboard does not increase significantly and the DSP

unit utilization increases from 192 to 204.

1.1 Convolutional Neural Networks

A CNN consists of several convolutional feature extractor layers followed by a mul-

ticlass classifier. Figure 1.1 shows a typical object detection/classification network

architecture which consists of convolution, maxpooling (downsampling), ReLU (non
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Fig. 1.1.: A typical convolutional neural networks for object detection consisting of

convolutional layers followed by a multi class classifier for generic multi class object

recognition. The network works on arbitrarily large images, once trained, to produce

a classification map as the output. Adapted from https://github.com/donglaiw/

mNeuron/blob/master/V_neuron_single.m by D Wei, 2016, Retrieved from URL.

Copyright (c) 2015 donglai

linear) and fully connected layers while a typical encoder-decoder semantic segmenta-

tion network consists of all of the above except the fully connected layers. Semantic

segmentation also introduces a new operation of deconvolutions which are used to

reverse the e↵ects of convolutions. Mathematically deconvolutions are convolutions

with inverted weights.

The convolution layers are basically filters for extracting features from the output

of the previous layers. The maxpool layers are used to summarize the output of the

convolution layers and reduce overfitting while ReLU introduces nonlinearity in the

network. In this work, these three layers are together referred to as a layer. The

inputs of layer are connected to the output of the previous layer except for the first

layer whose input is a signal usually an image. The input and outputs of a layer
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are called feature maps. The fully connected layers are classifiers that use the feature

maps from the final convolution layer to find the objects present in the original image.

A convolution is an operation in mathematics which when performed on two func-

tions produces a third function that expresses the amount of overlap of one function

over another. Mathematically,

h[m,n] =
kHX

j=1

kWX

i=1

f [m+ i, n+ j] ⇤ g[i, j] (1.1)

In CNNs a convolution is used as a filter for extracting features from the input [19].

Inputs are signals such as audio, video, images, etc. This work focuses mainly on

image datasets.

The non-linearity separates the input into distinct linearly independent outputs.

It usually models the firing rate of a biological neuron. A linear function may be

used in its place but then the output would be a set of linearly dependent layers that

could be coupled into a single huge layer. A linear activation function would increase

the computation but not necessarily make the network more expressive [20]. Popular

non linear functions are the sigmoid, the hyperbolic tan and the rectified linear unit

(ReLU).

Pooling reduces translational invariance and thus avoids overfitting. Hence, if a

pixel moves in the pooling region, the output would not change. Pooling also reduces

the number of computations encountered in the later layers. Usually the number of

maps increases as we go deeper and pooling helps reduce the width and height to

compensate for the increase in the depth. These days 1x1 convolutions are being

used to reduce the computational complexity as well [7].

1.1.1 CNN information flow

Let us consider the CNN described in Figure 1.1. Here the network consists of a

total of 8 computation stages viz. 5 convolutional layers and 3 fully connected layers.
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ReLU is applied to the output of every stage. Max pooling is applied to the output

of the first two stages.

The input to the first stage is a RGB image which is convolved with a kernel of

size 11x11. The convolution is done with a stride of 4 which means that after each

computation the kernel window is shifted by 4 units to find the next output pixel. If

we need N output feature maps we use N kernels each of size kWxkHx3 where kW

and kH are 11 in this case. Here N is taken as 96 giving us 96 output feature maps

of size 55x55. These output feature maps are then maxpooled using a 2x2 maxpool

with stride 2 giving 96 maps of size 27x27.

This is done 4 more times in order to extract finer features. At the end of the five

convolutional layers, we have 256 maps with size 13x13. These maps are then used as

input to the first fully connected layer. The fully connected layers are like traditional

multi layered perceptrons (MLPs). The output of the first fully connected layer is

fed to another one before being passed to a 1000-way softmax in order to obtain the

distribution over a 1000 class labels.

