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GLOSSARY

loss function a function that calculates the inherent error of classification

as a result of noise or other factors.

max pooling partitions the input image into rectangular sub-images and

finds the maximum value of each.
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ABSTRACT

Collier, Edward D. MS, Purdue University, May 2016. Avian Retinal Photoreceptor
Detection and Classification using Convolutional Neural Networks. Major
Professor: Bedrich Benes.

Avian retinas contain special light filtering cones called photoreceptors.

These photoreceptors help filter out specific wavelengths of light, giving birds a

good range of distinction between colors. There are five distinct types of

photoreceptors: red, yellow, transparent, colorless and principle. A specific

photoreceptor can be identified by an organelle called an oil droplet. Dectecting and

classifying the oil droplets is currently done by hand which can be a time consuming

process. Using computer vision detecting and classifying the photoreceptors can be

done automatically. The recent introduction of deep learning in computer vision has

revolutionized automatic classification, producing classification results identical to

what a human could do. Using deep learning the human element can be eliminated

from oil droplet detection and classification. It can take days for a human to process

and entire retina, but using deep learning a computer can perform the same take in

a matter of minutes.

In this work, using current state of the art deep learning frameworks we have

created a Convolutional Neural Network that can classify the photoreceptors in the

microscope images identical to human classified images. Coupling the CNN with

various object detection algorithms, including R-CNN and two stage Hough

transform, potential oil droplets can be both detected and classified automatically.

Our results show that a CNN trained to classify the five different has human level

accuracy. Detection algorithms still lag behind classification in accuracy with the

best algorithms obtaining obtaining only 66% on the PASCAL VOC 2012 data-set.
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Despite the limitations in detection, we show that adjusting the color contrast of

the retina images accurate detection can be achieved for oil droplets regions.
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CHAPTER 1. INTRODUCTION

The eye is one of the most complex body parts in all of anatomy. Computer

Graphics revolves around how the human eye perceives input, and how it can be

deceived. However complex the human eye might be, the eyes of birds are equally as

complex. Arguably one of the most important body parts on a bird, the birds

ability to see is essential to its ability to fly. Avian retinas have adapted over time

to accommodate for flight. Unlike humans, who can only perceive color between 360

nm and 720 nm in the spectral band, birds can perceive a wider range of color that

can extend down to ultraviolet light in some birds (Bowmaker, 1980).

One of the most important and distinctive features of avian retinas is for the

photoreceptors in the retina to selectively filter out light. These filters are

commonly known as oil droplets (Vorobyev, 2003). In an avian retina there is one

single type rod photoreceptor, four single type cone, one spectral type double cone,

and double cones made up of a principle and secondary component (Hart & Hunt,

2007). Of these only the single cones and the double cones principle component

contain oil droplets (Hart & Hunt, 2007). The four types of single cone oil droplets

are Red (R-Type), Yellow (Y-Type), Colorless (C-Type), and Transparent

(T-Type). R-Type oil droplets are contained in photoreceptors that absorb long

wavelengths(Fernández-Juricic et al., 2013). Photoreceptors sensitive to medium

wavelengths contain Y-Type oil droplets (Fernández-Juricic et al., 2013). C-Type

oil droplets are contained in photoreceptors that absorb short wavelengths

(Fernández-Juricic et al., 2013). T-Type oil droplets absorb light in the ultraviolet

range (Fernández-Juricic et al., 2013). The double cone principle component

(P-Type) is also sensitive to long wavelengths (Fernández-Juricic et al., 2013).

The goal of this thesis is to develop a multi-method system for detection, and

a CNN for automatic classification of oil droplets. Oil droplets are observable
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features that are associated with a specific photoreceptor. Biologists use microscope

images of regions of avian retinas to observe oil droplets because the photoreceptors

themselves can not be clearly seen (Hart, 2001b). Each microscope image of a

retina region contains two images, a bright field and an epi image. The bright field

image is a colored picture of the cell region that shows the oil droplet colors. The

epi image is the same region just under a florescent light; this shows cells that cant

be identified or detected by just color alone. Figure 1.1 shows what a bright field

and epi pair might look like for a retina region.

(a) Bright field (b) Epi

Figure 1.1. Paired bright field and epi images

At Purdue University, the Biological Sciences Department has an entire

research team that is studying bird vision. The department has hundreds of retinas

that need to be processed. This includes detecting, classifying and counting the cells

in a microscope image of the retina. This is a very time consuming process.

Computer vision can be used to speed up research by helping remove the human

element from the detecting, categorizing and counting. We hypothesize that, using a

convolutional neural network (CNN) combined with other techniques from computer

vision, a computer can perform the same task in a matter of seconds for an entire

eye. If successful, this new method would useful to biologist by significantly reduce

the amount of time it takes to count oil droplets.
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1.1 Problem Statement

The classification of oil droplets in avian retinas is a crucial task for research

in avian vision (Fernández-Juricic et al., 2013). To observe oil droplets researchers

must dissect an avian retina and take photos of the retina under a microscope.

While the images vary in quality it is still critical that the oil droplets in all the

undamaged retina images be classified. Currently this task is done manually by

trained researchers. Training a researcher to correctly classify images takes time,

however. Additionally, once a researcher has been trained it can still take days to

classify all the images for one retina. Automating the classification of avian oil

droplets with a computer would offer a significant speed up for avian vision

research. Not only would this eliminate the time required to train a researcher, but

a computer could detect and classify the images in a fraction of the time.

1.2 Scope

The scope of this thesis covers two main portions; detecting and categorizing

oil droplets in avian retinas. This means that the method being created limits itself

to detecting cells present in an image. After detection, the application will identify

the cells in the image as one of the oil droplet types.

This project creates two convolutional neural networks (CNNs). The first

network is created on images of a single oil droplet. Its purpose is to show that a

CNN trained on enough data can perform human levels of classification. The second

network is a fast R-CNN. This network is built to detect and classify cells in the full

image. The single cell network gives a best case classification scenario where the fast

R-CNN gives the realistic results for detection and classification for the full image.

While CNNs are the sole method used for classification there are three

detection methods implemented. The first is the R-CNN which has already been

described. Second is k-means segmentation with boundary tracing on an adjusted
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image. The last detection method implemented is a two stage Hough transformation

on an adjusted image.

All images tested were processed independent from all other images in the

retina. This means that regardless of what the results from other processed images

is, they will have no effect on how another image is processed. The images used for

training the network are not independent. In CNN training the results of one

training image will affect the weights of the network which will have an effect on

future results for better or worse.

The research and specific scientific details of bird retinas are not in the scope

of this thesis. The specific uses of each type of cell is irrelevant to categorization

and detection, and thus is not considered. The algorithms presented in this thesis

are designed to show the effectiveness of CNNs for the task presented. Due to the

amount of training data used for each CNN this paper does not claim them to be

the optimal CNNs. With significantly greater training data the network error would

significantly decrease.

1.3 Significance

Detecting, classifying and counting oil droplets in avian retinas is currently

done by hand. At Purdue University researchers use a tool called ImageJ to

manually label images (Abràmoff, Magalhães, & Ram, 2004). Using ImageJ

detection, categorization and counting is done by hand and is very time consuming.

Processing all the images for one retina might take days or weeks, and Purdue has

hundreds of these retinas that need processing. Automating detection and

classification could greatly speed up research at Purdue and beyond, reducing

processing time to a matter of seconds and not days.

Deep Learning has proven to be a useful method for cancer cell detection in

the medical field (Cruz-Roa, Ovalle, Madabhushi, & Osorio, 2013). Deep Learning

has yet to be applied to avian retinas to detect and classify oil droplets. This
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project has given the researcher the opportunity to apply Deep Learning in a new

way and expand the knowledge and application base of Deep Learning and other

computer vision techniques.

1.4 Research Question

Using the most current image processing techniques in computer vision, can

a Convolutional Neural Network be trained that can detect and categorize the cells

in a microscope image of an avian retina, with 90% accuracy?

1.5 Assumptions

• Image must contain all five oil droplets.

• Images must be absent of any rips or tears. Faulty images can occur, but this

application will not account for them and it is left to the user to filter those

out. Figure 1.2(a) gives an example of a damaged retina region that would be

unusable.

• Images must have a high enough resolution to visual identify cells in the

image. Figure 1.2(b) gives and example of an image with poor resolution.

• Every bright field image has an epi image.

• All the images used as input are avian retinal images, no other animal is used

in this study.

• All cells in the image fall into either red, yellow, principal, colorless, or

transparent.

• All libraries and tools used to build this application work correctly.
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(a) Retina region damaged

during dissection

(b) Retina region that is

to blurry to distinguish cell

types.

