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ABSTRACT

Ayesha Sayed M.S.E.C.E, Purdue University, December 2016. Mitigation of DC-
Link Voltage Oscillations Caused by Resolver Error in an Electric Vehicle Drivetrain.
Major Professor: Dionysios Aliprantis.

Resolvers are commonly used to measure the rotor position in motor drive applica-

tions. However, manufacturing imperfections introduce a position measurement error,

which manifests itself as relatively small oscillations primarily at the fundamental and

second harmonic frequencies. This affects the field orientation control in machines,

leading to oscillations in currents and electromagnetic torque. This research focuses

on the impact of position error in a series-hybrid drivetrain architecture. In this

topology, substantial oscillations in dc-link voltage are induced, which are further

exacerbated by reducing the dc-link capacitance in a bid to lower the overall inverter

size and weight.

This work sets forth various methods to mitigate the aforementioned dc-link oscil-

lations based on control modifications. To this end, a linearized small-signal detailed

model of the drivetrain is developed first to support the analysis of the phenomenon.

The effectiveness of these techniques is validated by analytical and experimental re-

sults.
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1. INTRODUCTION

Recent advances in wide-bandgap (WBG) power semiconductor devices, such as sili-

con carbide (SiC) and gallium nitride (GaN) devices, have been driven by their supe-

rior properties, which include high switching frequencies, high blocking voltages, and

high junction temperatures. These devices can improve the electrical and thermal

performance of power electronic converters, and thus find a very promising appli-

cation domain in vehicle electrification [1]. A particular outcome of increasing the

switching frequency, which is most relevant for this thesis, is the benefit of reducing

the capacitance of the dc link, which in turn lowers the size and weight of an inverter

thereby increasing its power density.

On the other hand, sensing the rotor position of electric motors is a necessary

functionality for control in a wide range of motor drive configurations. This includes

permanent magnet (PM) ac traction applications, which is the particular motor type

that this thesis focuses on. Resolvers are used extensively in high-performance motor

drive applications due to their ability to function in harsh environments [2]. The out-

put signals of a resolver contain absolute position information. The signals, which are

modulated using a high-frequency excitation, are processed using specialized resolver-

to-digital (R/D) converter circuits. Conventional tracking R/D converters operate

under the assumption that ideal resolver signals are supplied to the R/D converter.

However, in practice, various manufacturing imperfections in resolvers are always

present, such as amplitude imbalance and imperfect quadrature. In turn, these lead

to nonideal resolver signals, which induce a periodic error in position measurement [3].

This affects the field orientation control in PM machines, creating substantial oscil-

lations on dc-link voltage.

The dc-link voltage oscillations are further amplified when the dc-link capacitance

is reduced, which is the case in WBG applications. This could have several negative
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effects; for instant, since other components may be powered from the dc-link in a

hybrid electric vehicle, power quality issues may arise. In addition, the lifetime of

the dc-link capacitor may be decreased, and the operating range of the machines may

become limited. Therefore, addressing the problem of dc-link voltage oscillations is

important and timely, as the automotive industry is rapidly adopting WBG devices.

1.1 Background on Resolvers

Here, we describe the basic working principle of a resolver. Subsequently, a few

nonidealities in resolver manufacturing are analyzed, to understand the type of posi-

tion error introduced.

Ideal Resolver Operation

The most commonly used variable reluctance (VR) resolvers do not have windings

on the rotor. Their primary and secondary windings are all on the stator. Fig. 1.1

shows the rotor structure for 2, 3, and 4 lobes. The number of rotor lobes are usually

set equal to the motor pole pairs, so that the induced output in secondary windings

varies as a sinusoidal function of electrical rotor angle θr.

Fig. 1.1. Variable-reluctance resolver cross-sectional view, illustrating rotor lobes.
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The basic principle of VR resolver is shown in Fig. 1.2. The excited primary

voltage and induced secondary voltages are given by

Vp = V0 sin(ωct) (1.1)

Vsin = KV0 sin(θr) sin(ωct) (1.2)

Vcos = KV0 cos(θr) sin(ωct) (1.3)

where K is the transformation ratio.

P1

P2

Vp

θr

S1

S3

Vsin

S2 S4Vcos

Fig. 1.2. Basic operating principle of resolver.

The induced voltages in the secondary windings are shown in Fig. 1.3 for the

corresponding primary excitation. The modulated signals, which are the outputs of

the resolver, are demodulated to obtain the rotor position. The tracking mechanism

is explained in the block diagram shown in Fig. 1.4 where the modulated signals Vsin

and Vcos are multiplied by cos θ̂r and sin θ̂r respectively and then subtracted, which

results: Vsin cos θ̂r − Vcos sin θ̂r = KV0 sin(ωct) sin(θr − θ̂r) where θ̂r is the estimated

rotor position. Demodulating the above signal using the primary signal Vp yields

KV0 sin(θr− θ̂r). Generally, this signal is driven to zero using a controller to estimate

the rotor position [4], [5].

Non-ideal Characteristics

The measured rotor position θ̂r deviates from the true position value θr due to

various non-idealities [6], [7] such as the misalignment of the sensor components or
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Fig. 1.3. Resolver signals.
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Control

Vsin

Vcos

+

−

θ̂r

Vp

••

Fig. 1.4. Block diagram of resolver-to-digital converter.

manufacturing imperfections. This section sets forth a survey on the effects of non-

ideal resolver signal characteristics.

1. Amplitude Imbalance: This occurs when the two resolver output signals have

different amplitudes and is caused due to unequal inductances [3]. The modu-

lated signals are shown in Fig. 1.5. This can be modeled as follows:

Vsin = KV0 sin(θr) sin(ωct) (1.4)

Vcos = KV0(1 + ζ) cos(θr) sin(ωct) . (1.5)

Input to the demodulation block is given by

Vsin cos θ̂r − Vcos sin θ̂r = KV0 sin(ωct)[sin θr cos θ̂r − (1 + ζ) cos θr sin θ̂r] . (1.6)
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The signal obtained after demodulation isKV0[sin θr cos θ̂r−(1+ζ) cos θr sin θ̂r] .

Driving this signal to zero to estimate the rotor position yields,

sin(θr − θ̂r) = ζ cos θr sin θ̂r . (1.7)

The error in position is represented as eθ = θ̂r − θr. Using the small-angle

approximations sin eθ ≈ eθ and neglecting higher order terms, we obtain

sin (−eθ) =
1

2
ζ
[

sin (θr + θ̂r) + sin (θ̂r − θr)
]

(1.8)

eθ ≈ −ζ

2
sin 2θr . (1.9)

In this case, the position error is introduced at the second harmonic.

degrees

0 50 100 150 200 250 300 350

-1

-0.5

0

0.5

1
ζ Vsin

Vcos

Fig. 1.5. Amplitude imbalance in resolver signals.

2. Imperfect Quadrature: This is caused when the output phases are not in perfect

spatial quadrature with each other [3]. The modulated signals are shown in

Fig. 1.6.

Vsin = KV0 sin(θr) sin(ωct) (1.10)

Vcos = KV0 cos(θr + ξ) sin(ωct) . (1.11)
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Input to the demodulation block is given by

Vsin cos θ̂r − Vcos sin θ̂r = KV0 sin (ωct)[sin θr cos (θ̂r)− cos (θr + ξ) sin θ̂r] (1.12)

The signal obtained after demodulation isKV0[sin θr cos (θ̂r)−cos (θr + ξ) sin θ̂r] .

Driving the demodulated signal to zero yields,

sin θr cos θ̂r = cos(θr + ξ) sin θ̂r . (1.13)

Using the small-angle approximations sin ξ ≈ ξ, cos ξ ≈ 1, sin eθ ≈ eθ, we obtain

eθ ≈
ξ

2
(1− cos 2θr) . (1.14)

This imperfection also introduces a second harmonic position error.

degrees

0 50 100 150 200 250 300 350

-1

-0.5

0

0.5

1

ξ
Vsin

Vcos

Fig. 1.6. Imperfect quadrature in resolver signals.

3. DC Offset: A dc offset occurs in the output phases either due to asymmetrical

coil locations due to three layers of winding on stator tooth or occurrence of rotor

eccentricity during assembly or operation. Fig. 1.7 shows the rotor eccentricity.

The modulated signals are modeled as follows:

Vsin = KV0

[
K1

K
+ sin(θr)

]

sin(ωct) (1.15)

Vcos = KV0

[
K2

K
+ cos(θr)

]

sin(ωct) . (1.16)
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In a special case when K1 = K2 = K0, driving the output of the demodulator

block to zero yields,

K0

K
(cos θ̂r − sin θ̂r) + (sin θr cos θ̂r − cos θr sin θ̂r) = 0 (1.17)

√
2
K0

K
cos

(

θr +
π

4

)

+ sin (θr − θ̂r) = 0 . (1.18)

Using the small-angle approximations sin eθ ≈ eθ,

eθ ≈
√
2
K0

K
cos

(

θr +
π

4

)

. (1.19)

This causes a position error at the fundamental.

Fig. 1.7. Rotor eccentricity in resolver [8].

1.2 Literature Survey

Several compensation algorithms have been proposed to reduce the position error

caused by the manufacturing imperfections in resolvers. A conventional method of

compensating the position error is by using a high-resolution look-up table (LUT)

[9–12]. However, a large amount of memory is required to store the data, which could

be problematic in embedded applications where hardware resources are limited. The

creation of the LUT may also be challenging, as each resolver will differ slightly from

the next.
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Efforts to compensate the non-ideal characteristics in resolver signals are also re-

ported in the earlier works. The method proposed in [13] employs an integrating

operation of the d -axis current to compute the errors caused by the amplitude imbal-

ance and imperfect quadrature. However, this method is based on a constant d -axis

current, hence it is applicable only in surface-mount PM motors. In [14], a method

is introduced to reduce the torque ripple caused by only the amplitude imbalance.

This method needs an additional position sensor which has no periodic position error

in order to reduce the torque ripple. In [15], a method is introduced based on peak

values of resolver output signals to compute the magnitude of dc offset error, am-

plitude imbalance and imperfect quadrature. However the technique proposed needs

to be implemented in the R/D. In [16], an algorithm for compensating the errors in

modulated signals of the resolver is presented. This method first demodulates the

resolver signals and computes the error by comparing with the ideal signals. The

coefficients to best fit these error signals are computed using the polynomial approx-

imations based on the least mean squares. However, the ideal signals are synthesized

assuming a constant speed which might not be the case in practice. Also, this method

needs to be implemented in the R/D.

Also, a patent [17] was filed to compensate the position error adaptively through

a controller. In the method proposed, the resolver signals are initially demodulated

and normalized, then each of the signals are squared and their sum is subtracted

from a constant value 1 to estimate an error factor. The non-ideal characteristic

parameters in resolver such as amplitude error, phase error and dc-offset values are

estimated from the error factor and subsequently compensated to obtain the corrected

signals. However, this controller is to be implemented in the R/D. All the past

techniques have either not eliminated all possible errors types introduced due to

resolver manufacturing imperfection or have modified the R/D converter.

An other problem of VR resolvers is its complex winding structure. The asym-

metrical coil structure in resolvers due to three layers of coils on each stator tooth

causes a dc offset in the resolver signals. This in turn leads to an error in position es-
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timation. Furthermore, output windings are usually sinusoidally distributed and the

number coil turns is different from one to another, which makes the winding process

more complicated. In [8], a VR resolver with nonoverlapping toothcoil windings is

proposed which simplifies the manufacturing process; however, this increases an error

in rotor position.

In this disseration, a technique that is simple to implement is proposed. The

algorithm can eliminate the position error at any desired harmonic order, which might

be introduced due to any type of manufacturing imperfection in the resolver or from

R/D converter.

1.3 Thesis Outline

This work begins with a description of the series hybrid drivetrain architecture

in Chapter 2. It proceeds with the development of linearized small-signal model of

each subsystem in detail. Then, the state-space model of the entire system is derived

by combining the models of each subsystem. Two state-space models are presented;

one considering the position error as a state and the other considering the position

error as an input disturbance. Transfer functions are derived for each of the input

disturbances to the dc-link voltage from the state-space models. Lastly, this chapter

discusses the selection of gains in the current regulator.

