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ABSTRACT 

 

 

Li, Mozhu. M.S. Purdue University, August 2016. Differences in Context: Revealing 

Expert-Novice Graph Knowledge in Biology. Major Professor: Stephanie M. Gardner. 

 

Graphs are typically defined as visual representations that depict and sometimes 

summarize quantitative data. Visual representation of quantitative data is broadly used in 

scientific textbooks, papers, and lectures as well as popular media seen in everyday life. 

Thus, understanding graphs and data became an essential skill for all students to master. 

However, correctly and fully using graphs requires a person to have multiple 

competencies (diSessa & Sherin, 2000). For an instance, during graph construction, 

variables need to be identified and characterized, data are screened and often reduced, 

and a graph type needs to be chosen that is appropriate for the data. Student have 

difficulties interpreting and constructing scientific graphs (Beichner, 1994; Mevarech, & 

Karamarsky, 1997; Shaw, Padilla, & Mckenzie, 1983; Speth et al., 2010); in spite of 

using some of the documented difficulties to improve instruction, difficulties persist for 

undergraduate science students (Speth et al., 2010; McFarland, 2010). We aim to 

compare the differences in graph knowledge among undergraduate biology students, 

graduate biology students, and biology professors. Using the results, we hope to better 

understand and define the role that graph knowledge plays in students’ ability to choose 

and create appropriate graphs from data. This will be beneficial to instructors who teach 

analytical and graphical skills at school and to educators who design the curriculum with 

a purpose of effective teaching and learning. 
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CHAPTER 1: INTRODUCTION TO RESEARCH QUESTION 

 

1.1 Importance of Graphs as Visual Representations 

Graphs are visual representations that depict, and sometimes summarize, quantitative 

data. Rougier, Droettboom, and Bourne (2014) provided a more accurate definition of 

graphs by stating that scientific visualization is a graphical interface between people and 

data.  Graphs are used in lectures by professors and in textbooks by authors to explain 

important concepts to students (Treagust & Tsui, 2013). They are also used frequently in 

scientific papers to present complicated data and to show trends and ideas (Treagust & 

Tsui, 2013). It is also very common to see graphs in our daily lives, such as weather and 

stock market reports. 

Graphs are an essential part of scientific communication among scientists in research 

manuscripts in scientific journals. Cleveland (1984) measured the amount of graph usage 

in 57 scientific journals and found that around one-third of the space of science journals 

are devoted to graphs. He measured the graph area by the amount of text replaced by a 

graph, and a figure was judged to be a graph if it had scales and conveyed quantitative 

information. A more recent study targeting journals in the medical field showed a very 

similar result (Cooper, Schriger, and Tashman, 2001). In the study, the three authors 

performed a blinded review of all graphs published in Annals of Emergency Medicine 

from January 1998 to June 1999. Out of the 147 original research communications, 46% 

contained at least one graph. 

From the results of these studies, one can see that graphical representations in science 

publications and presentations are very common and critically important, especially in 

scientific research with quantitative methods. With biology education focused more on 

students learning content within the context of the practices of scientists (see section, 1.3, 
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below), it is particularly critical for college-level science students to be able to read 

graphs, understand data behind graphs, and interpret the messages that the graphs want to 

convey. However, neither constructing graphs nor interpreting graphs is an easy task, as 

even expert scientists can have difficulty. A series of study were conducted on scientists 

and professors who were experts in their field, mostly in life science and physical science 

(Roth & Thom, 2009; Roth, 2013). They found that even these experts had problems 

interpreting introductory graphs from other fields or graphs within their own disciplines 

but outside their immediate area of expertise. In a recent review of research articles that 

are published in top physiology journals, researchers assert that scientists need to 

improve data presentation using more complete representations. They especially 

emphasized a number of critical problems within the presentation of continuous data in 

small sample size studies (Weissgerber, Milic, Winham, & Garovic, 2015). 

 

 

1.2 Graph Knowledge 

Proper graph construction and evaluation requires knowledge and skills from various 

disciplines and practices. diSessa (2000, 2004) provided a new concept: 

MetaRepresentational Competence, or MRC. He pointed out that graphing is not 

dichromatic: it is not a “yes/no” question. MRC stands for the full range of capabilities 

that people need to have in order to construct and use external representations. In his 

opinion, in order to reach a deep, rich, and generative understanding of graphs, a student 

would need to be able to do such things as: “Invent or design new representations”, 

“Critique and compare the adequacy of representations and judge their suitability for 

various tasks”, “Understand the purposes of representations generally and in particular 

contexts and understand how representations do the work they do for us”, “Explain 

representations, i.e., the ability to articulate their competence with the preceding items”, 

and “Learn new representations quickly and with minimal instruction”. In light of the 

MRC framework, we believe that to correctly and fully use graphs, the graph creator not 

only needs knowledge of graphs, but also needs to be familiar with statistical knowledge, 
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spatio-visuo knowledge, and disciplinary-related knowledge and experiences. Graph 

knowledge is defined as the knowledge a person has about a type of graph including its 

name, its function, data that can be displayed with it, its affordances and limitations.  

