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ABSTRACT 

Wang, Yiming, M.S.E, Purdue University, May 2015. Sound Scattering of an Obstacle 

Placed Near a Non-Locally Reacting Ground. Major Professor: Kai Ming Li, School of 

Mechanical Engineering. 

 

 

The Boundary Element Method (BEM) is widely used in outdoor sound scattering prob-

lems due to its computational efficiency when compared to the FEM (FEM) for certain 

propagation geometries. The advantage of the BEM is apparent for problem geometries 

where the scattering surface is much smaller than the computational domain of the prob-

lem. The Green's function can be used in the BEM formulation to represent a non-locally 

reacting porous ground surface. The Weyl Van der Pol formula is often used to accu-

rately calculate the Green's functions above a locally reacting surface. However, the 

Green’s function representation for the sound field above and below a non-locally react-

ing ground has not yet been established. Nevertheless, the steepest descent method can be 

used to derive these functions.  

An efficient solution for several different types of Green’s functions are derived in 

the present study. The simulation results are computed via the BEM and validated against 

analytical solutions and/or physical experimental measurements. The scattering effect due 

to an obstacle in the vicinity of a porous ground is also investigated. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Sound scattering due to an impedance boundary is a fundamental problem in acoustics 

with practical noise control engineering applications. Typical examples of obstacles 

placed above the ground are: noise barriers, vegetation, and tires. Constructing a noise 

barrier is a common method to reduce noise pollution in outdoor environments. A large 

body of research has been conducted on the effects of diffraction due to the presence of 

noise barriers. The interface between a rolling tire and the road surface forms a horn-like 

region, which acts as an amplifier for the noise generated around the contact region. The 

amplified noise from the horn-like structure contributes significantly to the total noise 

generated by a moving vehicle. Another example is the scattering of sound due to objects 

embedded below the ground. Objects below the ground can be identified via acoustical 

detection methods. 

There are many different methods for solving a variety of scattering problem con-

figurations. For the sound field scattered by infinitely long cylinders and spheres, analyti-

cal solutions can be derived based on previous studies by Rayleigh and Morse, (Rayleigh, 

1896); (Morse, 1948). For a finite sized objects, analytical solutions may not be readily 

available. Various different approximation methods can be used to solve these kinds of 

problems: the transfer matrix method, optical method, and Kirchhoff method (Stephens, 
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1984); (Junger and Feit, 1972) have been suggested in the literature. Numerical solutions 

are needed for more complicated problem configurations. 

To solve the problem of scattering by an irregularly shaped object, we should con-

sider numerical methods such as the FEM (FEM) and/or the Boundary Element Method 

(BEM). Over the last few decades, the development of computer technology has made 

numerical approaches more readily available. Regardless of how complicated the shape 

of an obstacle may be, we can always find a satisfactory solution via the BEM or FEM 

approximations. Figure 1-1 shows some typical scattering problem configurations in the 

context of outdoor sound propagation. 

 

Figure 1-1. Typical scattering geometries considered in the present study. 

In order to solve a problem via the FEM approach, one needs to discretize the en-

tire domain of interest into a collection of ‘finite’ elements. Alternatively, the BEM ap-

proach only requires discretization along the surface of the scattering objects (e.g., the pe-

rimeter of the noise barrier’s surface). Typically, outdoor sound propagation involves 
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large domain sizes which can be modelled as an infinite boundary. Due to modeling con-

straints in the FEM, a finite domain must be discretized to approximate an infinitely large 

domain. The infinite boundary conditions must be approximated by artificial boundary 

conditions such as the perfectly matched layer, (Abarbanel et al., 1999) which may intro-

duce considerable errors in the final result. The mesh size must be sufficiently small to 

ensure the accuracy of the numerical solutions. Hence, the computational time for the 

FEM can become substantial.  

In the BEM formulation, the dimension of the problem is reduced by one dimen-

sion and the discretization only needs to be carried out along the surface of the obstacle. 

Hence, the BEM approaches are more suitable for sound scattering problems involving 

an infinite domain. There are several different methods for solving the scattering problem 

within two domains simultaneously.  

The first method is to approximate the boundary condition along the air/ground 

interface as a locally reacting impedance plane. The sound field above a locally reacting 

ground can be approximated by using the steepest descent method (Chandler-Wilde and 

Hothersall, 1985). However, the boundary condition on the surface of the non-locally re-

acting ground require more thought. A non-locally reacting ground surface has acoustical 

properties which depends on the angle of incidence (e.g., porous mediums such as foam, 

soil, and sand). A two-domain method is used to satisfy the boundary conditions along 

the medium interface: (1) continuity of the normal particle velocity, and (2) continuity of 

the acoustic pressure (Seybert, Cheng and Wu, 1990). However, the regions need to be 

discretized in this method include the interface between the air and the porous medium 

and also the obstacle’s surface. Hence, this method requires a large numbers of elements 
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to represent the sound pressure field along the surface of the obstacle. This requirement 

can diminish the advantages of the BEM over the FEM for tackling these types of prob-

lems. 

In order to solve the problem more efficiently with the BEM, a two-medium 

boundary element approach has been suggested (Berry et al, 1994). This method only re-

quires discretization along the surface of the obstacles. However, the method requires an 

accurate representation for four different types of Green’s function. The first Green’s 

function corresponds to the source and receiver located above the porous ground inter-

face. The second Green’s function represents a source located above the air/ground inter-

face while a receiver is situated within the porous medium.  The third Green’s function 

describes the source and receiver located within the porous medium.  And the fourth 

Green’s function provides the remaining permutation which is a crucial component in the 

subsequent analysis. By the principle of reciprocity (Fokkema and van den Berg, 2013), 

the last Green’s function can be obtained via the second Green’s function described 

above. The various Green’s functions are assembled to compute the pressure along the 

surface of the objects using the BEM approach. Thus, the sound field in the air and in the 

underground medium can be solved by means of a set of Boundary Integral Equations 

(BIE). Perhaps the most challenging part in this two-domain BEM approach is in the der-

ivation of the three different types of Green’s function. Although the functions can be ex-

pressed in integral form, numerical calculation can be computationally intensive due to 

the large number of boundary elements required.  

The Fast Field Program (FFP) techniques may be implemented to compute the 

necessary Green’s functions more efficiently. However, the locations of the receivers are 
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not always aligned along a straight line of equal spacing required by the FFP formulation. 

In fact, the location of the receivers in the two-domain BIE are on the surface of the ob-

stacle itself. Nonetheless, the FFP provides an alternative method for calculating the 

Green’s function for simple propagation geometries (e.g., a semi-infinite plane). 

Most of the earlier asymptotic solutions for the Green’s function are either not 

sufficiently accurate for application in the BEM, or are only valid for certain limiting 

cases. One of the objectives in the current research is to derive a fast and accurate solu-

tion for each of the three types of Green’s function proposed.  These Green’s function can 

be implemented in the boundary integral formulation to predict the scattered sound field 

due to various arrangements of obstacles. Figure 1-2 depicts the processes involved in 

implementing the two-domain BIE formulation. 

 

 

Figure 1-2. Process diagram for the two-domain BEM approach. 

1.2 Literature Review 

 

1.2.1 The Boundary Element Method 

The BEM is commonly used to predict the sound field in the presence of scatter-

ing from various obstacles. In order to solve the BIE along the boundary of the obstacle, 

one needs to discretize the surface of the scattering object. This method has been widely 
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applied in many areas, such as noise barrier design, underground object detection, and 

outdoor sound propagation. 

Compared to the standard FEM approach, the BEM can oftentimes be more effi-

cient when the problem of interest involves unbounded domains. In order to solve the 

problem via the FEM, the domain needs to truncated into bounded region using a large 

number of finite elements distributed throughout the domain. Alternatively, a BEM ap-

proach can be combined with a Sommerfeld boundary condition to model the unbounded 

domain. Discretization is only required along the surface of the scattering obstacle. For 

many acoustics problems, meshing is among the most difficult and time consuming steps. 

Modifying of the surface mesh is more convenient following the BEM approach. Hence, 

the FEM may be useful for smaller domain sizes while the BEM is of greater interest for 

outdoor sound propagation conditions over large distances. 

The origin of the BEM dates back to as early as the 1750s. Euler, Lagrange, Fou-

rier, among other mathematicians and scientists have shaped the method into what it is 

today. One of the most important contribution to the development of the BEM came from 

George Green. According to Green’s second theorem, we can reduce the dimension of 

the problem from 3D to 2D and from 2D to 1D via: 

 ( ) ( )dV dS
n n

 

 
    

     (1.1) 

which demonstrates the dimensional difference between the FEM and BEM approach. 

Fredholm formulated the BIE and proved the existence and uniqueness of the solution of 

the BIE. 
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Although some BIE were already developed at the beginning of the twentieth cen-

tury, solving the numerical equations without the aid of digital computers was nearly im-

possible. It wasn’t until the 1960s (after digital computers became accessible to many sci-

entists) that research concerning numerical methods such as the FEM, the finite differ-

ence method, and the BEM began to develop as a field. Many methods for solving the 

BIE were developed during this period. The work completed by Jaswon, Ponter, and 

Symm (Jaswon, 1963) on the direct and indirect methods for potential problems has 

greatly influenced the development of the BEM during the 1960s. Jaswon et al. applied 

the free-field Green’s function, which is the solution to the Helmholtz equation with 

Sommerfeld boundary conditions, along with Green’s second theorem, to develop the 

BIE which we still use today. The work by Kupradze from Tbilisi State University on po-

tential function solutions is another substantial contributions to the BEM community. 

Work by Chen (Chen, 1963), and Rizzo on the Somigliana integral equation are also 

noteworthy.  

In the early years of BEM developments, the functions and the acoustical varia-

bles were assumed to be constant in each element. In order to have a decent approxima-

tion with the BEM, one needs to have a large number of boundary elements. Seybert in-

troduced the first order and second order interpolation methods into the BIE from the 

FEM (Seybert, 1985). A detailed history of the BEM could be found in the work by 

Cheng (Cheng, 2005). 

When a scattering obstacle is positioned above a porous non-locally reacting sur-

face, the ground is sometimes assumed to be locally reacting ground to simplify the cal-

culations. With an impedance boundary condition and the Green’s second theorem, one 
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can calculate the acoustic pressure at any location above the ground (Chandler-Wilder, 

1984). However, this assumption is not always valid for certain mediums, especially 

when the sound speed within the ground is very close to the speed of sound in air. The 

air/ground interface can no longer be treated as an impedance boundary. A set of differ-

ent Green’s functions must be calculated first to solve these types of problems via the 

BEM. 

When the scattering of the obstacle is below the ground and in the vicinity of the 

air/ground interface, the contribution due to the scattering of the obstacle is non-negligi-

ble. In order to solve problems of this type, a two-medium BEM approach must be ap-

plied. Ahmad (Ahmad, 1988) and Seybert (Seybert, Cheng and Wu, 1990) developed 

multi-domain BEM methods for problems of elastodynamics and acoustics. The idea is to 

couple the BIE on the interface between the different mediums. They proposed that the 

surface of the interface needs to be discretized into boundary elements. As a result, the 

number of equations is substantially increased. Later, Berry introduced a BEM for two 

mediums by utilizing three types of Green’s functions without increasing the number of 

equations. Discretization of the boundary is only performed on the surface of the below 

ground obstacle. Asymptotic solutions for the Green’s functions were used in the study, 

which were valid only for limited scattering geometries. Among the most challenging as-

pect of the method is in the derivation of the Green’s functions. 

 

 

1.2.2 Green’s Function 

 



   9 

 

 

9
 

The study of sound propagation above an infinitely large ground can be dated 

back to the first half of the twentieth century. Acoustic wave propagation was adapted 

from the study of electromagnetic wave propagation (Norton, 1936 and Morse, 1944). In 

the work of Morse and Bolt, the sound field above an impedance ground was expressed 

as the sum of two different terms: a direct wave term and a mirror wave term (due to an 

image source). The calculation of the reflection term can be computationally expensive 

following the BEM approach. 

Ingard built on previous developments (Ingard, 1951). Several different source 

types were considered including monopole, dipole and quadrupole. The steepest descent 

method was used to approximate the reflection wave contribution. Then the method of 

pole subtraction was applied to evaluate the integration when the path is close to the sin-

gular points (Chien and Soroka, 1975). These types of approximated Green’s function 

can be simplified to a form of the Weyl Van der Pol formula. 

For a non-locally reacting ground such as an infinite porous ground or a hard-

backed porous ground, the above approximating methods are invalid. The exact solution 

for the sound field above a non-locally reacting ground can be found in Sommerfeld’s 

work (Sommerfeld, 1909). Asymptotic solutions of the sound field above a porous half-

space has been investigated by multiple researchers (Paul, 1957) (Attenborough, 1980). 

