
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

January 2015

DEVELOPING A METADATA REPOSITORY
FOR DISTRIBUTED FILE ANNOTATION
AND SHARING
Samuel Wilson
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Wilson, Samuel, "DEVELOPING A METADATA REPOSITORY FOR DISTRIBUTED FILE ANNOTATION AND SHARING"
(2015). Open Access Theses. 1166.
https://docs.lib.purdue.edu/open_access_theses/1166

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/1166?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1166&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:

 Head of the Departmental Graduate Program Date

Samuel P Wilson

DEVELOPING A METADATA REPOSITORY FOR DISTRIBUTED FILE ANNOTATION AND SHARING

Master of Science

J Eric Dietz
Chair

John Springer

Raymond Hansen

J Eric Dietz

Jeffrey L Whitten 11/12/2015

DEVELOPING A METADATA

REPOSITORY FOR DISTRIBUTED

FILE ANNOTATION AND SHARING

A Thesis

Submitted to the Faculty

of

Purdue University

by

Samuel P. Wilson

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2015

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

I wish to first and foremost give praise to God for His saving and redeeming

work in my life, without which master’s degrees and life itself would be void.

I also wish to thank my wife for her enduring love and support. Without her

joy and encouragement, I would not have considered a master’s, let alone gotten

this far.

I could not have done this particular study without the brilliance and insight

of Nathan Deny. Thanks for showing me the need for a good hat rack.

Finally, but in no way less significantly, I wish to gratefully acknowledge my

thesis committee for their insightful comments, guidance, and support. And a

special thanks to Dr. Dietz, for taking me on as a student and giving me the

flexibility to pursue my passions.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

GLOSSARY . xi

ABSTRACT . xii

CHAPTER 1. INTRODUCTION . 1
1.1 Background . 1
1.2 Scope . 2
1.3 Significance . 3
1.4 Research Question . 4

1.4.1 Primary Area . 4
1.4.2 Secondary Areas . 4

1.5 Assumptions . 4
1.6 Limitations . 5
1.7 Delimitations . 6
1.8 Summary . 6

CHAPTER 2. REVIEW OF RELEVANT LITERATURE 7
2.1 Local File Metadata . 7

2.1.1 Solutions . 8
2.1.1.1 Linking File System 9
2.1.1.2 Quasar File System 10
2.1.1.3 File System as Linked Data 11

2.1.2 Advantages . 11
2.1.3 Shortcomings . 12

2.2 Remote Object Metadata . 12
2.2.1 Solutions . 13

2.2.1.1 Digital Object Identifiers 14
2.2.1.2 Open Annotation Data Model 15
2.2.1.3 Document Collaboration Solutions 18

2.2.1.3.1 Integrated Rule-Oriented Data System 19
2.2.1.3.2 Google Docs/Drive 19
2.2.1.3.3 Dropbox 20

iv

Page
2.2.1.3.4 Git . 20

2.2.2 Advantages . 21
2.2.3 Shortcomings . 21

2.2.3.1 Usability . 22
2.2.3.2 Functionality . 22
2.2.3.3 Dependencies . 22
2.2.3.4 Persistence . 23
2.2.3.5 Implementation . 23

2.3 Summary . 24

CHAPTER 3. FRAMEWORK AND MEASUREMENT METHODOLOGY 25
3.1 Research Question . 25
3.2 Hypothesis . 25
3.3 Comparison Model . 26
3.4 Evaluation Criteria . 27

3.4.1 Key/Value Definitions . 27
3.4.2 Collaborative Nature . 28
3.4.3 Platform Support . 28
3.4.4 Adoption . 29
3.4.5 Versioning and Provenance 29
3.4.6 Security . 30
3.4.7 Distribution . 30
3.4.8 Adaptability/Extensibility 31
3.4.9 Cost . 31
3.4.10 Risk . 31

3.5 Ranking . 31
3.6 Scoring . 33
3.7 Summary . 33

CHAPTER 4. ANALYSIS . 35
4.1 Linking File System . 35

4.1.1 Key/Value Definitions . 35
4.1.2 Collaborative Nature . 35
4.1.3 Platform Support . 36
4.1.4 Adoption . 36
4.1.5 Versioning and Provenance 36
4.1.6 Security . 36
4.1.7 Distribution . 37
4.1.8 Adaptability/Extensibility 37
4.1.9 Cost . 37
4.1.10 Risk . 37

4.2 Quasar File System . 39
4.3 File System as Linked Data . 39

v

Page
4.3.1 Key/Value Definitions . 39
4.3.2 Collaborative Nature . 39
4.3.3 Platform Support . 41
4.3.4 Adoption . 41
4.3.5 Versioning and Provenance 41
4.3.6 Security . 41
4.3.7 Distribution . 41
4.3.8 Adaptability/Extensibility 42
4.3.9 Cost . 42
4.3.10 Risk . 42

4.4 Digital Object Identifiers . 42
4.4.1 Key/Value Definitions . 44
4.4.2 Collaborative Nature . 44
4.4.3 Platform Support . 44
4.4.4 Adoption . 45
4.4.5 Versioning and Provenance 45
4.4.6 Security . 45
4.4.7 Distribution . 45
4.4.8 Adaptability/Extensibility 46
4.4.9 Cost . 46
4.4.10 Risk . 46

4.5 Open Annotation Data Model . 46
4.5.1 Key/Value Definitions . 48
4.5.2 Collaborative Nature . 48
4.5.3 Platform Support . 48
4.5.4 Adoption . 48
4.5.5 Versioning and Provenance 49
4.5.6 Security . 49
4.5.7 Distribution . 49
4.5.8 Adaptability/Extensibility 49
4.5.9 Cost . 49
4.5.10 Risk . 50

4.6 Integrated Rule-Oriented Data System 50
4.6.1 Key/Value Definitions . 50
4.6.2 Collaborative Nature . 50
4.6.3 Platform Support . 52
4.6.4 Adoption . 52
4.6.5 Versioning and Provenance 52
4.6.6 Security . 52
4.6.7 Distribution . 53
4.6.8 Adaptability/Extensibility 53
4.6.9 Cost . 53

vi

Page

4.6.10 Risk . 54
4.7 Google Docs/Drive . 54

4.7.1 Key/Value Definitions . 54
4.7.2 Collaborative Nature . 54
4.7.3 Platform Support . 56
4.7.4 Adoption . 56
4.7.5 Versioning and Provenance 56
4.7.6 Security . 57
4.7.7 Distribution . 57
4.7.8 Adaptability/Extensibility 57
4.7.9 Cost . 57
4.7.10 Risk . 58

4.8 Dropbox . 58
4.9 Git . 58

4.9.1 Key/Value Definitions . 58
4.9.2 Collaborative Nature . 61
4.9.3 Platform Support . 61
4.9.4 Adoption . 61
4.9.5 Versioning and Provenance 61
4.9.6 Security . 62
4.9.7 Distribution . 62
4.9.8 Adaptability/Extensibility 62
4.9.9 Cost . 62
4.9.10 Risk . 63

4.10 Summary . 63

CHAPTER 5. IMPLEMENTATION . 66
5.1 Server . 66

5.1.1 Core Components . 67
5.1.1.1 The “Key” . 68
5.1.1.2 The Foundation . 68
5.1.1.3 The REST API . 69
5.1.1.4 The NoSQL Data Structure 69
5.1.1.5 The Language . 69
5.1.1.6 The Installation . 70
5.1.1.7 The Distribution 70

5.1.2 Extended Models . 71
5.1.2.1 Versioning and Provenance 71
5.1.2.2 Security . 72
5.1.2.3 Distribution . 72

5.2 Client . 73
5.3 Summary . 76

vii

Page

CHAPTER 6. COMPARISON AND EVALUATION 77
6.1 Criteria . 77

6.1.1 Key/Value Definitions . 77
6.1.2 Collaborative Nature . 78
6.1.3 Platform Support . 78
6.1.4 Adoption . 78
6.1.5 Versioning and Provenance 79
6.1.6 Security . 79
6.1.7 Distribution . 79
6.1.8 Adaptability/Extensibility 80
6.1.9 Cost . 80
6.1.10 Risk . 80

6.2 Analysis . 81
6.2.1 Benefits . 81
6.2.2 Shortcomings . 81

6.3 Conclusions . 83
6.4 Summary . 84

CHAPTER 7. FUTURE RECOMMENDATIONS 86
7.1 Process Validation . 86
7.2 Development . 86
7.3 Use Cases and Testing . 87

LIST OF REFERENCES . 88

viii

LIST OF TABLES

Table Page

3.1 Weighted Ranking . 32

3.2 Scoring Scale (Bandor, 2006) . 33

4.1 Weighted Sum Model for LiFS . 38

4.2 Weighted Sum Model for QFS . 40

4.3 Weighted Sum Model for F2R . 43

4.4 Weighted Sum Model for DOI . 47

4.5 Weighted Sum Model for Open Annotation Data Model 51

4.6 Weighted Sum Model for iRODS . 55

4.7 Weighted Sum Model for Google Docs/Drive 59

4.8 Weighted Sum Model for Dropbox . 60

4.9 Weighted Sum Model for Git . 64

4.10 Weighted Sum Model Comparison . 65

6.1 Weighted Sum Model for Fez . 82

6.2 Weighted Sum Model Comparison Including Fez 85

ix

LIST OF FIGURES

Figure Page

5.1 Unified Modeling Language diagram of the server. 67

5.2 Command line client. 74

5.3 Sample Fez query. 74

5.4 HUBzero projects Fez interface. 75

x

LIST OF ABBREVIATIONS

API Application Programming Interface

DOI Digital Object Identifier

DNS Domain Name System

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

NSF National Science Foundation

OS Operating System

POSIX Portable Operating System Interface

RDF Resource Description Framework

REST Representational State Transfer

UML Unified Modeling Language

W3C World Wide Web Consortium

xi

GLOSSARY

provenance “The term provenance traditionally refers to the documented

history of a work of art, which can be used as a guide toward

the work’s authenticity” (Godfrey, German, Davies, & Hindle,

2011, p. 65). In a similar manner, software provenance serves

as the chain of custody of a given file.

reproducibility Building upon provenance, reproducibility is the capability of

researchers to arrive at scientifically similar results by means

of repeating the processes and methods of the original authors

(Gil et al., 2007).

REST API Representational State Transfer APIs are a data-centric

means of exposing semantic interfaces for interacting with

external application data, utilizing web-based structures and

protocols (Riva & Laitkorpi, 2009).

xii

ABSTRACT

Wilson, Samuel P. M.S., Purdue University, December 2015. Developing a metadata
repository for distributed file annotation and sharing. Major Professor: J. Eric
Dietz.

Research data is being generated and modified at an increasingly accelerated rate.

Iterations and derivations are being crafted at an almost equal velocity. With this

increase comes a growing need to track the metadata about the data being

generated. Where did this dataset originate? What exactly do the column headers

mean? Who was the original publisher? Do I have the latest version of the data?

This is to only name a few. As data is shared second or third-hand, or via

alternative methods such as physical media or cloud based storage mechanisms, the

veracity of the implicit metadata becomes circumstantial. This research quantified

and contrasted existing file metadata management solutions, showing their

inadequacy to solve the above stated problem, and highlighted the need for a new

solution. The system subsequently established and developed by this research was

designed to allow for arbitrary file metadata definitions across file systems in a

collaborative manner, while facilitating platform independence and easy adoption.

1

CHAPTER 1. INTRODUCTION

Metadata, most simply put, is data about data. Without it, the file

structures and operating systems known today would not exist. And yet, there is

something oddly opaque and inaccessible about the metadata solutions currently

available, specifically concerning user-defined metadata. In this chapter, the

problems related to metadata will be identified, and the research that was

conducted will be outlined. It will also quantify the scope of the research, and cast

it within a concise domain framed by the research question. The chapter will then

conclude by outlining the assumptions, limitations, and delimitations that were

needed to e↵ectively and feasibly conduct the study.

1.1 Background

Research data is being generated and modified at an increasingly accelerated

rate. Iterations and derivations are being crafted at an almost equal velocity. With

this increase comes a growing need to track the metadata about the data being

generated. This data is typically housed in emails, Excel documents, and even

handwritten notes. These storage and dissemination mechanisms, though

reasonably e↵ective at maintaining the integrity of the data itself, lack the necessary

metadata and provenance over the long term. As time progresses and the origin of

the dataset is lost from active thought, the user of the dataset may need to recall

any one of several things. Where did this dataset originate? What exactly do the

column headers mean? Who was the original publisher? Do I have the latest version

of the data? This is to only name a few. If an original email can be found, one

might be able to reconstruct several of these facts. But as data is shared second or

2

third-hand, or via alternative methods such as physical media or cloud based

storage mechanisms, the veracity of the implicit metadata becomes circumstantial.

Many metadata systems exist on the market today. These systems fall into

one of two primary categories: local file system metadata, and remote, web-based

systems. But, as will be elaborated upon further in the following sections, these

existing solutions are insu�cient to meet the current needs. A better and more

user-oriented metadata solution is required.

1.2 Scope

The primary purpose of this study was to determine if a system currently

exists, or if one could be designed and prototyped, capable of spanning the gap

between the traditional, local file system metadata, and purely remote, often

web-based metadata systems. The spread of solutions in this space is wide, with

di↵ering problem statements spawning uniquely di↵erent mechanisms and feature

sets. While local metadata systems o↵er convenience and operating system

integration, they generally lack any awareness of the multiplicity of user

environments, let alone distribution amongst users and organizations. Conversely,

web-based systems typically o↵er communal solutions but make no contribution to

assets that are not universally web accessible. These gaps will be further elaborated

upon during the course of the review of relevant literature.

To understand whether or not a system existed to meet these needs, key

features and factors of the metadata system needed were identified. Subsequently,

an analysis of a wide range of existing solutions was conducted to determine what

amount of coverage those solutions o↵ered over the given feature set. Realizing that

a su�ciently large gap existed between what was available and what was needed, a

basic metadata system was designed and prototyped. The system includes the

capability to store arbitrary metadata in the JavaScript Object Notation (JSON)

standardized data format. The metadata server is open to queries from clients in a

3

standardized manner. Finally, the system focuses on the end user and the manner

in which it will be used to ensure that it can be easily adapted and applied.