In diSessa’s study (2004), he pointed out that MRC should not be treated as “hard-wired” 

abilities. Instead, MRC is gradually developed through practices both in and out of 

school. Thus, one’s graph knowledge should be highly related to one’s inner knowledge, 

or knowledge one has gained from past experiences. In other words, MRC is not only a 

competence with representations, but also the reflective aspects about the representations, 

their creation, and usage. Implicit in the MRC framework is expert-like competence that 

comes with experience.  In the case of graphs, this would be competence with 

disciplinary inquiry, statistics, and knowledge of graphical representations.  

 

 

1.3 College-level Biology Students as Targets 

It is both important and valuable to study college-level biology students’ graph 

knowledge. Undergraduate biology education reforms have called for students to be 

involved in the practices of science in classes, course-based undergraduate research, and 

research apprenticeships (AAMC-HHMI, 2010; AAAS, 2011; PCAST, 2012). A number 

of studies also mentioned that an increasing number of undergraduate students were 

engaging in biological research in order to meet the increasing stringent academic 

criteria, to get into graduate or professional schools, to become competitive in 

employment upon graduate, or for a variety of other reasons (Dasgupta, Anderson, & 

Pelaez, 2014; Wei, & Woodin, 2011, Laursen, Hunter, Seymour, Thiry, & Melton, 2010). 

Getting involved with research requires the students to be familiar with data and data 

representations, or graphs. While students across disciplines and education-levels are 

having various difficulties with graphing, we decided to particularly target college-level 

students with biology majors. We believe that studying and uncovering the role of graph 

knowledge in using graphs appropriately will help us have a more complete 

understanding of the reasons behind biology undergraduate students’ graphing 
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difficulties, thereby providing targets to help instructors to improve students’ 

performance in graphing.  

 

1.4 Research Objective 

In our study, we have a main research question: What are the differences in graph 

knowledge among undergraduate biology students, graduate biology students, and 

biology professors?  

This study will bring benefits to students, teachers, and other educators. Understanding 

the reasoning behind students’ difficulties with graphs will not only help students learn 

better in their STEM classes, but will also help teachers and professors to improve their 

teaching methods to help students succeed. It will also provide valuable information for 

educators who develop and arrange curriculum as well as teachers and professors who 

use graphs in their teaching. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Overview 

Graphs are important representations that are very commonly used in scientific 

communication, but creating effective graphs from data involves a wide range of skills 

and knowledge. In spite of years of instruction on visualizations and experiences with 

graphing, students in higher education (and sometimes even professors) still have 

difficulties in graph construction, interpretation, and evaluation. To improve instruction 

to increase students' competence with graphing, we first need to understand the 

difficulties they have. The literature review that follows includes theoretical perspectives, 

recommendations for undergraduate biology education, and data on graphing difficulties 

along the novice-to-expert continuum.  

 

 

2.2 Meta-Representational Competence 

In order to study the factors that are needed for a person to read and use graphs 

appropriately, we consult the components of Meta-Representational Competencies. The 

term “Meta-Representational Competencies”, or “MRC”, represents the full range of 

capabilities that a person has when constructing, understanding, and evaluating eternal 

representations. The term was first developed by diSessa and Sherin in their paper in 

2000; instead of concentrating on uncovering students’ misconceptions on graphs, the 

researchers wanted to focus on what students “knew” about graphs. They claimed that 

MRC did exist in students, as students were shown to have a deep, rich and generative 
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understanding of external representation (diSessa, Hammer, Sherin, & Kolpakowski, 

1991). There are four main components in the MRC: 

1) Invention: the ideas and skills that a person needs to have in order to construct 

new graphs; 

2) Critique: the knowledge that a person needs to have in order to compare and judge 

the quality of graphs; 

3) Functioning: the knowledge about the “why” and “how” of graphs, i.e. the 

function, purpose, advantages, and limits of graphs; 

4) Learning: the knowledge that a person needs to have in order to foster their own 

learning of new graphs. 

diSessa and Sherin pointed out in their paper that delimiting a “list” of knowledge that 

students have about representations was difficult, as the knowledge were more than 

simple facts to be memorized. The researchers decided to study the knowledge by 

understanding how it developed, and they believed that MRC developed from students’ 

previous experiences with representations, i.e. the production and evaluation of graphs as 

well as the communication using graphs.  