Numerical results illustrating the impact of the input disturbances on the dc-link

voltage are presented in Chapter 3. This includes the frequency response plots for

each of the disturbances for both the models and also the impact of position error

and slot harmonics over the operating range.

In Chapter 4, the proposed mitigation strategies to reduce the dc-link voltage

oscillations are set forth. Each of the methods is supported by the simulation results

obtained from the derived small-signal model and also by experimental results.
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2. SYSTEM DESCRIPTION AND SMALL-SIGNAL

MODEL

The structure of a conventional series-hybrid drivetrain is shown in Fig. 2.1. The sys-

tem described here has four interior permanent magnet (IPM) machines, converters,

and dc-link. The prime mover (Machine 1) is speed-controlled. Machine 2 (generator

drive) generates the electrical power necessary to maintain the dc-link at constant

voltage. Machine 3 (traction drive) absorbs electrical power from the dc-link to pro-

vide the desired torque demanded by the load. The load (Machine 4) is running in

speed control mode. The energy from the machines to the dc-link is supplied/absorbed

via the converters. The analysis herein is based on modeling Machine 2, Machine 3,

and the dc-link. A block diagram of these machines (with their controller) along with

the dc-link is shown in Fig. 2.2. Note that a subscript ‘2’ and ‘3’ represents the vari-

ables corresponding to Machine 2 and Machine 3 respectively. This model analyzes

the impact of possible disturbance sources on this system by formulating the transfer

functions with dc-link voltage variation as output and each of the disturbances as

inputs.

A linearized small-signal model is set forth to analyze the drivetrain system. The

inputs to the small-signal model represent various external disturbances (e.g., a me-

chanical shaft oscillation). The model outputs the dc-link voltage oscillation around

its nominal value. The system equations are linearized around a given steady-state

operating point, which is defined in terms of (i) torque and speed of the motor, and

(ii) speed of the generator. This equilibrium point corresponds to an ideal case when

there is neither resolver error nor any other disturbances. The equilibrium values at

any particular operating point are computed using an initialization script. A pseudo-

code of this script is included in the Appendix A.
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Fig. 2.1. System architecture.
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Fig. 2.2. Block diagram of detailed model.

The following notation is used throughout this thesis. The perturbation of any

variable x around its equilibrium point is defined as δx = x − x0, i.e., the subscript

‘0’ represents equilibrium value. In general, equilibrium values will be constant. A

notable exception to this is the rotor angle, which at equilibrium is a linear function of

time (assuming constant rotor speed). The position error is represented as eθ, which

is defined as the deviation of estimated rotor position (θ̂r) from actual rotor position
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(θr), i.e., eθ = θ̂r − θr. Variables with a hat, e.g., x̂, denote estimated (e.g., directly

measured) values. Variables with an asterisk, e.g., x∗, denote commanded values.

The controller of each motor comprises: i) a transformation of abc currents to qd,

ii) a CVCR (Complex Vector Current Regulator) block, which outputs commanded

qd voltages, iii) a transformation of commanded qd voltages to abc. The three phase

voltages are then applied to the machine through an inverter. The inverter is assumed

to be ideal. Switching is not modeled, i.e., the inverter is modeled by an average-value

model.

In what follows, the various subsystems that have time-domain dynamics are

linearized and modeled in canonical form, e.g., as ẋ = Ax + Bu, y = Cx + Du

(although minor variations to this notation will be introduced). As usual, u represents

input, y represents output, and x represents the state. Some subsystems are purely

algebraic, and are modeled as, e.g., y = Fu.

2.1 DC-Link Dynamics

The dc-link is modeled as an ideal capacitor C in parallel with a (small) admit-

tance G, which is physically present as a “bleeder” resistance. The equivalent series

resistance of the capacitor is neglected. Since the machine powers P2 and P3 are

defined as positive when power flows into the machine terminals, we have

−
(

ηP2 +
P3

η

)

= vdcidc = Cvdc
d

dt
vdc +Gv2dc (2.1)

where idc is the total current flowing through the capacitor and parallel admittance,

and where η < 1 is the efficiency of the inverter, which is assumed to be constant.1

Expressing the dynamics in the neighborhood of an equilibrium point, yields

−
[

η(P20 + δP2) +
P30 + δP3

η

]

= C(vdc0 + δvdc)

(
d

dt
vdc0 +

d

dt
δvdc

)

+G(vdc0 + δvdc)
2 .

(2.2)

1Efficiency is considered equal for both converters (for simplicity).



13

To linearize, we neglect the second-order terms δvdc
d
dt
δvdc and δv2dc, which leads to

d

dt
δvdc = − 1

Cvdc0

(

η δP2 +
1

η
δP3

)

− 2G

C
δvdc . (2.3)

Hence, the state-space model of the dc-link is given by,

d

dt
δvdc = Adcδvdc + Bdc




δP2

δP3



 (2.4)

where

Adc = −2G

C
, Bdc = − 1

Cvdc0

[

η 1
η

]

. (2.5)

2.2 Voltage Control Block

The voltage control block is present only in the generator (machine 2). This block

performs proportional-integral (PI) control of the dc-link voltage, or more precisely,

of the capacitor energy. Here, zv denotes the integral output of the PI controller,

which is the only state of the voltage control subsystem.

Two different versions of a voltage controller are set forth. The PI controller in

the first version outputs a torque command, whereas in the second version it outputs

a power command.

2.2.1 Version 1

The torque command to the generator, T ∗

e2, is negative for generator action. The

PI controller equations are:

ev = 1−
(

vdc
vdc0

)2

(2.6)

d

dt
zv = Kivev (2.7)

T ∗

e2 = −Kpvev − zv −Kffv

(
T ∗

e3ω̂r3

ω̂r2

)

(2.8)
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where Kpv > 0 and Kiv > 0 are PI gains,2 and Kffv > 0 is a feed-forward gain (its

value is somewhat arbitrary, but it should be slightly greater than 1.0 to account

for power loss). Note that the motor commanded torque T ∗

e3 is assumed to remain

constant. Also note that the two machines are assumed identical, hence the number

of pole pairs does not appear explicitly in (2.8). The small-signal model of this

subsystem is obtained by linearizing the above equations, i.e.,

δev = − 2

vdc0
δvdc (2.9)

d

dt
δzv = Kivδev (2.10)

δT ∗

e2 = −Kpvδev − δzv −KffvT
∗

e3

(
ωr20δω̂r3 − ωr30δω̂r2

ω2
r20

)

(2.11)

The state-space representation of this block is obtained by using equation (2.9) in

equations (2.10) and (2.11):

d

dt
δzv = Bvc








δvdc

δω̂r2

δω̂r3








(2.12)

δT ∗

e2 = Cvcδzv +Dvc








δvdc

δω̂r2

δω̂r3








(2.13)

where

Bvc =
[

−2Kiv

vdc0
0 0

]

, Cvc = −1, Dvc =
[
2Kpv

vdc0

KffvT
∗

e3ωr30

ω2

r20

−KffvT
∗

e3

ωr20

]

. (2.14)

2.2.2 Version 2

The voltage controller described in this section outputs a power command. First,

a method to select the PI gains is described, and then a state-space model of the

2The numerical values of these gains are provided by John Deere. They have been determined
experimentally.
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controller is developed. To this end, we analyze the voltage controller with the dc-

link model (plant model) assuming the inner torque loop is very fast.

The block diagram of the voltage controller with the plant model is shown in

Fig. 2.3. An active feedback Ga is introduced in the controller. The value of Ga is

generally chosen to be 5-10 times G. The closed-loop transfer function of this system

is given by

v2dc
v∗2dc

=
Kpvs+Kiv

C
2
s2 + [Kpv + (G+Ga)]s+Kiv

. (2.15)

The PI gains are selected as follows

Kpv = ωbv

C

2
(2.16)

Kiv = ωbv(G+Ga) . (2.17)

These gains reduce the transfer function (2.15) to a first order response as

v2dc
v∗2dc

=
ωbv

s+ ωbv

(2.18)

where ωbv represents the bandwidth of the voltage regulator.

Now, we develop a state-space linearized model of this controller. The PI controller

equations are

ev = v2dc0 − v2dc (2.19)

d

dt
zv = Kivev (2.20)

P ∗

2 = −zv −Kpvev −KffvT
∗

e3ω̂rm3 +Gav
2
dc (2.21)

where ω̂rm3 = ω̂r3/pp3,
3 denotes the estimated mechanical rotor speed of machine 3.

The above equations are linearized to obtain the small-signal model of this subsystem:

δev = −2vdc0δvdc (2.22)

d

dt
δzv = Kivδev (2.23)

δP ∗

2 = −δzv −Kpvδev −KffvT
∗

e3δω̂rm3 + 2Gavdc0δvdc . (2.24)

3pp3 is the number of pole pairs in machine 3.
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Fig. 2.3. Block diagram of voltage controller and dc-link dynamics.

The torque command is obtained from the power command by

T ∗

e2 =
P ∗

2

ω̂rm2

= pp2
P ∗

2

ω̂r2

. (2.25)

where pp2 is the number of pole pairs in machine 2. The variation in commanded

torque is obtained by linearizing the above equation,

δT ∗

e2 = pp2
ωr20δP

∗

2 − P ∗

20δω̂r2

ω2
r20

. (2.26)

The state-space model of this system is obtained from (2.23) and (2.26) using (2.22)

and (2.24)

d

dt
zv = Bvc








δvdc

δω̂r2

δω̂r3








(2.27)

δT ∗

e2 = Cvcδzv +Dvc








δvdc

δω̂r2

δω̂r3








(2.28)
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where

Bvc =
[

−2Kivvdc0 0 0
]

, Cvc = − pp2
ωr20

,

Dvc =
[

pp2
2vdc0(Kpv+Ga)

ωr20
−pp2

P ∗

20

ω2

r20

−KffvT
∗

e3

ωr20

]

. (2.29)

2.2.3 Comparison of Voltage Controllers

Here, we compare the response of the two voltage control strategies that have been

presented. To this end, we illustrate the dc-link voltage response to a step change in

voltage command, which is stepped from 700 V to 900 V. The response at various

operating speeds for Version 1 is shown in Fig. 2.4(a). The response depends on

the operating speed (of machine 2) because this version outputs a torque command,

whereas the dc-link voltage depends on power drawn by the motors. The response for

Version 2 is independent of operating speed per (2.18), as can be seen in Fig. 2.4(b).

These plots were generated by simulating a simplified system consisting of the voltage

control and dc link only. The detailed motor drive models were not included. It

should be noted that the actual system response may differ from what these plots are

showing, once the inner control loops and machine dynamics are considered.

2.3 Commanded Currents from Commanded Torque

The voltage control block outputs a variation in commanded torque, which affects

the qd commanded currents. Specifically, a maximum torque per ampere (MTPA)

control strategy is implemented (as a look-up table) in hardware. The MTPA func-

tions gq and gd that yield the qd current commands are defined as

i∗q = gq(T
∗

e , ω
∗

r) (2.30)

i∗d = gd(T
∗

e , ω
∗

r) . (2.31)
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Fig. 2.4. Step response of voltage controller (a) Version 1 (b) Version 2.
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Smooth (differentiable) functions are obtained by curve fitting the look-up table data

(obtained from motor characterization as discussed in Appendix A.2) with a fourth

degree polynomial for a given rotor speed command. For example,

gq(T
∗

e , ω
∗

r) = a4(T
∗

e )
4 + a3(T

∗

e )
3 + a2(T

∗

e )
2 + a1T

∗

e + a0 (2.32)

Note that, for MTPA control, a0 = 0 for both gq and gd. Hence, the variation in

commanded currents using equations (2.30) and (2.31) is given by:



δi∗q

δi∗d



 =




∂gq/∂T

∗

e

∂gd/∂T
∗

e





︸ ︷︷ ︸

M

δT ∗

e . (2.33)

For machine 3, the partial derivative is calculated at the given value of load torque,

whereas for machine 2 the equilibrium value of torque is calculated from an initial-

ization script (see Appendix A). The variation in commanded currents becomes an

input to the current control block.

