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ABSTRACT

Agrawal, Alok. MSME, Purdue University, August 2015. Constrained Optimized
Command Shaping for Minimizing Residual Vibration in a Flexible-Joint Robot.
Major Professor: Peter H. Meckl, School of Mechanical Engineering.

Joint flexibility is a natural trait of robotic manipulators, which limits fast point-

to-point motion. Remedial measures are often employed to enable these systems to

perform their goal in a desired manner. These measures range from either modifying

the system dynamics such that the resonance is increasingly damped or by designing

cleverly shaped input commands that avoid exciting the resonant modes altogether.

In this work, a numerical framework for generating constrained shaped commands

for a two-link flexible-joint robot is presented. To optimally select the design param-

eters for generating shaped commands, the effects of subjecting the optimization to

mutually exhaustive constraints of residual vibration performance, speed of motion

and size of actuators has been studied. Few important performance metrics to char-

acterize the performance are also introduced and discussed. The framework has been

tested for two basis functions, ramped sinusoid and segmented versine, in simulations

and experiments and performance is evaluated against one another and an unshaped

bang-bang profile. In practice, it has been shown that the constrained numerical

approach reduces vibration in the nonlinear robot system in a more effective and

efficient manner than the unconstrained closed-form solution.
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1. INTRODUCTION

1.1 Motivation

Modern computer-controlled engineering systems are designed to execute fast

point-to-point motion. Such systems include industrial manipulators, high speed

disk drive heads, chip manufacturing systems, flexible space structures, etc. For

these systems, flexibility is a natural characteristic and can be both detrimental and

necessary at times. Commonly, every mechanical system has some joint flexibility

which could occur from transmission elements like gears, belt drives, actuators or

even measurement devices like a rotary torque sensor [1]. In certain cases, joint flex-

ibility is intentionally built into the design for environments where there is a human

machine interaction. Flexibility could help reduce collision impact and damage in

case of an accident.

Typically, robot manipulators, in various application settings ranging from man-

ufacturing automobile parts to flipping muffins, are required to track trajectories to

perform pick and place operations. These operations are desired to be performed as

fast and as accurately as possible. With conflicting performance requirements, any

effort to move the system quickly would excite large vibrations due to rapid repo-

sitioning and high acceleration forces and, as such, resonance due to flexibility is

always a limiting factor for precise motion control. Especially in underdamped sys-
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tems, residual vibrations may increase the settling times and bring down the overall

productivity.

1.2 Literature Review

Standard feedback methods could be used to alleviate the problem to an extent but

the overall closed loop damping could still be insufficient to improve on the vibration

problem effectively. References [2] and [3] have proven the necessity to consider joint

flexibility to achieve desired control performance. There are two common approaches

to the precise motion control of mechanical systems with joint flexibility. The first

one aims to modify the system dynamics such that the system responds appropriately

to the input by incorporating feedback control, and the second approach modifies the

input itself through feedforward control. In the first approach, an attempt is made

to control the system through vibration by forcing it to follow whatever trajectory

is input. In the literature on flexible joint mechanical systems, researchers have

examined multiple standard feedback control methods. One example of using a simple

PD loop feedback for control of flexible systems is shown by Tomie in [4]. More

involved robust and adaptive control methods have also been researched for similar

systems, [5]. A good discussion on various control techniques for flexible joint robots

can be found in [1].

The control paradigms for flexible dynamic systems could broadly be classified

into two categories. The first involves controlling the end-effector position directly

by modeling the flexible modes and using link position in the control loop. However,
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controlling the system through the flexible elements is difficult and has a limited

bandwidth. It also frequently encounters problems with actuator saturation in pro-

viding more control effort to track the desired end-point trajectory through vibrations.

The second category involves controllers that act only on actuators and do not involve

complete robot dynamics, especially the modeling of flexible modes. These controllers

are simpler and make use of feedforward control that manipulates the input to the

system. The feedforward compensation uses clever command generation techniques

to reduce residual vibrations satisfactorily.

Feedforward techniques can further be divided into two categories, inverse and

forward compensation. In inverse compensation, first the reference input is designed,

and corresponding to that input, using the inverse dynamics model of the system,

the related input force is calculated, [6]. The chief drawback of the inverse dynamics

method is the instability of plant inverse for non-minimum phase systems. This

shortcoming can be handled by using pseudo-inverse methods, [7] or by applying

more sophisticated inverse adaptive feedforward control where the output error is

used to modify the weights of a compensator, such as a neural network, [8]. Also,

these techniques are usually conservative and achieve vibration performance at the

expense of longer move times.

In forward compensation, a force applied to the system is constructed first and

then the reference trajectories that produce that force are derived. The command

shaping technique falls under the umbrella of such forward compensation. Input

shaping or command shaping techniques aim to design inputs that avoid excitation of
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flexible modes. One of the simplest command shaping methods attempts to reduce the

sharpness of transitions in an input to remove all the high frequency components that

could cause resonance in the flexible joint. The smoothness of transitions is governed

by the desired bandwidth, which is kept below the lowest natural frequency of the

system, [9]. This method is easy to implement as it requires no information about the

system flexibility but slewing the large frequency band results in appreciably longer

move times.

Over the years various command generation methods have been proposed. One

of the early forms of command shaping, called posicast control was developed by

Smith in the 1950s [10]. It proposed a basic wave cancellation technique to remove

vibrations in underdamped systems. This method, unfortunately, was susceptible to

modeling errors in natural frequency and damping. In another systematic approach,

the knowledge of natural frequencies of the system is utilized in a manner such that

the critical frequency content in the inputs at the spectral location of flexible modes

is reduced. In [11], Singer and Seering proposed an input shaping technique that

convolves a general input command with a finite impulse response (FIR) filter to

remove energy at the system resonant frequencies. In [12], Bhat and Miu showed that

filtering in effect has the Laplace domain equivalence of placing zeros at undesirable

system poles. This is useful in the way that if we don’t have any control on the type of

input at the disposal of the system, suitable FIR filters which are designed specifically

for the flexible modes in the system, can be convolved with the input to reduce

the vibration. However, one might naturally question what kind of performance
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refinements can be achieved if we had more control of the design or constraints of the

input.

One such approach to synthesize shaped commands is through the use of harmon-

ics of appropriately selected basis functions. The harmonics can be used to construct

a desired command that minimizes energy content at the points of system natural

frequency. This approach was proposed by Meckl in [13], [14] and has been applied in

this study. In [15], a detailed comparison of the two shaping methods has been dis-

cussed and relative merits of each paradigm have been experimentally demonstrated.

Roover and sperling, [16], have also presented a good general discussion on shap-

ing techniques in reference to feedback and feedforward compensation for vibration

reduction. The command shaping approach is robust to modeling errors and has

progressed in a way that it has proven to be effective for multimode systems [17],

time-varying systems [18] and systems with configuration-dependent resonance [19].

1.3 Overview of Thesis

In this research, the command shaping approach from [14] and [20] has been

adopted in application to a two-link flexible-joint robot. The command shaping ap-

proach derives time optimality from a least square approximation of a bang-bang,

i.e., square wave profile, through a set of basis functions [13]. With least squares fit,

similar to an approximation with Fourier series, at every jump discontinuity, ringing

effects are observed. This ringing, also called Gibbs phenomenon, eventually results in

shaped profiles demanding high intermittent peak torques. Therefore, in this work a
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numerical optimization framework is developed which allows smoother approximation

to the bang-bang function by adding constraints in the design of the shaped inputs.

A tradeoff between time optimality and vibration performance has been investigated

in light of peak acceleration or torque demands on the actuators. Tests have been

conducted in simulation and experiment and a comparative analysis of relative merits

and drawbacks of the constrained optimization against earlier closed-form approach

has been presented. The command inputs used in this work are unshaped bang-bang

profile, ramped sinusoid and segmented versine.

An important consideration in multimode, multi-link systems is defining a per-

formance metric to quantify vibration performance. To address this, different key

measures of residual vibration have been critically evaluated. These methods have

been mathematically classified and qualitative implications are drawn. This paper is

organized as follows. First, a physical and mathematical understanding of the two-

link flexible joint robot setup is presented in Chapter 2. In Chapter 3, a solution to

Gibbs phenomenon for the chosen basis functions and an outline for constrained opti-

mization method is presented. It then discusses the validation of proposed approach

and shaping parameter consideration through design simulations. Experimental eval-

uation of the shaped profiles and discussion on performance metrics is presented in

Chapter 4. Lastly, Chapter 5 draws important inferences and summarizes contribu-

tions of this research.
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2. ROBOT MODEL AND SYSTEM DESCRIPTION

To generate suitable commands and study their application on the robot, it is first

necessary to gain a good understanding of the system. Sections 2.1 and 2.2 of this

chapter talk about the two-link robot and the mathematical models that are used

for controller design, simulation and implementation of the shaped commands. Two

variants of the mathematical model are included. The first one is the complete La-

grangian model used for precise simulations and, to facilitate control design, a reduced

model is also presented. In 2.3, a description of important system parameters, their

definition and estimated values is presented. The next section details the controller

design in place followed by a discussion of configuration-dependent resonance in the

manipulator system.