Given the core design elements as briefly described above, a system that can

serve both local and distributed needs should have a significantly broader impact

than merely metadata storage. Thus, beyond the basic system, other prototypes

and conceptual models were considered. These provided proofs of concept or

methodologies for expanded features, but were not all completely implemented in a

production-ready manner. These features included a framework for versioning and

provenance, as well as a security model. A hierarchical distribution system was also

considered, allowing for the possibility of using the system locally, within a single

organization, or in collaboration with other organizations.

Lastly, a sample command-line client was implemented. This demonstrated

and facilitated the primary user interaction point with the system and should serve

as a reference point for future clients.

1.3 Significance

The research and system that were produced out of this process will have its

primary impact upon the research community, both academic and corporate. Given

the current lack of unified, flexible, and transportable mechanisms for user file

metadata definition, the introduction of a validated system such as this will allow

for significant decreases in barriers to entry concerning the annotation of shared

data and files. Additionally, with funding agencies such as The National Science

Foundation (NSF) continuing to increase requirements for data transparency and

availability, a system such as this will allow for increased compliance, openness, and

accuracy of data after it has been shared.

That being said, this project could have ongoing and broader impact still, as

any user wishing to describe their files in a platform independent manner could use

it locally or in a distributed fashion, spanning both personal and collaborative

4

environments. This could facilitate a new wave of descriptive metadata sharing by

users within their network of devices and beyond.

1.4 Research Question

Distilling the problems outlined above, this research was propelled by the

following primary and secondary questions.

1.4.1 Primary Area

Can a new metadata system be proven necessary, designed, and prototyped

that facilitates the sharing of arbitrary file metadata across file systems that is

collaborative in nature, platform independent, and easily adopted?

1.4.2 Secondary Areas

• Can the system begin to facilitate such advanced operations as provenance

tracking and versioning?

• Can the system be reasonably unrestrictive while still being cognizant of user

context and security implications?

• Can the system be used locally, internally within an organization, or in

collaboration with others in a potentially hierarchical manner?

1.5 Assumptions

The research herein was performed under the following assumptions:

• Files used during initial testing will not be larger than 1GB in size.

5

• Principles of software security will be considered, but the data stored within

the application will be governed by open access and annotation policies unless

the repository itself is secured.

• If applicable in a client-server environment, someone with some system

administration experience will install the software.

• The metadata definitions are only as thorough and robust as the user choses

to make them.

• A user wishing to use the application in a purely local configuration will

require that the user have a broader system administration and installation

background, given that they must essentially install the server as well as the

client.

1.6 Limitations

The research herein was constrained by the following limitations:

• While the software developed can and should have a broad impact as noted

above, the primary application of the initial research will be targeted at

scientific inquiry producing data files shared within an undefined but finite

group of researchers.

• The REST API will be the primary point of interaction with the server, and

any significant abstractions of the basic GET, POST, PUT, and DELETE

HTTP verbs will be incorporated into the clients.

• A command line client will be developed for testing, but will not fully realize

the depth and abstraction of the user experience that is ultimately desired.

6

1.7 Delimitations

The research herein was conducted understanding the following delimitations:

• The software will not overcome any inherent security concerns found in the

underlying applications (ex: MongoDB, PHP).

• The client prototype will not be production ready, nor will it be as

user-friendly as ultimately desired.

• The developed repository is not intended to support, enforce, or enhance any

specific metadata standard.

• The repository is not an archival solution and makes no claims to longevity.

• Clients may eventually become “smarter”, but will not initially provide any

additional metadata beyond that explicitly entered by the submitter.

1.8 Summary

This chapter established the background for this study by identifying the

problem, scope, and significance of this research. Assumptions, limitations, and

delimitations were delineated to ensure a focused and successful study. The next

chapter will outline a review of the relevant literature in the field of file system

metadata, looking at both local file system solutions as well as remote metadata

repositories.

7

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This chapter seeks to elaborate on the existing literature surrounding file

metadata systems in terms of their primary focus and functionality. Generically

speaking, previous researchers have attempted to tackle the problem of file

metadata from one of two broad angles, local file system metadata and remote

metadata repositories. Both will be examined in turn. Though no system currently

seeks to solve the exact combination of issues posed by this research, the following

systems contain elements that position them in this general technological category.

2.1 Local File Metadata

The shortcomings of file metadata have been known for some time. Broadly

speaking, file systems track relatively little meta-information concerning the files

that they store. Primarily, these metadata items include system-centric information

such as created and modified dates, ownership and permissions, and size and

location of the files on the hard drive. Beyond that, specific file types occasionally

o↵er built in standards for augmented metadata within the file itself. For example,

MP3 audio files o↵er music and artist information stored in ID3 tags, and most

photos have information concerning when the photo was taken and the

specifications of the camera within its Exchangeable Image File Format (EXIF)

data. But this is far from a general solution.

Cammarata, Kameny, Lender, and Replogle (1995) describe this issue when

they note the following concerning their organization’s internal data management

structures:

However, most of these databases have little documentation or other

descriptional information to go along with them. The absence of such

8

information leaves users at a loss for understanding the definitions,

abbreviations, acronyms, and descriptions of the pieces of data stored

and maintained in a DBMS (p. vii).

They go on to describe five significant problems being addressed by their

proposed solution. They are, in essence, providing adequate documentation,

establishing versioning, chronicling a history of structural changes, determining

provenance, and governing standardization (Cammarata et al., 1995). These same

principles and needs remain true today, and continue to be targeted by proposed file

metadata solutions.

As S. Ames, Gokhale, and Maltzahn (2009) note in their introduction on the

subject, there have been relatively no changes in the metadata management area of

file systems in the last 10 years, even though significant improvements have been

made in other areas of large-scale files systems. This leaves a sizable gap in users’

ability to universally annotate any type of file that they have on their computer.

Anecdotally speaking, people have tried many things, including keeping separate

documents with file details, creating inline annotations within files, and file naming

conventions (S. Ames et al., 2009).

2.1.1 Solutions

To combat this problem, using the paradigm of the local file system, several

solutions have been constructed to o↵er augmented, metadata-rich, file systems.

These applications position themselves directly on top of the file system for the

purpose of o↵ering greater metadata functionality. Several of these solutions will be

examined to understand their purpose, features, and shortcomings, followed by an

overview of the general advantages and disadvantages of the local solutions explored.

It is important to note that, though it is unlikely that a purely local

metadata system will serve the purposes of this study (as one of the core

requirements of this research is that the metadata would be communal), it is

9

important to begin here, as this lays the foundation for many of the established

ideologies, and o↵ers promising ideas and principles to govern the user’s local

interaction with the metadata.

2.1.1.1. Linking File System

One such local metadata system is that of the Linking File System (LiFS).

Proposed and prototyped by A. Ames et al. (2005), it o↵ers the specification of

arbitrary user-defined keys and the ability to define relationships between files via

links. Links o↵er the ability to associate two files, and attributes can be attached to

both the links and the files themselves. The introduction of a file system level

linking architecture and attributes o↵ers extensive promise in the areas of

“provenance, intended use, type, contents, creator, modification history, version,

and other information that a user, application, or system may want to keep”

(A. Ames et al., 2005, p. 50). By use of these extended attributes, context can be

associated with files, something previously not possible, and critically important in

many of the examples mentioned above. By linking files, one can begin to identify

inputs or derivations. And by adding attributes, one could annotate where a file

came from, or what its intended use is.

This serves as an example of the principle model for file system metadata

through the use of low-level file system metadata architectures, or metadata

integration into new file systems themselves. Unfortunately, though the Portable

Operating System Interface (POSIX) style introduced by the LiFS is similar to that

of existing Unix systems, the introduction of new and complex methods for

interacting with the system seems somewhat complicated and inaccessible. Though

a graphical user interface through the application would likely obscure some of these

details from the average user, the likelihood of widespread integration of such a

solution by a major developer such as Apple or Microsoft seems unlikely. This

system also assumes the ability to retain the metadata in main memory for speed of

10

access and it does not o↵er the ability to be directly queried by the user or other

applications.

2.1.1.2. Quasar File System

In slight contrast to the previous approach, S. Ames et al. (2009)

demonstrated a unified file system approach where file system data and file

metadata are both stored in a coordinated architecture called the Quasar File

System (QFS). According to their research, the dichotomy between file systems for

data storage and databases for querying extensibility was somewhat dated. S. Ames

et al. (2009) further identified many of the shortcomings of the traditional model,

namely in the use of relational databases at all, and a weak association between

metadata and files identified by absolute paths. In their minds, the use of a

relational database was not appropriate for file system metadata in the first place.

Relational databases by definition require a structure for metadata fields. This leads

to an overly generic system, or one that must be constantly updated for new fields

required by additional file types or fields of study (S. Ames et al., 2009).

This analysis is apt, though other solutions now exist that might handle the

metadata portion of the environment better, such as NoSQL databases. They also

note that the link between file paths and metadata entries, as maintained by an

absolute path, is a weak and expensive link to maintain (S. Ames et al., 2009). As

files are moved and updated, it is consuming and expensive to track those changes,

and errors and inconsistencies are more likely to be introduced.

The QFS works roughly the same way as LiFS and other similar

implementations, but focuses more on the development of the Quasar query

language, o↵ering structured access to the underlying graph database. This

emphasis on the query language poses interesting opportunities for searchable

metadata. Though not inherently inaccessible in other implementations, the QFS

places the database architecture at the forefront of their implementation.

11

2.1.1.3. File System as Linked Data

Though the local solutions mentioned above o↵er the rudimentary elements

and functionality of interest in this research, they by definition lack many of the

non-local benefits also being pursued. Other local solutions begin to bridge that gap

by taking the local file system and connecting it to remote resources. He, Li, and

Shen (2013) elaborate on this principle in their work on exposing file systems to the

web as Linked Data through their application, F2R. This highlights several

interesting principles in the transition from purely local metadata stores and feature

sets, to shared and even distributed repositories and features.

He et al. (2013) propose the use of four key metadata sources to describe and

even automate the metadata generation process. They are physical metadata,

built-in metadata, user-defined metadata, and external data. In so doing, they o↵er

flexibility, but also serve to aid the user in a potentially more robust metadata

definition. Once described, structured definitions in the form of the Resource

Description Framework (RDF) are available to be published to the semantic web for

consumption.

There are, unfortunately, some shortcomings to the implementation. The

interface itself is lacking, and the automatic metadata generation is dependent on a

meaningful filename in a well-defined knowledge space. Additionally, automatic

metadata generation has some value in back-porting or publishing existing data, but

seems less relevant to the real time annotation of files being created and described.

2.1.2 Advantages

More generally speaking, each of the above-mentioned solutions share several

key advantages. Namely, they are local. And, whether or not they had a fully

developed graphical interface when conducting this research, they o↵er the potential

for direct or low level integration into the users’ file system environment and

workflow. This, for example, could mean that a right-click menu option might allow

12

for definition or exploration of a file’s metadata, rather than having to go to a

browser to look up remotely stored information. This is a compelling factor in

potential ease of use (though it is only potential for many of the solutions, as the

interface is typically a follow-up concern of many of these initial reports).

Secondly, they o↵er the ability to be fast. Though network connectivity

issues and latency may concern remote solutions, local solutions o↵er low-level

integration and direct disk or memory-based access to file metadata.

2.1.3 Shortcomings

Many other similar solutions exist, but with all of these systems, the issues of

adoption and technical requirements stand out as the primary barriers to success.

They all lack either a graphical interface entirely or, at the very least, do not have

one that would meet standard consumer expectation. They are also technically

niche implementations. A solution that seeks to integrate at this level of the

application hierarchy would likely require backing and integration from a major

Operating System developer to become practically feasible to the end user (i.e., a

non-technical user would not be able to install or operate many of the solutions in

their current state). This also alludes to the issues of adoption and economies of

scale that will be highlighted below.

Additionally, though many of these solutions show promise for local storage,

the reality of the distributed nature of collaboration and social computing means

these solutions miss the communal element of metadata altogether. And though

F2R begins to hint at such a need, it falls short in several key areas, as mentioned

specifically above. Remote and distributed systems must therefore be considered.

2.2 Remote Object Metadata

Metadata often has both a personal and communal function. Consider the

modern publication scenario where an author publishes a paper with an associated

13

dataset. The paper is likely published in a printed journal and perhaps their online

digital library as well. The paper may make reference to the generated dataset.

That data is then stored in an online repository such as the one o↵ered by the

author’s institution, the Purdue University Research Repository. The repository

makes a place for the data to live for the long term. It also o↵ers digital

preservation. The digital object identification system described below can help with

maintaining the appropriate location of that digital asset. But, the paper and

dataset are often subsequently downloaded to a user’s local hard drive, and all

associations are lost between the file and the dataset, and even between the dataset

and the location from which it was retrieved. Furthermore, as that dataset is shared

directly with colleagues and collaborators, the origins and details of the dataset can

be lost completely.

The local systems discussed in the previous section o↵er significant steps

forward in terms of augmented file metadata. But, with the saturation of modern

cloud-based file sharing mechanisms, a new set of issues has arisen. Not only do

users need to annotate files on one machine, they now expect to share those

annotations across all of their devices (or at the very least, all of their traditional

mouse-based personal computing devices). Additionally, files shared between

collaborators and colleagues also need to retain any additional metadata given them

by the previous steward of the file.

2.2.1 Solutions

Particularly in the online space, metadata currently fulfills one of two

primary purposes. The first is that of the digital preservation environment. In this

scenario, metadata is principally concerned with identifying and augmenting the

data necessary to maintain the primary files or datasets ad infinitum; as will be

described below, this is a relatively common use case for iRODS. Though not

mutually exclusive, metadata can also constitute augmented information about the

14

files themselves. This may mean descriptions of column headings, software packages

used to derive the current data, provenance, versioning, and more. The later of

these two is that with which this research is concerned.

It is important to understand which other contenders are situated in this

space and what their focuses are, to better understand the gaps and identify

strengths and weaknesses. There are several primary standards that contribute to

the metadata domain. Though they may not be specifically targeting the same

problems that this research has identified, they o↵er solutions to pieces of the

problem, and pose important background to further expose the solution being

pursued. These include the Digital Object Identifier (DOI) standard, the Open

Annotation Data Model, and document collaboration solutions.

