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ABSTRACT

Maheshwari, Apoorv M.S.A.A., Purdue University, December 2015. Industrial Adop-
tion of Model-Based Systems Engineering: Challenges and Strategies. Major Pro-
fessor: Daniel A. DeLaurentis.

As design teams are becoming more globally integrated, one of the biggest chal-

lenges is to efficiently communicate across the team. The increasing complexity and

multi-disciplinary nature of the products are also making it difficult to keep track of

all the information generated during the design process by these global team mem-

bers. System engineers have identified Model-based Systems Engineering (MBSE) as

a possible solution where emphasis is placed on the application of visual modeling

methods and best practices to systems engineering (SE) activities right from the be-

ginning of the conceptual design phases through to the end of the product lifecycle.

Despite several advantages, there are multiple challenges restricting the adoption of

MBSE by industry. We mainly consider the following two challenges: a) Industry per-

ceives MBSE just as a diagramming tool and does not see too much value in MBSE;

b) Industrial adopters are skeptical if the products developed using MBSE approach

will be accepted by the regulatory bodies. To provide counter evidence to the for-

mer challenge, we developed a generic framework for translation from an MBSE tool

(Systems Modeling Language, SysML) to an analysis tool (Agent-Based Modeling,

ABM). The translation is demonstrated using a simplified air traffic management

problem and provides an example of a potential quite significant value: the ability

to use MBSE representations directly in an analysis setting. For the latter challenge,

we are developing a reference model that uses SysML to represent a generic infusion

pump and SE process for planning, developing, and obtaining regulatory approval of

a medical device. This reference model demonstrates how regulatory requirements

can be captured effectively through model-based representations. We will present
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another case study at the end where we will apply the knowledge gained from both

case studies to a UAV design problem.
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1. Introduction

The origin of Systems Engineering (SE) as we know it today can be traced back to

Ludwig von Bertalanffy [1] when he defined system as a ‘whole’ consisting of interact-

ing ‘parts’. Wymore, who is considered one of the founding fathers of SE, defined it as

“the intellectual, academic, and professional discipline, the primary concern of which

is the responsibility to ensure that all the requirements for a bioware/hardware/software

system are satisfied throughout the lifecycle of the system.” [2] Today, SE is defined in

different forms by different organizations. Keating et al. [3] provides a good overview

of different perspectives of SE. Three commonly used definitions of SE are as follows:

SE is an interdisciplinary approach and means to enable the realization

of successful systems. It focuses on defining customer needs and required

functionality early in the development cycle, documenting requirements,

and then proceeding with design synthesis and system validation while

considering the complete problem: operations, cost and schedule, per-

formance, training and support, test, manufacturing, and disposal. (IN-

COSE) [4]

SE is a discipline that concentrates on the design and application of the

whole (system) as distinct from the parts. It involves looking at a problem

in its entirety, taking into account all the facets and all the variables and

relating the social to the technical aspects. (FAA) [5]

SE is a methodical, disciplined approach for the design, realization, tech-

nical management, operations, and retirement of a system. A system is a

construct or collection of different elements that together produce results

not obtainable by the elements alone. (NASA) [6]
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The common recurring theme is that SE is an iterative approach that supports the

complete life-cycle of the product and involves understanding interaction between

sub-systems.

Over the years, SE gave us a number of important tools, including Quality Function

Deployment (QFD) [7] [8], and Universal Systems Language (USL) [9], which rev-

olutionized the engineering fields by designing systems with significantly increased

reliability and productivity along with lowering the risk. Today, we stand at another

such junction, where systems engineers have identified another approach, Model-

Based Systems Engineering (MBSE), which can help us design better in the complex

world.

1.1 MBSE: An Overview

A model is a representation of information that follows some specific guidelines

and semantics. MBSE is defined by International Council on Systems Engineering

(INCOSE), in their SE Vision 2020 [10], as follows:

MBSE is the formalized application of modeling to support system re-

quirements, analysis, verification, and validation activities beginning in

the conceptual design phase and continuing throughout development and

later life-cycle phases.

Thus, in simple words, MBSE is a more digital and visual approach to represent

the SE processes. The main aim of the MBSE is to enhance the ability to capture,

analyze, share and manage the system information. MBSE is often represented as

a shift from document-centric to a model-centric approach to SE. In a traditional

document-centric approach, information associated with different SE processes, such

as specifications, interface requirements, system descriptions, analysis reports, trade-

off studies and qualification processes, are contained in documents. In a model-

centric approach, all of (or a part of) this information is captured in a model or

a set of models. The author believes that this approach will result in significant
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improvements in the system design process due to the following advantages of MBSE

over traditional SE:

• Improved communication: The model-based representations will improve

the communication across the system stakeholders, within the project teams

and across the spoken language barriers. It will help in reducing the loss of

information due to the language differences.

• Improved complexity management: With the ability to view the system

from different perspectives and to trace the impact of changes across the system

design, it becomes easier to manage the complexity of the system.

• Improved understanding: Information can be captured in more standard-

ized ways by creating logical models of the system. These models will help in

providing a high of level of abstraction, enabling design reuse or sharing and

thus, resulting in reduced cycle times and lower design costs.

• Improved design of test cases: With clearer representations of the system,

it will be easier to identify the weaknesses in the system. For example, an

improved understanding of information flow in a large complex system will help

us in identifying the most critical sub-systems quickly.

• Easier verification: It will be easier to evaluate an unambiguous and precise

system model for consistency, correctness, and completeness. This will also help

in leveling of requirements to understand which requirement is more critical (or

less critical) to the system design.

Before moving forward, it is important to understand that creating models to

represent a system is not a new concept. In fact, this concept exists at the heart

of scientific research where we constantly try to represent natural processes in forms

of theories or equations. This evolution to model-based approach has happened in

other domains in the past and will happen in the future as well (Figure 1.1). Thus,
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for SE, MBSE represents nothing but an evolution from low-fidelity representations

in documents to higher-fidelity, richer representations of the SE methods.

Figure 1.1. Transition to Model-based Approach in Different Domains [11]

1.2 MBSE: Status Quo

Since the inception of the theoretical and abstract discussion on MBSE from the

late 1990s, when the transition towards model-driven engineering was happening for

other engineering disciplines, there have been a lot of developments in MBSE. Today,

MBSE is the focus when it comes to process efficiency improvement. We have more

ready-for-use elements available and are moving towards the industrial adoption of

MBSE. It was obvious from the very start that the transition to MBSE required a col-

laboration of different organizations. Thus, systems engineers identified standardiza-

tion as a requirement in order to support this transition. A number of standards like

Systems Modeling Language (SysML) [12], Application Protocal (AP) 233 [13], Eu-

ropean Cooperation for Space Standardization-Engineering-Technical Memorandum-

10-23 (ECSS-E-TM-10-23) [14], Orthogonal Variability Modeling [15], ISO 26550 [16],



5

etc., have been developed since then. These standards are constantly developing while

initial deployment has also started in parallel. We will discuss SysML in detail later.