2.4 Impact of Position Error on abc/qd Transformation of Stator Cur-

rents

This transformation takes place inside the controllers of both generator and motor

machines, as it is an integral part of the current control strategy. The actual qd

currents are found by taking the actual rotor angle θr in Park’s transformation [18]:




iq

id



 =
2

3




cos θr cos(θr − 2π/3) cos(θr − 4π/3)

sin θr sin(θr − 2π/3) sin(θr − 4π/3)












ia

ib

ic







. (2.34)

On the other hand, the estimated qd currents are calculated using the resolver angle

θ̂r, which yields




îq

îd



 =
2

3




cos θ̂r cos(θ̂r − 2π/3) cos(θ̂r − 4π/3)

sin θ̂r sin(θ̂r − 2π/3) sin(θ̂r − 4π/3)












ia

ib

ic







. (2.35)
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Subtracting equation (2.34) from (2.35), and under the assumption of a small resolver

angle error eθ, so that

sin(eθ/2) ≈ eθ/2 (2.36)

(θ̂r + θr)/2 ≈ θr (2.37)

leads, after trigonometric manipulations (see Appendix C), to

îq − iq = −id eθ (2.38)

îd − id = iq eθ . (2.39)

Introducing variations around the corresponding equilibrium points yields

(̂iq0 + δîq)− (i∗q0 + δiq) = −(i∗d0 + δid)eθ (2.40)

(̂id0 + δîd)− (i∗d0 + δid) = (i∗q0 + δiq)eθ (2.41)

Hence4, the estimated currents are related to the actual currents and the rotor angle

error by



δîq

δîd



 = F








δiq

δid

eθ








(2.42)

where higher-order terms have been neglected, and with

F =




1 0 −i∗d0

0 1 i∗q0



 . (2.43)

2.5 Complex Vector Current Regulator (CVCR)

This block regulates the qd machine currents via PI control. Here, zq and zd denote

the outputs of the q- and d -axis integrators, respectively. The current regulation

errors are

eiq = i∗q − îq (2.44)

eid = i∗d − îd . (2.45)

4The equilibrium values of estimated, commanded and actual currents are equal, i.e, îq0 = i∗q0 = iq0

and îd0 = i∗d0 = id0.
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Fig. 2.5. Block diagram of complex vector current regulator.

Note that these equations are using the estimated current values, i.e., not the actual

currents. Linearizing the errors about the equilibrium point yields

δeiq = δi∗q − δîq (2.46)

δeid = δi∗d − δîd . (2.47)

The CVCR control is described by the following set of equations for the integral

regulator dynamics and the voltage commands as shown in Fig. 2.5, [19]:

d

dt
zq = Kiqeiq +Kpdω̂reid (2.48)

d

dt
zd = −Kpqω̂reiq +Kideid (2.49)

v∗q = Kpqeiq + zq −Rv îq + λf ω̂r (2.50)

v∗d = Kpdeid + zd −Rv îd (2.51)

where ω̂r is the estimated electrical rotor speed (in rad/s), λf is a constant that

approximates the flux linkage created in the d -axis by the permanent magnets, and
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Rv is a ‘virtual resistance’(generally chosen to be 5 times the stator resistance). Note

that the PI gains are operating point-dependent.

The linearized CVCR equations thus become5

d

dt
δzq = Kiqδeiq +Kpdωr0δeid +Kpded0δω̂r (2.52)

d

dt
δzd = −Kpqωr0δeiq −Kpqeq0δω̂r +Kidδeid (2.53)

δv∗q = Kpqδeiq + δzq −Rvδîq + λfδω̂r (2.54)

δv∗d = Kpdδeid + δzd −Rvδîd (2.55)

Note that the error signals

eiq = eiq0 + δeiq, eid = eid0 + δeid (2.56)

satisfy the steady-state equation eiq0 = eid0 = 0 (due to integral regulator action).

This leads to

d

dt
δzq = Kiqδeiq +Kpdωr0δeid (2.57)

d

dt
δzd = −Kpqωr0δeiq +Kidδeid . (2.58)

Manipulating equations (2.54), (2.55), (2.57), and (2.58) using (2.46)-(2.47) results

in

d

dt




δzq

δzd



 =
[

Bcr −Bcr 0
]














δi∗q

δi∗d

δîq

δîd

δω̂r














(2.59)




δv∗q

δv∗d



 = Ccr




δzq

δzd



+
[

Dcr (Ecr −Dcr) Fcr

]














δi∗q

δi∗d

δîq

δîd

δω̂r














(2.60)

5Recall ω̂r0 = ωr0.
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where

Bcr =




Kiq Kpdωr0

−Kpqωr0 Kid



 , Ccr =




1 0

0 1



 , Dcr =




Kpq 0

0 Kpd



 ,

Ecr =




−Rv 0

0 −Rv



 , Fcr =




λf

0



 . (2.61)

In summary, the CVCR subsystem has four inputs, δi∗q, δi
∗

d, δîq and δîd, and one

disturbance δω̂r.

2.6 Impact of Position Error on qd/abc Transformation of Commanded

Voltages

The inverse transformation is used to determine the actual voltages supplied to the

machine by the inverter. This block exists in both generator and motor. Assuming

an ideal inverter without switching effects, the voltages supplied to the machine, vabc,

are calculated based on the estimated rotor position θ̂r by

va = v∗q cos θ̂r + v∗d sin θ̂r (2.62)

vb = v∗q cos(θ̂r − 2π/3) + v∗d sin(θ̂r − 2π/3) (2.63)

vc = v∗q cos(θ̂r + 2π/3) + v∗d sin(θ̂r + 2π/3) . (2.64)

However, the actual machine qd voltages are based on the real value of θr, i.e.,




vq

vd



 =
2

3




cos θr cos(θr − 2π/3) cos(θr − 4π/3)

sin θr sin(θr − 2π/3) sin(θr − 4π/3)












va

vb

vc








. (2.65)

Substituting (2.62)–(2.64) in (2.65) and using trigonometric identities (see Appendix

B) results in

vq = v∗q + v∗d eθ (2.66)

vd = v∗d − v∗q eθ (2.67)
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which were obtained with the approximations cos eθ ≈ 1 and sin eθ ≈ eθ.

Linearizing about the equilibrium point,

vq0 + δvq = v∗q0 + δv∗q + (v∗d0 + δv∗d)eθ (2.68)

vd0 + δvd = v∗d0 + δv∗d − (v∗q0 + δv∗q )eθ . (2.69)

Neglecting the second-order terms δv∗deθ and δv∗qeθ leads to an algebraic relationship

between the actual and commanded voltages, which are not equal due to resolver

position error,6




δvq

δvd



 = G








δv∗q

δv∗d

eθ








(2.70)

where

G =




1 0 v∗d0

0 1 −v∗q0



 . (2.71)

It should be noted that the resolver error is typically of the fundamental or second

harmonic. Therefore, this oscillation will pass through an inverter that switches at

adequately high frequency.7

2.7 Machine Model

The flux linkages of an electric machine (in this case, an interior permanent mag-

net synchronous machine) with nonlinear magnetics and spatial harmonics can be

expressed in the rotor reference frame as the functions8

λq = fq(iq, id, θr) (2.72)

λd = fd(iq, id, θr) . (2.73)

6The equilibrium values of commanded and actual voltages are equal, i.e, v∗q0 = vq0 and v∗d0 = vd0.
7For example, at 10,000 rpm (using a high speed as an extreme case), we get 1.66 kHz for the 2nd
harmonic in a 10-pole machine. If the inverter switches at 20 kHz, this voltage oscillation will impact
the machine.
8The zero-axis flux linkage, λ0 = f0(iq, id, θr), does not enter the system equations, since the machine
is assumed to be Y-connected. Hence, i0 = 0, even though λ0 6= 0.
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Normally, when machine equations are written in the rotor reference frame, the de-

pendence of these functions on rotor angle is eliminated. However, here it is still

present in order to capture the impact of slot effects. It is important to note that the

dependence on θr is periodic.
9 Hence, we can rewrite these equations as

λq(iq, id, θr) = f̄q(iq, id) + φq(iq, id, θr) (2.74)

λd(iq, id, θr) = f̄d(iq, id) + φd(iq, id, θr) (2.75)

where f̄q and f̄d represent average flux linkage over a period, e.g.,

f̄q(iq, id) =
1

2π

∫ 2π

0

fq(iq, id, θr) dθr . (2.76)

Therefore, φq and φd are functions of zero mean (with respect to θr) that represent

the flux ripple. The functions f̄q, f̄d, φq, and φd can be obtained by running a series

of finite element analyses (e.g., using the JMAG machine model) over the entire

operating range. In particular, the periodic flux ripple terms are expressed as Fourier

series as

φq(iq, id, θr) =
∞∑

n=1

aqn(iq, id) cosnθr + bqn(iq, id) sinnθr (2.77)

φd(iq, id, θr) =
∞∑

n=1

adn(iq, id) cosnθr + bdn(iq, id) sinnθr . (2.78)

After a small change of the currents from an equilibrium (iq0, id0), the flux linkages

can be expressed as the first-order Taylor expansion10

λq(iq0 + δiq, id0 + δid, θr) ≈ f̄q(iq0, id0) +
∂f̄q
∂iq

δiq +
∂f̄q
∂id

δid + φq(iq0, id0, θr) (2.79)

λd(iq0 + δiq, id0 + δid, θr) ≈ f̄d(iq0, id0) +
∂f̄d
∂iq

δiq +
∂f̄d
∂id

δid + φd(iq0, id0, θr) (2.80)

where partial derivatives are evaluated at the equilibrium point (iq0, id0). Here, we

have ignored the contributions of the flux ripple terms, e.g., (∂φq/∂iq)δiq, which have

been assumed to be negligible.

9The period depends on the machine design. It is highly possible that the period is one electrical
cycle, which will be the case if the stator design is identical over every electrical cycle. It will be
assumed that this is the case here.
10It is implicitly assumed that all functions are differentiable.
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For the sake of analysis, the flux ripple terms are considered as small disturbances

to the system. In other words, they are not present at the equilibrium condition.11

Therefore, we can write

δφq = φq(iq0, id0, θr) (2.81)

δφd = φd(iq0, id0, θr) . (2.82)

Hence, we have

δλq = λq(iq0 + δiq, id0 + δid, θr)− f̄q(iq0, id0) = Lqqδiq + Lqdδid + δφq (2.83)

δλd = λd(iq0 + δiq, id0 + δid, θr)− f̄d(iq0, id0) = Lqdδiq + Lddδid + δφd (2.84)

The incremental inductances that appear in these equations are defined as

Lqq =
∂f̄q
∂iq

, Ldd =
∂f̄d
∂id

, Lqd =
∂f̄q
∂id

=
∂f̄d
∂iq

(2.85)

where partial derivatives are evaluated at the equilibrium point (iq0, id0). The equality

of the mutual incremental inductances (Lqd = Ldq) is enforced so that the model is

representative of a device with a conservative electromagnetic field.

Starting from the voltage equations in the rotor reference frame,

vq = rsiq + ωrλd +
d

dt
λq (2.86)

vd = rsid − ωrλq +
d

dt
λd (2.87)

we obtain the small-signal voltage equations

δvq = rsδiq + δωrλd0 + ωr0δλd +
d

dt
δλq (2.88)

δvd = rsδid − δωrλq0 − ωr0δλq +
d

dt
δλd (2.89)

where we have introduced for notational convenience

λd0 = f̄d(iq0, id0) (2.90)

λq0 = f̄q(iq0, id0) . (2.91)

11This is merely a mathematical artifact in order to obtain constant electrical quantities at equilib-
rium, as we cannot physically eliminate the slot harmonics from the machine.
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Substituting equations (2.83) and (2.84) results in

δvq = rsδiq + ωr0(Lddδid + Lqdδiq) +

(

Lqq

d

dt
δiq + Lqd

d

dt
δid

)

+ δvqh + λd0δωr (2.92)

δvd = rsδid − ωr0(Lqqδiq + Lqdδid) +

(

Lqd

d

dt
δiq + Ldd

d

dt
δid

)

+ δvdh − λq0δωr .

