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ABSTRACT

Kim, Jaeyoung. M.S.M.E, Purdue University, December 2015. Using Topography to
Aid Cell Phone Geolocation. Major Professor: Kartik Ariyur, School of Mechanical
Engineering.

In daily life, people demand accuracy of the Global Positioning System (GPS)

receiver. The current problem of GPS on mobile phones is that it is not available

in areas such as urban, natural canyons, forests, and indoor environments. Several

methods have been developed to obtain more accurate position estimation over the

past years. The received signal strength (RSS) and time difference of arrival (TDOA)

are the main approaches to use available mobile signals and errors around 4 ∼ 12 dB

and 10 ∼ 60 meters, respectively. Another approach to make a better performance

of the sensor is to use radio frequency identification (RFID) with indoor Wi-Fi. A

new method from our group shows that using magnetic field intensity maps based

on interval analysis can perform better than the RSS, TDOA and RFID and reduce

error for geolocation in some areas where GPS is not accessible. In our study, we

develop a novel algorithm where sensor measurements on the cell phone are used to

construct the topographic maps and aid cell phone geolocation which focuses on the

angles of inclination in user’s pathway when GPS is spotty. This can be particularly

useful on uneven terrain outdoors. For sensor characterization, we use application

in android operating system of smartphone by name of sensor stream IMU+GPS.

The sensor stream allows for users to observe, select or record the current values

of various measurements such as accelerations, angular rates (gyroscope), magnetic

fields, GPS position and received signal strength indication (RSSI) in 3-dimensional

coordinate system. We firstly develop algorithms of fast fourier transform and low

pass filter to find the accurate vertical acceleration measurements which impact values

are corresponded to step occurrences. Before analyzing position estimation, we use
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the relationship between the stride length and stride interval and the methodology

of detecting peak values to find the user’s step. In order to reduce uncertainty and

find the user’s walking direction in our navigation system, we apply the Kalman filter

and rotation matrix. We then develop optimization algorithms to bound the local

position estimation into small 2-dimensional intervals using the interval analysis and

dynamic estimation. After transforming the history of gravitational vectors to a fixed

local-coordinate frames, we are able to construct a topographical map of pathway. We

test our methodology in controlled conditions on an instrumented treadmill and also

outdoors where GPS is available. We then use our topographic mapping to augment

the results from pedometry and magnetic mapping to obtain better geolocation.
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1. INTRODUCTION

1.1 Background and Motivation

The current problem in Global Positioning System (GPS) on mobile phones is that

it is not available in areas such as urban, natural canyons, forests, and indoor envi-

ronments [1]. In daily life, many civilians demand accuracy of the GPS receiver. Over

the past years, several ways have been developed to obtain more accurate position

estimation of the sensor. The received signal strength (RSS) [2] and time difference of

arrival (TDOA) [3] are the main approaches to use available mobile signals and errors

around 4 ∼ 12 dB and 10 ∼ 60 meters, respectively. Another approach to improve

sensor performance is to use radio frequency identification (RFID) with indoor Wi-Fi

[4]. A new method from our group shows that magnetic field intensity maps based on

interval analysis has smaller errors than the RSS, TDOA and RFID for estimating ge-

olocation in some areas where GPS is not accessible [5]. Magnetic intensity map is one

of the possible cases that can be constructed by collecting sensor data on the meshed

grid. In this paper, we develop novel algorithms where sensor measurements on the

cell phone are used to construct topographic maps and aid cell phone geolocation. We

firstly figure out the vertical accelerations using FFT analysis and low pass filter to

obtain clear steady data. Before analyzing position estimation, we need to use stride

detection method in order to find the user’s steps. We then develop optimization al-

gorithms [6] to bound the local position estimation into small 2-dimensional intervals

and find position estimation using interval analysis and dynamic estimation. After

transforming the history of gravitational vectors to a fixed local-coordinate frame,

we are able to construct a topographical map of the region. We test our method-

ology in controlled conditions on a instrumented treadmill and also outdoors where
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GPS is available. We then use our topographic mapping to augment the results from

pedometry and magnetic mapping to obtain better geolocation.

1.2 Outline of Thesis

Chapter one presents the background of a priori in obtaining accurate geolocation,

the motivation and methodology of this research. Chapter one also includes the overall

outline of thesis and overall algorithmic framework.

Chapter two presents the sensor characterization and data collection from the

sensors in the cell phone.

Chapter three presents the methodology of data extraction and selecting the spe-

cific range of data to be used for stride detection and for virtual pedometry.

Chapter four presents the methodology of stride detection by peaks and the re-

lationship between the stride length and stride interval. This chapter also shows

the optimal estimation of yaw angles using the Kalman filtering analysis, compensa-

tion of rotation using Euler angle and position estimation using interval analysis and

dynamic estimation.

Chapter five presents the idea behind topographic mapping, gravity analysis and

construction of locally absolute coordinate frames to build topographical map.

Chapter six presents testing for various angles of inclination such as flat surface,

inclined surface, declined surface and unknown outdoor environment. It also shows

the maps constructed.

Chapter seven presents the summary, conclusions of the thesis, error analysis and

future recommendations. Figure 1.1 summarizes our overall algorithmic framework.
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Figure 1.1. Overall Algorithmic Framework.
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According to overall algorithmic framework as shown in figure 1.1, we define each

section for clear understanding and it is followed by the steps:

1. Collect and read sensor data: The data produced by sensor from the cell phone

is stored as an excel file for offline processing.

2. Data truncation: Steady state walking data is collected to avoid transients of

starting and stopping.

3. FFT and low pass filter: Given the steady walking from step 3, we use FFT to

determine a cutoff frequency to eliminate other high frequencies. We then use a low

pass filter with that cufoff frequecy to obtain clean steady data.

4. Stride detection: Given clear steady data, peak values of the vertical accelera-

tion are corresponded to step occurrences as based on the threshold and conditional

input value.

5. The Kalman filter and rotation matrix: Estimate yaw angles to find users

present walking direction with the vertical angular rate measurements and compen-

sate rotation effect using Euler angle when users body moves.

6. Position estimation: Based on the interval analysis and dynamic estimation,

the lateral and horizontal positions are estimated.

7. Locally absolute coordinate frame construction: The sensor measurements on

the cell phone transform to locally absolute coordinate frame using the cross product

operation with gravitational and magnetic field vectors.

8. Gravity analysis: The angles of inclination in pathway are estimated using the

local standard gravity and local calibrated gravitational vectors.

9. Construct topographical map: Given the position estimation and the angles

of inclination, the construction of topographical map algorithms are developed using

the slope of line in 3-dimensional coordinate frames.

10. Use to augment geolocation: Topographic mapping will augment the results

from pedometry and magnetic mapping to obtain better geolocation.
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2. SENSOR CHARACTERIZATION AND DATA COLLECTION

This chapter presents the sensor characterization and the methodology for collecting

data from the sensor in the cell phone.

2.1 Sensor Characterization

In this research, we use an application in the android operating system, by the

name of Sensor stream IMU+GPS, which can collect the sensor data in a certain

period of time. The sensor stream IMU+GPS allows for user to observe, select or

record the current values of accelerometer, gyroscope (angular rate), magnetic field,

GPS position and received signal strength indication (RSSI) in 3-dimensional coordi-

nate frames. The sampling frequency of the sensor can be adjusted by selecting one

of several available frequencies. It is also available for users to save sensor data to

SD card and PC for offline data processing. For real tests in this research, we use the

Samsung Galaxy S4 and its application of sensor as shown in figure 2.1.

Figure 2.1. Samsung Galaxy S4 and sensor stream IMU+GPS.
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2.2 Data Collection

The steps of sensor data collection are followed by:

Step 1. Collect and read the vertical acceleration measurements from the sensor in

the cell phone which will be used both for stride detection and topographical mapping.

Step 2. The x- and y-coordinate acceleration measurements on the sensor from

the cell phone are used to estimate positions in the lateral and horizontal coordinate

frames.