Other than the standards, a lot of progress has been made in the development

and application of MBSE in both academia and industry. We summarize major

ongoing research in this area here. The author encourages interested readers to go

through [17] [18] [19] to learn about more ongoing projects in MBSE.

Dave [20] provides a good summary of the ongoing MBSE work at the NASA

Jet Propulsion Laboratory (JPL). JPL has been working on developing and applying

MBSE to various systems engineering problems across different project types, activ-

ities and life-cycle phases. They have applied MBSE to approximately 20 different

projects including Mars 2020, Orion, The Jupiter Europa Orbiter, Europa Clipper,

The Soil Moisture Active Passive, etc. For example, they have used model-based

system representations to help in design exploration across architectural variants for

a fractionated spacecraft. They identified that MBSE was really useful in capturing

a rich set of rules and constraints that characterize a produce-able architecture or a

set of architectural variants.

While the JPL is working on the implementation of MBSE, Peak et al. [21] lists

how academic institutions have been working on educating the community through

graduate and professional courses on MBSE. For example, the MBSE Center [22],

along with the industrial partners, have been using SysML as their specific implemen-

tation mechanism to teach MBSE concepts to the students and working professionals.

Buede [23] in his book The Engineering Design of Systems takes a model-based

approach to key SE activities and introduces models and methods using a lot of ex-

amples from diverse domains. London [24] envisions a framework which can combine

MBSE with best practices to generate and evaluate concepts more efficiently.

MBSE is gradually being adopted among big industrial companies as well. Boeing

has been stressing on educating people about the concepts of MBSE for sometime

now. They have been using the MBSE approach in an integrated data environment to

support Integrated Product Architectures (IPA) incentive at Boeing. IPA is aimed at
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developing and deploying a common capability to enable Boeing engineers to integrate

requirements, architectures, and analyses [25].

Rolls Royce, another major aerospace company, has also been exploring the MBSE

for past few years with the focus on implementing different standards in their engi-

neering processes. In their implementation, they have observed that with MBSE there

has been a 20%-40% reduction in the number of requirements. Also, MBSE has been

helpful in early verifiability and validation of the products [11].

The work on MBSE adoption is not only limited to the aerospace sector and has

been picked up in the consumer packaged goods industry as well. Procter & Gamble

have identified MBSE as a means to create persistent, traceable and reusable require-

ments over product and process life cycles. They are using SystemicaTM Systems

Engineering Methodology for their work [26].

It is evident that the interest in MBSE is growing among the big industrial players.

This is also observed in the various surveys done by INCOSE on assessing the adoption

of the modeling in the systems engineering community since 2009 [27] [28] [29] [30]. It

was observed in the latest survey results that the MBSE adoption has increased in the

non-DoD/Defense industries such as Energy, Rail and Automotive when compared

with previous survey results. Still almost 50% of the responses come from people

representing companies from defense sector. The awareness about the MBSE pilots

and adoption of MBSE has also increased over the years. Along with identifying the

MBSE awareness, the survey also asked the responders to list major challenges in the

MBSE adoption in the industry. We discuss these challenges in detail in the next

section.

1.3 Challenges in adoption of MBSE by industry - Premiere to the Case

Studies

With the help of the survey results [30], literature [31] [32] [33] and interactions

with industry members [25] [26] [11], a number of roadblocks on the path of indus-
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trial adoption of MBSE have been identified. We categorize these challenges in the

following broad categories:

1. Tools and Methodologies Issues: The industrial perception is that MBSE

is just another diagramming tool which represents data in a more organized

manner at a higher-level but provides no benefit in the later phases of product

design like analysis, etc. For example, one of the survey respondents [30] said

that, “the fact that MBSE models cannot convert directly into simulation really

stinks”. Thus, to change the industrial perception, it is important to develop

the ability to translate MBSE design representations to analysis models.

2. Regulatory Issues: The regulatory system is still mainly document-based

and thus, industrial adopters are skeptical if the products developed using the

MBSE approach will be acceptable by the regulatory bodies. To tackle this

challenge, we need to show that the regulatory requirements can be captured

at the same level (or even better) in the model-based representations.

3. Legacy Issues: Most companies have significant legacy product data existing

in document-centric approach. But there is no simple (or inexpensive) trans-

lation process to convert that information to the model-centric format. This

presents a big hurdle for the companies to apply MBSE to the existing products.

4. Cost/Return on Investment Issues: It is difficult to measure the impact of

MBSE on the product design. Thus, it is often asked if the investment in MBSE

is worth the cost incurred in the implementation. Development cost-per-project

can be one such metric to measure the impact of MBSE. An independent study

done by Embedded Market Forecasters, based on 667 respondents, showed that

model-based approaches cost 55% less and slightly improve on-time delivery

when compared with traditional SE approaches [34].

5. Lack of Skilled Practitioners: Another major inhibiting factor is the lack

of MBSE-skilled practitioners in the industry who can not only execute the
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model-based projects but also educate management or fellow practitioners in

other parts of the adoption curve than early adopters. This challenge can be

tackled by increasing the number of MBSE-educating centers (like GaTech) and

also, by demonstrating the value of MBSE through more case studies.

Among the aforementioned challenges, we will focus on the following two research

questions in our work:

• What are the features of an effective framework for translating model-based con-

ceptual representations to analysis models?

• What are the specific products in a typical model based representation that, when

properly formed, could be used to satisfy the regulatory requirements? And do

these model based representations provide any benefit over the document-based

approach?

In Chapter 2, we will propose and demonstrate a translation framework to trans-

late a model-based representation to an agent-based simulation model. We will also

discuss some of the challenges associated with the proposed framework. In Chapter 3,

we will apply a model-based design methodology to a safety-critical biomedical device

and represent regulatory requirements using model-based approach. In Chapter 4, we

will revisit the framework suggested in the Chapter 2 and modify it to handle some

of the identified challenges. We will demonstrate the modified framework through

a UAV design case study while adapting and implementing the process explained in

the Chapter 3. Finally, we conclude with the insights gained through the work and

suggest some future research directions in the Chapter 5.
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2. Not just a Diagramming Tool!

Simulation plays an important role in the analysis of alternatives during the early

phases of systems engineering activities. In this chapter, we try to identify the features

of the framework that can translate model-based representations to analysis models

effectively. We develop and demonstrate a generic framework to translate a SysML

conceptual model to an executable agent-based simulation model using a simplified

air traffic management problem. Along with the potential advantages, we also identify

major challenges and possible mismatches in accomplishing a suitable translation for

real-world complex systems.

