
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

January 2015

Towards the Real-Time Application of Indirect
Methods for Hypersonic Missions
Michael Sparapany
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Sparapany, Michael, "Towards the Real-Time Application of Indirect Methods for Hypersonic Missions" (2015). Open Access Theses.
1161.
https://docs.lib.purdue.edu/open_access_theses/1161

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/220146341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/1161?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F1161&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Michael J. Sparapany

Towards the Real-Time Application of Indirect Methods for Hypersonic Missions

Master of Science in Aeronautics and Astronautics

Michael J. Grant
Chair

James M. Longuski
 Co-chair

William A. Crossley
Co-chair

Michael J. Grant

Weinong Chen 12/3/2015

TOWARDS THE REAL-TIME APPLICATION OF

INDIRECT METHODS FOR HYPERSONIC MISSIONS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Michael J. Sparapany

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Aeronautics and Astronautics

December 2015

Purdue University

West Lafayette, Indiana

ii

For Mom, Dad, Nicki, and Haley.

iii

ACKNOWLEDGMENTS

I would like to thank a number of individuals who have provided support in

the course of my research. First, I want to recognize my parents, John and Ann,

and my sister, Nichole, who have been constant sources of encouragement. All of

my accomplishments can be attributed to the time and energy they invested in me

throughout my life. I would also like to thank Haley Snell whose positive outlook,

enthusiasm, and competitive spirit has always inspired me to aim high and achieve

my goals.

I owe much gratitude to my advisor Professor Michael Grant, whose meticulous

teaching has been instrumental to this research. I am grateful for all of the tools

and knowledge he has given me, and I know it will serve me well in the future. I

also would like to extend my gratitude to my committee members Professor James

Longuski and Professor William Crossley, whose classes were vital to the foundation

of my research. I would also like to show appreciation for the rest of the staff and

faculty in the School of Aeronautics and Astronautics at Purdue for providing support

for all aspiring Aeronautics and Astronautics students.

I would specifically like thank Thomas Antony for his valuable insight, collabo-

ration, and recommendations in regards to this research topic. Kshitij Mall, Harish

Saranathan, Zhenbo Wang, Joseph Williams, and everyone else in my research group

should also be accredited for their contributions and constructive discussions on my

work.

Finally, I would like to acknowledge the Air Force Research Laboratory at Eglin

AFB and Universities Space Research Association for providing financial backing

through the Air Armament Scholars Program. Moreover, I want to thank my mentors

Dr. Crystal Pasiliao and Dr. Daniel Reasor for their guidance. My research was

also funded by a Teaching Assistantship through the Purdue School of Engineering

iv

Education and would especially like to thank Dr. Mary Pilotte, Lynn Hegewald, Jim

Whitford, Rick Womack, and Patrick La Petina for their continued support.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

SYMBOLS . ix

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1

2 OVERVIEW OF INDIRECT TRAJECTORY OPTIMIZATION 5
2.1 Calculus of Variations . 5
2.2 Necessary Conditions for Optimality 6
2.3 Single Shooting Method . 8
2.4 Multiple Shooting Method . 11

3 CONSTANTS OF OPTIMAL MOTION 13
3.1 Constants of Optimal Motion Overview 13
3.2 Noether’s First Theorem . 13
3.3 Poisson Bracket Generalization . 15

4 NEURAL NETWORK INITIAL GUESS 17
4.1 Overview of Neural Networks . 17
4.2 Construction of Co-state Predicting Neural Networks 18
4.3 Neural Network Validation . 21
4.4 Hamiltonian Residual Boundary . 25
4.5 Maximum Residual Determination 26

5 PARALLEL IMPLEMENTATION . 28
5.1 Parallel Processing Overview . 28
5.2 Single-node Multi-core Implementation 28

6 APPLICATION TO HYPERSONIC UN-POWERED FLIGHT 33
6.1 Maximum Energy Case . 33

6.1.1 Necessary Conditions . 34
6.1.2 Constants of Motion . 34
6.1.3 Footprint and Neural Network Generation 35
6.1.4 Propagation and Solver Input 37

vi

Page

7 SUMMARY . 41

8 FUTURE WORK . 43
8.1 Hamiltonian Dimension Reduction 43
8.2 Symplectic Integration . 43
8.3 High Fidelity Vehicle Analysis . 43

REFERENCES . 45

vii

LIST OF TABLES

Table Page

4.1 Number of unique features on a hypercube 26

6.1 Vehicle initial “post-boost” and terminal conditions 37

6.2 Maximum energy footprint area . 37

6.3 Timed trials with various algorithms 38

6.4 Generated Neural Network information 39

viii

LIST OF FIGURES

Figure Page

2.1 A single trajectory with error in terminal state 9

2.2 Multiple trajectories forming a Multi-Point Boundary Valued Problem 11

4.1 An abstract neuron (reproduced from Ref. 31) 17

4.2 Various common activation functions 19

4.3 Neural Network with one hidden layer 19

4.4 Neural Network solution strategy . 20

4.5 Reduced Neural Network solution strategy 21

4.6 Example Hamiltonian residual [39] . 23

4.7 Taylor series approximations of the Hamiltonian residual for different num-
bers of intervals [39] . 24

4.8 Example function with global extremum located at s2 25

4.9 Maximum residual of predicted Hamiltonian by the Taylor series expan-
sions [39] . 27

5.1 CPython interpreter bottlenecking a multi-threaded application 29

5.2 Spawning multiple processes utilizes multiple processors 30

5.3 Asynchronously scheduling arc integration effectively uses the available
resources . 31

5.4 Timed trials of a computationally expensive optimal control problem . 32

6.1 Various solutions sampled in swept region 36

6.2 Summary of timed trials . 40

ix

SYMBOLS

CD Drag coefficient

CL Lift coefficient

c Constant of motion

DH Hamiltonian vector field of H

D Drag, N

d Exterior derivative

ḡ Boundary conditions

H Hamiltonian

H Scale height, m

h Vehicle height, m

¯̄IN N ×N Identity matrix

J Jacobian matrix

J Cost functional

J ′ Augmented cost functional

£ Lie derivative

L Lagrangian

L Lift, N

m Vehicle mass, kg

p̄ Scalar parameters

r Radial position, m

ū Control variables

v Velocity, m/s

X̄ Augmented state vector

x̄ State vector

α Angle-of-attack, rad

x

γ Flight path angle, rad

δ Variational operator

ε Boundary condition residual

ζ Transformation

¯̄Φ State Transition Matrix

Φ̄ Initial constraint vector

φ Terminal cost and Latitude, rad

η Neural network output

θ Longitude, rad

µ Gravitational parameter, m3/s2

ν Lagrange multiplier of adjoined constraint

ξ Bank angle, rad

Ψ̄ Terminal constraint vector

ψ Heading, rad

ω Differential 2-form

xi

ABBREVIATIONS

ANN Artificial Neural Network

CFD Computational Fluid Dynamics

CPU Central Processing Unit

EOM Equation of Motion

FEM Finite Element Model

FPA Flight-Path Angle

GPOPS General Pseudospectral Optimization Software

GPU Graphical Processing Unit

MSM Multiple Shooting Method

NLP Nonlinear Programming

ODE Ordinary Differential Equation

POST Program to Optimize Simulated Trajectories

RK4 Runge-Kutta 4th Order

SSM Single Shooting Method

STM State Transition Matrix

xii

ABSTRACT

Sparapany, Michael J. M.S.A.A, Purdue University, December 2015. Towards the
Real-Time Application of Indirect Methods for Hypersonic Missions . Major Pro-
fessor: Michael J. Grant.

Conceptual hypersonic mission design has typically been performed in a computa-

tionally intensive, iterative manner using direct optimization methods. The introduc-

tion of modern computing has resulted in the widespread adoption of direct methods,

and useful information associated with optimal solutions has been lost. Optimization

through indirect methods leverages this information, yielding high quality trajectories

while reducing the dimensionality of the overall problem.

The amount of content that can fit on a single chip is approaching physical limita-

tions, resulting in state-of-the-art systems to use more chips. Due to this, present day

computational systems are transitioning towards massively parallel frameworks thus

creating a need for parallel algorithms to make effective use of available resources.

The Multiple Shooting Method provides an effective means of constructing indirect

solutions for hypersonic systems using parallel computational architectures. For sys-

tems with complex dynamics, it is expected that the chips will become fully saturated

with computations, providing performance increases over the serial counterpart.

One restriction to performing optimization using indirect methods is the require-

ment of high quality initial guesses that must be sufficiently close to a solution for

convergence. Sophisticated nonlinear prediction models are used to overcome this

limitation. Dimension reductions are performed using Noether’s First Theorem with

a generalization to Hamiltonian systems. A surrogate model is used to test and val-

idate the outputs of the nonlinear prediction model are high-quality, thus increasing

confidence in the constructed initial guess.

xiii

The combination of parallel processing with generated high-quality initial guesses

is shown to reduce the time to obtain a solution as well as increase the confidence

that convergence to a solution will be obtained. Both these criteria must be known

to perform real-time hypersonic optimization on-board a vehicle.