2.1 The Two-Link Robot

The custom-built two-link robot is setup at Ruth and Joel Spira Laboratory for

Electromechanical Systems in the School of Mechanical Engineering at Purdue Uni-

versity. As shown in Figure 2.1, the robot is designed to operate in a horizontal plane

and can be basically thought of as a two-link serial manipulator. The two links are

interchangeably referred to as link 1 and link 2 or shoulder link and elbow link. The

robot was designed by [21] as a rigid-joint serial manipulator and was later modi-
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fied by Kinceler to include compliance by adding flexible joints in [22]. The links

are driven by two electric brushless DC motors. In [23], Chatlatanagulchai set the

robot controller with LabVIEW data acquisition environment and programmed the

FPGA. More details on technical specifications of driving elements and sensors in

the hardware are included in chapter 4. The robot base mounts the first motor and

the encoder, providing an inertial frame of reference to the driven shoulder link. The

shoulder link houses the second motor, which drives the elbow link. Each motor drives

the corresponding link through a belt drive with a gear ratio of 5. Joint compliance

is introduced by adding torsional springs between the sprocket driven by the motor

and the link. As such, the motors only act on the torsional springs but not on the

link directly. The two torsional springs included in the robot have spring coefficients

ranging from 103 to 105Nm/rad, which are, by design, rather low compared to joint

compliance in standard industrial manipulators [1]. Thus, the robot proves to be a

challenging test bed for investigating control and trajectory design methods.

2.2 Mathematical Robot Model

Notation of all the physical model parameters can be visualized in Figure 2.2. The

models presented in the following subsections are utilized in numerical simulation,

control law design and calculation of system natural frequencies. It is important to

note that shoulder link and motor angles, θ1 and θ3, are defined and measured in

an inertial frame, whereas elbow link and motor angles, θ2 and θ4, are defined and

measured relative to shoulder link position, θ1.
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Figure 2.1. The two-link flexible-joint robot.

2.2.1 Lagrangian Model

A Lagrangian model of the robot was derived by Nho in [24] incorporating coulomb

and viscous friction in the motor bearings and links as well as viscous damping in the

joints due to linear torsional springs. This model originally included a payload mass

in the dynamics. For the focus of the present study, the effect of payload mass is not

considered and hence it is omitted in simulations and experimental analysis.

For the system setup as shown in Figure 2.2, the Lagrangian model can be stated

as

M(θ)θ̈ + V(θ, θ̇) + Cθ̇ + Kθ + D = T (2.1)
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Figure 2.2. Schematic of the robot with physical parameters, [24].

where θ is the generalized coordinate vector θi, M(θ) denotes the inertia matrix,

V(θ, θ̇) denotes the vector of Coriolis and centrifugal functions, C is the viscous

damping matrix, K is the stiffness coefficient matrix, D is the Coulomb friction

vector, and T represents the torque vector from the driving motors. It is to be noted

that the comparatively fast dynamics of the servo amplifiers is not taken into account

and the motors are considered to be ideal torque sources.

The inertia matrix M(θ) is written as

M(θ) =

M1(θ2) M2

MT
2 M3

 , (2.2)
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where

M1(θ2) =

m11 m12

m21 m22

 , (2.3)

M2 =

0 m41

0 0

 , (2.4)

M3 =

m33 0

0 m44

 , (2.5)

The matrix elements are given as

m11 = m1a
2
1 +m2(l

2
1 + a22) +m4b

2
1 +m6l

2
1

+J1 + J2 + J4 + J6 + 2l1m2a2cos(θ2), (2.6)

m12 = m21 = m2a
2
2 + J2 + l1m2a2cos(θ2), (2.7)

m14 = J4 +
J6
r
, (2.8)

m22 = m2a
2
2 + J2, (2.9)

m33 = J3 +
J5
r2
, (2.10)

and

m44 = J4 +
J6
r2
, (2.11)
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where mi refers to the lumped masses, Ji to the moments of inertia, li to the link

lengths, and a1, a2 represent the distances of the center of gravity of link 1 and link 2

from their respective first and second joints. The distance between the second motor

and the first joint is denoted by b1, and r denotes the chain drive gear ratio.

The Coriolis and centrifugal functions vector is calculated as

V(θ, θ̇) =

VL
0

 =



−l1m2a2(2θ̇1θ̇2 + θ̇22)sin(θ2)

l1m2a2θ̇21sin(θ2)

0

0


, (2.12)

and the viscous damping matrix can be written as

C =



c1 + c5 0 −c5
r

0

0 c2 + c6 0 −c6
r

−c5
r

0 c3 + −c6
r2

0

0 −c6
r

0 c4 + c6
r2


, (2.13)

where ci represents the viscous friction coefficients.

The stiffness coefficients of the springs are combined to denote the matrix of

stiffness coefficients as

K =



k5 0 −k5
r

0

0 k6 0 −k6
r

−k5
r

0 −k5
r2

0

0 −k6
r

0 k6
r2


, (2.14)

where ki represents the torsional springs’ coefficients.
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The Coulomb friction vector is written as

D =

DL

DM

 =



−d1sign(θ̇1)

−d2sign(θ̇2)

−d3sign(θ̇3)

−d4sign(θ̇4)


, (2.15)

and lastly, the torque vector is obtained as

T =

 0

TM

 =



0

0

T1

T2


, (2.16)

wherein T1 and T2 represent the driving torque for the first and second motor.

2.2.2 Simplified Model

The full Lagrangian dynamics model is a relatively complex model which makes

design of model-based feedback controllers rather difficult. Hence, it is useful to write

out a simplified model that still retains the important characteristics of the dynamic

behavior. A widely accepted reduced model in the literature was introduced by Spong

in [25]. This reduced model can be derived from the full model by considering two

important assumptions. First, the damping of torsional springs, c5 and c6, is justly
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neglected because of typically smaller magnitudes of damping coefficients. Thus, the

viscous damping matrix Equation (2.13) is reduced to

cred =

CL 0

0 CM

 , (2.17)

The resulting diagonal elements simplify to the link damping matrix and the motor

damping matrix, respectively.

CL = diag{c1, c2},CM = diag{c3, c4} (2.18)

Based on Equation (2.17), the robot model can be rewritten for the links as

M1(θL)θ̈L + M2θ̈M + VL(θL, θ̇L) + CLθ̇L + KS(θL −
θM
r

) = 0 (2.19)

and that for the motors as

MT
2 M3θ̈M + CM

˙θM + KS(
θM
r2
− θL

r
) = TM (2.20)

where

KS = diag{k5, k6} (2.21)

Spong’s reduced model makes a second assumption that the kinetic energy of the

motors is mainly due to their own rotation, which gives

Mred(θ)θ̈ + V(θ, θ̇) + Credθ̇ + Kθ = T (2.22)

where

Mred(θ) =

M1(θL) 0

0 M3

 , (2.23)
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is the reduced inertia matrix which differs from Equation (2.2) in the zero non-

diagonal elements M2. This assumption is predicated on the fact that for larger

drive ratios, r >> 1, the rotor angular velocity for the motor will be much larger

than the link angular velocity and, therefore, the non-diagonal term M2 can be safely

neglected. Now, the dynamics equations for links and the motors can be respectively

written as

M1(θL)θ̈L + VL(θL, θ̇L) + CLθ̇L + KS(θL −
θM
r

) = 0 (2.24)

for the links and

M3θ̈M + CM
˙θM + KS(

θM
r2
− θL

r
) = TM (2.25)

for the motors. It can be clearly noted that the motors and the links are only coupled

by torsional springs in the joints. With state variable x being defined as

x =



θL

θM

θ̇L

˙θM


, (2.26)

Equations (2.24) and (2.25) can now be expressed as a 4th order state space system

as

ẋ1 = x3,

ẋ2 = x4

ẋ3 = −M1
−1[VL + CLθ̇L + KS(θL −

θM
r

)]

ẋ4 = −M3
−1[TM −CM

˙θM −KS(
θM
r2
− θL

r
)]

(2.27)

Here the arguments have been removed for brevity.
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2.3 System Parameters

Precise knowledge of the robot’s physical parameters is necessary for generating

command inputs, designing model-based controllers and developing a good simulation

model. Especially in light of nonlinearities and deformities that overstep modeling as-

sumptions, system identification of the robot poses an interesting problem. Over the

years, various approaches have been chosen to make parameter estimations through

measurements and experiments. In [24], Nho performed first system identification

for the two-link robot through a least squares approach, where certain parameter

groups were formed to simplify and linearize the Lagrangian model. Doing so, all the

parameters of the robot were simultaneously determined. In Nho’s approach, all the

experiments performed were open-loop. Lee, in [26], first re-performed the estimation

routine using closed-loop experiments. Later, Lee introduced a new parameter esti-

mation approach based on Fourier regularization. This method led to better estimates

but offsets in torque still remained in the simulation model. In [27], Scheel developed

a new method to identify the robot parameters by splitting the identification process

into smaller parts. The identification process was divided into: 1) the motors 2) the

second link and 3) the first link. The estimated values in this procedure were able to

capture the important dynamic behavior of the robot very well and have been used

in this work. Table 2.1 lists the physical values of the robot’s parameters. Here p1,

p2 and p3 are written from Equation (2.37) as:
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Table 2.1. Identified physical values of the robot’s parameters. [27]

Parameter Value Parameter Value

p1 0.140kg m2

rad c4 1.497 · 10−3 Nms
rad

p2 0.0196kg m2

rad c5 0.005Nms
rad

p3 0.0234kg m2

rad c6 8.128 · 10−5 Nms
rad

J3 4.157 · 10−5 kg m2

rad k5 2.848Nm
rad

J4 7.543 · 10−4 kg m2

rad k6 2.848Nm
rad

J5 0.025kg m2

rad d1 0.0199 Nm

J6 0.025kg m2

rad d2 0.0323 Nm

c1 0.04Nms
rad d3 0.0053 Nm

c2 0.0214Nms
rad d4 0.0271 Nm

c3 1.894 · 10−4 Nms
rad
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p1 = m1a
2
1 +m2l

2
1 +m4b

2
1 +m6l

2
1 + J1 + J4 + J6, (2.28)

p2 = m2a
2
2 + J2, (2.29)

and

p3 = l1m2a2. (2.30)

2.4 Computed Torque Controller

Through the years, many robot control schemes have been proposed in the litera-

ture, ranging from adaptive control, robust control, learning control and so on, [28].