2.1 Science of Integration

Product Lifecycle Management (PLM) is defined as the process of managing the

entire lifecycle of a product from requirements identification, through design and

manufacture, to service and disposal of manufactured products. In the current state,

PLM and MBSE can be considered as two different approaches to product develop-

ment which have evolved from different requirements. PLM is the evolution of the

Product Data Management (PDM) approach, which was suggested to manage and

track the creation, change and archive of all product-related information. The PDM

concept was extended in PLM to manage all information around a manufactured

product throughout its lifecycle. On the other hand, MBSE is being developed to

advance the practice of SE with an objective to produce a more complete, consistent

and feasible system specification upon which the product can be built. Due to these

different requirements, PLM has evolved into a system that supports the manage-

ment of document variants, change processes and product configuration but lacks in

the transportation of semantic, computer-interpretable information throughout the
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Figure 2.1. Evolution of product development from the Drawing
Board to Model-Based Engineering [35]

lifecycle whereas MBSE can model the semantic information of a product but lacks in

managing it throughout the lifecycle. Thus, to realize the complete potential of both

PLM and MBSE approaches, the new generation PLM must itself be Model-Based

by incorporating more structured information with meaning and follow a stronger

model-based approach than it does today. This integration of PLM and MBSE is

commonly referred to as Model-Based Engineering as shown in the Figure 2.1.

Boeing identifies the current lack of integration of MBSE representations with

the phases and tools downstream to the design representation as one of the major

roadblocks in the industrial adoption of MBSE [25]. Figure 2.2, usually referred to

as the PLM Circle, shows the different phases of the product lifecycle. The current

MBSE literature is more focused and developed on the first two stages of this PLM

circle, namely, Requirements representation and Design representation. The MBSE

representations are also quite developed to represent the process going from the re-

quirements phase to the design phase. The main challenge exists in going from the
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Figure 2.2. The PLM Circle [36]
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design phase to the following analysis phase. Without this link, it is very difficult to

realize the actual potential of the well-organized MBSE representations. Figure 2.3

is another representation of the model-based design process. It stresses more on how

the link between the analysis and standard design library-based representations will

lead into the further stages of the product lifecycle management. In this chapter, we

will focus on the area (and the arrow) marked in green (Fig. 2.3). Connecting the

model-based design representations with the analysis tools is the first step towards

the integration of MBSE with PLM.

Figure 2.3. Model Based Design

2.2 Translation Framework

Kenley et al. [37] reviewed agent-based simulation models for systems of systems

and MBSE methods that are applicable to specifying a system of systems. Their

agent-based models are built from executable MATLAB code that simulates an al-
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located system-of-systems architecture where each function is modeled as an agent

operating in a network of multiple, independent interacting agents [38]. The models

simulate their functionality and operational effects, such as computational and com-

munications latency, that are a consequence of the physical properties of the allocated

architecture. They used the intra-agent dynamics model of an agent 2.4 to develop

a UML (and by extension SysML) activity diagram. The dynamics model defines

functions that:

• update the knowledge, beliefs, and information of the agent using inputs from

its environment;

• decide on actions that achieve its objectives and desires; and

• take action that produces outputs that affect its environment.

Figure 2.4. Behavioral model of an agent (adapted from [39])

In this chapter, we demonstrate a process for translating a system-of-systems

architecture specified in SysML to an executable agent-based model. Similar work

has been done by [40] where they used SysML as a diagramming tool to represent

agent-based models. The main aim of their work was to investigate the effectiveness
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of SysML in establishing a conceptual model for agent-based modeling. However,

in our research, we use SysML models to define the system and we seek to add

a use by extracting information useful for agent-based simulation. Designing for

Adaptability and evolutioN in System of systems Engineering (DANSE) project which

has been working on developing methodology to support evolutionary, adaptive, and

iterative lifecycles for systems of systems is another example where SysML models

are combined with tabular data to automatically generate architecture variants for

system analysis.

The generic schematic for translation from SysML to a simulation model is shown

in Figure 2.5. This schematic is similar to the work of McGinnis et al. [41], who

apply a model-driven architecture approach to develop a discrete event simulation

from a SysML model of semiconductor manufacturing. Two distinct domain-specific

toolboxes are mentioned in Figure 2.5. The domain-specific toolbox on the left is ded-

icated to the description of conceptual models using SysML whereas the toolbox on

the right is the tool that is used to create an agent-based simulation model. The mid-

dle part consisting of three ovals represents the steps to achieve this translation. The

first step is to understand the conceptual similarities and differences in how SysML

and agent-based models represent the key aspects of a system of systems, namely, sys-

tem definition and system inter-dependencies. These aspects are discussed in Section

2.3. The next step is to understand mappings between the domain-specific toolboxes.

To achieve this, we need to understand the interface between SysML specifications

and the agent-based model. This interface is discussed in Section 2.4. Once the map-

ping between the domain-specific toolboxes is completely understood, the final step

is to translate the conceptual model prepared using SysML to an executable agent-

based model. This translation is explained using a simple example in Section 2.5.

The demonstration problem centers on a system of systems for air traffic control that

was represented in SysML and interfaced with an executable agent-based modeling

code written in MATLAB that simulates the operational activities of the system of

systems.
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Figure 2.5. Translation Framework for SysML to ABM

2.3 Aspects of SysML and Agent-based Representations

The Systems Modeling Language, commonly known as SysML, has been specif-

ically developed for model-based systems engineering to formalize the change from

document-based to a model-based form of organization of information. It is a general-

purpose modeling language, supporting the specification, analysis, design, verifica-

tion, and validation of systems.

Agent-based modeling is a modeling approach to simulate the simultaneous ac-

tions and interactions of multiple autonomous agents (individual or collective) and

understand the effects of the combined actions and interactions on the system as a

whole. By allowing a designer to visualize these effects, it becomes possible to un-

derstand the root causes of the effects and to improve the modeled system. With its

bottom-up approach, agent-based modeling is flexible in adapting to new architec-

tures by integrating or removing any physical component or functional capability from

the system. These advantages make agent-based modeling a very useful modeling and

simulation approach for systems of systems.

An agent-based model represents a system of systems using four basic elements:
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1. Agents/Objects: The set of all simulated or passive heterogeneous entities

that interact with the environment based on their interaction rules.

2. Space: The environment where agents and objects are located and signals

propagate. The space can be both discrete and continuous.

3. Time: The system evolves over time. The system can evolve over both discrete

and continuous time intervals. For most of engineering problems, time can be

considered as one of the dimensions of the environment.

4. Dynamics: The interaction rules and behaviors of all the agents that determine

their actions and changes in state.

McGinnis et al. [41] identify a growing need for translating a conceptual model

(such as the one created in SysML) directly to a simulation program to formalize and

automate a substantial portion of the implementation side of the simulation process.

Schönherr et al. [42] tried to build SysML models after identifying and structuring

the significant properties of discrete processes mainly for production systems. IBM’s

Haifa Research Lab uses a generic SysML-based methodology for improving the archi-

tectural design phase [43]. In this chapter, we identify the key elements of SysML, viz.

viewpoints and network representations, which can be used to map SysML models to

agent-based simulations. We also demonstrate the translation with an agent-based

simulation from the air traffic management domain.