Figure 1.2. Sample images of retina regions that can not be processed

1.6 Limitations

• The application can only classify oil droplets as either red, yellow,

transparent, colorless or principle.

• CNN accuracy is dependent human input. If any of the training images are

formatted incorrectly, such as mislabeled, then the accuracy of the application

will suffer.

• The amount of training that can be performed is directly dependent on the

number of dissections the Biological Sciences department has performed.

• The application is specifically built for the images provided by the Purdue

Biological Sciences department. All input images must mimic the types of

images the Biological Science department produces.

• The accuracy of the CNN reflects the amount and quality of the training data

used. Most CNNs require tens of thousands of training and testing images to

converge. For the single cell network approximately 6,000 images were

processed and used. For the fast R-CNN network only approximately 500
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regions of interest (ROI) were used for training. The lack of training data is

primarily a result of time and man power constraints.

• This thesis relies heavily on several algorithms like selective search (Uijlings,

van de Sande, Gevers, & Smeulders, 2013). While these algorithms are

assumed to work as intended it cannot be assumed they are perfect solutions.

The algorithms used represent the best available methods for performing the

tasks outlines in this thesis.

• This study is not concerned with bird species.

• Animals other than birds are not considered.

• This study is not concerned with the use of the information the application

provides, but the application itself.

• This study is concerned with the effectiveness of CNNs for detecting and

classifying avian retina oil droplets. It does not evaluate the user ability of the

application created.

1.7 Summary

This chapter has provided information on why this thesis is important and

its background. The scope of the project has been outlined along with relevant

definitions and the limitations this thesis faces. The next chapter will review

previous research in the fields of computer vision, machine learning and cell biology.
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This chapter provides an overview of literature across the fields of avian

retinal research in biology and computer vision. At Purdue University there are

researchers who are taking microscope images of avian retinal regions and need to

detect, classify and count the visual pigment cells in them. This process is currently

done by hand using ImageJ. Using ImageJ involves manually aligning two images of

the retina region, one regular image and one fluorescent, and then switching

between the two images to determine cell classification. This is a long and time

consuming process that slows down research considerably. Additionally, it takes a

considerable amount of time to train a human to see the differences in the cell

types. Instead of training a human, computer vision and convolutional neural

networks (CNN) can be used to produce similar results in a fraction of the time.

This research applies existing tools and algorithms in computer vision and

machine learning to process the microscope images. While these tools are combined

and applied in new ways, the goal is not to recreate these tools. Caffe deep learning

framework created by the Berkley Vision and Learning Center was used to create

the deep learning model used in the application (Jia et al., 2014). Fast R-CNN

(R. Girshick, 2015), which is a CNN that is specially designed for detection

problems, was used to perform both detection and classification. Many of the

computer vision algorithms used were implemented by Matlab’s computer vision

toolbox.

2.1 Research on Bird Retinas

Using microscopic images, avian visual pigment can be examined in several

different ways. Nathan S. Hart provides an good overview of the five oil droplets,
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”Birds have five different types of visual pigment and seven different

types of photoreceptors-rods, double (uneven twin) cones and four types

of single cone.” (Hart, 2001b)

This information is primary to the research being conducted in this paper. The five

types of visual pigment are the cells the application will be detecting and

classifying. With this information (Hart, 2001b) measures various aspects of

spectral sensitivity including wavelengths of pigment. This represents an example of

some of the research the the applications created in this thesis will help with.

The single cone photoreceptors in an avian retina are the only cones that

handle color distinction, where the double cones handle tasks such as movement

detection (Hart & Hunt, 2007). The evolution of the visual pigments is observed by

(Hart & Hunt, 2007), finding similarities to visual pigment genes in other

vertebrates. They conclude these similarities go back to a common ancestor in early

vertebrate evolution. Oil droplets filter out specific wavelengths of light allowing a

bird to better distinguish colors (Vorobyev, 2003). Because of their benefits to color

vision oil droplets have been retained through evolution (Vorobyev, 2003) .

Avian photoreceptors and visual pigment can be examined in three aspects

(Hart, 2001a), but this thesis focuses on their first method, the measurements of

single cells in the images. While this project is deeply connected with the

background research in avian visual pigment and photoreceptors, the results of such

research is not the concern. This thesis is concerned with developing a tool for avian

retinal researchers, the development of algorithms for cell detection, and the

development of optimization algorithms for cell identification. These goals require a

knowledge of the information contained in the microscope images, but is not

concerned with the intended use of such information. The researcher directs the

reader to (Hart, 2001a) for more information regarding research into avian

photoreceptions and visual pigment from a biological sciences perspective.
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2.2 Biological Image Segmentation

Figure 2.1. Cell detection using foreground/background segmentation
from (Guan et al., 2014).

Using computer vision to detect cells in microscope images is used by (Guan

et al., 2014). The authors seek to take microscope images of human embryo stem

cell regions and detect cell regions. The purpose of the paper by (Guan et al.,

2014) is to develop an improved automatic algorithm to complete the detection.

This goal aligns itself with the goal of this thesis, however the researchers goal is to

detect the cells in avian retinas.

Image gradient has been used to distinguish cells from the background of the

image by (Guan et al., 2014). Gaussians are used to identify likely cells using Grey

Level. Noise is filtered using a Gaussian mask. With a list of likely cells and the

distinction between foreground and background as metrics the system decides what

is and is not a cell, shown in figure 2.1. The distinction between foreground and

background using gradient is important. Using the method detailed by (Guan et al.,

2014) the possibility of false positive cells during both detection and classification

can be eliminated.

Important to this thesis is the ability to detect partial circles. In many case

the cells are not perfect circles in the images. For this reason methods must be

looked at to detect partial circles. Using active contours to detect the iris in

biometric scans, (Ross & Shah, 2006) are able to identify partial circles in images.
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Following an initial filter for circle detection the candidate circles whose diameter is

larger than a certain threshold in the image is discarded.

2.3 Histograms

Figure 2.2. Grey scale image histogram of a retina cell region.
Columns represent the number of pixels of a certain value.

Image histograms can be used to plot the distribution of pixels of different

tones in an image or region of an image. For both the epi and bright field images of

a retina a histogram can be used to distinguish cells from the background. This can

be especially effective in the epi images that only use two colors; one for the cells,

and another for the background.

Histograms can go beyond differentiating the foreground from the

background. An image histogram can be used to aid in classification. In a bright

field image one can distinguish red and yellow visual pigment cells from other visual

pigment cells based off the color of the cell. Similar techniques were used to detect
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and classify smoke particles by (Pahalawatta & Green, 2012). Using a three

channeled image histogram with an R, G, and B channel the pixel colors of a

detected cell can be observes. If the histogram for a specific cell contains primarily

R pixels and little of the others then its initial classification can be red, if a cell has

high G and R then its initial classification can be yellow. R-Type and Y-Type are

the only cells that are classified by color and thus the only ones that can be

classified specifically by an image histogram.

A specific type of histogram known as the radial histogram has important

uses in circle detection. Radial histograms compute the number of dark pixels about

the edge of an object around its center (Kavallieratou, Sgarbas, Fakotakis, &

Kokkinakis, 2003). Radial Histograms have lent themselves to a variety of image

segmentation applications. Radial histogram are used by (Bertozzi & Broggi, 1997)

in their self driving car implementation, while (Tang, 2011) used radial histograms

to detect hands and extended fingers on the Microsoft Kinect. Radial histograms

have be shown to perform well for detection of symmetric objects (Davies, 2004).

This makes them an important tool for circle detection when used with a Hough

Transformation.

2.4 Hough Transformation

Hough transformation, created and patented by (Hough, 1962), is used for

pattern detection in pictures. Hough transform excels in shape detection. Detecting

lines, curves and circles is easy using Hough transform (Tian, Pan, Cheng, & Gao,

2004). The basic idea of Hough transform is that the algorithm transforms an image

from image space to parameter space. The algorithm then makes a decision on

whether certain points make a shape or not. The technical aspects of Hough

transform are not a focus of this thesis, however, we direct the reader to (Tian et

al., 2004) and (Hough, 1962).
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Figure 2.3. Circle detection using Hough transformation. Even partial
circles can be detected.

Hough transform is a good method for circle detection (Duda & Hart, 1972).

While the algorithm is relatively old, it is still used in current research for feature

detection. Recent work in retinal scanning use Hough transform for circle detections

to identify the iris of a human eye (Bakshi, Mehrotra, & Majhi, 2011).

The function imfindcircles in Matlab is an extensive method for circle

detection in images that uses a Circular Hough Transformation (CHT). This

function implements two circle detection algorithms, phase coding and two stage.