An experimental study on the Green’s function above a non-locally reacting ground was 

conducted by Lawhead and Rudnick (Lawhead and Rudnick, 1951). The asymptotic solu-

tion of the sound field above a hard-backed porous layer was developed by Allard (Al-

lard, 2002). Most recently, Li and Liu researched the sound field above an impedance-

backed porous layer (Li and Liu, 2012). Later, Li and Tao used a modified double saddle 
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point method to obtain the prediction of the sound field above several different types of 

non-locally reacting porous grounds based on the work by Ott (Ott, 2013) and Kawai 

(Kawai, Hidaka and Nakajima, 1984). The asymptotic solution for sound propagation 

above a semi-infinite porous ground, impedance-backed ground, and hard-backed ground 

are developed in their work. 

The sound field due to a coherent line source is similar to that of a point source. 

The formula is simpler due to the absence of the Bessel function term in the solution. An 

accurate and efficient solution for a coherent line source propagating over an impedance 

plane is presented by Chandler-Wilde and Hothersall (Chandler-Wilde, 1995). The 

method of the steepest descent and pole subtraction are used to obtain the solution, simi-

lar to the approach used in the point source case. The integrals can be evaluated by 

Gaussian quadrature integration for increased numerical efficiency. The solutions for the 

pressure and the directional derivatives are obtained, which are necessary in the BEM im-

plementation. 

For the sound field below the ground, the study on the subject was investigated by 

Berry, Chandler-Wilde and Attenborough (Berry, 1994), and later by Li (Li, 2008). In the 

current investigation, the solution for a point source is extended to consider a coherent 

line source. The integration is calculated along the steepest descent path instead of at the 

stationary points.  

For the sound field below the ground due to an underground noise source, the so-

lution is complicated by the introduction of a lateral wave term. When the incidence an-

gle of the plane wave is larger than the critical angle, most of the energy will be reflected 

back into the lower medium (i.e., total internal reflection). Lateral waves travel along the 
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air/ground interface for some distance, then go back into the porous medium when this 

occurs. The effect was first discovered in optics. An explanation for the phenomena can 

be found in (Brekhovskikh, 2012). The contribution due to the lateral wave term is calcu-

lated via the method of steepest descent. Here, the path of the integration is different from 

that of the direct wave. An asymptotic solution for this type of Green’s function (based 

on the ray theory) is provided by Berry (Berry, 1994). However, the solution is only valid 

for limited situations where analytical solutions are readily available. This topic is of 

great interest in underwater water acoustics and seismo-acoustic research communities.  

Fast and accurate solutions need to be developed to evaluate the below ground 

Green’s function required in the BIE formulation. The Fast Field Program (FFP) is often 

used to compute the Green’s function above and below the ground. The method was de-

veloped for electromagnetic wave propagation and introduced to the acoustics commu-

nity by (Dinapoli, 1970). Originally, it was applied to underwater acoustics problems to 

investigate the relationship between the speed of sound and the water depth. Later, the 

method was used in the study of the atmospheric sound propagation. The FFP is applica-

ble in range independent propagation conditions (Richards and Attenborough, 1972). 

The sound field along a horizontal line or on the surface of a horizontal plane can 

be computed efficiently via the FFP. However, this requires the receivers to be on the 

same elevation. In the BEM formulation described in the later chapters, the receivers 

need to be on the surface of the arbitrarily shaped scattering obstacles. Even though the 

FFP is an efficient numerical method for computing the Green’s function, the method is 

not as robust as the BEM for arbitrary scattering objects. However, it can serve as a vali-

dation tool to verify the BEM formulation under limiting cases. 
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1.3 Outline 

This thesis is divided into six chapters. A literature review is presented in the first chapter 

along with a discussion of the advantage/disadvantage of various computational tools 

(e.g., method of steepest descent, FEM, BEM, and FFP). Figure 1-3 provides an outline 

of the various topics examined in this thesis. Two different propagation configurations 

are investigated in the current research: (1) scattering above the ground (i.e., Chapter 2 

and 3), and (2) below ground scattering problems (i.e., Chapter 4 and 5).  

An application of the BEM for calculating the sound field above the ground is de-

scribed in Chapter 2. Starting from Helmholtz’s equation along with the associated 

boundary conditions, the BIE is derived with the help of Green’s second theorem. A fast 

asymptotic solutions for the above ground Green’s function and the directional deriva-

tives are introduced in the second chapter. The steepest descent method and pole subtrac-

tion method are also described. The sound field due to a coherent line source are com-

pared against those calculated via direct numerical integration methods. 

Chapter 3 describes the method of colocation. Sound field predictions are vali-

dated against experimental measurements and other data available in the literature. The 

last section in Chapter 3 illustrates the above ground sound field predictions obtained us-

ing the BEM. It highlights the necessity for an efficient method to compute the below 

ground Green’s function. 

The BEM for an underground scattering problems is introduced in Chapter 4. The 

boundary condition along the air/ground interface is coupled with the BIE in the two me-

diums. The underground Green’s function and the sound field below the ground due to an 
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above ground coherent line source are approximated by asymptotic solutions. The 

method of steepest descent is used in the derivation, and a branch cut integral is intro-

duced. The sound field above the ground due to a below ground monopole source is ob-

tained from the saddle path method by identifying two saddle points.  The efficiently ap-

proximated Green’s function are compared to exact solutions to help determine their ap-

plicability. Acoustic reciprocity in the two mediums is also discussed. 

Chapter 5 presents the predictions for the sound field above and below the ground 

due to a scattering object positioned below the ground. A detailed formulation of the 

colocation method is provided. The acoustic pressure along the rigid surface of the hard-

backed layer is compared against the analytical solution. Scattering due to a cylindrical 

object embedded in the ground is investigated using the BEM in a case study. 

Conclusions are drawn in Chapter 6. A discussion of future work is provided to 

extend the topics presented in the current investigation to areas of potential growth.  
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Figure 1-3. Schematic diagram for classifying sound scattering problems.  
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CHAPTER 2.  THE BEM FOR THE SCATTERING ABOVE THE GROUND 

2.1 Introduction 

The development of the BIE can be traced back to one hundred years ago, however, with-

out the help of the numerical methods brought by the advancement in the computer tech-

nology, the application of the BEM is nearly impossible. In the 1960s, the BEM was first 

put into application together with the FEM, which is a very powerful numerical tool in 

the area of structural mechanics. Nonetheless, the BEM has several advantages in the 

analysis of outdoor sound propagation. The most important reason is that the domains in 

many outdoor acoustic problems are unbounded, and it is time consuming to truncate and 

discretize the whole problem domain with the FEM. However, with the BEM, one only 

needs to discretize the surface of the scattering obstacle, which saves a lot of computer 

memories and calculation time. 

 

The purpose of the current study is to develop an approach to calculate the sound field in 

the air and in the porous medium with the influence of an obstacle which can be both 

above or below the ground. When the shapes of the obstacles are not complicated, the re-

sults based on analytical methods have been presented by Bowman. (Bowman, 1970). 

However, if the shape of the scattering obstacle is arbitrary, the BEM is more suitable, in 
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which the surface boundary of an obstacle with arbitrary shape, as long as it is continu-

ous, can be approximated with finite number of polygons. There have been many studies 

on the formulations of the BIE for acoustic scattering problems. (Morgan, 1998) Particu-

larly, for predicting the acoustic influence of near-surface obstacles in the porous me-

dium, a method involved BIE was developed by Berry, Chandler-Wilde and Attenbor-

ough. (Berry, 1994) However, the asymptotic solutions for the Green’s functions are only 

valid for certain geometries.  

The purpose of the current study is to extend the previous work on the BEM 

scattering problems to more general geometries. To solve the BIE with BEM introduced 

by Berry, the fast and accurate solutions of several types of Green’s functions are indis-

pensable. 

 

2.2 Basic Theory 

2.2.1 The Sound Wave Equation 

In an isotropic and homogeneous medium, the propagation of sound is governed 

by the wave equation. 

 

2
2

2 2
0

1
p

c

p

t


 




,  (2.1) 

where p  denotes the sound pressure, t  is the time and c is the speed of sound in the me-

dium. The solutions are assumed as time-harmonic, which can be expressed as 

 
(x, t) Re( (x)e )i tp u 

 , (2.2) 
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where the spatial variable x is the sound source location and 2 f   denotes the angu-

lar frequency with f  representing the source frequency. The time dependent factor,
i te 

 

is used as an alternative expression in some textbooks. 

Substituting (2.2) into (2.1), we get the Helmholtz equation 

 

2 0,p k p in D  
  (2.3) 

D  is the domain of propagation and   2 .  In the current study, we only consider a 2-

dimensional condition. The variable k  denotes the wave number, which can be calculated 

as 

 

2 f
k

c c

 


 . (2.4) 

As an alternative to the pressure, Sound Pressure Level is often used, which is more di-

rectly related to the human perception of sound. Sound pressure can be converted to SPL 

by 

 

2

10 102
10log | || | 20log

ref ref

p
SPL

p

pp


 , (2.5) 

where the reference pressure 20refp pa  is the threshold of human hearing for sound 

propagation in the air. 

 

In order to derive the BEM formulation, we need to obtain the Green’s function for the 

sound field. If the monopole sound source is placed at position sr  and the receiver loca-

tion is r , the Green’s function can be expressed as (r, r ) ( , )s sp G r r . The Green’s func-

tion is the solution for the inhomogeneous Helmholtz equation 
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2 ( ), ,s s sp k p r r r r D     
 , (2.6) 

where   is the Dirac delta distribution function.  In 2D, it means a coherent line source of 

sound is located at sr  point. 

 
,

(r r )
0,

s

s

s

r r

r r


 
  


  (2.7) 

An additional boundary conditions is often assumed for sound propagation in a un-

bounded field, which is known as the Sommerfeld radiation condition. It can be ex-

pressed as 

 

1

2(r, r ) o(| r
(r, r )

r ,| )s
s s

p
ikp as r

r


   

   (2.8) 

The free field Green’s function can be expressed as 

 
(1)

0(r, r ) (k | r r |), r, rs
4

f s sH D
i

G   
  (2.9) 

where 
(1)

0H  denotes the zeroth order Hankel function of the first kind. The Hankel func-

tion is given by 

 
(1)

0 0 0(z) (z) iY (z),H J 
  (2.10) 

which can be found in many mathematic handbooks. (Abramowitz, 1972) And | |sr r  is 

the Euclidean distance between r  and sr . If the value of | |sz k r r   is small enough, 

we can use the near field approximation 

 
)

0

(1 1 [ln( ) ]
2 1

(
2

.z) iH z 


 
  (2.11) 



   19 

 

 

1
9
 

The term   is Euler’s constant which is approximately 0.577215. (Abramowitz, 1972) 

The approximation is necessary when we need to calculate the improper integral in the 

sound source element. In the 3D case 

 

| |

(r, r ) , r, r
|

s
| r r4

sik r r

f s

s

D
e

G




 
   (2.12) 

The normal derivative of the Green’s function, which is necessary in the boundary ele-

ment formulation, is given by 

 

(1)

1

(r, r ) | r r |
(k | r r |) , r, rs

4(r)

f s s
sH D

n

ik

n

G 


 


  

  (2.13) 

where (1)

1H  is the first kind Hankel function.  

 

The most common problem is the monopole scattering problem, which usually has 

boundary surfaces with sound rigid property or impedance boundary condition. The im-

pedance boundary condition is given by 

 
(r, r ) 0

(r

(r r )

)

, s
s

p
ik p

n



 

    (2.14) 

where   denotes the normal admittance of the surface. If the sound speed ratio 1 2/n c c  

is large enough, the surface is named as locally reacting ground. The Green’s function for 

locally reacting ground is relatively easier to model compared to porous ground, where 

solving the problem involves solving the wave equations in both media and then applying 

continuity conditions. 
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2.2.2 Free Field Scattering BEM Formulation 

 

Figure 2-1. Free field scattering. 

The governing equation for the acoustic pressure in the sound scattering problem in free 

field is 
2 (r r )sp k p      . The first boundary condition is (r, r ) 0

(r

(r r )

)

, s
s

p
ik p

n



 


 on 

the surface D , which is an impedance boundary condition. D  denotes the surface of 

the scattering obstacle. Another boundary condition is the Sommerfeld boundary condi-

tion. 

The free field Green’s function G  and p  are both solutions to the homogeneous 

Helmholtz equation in the propagation domain D. We can apply the Green’s theorem to 

the equation 

 
2 2 0p G G p Gk p pk G    .  (2.15) 

We will have 
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0( ) 0,

p G
G p dr

n n

 
 

    (2.16) 

where the   is the same as D  except that   does not include a point at the source loca-

tion of the function 0( , )G r r  and a point at the source location of the function ( , )sp r r , 

which are r  point and sr  point. After some integrations around sr  and r , we can get the 

expression of the BIE 

 0 0
0 0 0

0

(r , r ) (r , r)
(r, r ) (r ) [ (r , r) p(r , r ) ]dr

(r) (r
, r

)

s
s s s

D

p G
p G G

n n

 
  

    (2.17) 

with 

    

 

0

0

0

0

1

2

r D

r D

r D 




 
 

 , (2.18) 

where D  is the propagation domain and D  is the boundary of the propagation domain. 

( )n r  is the unit normal at point r pointing from the scattering surface to the outside of the 

propagation domain.   is the solid angle in the region of the domain, which is equal to 

  at most points on the scattering surface except at the corner points. ( , )sG r r  is the free 

field Green’s function in the 2D case. 