2.2.1.1. Digital Object Identifiers

The DOI system has been in establishment since 1997 and managed by the

International DOI Foundation since 1998 (Chandrakar, 2006). DOIs o↵er a

persistent pointer to a digital asset. Given the evolutionary nature of the Internet

and developing technologies, this allows content to move digital locations and still

have a consistent pointer that remains intact long after other content may have

made its initial reference to it. As Wang (2007) notes, this seems to be the

predominant perception, that the preeminent feature of the DOI system is

persistence.

To exemplify this, suppose a researcher writes Paper A. They then publish

that paper and make it available on their personal website, www.myresearch.com.

Then another researcher uses that work to write their paper, Paper B. They give

credit to the original author and say that her work can be found at

www.myresearch.com. Now suppose that the original author purchases a new

domain name and moves her work to that new location. The second author’s

reference to the deprecated domain is now invalid, and subsequent readers of Paper

15

B will no longer be able to reference the cited work. This is the problem resolved by

the DOI system (no pun intended).

Instead of referencing www.myresearch.com, the second author could

reference the DOI handle that the first researcher created. Initially, the handle

would resolve to www.myresearch.com and the net result would be the same. But,

after the first author changes domain names, she could also update the DOI to point

to the new domain. And in so doing, the second author’s citation remains valid.

In addition to maintaining the resolution between DOI and the digital asset

location, the DOI system requires core metadata to be included with each DOI

entry. Wang (2007) identifies this metadata as kernel metadata, and includes such

basic attributes as title, type, mode, and other key fields. Though potentially

perceived primarily as a persistence system, the DOI structure does o↵er a fairly

robust metadata management scheme. According to the DOI handbook (2013),

there is no restriction placed on the metadata to be included in the DOI, except

that it meets the DOI kernel requirements. The kernel itself has two primary

purposes, recognition and interoperability (DOI handbook , 2013).

That being said, the extended metadata model supported by the DOI system

is still constrained by the standard of established and accepted metadata schemas

(DOI handbook , 2013). According to Paskin (2004), DOIs that may have some use

outside of the immediate DOI system itself are subject to certain metadata policies.

2.2.1.2. Open Annotation Data Model

Contrasting the persistence orientation of the DOI system, the Open

Annotation Data Model seeks to create a framework for open and shared

relationships and annotations amongst and about web objects. Annotations are an

essential element of scholarly evolution and facilitate the organization of knowledge

and the inception and dissemination of new knowledge (Sanderson & Van de

Sompel, 2010). The Open Annotation Data Model is a World Wide Web

16

Consortium (W3C) community draft specification, and as such, is clearly defined as,

and interesting in being, oriented to the structure of the World Wide Web

(Sanderson, Ciccarese, & Van de Sompel, 2013). These annotations could be used,

functionally speaking, to attach metadata to web resources. To put it another way,

content metadata is a subset of the overall use case of open annotations.

In their initial work predating the formal introduction of the Open

Annotation Data Model, Ciccarese, Ocana, Garcia Castro, Das, and Clark (2011)

lay out the need for annotation, specifically in the scientific and academic realm.

Here they describe the disassociation between well-defined domain-specific

ontologies and the papers that cover such topics (Ciccarese et al., 2011). Though

slightly di↵erent than the ultimate goals established by the later Open Annotation

Data Model, it highlights the need to link, or describe, scientific literature by other

established ontologies. From this, the need to openly annotate web resources with

arbitrary data evolved.

To a certain extent, there is nothing revolutionary about web annotations.

Consider an image posted to Facebook with several comments from friends and

acquaintances. These are, in essence, annotations. They are textual content that is

attached to that web resource (Open annotation data model , 2013). That being

said, as the Open annotation data model (2013) notes, such annotations are often

proprietary and non-portable, thus the need for an open and interoperable standard.

But, to be clear, it is a just that, a standard, not an implementation. As the

working draft of the data model explicitly states:

The Open Annotation system does not prescribe a transport protocol for

creating, managing and retrieving annotations. Instead it describes a

web-centric method, promoting discovery and sharing of annotations

without clients or servers having to agree on a particular set of network

transactions to communicate those annotations (2013, Introduction

section, para. 4).

17

Though several have begun experimenting with implementations of the

standard, it remains a relatively immature field. Haslhofer, Simon, Sanderson, and

van de Sompel (2011) describe the application of the model using several use cases

in their work on the matter. They developed a JavaScript prototype for annotating

images with SVG elements. Ironically enough, their paper contains a direct link to

the prototype that is no longer valid.

In spite of the lack of concrete implementations, one function espoused by

the Open Annotation Data Model is its intent and ability to scale from the

incredibly simple use case to the far more complex examples (Sanderson et al.,

2013). Cole and Han (2011) also note that the annotations are capable of

referencing multiple entities, a feature of the Open Annotation Data Model that is

critical in this environment.

Beyond the basic manifestation of the model, Sanderson and Van de Sompel

(2010) indirectly highlight the convergence of the Open Annotation Data Model and

the DOI system (though they propose di↵erent solutions) when they identify the

issue of annotating a living and evolving entity (a dynamic web page) with content

explicit to a specific version of that entity. This is an inherent architectural issue of

the web, and the need to think about how an asset can be uniquely identified is

something that will be addressed in the definition of a deterministic asset key in the

following chapters.

In all of this, it is always important to evaluate the central purpose of the

system. What is the key driving principal propelling the implementation and

evolution of a given technology? The Open Annotation Data Model is ultimately

concerned with creating and sharing annotations of web resources. This is critical in

understanding whether or not it will meet the stated needs of this research.

18

2.2.1.3. Document Collaboration Solutions

In searching for solutions that o↵er a collaborative and communal metadata

environment, several metadata-oriented services have been examined above, namely

the DOI system and the Open Annotation Data Model. These solutions focus on

associative functions such as metadata and relationships between web objects.

Approaching the problem of metadata storage from the inverse perspective, that of

the files themselves, also reveals several potential competitors. These solutions o↵er

as their primary purpose, collaborative document development capabilities rather

than metadata storage. The collaborative nature of these solutions is made manifest

by features such as distribution of storage, versioning, and other similar

mechanisms. Examples of products in this realm include the Integrated

Rule-Oriented Data System (iRODS), Git, Dropbox, and Google Drive.

The beauty of these document collaboration solutions is that many of the

tools in this space are already familiar to academics, professionals, and students

alike. Whereas the average reader may be unaware of the implications of the Open

Annotation Data Model, it is likely that the reader is actively using, or has used in

the recent past, a Google Drive document to collaborate on the development of a

proposal or spreadsheet, a Dropbox account to quickly and easily share a file, or

GitHub to host an application or piece of code in a distributable and traceable

manner. These solutions o↵er extensive collaboration and synchronization benefits.

In some senses, they are the antithesis of the local solutions referenced earlier in this

chapter. They o↵er all of the communal benefits of file development, with little to

no explicit metadata value. These solutions will be briefly examined to better

understand how they are positioned in this technological space, and what

advantages and disadvantages they pose over the other above-examined solutions.

The descriptions below are not intended to be as thorough as other lesser

known applications in this chapter, with the exception of iRODS, as these solutions

are assumed to have achieved relative market saturation.

19

2.2.1.3.1. Integrated Rule-Oriented Data System

Though significantly larger in scope than a pure metadata management

platform, iRODS o↵ers a metadata catalog, called iCAT, for arbitrarily describing

data objects (iRODS technical overview , 2014).

iRODS o↵ers extensive features for data management, including data

virtualization, file metadata, workflow automation, and collaborative tools (iRODS

technical overview , 2014). Specifically related to file metadata, the iCAT uses a

standard relational database to store internal metadata necessary to the functioning

of the iRODS server, as well as arbitrary user defined metadata concerning data

objects or even data collections (iRODS technical overview , 2014).

With such a rich feature set, though, comes an unfortunately complex

environment. Assuming one is in need of the breadth of features o↵ered, iRODS

proves fruitful for advanced workflows and complex preservation environments. To

this end, Hedges, Hasan, and Blanke (2007) highlight the use of iRODS and its

metadata components in an archival preservation environment. But, for simple

metadata management, it could be considered fairly cumbersome.

2.2.1.3.2. Google Docs/Drive

Google Docs o↵ers online and collaborative creation of standard text

documents, spreadsheets, presentations, and forms. The power of Google Docs can

be found in its unique multi user editing environment, revision history, and

automatic saving (Google Docs , n.d.). That being said, Google Docs does su↵er in

several capacities, including output formating and complexities, o↵-line support,

and browser requirements (Dekeyser & Watson, 2006). As a compliment to Google

Docs, Google Drive o↵ers synchronized file storage space for native Google Docs or

other standard file types.

20

2.2.1.3.3. Dropbox

Dropbox focuses on o↵ering its users a safe and central location for file

storage and sharing. It allows for the individualized distribution of files to

collaborators and peers on projects or homework. Dropbox also o↵ers enhanced

functionality and support levels through its Dropbox for Business service (Dropbox

for Business , n.d.). Unlike Google Docs, Dropbox functions primarily as a

synchronization service, rather than an online editing environment (Marshall &

Tang, 2012).

2.2.1.3.4. Git

Git is a slight divergence from the previous two examples. With its primary

focus being on versioned code development, it o↵ers a decentralized repository for

document development (Chacon & Straub, 2014). And though its community is

primarily composed of software teams and open source projects, it also has value for

standard documents of a reasonable size. Git functions well for a variety of use

cases, including, as a lab notebook, facilitating collaboration, preventing data loss,

fostering exploratory freedom, soliciting feedback, increasing transparency, and

lowering barriers to reuse (Ram, 2013).

By contrast to the previously discussed remote solutions, with the exception

of iRODS, these services do not o↵er built-in features for the definition of arbitrary

metadata. Using one of these solution, one sacrifices explicit metadata functionality

for syncing and collaborative features. To make these solutions viable competitors

in the collaborative metadata environment, one could include an ancillary metadata

file and keep it stored within the collaborative space. Others have attempted to use

folder structures and naming schemes for metadata purposes. As long as users are

directly associated with the project, that implicit data will be included in the synced

or downloaded versions shared across devices or between users. Also captured is

standard file system level metadata, including ownership and modified dates.

21

2.2.2 Advantages

Considering the three types of remote solutions discussed, many advantages

exist concerning the use of these systems, and are more or less the inverse of the

disadvantages identified above regarding local metadata solutions. Broadly

speaking, these solutions are communal in nature, o↵ering online and shared

visibility. They also require little to no end user requirements for installation and

use, as they are managed by third party organizations and require a standard web

browser for interaction. Some solutions also make simple and intuitive user client

applications available that can be installed locally to emulate standard direct file

system functions to which users are accustomed.

In addition to the generic advantages o↵ered by solutions in this category,

other individual advantages also emerge. For example, Git excels in the area of

versioning. Git was developed for this purpose. Furthermore, particularly with the

advent of service such as GitHub, GitLab, and Git desktop clients, Git has

significantly decreased its barriers to entry for the average user.

Google Docs handles versioning and change management very well.

According to the Google Help page entitled View and manage file versions (n.d.),

Google retains file versions for Google and non-Google files alike, keeping track of

native Google Doc changes indefinitely and cataloging up to 200 versions of

non-Google files (i.e. files not created and edited through the Google Docs

platform). In addition to the online editing functionality made available by Google

Docs, Google also o↵ers complementary services for file storage and syncing across

devices through the use of their Google Drive service.

2.2.3 Shortcomings

In spite of the advantages of these remote systems, several shortcomings arise

upon further examination of these solutions.

22

2.2.3.1. Usability

Issues surrounding usability include the lack of user customization and the

absence of directly accessible mechanisms for metadata input. DOIs, practically

speaking, have several layers of indirection from the average user. A third party

issuer on behalf of a publication platform typically mints DOIs. The involvement of

the publisher is often automatic, thus making it deterministic and not highly

customizable. Tangential third parties are also unable to augment the annotation.

2.2.3.2. Functionality

As much as the document collaboration solutions excel in collaborative

functionality, communal orientation, and user accessibility, they su↵er significantly

in terms of explicit functionality for metadata support. Forcing the user to capture

extended metadata in an auxiliary location, while reasonable, is functionally no

di↵erent than other existing file system solutions. While it may make it easy to

share, if what is being shared is not well defined and managed, the problem persists.

2.2.3.3. Dependencies

Native to both open annotations and DOIs is the requirement that a

publicly available web resource be accessible to which the annotations or DOIs can

point. It is thus dependent on a public web entity. Though not a significant concern

for published papers, private and developmental data should not have to come with

the burden of maintaining a fixed public presence in order to be annotated. The

document collaboration solutions do not su↵er from the same problem, but

conversely lack a truly public dissemination mechanism.

23

2.2.3.4. Persistence

None of the above-examined solutions is capable of retaining metadata once

abstracted from the repository. By this, it is meant that files retain no persistent

and inherent connection to anything in the original repository once removed -

similar to the scenario about downloading a file and dataset, as described in the

DOI section above. When in the repository, they are implicitly related, but once

downloaded, that connection is lost.

To exemplify this, test implementations of the Open Annotation Data Model

store annotations locally on the server where the annotated items live. This seems

intuitive, but requires the user to travel to that site to discover (or rediscover) the

annotations pertaining to that resource. This is to say, if the user downloads an

item, those annotations are lost. And unless the users makes note of, or remembers

where the file was retrieved from, those annotations remain detached.

Principally speaking, the DOI system su↵ers from the same issue. The

metadata is stored remotely and the files are stored locally. By convention, the DOI

is often included in the body of the paper, making it easier to retrieve. But, that is

not a requirement.

2.2.3.5. Implementation

The Open Annotation Data Model does not actually o↵er an

implementation; it is just a model. It o↵ers an excellent framework for describing

web-based resources, but there is still growth and evolution necessary before it

becomes a commonly implemented standard. Until then, it is practically

unapproachable.

Ultimately, none of these systems have metadata management as their

primary purpose. In other words, though they can be construed to serve that

purpose, it is not their intended goal. As such, they cannot be ensured to have

metadata management as their principle driving requirement in the future. While

24

the DOI system and Open Annotation Data Model have gained some traction in the

research community, as highlighted by Ciccarese, Soiland-Reyes, and Clark (2013),

adoption continues to be a crucial issue in creating the economies of scale necessary

to make these solutions succeed in the long term.