1.2 Outline

This section details the organization of this document. The next chapter goes

through the history of hardware accelerators for convolutional neural networks and

existing research in reducing power/bandwidth of custom hardware while keeping the

accuracy constant. It talks about popular present day architectures. The next section

also describes the existing methodologies for reducing precision in CNNs. In Chapter

3, we describe the hardware details of suggested improvements and the rationale

behind them. Chapter 3 also presents the variable precision fixed point algorithm and

details how the proposed strategy fits into an existing architecture. Chapter 4 details

the experimental setup and results. It also compares the results to existing numeric

representations. Chapter 5 analyzes the accuracy and performance improvements

and hypothesizes the reason for sub-optimal performance of popular representations.
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Chapter 6 concludes the discussion by summarizing the work described and providing

suggestions for interesting future extensions for this project.



7

2. LITERATURE REVIEW

Convolutional neural networks were proposed a long time ago but were widely ac-

cepted for computer vision only after their use in object detection and classification

was shown by Krizhevsky at al. [1]. They have become popular recently due to the

increase in computational power and the advent of fast, high throughput GPUs sys-

tems. Networks like Inceptionv3 [6] and ResNet-34 [8] require a massive 5.71 G-ops

and 3.6 G-ops respectively. They are usually trained and tested on high-end GPU

clusters or supercomputers like the NVIDIA DGX-1.

While feasible for training a network, clusters and supercomputers are unsuitable

for day to day scenarios such as self-driving car or home automation systems. These

systems are to be operated within a power budget and using a 300W GPU is an

extremely critical design consideration. While some home consumers might be willing

to run a 300W GPU, we must also consider that home security systems need to run

on battery in case of power outage and a GPU will be unusable in such circumstances.

In order to account for these situations several ASIC and FPGA based custom

architectures have been proposed in recent times. Low power consumption is inherent

for most FPGA and ASIC based architectures. These architectures mainly consider

scalability, programmability and i/o/memory bandwidth.

Scalability encompasses computation capability and power consumption of the

system. Scalability is a design consideration because all devices may not necessarily

run the same CNN. Home automation devices may not need the same network ar-

chitecture or computation power as a performance and accuracy critical application

such as a self-driving car. On the other hand a 50 W device in a single home security

camera is a big design choice while being a small unnoticeable dent in a cars power

budget.
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Programmability is one of the key considerations while developing a custom CNN

architecture. While a custom architecture might have 100% e�ciency in order for

it to be popular, it must be friendly to software developers. A software developer

does not need to be taxed with the micro architectural details. A C/Python interface

which allows the user to make API calls in order to process their neural networks is

critical.

I/O bandwidth is important because in a practical system, the data is fetched via

pins and sent out to an output device such as a LED display. While we would like to

store all the data on the chip itself, it is currently unfeasible to do so. Hence, most of

the data is stored in o↵ chip DRAM and needs to be continuously swapped in and out

to compute a single output feature map. If the memory bandwidth is low, training

and testing networks will take a long time.

We will be using the snowflake architecture for the purpose of this work although

the concepts are general and can be applied to any CNN coprocessor. Snowflake

is currently implemented using FPGAs. It is a SIMD architecture and has its own

instruction set. It functions as a coprocessor relying on the host to initiate the first

instruction which DMAs a program to on chip memory from DRAM. The coprocessor

then takes over and starts computing the network based on the program written.

The smallest unit in Snowflake is a compute unit which is a 256 bit vector mul-

tiplier accumulator with 16 bit granularity. Each compute unit has its own kernel

cache and shares a unified image cache with three other compute units. Four compute

units together make up a compute cluster. Four such compute clusters comprise one

snowflake. Each snowflake also has a scalar pipeline and scalar and vector register

files. A snowflake also has a unified L2 cache that is shared by the four compute

clusters.