 

After substituting the impedance boundary condition into the BIE, we can obtain 

 0
0 0 0 0 0

0

(r , r)
( ) (r, r ) (r ) [ (r , r) ( ) (r , r ) p(r ,, r ( ) r ) ]

( )
,dr

r
s s s s

D

G
r p G G ik r p

n








   (2.19) 
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The Green’s function and the directional derivative are always known. With the numeri-

cal method of colocation, we can solve the pressure distribution. 

 

2.2.3 Above the Ground BEM Formulation 

 

 

Figure 2-2. The scattering above an infinitely long ground. 

The BIE for the sound field above the ground is similar to the previous one. 

 
1 0

1 1 0 0 0 0 0

0

(r , r)
( ) (r, r ) (r ) [ (r , r) ( ) (r , r ) p(r , r ) ]dr

(r )
, r ( ) ,s s s s

D

G
r p G G ik r p

n






  

  (2.20) 

The only difference between (2.20) and (2.19) is the Green’s function. The Green’s func-

tion in (2.19) is the free field Green’s function, however, the Green’s function G1 in the 

(2.20) is the Green’s function for the sound field in the air. The ground can be locally re-

acting, hard-backed, impedance backed or rigid porous. The derivation of the Green’s 

function can be found in the section 2.3. 
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2.2.4 Mixed Ground Types BEM Formulation 

 

Figure 2-3. Scattering above a discontinuous ground. 

The geometry is in the Figure 2-3. If the surfaces on the left and on the right are both lo-

cally reacting, the ground can be described with impedance boundary conditions. With a 

similar approach, we can obtain 

 
1

1 0 0 0 0 0 0 1 0 0

(r, r ) (r )

[ (r , r) ( ) (r , r ) p(r , r )

, r

( ) ( )( (r , r ]d ,)) r

s s

s s
D

p G

G ik r p ik r G 






 
  (2.21) 

which can be simplified as 

 1 1 0 0 0 0(r, r ) (r ) [ (r, r ) (r , r)( ( ))]dr, r ( ) .s s s
D

p G p ikG r r 


      (2.22) 

The integration is performed on the surface part where the ground type has changed, and 

the Green’s function G1 is the Green’s function for the sound field above the original type 

of ground. (Chandler-Wilde & Hothersall, 1984) 

If the ground is porous on the right but locally reacting on the left, we can derive a 

different BIE equation by assuming the contribution from the below ground is small. This 

assumption is proper when the sound source is located above the locally reacting part. 

The BIE equation can be expressed 



   24 

 

 

2
4
 

 
0

0 0 0 0 0

0

(r , r)
(r, r ) (r ) [ (r , r) ( ) (r , r ) p(r ,, r r ) ]dr
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(

p

s p s p s s
D

G
p G G ik r p

n





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
    (2.23). 

The integration is performed on the part of ground with the impedance boundary condi-

tion, and the Green’s function Gp is the above ground Green’s function for the porous 

ground.  

If the location of the sound source is above the porous ground part, the assumption 

is not accurate because of the reflection from the underground interface between the po-

rous ground and the locally reacting ground, which makes an innegligible contribution to 

the total sound pressure.  

 

2.3 Green’s Functions for Sound Field Above the Ground 

2.3.1 Introduction of the Green’s Functions Above the Ground 

The prediction of the sound fields above and below a two-medium interface is a 

subject of great interest and the study has been conducted for decades. The method was 

first introduced from the study of electromagnetic waves by Sommerfeld (Sommerfeld, 

1909) and he dipole prediction by Banos. (Banos, 1966) Later studied by Chien and 

Soroka (Chien, 1975), and Attenborough. (Attenborough, 2006) Most recently, the 

propagation above and below a porous ground was studied by Li and Liu. (Li, 2011) 

For the prediction of the sound field in the air, the interface was often treated as a 

locally reacting ground, where boundary condition were modeled as an impedance 

boundary condition. The prediction of the sound field in the air could be calculated with 

an asymptotic solution known as the Weyl-van der Pol equation. (Attenborough, 2006) 
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However, assuming the surface as locally reacting is not always proper. In order to make 

the BEM possible for more general cases, the fast solution for the Green’s functions must 

be solved. 

 

2.3.2 Fast Solutions for Sound Fields Above Ground with an Above Sound Source. 

In the case of two dimensions, 
1R  is the distance between the sound and the receiver.  2R  

is the distance between the location of the sound source image below the ground and the 

location of the receiver. r  is the distance between the sound source and the receiver in 

the x direction. sz  and rz  are the indicated in the figure 2-4. 

 

Figure 2-4. Geometry of the problem. 

Li and Liu (Li & Liu, 2011) suggested that the sound fields above a porous ground due to 

a point source can be expressed as 
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  
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( ) ( )
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, ,
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ikR ikR
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s a

e e
p r z z p

R R 
    . (2.24) 

In the 2D case, the function is similar 

  
(1) (1)

(m) (m)0 1 0 2
a

` `

iH (kR ) iH (kR )
p r,rs + + p

4 4
  . (2.25) 

The diffraction term in the 3D case can be expressed as 

  
   2 2
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

 
  . (2.26) 

Based on Li and Liu’s work for a point source, the pa for a corrent line source can be ex-

pressed as 

  
 ( ) exp ( )

r, r
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a

a

C
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ikfi
p d


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






 , (2.27) 

where 

      2sin cos cosa sf r z z R          . (2.28) 

 

In the Equation (2.28), ζ is the density ratio, n is the sound speed ratio between the above 

ground medium and the below ground medium. χ is the admittance of the ground surface, 

which is a function of  . The variable m represents the type of the ground. The incident 
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angle of the mirror wave is   and the horizontal separation between the source and re-

ceiver is denoted by r.  The integration path for the integration can be found in many text-

books.   travels from 2 i    to 2 , then it goes to 2  and to 2 i   . The path 

does not cross any branch cuts here. 

 

The integral could be evaluated with the directly numerical integration, however, the 

method is extremely time comsuming. To improve the speed of calculation, the steepest 

descent method is used. The method of steepest descent is known to be one of the fastest 

method to evaluate an integration along an infinitely long path in the complex plane. In 

order to perform the steepest descent method, we need to change the path of integration 

to the steepest descent path first. Also, the residue due to the singularity must be included 

into the result. The detailed analysis can be found in work of Li and Liu (Li & Liu, 2011). 

The pole location can be solved by setting the denominator of the integrand to 

zero, and the solution can be solved with 

    2 2cos 1 1p pn           (2.29) 

and 

    2 2 2 2sin 1 1 1p pn          . (2.30) 

A conformal mapping needs to be introduced, which can be expressed as 
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2

2[1 cos
1

)]
2

(ikRW      . (2.31) 

The steepest descent path is found by setting the imaginary part of the Equation (2.31) to 

zero, which is the real axis in the W plane. Then, the diffraction term could be expressed 

as 

 { Im[ [1 cos ]( )] }a SDP p pp P H pi        , (2.32) 

where pp is the pole contribution which can be evaluated with the residue theorem. The 

expression of pp  is not given here because it will be cancel later. The term PSDP  can be 

expressed as 

 
 exp ( )

2 cos
SDP

a

C

ikfi
P d






 








  . (2.33) 

With Equation (2.31) and Equation (2.33) we can obtain 

 

2

2

/2( )

2 cos
X

W
ikR

S P

C

D

i A W e
P e dW

  



 
  , (2.34) 

where 

 
2

2 /) 4( /A W ikR W   . (2.35) 
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The integral along the steepest descent path can be evaluated with an asymptotic expan-

sion, but it does not work well if the pole is in the vicinity of the integration path, where 

the influence of pole brings a large oscillation near the pole location.  

In order to evaluate the integration appropriately, we need to take advantage of 

the method of pole subtraction. The method introduces an additional term to the integral, 

which has the same limit as the singular term when the integration variable   goes to the 

singular point. As a result, the singularity at the pole location will be canceled by the ad-

ditional term, and at the same time, the additional term could be evaluated with the error 

function. 

 

The integration term in the Equation (2.34) can be rearranged through pole subtraction 

method, which can be written as 

 
2

2

2

/2
/2[ ]

cos
( )

2

W
p WSDP

p
ik

C x
R

Cp px

AP e dW A
A e dW

i W W W W
e

 




  

  


 
 ,           (2.36) 

where Wp is the location of the singularity in the W plane and Ap is chosen to eliminate 

the singularity at the pole location. To match the limit at the pole location, we need 

 lim ( )
( )sinp

p

p
W

p

p
W

A A W
E



 
    (2.37) 

For different types of ground, Eμp has different expressions. Detailed solution for Eμp can 

be found in Li’s work. (Li & Liu, 2011) 
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Now PSDP can be cast as a summation of the following two terms 

 SDP s sP p    , (2.37) 

where 

  

 

2

2

/2

( )
2

W
ikR

s p

pCx

i e dW
p e A

W W



 
  , (2.38) 

and 

 ( )s SDP sP p    . (2.39) 

 

At the same time, ps can be computed with the complementary error function 

 [ Im( )]s erfc p pP P H W p    , (2.40) 

where 

 

2

2

/2
( /

2 ( s

)

) in

2pW

p p ikR

erfc

p p

e erfc iW
P e

E



 




   . (2.41) 

This correction term can be evaluated with numerical methods. The expressions for the 

integrals in the W plane are

 

 

2

2

/2

2

2
2 ( ) /co 4sCx

W
ikR

SDP

i
P

e

ik
dW

R W
e



  



 
     (2.42) 

and 



   31 

 

 

3
1
 

 
2

2 /2

(

cos

2 ) ( )sin

pikR W

erfc

p p
Cx

p

e
W W

i
P e dW

E



  


  . (2.43) 

In order to give the asymptotic solution with a physical meaning, we could express the 

solution for the sound pressure with an easy expression, which contains a direct wave 

term and a mirror wave term with an acoustic reflection coefficient Q. The solution can 

be expressed as 

 

(1) (1)

0 1 0 2

` `

iH (kR ) iH (kR )
p +Q

4 4
  , (2.44) 

where 

 wQ V g   . (2.45) 

The plane wave reflection coefficient is named as V  and the ground wave tern gw is de-

fined by 

 

(1)

0 2

`

erfcw erfc

iH (kR )
g P

4
P   (2.46) 

and 

 
2

1/2 1/2

2{(2[1 cos( )])
2

/ 2 ( )}
n

)
si

( ap w

w p a

p

g ikRi e erfc iw
E


  



     . (2.47) 

In the next step, the ground wave term can be expressed as 
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22 ( )( )

sin sin1 cos( )

p p aa
w

p p ap

ikR F wF w
g

E E w

 

  


 
  . (2.48) 

The gw can also be written as 

 (1 ) ( )w ag A V F w   , (2.49) 

where 

 

/

sin

w

p p

r r
A

E






 , (2.50) 

which is a diffraction factor. 

 

Now, the total sound field can be written as 

 
[ (1 ) ( )]

(1) (1)

0 1

`

a
0 2

`

iH (kR ) iH (kR )
p + V A V F w

4 4
   

 . (2.51) 

 

It might be interesting to mention that, the asymptotic solution of ground wave gw  in the 

2D case is more accurate than that in the 3D case when the range is small. The results are 

compared with the three dimensional solutions for the Green’s function by Li. We can 

see in the Figure 2-5 that, there is a singularity when the horizontal distance is very close 

to 0 for the three dimensional Green’s function.  
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The singularity in the 3D case is originated from the hankel function term, however, the 

integral for the two dimentional Green’s function has no hankel function term in the inte-

grand. This comparison could be seen from the Figure 2-5 and Figure 2-6. The values of 

the diffraction term are compared for different types of ground surface at different fre-

quencies.  

 

There is no singularity in the two dimensional case, however, we can observe in the fig-

ure 2-6 that a disagreement between the asymptotic solution and the exact solution ap-

pears when the range is smaller than 0.1 m. However, the error gradually becomes a con-

stant as the range decreases. Poor agreement in this region is inevitable, but the error can 

usually be satisfactory in practical applications because the value of the direct wave term 

is far larger than the value of the diffraction term when the horizontal range is close to 

zero. We can also conclude that the value of the diffraction term is important only when 

the distance between the sound source and the receiver is large. 

It may be important to point out that the aysmptotic results in Figure 2-5 and Fig-

ure 2-6 are calculated with the Gaussian quadrature with one term. The fast solutions cal-

culated with 20 Gaussian quadrature terms are shown in Figure 2-7 and Figure 2-8, where 

the agreement is excellent for any geometries. 
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Figure 2-5. The ground wave term above the ground due to an above ground point source 

(Li and Tao, 2014). Dotted: asymptotic solution; Solid: exact solution. 

 

Figure 2-6. The ground wave term above the ground due to a coherent line source. Dot-

ted: asymptotic solution; Solid: exact solution. 
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Figure 2-7. The predicted excess attenuation of the diffraction term along a horizontal 

line above a locally reacting ground surface. Source frequency is 1 kHz. The source is 

placed at 0.02m and the receiver at 0.04m above the ground. Solid line: DNS method. 

Dashed line: FFP method. Dashed dotted line: Exact solution (EXA). Square mark: 

asymptotic solution. 