(2.93)

Here, we have introduced two “back-emfs due to spatial harmonics” as the terms δvqh

and δvdh, which are defined as

δvqh = ωr0 δφd +
d

dt
δφq (2.94)

δvdh = −ωr0 δφq +
d

dt
δφd . (2.95)

The terms δφq,
d
dt
δφq, δφd, and

d
dt
δφd are evaluated by setting the rotor angle (in the

corresponding Fourier series expressions) equal to

θr(t) =

∫ t

0

ωr(ξ) dξ + θr(0) (2.96)

where ωr(t) = ωr0 + δωr(t). The choice of initial rotor angle θr(0) is arbitrary. For

example, this leads to

d

dt
δφq = ωr

∂

∂θr
φq(iq0, id0, θr) = (ωr0 + δωr)

∂

∂θr
φq(iq0, id0, θr) . (2.97)

This derivative can be analytically evaluated using (2.77),

d

dt
δφq = ωr

∞∑

n=1

−naqn sinnθr + nbqn cosnθr . (2.98)

In summary, δvqh and δvdh can be pre-calculated given a steady-state operating point

and a rotor speed disturbance (if any) as

δvqh =
∞∑

n=1

[ωr0adn + n(ωr0 + δωr)bqn] cosnθr + [ωr0bdn − n(ωr0 + δωr)aqn] sinnθr

(2.99)

δvdh =
∞∑

n=1

[−ωr0aqn + n(ωr0 + δωr)bdn] cosnθr − [ωr0bqn + n(ωr0 + δωr)adn)] sinnθr .

(2.100)
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They are input as disturbances to the small-signal system model.

The state-space model of the machine is defined with the qd currents as the state

variables. By manipulating (2.92)-(2.93), we have

d

dt




δiq

δid



 = Am




δiq

δid



+ Bm




δvq

δvd



−Bm




δvqh

δvdh



+ Emδωr (2.101)

The model outputs the electric power absorbed by the stator,

δP = Cm




δiq

δid



+Dm




δvq

δvd



 (2.102)

It should be noted that any harmonics associated with inverter switching, dead-time

compensation, etc. can be added to δvqd in (2.101).

In these equations, the various matrices are given by

Am =




Am1 Am2

Am3 Am4



 (2.103)

Am1 =
−rsLdd − ωr0Lqd(Ldd + Lqq)

LddLqq − L2
qd

(2.104)

Am2 =
rsLqd − ωr0(L

2
dd + L2

qd)

LddLqq − L2
qd

(2.105)

Am3 =
rsLqd + ωr0(L

2
qq + L2

qd)

LddLqq − L2
qd

(2.106)

Am4 =
−rsLqq + ωr0Lqd(Ldd + Lqq)

LddLqq − L2
qd

(2.107)

Bm =
1

LddLqq − L2
qd




Ldd −Lqd

−Lqd Lqq



 (2.108)

Em =
1

LddLqq − L2
qd




−(Lddλd0 + Lqdλq0)

Lqdλd0 + Lqqλq0



 (2.109)

Cm =
3

2

[

v∗q0 v∗d0

]

, Dm =
3

2

[

i∗q0 i∗d0

]

. (2.110)
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2.8 State-Space Model of the Entire Drivetrain

2.8.1 Model 1: Formulation of System Equations with Position Error as

a State

The subsystem equations that were derived in the previous section are used to

assemble the state-space model for the entire drivetrain system. This is accomplished

in two steps, briefly outlined as follows:

1. The state-space model for an electric machine including the CVCR control is

assembled in the form: ẋM = AMxM+BMuM+BT δT
∗

e , yM = CMxM+DMuM+

DT δT
∗

e . This model is identical for both machines. The model has 5 states,

xM = [δiq, δid, δzq, δzd, eθ]; 5 inputs, uM = [δω̂r, δωr, δvqh, δvdh] and δT ∗

e ; and a

single output, yM = δP . Note that the torque is treated separately than the

other inputs, as it will be eliminated from the equations in the next step.

2. The machine equations are combined with the dc-link and voltage control block

equations. Note that for machine 3, δT ∗

e3 = 0, whereas for machine 2, δT ∗

e2 is

obtained from the voltage control block.

Step 1. Combined Machine/Current Control Model in Canonical Form

In this section, we describe how to combine a single machine model with its

controller model, as depicted by the dashed box in Fig. 2.2. The system equations of

this combined model are obtained by cascading state-space models of each component.

From equation (2.42),12

δîqd = δiqd + F3eθ (2.111)

12Here, we introduce the short-hand notation xqd = [xq xd]
T . Also, note that the ith column of

any matrix A is represented by Ai.
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since
[

F1 F2

]

= I2 (a 2x2 identity matrix). Manipulating (2.60) using (2.33) and

(2.111), the variation in commanded voltages from the output of CVCR becomes

δv∗qd =
[

(Ecr −Dcr) I2 (Ecr −Dcr)F3

]








δiqd

δzqd

eθ







+
[

DcrM Fcr

]




δT ∗

e

δω̂r



 (2.112)

The variation of inverter output voltage is obtained by substituting the above equation

in (2.70):

δvqd =
[

(Ecr −Dcr) I2 (Ecr −Dcr)F3 +G3

]








δiqd

δzqd

eθ







+
[

DcrM Fcr

]




δT ∗

e

δω̂r



 .

(2.113)

Substituting (2.113) in (2.101),

d

dt
δiqd =

[

Am + Bm(Ecr −Dcr) Bm Bm [(Ecr −Dcr)F3 +G3]
]








δiqd

δzqd

eθ







+

[

BmDcrM BmFcr Em −Bm

]











δT ∗

e

δω̂r

δωr

δvqdh











. (2.114)

The integrator equations of the CVCR block are written in terms of state variables

using (2.33), (2.59), and (2.111):

d

dt
δzqd = [−Bcr 02 −BcrF3]








δiqd

δzqd

eθ







+
[

BcrM 02,4

]











δT ∗

e

δω̂r

δωr

δvqdh











(2.115)
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where 02 is the 2x2 zero matrix and 02,4 is the 2x4 zero matrix. Grouping (2.114)

and (2.115) yields the motor equations in the desired form, ẋM = AMxM +BMuM +

BT δT
∗

e :
13

d

dt








δiqd

δzqd

eθ








︸ ︷︷ ︸

xM

=








Am + Bm(Ecr −Dcr) Bm Bm [(Ecr −Dcr)F3 +G3]

−Bcr 02 −BcrF3

01,2 01,2 0








︸ ︷︷ ︸

AM








δiqd

δzqd

eθ







+








BmFcr Em −Bm

02,1 02,1 02

1 −1 01,2








︸ ︷︷ ︸

BM








δω̂r

δωr

δvqdh








︸ ︷︷ ︸

uM

+








BmDcrM

BcrM

0








︸ ︷︷ ︸

BT

δT ∗

e . (2.116)

Substituting (2.113) in (2.102) gives the oscillations in the input power of the machine,

which is the output of this model, in the form yM = CMxM +DMuM +DT δT
∗

e :

yM = δP =
[

Cm +Dm(Ecr −Dcr) Dm Dm[(Ecr −Dcr)F3 +G3]
]

︸ ︷︷ ︸

CM








δiqd

δzqd

eθ








︸ ︷︷ ︸

xM

+

[

DmFcr 01,3

]

︸ ︷︷ ︸

DM








δω̂r

δωr

δvqdh








︸ ︷︷ ︸

uM

+
[

DmDcrM
]

︸ ︷︷ ︸

DT

δT ∗

e . (2.117)

Step 2. Grouping Machine Equations with DC-Link and Voltage Control

The system equations for machines 2 and 3 can be written explicitly using (2.116)

and (2.117) as

d

dt
xM2 = AM2 xM2 + BM2 uM2 + BT2 δT

∗

e2 (2.118)

δP2 = CM2 xM2 +DM2 uM2 +DT2 δT
∗

e2 (2.119)

13From the definition of resolver error eθ = θ̂r − θr = δθ̂r − δθr, we obtain d
dt
eθ = δω̂r − δωr.
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and14

d

dt
xM3 = AM3 xM3 + BM3 uM3 (2.120)

δP3 = CM3 xM3 +DM3 uM3 . (2.121)

Combining equations (2.119) and (2.121) with the dc-link dynamics (2.4), we get

d

dt
δvdc = Adcδvdc + Bdc




CM2 xM2 +DM2 uM2 +DT2 δT

∗

e2

CM3 xM3 +DM3 uM3



 . (2.122)

Grouping equations (2.118), (2.120), and (2.122) yields

d

dt








xM2

xM3

δvdc







=








AM2 05 05,1

05 AM3 05,1

Bdc1CM2 Bdc2CM3 Adc















xM2

xM3

δvdc







+








BM2 05,4

05,4 BM3

Bdc1DM2 Bdc2DM3











uM2

uM3



+








BT2

05,1

Bdc1DT2







δT ∗

e2 . (2.123)

Finally, we incorporate the voltage control block into the system state-space model,

i.e., we use equations (2.12) and (2.13). Hence, the torque commands are no longer

14Recall that δT ∗

e3 = 0.
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explicit inputs, and the integrator zv is appended to the vector of state variables.

Thus we obtain

d

dt











xM2

xM3

δvdc

δzv











︸ ︷︷ ︸

xS

=











AM2 05 BT2Dvc1 BT2Cvc

05 AM3 05,1 05,1

Bdc1CM2 Bdc2CM3 Adc + Bdc1DT2Dvc1 Bdc1DT2Cvc

01,5 01,5 Bvc 0











︸ ︷︷ ︸

AS











xM2

xM3

δvdc

δzv











+











BM2 +
[

BT2Dvc2 05,3

] [

BT2Dvc3 05,3

]

05,4 BM3

Bdc1DM2 +
[

Bdc1DT2Dvc2 01,3

]

Bdc2DM3 +
[

Bdc1DT2Dvc3 01,3

]

01,4 01,4











︸ ︷︷ ︸

BS




uM2

uM3





︸ ︷︷ ︸

uS

.

(2.124)

The output of the system is the dc-link voltage oscillation, which is one of the system

states:

δvdc
︸︷︷︸

yS

=
[

01,10 1 0
]

︸ ︷︷ ︸

CS











xM2

xM3

δvdc

δzv











+
[

01,8

]

︸ ︷︷ ︸

DS




uM2

uM3



 . (2.125)

Hence, the state-space model for the entire system has been formulated as the 12-order

dynamic system

d

dt
xS = AS xS +BS uS (2.126)

yS = CS xS +DS uS . (2.127)

2.8.2 Model 2: Alternative Formulation of System Equations with Posi-

tion Error as an Input Disturbance

Depending on the signal processing algorithm used for estimating the speed from

position signal, it is not always necessary that the ideal mathematical relation d
dt
eθ =



34

δω̂r − δωr, used in the previous section, will hold. For instance, the estimated rotor

speed may be low-pass filtered, thereby leading to very precise rotor speed estimation

(at least in the steady state), whereas resolver error may still remain significant. To

account for this, we decouple the input disturbances (eθ, δω̂r, δωr). A modified state-

space model where the position error (eθ) is treated as an input disturbance (i.e., no

longer a state variable) is set forth.

Equations (2.116) and (2.117) can be rewritten as follows, where the states xM ,

inputs/disturbances uM , and system matrices AM , BM , CM , and DM have been re-

defined:

d

dt




δiqd

δzqd





︸ ︷︷ ︸

xM

=




Am + Bm(Ecr −Dcr) Bm

−Bcr 02





︸ ︷︷ ︸

AM




δiqd

δzqd



+




BmFcr Em Bm [(Ecr −Dcr)F3 +G3] −Bm

02,1 02,1 −BcrF3 02





︸ ︷︷ ︸

BM











δω̂r

δωr

eθ

δvqdh











︸ ︷︷ ︸

uM

+




BmDcrM

BcrM





︸ ︷︷ ︸

BT

δT ∗

e

(2.128)

yM = δP =
[

Cm +Dm(Ecr −Dcr) Dm

]

︸ ︷︷ ︸

CM




δiqd

δzqd





︸ ︷︷ ︸

xM

+

[

DmFcr 0 Dm[(Ecr −Dcr)F3 +G3] 01,2

]

︸ ︷︷ ︸

DM











δω̂r

δωr

eθ

δvqdh











︸ ︷︷ ︸

uM

+
[

DmDcrM
]

︸ ︷︷ ︸

DT

δT ∗

e . (2.129)
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The system state-space model is obtained as explained in section 2.8.1:

d

dt











xM2

xM3

δvdc

δzv











︸ ︷︷ ︸

xS

=











AM2 04 BT2Dvc1 BT2Cvc

04 AM3 04,1 04,1

Bdc1CM2 Bdc2CM3 Adc + Bdc1DT2Dvc1 Bdc1DT2Cvc

01,4 01,4 Bvc 0











︸ ︷︷ ︸

AS











xM2

xM3

δvdc

δzv











+











BM2 +
[

BT2Dvc2 04,4

] [

BT2Dvc3 04,4

]

04,5 BM3

Bdc1DM2 +
[

Bdc1DT2Dvc2 01,4

]

Bdc2DM3 +
[

Bdc1DT2Dvc3 01,4

]

01,5 01,5











︸ ︷︷ ︸

BS




uM2

uM3





︸ ︷︷ ︸

uS

(2.130)

δvdc
︸︷︷︸

yS

=
[

01,8 1 0
]

︸ ︷︷ ︸

CS











xM2

xM3

δvdc

δzv











+
[

01,10

]

︸ ︷︷ ︸

DS




uM2

uM3



 . (2.131)

Now, this is a 10th-order dynamic system with 10 inputs.