Step 3. The gyroscope measurements are used to estimate walking direction by

applying the Kalman filtering and to compensate rotation effect by using Euler angle.

Step 4. The magnetic field measurements are used as an unit vector, which will be

fused with gravitational measurements, to construct the locally absolute coordinate

frames.

Step 5. The gravitational measurements are used to find the angles of inclination

by comparing to the local standard gravity.

Step 6. The GPS location measurements are used as reference values comparing

to our methodology in outdoor environment test.

For the real test in this research, we setup 50 Hz as sampling frequency which is

one of available frequecies that users select. Since the frequency of human walking and

running cannot be over 4 Hz, it is available to avoid aliasing in this system. we use 50

Hz of sampling frequency to be used in the process of fast fourier transform and low

pass filtering. After the process of low pass filtering is completed, we then estimate

the acceleration measurements which are intial sources to find step occurrences and

position estimation in the horizontal and lateral coordinate frames.
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Figure 2.2. Smartphone location for measurement.

We collect measurements from the sensor in the cell phone that is located inside

the shoes during the test for convenient and comfort as shown in figure 2.2. For the

orientation of inertial sensor in the cell phone, it is perpendicular to the surface in

order to establish real test. The reason for selecting the location of the cell phone is

to estimate the accurate gravitational measurements from the sensor which will be

compared to the local standard gravity and find the angles of inclination as shown in

the figure 2.3.
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Figure 2.3. Estimation of angle of inclination using gravity vectors.

To avoid the oscillation, shoes is tightened with string as much then the inertial

sensor in the cell phone can be fixed in shoes. To get more accurate measurements,

we will use rotation matrix using Euler angle to compensate oscillation of human

body, equations of International Gravity Formular 1980 and the Free Air correction

to find the local standard gravity at specific location. In addition, we will transform

the gravititional measurements to the locally absolute coordinate frames which are

suitable for our research.
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3. DATA ANALYSIS

In this chapter, we present the methodology of data analysis to get accurate measure-

ments from the sensor in the cell phone and reduce errors. We then find the accurate

vertical acceleration that will be used to find step occurrences in our research.

3.1 Data Truncation

We truncate irrelevant measurements of the vertical acceleration from the sensor

in the cell phone. As shown in figure 3.1, the initial and terminal states of the vertical

acceleration are assumed that begin and stop walking period. Since we need to find

the vertical acceleration in steadily walking period which is corresponded to proper

steps, the initial and terminal states are redundant in our research.

Figure 3.1. The vertical acceleration measurements truncation.
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According to the vertical acceleration measurements truncation as shown in figure

3.1, the time intervals in a range between 0 to 8 seconds and 32 to 40 seconds assume

that begin and stop walking. After the process of truncation is completed, we can

obtain the steadily walking period which is also shown in figure 3.1. We then apply

the vertical acclerations in steadily walking into the fast fourier transform and low

pass filtering with a selection of 50 Hz sampling frequency. Therefore, we can more

effectively minimize the sensitive noise and estimate the accurate vertical accelerations

that indicate user’s walking steps.

3.2 Fast Fourier Transform Analysis and Low Pass Filtering

Fast fourier transform (FFT) is a widely used in the data signal processing and

data analysis. Fourier transform analysis converts signal from time domain to fre-

quency domain and vice versa in order to do data processing. Fast fourier transform

(FFT) can rapidly compute such as the transformations by factorizing the discrete

fourier transform matrix into a product of sparse factors [7]. The mathematical equa-

tions of forward and inverse discrete fourier transform show below.

Xk =
N−1∑
n=0

xne
−i2kn

N , k = 0, 1, 2, ..., N − 1 (3.1)

Forward Discrete Fourier Transform(DFT)

xn =
1

N

N−1∑
k=0

Xke
2kn
N , k = 0, 1, 2, ..., N − 1 (3.2)

Inverse Discrete Fourier Transform(IDFT)

Let x0, x1, ...xN−1 be complex numbers, Xk be the result of DFT and N is number of

output.

The most common used algorithm for the FFT is the Cooley-Tukey which ex-

presses as discrete fourier transform (DFT) of size N = N1 ∗ N2 where N1 and N2
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are small size of outputs in DFT to save the computation time O(N log N), recur-

sively[8][9]. Since the Cooley-Tukey algorithm is to divide the transform into two

pieces of size N
2

at each step, N is commonly expressed as a power of two. In our

research, we use N as the length of the vertical acceleration measurements from the

embedded sensor on the cell phone. From the Cooley-Tukey algorithms, the DFT of

the function can be rearraged into a sum over the even-number and a sum over the

odd-number as shown below

Xk =

N/2−1∑
n=0

x2ne
−i2kn
N/2 +

N/2−1∑
n=0

x2n+1e
−i2kn
N/2 = Yk + Zk, k = 0, 1, 2, ...,

N − 1

2
(3.3)

Where,

Yk is the DFT of the even-indexed inputs

Zk is the DFT of the odd-indexed inputs

As equation above re-expresses in terms of Yk and Zk,

Xk = Yk + e
−i2k
N Zk, k = 0, 1, 2, ...,

N − 2

2
(3.4)

Since Yk and Zk are periodic sequences with N
2

, these two terms can be expressed

as

Yk = Yk+N
2

(3.5)

Zk = Zk+N
2

(3.6)

The Xk with periodicity is shown below

Xk+N
2

= Yk + e
−i2k
N Zk, k = 0, 1, 2, ...,

N − 2

2
(3.7)

According to the Cooley-Tukey algorithm, the splitting algorithm can be used to

compute Yk,Zk and Xk to reduce the time and we use MATLAB programming to

compute the splitting alogrithm automatically.
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The transformation from xn to Xk indicates a conversion from configuration to

frequency space, and this process is useful in seeing the characteristic spectrum of a

signal. As based on the theoretical equations above, we find the single-sided ampli-

tude spectrum of the vertical accleration measurements over frequencies. According

to the analysis for single-sided amplitude spectrum of the vertical acceleration mea-

surements, we estimate a cutoff frequency, peak to peak passband and stop band of

attenuation to be used in low pass filtering and find the filtered vertical acceleration

measurements.

Figure 3.2. One sample in a single-sided amplitude spectrum of vertical acceleration.

According to a single-sided amplitude spectrum of the vertical acceleration which

is shown in figure 3.2, the main frequency is about 2 Hz and it indicates that most of

the walking period is about 0.5 seconds. Other high frequencies indicate the measure-

ment noise which is caused by oscillation of the cell phone bonded to the user’s body
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and shoes. After most of the walking period is estimated, we use low pass filtering to

find the filtered vertical acceleration measurements which will be used for the stride

detection. We then compare the acceleration measurements using low pass filter with

the acceleration measurements using truncation method.

Figure 3.3. Filtered acceleration vs. acceleration using truncation method.

As shown in figure 3.3, the filtered vertical acceleration becomes shift up, start

at zero and compensate for gravity effect as compared to acceleration data using

truncation method. Therefore, low pass filtering reduces the disturbances and noises

that it helps to figure out the accurate vertical acceleration measurements which are

corresponded to step occurrences. After data analysis from chapter 3, we then detect

steps and find position estimation in next chapter.
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4. DETECTION AND ESTIMATION FROM MEASUREMENTS

In this chapter, we present the discrete system for stride detection, analysis of peak

values and the relationship between the stride lengths and stride intervals . This

chapter also presents the analysis of the walking direction using the Kalman filtering

analysis, rotation effect with the Euler angle, position estimation in the lateral and

horizontal coordinate frames.

4.1 Discrete Time System for Stride Detection

The discrete time system is a model which the state variables are only available to

change at a countable number of points over time [10]. We select the stride detection

as discrete model and analyze the peak values of the vertical acceleration which are

corresponded to the step occurrences.