Recently there has been a lot of interest in reducing the size of the network since

it will allow for lower bandwidth, possibly faster computation and lower power con-

sumption. There are ways like dropout and drop connect that are used to eliminate

some pixels probabilistically in training. However, such networks when tested at 32
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bit floating point precision consume a lot of bandwidth and power. Several method-

ologies have been proposed for reducing the size of the network. There is biological

motivation too as [21] notes that the neurons in our brain have 6 to 12 bit precision.

One solution by Courbariaux et al. stochastically binarizes the weights. The

gradients are not binarized during back propagation but are instead passed in 32

bit floating point format. The parameter update is done in full precision because

stochastic gradient descent, the most popularly used back-propagation method, uses

infinitesimally small changes in the parameters in order to adjust the final output as

desired. If the weights were binarized during update, the system may even fail to

converge. However, this work has been tested on small CNNs such as those required

for MNIST and SVHN and it achieves an accuracy drop of up to 10% for these small

networks.

Another method proposed by [22] is to use 8 bit floating point precision. Their

experiments are however limited to 10%-20% of values present in the network. It

can be shown that for a network 10% of the weights may lie in a small region of the

weights-value distribution and hence, the 1% accuracy drop claimed may not hold

true when the entire network is considered.

[23] has evaluated the use of Q4.12 and Q2.14 schemes for training and test

purposes. The units are hardcoded into a systolic array of MACc units on a Kintex

FPGA. Their experiments on the CIFAR10 and MNIST datasets yield a 1% drop in

accuracy.

Deep compression [24,25] is a methodology proposed by Han et al. that quantizes

the weights and then performs Hu↵man encoding in order to reduce their sizes further.

This methodology proposes the following flow: prune connections by learning the

important ones, reduce precision of the weights depending on their distribution and

then perform Hu↵man encoding to reduce the size of the network further. While this

methodology improves the average time per layer by 4x for a batch size of 1, it also

degrades the average time per layer by 5x for a batch size of 64. This is because of
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ine�cient utilization of CPU/GPU resources while doing sparse matrix computations

on a large batch of images.

Our aim is to provide a methodology that provides consistent improvement in Gops

per sec per watt and bandwidth across batch sizes for networks like Alexnet [1]. We

also aim to analyze the statistical distribution of values in each layer and dynamically

provide an optimum representation for each layer.
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3. HARDWARE/REPRESENTATIONS OVERVIEW

In the previous two chapters, we reviewed the various architectures and learning

representations that have been proposed to process the computationally intensive

CNNs. We also stated that our aim was to optimize the G-ops/s-Watt and memory

bandwidth while being agnostic to batch size and network architecture and keeping

the accuracy as close as possible to that obtained with single precision.

3.1 Statistical distribution of weights

Before going into the representation and learning details, let us look at the distri-

bution of the weights in a trained CNN, as a whole and on a per layer basis. We will

be using the network shown in Figure 1.1 as a reference in this document and if any

other network is referenced, it will be explicitly mentioned.

Figure 3.1 shows that the parameters in a network are distributed along a Normal

distribution and this is true whether we are considering the entire network or each

layer individually. Here the weights are tightly packed around a central value and

there are very few outliers. These outliers can be characterized by the ceiling and the

floor values of the representation.

Based on this information, we can deduce that while using a typical number

representation such as single precision or half precision floating point approximately

half of the useful range is thrown away. The loss is even greater for Q8.8 fixed point

representation where we are using only the first 256 values out of 65536 possible

combinations which is an e↵ective utilization of 0.4% of the entire range. In a custom

CNN accelerator, using these representations will result in a significant portion of the

bandwidth being used just to transmit zeros. This gives us the motivation to search

for a suitable representation for the parameters and pixels in a CNN. We would
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Fig. 3.1.: Distribution of Weights and Biases in a typical CNN. From the graph we

can see that the parameters of a CNN lie approximately on a Normal Distribution.

Due to this if we use a typical number representation scheme like single precision,

most of the representations are unused.

typically like this representation to be applicable to all existing hardware resources

and to not require retraining of CNNs.