2.9 Frequency Response Analysis

The impact of each input disturbance on the dc-link can be analyzed in the fre-

quency domain based on the state-space models described in previous section. From

basics of linear system control theory, a transfer function matrix is obtained by taking

a Laplace transform with zero initial conditions as follows [20]:

H(s) = CS(sI − AS)
−1BS +DS . (2.132)

For Model 1, H(s) is a 1×8 matrix obtained from (2.126) and (2.127), with each

element representing a transfer function

Hi(s) =
δvdc
uS,i

, i = 1, 2, . . . , 8 . (2.133)
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For instance, the transfer functions related to disturbances originating from machine 2

are

H1(s) =
δvdc(s)

δω̂r2(s)
, H2(s) =

δvdc(s)

δωr2(s)
, H3(s) =

δvdc(s)

δvqh2(s)
, H4(s) =

δvdc(s)

δvdh2(s)
. (2.134)

Similarly for Model 2, H(s) is a 1×10 matrix defined using (2.130) and (2.131). For

example, the transfer functions of interest for studying the impact of rotor position

and speed disturbances from machine 2 are

H1(s) =
δvdc(s)

δω̂r2(s)
, H2(s) =

δvdc(s)

δωr2(s)
, H3(s) =

δvdc(s)

eθ2(s)
. (2.135)

2.10 Selection of Control Gains in CVCR

This section discusses the selection of CVCR controller gains considering a simpli-

fied system model. The state-space equations of the CVCR are simplified assuming

that the estimated and actual qd currents are the same (iqd = îqd) and neglecting

the oscillations in estimated speed. From (2.59) and (2.60), we obtain the simplified

equations:

d

dt




δzq

δzd



 =
[

Bcr −Bcr

]











δi∗q

δi∗d

δiq

δid











(2.136)




δv∗q

δv∗d



 = Ccr




δzq

δzd



+
[

Dcr (Ecr −Dcr)
]











δi∗q

δi∗d

δiq

δid











. (2.137)

Similarly, the machine model is simplified by neglecting the cross-coupling induc-

tances, spatial harmonics and oscillations in shaft speed. Also, the actual qd voltages

are assumed to be equal to commanded qd voltages. The state-space equation (2.101)

thus becomes

d

dt




δiq

δid



 = Am




δiq

δid



+ Bm




δv∗q

δv∗d



 (2.138)
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where Am and Bm are

Am =





−rs
Lqq

−ωr0Ldd

Lqq

ωr0Lqq

Ldd

−rs
Ldd



 , Bm =





1
Lqq

0

0 1
Ldd



 . (2.139)

Substituting (2.137) in (2.138) yields

d

dt
δiqd =

[

Am +Bm(Ecr −Dcr)
]

δiqd + BmCcrδzqd + BmDcrδi
∗

qd . (2.140)

Combining (2.136) and (2.140), we get the simplified state-space system model

d

dt




δiqd

δzqd





︸ ︷︷ ︸

xS

=




Am + Bm(Ecr −Dcr) BmCcr

−Bcr 02





︸ ︷︷ ︸

AS




δiqd

δzqd



+




BmDcr

Bcr





︸ ︷︷ ︸

BS

[

δi∗qd

]

︸ ︷︷ ︸

uS

. (2.141)

The machine output qd currents are given by

δiqd
︸︷︷︸

yS

=
[

I2 02

]

︸ ︷︷ ︸

CS




δiqd

δzqd



 . (2.142)

The 2 × 2 transfer function matrix H(s) for the above state-space model is derived

using (2.132). The elements of H(s) matrix are

δiq
δi∗q

=
h1,1(s)

den(s)
,
δiq
δi∗d

=
h1,2(s)

den(s)
,
δid
δi∗q

=
h2,1(s)

den(s)
,
δid
δi∗d

=
h2,2(s)

den(s)
(2.143)

where

h1,1(s) = LddKpqs
3 + [(rs +Rv)Kpq + LddKiq +KpdKpq]s

2 +

[(rs +Rv)Kiq + ω2
r0LddKpq +KpdKiq +KpqKid]s+ ω2

r0KpdKpq +KidKiq (2.144)

h1,2(s) = [(rs +Rv)Kpd −KidLdd]ωr0s (2.145)

h2,1(s) = [KiqLqq − (rs +Rv)Kpq]ωr0s (2.146)

h2,2(s) = LqqKpds
3 + [(rs +Rv)Kpd + LqqKid +KpdKpq]s

2 +

[(rs +Rv)Kid + ω2
r0LqqKpd +KpdKiq +KpqKid]s+ ω2

r0KpdKpq +KidKiq (2.147)
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den(s) = LddLqqs
4 + [(rs +Rv)(Ldd + Lqq) + LddKpq + LqqKpd]s

3 +

[(rs +Rv)(Kpd +Kpq) + (rs +Rv)
2 + LddLqqω

2
r0 + LddKiq + LqqKid +KpdKpq]s

2 +

[(rs+Rv)(Kid+Kiq)+ω2
r0(LddKpq+LqqKpd)+KpdKiq+KpqKid]s+ω2

r0KpdKpq+KidKiq

(2.148)

The PI gains are selected as follows [21]:

Kpd = ωbiLdd, Kid = ωbi(rs +Rv), Kpq = ωbiLqq, Kiq = ωbi(rs +Rv) . (2.149)

This choice decouples the qd axes, i.e., h1,2(s) = h2,1(s) = 0, and also reduces the

polynomials in (2.144)–(2.148) to

h1,1(s) = h2,2(s) =

[(

s+
rs +Rv

Ldd

)(

s+
rs +Rv

Lqq

)

+ ω2
r0

]

(s+ ωbi)ωbiLqqLdd

(2.150)

den(s) =

[(

s+
rs +Rv

Ldd

)(

s+
rs +Rv

Lqq

)

+ ω2
r0

]

(s+ ωbi)
2LqqLdd . (2.151)

The transfer functions are thus reduced to first-order responses,

δiq
δi∗q

=
δid
δi∗d

=
ωbi

s+ ωbi

(2.152)

where ωbi is the bandwidth of the current regulator.
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3. IMPACT OF DISTURBANCES: NUMERICAL

RESULTS

In this section, we illustrate the impact of the various disturbances (i.e., the compo-

nents of uS in (2.124) and (2.130)) on the dc-link voltage using the state-space model

that was derived in the previous section. The results are obtained in the frequency

domain, as explained in Section 2.9.

3.1 Frequency Sweeps

The first set of results is intended to show the effect of position error and shaft

oscillations on dc-link voltage. To this end, six different operating points are selected;

they are listed in Table 3.1. The impact of each input disturbance on the dc-link is

observed via frequency response (Bode) plots. The theoretical analysis of Section 1.1

as well as experimental results indicate that the errors in estimated rotor position and

speed are commonly encountered at fundamental and second harmonics; therefore,

these particular frequencies are highlighted.

Analyses are conducted for both Model 1 and Model 2, and the results are shown in

Figs. 3.1–3.6 and Figs. 3.7–3.12, respectively. Results for both versions of the voltage

controller (see Section 2.2) are included. These results are generated by considering

Rv = 5rs and ωbi = 2π80 Hz.

In the formulation of Model 1, the estimated rotor speed is assumed to be di-

rectly tied to the estimated rotor angle (e.g., through some ideal speed estimation

algorithm). In this case:

1. In the presence of shaft oscillations without position error (eθ = 0), we have

δω̂r = δωr. Due to linearity of the small-signal dynamic system, the dc-link os-

cillations can be found by superposition. For example, for oscillations occurring
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Table 3.1
Operating Points

Case Study Machine 2 Speed Machine 3 Speed Load Torque Electrical

Power

Absorbed by

Traction Drive

from DC-Link

1 1000 rpm 1000 rpm 50 Nm 5.65 kW

2 3000 rpm 3000 rpm 100 Nm 34 kW

3 6000 rpm 6000 rpm 150 Nm 103.5 kW

4 9000 rpm 9000 rpm 150 Nm 163 kW

5 3500 rpm 5000 rpm 150 Nm 84.2 kW

6 5400 rpm 9000 rpm 100 Nm 109.6 kW

in the shaft speed of machine 2, the dc-link voltage oscillation can be found

using (2.134):

δvdc(s) = [H1(s) +H2(s)] δωr2(s) (3.1)

Results considering oscillations of unit magnitude (1 rpm) are shown in Figs.

3.1(a), 3.1(b), 3.2(a), 3.2(b), . . . , 3.6(a), 3.6(b).

2. In the absence of actual shaft oscillations but in the presence of position error,

we have δω̂r = d
dt
eθ. For example, for oscillations occurring in the estimated

speed of machine 2, (2.134) yields

δvdc(s) = H1(s) δω̂r2(s) = H1(s) seθ2(s) . (3.2)

The results shown in Figs. 3.1(c), 3.1(d), . . . , 3.6(c), 3.6(d) correspond to a 1◦

position error magnitude (setting eθ =
π
180 0).

For Model 2, the impact of unit magnitude (1 rpm) shaft oscillations is shown in Figs.

3.7(a), 3.7(b), . . . , 3.12(b), 3.12(b). The results in Figs. 3.7(c), 3.7(d), . . . , 3.12(c),
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3.12(d) illustrate the effect of unit magnitude (1 rpm) oscillations in estimated speed.

Similarly, the influence of 1◦ position error is seen in Figs. 3.7(e), 3.7(f), . . . , 3.12(e),

3.12(f).
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Fig. 3.1. Bode plots for case study 1 (Model 1).
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Fig. 3.2. Bode plots for case study 2 (Model 1).
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Fig. 3.3. Bode plots for case study 3 (Model 1).
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Fig. 3.4. Bode plots for case study 4 (Model 1).
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Fig. 3.5. Bode plots for case study 5 (Model 1).
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Fig. 3.6. Bode plots for case study 6 (Model 1).
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Fig. 3.7. Bode plots for case study 1 (Model 2).
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Fig. 3.8. Bode plots for case study 2 (Model 2).
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Fig. 3.9. Bode plots for case study 3 (Model 2).
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Fig. 3.10. Bode plots for case study 4 (Model 2).