In this work, to ensure motor trajectory tracking, external disturbance rejection and

handling modeling uncertainties, a computed torque controller is applied in a similar

manner as [19]. Computed torque controller is a special case of feedback linearization

form of nonlinear controllers. It uses estimates from a model of the robot to can-

cel out nonlinear behavior and reduces nonlinear dynamics to decoupled linear error

equations.

Computed torque uses control law partitioning and is divided into a servo-based

part and a model-based part. The model-based part works to reduce the nonlinear

behavior of the motors, while the servo-based portion ensures asymptotic tracking of

the input trajectories. The servo-based part is simply a PD feedback controller that

compensates any disturbances or modeling errors. Since the cross-coupling terms are
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negligible in Equation (2.2), the model-based part uses a mix of complete Lagrangian

model and the reduced model, with inertia matrix in Equation (2.2) replaced by

Equation (2.23). This is a reasonable assumption and it permits much simpler im-

plementation of the controller. Let CH represent the bottom two rows of the viscous

damping matrix in Equation (2.13) and KS = diag (k5, k6) represent the diagonal ma-

trix consisting of spring coefficients. Also, if θL and θM denote the link and motor

positions, respectively, we can write the model-based part as:

Tmb = CHθ̇ + DM + KS

(
θM

r2
− θL

r

)
(2.31)

and the servo-based part as

Tsb = M3

(
θ̈M,d + Kv

(
θ̇M,d − θ̇M

)
+ Kp (θM,d − θM)

)
, (2.32)

with index d in Equation (2.32) representing the desired values of motor acceleration,

velocity and the position in the input trajectory. Kp and Kv denote the diago-

nal matrices for proportional and derivative gains for each motor joint, respectively.

Therefore, net torque to the robot is:

TCT = Tmb + Tsb. (2.33)

Application of computed torque, Equation (2.33), along with the described robot

model, Equation (2.1), gives the following closed-loop motor tracking error dynamics,

ëM + KvėM + KpeM = 0. (2.34)

where the motor tracking error has been defined as eM = θM,d − θM. Kp and Kv

are chosen such that Equation (2.34) is Hurwitz. Therefore, computed torque ensures
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Figure 2.3. Block diagram representation of computed torque con-
troller and the robot, [19].

asymptotic tracking and results in stable internal dynamics for the link subsystem.

Figure 2.3 shows a block diagram of the closed-loop system with the controller.

2.5 Configuration-Dependent Resonance

To suitably apply command shaping to the robot, it is necessary to calculate the

varying natural frequencies of the robot. This calculation is done by linearization

of the combined feedback controller system and the robot loop. The change in fre-

quencies of the robot occur due to varying inertia of the robot manipulator based on

the configuration of the two links. The natural frequency for a nonlinear system is

usually obtained by linearizing around an equilibrium point. As noted in section 2.2,

the inertia matrix in Equation (2.2) is a function of θ2, the position of the second link

and therefore the system resonant frequencies also vary with θ2.

The closed-loop equations for the robot are obtained by substituting Equation

(2.33) into the complete Lagrangian model Equation (2.1). The resulting equations

are linearized by performing Taylor expansion of all the rows up to the first-order
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term for an equilibrium point of zero velocity and zero acceleration as a function

of θ2. Derivatives of the Coulomb friction terms with respect to the velocities were

assumed to be zero and therefore, linear equations don’t feature Coulomb friction.

The linear closed-loop dynamics can now be given as

Mlinθ̈ + Clinθ̇ + Klinθ = 0 (2.35)

where the linearized inertia matrix is

Mlin =



m11,lin m12,lin 0 m14

m21,lin m22 0 0

0 0 m33 0

0 0 0 m44


, (2.36)

where m11,lin, m12,lin and m21,lin are the linearized matrix entities

m11 = m1a
2
1 +m2(l

2
1 + a22) +m4b

2
1 +m6l

2
1

+J1 + J2 + J4 + J6 + 2l1m2a2cos(θ2,lin), (2.37)

m12 = m21 = m2a
2
2 + J2 + l1m2a2cos(θ2,lin), (2.38)

Also, the closed-loop viscous damping matrix is given by

Clin =



c1 + c5 0 −c5
r

0

0 c2 + c6 0 −c6
r

0 0 m33Kv,3 0

0 0 0 m44Kv,4


, (2.39)
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and the closed loop stiffness matrix is

Klin =



k5 0 −k5
r

0

0 k6 0 −k6
r

0 0 m33Kp,3 0

0 0 0 m44Kp,4


, (2.40)

Now, for the linearized closed loop dynamic model, the natural frequencies are calcu-

lated by determining the imaginary parts of the eigenvalues of the system matrix A

given by

A =

 0 I

−Mlin
−1Klin −Mlin

−1Clin

 , (2.41)

where Mlin denotes the new inertia matrix, Clin and Klin are the closed-loop vis-

cous damping matrix and the closed-loop stiffness matrix, respectively. I denotes an

identity matrix.

It is common knowledge that the system resonant frequencies will change and the

resonant peak will flatten out more in the presence of increasing system damping.

Meckl, [14], studied the effect of damping and concluded that the system response

worsens with more inherent damping when it is not considered in the command

shaping routine. Command shaping approach proved successful for lightly-damped

systems (ζ < 0.3) and since the two-link robot represents one such lightly-damped sys-

tem, command shaping has been applied in this study without incorporating damping

in the shaping process. The change in both the natural frequencies, ω1 and ω2, with

θ2 is illustrated in Figure 2.4.
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Figure 2.4. Natural frequencies ω1 and ω2 as a function of position
of the second link θ2.
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3. CONSTRAINED COMMAND SHAPING THROUGH NUMERICAL

OPTIMIZATION

This chapter first describes the constructs behind the command shaping approach in

section 3.1, (3.1.2) and discusses earlier methods provided in the literature. Then,

in 3.2, issues related to Gibbs phenomenon or ringing artifacts in the conventional

approach are looked at and their effect on shaping input profiles is studied. In section

3.3, a numerical optimization framework is derived to address the Gibbs effect in

reference to command shaping. Implications of the shaped inputs generated using a

numerical approach are then studied against the inputs from the original formulation

in section 3.4.

3.1 Background

Command shaping removes residual vibrations, essentially by not introducing un-

wanted energy at the system’s natural frequency in the inputs. One of the early

works in modifying the frequency content of an input to suppress vibrations was pro-

posed by Aspinwall [29]. A drawback of this method was considerably longer move

times than a time optimal bang-bang input. Meckl in [13] introduced a technique

to create commands that approximate a bang-bang profile while avoiding resonant

energy content. This method involved the use of harmonics of select basis functions
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and the troughs in the spectrum depended on the number of employed harmonics.

This method was used to design inputs for open-loop controlled systems. Meckl [14]

further extended this method to create a weighted, multi-objective fitness function

that sought to approximate a square wave and penalize the magnitude of the Fourier

transform at critical frequencies in the generated input. Also, a method was proposed

to use the commanded signal in conjunction with a feedback controller. In this re-

spect, the controller and plant were treated as one entity and the commanded input

served as a reference trajectory to the feedback controller. Beazel, [17], extended

the standard command shaping to nonlinear systems with configuration-dependent

resonance. In this work, command shaping is adapted in a similar manner, i.e., to

generate motor trajectories that effectively suppress vibration in the links.

3.1.1 Theoretical Preliminaries

In [13], Meckl derived an analytical relationship between the residual vibration in

a two-mass single-mode system and the Fourier transform magnitude of the forcing

function at the flexible mode of the system,

A∗ = ωnTf |F ∗(ωnTf )| , (3.1)

with A∗ as the dimensionless residual acceleration amplitude, ωn as the two-mass

system natural frequency, Tf as the move time, and |F ∗(ωnTf )| as the dimensionless

Fourier transform of the forcing function. It is defined as,

|F ∗(ωnTf )| =
|F ∗(ωn)|
FmaxTf

, (3.2)
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where Fmax is the maximum value of the forcing function. In this study, shaped signals

are input to the controller as a reference trajectory and refer to an acceleration profile.

In general, the shaped profile is of the form

θ̈rs/v = θ̈d,maxf
∗(t) = θ̈d,max

L∑
l=1

B∗l Φ
∗
l (t), (3.3)

with f ∗(t) being the normalized shaped function ranging between

−1 ≤ f ∗(t) ≤ 1, (3.4)

and then multiplied by the maximum desired acceleration θ̈d,max. In θ̈rs/v, the rs

and v stand for Ramped Sinusoid and Versine, which are the two basis functions

proposed by Meckl in [13, 14]. More details on the basis functions are provided in

section 3.1.2. Therefore, θ̈rs/v satisfies −θ̈d,max ≤ θ̈rs ≤ θ̈d,max. f ∗(t) consists of a

total of L harmonics of the basis function Φ∗(t) and normalized coefficient B∗l , where

l denotes the lth harmonic Φ∗l (t).