2.3.1 Viewpoints

SysML defines four set of viewpoints - structural, behavioral, requirements, and

parametric. The structural viewpoint defines the elements (including the composition

of systems, their properties, and organizational grouping) of the systems using the

block definition diagram and the internal block diagram. The behavioral viewpoint

explains the interaction and architecture of the system using activity, sequence, state

machine, and use case diagrams. The requirements viewpoint functions as a require-
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Table 2.1. Similarities between SysML and agent-based modeling

Viewpoints SysML Agent-Based Modeling

Structural Element definition Agent definition

Behavioral
Interaction and architecture of the

system

Information flow between

the agents

Requirements Requirement management tool
Verification of agent-based

model (indirect)

Parametric
Logical/mathematical constraints

on the design

Parameters of intra-agent

dynamics

ments management tool keeping all the requirements in one place, making it easier

for a systems engineer to create, relate, trace, and analyze them. Finally, the para-

metric viewpoint explains the constraints on the design via logical and mathematical

expressions.

For agent-based modeling, structural viewpoints serve as the basis of defining

various agents being simulated. Properties of the elements defined in the SysML

can be directly mapped as the agent properties in the simulation. The behavioral

viewpoint maps to the interaction and information flow between and within the agents

in the simulation. The requirements viewpoint can be indirectly associated with

verifying and analyzing the outcomes of the simulation but cannot be directly mapped

with the functioning of the agent-based model. Finally, the parametric viewpoint

defines the parameters of intra-agent dynamics for every agent. These similarities are

summarized in the Table 2.1.

Though the congruence between the SysML viewpoints and the corresponding

agent-based viewpoints seems significant, mismatches are possible. One of the major

advantages of agent-based modeling is its ability to easily create multiple instances

of an agent and analyze their interaction. In SysML, although it is possible to create

multiple instances of the same element, it becomes relatively difficult to manage the

links and the interactions once the number of instances becomes high. Another possi-
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ble mismatch may occur in the ability to trigger a particular event at a specific point

in time. Since SysML viewpoints are static representations of different components

of the system, it is difficult to trigger events dynamically in the simulation using

SysML. State machines can be used to represent various event triggers in SysML but

proper extraction of the information relevant for agent-based simulation has not been

achieved yet.

2.3.2 SysML Networks

Another important feature of SysML is its representation of networks. SysML

can represent two types of architectures (or networks) used in cyber-physical design:

logical and physical [44]. Logical network architectures describe the exchange of

information between systems by explaining what information is transferred between

systems. The physical network architecture shows the connectivity of systems by

explaining the physical paths over which the information is transferred. For example,

a logical network connection may specify that - when the driver presses the brake

pedal, the information to slow down the car flows in the system. The related physical

network would show the hydraulic configuration which is transferring the information

from the brake pedal to the road-wheel brakes. The combination of these two types

of links articulates that the brake pedal transfers information to slow down the car

to the brakes using hydraulics, where both the action and the medium may have

differing properties. Keeping these two networks separate allows for changes to either

network without necessarily altering the other. For example, both the foot brake and

the parking brake have the same logical networks but different physical networks. The

driver just knows that the car will slow down by pressing the brake pedal and thus,

the driver only knows about the logical network. The driver does not need to know

about the underlying physical network to interact with the system. Similarly, in an

agent-based model, this distinction between the path of interaction and the medium

of interaction can help in modeling the system in a more generic way. Moreover, it
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also presents an opportunity to analyze the effects of different logical and physical

concepts separately.

In an agent-based model, an agent changes its state based on its internal logical

relations and external stimuli. Thus, an agent-based model represents these networks

by specifying the interaction rules and the information flow for the agents. The

distinction between a logical and a physical network surely helps in understanding

the problem in a greater depth but this distinction might not be readily visible in an

agent-based model at times. In those situations, direct translation of SysML networks

to agent-based dynamics can be problematic (or, at worse, completely incorrect).

2.4 Interfacing SysML Specifications to Agent-based Simulation

After understanding the system-of-systems representation from the perspectives

of both SysML and agent-based modeling, the next step is to understand the mapping

between the domain-specific toolboxes of each field. In this work, we create the SysML

model for the simulation in a SysML-enabled visual toolbox MagicDraw. MagicDraw

is a visual SysML modeling tool that supports the latest OMG SysML Specification

1.3 version. The simulation for the generated SysML models is then translated to

and executed in MATLAB by the Discrete Agent Framework (DAF) [45], developed

at the System-of-Systems Laboratory, Purdue University. DAF is a MATLAB-based

framework that provides the underlying infrastructure for agent-based simulation that

moves messages around and maintains the simulation environment (locations, time,

etc.). The link between MagicDraw and DAF is facilitated by ParaMagic, a plugin

for MagicDraw. The complete translation mechanism is summarized in the Figure

2.6.

Based on the system definition, the elements of the system are defined in Mag-

icDraw using the block definition and internal block diagrams. While designing the

elements, requirements and constraints are created for each element using the re-

quirements and the parametric viewpoint. Next, based on the architecture, logical
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Figure 2.6. Translation Mechanism
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and physical SysML networks of the system are created in MagicDraw. Once the

SysML model is completed, the MagicDraw output artifacts are connected to the

MATLAB using ParaMagic. ParaMagic helps in executing constraints relationships

in SysML parametric diagrams through MATLAB and other math toolboxes. This

MATLAB link is used to generate the files required for setting up the DAF simulation

with the information from the SysML model. Once the required files are generated,

an agent-based simulation is executed using DAF.

There are major challenges in achieving this translation from SysML model to

an executable agent-based model. The primary challenge is to develop a mapping

between the two domain-specific toolboxes (i.e. MagicDraw for SysML and DAF for

agent-based modeling). The generic mapping has been developed in the previous

section, but it is still difficult to find a publically available formal specification for all

the toolboxes.

Another challenge, of course, is the development of the model translator, which

uses the aforementioned mapping to translate a conceptual SysML model to an ex-

ecutable simulation model. This translator needs to be developed for each set of

domain-specific toolboxes being used.

2.5 The NextGen Air Traffic Control System of Systems

The National Airspace System (NAS) consists of all the components (such as

airspace, facilities, equipment, and procedures) that enable the United States air

transportation system. The Next Generation Air Transportation System (NextGen)

initiative was created to transform the NAS to a safer, more reliable, more efficient

and an environment-friendly system. It proposes, for example, a transformation in

the surveillance function from a ground-based system to a satellite-based system. It

plans to use precision navigation technology to shorten routes, save time and fuel,

reduce traffic delays, increase capacity, and permit controllers to monitor and manage

aircraft with greater safety margins.
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Modeling and simulating any new concept is crucial, especially when both safety

and cost-effectiveness are at play. NextGen is a prime example. Simulations of new

concepts can not only save time compared to physical experiments, but can also

create a coherent synthetic environment that allows for integration of the simulated

systems in the early analysis phase. Here, we demonstrate a simulation of one of the

most important NextGen elements, the Automatic Dependent Surveillance-Broadcast

(ADS-B) technology. In Next Gen, ADS-B will provide air traffic controllers and pilots

more accurate information, based on GPS and inter-aircraft communication, to keep

aircraft safely separated in both airborne and ground settings. In the demonstration,

we simulate a simplified air traffic management problem.

