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ABSTRACT

Gingade, Ganesh Prahlad Rao M.S.E.C.E., Purdue University, August 2015. Hybrid
Power Management for Office Equipment. Major Professors: Yung-Hsiang Lu and
Jan P. Allebach.

Office machines (such as printers, scanners, fax, and copiers) can consume sig-

nificant amounts of power. Few studies have been devoted to power management

of office equipment. Most office machines have sleep modes to save power. Power

management of these machines are usually timeout-based: a machine sleeps after be-

ing idle long enough. Setting the timeout duration can be difficult: if it is too long,

the machine wastes power during idleness. If it is too short, the machine sleeps too

soon and too often— the wakeup delay can significantly degrade productivity. Thus,

power management is a tradeoff between saving energy and keeping short response

time. Many power management policies have been published and one policy may

outperform another in some scenarios. There is no definite conclusion which policy

is always better. This thesis describes two methods for office equipment power man-

agement. The first method adaptively reduces power based on a constraint of the

wakeup delay. The second method is a hybrid with multiple candidate policies and it

selects the most appropriate power management policy. Using six months of request

traces from 18 different offices, we demonstrate that the hybrid policy outperforms

individual policies. We also discover that power management based on business hours

does not produce consistent energy savings.
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1. INTRODUCTION

Office equipment may consume significant amounts of energy and the potential of

energy savings has not been fully exploited. Today’s office equipment is set in “ready”

mode to have short response time. However, the machine is idle for most part of

business hours [1] and consumes a significant amount of power in the ready mode. As

energy efficiency becomes increasingly important, power management is essential for

office equipment. The most prevalent power management policy for office equipment

is timeout: when the machine becomes idle, a timer is set. While waiting for the timer

to expire, the machine stays in the ready mode. If the machine remains idle when

the timer expires, the machine enters a lower-power “sleep” mode. The timeout value

is set by either the user or the manufacturer in order to comply with regulations

for Eco-labels such as Energy Star [2], Blue Angel [3], or Nordic Swan [4]. These

regulations stipulate stringent energy requirements for certification (under one Watt

after a sufficient period of idle time) [5].

General power management policies employ either predictive or stochastic based

approaches [6]. The former predicts the next machine activity based on exponen-

tial average, correlation, regression, or heuristics of past observed and predicted idle

time [6]. Stochastic techniques model systems as Markov decision processes [7]. Sev-

eral other policies employ machine learning techniques to learn the power management

policy [8], [9], [10]. Some maintain a set of policies and perform online policy selec-

tion [11], [12] based on user specified energy-performance criteria. In case of printers,

an adaptive timeout policy is proposed [13], [14] using the estimated distribution of

past print requests.

Many dynamic power management studies focus on peripheral devices such as hard

disk drive (HDD) and wireless local area network (WLAN) controller [7]. Very few

studies are devoted to office equipment power management. Office equipment presents
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unique challenges wherein the wakeup energy and delay are significantly higher than

the peripheral devices. The idle power of a printer can be 100 Watts, while a HDD’s

idle power is around 5 Watts [12]. The wakeup energy for a printer can be 2000 Joules

compared to a HDD’s 20 Joules. The printer request is highly dynamic and depends

on the location and time. Office equipment encounters a variety of request scenarios

based on the offices’ functions (business office, academic units, or student laboratories)

or the time of the request (day, night, weekday, or weekend). Best power management

policy for office equipment depends on hardware and workload. For frequent requests,

a preferred power management policy would have a long timeout to prevent the printer

going to sleep. For sparse requests, a better policy would shutdown soon after each

service. Hence a fixed timeout cannot always achieve desirable energy savings. Some

printers provide options to set custom schedules for sleep and wakeup times for each

day of the week or holidays.

Using six months of request traces from 18 different printers deployed at Purdue

University, we conclude that fixed timeout or preset schedules cannot achieve con-

sistent energy savings for printers in different offices. We propose two policies for

printer power management. The first policy divides the printer workload into dis-

tinct phases and provides a timeout for each phase. The timeouts are determined

from the printer past request based on a constraint of the wakeup delay. The second

selects the best power policy from a set of candidate policies based on the observed

request pattern. We evaluate this hybrid policy and demonstrate that it is better

than the individual policies. We also show that, contrary to intuition, a policy with

scheduling information (such as weekdays vs. weekends) underperforms the policies

without such knowledge about business hours.

This thesis has the following contributions:

1. We propose a power management policy with multiple timeouts, each deter-

mined from the printer’s past requests, balancing power and delay.
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2. We demonstrate that no single power management policy performs consistently

for different printers in different offices.

3. We propose a hybrid power policy that outperforms individual power manage-

ment policies.

4. We demonstrate that the hybrid power policy performs best with frequent policy

updates and using short-term memory of past printer requests.

5. We examine the policy with scheduling information (such as weekdays vs. week-

ends) and show that it does not produce consistent power savings.
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2. RELATED WORK

Related work in power management can be found for peripheral devices like hard

disk drives, displays, and wireless local area network (WLAN) controller [7]. Few

studies have been devoted exclusively for office equipment. In the following sections,

we discuss the related work and compare our policies with the existing policies.

2.1 Dynamic Power Management

Dynamic power management policies can be broadly classified as timeout based,

predictive, or stochastic [15], [6], [16]. In timeout based policies, an idle machine

is set to a low power state after the expiry of a timeout period. The timeout could

be pre-configured to a fixed value based on expected future requests or changed

dynamically. The value could be statically or adaptively determined [17]. In a static

timeout policy, a pre-configured value is used irrespective of the request conditions. In

an adaptive timeout policy, the value is changed according to the workload changes.

Ramanathan and Gupta [18] describe an adaptive timeout policy based on a device’s

break-even time. Break-even time is the time period during which the device would

incur no additional energy irrespective of the energy state it stays in after serving

a request. Shih and Wang [19] present a policy for mobile devices that can adapt

to self-similar workloads [32] exhibited by human interactions. Guo et al. [31] take

into account human behavior aspects to determine the best policy for the adaptive

energy management. Prediction based policies rely on past request patterns to predict

a device’s future request. The prediction-based policies attempt to predict future

requests and set the device’s power state. The prediction of inter-arrival times is based

on the observed patterns: exponential average, correlation, regression, or heuristics

of past observed and predicted idle times [7], [6], [20], [21]. For example, future inter-
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arrival times are predicted using an observed pattern like L-Shape [22], where it is

assumed that a short busy period is followed by a long idle period. Stochastic policies

model systems as Markov decision processes. Both Markov and Semi-Markov models

are considered. The policies are considered constrained optimization problems [7].