Figure 4.1. The orientations of inertial sensor in the cell phone.
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The basic concept of stride detection is that the vertical acceleration of the walking

is produced by z-directional impact when the users foot hit on the ground as shown

in figure 4.1. We assumed that z-directional impact is considered as step when it

is larger than the threshold of the vertical acceleration measurements. The detailed

steps for selecting the threshold are presented in 4.1.2.

4.1.1 Relationship between Stride Length and Stride Interval

In our research, we notice that the relationship between stride length and stride

interval help us find the accurate cell phone user’s steps in various cases such as

walking, running, hiking, etc. Since various cases have different walking characters,

finding the relationship between stride length and stride interval is important factor

to figure out the accurate position estimation. Before we estimate the velocity and

position from the acceleration measurements, it is necessary to analyze the relation-

ship between the stride length and stride interval. The relationship between the stride

length and stride interval in theoretical biology has been introduced [11] and the pre-

vious researches have been developed that the users total walking activity can be

divided into the designated pieces to reduce the error in long distance navigation [12].

As based on previous researches, we select the section of walking path and measure

different walking steps in the designated path as shown in figure 4.2.

Figure 4.2. Section of walking path.
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We then divide total lengths of walking path by total steps, collect data from

various cases of walking steps and figure out the fitted curve between the stride length

and stride interval. The fitted curve has a power function and it is re-calibrated by

real test to obtain precise data. The relationship between stride length and stride

interval has been expressed as

∆tk = ti − ti−1 (4.1)

∆sk = C∆tk
b−1/b + C1 (4.2)

Where,

∆tk = The stride interval which is detected for each stride

∆sk = The estimated stride length which is applied to estimate correct position

Figure 4.3. The fitted curve between the stride length and stride interval.
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From the fitted curve between stride length and stride interval, we find the level

of quantity in fitting such as R2, Adjust R2, SSE, and the root mean square error

(RMSE). Each variable from above equations, variable C, b and C1, is 0.02637, -

2.103 and 0.7333, respectively. The variables also have minimum and maximum

values which are accessible in the fitted curve equation. Compared to the results in

the previous research [12], we obtain more precise variables with the 95 percentages

confidence bound and 98 percentages of confidence interval (R2). The new fitted

function is a better approach than former results, which has trends of human walking

character as shown table 4.1.

Table 4.1. The index variables of stride model.

Variables Former Numerical values[12] Current Numerical values

b
1.1060e− 3 0.02637

(0.4259e− 3, 2.6380e− 3) (−0.009851, 0.06259)

C
0.1311 −2.103

(0.1158, 0.1670) (−2.97,−1.235)

C1

0.7707 0.7333

(0.7406, 0.8007) (0.6483, 0.8184)

R2 value 0.9507 0.9861

Adjust R2 value 0.9476 0.9838

RMSE 0.04427 0.02223

4.1.2 Detecting by Peak Value Points

There are some previous researches to detect each step such as detection of zero-

crossing points and detection of peak values [12]. In this research, we use to detect

by peak values since the detection of zero-crossing points from previous research [12]

is not appropriate for larger stride length in real test, detection by peak values has
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a little disturbance affect and it does not rely on initial compensation. The steps for

detecting by peak values are followed by:

Step 1: Detect the peak values of the vertical accelerations which were estimated

using fast fourier transform and low pass filtering as shown in chapter 3.

Step 2: Set the condition value which is an input for the function by examining

the peak values along the input data with a pre-defined threshold value, τ .

Step 3: If the default condition is 1, we have initial two threshold values as 40

percent of the original input data.

Step 4: If the default condition is 0, then the threshold value holds for all through

the process.

Step 5: If the default condition is 2, then the algorithms use stop sign to fix

backward.

Figure 4.4. The stride detection for peak values.
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According to figure 4.4, the vertical acceleration has a minimum value below -4(g)

so it needs to be filtered by τ = −4(g) to eliminate other interferences. We can

express a range of the vertical accelerations to be filtered as below and find the peak

values.

az =

az, az ≤ τ

0, az > τ

(4.3)

Having the stride detection by peak values, we can figure out the accurate step

occurrences. The step occurrences will be used as initial sources for estimating user’s

position and finding the angles of inclination using the gravitational vectors. In the

next chapter, the Kalman filtering analysis and rotation matrix with Euler angle

are applied to estimate user’s present walking direction and compensate for rotation

effect.

4.2 Kalman Filtering Analysis

The purpose of using the Kalman filtering analysis in our research is to find the

accurate yaw angles of gyroscope measurements which can figure out the users walking

direction at certain time. The Kalman filtering is also available to update the yaw

angle measurements to estimate the overall walking direction. In general, the random

noise are occurred in the systems and measurement procedure. The Kalman filtering

has developed many years for navigation systems to reduce the random noises in the

IMUs [13]. For the walking paths, the cell phone users can walk in various directions

such as straight, backward, deviated paths, and, etc. Having the Kalman filtering

analysis, We reduce the random noises of yaw angles from the sensor in the cell

phone and estimate the user’s walking direction. Figure 4.5 shows the example of the

Kalman filter process.
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Figure 4.5. The process of Kalman filter.

The Kalman filtering on the discrete times is applied into linear dynamic systems.

The state of the Kalman filter system represents in terms of a vector of real numbers

and generates the new state at each incremental time. We firstly introduce the basic

equations of the Kalman filter which is expressed as

xk = Fkxk−1 +Bkuk + wk (4.4)

Where,

xk= process state at time tk

Fk= the state transition model which is applied to the xk−1

Bk= the control-input model which is applied to the uk

wk= the process noise (zero mean multivariate normal function with covariance,Qk)

In this system, x(k) consists of the vertical rotation angle and the yaw angle (gy-

roscope) measurements from the sensor which can be expressed as x(k) = (φk, wzk)T

with initial condition, x(0) = (φ0, wz0)
T . The Bkuk term does not exist in our sys-

tem since we don’t have any known control inputs. The zk of the state xk which is

collected directly from the sensor as shown below



21

zk = Hkxk + vk (4.5)

Where,

zk = measurement at time tk

Hk = the observation model which connects between measurement and state vector

at tk

vk = the noise in the system itself and measurement

Having the x(k) and z(k) equations, following invariants are defined with initial

estimation of E[x(0)]t=0 = x̂0 and E[(x0 − x̂0)(x0 − x̂0)T ]t=0 = P0.

E[wkwi
T ] =

Qk i = k

0 i 6= k

(4.6)

E[vkvi
T ] =

Rk i = k

0 i 6= k

(4.7)

E[wkvi
T ] =

{
0, ∀k and i (4.8)

Since the wk and vk noises are considered as white having zero correlations to

each other, we can make the simplified system. The Kalman filter model assumes the

true state at time k is developed from the state at time, (k − 1) and the covariance

is propagated as shown below

x̃k = x̃(k | k − 1) = Fkx̂(k − 1 | k − 1) (4.9)

P̃k = P̃ (k | k − 1) = FkP̃(k − 1 | k − 1)F T
k +Qk (4.10)
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Where,

x̃(k | k − 1) = process state vector at time k given observations up to and including

at time (k − 1)

Fk= state transition model which is applied to the xk−1

P̃ (k | k − 1) = the covariance at time k given observations up to and including at

time (k − 1)

Qk= the noise covariances

Having the updated state x̂(k | k − 1) with the covariance P̃ (k | k − 1), we can

find the updated measurements which are applied to with zk and use each variable

as shown below

x̂k = x̃k +Kk[zk −Hkxk] (4.11)

P̂k = [I −KkHk]P̃k (4.12)

Kk = PkHk
T (HkP̂kHk

T +Rk)−1 (4.13)

Where,

Kk = the optimal Kalman gain at time tk

In our research, each matrix is determined as shown below.