Since this function works specifically for images the 3-D accumulator array that

holds candidate radii and votes for each in the standard 3-D Hough Transformation

is only 2-D for both methods, this provides a significant speed up. Additionally,

both methods explicitly use edge pixels and their gradients to help make

determinations. Phase coding, initially described by (Atherton & Kerbyson, 1999),

encodes the estimated radius as phases information in the accumulator array.

Decoding phase information from the proposed circle center can then estimate the

radius (Davies, 2004). The two stage method creates a radial histogram that

computes the radius of a circle using proposed center and edge information (Yuen,

Princen, Illingworth, & Kittler, 1990).
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2.5 K-Means Clustering

K-means clustering is a clustering algorithm that takes n observations and

clusters them based off some mean into K clusters. Using image histograms k-means

clustering can be done automatically by clustering the pixel values. When taking a

histogram of a region of an image the peak, or mean of the colors can be used to

cluster (Chen, Chen, & Chien, 2008). Using several iterations of k-means the

background can be filtered out of the retinal cell regions leaving the cells filtered out

for detection.

K means is commonly used for segmentation for retinal images and scans.

Using multi-space cluster, which includes k-means, (Ram & Sivaswamy, 2009)

detects Exudates in optical fundus images. Automatic retinal vessel segmentation

using k means is performed by (Lupaşcu & Tegolo, 2010), by clustering a

self-organizing map into two classes.

2.6 SIFT

SIFT is a computer vision algorithm for object matching that is invariant to

transformations (Lowe, 1999). SIFT is a trained algorithm, that matches objects of

interest in an input image to an initial training image, or images, with the same

detected objects (Lowe, 1999). Color clarity is less important for SIFT because

SIFT works best with gray (colorless) images (Y. Zhang, Zhaoxing, & Han, 2009).

A method for computing the location of objects in images using SIFT was

proposed by (Sivic, Russell, Efros, Zisserman, & Freeman, 2005). This method

works well as an object proposal method for images, but runs the risk of detecting

the same object multiple times in noisy images. Using a combination of graph cuts

and SIFT objects in images can be segmented and recognized (Suga, Fukuda,

Takiguchi, & Ariki, 2008). This is a novel approach when objects are distinct and

vary from the background. For this thesis SIFT was shown to have trouble
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Figure 2.4. oil droplets segmented from the background, drawn white,
using k-means image segmentation.

extracting features from the cells in the images, especially for some of the lower

quality images.

2.7 Decision Tree Learning

Decision tree learning is one of the most widely used and well known

machine learning methods for classification. Decision tree learning uses a tree to
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map observations to a specific result. This can be an incredibly powerful tool for

classification, even in biology.

Decision tree learning is used to classify ovarian cells as cancerous or not in

(Vlahou, Schorge, Gregory, & Coleman, 2003). Using trained and known

observations the researchers created a decision tree that would identify a cell as

cancerous or not. The decision trees used by the researchers only classify between

non-cancer and cancerous cells. Different from (Vlahou et al., 2003) cells in this

thesis must be classified into one of five different types. Decision tree learning can

classify into multiple types but is also effective in binary classification.

2.8 Cell Distribution

When detecting or classifying cells distribution can be a key variable. One of

the more common ways to describe cell distribution is through the Poisson

distribution. Poisson Distributions were used by (Knudson, 1971) to predict the

number of retinoblastomas an individual will produce in the event of a specific

mutation. The distribution of cells and their probability of occurrence is relative to

its neighbors is described by (Rodieck, 2003). For more information on the Poisson

Distribution or other methods for describing distribution (Rohatgi, 2003) provides

a good overview.

2.9 Convolutional Neural Networks

Convelutional neural networks first gained use for classification in the 1980’s

and 1990’s (LeCun et al., 1989, 1998). However, the CNNs used then were not

nearly as effective as the ones used today. In fact during the mid 2000’s support

vector machines (SVM) were the prominent method for image classification. It

wasn’t until (Krizhevsky et al., 2012) that CNNs became relevant again, and from

there have taken off.
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Figure 2.5. Visualization of the AlexNet architecture from
(Krizhevsky et al., 2012)

Research by (Hubel & Wiesel, 1968) found that eyes contain complex

blankets of cells. These cells are very sensitive to regions of the visual field and

together form filters that are very adapt at pattern recognition and feature

detection. This system of filters in animal eyes was the primary influence behind the

design of convolutional neural networks. Additionally, the alternating convolutional

and sub-sampling architecture in CNNs shown in Figure 3.3 is an idea also

borrowed from animal eyes (Duda, Hart, & Stork, 2012; Fukushima & Miyake,

1982). CNNs represent one of the most widely used examples of concepts in biology

translating to concepts of computer science and machine learning (Alon, 2003).

CNNs have been found to have a wide range of uses outside of standard

object classification. Two of the more classic examples of CNNs being used outside

of detection are scene recognition (Zhou, Lapedriza, Xiao, Torralba, & Oliva, 2014)

and image style recognition (Karayev et al., 2013). While these two topics are still

subsets of classification, they do show the versatility and power of neural networks.

Some other uses include age and gender recognition (Levi & Hassner, 2015a) and

even emotion recognition (Levi & Hassner, 2015b).

A CNN is a specific type of neural network. There are many types of

networks in existence. Each type of network needs to be optimized for different
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tasks. Examples of other neural networks include Recurrent networks (RNN)

(Donahue et al., 2014) which performs well for videos, and fully convolutional

networks (Long, Shelhamer, & Darrell, 2014) which are much deeper than normal

CNNs and good for pixel wise predictions. CNNs work well for object recognition in

images and can be easily trained with modern GPU’s (Krizhevsky et al., 2012).

CNNs to date have produced the best results on classification data sets like

ImageNet, MNIST and CIFAR (Krizhevsky et al., 2012).

One of the large and more open problems in CNNs is that, while very good

at single label images, they are not as proficient with multi-label images. While

there are many CNNs that can classify multi-label images they generally require

ground truth images with bounding boxes for training. Obtaining large quantities of

multi-labeled bounding box images is incredibly time consuming.

Hypotheses-CNN-Pooling (HCP), created by (Wei et al., 2014), is a multi-label

CNN that does not require bounding box images. The CNN that HCP uses can be

trained on single image data set saving valuable time. While HCP can output

multiple labels for an image, it is still a classification CNN. For the case of the

retinal cell regions it is known that there will be the five types of oil droplets in the

image, but their location is what must be found.

Deep learning and CNNs have been particularly useful at classifying

cancerous cells. Using deep learning (Cruz-Roa et al., 2013) detect cancer cells

from non-cancer cells in microscope images of skin to identify carcinoma. CNNs

have been used to identify breast cancer in (Abdel-Zaher & Eldeib, 2016; Rouhi,

Jafari, Kasaei, & Keshavarzian, 2015; Wu et al., 1995). While all the cells that

will be classified by the CNNs created in this thesis will be normal, the research on

cancer cells is important because it shows that neural networks can be trained on

microscopic biological data.
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2.9.1 CNN Detection

While the initial use of CNNs was for image classification, CNNs are now

being put to use for recognition as well. There are two notions of recognition with

CNNs, detection and segmentation (Hariharan, Arbeláez, Girshick, & Malik, 2014).

Detection finds all the instances of objects in the image and places bounding boxes

around the object. Segmentation uses pixel-wise labeling to find all the pixels of a

certain object in the image. The algorithms in this thesis will focus strictly on

detection, because segmentation offers no notion of the number of instances of an

object, just segments of the image that contain pixels associated with that object

(Hariharan et al., 2014). While this thesis deals strictly with detection the work of

(Xu, Schwing, & Urtasun, 2014) provides good insight into image segmentation and

how it is used.

Detection is a very open problem in computer vision. The human eye has

adapted over thousands of years to recognize patterns, making it very adept at

detecting objects in the field of view. Even with the introduction of deep learning,

algorithms for object detection are still not as effective as classification. In fact

while CNNs can achieve very high accuracy on the ImageNet classification

challenge, top CNNs like GoogLeNet could only achieve 40% to 43.9% accuracy for

the ImageNet detection challenge (Szegedy et al., 2014).

For detection with CNNs classification is used to lead to detection. There are

two methods for using CNNs for object detection. The first method uses sliding

windows to classify sub-images (Sermanet et al., 2013). This method is straight

forward, but helps solve a fundamental problem with CNN detection: how can

multiple objects in a single image be detected when the CNN is trained for binary

classification? By breaking the image into smaller sub-images, each containing

presumably one object or the background, the CNN can classify the one object in

the sub-image. Sliding window is a straight forward method that can be used on

basic CNNs at the cost of speed and efficiency.
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The second method for detection is to use Region-based Convolutional

Nerual Networks (R-CNN) (R. B. Girshick, Donahue, Darrell, & Malik, 2013).