The learning and teaching of MRC was plausible and valuable for improving instruction 

of scientific representations. On one hand, students had a rich and deep basis of MRC for 

instructors to build on, and they found MRC-related experiences very engaging and 

sense-making. On the other hand, MRC was frequently used by scientists and 

mathematicians to design their representations, and the increasing use of technology had 

put an increasing premium on MRC. In addition, MRC tasks might help instructors to 

attract students who were less engaged in mathematics and science, due to its rich and 

often continuous nature which is different from current mathematics and science 

instruction. 

A critical element within MRC is graph knowledge. We define graph knowledge as the 

knowledge a person has about a type of graph, including the graph’s name, function, type 

of data that can be displayed with the graph, as well as the graph’s affordances and 

limitations. Graph knowledge is deeply inter-connected with the four components of the 
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MRC: Invention, Critique, Function, and Learning. In addition to MRC, the spatio-visuo 

knowledge, mathematical and statistical skills, discipline-special knowledge and the 

meta-cognition of knowledge also interact with graph knowledge. We could say that 

graph knowledge includes parts of the MRC components, but we do not intend to use 

graph knowledge to represent all the aspects of MRC. In our study, we will only focus on 

studying the role of graph knowledge in constructing and understanding graphs, and we 

believe studying and uncovering the role of graph knowledge in using representations 

will help educators to understand students’ difficulties with graphs and help teachers to 

improve their instructions. 

 

 

2.3 Education Standards and Recommendations 

So why are graphs so important? They are used in many places (lectures, textbooks, 

papers, reports) and they have a variety of functions, such as to present data, to show 

trends, to support claims, to communicate ideas, and so on (Treagust & Tsui, 2013; 

Weissgerber, Milic, Winham, & Garovic, 2015). Several calls for science education 

reform include an increased emphasis on students engaging in the practices of science as 

a means to increase engagement and learning of disciplinary content.  These practices 

include working with data and applying mathematical and quantitative approaches to its 

analysis and interpretation, including graphing. In HHMI’s report: Scientific Foundations 

for Future Physicians, one of the competencies emphasizes on students’ abilities to 

integrate data, modeling, computation, and analysis. Specifically, the students need to be 

able to apply basic mathematical tools, including functions, graphs, measurement and 

scale, to reach a basic understanding of problems (AAMC-HHMI Committee, 2009). In 

“Vision and change in undergraduate biology education: a call to action”, the report 

points out that developing and interpreting graphs is one of the core competencies for 

students to master in order to use quantitative reasoning. These contents indicated that 

researchers and educators are calling for emphasis on graph education and assessment.  

Therefore, it is increasingly important for college-level science students to be able to read 
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graphs, understand data behind graphs, and interpret the messages that the graphs want to 

convey. 

 

2.4 Students’ Difficulties with Graphs 

While calls to undergraduate biology education reform suggest that students work with, 

analyze and interpret data, undergraduate students have difficulties with several concepts 

and skills related to graphing.  Although this study only targets higher-education students, 

we felt necessary to do a literature review on younger students’ difficulties with graphs as 

one of our participant populations included lower division students who are recent high 

school graduates. In the U.S., students start to get in contact with graphs in K-12 (NGSS 

Lead States, 2013), and their graph knowledge and experiences began to build up since 

then (Novick, 2004). We also observed in our study that our participants recalled graph 

knowledge that they obtained from primary schools, middle schools and high schools. 

Knowing the students’ difficulties with graph since they’ve started to learn graphs would 

give us a big picture on the types of graph knowledge that out participant might be 

lacking and aligns with the novice to expert continuum approach to our study. 

 

Graphing in K-12 Education 

Graphs should not be a new tool to students, since they start to learn about graphs at an 

early age (NGSS Lead States, 2013). Bryant & Somerville (1986) claimed that young 

students did not find the spatial demands of graphs difficult at all. The two researchers 

presented a study targeting 32 students from the same school, in which 16 are six-year-

olds and 16 are nine-year-olds. Their goals were to determine whether children can find 

the y-axis value if given the x-axis value on a graph, and whether the fact that they have 

to extrapolate non-perpendicular lines in graphs causes them difficulty in reading graphs. 

In the first part of the study, a position was given on one axis, and the student had to find 

the corresponding position on the other axis by extrapolation. In the second part of the 

study, Children were shown two different graph-like displays in each of which a straight 
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line was drawn through the origin, one at an angle of 56 degrees and the other 34 degrees. 

The results indicated that, although six-year-olds were significantly less accurate than 

nine-year-olds in their extrapolations of imaginary straight lines, the two groups of 

students can easily cope with the spatial aspects of graphic information. 