3.2 Possible Representations

3.2.1 Floating Point

Floating point representation usually consists of 3 parts: the sign bit, the mantissa

and the exponent. Consider a number [s,e,m] where s, e and m denote the sign bit,

exponent and mantissa respectively. The numerical value of this number is s⇤ (1.m)⇤

(2(e�E)) where E is the bias which is usually max (e) + 1/2.
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Note than the mantissa has m+1 bits with the leading bit being either 0 or 1.

When the exponent e is non zero the leading bit is 1 i.e. the normal range and when

it zero the leading bit is zero i.e. the subnormal range.

A typical floating point multiply accumulator unit is shown in the Figure 3.2.

Let us consider the multiplication module of the FP MAC. When multiplying two

numbers the result is positive if both the numbers have the same sign and negative

if they are of opposite signs. A XOR gate is used to deduce the sign bit of the

multiplication result.

In order to understand the operations on the exponent and mantissa let us consider

two numbers m1⇤2e1 and m2⇤2e2 . When we multiply these two numbers on paper,we

add the exponents and multiply the mantissas to get m1⇤m2⇤2e1+e2 . This is achieved

using the adder and the multiplier modules shown in the Figure 3.2. The outputs of

the XOR, multiplier and adder modules are registered and passed to the accumulator

stage.

The accumulator is a floating point adder with its output connected to one of its

inputs. Let us consider s1 ⇤ m1 ⇤ 2e1 and s2 ⇤ m2 ⇤ 2e2 as the inputs to the floating

point adder. The exponents are first compared and the greater of the two is passed

on to the result. We use the di↵erence between the greater and the smaller exponent

in order to shift the mantissa of the number with the greater exponent to the right

using a barrel shifter. The shifted mantissa is added to the mantissa of the larger

number in order to obtain the final mantissa for the result. These two mantissas are

also compared and their result is used to determine the sign of the output.

After the last value is accumulated a done signal, not shown in the Figure, puts

the accumulated value on the output bus and clears the accumulator register in the

next cycle. The result of the accumulation is then passed on to the normalization

unit which eliminates some precision and packs the number back into the original

format to be used for the next layer. In a conventional floating point unit if the

result is greater/lesser than the maximum/minimum possible numerical values for
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the representation, a Nan value is returned. In our implementation, we return the

maximum/minimum possible numerical value or a zero respectively.

16 bit floating point/half precision

Fig. 3.3.: Floating Point Representation

Let us start with the most popular representation of all, the 16 bit floating

point. In recent times this representation has gained a lot of momentum even causing

NVIDIA to rethink their GPU architecture by introducing vector 16bit floating point

multiply accumulators. It has been well established that half precision arithmetic

gives accuracy close to single precision for CNNs. Figure 3.3 gives the distribution of

bits in half precision. Typically, there are 10 bits reserved for the mantissa, 5 for the

exponent and 1 bit for the sign. We however have implemented a flavor which has 11

bits for the mantissa and only 4 for the exponent. The reason for doing this is evident

from the statistical distributions. The values of weights and inputs never exceed ±

32 and hence using 4 bits of exponent provides us an additional bit of precision for

the mantissa.

12 bit floating point

Another possible representation uses 12 bits: 7 for the mantissa, 4 for the exponent

and 1 for the sign. From the structure itself, it is evident that this representation

will have lesser accuracy than the 16 bit floating point but the overall e↵ect of the

drop in precision on the network accuracy is less. The maximum achievable range is

approximately the same as 16 bit floating point. Since the mantissa multiplier and
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accumulator in this representation are 8 bits wide, this representation utilizes the

FPGA fabric instead of being synthesized as a DSP unit.

8 bit floating point

8 bit floating point representation is also known as minifloat. A minifloat is

showing great promise for NNs these days. It comprises of 3 bits for mantissa, 4

for the exponent and the remaining bit for sign. We have also experimented with 4

mantissa and 3 exponent bits. Here the precision and range are greatly reduced and

while it would work for small NNs and datasets like LeNet/MNIST, in order to get

it to work for modern NNs significant tweaks in the network would be necessary.