R-CNN extracts feature vectors from regions of interest (ROI) to detect objects

using a CNN (R. Girshick, Donahue, Darrell, & Malik, 2014). A number of

algorithms can be used to compute ROIs including selective search (Uijlings et al.,

2013) or edge boxes (Zitnick & Dollár, 2014). Using the regional proposals a

feature vector is created. The feature vector is then classified using SVM’s

(R. B. Girshick et al., 2013). Originally training R-CNN was slower than training a

standard CNN because there was no shared computation for each forward pass of

the network (R. Girshick, 2015), but later implementations starting with fast

R-CNN have included shared computation. R-CNNs have performed well on the

detection challenges like PASCAL VOC 2012, where it achieved 66% accuracy

(R. B. Girshick et al., 2013). The main drawback to R-CNN is network training.

Not only is the training slower, but the training and testing data must be formatted

differently. Whole images must be classified either pixel wise or with bounding box

annotations. This is much more time consuming than standard image labeling

where an entire image has one label.

A faster and more accurate R-CNN called fast R-CNN is used in this thesis

(R. Girshick, 2015). Recently a new R-CNN was released called faster R-CNN

(Shaoqing Ren, 2015). Faster R-CNN was released during the development of the

algorithms described in this thesis and is thus not considered, but offers an

interesting option for the future. See Figure 2.6 for an example of fast R-CNN

output.

On the ImageNet 2013 detection challenge fast R-CNN performed the best

with 31% while the sliding window algorithm Overfeat (2) came in second with 24%

(R. B. Girshick et al., 2013). These results highlight one of the main points about

detection algorithms: compared to classification detection is still far behind. Even

the best detection algorithms still produce below 50% accuracy results (Gupta,

Girshick, Arbeláez, & Malik, 2014).
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Since the release of R-CNN there has been vast amounts of research looking

to improve detection using R-CNN. Bottom up regional proposals have been used to

avoid the need for pre-computed bounding box annotations in R-CNN, while

creating a CNN that can detect both an entire object and its parts (N. Zhang,

Donahue, Girshick, & Darrell, 2014). Areas of image segmentation have seen

improvements by creating fully convolutional networks (FCN) (Long, Shelhamer, &

Darrell, 2015). This network replaces the fully connected layers at the end of the

standard CNN architecture with more convolutional layers, hence the name fully

convolutional.

Figure 2.6. An example or Fast R-CNN detecting cars in an image
from (R. Girshick, 2015).
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2.10 Conclusion

Avian retinal research is a large field with many applications (Hart, 2001b),

but a lack of automated software solutions can slow down the research considerably.

Cell detection has been attempted in research before (Guan et al., 2014). Using

similar methodology to existing research along with deep learning (R. Girshick et

al., 2014) this thesis shows that CNNs can be used to automate the time

consuming task of detecting and classifying. This application is flexible and can be

extended to a wide range of research projects in biology, not just the ones being

conducted at Purdue University.

2.11 Summary

This chapter gives background information on the research being done on

avian retinas, where this application fits into that research and the tools this

application will employ. A detailed look into how detection and classification will be

performed automatically along with an overview on CNNs. Methods for automatic

detection using CNN were discussed along with their drawbacks. Additionally, cell

localization with Poisson distribution, k-means clustering, image histograms and the

Hough transformation are discussed.
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CHAPTER 3. FRAMEWORK AND METHODOLOGY

Figure 3.1. An overview of the system implemented in this thesis.

This thesis is a quantitative research project. Figure 3.1 presents the pipeline

of our system. The first phase is data labeling. All data used for training the

convelutional neural networks created must be specially labeled for input. The

second phase trains a CNN using the labeled data produced in the first phase. The

detection phase has multiple independent parts. Three detection algorithms,

R-CNN, image adjusted k-means segmentation and image adjusted Hough

transformation, were implemented in our system. Each of the detection algorithms

is independent of the other. Regardless of the detection algorithm used classification

is always done by the trained CNN. The oil droplet regions output from detection

are all passed through the CNN and classified into either red, yellow, transparent,

colorless or principle. If the CNN is an R-CNN then a background class is also

present. The effectiveness of the application created is judged by its accuracy in cell

classification and detection compared to pre-classified images done by humans.
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3.1 Initial Non-Machine Learning Approach

The initial approach to detecting and classifying cells was to use conventional

methods in computer vision. These were non-machine learning methods like

k-means segmentation and Hough transformations (Hough, 1962; Tian et al.,

2004). This approach first sought to detect the cells and the classify all the

detections. The epi image in this method was relied on heavily to help with

classification and detection. Further iterations of this application used basic

machine learning techniques like decision trees to build classifiers for the oil droplets.

Figure 3.2. Results for initial approach. Notice a majority of the
classifications are wrong along with the existence of multiple false
positives.

Detection results for the initial approach produced countless false positives

and numerous misclassifications. While the detection coverage was good, heavy

background noise in the images led to large amounts of false positives. The

classification results were even worse than the detection results. Without a

threshold to judge the ”brightness” of an oil droplet in epi images, the epi was

essentially rendered useless. Misclassification between the principle, colorless and

transparent types was more common than not. In many cases the all the

transparent oil droplets would be completely misclassified, or not even detected at
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all. Figure 3.2 provides a look at the classification short comings of the old method

in addition to some detection errors.

The failures of the initial approach led to the use of deep learning and CNNs.

CNNs offered the best possible option to classify the oil droplets in the retina

images. CNNs have also found footing in the fields of detection. With this in mind

it was determined that CNNs could provide the best classification and detection if

trained properly with enough data.

3.2 CNN

Figure 3.3. Visualization of the LeNet architecture from (LeCun et
al., 1998) that is used in this thesis for classification

In order to produce the best possible classification results the pre-classified

data of the avian oil droplets was used to train a CNN. Having large quantities of

pre-classified data made moving to CNNs a logical next step for classification.

However, even though the data was pre-classified it needed to be extensively

formatted to be used for CNN training.

Most CNNs follow the same basic structure, multiple convolutional layers

followed by fully connected layers (LeCun et al., 1989; Szegedy et al., 2014). A

convolutional layer is a feature extractor that contains multiple feature maps

(LeCun & Bengio, 1995). For larger data-sets, larger layers or more layers will
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usually be added to the CNN (Lin, Chen, & Yan, 2013). Figure 3.3 gives the

standard architecture for a CNN from (LeCun et al., 1998). The modern day CNN

format described by (Krizhevsky et al., 2012) consists of several convolutional

layers, max pooling layers, three fully connected layers and lastly a loss layer. A

CNN can use one of many loss functions, but standard CNNs tend towards using

the softmax loss.

Training a neural network is in essence trying to minimize the loss for the

entire data set using back propagation. With back propagation the weights at each

layer are adjusted and the gradient for the loss is then computed (LeCun,

Kavukcuoglu, Farabet, et al., 2010). Training adjusts the weights of each layer in

the network to minimize the loss. The following sections describe the process of

training a CNN and the multiple ways it was used to classify photoreceptors, and

assist in detection.

3.2.1 Caffe

The Caffe framework by (Jia et al., 2014) is used to create and train all the

CNNs in this paper. Caffe is an open source deep learning framework created by the

Berkley Vision and Learning Center. Caffe is considered to be the lead framework

for deep learning, providing an open and flexible framework that is supported by a

dedicated team at BVLC and a large open source community of developers. Caffe is

functional on both the CPU and GPU, and is also integrated with Nvidia’s CUDA

Deep Neural Network Library (cuDNN). Caffe is implemented in C++ and is

functional in Python and Matlab.

Caffe builds networks layer by layer, where each layer of a network is

described in Google Protocol Buffer format. Caffe defines networks in bottom up

format where the data layer is considered the bottom and the top most layer is

generally the loss layer. Data that is passed through a Caffe network is stored in

blobs (Jia et al., 2014). A blob is a representation of an N-dimensional array, where
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N is the batch size, that not only hold images, but other data like network

parameters.

As previously stated networks in Caffe are built layer by layer. The most

important tasks of each layer are the forward pass and the backwards pass. The

forward pass takes a blob as input, computes the output and passes it to the top. A

backwards pass computes parameter gradients from output gradient that gets

passed to it. A blob that is passed through the entire network simply goes through

a series of forward passes and then backwards passes.

3.3 Classification

Using LeNet CNN architecture a network was trained to classify images of

single oil droplets. This network serves two purposes to this thesis. First, it acts as

a proof of concept that CNNs can individually classify one oil droplet type from

another. Second, the CNN created in this section is used for cell classification in the

image adjusted detection described later on. With the exception of the R-CNN

network created later, this CNN is the primary method used for retinal oil droplet

classification.