The objective function minimizes the residual error between the synthesized com-

mand and a bang-bang profile and also the frequency content around the natural

frequencies, based on Equation (3.1). Thus, the fitness function for the optimization

can be given as,

J =
1

Tf


Tf/2∫
0

[1− f(t)]2dt+

Tf∫
Tf/2

[−1− f(t)]2dt


+ρ

11M∑
i=1

(ωiTf )
2|F ∗(ωiTf )|2,

(3.5)

where M is the number of resonant frequencies to be attenuated. The parameter ρ

is the relative weighting factor between the two objectives. The choice and influence
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of this factor is explored in section 3.4. The magnitude of the Fourier transform

is reduced in a sufficiently broad range around the natural frequencies by evaluat-

ing eleven equally distributed points around each natural frequency in the range of

0.9ωn ≤ ωi ≤ 1.1ωn and providing a tolerance band of ±10% for each frequency. This

range and hence the robustness of the method can be adjusted on a case by case basis.

Equation (3.5) is then partially differentiated with respect to all the coefficients,

Bl, and the derivatives are then set to zero:

∂J

∂Br

= 0, (3.6)

r = 1, 2, ..., L denotes a particular value of l. The analytical expressions for the

ramped sinusoid and versine basis functions can be found in [14]. The coefficients Bl

are then normalized so that Equation (3.4) holds:

B∗l =
1

SF
Bl, (3.7)

where SF is the scaling factor, obtained as

SF = max[f(t)]. (3.8)

3.1.2 Basis Functions

Ramped Sinusoid

The ramped sinusoid basis function was first introduced in [13]. It is given by

Φ∗l (t) =
1

αl

(
1

2
− τ
)

+
1

α2
l

sin(αlτ)− 1

2αl
cos(αlτ), (3.9)
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where τ is the dimensionless time

τ =
t

Tf
, (3.10)

and Tf is the move time of the system and αl is a characteristic number associated

with each harmonic that satisfies the following relation:

αl sinαl + 2 cosαl − 2 = 0, (3.11)

with αl 6= nπ, where n is an even integer. αl for the first ten harmonics is listed in

Table 3.1. The first three harmonics of the ramped sinusoid are plotted in Figure 3.1.

Table 3.1. Value of αl for the first ten harmonics of Ramped Sinusoid.

lthHarmonic Value

α1 -8.9688

α2 -15.4505

α3 -21.8082

α4 -28.1324

α5 -34.4415

α6 -40.7426

α7 -47.0389

α8 -53.3321

α9 -59.6232

α10 -65.9128
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Segmented Versine

In contrast to the ramped sinusoid function that can approximate a full cycle of

a square wave consisting of one acceleration and one deceleration phase, the versine

function approximates a square pulse. For systems with actuator rate limits, square

pulses can be used to drive a system from an initial to a desired velocity state,

maintain that state as needed and then take a deceleration phase.

The versine basis function is given by

Φ∗l (t) = 1− cos (2πlτ) , (3.12)

where l again denotes the harmonic and is a positive integer.

The segmentation of the versine basis function for command shaping was intro-

duced by Beazel [20]. Nonlinear systems could have natural frequencies that span
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Figure 3.1. First three harmonics of the normalized Ramped Sinusoid function.
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over a large band. Efforts to reduce the entire band would be expensive in terms of

the longer move times. Thus, Beazel proposed to divide the trajectory into multiple

segments and attenuate natural frequency based on linearized operating points for

each segment. When the segments are combined, the frequency content of the input

signal changes with time and a small band is surgically attenuated in each segment.

The first three harmonics of the versine function are plotted in Figure 3.2.

To scale the shaped function and to determine θ̈d,max, a factor Γ is utilized. It links

θ̈d,max and θ̈B,B, the required acceleration to move the system to a desired position

with the shaped profile in a specified move time to an equivalent acceleration for a

rigid body with bang-bang profile. This relationship and the expressions for Γ depend

on the basis function and are given by
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Figure 3.2. First three harmonics of the normalized Versine function.
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θ̈d,max,RS = θ̈B,BΓ2
RS, (3.13)

and

θ̈d,max,V = θ̈B,BΓV . (3.14)

ΓRS =

√
3∑L
l=1

B∗
l

αl

, (3.15)

and

ΓV =
1∑L

l=1B
∗
l

. (3.16)

3.2 Motivation

The first term in Equation (3.5) is a least square approximation of a bang-bang

profile, which, simply put, is one cycle of a square wave. The bang-bang solution,

where the actuator generates a constant peak force in either the acceleration or de-

celeration phase, has been proven by mathematicians, [30,31], to be time-optimal for

systems in which all their modes are controllable at all times. However, due to the

discontinuity at the transition from peak positive to peak negative, the approximation

of this function using a finite number of harmonics of a basis function is challenging.

3.2.1 Gibbs Phenomenon

A least square fit to a square wave essentially encounters a problem known as

Gibbs phenomenon. Also termed as ringing artifacts, it is the peculiar behavior of
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the Fourier series of a piecewise continuous differentiable function f at a jump discon-

tinuity in which the nth partial sum of the Fourier series shows oscillations near the

point of the jump. It was first analyzed by Josiah W. Gibbs in 1899, who pointed out

that the ringing was a mathematical problem and would always arise during Fourier

series synthesis of a discontinuous function. The overshoots and undershoots are the

result of approximating a discontinuous function using a finite number of harmonics

of continuous basis functions. The partial sum Fourier series approximation using

different number of harmonic terms is represented in Figure 3.3.

3.2.2 Mathematical Description of Gibbs Phenomenon

Let f : < → < denote a piecewise continuously differentiable function with a

period of L > 0 . Also, let x0 be the point of discontinuity with a non-zero gap of a,

between the right limit f (x+
0 ) and left limit f (x−0 ) of the function f .

f (x+
0 )− f (x−0 ) = a 6= 0. (3.17)

Let SN f be the N th partial Fourier series (for each integer N ≥ 1 ),

SNf(x) :=
∑

−N≤n≤N

f̂(n)e2πinx/L

=
1

2
a0 +

N∑
n=1

an cos

(
2πnx

L

)
+ bn sin

(
2πnx

L

) (3.18)
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Figure 3.3. Gibbs Phenomenon: A demonstration for square wave.

where the Fourier coefficients f̂ (n), an , bn are given by their usual definition as

f̂(n) := 1
L

∫ L
0
f(x)e−2πinx/Ldx

an := 2
L

∫ L
0
f(x) cos

(
2πnx
L

)
dx

bn := 2
L

∫ L
0
f(x) sin

(
2πnx
L

)
dx

(3.19)
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Using basic calculus we can now evaluate the summation around the break-point, and

take the limits to get

lim
N→∞

SNf

(
x0 +

L

2N

)
= f(x+0 ) + a.(0.0894) (3.20)

and

lim
N→∞

SNf

(
x0 −

L

2N

)
= f(x−0 ) + a.(0.0894) (3.21)

As can be noticed in Figure 3.3, as the number of terms increases, the width

of the overshoot decreases, but the height converges to a fixed amount. This fixed

amount, as calculated in Equations (3.20) and (3.21), shows that the overshoot and

the undershoot on either side of the discontinuity equal to a.(0 .0894 ). Primarily,

Gibbs phenomenon reflects the inherent difficulty in approximating to a discontinu-

ity using a finite number of continuous sinusoidal basis functions. The smoothness

of a function is closely related to the rate of decay of Fourier coefficients at higher

frequencies. Functions with discontinuity will have slow convergence of the Fourier

series due to slowly decaying coefficients. Converging coefficients or coefficients with

absolute convergence will have uniformly convergent approximations by Weierstraas

M-test and would subsequently not show any oscillatory behavior. In signal process-

ing, the Gibbs phenomenon is frequently encountered in filter design where Brick wall

characteristics are generally required of most filters, which have sharp transition from

passband to stopband. An ideal lowpass filter translates to a sinc function (sin(x)/x)

in the time domain, with an infinite duration. In practical designs, this sinc function

is truncated appropriately to realizable time durations, which then leads to wiggles at
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the transition in the frequency domain. This problem is ameliorated usually by using

smoothly tapered windowing techniques like Hanning, Blackman, Kieser windows,

etc. Other methods attempt to get a smoother summation of the Fourier series, such

as Fejr summation or Riesz summation, [32] or by applying a wavelet transform using

Haar basis functions, [33].

3.3 Numerical Optimization Solution

The blips in the least square fit to the bang-bang profile, at the break-point, are

detrimental to performance in the design of shaped profiles. These blips symbolize

the non-uniform decay of the coefficients of the basis function harmonics. Thereby,

the overshoots and undershoots at the transition occur from the energy in the signal

constituted by higher frequency harmonics. So, when a penalty is added in the cost

function to remove energy at natural modes of the system, more energy gets pumped

into these higher energy peaks. This results in nervous looking shaped profiles at

the transition from acceleration to deceleration phase and eventually demand high

intermittent torques to drive the system to the desired end point.

As shown in section 3.1.1, the trajectory design routine solves a multiobjective

optimization problem where it determines the coefficients for the chosen basis func-

tion that minimize the appropriately defined penalty function. This implies that the

coefficients can not be directly manipulated through the use of windowing techniques

or smoother summation methods and the solutions described in section 3.2.2 don’t

lend themselves particularly useful to the command shaping formulation. Therefore,
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in this work a method is presented to resolve the Gibbs phenomenon through opti-

mization to obtain smoother bang-bang profile approximations. This is achieved by

constraining the penalty function and laying out a numerical optimization framework

that solves for basis function coefficients iteratively while subjected to linear and

nonlinear constraints.