1

1. INTRODUCTION

Since the invention of the first transistor in 1947 [1], steady progress has been

made in device miniaturization resulting in more content per chip [2]. This progress

was accurately predicted using the well-known Moore’s Law [3, 4], though like most

extrapolation techniques based on a small sample size, Moore’s Law does not model

the fundamental limitations of silicon technology and physics [5]. Because of this,

CPU clock rates are approaching a plateau, and it is not expected that clock rates

can keep increasing at the same rate as they historically have been. Though some

techniques exist to increase performance out of a single CPU core, such as Hyper-

Threading [6, 7], current state-of-the-art computational architectures are moving to-

wards massively parallel systems [8]. New algorithms are required to make effective

use of these massively parallel computational architectures while retaining all of the

benefits of the previously mentioned methods.

Direct methods are widely used techniques for solving optimal control problems.

In general, this is performed by discretizing a trajectory into several finite segments

parameterized by nodes containing state information. Various parameter optimiza-

tion techniques are used to optimize the nodes of the trajectory while satisfying a set

of constraints, including initial, terminal, and path constraints. Newton’s Second Law

of Motion, or the dynamic constraints of the vehicle, are adjoined as path constraints

to ensure the trajectory is physically realizable. Solving the defined optimization

problem requires an iterative process that will satisfy the Karush-Kuhn-Tucker con-

ditions [15,16] within tolerance. Industry and government standard programs such as

NASA’s POST [9], DIDO [10], and GPOPS [11, 12] utilize sophisticated algorithms

that incorporate collocation [13] and pseudo-spectral [14] methods.

Indirect methods are based on the Calculus of Variations [17] and Pontryagin’s

Minimum Principle [18,19]. Pontryagin’s Minimum Principle states that for a system

2

to be at a local optimum, the Hamiltonian [20] must lie on an extremum over the set

of admissible controls. The Hamiltonian is formulated by adjoining the equations of

motion to the cost functional with Lagrange multipliers (co-states). The Lagrange

multipliers have their own equations of motion by definition of the Hamiltonian.

Integral curves in the defined vector space represent optimal trajectories given that the

necessary conditions of optimality are derived from Pontryagin’s Minimum Principle

and the Hamiltonian. This process converts a continuous optimization problem into

a finite dimensional boundary valued root-solving problem while retaining all original

numerical information.

While it is evident that indirect methods benefit by making use of known analyt-

ical quantities that are sometimes ignored with direct methods, other mathematical

quantities are often ignored in optimal control problems. Noether’s First Theorem,

published in 1918, has been an extraordinary benefit for scientists and researchers due

to its practicality and insight it provides into physical systems. Multiple versions exist

for practical application in any scenario derived by many different researchers. The

original published version was a generalization applicable to a multitude of situations.

Emmy Noether considered groups of global symmetries as well as their infinitesimal

generating functions whereas physicists of the time largely ignored the work of So-

phus Lie and his contributions to continuous symmetry [21]. Emmy Noether also

used concepts from Calculus of Variations in her publication long before the great

contributions of Lev Pontryagin and his students to the field. Typically applicable to

Lagrangian systems, formulations of Noether’s First Theorem have been presented for

Hamiltonian systems and optimal control problems as well [22]. This generalization

presents a much more compact and comprehensive approach to determining symme-

tries and conserved quantities encompassing the results in a Lagrangian system as

well [23].

Optimization methods, both direct and indirect, focused on an inherently serial

process for formulating numerical solutions. Considering state-of-the-art computa-

tional frameworks are transitioning towards parallel systems, there is a need for more

3

algorithms to be employed in parallel [24]. Trajectory optimization problems are a

subset of optimization dealing with infinite dimensional problems, requiring functional

optimization. In the case of very high speed vehicles, typically traveling as speeds

over Mach 5, computer guidance algorithms control the vehicle. Practical applica-

tions include modeling the entry phase of orbital vehicles and designing hypersonic

vehicles to fit a defined mission. Historically, hypersonic trajectory optimization has

been performed using direct methods due to three main challenges associated with

indirect methods.

1. Specialized knowledge of Calculus of Variations as well as Optimal Control

Theory is required to pose a well defined problem.

2. Incorporating path constraints requires prior knowledge of the order of the

constrained arc sequence.

3. The initial guess of a trajectory needs to be substantially close to the optimal

solution.

The difficulties associated with solving optimization problems in this manner have

been overcome through modern symbolic manipulation tools and homotopy continua-

tion methods [25,26]. This process has also been demonstrated with recent hypersonic

applications [27].

Real-time and on-board applications of optimization have been studied previously.

The authors of Ref. 28 and Ref. 29 present a hybrid analytical and numerical ap-

proach to solving the constrained trajectory of an ascent vehicle and also comment on

it’s feasibility for on-line usage. Guidance is typically solved in an open-loop manner

for atmospheric flight and in a closed-loop manner when the vehicle is in a vacuum.

When a vehicle is flying in a vacuum, there are either analytic or near analytic solu-

tions that exist for the guidance problem. The authors of Ref. 28 cite costly launch

delays as one motivation for investigating on-line optimization of the atmospheric

phase. First, an analytical solution is generated for a simplified problem, specifically

the vehicle in a vacuum. Because near-analytic solutions exist for exoatmospheric

4

flight [30], an initial guess is rapidly generated for the full problem. Instead of solving

the entire atmospheric guidance problem in a single step, the atmosphere model is in-

corporated through a homotopy method. This method allows the authors to reliably

generate solutions to the full problem rapidly.

For real-time hypersonic trajectory optimization to be performed on-board, two

criteria must be met by an algorithm.

1. Convergence to a flyable trajectory is guaranteed.

2. Time to converge to a solution is known.

In an effort to mitigate both of these issues, Artifical Neural Networks (ANNs)

are employed to construct high-quality initial guesses of optimal trajectories. ANNs

are a form of nonlinear curve prediction and pattern recognition inspired by Biolog-

ical Neural Networks. With the ability to model and reproduce massive amounts of

information accurately, ANNs are used in a wide variety of fields such as automotive,

defense, entertainment, financial, insurance, manufacturing, robotics, telecommuni-

cations, and transportation industries [31]. One goal of this research is to lessen the

gap between present day technology and the ability to perform optimization on-board

a hypersonic vehicle.

Current state-of-the-art algorithms currently are unable to perform real-time hy-

personic trajectory optimization on-board. This is primarily due to the fact that

convergence and time to solution are not guaranteed for any one algorithm. The re-

search presented aims to decrease time to solution by generating high-quality initial

guesses from a ANN. Contributions are also made in increasing confidence that an

ANN will return high-quality guesses through application of Noether’s First Theo-

rem and validation of a Taylor series surrogate model, making an effort to leverage

as many known analytical quantities as possible.

5

2. OVERVIEW OF INDIRECT TRAJECTORY

OPTIMIZATION

2.1 Calculus of Variations

Calculus of Variations is a field of mathematics that has found use in a wide

variety of applications ranging from quantum and classical mechanics to aerospace

engineering. The main focus of Variational Calculus is the extrema of functionals.

A functional is a mapping from a function to real numbers. One of the earliest and

most important problems, the brachistochrone problem, was first posed and solved

by John Bernoulli in 1696. Given two points, A and B, in a vertical plane, a fric-

tionless mass placed at point A, and a uniform gravity field, the question is: What

is the path the mass should take from point A to point B such that time of travel

is minimized? Isaac Newton, Jacob Bernoulli (John’s brother), Gottfried Leibnitz,

Ehrenfried Walther von Tschirnhaus, and Guillaume de l’Hôpital all submitted solu-

tions for the problem. What appeared to be a simple mathematics problem spawned

an entire field of mathematics with a rich history and very important applications.

A general statement for an optimal control problem minimizing path and termi-

nal cost is shown in Equation 2.1. f(x̄, ū, t), Φ̄, and Ψ̄ shown in Equations 2.2-2.4

represent the dynamic, initial, and terminal constraints respectively and J represents

a continuous-time cost functional to be minimized. Equation 2.5 refers to the set of

admissible controls.

minimize J = φ(x̄(tf), tf) +

∫ tf

t0

L (x̄, ū, t)dt (2.1)

6

subject to:

˙̄x− f̄(x̄, ū, t) = 0 (2.2)

Φ̄(x̄(t0), t0) = 0 (2.3)

Ψ̄(x̄(tf), tf) = 0 (2.4)

ū ∈ U (2.5)

2.2 Necessary Conditions for Optimality

For a finite dimensional constrained optimization problem, the cost function can

be written simply as an analytical function of the input parameters.

minimize J = φ(x̄, ū) (2.6)

subject to:

f(x̄, ū) = 0 (2.7)

Constrained optimization problems formulated this way can be typically solved

in a fairly straightforward manner utilizing sophisticated algorithms such as Nelder-

Mead, Simulated Annealing, or Genetic Algorithms. Solving an optimization problem

in this manner is typically referred to as using a “direct” method. First and second-

order necessary conditions are implemented to verify a solution is at a local optimum

and are shown in Equations 2.8a and 2.8b. For a solution to be at a local optimum,

these conditions must be satisfied. A sufficient condition guarantees a solution is a

local minimum and is shown in Equation 2.9.