3.3.1 Training Data Augmentation

To format the data to create a CNN for single cell classification a large

amount of images containing a individual cells would need to be cropped from whole

images. To reduce the time it would take to manually cut and classify thousands of

individual images for each type of oil droplet all cropped images were augmented.

For each image that was cropped eight images would be labeled. These images were

produced by rotating the image by 90 degrees three times, and then color adjusting

the image and rotating it again by 90 degrees three times. It was found that using a

low end vector of [0.1, 0.1, 0.0] and a high end vector of [0.6, 0.7, 1] adjusted the
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image color enough to be variable from the original while not affecting the training

results.

Each augmented image is labeled with a number 1 through 5. The number

corresponds to the classification of the image. The label for each oil droplet is shown

in table 3.1. The same process of cropping, augmenting and labeling is repeated to

obtain data for testing, but significantly less data is used. Table 3.1 presents the

quantity of data used for training the CNN. Figure 3.4 shows a yellow oil droplet

and principle oil droplet image that were both used to train the single cell network.

Table 3.1
Single cell image counts

Type Label Train Test

Red 1 1632 210

Yellow 2 1517 165

Transparent 3 420 65

Colorless 4 790 100

Principle 5 1663 155

(a) Yellow oil droplet image

used for CNN training.

(b) Principle oil droplet image

used for CNN training.

Figure 3.4. Images like these are labeled with the corresponding class
number for training the single cell network.
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3.3.2 CNN Training

Our CNN is created using the standard LeNet architecture (LeCun et al.,

1998). To standardize the training and testing data sets the network crops the

images to 24x24. After all the images are re-sized to 24x24 the training and testing

image sets are compiled into two separate lmdb files (Chu, 2011), one for the

training data set and one for the testing.

For the training lmdb the image mean is computed. An image mean is a

24x24 image that is created by computing the mean value at every pixel location

between all the photos in the lmdb. Before an image is passed through the network

it has the mean image subtracted from it. Subtracting the image mean helps with

feature extraction during the images forward pass through the network. Subtracting

the image mean eliminates commonalities that exist across some or all classes,

leaving only the distinct features for each image for training or classification. Figure

3.5 shows the image mean computed for the single cell network described in this

thesis

Figure 3.5. Image mean calculated for single cell network

With the images cropped, lmdb’s created and image mean computed the

network can begin training. The single cell network trained for 7,530 iterations on

an Nvidia Tesla k40 GPU. Training took 40 minutes and 21 seconds to complete

with a reported accuracy of 0.8757 on the test set and a loss of 0.0559.
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3.3.3 Oil Droplet Classification

Before images can be passed through the network and classified they must be

modified to meet network and Caffe specifications. The image must have its color

channel switched from RGB to BGR. The resulting image is in W x H x 3 format

where 3 represents the now BGR color channels. The use of BGR instead of RGB is

part of the Caffe frameworks. After the channels for the image have been permuted

the mean is subtracted for the the image and the results is passed through the

network.

For each image that makes a forward pass the network will output the scores

for each class in the network. The scores represent the probability that the object in

the image is of any one type. The possible values for a score are between 0 and 1.

The scores are not independent of each other meaning that the sum of all the scores

must equal 1.000.
n∑

i=1

scorei = 1.000 (3.1)

Generally the image is classified based off the label with the highest score, known as

the max label. Since the its possible for the max score to be less than 50% its not

always worth while to just output the max label. In our application the score for all

five classes are output sorted from greatest to smallest.

3.4 R-CNN

R-CNN is a special type of CNN that is specially designed for detection.

Originally created by (R. Girshick et al., 2014) it has since been upgraded to fast

R-CNN (R. Girshick, 2015) and more recently faster R-CNN (Shaoqing Ren,

2015). R-CNN uses the ImageNet CNN implemented in Caffe and extracts a feature

vector for each region of interesting in an image. Training an R-CNN is done

through network fine tuning. This involves taking a network that was previously

trained for classification, and then training it for detection. Fast R-CNN and faster
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R-CNN can also fine tune deeper networks like VGG16 (R. Girshick, 2015;

Shaoqing Ren, 2015).

The network architecture for the original R-CNN is unchanged from the

ImageNet CNN, but implementations of fast R-CNN and faster R-CNN have made

changes. Fast R-CNN, which this thesis uses, defines two separate loss layers, a

softmax loss and a smooth loss. Both loss layers branch from a fully connected layer

and are separate from each other. The softmax loss computes the loss associate with

the classification score for a proposal. The smooth loss computes the loss for a

bounding box prediction. Loss is a term used to define the error in classification.

All versions of R-CNN are implemented in C++ as a branch of the Caffe

repository. The original R-CNN and fast R-CNN are implemented in Python as

well, while faster R-CNN was originally implemented in Matlab. Fast R-CNN also

has basic Matlab function-ability, but this thesis uses the Python implementation.

Training the fast R-CNN network for oil droplet detection follows similar steps as

with the standard CNN created previously, but with some minor additions. These

additions are creating bounding box annotations for each image, and computing

regional proposals.

3.4.1 Training Data Augmentation

To label data to train an R-CNN network each whole image needs to have an

annotation file associated with it. The annotation file contains bounding box

coordinates and labels for each of those bounding boxes. Using previously classified

images for reference, bounding boxes were places around all the classified cells. Each

bounding box is labeled as either red, yellow, transparent, colorless or principle.

The bounding box and the label are saved to a .xml file that can be read by Caffe

during training. Internally bounding boxes are represented as an (x, y) coordinate

with a height and width. The (x, y) coordinate is the top left corner of the box on

the image. Annotations for each image were obtained using the
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trainingImageLabeler tool provided in the Matlab Computer Vision Toolkit. Figure

3.6 provides a look at image labeling using the trainingImageLabeler. Even with

previously classified data the process had to be done by hand. This effected the over

all amount of training data that was processed.

To train the R-CNN network bounding box proposals must also be sent in as

input (R. Girshick, 2015). Bounding box proposals are a set or regions in the image

where an object might be. The network makes final decisions as to whether a

proposal is the background or an object. In this thesis object proposals for each

image are generated by running a selective search (Uijlings et al., 2013), but we

recognize the existence of other algorithms for generating object proposals. Selective

search uses a combination of image segmentation and exhaustive search. This

produces a set of all possible object locations in the image. These possible locations

are the object proposals. Selective search can produce thousands of proposals for a

single image. The majority of these are false positive detections. Using classification

these detections can be identified as the background or a possible oil droplet. The

selective search saves all the object proposal bounding boxes to a single .mat file

associated with the training data set.

3.4.2 R-CNN Training

The fast R-CNN framework created by (R. Girshick, 2015) was used to train

and test our R-CNN network. To train a fast R-CNN network for cell classification

and detection the Caffe ImageNet 2014 model was fine tuned. The fine tuning

added the cell classes to the existing model over 40,000 training iterations.

Originally the network was trained using the same images as the single cell

classification CNN. The resulting network posted poor results for whole cell regions,

never being able to classify an ROI with a score above 0.25. The underlying issue

was that features of one ROI relevant to any others in the image were nonexistent

since only one ROI existed per image. To combat this issue the network was
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Figure 3.6. ROI annotations for a retina cell region.

re-trained using images of entire retina regions. This allowed the network to better

recognize the placement of features relative to one another. For the training data

set the object proposals are stored in a single .mat file produced by Matlab.

Similar to training for the single cell network the images need to be compiled

into an lmdb before training the R-CNN network. Both a training and annotation

lmdb are be created. The annotation lmdb is similar to the training lmdb except it

encapsulates all the annotation files. Since the ImageNet 2014 model was fine tuned
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a test lmdb was not needed. Similarly, because fine tuning was performed and

image mean was not calculated for the network either. To fine tune the network

Caffe is given the ImageNet 2014 model, its solver state and the lmdb for the

training image as input.

Training the R-CNN over 40,000 iterations took significantly longer than the

single cell CNN. Total training time took close to five hours. The final reported loss

was 0.1459. Accuracy results for R-CNN were not output during training.

3.4.3 R-CNN Detection

The fast R-CNN network runs images in batches. The total size of the batch

is describe by a text document that lists the absolute paths to all the images in the

set. For each image that is going to be processed object proposals have to be found.

The object proposals are found identically to the training set by using the selective

search. Using selective search approximately 2K object proposals are created for

each image. Unlike the training data set, however, the object proposals are not

stored in a single .mat file. This is because images with in the batch are passed

through the network individually. Figure 3.7 shows the results of a selective search.

All the regions surrounded by a red bounding are object proposals generated by the

selective search. These are the regions that will be classified as one of the oil droplet

types or the background.