Air traffic management encompasses all systems that assist aircraft to depart from

an airport, transit airspace, and land at the destination airport. [46] states that air

traffic management consists of mainly three distinct activities:

1. Air Traffic Control (ATC): This process is responsible for maintaining the

appropriate separation between the aircraft to ensure the safety of the flying

aircraft. Currently, the air separation is maintained by communication between

pilots and air traffic control centers. In NextGen, ADS-B is meant to improve

this communication link by broadcasting the aircraft information directly to its

nearby aircraft.

2. Air Traffic Flow Management: This process deals with the planning of

flight paths and timings. This is done before the flight takes place.

3. Aeronautical Information Services: These services are responsible for the

compilation and distribution of all aeronautical information (including safety,

navigation, technical, administrative, or legal) necessary to airspace users.

In our demonstration, we prepare a simplified model of the ATC section of the air

traffic management, to illustrate the translation from SysML to DAF for a system

of systems. Based upon the Mark Maiers description of the unique traits of systems

of systems, there are two primary traits that are necessary for a group of systems
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to be considered as a system of systems: operational independence and managerial

independence [47]. Operational independence implies that each system is capable

of performing a set of functions without any interactions from the other systems.

Managerial independence implies that the systems manage themselves to a purpose

separate from the ultimate purpose of the system of systems. For the Air Traffic

Control system, the aircraft can be considered as an operationally independent system

performing the task of travelling from an origin to a destination along with satisfying

the overarching goal of fulfilling the demand of the air transportation network.

Our model consists of a group of aircraft, equipped with ADS-B as the only com-

munication technology, approaching each other. ADS-B consists of two sub-systems:

ADS-B In (component responsible for receiving the other aircraft information) and

ADS-B Out (component responsible for transmitting the aircraft information). All

the aircraft are required to maintain a fixed minimum separation from other air-

craft to reduce the risk of aircraft collision, as well as prevent accidents due to wake

turbulence. Air traffic control enforces minimum separation rules to achieve this

(FAA order 7110.65). A defined loss of separation between airborne aircraft occurs

whenever the specified separation minima in the controlled airspace are breached.

In such cases, a system known as the Airborne Collision Avoidance System (ACAS)

comes into action to avoid collision. In simpler terms, if the separation bubbles of

two aircraft intersect at any time, both aircraft change direction as per the collision

avoidance algorithm. The ADS-B can broadcast and receive the aircraft information

within a fixed distance. Thus, the aircraft can see other aircraft only if it is within

the range of its ADS-B In. Fault is also introduced in the simulation by shutting off

the ADS-B In system of an aircraft by a pre-defined trigger. With a faulty ADS-B

In, the aircraft fails to see other aircraft in its ADS-B In range.

The Aircraft agent can divided in mainly two parts:

1. Subsystem containing all the communicating sensors and the auto-pilot system

responsible for driving the agent. To simplify the implementation, both the
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communicating sensors and the auto-pilot system are considered under this

single section.

2. ACAS, the collision avoidance system which makes decisions regarding the

agent’s flight path based on the information about other agents and the sepa-

ration rules.

The working of Aircraft agent is defined in the Figure 2.7, which is consistent with

Figure 2.4 and is patterned after the activity diagram of a generic agent from [37]. The

ADS-B In receives the State Vector (position and heading direction) of the aircraft

that are within the range of the ADS-B In. Based on this input, the subsystem

updates the state vector database. This information is then transferred to the ACAS,

which decides upon the flight path based upon this information and the objective

to maintain a minimum distance from other aircraft. This updated path is now

sent to the subsystem as a command for the auto-pilot module. Simultaneously, the

communication module broadcasts the updated state vector of the aircraft using ADS-

B Out. In our demonstration, the logical network (Figure 2.8) consists of relevant

information going to and from aircraft agents. The physical network (Figure 2.9)

consists of the specific ADS-B In and ADS-B Out communication implementations.

For this example, after defining the block diagram of the aircraft agent, we create a

parametric diagram for the agents which utilizes the ParaMagic plugin and MATLAB

script to convert the parameters of each aircraft into agent files required for the

DAF simulation. Since all the agents in our simulation are of the same type, we

convert their specifications (i.e., initial positions and initial velocities) directly from

one parametric diagram. A screen-shot of the parametric diagram is shown in Figure

2.10.

The constraint block shown above uses the MATLAB script matlab aircraft to

generate the required DAF agent files. The parameters are input into this MATLAB

script and it gives the output flag a value (1, if file generation is successful and 0

otherwise). The DAF agent file is generated in the same folder as the MATLAB script.
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Figure 2.7. Activity Diagram for Aircraft agent

Figure 2.8. Logical Network
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Figure 2.9. Physical Network

Figure 2.10. Parametric diagram for DAF agent file generation
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Figure 2.11. ParaMagic instance browser for agent file generation

Figure 2.11 shows Instance browser for one such run. Note that all the parameter

values are given, and the flag value is the target value of the run. The first two entries

of parameters represent the number of aircraft and number of specifications for each

aircraft respectively. The rest of the values represent initial position (x-component),

initial position (y-component), initial velocity (x-component) and initial velocity (y-

component) for each aircraft in that order.
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2.6 Results of the Simulation

After creating the SysML networks and establishing the connection between SysML

and DAF, the agent-based simulation was executed with a group of aircraft agents

working based on the established rules and objectives. The simulation snapshots are

tabulated in Figure 2.12.

The range of ADS-B In is denoted by the blue circle in the simulation. The

red circle denotes the critical separation zone for each aircraft. As soon as another

aircraft comes in the ADS-B In range, the aircraft receives the data (starts seeing the

aircraft) and turns green. When the separation bubbles of two aircraft intersect, both

aircraft change their path based on the collision avoidance algorithm to maintain the

minimum separation. Right now, a very simplified collision avoidance algorithm is

implemented where aircraft move in the direction perpendicular to the vector formed

between the two aircraft. The faulty aircraft is denoted by turning its marker red.

We can see in the simulation that the faulty aircraft does not change path because it

cannot see the other aircraft in its ADS-B In range.

Thus, we can see that a proper translation from SysML to an executable agent-

based simulation model can be achieved. But there are two major issues that remain

to be settled:

1. Scalability: The example problem is a very simplified version of a real-world

situation. We observed in the example with three same type of agents with

four specification parameters for each, the number of parameters needed for

each simulation is 14. A more comprehensive and detailed version could be

very large and complex, with a number of different agents involved and many

instances of each. The construction and organization of such a large simulation

is a major challenge of its own, but so may be the ability of this SysML-ABM

mapping approach.

2. Coarse-Graining: To achieve an efficient mapping, we should be able to first

identify and then extract all the relevant information from the SysML model to
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Figure 2.12. DAF Simulation Results



30

create an executable agent-based simulation model. The identification, extrac-

tion and management of this information is a difficult task and depends heavily

on the knowledge about the internal functioning of both domain-specific tool-

boxes (of SysML and the agent-based simulation model). For example, in the

demonstration problem, we assume the network of aircraft agents to be fully

connected and thus, we were able to minimize the relevant information to the

initial state characteristics of each aircraft. In a real world complex system, our

network might not be fully connected and we will have to transfer this informa-

tion from SysML to agent-based modeling tool. This information can be really

difficult to extract and manage.