The models trade off between power and latency. They attempt to estimate the

underlying request arrival distribution and globally optimize the expected power and

latency. Both stationary and non-stationary requests are considered [23]. Discrete

and continuous time stochastic models have been proposed [24], [7]. Several other

policies employ machine learning techniques [25] to learn the power management

policy from the device environment. Supervised learning and reinforcement learning

have been explored [8], [9], [10], [26], [27], [28].

The competitive analysis technique can be used to compare online policies [29].

In this approach the performance of an online policy is compared against an optimal

offline oracle policy. The policy is c-competitive if for any sequence of requests, its

worst case performance is bounded by c times the performance of the offline oracle

policy. The fixed timeout policy has been shown to be a 2-competitive [18], if the

timeout is set to the break-even time. The worst case power dissipation expected

from a fixed timeout policy is twice the oracle’s power. The dual-timeout adaptive

policy [18] is 3-competitive, but shown to achieve better performance in practice. The

competitive ratio’s low bound is 1.58 [29] for the best timeout policy. User annoyance

is attributed to latency during system power management [17]. Irani and Pruhs [30]

mention a need for a policy which allows a user or system to preferentially choose

between optimizing one resource over another (for example, optimizing power based

on a delay constraint).

2.2 Power Management for Office Equipment

The most prevalent power management policy for office equipment is timeout.

The timeout value is set by either the user or the manufacturer in order to comply
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with regulations for Eco-labels. Larson [33] describes a policy of selecting power

state for a peripheral by examining the activity packets. Ciriza et al. [13] describe a

timeout based policy, wherein a fixed timeout is estimated to minimize a cost function.

The cost function is based on the distribution of the past (week or month) observed

inter-arrival times and penalty (wake-up delay and energy). Durand et al. [14], [34]

describe an adaptive timeout policy using a hidden Markov chain. These studies

suggest using long-term observations to improve energy savings. In contrast, we show

that the power management policy performs better using short-term past requests.

2.3 Power Policy Selection

Pettis and Lu [12] introduce power policy selection in an operating system and

show one policy outperforming another under some conditions. It may be difficult,

or even impossible, to design the “best” policy for all conditions. A software frame-

work called the Homogeneous Architecture for Power Policy Integration (HAPPI) is

defined for system power management. The framework selects an active power man-

agement policy by choosing the best estimate for an evaluation metric, such as total

energy consumption or energy-delay product. The evaluation is performed every 20

seconds and the active policy is selected. An experimental setup is demonstrated that

selecting policies can achieve better reduction in system energy. Different workloads

are considered to demonstrate the notion of “no one policy fits all”. Helmbold et

al. [35] maintain a set of “expert” policies and use multiplicative weights to make

timeout predictions. Dhiman and Rosing [11] describe an online learning policy to

select among a set of possible policies and voltage-frequency settings. The online

learning policy maintains a set of “experts” and select an expert that has the best

chance to perform well based on the characterization of the current workload. An

evaluation is performed at the end of each idle period to select among the experts.

It demonstrates that the performance is at least as good as the best expert across

different workloads. In addition to using the policy selection as described in the above
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two papers, we propose how to perform policy evaluation and determine the period

for better results. We also show that better performance is achieved using short-term

past requests.
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3. LASER PRINTER SYSTEM

3.1 Printer Mechanism

Office imaging equipment includes the following product types: printers, scanners,

copiers, and facsimile machines. In this chapter, we discuss laser printers with a focus

on the printer mechanism and performance metrics. The discussion applies to other

office equipment. Laser printers produce high quality text and graphics on plain

paper. Laser printers have mechanical and thermal components [36] which affect

power management. Laser printers use electrically charged rotating drums. A laser

beam is used to alter the charge components of the drum. Dry ink or toner is attracted

to the charge altered areas of the drum. The toner is subsequently transferred to a

paper and fused using heat and pressure. As shown in Fig 3.1, the laser printer image-

formation system consists of the following parts: laser for scanning, print cartridge,

imaging drums, intermediate transfer belt (ITB) and fuser. The process of image

formation onto a paper involves the following steps [36]: (i) latent image formation,

(ii) development, (iii) transfer, (iv) fusing.

Once the printer gets the data, a latent image is formed on the surface of the

photosensitive drum. To form the desired latent image, the photosensitive drums are

initially stripped of any residual charges by exposing them to LED light. A charging

roller is used to negatively charge the drum. A laser beam is used to strike the

surface of the photosensitive drum at those areas where an image is desired. The

image areas on the drum acquire neutral charge and are ready to accept the toner

(dry ink). Next, the toner is given negative charges during the development. The

toner is placed in those areas neutralized by the laser beam. The areas not struck

by the laser beam still retain negative charges and thus repel the negatively charged

toner. An image is formed on the photosensitive drum. The image is transferred
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Laser/Scanner

Laser/Scanner

FuserCartridge Photosensitive Drum

Laser Beam

Intermediate Transfer Belt

Paper Path

Y

M

C

K

Fig. 3.1. Color laser printer image formation system. The desired im-
age is formed on a negatively charged photosensitive drum using laser
beams. Yellow (Y), magenta (M), cyan (C), and black (K) images
are formed on four separate photosensitive drums. The charged toner
gets attracted to the drum at the image areas and later transferred
onto an intermediate transfer belt (ITB). The toner collected from
different colors gets attached to a positively charged paper. Finally
the toner is fused and pressed onto a paper to get a permanent image.
(Source: HP color LaserJet service manual)
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onto a paper using the ITB. At first, the ITB is given a positive charge. As the

ITB contacts the photosensitive drum, the negatively charged toner gets attracted to

the ITB. Likewise, toners of different colors: yellow, magenta, cyan, and black are

transferred onto the ITB in sequence. The paper is given a positive charge. Thus on

contact with the ITB, the negatively charged toner on the ITB gets attracted to the

positively charged paper. The complete toner image gets transferred onto the paper.

The paper is then passed through the heated and pressurized rollers to melt the toner

and get the permanent image. The fuser accounts for the highest power usage in a

laser printer. The fuser has to be at the right temperature before the printing can

begin. The primary power saving feature available in most the laser printers is to

turn off the fuser. It takes a considerable amount of time (around 10 seconds) before

the fuser returns to the required temperature after being turned off. Thus any power

management policy has to factor in the fuser property to balance power savings and

delays.

3.2 Printer Power Cycle

The printer cycles through the following sequence each time there is a request as

illustrated in Fig 3.2. The printer at the sleep state enters a waiting period upon a

request and starts heating the fuser. This takes a considerable amount of time. Upon

heating the fuser to the right temperature, the printer enters the ready state. During

the printing process, an image is formed on the photosensitive drum by striking a

laser beam which is eventually transferred using a charged toner onto a paper and

fused. The printer then enters the standby state wherein the fuser is kept ready by

constantly applying heat. After a specified length of inactivity, the printer enters the

sleep state as a power saving feature. During the sleep state, energy is conserved by

turning off many components, in particular the fuser. Some printers have multiple

sleep states and different sets of components are turned off. For example, the printer
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HP Color LaserJet CM3530 [36] has the following power-saving modes: (i) power off,

(ii) ready, (iii) shallow suspend, (iv) almost one Watt suspend, (v) deep suspend.