The exact solutions of the diffraction term calculated with Gaussian quadrature with 20 

terms and the asymptotic solutions agree well with DNS method and the FFP method so-

lutions. A comparison of the excess attenuation for the Green’s function with different 

frequencies is shown in the Figure 2-8. The agreement between the fast asymptotic solu-

tions and the accurate solutions is excellent.  
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Figure 2-8. The predicted excess attenuation of the green function (G/Gf, where Gf is the 

free field green function) versus horizontal separation above a hard backed extend 

reaction ground for 100 Hz, 500 Hz, 1k Hz and 10k Hz. The same geometrical 

configuration as Fig 2-7 is used.

 

Horizontal directional derivative is also required in the BEM formulation. A similar 

method is used to find the solution for the horizontal directional derivative. Also, the so-

lution for a vertical dipole will be discussed.  

 

The path of the integration is changed to the steepest descent path, which is the same as 

the path in the last section. The equation for the horizontal directional derivative is 
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 

 

2 cos

( ) ( )sin

2 cos ( )

Im 1 cos( )

ikR

m

r a

C

p p

k N e
p d

N

H i P



 
  


   

 



 


       


 . (2.52) 

After mapping to the W space as in the last section 

 
  2

2

2 cos /2( )sin ( )

2 cos ( ) 2 cos

W
ikR

SD

ik

C

P

R

C

k N e k A W e
P d e dW

N


 
  


      

 

 
    , (2.53) 

where 

 
2

2( ) sin / / 4A W ikR W    . (2.54) 

Using the same pole subtraction method, we can get 

 

2

2

2

/2
/2[ ]

cos
( )
2

W
p WSDP

p
i

C
R pC

k p

AP e dW A
A e dW

k W W W W
e

 




  

     , (2.55) 

where 

 lim ( )
( )pW W

p

p

p

A A W
E




   . (2.56) 

Now PSDP can be written as 

 SDP s sP p    , (2.57) 

where 
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2

2

/2

( )
2

W
ikR

s p

pCx

i e dW
p e A

W W



 
   (2.58) 

and 

 ( )s SDP sP p    . (2.59) 

 

Evaluating ps with the similar complementary error function 

  

 [ Im( )]s erfc p pP P H W p    , (2.60)  

where
  

 

2

2

/2
( 2)/

2 ( )

pW

p p ikR

erfc

p

ik e erfc iW
P e

E 





   . (2.61)  

The correction terms are

 

 

2

2

/2

2

2
2 (cos

sin

) / 4

W
ikR

SDP
C

k
P e dW

e

ikR W

 

  




 

   (2.62) 

and 

  

 

2

2

/2

2

2
2 (cos

sin

) / 4

W
ikR

SDP
C

k
P e dW

e

ikR W

 

  




 

  . (2.63) 
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The horizontal directional derivative is derived similarly. The path of the integration is 

changed to the steepest descent path, the derivative can be written as 

 

 

 

2 cos

( ) ( ) cos

2 cos ( )

Im 1 cos( )

ikR

m

r a

C

p p

k N e
p d

N

H i P



 
  


   

 



 


       


 . (2.64) 

After mapping to the W plane 

 

  2

2

2 cos /2( )cos ( )

2 cos ( ) 2 cos

W
ikR

SD

ik

C

P

R

C

k N e k A W e
P d e dW

N


 
  


      

 

 
    , (2.65) 

where 

 
2

2( ) cos / / 4A W ikR W    . (2.66) 

 

Using the pole subtraction method, we can get 

 

2

2

2

/2
/2[ ]

cos
( )
2

W
p WSDP

p
i

C
R pC

k p

AP e dW A
A e dW

k W W W W
e

 




  

     , (2.67) 

where 

 
lim ( ) cot( )

( )p
p

W W

p

p pA A W
E







 

 . (2.68) 

PSDP can be expressed as 
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 SDP s sP p    , (2.69) 

where 

 

2

2

/2

( )
2

W
ikR

s p

pCx

i e dW
p e A

W W



 
   (2.70) 

and 

 ( )s SDP sP p    . (2.71) 

Also, 

 [ Im( )]s erfc p pP P H W p    , (2.72) 

where 

 

2

2

/2
( /

cot( )
2 ( )

2)pW

p p ikR

erfc p

p

ik e erfc iW
P e

E









   . (2.73) 

The correction term is the sum of

 

 

2

2

/2

2

2
2 (cos

cos

) / 4

W
ikR

SDP
C

k
P e dW

e

ikR W

 

  




 

   (2.74) 

and 

2
2 /2

cos c )

(

ot(

2 ) ( )

p pikR W
er

p
C

fc

p

k
P

W EW
e dWe

 

 




                         (2.75) 
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The fast solutions for the Green’s functions of the first type are derived in the section 2.3. 

In the next chapter, the solutions are implemented into the BEM formulation to solve the 

sound scattering problems.
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CHAPTER 3. BEM RESULTS FOR ABOVE GROUND SCATTERING 

There are several different empirical and analytical methods for predicting the sound field 

due to a scattering object positioned above a ground surface. The first method is based on 

ray theory, which expresses the sound field in terms of the Fresnel integrals. Later, meth-

ods which introduced the effects of reflection due to an impedance ground were consid-

ered. The predictions based on these methods were shown to be accurate based on experi-

mental evidence. However, the shapes of the barriers were required to be thin to obtain 

good agreement. 

With the development of digital computers, the scattering of sound from noise 

barriers above the ground can be computed effectively. The shape of the barrier can be 

arbitrary in the BEM approach, and the reflection from the ground can be incorporated 

using the relevant Green’s function. A major disadvantage of the BEM is that computa-

tional times can be substantial when the frequency is high and/or the scattering surface is 

complicated. 

Even with a vast number of studies on the problems mentioned above, the sound 

field predictions above a non-locally reacting porous ground have not yet been satisfacto-

rily completed. The Green’s function above a porous ground are usually difficult to ob-

tain due to the non-locally reacting boundary condition.
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A fast solution for the Green’s function for the above ground cases were derived in 

Chapter 2 via the steepest descent method. The proposed method is more efficient than 

the direct numerical integration approaches or the FFP. Results obtained from the pro-

posed BEM implementation are first compared against the standard BEM approach from 

the previous studies. Next, experimental validation is conducted and shown in this chap-

ter.  

 

3.1 Numerical Implementation 

The geometry for the above ground propagation condition is shown in the Figure 3-1. 

 

Figure 3-1. Problem geometry for an above ground noise barrier. The receiver location of 

interest are those positioned behind the barrier. 

In the figure 3-1, sr  denotes the location of the monopole point source, r denotes the lo-

cation of the receiver. An obstacle is placed above the ground and the ground is assumed 

to be either: semi-infinite and locally/non-locally reacting, or finite thickness with a 

hard/impedance backed termination boundary condition. 

The BIE on the surface of the obstacle can be expressed as: 



   44 

 

 

4
4
 

 0 0 0 0 0( , ) ( , ) [ ( , ) ( , ) ( , ) ( , )] ( )
D

s s s s

p G
p r r G r r G r r r r p r r r r ds r

n n




 
  

   , (3.1) 

which can be simplified into: 

 
1

N

n

Ax B Cx


   . (3.2) 

The mesh has N elements and N+1 nodes. Colocation points in the BEM are chosen as 

the midpoints between two adjacent nodes. We can see that there are N+1 unknowns but 

only N constraints. In the current problem, the sound pressure for the Nth and N+1 nodes 

are assumed to be the same. This serves as the last constraint. 

 

Figure 3-2. The structure of the mesh. 

1 2 3, , ... ...m Nx x x x x x , ( , )s s sr x z  denotes the source position and ( , )r x z  denotes the 

receiver position. Let ( , )sp r r  denote the acoustic pressure at r  due to the monopole 
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source at sr , and let D  denote the barrier’s surface. When 1  , the receiver lies in the 

propagating medium. If 
1

2
  , the receiver lies on the barrier’s surface. If the receiver is 

at a corner point, 
2





 ,  where   is the angle potion in the propagation medium. And 

( , )sG r r  is the Green’s function we derived previously. The 0( , )r r
n




 term denotes the 

partial derivative in the normal direction of D . 

In the current study, the functions on the discretized elements are approximated 

via the Galerkin method: 

 
1( ) (1 )n n nG G G     ,  (3.3) 

 1( ) (1 )n n n      
  (3.4) 

and 

 1( ) (1 ) n nnp p p    
  (3.5) 

are the shape function for the three functions. 

 

Figure 3-3. The first order shape function for the pressure in one element. 
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Figure 3-4. The shape of the function in one element. 

where 0(r (n), r)nG G , which is the value of the function 0(r (n), r)G  at the nth node in the 

mesh. 1nG   is the value of 0(r (n), r)G  at the (n+1) th node of the mesh. ( )nG   is the 

shape function of 0(r ( ), )G r  on the nth element of the mesh. In every element, every 

function with location variables, G ,  , and p  are approximated with the same shape 

function. The variable r  is mapped to  . Since the transformation is one dimensional, 

the Jacobian matrix for the mapping is 

 [h ]n nJ   (3.6) 

where nh  is the length of the nth element. Curves are approximated by straight lines. 

In many previous studies, the value of the functions on the elements are assumed to be 

constant in each element. The necessary number of the elements to obtain a good approx-

imation is much smaller following our proposed approached. Gaussian quadrature inte-

gration method can be more effective when the lengths of elements are different. This 

may yield increased accuracy for the same number of function evaluations. However, the 
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advantage of Gaussian quadrature methods is not obvious for the problems under consid-

eration. 

The numerical equations can be expressed as: 

 

0

0 0

1

0 0

0

1 1
( (m ), ) ( , (m ))

2 2

1
(n) (m )

1 2[ (n) (m ) ( (n)

(r , r )

(r , r ) ( ) (r , r ) p(r ,(n) ) (n) .
2 (n)

r ) ]
(r )

s s

s

N

s

n

p r r G r r

G

h G ik r p
n






  










 

   

  (3.7) 

The [B] matrix contains values for the direct wave at the colocation points: 

 

(r , (1 1/ 2))

(r , (2 1/ 2))

...

(r , ( 1/ 2))

s

s

s

G r

G r
B

G r N

 
 


 
 
 

 

 . (3.8) 

The [A] matrix is a mapping matrix which connects the nodes and the colocation points: 

 

1 1
0 ... 0

2 2

1 1
0 ... 0

2 2

0 0 ... ... 0

. . .
1 1

. . .
2 2

. . .

0 0 0 0 1

A

 
 
 
 
 
 

  
 
 
 
 
 
  

  (3.9) 

The left hand side of Equation (3.2) can be expressed as:  
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1

2

3

1 1
0 ... 0

2 2

1 1
0 ... 0

2 2

0 0 ... ... 0

. . . .
1 1

. . .
2 2

. . .

0 0 0 0 1

N

p

p

Ax p

p



 
 
 

  
  
  
   
  
  
    

 
 
  

 . (3.10) 

The last value in [A] is unity because the pressure at the Nth node and at the N+1 node are 

assumed to be the same in the current numerical formulation. As a result, we need the Nth 

node and the N+1 node to be far enough from the sound source, so that the error from the 

two points are negligible. 

In the [C] matrix, 

  

1 1

2 2

1 2 ( 1)

1 1

1... ( ... 0 0 ... ) ...mm m m mn m n mn

N N

N N

p p

p p

C b b b c c c

p p

p p



 

   
   
   
       
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where mC  is the mth row of [C] and 
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where nh  is the length of the nth element. When the length of elements are the same, the 

formulas can be simplified. 

Singularities appear when the two location variables are contained within the same 

element. Several methods have been developed to deal with this issue. For example, we 

can integrate the Green’s function using the short range approximation for the Hankel 

function and take advantage of the pole subtraction method as done by Berry to remove 

singularities. The method of modifying the integration described above can be applied for 

good measure. The infinite terms in the integration essentially annihilates, which may in-

troduce a small error in the overall predictions. Nonetheless, the approach can provide an 

efficient and accurate solution compared to other alternatives. 

 

3.2 Validation of BEM 

3.2.1 Free Field Scattering 

First, the BEM formulation is verified by comparing the simulation results to ex-

perimental results by Mir, Anthony, and Colin (Mir, Anthony and Colin, 2010). 

The experiment is conducted in a 4.79m   3.90m   3.94m anechoic chamber. The scat-

tering obstacle is a hard cylindrical PVC tube mounted on a turntable.  
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Figure 3-5. The frequency is 700 Hz. The squares are the results calculated with the BEM 

in the current thesis. Others are labeled in the figure. 

The length of the cylinder is 1.446 m and the diameter is 0.114 m. A loudspeaker was 

placed 4.1m away from the cylinder. In order to eliminate the contribution from the 

ground reflection, the microphone was placed 1.13 m above the ground. The pressure on 

the surface of the cylinder is normalized to the maximum pressure to obtain a relative 

pressure. The results for 700 Hz and 3000 Hz are compared in Figures 2-5 and 3-6. In the 

BEM, the surface of the cylinder is discretized into elements. For different frequencies, 

the sizes of the elements are different. The results are calculated with Matlab. The 

Green’s function in the simulation is free field Green’s function. 
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Figure 3-6. The frequency is 3000 Hz. The squares are the results calculated with the 

BEM in the current thesis. Relative Pressure 1020log (| p | / | max(p) |) . 