2.3 Summary

This chapter provided an overview of the existing literature surrounding

metadata management systems. These systems are composed primarily of two

types: local, file system based architectures; and remote, web-based asset

annotation systems. While local systems o↵er direct user accessibility and

customization, they lack the distributive functions necessary for multiple

environments and shared annotation. And though remote systems counter on those

points, they lack the user accessibility and non web-based features needed to fulfill

the requirements presented by this research. Thus, this paper now turns to describe

the methodology used to identify and quantify these existing solutions to determine

if a new solution is needed.

25

CHAPTER 3. FRAMEWORK AND MEASUREMENT METHODOLOGY

Having identified the existing solutions and considered many of their benefits

and shortcomings, it is important to now consider the way in which one will know

whether or not there is potential to capitalize on these gaps through the creation of

a new metadata solution. To do so, a measurement and evaluation mechanism was

established that is independent of any of the particular solutions being described.

3.1 Research Question

Driving this research was the basic question: Can a new metadata system be

proven necessary, designed, and prototyped that facilitates the sharing of arbitrary

file metadata across file systems that is collaborative in nature, platform

independent, and easily adopted?

As identified in the previous chapter, a significant gap exists in the

user-defined file metadata space. Local file metadata systems appear simply

inadequate to capture the necessary file metadata for modern applications and are

isolated to a single environment. Distributed systems are often overly restrictive

and may require a publicly web-accessible asset or large online file repository.

3.2 Hypothesis

Given these shortcomings, the hypotheses set forth by this research can be

summarized as follows:

H
o1 An improved metadata management solution is not needed to meet the needs

established by this research.

26

H
a1 An improved metadata management solution is needed to meet the needs

established by this research.

H
o2 An improved metadata management solution cannot be constructed that

achieves 75% or greater coverage of requirements.

H
a2 An improved metadata management solution can be constructed that achieves

75% or greater coverage of requirements.

3.3 Comparison Model

When comparing software applications, or even considering building a new

one, it is important to quantify the existing competitive landscape. What else exists

in that technical space and on what functional areas do they compete? Chapter 2

o↵ered an overview of the metadata software landscape, along with initial

observations of shortcomings and gaps. It then became important to compare the

solutions to one another and evaluate how well they satisfied the problems outlined

in chapter 1. According to Langer (2011), important factors in this decision include

coverage, which is concerned with how well the product meets the needs of the

customer, and direction, which includes the ability to customize existing solutions to

best aligned with the user’s core needs.

Software comparison methods o↵er several means to complete this task,

including the Weighted Sum Model and other technical performance based models.

Given the prototypal nature of many of the solutions analyzed, it became di�cult to

evaluate the applications based directly on technical performance. Many of the

solutions were not available to be installed or analyzed. Additionally, it was

important to be able to identify whether or not a better solution could and should

be designed, prior to implementing it in a manner su�cient for prototyping, let

alone a strenuous technical performance evaluation.

27

It thus became advantageous to use the Weighted Sum, or Weighted Scoring,

Model for decision-making analysis. The question to be answered, from another

perspective, was essentially that of a standard build versus buy analysis. To

accomplish this task, the criteria for comparison were established. Those criteria

were then ranked according to importance in the design specification. Finally, each

solution was then considered in a matrix fashion against each criteria, rendering a

final score for each product. This process was fulfilled in the creation of a Decision

Analysis Spreadsheet, as outlined by Bandor (2006).

It is important to note that many of the solutions considered, especially in

the remote realm, o↵er both a client and a server. Some criteria defined below may

apply generically, irrelevant of the implementation architecture, and some may

apply more specifically to either the client or the server (if applicable). When that

is the case, this distinction was noted as the criteria were considered.

3.4 Evaluation Criteria

Based on the survey of existing solutions found in the prior chapter and the

subsequent gap analysis, along with the research question put forth by this study,

the following key criteria were identified for a successful and di↵erentiated product

to meet the requirements implicit in the problem statement found in chapter 1.

The criteria identified below fall into one of two primary categories. The first

is that of functional needs, establishing whether or not the product does what it

must do to meet the core needs of the application. The second set consists of

implementation and adoption criteria, evaluating environmental and deployment

factors.

3.4.1 Key/Value Definitions

To put it simply, this seeks to understand how well the solution actually

o↵ers services for storing metadata. Is the metadata storage explicit or implicit?

28

How flexible is the storage and is it built into the solution or a byproduct of the way

it is used? Does it support only a defined set of metadata key/value pairs, or is it

su�ciently flexible for new areas of interest or even unknown applications? This,

along with the area of collaboration, were the key functional areas.

In this specific research inquest, there was a higher value placed on creating

a su�ciently flexible environment for metadata definitions. This is to say that it is

both capable of storing such standard elements as Dublin Core, as well as other

domain-specific ontologies or even unknown applications in the future. Though to

some areas of research, structured metadata is highly valued, in this application, a

lack of rigidity was prized for the sake of flexibility.

3.4.2 Collaborative Nature

Collaboration was a critical aspect of this research. Being able to share

metadata between users is the manifestation of that collaboration. This category

looked at how well the solution facilitates input from its users. Is it limited to some

externally defined group or all interested parties? How easily is the generated

metadata shared with collaborators and external participants? How easily can users

contribute back to the metadata definition?

In addition to the metadata definition group and collaboration sphere, it was

important to also consider how transportable the metadata is. For example, once a

file has been downloaded from its repository, does it retain its metadata or at least a

reference to it, or is the metadata only applicable in the original context for which it

was defined?

3.4.3 Platform Support

This criteria sought to understand on which di↵erent environments and

operating systems the solution can be used. Is it constrained to primarily one type

of environment, or is it flexible enough to support many di↵erent locales? This

29

question was particularly pertinent to clients, but could also apply to servers if the

server must be self-hosted in order to use the solution. This ultimately sought to

point to the reality that adoption and economies of scale hinge significantly on

whether or not users can use the solution on a broad range of existing devices and

products.

3.4.4 Adoption

According to Bonneau, Herley, Oorschot, and Stajano (2012) in their

analysis of password mechanisms and security, they note that there is an important

third category above and beyond the traditional dichotomy of usability and

security: the category of deployability.

In keeping with this observation, widespread adoption is critical to success in

a scale driven environment such as collaborative metadata. In order to facilitate

adoption, the solution must be both platform independent, as noted by the previous

category, and easily deployable. The issue of adoption is also fairly interconnected

with the issue of cost, but considers specifically how hard it is to deploy the

solution. Can an average user manage the deployment, or does it require extra or

specialized training? This particular category was primarily concerned with the

server but could have implications for the client as well.

3.4.5 Versioning and Provenance

This requirement sought to understand how well the solution can track

changes within the files themselves. Versioning looks at the contents of the file,

whereas provenance is concerning with context through external inputs, such as who

changed the file, when, using what other applications, for what purpose, and other

similar questions. The solution did not necessarily have to track the unique contents

of the individual versions, but should be aware of the existence of other versions,

and the relationships between them.

30

3.4.6 Security

In the context of this research, metadata definitions and collaborative

features were targeted at trying to facilitate open annotation within a specific

context or domain. Meaning, the definitions would likely be shared within the

context of a scientific discipline or research group, and may actually be

hierarchically distributed. As such, security may be both a function of the

application or the domain implementation, depending on the target scope of the

metadata service. That being said, how does it handle user identification and

authentication? Does it require an authenticated user? Does it support some

amount of anonymous functionality?

Security is also a function of the requirements of a given system. For

example, saying that a system requires an authenticated user, though seemingly

more secure, may be a disadvantage to the purpose of a particular project,

especially if that project wants to support anonymous interaction.

Finally, it is important to note that this is not a discussion of the security of

the application code itself and any susceptibility it may have to exploit. Given the

nature of many of the solutions and prototypes being analyzed, understanding the

actual security level of the software is impractical.

3.4.7 Distribution

Along with versioning and provenance, and security, distribution was the last

of the extended models identified by the secondary research questions. Here, the

analysis attempted to discern how the application is architecturally structured,

whether it be centralized or decentralized. Furthermore, if possible, understanding

whether the solution manifests any sort of distributed or hierarchical structure was

also captured here. This ultimately points to how the application may work in such

a way as to facilitate concentric circles of metadata coverage, context, and sharing.

31

3.4.8 Adaptability/Extensibility

As the build versus buy debate often considers, it is important to understand

that even though an existing solution may not o↵er all needed features, it may o↵er

the ability to easily extend its native functionality. Thus, how easy can the solution

be customized or extended? Again, this is not necessarily for the average end user,

but important when considering adoption by groups needing custom behavior or

extended functionality.

3.4.9 Cost

While software may be free, it is not without cost. This criteria, in

conjunction with adaptability and adoption, sought to understand those implicit

and explicit costs (Langer, 2011). Does the software have a purchase price? How

much does it cost to initially install? How much does it cost in ongoing

maintenance? Does the user have to host both the client and the server, or are free

hosting services available? The lower the initial and ongoing cost, the better score

an application received in this category.

3.4.10 Risk

Risk can seem intangible, but it is extremely important to consider. Are

users being asked to be an early adopter of the solution, or the user of a clearly

established standard or service? And subsequently, if required to use some form of

centralized server model, is that service clearly established and trustworthy?

3.5 Ranking

Having established the criteria of interest, those individual categories were

ranked and weighted according to their overall importance to the project. The

weighted sum of those rankings evaluates to 100% of the total possible weighted

32

score (Bandor, 2006). The above criteria have been defined in order of importance,

and are weighted as shown in table 3.1.

Table 3.1. Weighted Ranking

Criterion Weight

Key/Value Definitions 20%

Collaborative Nature 20%

Platform Support 10%

Adoption 10%

Versioning and Provenance 10%

Security 10%

Distribution 5%

Adaptability/Extensibility 5%

Cost 5%

Risk 5%

The criteria identified were ordered respective of their inclusion within the

research questions of chapter 1. The first two elements, those of metadata

definitions and collaboration, were ranked highest at 20%, as they were the core

functional elements established and required by this research. The subsequent items

of platform support and adoption were the non-functional requirements of the

primary research question, and as such, were ranked just below the primary

functional requirements, at 10%. The secondary research questions were those of

versioning, security, and distribution. Distribution was ranked subtly less than the

other two, as it is the least likely to significantly a↵ect a successful initial

implementation of a prototypal product. Lastly, adaptability, cost, and risk, were

identified as critical aspects of any real-world analysis and adoption of a new

product (Langer, 2011). Though they were important concerns and should weigh

33

into the discussion, they were weighted least, at 5%, for the purposes of this initial

analysis as they are the most subjective based on the specific adopter.

3.6 Scoring

Each solution was evaluated on the established criteria and given a raw

score. According to Bandor (2006), it is important to provide a scale from -1 to +1

for the definition of the raw score. This allowed for both the idea of negligence of a

feature (a score of 0), as well as the explicit detraction of a feature (the score of -1).

For example, one solution may only be available on one platform. This would have

received a raw score of -1.0. On the contrary, if a solution were centrally hosted by a

third party, platform support would be irrelevant, and received a 0.

The score scale is described graphically in table 3.2.

Table 3.2. Scoring Scale (Bandor, 2006)

Definition Score

Perfect match +1.0

Partially fulfills requirement +0.5

Neglects requirement 0.0

Partially detracts from requirement -0.5

Completely detracts from requirement -1.0

3.7 Summary

This chapter established the methodology and criteria with which the

existing metadata solutions can be compared. The weighted sum model was chosen,

34

with 10 criteria included in the analysis. With those criteria in mind, the

competitors identified and described in chapter 2 will be evaluated.

35

CHAPTER 4. ANALYSIS

Utilizing the criteria established by the previous chapter, the competitors

identified and described were evaluated to determine their strength against the

criteria. A brief written description summarizing the solution and criteria will be

given, followed by a numeric score. Each solution’s scores will be summarized, and a

collective summery will be given at the end of the chapter.

4.1 Linking File System

The Linking File System was the first of the local solutions considered as a

comparable in this investigation. It o↵ers the ability to link files and describe those

links and the files themselves using key/value metadata pairs.

4.1.1 Key/Value Definitions

LiFS received a 1.0 for its ability to arbitrarily define key/value pairs and

establish links between files. This core functionality of the application is a thorough

implementation and serves to solve the metadata definition problem.

4.1.2 Collaborative Nature

By definition, local solutions all generally received a -1.0 for their

collaborative nature. This was true of LiFS as well.

36

4.1.3 Platform Support

The prototype of LiFS was implemented for the Linux platform, and requires

the FUSE userspace module to function (A. Ames et al., 2005). Due to these

restrictions, it received a -0.5. Given the widespread adoption of Linux and the

availability of FUSE within the Mac operating system it was not considered to

completely detract from the criteria.

4.1.4 Adoption

As with many solutions in this space, their lack of maturity contributed to a

di�culty in adoption. Some solutions, such as LiFS, were not actively available on

the market, and thus received a -1.0. Solutions that are available, but only in a

prototype phase received higher marks.

4.1.5 Versioning and Provenance

Though it o↵ers no explicit promise of versioning or provenance, the ability

to define links between files could function as a version history. Links could also be

used to identify a history of contributing artifacts leading to a rudimentary

understanding of provenance. Given these possibilities, LiFS received a 1.0 for

versioning and provenance.

4.1.6 Security

In the context of all local file system solutions, security is not applicable as

the data is not shared between hosts or other entities. For this reason, LiFS

received a 0 for security.

Whereas all local solutions received a -1.0 for collaboration, they all received

a 0 for security. The di↵erence between the scoring of the two rests in the fact that

37

the lack of security is not applicable to a local solution, whereas a lack of

collaborative nature is functionally lacking a core requirement of this research.

4.1.7 Distribution

As with security, local solutions do not have a potential application of

distribution, as they do not conform to the client server architecture. For this

reason a 0 was awarded.

4.1.8 Adaptability/Extensibility

The ability to adapt and extend the functionality of LiFS was unknown. For

this reason, it received a 0 on this criteria.

4.1.9 Cost

For solutions only implemented in prototypal form, understanding cost was

an impossible endeavor. In this context, given the academic nature of many of the

available solutions, it was likely safe to assume that they would have been o↵ered at

little to no cost. For that reason, given the benefit of the doubt, LiFS received a 1.0

for cost.