At each power state, a specific set of components is kept on with the rest turned

off. Different printer manufacturers select different sets of components to achieve

desired energy conservation and swift response. Fig 3.2 shows a printer with multiple

power states. There is an associated power dissipation at each state. The sleep state

dissipates the lowest power. There is a cost in terms of wakeup energy which is

expended whenever the printer transitions from a low power state to a higher state.

Also there is a considerable latency involved in the transition. To conserve power,

the printer has to transition to a low power state. As the printer transitions to a low

power state, it also incurs a cost in terms of energy and latency, while waking up to a

request. Power management intends to conserve power with little wakeup delay (user

experience impact).

3.3 Printer Performance Metrics

Printer performance is measured by the number of pages per minute (PPM). Each

printer is classified based on PPM and has to meet a specific set of power regulations.

Office equipment has to comply with regulations for Eco-labels such as Energy Star [2],

Blue Angel [3], or Nordic Swan [4]. These regulations stipulate stringent energy

requirements for certification (under one Watt after a sufficient period of idle time) [5].

Only top 25 percent of the printers meeting the requirements are certified. For a

printer, the performance metrics include Sleep-to-First-Page-Out and Sleep-to-First-

Copy-Out. The latest printers can achieve sleep to first page out of under 5 seconds

from less than 5 Watt. Most printers have sleep to first page out in the range of 12

to 20 seconds [37]. Users often put higher priority on the performance (less than 10

seconds delay from low power mode) than energy efficiency and feel inconvenienced

while waiting for the printer to wake up. Energy efficiency and high performance

are usually conflicting goals. To improve energy efficiency, a printer should sleep
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Fig. 3.2. Printer starts in the idle state, consuming idle power. Upon
receiving a request, the printer transitions to a higher power state for
serving the request. After serving the request, the printer returns to
the ready state and starts a timer. If no request is received within
this timeout period, the printer transitions to a low power state. Most
of the components are turned off at the low power state. Waking up
from the sleep state incurs a significant cost in terms of energy and
time. The wakeup energy and delay is printer-specific.

often. To improve performance, a printer should stay ready. There have been recent

improvements in fuser heating technology and engine mechanical recovery, which

constitute the main bottleneck in the printer’s response time from sleep. Nevertheless,

the delay due to wakeup is still noticeable. Better performance can be achieved with

an intelligent power manager inside the printer determining when to sleep. Thus it

is desirable to achieve more energy savings with less user inconvenience by balancing

between the energy efficiency and performance.
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4. POWER MANAGEMENT POLICY

Chapter 2 describes the existing studies on power management policies. Most of

the studies focus on peripheral devices and very few are devoted to printer power

management. Chapter 3 describes the printer system and unique challenges associated

with printer power management. The printers have significantly higher wakeup energy

and delay compared with the peripheral devices. We measure the wakeup energy and

delay for a commercial printer in Chapter 5. Stringent governmental regulations on

power conservation conflicts with the user demand for a swift response. Hence a better

power management policy for printers is desirable. We study the request traces from

printers installed at 18 different offices at Purdue University in search for a better

power management policy for printers. We demonstrate two power management

policies specific to printers: (1) Adaptive multiphase power management and (2)

Hybrid power management. Adaptive multiphase power management relies on the

past printer requests to classify the workload and derive timeouts for the future. The

hybrid power management performs policy selection, given a set of candidate power

management policies. In Chapter 5, we perform evaluations and compare our new

power management policies with the existing policies.

4.1 Printer Activity

As part of the solution towards better printer power management, six months of

request traces from printers at 18 different offices were studied. The printers were

located at different offices like business office, administrative office, faculty room, and

student lab. The traces contained the sequences of timestamps corresponding to the

printer requests like print, scan, fax, and copy. The timestamps were logged at a

resolution of one second for each of the request’s start and end time. Figure 4.1
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shows the request trace of an office printer over a month. Each symbol corresponds

to a printer request. Each row belongs to a day of the week plotted over a course of

24 hours. We can see most requests during the weekdays in contrast to limited re-

quests during weekends. Similarly, the requests are more frequent during the business

hours starting from 8:00 AM to 6:00 PM compared with non-business hours. Similar

patterns of requests were observed for most other office printers. Fig 4.2 depicts the

cumulative distribution of inter-arrival times for printers placed at five different office

rooms over six months. It can be observed that the request patterns are unique to the

office printers. Some printers have more frequent usage than the others. For example,

printer-3 has the most frequent usage with half of its inter-arrival times less than 3

minutes. While printer-1 has half of its inter-arrival times less than 15 minutes.

The printers are idle most of the time with 20% of the requests arriving no sooner

than 30 minutes. Usually the printers are set in ready mode to serve a request

immediately. If the printers are idle most of the time, they waste considerable amounts

of energy. From Fig 4.2, we also see a burst request among printers with 40% of

inter-arrival times less than 5 minutes. Setting the printers to low power states would

seriously degrade performance as printers would take considerable amounts of time

waking up. From Fig 4.3, we see that there is a short-term correlation among printer

requests. We compute the autocorrelation on the binary inter-arrival time sequence to

verify any relation among printer requests. The binary sequence is computed using a

threshold (break-even time). Any inter-arrival time greater than the break-even time

is assigned ’1’ else a ’0’ is assigned. In summary, printers are idle most of the time with

burst of requests in between. The printer requests exhibit a short-term correlation.

We use these properties to devise new power management policies specific to printers

in the rest of this chapter.
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Fig. 4.1. Printer request log of an office printer. Each symbol rep-
resents a request. Several attributes are logged at each request like
start and end times, job type etc,. Each row belongs to a day of the
week plotted over course of 24 hours.

4.2 Adaptive Multi-Phase Power Management

From the previous section, we observe the following: (1) The printer requests are

unique to the offices. (2) The printer requests exhibit a unique pattern over a day

and week. (3) The printer is idle most of the time with burst of requests in between.