We can see in the figures that the BEM results and the analytical results show excellent 

agreement with the experimental results at 3000 Hz. At low frequencies, the BEM and 

analytical predictions are in agreement. However, there is disagreement between the ex-

perimental result and the BEM at low frequencies, especially in the shadow zone behind 

the cylinder. The differences may be attributed to the reflections from the walls and the 

supporting platform the anechoic chamber. Contributions due to reflections can be signif-

icant when the wavelength of the sound is large (i.e., at low frequencies). The BEM for-

mulation for the free field scattering problem by a cylinder has been validated. 
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3.2.2 Scattering Due to a Barrier Positioned Above a Locally Reacting Ground  

Noise barriers are commonly used to reduce the transmission of sound and to de-

flect some of the acoustic energy away from shielded objects. There are many different 

methods for predicting the diffraction of sound by a rectangular barrier. In most empirical 

methods, the barriers need to be thin to obtain a decent approximation. The analytical 

prediction was first presented by Sommerfeld (Sommerfeld, 1896) and later extended by 

Carslaw (Carslaw, 1920) and MacDonald (MacDonald, 1915). The solutions are ex-

pressed as the summation of two different wave terms. The first term is the contribution 

from an incident wave and the other term is the contribution due to diffraction. 

 

Figure 3-7. Thin barrier scattering geometry. 
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Figure 3-8. Comparison of ray model and BEM predictions for a noise barrier. Source: 

x=-0.5 m. y=0.5 m; Receiver: x=0.5 m, y=0.5 m. Barrier height=1.2 m. 

A comparison is provided in Figure 3-8 for noise propagation through a thin barrier. 

Good agreement is achieved in predicting the locations of the interference dips. At low 

frequencies, the differences between the two methods are due to ground reflections. The 

relative differences in shape and amplitude may be due to ray model assumptions.  

Figure 3-9 provides a comparison against the work completed by Hothersall et al. 

(Hothersall, Chandler-Wilde, and Hajmirzae, 1990). Excellent agreement is obtained, 

which helps establish the validity of our BEM implementation. Additional comparisons 

against experimental measurement shows good agreement as well. 
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Figure 3-9. Experimental validation of the proposed BEM implementation against meas-

urements made by Hothersall et al. (Hothersall, Chandler-Wilde, and Hajmirzae, 1990). 

Dashed line: our BEM results. Dotted line: Hothersall et al.’s BEM. Solid line: experi-

mental data. 

To further validate our BEM implementation, several additional measurements were con-

ducted in Herrick Lab’s anechoic chamber (with a working dimension of 3.5 m   3.5 m 

   3.5 m). The noise source is a CIE 30W tap loudspeaker, which is attached to a 1.0 m 

long brass tube with diameter of about 0.03 m. The configuration approximates a mono-

pole source. The microphone in the experiment is a Bruel & Kjaer type 4189 pre-polar-

ized 0.5 inch microphone. The rigid porous medium is represented by spherical glass 

beads which have diameters in the range of 0.3 mm to 0.4 mm. The barrier is 0.21 m high 

and 0.015 m thick plywood panel. In the simulations, the barrier is assumed to be rigid. 

The ground layer is treated as a porous medium. 
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Figure 3-10. Experiment lay out. 

 

Figure 3-11. Source location: x=-0.54 m, z=13.5 m. Receiver location: x=0.37 m, 

z=0.178 m. Barrier height=0.21 m and width= 0.015 m. Ground properties: flow resistiv-

ity=140,000 Pa m s-2, tortuosity=1.27, porosity=0.4, shape factor=0.8, layer thick-

ness=0.012m. Solid line: BEM; dashed line: experimental result. 
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The wooden frame is filled with glass beads and modeled using Attenborough’s 4 param-

eter ground impedance model. Excellent agreement is shown in Figure 3-11 between the 

BEM and experimental data. The measurements for a below ground source/receiver are 

not provided due to limitations on existing equipment capabilities. 

Numerical studies are also considered using the validated BEM model. We can 

observe the effects of interference as shown in Figures 3-13 to 3-15. As the frequency in-

creases, the wavelength will decrease. As a result, the distance between two adjacent in-

terference maxima decreases. The noise level behind the noise barrier indicates that it is 

working as intended. It can be seen that the performance of the barrier is better at the 

higher frequency of 1,000 Hz. Sound diffraction and interference effects are clearly visi-

ble behind the barrier where one might expect there to be no sound penetration by intui-

tion. The sound field prediction near the barrier surface is not very accurate since the pre-

diction of the sound field near the scattering surface requires more elements. It is one dif-

ficulty of the boundary element method. 

In the simulations, most of the acoustic energy is reflected backward by the 

ground and the barrier due to the rigid boundary assumption. The contribution due to un-

derground obstacles cannot be observed. In more realistic situations, the ground has a fi-

nite impedance such that some of the incident sound can penetrate into the ground. This 

enables the possibility for acoustical detection of below ground objects. 



   57 

 

 

5
7
 

 

Figure 3-12.  Source: location x=-1.75m, y=0.25m, frequency=500 Hz. Barrier 

height=0.5m. Ground properties: flow resistivity=140,000 Pa m s-2, tortuosity=1.27, po-

rosity=0.4, shape factor=0.8, and thickness=0.012m. 

 

Figure 3-13. Same conditions as Figure 3-12 but for a frequency of 1,000 Hz. 
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Figure 3-14. Sound field predictions in the absence of a noise barrier. Same conditions as 

before. 

The empirical model can accurately predict the sound field for simple propagation geom-

etries. However, the BEM provides a more general approach. Arbitrarily shaped noise 
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barriers can be considered. In addition, the surface of the barrier can have impedance dis-

continuities (e.g., use multiple different materials). The primary disadvantage of the BEM 

is in the longer computational time. This is especially apparent when the barrier has a 

complicated shape and/or high frequencies are of interest. 

 

3.2.3 Scattering by a Cylindrical Obstacle Located Above a Locally Reacting Ground  

The study of sound scattering by spheres and cylinders are of great interest in the 

transportation noise community. Amplification by the horn-shaped structure formed be-

tween the tire/road surface is the primary mechanism for noise generation. Simulation re-

sults are compared with experiments data provided by Graf (Graf, 2001). A sphere with a 

diameter of 0.64 m is placed on the ground surface. A point source is located 0.72 m 

above the road surface and 2.57 m from the center of the sphere. The receiver is posi-

tioned on the center line of the sphere with a distance of d=130 mm. Only the low fre-

quency results are computed due to computational limitations. Excellent agreement is 

achieved in the range of 100 Hz to 4000 Hz. 

Another comparison is performed against the work by Wolfgang, Becot, and 

Barrelet (Wolfgang, 2000). The BEM predictions are as good as Wolfgang’s model as in-

dicated in Figure 3-17. Note the large deviations at low frequencies while the high fre-

quencies are in good agreement. The low frequency disparity may be attributed to wall 

reflections in the testing facility. 
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Figure 3-15. Validation of the BEM with the experiments results from Grap et al.for 

d=130mm.  Colored line: BEM results. 

 

Figure 3-16. Validation of the BEM with the experiments results from Grap et al.for 

d=90mm.  Colored line: BEM results. 
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Figure 3-17. Validation against Wolfgang et al.’s model. Colored lines: BEM predictions. 

 

Figure 3-18. Validation against experimental data from Wolfgang et al. Colored lines: 

BEM predictions. 
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Figure 3-19. Sound field predictions for a cylindrical barrier positioned above a hard-

backed ground surface. Ground properties: flow resistivity=140,000 Pa m s-2, tortuos-

ity=1.27, porosity=0.4, pore shape factor=0.8, and thickness=0.012m. Source location: 

x=-0.4 m, z=0.3 m. Cylinder radius=0.3 m. 

 

Figure 3-20. Same as Figure 3-19, but at a frequency of 1,000 Hz. 

 

3.2.4 Mixed Ground Surfaces 

Typical outdoor sound propagation problems contain multiple types of ground 

surfaces. For example, the noise generated by a factory may propagate over grassland, 
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pavement, soil, and/or snow. These ground surfaces exhibit a range of acoustical proper-

ties. There are several analytical methods which deals with the two-impedance interface 

boundary condition such as those described by (De Jong, 1987), (Rasmussen, 1982), and 

(Hothersall and Harriott, 1995). These methods are based on ray theory, which separates 

the direct and reflected wave contributions. Although a locally reacting ground is differ-

ent from the porous (non-locally reacting) ground, we can approximate a porous ground 

as an impedance surface by introducing an effective reflection coefficient. This approxi-

mation is valid only for some types of porous mediums and is widely used in semi-empir-

ical models. 

 

Although semi-empirical models are much faster than numerical methods (e.g., FEM and 

BEM), numerical methods provide greater flexibility and consistency in predicting realis-

tic propagation configurations. A mixed impedance ground with an arbitrary number of 

impedance discontinuities can be incorporated into a BEM formulation. To validate the 

BEM, several case studies are performed. 

General agreement between the experimental results and the BEM is acceptable 

as shown in the Figure 3-24. Again, low frequency deviations may be due to wall reflec-

tions or the limiting frequency of the anechoic chamber. 

 

The sound field above the ground is shown in the figures 3-25 and 3-26. We can see the 

asymmetry caused by the impedance discontinuity.  The region above the rigid ground 

has higher SPL than that of the porous ground. This indicates that some of the acoustic 

waves have been absorbed by the porous medium.  The interference pattern depends on  



   64 

 

 

6
4
 

 

 

Figure 3-21. BEM result and the ray model result. Source1: x=0.2m y=0.25m; Receiver1: 

x=-0.15m y=0.25m; Receiver2: x=-0.1m y=0.4m; Right half ground is rigid; Left half is 

porous ground; Porous ground type same as previous ground type. 

 

Figure 3-22. Solid line: experimental results; Dotted line: BEM result. Source: x=-0.41m 

y=0.077m; Receiver: x=38.5m y=0.102m; Left half ground is porous; Right half is a car-

pet with 110k  N s m-4 and 850  ; Porous ground type same as previous ground 

type. 
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the source frequency. The angle formed by the destructive interference region appears to 

be larger at higher frequencies.The BEM approach is preferable to the semi-analytical 

methods based on Fresnel diffraction theory since arbitrary impedance discontinuities can 

be accurately represented. Furthermore, the BEM can predict the sound field above a po-

rous ground without any approximations regarding the boundary conditions. In the BEM 

formulation, the contribution from the below ground reflection is neglected. This assump-

tion is valid when the flow resistivity is large or when the source is positioned above a lo-

cally reacting ground surface. In order to obtain a more general solution, a below ground 

BEM formulation needs to be developed. This topic is explored in the next chapter. 

 

 

Figure 3-23. Source location: x=0.3m y=0.2m, barrier height=0.5m. Ground properties: 

flow resistivity=20,000 N s m-4, tortuosity=3.5, porosity=0.15, pore shape factor=1.0. 
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Figure 3-24. Same as Figure 3-23, but for a frequency of 1,000 Hz. 



   67 

 

 

6
7
 

CHAPTER 4. THE BEM FOR THE UNDERGROUND SCATTERING 

4.1 BEM Theory for Below Ground Scattering 

 

Figure 4-1. The source is located above the ground and the receiver is located either 

above or below the ground. 

The mono-pole source and the scattering surface are not in the same medium. As a result, 

the integral equations in the previous sections are not valid for this problem. In the for-

mulation of the two–medium BEM, several different types of Green’s functions are re-

quired. We define the domain above the ground as aD  and the domain below the inter-

face as bD .
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The medium in aD  is air, and the medium in bD  is a porous material which has 

complex acoustic wave number. The inhomogeneous Helmholtz equation in aD  can be 

expressed as 

 
2 (r r ),s ap r Dp k     

 , (4.1) 

and the Helmholtz equation for the underground domain is 

2

1 0, bp k p r D     .                  (4.2) 

The boundary condition on the surface of the scattering object is the same as the previous 

impedance boundary condition. On the interface between the air and the underground 

medium, the pressure is continuous. The continuity can be expressed as 

 (r, r ) (r, r ), rs sp p  ， , (4.3) 

where   denotes the interface between the air and the underground medium. Here + 

means the limit of the pressure as r approaches the interface from air, and – means the 

limiting pressure as r approaches the interface from porous medium. 

 

The normal velocity is also continuous on the interface, 

 

1

1 1
,

dp d

z dz
r

p

d 
    . (4.4) 

Another boundary condition is the Sommerfeld radiation condition, which is the same as 

the radiation condition in the chapter 2. 



   69 

 

 

6
9
 

To solve the problem with BEM, we need several different types of Green’s functions. 

The first one is the sound field above ground due to an above the ground sound source. 