52

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

|δ
v
d
c
|,
V

0

0.2

0.4

0.6

0.8
 Impact of M #2 actual speed oscillations

VC ver.2
VC ver.1

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

p
h
a
s
e
, 
d
e
g
re

e
s

-200

-100

0

100

200

(a)

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

|δ
v
d
c
|,
V

0

0.1

0.2

0.3

0.4

0.5
 Impact of M #3 actual speed oscillations

VC ver.2
VC ver.1

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

p
h
a
s
e
, 
d
e
g
re

e
s

-200

-100

0

100

200

(b)

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

|δ
v
d
c
|,
V

0

0.1

0.2

0.3

0.4

0.5

0.6
 Impact of M #2 estimated speed oscillations

VC ver.2
VC ver.1
fundamental
second harmonic

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

p
h
a
s
e
, 
d
e
g
re

e
s

-200

-100

0

100

200

(c)

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

|δ
v
d
c
|,
V

0

0.1

0.2

0.3

0.4
 Impact of M #3 estimated speed oscillations

VC ver.2
VC ver.1
fundamental
second harmonic

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

p
h
a
s
e
, 
d
e
g
re

e
s

-200

-100

0

100

200

(d)

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

|δ
v
d
c
|,
V

0

5

10

15
 Impact of M #2 position error

VC ver.2
VC ver.1
fundamental
second harmonic

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

p
h

a
s
e

, 
d

e
g

re
e

s

-200

-100

0

100

200

(e)

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

|δ
v
d
c
|,
V

0

5

10

15

20

25
 Impact of M #3 position error

VC ver.2
VC ver.1
fundamental
second harmonic

Frequency, Hz

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

p
h

a
s
e

, 
d

e
g

re
e

s

-200

-100

0

100

200

(f)

Fig. 3.11. Bode plots for case study 5 (Model 2).
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Fig. 3.12. Bode plots for case study 6 (Model 2).
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3.2 Impact of Position Error Over Operating Range

The second set of results shows the impact of position error over a wide operating

range, which is obtained by varying load torque and speed (assuming both machines

have the same rpm). They are conducted for Model 2 with version 1 of voltage

controller and setting all other disturbances to zero. For example, for position error

occurring in the resolver of machine 2, (2.135) yields

δvdc(s) = H3(s) eθ2(s) . (3.3)

The analysis is performed assuming a 1◦ position error magnitude occurring either

at the fundamental or at the second harmonic. The results are depicted in Fig. 3.13

over a range of rotor speed from 2000 to 9000 rpm in steps of 500 rpm. The load

torque at each speed is varied in steps of 10 Nm starting from 50 Nm and ending at

the maximum possible torque at that particular speed. (The upper bound for torque

is determined by the motor characterization data range; see Appendix A for details.)

3.3 Impact of Slot Harmonics Over Operating Range

Thirdly, we investigate the impact of the slot harmonics on the dc-link voltage

oscillations. The operating range is identical to the one described in the previous

subsection (Sec. 3.2). The test is conducted for Model 2 with version 1 of voltage

controller. The back-emf time-domain waveforms corresponding to the slot harmonics

are obtained from (2.99) and (2.100) for any given speed. For example, the impact of

machine-2 slot harmonics on the dc-link voltage is computed by superposition using

(2.134)1,

δvdc(s) = H3(s) δvqh2(s) +H4(s) δvdh2(s) . (3.4)

As the machine considered in this case study has 12 slots per pole pair, the dominant

slot harmonics appear at the 6th and 12th order. The impact of these harmonics is

1Note that the impact of slot harmonics on dc link is same for both Model 1 and Model 2.
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Fig. 3.13. Variation of dc-link oscillations for 1◦ position error over
an operating range (Rv = 5rs, ωbi = 2π80 Hz).

shown in Fig. 3.14. It can be observed that the slot harmonic impact is insignificant,

since the dc-link voltage ripple does not exceed 0.4 V over the operating range.



56

10000

8000

 Impact of M#2 slot harmonics at 6th harmonic

Speed, rpm

6000

4000

20000

100

Torque, Nm

200

0

0.5

0.4

0.3

0.2

0.1

300

|δ
V
d
c
|,
V

(a)

10000

8000

 Impact of M#3 slot harmonics at 6th harmonic

Speed, rpm

6000

4000

20000

100

Torque, Nm

200

0.2

0.15

0.3

0.1

0.05

0.35

0.25

300

|δ
V
d
c
|,
V

(b)

10000

 Impact of M#2 slot harmonics at 12th harmonic

8000

Speed, rpm

6000

4000

20000

100

Torque, Nm

200

0

0.1

0.2

0.3

0.4

300

|δ
V
d
c
|,
V

(c)

10000

 Impact of M#3 slot harmonics at 12th harmonic

8000

Speed, rpm

6000

4000

20000

100

Torque, Nm

200

0.2

0

0.1

0.3

0.4

300

|δ
V
d
c
|,
V

(d)

Fig. 3.14. Impact of slot harmonics on dc-link voltage oscillations over
an operating range.
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4. TECHNIQUES TO MITIGATE DC-LINK

OSCILLATIONS

4.1 Elimination of Position Error

Position error commonly occurs at fundamental and second harmonic due to im-

perfections in resolver manufacturing as discussed in Section 1.1. It can be inferred

from Fig. 3.13 that the position error has significant effect on dc-link voltage at these

particular frequencies over the entire operating range. One of the potential ways to

reduce these oscillations is to eliminate the position error at the source itself.

4.1.1 Elimination of Fundamental Position Error

This section sets forth a resolver position error elimination technique assuming

that only a fundamental component in position error exists. This situation is illus-

trated in Fig. 4.1, where θr = 2πt rad, corresponding to a constant rotor speed of

2π rad/s, with α = 0.52 rad and β = 0.3 rad. In general, the measured position

signal can be represented as

θ̂r = θr + α cos θr + β sin θr
︸ ︷︷ ︸

ǫ

(4.1)

where ǫ is measurement error. The proposed algorithm first computes the coefficients

α and β. Then, the position error is estimated and subtracted from the estimated

position signal in order to obtain a corrected position signal.

To find the coefficients α and β, we first compute

cos θ̂r = cos(θr + ǫ) = cos θr cos ǫ− sin θr sin ǫ . (4.2)
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Fig. 4.1. Position signal variation example.

As ǫ is very small, the following approximations are valid: cos ǫ ≈ 1 and sin ǫ ≈ ǫ.

The above equation reduces to

cos θ̂r ≈ cos θr − ǫ sin θr . (4.3)

Substituting ǫ from (4.1) results in

cos θ̂r ≈ cos θr − (α cos θr + β sin θr) sin θr . (4.4)

Using trigonometric identities from Appendix C,

cos θ̂r ≈ cos θr −
α

2
sin 2θr −

β

2
(1− cos 2θr) . (4.5)

Similarly, computing sin θ̂r with the above approximations yields

sin θ̂r = sin θr cos ǫ+ cos θr sin ǫ ≈ sin θr + ǫ cos θr (4.6)

sin θ̂r ≈ sin θr + (α cos θr + β sin θr) cos θr (4.7)

sin θ̂r ≈ sin θr +
α

2
(1 + cos 2θr) +

β

2
sin 2θr (4.8)
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The coefficients α and β are obtained by low-pass filtering the signals from equa-

tions (4.8) and (4.5), respectively, to eliminate all oscillatory zero-mean components,

i.e.,

α = 2 fLPF

(

sin θ̂r

)

(4.9)

β = −2 fLPF

(

cos θ̂r

)

(4.10)

where fLPF represents a low-pass filter function. For example, a first-order low-

pass filter with time constant τ is expressed in the frequency domain as: fLPF(x) =

x/(τs+ 1). Note that this method will work properly during operation under constant

rotor speed, which eliminates the time-average of sin θr, cos θr, sin 2θr, and cos 2θr.

For more details see Sec. 4.1.5. Also, while implementing this method in hardware,

we should limit the values of α and β to around 0.0349 rad (which corresponds to a 2◦

position error). Otherwise, these variables could integrate to high values (e.g., while

the motor is at standstill), thus leading to instability (e.g., during motor start-up).

After the coefficients are calculated, the position error can be estimated as ǫ̂ ≈
α cos θ̂r + β sin θ̂r. This approximation is valid because

ǫ̂ = α cos(θr + ǫ) + β sin(θr + ǫ) (4.11)

≈ α(cos θr + ǫ sin θr) + β(sin θr + ǫ cos θr) . (4.12)

Substituting ǫ from (4.1), we get

ǫ̂ ≈ α cos θr + β sin θr +
α2 + β2

2
sin 2θr + αβ

︸ ︷︷ ︸

<<1

≈ ǫ . (4.13)

The position signal is corrected by subtracting the estimated error from the esti-

mated position:

ˆ̂
θr = θ̂r − ǫ̂ (4.14)

= θ̂r − α cos θ̂r − β sin θ̂r . (4.15)

It should be noted that the α, β coefficients converge depending on the time constant

of the low-pass filter. Hence, the estimated position signal is gradually corrected at

the same rate.
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4.1.2 Extension to Eliminate any Harmonic

The above algorithm may be extended to eliminate any desired harmonic compo-

nent occurring in the position error. Suppose that the estimated position signal is

expressed as

θ̂r = θr +
∑

x∈X

αx cos xθr + βx sin xθr

︸ ︷︷ ︸

ǫ

(4.16)

where x represents the harmonic number of a particular error component, and X is

the set of harmonics, e.g., X = {1, 2, . . .}, which do not necessarily have to be of

integer order.

To eliminate the yth harmonic component from this position signal, we compute

cos yθ̂r and sin yθ̂r with the approximations cos yǫ ≈ 1 and sin yǫ ≈ yǫ:

cos yθ̂r ≈ cos yθr − yǫ sin yθr (4.17)

≈ cos yθr − y
∑

x

αx sin yθr cosxθr + βx sin yθr sin xθr (4.18)

≈ cos yθr − y
∑

x

αx

2
[sin(x+ y)θr + sin(y − x)θr]

+
βx

2
[cos(x− y)θr − cos(x+ y)θr] . (4.19)

The only dc component in the above expression corresponds to the term in the sum

where x equals y. Therefore, we can express

cos yθ̂r ≈ (oscillatory terms)− yβx

2
. (4.20)

Similarly,

sin yθ̂r ≈ sin yθr + yǫ cos yθr (4.21)

≈ sin yθr + y
∑

x

αx cos yθr cos xθr + βx cos yθr sin xθr (4.22)

≈ sin yθr + y
∑

x

αx

2
[cos(x+ y)θr + cos(x− y)θr]

+
βx

2
[sin(x+ y)θr + sin(x− y)θr] . (4.23)
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The only dc component appears when x = y in the sum, so

sin yθ̂r ≈ (oscillatory terms) +
yαx

2
. (4.24)

Therefore, the coefficients of the yth harmonic error in position can be computed by

low-pass filtering cos yθ̂r and sin yθ̂r:

αx =
2

y
fLPF

(

sin yθ̂r

)

(4.25)

βx = −2

y
fLPF

(

cos yθ̂r

)

(4.26)

The position error due to the yth harmonic is then estimated by

ǫ̂y ≈ αy cos yθ̂r + βy sin yθ̂r (4.27)

which is subsequently subtracted from the original position signal. In general, the

total position error can be estimated using

ǫ̂ =
∑

y∈Y

ǫ̂y (4.28)

where the set Y ⊂ X contains the harmonics that are targeted. A block diagram

representing elimination of fundamental and second harmonic error components is

shown in Fig. 4.2.

4.1.3 Low-Pass Filter Bandwidth

This section discusses the selection of bandwidth of the low-pass filter. The fre-

quency response of a first-order low-pass filter with bandwidth ωlpf, which corresponds

to a time constant τ = 1/ωlpf, is shown in Fig. 4.3. As a rule of thumb, the bandwidth

of the low-pass filter should be selected such that it is at least 10 times smaller than

the minimum frequency of all components of interest in the position error that are to

be eliminated. Of course, this depends on the lowest operating speed. This can be

expressed as follows:

ωmin > 10ωlpf . (4.29)



62

sin fLPF 2

cos fLPF −2

•

2 sin fLPF 1

cos fLPF −1

•

•

+

+

−

ǫ̂1

+

• •

•

+

+

−

ǫ̂2

θ̂r
ˆ̂
θr
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4.1.4 Simulation Results

We illustrate the technique with a time-domain simulation study at an arbitrarily

selected operating point. To focus solely on the impact of position error on dc-
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link, all other disturbances are ignored. An operating point of 9000 rpm (equal for

both machines) and 150 Nm load torque is considered. The speed corresponds to a

fundamental frequency of 4.7 ×103 rad/s (750 Hz). The test is conducted for Model 2

with version 1 of voltage controller. A position error in both machines (M2 and M3)

is synthesized using the following (arbitrarily selected) values for the fundamental

components: αM2 = 0.5◦, βM2 = 1.5◦, αM3 = 1◦, and βM3 = 2◦. The time constant

of all low-pass filters is τ = 5 s which corresponds to a bandwidth ωlpf = 0.2 rad/s.

In this case, ωmin/ωlpf = 2.3 × 104, and satisfies the condition (4.29). Figs. 4.4(a)–

4.4(d) illustrate the convergence of coefficients α and β for both machines. Also, the

positive impact of eliminating the position error on the dc-link voltage oscillations is

observed in Fig. 4.5(a). A second study is performed using the same parameters as

discussed above except the time constant of all low-pass filters, which is now 0.01 s.