Objective Function and Constraints

The analytical formulation as proposed in [13], [14] involves scaling of the coeffi-

cients, obtained from optimization, to normalize the peaks of the shaped profile and

satisfy Equation (3.4). However, the coefficients can be prescaled to normalize the

function being approximated and include it in the cost function. Doing this would

force the choice of coefficients such that there are no peaks crossing the bound. We

begin with an initial set of coefficients,

Bl = [B1, B2, ........BL] (3.22)

and as earlier, we find scale factor SF from Equation (3.24) to get

B∗l = [B∗1 , B
∗
2 , ........B

∗
L] (3.23)

where

B∗i = Bi/SF, (3.24)



37

L is the total number of harmonic coefficients. Now we can write the updated cost

function as,

J =
1

Tf

[∫ Tf

0

[ubb − f ∗(t)]2dt
]

+ ρ
11M∑
i=1

(ωiTf )
2|F ∗(ωiTf )|2, (3.25)

where

f ∗(t) =
L∑
l=1

B∗l Φ
∗
l (t) (3.26)

and ubb denotes a complete cycle of the bang-bang profile. For now, we just focus on

the least square fit to a bang-bang function to look at the difference due to prescaling

of the synthesized function f , thus, ρ in Equation (3.25) is zero. Figures 3.4 and

3.5 show the approximated profiles with Ramped Sinusoid basis functions. These

profiles represent the acceleration input required to displace the target system by

a unit magnitude. As mentioned in subsection 3.1.2 and in Equation (3.15), the

acceleration profiles need to be scaled to overcome the loss of energy due to errors in

approximation, and hence the obtained profiles have peaks greater than unity.

Looking at the two profiles, it can be noticed that bounding the force function

amplitudes gets rid of overshoots, however, ringing in the form of undershoots still

persists. Also, in Figure 3.5, it can be seen that the decay of coefficients is faster

than the case in Figure 3.4 but there is still non-uniformity at higher frequencies. So,

constraining the function alone doesn’t serve the purpose of smoother fits.

The Least Square Error (LSE) formulation is an L2-norm and is basically mini-

mizing the sum of squared error of the fit. Statistically speaking, LSE is more stable,

i.e., it is not affected by any outliers or a small change in one of the datums. However,
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Figure 3.4. Bang-bang approximation using analytical formulation.
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Figure 3.5. Bang-bang approximation using constrained formulation.
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LSE is not robust. By virtue of looking at square of error, it puts more emphasis on

residuals that are larger. This increases the rate of transition at the discontinuity,

(f(0+) + f(0−))/2, and provides acute or high derivatives at the cost of not approxi-

mating the function well at points of overshoots or undershoots. A truncated Fourier

series, as analyzed in section 3.2.2 is also the best approximation to the desired func-

tion in an L2 sense. Because there is a limit to how large a value the derivative of a

trigonometric polynomial can assume, it bodes well to fit a polynomial by gathering

speed at transition across a discontinuity and overshooting on either side.

In this study, however, smoothness of approximation is more important in the

sense of command shaping for reasons outlined earlier. Therefore, we shift our focus

to L1-norm function, also termed as Least Absolute Deviation (LAD). It basically

aims to minimize the sum of absolute errors in the fit, thereby weighting all the

errors equally. Unlike L2-norm, L1-norm can not be solved analytically and needs

more computational resources to find a solution. However, since the shaped functions

are generated offline, it does not pose an issue. A numerical optimization approach

is taken to obtain the L1 function solution. Under this, the first objective of the cost

function can be rewritten as,

J bbL1 =
1

Tf

N∑
i=1

|uBB(ti)− f ∗(ti)| (3.27)

where f ∗(t) is the same as defined for Equation (3.25) andN = Tp/dt, dt is the discrete

step size for evaluation of numerical error points. In Figure 3.6, we can notice that

the ringing effects in the approximation have disappeared and also that the rate of

decay at higher frequency is now uniform. This has resulted in uniform convergence
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Figure 3.6. Bang-bang approximation using numerical L1-norm formulation.

of the fit across each peak of the synthesized profile. Similar results are obtained for

shaping the bang-bang profile using Versine basis functions, Figure 3.7. Therefore,

we have resolved the ringing artifact issue through applying a constrained numerical

optimization approach. The overall cost function including the second objective can

be given as,

JL1 = J bbL1 +
ρ

TP

kM∑
i=1

(ωiTf )
2|F ∗(ωiTf )|2︸ ︷︷ ︸

Jωn

(3.28)

where Jωn is the objective function for penalizing the frequency content around the

natural frequency ωn , k is the number of equally distributed points around each of

the M natural frequencies of the system.
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(a) Bang-bang approximation using analytical formulation

(b) Bang-bang approximation using constrained formulation.

(c) Bang-bang approximation using numerical L1-norm formulation.

Figure 3.7. Least Absolute Error fit using Versine basis function.
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The general layout of the proposed method can now be summarized as in Figure

3.8,

min
Bl

JL1(Bl, Tf , ωn, ρ) such that

{
−1 ≤

L∑
l=1

B∗l Φ
∗
l (t) ≤ 1 (3.29)

Figure 3.8. Numerical Optimal Solution Routine.

In order to determine the attenuation of frequency content around each of the

flexible modes, the expressions for J ωn in the cost function JL1 can be calculated

using a simple Fourier transform as,

F (ω) =

Tf∫
0

F ∗(t)e−iωtdt (3.30)

where F ∗(t) is denoted the same as in Equation (3.26) and Tf again represents the

move time. For Versine, Tf = TV nseg, where nseg is the number of segments in the
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profile and TV is the move time of each of these individually shaped segments. Now,

the respective frequency spectra expressions for the Ramped Sinusoid and Versine

can be given by

|F ∗(ω)|RS =

∣∣∣∣∣2 sin(ωTf/2)− ωTf cos(ωTf/2)

(ωTf/2)2

L∑
l=1

B∗l αl

α2
l − (ωTf )

2

∣∣∣∣∣ (3.31)

and

|F ∗(ω)|V =

∣∣∣∣∣2(2π)2sin2(ωTV /2)

(ωTV )

L∑
l=1

B∗l l
2

(2πl)2 − (ωTV )2

∣∣∣∣∣ (3.32)

3.4 Influence of Weighting Factor

Having established a solution for Gibbs phenomenon, it is important to under-

stand the tradeoffs that occur in the process. Especially, a closer look is required

to inspect the behavior of the second objective in the optimization, i.e., removal of

frequency content around the resonant modes. The weighting factor, ρ, between the

two competing objective functions governs the overall nature of the shaped input.

More penalty on frequency attenuation will remove more and more energy at the

spectral location of the natural modes, thereby giving us better residual vibration

performance profiles but commands that are more skewed in comparison to the ref-

erence bang-bang. Because of removal of more energy, higher penalty would mean

higher scaling of the normalized input to reach the desired destination point. This

would in turn impose higher demand on the actuators to meet the peak acceleration

input without introducing additional nonlinearities due to saturation.
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For the cost function in Equation (3.28), it would be intuitive to think that higher

weighting factor would essentially lead to more attenuation and better performance.

However, in a multiobjective setting and due to the nature of tradeoffs, that might

not necessarily be the case. Increasing ρ beyond a certain value could skew the accel-

eration profile such that no more attenuation could be exercised without increasing

the error of fit. In such a case, increasing the penalty would adversely affect the

attenuation and the optimization would search in a solution space where it attempts

to minimize the fitness error first. There is a need to better understand this tradeoff

against ρ. Therefore, in this section, we have attempted to quantify the variation

of attenuated energy at a frequency window and the peak input acceleration with ρ.

This study will generate mappings that could be used to select optimum weighting

factor based on performance requirements and actuator limits. These mappings have

also been utilized to compare the performance of the constrained numerical approach

in reference to the analytical solution.

Since the flexible-joint robot in this study has two resonant modes, we attempt

to attenuate energy at both the modes in the design of shaped profiles. A good

estimate to calculate the effective attenuation through a single parameter is to obtain

the scaled magnitude as,

|F (ω12)| = ω1 |F (ω1)|+ ω2 |F (ω2)| (3.33)
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where F (ω1) and F (ω2) are the average magnitude at the two attenuated spectral

window around each natural frequency and are calculated by,

|F (ωn)| =
N∑
i=1

|F (ωi)|

/
N (3.34)

where ωi is calculated at N equally divided points between 0.9ωn ≤ ωi ≤ 1.1ωn.

Figures 3.9 and 3.10 illustrate the effect of ρ on Γ as defined for each of the two

basis functions in Equations (3.15) and (3.16), and the scaled attenuation. Γ here

is indicative of the peak acceleration in the shaped input scaled on a unit bang-

bang acceleration profile. It can be observed that these variations against ρ are

largely monotonic for each of the four cases with larger attenuation leading to larger

desired acceleration peaks. However, our interest lies in exploring the effect of the

constrained numerical optimization approach on these parameters in comparison to

the conventional analytical method to generate shaped inputs. From the data markers

in Figure 3.9(a) and Figure 3.9(b), it can be noted that for a similar Γ value of 30,

the average attenuation achieved in case of the numerical approach, 8.89 dB, is larger

than its counterpart in the analytical method, 9.178 dB. Also, a given attenuation of

the order of 8.2 db, is designed at a lower Γ value of 46.66 in the constrained numerical

optimal solution compared to 70.74 in the closed form solution. Similar observations

can be made for the Ramped Sinusoid profiles in Figure 3.10. Between Figures 3.9

and 3.10, it can also be noted that the Ramped Sinusoid profiles generally are able to

achieve better attenuation at the desired frequencies than their Versine counterparts.