Necessary Conditions:

∂J

∂ū
= 0 (2.8a)

∂2J

∂ū2
≥ 0 (2.8b)

Sufficient Condition:
∂2J

∂ū2
> 0 (2.9)

7

The Augmented Multiplier Method introduces more unknown parameters into

the system thereby eliminating dependent changes of the cost function. Using this

method, also referred to as an “indirect” method, results in an augmented cost func-

tion.

J ′ = φ(x̄, ū) + λf(x̄, ū) (2.10)

With new first-order necessary conditions:

∂J ′

∂x̄
=
∂φ

∂x̄
+ λ

∂f

∂x̄
= 0 (2.11a)

∂J ′

∂ū
=
∂φ

∂ū
+ λ

∂f

∂ū
= 0 (2.11b)

∂J ′

∂λ
= f = 0 (2.11c)

This finite dimensional example illustrates the solution process of indirect meth-

ods. The optimization of a trajectory is considered to be an infinite dimensional

optimization problem where the control variables ū have a time-history. To incorpo-

rate the constraints into Equation 2.1, the Augmented Lagrange Multiplier method

is used. The cost functional is augmented and each constraint is adjoined with its

own Lagrange multiplier. The dynamic constraints must be satisfied for all time and

are included inside the integral. The corresponding Lagrange multipliers are now no

longer constants.

J ′ = φ(x̄(tf), tf) +

∫ tf

t0

(
L (x̄, ū, t) + λ̄T (x̄, ū, t)(f̄(x̄, ū, t)− ˙̄x(x̄, ū, t))

)
dt

+ ν̄T0 Φ̄(x̄(t0), t0) + ν̄Tf Ψ̄(x̄(tf), tf) (2.12)

To minimize a cost functional J , a necessary condition is for the first-order varia-

tion of J to vanish.

δJ ′ = δφ+ δ

∫ tf

t0

(
H − λ̄T ˙̄x

)
dt + δ(ν̄T0 Φ̄) + δ(ν̄Tf Ψ̄) (2.13)

Using the Leibniz’ Rule, the first-order variation is determined inside of the inte-

gral [20]. H is the Hamiltonian of the system defined in Equation 2.14.

H := L + λ̄T f̄ (2.14)

8

δJ ′ = δφ+

∫ tf

t0

(
∂H

∂x̄

T

δx̄+
∂H

∂λ̄

T

δλ̄+
∂H

∂ū

T

δū− ˙̄xT δλ̄− λ̄T δ ˙̄x

)
dt

+ δ(ν̄T0 Φ̄) + δ(ν̄Tf Ψ̄) (2.15)

Considering t0 to be a fixed initial time and tf to be free, selecting λ̄ and ν̄i such

that all δx̄ vanish results in the formulation of a Two-Point Boundary Valued Problem

(TPBVP) listed in Equations 2.16-2.21.

∂H

∂ū
= 0 (2.16)

˙̄xT = {x̄,H } =
∂H

∂λ̄
(2.17)

˙̄λT = {λ̄,H } = −∂H
∂x̄

(2.18)

λ̄T (t0) = −ν̄T0
∂Φ̄

∂x̄(t0)
(2.19)

λ̄T (tf) =
∂φ

∂x̄(tf)
+ ν̄Tf

∂Ψ̄

∂x̄(tf)
(2.20)(

H +
∂φ

∂t
+ ν̄Tf

∂Ψ̄

∂t

) ∣∣∣∣∣
tf

= 0 (2.21)

Where {f, g} denotes the Poisson bracket of the functions f and g, defined in

Equation 2.22.

{f, g} =
∂f

∂x̄

T ∂g

∂λ̄
− ∂f

∂λ̄

T ∂g

∂x̄
(2.22)

Such that

df(x̄, λ̄, t)

dt
=
∂f(x̄, λ̄, t)

∂x̄

T
∂x̄

∂t
+
∂f(x̄, λ̄, t)

∂λ̄

T
∂λ̄

∂t
+
∂f(x̄, λ̄, t)

∂t
(2.23a)

df(x̄, λ̄, t)

dt
=
∂f(x̄, λ̄, t)

∂x̄

T
∂H

∂λ̄
− ∂f(x̄, λ̄, t)

∂λ̄

T
∂H

∂x̄
+
∂f(x̄, λ̄, t)

∂t
(2.23b)

df(x̄, λ̄, t)

dt
= {f(x̄, λ̄, t),H }+

∂f(x̄, λ̄, t)

∂t
(2.23c)

2.3 Single Shooting Method

One result of using indirect methods is the infinite-dimensional optimization prob-

lem defined in Equations 2.1-2.5 is rewritten as a finite-dimensional TPBVP shown in

9

Equations 2.16-2.21. The main benefit from going through process is that the original

optimization problem is now posed as a root-solving problem. Solutions that satisfy

these equations have guaranteed optimality. One popular algorithm for root-solving

these equations is the Single Shooting Method (SSM) [32]. Figure 2.1 shows how a

trajectory is propagated using state estimates in the SSM.

Figure 2.1. A single trajectory with error in terminal state

Consider the augmented state vector (X̄) defined in Equation 2.24a. If the initial

condition is X̄0 and the final time is tf , then a complete trajectory may be recon-

structed. The terminal state estimate (X̄f) is computed through forward propagation

using a Runge-Kutta 4th Order (RK4) or similar integration scheme.

X̄ =

x̄
λ̄

 (2.24a)

X̄0 = X̄(t0) (2.24b)

X̄f = X̄0 +

∫ tf

t0

˙̄Xdt (2.24c)

Boundary conditions (ḡ) are evaluated using estimates for X̄0 and X̄f as well as

estimates for any additional parameters (p̄) defined by the trajectory problem. This

10

obtains a residual vector, ε. The residual vector is shown in Equation 2.25a and

Equation 2.25b shows how a correction vector (∆X̄0 and ∆p̄) applied to the initial

state and parameters will drive the residual error to zero.

ḡ(X̄0, X̄f , p̄) = ε (2.25a)

ḡ(X̄0 + ∆X̄0, X̄f , p̄+ ∆p̄) = 0 (2.25b)

Due to the nonlinear equations of motion (EOMs), an analytic solution for the

correction vector typically can not be found. Instead, the correction vector is com-

puted using a first-order approximation and Jacobian matrices of sensitivities. JM

and JN are Jacobian matrices of the boundary conditions at the initial and terminal

states respectively while Jp is the Jacobian matrix with respect to the parameters.

JM =
∂ḡ

(∂X̄(τ0))
,JN =

∂ḡ

(∂X̄(τf))
,Jp =

∂ḡ

∂p̄
(2.26)

Since the SSM only updates the initial conditions of the trajectory, relationships

between the error in the terminal boundary conditions and initial correction vector

are characterized through the use of a state transition matrix (STM), ¯̄Φ. The STM

is a matrix that relates state information at some time t1 to another point in time

t2 through products. Using the STM allows adjustments in the initial state vector

to reduce residual error in the terminal state of the system. Equations 2.27a-2.27b

define the STM and it is important to note that it has EOMs. The STM and states

must be propagated forward in time together.

˙̄̄
Φ =

∂ ˙̄X

∂X̄
· ¯̄Φ (2.27a)

¯̄Φ(t0) = ¯̄IN (2.27b)

With the STM and each individual Jacobian matrix, the completed Jacobian

matrix for the entire system can be defined and is shown 2.28.

J = [JM + JN
¯̄Φ,Jp] (2.28)

The correction vector can then be determined by solving the linear system in

Equation 2.29.

J ∆X̄0 = −ε (2.29)

11

2.4 Multiple Shooting Method

Since a single trajectory is entirely continuous with one set of initial conditions,

the entire solution process is serial. The Multiple Shooting Method (MSM) attempts

to parallelize the process by allowing the integration to take place in parallel. By

introducing discontinuities into the trajectory with corresponding boundary condi-

tions, several independent smaller trajectories are formed each with their own set of

initial conditions. Figure 2.2 illustrates how a single trajectory may be separated into

smaller arcs, where τ represents the localized time of each independent sub-arc.

Figure 2.2. Multiple trajectories forming a Multi-Point Boundary Valued Problem

With multiple independent arcs, integration can now take place independently

from one another. One issue that arises, however, is how the correction vector must be

determined. With additional boundary conditions defined in Equation 2.30 enforcing

continuity, new Jacobian matrices must be derived.

g = 0 = X̄i(τ0)− X̄i−1(τf) i = 2, 3, · · · , n (2.30)

JMi
=

∂g

(∂X̄i(τ0))
,JNi

=
∂g

(∂X̄i(τf))
,JP =

∂g

∂p̄
(2.31)

The new Jacobian matrix for the system is entirely coupled and shown in Equation

2.32.