However, there are several studies dealing with students’ problem with graphing in their 

later stage of education and with graph construction in addition to graph interpretation. 

Shaw, Padilla, and Mckenzie (1983) claimed that students in Grades 7 through 12 

demonstrated an inadequate ability to construct and interpret line graphs. They target 625 

middle school and high school students, asking them to provide baseline data of line 

graphing skills to examine their graphing ability. Their results showed that seventh-grade 

and eighth-grade students were significantly less successful in graphing basic line graphs 

than high school students, which have more experiences with scientific graphs, 

demonstrating the suggestion that fundamental graphing skills are developing over this 

time frame, but could be introduced and emphasized in earlier grades. 

In a similar and more recent study, Mevarech and Kramarsky (1997) also targeted middle 

school students on their graphing abilities. Their goal was to investigate student’s 

conceptions and misconceptions relating to the construction of graphs. In their study, 92 

grade 8 students were randomly selected from two different middle schools. The 

participants were asked to construct graphs representing each of four given situations 

representing increasing, constant, curvilinear, and decreasing functions. The students 

were given pencils and four sheets, each sheet with one problem printed on the top. On 

the pre-test, only 26 (27%) students constructed all four graphs correctly, which is a 

relatively low percentage. 40% of the students failed to construct even one graph 

correctly. Three major categories of problems were also identified, including constructing 

an entire graph as only one point (i.e., when some students constructed correctly the x 

and y axes, but they marked only one point, one bar, or one histogram), constructing a 

series of graphs with each representing only one factor from the given data, and 

conserving the form of an increasing relationship between variables under all four 

conditions.  
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Undergraduate Students Difficulties with Graphs 

Students continue to experience difficulties with graphical representations in colleges. 

Meletiou-Mavrotheris and Lee (2010) conducted a study targeting only college-level 

introductory statistics students, and they found out that these students have difficulties in 

graph reading and interpretation, graph construction, and graph evaluation. Their study 

aimed to investigate students’ ability to reason about variation in histograms. The site of 

the study was an introductory statistics course and there were 35 students in the class. 

The students were assessed by 10 tasks related to histograms, and the questions were 

related to the construction, interpretation, and application of histograms. Some of the 

students were also observed and videotaped while solving problems. Their results showed 

that, at the beginning of the course, students have very limited understanding of graphical 

representations. For example, a majority of students were not able to correctly distinguish 

between histograms and bar graphs. Some of the students’ difficulties persisted despite 

the course’s continuous efforts to help them improve their understanding of histograms. 

A similar study was published in 2009 by Bruno and Espinel, where they targeted 

primary education major undergraduate students. In the study, 29 primary education 

majors were given a written test with two questions which was designed by the 

researchers. The test was developed to test students’ ability to construct, read and 

interpreting a variety of quantitative representation of data, including frequency polygon 

and histogram. A descriptive analysis of the tests then was performed along with a study 

of students’ answers of interest to the research objective. The results showed that, in the 

29 students, only 1 student correctly drew graphs in both questions, and the rest of them 

made mistakes in either the histogram or the frequency polygon (a line graph showing 

frequencies of groups).  

Two studies with undergraduate biology students highlight the fact that difficulties with 

knowledge and skills related to graphing still persist, even with some instruction on data 

and graphing.  A study that was published by Bray-Speth et al. in 2010 studied the 

quantitative literacy skills of undergraduate students with life science majors or pre-

health students. The researchers assessed the quantitative skills that students had and 
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concluded that the students experienced difficulties in representing data graphically. In 

the study, a biology-related situation was given to the students, and the students were 

asked to perform a simple calculation and to create a graph from the resulting data. The 

answers were then evaluated by researchers based on choosing the right type of graph for 

the data, appropriately labeling the axes, and correctly graphing the calculated data. 

Analysis of students’ responses revealed that undergraduate students with life science and 

pre-health majors experience difficulties with representing data on a graph, labeling the 

axes properly, and formulating complete arguments from data. McFarland discussed 

common graphing problem that college biology students made in her paper (2010). She 

stated that, from her own experiences with students, college-level biology students 

sometimes failed to present appropriate labels for graphs, chose wrong type of graph to 

represent data, had frustration with scaling, and had problems identifying the 

relationships between variables. 

The results of these studies demonstrated the fact that college-level undergraduate 

students, both in and outside of the discipline of biology, were experiencing difficulties in 

representing graph construction and interpretation. These studies were all done in the 

United States. 

 

Learning Graphs under the Current Education System 

According to the constructivism theory, students’ graph knowledge is actively 

constructed with their existing concepts and models, and it is modified with new learning 

experiences, in which science education plays a critical and essential role (Duffy, & 

Jonassen, 1992). 