In this case, the ratio ωmin/ωlpf is 47.1. The dc-link voltage oscillations for this case

are observed in Fig. 4.5(b).

4.1.5 Impact of Rotor Shaft Oscillations

Let us suppose that rotor shaft oscillations are occurring at fundamental electrical

frequency (induced by a position error at the same frequency). The rotor position

can be expressed as

θr = θr0 + γ cos θr0 + δ sin θr0
︸ ︷︷ ︸

δθr

. (4.30)

The angle θr0 corresponds to a linearly increasing angle due to a nominal constant

rotor speed. Substituting the above equation in (4.8), we obtain

sin θ̂r ≈ sin (θr0 + δθr) +
α

2
[1 + cos 2(θr0 + δθr)] +

β

2
sin 2(θr0 + δθr) . (4.31)
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Fig. 4.4. Convergence of α and β in both machines.

Considering the small-angle approximations cos δθr ≈ 1 and sin δθr ≈ δθr, and ne-

glecting higher-order terms, leads to

sin θ̂r ≈ sin θr0 + δθr cos θr0 +
α

2
(1 + cos 2θr0) +

β

2
sin 2θr0 (4.32)

≈ sin θr0 + (γ cos θr0 + δ sin θr0) cos θr0 +
α

2
(1 + cos 2θr0) +

β

2
sin 2θr0 (4.33)

≈ sin θr0 +
γ + α

2
(1 + cos 2θr0) +

δ + β

2
sin 2θr0 . (4.34)

It is observed that oscillations in rotor speed can affect the estimation of the α and

β coefficients.



65

Time, s

0 5 10 15 20

δ
v
d
c
,
V

-40

-20

0

20

40

(a) τ = 5 s

Time, s

0 0.02 0.04 0.06 0.08 0.1

δ
v
d
c
,
V

-40

-20

0

20

40

(b) τ = 0.01 s

Fig. 4.5. Reduction of dc-link voltage oscillations.

We proceed to obtain approximate upper bounds for γ and δ, by estimating a

maximum possible value of the amplitude of δθr. The mechanical dynamics of the

system are described by

Te − Tl = J
d

dt
ωrm (4.35)

where Te is the electromagnetic torque, Tl is the load torque (assumed constant here),

J is the moment of inertia, and ωrm is the mechanical rotor speed. The small-signal

version of the above equation is

δTe = J
d

dt
δωrm . (4.36)

As the oscillations in the actual speed occur at fundamental electrical frequency,

switching to the frequency domain yields (with slight abuse of notation)

δTe =Jωeδωrme
j π
2 (4.37)

=Jω2
eδθrme

jπ (4.38)

=− Jω2
eδθr

1

pp
(4.39)

where pp = 5 represents the number of pole-pairs of the machine. The magnitude of

δθr is, therefore,

|δθr| =
pp δTe

Jω2
e

(4.40)
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The machine in this case study has a rated torque of 350 Nm and a moment of inertia

of drivetrain of approximately 0.3 kg·m2. The oscillations in torque are assumed to be

around 3% of the rated torque. We compute δθr considering a low speed of 500 rpm

as a worst-case scenario. Substituting the aforementioned parameters in (4.40), we

obtain |δθr| = 0.0026 rad, which is approximately 7 times smaller than a typical

position error magnitude (1◦). Hence, it may be concluded that the impact of shaft

oscillations is relatively small compared to the position error.

Note that the shaft oscillations are caused due to torque oscillations which in turn

are due to the position error. Therefore, as the error in the position converges to

zero, the shaft oscillations are also expected to converge to zero as well.

4.1.6 Experimental Results

For this experiment, the Machine 2 and Machine 3 are connected to a 700-V dc-

link through a dual inverter. The test was conducted at an operating point running

the Machine 2 and Machine 3 at a fundamental frequency of 400 Hz and 200 Hz,

respectively. This test was focused on eliminating only the fundamental component

of position error in both of the machines. Note that the speed estimation was still

computed using the polluted position signal that contains the error. The time-domain

dc-link voltage waveform with and without position error compensation is shown in

Figs. 4.6(a) and 4.6(b). The spectrum of the dc-link voltage is observed in Figs.

4.6(c) and 4.6(d). The harmonic number in this figure corresponds to the harmonics

of 200 Hz (speed of Machine 3).
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Fig. 4.6. Impact of position error elimination on dc-link (a), (b) time-
domain waveform (c), (d) spectrum: experimental result.
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4.2 Variation of Virtual Resistance in Current Regulator

Here, we analyze the impact of position error on dc-link voltage oscillations by

varying Rv, which is a virtual resistance parameter used in the CVCR. The analysis

is conducted using Model 2 with version 1 of the voltage controller.

4.2.1 Simulation Results

The first set of results shown in Fig. 4.7 are the frequency response plots for both

machines 2 and 3 at an arbitrary selected operating point of 6000 rpm (the speeds of

both machines are the same) and load torque of 150 Nm. Rv is increased from 5rs to

20rs in the controllers of both machines. Note that increasing Rv increases the integral

gains Kiqd from (2.149). It is observed from these plots that increasing Rv reduces

the dc-link voltage oscillations in the frequency range around the fundamental.

The second set of results is performed over a wide operating range. Rotor speed

is the same for both machines, and varies from 2000 to 9000 rpm in steps of 500 rpm.

The load torque at each speed is varied in steps of 10 Nm, starting from 50 Nm and

ending at the maximum possible torque at that particular speed. The impact of 1◦

position error at fundamental in both machines is shown in Figs. 4.8(a)–4.8(b) and

4.8(c)–4.8(d) for Rv = 10rs and Rv = 20rs, respectively. It is observed that the

dc-link voltage oscillations reduce as Rv increases (cf. Fig. 3.13, p. 55).

4.2.2 Experimental Results

For this experiment, the Machine 2 (generator) and Machine 3 (motor) are con-

nected to a 700-V dc-link through a dual inverter. The test was conducted at an

operating point of 3000 rpm (the speeds of machines 2 and 3 are the same, and are

controlled by machines 1 and 4) at 80 kW. The virtual resistance Rv is changed

from a value of 4rs to 20rs in the controllers of both machines. The time-domain

dc-link voltage waveform is shown in Figs. 4.9(a)–4.9(b). The data has been logged
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Fig. 4.7. Impact of increasing virtual resistance on dc-link.

using a Tektronix oscilloscope for 1 s. The spectrum of the dc-link voltage for these

waveforms is shown in Figs. 4.9(c)–4.9(d). It can be observed that increasing Rv at-

tenuates the dc-link voltage oscillations at a broad frequency range, as expected from

the preceding theoretical analysis.
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Fig. 4.8. Impact of position error on dc-link when Rv = 10rs in (a),
(b) and Rv = 20rs in (c), (d).
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Fig. 4.9. Dc-link voltage (a), (b) time-domain waveform (c), (d) spec-
trum: experimental result.
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4.3 Variation of Current Regulator Bandwidth

In this section, we study the impact of varying the current regulator bandwidth

ωbi on the dc-link voltage oscillations. The position error magnitude is kept constant

at 1◦. The results are obtained using Model 2 with version 1 of the voltage controller.

4.3.1 Simulation Results

The first study is performed at an arbitrary operating point of 3000 rpm (250 Hz

fundamental electrical frequency) and 240 Nm load torque. This first set of results is

obtained by varying the current regulator bandwidth starting from 80 Hz to 800 Hz,

i.e., a frequency that is substantially higher than the fundamental where the distur-

bance due to position error appears. Note that increasing ωbi increases all the gains

of CVCR per (2.149). A positive side-effect of increasing the inner-loop current con-

trol bandwidth is that it allows the version-1 voltage control to perform better at

higher rotor speeds (see Sec. 2.2). It is observed from Figs. 4.10(a)-4.10(b) that the

dc-link voltage oscillations reduce at a frequency range around the fundamental as

ωbi increases.

The second set of results in Fig. 4.11 shows the impact over a wide operating

range. The bandwidth of the current regulator is set to 1500 Hz, which was chosen to

be higher than the highest fundamental frequency in the considered operating range.

It is observed that the oscillations reduce when ωbi is increased (cf. Fig. 3.13, p. 55).

However, there is a slight increase in dc-link voltage oscillations due to slot harmonics

as shown in Fig. 4.12 (cf. Fig. 3.14, p. 56). This behavior can be explained using

the transfer function of the tuned current regulator (2.152), p. 38. The increase in

bandwidth allows the slot harmonics (especially at lower rotor speeds) to pass through

the current regulator, thereby causing a slight increase in dc-link oscillations.

The third set of results is obtained by simulating a case where only the traction

drive (Machine 3) is present, and is connected to a constant dc source through an
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Fig. 4.10. Impact of current regulator bandwidth on dc-link voltage.

inverter. The selected operating point is 3000 rpm at a load torque of 240 Nm. The

power at the machine terminals is

P3 =
3

2

[
(v∗q30 + δvq3)(i

∗

q30 + δiq3) + (v∗d30 + δvd3)(i
∗

d30 + δid3)
]

(4.41)

where the equilibrium values of qd voltages and currents are obtained using the ini-

tialization process described in Appendix A, and the time-domain δvqd and δiqd are
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Fig. 4.11. Impact of position error on dc-link voltage oscillations when
current regulator bandwidth is 1500 Hz.

obtained by running the small-signal model in Simulink. A 1◦ position error is in-

troduced at the fundamental. The spectrum of oscillatory power components at the

machine terminals is observed in Fig. 4.13(a). The oscillations in power at fundamen-

tal are due to the encoder position error, whereas oscillations of 6th and 12th order

are due to the slot harmonics. However, harmonics of 2nd, 5th, 7th, 11th, and 13th

order are also observed. This can be explained using (4.41). The interactions be-

tween fundamental component and 6th order in voltages and currents leads to 5th and

7th order power components. Similarly, interactions between fundamental and 12th

order in voltages and currents leads to 11th and 13th order power components. The

oscillations at second harmonic occur due to the interaction of fundamental compo-

nents in voltages and currents. It is observed that by increasing ωbi, the oscillations

in power reduce by a factor of 2–4 at the fundamental frequency; however, the slot

harmonics generally increase by a factor of approximately 2. Recall that these power

oscillations cause the oscillations on dc-link voltage per (2.4), p. 13. Fig. 4.3.1 depicts

the power spectrum when a 1◦ position error is introduced simultaneously at both

the fundamental and second harmonic. The interaction between 2nd order and slot

harmonics leads to harmonics of 4th, 8th, and 10th order.
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Fig. 4.12. Impact of slot harmonics on dc-link voltage oscillations
when current regulator bandwidth is 1500 Hz.

4.3.2 Experimental Results

To verify the impact of changing the current regulator bandwidth experimentally,

tests were performed using only a traction drive (Machine 3) connected to a 700-V

dc-supply through an inverter. The test was performed at a fundamental frequency

of 200 Hz with 240 Nm of load torque (generated by the Machine 3). Here, the three

phase voltages and currents are logged to compute the instantaneous power. Note

that the phase voltages are logged without filtering any higher harmonics. Three

tests are performed at the same operating point by setting the bandwidth of the
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Harmonic Number

-2 0 2 4 6 8 10 12 14

M
a

g
n

it
u

d
e

, 
W

10
0

10
1

10
2

10
3

10
4

10
5

ωbi = 2π100 rad/s
ωbi = 2π200 rad/s

ωbi = 2π400 rad/s
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current regulator to 100 Hz, 200 Hz, and 400 Hz. The spectrum of the power at the

machine terminals for these three cases is shown in Fig. 4.14. It is observed that the

fundamental component in the power reduces at the cost of increasing components

at higher frequencies, as expected from the simulation results.
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5. CONCLUSIONS

This research has set forth three methods to address the problem of dc-link voltage

oscillations caused by VR resolvers. The techniques proposed herein to reduce the

impact of position error are not specific to any particular manufacturing imperfection

in the resolver. Comparing with the earlier works [15], [16] in this domain, the

proposed techniques are easier to implement as they do not involve any modifications

to be performed in the R/D, and also do not require LUT methods. A notable

advantage of the position error elimination technique is that it can be employed to

eliminate any desired harmonic component present in the position error. In addition,

the proposed methods of eliminating the position error and increasing the virtual

resistance can be implemented simultaneously for more efficient reduction of dc-link

oscillations.