J = [JM1 + JN1

¯̄Φ1,JM2 + JN2

¯̄Φ2, · · · ,JMn + JNn
¯̄Φn,JP] (2.32)

12

This allows the entire trajectory to be integrated in parallel, though the correction

vector for the system must be determined after integration of each trajectory has been

completed. Therefore the overall process will be limited by the slowest core. Even

though this causes a slight performance reduction by a required matrix inversion at

the end of integration, it enforces additional boundary conditions and provides each

individual arc with corrections to its initial conditions so the resulting solution will

be continuous.

One issue that commonly arises when solving the linear system in Equation 2.29

is that det(J) = 0. This produces an error commonly referred to as a “singular

Jacobian” and can be caused by a number of issues. These issues include, but are

not limited to a trajectory optimization problem with no solution, a poorly scaled

problem, and linear dependencies in the Jacobian matrix. Because first order approx-

imations were made, there is no guarantee the Jacobian matrix will be invertible for

a nonlinear problem. This presents a problem for real-time applications since conver-

gence must be guaranteed. Instead of directly solving Equation 2.29 by inverting the

Jacobian, an optimization problem is posed. Equation 2.33 defines the optimization

problem such that the distance between −ε and J ∆X̄0 is minimized.

minimize J =
∥∥J ∆X̄0 + ε

∥∥ (2.33)

Using the Projection Theorem guarantees this problem has a solution. If J is

one to one, then (J TJ) is invertible and the solution to the optimization problem

is shown in Equation 2.34.

∆X̄0 = −(J TJ)−1J T ε (2.34)

13

3. CONSTANTS OF OPTIMAL MOTION

3.1 Constants of Optimal Motion Overview

An expression is considered to be an integral of motion if it is invariant along a

trajectory and not a function of the independent variable.

I(X̄, ˙̄X) = const (3.1)

Similarly, an expression is considered to be a constant of motion if it is invariant

along a trajectory and also a function of the independent variable.

c(X̄, ˙̄X, t) = const (3.2)

Therefore every integral of motion is also considered a constant of motion, but not

every constant of motion is an integral of motion. Knowing constants of a system can

be an especially powerful tool as they typically can be used to reduce the dimension-

ality of a system. Some of the most well-known constants of motion include linear

and angular momentum, which are used on a regular basis in Physics and Engineer-

ing. These constants of motion allow Engineers and Scientists to analyze systems and

make generalizations that otherwise would be numerically difficult or impossible.

3.2 Noether’s First Theorem

In 1918, German mathematician Emmy Noether published Invariante Variation-

sprobleme in which she proved what is now an important fundamental tool in math-

ematics, physics, and optimal control theory [33]. Albert Einstein commented on

Emmy Noether’s contributions as a mathematician in a letter to the editor of The

New York Times [21,34]:

14

In the judgment of the most competent living mathematicians, Fräulein

Noether was the most significant creative mathematical genius thus far

produced since the higher education of women began.

Noether’s First Theorem states that for every symmetry of the action functional of

a physical system, there exists a corresponding conservation law. Applying Noether’s

First Theorem to a system can provide a set of first integrals for that system. The

Lagrangian formulation of a mechanical system is shown in Equation 3.3 where T is

a system’s kinetic energy and U is a system’s potential energy.

L (x̄, ˙̄x, t) = T − U (3.3)

The Euler-Lagrange equation defines the system’s EOMs and is shown in Equation

3.4.
d

dt

∂L

∂ ˙̄x
=
∂L

∂x̄
(3.4)

Theorem 3.2.1 (Noether’s First Theorem [35]) If the functional

J(x̄) =

∫ tf

t0

L (x̄, ˙̄x, t) dt (3.5)

is invariant under the transformations

x̄→ x̄+ εζ̄x(x̄, ˙̄x, t), ˙̄x→ ˙̄x+ ε ˙̄ζx(x̄, ˙̄x, t), t→ t (3.6)

for arbitrary t0 and tf and constant infinitesimal ε, then there exists a corresponding

constant quantity
∂L

∂ ˙̄x

T

ζ̄x (3.7)

Proof For the action functional

J(x̄) =

∫ tf

t0

L (x̄, ˙̄x, t) dt (3.8)

to be invariant under the transformations listed in Equation 3.6, the change in the

Lagrangian upon the transformation must vanish

∆L = L (x̄+ εζ̄x(x̄, ˙̄x, t), ˙̄x+ ε ˙̄ζx(x̄, ˙̄x, t), t)−L (x̄, ˙̄x, t) = 0 (3.9)

15

For a first order Taylor series expansion on ε

∂L

∂x̄

T

εζ̄x +
∂L

∂ ˙̄x

T

ε ˙̄ζ = 0 (3.10)

Which is rewritten using the Euler-Lagrange equations in Equation 3.4

d

dt

∂L

∂ ˙̄x

T

εζ̄x +
∂L

∂ ˙̄x

T

ε ˙̄ζ = 0 (3.11)

Grouping similar terms

2ε
d

dt

(
∂L

∂ ˙̄x

T

ζ̄x

)
= 0 (3.12)

Implying that
∂L

∂ ˙̄x

T

ζ̄x (3.13)

is a constant.

3.3 Poisson Bracket Generalization

Equation 2.22 defines the Poisson bracket of a function with the Hamiltonian

of a system. If a Hamiltonian is not an explicit function of time, where ∂H
∂t

= 0,

then {H ,H } = 0 due to the antisymmetry of the Poisson bracket. Noether’s First

Theorem can be generalized further to Poisson brackets and represented in a more

compact and convenient format. Consider the Hamiltonian vector field defined in

Equation 3.14 and differential 2-form defined in Equation 3.15.

DH :=
d

dt
=
∂H

∂λ̄

T ∂

∂x̄
− ∂H

∂x̄

T ∂

∂λ̄
= {·,H } (3.14)

ω =
n∑
i=1

dxi ∧ dλi (3.15)

Where ∧ is the wedge operator or exterior product. The Lie derivative (£) of a

function f can now be expressed in terms of the Poisson Bracket.

£Dg(f) = df(Dg) = Dg(f) = {f, g} (3.16)

16

Theorem 3.3.1 (Noether’s First Theorem for a Hamiltonian System [36])

For a continuous symmetry D of a Hamiltonian system such that £Dω = 0 and

£DH = 0, there locally exists a constant of motion c such that D = Dc. Conversely,

if c is a constant of motion, then Dc is a symmetry.

Simply put, a constant of motion for a system will result in a vanishing quantity

{c,H } if and only if the quantity {H , c} vanishes as well. Additionally, through

Poisson’s Theorem, given two constants c1 and c2 for a Hamiltonian H , a third

constant may be discovered by evaluating {c1, c2}. This compact formulation is bet-

ter suited for this class of problems while encompassing more constants than the

Lagrangian formulation.

The constants of motion cannot be directly applied to the trajectory optimization

problem as it stands. Simply evaluating their first derivative recovers already known

differential equations defined by {λ̄,H }, and they are unique to the trajectories they

characterize. For example, the algorithms described in Sections 2.3-2.4 root-solve for

the values of the co-state initial conditions, and likewise the constants of motion. At

the beginning of the solution process, the initial co-states are unknown so, therefore,

the constants are unknown as well. The exception to this is dependent on the con-

straints placed on the boundary conditions. Through the necessary conditions for

optimality, some of these constants can be determined before hand. These constants

of motion will later be used in Chapter 4 to make analysis of a Neural Network simpler

and more accurate.

17

4. NEURAL NETWORK INITIAL GUESS

ANNs are a sophisticated form of nonlinear curve prediction and will be used to

aid reconstructing entire trajectories. For obvious reasons, using an ANN to directly

reconstruct an infinite dimensional trajectory is infeasible. Such a network would

require an infinite number of neurons. One key result of solving trajectory optimiza-

tion problems using indirect methods is that the infinite dimensional optimization

problem is posed as a finite dimensional root-solving problem. The entire trajectory

becomes characterized by a finite set of parameters and training an ANN to predict

this set is possible.

4.1 Overview of Neural Networks

At their lowest level, ANNs are composed of artificial neurons. Figure 4.1 repre-

sents a single abstract neuron and its structure.

Figure 4.1. An abstract neuron (reproduced from Ref. 31)

x1 through xn represent an abstract number of inputs into a neuron while w1

through wn represent the weight of each input. The input information is then ag-

18

gregated at the neuron and passed through an activation function. The activation

function is what determines the output of a neuron given the inputs and can be se-

lected to suit the application. Equations 4.1-4.4 and Figure 4.2 present examples of

a few basic activation functions along with some various parameters.

Step Function = f(s) =

0 if s < 0

1 if s > 0

(4.1)

Linear Function = f(s) =

−1 if s < −1

β

1 if s > 1
β

βs otherwise

(4.2)

Log-Sigmoid Function = f(s) =
1

1 + exp(−βs)
(4.3)

Tan-Sigmoid Function = f(s) = tanh(βs) (4.4)

The neurons are then arranged into several layers to form a feedforward network

of neurons. A user can directly interface with the input and output layers of a Neural

Network, while the hidden layers remain unseen. Figure 4.3 represents a feedfor-

ward Neural Network with m output variables corresponding to n input variables.