It is necessary for us to become aware of the effect that formal instruction on graphs can 

have on students. In Mevarech and Karamarsky’s study (1997) in which they targeted 

middle school students on their graphing abilities, on the pre-test only 27% of students 

constructed all four graphs correctly. However, after being taught by an instructor four 

times a week for three weeks, the number of students who constructed all four graphs 



12 
 

 
 

correctly increased to 45%. This significant increase in correctness indicated that, 

following instruction, students could overcome the difficulties and improve performance 

on graphing. 

Other than the role of teachers and instructors, the design of the curriculum on graphing 

skills is also critical to students. Picone, Rhode, Hyatt, and Parshall (2007) targeted 240 

college-level students in ecology and environmental science courses. In their study, they 

assessed graphing skills of the 240 students from four colleges and universities. Over the 

course of a semester, the researchers integrated graph education and scientific data 

analysis throughout the lab and lecture courses using an active-learning method that they 

developed. Students graphing skills were assessed before, during, and after the courses. 

Compared to pre-tests, a significant increase in bar graph and scatterplots interpreting 

skills were detected. There is also a considerable increase in their abilities on making 

graphs from raw data, i.e. graph construction. On the other hand, it is noticeable that very 

little improvement was detected in their ability to understand independent and dependent 

variables. More than half of the students still have difficulties in summarizing overall 

trends from data with variation. Students also failed to improve their abilities to interpret 

complex bar graphs with interactions between variables. 

As we discussed earlier in Chapter 2.1, a crucial skill for appropriate graphing is 

discipline-related knowledge. Within the discipline of biological science, constructing 

and reading graphs using experimental data are critical skills for students to have 

(Dasgupta, Anderson, & Pelaez, 2014). In a recent study, Shi, Power, & Klymkowsky 

(2011) conducted a study targeting undergraduate students on their thinking of 

experimental design. The authors claimed that a well-designed control group was a key 

component of a scientific experiment, thus they tested college-level students on their 

understanding of the roles of control experiments. To their surprise, a high percentage of 

students still experienced difficulties identifying control conditions in experiments after 

completing three college-level laboratory courses.  
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2.5 Expert-Novice Studies in Science 

A goal of undergraduate education is to move novice students forward along a continuum 

of knowledge and skill closer to the expert-like state. A number of previous studies were 

carried out to discover and analyze the differences between the experts and the novices 

on their ability to categorize information, understand situations, and solve problems in 

science. By doing so, the difficulties that novices face in science could be identified 

(Ericsson & Smith, 1991).  

In Bransford, Brown, and Cocking’s book “How people learn: Brain, mind, experience, 

and school”, the authors researched a number of expert-novice studies in various fields, 

including studies in areas of mathematics, physics, history, computer science, chess, 

teaching, etc. They pointed out that the differences between experts and novices in 

processing knowledge and solving problems were complex and on different levels. For 

instance, the extensive knowledge that experts had differentiates them from novices in 

the ways they acquire, organize, and interpret information from outside environment 

(Bransford, Brown, & Cocking, 1999). Experts do better than novices in recognizing 

features and meaningful patterns of knowledge, and they were more aware that 

knowledge is conditionalized on various circumstances (Bransford, Brown, & Cocking, 

1999). When solving scientific problems, experts tended to first acquire an overall 

understanding of the problems (i.e. thinking in terms of “big ideas”) while novices were 

more likely to look at problems by fitting them into formulas and vying for answers that 

they experienced in their everyday lives (Bransford, Brown, & Cocking, 1999). In 

addition, the authors mentioned that experts had the abilities to retrieve knowledge that 

were relevant to problems with little attentional efforts; i.e. they could link new problems 

with their previous knowledge and experiences relatively effortless than novices 

(Bransford, Brown, & Cocking, 1999). 

Other than Bransford, Brown, and Cocking’s work, a number of other expert-novice 

studies also demonstrated critical characteristics of expertise. A study related to graphing 

was performed by Carter and his colleagues in 1988. They carried out an examination on 

the expert-novice differences in processing visual information in classrooms. The results 
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suggested that experts appeared to be better at forming connections among various pieces 

of information and representing situations into meaningful units when compared to 

novices (Carter, Cushing, Sabers, Stein, & Berliner, 1988). 

In the discipline of biology and biological science, Boshuizen and Schmidt (1992) 

examined and analyzed the role of biomedical knowledge in clinical reasoning by 

experts, novices, and participants at intermediate levels at expertise. Using a combined 

think-aloud interviewing and post-hoc explanation methodology, they showed that 

experts have more in-depth biomedical knowledge, which generally support a three-stage 

model of expertise development in medicine (acquisition, practical experiences, and 

integration).  