4.1.10 Risk

For all products in the development and prototypal phases, risk is always

high. There are concerns of maintainability and support over the long term, and

risks related to unknown factors such as scaling and security. For this reason, LiFS

received a -1.0 on the issue of risk.

A summary of the LiFS weighted sum results can be seen in table 4.1.

38

Table 4.1. Weighted Sum Model for LiFS

Criterion Weight Score Weighted

Key/Value Definitions 20% 1.0 20%

Collaborative Nature 20% -1.0 -20%

Platform Support 10% -0.5 -5%

Adoption 10% -1.0 -10%

Versioning and Provenance 10% 1.0 10%

Security 10% 0.0 0%

Distribution 5% 0.0 0%

Adaptability/Extensibility 5% 0.0 0%

Cost 5% 1.0 5%

Risk 5% -1.0 -5%

Total 100% -5%

39

4.2 Quasar File System

The Quasar File System is a functionally similar implementation to LiFS,

o↵ering comparable strengths and weaknesses, though it focuses more on unifying

the location of both file data itself and its descriptive metadata. In so doing, it

poses potential improvements in terms of performance, but no significant functional

changes from that of LiFS. For this reason, no further analysis of QFS will be

provided. The results of QFS are summarized in table 4.2.

4.3 File System as Linked Data

The last of the local solutions, the File System as Linked Data, or F2R,

o↵ers an interesting hybrid of the local perspectives with its attempt to bridge the

gap between a strictly isolated solution and a more robust collaborative model.

4.3.1 Key/Value Definitions

As with LiFS and QFS, F2R o↵ers as a core feature the ability to describe

assets using key/value definitions. Furthermore, it proposes the idea of augmenting

its user-defined metadata with certain automatically generated metadata elements.

Though somewhat irrelevant to this discussion, this does pose interesting

possibilities in this space of collaborative metadata generation. A 1.0 was given for

this category.

4.3.2 Collaborative Nature

As noted above in the section on LiFS, all local solutions should inherently

receive a -1.0. But, F2R introduces the ability to publish the contents of a file

system to the web in a semantic context. Unfortunately, this does little to aid in the

current endeavor, o↵ering no practical value to the non-automated consumer of the

shared metadata. A -1.0 was thus still awarded.

40

Table 4.2. Weighted Sum Model for QFS

Criterion Weight Score Weighted

Key/Value Definitions 20% 1.0 20%

Collaborative Nature 20% -1.0 -20%

Platform Support 10% -0.5 -5%

Adoption 10% -1.0 -10%

Versioning and Provenance 10% 1.0 10%

Security 10% 0.0 0%

Distribution 5% 0.0 0%

Adaptability/Extensibility 5% 0.0 0%

Cost 5% 1.0 5%

Risk 5% -1.0 -5%

Total 100% -5%

41

4.3.3 Platform Support

The prototype of F2R was implemented in Java, making it, in theory, cross

platform (He et al., 2013). But, given the larger degradation in support of Java,

especially for Mac, a 0.5 was given for this category.

4.3.4 Adoption

As with many solutions in this space, their lack of maturity contributes to a

di�culty in adoption. Some solutions, such as F2R, were not actively available on

the market, and thus received a -1.0.

4.3.5 Versioning and Provenance

Though it o↵ers no explicit promise of versioning or provenance, the ability

to define metadata about files could function as a version history. Given these

possibilities, F2R received a 0.5 for versioning and provenance.

4.3.6 Security

In the context of all local file system solutions, security is not applicable as

the data is not shared between hosts or other entities. Furthermore, assuming the

choice to published metadata to the semantic (and open) web is a purely voluntary

action, security still primarily remains irrelevant. For this reason, F2R received a 0

for security.

4.3.7 Distribution

F2R, in its server architecture, is not distributed. But, in publication, it

could in theory allow for the distribution of file system metadata to multiple

42

destination. Though not defined, a 0.5 was awarded for the potential application of

this solution in a distributed manner.

4.3.8 Adaptability/Extensibility

The ability to adapt and extend the functionality of F2R is relatively

unknown. According to He et al. (2013), the application is developed in a modular

manner, implying at least some amount of customization potential. For this reason,

it received a 0.5 on this criteria.

4.3.9 Cost

For solutions only implemented in prototypal form, understanding cost is an

impossible endeavor. In this context, given the academic nature of many of the

available solutions, it is likely safe to assume that they would have been o↵ered a

little to no cost. For that reason, given the benefit of the doubt, F2R received a 1.0

for cost.

4.3.10 Risk

For all products in prototypal phase, risk is always high. There are concerns

of maintainability and support over the long run, and risks related to unknown

factors such as scaling and security. For this reason, F2R received a -1.0 on the issue

of risk

A summary of the results of the F2R analysis can be seen in table 4.3.

4.4 Digital Object Identifiers

The Digital Object Identifier system is managed by the International DOI

Foundation and allows for persistent handles to web objects. The DOI system is a

43

Table 4.3. Weighted Sum Model for F2R

Criterion Weight Score Weighted

Key/Value Definitions 20% 1.0 20%

Collaborative Nature 20% -1.0 -20%

Platform Support 10% 0.5 5%

Adoption 10% -1.0 -10%

Versioning and Provenance 10% 0.5 5%

Security 10% 0.0 0%

Distribution 5% 0.5 2.5%

Adaptability/Extensibility 5% 0.5 2.5%

Cost 5% 1.0 5%

Risk 5% -1.0 -5%

Total 100% 5%

44

client-server based architecture, where DOI registration is managed by decentralized

and vetted Registration Agencies (RA), and the client is traditionally a web browser

(DOI handbook , 2013).

4.4.1 Key/Value Definitions

The DOI scheme does support the definition of key/value metadata. That

being said, the metadata standards are primarily intended to be based on the

Dublin Core or an established domain ontology. For this reason, and the relative

fixity of the metadata once published, it received a 0.5 in this category.

4.4.2 Collaborative Nature

The DOI system is intended to be collaborative and public in nature. That

being said, it is not a living or collaborative metadata store to the extent required

by this research. Metadata is only defined by the publisher at the time of

publication. Additionally, metadata is loosely coupled to the object and can be

easily lost. For these reasons, a -0.5 was given for collaboration.

4.4.3 Platform Support

Platform support for the server is less important, as it is not generally the

responsibility of the user wishing to adopt the solution to set up their own server

(though this may be considered a disadvantage to some). Given that the client is

primarily a web browser, there is little to no platform dependence. But,

understanding the lack of flexibility on the server side, it was only awarded a 0.5 for

this criterion.

45

4.4.4 Adoption

Adoption is based on access to an existing service that supports the DOI. To

use the DOI service, an appropriate Registration Agency must be identified. If one

does not exist, a new one may have to be formed. It therefor may not be an

applicable solution for all interested parties, depending on the availability of the

assets being described (referring here to the requirement for publicly available assets

as noted in the review of relevant literature). A -0.5 was thus awarded.

4.4.5 Versioning and Provenance

DOIs can and should be assigned to explicit versions of the objects they

represent. In addition, those objects could in theory reference other objects, and

thus fulfill a form of versioning and provenance. It thus warranted a 1.0 on this

criterion.

4.4.6 Security

The security and validity of the metadata given for an object is managed by

the registering agency. Security is therefor primarily a factor of the individual

registration agency systems. In the absence of any other contrary information, a 1.0

was given for this category.

4.4.7 Distribution

The DOI system is by nature distributed, in that it is divided by registration

domains identified by handle prefixes (DOI handbook , 2013). Though this does not

necessarily constitute a hierarchical system, it is distributed, and a 1.0 was therefor

given in this category.

46

4.4.8 Adaptability/Extensibility

There is little to no concept of user adaptability or extensibility in the DOI

system, as it is strongly standardized in both use and implementation. A -1.0 was

thus appropriate here.

4.4.9 Cost

Cost is dependent on whether or not an existing service entity is available

and suitable to be used by the client. Furthermore, membership in the DOI

Foundation may also include a cost (though is not required to utilize the service).

Assuming the DOI system is used within the larger context of an existing RA, little

to no cost will be assumed, and thus warranted a 1.0 in this category.

4.4.10 Risk

The DOI system is well established and has been in use since 1997 (DOI

handbook , 2013). It has earned widespread acceptance and o↵ers a valuable

maturity when selecting a third party metadata service. It was given a 1.0.

A summary of the results of the DOI analysis can be seen in table 4.4.

4.5 Open Annotation Data Model

The Open Annotation Data Model, which is the second of the remote

solutions discussed, posses high promise in the metadata realm. But, as discussed in

the review of relevant literature, its lack of solid implementation is a significant

hindrance to adoption and use.

47

Table 4.4. Weighted Sum Model for DOI

Criterion Weight Score Weighted

Key/Value Definitions 20% 0.5 10%

Collaborative Nature 20% -0.5 -10%

Platform Support 10% 0.5 5%

Adoption 10% -0.5 -5%

Versioning and Provenance 10% 1.0 10%

Security 10% 1.0 10%

Distribution 5% 1.0 5%

Adaptability/Extensibility 5% -1.0 -5%

Cost 5% 1.0 5%

Risk 5% 1.0 5%

Total 100% 30%

48

4.5.1 Key/Value Definitions

The Open Annotation Data Model takes a slightly di↵erent structural

approach to the metadata definition aspect of the solution. Instead of explicitly

allowing arbitrary key/value definitions, the data model defines a semantic language

for describing and relating web objects. Though not exactly the same as many of

the other solutions, this should prove su�cient to meet the requirements of this

research. A 1.0 was therefor given.

4.5.2 Collaborative Nature

Though uniquely targeting a semantic definition to allow for the sharing of

annotations, the Open Annotation Data Model does not actually advocated a user

to user centric approach. For this reason, it only received a score of 0.5 for

collaboration.

4.5.3 Platform Support

This issue cannot be addressed without proper implementations to analyze.

Given, though, that this is intended to be a cross platform and cross domain

specification, it was given a preemptive evaluation of 1.0.

4.5.4 Adoption

In a similar manner to the costing issue, the requirement for a home-grown

implementation to mechanize the model poses significant hindrances to adoption. A

-1.0 was given. This could be improved in the future by standards-compliant clients

and servers being introduced to the market.

49

4.5.5 Versioning and Provenance

Understanding that the Open Annotation Data Model’s intent is to describe

web objects, versioning and provenance can pose a problem in this regard, given

that the same web identifier may describe any number of items over a given period

of time without semantic di↵erentiation. That being said, assuming fixed objects

such as publications and datasets should remained constant for a given resource

identifier, versioning and provenance could apply for a certain subsection of

potential objects. For this reason, a -0.5 was given.

4.5.6 Security

Security is not an explicit concern of the model, and as such, becomes a

product of the implementation and specific use case of the adopter. It thus received

a 0 in this analysis until specific clients or servers can be considered.

4.5.7 Distribution

The open standard has been defined to facilitate the distribution and

interoperability of the web annotations created. This fits well within a distributed

structure, and thus warranted a 1.0.

4.5.8 Adaptability/Extensibility

This criteria is specific to tangible implementation, and is thus given a 0.

4.5.9 Cost

There is no cost to the model itself, but as it is only a model, a solution must

be implemented surrounding the use of the model for individual adopters. It thus

50

received a -1.0, assuming a reasonable amount of work would be required to

implement both a server and cross-platform clients.

4.5.10 Risk

The risks are self-evident in the previous criterion. No solid implementation

leads to significant development cost and risk. A -1.0 was thus awarded.

As a model, the Open Annotation Data Model o↵ers meaningful insight and

promise into the problem of shared annotation on the web. That being said, as can

be seen above, without a tangible implementation, it was not a viable option for

consideration in the current analysis.

The results of the Open Annotation Data Model are summarized in table 4.5.

4.6 Integrated Rule-Oriented Data System

Contrary to the previous two remote solutions, iRODS o↵ers a large scale

data management and virtualization platform with extended file metadata

capabilities and a plugin-based system for file event management.

4.6.1 Key/Value Definitions

iRODS has built-in support for metadata key/value pairs. These pairs can

describe data objects, resources, collections, or even users (iRODS technical

overview , 2014). For this reason, iRODS received a 1.0 on the metadata definition

requirement.

4.6.2 Collaborative Nature

iRODS is a centralized collaboration solution. Like other solutions presented,

the value of the metadata and features are tied strictly to their existence within the

51

Table 4.5. Weighted Sum Model for Open Annotation Data Model

Criterion Weight Score Weighted

Key/Value Definitions 20% 1.0 20%

Collaborative Nature 20% 0.5 10%

Platform Support 10% 1.0 10%

Adoption 10% -1.0 -10%

Versioning and Provenance 10% -0.5 -5%

Security 10% 0.0 0%

Distribution 5% 1.0 5%

Adaptability/Extensibility 5% 0.0 0%

Cost 5% -1.0 -5%

Risk 5% -1.0 -5%

Total 100% 20%

52

iRODS ecosystem. But, the iRODS platform does support user-based access levels

and management. For this reason, a 0.5 was awarded.

4.6.3 Platform Support

The iRODS server is distributed for Linux-based systems, and is composed of

several di↵erent packages. Specialized clients are less important in the iRODS

environment, as it is often used by users as any other network mounted file system

would be. A -0.5 was given for dependence on Linux. A -1.0 was not given in light

of the client flexibility.

4.6.4 Adoption

Unfortunately, the barriers to entry, in terms of adoption, for iRODS are

high, both in terms of installation and configuration, and knowledge required to

properly manage the solution. The server must also be self-hosted, as it does not

have a third party service implementation that clients can utilize. Thus, a -1.0 was

given.

4.6.5 Versioning and Provenance

iRODS does not explicitly o↵er versioning functionality. But, through its use

of metadata catalog, and extensive rule engine, iRODS o↵ers strong provenance

functionality (iRODS FAQ , n.d.). In fact, iRODS sees this preservation function as

one of its core missions. This warranted a score of 1.0.

4.6.6 Security

The iRODS system has its own internal user management functionality.

Additionally, the default installation of iRODS includes an extensive number of

53

features and submodules, some of which have been more closely examined than

others. As is the case with many other solutions, the integrity of the whole is

dependent on the weakest link. That being said, iRODS is a large and expansive

solution with many features and interfaces, and should be examined by the adopting

organization to ensure features are compatible with the desired level of security. In

spite of this ambiguity, given its relative maturity, for the sake of this discussion,

iRods received a 1.0 for security.