With known activation functions, each output ηi can be analytically represented as a

function of the input variables xi.

4.2 Construction of Co-state Predicting Neural Networks

In machine-learning, training a Neural Network is typically organized into 2 dis-

tinct tasks: supervised and unsupervised learning. In unsupervised learning, a Neural

Network is provided with a set of inputs and no outputs. The Neural Network will

then attempt to draw inferences about the input data set without any response data

set. In supervised learning, both an input and output data set are provided during

the training process. The network will then attempt to infer underlying functions and

19

Figure 4.2. Various common activation functions

Figure 4.3. Neural Network with one hidden layer

20

relationships between the given inputs and outputs. To accomplish this, typically a

backwards propagation of errors [37] in combination with a parameter optimization

method such as Levenberg-Marquardt [38] or gradient descent. In the case of op-

timal control problems, the underlying functions the Neural Network predicts are

relationships between the state and co-state variables in a region of optimal solu-

tions. A Neural Network is used for difficult optimal control problems where there is

no known closed-form expression for the state and co-state variables.

In the case of optimal control problems, unsupervised learning is most relevant. A

set of data is created by numerically solving the optimal control problem for a range

of boundary constraints. Using the data that were generated, the Neural Network is

trained to infer relationships about the unknown co-state initial and terminal con-

ditions. A Neural Network being used in this manner to reconstruct trajectories is

shown in Figure 4.4.

Figure 4.4. Neural Network solution strategy

Additionally, using constants of motion derived from Theorem 3.2.1 and Theorem

3.3.1, the dimension of the Neural Network can be reduced. This reduction serves

to reduce the time required to train a Neural Network and increases accuracy with

known analytic expressions. The previously mentioned solution strategy has been

modified to include the constants of motions and is shown in Figure 4.5

21

Figure 4.5. Reduced Neural Network solution strategy

4.3 Neural Network Validation

One criterion that must be satisfied for an algorithm to be considered for real-time

on-board hypersonic trajectory optimization is that the convergence to an optimal

solution must be guaranteed. For a solver using indirect methods to converge to a

solution, the initial guess supplied must be accurate. Reconstructing an initial guess

from a Neural Network is relatively simple for well-behaved problems since forward

integration does this in a quick manner. Validating that the Neural Network satisfies

the necessary conditions of optimality across the infinite possible input parameters

that may be used during on-board applications is not as straightforward. Brute-force

propagating trajectories from the Neural Network and validating they converge to op-

timal solutions is not a test that is rigorous enough. Theoretically, validating a Neural

Network in this manner for 1,000 trajectories provides no guarantee that trajectory

number 1,001 will converge as well. As stated earlier, for real-time applications con-

vergence to an optimal solution must be guaranteed for the infinite number of possible

inputs. This approach will need to leverage the analytical activation functions inside

of the Neural Network.

The Neural Network is expressed as a combination of known functions and weights

as described in Section 4.1, the outputs can be also be expressed as known symbolic

functions of the inputs. An abstract expression output from a constructed Neural

22

Network is shown in Equation 4.5. The known and unknown variables depend on the

optimal control problem definition.

X̄unknown = η̄(X̄known) (4.5)

Considering that for standard hypersonic systems, the Hamiltonian is autonomous

such that {H ,H } = 0, H = c0. The terminal boundary condition of the Hamil-

tonian is known, and therefore the Hamiltonian initial value is also known. Using

the relationships provided by the Neural Network output in Equation 4.5, analytic

approximations for the unknown states and co-states are substituted. For a Neural

Network that accurately predicts the Hamiltonian, the residual is expected to be close

to 0 as show in Equation 4.6.

H (X̄known, η̄)− c0 ≈ 0 (4.6)

Determining the maximum residual of the initial Hamiltonian condition analyti-

cally can provide confidence that the Neural Network satisfies the necessary conditions

for optimality. Theoretically, the location of extrema in the Hamiltonian residual can

be located by evaluating where its first derivative vanishes. Root-solving Equation 4.7

analytically and evaluating these points in the residual equation will guarantee the

Neural Network accurately predicts the Hamiltonian within an interval for a specific

region of optimal solutions, excluding the boundaries.

∂H

∂X̄known

= 0 (4.7)

While this method provides a robust process of determining the maximum Hamil-

tonian residual, it is fairly impractical for more complex problems where the use of a

Neural Network is warranted in the first place. Due to the highly nonlinear expres-

sions that the Neural Network returns, it is typically infeasible to root-solve Equation

4.7. In this case, an alternate method of checking the Hamiltonian residual must be

used.

Using an activation function with well known analytic derivatives, such as the

log-sigmoid function shown in Equation 4.3, a Taylor series expansion of the Hamil-

tonian residual may be used. Using an activation function that is C∞ guarantees the

23

existence of higher order derivatives, thus allowing more accurate approximations by

leveraging more known analytical values from the original function. Determining the

order of the Taylor series expansion is limited by present-day computational power.

For example, the residual plot in Figure 4.6 has a minimum of 12 extrema within

the plotted boundaries, yet the highest order Taylor series expansion that could be

generated in a reasonable amount of time was a 5th order expansion. One Taylor

series clearly is unable to represent the full plotted region considering the number of

visible extrema. Due to this, several Taylor series expansions must be taken across

the length of the region.

Figure 4.6. Example Hamiltonian residual [39]

Taylor series approximations use the values of a function’s derivatives at a single

point on a surface. Since it is infeasible to model all of a surface’s derivatives, some

error due to truncation exists. As approximations are made further away from this

“center-point”, the error tends to become worse and the Hamiltonian residual from

this approximation will tend to appear worse as well. As shown in Figure 4.7, multiple

Taylor series expansion may be used in finite intervals spanning the full region of

24

interest to help mitigate this error. Similar to determining the order of the Taylor

series approximations, determining the number of subdivisions that should be used

is also limited by available computational power and time constraints.

(a) 5 Taylor series expansions (b) 9 Taylor series expansions

(c) 29 Taylor series expansions

Figure 4.7. Taylor series approximations of the Hamiltonian residual
for different numbers of intervals [39]

Extrema of the constructed Taylor series surrogate model of the Hamiltonian

residual are found by evaluating where the first derivative vanishes. For 5th-order

Taylor series expansions, this can be done analytically. Higher order expansions re-

quire a numerical method to root solve the first-derivative and therefore were avoided

25

in favor of time and accuracy. Increasing the number of Taylor series expansions used

to model the surface proved to be more beneficial than increasing the order past five.

Using more local approximations creates a more accurate global approximation.

4.4 Hamiltonian Residual Boundary

Following the process outlined in Section 4.3 only guarantees extrema within a

region of optimal solutions excluding the boundaries are found. This presents an issue

with functions that contain an extremum along the boundary. Figure 4.8 shows how

a function with a global extremum along the boundary may have a non-vanishing first

derivative. Evaluating df
ds

= 0 within [s1, s2] captures two local extrema, whereas it

can be seen visually that the global extremum is located at s2 which is not captured

since df
ds

(s2) 6= 0.

Figure 4.8. Example function with global extremum located at s2

For a 1-dimensional case, one can simply include the boundary points as local

extrema. This case corresponds to a region of optimal solutions with only 1 swept

parameter. A region of optimal solutions with several swept parameters is more

beneficial in a real application because of the greater number of cases it may predict.

26

For a function with more than one dimension, the boundaries are also continuous

functions. Automatically including these boundaries as extrema is impossible because

there are an infinite number of points associated with each one. For example, a 2-

dimensional case may be predicted with a plane, mapping two inputs to one output.

The boundaries of this plane are 1-dimensional lines. To account for this, the process

outlined in Chapter 4.3 is repeated for additional residual functions generated by

evaluating the Hamiltonian along its boundaries. The number of unique functions

and unique points that are evaluated in this manner depends on the dimension and

boundaries of Equation 4.6. A list containing total unique features for a footprint

swept in a hypercube is shown in Table 4.1.

Table 4.1. Number of unique features on a hypercube

Dimension Unique Functions Unique Points

1-Cube (Line) 1 2

2-Cube (Square) 5 4

3-Cube (Cube) 19 8

4-Cube (Tesseract) 65 16

5-Cube 211 32

6-Cube 665 64

4.5 Maximum Residual Determination

Determining the number of Taylor series expansions required per unique function

is not well defined. The main trade-off for adding additional expansions is an added

computational cost. Recording the maximum predicted residual over a range of sub-

divisions is shown in Figure 4.9. As the number of Taylor series expansions used in-

creases, the maximum residual predicted will converge and likewise it is expected that

the individual Taylor series expansions have converged to the Hamiltonian surface.

27

After the residuals have converged to a single value, the highest residual correspond-

ing to the greatest number of expansions is recorded. This value is associated with

the initial Hamiltonian residual and given that it is sufficiently small, it is assumed

that the error associated with the Neural Network output will be small as well.