(4) There is a short-term correlation among the printer requests. (5) Timeout is the

most prevalent power saving feature among the printers. The existing single timeout

policy is ineffective for a variety of printer workloads. Although a sleep and wakeup

schedule is provided for the printer, it is manual and does not accurately characterize

the printer workload. Hence there is a scope for better power management policy for

the printers, that characterizes the printers’ workload and sets the appropriate power

states to balance power and delay. We propose an adaptive multiphase policy that

compartmentalizes the printer requests into multiple activity phases ranging from
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Fig. 4.2. Cumulative distribution of inter-arrival times for printers
placed at different offices. It depicts the ratio of request occurrences
with inter-arrival times less than a specific time to the total requests.
Break-even time is the time period during which the printer would
incur no additional energy irrespective of the power state it stays in
after serving a request.

the most busy to the least busy. The activity phases are configurable to reflect the

variations in the printer workload. For example, during the non-business hours with

less variations in the printer requests, we can use dual activity phases. With more

variations in the printer requests during the business hours, more number of phases

can be used. Each activity phase reflects a printer workload and hence a timeout

could be used to set an appropriate power state. The busier the activity phase is, the

longer the timeout is set and vice versa. In a busier phase, the printer requests are

more frequent and hence a longer timeout would prevent frequent shutdowns, thus

providing swift response. Similarly, in a lesser busy phase, a shorter timeout would

shutdown the printer more often and save power. Thus based upon the underlying

requests, an appropriate activity phase is entered and a corresponding timeout is

set. We restrict the phase transitions to adjacent phases to account for short-term

correlation found among the printer requests. The phase transitions are based on

the request inter-arrival times and a set of thresholds at each phase. The printer
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Autocorrelation of interarrival times at different request lags

Fig. 4.3. Autocorrelation of inter-arrival times (binary) at different
lags for printer-1. The inter-arrival times are classified using a thresh-
old (break-even time). The inter-arrival times greater than the break-
even time are assigned a value ’1’ else a value ’0’ is assigned. The
autocorrelation at different lags are computed on the binary sequence
to verify any relation among printer requests. The printer requests
exhibit a short-term correlation.

would incrementally transition to finally reach an activity phase corresponding to the

underlying workload. For example during a typical weekday, the printer would start

in the least busy phase with the shortest timeout. During business hours, the printer

would incrementally transition to a more busy phase depending upon the workload

and transition back to the least busy phase at the end of the business hours. The

parameters to switch the activity phase and the corresponding timeouts are computed

from the past requests. The parameters are updated periodically to reflect the changes

in the printer workload.

We illustrate the multiphase policy using the following example. Consider a printer

with the break-even time of one minute and a wakeup delay of 10 seconds. Consider

a case where all the requests arrive too soon, for example inter-arrival times less than

one minute. We can use a single-phase policy with a timeout of greater than one

minute. The printer is thus ready for all the requests and never goes to sleep. This
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single-phase policy provides the best energy savings and delay. Similarly, a single-

phase policy with an immediate shutdown provides the best energy savings for the

case where every requests arrive late, for example inter-arrival times greater than one

hour. In this case, the average delay is 10 seconds as the printer shuts down at the end

of each request. For the case with bursty requests followed by long idle periods, for

example with 90% of the inter-arrival times less than one minute and the rest greater

than one hour, the best energy savings and delay is achieved using a dual-phase

policy with the timeouts of one minute and immediate shutdown (zero minute), and

an inter-arrival threshold of one minute. The policy shuts down the printer for 10%

of the requests providing an average delay of one second. Using a single policy the

printer is idle until the timeout, even when the requests arrive late, wasting energy.

For another case with 50% of the inter-arrival times less than five minutes, 90% less

than 15 minutes and the rest greater than one hour, using a dual-phase policy with

the timeouts of 15 minutes and immediate shutdown, we can achieve an average delay

of one second, however there is a degradation in the energy savings as the printer is

idle for most of the time. We can use a relaxed delay constraint of five seconds and

search for the timeouts and inter-arrival threshold for the dual-phase that shuts down

the printer for 50% of the time. We use the timeouts of five minutes and immediate

shutdown, and an inter-arrival threshold of five minutes to achieve a delay constraint

of less than five seconds with the energy savings improvement. The dual-phase policy

shuts down the printer immediately for inter-arrival times greater than five minutes

and keeps the printer ready otherwise. Thus the printer wakes up for 50% of the total

requests providing an average delay of five seconds. Thus, we search for the timeouts

and inter-arrival thresholds based on the requests and an input delay constraint.

Fig 4.4 describes a general N-phase power management policy, with the activ-

ity phases ranging from the most busy (AP0) to the least busy (APN−1). Each

activity phase (APk) has an associated timeout (TOk) and inter-arrival thresholds

(IAk−1,k, IAk,k+1). The printer in an activity phase (APk) stays in the same phase

(APk) or transitions to its adjacent phases (APk−1 or APk+1) based upon the current
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Fig. 4.4. Activity phases ranging from the most busy (AP0) to the
least busy (APN−1). Timeout (TOk) and inter-arrival thresholds
(IAk−1,k, IAk,k+1) for an activity phase (APk) are determined using
MATLAB’s pattern search. The printer in the activity phase (APk)
stays in the same phase (APk) or moves to its adjacent activity phase
(APk−1 or APk+1), based on the current inter-arrival time (ia).
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inter-arrival time (ia). The number of phases, N is configurable and can be set based

on the variations in the workload. The timeout (TOk) and the inter-arrival thresholds

(IAk−1,k, IAk,k+1) are computed from the past printer requests and updated period-

ically. At each request, the inter-arrival time (ia) is computed as the difference in

the time between the current request and the past request instance. The activity

phase (APk) is updated based on the current inter-arrival time (ia). The printer at

the activity phase (APk) moves to a more busy phase (APk−1) for ia less than the

inter-arrival threshold IAk−1,k. It moves to a lesser busy phase APk+1 for ia greater

than the threshold IAk,k+1. It stays in the same phase otherwise. The timeout cor-

responding to the new activity phase is applied for the next printer idle period, until

the next request arrives. The multiphase parameters are updated periodically (every

day, week, etc) using the past requests to reflect any changes in the printer workload.

Thus, given a set of requests and the printer model, the goal is to compute the pa-

rameters for an N-phase power management policy: TOk, IAk−1,k, and IAk,k+1 for

0 < k < N − 1. The parameters should provide the best energy savings with swift

response. However, the power and delay are dual in nature. Achieving a low power

would incur a cost on delay and vice versa. Hence, we search for parameters that

provide the best energy savings under a given delay constraint (for example less than

3 seconds).

We employ optimization methods to search for the multiphase parameters under a

given delay constraint. Since the printer is not continuous with power state transitions

(active to sleep, etc), we look for the optimization methods that do not use derivatives.

Pattern search [38] is one such optimization method that does not use derivatives.

Fig 4.5 describes a method for searching the multiphase parameters (TOk, IAk−1,k,

and IAk,k+1) using the pattern search optimizer. We use the pattern search optimizer

in MATLAB [39] to find the multiphase parameters. We use a printer model with

measured parameters (wakeup delay, wakeup energy, active power, and sleep power)

that returns an average power for a given set of candidate multiphase parameters and

the delay constraint. The model returns a very high power, if the delay constraint is
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not met. The pattern search uses the known request instances and the printer model

to find the best parameters. The pattern search converges onto the best parameters

that provide a low power under the given delay constraint in finite time. In order

to prevent false convergence, the pattern search optimization is performed multiple

times with random initial parameters.