Although more exploration is needed to reason this behavior, initially it is suspected

that the symmetrical nature of Versine profiles does not allow as good a tradeoff
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(a) Closed form analytical formulation.

(b) Constrained numerical optimization formulation.

Figure 3.9. Influence of ρ on shaped profiles: Versine.
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(a) Closed form analytical formulation

(b) Constrained numerical optimization formulation.

Figure 3.10. Influence of ρ on shaped profiles: Ramped Sinusoid.



48

between minimizing the error of fit to the bang-bang and removing energy at spectral

location of flexible modes. In the next chapter, the implications of this difference

between the two characteristic basis functions on reducing the residual vibrations in

the robot would also be investigated through experimental analysis.

(a) Closed form analytical formulation

(b) Constrained numerical optimization formulation.

Figure 3.11. Relative redistribution of energy at intermediate modes: Versine.

It would seem counter intuitive at first that there is not a penalty of some sort

to smoother approximation of the bang-bang function. Comparatively more energy
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removal should imply the need for higher scaling and in turn higher input peaks or

that with a lower demand on input peak the attenuation should be compromised.

To better understand this peculiar tradeoff, a closer look is taken for a sample case.

In Figure 3.11, for a unit displacement of the end effector, the inputs are designed

to have similar energy at a window around the two natural frequency modes, viz.

3.79 rad/s and 15.3 rad/s. A maximum acceleration in the analytical input is at

30 rad/s2 and in the constrained numerical approach case it is 16.5 rad/s2. We

can, however, notice the pattern observed earlier in Figure 3.6, where the energy

at higher frequency components is uniformly decreasing. This pattern stays put

even after penalizing for critical frequency content removal and in effect redistributes

the energy to intermediate frequencies, between 20 and 50 rad/s in Figure 3.11(b).

Doing this permits the removal of intermittent surges or spikes in the input at the

discontinuity. In that sense, we are able to design inputs that need not exploit the

maximum available acceleration and also do the intended job of suppressing residual

vibrations by neglecting the joint resonant frequencies.
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4. APPLICATION TO THE ROBOT

Now that the proposed numerical approach for command shaping has been studied

in respect to major attributes of the input, attenuated energy and maximum desired

force, this chapter will focus on validating the performance of the proposed approach

and establishing comparative analysis to the conventional command shaping solution.

Section 4.1 first outlines the setup of the robot experimental platform, then in Sec-

tion 4.2 multiple performance metrics have been defined and discussed to quantify

performance of the test profiles. Section 4.3 discusses a simulation model of the robot

system and also describes the effect of parametric mismatch between the controller

and the plant. Lastly, in Section 4.4, the vibration performance of shaped commands

has been tested and analyzed in experiments on the two-link robot.

4.1 Robot Experimental Set-up

Each of the two joints of the experimental robot, setup in the Ruth and Joel

Spira Laboratory for Electromechanial Systems at Purdue University, is actuated by

a permanent magnet DC motor. The first link is driven by a motor with maximum

torque of 2.47 Nm at 21.2 A and a torque constant of 0.118 Nm/A. The second link

is driven by a frameless Inland T-3108-A torque motor that has a torque constant of

0.61 Nm/A and a maximum torque of 1.35 Nm at about 2 A. Each motor is driven
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Figure 4.1. Schematic of the two-link robot experiment set-up.

by an Advanced Motion Control brushless pulse-width-modulated transconductance

servo amplifier that converts input voltage commands into current commands. To

measure the positions of the two joints and two links, four incremental optical en-

coders each having a resolution of 4000 counts per revolution have been used. Finite

differences with a fourth-order Butterworth filter are used to obtain velocities. Two

capacitive accelerometers, with a sensitivity of ±2g, have been mounted at the end

of each link length to measure accelerations. These measurements have been used

in defining and calculating the performance metrics that are used to characterize vi-

bration performance. Two current sensors have also been utilized to measure motor

current, which is proportional to motor torque.
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National Instruments’ LabVIEW software running in conjunction with the Real

Time Module is used for data acquisition. A schematic of the overall setup is shown

in Figure 4.1. The user interacts with a host PC, where the controller is programmed.

The target PC executes the controller to ensure fast real-time processing, and is con-

nected with NI 7831R module, which provides multiple digital and analog I/O to col-

lect sensor data and send out current commands to the motors. These input/output

channels are controller by a reconfigurable Field-Programmable Gate Array (FPGA),

which enables fast preprocessing and sampling of the input signals. The controller on

the LabVIEW real-time system has been configured to sample at 2 kHz.

For simulation analysis and experimental verification, a point-to-point movement

of both links from the initial state θ1,i = 0 rad and θ2,i = 0 rad to the final state

of θ1,f = 1.2 rad and θ2,f = 1.2 rad with a move time of 2 seconds is chosen as the

benchmark problem.

4.2 Performance Metrics

To study the effectiveness of the generated commands, it is necessary to be able to

measure the residual vibration in the system. The two most important characteristics

of residual vibration are (1) the vibration amplitude and (2) the settling time. Resid-

ual vibration measurement for nonlinear, multimode systems can be tricky and so far

most of the vibration measurement methods presented in the literature discuss linear

single-mode systems. For such systems, closed-form expressions for settling time or

residual vibration can be analytically derived. Moreover, most of these methods are
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applicable to input shaping techniques [11], which derive information from the sys-

tem model to generate the shaped input. Vibration amplitudes and settling times for

single-mode system are usually calculated by fitting dissipation envelope to the re-

sponse. However, for a multimode, nonlinear system, where the envelope depends on

coupling and interaction of the modes, application of such methods is not straight-

forward. Therefore, in this work, an attempt has been made to calculate residual

vibration through single standard parameters, in reference to a two-link flexible-joint

robot, through experiments. In effect, this is achieved by considering the motion of

end-effector point B in Figure 4.2. We need to do a basic vector analysis to derive

the planar acceleration of the end-effector in terms of available sensor measurements.

Note that the base of link 2, point A, is a non-inertial frame of reference. Therefore,

we can represent the system using the following vector notation. For position vector

Figure 4.2. Vector diagram of the robot kinematic chain.
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−→
OA = R1î1 and the velocity vector

.−→
OA = R1ω1ĵ1, the acceleration vector can be

written as,

..−→
OA =R1ω

2
1 k̂1 × ĵ1 +R1ω̇1ĵ1

=−R1ω
2
1 î1 +R1ω̇1ĵ1

(4.1)

Similarly, for the end-point B, the acceleration vector can be derived by:

−−→
OB =

−→
OA+

−→
AB

=R1î1 +R2î2

(4.2)

.−−→
OB =R1

d̂i1
dt

+R2
d̂i2
dt

+ Ṙ1î1 + Ṙ2î2

=R1ω1 k̂1 × î1 +R2ω2 k̂2 × î2

(4.3)

..−−→
OB =R1ω

2
1 k̂1 × ĵ1 +R2ω

2
2 k̂2 × ĵ2 +R1ω̇1ĵ1 +R2ω̇2ĵ2

=−R1ω
2
1 î1 −R2ω

2
2 î2 +R1ω̇1ĵ1 +R2ω̇2ĵ2

(4.4)

..−−→
OB can be represented in base frame of link 2 as,

..−−→
OB = (∗) î2 + (∗) ĵ2 (4.5)

where * is a short-hand notation for components that need to be calculated. So, the

translation between the two frames can be given by,

î2 = cos θ2 î1 + sin θ2 ĵ1

ĵ2 = sin θ2 î1 + cos θ2 ĵ1

(4.6)
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and the transpose matrix from

[
î1 ĵ1

]
to

[
î2 ĵ2

]
as,

 î1

ĵ1

 =

 cos θ2 sin θ2

− sin θ2 cos θ2


︸ ︷︷ ︸

T

 î2

ĵ2

 (4.7)

Now, we have

..−−→
OB =

[
−R1ω

2
1 R1ω̇1

] î1

ĵ1

+

[
−R2ω

2
2 R2ω̇2

] î2

ĵ2



=

([
−R1ω

2
1 R1ω̇1

]
T +

[
−R2ω

2
2 R2ω̇2

]) î2

ĵ2



=

[
−R1ω

2
1 cos θ2 +R1ω̇1 sin θ2 −R2ω

2
2 −R1ω

2
1 sin θ2 +R1ω̇1 cos θ2 +R2ω̇2

] î2

ĵ2


(4.8)

Equation (4.8), thus, allows us to obtain the net translatory acceleration at the end-

tip in terms of available measurements of angular positions and angular velocities

from the encoders and linear acceleration components from the accelerometers. The

vibration amplitude can now be determined using one of the following two methods.

First, in the acceleration domain, the residual amplitude can be obtained by:

arv(t) = max(a(t))−min(a(t)) (4.9)

where

a =
√
a2x + a2y (4.10)
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with ax and ay representing the î2 and ĵ2 components of
..−−→
OB and ti ≤ t ≤ tf , with ti

denoting the command completion time and tf the overall run time of the experiment.

The net excursion can also be written in terms of maximum residual displacement of

a response from the equilibrium as

∆xy =
√

∆2
x + ∆2

y (4.11)

where ∆x,∆y are the deflections about the equilibrium after the completion of the

command.