After the image does a forward pass through the network the list of object

proposals and scores for each proposal are returned. For each bounding box the

array of scores associated with it is sorted from maximum to minimum. Now that

every box has a max score associated with it ROIs that are considered misses are

filtered out.

ROI filtering consists of multiple steps. The first step is to discard all the

bounding boxes whose max score is not for one of the five oil droplet types. Theses

ROIs are considered to be background regions. The next step in filtering out the
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background regions is determining a max score threshold. This defines a max score

a non-background classified ROI must have to be considered a positive detection. In

the classification CNN the max score threshold was not used because all images

contained an oil droplet. For R-CNN the threshold must be defined to further

eliminate misclassified background regions. After testing it was noted that a

threshold of 0.85 preformed well for the eliminating miss classified background ROIs.

After the background regions are filtered out overlapping detections need to

be eliminated. Bounding boxes that are bigger the 40x40 are eliminated first. These

bounding boxes are too big and likely will contain multiple cells. Next all the

remaining overlapping bounding boxes of the same classification must be removed.

In the review of the Poisson distribution is was stated that oil droplets of the same

class can only occur so close to each other. To remove overlapping bounding boxes

Non-Maxima Suppression (NMS) is used (Devernay, 1995). Given a threshold

defined as the maximum amount of overlap two bounding boxes may have, NMS

finds all the groups of overlapping bounding boxes and removes the boxes with the

lowest score. This process assumes that the bounding box with the highest score is

the most centered around the object.

After all the ROIs for each oil droplet type are filtered and removed the

remaining ROIs are assumed to be positive detections. To improve the readability

of the data the results are printed to five files. Each file contains the input image

and all the labeled bounding boxes for one type of oil droplet. Each bounding box

in the output image is labeled with the score for the oil droplet.

3.5 Adjusted Image Detection

During the process of augmenting training and testing images for the

classification CNN it was observed that the [0.1 0.1 0.0, 0.6 0.7 1] block vector used

to adjust images actually made the cells more visible from the background, see

Figure 3.8. Previous non-machine learning methods for cell detection performed
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Figure 3.7. Selective search ROIs for a retina cell region

poorly because in most cases the cell could not be segmented from the background.

With greater contrast between the oil droplets and the background coupled with a

CNN for classification cells could now be detected with greater accuracy while also

providing CNN classification. Using the Computer Vision Toolkit provided by

Matlab first a detection method that coupled color-based image segmentation with

k-means and boundary tracing was implemented. Then a method using the two

stage Hough transformation for circle detection was implemented. The adjusted

image is strictly used for detection. CNN classification was performed using the

unaltered image using each of the regions detected by the algorithm.

3.5.1 K-Means Segmentation with Boundary Tracing

The first step to segmenting the retina cell regions with k-means is converting

the image from RGB to Lab. Lab is a color space where L is the luminosity, a is

represents a colors location on a red-green scale and b is a colors location on a

blue-yellow axis. Color information is now stored in a and b. The benefit of being in
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Figure 3.8. Block vector adjusted image. The cells tend to be more
distinctive after adjustment.

Lab space is that Euclidean distance can be used as the distance metric for

k-means. In Lab space the difference between two colors is their Euclidean distance.

Euclidean distance is the straight line distance between two points.

Our k-means algorithm splits the input image into three clusters,

background, red and yellow, and principle, colorless and transparent. We utilize the

fact that the distance between red and yellow is relatively small compared to their

difference from the rest of the image. The same notion also holds true for the

principle, colorless and transparent cells who all appear as a shade of gray. In

Matlab a random seed is used during the k-means computation. This seed represents

the initial points chosen as the center of each cluster. With the seed, or center,

being random the clustering results might always be different on a single image.

This can be a problem for replicating results. To solve this the seed is manually set

in our algorithm so that the results for one image will always remain the same.
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After clustering, a matrix containing the cluster ID for each pixel in the

image is created. While retina regions can contain a large number of pixels clustered

into one of the clusters that contain the oil droplets, they should never outnumber

the amount of pixels clustered into the background. After obtaining the background

cluster ID by taking the mode of the ID matrix, all the pixel labeled in the

background cluster have their RGB value set to zero as shown in Figure 3.9.

Figure 3.9. Pixels clustered into the background have their RGB
values set to 0 in the original image.

After clustering, boundary tracing is run to segment the oil droplets in the

image. The first step is converting image shown in Figure 3.9 to a binary image. For

each non-black region in the image Moore neighborhood contour tracing is used to

trace the boundaries(Gonzales, Woods, & Eddins, 2004). Starting at a black pixel

Moore neighborhood contour tracing traverses all the neighboring pixels until a

black pixel is found (Pradhan, Kumar, Agarwal, Pradhan, & Ghose, 2010). This

process is continually repeated until the starting pixel is visited a second time. The

set of visited pixel is then assumed to be the boundary of the oil droplet, Figure

3.10.
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Figure 3.10. Boundary tracing using Moore neighborhood on segmented regions.

To classify each of the segmented regions they must be cropped out of the

original image and passed through the network. To ensure the whole oil droplet is

contained in the crop the center of the boundary is computed by the centroid. A

24x24 mask of the image is then made around this center point on the unaltered

image and passed through the CNN. The center point is then marked with the

resulting max label as shown in Figure 3.11

Figure 3.11. Classified photoreceptors detected using k-means
clustering and boundary tracing.



40

3.5.2 Two Stage Hough Transformation

The third detection method implemented in our system is a two stage Hough

transformation on an adjusted image. Hough transformation is a well know method

for circle detection (Atherton & Kerbyson, 1999; Yuen et al., 1990). After image

adjustment there is greater contrast between the oil droplets and the background of

the retina region which makes edge pixels more identifiable. Ex

When using a Hough transformation for circle detection the polarity of the

objects being detected must be defined. This helps with identifying potential circles

and vote tallying. Looking at figure 3.8 we can see that, after adjustment, the oil

droplets are generally darker than the background.

Computation of the two stage Hough transformation is performed in Matlab

by the built in imfindcircles function. The output from the function gives a list of

circle centers and their radii. For a visualization of the results see Figure 3.12. The

phase-coding method of Hough transformation was also tested but produced worse

results when compared to the two-stage Hough transformation.

After detection oil droplets are cropped from the original image, but in this

case a r+4 x r+4, where r is the circle radius, crop is made. Four is added to the

radius to pad the crop in case the center is not the true center of the oil droplet.

The cropped images are passed through the CNN. The detected circle associated

with the cropped image passed through the next work is labeled with the max score,

Figure 3.13.

3.6 Summary

This chapter outlines the steps taken to train both the single cell and

R-CNN networks, classify images and detect cells. The initial approach to the

problem was first presented and its failures outlined. Data formatting and labeling

for both the single cell network and R-CNN network is covered, including the image

annotations required for R-CNN. Training methods and the differences between the
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Figure 3.12. Oil droplet detection on the adjusted image using a two
stage Hough transformation.

Figure 3.13. Classified oil droplets detected by two way Hough transformation.

two networks are noted. For R-CNN a brief overview of the selective search used to

generate ROIs is covered. The methodology for processing images in both networks

is describes. Steps to preparing the single cell data in Matlab is given, and filtering

techniques to achieve accurate results for the R-CNN network are presented. Lastly,

two non-machine learning detection algorithms were implemented on an adjusted
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image. The detections from both the k-means segmentation and two-stage Hough

transformation are passed to the CNN for classification. In the next section the

results will be discussed in detail.
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CHAPTER 4. RESULTS

All the results produced by the algorithms used are compared to ground

truth images that have been pre-classified, and verified for their correctness by

biologist from the Purdue University Biological Sciences department. Each CNN

was tested using data with an identical format to the data that the network was

trained and tested with. The ground truth images that the test results are compared

with also have the same format as the images used to train and test each network.

Any pre-processing that had to be done to format the images before testing is not

considered as part of the tests or study. The results for the tests were viewed on a

per cell type basis and then brought together to evaluate the entire network.

All tests are performed on a computer running Ubuntu 14.04 using and Intel

i7 processor, 8 GB of RAM and an Nvidia K40 graphics card.

4.1 Classification

New single cell images were cropped out of ground truth pre-classified images

that were not used for training. The images were re-sized to meet the CNNs

requirements. Table 4.1 shows the accuracy for the classification of each cell type.

For testing a total of 197 red, 166 yellow, 112 transparent, 143 colorless and 156

principle images were used. The resulting classification for each input image is the

cell type with the highest score for that image. Even if the highest score was less

than 50% that image would still get classified into the highest score.