The pattern search [38] uses derivative free heuristic methods to search for the

best parameters. The pattern search can be illustrated using the following example

of a compass search: given a function with two parameters, the pattern search starts

with an initial step size and reduces it iteratively, until a threshold is reached. It

evaluates the function at each set of candidate parameters along the north, south,

east, and west by incrementing or decrementing the parameters by the step size. The

candidate parameters that provide a reduction in function is selected for the next

iteration. If no reduction is achieved along any direction, the step size is reduced by

half and the search is continued. The pattern search is terminated when the step size

reaches a lower threshold.

Fig 4.6 describes an example of the multiphase power management for a printer

in a general office environment. During the non-working hours (before 6:00 AM and

after 7:00 PM) a dual activity phase is used with a relaxed delay constraint of less than

5 seconds. During the work transition hours (6:00 AM - 8:00 AM, Lunch hour, and

6:00 PM - 7:00 PM) a slightly tighter constraint of 4 seconds is used. Finally, during

the working hours four activity phases with a constraint of less than 2.5 seconds is

used.

In summary, the multiphase power management policy compartmentalizes the

printer workload into multiple phases and provides a set of parameters that can be

used to reach the relevant phase from any phase. The policy would transition to a

relevant phase, based on the current workload and an appropriate timeout is applied

balancing power and delay.
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Fig. 4.5. Computing multiphase parameters using the pattern search optimizer.
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12 AM 6 AM 12 PM 6 PM 11:59 PM

Non-Working hours, Dual-State, <5s constraint

Work transition hours, Dual-State, <4s constraint

Working hours, Quad-State, <2.5s constraint

Fig. 4.6. Sample delay constraints during a weekday for a printer
in a general office environment. The constraints are based on the
assumption that a printer is used more often during the working hours
from 8:00 AM to 6:00 PM. A relaxed constraint is applied during
the non-working hours with an intermediate constraint during the
transition hours.
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4.3 Hybrid Power Management

In the previous section, we described a power management policy that compart-

mentalizes the printer requests into multiple phases. Based on the current workload,

the printer transitions to a relevant phase and an appropriate timeout is applied. The

multiphase policy is based on the following observations: (1) The printer requests ex-

hibit a unique pattern across a day and week. (2) There is a short-term correlation

among the printer requests. (3) Timeout is available for the power management.

The multiphase policy provides the following features: (1) The activity phases are

configurable to accommodate the workload variations. For example, dual-phase or

quad-phase depending upon the expected workload (2) The policy could be scheduled

based on the preset hours to accommodate the request pattern observed among the

printers. For example, a dual-phase with a relaxed delay constraint during the non-

business hours and a quad phase with a tight delay constraint during the business

hours. (3) The multiphase parameters are computed from the past requests to adapt

to the changes in the workload. However, the multiphase policy has the following

drawbacks: (1) The compartmentalization is performed using parameters computed

from the past requests and does not reflect the current workload. There is no conclu-

sive evidence of a long-term correlation among the requests, although we observe a

short-term correlation.(2) Upon reaching an activity phase, a single timeout is applied

irrespective of the workload.

Based on the shortcomings of the multiphase policy, we propose a second policy —

hybrid policy that attempts to characterize the current workload and selects a policy

instead of a timeout. Essentially, power management is a problem of workload char-

acterization. A policy that accurately characterizes the underlying workload is able

to successfully perform power management achieving energy savings with acceptable

delay. We show in a later chapter by considering different policies that each policy

performs well for a different workload. We evaluate each of the policy’s performance

(energy savings) on multiple printer traces from different offices. We evaluate the
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policy’s overall performance as well as the performance during a short time period.

We can associate a workload with a policy and hence, with a combination of power

management policies, we can achieve a better performance. The hybrid policy is

thus a combination of individual candidate policies that achieves better performance

overall than a single policy. Instead of explicitly characterizing a printer’s workload

as a single pattern, we select a policy associated with the workload. As the workload

changes, we select a different policy.

Fig 4.7 describes the hybrid policy that performs the policy selection. The hy-

brid policy selects and applies policies regularly. The hybrid policy consists of the

following components: (1) Candidate power management policies (2) An evaluator

that performs the policy evaluation based on a criteria (3) The printer. The goal is

to characterize the current printer workload and to select the best power policy. We

perform policy selection periodically to reflect changes in the workload. Assuming the

workload does not change drastically, we rely on a policy’s performance during the

immediate past to select it for the future. As shown in Fig 4.8, at current time tcurrent,

an evaluation is performed on the just concluded workload. An evaluation window of

time period teval is used to find a policy that performed best during the evaluation

window. Assuming the workload does not vary drastically, the best performing pol-

icy would also perform better for the future workload. The best performing policy is

retained for the next freeze period tfreeze. The hybrid power management performs

the workload characterization and in turn provides the best performance overall as

compared with a single policy.
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Fig. 4.7. Hybrid power management consists of a set of candidate
power policies and an evaluator. Each candidate policy outperforms
the others under different workloads. The candidate policies are eval-
uated based on a criteria of energy savings or delay during the policy
evaluation. The best performing policy becomes active and manages
the printer power for the next policy period.
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Fig. 4.8. Hybrid power manager with a policy evaluation window
(teval) and freeze window (tfreeze). The best performing policy during
the evaluation window is applied for the next freeze window. The
evaluation window can be also set from the previous day or week.
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5. EVALUATION AND RESULTS

5.1 Printer Parameter Measurement

A multi-function printer is used to measure the parameters like wake-up delay,

wake-up energy, average active power, average sleep power, and printer break-even

time, as shown in Fig 5.1. The printer is connected to the main power source through

a power meter. The power meter with a sensitivity of one milliwatts logs the power

dissipated at an interval of one second. The power meter is connected to a network

enabling readings to be logged remotely. The printer sleep function is enabled with

a timeout of 30 minutes. Once the printer serves a request, it waits for a period of

30 minutes before transitioning to a low power sleep state. The standard ISO/IEC

24712:2006 color test pages are used for printing and measuring the parameters. The

standard color test pages are used for the measurement of office equipment consum-

able yield. Fig 5.2 shows the power meter readings for a test page printing. From

Fig 5.2, we observe that the printer consumes an average power of 12 Watts until

the first request. As explained in Section 3.2, a printer consumes a nominal power

during the sleep state, with most of the components turned off. There is a surge in

power consumption with a request. The power surge reaches as high as 1000 Watts.