Lastly, to study the dissipation performance of the vibration in a response, a

settling time measure is defined. It is calculated by scanning the acceleration response

in Equation (4.10) to find the maximum time, ts, for which the response stays above

the vibration tolerance. This tolerance is designed by experience and looking at

the noise floor in measurements of the constituting components in the signal. These

three methods have been used to characterize and compare the performance of several

different shaped profiles.

4.3 Simulation Analysis

A simulation model of the two-link robot is utilized to evaluate the system response

under different parametric variations. In the simulation environment, practical limi-

tation that are encountered in the real system have also been incorporated to maintain

best possible consistency between the simulated and the experimental results. Iden-

tical to the specifications in Section 4.1, a sampling rate of 2 kHz is used for the
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simulated controller and the quantization effect of four encoders with finite resolution

(4000 steps/revolution) is considered in simulated sensor feedback. In addition, the

quantization due to Digital-to-Analog conversion of current command signals through

the NI 7831R is also included in the model. Since encoder measurements only provide

position feedback, the online velocity calculation through backward finite differences

in LabVIEW system is emulated similarly in the simulation environment. A 4th-order

Butterworth filter with a cut-off frequency at 60 Hz is included to reduce of the noise

due to numerical differentiation. Thus, small phase delays due to the filter and finite

differences are introduced in the system.

To meaningfully assess the extent to which the vibration suppression performance

of the shaped input can be predicted by the spectral magnitude of the critical frequen-

cies, it is important to look at system response against varying attenuation levels. In

Figure 4.3, for the closed-form ramped sinusoid profiles, the residual oscillations in

the simulated response has been mapped against increasing weighting factor ρ. It

is important to note here that only peak-to-peak residual accelerations have been

considered to quantify the vibration amplitude. For simulation study, residual accel-

eration has been used to represent the amplitude of vibration.

Since the computed torque method includes a model-based portion, the controller

has Coulomb friction terms and, thereby, a sign(·) function appears in the control law.

This function can result in chattering in the control output and although this effect

is ameliorated by amplifier and motor dynamics in the real experiment, the chatter

directly influences the motor torques in simulations. In Figure 4.3(a), the simulation
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results show the variation in settling time and residual acceleration, as defined in

Section 4.2, with ρ when the Coulomb friction terms in the model-based portion

have been neglected. To understand the effect of parameter variations, in Figure

4.3(b), the results are recorded for a case with purposely designed parameter mismatch

between the model-based part of computed torque and the robot plant. Since most

of the inaccuracy lies in estimating friction effects, the mismatch has been specifically

built in friction and damping parameters in the model-based part, where the viscous

damping matrix elements are increased by 50% and to still keep the Coulomb friction

low, 20% of estimated values for the Coulomb friction are used. The parameters in

the plant, however, were not changed. Therefore, in the first case, Figure 4.3(a), apart

from the neglected Coulomb friction and small differences between the complete and

the reduced Lagrangian model which is used to derive the trajectories, the dynamic

behavior is fully known. This, however, is not possible in experiments where the actual

physical parameters are not known and the mathematical model only imperfectly

captures the robot behavior.

Two important observations can be made from Figure 4.3: the vibration per-

formance largely improves with increasing ρ, in both respects ts and arv, until a

point where saturation of actuators comes into effect, and the performance deterio-

rates quickly. For the first case, Figure 4.3(a), in the absence of friction effects in the

controller, the settling times and residual amplitude are both smaller than their coun-

terparts in Figure 4.3(b). Also, in the case of mismatched parameters, the saturation

effects come into play at a relatively smaller value of ρ. Through more advanced
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design of experiments or nonlinear identification methods such as a neural network,

a specific set of mismatched parameters can be built in the simulation model so that

it could more closely predict the experimental response of the robot.

4.4 Experimental Results

To gain better insight on performance of the proposed numerical approach and

how it compares to the closed-form method of command shaping, it was decided to

test and study various shaped profiles in application to the robot platform. After

looking at design simulations to compare and highlight important features of the two

shaping methods, the analysis in this is focused towards evaluating the performance

of the two shaping routines. Since the simulation model does not lend a lot of insight

due to susceptibility to parameter mismatch between the feedforward block and the

plant, to draw more meaningful and consistent inferences, only experimental results

are discussed in this section.

Multiple sets of command profiles, both for the versine and the ramped sinusoid,

have been compared under two fundamental conditions. Tables 4.1 and 4.2 list the

basis of comparison on the left and the respective performance of each profile in terms

of the three metrics, defined in Section 4.2, on the right. In the first condition, our

interest is in constraining the maximum commanded acceleration θ̈d,max or Γ in the

input and then evaluating the amount of vibration in the system. In contrast, in the

second condition, the focus is on investigating cases with similar levels of spectral

magnitude or scaled attenuation at the system natural frequency, as defined in Equa-
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(a) No friction in the model-based part of the computed torque controller.

(b) Parameter mismatch between the model-based part and the plant.

Figure 4.3. Simulation results for different model parameter cases.
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tion (3.33), and studying what demands the shaped input places on the actuators and

how well it fares in its vibration performance considering identical levels of resonant

energy in the input. These cases were constructed offline by plotting the variations of

F (ω12) and Γ, as defined in Equations (3.13) and (3.14), against the weighting factor

ρ and thereby selecting appropriate inputs for either fixed Γ or F (ω12), Figures 3.9

and 3.10.

Figures 4.4 to 4.11 show four different versine cases each for the closed-form ap-

proach and the numerical approach, for a move time of 2 seconds. Vcf and Vnum

denote the closed-form and numerical profiles for the versine. A similar notation is

used for the ramped sinusoid, shown in Figures 4.12 to 4.19. Each figure shows the

desired and actual motor angles, θ3 and θ4, the desired input acceleration, θ̈3,4,d, and

its frequency spectrum, motor torques, T1 and T2 and the link accelerations, θ̈1,2.

In all of the experimental results, it can be seen that there are small steady-state

errors in the tracking of motor trajectory, θ3,4. Since there is no integral term in

the controller, these offsets are expected. It essentially results in the robot links

not reaching the desired final position at times. However, the focus of this work

lies in residual vibration reduction and the presence of these steady-state errors is

secondary. An unshaped bang-bang, Figure 4.20, and an inverse kinematic profile,

Figure 4.21, have also been considered as an alternate to the command shaped inputs.

In general, most of the shaped profiles comfortably outperform either of these two

alternate approaches. Note that for inverse kinematics, the residual acceleration is

lower than all of the versine profiles, Table 4.1. This observation can be attributed to
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the fact that inverse kinematic profiles are highly conservative and have minimal high

frequency components, which leads to lower residual acceleration recordings but the

position residuals and the settling times are both always poorer than either ramped

sinusoid or versine profiles.

In Figures 4.4 and 4.5, it can be seen that for input profiles with maximum θ̈3,4,d

at 129rad/s2, the numerical form solution does not show spikes at transition between

the nominal acceleration and deceleration phases and has a faster settling time than

the counterpart in the closed-form method. Similar behavior can be observed using

another Γ constrained case in Figures 4.6 and 4.7. It is important to note that in

Figure 4.7, the commanded input θ̈3,4,d is completely bounded in contrast to sharp de-

generacies observed in closed-form profiles, Figures 4.6, 4.8 and 4.10. In the case with

similar frequency attenuation F (ω12), Figures 4.8 and 4.9, an important observation

is that performance of the two methods is more or less equal with settling time ts of

the order of 1.85 s. However, in the case of the numerical solution the demand put on

actuators is considerably less, with peak acceleration in the input to be 29.13 rad/s2

compared to 100.5 rad/s2 for the analytical approach. Again, the difference can be

clearly seen while looking at the bounded form of the input acceleration in Figure

4.9. This form qualitatively resembles a multi-switch bang bang solution as proposed

by Meckl in [13]. However, this solution has not made use of any additional model

information in generating the shaped command.

When looking at the influence of the weighting factor ρ, it is clear that in the range

of considered cases, increasing ρ has consistently resulted in improved settling times.
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However, the vibration amplitude has gone up in several cases, i.e., for Vcf ρ = 1000

to Vcf ρ = 10000. This can partly be attributed to larger high-frequency harmonics in

case of Vcf ρ = 10000, which is confirmed by more spikes in the accelerometer signal.

This behavior is not evident in case of the numerical-form solution for the versine.

Similar inferences can be drawn for the two approaches in case of ramped sinusoid

profiles as well. For a fixed actuator limit or an upper bound on ΓRS, the analytical

solution performance is exceeded by the numerical approach, Figures 4.12 to 4.15.

When looking at the Fourier plots of the shaped inputs, it can be noticed that, with

increasing ρ, the troughs around the two natural frequencies get more pronounced and,

hence, lead to larger peaks in the input. In general, the numerical-solution ramped

sinusoid profile with ρ = 1550, Figure 4.19, achieves the least residual oscillations and

also the input profiles are fairly moderate in ampltidue.

The ramped sinusoid, like the versine, shows spikes during transit from accelera-

tion to deceleration phase. However, for the ramped sinusoid, these peaks are much

higher and, for safety reasons, the driving torque for the second motor in Figure 4.18

was saturated. The effect of saturation can be seen in imperfect trajectory tracking.

This further strengthens the need to avoid degenerate trajectory profiles that require

oversized actuators. A bounded numerical-form solution does not compromise on per-

formance, at the same time generating moderate input trajectories, which avoid the

need for supplying high torques intermittently and thus proving to be more efficient.

Removing the Gibbs effect in approximation of the bang bang, therefore, results in

inputs that more effectively use the available torque without negatively impacting
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the performance. These results further corroborate the findings in Chapter 3, where

it was concluded that uniform convergence of coefficients results in better utilization

of available energy and improves performance of the shaped profiles.