3.2.2 Fixed Point

Fixed point representation uses a fixed decimal point. A fixed point number has

the same precision across the entire range as opposed to a floating point number who

precision decreases monotonically as the numerical value increases. A fixed point

number is usually represented as QX.Y where X denotes the number of integer bits

while Y denotes the number of bits in the fractional part.

16 bit fixed point Q8.8

In the Q88 format the integer part is allocated 8 bits and the fractional part gets

8 bits. This allows the maximum possible value to be 127.99609375 and the precision

is 0.00390625. This may seem as a good representation at first but the error may

accumulate at each layer and cause significant di↵erence in the output compared to

baseline.
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Dynamic fixed point

This is a variation of the fixed point format in which the decimal point is adjusted

in order to achieve the best possible accuracy. This format has been used for experi-

menting with 16, 12 and 8 bit numbers. Most commonly used formats are 16bit wide

Q4.12 and Q5.11. In our experiments, we consider the distribution of weights and

select the format that would allow maximum coverage.

While experimenting we observed that di↵erent layers work better at di↵erent

precisions. Due to this we decided to alter the precision of the weights on a per layer

basis. Algorithm 1 is used for this purpose.

Algorithm 1 CNN Inference using Dynamic Fixed Point Computation. Here the

quantize routine converts between precision formats. The findQuantizationParame-

ters routine finds the conversion ratio for the net layer and passes it to the quantize

routine.
Require: weights W , biases B, input feature map ifm, network model net, initial

representation QX.Y

Ensure: output feature map ofm

1. Input Quantization

For w in W to end, w = quantize(w)

For b in B, b = quantize(b)

For pixel in ifm, pixel = quantize(pixel)

2. Compute Output Feature Map

ofm = net:forward(ifm)

3. Output Module

quantparams = findQuantizationParameters(ofm)
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This algorithm works well in software as well as hardware. In terms of the CNN

accelerators, two additional modules are included, one at the input and one at the

output of the design. The result from each compute element in hardware is truncated

to the desired precision format. Since the format of the inputs is known we know

exactly where the output decimal point lies. The output unit uses this information and

the required output format information to truncate number to the desired precision.

The required output format information depends on the distribution of the inputs

to the system. The input unit is responsible for computing this distribution and

providing the necessary information to the output unit.

3.3 Multi clock design

Multiple clock domains are a common trick used in modern day CPUs and GPUs

to operate di↵erent parts of a design at appropriate clock rates. Clock domain crossing

allows a SoC designer to interface components operating asynchronously with the

CPU to the base system and to each other.

Modern FPGAs are equipped with PLLs that can generate in-phase/out-of-phase

clocks upto GHz frequencies. Unfortunately, operating a big design at high frequencies

on FPGAs requires a great amount of e↵ort to achieve timing closure. Hard IP like

DSP units and on chip RAMs on FPGAs can be operated at frequencies as high as

600 MHz even when the fabric clocks at 150-250 MHz.

In this work, we experiment with CDC techniques to operate the DSPs faster

than the rest of the design. We have a DMA fetching Data into BRAMs on a Xilinx

FPGA. The BRAMs are instantiated inside an asynchronous FIFO module (shown

in Figure 3.4) and output data at 1.5x, 2x and 3x the fabric frequency. The DSP

units clocked at higher frequencies use this data output from BRAMs to generate the

output feature maps.
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This technique is useful as long as we keep the DSP units fed with data. If we are

unable to achieve the desired bandwidth, the compute elements will be underutilized

and the increase in power due to multiple frequency domains will not be compensated

by a proportionate increase in throughput.