This surge is due to the transient current drawn by the fuser heating the rod and

other mechanical components like fan and motors. The power consumption stabilizes

at around 600 Watts after the wakeup. The printer then enters the ready state con-

suming an average power of 70 Watts waiting for the future requests. The printer

waits until a preset timeout (30 minutes) before entering the sleep state. The energy

consumed and the elapsed time is measured for both the cases of printing from the

sleep and ready state. The above experiment is repeated with one page, ten pages,

and fifty pages per request. Table 5.1 lists the measured printer parameters.
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Fig. 5.1. Printer power measurement setup. The power meter and
the printer are both connected to a network. A computer is used to
control and access both the power meter and the printer. Common
unix printing system (CUPS) standard is used to print to a network
printer. Test pages are printed and the corresponding power readings
are logged. The power meter refreshes the readings after each second.
A log file is generated with the time-stamps and power readings.

Table 5.1.
Measured printer parameters

SI.No Parameter Measured Values, Average

1 Wake-up Delay 5 Seconds

2 Wake-up Energy 2909 Joules

3 Active power 70 Watts

4 Sleep power 12 Watts

5 Break-even Time 1.54 Minutes
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Fig. 5.2. Printer power measurement reading. A test page is printed
while the printer is in (1) ready and (2) sleep state. Power readings are
logged at each second. The printer starts in the sleep state consuming
a low power. It serves a request consuming power at 650 Watts. The
printer enters the ready state waiting for further requests, consuming
an average idle power of 70 Watts. It consumes more power while
printing from the sleep state than from the ready state. The printer
takes more time serving a request from the sleep state.
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5.2 Adaptive Multiphase Power Management

We compare the multiphase policy’s performance with several other policies: fixed

one minute timeout, factory pre-set 30 minute timeout, and immediate sleeping.

We perform simulations in MATLAB with the measured printer parameters and the

printer traces. The simulation setup consists of the following: (1) The printer trace

(2) The printer parameters (wakeup delay, wakeup energy, active power, and sleep

power) (3) The MATLAB pattern search optimizer to compute multiphase param-

eters. The trace provides the sequence of inter-arrival times from the timestamps

associated with each request used by the the printer model to compute the cumu-

lative energy and delay. Based on the policy a corresponding timeout is applied for

the simulation. The printer selects the states: idle, active, sleep and accumulates

the energy and delay. At the end of the simulation, the average power and delay is

computed. The pattern search optimizer is used to compute the multiphase policy’s

timeout and inter-arrival thresholds. Tables 5.2–5.3 provide the parameters com-

puted from the pattern search for the quad-phase and the dual-phase policies. The

pattern search is run multiple times to prevent the false convergence. The simulation

is performed on the entire trace. But in actual implementation a sliding window can

be adopted, whereby new set of parameters (thresholds and timeouts) are computed

periodically from the available requests. For example, every day a new set of param-

eters can be computed from the past week requests. The quad-phase policy consists

of four decreasing timeouts for phases ranging from the most busy to the least busy,

and five increasing inter-arrival thresholds. Current simulation divides one hour into

equal blocks based on the number of phases, and initializes the parameters assigning

random values from each block. The search is performed 256 times and each time,

the pattern search provides a set of parameters satisfying the delay constraint. The

set of parameters that provide a low power is selected for the power management.

Fig 5.3 depicts the average power dissipated and the average delay per request

encountered for different policies. The oracle policy provides the lower bound for
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power, as it knows the future and powers down appropriately. Fixed timeouts are

poor at balancing both delay and power consumption. Immediate sleep and one

minute timeout shuts down the printer very often causing increased delay. The 30

minute longer timeout rarely shuts down the printer and can serve a request imme-

diately. However, it consumes the maximum power compared with other policies.

As an example, for printer-5, the oracle policy expends on an average of 12.9 Watts

with 3.3 seconds delay . The fixed timeout policies (30 min, one min, and immediate

shutdown) consume 19.9, 13.6, and 13.2 Watts with 0.7s, 3.7s, and 5s delay respec-

tively. The multiphase policy consumes 14 Watts with 3 seconds of delay. Thus, the

multiphase policy achieves the performance goals with a marginal increase in power.

The multiphase policy utilizes multiple timeouts to achieve the performance goals.

The set of timeouts for a particular trace provides the best energy savings under

a delay constraint. An oracle would choose large timeout during busy periods and

immediate shutdown during reduced usage periods. The multiphase policy classifies

the printer requests into finite activity phases. The printer incrementally moves to

a relevant activity phase corresponding to the workload. Upon reaching the relevant

activity phase, a corresponding timeout determined using pattern search is applied.

The new set of thresholds and timeouts are computed again after a period with the

consolidated requests.

5.3 Hybrid Power Management

The candidate power policies for the hybrid power management consists of the

following:

1. Adaptive Multiphase Power Management

2. Fixed Timeout - 60 Seconds

3. Adaptive Timeout

4. 2-Competitive
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Table 5.2.
Quad-phase parameters using pattern search

Printer Timeouts (seconds) Inter-arrival

Thresholds

(seconds)

TO0 TO1 TO2 TO3 IA0,1 IA1,2 IA2,3

Printer-1 808 669 425 334 141 610 682

Printer-2 262 214 134 65 55 232 292

Printer-3 114 65 52 50 72 91 101

Printer-4 206.5 206 203 91 4 125 307

Printer-5 419 372 234 140 74 295 514

Table 5.3.
Dual-Phase parameters using pattern search

Printer Timeouts

(seconds)

Inter-arrival

Thresholds

(seconds)

TO0 TO1 IA0,1

Printer-1 227 137 1155

Printer-2 121 72 91

Printer-3 52 0 1256

Printer-4 141 73 76

Printer-5 240 103 115
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Fig. 5.3. Comparison of average power and average delay for differ-
ent policies. The oracle policy saves the most energy as it knows the
future. The factory preset fixed 30 minute timeout keeps the printer
awake most of the time and hence less delay per request, but has the
power consumption. Immediate shutdown has to wakeup for each re-
quest and hence has the delay per request. Multiphase policy balances
delay with marginal penalty in power consumption.

A fixed timeout policy employs a single timeout irrespective of the workload. Fixed

timeouts of one minute and break-even time are considered. The adaptive multiphase

policy uses different phases each with an associated timeout. A set of inter-arrival

thresholds are used to transition between phases based on the current inter-arrival

time. Each multiphase parameter is computed from the past known requests as

explained in Section 4.2. The current simulation uses a dual-phase policy with a delay

constraint of less than 3 seconds. A sliding window approach is used for computing the

parameters. The parameters are computed every day using the past week’s requests.

The adaptive power policy uses a dual timeout: 0 and break-even time, based on the

inter-arrival time. The simulation setup consists of the following: (1) The printer trace

(2) The printer parameters (3) The policy selection. The sequence of inter-arrival
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times, busy times, day of the week, and the type of request (print, copy, etc) are

computed using the printer trace. Each of the policies are simulated using MATLAB

with the measured printer parameters generating accumulated energy, delay, number

of events, total trace duration, etc., which are used for comparisons and analysis.