The inhomogeneous Helmholtz equation for it is 

 2

11 11 (r r ), ,s s ar rG k DG       . (4.5) 

The second one has the same sound source, but the receiver is below the ground. This 

Green’s function is named as G12, which denotes the sound field penetrating from the air 

into the second medium. The inhomogeneous Helmholtz equation for it is 

 2

12 12 ( r , ,r )s s a bG k G rr D D       . (4.6) 

These two Green’s functions share the conditions 

 11 12(r, r ) (r, r ), r , rs s s aG G D    (4.7) 

and 

 11 12

1

(r, r ) (
,

r, r )
r .

1 1
, rs s

s a

dG dG

dz dz
D

 
   . (4.8) 

The third Green’s function is G22. The inhomogeneous Helmholtz equation for it is 

 2

22 1 22 (r , ,r ),s s brG k G r D      (4.9) 

where 1

1

c
n

c
k k k   is the acoustic wave number in the porous medium and n is the 

sound speed ratio. The last Green’s function is denoted as G21. The equation is 
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 2

21 1 21 (r r ), r , rs a s bG k G D D       . (4.10) 

Due to the principle of reciprocity, we can calculate G21 with G12, where 

 21 12(r, r ) (r , r), r ,s s a s bDG G Dr     (4.11) 

The term   ensures that the mono-pole source in the lower medium has the same volume 

strength as the source in the upper medium. The validation of the reciprocity is discussed 

in the third chapter. We define G  as 
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  (4.12) 

to satisfy reciprocity,  

 (r, r ) G(r , r), r, rs s s a bDG D  . (4.13) 

In order to get a simple BIE, we need to eliminate the integral term along the interface 

between the two medium. With Green’s theorem we can obtain 

 0 0
0 0 0

0

(r , r ) (r , r)
(r, r ) (r ) [ (r , r) p(r , r ) ]dr

(
,

r) (r )
r s

a s s s

p G
p G G

n n

 
  

    (4.14) 

and 



   71 

 

 

7
1
 

 

0 0
0 0 0

0 0

0 0
0 0 0

0 0

(r , r ) (r , r)
(r, r ) [ (r , r) p(r , r ) ]dr

(r ) (r )

(r , r ) (r , r)
[ (r , r) p(r , r ) ]

(r ) (r )

1 s
s s

s
s

b

p G
p G

n n

p G
G dr

n n

 



 
  

 







 





 , (4.15) 

where 
1

=
0,

a

a

b

r

r

D

D




 ，
 and 

0

= 1,

,
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D

D

r

r

r







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



，

.  is the term about the solid angle which we 

have mentioned before. With the two equations above, we can get the BIE we need, 

which is ready to be solved with the BEM. The BIE is 

 0 0
0 0 0

0 0

(r , r ) (r , r)
(r, r ) (r, r ) [ (r , r) p(r , r ) ]

(r ) (r )
.s

s s s

p G
p G G dr

n n




 
 




   (4.16) 

In the (4.16), r can be above the ground or below the ground but rs is above the ground. 

The detailed proof of the equivalency between the original boundary conditions and the 

BIE was given by Attenborough, Berry and Chen. (Attenborough, Berry, & Chen, 1990) 

 

In order to predict the sound field in the air and in the porous medium in the problem, 

collocation method can be applied. In the collocation method, the receiver needs to be put 

on the surface of the scattering object first.  

 

The BIE can be written as 

 0
0 0

0

(r , r )
(r , r ) (r , r ) p(r ,

(
,r )

)
,

r

c
c s c s s c sr r

G
p G dr

n








   . (4.17) 
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We can conclude from the Equation (4.17) that, we need 12G  and 22G  to solve the BIE. 

And in order to obtain the prediction of the sound field in the air and in the porous me-

dium with the BIE, we also need 11G  and 12G .  

The asymptotic solution for 11G  used in the previous study (Attenborough, Berry, 

& Chen, 1990) is only valid for certain geometries and ground properties. When the po-

rous ground has low flow resistivity, the asymptotic solution is not accurate enough. 

When the dissipativity of the porous medium is high, the contribution of the reflected 

sound wave from underground scattering is negligible. However, when the dissipativity is 

low, the below ground scattering makes a significant contribution to the sound field 

above the ground. As a result, a more accurate solution must be utilized to ensure the ac-

curacy of the solution. 

 

The differences between above ground and below ground include sound speed and me-

dium density. For most ground types of interest, the sound speed in the above ground me-

dium is larger than that in the below ground medium, and the density of the below ground 

medium is relatively larger. Also, we treat air as a non-dissipative medium, and the un-

derground medium is modeled as a dissipative medium, which has complex wave num-

ber.  

 

The derivations of different types of Green’s functions are lists below with the steepest 

descent method. The results are compared with the results calculated with the directly nu-

merical integration. 
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4.2 Fast Numerical Solutions for Sound Fields Below a Rigid Porous Ground with an 

Above Sound Source 

The study about the sound transmitted into a rigid porous half-plane is of great interest 

for decades with many practical acoustic engineering applications. The research about the 

asymptotic solution for the sound fields below a semi-infinite porous ground has been 

conducted most recently by Kai Ming Li and Sheng Liu. (Li and Liu, 2011) The method 

of steepest descent is used in the research, and the integral is evaluated asymptotically 

only at the saddle point. 

 

Figure 4-2. The steepest descent path. 
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In this thesis, a similar method is used to get the fast solution for the Green’s function. 

The function G12 is expanded with only one term in Li and Liu’s research, however, the 

path of the steepest descent is found out and the integration is evaluated with 20 terms 

Gaussian quadrature. 

 

From the boundary conditions, the original integrand can be expressed as: 

 1

1

e
i/2

F(k )=
k + k

z z xik zs ik D ik r

x

z z





 
 . (4.18) 

And the total integral can be expressed as 

 1

1

/ 2
.z z xik zs ik

x

D

z z

ik ri
p dk

k
e

k





 










   (4.19) 

In the equation, D  is the vertical distance from the interface to the receive location, and r 

is the horizontal distance between the sound source and the receiver. Before using the 

steepest descent method, we need to map the integral from kx  plane to   plane with the 

mapping 

 si .nxk k    (4.20)  

The integrand becomes 

 
2 2

1cos (ksin in) scos
eF

cos
)=

2
(

ikzs ikD k ikri   


  




, (4.21) 

and the integral becomes 
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e ,

2 c s
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o

ikzs ikD k ikr

C
p

i
d

  


  

 

   (4.22) 

where the path C is the same as the path listed in the previous section. 

 

Li and Liu used a quartic equation to find the saddle point and expanded the integrand at 

the saddle point. Following the analysis of Li, we can determine the full path of the steep-

est descent with different quartic equations. 

 

The mapping is  

 

2
2 2

1( cos sin(ksin ))
2

X
ikL ikzs iD k ikr    

 , (4.23) 

where 

 
2 2sin cos 1 sin /L r v zs v nD v n     . (4.24) 

In the Equation (4.24), v is the solution of when 0X  . The location of v is at the sad-

dle point.  

 

In order to find the steepest descent path. We need to solve the quartic function for every 

different X.  Coefficients of sina   from order 0 to order 4 can be expressed as 
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2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2
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( ( ( / 2) ) 1 ) 4 1

4 ( ( / 2) )( ( ( / 2) ) 1 );

4 1 4 ( ( / 2) )

2( ( ( / 2) ) 1 )( ( 1 ) / )

(4 1 )

;

;/

4 ( ( / 2)

k zs X i kL D k k k zr zs

kr X i kL k zs X i kL D k

k k zr zs k r X i kL

k zs X i kL D k k zs k r D k n

k k zr zs n

kr X i

   

   

  

    



  2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

)( ( 1 ) / );

( ( 1 ) / ) (4 1 ) /

kL k zs k r D k n

k zs k r D k n k k zr zs n

 
 
 
 
 
 
 
 
  

  


 
  

  (4.25) 

   

The principle for choosing the roots could be found in the work by Li. After obtaining the 

path of the integration, the solution can be calculated with the Gaussian quadrature of 20 

terms. In the evaluation of the integration, the method of pole subtraction is necessary if 

the path is close to the singularity. The integral is 

 
( )( )e f

C
P F d    , (4.26) 

where 

 /( ) cos co ( )
2

( s )
i

F     


   (4.27) 

and 

 
2 2

1( ) cos ( sin ) sinf zs iDi kk ikrk       . (4.28) 

Besides, the integration can also be approximated by a 2rd order asymptotic solution 

 / ( f' )2 ,' f

asymI e F    (4.29) 

which is the same as the asymptotic solution given by Li and Liu. (Li and Liu, 2011) 
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In order to complete the BEM simulation, the derivatives in the horizontal direction and 

vertical direction are also necessary. The derivative in the horizontal direction can be 

evaluated with the same approach. The only difference is 

 
sin( ) cos / (cos ( )

2
)

k
F      


 

 . (4.30) 

The derivative in the vertical direction can be evaluated with the approach as well, and 

the only difference between them is 

 
(cos

c

( )

o
( )

)

s

2

k
F

 


    
 


 . (4.31) 

Figure 4-3. Predicted IL versus horizontal separation between the source and receiver. 

IL=|20log(P/1)|, where the reference is 1 dB; Flow resistivity is 3000 Pa m s-2; Tortuosity 

is 1.82; Porosity is 0.3; Shape factor is 1; Source location is 1 m above the ground and re-

ceiver location is 1 m below the ground. Circle: Fast solutions; Solid: Accurate solutions. 
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Figure 4-4. Horizontal derivatives. Solid line: fast asymptotic solution; dotted line: exact 

solution calculated with direct numerical integration. 

 

Figure 4-5. Vertical derivatives. Solid line: fast asymptotic solution; dotted line: exact so-

lution calculated with direct numerical integration. 
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The sound pressure on a straight line are calculated with the steepest descent method and 

the exactly numerical integration method. The agreements are excellent at different fre-

quencies and for several types of ground. The method of pole subtraction is not imple-

mented into the integration yet because the results are accurate enough for several types 

of porous ground of interest. 

  

4.3 Fast Numerical Solutions for Sound Fields Below a Rigid Porous Ground with an 

Underground Sound Source 

4.3.1 Theoretical Formulation of G22 

When the receiver and the monopole source are both below the ground, we name the 

Green’s function as G22. The differences between G22 and G11 include the wave num-

ber a, the density ratio and also the sound speed ratio. In particular, the wave number is 

complex below the ground because of the property of dissipativity of the porous medium, 

which brings a positive imaginary part into the wave number. The solution could be ap-

proximated with an easy approximation 

 ( , )
(1)

s

(1)

0 1 0 2

`

p

`

iH (kR ) iH (kR )
G r r + R

4 4
  , (4.32) 

where Rp denotes the plane wave reflection coefficient. Rp could be calculated with 

 
2 2 2 2(cos ) / (cos ).p n sin n sinR            (4.33) 

This approximation for the Green’s function is used in the BEM formulation by Berry, 

Chandler-Wilde and Attenborough. (Berry, 1994) The approximation is accurate when 
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sinn  , however, if the sound speed ratio 1 2/n c c  is not far larger than the value of 

sin , this solution is going to be inaccurate. In this section, a more accurate and fast solu-

tion for G22 is obtained with the method of the steepest descent. With the boundary con-

ditions and the Helmholtz differential equation, the integral can be expressed as 

 
 

 2 2

2 2

sin exp ( )
r, r

2 cos sin
s

C

n ikfi
p d

n

  


   




 
  , (4.34) 

where  

      2sin cos cos .sf r z z R           (4.35) 

Due to the complex wave number and the branch cut in the μ plane, the deformation pro-

cess of the integral path becomes complicated. The integrand of the G22 integration con-

tains a double-valued function, which is the square root function 2 2sinn  . The 

steepest descent path may cross the branch cut and goes into another branch under some 

conditions. As a result, the function needs to be evaluated carefully along the steepest de-

scent path. Also, the integration along the two sides of the branch cut must be added into 

the integration under some conditions. The branch integration term is sometimes known 

as the lateral wave in acoustics. (Brekhovskikh, 2012) 

 

With different geometries, there can be three different types of integral path. 

1) When the horizontal distance between source and receiver is short, the steepest descent 

path will cross the branch cut twice. It means that the path of integration starts from the 

original branch and goes into another branch and then the path will go back into the original 
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branch after crossing the branch cut at the second time. (Figure 4-6) 

A mapping needs to be introduced to find the steepest descent path, which can be expressed 

as 

 2

2/ 2 cos( )X ikR    . (4.36) 

The location of 0  in the transformed complex   plane can be calculated with 

 1

0 sin ,n    (4.37) 

where n is the speed ratio 1 2/c c . The branch cuts can be found with 

 
1 2

2
(n )si

x
n

k
     , (4.38) 

where [0, )x  .  In the current problem, the branch cut starts from 0  and goes upward 

to infinity. The relationship between the real part and the imaginary part of the branch cut 

can be expressed as 

 
1

2 2
( ) cosRe( ) ( ( ) / 2 ( )

) ( )(
i i

i i

c
A sign

ba
   

 

 


  , (4.39) 

where 

 ( ) 2Re( ) Im( )cosh(2 ),i ia k k     (4.40) 

 2 2( ) (Re( ) Im( ) )sinh(2 )i ib k k   ,  (4.41) 

and 
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2Re( ) Im( )c k k 

 . (4.42) 

With above functions, we could decide the relative location of the steepest descent path 

to the branch cut.  