Fk =

1 0.02

0 1

Hk =

1 0

0 1

Qk =

0.004 0

0 1

Rk =

0.004 0

0 4

 (4.14)

Having the Kalman filtering analysis, the random noises of yaw angles can be

minimized then find the accurate values. We apply the results of the Kalman filtering

with rotation matrix to estimate user’s walking direction at certain time as shown in

outdoor environment test in chapter 6.
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4.3 Rotation Effect

Since the sensor in the cell phone is bonded directly to user’s foot inside shoes,

rotation effect in a certain angle needs to be considered when user’s body moves. We

apply the acceleration and angular rates measurements from the sensor in the cell

phone into Euler angles in order to compensate the rotation effect and estimate the

accelerations and angular rates precisely [12]. The rotation angle can be expressed as

matrix which is shown below [14].

Figure 4.6. Rotation coordinate frames.

R3x3 =


CθCφ SψSθCφ− CψSφ CψSθCφ+ SψSφ

CθSφ SψSθSφ+ CψCφ CψSθSφ− SψCφ

−Sθ SψCθ CψCθ

 (4.15)

Where ψ, θ and φ represent the rotation angle from x-, y- and z- coordinate

frames. C and S represent cosine and sine. The rotation matrix is considered as

the sequence of rotations that we analyze about x-, y- and z-coordinate axis. As we

apply rotation matrix to the acceleration and angular rate, these updated variables

can be expressed as

ak = R3x3 · (φk · ak−1) (4.16)

wk = R3x3 · (φk · wk−1) (4.17)
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Where ak and wk are the updated acceleration and angular rate at each sample

times from previous state. We can also apply rotation matrix into stride length for

each dimensional displacement and it is expressed as


∆x

∆y

∆z

 = R3x3 · ds (4.18)

Where,

∆x = x-axis displacement using rotation matrix and stride detection

∆y = y-axis displacement using rotation matrix and stride detection

∆z = z-axis displacement using rotation matrix and stride detection

We also apply rotation matrix into the gravitational vectors in the locally absolute

coordinate frames to find the accurate angles of inclination in the user’s pathway. The

way to construct the locally absolute coordinate frames and estimate the accurate

gravitational vectors in the locally absolute coordinate frames will present in chapter

5.


Gx
′

Gy
′

Gz
′

 = R3x3 · [Gx, Gy, Gz]
T (4.19)

Where,

Gx
′ = x-axis gravitational vector in the locally absolute coordinate frame using

rotation matrix

Gy
′ = y-axis gravitational vector in the locally absolute coordinate frame using

rotation matrix

Gz
′ = z-axis gravitational vector in the locally absolute coordinate frame using

rotation matrix

Having a consideration of rotation effect using Euler angle, we then develop al-

gorithms of static estimation using interval analysis and dynamic estimation for the
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accurate position estimation in the lateral and horizontal coordinate frames on the

topographical map.

4.4 Position Estimation

Position estimation is necessary to work on the process of constructing the topo-

graphical map which is corresponded to the gravitational measurements on the same

location. To obtain the accurate position estimation, it is also necessary to deal with

the static estimation and the dynamic estimation which aids to improve the estima-

tion accuracy for keeping the positions inside the region of estimated uncertainties.

For static estimation, we use interval analysis (IA) to reduce random noises and in-

tegrate topographical map easily. There has been introduced interval analysis which

is able to estimate system state [6][15][16] and fuse the magnetometer with the IMUs

to improve the accuracy of estimation and to be stable the system [5]. Since our task

deals with random fields and the Kalman filter or the particle filter are the process for

stationary noise, interval analysis is more fitted than the Kalman filter or the particle

filter in our research. The concept of interval analysis can be expressed as

[x] = [x, x̄] (4.20)

x = inf{a ∈ R ∪ {−∞,∞}∀x ∈ [x], a ≤ x} (4.21)

x̄ = sup{b ∈ R ∪ {−∞,∞}∀x ∈ [x], x ≤ b}w([x]) = x̄− x (4.22)

Where,

x = Lower bound on one dimension R

x̄ = Upper bound on one dimension R

w([x]) = Width on one dimension R

Interval analysis is extended to the four classical operations of real arithmetic such

as addition, subtraction, multiplication and division which can be defined as

[x] · [y] = [{x · y ∈ R | x ∈ [x], y ∈ [y]}] (4.23)
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The · indicates any binary operator on the interval [x] and [y]. We can also apply the

interval analysis into intersection and union which are expressed as

[x] ∩ [y] = [{z ∈ R | z ∈ [x], z ∈ [y]}] (4.24)

[x] ∪ [y] = [{z ∈ R | z ∈ [x], z ∈ [y]}] (4.25)

In order to apply an interval set of certain space in the interval analysis to 2-

dimensional estimation, we use the definition of interval real vector.

Definition (Interval Real Vector)[6] The interval vector [x], which is a subset

of Rn, can be defined as n closed intervals in the Cartesian product and it is expressed

as

[x] = [x1]× [x2] · · · × [xn] (4.26)

Having the interval vector using Cartesian product, estimation of position with x and

y intervals can be defined as a non-empty box.

[P0] = [x0]× [y0] (4.27)

[Pn] = [P0] +
n∑

i=1

dxi
dyi

 (4.28)

P0 represents the initial estimation of position with initial x0 and y0. Pn is corre-

sponding to update inertial position estimation. It is also found the width vector of

box, w([p]) as shown below.

w([p]) = (wx([p]), wy([p]))
T = (w([x]), w([y]))T (4.29)

Having applied interval analysis, we obtain rectangular axis-aligned two dimensional

intervals to express walking path model in static estimation in order to make the ac-

curate system modelling. The result of static estimation for two dimensional position

intervals is shown below.

As a result of the static estimation, we are available to figure out the crossing of

paths which can be considered as intersections. To obtain more accurate position esti-

mation, we use dynamic estimation to remove the intersection of redundant spaces in
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Figure 4.7. Result of static estimation for two dimensional position intervals.

static estimation and to improve the estimation accuracy using the size of estimation

error for keeping the positions inside the estimated space. In order to construct the

dynamic path, we use the result of static estimation (St) from starting point (t = 0)

to current point,(t = n·∆t) then remove the redundant ones by examining their prop-

agation. We assume that the smallest estimated width, w([p]) = sup([p]) − inf([p])

is larger than the true displacement between two grid points, ∆d. We shows theo-

rem of relationship between d and w([p]) and its proof to get clear understanding of

theoretical method.

Theorem Suppose that there are two grid points on 2-dimensional space, (xk+1, yk+1).

The displacement between these two grid points can be expressed as

∆d = (∆dx,∆dy)
T = (xk+1 − xk, yk+1 − yk)T



28

max[∆d] < w([p]) then (xk, yk) ∈ [pk] and (xk+1, yk+1) ∈ [pk]

Proof Assume that there is displacement along x-direction, xk+1 = xk + ∆dx

where ∆dx is a range of [inf{∆dx}, sup{∆dx}]. Then, we can define a term xc as

xc = inf{xk+1}−sup{xk} = inf{xk+∆dx}−sup{xk} = inf{xk}+inf{∆dx}−sup{xk}

= (sup{xk}−w(x))+inf{∆dx}−sup{xk} = inf{dx}−w(x) ≤ sup{∆dx}−w(x) < 0

⇒ [pk] ∩ [pk+1] 6= ø

The displacement along y-direction is same as above equation. So, if there is

intersection between the current estimation of interval set and next estimation of

interval set, we can remove redundant part and identify the accurate interval of

position estimation using above theorem and its proof. Having an integration above

theorem with dynamic process, we then obtain the acceleration, velocity and position

precisely which are shown below.

[at] = [at − 3µcc, at + 3µcc] (4.30)

[vt] = [vt−1] + [at] · 4t (4.31)

[pt] = [pt−1] +
1

2
[at−1] · 4t2 + [vt−1] · 4t (4.32)

Where,

4t = The time interval

at = The acceleration including the error vector, µcc

[vt] = The updated velocity estimation

[pt] = The updated position estimation

For error vector, it is not enough to bound the drift of position estimation by

applying the Kalman filtering into our navigation system. The measurements from

the sensor on the cell phone have uncertainties which are caused by the sensor itself.