Figure 4.9. Maximum residual of predicted Hamiltonian by the Taylor
series expansions [39]

28

5. PARALLEL IMPLEMENTATION

5.1 Parallel Processing Overview

Programming an application for a parallel architecture is fundamentally different

than its serial counterpart. In an interpreted language, instructions that are written

by a designer are directly executed by an interpreter. The interpreter reads code

line-by-line and performs different actions on a CPU one at a time. This makes

many standard interpreted languages extremely convenient to write simple programs

in but creates challenges for designers who wish to take full advantage of systems

with multiple cores.

The Multiple Shooting Method described in Chapter 2.4 is a good candidate

algorithm to run on several cores unlike the SSM. The independence of one sub-

trajectory from another allows computational resources to be handled independently

whereby each sub-trajectory is assigned to an individual core on a computational

node. Each sub-trajectory is solved independently with correction vectors determined

based on a first-order method.

5.2 Single-node Multi-core Implementation

Implementation of this algorithm was done using the open-source Python pro-

gramming language [40]. Various Python-specific issues were addressed to implement

the algorithm effectively in parallel. Typically, programs run, carry out computa-

tions, and return a result in serial. Additional work is required to make effective

use of parallel architectures. For example, Python’s interpreter implements a Global

Interpreter Lock [41,42]. The Global Interpreter Lock will synchronize the execution

of threads so that only one thread will run at a time. A Python application utilizing

29

a single interpreter with multiple threads will only make effective use of a single core.

Figure 5.1 illustrates how a properly multi-threaded application will run in serial due

to the interpreter.

Figure 5.1. CPython interpreter bottlenecking a multi-threaded application

The Global Interpreter Lock is essential for applications that are not thread-safe.

To run applications in parallel, more processes are created. Since each Python process

contains its own interpreter with its own Global Interpreter Lock, the processes are

separated from one another and can run in parallel. By creating additional processes

in this manner, arcs can each be allocated to their own individual process and inte-

grated independently in parallel. Figure 5.2 shows how creating new processes allows

a program to take advantage of parallel architectures. It is important to note that

this method works for any languages where the interpreter has a mutual exclusion

lock.

Implementing code in this manner allows an entire computational node to be

utilized. For problems with substantially complex derivatives, a boost in performance

30

Figure 5.2. Spawning multiple processes utilizes multiple processors

is expected due to distributing heavy computations over multiple cores. For relatively

simple problems with derivatives that are quick to evaluate, we expect there to be

a decrease in performance. This decrease in performance would be caused by the

overhead of spawning new processes. Since spawning new processes also requires

copying memory and other I/O bound operations, creating new processes for problems

that typically evaluate quickly with the SSM will not be beneficial.

Scaling up and scaling down the problem becomes an issue, since for realistic

applications the optimal number of arcs the trajectory should be subdivided into will

not equal the number of processors available. Solving a TPBVP problem using 4 arcs

on a system with 8 cores has no need to spawn 8 processes. This would result in

additional overhead. Likewise, a system that is several years old may not have many

cores available, but a highly sensitive problem may require dozens or even hundreds

of arcs to converge. A solution to this issue is to use an asynchronous scheduler in the

program. Figure 5.3 illustrates how several arcs are distributed across the available

processors. Implementing the algorithm in this manner ensures that the problem

31

can effectively execute on state-of-the-art hardware as well as hardware that may be

several years behind state-of-the-art.

Figure 5.3. Asynchronously scheduling arc integration effectively uses
the available resources

To test this, the MSM was implemented as detailed above and run on a Cray XC30

(U.S. Department of Defense High Performance Computing System “Lightning”) in

collaboration with the Air Force Research Laboratory at Eglin Air Force Base. An

optimal control problem with a substantially expensive derivative was simulated using

a fixed-step RK4 integration scheme with 5000 time subdivisions. The solution for the

optimal control problem was obtained using a combination of continuation and the

multiple shooting method. Timed trials were performed on a single-node of a Cray

XC30 and results are shown in Figure 5.4. The shown times represent a theoretical

maximum in terms of benefit of using more processors and confirms that the algorithm

makes effective use of available processors.

32

Figure 5.4. Timed trials of a computationally expensive optimal control problem

33

6. APPLICATION TO HYPERSONIC UN-POWERED

FLIGHT

A vehicle in atmospheric flight traveling over five times the speed of sound is

generally considered to be traveling at hypersonic speeds. The flight is considered

unpowered as well due to the absence of thrust. Assuming the vehicle is traveling

at hypersonic speeds allows the use of Newtonian theory for modeling aerodynamic

forces, providing great simplifications. A non-rotating spherical Earth model with

exponential density is also assumed, along with low-order curve-fit polynomials ap-

proximating CL and CD. A vehicle-centered polar coordinate system with 3 degree-

of-freedom dynamics [43] is used to derive the equations of motion listed in Equations

6.1-6.6.

ṙ = v sin(γ) (6.1)

θ̇ =
v cos(γ) cos(ψ)

r cos(φ)
(6.2)

φ̇ =
v cos(γ) sin(ψ)

r
(6.3)

v̇ = −D
m
− µ sin(γ)

r2
(6.4)

γ̇ =
L cos(ξ)

mv
− µ cos(γ)

vr2
+
v cos(γ)

r
(6.5)

ψ̇ =
L sin(ξ)

mv cos(γ)
− v cos(γ) cos(ψ) tan(φ)

r
(6.6)

6.1 Maximum Energy Case

The selected maximum energy control problem refers to a vehicle maximizing im-

pact velocity, or terminal kinetic energy and represents a hypothetical un-powered

guided weapon. Realistic path constraints, such as those relating to heat rate, G-

loading, and country overflight constraints were ignored. The cost functional is de-

34

fined in Equation 6.7 with no path cost (L = 0). The maximum energy case is

selected to demonstrate the benefits of using a Neural Network to generate initial

guesses.

J = −v2f (6.7)

6.1.1 Necessary Conditions

Derivation of the necessary conditions for optimality was performed by evaluating

Equations 2.16-2.21 in Mathematica [44]. Symbolically root-solving Equation 2.16

results in multiple analytic control laws. Selection of the which control law is used

at each time step is made using Pontryagin’s Minimum Principle [18, 19] shown in

Equation 6.8. For each point in time along the trajectory the Hamiltonian is evaluated

with each resulting control law. Pontryagin’s Minimum Principle states that the

Hamiltonian must take on a minimum value over the set of admissible controls. Small

perturbations in an optimal control history will result in an equivalent or increasing

Hamiltonian.

H (x̄∗, λ̄∗, ū∗, t) ≤H (x̄∗, λ̄∗, ū, t) (6.8)

6.1.2 Constants of Motion

Constants of motion for un-powered hypersonic flight over a spherical planet are

derived using Theorem 3.2.1 and listed here for completeness [45]. Additionally, these

constants of motion can be computed using Theorem 3.3.1, satisfying all associated

properties of the Poisson bracket. The specific usage of the constants of motion is

35

heavily dependent on the boundary conditions set for the optimal control problem

and is addressed in Section 6.1.3.

c1 = λφ cos(θ) + λθ tan(φ) sin(θ)− λψ
sin(θ)

cos(φ)
(6.9)

c2 = λφ sin(θ)− λθ tan(φ) cos(θ) + λψ
cos(θ)

cos(φ)
(6.10)

c3 = λθ (6.11)

6.1.3 Footprint and Neural Network Generation

Table 6.1 shows the set of initial and terminal conditions used to define the optimal

control problem and Table 6.2 expands on the swept parameters used to define the

optimal footprint. Samples were taken in the swept region with a 0.125o × 0.125o

resolution and some trajectories are shown in Figure 6.1. A reduction in output

dimension was performed using the constants of motion derived earlier. Both latitude

and longitude are known quantities at the initial and terminal states due to the

constraints imposed upon the boundary conditions. Through the necessary conditions

for optimality, a numeric quantity can be found for λψ0. Since ψ0 is free, λψ0 = 0.

Because there are more unknowns than there are equations, some unknown states

that appear in the constants of motion will still need to be calculated by the Neural

Network. Predictions were given by the Neural Network for λθ0 and λφ0, then numeric

values for λφf , λθf , and λψf were found through the constants of motion.

After training, the resulting data file’s size was 280 megabytes on disk. Neural

Network training was performed with Levenberg-Marquardt backpropagation in 15

minutes. The output Neural Network file’s size was 1 megabyte on disk and evaluates

in an average time of 10.87 milliseconds.

36

Figure 6.1. Various solutions sampled in swept region

37

Table 6.1. Vehicle initial “post-boost” and terminal conditions

State Initial Value Terminal Value

Height, h 80 km 0 km

Longitude, θ 0 deg 5-10 deg

Latitude, φ 0 deg 2.5-5 deg

Velocity, v 5 km/s free

FPA, γ free free

Heading Angle, ψ free free

Table 6.2. Maximum energy footprint area

State Width Samples

Terminal Longitude, θf 5 degrees 40

Terminal Latitude, φf 2.5 degrees 20

6.1.4 Propagation and Solver Input

Using the outputs from the Neural Network, solutions are propagated forward in

time from the vehicle’s initial state with an RK4 integration scheme. These generated

initial guess structures are then sent into either a SSM or MSM solver utilizing a range

of computational cores. Timed trials were performed on a parallel system with an

Intel Core i7-4700MQ CPU, and a summary of the timed trials is shown in Table 6.3.