Table 4.1. Residual vibration performance of Versine profiles.

Comparison

Basis

Profile ρ
∆xy

(rad)

arv

(m/s2)

ts

(s)

θ̈d,max

(rad/s2)

20.9 ≤ Γv ≤ 21.7

Vcf 1000 0.0454 0.7917 1.0130 129.8

Vnum 10000 0.0332 0.7921 0.9755 125.6

29.6 ≤ Γv ≤ 30.1

Vcf 2000 0.0458 0.9788 1.764 180.1

Vnum 15000 0.0333 0.7904 0.8805 177.6

Scaled Magnitude

=9.68 dB

Vcf 500 0.0452 0.8080 1.8550 100.5

Vnum 1250 0.0437 0.7811 1.8435 29.13

Scaled Magnitude

=8.16 dB

Vcf 10000 0.0251 1.0130 0.8200 354.4

Vnum 25000 0.0201 0.7300 0.8000 276.3

Bang-Bang 0.2337 2.1068 3.8420 6

Inverse Kinematics 0.0616 0.6198 1.9355 16.45
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Table 4.2. Residual vibration performance of Ramped Sinusoid profiles.

Comparison

Basis

Profile ρ
∆xy

(rad)

arv

(m/s2)

ts

(s)

θ̈d,max

(rad/s2)

3.47 ≤ ΓRS ≤ 3.5

RScf 1.5 0.0424 0.8515 0.9260 75.59

RSnum 141 0.0116 0.8016 0.7715 72.65

4.99 ≤ ΓRS ≤ 5

RScf 16 0.0110 0.4915 0.7575 149.7

RSnum 2900 0.0045 0.3902 0.4040 152.8

Scaled Magnitude

=1.741 dB

RScf 56 0.0108 0.4825 0.8575 194.6

RSnum 96 0.0085 0.7311 0.6175 69.37

Scaled Magnitude

=0.1 dB

RScf 900 0.0164 0.7436 0.8305 796.1

RSnum 1550 0.0041 0.1786 0.1645 113.1

Bang-Bang 0.2337 2.1068 3.8420 6

Inverse Kinematics 0.0616 0.6198 1.9355 16.45



66

Figure 4.4. Experimental result for closed-form versine with ρ=1000.
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Figure 4.5. Experimental result for constrained numerical-form ver-
sine with ρ=10000.
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Figure 4.6. Experimental result for closed-form versine with ρ=2000.
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Figure 4.7. Experimental result for constrained numerical-form ver-
sine with ρ=15000.
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Figure 4.8. Experimental result for closed-form versine with ρ=500.
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Figure 4.9. Experimental result for constrained numerical-form ver-
sine with ρ=1250.
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Figure 4.10. Experimental result for closed-form versine with ρ=10000.
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Figure 4.11. Experimental result for constrained numerical-form ver-
sine with ρ=25000.
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Figure 4.12. Experimental result for closed-form ramped sinusoid with ρ=1.5.
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Figure 4.13. Experimental result for constrained numerical-form
ramped sinusoid with ρ=141.
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Figure 4.14. Experimental result for closed-form ramped sinusoid with ρ=16.
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Figure 4.15. Experimental result for constrained numerical-form
ramped sinusoid with ρ=2900.
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Figure 4.16. Experimental result for closed-form ramped sinusoid with ρ=56.
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Figure 4.17. Experimental result for constrained numerical-form
ramped sinusoid with ρ=96.
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Figure 4.18. Experimental result for closed-form ramped sinusoid with ρ=900.
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Figure 4.19. Experimental result for constrained numerical-form
ramped sinusoid with ρ=1550.
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Figure 4.20. Experimental result for an unshaped bang-bang profile.
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Figure 4.21. Experimental result for an inverse kinematics profile.
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5. CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and Conclusions

In this work, the command shaping approach has been extended in the form

of a constrained numerical optimization problem. The Gibbs effect that occurs for

discontinuous function approximation inherent to the command shaping technique is

studied. Possible causes for the ringing artifacts in the approximated function were

identified and, more importantly, their implications to the design of command inputs

was studied. Through simulations for design of commanded profiles, the tradeoff

between critical energy attenuation and error in fit to the time-optimal bang-bang

function was explored. It was found that with L2-norm approximations of the bang-

bang reference, when the detrimental resonant energy is attenuated in the inputs, the

redistribution of energy takes place in a manner such that more energy gets pumped

into the blips that are present due to the Gibbs phenomenon. Because of this, as

more attenuation was sought, the peaks in the input took even higher values with

sharp spikes at the discontinuity.

After demonstrating the ill-effects of the undesired oscillations around the jump

discontinuity, a constrained numerical approach was introduced to obtain the L1-norm

approximation of the square wave cycle for both the versine and the ramped sinusoid

functions. It was observed that the numerical L1-norm generates much smoother
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approximations, even at the discontinuity, and leads to faster decay of harmonic co-

efficients and more uniform convergence across the period of the bang-bang. And

when the resonant frequency content is penalized, the energy is now redistributed to

intermediate modes in a manner that keeps the acceleration profiles bounded without

sacrificing attenuation performance. By observing the payback between the two com-

peting objectives of the cost function, the variations of maximum input acceleration

demand on the actuator and the flexible mode energy were simultaneously analyzed

against an increasing weighting factor on frequency attenuation, ρ. It was observed

that, beyond a point in the solution space, the error of fit to the bang-bang function

starts dominating the penalty on frequency, and the solution ventures into regions

that are suboptimal with respect to both objectives. Therefore, by exploring this

multiobjective interaction, a method has been outlined to select ρ based on profile

characteristics. Although the proposed numerical approach is computationally more

expensive, since the commands are generated offline, it does not prove to be a limit-

ing factor. The numerical-form solution provides more flexibility in formulating the

optimization problem, with a scope of including nonlinear constraints to control the

generated input to have certain attributes, such as imposing a direct limit on max-

imum permissible torque demand or controlling the frequency content to a specific

amount, which then directly governs the performance of simple linear systems.

After demonstrating the useful tradeoffs that occur in the numerical approach,

the generated inputs for both approaches were applied in experiments to the two-link

robot platform. To critically evaluate the performance of different inputs, several
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important metrics were defined to obtain a better sense of vibrations in the response.

Measures of settling time and peak-to-peak planar residual acceleration were able

to capture the vibration in the system. However, for complete comparison between

different inputs, more than one metric has to be considered. One single metric could

not effectively combine both the vibration amplitude and the dissipation performance.

The standard closed-form technique for command shaping, as discussed in section 3.1,

was experimentally compared to the numerical approach. The formulated numerical

solution showed superior residual vibration performance for a given limit on maxi-

mum input acceleration. Also, for this approach, a desired attenuation at the natural

frequency posed less demands on the actuators by generating moderate input acceler-

ations. The main feature behind a smooth fit to the bang-bang function and removing

the Gibbs effect is that the generated input now more effectively utilizes the available

energy with the maximum available torque. However, one needs to bear in mind that

the redistribution of energy that occurs in the numerical approach could potentially

excite any intermediate unmodeled modes. So, a careful analysis of existence of any

such phenomenon is required to successfully use the technique.

5.2 Unique Contributions

There were multiple new findings from this work that warrant repeating. The

primary contribution of this work was to develop a method that takes care of de-

generacy in the shaped input profiles. The other benefits of this development were a

closer exploration of the multiobjective cost function and how the factor ρ should be
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best selected. Also, a framework has been put in place where the decision variables,

i.e., the coefficients of harmonics of the basis function, can now be manipulated with

greater flexibility, wherein the nature of inputs can be constrained more directly. An-

other development was inclusion of the accelerometer response in the experimental

analysis. Using accelerometer data, multiple single-parameter metrics were defined

for estimating the vibration performance. It was pointed out that due to the cou-

pling and interaction between the two modes of the system, the focus should shift to

looking at only the end-effector vibration rather than vibration of each link.

There were other developments that although not instrumental in meeting the

core objective, nevertheless proved significant. It was discovered that the simulation

model needs more fine tuning to build in appropriate mismatch between the model-

based part of the controller and the robot plant, to obtain results or trends that better

match experimental results.

5.3 Recommendations for Future Work

One area that could be explored in the future is to extend the proposed optimiza-

tion model to consider the simulated vibration performance in defining the fitness

function. Inputs can be designed directly with the objective of minimizing residual

vibration in simulation response, subjected to desired move times or actuator size

constraints. In addition, the interaction and the effect of multiple modes in light of

frequency attenuation at each mode needs further inspection. In the current work,

both modes are equally weighted for attenuation, but a simple two-mode linear sys-
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tem could be explored to begin with, to determine better ways of achieving uniform

attenuation at each mode. Moreover, the basis for selection of ρ values could be

studied further in parallel with determining appropriate scaling of Fourier magnitude

at the two modes that can relate to vibration performance with more accuracy. One

significant area of future work is to look at the effect of the computed torque con-

troller on the shaped profile and if or how it shifts the points of attenuation in the

frequency spectrum of the input to the robot.

The differences between maximum attainable attenuation for the ramped sinusoid

and versine inputs should be inspected further. The attenuation window can be dialed

in more carefully depending on the specific change in configuration of the robot for

each segment. Moreover, the choice of number of harmonics should be investigated

to ensure if we could add more power to the signal at the same time improving

on attenuation performance. In addition, the possibility of determining the natural

frequency of the system under varying payloads online could be explored.
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