Looking at the results from Table 4.1 we can see that all the cell types

perform well for the single cell classification with transparent being the only type to

not obtain 90% accuracy. As Table 4.2 shows the incorrect classification with the

highest score for transparent was colorless. All 18 incorrect classifications for the
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transparent tests were classified as colorless, and indeed the opposite holds true for

colorless. All together we can see that across all the test the CNN obtains 95.09%

accuracy, which is well within acceptable human range for cell classification.

Our system does not incorporate the epi image into classification. The epi

image is used to help classify between the transparent, colorless and principle types.

Without any need for the epi image, however, we can see the a CNN can classify at

a level acceptable to human classification. The lack of an epi image is the most

likely result for the misclassifications between the colorless and transparent types.

Figure 4.1 gives a sample of the output for the single cell network.

Table 4.1
Single Cell Network Classification Results

Type Images Used Correct Incorrect % Correct

Red 197 196 1 99.49%

Yellow 166 163 3 98.19%

Transparent 112 94 18 83.92%

Colorless 143 130 13 90.90%

Principle 156 152 3 98.07%

(a) Colorless oil droplet

passed through the CNN for

classification.

(b) Score outputs for colorless

cells in 4.1(a).

Figure 4.1. Sample output for the results of a red oil droplet classification.
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Table 4.2
Single Cell Network Score Extremes

Type Max Correct Min Correct Max Incorrect Max Incorrect Type

Red 100% 90.09% 69.99% Yellow

Yellow 100% 64.24% 95.28% Principle

Transparent 96.90% 49.94% 66.99% Colorless

Colorless 99.91% 50.91% 73.26% Transparent

Principle 100% 57.61% 94.49% Yellow

4.2 R-CNN

The R-CNN network is a culmination of the classification and detection

problems. Using fast R-CNN (Shaoqing Ren, 2015) selective search finds regions of

interest to be classified. Because there is no guarantee that any of the ROIs will

have a cell in it fast R-CNN uses classification for detection. Detection is evaluated

by the number of cells that are left undetected. Due to the nature of R-CNN false

positive regions actually correspond to miss classified background regions.

Classification is measured by the amount of misclassifications, similar to the single

cell CNN.

4.2.1 Timing

The fast R-CNN network is fast at classification and detection. On average it

can process a full size retina image in 0.267 seconds. Processing an entire retina of

211 images takes 1.13 minutes. The results for each oil droplet type are saved into

separate files as shown in figure 4.2 to make the results for each type more view-able.
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4.2.2 Detection

Running the selective search on an images produces thousands of ROIs

thanks in part to the noise many of the retina cell photos contain in addition to the

large number of cells. When feeding the ROIs into the network regions that get

classified as background are discarded. In addition only regions whose score exceeds

0.85 are considered to be classified. This threshold was chosen to account for large

ROIs that might contain many cell but produce a high score for the most prominent

cell in that region.

Detection is still an open problem, (R. Girshick et al., 2014), and the results

from the fast R-CNN network show just that. The coverage for the red and yellow

oil droplet combine across all tests is above 95%. These are the most distinguishable

cells and can easily be found with the selective search algorithm. Principle also

tends to perform well. As Figure 4.2(e) shows all the principle cells in the image are

covered. Issues do arise in images where the principle cells are more faded and less

defined.

Transparent and colorless cells are where the network does not perform as

well. Figures 4.3(a) and 4.2(d) show that in many cases the background is classified

as a transparent or colorless type while failing to detect the actual cells in many

cases. In many cases the cause of these missed detections was because the bounding

boxes that covered those cells were to large and removed. ROIs that are larger than

40x40 are also removed and not considered. This is done to avoid repeated

detections and reduce the number of false positives. It was observed that allowing

large ROI would cause more false positives to appear than the number of misses

that smaller ROIs would cause. This was the main factor in deciding whether to

include large or small ROI.
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(a) Red detection. (b) Yellow detection.

(c) Transparent detection. (d) Colorless detection.

(e) Principle detection.

Figure 4.2. Fast R-CNN detection results.

4.2.3 R-CNN Classification

Because the fast R-CNN network is different in many ways from the single

cell network the classification results do differ. As figures 4.2(a) and 4.2(b) show the

classification for all the detected yellow and red oil droplets is around 100%. Across

all test 97% of red and yellow cells were properly classified and detected. Errors
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would only occur in the event a yellow cell appeared more orange than yellow.

These cells could end up being classified as red instead of yellow. The classification

scores for the red and yellow oil droplets tend to remain around 1.000 meaning the

network is very confident of the classification. Principle oil droplet detections also

tend to perform well, reach mid 80%’s to low 90%’s for detection on most images.

As previously stated in R-CNN classification leads into detection which can

exacerbate the results of a false classification. Any classification that the network

believes to be relatively good, has a high score, the network will keep. This is how

false classification arise in R-CNN. The primary victims of this phenomenon are the

transparent and colorless cells.

Looking at Figure 4.3 we can see that both the transparent oil droplet and

the colorless oil droplet in the photos can easily blend in to the background. This

can lead to one of two possible errors. The first as discussed is false positive, where

a background image is actually positively classified as a transparent or colorless cell

as shown in Figures 4.2(d) and 4.2(c). The other situation is a transparent cell or

colorless cell gets classified as background. This scenario would cause that specific

detection to be filtered out with all the other background images, leading to a

missed detection.

(a) Transparent oil droplet. (b) Colorless oil droplet.

Figure 4.3. Transparent and colorless oil droplets tend to blend with
the background.
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4.3 Adjusted Image Detection

After image adjustment the oil droplets became more distinguishable from

the background. Using classical segmentation methods from computer vision oil

droplets were detected with a higher accuracy than even the R-CNN network

produced. Not only was the detection better but it eliminated the need to train

hundreds to thousands of images with bounding box proposals, and the previously

created single cell CNN could be reused to classify the detections. The first

implementation is a Lab color k-means segmentation with boundary tracing. The

second is circle detection using two stage Hough transformation.

The same CNN was used for classification for both detection algorithms

which lead to consistent classification results between the two. The classifications

prove to be very effective for the detected oil droplets, posting results similar to the

classification results shown in the CNN black box testing. Their is still confusion

between the colorless and transparent cells, but the principle, red and yellow

classifications are consistent with those posted by the CNN.

4.3.1 K-Means Detection

K-means clustering with boundary tracing produces good detection results

for retina region image with quite backgrounds. For images that could be segmented

with k-means on average 8.5 oil droplets were missed among an average 38.25 oil

droplets per image. False positive detections occurred occasionally when small

segmented regions would be classified at a transparent or colorless type. Adjusting

the image vastly improved the quality of k-means segmentation, where before it was

generally unusable for most images. Even with the improvement, however, k-means

was still unstable for many images.

Similar to issues with R-CNN the downfall of k-means segmentation is the

varying image quality for the input images. For many test images k-means works

well segmenting the cells, shown in Figure 4.4, but for images with more noisy
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Figure 4.4. A retina region that is well segmented by k-means.
Background regions clustered in gray where cell regions comprise of
the black and white clusters.

backgrounds the results are not as good. There are many cases where oil droplets

get clustered with the background like what is shown in Figure 4.5(a), and can

produce a segmented image like the one shown in Figure 4.5(b). Because the

background has not been fully eliminated from the image boundary tracing does not

segment out oil droplets for classification.

(a) The white regions cover

both the background and oil

droplets.

(b) The segmented image still

contains a majority of the

background.

Figure 4.5. With a noisy background k-means will segment the image poorly.
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4.3.2 Hough Transformation Detection

Many of the inconsistencies that arise during k-means clustering have little

effect on the two stage Hough Transformation. Across the majority of testing

images circular oil droplets were detected at a high rate. On average only 2.0 oil

droplets were missed in a cell region. False positives were also more uncommon with

Hough transformation compared to k-means with approximately of 1.4 false

positives per-image.

Figure 4.6. Using two way Hough transformation on an image
k-means could not segment.

Across all the images tested the Hough transformation was consistently able

to detect the oil droplets. In images that failed for k-means like the one showed in

Figure 5.1 Hough transformation detected all or the majority of the circle, shown in

Figure 4.6, but occasionally with the inclusion of more false positives. Instances of

missed detection occurred in more cases for yellow or transparent oil droplets, when

the polarity of the cell was lighter than the background, Figure 4.7 The two stage

Hough transformation used in this thesis searches for circles darker than the

background. This can be solved by reducing the image detection threshold defined

by the algorithm, but will also result in more false positives.
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Figure 4.7. A yellow type oil droplet is left undetected due to its lack
of contrast with the background.