The above studies are highly related to my research question in terms of expert-novice 

framework, context (visual representations) and discipline (biological science). Using 

expert-novice as the framework and connecting the ideas of MRC and the theory of 

constructivism, I hypothesize that experts and novices have different abilities and patterns 

in processing biological graphical information and solving related problems, specifically 

differences in their graph knowledge. My findings will provide science educators with 

additional targets for instruction to help students increase their competence with data and 

graphing. 
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CHAPTER 3: METHODS AND DESIGN 

 

3.1 Study Design 

This study is a sub-project of a larger project developed by Stephane M. Gardner and 

Aakanksha Angra. The procedures of the whole project are: modified Pre-interview PPI 

(Clase, Gundlach, & Pelaez, 2010), Graphing Protocol, Background Information, Stage 1 

- Graph Construction, Stage 2 - Graph Evaluation, Stage 3 – Graph Knowledge, and Post 

PPI. My study only focuses on Stage 3, which is a sub-project that focuses only on 

studying subjects’ graph knowledge. 

 

Participants 

There are 58 participants in this study. Eight of them are faculty members of Purdue 

University’s Biological Science Department; 13 of them are graduate students of Purdue 

University’s Biological Science Department; 13 of them are upper-level undergraduate 

students (juniors and seniors) with a Biology major at Purdue University, 24 of them are 

lower-level undergraduate students (freshmen and sophomores). All participants in this 

study were recruited via email invitation from the researchers directly (professor and 

graduate student pools) or indirectly through course mailing lists. Participants were given 

a $20 Gift card at the end of the study to compensate them for their time. The recruitment 

and procedures were done in accordance with IRB protocol No. 1210012775, 

“Investigating the Reasoning Involved in Creating Graphical Representations of Data in 

Biology”.
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Interview Procedure 

In Spring 2012, we sent 15 graphs to 12 professors at Purdue University and asked them 

to rank them in terms of graphs that they felt all undergraduate students should know and 

graphs that they covered the most frequently in class. The 12 professors resembled a 

variety of sub-discipline in biology, including Environment and Ecology, Development 

and Disease, and Molecular Biology. They also have a mixture of teaching experiments, 

including a variety of teaching targets (i.e. biology undergraduate students, biology 

graduate students, and non-biology major undergraduate students) and teaching format 

(normal lectures and laboratory). The 15 graphs we sent to them, and the graphs consisted 

of only axes and data, i.e. without labels, scales, or titles. The information of professors 

and the results were shown in Table 1, 2 and 3. 

The five graphs (a bar graph, a line graph [growth curve], a scatterplot, another line graph 

[variation], and a histogram) chosen by the 12 professors were used in the interview. 

Again, these graphs have no scale or text on them. During the interview, the five graphs 

were given to the subject in the order of: the bar graph, the line graph (growth curve), the 

scatterplot, the second line graph (variation), and the histogram. After each graph was 

given, the interviewer asked five prompts/questions in order: 

Q1: Please examine the graph and tell me your first impression. 

Q2: Now from your past knowledge and experiences, please describe to me what type of 

data can fit this graph. 

Q3: Can you think of a specific scenario to fit the graph? 

Q4: Why did you choose that specific scenario to fit this graph? 

Q5: What type of trends does this type of graph helps to convey? 

When answering those five questions, the participants were asked to “speak aloud their 

thoughts”. The interviews were recorded using Smartpen, and then transcribed verbatim 

into text document by playing back the audiofile using Echo Desktop. We then used the 

coding scheme that we developed to code the data. 
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Table 1  Professors who voted on the graphs to be used in the interview were identified 

with a number. UUG: Upper-level undergraduate students. LUG: Lower-level 

undergraduate students. EE: Ecological and Evolutionary Biology. DD: Development and 

Disease. MB: Molecular Biology. 

Number Cluster Targeting Students Teaching Form 

1 EE Biology Freshman Lecture 

2 EE Biology Freshman, Senior Lecture 

3 DD Biology Sophomore Lecture 

4 DD Biology Sophomore Lecture 

5 DD, MB Biology UUG, Graduate Lecture 

6 DD Biology UUG Lecture 

7 EE Biology UUG, Graduate Lecture and Lab 

8 EE Biology Sophomore Lecture 

9 DD Biology UUG Lecture and Lab 

10 EE Biology Sophomore, Senior Lab 

11 EE Non-Biology LUG Lecture 

12 MB Biology Senior Lab 

 

 

Table 2  The types of graphs and the results. 

15 

Original 

Graphs Type Chosen? 