4.6.7 Distribution

iRods is an intentionally centralized environment. It is not necessarily

intended to collaborate with other iRODS instances. A -1.0 was given.

4.6.8 Adaptability/Extensibility

To a certain extent, one of the primary purposes of iRODS is to be

extensible. The ability to attach rule-based plugin events to the infrastructure is a

core feature of the product. This thus warranted a 1.0 in this category.

4.6.9 Cost

iRODS is distributed as an open source project, but the server must be

installed and maintained by the utilizing organization, which does incur its own set

of costs. And, as noted in the section above on adoption, the installation and

requirements of such an extensive system are much higher than average. Specialized

experience and hardware may be required. A -1.0 was thus given for this category.

54

4.6.10 Risk

Again, contrary to the previous two solution, iRODS posses significantly less

risk as a more mature and developed solution. Risk for this solution is primarily

found in maintainability and configuration. In spite of potential risks due to

complexity, a 1.0 was given for its maturity and flexibility.

A summary of the results of the iRODS analysis can be seen in table 4.6.

4.7 Google Docs/Drive

Google o↵ers multiple solutions that, particularly when used in conjunction

with one other, provide a compelling remote solution to the problem identified by

this research. Google Docs and Drive are compliments to one another. Google Drive

o↵ers cloud based storage for files of any type, and Google Docs enables online

editing and collaboration for standard document, spreadsheet, and presentation

type files.

4.7.1 Key/Value Definitions

Unfortunately, in spite of Google’s excellent o↵erings, they are not explicitly

intended to be a metadata store. To achieve metadata definitions in this context, a

separate file with information must be stored and distributed to describe any items

available within the Google Drive. For this reason, a -1.0 was given for the criteria

of metadata definitions.

4.7.2 Collaborative Nature

Google is a user-oriented company, and as such, o↵ers well defined and

intuitive products and interfaces. Their Docs and Drive o↵erings are highly

collaborative and work well within small teams. But, generally speaking, they do

not function as well in an openly collaborative environment, where unknown people

55

Table 4.6. Weighted Sum Model for iRODS

Criterion Weight Score Weighted

Key/Value Definitions 20% 1.0 20%

Collaborative Nature 20% 0.5 10%

Platform Support 10% -0.5 -5%

Adoption 10% -1.0 -10%

Versioning and Provenance 10% 1.0 10%

Security 10% 1.0 10%

Distribution 5% -1.0 -5%

Adaptability/Extensibility 5% 1.0 5%

Cost 5% -1.0 -5%

Risk 5% 1.0 5%

Total 100% 35%

56

may need to collaborate, as explicit permissions must be granted in order to edit a

document.

Furthermore, having a central location for files eliminates some questions

(i.e. do I have the latest version of a given document), but once downloaded

(perhaps in publishing the document to a research journal), the metadata is not

transportable and is completely lost from its original context. It thus received a 0.5

in the collaborative category.

4.7.3 Platform Support

The server for this solution is hosted by Google, and is thus irrelevant. The

client however is cross-platform by nature of being accessible through a web

browser. Other clients have been developed, are well supported, and are available

for multiple operating systems. A 1.0 was thus awarded.

4.7.4 Adoption

Google products are relatively easy to adopt given their proliferation in the

market. Furthermore, having a centrally hosted server and available clients leads to

little deployment burden. A 1.0 was therefor appropriate for this category.

It should be noted though, that licensing restrictions may be involved when

considering the use of the platform. These should be addressed and reviewed on a

case by case basis.

4.7.5 Versioning and Provenance

Google o↵ers versioning mechanisms for their Docs enabled files. But again,

that versioning is lost upon extraction of the files from the hosting platform.

Additionally, no provenance mechanism is available, thus warranting a -0.5.

57

4.7.6 Security

By necessity, Google’s security is high. Mechanisms are made available

within Docs and Drive to allow individuals to explicitly define who can access

certain assets within the space. For these reasons, Google received a 1.0 in the area

of security.

That being said, though not explicitly related to security, it is important to

note that there may be reasons to avoid using Google due to security restrictions for

classified or otherwise restricted data. For those who may potentially find

themselves in that category, it would be important to review the Google terms of

service and licensing, and potentially consult with ones legal counsel prior to use.

4.7.7 Distribution

These two Google products are by definition centrally stored and not

distributed. This contributes to the lack of metadata context once files are removed

from the central repository. But, if using a provided desktop client, the illusion of a

distributed environment can be given. This warranted a -0.5.

4.7.8 Adaptability/Extensibility

Google o↵ers fairly robust and exhaustive APIs to facilitate extensibility

within their products. Though this does not allow the core product to be changed

(namely their browser-based interface), other products can be developed or

augmented using their API. A 1.0 was awarded for adaptability and extensibility.

4.7.9 Cost

These products are free to use. But, as noted above, some cost may be

incurred if business grade solutions are required. For this reason, a 0.5 was given.

58

4.7.10 Risk

The primary risk for any third party integration is that of sustainability.

Will the product remain available and at relatively the same cost for an extended

period of time? Google is a mature and user-centric company, which in theory limits

the exposure of risk in this regard. Risk is therefore considered low, and in turn,

warranted a 1.0.

This analysis is summarized in table 4.7.

4.8 Dropbox

Dropbox is another online document storage and sharing solution. It o↵ers a

similar compliment for online editing through the use of Microsoft Online. It is thus

a functionally equivalent solution to Google and will not be analyzed further. Its

scores are summarized in table 4.8.

4.9 Git

Git, the final solution in the remote object category, is similar to the above

solutions of Google and Dropbox, with a few key variations. Git GUIs and desktop

clients do exist, but the most powerful interface is the native command line tool.

Additionally, whereas Dropbox and Google o↵er centralized storage servers, Git can

be implemented locally and functions under a decentralized model. That being said,

there are public service options for the use of Git, including the most popular and

well known, GitHub.

4.9.1 Key/Value Definitions

Git, like Google and Dropbox above, does not o↵er an explicit metadata

solution. Adding a file to the repository for defining this extended metadata would

be the primary solution to this problem. This was given a score of -1.0

59

Table 4.7. Weighted Sum Model for Google Docs/Drive

Criterion Weight Score Weighted

Key/Value Definitions 20% -1.0 -20%

Collaborative Nature 20% 0.5 10%

Platform Support 10% 1.0 10%

Adoption 10% 1.0 10%

Versioning and Provenance 10% -0.5 -5%

Security 10% 1.0 10%

Distribution 5% -0.5 -2.5%

Adaptability/Extensibility 5% 1.0 5%

Cost 5% 0.5 2.5%

Risk 5% 1.0 5%

Total 100% 25%

60

Table 4.8. Weighted Sum Model for Dropbox

Criterion Weight Score Weighted

Key/Value Definitions 20% -1.0 -20%

Collaborative Nature 20% 0.5 10%

Platform Support 10% 1.0 10%

Adoption 10% 1.0 10%

Versioning and Provenance 10% -0.5 -5%

Security 10% 1.0 10%

Distribution 5% -0.5 -2.5%

Adaptability/Extensibility 5% 1.0 5%

Cost 5% 0.5 2.5%

Risk 5% 1.0 5%

Total 100% 25%

61

4.9.2 Collaborative Nature

Git, contrary to some of its version control predecessors, is intended to be

decentralized and distributed, thus providing a highly collaborative and redundant

environment. So long as the repository remains intact, the metadata file definitions

remain available. But, like other solutions, once removed from the repository, the

files have no explicit linkages back to their associated metadata. A 0.5 was thus

awarded.

4.9.3 Platform Support

Git is built and distributed for all major platforms, and many desktop based

GUI applications are available for multiple platforms. Use of online services such as

GitHub can also be made available with a web browser. A 1.0 was therefor given for

this category.

4.9.4 Adoption

The adoption of Git is slightly more involved than that of Google and

Dropbox in that it may require management of the server as well as the clients, and

may involve a slightly higher level of technical competency from its end users. Even

still, it is a general accepted solution in the version control domain, and likely to be

familiar to many users. A 0.5 was given.

4.9.5 Versioning and Provenance

Git’s primary purpose is version control. It is especially designed for

versioning text-based (i.e. non-binary) documents. Provenance, on the other hand,

is not explicitly accounted for within the application. This, in conjunction with its

lack of explicit metadata store, warranted a 0.5.

62

4.9.6 Security

Security in Git is a function of how and where it is implemented. For

example, if the server is implemented locally within an organization or even to a

single user, the credentials for access and authentication would be managed by

access to the hosting server, not directly by Git. Similarly, access to GitHub is

managed by account-based privileges on the site itself. It is thus considered not

applicable and received a 0 in this category.

4.9.7 Distribution

As a decentralized versioning system, Git is by definition distributed. But,

these distributed entities cannot interoperate unless they share a common file

ancestry. A 0.5 was therefor given.

4.9.8 Adaptability/Extensibility

Git adheres to a hook-based system for extensibility, o↵ering developers the

ability to inject code at targeted points within the Git workflow. Some online

Git-based server solutions also o↵er API endpoints and triggers for customizing

workflows. This warranted a score of 1.0.

4.9.9 Cost

Git is free and open source. GitHub as well is free for many use cases. Under

some circumstances, though, fees may be charged for those requiring private

repositories. A 0.5 was thus given.

63

4.9.10 Risk

Risk for this solution will likely depend on the choice of server location,

whether internally hosted or externally outsourced. Assuming the appropriate

solution for the circumstance is chosen, a 1.0 was given.

A summary of the preceding Git analysis can be found in table 4.9, and a

collective summary of all items can be found in table 4.10.

4.10 Summary

This chapter captured a concrete summary of the identified competitors in

the realm of collaborative metadata management. Each solution has been

summarized according to the key metrics of this research, and given a corresponding

weight. With no solution scoring higher than a 35% feature coverage ratio, an

alternative solution was sought. Given this information, the new application

proposed by this research will now be defined and subsequently ranked using the

same criteria identified in the previous chapter.

64

Table 4.9. Weighted Sum Model for Git

Criterion Weight Score Weighted

Key/Value Definitions 20% -1.0 -20%

Collaborative Nature 20% 0.5 10%

Platform Support 10% 1.0 10%

Adoption 10% 0.5 5%

Versioning and Provenance 10% 0.5 5%

Security 10% 0.0 0%

Distribution 5% 0.5 2.5%

Adaptability/Extensibility 5% 1.0 5%

Cost 5% 0.5 2.5%

Risk 5% 1.0 5%

Total 100% 25%

65

T
ab
le

4.
10

.
W
ei
gh

te
d
S
u
m

M
od

el
C
om

p
ar
is
on

L
iF
S

Q
F
S

F
2R

O
A
D
M

D
O
I

iR
O
D
S

G
oo

gl
e

D
ro
p
b
ox

G
it

K
ey
/V

al
u
e
D
efi
n
it
io
n
s

20
%

20
%

20
%

20
%

10
%

20
%

-2
0%

-2
0%

-2
0%

C
ol
la
b
or
at
iv
e
N
at
u
re

-2
0%

-2
0%

-2
0%

10
%

-1
0%

10
%

10
%

10
%

10
%

P
la
tf
or
m

S
u
p
p
or
t

-5
%

-5
%

5%
10
%

5%
-5
%

10
%

10
%

10
%

A
d
op

ti
on

-1
0%

-1
0%

-1
0%

-1
0%

-5
%

-1
0%

10
%

10
%

5%

V
er
si
on

in
g
an

d
P
ro
ve
n
an

ce
10
%

10
%

5%
-5
%

10
%

10
%

-5
%

-5
%

5%

S
ec
u
ri
ty

0%
0%

0%
0%

10
%

10
%

10
%

10
%

0%

D
is
tr
ib
u
ti
on

0%
0%

2.
5%

5%
5%

-5
%

-2
.5
%

-2
.5
%

2.
5%

A
d
ap

ta
b
il
it
y/

E
xt
en
si
b
il
it
y

0%
0%

2.
5%

0%
-5
%

5%
5%

5%
5%

C
os
t

5%
5%

5%
-5
%

5%
-5
%

2.
5%

2.
5%

2.
5%

R
is
k

-5
%

-5
%

-5
%

-5
%

5%
5%

5%
5%

5%

-5
%

-5
%

5%
20
%

30
%

35
%

25
%

25
%

25
%

66

CHAPTER 5. IMPLEMENTATION

As exemplified by the previous chapter, initially many seemingly viable

solutions existed to handle the problem of file metadata. Unfortunately, many of

those solutions also have key deficiencies, neglecting primary portions of

functionality needed to create a more holistic solution. Thus, a new application had

to be developed. This chapter will focus on that application, as a solution to

uniquely and strategically solve the problems identified herein. In the subsequent

chapter, the prototyped solution will be evaluated against the previous solutions to

show whether or not there is su�cient reason to deem the prototyped metadata

repository a success.

To fulfill the requirements of this research and support the hypothesis

established in the previous chapter, a metadata system was designed and developed.

The principle requirements and constraints of that system are as follows. The

application itself was named, and will be henceforth referred to as Fez. The Fez

name encompasses both the server and any clients described below.

5.1 Server

Two principle components make up the interaction of the system, the server

and the client. This development focused primarily on the server, as it is the

fundamental element to a functioning system. During development of the server,

features from the research question established in chapter 1 were divided into core

features (the primary research question), and features that were considered

extended models (the secondary research questions). The core features were deemed

essential and had to be fully functioning for the system to be deemed viable, while

67

extended models could be more conceptual in nature and may lack complete

integration for the sake of the current analysis.

5.1.1 Core Components

The prototype server itself runs within the Linux Operating System (OS).

Due to its establishment in the market and extensive feature-set, the MongoDB

NoSQL database serves as the JSON data store for the server. Overlaying that rests

the application itself. The application language was chosen from common

web-ready, high level programming language, such as Ruby, PHP, or Python. The

server application exposes a RESTful web API for accepting inquests of, and

submissions to, the repository. The data architecture for the server is shown in

figure 5.1 and further expounded upon in the following sections.

Figure 5.1. Unified Modeling Language diagram of the server.