The Asynchronous FIFO shown in Figure 3.4 consists of three important parts:

the FIFO pointer logic, the synchronizers and the RAM block. Here the pointer logic

is divided into read and write modules where the former handles the empty signal and

the pop pointer while the latter handles the full signal and the push pointer. These

modules also have binary to gray and gray to binary logic. The binary to gray logic

converts the push/pop pointers from binary to gray format in order to be sent to the

other module. This is done because synchronizers can correctly handle only single bit

changes across clock domains and gray code always changes by a single bit when the

pointer is incremented. The gray to binary module converts the incoming pop/push

pointer to binary so that it can be compared to the internal push/pop pointer in

order to assert the full/empty signal respectively.

The synchronizers are just a pair of FFs that convert a pointer from one clock

domain to another. The RAM block is the memory module that stores the data. The

pointer logic is pessimistic since the full/empty signals are not deasserted for two

cycles after a pop/push has occurred. This compute unit is placed between two such

asynchronous FIFOs.

3.4 System Overview

The snowflake architecture shown in Figure 3.5 is used as a reference design. This

work is mainly concerned with the parts highlighted in red is shown in Figure 3.5. We

work towards finding the best possible implementation for the compute units using

the DSP48E1s on the Zynq7000 series. The dynamic fixed point input unit sits on the

AXI stream [26] interface coming into the snowflake co-processor. The corresponding

output unit is placed between the compute units and the vector registers. When
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Fig. 3.5.: Snowflake Architecture by Gokhale et al.

going for multiple clock domains, small asynchronous FIFOs are placed at the output

of the M$ and W$ and after the output unit.
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4. RESULTS

Let us now take a look at the performance results obtained using the methodologies

described in the previous chapters.

4.1 Experimental Setup

The improvements suggested in this work were tested on the Zynq Zedboard

development platform [27] (see Table 4.1). The Zedboard has the Zynq 7z020 chip

which consists of two parts: the Processor System (PS) and the Programmable Logic

(PL). The PS has two ARM Cortex-A9 cores and is connected to 512MB DDR3

memory. The PL can fit upto 12 compute units each with 16 DSPs. The PL was

clocked at 187.5 MHz.

Table 4.1: Zynq Zedboard Hardware Specifications

Platform Zynq Zedboard

Chip Xilinx Zynq 7z020 SoC

Processor Dual ARM Cortex-A9 @ 667 MHz

Programmable Logic Artix-7

Memory 512 MB DDR3 @ 533 MHz

Memory Bandwidth 4.2 GB/s full duplex

PL Frequency 187.5 MHz
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Torch7 [28] and Thnets1 were the main software tools used in the work. Torch7

is a scientific computing framework built on the Lua programming language. Thents

is a set of C libraries by e-lab that opens and parses a trained Torch7 model.

4.2 Accuracy

Table 4.2: Percentage Error per layer for the reference network shown in Figure 1.1

across di↵erent precision formats. The error is with respect to the single precision

floating point format. Here layers l1-l5 consist of convolution and ReLU. Layers l2

and l3 have maxpooling. Layers l6-l8 are linear layers

l1 l2 l3 l4 l5 l6 l7 l8

16bit FP 0.04 0.01 0.003 0.05 0.13 0.42 0.23 0.39

12bit FP 0.08 0.37 0.41 0.31 0.65 0.93 2.46 1.27

8bit FP 3.35 4.21 4.97 5.13 8.24 9.67 10.06 15.03

Q8.8 fixed 0.95 1.65 2.30 2.84 2.80 9.13 10.49 6.92

Q7.9 fixed 0.61 0.86 1.21 1.51 1.48 4.60 5.23 3.18

Q6.10 fixed 0.27 0.42 0.58 0.71 0.71 2.23 2.61 1.67

Q5.11 fixed 0.13 0.22 0.31 0.37 0.37 1.17 1.31 0.82

Q4.12 fixed 0.07 1.26 3.36 5.50 7.42 17.8 15.5 10.9

Q3.13 fixed 0.01 18.1 23.7 30.1 32.9 54.8 49.7 36.9

Variable 0.06 0.40 0.54 0.75 1.12 0.63 1.58 0.94

It is evident from the Table 4.2 that 16 bit floating point provides the best possible

accuracy with respect to full precision inference. Q5.11 is the second best represen-

tation for this network. One must keep in mind that for other networks di↵erent

QX.Y representations may be the ones with the best accuracy. However, due to the

1
https://github.com/mvitez/thnets
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approximately normal nature of parameter distribution, one of the representation will

always be close in accuracy to full precision.