Table 5.4 lists the average power and Table 5.5 lists the average delay for each of the

candidate power policies and printers. It is observed that no single policy is effective

for all the printers. For example, the multiphase policy provides better energy savings

for the printers- 2, 3, and 9. Whereas the adaptive policy provides energy savings

for the printers- 1, 5, 6, and 7. Similarly, low delay is achieved using the multiphase

policy for the printers- 1, 5, 7 and using 2-competitive policy for the printers- 3, 6, 9.

The hybrid policy switches the candidate policies and provides better performance

than the best performing individual policy. Current simulation uses the energy savings

as the policy selection criteria. The hybrid policy evaluates the candidate policies’

energy consumption during an evaluation window to select the best policy. The best

policy performs the power management for a duration called policy freeze window. At

the end of the policy freeze window, another evaluation is performed. From Table 5.4,

we see that, the hybrid policy provides consistent energy savings than the best policy.

The hybrid policy uses a combination of the individual policies to achieve better

energy savings. Fig 5.4 shows the frequency of individual policy selection for printers

at different offices. Depending upon the workload, each policy is selected to achieve

better energy savings. For example, the hybrid policy selects the multiphase policy

for 6.5%, the adaptive policy for 63%, and the fixed one minute timeout for 30% of

the time for printer-2. From Table 5.8, we observe that there are 436 unique switches

among power policies for one minute evaluation and freeze window. Thus, there are

instances during the printer activity, wherein different policies provide better energy

savings. Hence a single policy is ineffective for the entire workload and better energy

savings can be achieved using a combination of policies.
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Table 5.4.
Average power (Watts) for the candidate power policies. No single
policy provides low power for all the printers. The hybrid policy
performs better than the best performing policy.

Printer Trace Multiphase Fixed-60 Adaptive 2-Competitive Hybrid

Printer-1 12.89 12.61 12.54 12.70 12.46

Printer-2 13.94 13.96 13.96 14.20 13.59

Printer-3 14.98 15.22 15.86 15.42 14.95

Printer-4 12.91 12.69 12.68 12.77 12.56

Printer-5 13.88 13.59 13.48 13.81 13.23

Printer-6 14.44 14.49 14.39 14.76 14.00

Printer-7 13.07 12.72 12.66 12.80 12.58

Printer-8 12.62 12.40 12.38 12.45 12.33

Printer-9 12.31 12.37 12.36 12.40 12.31

Printer-10 12.73 12.49 12.44 12.56 12.37

Printer-11 13.21 12.85 12.80 12.92 12.72

Printer-12 13.04 12.44 12.42 12.46 12.39

Printer-13 13.96 12.85 12.79 12.94 12.69

Printer-14 13.91 13.50 13.41 13.71 13.16

Printer-15 13.33 12.74 12.67 12.85 12.56

Printer-16 14.53 14.56 14.50 14.69 14.33

Printer-17 14.27 14.03 13.95 14.29 13.60

Printer-18 12.48 12.34 12.30 12.39 12.26
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Table 5.5.
Average delay (seconds) for the candidate power policies. No single
policy provides low delay for all the printers.

Printer Trace Multiphase Fixed-60 Adaptive 2-Competitive Hybrid

Printer-1 2.84 3.26 3.47 3.08 3.14

Printer-2 3.07 3.05 3.39 2.80 2.87

Printer-3 2.78 2.23 2.44 1.96 2.50

Printer-4 2.80 2.97 3.23 2.77 2.81

Printer-5 3.19 3.44 3.76 3.22 3.30

Printer-6 2.94 2.82 2.98 2.50 2.53

Printer-7 3.15 3.47 3.76 3.26 3.38

Printer-8 2.67 3.19 3.47 3.04 3.03

Printer-9 1.35 1.15 1.25 1.08 1.12

Printer-10 3.13 3.65 3.95 3.47 3.47

Printer-11 2.74 3.28 3.57 3.09 3.09

Printer-12 2.67 3.37 3.73 3.21 3.19

Printer-13 2.77 3.55 3.85 3.41 3.45

Printer-14 2.96 3.31 3.60 3.13 3.03

Printer-15 2.97 3.58 3.80 3.41 3.46

Printer-16 3.44 3.36 3.72 3.15 3.25

Printer-17 3.10 3.38 3.69 3.09 3.18

Printer-18 3.08 3.54 3.75 3.30 3.31
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Table 5.6.
Average power (Watts) for Printer-2 with the hybrid policy using
different evaluation and freeze windows

Evaluation

Window

Policy Freeze Window

1Min 10Min 30Min 1Hour 6Hours 12Hours 1Day 1Week

1Min 13.58 13.75 13.85 13.88 13.95 13.95 13.98 13.97

1Hour 13.84 13.90 13.92 13.93 13.93 13.93 13.98 13.97

1Day 13.92 13.94 13.96 13.95 13.97 13.98 13.98 13.95

1Week 13.95 13.96 13.96 13.95 13.97 13.97 13.96 13.95

Table 5.7.
Average delay (seconds) for Printer-2 with the hybrid policy using
different evaluation and freeze windows

Evaluation

Window

Policy Freeze Window

1Min 10Min 30Min 1Hour 6Hours 12Hours 1Day 1Week

1Min 2.87 3.07 3.18 3.20 3.26 3.26 3.32 3.34

1Hour 3.04 3.14 3.19 3.20 3.22 3.22 3.32 3.34

1Day 3.17 3.18 3.21 3.20 3.23 3.24 3.30 3.12

1Week 3.14 3.17 3.17 3.19 3.22 3.22 3.17 3.12
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Table 5.8.
Policy switch frequency for Printer-2 with the hybrid policy using
different evaluation and freeze windows

Evaluation

Window

Policy Freeze Window

1Min 10Min 30Min 1Hour 6Hours 12Hours 1Day 1Week

1Min 436 224 117 70 21 18 9 2

1Hour 278 191 131 105 25 23 9 2

1Day 119 86 66 44 30 30 20 4

1Week 45 35 23 17 15 15 12 4
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5.4 Evaluation Window Selection

We next perform policy selection simulations on printers from 18 different offices

to find the evaluation and freeze windows that achieve the best energy savings. As

explained in the previous section, the hybrid policy with four different policies is

used for the simulation. We simulate the hybrid policy with different sets of time

periods for the evaluation and freeze window. The best policy based on the energy

saving criteria during an evaluation window is selected and activated for the next

freeze window. Following evaluation windows are considered for the simulation: 1

Minute, 1 Hour, 1 Day, and 1 Week. Following freeze windows are considered: 1, 10,

30 Minutes, 1, 6, 12 Hours, 1 Day, and 1 Week.

Fig 5.5 shows the average power for different evaluation and freeze windows. We

see that using a short evaluation and freeze window, better energy savings can be

achieved. For the current simulation, the hybrid policy using 1 minute evaluation and

freeze window provides the best energy savings compared with the other combinations.