It can be seen in Table 6.3 that there are benefits to using the MSM over the

SSM. This parallelization specifically has two distinct advantages. The first benefit

is the reduced time to solution through simultaneously integrating several arcs of

the trajectory. The second benefit is the reduced number of iterations the solver

must take to converge to an optimal solution. This is due to the fact that each

individual arc has its own correction vector and therefore more state corrections per

38

Table 6.3. Timed trials with various algorithms

Algorithm Number of Arcs
Average time to

Solution, seconds

Average Number

of Iterations

SSM 1 10.34 15.2

MSM 2 7.17 7.4

MSM 3 6.19 6.9

MSM 4 4.91 6.4

MSM 5 4.95 6.4

MSM 6 5.68 6.2

MSM 7 5.55 6.3

MSM 8 5.26 6.1

iteration are made. Table 6.3 was generated using an Intel Core i7-4700MQ CPU.

The Intel Core i7-4700MQ CPU is a CPU with four physical cores, eight as seen by

the operating system including the Hyper-Threading virtual cores. This means that

while the processor may be able to simultaneously run 8 threads, it is not guaranteed.

Increasing the number of processes used beyond the number of physical cores available

will not guarantee a performance boost.

From the same problem definition, two Neural Networks were generated using two

different datasets. Both datasets covered the same swept regions as shown in Figure

6.1 and cover the same family of solutions, though one dataset was generated to a

higher tolerance than the other. Additionally, damping was removed from the solver

in an effort to decrease the time and number of iterations to reach a solution, totaling

four unique scenarios. Details regarding the Neural Networks generated are shown in

Table 6.4. The training time of the Neural Network using the higher quality dataset

was significantly longer since more iterations were required to sufficiently capture

trends in the data. This was done in an attempt to maximize the quality of the

39

network. The results of timed trials for a various number of arcs is shown in Figure

6.2.

Table 6.4. Generated Neural Network information

Network Number Dataset Tolerance Training Time Estimated Max Residual

Net 1 1× 10−4 23 minutes 1.41× 10−3

Net 2 1× 10−6 3.7 hours 5.22× 10−5

Two trends are apparent from Figure 6.2. The first trend is that removing the

damping from the solver significantly reduces time and number of iterations to ap-

proach a solution. While this is beneficial for some cases, timed trials for the SSM

we not able to be performed for the undamped solver since the convergence rate was

very low. Removing the damping came at the cost of decreasing robustness. The

second trend that can be seen is that the benefits of adding additional arcs plateaus

around four cores. Whether or not this is directly caused by the Hyper-Threading

technology is unknown. A detailed investigation into the effects of Hyper-Threading

technology was not performed. There is additional overhead with transferring data

between Python processes as the number of processes grows. What is likely is that

the detrimental effects of adding additional processors surpassed the benefits and the

performance increase plateaued.

Even though the predicted residual for the second Neural Network is within ac-

ceptable limits, the solver still required some iterations to converge. This is likely

due to the fact that only the Hamiltonian at the initial condition is checked across

the infinite span of inputs to the Neural Network. The Neural Network was not vali-

dated at any other locations other than the initial state due to the fact that there is

no closed-form solution for the trajectory. Errors in the initial state can potentially

grow as the trajectory evolves.

40

Figure 6.2. Summary of timed trials

41

7. SUMMARY

This study presents a parallelized method to support time-critical missions. An

emphasis was placed on using known analytical quantities to reduce time to solution

and error while reducing the overall size on disk of a set of solutions.

A Multiple Shooting Algorithm is developed and deployed onto a parallel system.

Significant performance boosts were shown for problems with substantially difficult

or complex derivatives. Utilizing more processors in parallel allows the solver to make

more initial vector corrections per iteration thus minimizing the amount of wasted

computational resources. A reduction in both time and number of iterations to a

solution were shown for the Multiple Shooting Method.

A region of optimal solutions is generated and used to train an Artificial Neural

Network. Using the Neural Network to predict the unknown parameters of the system

provides accurate initial guesses for optimal solutions through forward integration. To

further improve the accuracy of the Neural Network, Noether’s Theorem is used to

generate constants of motion associated with the optimal control system. Leveraging

these known quantities allows one to bypass sections of the Neural Network where

approximations would normally have taken place without the reduction. A method

is developed for testing the accuracy of Neural Network by analyzing the Hamilto-

nian across the infinite number of inputs. This increase in confidence that a Neural

Network will return high quality solutions has potential real-time applications. Char-

acterizing a family of optimal solutions in this manner also reduces the size on disk

eliminating long search times associated with large data files. Two example Neural

Networks were generated and timed trials were performed with various algorithms

utilizing both serial and parallel processes.

This research has applications to real-time hypersonic optimization as well as

time-critical applications. Using a combination of parallel processing with generated

42

high-quality initial guesses, this method is shown to reduce the time to solution as

well as increase confidence that convergence on an optimal solution will be obtained.

43

8. FUTURE WORK

8.1 Hamiltonian Dimension Reduction

The integrals of optimal motion shown in Chapter 3 are conserved quantities as a

result of physical symmetries that exist in the system. A system with 2n dimensions

and 3 symmetries can potentially reduce to a system with 2n−6 dimensions [46], thus

resulting in a less complex problem to solve. Reductions have been performed in other

systems where dynamics are decoupled into substantially simpler subsystems [47,48].

It is expected that application of a similar procedure to hypersonic design problems

will result in a significantly simpler problem with more benefits than that of the

reduced Neural Network defined in Chapter 4.

8.2 Symplectic Integration

Indirect methods excel because of its use of analytic information in the prob-

lem statement. For long-term integrations and trajectories where the Hamiltonian

approaches a critical point, it has been show that structure-preserving symplectic in-

tegrators are superior to non-symplectic ones [49]. Integration of hypersonic systems

is typically done using RK4 or a similar algorithm. For sensitive problems, integration

cannot be performed in a simple manner using these algorithms. Implementation of

a symplectic integrator may provide a means for reducing the sensitivities associated

with these problems.

8.3 High Fidelity Vehicle Analysis

For hypersonic vehicle concept design, typically simplifying assumptions are made

that decrease fidelity and accuracy in favor of time constraints. Previous examples

44

include simultaneous aerodynamic and trajectory optimization using relatively sim-

plified geometries [50, 51]. The authors of Ref 50 and Ref 51 demonstrate how a

blunted cone, blended wedge, and blunted biconic were used to estimate the aero-

dynamics of the vehicle and also provide a generalized method for augmenting the

problem. This simplified systems standpoint has proven to be a useful tool for de-

signers in the early stages of development. Certain multidisciplinary analysis have

made use of reduced-order models to improve the quality and speed of design. Such

examples include the simulation of a flexible vehicle [52], modeling of aerothermale-

lasticity [53,54], fluid-thermal-structural interaction [55], rapid loads prediction [56],

and nonlinear reduced-order thermal models [57]. Such reduced-order models take a

fraction of the time to evaluate in comparison to their full simulation counterparts.

Due to the iterative nature of solving NLP problems, performing full CFD, FEM,

or thermal analysis in-the-loop with trajectory optimization is infeasible even with

current state-of-the-art computational architectures. Reduced-order models can be

used in place of the full simulations where necessary for conceptual design. Including

the reduced-order models can be done by adjoining them to the problem with their

own Lagrange multipliers by the process outlined in Chapter 2.

REFERENCES

45

REFERENCES

[1] William F. Brinkman, Douglas E. Haggan, and William W. Troutman. A history
of the invention of the transistor and where it will lead us. Solid-State Circuits,
IEEE Journal of, 32(12):1858–1865, Dec 1997.

[2] Gordon E Moore et al. Cramming more components onto integrated circuits.
Proceedings of the IEEE, 86(1):82–85, 1998.

[3] Robert R. Schaller. Moore’s law: past, present and future. Spectrum, IEEE,
34(6):52–59, Jun 1997.

[4] Robert W. Keyes. Moore’s law today. Circuits and Systems Magazine, IEEE,
8(2):53–54, Second 2008.

[5] Robert W. Keyes. Fundamental limits of silicon technology. Proceedings of the
IEEE, 89(3):227–239, Mar 2001.

[6] Steve Melvin, Mario Nemirovsky, Enric Musoll, Jeff Huynh, Rodolfo Milito, Hec-
tor Urdaneta, Koroush Saraf, et al. A massively multithreaded packet processor.
Proc. of NP2, Held in conjunction with HPCA-9, Anaheim, CA, USA, 2003.

[7] Tau Leng, Rizwan Ali, Jenwei Hsieh, Victor Mashayekhi, and Reza Rooholamini.
An empirical study of hyper-threading in high performance computing clusters.
Linux HPC Revolution, 2002.