2.7 Lessons Learned

In this chapter, we showed how we can use a conceptual system representation in

SysML to get an executable agent-based simulation. We also identified major chal-

lenges in achieving this translation for a real-world system. We explained a generic

translation framework with the help of simple air traffic management problem. The

framework helped us automate the simulation process, to some extent, directly from

the SysML model. We were able to generate agent files required for the ADS-B sim-

ulation directly from the SysML element definition. The case study proves that this

translation can be achieved, but we still have major challenges including scalability

of the efficiency in the mapping process. While working on the translation, we also

realized that automating the analysis process for a model-based system definition

of complex real-world systems requires development of formal specifications for the

domain-specific toolboxes involved.
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3. Tackling the Regulatory Issues

In this chapter, we discuss the model-based approach to the engineering design of

systems given by Buede [23]. We demonstrate the abstract nature of the approach by

applying it to a Healthcare design problem and see if we can capture the regulatory

requirements in the model-based representations.

3.1 Introduction to the Engineering Design of Systems

In his book, The Engineering Design of Systems [23], Buede describes the engi-

neering of a system as “the engineering discipline that develops, matches, and trades

off requirements, functions, and alternate system resources to achieve a cost-effective,

life-cycle-balanced product based upon the needs of the stakeholders”. He explains it

further using the famous “Vee” diagram (Fig. 3.1) where the design process starts

at the top left of the diagram with the definition of the operational needs of the

stakeholders. These needs are then further decomposed to generate system-level re-

quirements to eventually create specifications for each configurations item (CI). These

specifications are then used by the design (or discipline) engineers to design and pro-

duce the CIs. The right side of the “Vee” represents the integration of these CIs to

create the final system which is then verified and validated with the help of the quali-

fication system that is created based on the needs of the stakeholders identified in the

first step. The whole design process moves from left to right in time where iteration

between the high- and low-levels is not only important but highly encouraged. The

horizontal line depicts the point where information is handed-off from system engi-

neers to respective discipline engineers who will produce the physical entity satisfying

the given specifications. This line can be moved higher or lower to represent decreas-

ing or increasing overlap between design and integration activities. For example, if
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Figure 3.1. Systems Engineering “Vee” Diagram [48]

the horizontal line is draw above the intersection of the “Vee”, it means that there

is no overlap between the design and integration activities. This could represent the

contractual relationship between procurers and suppliers in the design process.

Now, in the following case study, we demonstrate that this model-based approach

is not only capable of capturing the regulatory requirements but also identifies the

appropriate design stages related to these requirements.

3.2 Healthcare Case Study

Healthcare industry is one of the most safety-critical industries where product

designs are driven by different standards and regulations to a large extent. Therefore,

we chose to demonstrate how regulatory requirements are expressed using a model-

based representation of the design process of a healthcare device. This work has been
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done in collaboration with the INCOSE Healthcare MBSE Challenge Team [49], who

are working with an aim to demonstrate the value of MBSE for biomedical-healthcare

devices. The challenge team provided the expertise regarding the healthcare side of

this case study.

3.2.1 Introduction

The challenge team has been working on creating a reference model for an in-

fusion pump. U.S. Food and Drug Administration (FDA) defines infusion pump as

“a medical device that delivers fluids, such as nutrients and medications, into patient

body in controlled amounts” [50]. For the last few years, the Laboratory of Software

Engineering at FDA has been working with various academic collaborators to develop

model-based tools and verification techniques for infusion pumps. FDA believes that

these model-based tools not only save costs and time but also make the design more

robust and efficient as problems can be identified and resolved at early phases of de-

sign [50] [51] [52]. In our work, we adapted the model-based process representations

described by Buede [23] in SysML diagrams to represent the system life cycle pro-

cesses of an infusion pump. Moreover, we harmonized these representations with the

following three standards:

1. ISO 15288: Systems and software engineering - System life cycle processes [53]

2. ISO 14971: Application of Risk Management to Medical Devices [54]

3. IEC 62366-1: Application of Usability Engineering to Medical Devices [55]

3.2.2 Process Diagrams

The system life-cycle process is represented with the help of SysML block defini-

tion, internal block and activity diagrams. All the diagrams are connected using a

navigation page as shown in Figure 3.2. The diagrams on the navigation page are

categorized into following three categories:
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1. Pre-Systems Engineering Processes: The diagrams in this region repre-

sents the steps that occur before the start of the system-level design activities.

This could be considered as the highest level of abstraction of the design process.

2. System-level Design Activities: The region marked in green contains dia-

grams for all the processes involved in the system-level design activities from

problem definition to qualification system development.

3. Mapping Information: The process diagrams in the above categories are

mapped to the sections and terminologies of ISO 14971:2007 [54]. This mapping

works like a dictionary between SE and Healthcare terminology.

Examples from the Diagrams

A lot of process diagrams were generated to represent the design process. We

discuss some of the process diagrams here but all the generated diagrams are com-

piled in the Appendix A. In the block definition diagram shown in Figure 3.3, we see

all the activities (or steps) that are part of the Development Phases (highest-level of

abstraction). The activity representing systems engineering is marked as our system-

of-interest. The information flow diagram for these development phases (figure 3.4)

shows the information flow across these steps. The information flow diagram consists

of swimlanes that distribute the steps among different groups, namely, the stake-

holders, the SE team, the discipline engineers and the qualification system discipline

engineers, in the team. It should be noted that for a small design team, the same

person can play more than one role in this diagram. Figure 3.5 provides an zoomed-in

view of the inputs and outputs of the SE activity.
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Figure 3.2. The Navigation Page
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Figure 3.3. Development Phases - Block Definition Diagram
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Figure 3.5. Perform Systems Engineering

Another example from the process diagrams is shown in Figure 3.6, where steps for

Allocated Architecture Development, a system-level design activity, are represented.

Some of these steps are further broken down in attributes that are mapped from ISO

14971 using the approach followed by Malins et al. [56]. Similarly, in the activity flow

diagram (Figure 3.7), the specific section from IEC 62366-1 is mapped to relevant

step using comments.
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Figure 3.6. Allocated Architecture Development - Block Definition Diagram
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Figure 3.8. Mapping Buede’s diagrams with ISO 14971

Finally, figure 3.8 summarizes the mapping of ISO 14971 to different activities

in the model-based process representations. This kind of mapping table not only

serves as a Rosetta Stone between system engineers and other domain experts (here,

Healthcare) but also traces the regulatory requirements to specific design steps making

the design process more efficient and robust.
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3.3 Lessons Learned

In this chapter, we adapted the model-based process representations, given by

Buede, to represent the product design process of a biomedical device. We observed

that the model-based approach not only manages to capture the regulatory require-

ments but also map them to specific design activities. The identification of the stages

where a standard is being used makes the design process more efficient and robust

from the perspective of compliance activities. The method of creating the mapping

tables also serves as a means to communicate the SE knowledge to other domains.
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4. UAV Design Case Study

In this chapter, we apply the product design approach explained in the chapter 3 to

an unmanned aerial vehicle (UAV) design process. We will also adapt the translation

framework, developed in the chapter 2, to connect the model-based representations

with another analysis tool, XFOIL [57].