68

5.1.1.1. The “Key”

Central to all of the solutions examined thus far is the need to have the files

themselves, and the metadata about those files, stored in the same location. To

eliminate the need to store all files in a centralized repository, a unique and

deterministic key (labeled “identifier” in figure 5.1) was used to identify all

published assets. This gives secondary recipients of files the ability to query the

repository for metadata without having to learn the unique key from the original

author or devise some universal mechanism for embedding that key in the file. The

file, in essence, is the key. The key therefor travels with the file and allows for a

unique separation of file contents and file metadata.

The key is composed of the file hash, su�xed with the file size, separated by

a colon, in this manner:

1bec963c32050158e2c40f3f95ed62b55e926f918b9e2e2aa8e74ffb58d5d2e5:6546

The length of the hash, in combination with the file size makes this key,

though deterministic, su�ciently unique.

5.1.1.2. The Foundation

The foundation of any solution is important. Choosing to construct the Fez

server on the Linux architecture o↵ered both an incredible amount of support and

flexibility. It also strongly supported the expressed goal of cost e↵ectiveness, as

many distributions are available as free open source distributions.

That being said, the level at which this application is implemented allows the

solution to run on other operating systems as well, including Windows and Mac. It

is therefor not explicitly limited to Linux. The underlying applications required to

install and run Fez include a modern version of Apache2, PHP, MySQL, MongoDB,

and the PHP-MongoDB extension.

69

5.1.1.3. The REST API

A REST API o↵ers a platform independent and semantic interface for any

number of clients to communicate with the core metadata service. A proper REST

API takes advantage of the central request methods of HTTP, namely GET, POST,

PUT, and DELETE. This also facilitates the creation of clients across device types,

including native phone apps, web browsers, and integrated desktops clients.

The use of REST-based APIs has gained significant momentum and

acceptance, which further establishes it as the proper method for client-server

interaction, as it is already familiar to most web and native app developers.

5.1.1.4. The NoSQL Data Structure

In contrast to traditional relational databases, arbitrary metadata fits more

aptly into the emerging paradigm of NoSQL databases. It o↵ers incredible flexibility

for arbitrary data in the form of key/value definitions by the very nature of its

underlying JSON data structure. MongoDB was selected for its strong feature set,

community support and adoption, and maturity in this space. Additionally, as will

be seen later, MongoDB’s sharding capabilities are also advantageous for use in

distributed applications.

5.1.1.5. The Language

The language chosen for the metadata server was that of PHP. This was due

to it familiarity to the author and its prevalence in the web development

community. According to Usage statistics and market share of server-side

programming languages for websites (2015), PHP powers over 80% of websites

whose server-side language is known.

70

5.1.1.6. The Installation

Having developed the server in a language such as PHP also gave the

flexibility to have it function in both a standalone environment as well as alongside

other existing frameworks. The basic server was constructed using the Laravel PHP

framework. It is a well-adopted community driven PHP framework for developing

powerful applications.

In addition to the Laravel Framework, the metadata server also integrates

into the HUBzero Platform. HUBzero is a platform for scientific collaboration and

community building and o↵ers a natural and targeted integration point for working

with predefined domain communities of people currently collaborated in the ways

described by the problem statement. The HUBzero platform can also serve as a Fez

client through the use of its collaborative projects technology.

Choosing to use strong existing frameworks such as Laravel and HUBzero

also a↵orded the benefits of a surrounding architecture for authentication, as will be

identified in the extended models below.

5.1.1.7. The Distribution

To disseminate an application to the community, it is important and

beneficial to take advantage of existing solutions and mechanisms that are familiar

to the community. Because of this, the source for the clients and the server will be

distributed via the author’s GitHub page. This is the de facto standard in the open

source community for software exposure and distribution. It has built-in features for

sharing, versioning, issue management, and community participation.

Beyond the source being made available on GitHub, the PHP community has

adopted the package management solution known as Composer, coupled with the

primary package repository called Packagist. These mechanisms coordinate with

GitHub to o↵er a centralized and simple way for users to require, install, and keep

the software updated.

71

5.1.2 Extended Models

In addition to the core server application, additional structures have been

outlined by the secondary research questions of chapter 1. Though these items are

not required to be fully functioning, paradigms were established within Fez for these

extended features that should be compelling to the larger use case of Fez. As

identified by the secondary research questions, these items were that of provenance

tracking and versioning, security, and hierarchical distribution.

5.1.2.1. Versioning and Provenance

Provenance and versioning serve a complimentary purpose, and can be

achieved by a relatively simple mechanism. The standard for a file link within the

metadata can be established. For example, the child of key (or similar), as shown

below, denotes that this file is a subsequent version of another file known to Fez.

{

child_of :

1bec963c32050158e2c40f3f95ed62b55e926f918b9e2e2aa8e74ffb58d5d2e5:6546

}

Servers and clients alike could immediately recognize this as a file key and

understand that this is a relationship between files. And though seemingly complex,

clients interfaces can e↵ectively obscure these details from the user, o↵ering

click-based or drag-and-drop mechanisms for establishing or identifying these

relationships.

This does, however, raise the somewhat methodological question of rigidity

versus flexibility. The goal of this particular project was not to develop a highly

curated repository. Other systems exist that support specific metadata standards or

ontologies. As previously discussed, they have the potential to su↵er on account of

their rigidity and the lack of adaptability in rapidly changing domains. But, that

does mean that the data in Fez will ultimately only be as good as the user intends it

72

to be. Therefore, though the underlying structure of the application is as open as

possible, clients may guide users toward certain paradigms, such as the child of key

identified above, while still o↵ering flexibility for more advanced users.

5.1.2.2. Security

Discussions of security often attempt to understand two things, namely,

authentication and authorization. Authentication seeks to know who the user is,

while authorization is tasked with understanding whether or not the user can

perform a given task. The goal of Fez is to provide a relatively open and

unrestrictive platform for metadata definition and distribution. Taking advantage of

the integration with the HUBzero framework, Fez can utilize the existing

authentication mechanisms provided by the framework, including user accounts,

group management, and OAuth2 token-based API requests.

Though not directly related to the functionality of Fez, it is also possible to

impose limitations at the network level to completely restrict or limit interactions

with the system to a closed group or domain.

5.1.2.3. Distribution

Lastly, the issue of hierarchical distribution was established to address the

question of metadata scope. If a user wants to only store metadata items for

consumption by their own devices, can that be supported? Additionally, can a

hybrid model be established whereby a user might have a local repository, and then

defer to a higher repository for locally unknown entities? To achieve such a

structure, the concepts introduced by the Domain Name System (DNS) were

examined to serve as a model for such a dynamic interaction.

Though not implemented, the ultimate goal of Fez is that it would be

distributed in nature, allowing authoritative sources to preside over defined domains

in a customizable fashion. This would follow a similar structure to the Domain

73

Name Service and be implemented via the MongoDB sharding mechanisms already

available within the server application.

5.2 Client

With a clear understanding of the features of the Fez server, the client can

now be considered to create a fuller picture of how the user will interact with the

system. The beauty of building a client-server architecture atop a REST HTTP API

is that any instantiation capable of implementing HTTP web requests can serve as a

client to the system. This allows for incredible flexibility and customization. As it

stands, native desktop clients would likely be the primary points of interaction with

the system, but mobile apps and browser-based inquiries are also entirely feasible.

For the purposes of this research and testing, a platform independent

command line utility was created, serving as both a complete client and as a base

library that other application could leverage in constructing more advanced user

interfaces.

The command line client, like one of the implementations of the server, is also

based on the Laravel PHP framework, and currently supports the options shown in

figure 5.2. Upon using, for example, the query command, the user can retrieve any

metadata associated with an entity, as shown in the example in figure 5.3.

As mentioned above, this is not intended to be the primary, or even standard

client. Other more user-friendly clients must follow to garner the support needed to

scale the use of Fez. For example, the HUBzero platform file storage and

collaboration feature, called Projects, has been expanded to function as a Fez client

as shown in figure 5.4. Such a client is a prime example of how easily Fez can be

integrated into new or existing solutions requiring extended file metadata

capabilities. It also showcases how a given client may chose to guide the user in

providing key metadata elements (such as Dublin Core), while still allowing for any

number of arbitrary elements.

74

Figure 5.2. Command line client.

Figure 5.3. Sample Fez query.

75

Figure 5.4. HUBzero projects Fez interface.

76

5.3 Summary

This chapter outlined the application developed, named Fez, in a�rmation of

the hypothesis, and in fulfillment of the research questions. With a functioning

prototype and an understanding of its architecture and key features, it is now

possible to evaluate Fez in light of the previously established criteria. This will

determine whether or not Fez is su�cient to meet the needs and overturn the

second hypothesis identified by this research.

77

CHAPTER 6. COMPARISON AND EVALUATION

Having clearly defined and identified the functionality of the developed

solution, Fez, it is important to evaluate it against the same criteria as identified in

the framework and measurement methodology chapter. Once complete, this grants

a clear distinction as to whether or not there is su�cient cause to finalize

development of the prototype solution. In addition to the justification of the build

versus buy question, it may also prove beneficial for future marketing of the

product, if and when it is released.

6.1 Criteria

The criteria identified in chapter 3 give a clear picture of the features and

constraints necessary to su�ciently di↵erentiate this research’s solution from the

existing products. These criteria will each be addressed to evaluate Fez, and to

subsequently compute the weighted value of the solution.

6.1.1 Key/Value Definitions

This is the central feature of a metadata solution, and having been crafted

for this purpose, Fez excels in this category. The MongoDB JSON storage o↵ers a

su�ciently flexibility data store while still giving the needed structure for the

application to function. The Laravel Object Relational Mapping (ORM) and

HUBzero equivalent o↵er the ability to define relationships between required fields,

such as internal IDs and categorization constructs. Fez received a score of 1.0 for

this category.

78

6.1.2 Collaborative Nature

This is the second key requirement of the application. And again, Fez was

designed with the creation and sharing of extended metadata at its forefront. To do

this, Fez has taken the approach of explicitly tying the metadata to a specific

version of a file through the use of the computed file hash key. This allows the

metadata to remain associated irrelevant of operating system or location. This also

allows the metadata to seemingly travel with the file and to be accessible by anyone

interesting in using a Fez client, irrespective of how the file was obtained. This is a

significant improvement over other existing solutions, and thus warranted a 1.0.

6.1.3 Platform Support

Though the server was developed initially for a Linux distribution, such as

the extremely popular Ubuntu, the use of PHP and other applicable applications can

be supported on almost all modern systems, including Mac and Windows servers.

Clients themselves would ideally not be developed using a platform

independent language such as Java, due to its security vulnerabilities and waining

support. But, because of the implementation of a RESTful API, clients can be

developed for any modern platform and language combination desired. The

flexibility of both the server and the clients facilitated a 1.0 score for platform

support.

6.1.4 Adoption

Ease of adoption will likely depend on whether or not those interested in

using the service have any existing physical or virtual server capacity available for

their use. Either way, the server and client, as mentioned in the previous chapter,

are available via standard mechanisms. Concerning clients, that would ideally be

the App Store for Mac users, or similar mechanisms for other platforms. The server

will be distributed via Packagist, which though not likely familiar to all readers, is

79

very well known in the PHP community. This thus warranted a lesser score of 0.5,

given the potential requirements for server acquisition.

6.1.5 Versioning and Provenance

In the Fez model, the concept of versioning and provenance is not an explicit

construct. As described in the previous chapter, the client will promote the use of

an association between files by way of the unique Fez key. It could also facilitate the

logging of associated applications for provenantial reasons. That being said, it is a

function of the user or the client, not the server itself, and thus received a score of

0.5.

6.1.6 Security

Security is not a central issue when considering the need for a relatively open

system. But, for implementations limited to a certain organization, security may be

implemented using network layer constructs, similar to the way that Git functions.

Additionally, the use of Laravel and HUBzero as frameworks does allow for

easy integration with their existing authentication and OAuth structures. Using

HUBzero as an OAuth server, for instance, would allow clients to request access to

the server and facilitate authentication through users’ existing usernames and

passwords. This thus gave a score of 1.0 for function and flexibility.

6.1.7 Distribution

Given the proposed distributed model of hierarchical Fez repositories, the

distribution score for Fez was a 1.0. This structure allows for smaller communities

to define an authoritative source, while still deferring to other parent or peer Fez

repositories for unknown metadata queries using the MongoDB sharding

functionality and other application level protocols.

80

6.1.8 Adaptability/Extensibility

Often times, in a build versus buy decision, the ability to adopt an existing

solution hinges on the adopter’s capability to tweak and customize the existing

solution to their needs. This is again the value in choosing a common language such

as PHP and making the source open and available on GitHub. In-house development

teams considering use of the Fez server can easily evaluate the source and consider

whether it is reasonable for them to customize. They can also, using GitHub,

potentially re-contribute any improvements they make back to the community for

use by other interested parties. This gave the application a 1.0 on this criterion.

6.1.9 Cost

The intent of Fez, as both a server and client, is that it would be distributed

as free, open source software. Thus, the only costs associated with the application

are personnel costs needed to facilitate hosting and maintenance, or provisioning

hardware. This will likely be relative to the size and scope of the implementation.

But, given that the server is not an existing solution hosted by a third party (as is

the case with solutions such as GitHub or Google Docs), Fez was awarded a score of

0.5 for cost.

6.1.10 Risk

Given the obvious immaturity of a brand new product, risk is high for early

adopters. The success of solutions that hinge on widespread user adoption rely on

economies of scale for added value to its users. That being said, risk is slightly

lessened by the fact that this research is not proposing a completely new file type

that is dependent on a Fez service to function. In other words, even if the metadata

solution is disbanded, the files themselves are still intact and function normally.

Even still, Fez received a -0.5 in terms of risk.

81

6.2 Analysis

These conclusions can be seen summarized in table 6.1.

6.2.1 Benefits

Fez excels in the key areas of metadata definition and collaboration, as well

as flexibility and adoption. It also o↵ers an open arena for a broad spectrum of

client applications, including native OS apps and other frameworks or web services.

Fez o↵ers a strong implicit tie between the extended file metadata and the

file itself, even without the client being installed. The metadata definition does not

require any additional standards to be implemented or operating systems to be

changed. Furthermore, it does not inhibit anyone from using the files, even if they

elect not to use Fez itself for extracting the augmented metadata.