Especially, the bias in the acceleration and gyroscope measurements propagates to

the position estimation as we integrate the measurements as the cube of time. After
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the integration from the accelerations in long time, error can be a huge as the way

of Err = 1
2
verrt

2. Therefore, we use the results from the virtual pedometry with the

stride detection to figure out the accurate position estimation and velocity in every

step.

Figure 4.8. Result of dynamic estimation for two-dimensional position intervals.

The result of dynamic estimation for 2-dimensional position estimation is shown

in figure 4.8. According to the result of dynamic estimation for 2-dimensional postion

intervals, the size of each region becomes smaller and each region has few intersec-

tion. Therefore, we can estimate both of indoor and outdoor geolocation without

fluctations.
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5. CONSTRUCTION OF TOPOGRAPHICAL MAP

The main objective of our research is to find the angles of inclination are the vertical

coordinate axis of pathway which aid to construct topographical map. In the previous

chapters, we focus on analyzing the position estimation using interval analysis and

dynamic estimation. We then develop the algorithms to build the locally absolute

coordinate frame and find the angle of inclination using gravity analysis. Finally, we

estimate the vertical coordinate axis of pathway and build topographical map.

5.1 Construct Locally Absolute Coordinate Frames

Since the coordinate frames of cell phone and those of the locally absolute coordi-

nate frames are different, the measurements in the cell phone’s coordinate frames are

necessary to transform into the locally absolute coordinate frames. We then obtain

the accurate gravitational vectors to compare the local standard gravity and find the

angles of inclination for user’s pathway. To construct the locally absolute coordinate

frames, we use the gravitational measurements and the magnetic field measurements

on the embedded sensor in the cell phone. The basic idea of constructing the lo-

cally absolute coordinate frames comes from creating the coordinate frames using

two unit vectors [17]. Using the cross product operation with two measurements, it

is convenient to construct a new coordinate frames as shown below.
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Figure 5.1. The cross product operation with two vectors.

The cross product of unit vector a and b (a× b) is perpendicular to both a and b.

We can select either a or b vector to represent one of the coordinate axes. If we select

a vector aligned with x-coordinate axis of the locally absolute coordinate frames, the

direction of a vector can be corresponded to the x-coordinate of axis in the locally

absolute coordinate frames. The z-coordinate axis in the locally absolute coordinate

frames is same as the unit vector of cross product operation. The y-coordinate axis

in the locally absolute coordinate frames must be perpendicular to both x and z-

coordinate axis in the locally absolute coordinate frames. Three unit vectors in the

locally absolute frame can be expressed below and figure 5.2 shows the construction

of new coordinate frames using two vectors.

ux =
a

‖a‖
(5.1)

uy = uz × ux (5.2)

uz =
a× b
‖a× b‖

(5.3)
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Figure 5.2. The locally absolute coordinate frame construction using two vectors.

In our research, we use the x- and y-coordinate magnetic field measurements to

build the x-coordinate axis in the locally absolute coordinate frames because these two

vectors can be one of the coordinate axes as corresponding to the reference direction.

So, the a vector can be defined as [mx,my, 0] and unit vector of a is expressed as

ua = ux =
[mx,my, 0]√
m2

x +m2
y

= [m′x,m
′
y, 0] (5.4)

For the b vector, we use the gravitational measurements from the embedded sensor

in the cell phone and it is defined as [gx, gy, gz]. The unit vector of b can be expressed

as

ub =
[gx, gy, gz]√
g2x + g2y + g2z

= [g′x, g
′
y, g
′
z] (5.5)

The cross product operation between unit vector of a and b that is corresponded

to the z-coordinate axis in the locally absolute coordinate frames is expressed as
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ua×b = uz =

∣∣∣∣∣∣∣∣∣
i j k

m′x m′y 0

g′x g′y g′z

∣∣∣∣∣∣∣∣∣
‖[m′xm′y0]× [g′xg

′
yg
′
z]‖

(5.6)

=
m′yg

′
zi−m′xg′zj + (m′xg

′
y −m′yg′x)k)√

(m′yg
′
z)

2 + (−m′xg′z)2 + (m′xg
′
y −m′yg′x)2

(5.7)

=
(m′yg

′
z,−m′xg′z, (m′xg′y −m′yg′x)]√

(m′yg
′
z)

2 + (−m′xg′z)2 + (m′xg
′
y −m′yg′x)2)

(5.8)

Finally, the y-coordinate axis in the locally absolute coordinate frames, which

is perpendicular to both ux and uz, simply expresses as uz × ux using 5.4 and 5.6

equations. As based on the results of finding three unit vectors in the locally absolute

coordinate frames, each unit vector has a 3× 1 matrix and total unit vectors can be

expressed as 3× 3 matrices.
ux

uy

uz

 =


uxx′ uxy′ uxz′

uyx′ uyy′ uyz′

uzx′ uzy′ uzz′

 (5.9)

Where x, y and z represent the x-, y- and z-coordinate axis of unit vector compo-

nents in the locally absolute coordinate frames. Having three unit vectors, we then

combine these three unit vectors with gravitational measurements to find the accurate

gravity vectors in the locally absolute coordinate frames. The gravitational vectors

in the locally absolute coordinate frames are expressed as matrix below

glocally absolute = gsensor ·


ux

uy

uz

 = [gx, gy, gz] ·


uxx′ uxy′ uxz′

uyx′ uyy′ uyz′

uzx′ uzy′ uzz′

 = [Gx Gy Gz] (5.10)

Where,
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Gx represents the x-coordinate axis of gravity in the locally absolute coordinate

frame

Gy represents the y-coordinate axis of gravity in the locally absolute coordinate

frame

Gz represents the z-coordinate axis of gravity in the locally absolute coordinate

frame

Having the integration of rotation matrix with the gravitational vectors in the

locally absolute coordinate frames in chapter 4, it is available to compare to the local

standard gravity and find the angles of inclination in user’s path way. It is also

appropriate for testing both indoor and outdoor environments in our research.

5.2 Gravity

In the history of gravity, gravity has been introduced in Galileo Galileis experi-

ment of dropping balls from the Tower of Pisa. For planets on the galaxy, they are

surrounded by own gravitational field that exerts attractive force on all objects. The

standard numerical gravity value, which is defined by the International Bureau of

Weights and Measures under SI, is g = 9.80665m/s2 without consideration for the

air resistances, latitudes, surface features and densities. Since we develop to build a

topographical map on the Earth’s shape, it is necessary to find the precise value of

gravity with distance from equator on specific location. So, we use the theoretical

equations of International Gravity Formula 1980 [18] and the Free Air Correction to

calculate the accurate value of gravity as a function of latitude and height above sea

level.

g = 9.780327(1 + Asin2L−Bsin22L)− 3.086× 10−6H (5.11)

Where,

A = 0.0053024

B = 0.0000058

L = latitude(meter)
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H = height above sea level (meter)

According to U.S. climate data [19], we can obtain average values of latitude (40.475)

and height above sea level (712 feet) in West Lafayette and we plug these values

into equation above. We then obtain the local gravity value ( 9.80145m/s2) in West

Lafayette to be used as the reference gravity value in our research. The local gravity

value is compared to the gravitational measurements from the embedded sensor in

the cell phone and find the angles of inclination.