 

Through investigation of the shapes of the steepest descent paths, we are able to deter-

mine which method should be used. All the curves in the complex plane can be written 

out analytically. The only inconvenient part is that nearly all of the functions are multi-

valued functions. Hence, numerical integration must be conducted carefully. The value of 

the integrand should be adjusted carefully when the path goes into another branch. In the 

second branch 

 

 2 2

2 2

sin exp ( )
( ) .

cos sin

n ikf
F

n

  

 




 


    (4.43) 

In order to evaluate the integration with Gaussian quadrature, one also need 

 
2si )

,
n(

X

ikRX



 



 
   (4.44) 

which has a removable singularity when 0X  . The singularity could be removed by 

adding a small value 1510   at the singular location. The problem could be solved ana-

lytically, however, this method is fast and convenient for calculation. To obtain the inte-

gral along the steepest path with Gaussian quadrature method, we need to use different 

functions in different branches. The solution implemented with the Gaussian quadrature 

method can be calculated with 
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 2( )
cos

2 ( 2 )
2

ikR

g g

i
p X e w X

X

 

 



 
   , (4.45) 

where w is the weighting function for function of the type 

 
2

(x) x dxF f e








   , (4.46) 

and Xg is the abscissae for the Gasussian quadrature of the type in Equation (4.46). 

 

2) As the range increases, we have to incorporate the branch cut integral, which is also known 

as the lateral wave term. (Brekhovskikh, 2012) In order to complete the integration in the 

complex plane, one must follow the arrows in the Figure 4-7 to integrate. As a result, an 

additional term appears in the path of integration.  The solution of the original integral 

becomes 

 stp lateralp p p 
 , (4.47) 

where  

 
'lateral branch stpp p p 

 . (4.48) 

In the Equation (4.48), 'stpp  denotes another integral on the steepest descent path, which 

is 

 
2 cos( )

' (
2 cos 2 cos

)
stp

ikR

C
stp

i i
p de

  


     


  

   , (4.49) 

and the path of integration is the pink line in the Figure 4-8. 
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Figure 4-6. The steepest descent paths in the first case. 

  

Figure 4-7. The path of the integration and the lateral wave term. 
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With a similar approach, we could calculate the integration along the branch cut path 

with the mapping 

 2 0W= (cos( - )-cos( )- )ikR       (4.50) 

and 

 
1

0

2

(W) co (s ( )cos )
W

ikR
        . (4.51) 

The partial derivative is 

 

2

1

sin( )ikW R



 







 . (4.52) 

And the integral along the branch cut is 

 2 cos( )(
2 cos 2 cos

)
branch

ikR

bran h
C

c

i i
p e d  


     







  . (4.53) 

branchC  denotes the branch cut path, which starts from 0  and goes to infinity. The integra-

tion is evaluated with Gaussian quadrature and the branch cut integral can be written as 

 

2 0c

1

1 1

1

os( )

(W )

(W ) (W )

(W )
) (W ) w (W )

(W ) (

(
2 cos

2 c s )o W

g

branch

g g

g ikR

g g

g g

i
p

i

dW

d
e

 



  

 

  







 





 , (4.54) 

   

where 1w  is the weighting function for function of the type 
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 (x) ,x xF f e d








    (4.55) 

and gW  are the abscissae points for the Gaussian quadrature for the type of functions in 

the Equation (4.55). 

In the procedure of integration, any branch cut crossed by the integration path 

must be took into consideration. The path of integration along the branch cut starts from 

the branch point then goes along the path where the absolute value of the exponential 

term decreases most rapidly. In this case, the path goes downward to the infinity. (Figure 

4-8) 

 

3) The direction of the branch cut steepest path will change when the range is even larger due 

to the branch cut of 1cos .  

If 
0

2

2 0

1
Im(cos( ) ) / Im( )

Re( )
cos( )

ikR

ikR

 

 

 

 
 is less than 1, the third condition is met. Un-

der this condition, the deformed integration path of the branch cut starts from the branch 

point and goes upward to the infinity, and we only need to add the branch cut term into 

the solution as 

 
stp branchp p p   . (4.56) 

Also, the integrand should choose different functions in the different branches. In order to 

the use the BEM in the later chapters, one also need to get the solutions for 
p

r




 and 

p

z




. 
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The derivatives could be calculated conveniently with the expression 

 

2 2

1 ( )

2 2

1

1

2 (k )

x z r sx ik r ik z z

x

zz x x

k k
e

i
p dk

k k kk



 














 
  , (4.57) 

 

 

Figure 4-8. The steepest descent paths under the second condition. 

The horizontal directional partial derivative is  

 

2 2

1 ( )

2 2

1

1

2 (k )

x z r sx ik r ik z zx

zz x x

k kp
e

r kk k

k

k



 

 











 . (4.58) 

  

The Equation (4.58) can be calculated with the equation 
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 2 2

2 2

sin exp ( )sin

2 cos sinC

n ikfk
d

n

p

r

  


   

 


 




 .  (4.59) 

 The integral along the branch cut is 

 2 cos( )sin (
2 cos 2

)
cosbranch

ikRbranc

C

hp
e

r

i i
ik d  

 
     






 
 

   , (4.60) 

 and the integration could be evaluated with 

 

2 0

1

1 1

1

cos( )

(
2 cos 2 co

(W ) (W )
)

(W ) (W ) (W ) (W )

iksin (W ) w (W )
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ikR
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d
e
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 

 
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
 











 


 . (4.61) 

The two-side integral along the steepest descent path becomes 

 2 cos( )(
2 cos 2 c

'
)

osstp

s

C

tp ikR
p

e
i i

d
r

  


     









 
   . (4.62) 

The vertical directional partial derivative is 

 
 2 2

2 2

sin exp ( )cos

2 cos sinC

n ikfk
d

n

p

z

  


   

 


 




  . (4.63) 

The integral along the branch cut is 

 2 cos( )cos (
2 cos 2

)
cosbranch

ikRbranc

C

hp
e

z

i i
ik d  

 
     






 
 

   . (4.64) 

The integration could be evaluated with 
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 . (4.65) 

The two-side integral along the steepest descent path becomes 

 2 cos( )(
2 cos 2 c

'
)

osstp

s

C

tp ikR
p

e
i i

d
z

  


     









 
   . (4.66) 

The steepest descent paths for p ,
p

r




 and 

p

z




 are the same because of the same exponen-

tial term ( )f  , which decides the path of the steepest descent. 

 

4.3.2 Validation of the Asymptotic Solutions 

In the section 4.3.1, the steepest descent method was used to derive the sound field under 

the ground due to an underground sound source.  For different horizontal separations be-

tween the sound source and the receiver, there are three different paths of steepest de-

scent. When the horizontal separation is small, the path is similar to the path used in the 

above ground case. When the horizontal separation is large, the result must include the 

lateral wave term, which is also known as branch cut integral.  

 

The lateral wave term can be expressed with Figure 4-10. When the incident angle is 

larger than the critical angle of the refraction 
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 2

1

arcsin( )c i

n

n
    , (4.67) 

the effect of total internal reflection occurs. The lateral wave travels along the interface of 

air/porous and then goes back into the lower medium. The value of the lateral wave is 

smaller compared to the direct wave term / 4(1)

0 1iH (kR ) , but it brings significant contribu-

tion to the total pressure when the horizontal separation is large. 

 

Figure 4-9. The steepest descent paths under the third condition. 
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Figure 4-10. Lateral Wave. 

The results between the simple asymptotic method, the steepest descent method and the 

accurate result with integrated exact solution 
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
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

  (4.68) 

   

are compared in the Figure 4-11. 

In order to obtain the prediction of the sound field below the interface, the Atten-

borough 4-parameter model is used to obtain the density and the sound speed in the lower 

medium. (Attenborough, 1985) The effective flow resistivity e of the porous medium is 

3000 Pa s m-2. The tortuosity is 1.82 and the porosity is 0.3. The pore shape factor is 1. 

The results of the simple asymptotic method and the steepest descent method are com-

pared with the accurate solution calculated with the directly numerical integration. The 

reference pressure for IL is 1 dB 
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1020log (| p | / | p |).refIL    (4.69) 

Figure 4-11 shows that the simple asymptotic solution is accurate for short horizontal dis-

tance. The error appears when the separation is larger than 1 m, which could be explained 

by the appearance of the lateral wave term. 

 

The agreement between the directly integrated exact solution and the steepest descent 

method solution is excellent for the horizontal distance and the vertical distance as we 

can see in the Figure 4-11 and Figure 4-12. 

 

In addition, the same porous medium and geometry are used in Figure 4-13 and Figure 4-

14 to validate the accuracy of the steepest descent results for horizontal directional deriv-

atives and the vertical directional derivatives. The agreements are excellent in both fig-

ures and we can find the contribution of the lateral waves from the results.  

 

All the above comparisons have confirmed the validity of the steepest descent method 

used in the research, and the solution calculated with the steepest descent method is more 

accurate than the simple solution derived with the Weyl Van der Pol formula in the long 

range cases, where the lateral waves appear. In the fifth chapter, the Green’s functions 

derived in this section are implemented into the BEM formulation to solve scattering 

problems. 
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Figure 4-11. The Insertion Loss versus horizontal separation. Source location is 1 m and 

receiver location is 0.5 m below the interface. Flow resistivity is 3000 Pa m s-2; Tortuos-

ity is 1.82; Porosity is 0.3; Shape factor is 1; Circle: Fast solutions; Solid: Accurate solu-

tions; Dashed: Simple Asymptotic.

 

Figure 4-12. Same as previous figure except source location is 0.02m and receiver is at 

0.5m below the interface. 
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Figure 4-13. Insertion loss versus horizontal separation for 10k Hz, 2k Hz and 500 Hz 

sound. Flow resistivity is 3000 Pa m s-2; Tortuosity is 1.82; Porosity is 0.3; Shape factor 

is 1; Source location is 1 m and receiver location is 0.5 m below the interface. Circle: 

Fast solutions; Solid: Accurate solutions. 

 

Figure 4-14. Insertion loss for the horizontal directional derivative. Others are the same 

as the Figure 4-13. 
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Figure 4-15. Insertion loss for vertical directional derivative; Others are the same as the 

Figure 4-13. 

 

4.4 Fast Numerical Solutions for Sound Fields Above a Rigid Porous Ground with an 

Underground Sound Source 

 

G21 is the Green’s function whose sound source is below the ground and the receiver of 

it is above the ground. By interchanging the location of the sound source and the receiver, 

we can see the reciprocity between the G12 and G21. However, one can also evaluate the 

G21 integration with the steepest descent method. 

 

The integrand of G21 is similar to that of G12, except for the different density ratio, 

speed ratio and the wave number. The integrand can be expressed as 
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 1

1

e
i/2

F(k )=
k + k

z z xik zs ik D ik r

x

z z





 
 . (4.70) 

First, the function is mapped to another plane with 

 si .nxk k    (4.71) 

The integrand becomes 

 
2 2

1cos (ksin in) scos
eF

cos
)=

2
(

ikzs ikD k ikri   


  




 . (4.72) 

In order to find the steepest descent path, we need to use the transformation 

 

2
2 2

1( cos sin(ksin ))
2

X
ikL ikzs iD k ikr    

 , (4.73) 

where 

 
2 2sin cos 1 sin / .L r v zs v nD v n      (4.74) 

In the equation, v is the solution of  when X=0, and the location of v is the same as the 

location of the stationary point. 

 

The steepest descent path is influenced by the branch cut in the G21 case because of the 

influence caused by the square root function in the L term. As a result, the steepest de-

scent path for evaluating G21 is different from that of G12. 
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In order to find the accurate steepest descent path, we need to solve a quartic function for 

every different X, where X is a real number on the real axis. Coefficients of a= sin  from 

order 0 to order 4 can be expressed as 

 

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

2

( ( ( / 2) ) 1 ) 4 1

4 ( ( / 2) )( ( ( / 2) ) 1 );

4 1 4 ( ( / 2) )

2( ( ( / 2) ) 1 )( ( 1 ) / )

(4 1 )

;

;/

4 ( ( / 2)

k zs X i kL D k k k zr zs

kr X i kL k zs X i kL D k

k k zr zs k r X i kL

k zs X i kL D k k zs k r D k n

k k zr zs n

kr X i

   

   

 

     



  2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

)( ( 1 ) / );

( ( 1 ) / ) (4 1 ) /

kL k zs k r D k n

k zs k r D k n k k zr zs n

 
 
 
 
 
 
 
 
  

  


 
  

  (4.75) 

   

1) When the horizontal distance between source and receiver is short, the steepest descent 

path will cross the branch cut twice, which means that the path starts from the original 

branch and goes into another branch and then goes back into the original branch. To inte-

grate the integrand on the steepest path with the Gaussian quadrature method, one needs to 

make sure that the functions are chosen properly in the different branches. 

In the first branch, the function of the integrand is already listed above. When the 

path is in the second branch, the integrand will change to 

 
2 2

1cos (ksin in) scos
eF

cos
)=

2
(

ikzs ikD k ikri   


  




 . (4.76) 

With the Gaussian quadrature method for exponential functions, we can evaluate the inte-

gration with 20 terms. 