Though this research was mainly focused on mitigating the dc-link oscillations

caused solely due to resolver error, the impact of other possible external disturbances

on the system has been analyzed, and it has been concluded that the position error

has the most significant impact compared to other disturbances.

The approach followed in this work suggests several research avenues. A further

improvement is to model the inverter, Machine 1 (prime mover) and Machine 4 (load)

for more accurate analysis, as this work assumes an average-value model and models

only Machine 2, Machine 3, and the dc-link. The position errors in all four machines

can be accounted to observe the dc-link oscillations. It would be interesting to observe

the impact of torque oscillations due to resolver error and also compute the rotor shaft

oscillations using the mechanical dynamics of the system. Ultimately, the rotor shaft

oscillations can be tied to resolver error for a more precise analysis.

The method of varying virtual resistance can be investigated a little further with

respect to its limitations. Increasing the virtual resistance of current regulator to a
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very large value shifts the poles of the regulator to far left side of s-plane. This might

introduce high frequency components into the system. So, one could concentrate on

analyzing the impact of noise obtained from the measurements on the dc-link voltage.

In regard with the practical implementation of the proposed techniques, a thor-

ough validation should be done by conducting the tests over the entire operating

range.
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A. MOTOR CHARACTERIZATION

The machine used in this research is a Remy HVH250-115D machine which is rated

at 200 kW and 425 A rms stator current. This appendix sets forth a method to

obtain the map of qd currents to stator flux linkages and electromagnetic torque. The

method is based on running a series of simulations using a JMAG (FEA) machine

model. First, we define an operating range in terms of qd currents. To obtain these,

the machine is connected to three dc voltage sources of appropriate magnitude. The

JMAG model is simulated using the calculated abc voltages as inputs, with the rotor

locked at a particular position. We wait until the steady state is reached to extract

the flux linkages and electromagnetic torque from the JMAG model. This process is

repeated for all qd currents spanning the complete operating range and at all rotor

positions spanning a complete electrical revolution.

A.1 Flux Linkage and Torque

The steady-state circuit representing a case where dc voltage sources are connected

to the stator windings is shown in Fig. A.1. In the JMAG model, the motor is Y-

connected without neutral wire. Here, we calculate the input dc voltages, E1, E2,

and E3, to obtain given qd currents. Applying Kirchhoff’s voltage law twice, we get


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

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where we have also used the fact that the vas + vbs + vcs = 0 in a Y-connected motor

(this becomes the third equation). This leads to

vabcs =
1

3








2 −1 −1

−1 2 −1

−1 −1 2







E123 . (A.2)

The matrix in (A.2) is not invertible. But once we introduce an additional equation

for the sum E1 + E2 + E3, we can solve for the source voltages. In general, we are

free to select sources such that E1 + E2 + E3 6= 0. Nevertheless, here, we choose

E3 = −E1 − E2. Manipulating the above equation using this relation yields

vabcs =








1 0

0 1

−1 −1







E12 . (A.3)

Therefore, the input dc voltage sources to obtain desired qd currents are given by

E1 = vas = rs [iqs cos θr + ids sin θr] (A.4)

E2 = vbs = rs [iqs cos (θr − 2π/3) + ids sin (θr − 2π/3)] (A.5)

E3 = vcs = −vas − vbs (A.6)

where we have applied the inverse qd transformation to obtain ias and ibs.

We run a series of JMAG studies with qd currents spanning the complete operating

range and rotor position spanning an electrical revolution. The pseudo-code of this

process is outlined below:

Specify coil temperature Tc and magnet temperature Tpm.

for (some value of θr ∈ Θr)

for (some value of iqs ∈ Iqs)

for (some value of ids ∈ Ids)

% using (A.4)-(A.6)

E1 = vas = rs[iqs cos θr + ids sin θr]
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E2 = vbs = rs[iqs cos (θr − 2π/3) + ids sin (θr − 2π/3)]

E3 = vcs = −vas − vbs

sim(’model’) % wait until dc steady state

% extract final values of λabcs from JMAG model

% transform into qd variables

λqd(iq, id, θr) =
2
3




cos θr cos(θr − 2π/3) cos(θr − 4π/3)

sin θr sin(θr − 2π/3) sin(θr − 4π/3)



λabcs

% extract Te(iq, id, θr) from JMAG model

Θr is an n × 1 vector of equally-spaced electrical rotor angles spanning the interval

[0, 2π). Iqs (Matlab symbol: iqs vec) is a 93 × 1 vector of equally-spaced q-axis

currents spanning an interval [−460, 460] and Ids (Matlab symbol: ids vec) is a

69× 1 vector of equally-spaced d -axis currents spanning an interval [0,−680].

g
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Fig. A.1. Steady-state circuit diagram of stator coils connected to
three dc voltage sources.
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The averages of qd -axis flux linkages f̄qd(iq, id) and electromagnetic torque T e(iq, id)

(Matlab symbol: Te avg) are obtained by taking the mean of λqd(iq, id, θr) and

Te(iq, id, θr) over an electrical revolution, for example:

f̄q(iq, id) =
1

n

n∑

k=1

λq(iq, id, θr,k) . (A.7)

The variation of average flux linkages and electromagnetic torque with qd currents is

shown in Fig. A.2.
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Fig. A.2. Average qd flux linkages and electromagnetic torque over
the complete operating range.
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A.2 Calculation of qd Current Commands

In this section, we outline the procedure for computing an optimum pair of qd

currents that generate a given electromagnetic torque (Te) at a particular rotor speed

(ωr). This yields the maximum torque per ampere (MTPA) curve. However, at higher

speeds, the operation is constrained by voltage limits, and the obtained currents

deviate from the nominal MTPA characteristic. The procedure is outlined as follows:

1. Extract pairs of qd currents (Matlab symbol: iqd) for the given torque (Matlab

symbol: Te) using the torque map (obtained from motor characterization):

iqd = contour(ids vec, iqs vec, Te avg, [Te Te]).

2. Compute the corresponding qd voltages using the qd currents (obtained in above

step) and the average flux-linkages (obtained from motor characterization): e.g,

vq = rsiq + ωrf̄d(iq, id).

3. Find the peak value of the stator current for all the pairs of qd currents lying

on the contour:

Is vec = sqrt(iq∧2+id∧2).

4. Find the pair of qd currents corresponding to the minimum peak stator current:

[Is min,ind] = min(Is vec);

iqd mtpa = iqd(ind).

5. Identity the voltages vqdm corresponding to iqd mtpa and compute the peak

value of the voltage: vs =
√

v2qm + v2dm.

6. Verify if this pair of qd currents (iqd mtpa) satisfy the voltage constraint, i.e,

vs <= vdc0/
√
3. Note that the qd voltages are computed in step (2).

(a) If the voltage limit is satisfied, the optimum value of qd currents for the

given speed and torque are the ones obtained in step 4.

(b) If the voltage limit is violated, identify the iqd of smallest magnitude that

satisfies the voltage constraint.
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From the above study, we find the following:

1. Maximum allowable torque Tmax (Matlab symbol: Tmax) vs. commanded rotor

speed ω∗

r (Matlab symbol: wrstar) for MTPA control. The speed range provided

is 500–10,000 rpm in steps of 500 rpm.

2. A 2-D mapping from commanded torque percentage T ∗

e,pc (Matlab symbol: Testarpc)

and commanded rotor speed (wrstar), to commanded currents i∗qd (Matlab sym-

bols: iqstar, idstar, 2-D arrays). This mapping is based on the definition of

commanded torque percentage,

T ∗

e,pc =
T ∗

e

Tmax(ω∗
r)

× 100 (A.8)

which is provided in steps of 2%.

A.3 Initialization Process

In this section, we describe the initialization process (in Matlab pseudo-code form)

to compute steady-state values for any arbitrary operating point:

1. Input parameters: rotor speed of each machine and load torque (Matlab symbol:

Tload) of motor 3.

2. Set parameters for both machines, e.g., resistance of coil, number of poles, etc.,

and for dc-link, e.g., capacitance.

3. Set the PI gains for CVCR in each machine (dependence on commanded speed).

4. Load steady-state data (section A.2) to set the operating points for each machine.

5. Compute equilibrium point for Machine 3:

(a) Find Tmax,3 for the given commanded rotor speed ω∗

r3 using linear interpo-

lation:

Tmax3 = interp1(wrstar,Tmax,wr3star);

(b) Extract set of machine #3MTPA currents iqd3,mtpa (Matlab symbols: iq3 mtpa,

id3 mtpa, 1-D array) at the given commanded speed for the complete torque
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range using 2-D linear interpolation:

torquepc = linspace(0,100,1000);

iq3 mtpa = interp2(wrstar,Testarpc,iqstar,wr3star,torquepc);

id3 mtpa = interp2(wrstar,Testarpc,idstar,wr3star,torquepc);

Also, compute the torque values T3,mtpa (Matlab symbol: T3 mtpa) for cor-

responding MTPA currents:

T3 mtpa = torquepc ∗ Tmax3/100;

(c) Obtain polynomial gqd functions (2.30)-(2.31) by curve fitting iq3,mtpa vs.

T3,mtpa and id3,mtpa vs. T3,mtpa for the given speed. 1 The following script

for gq is generated from the curve fitting toolbox in Matlab:

ft = fittype(’poly4’);

opts = fitoptions(’Method’,’LinearLeastSquares’);

opts.Lower = [-Inf -Inf -Inf -Inf 0];

opts.Upper = [Inf Inf Inf Inf 0];

[g q, ∼] = fit(T3 mtpa,iq3 mtpa,ft,opts);

coefs q = coeffvalues(g q);

Similarly, compute gd.

(d) Find qd currents using gqd functions based on load torque.

iq3 0 = polyval(coefs q,Tload);

id3 0 = polyval(coefs d,Tload);

(e) Compute qd voltages using currents and flux-linkages (obtained from JMAG

parameter characterization study) and based on steady-state voltage equa-

tions, e.g, vq0 = rsiq0 + ωr0f̄d(iq0, id0).

(f) Compute stator power P30 using voltages and currents, e.g., P30 = 1.5(vq0iq0+

vd0id0).

6. Compute equilibrium point for Machine 2:

(a) Repeat step (5b) for wr2star to obtain MTPA currents and torques.

1T ∗

e = 0 implies i∗q = 0 and i∗d = 0 for MTPA control at all commanded rotor speeds from steady-state
data (section A.2).
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(b) Power required by machine 2 is computed by P20 = −P30/η
2 − Gv2dc0/η,

where η is the efficiency of the inverter.

(c) A bisection algorithm is used to find the q-axis current that corresponds to

P20. First, we compute the d-axis current corresponding to a given q-axis

current using the MTPA mapping i∗d(i
∗

q):

id2star = interp1(iq2 mtpa,id2 mtpa,iq2star);

Then power is calculated similarly to (5e) and (5f). Hence, P20 = f(i∗q2),

i.e., a single-variable function.

(d) The equilibrium value of torque Te20 is computed by

Te2 0 = interp1(iq2 mtpa,T2 mtpa,iq2 0).
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B. SYSTEM PARAMETERS

The following parameters are used in the simulations that were conducted to analyze

the drivetrain.

Table B.1
List of System Parameters

Parameters Values

Number of pole pairs (pp2 = pp3) 5

dc-link voltage (vdc0) 700 V

dc-link capacitance (C) 500 µF

dc-link admittance (G) 0.1 mS

Stator resistance (rs) 0.0155 Ω

Virtual admittance (Ga) 1 mS

Permanent magnet flux linkage (λf ) 0.0456 V·s

Voltage regulator bandwidth (ωbv) (for version 2) 2π20 rad/s

Efficiency of inverter (η) 0.95
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C. TRIGNOMETRIC IDENTITIES

cosA− cosB = −2 sin

(
A+ B

2

)

sin

(
A−B

2

)

(C.1)

sinA− sinB = 2 cos

(
A+ B

2

)

sin

(
A− B

2

)

(C.2)

cosA cosB =
1

2
[cos (A+ B) + cos (A−B)] (C.3)

sinA cosB =
1

2
[sin (A+B) + sin (A−B)] (C.4)

sinA sinB =
1

2
[cos (A−B)− cos (A+ B)] (C.5)
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