5.3 Gravity Analysis

In the gravity analysis, we express the local standard gravity as 3 × 1 matrices

and it acts on the vertical direction in the locally absolute coordinate frames. The

embedded sensor in the cell phone collects the user’s gravitational vectors in the

3-dimensional coordinate frames and it can be expressed as

greference = [0 0 g]T (5.12)

gsensor = [gx gy gz]
T (5.13)

In the inclined plane in physics, there is the key to solve the problems which is

related to inclined or declined plane. The forces acting on the objects that are parallel

to the surface and the objects are in contact with the plane. In our research, we use

the idea for analyzing the forces acting on object to the inclined surface. We assume

that the angle between the vertical gravitational measurement from embedded sensor

and the local standard gravity is same as the angle of inclination in the user’s pathway

as shown in figure 2.3. In order to find the angle between the vertical gravitational

vector and the local standard gravitational vector, the mathematical equation is used

with these two vectors in 3-dimensional spaces which can be expressed as

cos θ =
v · w
|v| · |w|

(5.14)

Where,
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v = the vertical gravitational vector from the embedded sensor

w = the local standard gravitational vector

θ = the angle between the vertical gravitational and the local standard gravitational

vector

As we re-write above equation with the gravitational vectors,

cos θ =
[0 0 g]T · [gx gy gz]T

|
√
g2| · |

√
g2x + g2y + g2z |

(5.15)

Since we assume that the magnitude of gravitational measurement vectors is same

as the magnitude of the local standard gravitational vector, the equation above can

be simplified as

cos θ =
g · gz
|g| · |g|

=
g · gz
|g|2

(5.16)

θ = cos−1
g · gz
|g|2

(5.17)

5.4 Construct Topographical Map

Having all analysis of position estimation and the angles of inclination, we then

develop the algorithms of constructing topographical map. Since we develop to find

the position estimation in the horizontal and lateral coordinate frames, the position

estimation in the vertical coordinate axis is also available to find using the angles of

inclination. We use the idea from the way to find slope in the 3-dimensional space

[20],
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Figure 5.3. Example of slope in 3-dimensional space.

tan θ = slope(m) =
∆z√

∆x2 + ∆y2
(5.18)

∆z = tan θ ×
√

∆x2 + ∆y2 (5.19)

Since we have a discrete time system and collect the step occurrences to be path

node, the difference between each step indicates the path intervals. We then develop

algorithms that z-directional path intervals will be accumulated and it can be vi-

sualized as topographical map. We can express above equations as discrete system

modelling below,
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zt+1 = zt +
√

(xt+1 − xt)2 + (yt+1 − yt)2 ∗ tan(θt+1 − θ1) (5.20)

Where,

xt+1 = The updated position estimation in the x-coordinate axis

yt+1 = The updated position estimation in the y-coordinate axis

zt+1 = The updated position estimation in the z-coordinate axis

θt+1 = The updated angle between z-directional gravitational vector and the local

standard gravitational vector

θ1 = The initial angle between z-directional gravitational vector and the local

standard gravitational vector
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6. EXPERIMENTAL RESULTS FOR VARIOUS TOPOGRAPHIES

Having all the algorithms of data analysis, stride detection, the Kalman filtering anal-

ysis, compensation of rotation effect, gravity analysis, the angles of inclination and

map construction, we set up series of tests including flat surface area, inclined sur-

face area, declined surface area and outdoor environment in this chapter. In order to

test for convenience, we use an instrumented treadmill which can adjust the walking

speed, angle of inclination and measure times and total distances of walking. For out-

door environment, we select the location of walking paths and test our methodology.

The results will be compared to GPS location elevation measurement to verify our

methods.

Figure 6.1. Instrumented treadmill for testing, Precor 966i Experience.
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6.1 Flat Surface Area

Before we start to test, the embedded sensor in the cell phone needs to be stable

at a few seconds and begins to collect measurements. We then set up the distance

of pathway, put the cell phone inside shoes and measure sensor data for flat surface

area. Figure 6.2 and 6.3 illustrate that the angle of inclination at each stride point

and histrogram of angle at each stride point. Figure 6.4 and Table 6.1 show that the

result from the test for flat surface area.

Figure 6.2. Angle of inclination at each point for flat surface area.
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Figure 6.3. Histogram of angle at each point for flat surface area.

From histogram chart, each angle at stride point can be compared with reference

value that is assumed as zero degree. We then find the average angle of inclination

for testing and calculate the maximum height from flat surface compared to reference

value.

Table 6.1. The results of testing for flat surface area.

Testing Reference Difference

Average value of

Inclination of

angle(Degree)

0.896 0.0 0.896

Max height

from flat surface

(meters)

0.078 0.0 0.078
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According to the results of testing for flat surface area, the average value of in-

clination of angle is 0.896 degree and the maximum height from flat surface is 0.078

meter. As shown in figure 6.4, The shape of topographical map looks almost flat and

this result can be satisfied with the reference shape model that we need to obtain.

Figure 6.4. Topographical map for flat surface area.
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6.2 Inclined Surface Area

In order to test for inclined surface area, we firstly set up the 2.5 miles per hour for

walking speed and 10 meters pathways on the treadmill which is installed in Corec-

gym at Purdue University. We then set up the 15 percentage for angle of inclination,

which is same as 8.53 degree (0.149 rad/s) and collect sensor measurements. The

result for inclined surface area is shown below.

Figure 6.5. Angle of inclination at each stride point for inclined surface area.
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Figure 6.6. Histogram of angle at each point for inclined surface area.

From histogram chart for inclined surface area, each angle at stride point is com-

pared with reference value that is assumed as 8.53 degree (0.149 rad/s). We then

calculate the average angle of inclination from testing and find the maximum height

from flat surface that will be compared to reference value.

Table 6.2. The results of testing for inclined surface area.

Testing Reference Difference

Average value of

Inclination of

angle(Degree)

8.67 8.53 0.14

Max height

from flat surface

(meters)

1.4243 1.4093 0.015
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According to the result of testing for inclined surface area, the average value

of inclination of angle is 8.67 degree and the maximum height from flat surface is

1.4243 meters. As compare to reference values, the differences for average angle and

maximum height from flat surface are 0.14 degree and 0.015 meters, respectively. So,

we can obtain a good shape model of topographical map for inclined surface area.

Figure 6.7. Topographical map for inclined surface area.
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6.3 Declined Surface Area

In order to collect sensor measurements for declined surface area, we set up the

2.5 miles per hour for walking speed and 10 meters pathways on the treadmill which

is as same as the testing for inclined surface area. We then adjust the 15 percentage

for angle of inclination and test backward walking (- 8.53 degree). The result for

declined surface area is shown below.

Figure 6.8. Angle of inclination for declined surface area.
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Figure 6.9. Histogram of angle at each point for declined surface area.

From histogram chart for declined surface area, each angle at stride point is com-

pared with reference value that is assumed as - 8.53 degree ( - 0.149 rad/s). We then

calculate the average angle of inclination from testing and find the maximum height

from flat surface that will be compared to reference value.

Table 6.3. The results of testing for declined surface area.

Testing Reference Difference

Average value of

Inclination of

angle(Degree)

-7.75 -8.53 0.78

Max height

from flat surface

(meters)

-1.4046 -1.4093 0.0047
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From the result of testing for declined surface area, the average value of inclination

of angle is -7.75 degree and the maximum height from flat surface is -1.4046 meters.

As compared to reference, there are slightly different between testing and reference.

Therefore, we can obtain the accurate topographical map for declined surface area as

same as a series of test for flat and inclined surface area.

Figure 6.10. Topographical map for declined surface area.
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6.4 Outdoor Test

Based on the results from a series of test established in the flat, inclined and de-

clined surface area using an instrumented treadmill, we then test outdoor environment

in order to verify our methodology and compare to GPS elevation measurements. We

select the location of the pathway in Tower Drive at Purdue University which has a

length of 80 meters in one direction with curve and it shows in figure 6.11. Having

the algorithms of constructing topographical map, we use the elevation of position

estimation from the GPS location measurements to compare our topographical map

as shown in figure 6.14. The main results from outdoor test are listed in table 6.4.

Figure 6.11. Tower drive at Purdue University.

According to figure 6.12, we estimate the user’s walking direction using Kalman

filtering analysis in chapter 4. To analyze the walking direction specifically, we show

the 2- and 3-dimensional spaces. As compared the results with pathway in the real-

test, our methodology of estimating a walking direction is a quite correspondence.