 

2) When the horizontal distance between the sound source and the receiver is long. We need 

a steepest descent path to keep the start point and the end point of the path in the same 
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branch. However, there is no such path for any single saddle point we can find. The 

previous steepest descent path turn back to the left in the   plane instead of going 

downward and completing the contour. As a result, we need two saddle points to 

complete the integration. In other words, we need two different steepest descent paths to 

keep the start point and the end point in the same branch. The integration along the first 

path could be calculated with the same approach mentioned above. The sesond path can 

be calculated with an asympototic solution 

 / ( f'')2 f

asymI e F   , (4.77) 

where 

 /( ) cos co ( )
2

( s )
i

F     


   (4.78) 

and 

 
2 2

1( ) cos ( sin ) sin .f ik zs iD k i rk k        (4.79) 

The contribution from the second saddle path can be named as the evanescent ray, which 

is caused by the totally reflected energy at the interface. The evanescent ray will decrease 

exponentially after traveling along the interface. It only contributes a tiny value when the 

receiver location is well below the ground. The paths are indicated in the Figure 4-16 and 

the Figure 4-17. The arrows show the direction of the integration. The solid blue lines are 

the branch cut lines which have important influence to the integration paths and the value 

of the integrand along the paths.  



   99 

 

 

9
9
 

The property of reciprocity is shown in the figure 4-18. The G12 here is the solution of 

 2

1212 (r r ), r , r ,b s as D DG k G         (4.80) 

and G21 is the solution of 

 
2

21 1 21 (r r , r),
1

rs a s bk G
n

DG D       . (4.81) 

The receiver in G12 is the sound source for G21 and the receiver in G21 is the sound 

source for G21, which means the locations of the sound source and the receiver are inter-

changed. 

 

 

Figure 4-16. The path when the range is short. 



   100 

 

 

1
0
0
 

 

Figure 4-17. The path when the range is long. 

 

Figure 4-18. Reciprocity of G12 and G21. Solid line: G12; Dotted line: G21. From top to 

bottom: 10k Hz, 2k Hz and 500 Hz. 
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We can see that one can use different descent methods to simplify the calculation of the 

same integration. This inspirational fact provides a possibility to find a better steepest de-

scent method to simplify the evaluations of many integrations, which may be a worth-

while study in the future.  Although we calculate G21 with the steepest descent method, 

the method used in the calculation of G12 is easier. The path of the integration crosses 

the branch cut several times in the calculation of G21, which makes the evaluation ex-

tremely difficult. As a result, the property of reciprocity is used to obtain G21 in the BEM 

simulation. 

 

All of the necessary Green’s functions are derived in the current chapter. In the next 

chapter, the Green’s functions are implemented into the BEM formulation to solve the 

sound field below and above a porous ground due to the scattering effect of an under-

ground obstacle. 
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CHAPTER 5. THE BEM RESULTS FOR THE UNDERGROUND SCATTERING 

Acoustic reflections due to objects below a porous ground can be substantial in a low dis-

sipative medium and/or when the object is located near the air/ground interface. Applica-

tions may include detection and identification, or assist in the design of noise barriers. 

Perhaps the Green’s function for a water/sediment interface can be derived which would 

facilitate underwater acoustics applications.  

In the problem of sound scattering by an obstacle below a porous ground, the air 

is assumed to be non-dissipative. The porous medium is assumed to have a lower 

Figure 5-1. Acoustical detection of an underground object. 



   103 

 

 

1
0
3
 

sound speed and a higher density than air. Also, the porous medium has a complex wave 

propagation coefficient, which provides the necessary dissipation property. 

 

The problem geometry provided in Figure 5-1. In the BEM, the surface of the obstacle is 

discretized into boundary elements. The number of the elements depend on the wave-

length within the medium and the smoothness of the object’s surface. To accurately mesh 

a complicated shape, more elements are needed. In addition, the rate of change of the 

pressure along the object’s surface needs to be considered. Adaptive meshing can be ap-

plied as necessary. 

 

5.1 Below Ground BEM Formulation 

The below ground BEM formulation is similar to that of the above ground case. How-

ever, there are several notable differences. The pressure field along the surface of the ob-

ject needs to be determined. The numerical equations can be expressed as: 

 

0

0 0

1

0 0

0

1 1
( (m ), ) ( , (m ))

2 2

1
(n) (m )

1 2[ (n) (m ) ( (n) (n) ) (n)

(r , r )

(r , r ) ( ) (r , r ) p(r , r ) .
2 (n)

]
(r )

N

s

n

s s

s

p r r G

G

h G ik

r r

r p
n

 







   



 




   

  (4.82) 

The complex density ratio /a b    is included within the integral and the equation can 

be simplified into: 
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1

N

n

Ax B Cx 


    . (4.83) 

The [B] matrix contains the direct wave information at colocation points: 

 

12

12

12

( (1 1/ 2), r )

( (2 1/ 2), r )
[ ]

...

( ( 1/ 2), r )
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 


 
 
 

 

 . (4.84) 

By reciprocity, the locations of the source/receiver are interchangeable. The mapping ma-

trix, [A], remains unchanged. The mapping matrix [A] connecting the nodes and the colo-

cation points is still the same. Within the [C] matrix, 
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 , (4.85) 

and 
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The pressure distribution vector along the surface of the object is given by x . Once it has 

been obtained, we can evaluate the sound field for the entire domain via the BEM. 
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For the above the ground case: 

 above a ax B C x   , (4.87) 

where 
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and 
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  (4.90) 

 

The Green’s function for an above ground source and below ground receiver is 12G . To 

satisfy reciprocity, an additional   term is included.  

 

Similarly, the below the ground sound field is given by: 

  

 below a ax B C x   ,  (4.91) 

  

where 
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5.2 BEM Validation 

The sound field above and below a hard-backed ground is validated against existing ana-

lytical solutions in this section. A monopole source is positioned above the air/ground in-

terface. An analytical solution for the sound field underground is given by: 

 1 1

1 1 1(e ),z zik z i zk
p B U e


    (4.95) 

which represents contributions from both an upward and downward traveling wave. The 

sound field in the air can be given as: 
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where 

 1 1 1
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  (4.97) 

and 

 1 12

1
zik d

U e  . (4.98) 

1d  is the thickness of the porous medium. (Attenborough, 2006) 

The analytical result for the sound field above a hard-backed ground is calculated 

with the numerical integration, which is the same as the method used in the calculation of 

the accurate solution for the Green’s functions. 

 

In the comparison, Figure 5-2 demonstrates the good agreement between the analytical 

result and the BEM result. Low agreement could be observed in some regions, but the ab-

solute error is low enough to be neglected. At the end of the interface, poor agreement is 

the result of the limitation of the BEM elements. A simulation with a larger element num-

ber can solve the problem. Besides, a finitely long surface must be used to approximate 

the infinitely long ground, which would definitely introduce error into the simulation due 

to the truncation. 

 



   108 

 

 

1
0
8
 

 

Figure 5-2. Sound pressure field predictions along the hard backing layer at a depth of 

0.05 m below the ground. Ground properties: flow resistivity = 3000 Pa m s-2, tortuosity 

= 1.7, porosity = 0.3, and pore shape factor = 1. The source is located at xs = 0.5 m, zs = 

0.5 m, with a frequency of 500 Hz. Red dots: BEM predictions. Blue line: analytical 

model. 
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Figure 5-3. Simulation result below the interface. The hard surface is 0.05 m below the 

ground; The width of the surface is 5 m; Flow resistivity is 3000 Pa m s-2; Tortuosity is 

1.7; Porosity is 0.3; Shape factor is 1; The source point is located at x=0 m, z=0.5 m; Fre-

quency is 500 Hz; Left: BEM result; Right: Analytical result. 

Figure 5-3 and Figure 5-4 demonstrate the good agreement between the analytical 

solution and the BEM, except in regions where the SPL is very low. Poor agreement in 

these regions is inevitable, but an absolute error below -20 dB can usually be satisfactory 

in practical applications. More elements are required to increase the resolution of the vis-

ualization; however, this would require a considerable amount of additional computa-

tional resources. In the vicinity of the interface, poor agreement may be attributed to dis-

cretization error which fails to capture the rapidly varying pressure fluctuations. The 

stripes near the bottom interface (z=-0.05 m) indicates that more elements are needed to 

resolve the sound field. 
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Figure 5-4. Same as Figure 5-3, but for the above ground propagation. The bottom figure 

shows the relative difference in EA in the absence of the below ground obstruction. 
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Figure 5-5. EA contour plots for the above ground, below ground, and relative EA in the 

absence of the below ground obstruction (ordered from top to bottom). A cylinder of 0.3 

m radius is buried 0.01 m below the ground. 
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Figure 5-6. Same as Figure 5-5, but for a cylinder of 0.1m radius. 
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The EA difference is greater in Figure 5-5 than in Figure 5-6, which indicates that 

the larger cylinder is a more effective noise barrier. From the above ground sound field, 

one can determine the properties of below ground objects, assuming the porous medium 

properties are already known. This technique can be applied to underground object detec-

tion and acoustical material design. For example, we may consider the acoustical proper-

ties of a material which has beams or other obstructions consisting of rigid surfaces (e.g., 

rocks, roots, etc.) embedded below the ground. The prediction of the sound field above 

coble ground covered by snow or sand can also be considered. 

Figure 5-8 illustrates the influence of the obstacle’s proximity to the ground sur-

face. A stronger signal can be obtained by the near-surface object as indicated by the 

lower plot. The method can also be used to evaluate the acoustic properties of porous ma-

terials at oblique angles of incidence.  

Additional simulations for a hard-backed ground in the absence of barriers indi-

cates the validity of our BEM formulation in the limiting cases. We can be assured that 

the proposed BEM provides reasonable sound field predictions based on the physical 

trends observed for below ground objects. The shape, size, and location of the objects 

have a significant impact on the sound field both above and below the ground, especially 

when in the vicinity of the air/ground boundary. When the flow resistivity is sufficient 

large, the ground behaves rigidly so the usefulness of below ground object detection di-

minishes. 
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Figure 5-7. Below ground sound field due to a square object of 0.5 m width buried at two 

different depths. Source location: xs=0.1 m, zs=0.1 m.  The object is buried 0.1 m and 

0.05 m below the ground in the top/bottom figures, respectively. 
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Figure 5-8. Same as Figure 5-7, but for the above ground sound field. 
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CHAPTER 6. CONCLUSION AND FUTURE WORK 

6.1 Conclusions 

An efficient asymptotic solution for the sound field below and above the ground due to a 

coherent line source was presented. The results are compared against analytical solutions 

or direct numerical solutions where applicable. Excellent agreement has been achieved, 

except for G12 at very low frequencies. This is an inherent problem in the method of 

steepest descent due to a violation of the rapidly varying phase assumption. However, the 

Green’s function can be used along with direct numerical integration to obtain an accu-

rate solution. 

The Green’s function is first implemented in the BIE to evaluate the sound field 

above the ground due to a scattering obstacle positioned above the ground. The sound 

field predictions in the presence of a noise barrier and mixed impedance ground are vali-

dated against experimental measurements. For the sound field below and above the 

ground due to scattering by an underground obstacle, numerical simulations are con-

ducted using the derived Green’s function. Good agreement between the proposed ap-

proximation scheme and the analytical solution was achieved in the situation of a hard-

backed ground. This indicates that the proposed approximation provides a sufficient and 

numerically efficient alternative to the standard integration approach. We can be assured
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 that the proposed BEM formulation is capable of predicting the sound field from an ob-

stacle positioned above and/or embedded below a porous ground surface. 

 

6.2 Discussion of Future Work 

The prediction of the sound below the ground with a coherent line source below the 

ground is accurate for the most ground types. However, if the imaginary part of the wave 

number in the porous medium is large, the path may become distorted. In this case, the 

validity of the underground Green’s function may require further investigation. An im-

proved method could be implemented along with the method of steepest descent to evalu-

ate the integration in the vicinity of the singularity. 

The detection object on the seafloor is of great interest to the underwater acoustics 

community. Predictions based on sonar is influenced by the acoustical properties of the 

sediment and the topography of the land. The BEM can be applied to efficiently investi-

gate such phenomena. However, the Green’s function above the seafloor would be re-

quired. A different steepest descent method should be applied to solve the Green’s func-

tion for the underwater case. 

Additionally, the performance of the BEM is unsatisfied at high frequencies due to 

the large numbers of elements needed to represent the rapidly varying Green’s function. 

There is great interest in developing a more robust high frequency BEM approach. A 

summary of potential research opportunities is listed below: 

 Improve sound field predictions below the ground due to an above ground line 

source by modifying the steepest descent method to incorporate the phase term out-

side of the exponential term 
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 Derive faster solutions for the Green’s function evaluation for the water/sediment in-

terface problem 

 Apply state-of-the-art methods to evaluate the integral in the vicinity of singularities 

 Design and conduct underground scattering experiments to validate BEM results 

 Implement a high frequency BEM in the current work to explore high frequency 

scattering phenomena 

 Investigate the acoustical properties of rough ground surfaces (e.g., rigid beams 

placed over a porous medium)  
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