6.2.2 Shortcomings

As with all solutions to a given problem, the shortcomings must be

considered. Because Fez is implemented at the application level, it should be

assumed to be less e�cient than an application implemented directly at the file

system level, as many of the local solutions analyzed in chapter 2 were designed to

work. This is mainly due to network requirements and activity.

Additionally, some form of client is required to view the metadata. This may

be a local native client, a web browser, or any other application to be developed.

But, it will likely have to be installed on the user’s system. That being said, even

though the client is not built into the OS, many operating systems still allow the

client to customize and even include features such as right click context menus for

querying the extended metadata of a file.

Fez is easy to adopt, given the standardized distribution mechanisms

mentioned above. But, as previously identified, applications of this nature require a

certain scale of adoption within the community to be meaningful. This scale could

82

Table 6.1. Weighted Sum Model for Fez

Criterion Weight Score Weighted

Key/Value Definitions 20% 1.0 20%

Collaborative Nature 20% 1.0 20%

Platform Support 10% 1.0 10%

Adoption 10% 0.5 5%

Versioning and Provenance 10% 0.5 5%

Security 10% 1.0 10%

Distribution 5% 1.0 5%

Adaptability/Extensibility 5% 1.0 5%

Cost 5% 0.5 2.5%

Risk 5% -0.5 -2.5%

Total 100% 80%

83

be achieved over time in the larger community, or by necessity in smaller

communities that may require the use of Fez to participate in their collaborative

environment. Yet, at this point, adoption is not currently established or proven.

Similarly, as identified in the criteria above, risk is high when adopting an immature

solution.

6.3 Conclusions

As was seen in chapter 4, the existing solutions were insu�cient to resolve

the problems identified by this research. Therefore, the first hypothesis was

overturned. An improved metadata management solution was needed to meet the

needs established by this research. Fez was therefor created.

Having evaluated Fez as described above, it ultimately received a score of

80%, surpassing the desired level of 75%, and overturning the second hypothesis –

namely, that an improved metadata management solution can be constructed that

achieves 75% feature coverage. To highlight these results, a summary of all

considered solutions, including Fez, is shown in figure 6.2.

In light of this analysis and success, there are two key di↵erentiating marks

that surface about this research and the solution that it proposes.

First, in relationship to the larger problem of metadata definition, this

research takes a structural and user-centric approach. Others have opted for solving

the problem theoretically, or by taking an overly restrictive, pre-defined ontological

approach. While both are valid and needed, they have not led to many practical or

well-rounded solutions to the problems identified herein. And though solutions such

as Google Docs or Dropbox do have a user-centric design, their lack of extended

metadata functionality causes them to su↵er.

Secondly, the key is key. Fez does not rely on path-based or location-oriented

identifiers. A user can annotate files through a browser or other client mechanism.

Those annotations will immediately be available to a person who downloads, or

84

even has already downloaded, the file by virtue of the hashing key mechanism

utilized in Fez. This is a significant improvement.

6.4 Summary

Ultimately, Fez promises to be a strong contender in the metadata market.

Given the criteria established by this research, it is a significant improvement at

performing metadata management in a collaborative environment. To show the

significant improvements, this chapter analyzed Fez according to the criteria of

chapter 3 and summarized the findings of this research. To conclude, the next

chapter will highlight what remains to be done, and how this research should be

taken from prototype to production.

85

T
ab
le

6.
2.

W
ei
gh

te
d
S
u
m

M
od

el
C
om

p
ar
is
on

In
cl
u
d
in
g
F
ez

L
iF
S

Q
F
S

F
2R

O
A
D
M

D
O
I

iR
O
D
S

G
oo

gl
e

D
ro
p
b
ox

G
it

F
ez

K
ey
/V

al
u
e
D
efi
n
it
io
n
s

20
%

20
%

20
%

20
%

10
%

20
%

-2
0%

-2
0%

-2
0%

20
%

C
ol
la
b
or
at
iv
e
N
at
u
re

-2
0%

-2
0%

-2
0%

10
%

-1
0%

10
%

10
%

10
%

10
%

20
%

P
la
tf
or
m

S
u
p
p
or
t

-5
%

-5
%

5%
10
%

5%
-5
%

10
%

10
%

10
%

10
%

A
d
op

ti
on

-1
0%

-1
0%

-1
0%

-1
0%

-5
%

-1
0%

10
%

10
%

5%
5%

V
er
si
on

in
g
an

d
P
ro
ve
n
an

ce
10
%

10
%

5%
-5
%

10
%

10
%

-5
%

-5
%

5%
5%

S
ec
u
ri
ty

0%
0%

0%
0%

10
%

10
%

10
%

10
%

0%
10
%

D
is
tr
ib
u
ti
on

0%
0%

2.
5%

5%
5%

-5
%

-2
.5
%

-2
.5
%

2.
5%

5%

A
d
ap

ta
b
il
it
y/

E
xt
en
si
b
il
it
y

0%
0%

2.
5%

0%
-5
%

5%
5%

5%
5%

5%

C
os
t

5%
5%

5%
-5
%

5%
-5
%

2.
5%

2.
5%

2.
5%

2.
5%

R
is
k

-5
%

-5
%

-5
%

-5
%

5%
5%

5%
5%

5%
-2
.5
%

-5
%

-5
%

5%
20
%

30
%

35
%

25
%

25
%

25
%

80
%

86

CHAPTER 7. FUTURE RECOMMENDATIONS

Having crafted a viable solution to the problems identified in this research, it

is also critical to identify adequate next steps for further growth and development of

the solution. To do so, three primary categories of improvement should be

considered, those of process validation, development, and user testing.

7.1 Process Validation

Given the scale and scope of this research, much of the work of identifying

key functional requirements and weightings was performed by the author. To

further validate this process, key groups of stakeholders should be established.

Using the insight and expertise of those stakeholders, the requirements established

and weighted herein should be validated.

Additionally, those stakeholders may also identify other technical

requirements to impose upon Fez in order that optimal adoption may be achieved.

This could include, for example, security audits to encourage governmental

compliance and adoption. Ultimately, by incorporating key stakeholders, the

potential for individual bias is lessened and practical applications of Fez are further

expounded.

7.2 Development

Implementation has begun but, prototype and production-ready products are

not the same. To move Fez from prototype to production, continued development

and feature resolution is required.

87

In addition to the finalization of the server, to ensure initial adoption, several

clients should be developed spanning multiple platforms. Though the client server

architecture proposed o↵ers the ability for any number of clients to function in this

environment, several key clients should be established to seed the pool and aid

initial adoption of the platform. Without these clients, buy-in may be di�cult to

establish with non-technical customers.

Lastly, more work needs to be done to finalize and implement the extended

models identified. Of the three models identified, hierarchical distribution is the only

one that remains at the conceptual level. Though not explicitly required, having this

model implemented in the product would greatly enhance functionality and appeal.

7.3 Use Cases and Testing

In order to extend the value of the product to the end user, extensive use

cases and testing should be established to further verify its product space and target

audience. To do so, a sample community for initial testing and user evaluation

should be established. The group would likely be a scientific community utilizing

modeling, derivative data, and scientific workflows. Furthermore, user experience

testing could be conducted to validate and verify any initial clients that are

developed.

LIST OF REFERENCES

88

LIST OF REFERENCES

Ames, A., Bobb, N., Brandt, S., Hiatt, A., Maltzahn, C., Miller, E., . . . Tuteja, D.
(2005, April). Richer file system metadata using links and attributes. In
22nd IEEE / 13th NASA Goddard Conference on Mass Storage Systems and
Technologies, 2005. Proceedings (pp. 49–60). doi: 10.1109/MSST.2005.28

Ames, S., Gokhale, M., & Maltzahn, C. (2009). A metadata-rich file system (Tech.
Rep. No. LLNL-TR-409717). Washington, DC: United States Dept of
Energy; Oak Ridge, Tenn.

Bandor, M. S. (2006, September). Quantitative methods for software selection and
evaluation (Final No. CMU/SEI-2006-TN-026). Carnegie Mellon University.
Retrieved from http://www.sei.cmu.edu/reports/06tn026.pdf

Bonneau, J., Herley, C., Oorschot, P. C. v., & Stajano, F. (2012). The quest to
replace passwords: A framework for comparative evaluation of web
authentication schemes. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy (pp. 553–567). Washington, DC, USA: IEEE Computer
Society. Retrieved 2015-01-05, from http://dx.doi.org/10.1109/SP.2012.44
doi: 10.1109/SP.2012.44

Cammarata, S., Kameny, I., Lender, J., & Replogle, C. (1995). The RAND
metadata management system (RMMS): a metadata storage facility to
support data interoperability, reuse, and sharing (Tech. Rep.). Santa Monica,
CA: Rand.

Chacon, S., & Straub, B. (2014). Pro Git (2nd ed. 2014 edition ed.). Berkeley, CA:
Apress.

Chandrakar, R. (2006, July). Digital object identifier system: An overview. The
Electronic Library , 24 (4), 445–452. doi: 10.1108/02640470610689151

Ciccarese, P., Ocana, M., Garcia Castro, L., Das, S., & Clark, T. (2011). An open
annotation ontology for science on web 3.0. Journal of Biomedical
Semantics , 2 (Suppl 2), S4. doi: 10.1186/2041-1480-2-S2-S4

Ciccarese, P., Soiland-Reyes, S., & Clark, T. (2013, December). Web annotation as
a first-class object. Internet Computing, IEEE , 17 (6), 71–75. doi:
10.1109/MIC.2013.123

Cole, T. W., & Han, M.-J. (2011). The open annotation collaboration phase I:
Towards a shared, interoperable data model for scholarly annotation.
Journal of the Chicago Colloquium on Digital Humanities and Computer
Science, 1 (3).

89

Dekeyser, S., & Watson, R. (2006). Extending google docs to collaborate on research
papers (Tech. Rep.). Retrieved 2015-11-06, from
http://www.sci.usq.edu.au/sta↵/dekeyser/googledocs.pdf

DOI handbook. (2013, August). Retrieved 2015-03-07, from
https://www.doi.org/doi handbook/

Dropbox for Business. (n.d.). Retrieved 2015-11-02, from
https://www.dropbox.com/business/teamwork

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., . . . Myers,
J. (2007, December). Examining the challenges of scientific workflows. IEEE
Computer , 40 (12), 26–34.

Godfrey, M. W., German, D. M., Davies, J., & Hindle, A. (2011). Determining the
provenance of software artifacts. In Proceedings of the 5th International
Workshop on Software Clones (pp. 65–66). Waikiki, Hawaii: ACM. doi:
10.1145/1985404.1985418

Google Docs. (n.d.). Retrieved 2015-11-02, from
https://www.google.com/docs/about/

Haslhofer, B., Simon, R., Sanderson, R., & van de Sompel, H. (2011, June). The
open annotation collaboration (OAC) model. In Proceedings of the 2011
Workshop on Multimedia on the Web. Graz, Austria: IEEE Computer
Society. (arXiv: 1106.5178) doi: 10.1109/MMWeb.2011.21

He, S., Li, J., & Shen, Z. (2013, July). F2r: Publishing file systems as linked data.
In 2013 10th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD) (pp. 767–772). doi: 10.1109/FSKD.2013.6816297

Hedges, M., Hasan, A., & Blanke, T. (2007). Management and preservation of
research data with iRODS. In Proceedings of the ACM First Workshop on
CyberInfrastructure: Information Management in eScience (pp. 17–22). New
York, NY, USA: ACM. doi: 10.1145/1317353.1317358

iRODS FAQ. (n.d.). Retrieved 2015-10-21, from http://irods.org/about/faq/

iRODS technical overview. (2014, November). Retrieved 2015-03-07, from
http://irods.org/wp-content/uploads/2012/
04/iRODS-Overview-November-2014.pdf

Langer, D. A. M. (2011). Build vs. buy. In Guide to Software Development (pp.
37–48). Springer London. Retrieved 2015-08-29, from
http://link.springer.com/chapter/10.1007/978-1-4471-2300-2 3

Marshall, C., & Tang, J. C. (2012). That syncing feeling: Early user experiences
with the cloud. In Proceedings of the Designing Interactive Systems
Conference (pp. 544–553). New York, NY, USA: ACM. Retrieved
2015-11-06, from http://doi.acm.org/10.1145/2317956.2318038 doi:
10.1145/2317956.2318038

Open annotation data model. (2013, February). Retrieved 2015-03-07, from
http://www.openannotation.org/spec/core/

90

Paskin, D. N. (2004). Digital object identifiers for scientific data. Data Science
Journal , 4 , 12–20.

Ram, K. (2013, February). Git can facilitate greater reproducibility and increased
transparency in science. Source Code for Biology and Medicine, 8 (1), 7.
Retrieved 2015-11-06, from http://www.scfbm.org/content/8/1/7/abstract
doi: 10.1186/1751-0473-8-7

Riva, C., & Laitkorpi, M. (2009). Designing web-based mobile services with REST.
In E. D. Nitto & M. Ripeanu (Eds.), Service-Oriented Computing - ICSOC
2007 Workshops (pp. 439–450). Springer Berlin Heidelberg.

Sanderson, R., Ciccarese, P., & Van de Sompel, H. (2013, April). Designing the
W3c open annotation data model. In Proceedings of the 5th Annual ACM
Web Science Conference. Paris: ACM. (arXiv: 1304.6709) doi:
10.1145/2464464.2464474

Sanderson, R., & Van de Sompel, H. (2010, January). Making web annotations
persistent over time. In Proceedings of the 10th annual joint conference on
digital libraries. New York: ACM. doi: 10.1145/1816123.1816125

Usage statistics and market share of server-side programming languages for
websites. (2015, November). Retrieved 2015-11-05, from
http://w3techs.com/technologies/overview/programming language/all

View and manage file versions. (n.d.). Retrieved 2015-11-02, from
https://support.google.com/drive/answer/2409045?hl=en

Wang, J. (2007, September). Digital object identifiers and their use in libraries.
Serials Review , 33 (3), 161–164. doi: 10.1016/j.serrev.2007.05.006

	Purdue University
	Purdue e-Pubs
	January 2015

	DEVELOPING A METADATA REPOSITORY FOR DISTRIBUTED FILE ANNOTATION AND SHARING
	Samuel Wilson
	Recommended Citation

	tmp.1541002327.pdf.rIBs0