 

 

Graph 

1 Line graph (curved, with dots) No  

2 Bar graph (adjusted to 100%) No  

3 Scatterplot Yes See Table 3 

4 Radar Graph No  

5 Log-log Plot No  

6 Line graph (multiple, w/SD) No  

7 Line graph (variation) Yes See Table 3 

8 Histogram (w/bars) Yes See Table 3 

9 Line graph (growth curve) Yes See Table 3 

10 Histogram (w/lines) No  

11 Dot plot (categorical) No  

12 Dot plot No  

13 Box Graph No  

14 Bar graph (w/ error bar) Yes See Table 3 

15 Line graph (curved, w/o dots) No  
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Table 3  The five graphs that were chosen and used in the interview. This form was 

modified from Angra, A., & Gardner, S. M., 2016. 

Graph Number and Graph Type Graph Usage 

1. Bar Graph w/ error bar

 

 To compare categorical data, 

percentages, or summary 

statistics from multiple 

groups. (Schriger D.L., & 

Cooper R.J., 2001)  

 Each bar represents a 

category; shape canbe 

changed by moving the 

categories around. (Humphrey 

P.B., Taylor S., & Mittag 

K.C., 2014) 

2. Smooth Line Graph

 

 To show how a single variable 

or multiple variables changes 

over time or to show how a 

variable deviate from a set 

baseline. (Few S. 2004)  

 X axis portrays categories 

while the Y axis portrays 

quantitative values. (Few S. 

2004) 

3. Scatterplot

 
 

 To show individual data 

points from bivariate data. 

(Schriger D.L., & Cooper 

R.J., 2001) 
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Table 3 Continued 

Graph Number and Graph Type Graph Usage 

4. Varied Line Graph

 

 To show how a single 

variable or multiple variables 

changes over time or to show 

how a variable deviate from a 

set baseline. (Few S. 2004)  

 X axis portrays categories 

while the Y axis portrays 

quantitative values. (Few S. 

2004) 

5. Histogram

 

 To show a distribution of data 

with the independent variable 

as continuous. (Humphrey 

P.B., Taylor S., & Mittag 

K.C., 2014) 

 Uses numerical data instead 

of categorical data. 

(Humphrey P.B., Taylor S., & 

Mittag K.C., 2014) 

 

 

3.2 Methods 

Inductive and Deductive Coding 

In order to summarize our qualitative data into a brief summary format, we used a hybrid 

process of inductive and deductive coding to analyze our data. “Coding” is a process of 

encoding qualitative information, usually the text, into explicit “codes” which can be 

organized into themes and categories to help reveal trends and patterns in the data 

(Boyatzis, 1998). While a deductive analysis involves using previously-outlined patterns 

or “coding schemes” to help organize data (Crabtree and Miller, 1992), an inductive 
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analysis refers to the approaches reading raw data, i.e. the transcripts, to derive patterns, 

themes, or concepts (Thomas, 2006).  

Table 4  The theoretical constructs that were consulted in the process of deductive coding 

Each of the two approaches has its unique benefits, and we decided to use a mixture of 

the two approaches: we first started with inductive coding, reading through raw 

transcripts and trying to identify patterns in the data, by which we developed and 

Papers Theoretical Constructs 

Postigo & Pozo, 2004 Three levels of depth in which graphic information are processed: 

1) Explicit Information: a superficial reading of basic graph elements 

2) Implicit Information: reading of graphics materials beyond isolated 

elements; “decoding” information 

3) Conceptual Information: establishing relationships between different 

graph elements; presenting overall analysis of information 

Novick, 2004 Six types of knowledge required for diagrammatic competence: 

Implicit Knowledge (non-verbal performance assessment), Construction 

Knowledge (rules for graph constructing), Similarity Knowledge (similarity 

of a situation to other situations), Structural Knowledge (structure of a 

particular type of graph), Metacognitive Knowledge (monitor the 

comprehension), and Translational Knowledge (transfer information from 

one representation to another). 

Friel, Curcio, & Bright, 

2001 

Three levels of graph comprehension: 

1) Elementary: extracting data and information from graph, such as 

locating 

2) Intermediate: interpolating and finding relationships in the data in a 

graph, such as integrating and interpreting 

3) Overall: moving beyond the data and analyzing the relationships 

implicit in a graph, such as generating and predicting 

Carswell, 1992 Evaluation levels of graph comprehension: 

1) Point reading or attention to a single specifier 

2) Local and global visual comparison of data and feature in graphs 

3) Synthesis and integration of most of or all the graphic features 
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established categories. In further steps, some theoretical constructs (Table 4) were 

consulted to explain and evaluate the categories. After a coding scheme (Appendix A) was 

constructed, we used the coding scheme to code the remaining data. 