Figure 6.13 shows the topographical map for outdoor environment.
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Figure 6.12. The walking direction in 2-dimensional and 3-dimensional spaces.

Figure 6.13. Topographical map for outdoor test.
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Figure 6.14. Comparison between maps and GPS location.

Having the results from Figure 6.14 and Table 6.4, there is difference between the

topographical map and GPS location elevation. For average slope of pathway, the

difference between map and GPS is 0.6282. For the maximum and minimum length

of elevation, the differences between testing and GPS location elevation are 0.9338

meter and 1 meter, respectively. Since the GPS is hard to find the accurate position

estimation at every step occurrences, we can use the overall slope performance in

pathway, maximum and minimum length of elevation to compare the results of testing

with GPS location measurements.
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Table 6.4. The results of testing for outdoor environment.

Testing
GPS location

elevation
Difference

Average slope of

pathway
3.7096 3.0814 0.6282

Maximum

height of

elevation

(meter)

7.9338 7 0.9338

Minimum height

of elevation

(meter)

0 -1 1
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this research, we proposed the novel algorithms to construct a topographical

map for cellphones geolocation when GPS is spotty. We firstly collected the IMUs

and RSSI measurements from the embedded sensor in the cell phone. We then used

truncation method to obtain the vertical accleration measurements in steadily walk-

ing period without the sensitive noise. Moreover, we used the fast fourier transform

and low pass filtering to obtain more clear measurements which are corresponded to

the impact values of users step. We then analyzed the stride detection of the users

walking path as based on the relationship between stride length and stride interval.

We also applied the Kalman filter and rotation matrix to remove random noise in the

vertical gyroscope measurements and estimate the users overall walking direction.

We also developed the position estimation using interval analysis and dynamic esti-

mation to reduce intersection of regions and fluctuations. Having a gravity analysis

and construction of the locally absolute coordinate frames, topographical map was

constructed. After the process of testing various cases such as flat, inclined, declined

and outdoor environment, our methodology was verified and augmented the results

from pedometry and magnetic mapping to estimate geolocation more precisely.

7.2 The Error Analysis

From the methodology of constructing a topographical map, there is still existed

the estimation error. The one of main reasons for propagating the estimation error

in our research comes from the relationship between the stride intervals and stride

lengths. Since the relationship is expressed as the power function with the numerical

variables, it is hard to estimate all steps using our power function. Another reason
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for estimation error is from data analysis. The measurements from the sensor are

not perfectly truncated. Therefore, redundant can still be remained. Even though

we use low pass filter to estimate the vertical accleration measurements precisely,

noise can be existed for high frequencies. Detecting by peak values can occur errors

in this system. Although the methodology of detecting by peak values is filtered

by threshold and it is fitted for larger stride length in real test, peak values are not

perfectly corresponded to step occurrences. Lastly, the oscillation and shaking of cell

phone in the shoes can produce some unpredictable errors.

7.3 Future Recommendations

As based on the current results, there are some issues that are going to be devel-

oped in the future. Since uncertainties can be accumulated along the long distance of

pathway, our methodology for constructing a map is not available to find the exact

position estimation alone. We will extend to fuse our methodology with the magnetic

mapping algorithms so that topographical map can be constructed more precisely

even if the pathway is uneven surface. Secondly, we apply our methodology to more

various tests such as different walking speed and different walking paths. We can also

try to use different IMUs on the sensor and compare with current results. Having the

novel algorithms of the constructing topographical map, we can develop to make a

sensor chip which aids to apply measurements such as the radiation effect from the

user’s walking paths.
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Appendix: Algorithms of building topographical map

%% Read sensor measurements on the cellphone

dataSet = csvread('sensor data.csv'); % read through data

t0 = dataSet(1,1); % initial time is not zero in the file.

figure(1) % check the plot

plot(dataSet(:,1)-t0,dataSet(:,4),'b')

legend('z-coordinate of Accelerometer')

xlabel('Time (s)')

ylabel('Acceleration(m/sˆ2)')

%% Sampling freq is 50 Hz, and after truncation

dataSetTruncated = dataSet(1000:3000,:);

figure(2) % check the plot

plot(dataSetTruncated(:,1)-t0,dataSetTruncated(:,4),'b')

title('Acceleration with respect to Truncated time')

legend('Z-coordinate of Acceleration')

xlabel('Time (s)')

ylabel('Acceleration(m/sˆ2)')

%% FFT analysis of the z directional signal

az = dataSetTruncated(:,4)-9.8;

Fs = 50; % sampling freq

NFFT = 2ˆnextpow2(length(az)); % Next power of 2 from length of z

Z = fft(az,NFFT)/length(az); % fft process
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f = Fs/2*linspace(0,1,NFFT/2+1);

%% Plot single-sided amplitude spectrum

figure(3)

plot(f,2*abs(Z(1:NFFT/2+1)))

% title('Single-Sided Amplitude Spectrum of a z')

xlabel('Frequency (Hz)')

ylabel(' |Z |')

%% Low pass filter with a Fs = 50Hz, fpass = 5Hz, fstop = 10Hz.

t = dataSetTruncated(:,1)-t0;

t = t-t(1);

order = 4;

cutoff freq = 2;

passband peak to peak db = 0.5;

stopband attenuation = 20;

[B,A] = ellip(order,passband peak to peak db, stopband attenuation,

cutoff freq/(0.5*Fs),'low');

azFiltered = filter(B,A,az);

figure(4) % filtered ay signal

plot(t,azFiltered,'r',t,az,'b')

title('azFiltered vs DataSetTruncated without offset')

xlabel('Time (s)')

ylabel('Acceleration(m/sˆ2)')

%% Stride detection

azThreshold = 2; % this is pre-examined from the figure

condition = -5; % input argument, detecting from starting point

stridePointers = strideDetection(-azFiltered,azThreshold,condition);

strideTimes = [];

stridePeaks = [];

for i = 1:length(stridePointers)
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strideTimes(i) = t(stridePointers(i));

stridePeaks(i) = azFiltered(stridePointers(i));

end

figure(5)

plot(t,azFiltered,'b',strideTimes,stridePeaks,'ro')

legend('azFiltered vs StrideTimes', 'StridePeaks')

xlabel('Time (s)')

ylabel('Acceleration(m/sˆ2)')

%% Walking direction check, based on w x, the rotation rate on

x direction with Kalman Filter

wz = dataSetTruncated(:,9); % angular rate z

thetaz = zeros(501,1); % Kalman filter implementation

Phi = [1 0.02;0 1]; % state

Hk = [1 0;0 1]; % state

Qk = [0.004 0;0 1]; % state

Rk = [0.004 0;0 4]; % state

Pk = [0.01 0;0 4]; % state

zk = [thetaz';wz']; % state

xkstate = [0;0];

wzstate = [];

i = 1;

while i <501

xk = Phi*xkstate;

Pk = Phi*Pk*Phi'+Qk;

Sk = Hk*Pk*Hk'+Rk;

Kk = Pk*Hk*inv(Sk);

xkstate = xk+Kk*(zk(:,i)-Hk*xk);

wzstate(:,i) = xkstate;

Pk = (eye(2,2)-Kk*Hk)*Pk;

i = i+1;

end

%% Position estimation via stride model.
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%%Stride model parameters

Cinterval = infsup(-0.009851,0.06259);

C = -2.103;

bindex = 0.02637;

C1interval = infsup(0.6483, 0.8184);

sigmaAccx = 0.5; % acc x

sigmaAccz = 0.5; % acc z

%%Stride update, initial set-up

pathInterval(:,1) = [infsup(0,1);infsup(-0.5,0.5)];

fusionInterval(:,1) = pathInterval(:,1);

positionXZ = [infsup(0,1);infsup(-0.5,0.5)];