4.1 Introduction

The US Department of Defense defines UAV as “a powered, aerial vehicle that

does not carry a human operator, uses aerodynamic forces to provide vehicle lift,

can fly autonomously or be piloted remotely, can be expendable or recoverable, and

can carry a lethal or nonlethal payload” [58]. Today, the UAVs are used for both

military and non-military purposes including search and rescue operations, forest fire

detections, acrobatic aerial footage in film-making and leisure flying. Consider the

design process of one such UAV, which is planned to be used as the first responder

during emergency conditions. The UAV is supposed to gather information about the

emergency site until emergency personnel arrives on scene.

4.2 System-level Design Activities

Now, we follow the SE process, shown as the system-level design activities in the

chapter 3, to design the UAV.

4.2.1 Problem Definition

Based on the figure 3.2, the first step in the design process to define the problem.

After identifying the need, it is important to capture the important requirements as
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Figure 4.1. Mission Scenario

these requirements will work as the foundation for the whole design process. It is

also important to have solution neutral requirements to avoid introducing artificial

limitations. In our case, the mission of the UAV can be defined as: “To design a

rapid deployable UAV first responder to the scene of an emergency while Police, Fire,

and Medical teams are en route”. A mission scenario, which has been defined by the

stakeholders in the pre-SE processes, is shown in the Fig. 4.1. Based on the given

information, the most important requirements for this UAV can be depicted in the

model-based representations, as shown in Fig. 4.2.

4.2.2 Functional Decomposition

The next step after properly defining the problem is to decompose the system

into different components (or subsystems) based on their functions. It is advisable to

name the components, based on their functions, rather than the physical component

associated with it. For example, instead of propellers, the component is named as

thrust system. This method of classifying and naming components not only keeps the

process solution neutral but also makes it easy to determine the impact of changing
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Figure 4.2. Model-based Representation of the Requirements
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Figure 4.3. Functional Decomposition of the UAV system

the physical component through the model traceability. An example of functional

decomposition for our system is shown in Fig. 4.3.

4.2.3 Physical Architecture Design

Once the functional decomposition is completed to enough detail, the develop-

ment of the physical concepts that will satisfy the given functions start. Now, the

design of these physical concepts can be a very complex process involving further

decomposition and this is where the horizontal line in the “Vee” diagram (Fig. 3.1 is

drawn. For example, in our system, the Lift System can have either Wing or Rotors

or a combination of both as possible physical concepts. Moreover, as shown in the

Fig. 4.4, the Wing can be further broken down into different types: Fixed Wing and

Folding Wing. Our final concept design will consist of any one (or a combination) of

these physical concepts.

4.2.4 Architecture Allocation

Once a number of physical concepts are generated, the next step is to analyze

and allocate the most suitable architecture, based on the performance metrics. The

detailed steps for this activity are shown in the Fig. 3.6. For example, in our case, the

best Fixed Wing can be selected based on its Airfoil and Structural characteristics
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Figure 4.4. Physical Architecture for the Lift System
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Figure 4.5. Decomposition of Physical Design of a Fixed Wing

(Figure 4.5). We will see how the analysis tool (XFOIL) is connected to the airfoil

analysis in the next section.

4.2.5 Interface Architecture Development

After allocating the physical concepts based on the functional decomposition, we

develop the architecture for the interaction between the components. This step is
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crucial to identify the critical components in the design and make sure that the

allocated physical components are compatible with each other. For example, in our

design, at this step, the interface between the thrust system and lift system will be

developed, i.e., we will understand the interaction between the propellers and the

fixed wing.

4.2.6 Qualification System Development

The final step in the design process is to verify that the designed system satisfies

the requirements created in the beginning. In this step, we develop the qualification

system that will perform this check on the final design. For example, for the UAV

design, we might have to perform a timed test flight to show if our final design can

fly for 40 minutes.

4.3 Airfoil Analysis using XFOIL

In this section, we will explain how we can modify the translation framework,

explained in the chapter 2, to connect model-based representations with any analy-

sis tool. We demonstrate the modified framework by enabling the translation from

model-based representations to XFOIL, a low-fidelity aerodynamic analysis tool.

In chapter 2, one of the challenges with the translation framework (Fig. 2.5) is

that every pair of domain specific toolboxes require a different translator. Due to

this shortcoming, even though the framework provides a guideline towards solving

the challenge of connecting the MBSE representations with analysis tools, its proper

implementation is still a daunting task. To address this challenge, we propose a slight

modification to the framework (see Fig. 4.6). We observed that due to the popularity

of computational tools like MATLAB R©, Python, etc., a number of important analysis

tools are already interfaced with these tools [59]. In fact, The MathWorks Inc. has

been releasing comprehensive documentation on how to interface external tools with

MATLAB R© [60]. So, if we can enable the translation of MBSE representations to
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Figure 4.6. Modified Translation Framework

these popular computational tools (intermediate tool), we will be able to enable the

translation to a number of analysis tools (specific tool). We demonstrate the modified

translation framework in the following section.

4.3.1 Demonstration

During Architecture Allocation (section 4.2.4), Conduct Performance and Risk

Analyses is one of the most important step as the results of this analysis will determine

which concept will be selected for the final design. For example, in the UAV example,

the design process of a Fixed Wing can be further divided into Airfoil Design and

Structural Design (Fig. 4.5. Now, we perform the airfoil analysis using XFOIL.

Say, we want to perform an aerodynamic analysis of NACA 24012 airfoil for our

UAV. The analysis can be done in the following three steps:
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Figure 4.7. Snippet from the generated MATLAB file

1. We transfer the information about the airfoil geometry (standard NACA 5-digit

series number here) to MATLAB with the help of the translator developed in

the chapter 2. Figure 4.7 shows a snippet of the generated MATLAB file after

the translation.

2. Next, we use the MATLAB-XFOIL interface developed by Rafael Oliveira to

perform the aerodynamic analysis [61]. Figure 4.8 shows a snapshot of the

XFOIL analysis.

3. Figure 4.9 shows the generated results for various aerodynamic parameters. We

can select and feedback values to the MBSE model as per our requirements.
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Figure 4.8. Snapshot of the XFOIL Analysis



53

F
ig

u
re

4.
9.