[8] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William L. Plishker, John Shalf,
Samuel W. Williams, et al. The landscape of parallel computing research: A
view from berkeley. Technical report, Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[9] G. L. Brauer, D. E. Cornick, A. R. Habeger, F. M. Petersen, and R. Stevenson.
Program to optimize simulated trajectories (POST). Volume 1: Formulation
manual. Martin Marietta Corp. Report, 1, 1975.

[10] I. Michael Ross. A beginners guide to dido. Ellisar, LLC, Monterey, CA, 2007,
1998.

[11] Ryan D. Gauntt. Aircraft course optimization tool using GPOPS matlab code.
Technical report, DTIC Document, 2012.

[12] Anil V. Rao, David A. Benson, Christopher Darby, Michael A. Patterson, Camila
Francolin, Ilyssa Sanders, and Geoffrey T. Huntington. Algorithm 902: Gpops,
a matlab software for solving multiple-phase optimal control problems using the
gauss pseudospectral method. ACM Transactions on Mathematical Software
(TOMS), 37(2):22, 2010.

46

[13] Charles R. Hargraves and Stephen W. Paris. Direct trajectory optimization
using nonlinear programming and collocation. Journal of Guidance, Control,
and Dynamics, 10(4):338–342, 1987.

[14] I. Michael Ross and Fariba Fahroo. Legendre pseudospectral approximations of
optimal control problems. In New Trends in Nonlinear Dynamics and Control
and their Applications, pages 327–342. Springer, 2003.

[15] William Karush. Minima of functions of several variables with inequalities as
side constraints. PhD thesis, Masters thesis, Dept. of Mathematics, Univ. of
Chicago, 1939.

[16] Harold W Kuhn. Nonlinear programming: a historical view. In Traces and
Emergence of Nonlinear Programming, pages 393–414. Springer, 2014.

[17] Kevin W. Cassel. Variational Methods with Applications in Science and Engi-
neering. Cambridge University Press, 2013.

[18] Vladimir G. Boltyanskii, Revaz V. Gamkrelidze, and Lev S. Pontryagin. Towards
a theory of optimal processes. Proceedings of the USSR Academy of Sciences,
110(1):7–10, 1956.

[19] Lev S. Pontryagin. Mathematical theory of optimal processes. CRC Press, 1987.

[20] James M. Longuski, José J. Guzmán, and John E. Prussing. Optimal Control
with Aerospace Applications. Springer, 2014.

[21] Yvette Kosmann-Schwarzbach. The Noether theorems. Springer, 2011.

[22] Delfim F.M. Torres. On the noether theorem for optimal control. European
Journal of Control, 8(1):56–63, 2002.

[23] John R. Cary and Robert G. Littlejohn. Noncanonical hamiltonian mechanics
and its application to magnetic field line flow. Annals of Physics, 151(1):1–34,
1983.

[24] Scott Kirkpatrick. Rough times ahead. Science, 299(5607):668–669, 2003.

[25] Francesco Decarolis, Ricardo Mayer, and Martin Santamaria. Homotopy contin-
uation methods, 2002.

[26] Eugene L. Allgower and Kurt Georg. Introduction to numerical continuation
methods, volume 45. SIAM, 2003.

[27] Michael J. Grant and Robert D. Braun. Rapid indirect trajectory optimization
for conceptual design of hypersonic missions. Journal of Spacecraft and Rockets,
52(1):177–182, Nov 2014.

[28] Anthony J. Calise, Nahum Melamed, and Seungjae Lee. Design and evaluation
of a three-dimensional optimal ascent guidance algorithm. Journal of Guidance,
Control, and Dynamics, 21(6):867–875, Nov 1998.

[29] Peter F. Gath and Anthony J. Calise. Optimization of launch vehicle ascent
trajectories with path constraints and coast arcs. Journal of Guidance, Control,
and Dynamics, 24(2):296–304, 2001.

47

[30] J-P Marec. Optimal space trajectories. NASA STI/Recon Technical Report A,
80:48848, 1979.

[31] Raúl Rojas. Neural networks: a systematic introduction. Springer Science &
Business Media, 2013.

[32] Josef Stoer and Roland Bulirsch. Introduction to numerical analysis, volume 12.
Springer Science & Business Media, 2013.

[33] Emmy Noether. Invariante variationsprobleme. Nachrichten von der Gesellschaft
der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse, 1918:235–
257, 1918.

[34] Albert Einstein. Professor einstein writes in appreciation of a fellow-
mathematician. New York Times, 1935.

[35] Floris Takens. Symmetries, conservation laws and variational principles. In Jacob
Palis and Manfredo do Carmo, editors, Geometry and Topology, volume 597 of
Lecture Notes in Mathematics, pages 581–604. Springer Berlin Heidelberg, 1977.

[36] Jeremy Butterfield. On symmetry and conserved quantities in classical mechan-
ics. In Physical Theory and its Interpretation, pages 43–100. Springer, 2006.

[37] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Cognitive modeling, 5:3, 1988.

[38] Amir A. Suratgar, Mohammad B. Tavakoli, and Abbas Hoseinabadi. Modified
levenberg-marquardt method for neural networks training. World Acad Sci Eng
Technol, 6:46–48, 2005.

[39] Michael A Bolender, Michael J Grant, and Michael Sparapany. A homotopy
and parallelization approach for improving the solution time of hypersonic foot-
prints. In 20th AIAA International Space Planes and Hypersonic Systems and
Technologies Conference, page 3564, 2015.

[40] Guido Van Rossum and Fred L. Drake. The python language reference manual.
Network Theory Ltd., 2011.

[41] John Markus Bjørndalen, Brian Vinter, and Otto J Anshus. Pycsp-
communicating sequential processes for python. In CPA, pages 229–248, 2007.

[42] David Beazley. Understanding the python gil. In PyCON Python Conference.
Atlanta, Georgia, 2010.

[43] Nguyen X. Vinh, Adolf Busemann, and Robert D. Culp. Hypersonic and plan-
etary entry flight mechanics. NASA STI/Recon Technical Report A, 81:16245,
1980.

[44] Wolfram Research, Inc. Mathematica, 2012.

[45] H.G. Moyer. Integrals for optimal flight over a spherical earth. AIAA Journal,
11(10):1441–1443, 1973.

[46] Reduction. In Lectures on Symplectic Geometry, volume 1764 of Lecture Notes
in Mathematics, pages 173–179. Springer Berlin Heidelberg, 2001.

48

[47] Tomoki Ohsawa. Symmetry reduction of optimal control systems and principal
connections. SIAM Journal on Control and Optimization, 51(1):96–120, 2013.

[48] Perinkulam S Krishnaprasad. Optimal control and poisson reduction. Technical
report, DTIC Document, 1993.

[49] Monique Chyba, Ernst Hairer, and Gilles Vilmart. The role of symplectic integra-
tors in optimal control. Optimal control applications and methods, 30(4):367–382,
2009.

[50] Michael J Grant, Ian G Clark, and Robert D Braun. Rapid simultaneous hy-
personic aerodynamic and trajectory optimization using variational methods. In
AIAA Atmospheric Flight Mechanics Conference, page 6640, 2011.

[51] Michael J Grant. Rapid simultaneous hypersonic aerodynamic and trajectory
optimization for conceptual design. PhD thesis, Georgia Institute of Technology,
2012.

[52] Ryan C. Kitson. Aeroelastic modeling and simulation of very flexible vehicles.
In 3rd Annual Meeting of the AFRL Mathematical Modeling and Optimization
Institute. Shalimar, Florida. UF REEF, Jul 2015.

[53] Ryan Klock and Carlos E. Cesnik. chapter Aerothermoelastic Simulation of
Air-Breathing Hypersonic Vehicles. AIAA SciTech. American Institute of Aero-
nautics and Astronautics, Jan 2014.

[54] Ryan Klock and Carlos E. Cesnik. chapter Aerothermoelastic Reduced-Order
Model of a Hypersonic Vehicle. AIAA Aviation. American Institute of Aeronau-
tics and Astronautics, Jun 2015.

[55] Emily R. Dreyer. Fluid-thermal-structural interaction analyses in extreme en-
vironments. In 2rd Annual Meeting of the AFRL Mathematical Modeling and
Optimization Institute. Shalimar, Florida. UF REEF, 2014.

[56] Emily R. Dreyer. Rapid loads prediction for hypersonic vehicles using cfd sur-
rogates. In 3rd Annual Meeting of the AFRL Mathematical Modeling and Opti-
mization Institute. Shalimar, Florida. UF REEF, 2015.

[57] Ryan Klock. Nonlinear thermal reduced-order models for a hypersonic vehicle.
In 3rd Annual Meeting of the AFRL Mathematical Modeling and Optimization
Institute. Shalimar, Florida. UF REEF, 2015.

	Purdue University
	Purdue e-Pubs
	January 2015

	Towards the Real-Time Application of Indirect Methods for Hypersonic Missions
	Michael Sparapany
	Recommended Citation

	tmp.1541002327.pdf.8HdKs