%% Sensor fusion with IMUs and Dynamic process

accx = dataSetTruncated(:,3);

accz = dataSetTruncated(:,5);

for i = 2:length(stridePointers) % scan all stride detections

dtInterval = t(stridePointers(i))-t(stridePointers(i-1));

dsInterval = Cinterval*dtIntervalˆbindex+C1interval; % ds update

rotate2D = [cos(wzstate(1,stridePointers(i))),

-sin(wzstate(1,stridePointers(i)));...

sin(wzstate(1,stridePointers(i))),

cos(wzstate(1,stridePointers(i)))];

pathInterval(:,i) = pathInterval(:,i-1)+2*[dsInterval*

[cos(wzstate(1,stridePointers(i))),...

sin(wzstate(1,stridePointers(i)))]]'; %iteration

velocityInterval = pathInterval(:,i)-pathInterval(:,i-1);

for j = stridePointers(i-1):stridePointers(i)

accInterval = [infsup(accx(j)-3*sigmaAccx,accx(j)+3*sigmaAccx);...

infsup(accz(j)-3*sigmaAccz,accz(j)+3*sigmaAccz)];

positionXZ = positionXZ+0.5*accInterval*(t(j)-t(j-1))ˆ2+
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velocityInterval*(t(j)-t(j-1));

end

[crossing,adjacent,faraway] = IntervalJudge(real(positionXZ),

real(pathInterval(:,i))); % check crossing

if crossing == 1 % if crossing is non-empty, then use the intersection

fusionInterval(:,i) = intersect(real(positionXZ),real(pathInterval(:,i)));

positionXZ = intersect(real(positionXZ),real(pathInterval(:,i)));

intersectionFlag = 1;

else % otherwise, use initial estimations

fusionInterval(:,i) = real(pathInterval(:,i));

positionXZ = real(pathInterval(:,i));

intersectionFlag = 0;

end

end

figure(6)

plot(real(pathInterval(1,:)),real(pathInterval(2,:)))

axis equal

xlabel('x(meter)')

ylabel('y(meter)')

%% Map generation, firstly by stride model, with estimation of nodes.

pathNodes = [];

pathNodes(:,1) = [0;0];

C = -2.103;

C1 = 0.7333;

%% Construct Global frames

x = (dataSetTruncated(:,19)); %x-component of gravity vector

x 1 = length(x);

y = (dataSetTruncated(:,21)); %y-component of gravity vector

z = (dataSetTruncated(:,20)); %z-component of gravity vector

a = power(x,2); %xˆ2
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b = power(y,2); %yˆ2

c = power(z,2); %zˆ2

scalarg =sqrt(a+b+c); %sqrt(xˆ2+yˆ2+zˆ2)

gvector = -[x,y,z]; % gravity vector

m x = (dataSetTruncated(:,11)); %x-component of magnetic field vector

m x 1 = length(m x);

m y = (dataSetTruncated(:,13)); %y-component of magnetic field vector

m z = (dataSetTruncated(:,12)); %z-component of magnetic field vector

a 1 = power(m x,2); %mxˆ2

b 2 = power(m y,2); %myˆ2

scalarm = sqrt(a 1+b 2); %sqrt(mxˆ2+myˆ2)

magvector = [m x,m y,repmat(0,m x 1,1)]; % magnetic field vector

u 1 = repmat(scalarg,1,3); % denominator of unit vector g

v 1 = repmat(scalarm,1,3);% denoninator of unit vector m

u = rdivide(gvector,repmat(scalarg,1,3)); % unit vector g

v = rdivide(magvector,repmat(scalarm,1,3)); % unit vector m

v x = repmat(v(:,1),1,3); % x component of unit vector of magnetic field

v y = repmat(v(:,2),1,3); % y component of unit vector of magnetic field

v z = repmat(v(:,3),1,3); % z component of unit vector of magnetic field

cros = cross(u,v); %cross product of unit vector g and m

cros x = cros(:,1); % x-component of cross product

cros y = cros(:,2); % y-component of cross product

cros z = cros(:,3); % z-component of cross product

cros x 2 = power(cros x,2); %xˆ2 of cross product

cros y 2 = power(cros y,2); %yˆ2 of cross product

cros z 2 = power(cros z,2); %zˆ2 of cross product

mag cros = sqrt(cros x 2 + cros y 2 + cros z 2); %magnitude

cros unit = rdivide(cros,repmat(mag cros,1,3)); % unit vector

x global = v; % x-component of unit vector

z global = cros unit; % z-component of unit vector
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y global = cross(x global,z global); % y-component of unit vector

new g = dot(gvector,x global,3) + dot(gvector,y global,3) +

dot(gvector,z global,3);

new g matrix = [dot(gvector,z global,2) dot(gvector,x global,2)

dot(gvector,y global,2)]; % new g-vector in global frame

new g z = dot(gvector,y global,2);% new z-axis g vector

%% using new gravity vector to find the angle of inclination

g1 = 9.81;

A = [0 0 g1];

A 1 = repmat(A,x 1,1);

B = new g matrix;

g2 = sqrt(power(dot(gvector,z global,2),2)+

power(dot(gvector,x global,2),2)+power(dot(gvector,y global,2),2));

n1 = g1*g2;

n2 = dot(A 1,B,2);

theta = acos(rdivide(n2,n1)); % theta in radian

magOnNodes(1) = real(theta(stridePointers(1),1));

for i = 2:length(stridePointers)

dsInterval = C*dtIntervalˆbindex;

pathNodes(:,i) = pathNodes(:,i-1)

+dsInterval*[cos(wzstate(1,stridePointers(i))),...

sin(wzstate(1,stridePointers(i)))]';

magOnNodes(i) = real(theta(stridePointers(i),1));

end

figure(7)

plot3((((pathNodes(1,:)))),pathNodes(2,:),magOnNodes-magOnNodes(1),'*-');

box on

xlabel('Pathway (m)')

ylabel('PathNode2')

zlabel('angle(rad/s)')
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%% Construct a Topographical Map

for i = 2:length(pathNodes)

S = tan(magOnNodes); %slope of topographical map

R = times(sqrt((pathNodes(2,i)-pathNodes(2,i-1))ˆ2 + (pathNodes(1,i)-

pathNodes(1,i-1))ˆ2),S); % length of z in y interval

Y(1) = R(1);

Y(i) = Y(i-1)+R(i);

Z = repmat(Y,size((pathNodes(1,:)),2),1);

K = repmat(pathNodes(2,:),size(pathNodes(1,:),2),1);

end

%% Check walking direction from z- and y-coordinate frame

figure(22)

plot((pathNodes(1,:)), abs(pathNodes(2,:)));

axis equal

xlabel('y axis (meter)')

ylabel('x axis (meter)')

saveas(gcf,'2dwalkingdirection.png')

figure(23)

plot3(pathNodes(1,:), abs(pathNodes(2,:)),Y);

axis equal

xlabel('y axis (meter)')

ylabel('x axis (meter)')

zlabel('z axis (meter)')

trans x = transpose(pathNodes(2,:));

trans y = transpose(pathNodes(1,:));

trans z = transpose(Y);

trans mat = [trans x,trans y,trans z];

%% Topographical Map

map x = pathNodes(1,:);

map y = abs(pathNodes(2,:));

map z = Z-Z(1);
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n = surf(map x,map y,map z);

xlabel('y axis (meter)')

ylabel('x axis (meter)')

zlabel('z axis (meter)')

%% GPS location

gps location = dataSetTruncated(:,29);

figure(9)

plot((pathNodes(1,:)) , gps location(stridePointers)-

gps location(stridePointers(1)));

%% Comparison with GPS and measurements

figure(10)

plot((pathNodes(1,:)), Y-Y(1), (pathNodes(1,:)) ,

gps location(stridePointers)-gps location(stridePointers(1)))

xlabel('y axis (meter)')

ylabel('z axis (meter)')

legend('Measurement','GPS location')
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