F
in

al
X

F
O

IL
A

n
al

y
si

s
R

es
u
lt

s



54

4.4 Lessons Learned

In this chapter, we showed how the Buede’s process representation diagrams that

were used to represent the product design process of a biomedical device can be used

to describe the design process of a UAV. With the help of UAV case study, we also

demonstrated how the translation framework that was introduced in the Chapter 2

can be adapted to implement it to other analysis tools. The third step of translation

from the conceptual model to the simulation model was broken into two steps, where,

first the conceptual model is translated to an intermediate popular tool and then the

existing interface between the intermediate and the analysis tool is used to translate

to the simulation model. This additional step makes the translation to the analysis

tool more efficient.
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5. Conclusions and Future Work

5.1 Conclusions

This thesis outlines the advantages of MBSE and identifies the major roadblocks in

its industrial adoption. With the help of three case studies, the author has suggested

ways to handle two of these challenges. Although the answers to the research questions

have been explained in detail throughout the document, we summarize them here:

• What are the features of an effective framework for translating model-based con-

ceptual representations to analysis models?

In Chapter 2, the author proposes a translation framework that enables the

translation from a SysML conceptual model (created using MagicDraw) to an

executable agent-based simulation model. The translation framework was also

demonstrated using a simplified air transportation problem where three aircraft,

communicating only using ADS-B, had to maintain a minimum separation dis-

tance. Along with the demonstration, a number of challenges were also iden-

tified that might hinder the implementation of the framework to a real world

complex problem. In Chapter 4, the author proposes a modification to the

framework to address one of the identified challenges. The modified framework

was demonstrated using an airfoil analysis problem.

• What are the specific products in a typical model based representation that, when

properly formed, could be used to satisfy the regulatory requirements? And do

these model based representations provide any benefit over the document-based

approach?

In Chapter 3, Buede’s systems engineering diagrams were adapted to represent

the product design process of a biomedical device. Three standards, namely,
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ISO 15288, ISO 14971 & IEC 62366-1, were also harmonized with the represen-

tations to demonstrate that the model-based representations not only capture

the regulatory requirements but also show the stages (in product lifecycle) where

a specific standard will be used. Thus, it makes the design process more efficient

and robust with respect to the regulations.

Overall, it was shown that the MBSE representations are capable of capturing

the processes involved during the product lifecycle efficiently. Moreover, a translation

framework was proposed to move towards the integration of MBSE with PLM.

5.2 Future Work

In this work, in addition to identifying and demonstrating strategies towards in-

dustrial adoption of MBSE, we also identified the challenges associated with it. Es-

tablishing the link between the model-based design representations and the analysis

tools is crucial for the integration of MBSE & PLM and this work just describes the

initial steps. Some of the future directions, categorized as short-term and long-term,

are described in the following subsections:

5.2.1 Short-term

1. Scalable Translation: At the current stage, the translation to an agent-

based simulation model works fine when the model-based representation does

not contain a large number of occurrences of the same (or similar) element(s).

But since design reuse is one of the main advantages of MBSE, it is really

important to make the translation framework scalable for multiple occurrences

of the same element.

2. Coarse Graining: As the same model-based representation can be connected

to a number of analysis tools to perform different design evaluations, it is critical

to be able to identify and extract the “relevant” information from the repre-
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sentation. With an increase in the complexity of the systems, it is essential to

manage models to retain the important information and in doing that, discov-

ering what is important is the biggest challenge. To tackle this challenge, un-

derstanding the development of the Computer-Aided Engineering (CAE) tools,

where information is extracted from CAD models to perform different engineer-

ing analyses, can be a good place to start.

3. Interface Standards: There is a need to standardize the information exchange

between different analysis tools. These standards can boost the usefulness and

interoperability of the tools. For example, the development of ISO 10303, in-

formally known as STEP, has worked wonders for the CAD industry.

4. Impact on Cognitive Load: Another interesting area is to explore the impact

of MBSE on the cognitive load of the design engineers. The richer and high-

fidelity representations should not only make the design process more efficient

but should also make it easier for the interdisciplinary teams of design engineers

to interact and understand each other.

5. Link with the Downstream Phases: In our work, we mainly talk about

the link between the model-based design representations and the analysis tools

but we also need to establish the links with the downstream phases, such as

manufacturing, product sustainability, etc., as well to make the model-based

approach more relevant to the design process.

5.2.2 Long-term

1. Dissemination of SE knowledge: The difference in the vernacular termi-

nology is the biggest hurdle in the application of SE to different domains. As

described using the mapping table (Figure 3.8) in the Chapter 3, we mapped

the information from SE to the corresponding Healthcare terminology. Creating
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similar lexicons, with the help of domain experts and systems engineers, is vital

to handle the increasingly interdisciplinary nature of the products.

2. MBSE-PLM Integration: To realize the maximum benefit from the model-

based approach, it is very important to integrate the MBSE with the PLM.

Currently, all the PLM tools are mainly managing the various documents (for

example, spreadsheets, checklists, etc.) used throughout the lifecycle of the

product. The next generation PLM tools must itself be model-based by incor-

porating more structured information with meaning and should follow a stronger

model-based approach than they do today. The MBSE-PLM integration will

not only boost the adoption of MBSE in the industry and but will also make

the PLM tools more functional and thus, will lead us to a more efficient design

process of the future.
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A. SysML diagrams for the Healthcare Case Study

Figure A.1. Main Navigation Page
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Figure A.2. Block Definition Diagram of the Development Phases
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Figure A.4. Perform Systems Engineering - Block Definition Diagram

Figure A.5. System-level Design Activities - Block Definition Diagram
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Figure A.7. Problem Definition - Block Definition Diagram
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Figure A.9. Functional Architecture Development - Block Definition Diagram

Figure A.10. Physical Architecture Design - Block Definition Diagram
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Figure A.11. Allocated Architecture Development - Block Definition Diagram
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Figure A.13. Interface Architecture Development - Block Definition Diagram

Figure A.14. Qualification System Development - Block Definition Diagram



74

Figure A.15. Mapping process diagrams with ISO 14971
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B. Traditional Top-Down Systems Engineering (TTDSE) and

Platform-Based Design (PBD)

The “Vee” diagram is also referred to as the Traditional, Top-Down Systems En-

gineering (TTDSE) Approach where we start at the top with the high-level system

definition and break it down until we reach the specifications of the CI which are

designed by the discipline engineers. In this section, we contrast this top-down ap-

proach with another design methodology, platform-based design (PBD), which was

proposed by Sangiovanni-Vincentelli [62].

PBD is defined as “an integration oriented design approach emphasising systematic

reuse, for developing complex products based upon platforms and compatible hardware

and software virtual component, intended to reduce development risks, costs and time

to market” [63]. This approach has its roots in the semiconductor and electronic

design automation industry but [62] argues that due to its abstract nature, it is

applicable to different industries including automotive, communication, computing,

Figure B.1. PBD Process [62]
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avionics, building automation, space, agriculture, health and security. The basic

principle of PBD is to start the design process at the highest level of abstraction and

break-down the implementation to a certain functionality level where it is mapped

with a platform instance from the platform (or architectural) space. This mapping

is then carried out at number of times at different levels of abstractions to go from

the initial specification to the final implementation. The PBD process (as shown in

Figure B.1) can be seen as a meet-in-the-middle process contrary to the traditional

top-down (or bottom-up) approaches.
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