The hybrid policy using a shorter evaluation window relies less on the distant past

requests and hence the selected policy is more suited for the current workload. We see

that using a longer evaluation window, the energy consumption approaches that of the

best individual policy. A shorter freeze window, enables the hybrid policy to update

and switch policies more often based on the workload variation. However using a

longer freeze window, the hybrid policy is restricted in updating the policies with the

workload variations. Also any wrong selection of policy would take a longer time to be

corrected and hence energy is wasted. Tables 5.6–5.8 list the following results of the

simulation for printer-2: average power, average delay, and policy switch frequency.

Thus, the hybrid policy using short-term memory and updated frequently provides

the best energy savings.
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5.5 Week Analysis

We next perform simulations with scheduling information from the past six days

and the previous week for policy selections. We are motivated by the printer request

pattern, as explained in Section 4.1. Most of the printer traces display distinct request

patterns - with significant requests during weekdays followed by limited requests

during weekends. Similarly, requests are frequent during working hours as compared

with non-working hours. We perform simulations to verify any energy savings using

this scheduling information. We perform simulations, selecting the best policy from

the previous six days and the previous week. Tables 5.9–5.10 list the simulation results

for the hybrid policy with scheduling information from the previous six days and the

previous week. With the previous six days schedule, we evaluate the candidate power

policies from the previous six days at the current time. For example, if the current

time is 11 AM, the candidate policies are evaluated from the previous six days at

exactly 11 AM. The policy that provides the best energy savings for most number of

days is selected. In the previous week schedule, best policy from the previous week

is selected at the current time. From Tables 5.9–5.10, we observe that the regular

hybrid policy without using any scheduling information performs better than the

policies using scheduling information. The current workload cannot be characterized

using the past days’ or the previous week information, although we observe a pattern

among printer requests. The current workload is different from the workload that

existed during previous days or the previous week. Hence, scheduling information

from the past requests (previous days or week) does not provide consistent energy

savings.
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Table 5.9.
Average power in Watts for the previous six day schedule. The hybrid
policy using a short-term memory of past requests and frequent up-
dates performs better than the policies using scheduling information
from the previous six days.

Printer

trace

1Min 10Min 30Min 1Hour 6Hour 12Hour 1Day Hyb-

rid

Printer-1 12.56 12.56 12.55 12.55 12.55 12.55 12.54 12.46

Printer-2 13.98 13.98 13.98 14.00 13.99 13.99 13.98 13.59

Printer-3 15.32 15.30 15.28 15.23 15.12 15.11 15.11 14.95

Printer-4 12.68 12.68 12.68 12.68 12.68 12.68 12.68 12.56

Printer-5 13.50 13.50 13.52 13.52 13.51 13.51 13.48 13.23

Printer-6 14.39 14.38 14.36 14.37 14.37 14.38 14.40 14.00

Printer-7 12.67 12.67 12.67 12.67 12.67 12.67 12.67 12.58

Printer-8 12.41 12.41 12.41 12.41 12.41 12.41 12.39 12.33

Printer-9 12.36 12.36 12.36 12.36 12.35 12.35 12.33 12.31

Printer-10 12.44 12.44 12.44 12.44 12.44 12.44 12.44 12.37

Printer-11 12.83 12.83 12.83 12.83 12.82 12.82 12.83 12.72

Printer-12 12.42 12.42 12.42 12.42 12.42 12.42 12.43 12.39

Printer-13 12.79 12.79 12.79 12.79 12.79 12.79 12.79 12.69

Printer-14 13.46 13.46 13.46 13.46 13.45 13.46 13.43 13.16

Printer-15 12.68 12.68 12.69 12.68 12.68 12.68 12.69 12.56

Printer-16 14.47 14.48 14.48 14.47 14.47 14.47 14.47 14.33

Printer-17 14.00 13.99 13.99 13.98 14.02 14.00 13.97 13.60

Printer-18 12.31 12.31 12.31 12.31 12.31 12.31 12.31 12.26
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Table 5.10.
Average power in Watts for the previous week schedule. The hybrid
policy without using any scheduling information from the past week
performs consistently better than the policies using scheduling infor-
mation.

Printer

Trace

1Min 10Min 30Min 1Hour 6Hour 12Hour 1Day 1Week Hyb-

rid

Printer-1 12.59 12.59 12.59 12.59 12.58 12.58 12.57 12.54 12.46

Printer-2 14.02 14.00 13.98 13.98 13.97 13.97 13.96 13.95 13.59

Printer-3 15.33 15.29 15.28 15.26 15.21 15.20 15.11 14.98 14.95

Printer-4 12.69 12.68 12.68 12.67 12.67 12.67 12.67 12.67 12.56

Printer-5 13.53 13.52 13.53 13.55 13.55 13.55 13.56 13.48 13.23

Printer-6 14.47 14.44 14.46 14.42 14.38 14.38 14.39 14.39 14.00

Printer-7 12.72 12.71 12.71 12.71 12.69 12.69 12.69 12.68 12.58

Printer-8 12.49 12.49 12.49 12.49 12.49 12.49 12.48 12.48 12.33

Printer-9 12.36 12.36 12.35 12.35 12.34 12.34 12.33 12.32 12.31

Printer-10 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.44 12.37

Printer-11 12.85 12.84 12.84 12.83 12.83 12.83 12.83 12.80 12.72

Printer-12 12.43 12.43 12.43 12.43 12.43 12.43 12.43 12.42 12.39

Printer-13 12.82 12.81 12.81 12.82 12.81 12.81 12.80 12.79 12.69

Printer-14 13.45 13.45 13.44 13.44 13.44 13.44 13.43 13.43 13.16

Printer-15 12.70 12.70 12.71 12.71 12.70 12.70 12.71 12.67 12.56

Printer-16 14.50 14.50 14.50 14.50 14.49 14.49 14.49 14.48 14.33

Printer-17 14.02 14.01 14.01 14.01 14.05 14.03 14.01 14.00 13.60

Printer-18 12.32 12.32 12.32 12.32 12.31 12.31 12.31 12.31 12.26
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6. SUMMARY

In this thesis, two power management policies are presented for office equipment:

adaptive multiphase policy and hybrid policy. The multiphase policy compartmen-

talizes the printer workload into finite phases. The printer transitions to a relevant

phase, based on the current workload and an appropriate timeout is applied balanc-

ing power and delay. The hybrid policy selects the best performing policy to perform

system power management. We arrive at the appropriate policy evaluation and freeze

windows and show that frequent updates with short-term memory provides the best

performance. We also show that, policies relying on scheduling information do not

provide consistent energy savings. We perform the simulations measuring the printer

parameters from a commercial printer and using the request traces from printers with

contrasting usages.
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