Variable Precision Fixed Point

The variable precision fixed point row in Table 4.2 corresponds to values obtained

using Algorithm 1 from the previous chapter. This methodology was experimented

for 8 bit and 12 bit numbers since with 16 bit numbers the Q5.11 representation is a

clear winner. When using 8 bit fixed point for parameters and Q5.11 for feature maps,

the results were fairly similar to the Q5.11 metrics. However, if both the parameters

and the feature maps were shifted to 8 bit representation, error varied between 1%

to 20% compared to full precision. The values mentioned in the Table refer to those

obtained when using 12 bit representation for the parameters and feature maps. The

variation in the feature map value range and the corresponding representation used

is shown in the Figure 4.1.

4.3 Utilization

The utilization Figures 4.2 provided here are solely for the compute units. All

figures except for 16bit floating point are for a 192 MAC system. In order to synthesize

192 16bit FP units, 57,408 LUTs are required which is greater than the available

resources. The 8bit and 12bit systems utilize no DSPs. The 16bit system utilizes

one DSP unit per MAC. The fixed point module utilizes 1 DSP per MAC and 12

additional DSPs for the output module increasing the total utilization to 204 DSP

units. Additional resources are utilized for the DMA channels in and out of memory.

When prototyped with Snowflake, the pipeline, caches, etc utilize additional resources

too.

In order to obtain a better throughput we can clock the compute units much faster

than other parts of the accelerator. However, we must be able to supply enough data

to keep the units busy else the power increase will not be su�ciently o↵set by the



25

(a) L1 Q4.8 (b) L2 Q5.7

(c) L3/L4 Q5.7 (d) L5/L6 Q5.7

(e) L7 Q2.10 (f) L8 Q2.10

Fig. 4.1.: The distribution of the output feature map values are shown here. The first

label presents the layer while the second label gives the representation to which these

layers were truncated by the output unit
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(a) LUT Utilization

(b) FF Utilization

Fig. 4.2.: Compute Unit utilization for various configurations. Note that all fixed

point units are grouped into a single row. This is because even an 8bit dynamic fixed

point MAC is sign extended to 16 bits in order to get it to synthesize as a DSP unit
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throughput change. If we reduce the precision down to 12 bit variable fixed point,

we find it much easier to sustain the bandwidth required for faster compute since the

bandwidth required for 16 bit operands at 187.5 MHz is the same as that required

for 12 bit operands at 250 MHz.

4.4 Performance

Figure 4.3 shows the performance per unit power for various number represen-

tations. One can observe that the Variable Precision Floating Point Representation

provides a significant advantage over the 16bit FP representation while having com-

parable accuracy as seen in Table 4.2.

Fig. 4.3.: Performance per unit power for various representations (higher the better)
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Fig. 4.4.: Bandwidth requirement for various representations (lower the better)

4.5 Bandwidth

Figure 4.4 shows the bandwidth requirement in Gigabytes per second for the var-

ious numeric schemes. It is evident that 12bit variable precision fixed point requires

much lesser bandwidth than both Q5.11 fixed point and 16bit floating point repre-

sentations. While 8bit FP presents the lowest bandwidth requirement, it degrades

accuracy significantly.
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5. ANALYSIS AND DISCUSSION

This chapter analyzes the results presented in the previous chapter and discuss the

tradeo↵s behind choosing the best possible implementation for the compute elements

of a custom CNN architecture.