4.4 Summary

In this chapter the results for the classification and detection algorithms are

presented. First we show that a CNN can classify oil droplets at or above 95%,

which represents human effectiveness. The CNN trained on the five oil droplets

classified the red, yellow and principle types test data in the upper 90%. Classifying

the transparent and colorless type was not as accurate but still showed effective

classification results by classifying test data at 84% and 91% respectively. The

results show that even without the use of an epi image, which before was thought to

be critical to classification, a CNNs trained on single cell images could classify at a

human level. The effectiveness at classification is also compounded by the speed at

which large amounts of data can be classified at once.

Second, the results of the fast R-CNN network were reviewed. While

detection is still known to be a very open problem in computer vision the fast

R-CNN produced promising results. Red, yellow and principle type cell all posted

promising detection results. The results for transparent and colorless detection were

not as good, shown in Figures 4.2(c) and 4.2(d). Much of the inaccuracy can be

attributed to a lack of training data, specifically background training data.
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Lastly, the results of non-machine learning detection and segmentation

algorithms on adjusted images are reviewed. The results for k-means segmentation

with boundary tracing provide good results for some images, but not all. While it

posts low rates of false positives, a lack of consistent seeding and cells still blending

with noisy backgrounds reduce the effectiveness. There is no way to know the most

optimal seed for k-means for anyone image. Using a random seed would make

results inconsistent for the same image, and no one seed will be optimal for every

image. With no way to know the optimal seed for every image, the results are

inconsistent from one image to the next.

Two stage Hough transformations results in less misses and false positives

per image than k-means. Hough transformation also posts significantly more

consistent results across all images. Regardless of the quality or contrast after image

adjustment most oil droplets will be covered in the retina images. Misses from

Hough transformation occur in instances where an oil droplet has a lighter polarity

than the image background. Many misses can be found by increasing the detection

threshold, but this would also increase the number of false positives. The

classification results for both Hough transformation and k-means segmentation

reflect the results posted by the CNN they use.
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK

In this thesis methods for automatically detecting and classify avian retina

oil droplets, or oil droplets, are presented. Using labeled images of avian retina oil

droplets we trained a CNN that can perform human level classification of avian oil

droplets. Detection was first performed by training R-CNN for detection. After

adjusting the retina region image using a [0.1 0.1 0.0, 0.6 0.7 1] block vector we

showed that traditional detection and segmentation algorithms can be even more

effective than R-CNN, while providing the classification benefits of the trained

CNN. In this chapter we draw conclusions from the methods and results laid out in

this thesis, and offer insights into areas for future work.

5.1 Classification

The results for the CNN trained for show that even without using the epi

image oil droplets can be automatically classified at human level. While errors do

occur classifying between the transparent and colorless types, overall accuracy for

the network sits at around 90%. Even without being paired with automatic

detection, the CNN trained in this thesis eliminates the need to train a human to

tell the differences between cells. The possibility of speeding up the processing time

for retinal cell regions would have a profound impact on avian research in biology.

5.2 Detection

Three detection methods were implemented in this thesis, fast R-CNN,

k-means with boundary tracing and two stage Hough transformation. While from a

computer vision perspective each of the methods worked well for detecting oil
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droplets, only the two stage Hough transformation was effective from a biology

perspective, producing on average 3.4 detection errors per 38.25 oil droplets. The

two stage Hough transformation on an adjusted image was the only method that

produced consistent and usable results across all images.

5.2.1 R-CNN Detection

Fast R-CNN was created such that a single CNN would be trained to

combine both classification and detection. While the R-CNN detects and classifies

the red, yellow and principle type very accurately, detection and classification for

the transparent and colorless types was practically nonexistent. No longer are

transparent and colorless oil droplets just being mixed up, but the introduction of a

background class leads to many not even being classified. Even worse background

regions of interest can be misclassified as either a transparent or colorless type.

Fast R-CNN has proven to be one of the most if not most effective detection

method available on the ImageNet detection challenge. With substantially more

training data its still possible that either fast R-CNN, or its newer iteration faster

R-CNN, could provide best case detection. Selective search produces many ROIs,

but more ROIs also increase the chance for errors to occur.

5.2.2 K-Means Segmentation

Using image adjustment increases the effectiveness of k-means segmentation,

but only for some images. Images that don’t have smooth background will

inevitably have either cells clustered with the background or the opposite. There

are two primary causes for the shortcomings k-means segmentation. The first is that

the seed that is set is not universal. The native Matlab implementation of k-means

optimizes itself by choosing a random seed for the image. This seed represents the

initial center for the clusters. To avoid different results for the same image the seed

in manually set before hand. The same seed is not consistent for all the images, and
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there is no way to know what the best seed for an image is beforehand without

testing multiple seeds on a single image. The second and most important is that the

same block vector used to adjust the image with k-means is not as effective for all

images. For the majority of images the [0.1 0.1 0.0, 0.6 0.7 1] block vector is

effective a increasing the contrast between the background and oil droplets, but as

shown in Figure 5.1 there are many cases where transparent and colorless cells still

blend in with the background leading to poor segmentation.

Figure 5.1. Notice how many of the lighter cells blend well with the
background. k-means would have difficulty segmenting this retina
region.

5.2.3 Two Stage Hough Transformation

The best detection method for oil droplet detection implemented in this

thesis was using two stage Hough transformation with an adjusted image. Not only

were missed detections rare with this algorithm, but so were false positives. Even

for images that were to noisy for k-means segmentation, the Hough transformation

could handle with ease.

With no human input the Hough transformation performs well. Tweaking

the detection threshold for individual images based on their quality produces human



57

quality detection across all images. With this in mind processing an entire image

would be reduced to thresholding. Instead of a researcher having to count cells and

classify them, they can adjust the threshold based on image quality and let the two

stage Hough transformation and CNN take care of the rest. This possibility would

dramatically speed up avian retina research and be a major step for biology.

5.3 Neural Network Training

Many if not most neural networks use tens of thousands of images to train a

reliable network. Both the CNN and fast R-CNN in this trained were trained over

hundreds of images. All the images were formatted mostly by hand and then

augmented. A lack in training data could explain many of the classification and

detection errors in the single cell CNN and fast R-CNN networks. Due the the

varying quality of the images its also possible that images whose quality drastically

deviates from the images used for training could experience errors. Substantially

more data could increase the effectiveness of the networks could increase

dramatically.

5.4 Areas of Future Research and Study

While the networks do perform well with greater amounts of training data

the new networks could be trained that perform substantially greater than the

current ones. This would be especially important for detection. The primary issue

in the missed classifications in the R-CNN network stem from mislabeled

background ROIs. expanding the amount of training data used and including

varying image qualities would reduce this error.

The single cell network created is identical to the LeNet (LeCun et al., 1998)

architecture. Using a slightly deeper and more modern network like GoogLeNet

(Szegedy et al., 2014) would help with both classification and detection. While the
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problem does not call for a very deep network like VGG16 (Simonyan & Zisserman,

2014) it would benefit from a more modern architecture.

The algorithms presented are all automated and as a result produce error.

While it is a natural goal of computer science to reduce the amount of error to near

human levels, it is still not a case in all computer vision problems. Introducing

minimal human assistance into the algorithms proposed would help speed up the

time it takes to count cells while also reducing the error to a more acceptable level.

Reinserting the epi image into the detection and classification process would

also help improve results. While the epi image wouldn’t necessarily offer much for

classification, except for colorless and transparent, it would greatly help with

colorless detection which has shown to be a particular problem. Similar to the single

cell network showing that classification can be performed with out the epi image,

creating a network trained on just epi images may reveal that the principle and

colorless cells do have distinct features in the epi the human eye cant catch.

The networks outlined in this thesis present a small sample of how CNNs can

be used in microbiology. The ideas presented in this thesis can easily be expanded

to other areas in biology. With adequate amounts of properly formatted data, even

the networks in this thesis could be fine tuned to include other biological microbes.

This would expand the breadth of cells the networks can classify, providing perhaps

a more general purpose too to biologist.

Following the completion of this thesis a new R-CNN method was released

called faster R-CNN (Shaoqing Ren, 2015). Faster R-CNN is an improvement on

the Fast R-CNN architecture that is used in this thesis. Moving from the fast

R-CNN network to the faster R-CNN network in addition to more training data

could produce better results.
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5.5 Summary

In this thesis we provided a look at the effectiveness of convoltional neural

networks in classification and detection for avian retina oil droplets. The need in

biology for methods that can automatically detect and classify oil droplets has been

outlined. The previous work in the areas of biology, computer vision and neural

networks was reviewed to show the tools and methods that are built upon. We

trained and applied CNNs in new ways that have not been proposed to date. This

thesis has shown CNNs and computer vision algorithms have the potential to aid

biologist in oil droplet detection and classification, which is currently a time

consuming process.
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