5.1 Accuracy/Utilization tradeo↵

The 16 bit floating point unit has undoubtedly the best accuracy possible while

the 12bit variable precision fixed point comes in a close second. However, in an em-

bedded system accuracy is not the only parameter under consideration. A 16bit FP

allows only 160 processing elements for every 192 elements for variable precision fixed

point. If we were to choose the 16 bit FP, at optimum utilization it is capable of

sustaining 54.22 Gflops/s while a fixed point unit will sustain 63.98 G-ops/s. Con-

sidering AlexNet with 2.4 G-ops per frame, 16bit FP provides a frame rate of 22.6

fps while variable precision fixed point provides 26.66 fps. While this may not be a

big di↵erence, one must also take into consideration the power savings due to lesser

FPGA utilization and lower data transfer from memory. The fixed point units can

also be boosted to double/triple the clock rate using multiple clock domains as de-

scribed in Chapter 3. This will result in 1.5x-2.5x the original frame rate. The same

can be done for the FP16 unit but it does not meet timing at higher frequency. At

375 MHz, the FP16 also utilizes greater fabric area and hence, synthesizing 160 units

along with associated control logic is di�cult.
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5.2 Accuracy/Power tradeo↵

Here, the 16bit floating point utilizes about 2.578 W power while the variable

precision fixed point utilized 1.946 W. This jump in power gives an e↵ective 21.03 G-

ops/s-W for the FP16 and 32.88 G-ops/s-W for fixed point. This is quite a significant

improvement for a 0.94% drop in accuracy.

5.3 Accuracy/Bandwidth tradeo↵

Memory bandwidth is quite and important consideration in embedded systems.

The memory bandwidth proves to be a bottleneck in quite a few embedded systems.

Even if there is su�cient bandwidth available it is always better to access lesser

data since it saves a significant amount of power. The variable precision fixed point

representation requires significantly lower bandwidth compared to the 16bit fixed and

floating point. Q5.11 fixed point representation and 16bit FP require more bandwidth

due to the additional bits per transferred operand. We can see that 16bit FP requires

more bandwidth than Q5.11. The reasons for this is the availability of lesser 16bit

FP MAC units due to which feature Map data has to be transferred multiple times

in order to compute the entire output. It is evident that 8bit FP has the lowest

bandwidth but its poor accuracy is a downside that prevents us from considering this

representation.
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6. CONCLUSION AND FUTURE WORK

6.1 Future Work

This work identifies and tries to solve various accuracy performance tradeo↵s in

CNNs. It is limited because of its application solely for inference. Further develop-

ment will revolve around implementing the same strategies in training.

Pruning unnecessary connection during training is showing promise. This pruning

will reduce the range of numerical value of the parameters and feature maps even

further allowing us to utilize lesser bits for representing each value while maintaining

accuracy.

Current FPGAs are limited to a minimum of 16 bit computations. Research into

next generation fabric with vector 8 bit multipliers will allow us to achieve even better

performance. In this case the power consumption will have to be evaluated again in

order to ensure that the benefit in performance is not o↵set by higher power draw

resulting in a poorer G-ops/s-W metric.

6.2 Conclusion

In this thesis, we presented a case for experimenting with the compute elements in

a CNN accelerator. The parameters and values in a trained CNN are usually normal

distribution around a fixed value with a standard deviation. This allows us to use

di↵erent number representations in order to extract the best accuracy from a layer

at a low cost in term of power and bandwidth.

We then presented various strategies for improving the performance of a compute

element while keeping the accuracy approximately constant. We described the various



32

units developed and presented an algorithm for extracting the best performance from

each layer.

Next, we prototyped the proposed changes on a Zynq Zedboard and provided the

various metrics obtained for the di↵erent strategies. Finally, we then tackled various

tradeo↵s for selecting the best possible compute unit implementation for a custom

CNN architecture.
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