 

Developing the Coding Scheme 

I started analyzing data by reading through the transcripts to get a general idea of what 

our participants were talking about. While reading, I also used a pen to memo on the 

transcripts. I noticed some similar patterns (the same words, phrases or similar short 

sentences) among multiple transcripts.  

 

P8124: “I mean it’s close to a normal distribution but it’s skewed a little on the high end.” 

 

G4235: This seems to be like one data set in which there is like a normal distribution of 

the data.  

 

In the above example, the two participants both said the phrase “normal distribution”. I 

highlighted this phrase in these two transcripts, and when later I noticed a third person 

saying “normal distribution” I also highlighted the phrase in that transcript.  

 

 

G1906: “The x axis and the y axis need to be labeled with units.” 

 

G6092: “My first impression is that the x axis and the y axis is not labeled.” 

 

P8124: “There is nothing on the axis. There’s no units, there’s no key.” 

 

In the above example, although there is not a specific word or phrase mentioned, all three 

participants talked about a graph that lacked labels on the axes, which I considered as 

similar patterns. I highlighted these sentences in the transcripts, and I wrote down 
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“lacking labels” next to them.  Later when I noticed other participants talking about 

graphs lacking labels, I also wrote down the same thing next to the sentences. 

If a same word or phrase or a similar sentence was mentioned in more than one 

transcripts, I took notes down saying that this is a “common pattern”. In this way, I read 

all transcripts and highlighted all similar words, phrases, and sentences. I called them 

“codes”. The number of different codes were growing as I read more and more 

transcripts, and I kept modifying and refining the name and meaning the codes. 

After I read all the transcripts, I had a list of codes. A code may be a word, such as 

“average”, “median”, “conditions”, “comparison”; a phrase, such as “independent 

variable”, “control group”, “standard deviation”, “normal distribution”; and my note for 

short sentences, such as “lacking labels”, “take home message”, “learned from class”. My 

next step was to put them into different categories according to their identity or meaning. 

For example, “average” and “standard deviation” both belong to statistical terms; the 

participants should be thinking about statistical analysis when they talked about 

“average” or “standard deviation”. So, I put “average” and “standard deviation” under the 

category “statistical terms and analysis”, which later was joined by “standard error”, 

“median”, “R2”, “degree of correlation”, and other terms that I thought should be 

included in the same category. 

1. Statistical Terms and Analysis 

1.a   Average 

1.b   Standard Deviation 

1.c   Median 

1.d   Degree of correlation (i.e. tight correlation/strong correlation) 

1.e   Significant Difference 

The “Statistical terms and analysis” category now looked like this. I found out that in 

these five codes, only the first three codes “average”, “standard deviation” and “median” 

belonged to defined statistical terms, whereas the last two codes “degree of correlation” 

and “significant difference” were more likely referring to statistical analysis: they were 
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more than a term. So I added a layer to this category, introducing two sub-codes: 

“Statistical Terms” and “Statistical Analysis”, and this category now looked like this: 

1. Statistical Terms and Analysis 

1.a   Statistical Terms 

Average 

Standard Deviation 

Median 

1.b   Statistical Analysis 

Degree of correlation (i.e. tight correlation/strong correlation) 

Significant Difference 

The next step was to add definitions to the categories and the sub-categories, not only for 

me to define and understand the terms better, but also for other researchers to learn the 

meaning of the terms. After adding definitions to the terms and refining the details, the 

“Statistical Terms and Data Analysis” category now looked like this: 

1. Statistical Terms and Data Analysis: The mention of specific statistical terms or functions 

1.a   Statistical Terms: The mention of statistical terms in the scenario/example, such as: 

average, standard deviation, median, standard errors, mode, range, variance, etc. 

1.b   Statistical Analysis: The mention of types of statistical analysis in the 

scenario/example, such as: degree of correlation, statistical significance, trendline or best-

fit-line, R^2, etc. 

 

Most of the time, I categorized a code based on its own meaning. For instance, 

“experimental group” and “control group” were categorized under “experimental design”, 

and “naming x axis with a variable” and “adding a title” were put under “graph 

construction”. However, under some special circumstances, a code might be categorized 

or defined based on the question the participant was asked when answering the question. 

For instance, we asked five questions during the interview, one of which is “Can you 

think about a specific scenario to fit this graph?” This question required the participant to 

think through their learning experiences to find out an example that could fit in the graph, 
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or “populate the graph with data.” In this case, i.e. when the participant was answering 

this particular question, I put their answers under the category “Example Type”.  

2. Example Type 

2.a   Academic/Research Related  

2.b   Personally Experienced in Life (e.g. weather reports, phone apps, news) 

2.c   Moth Comparison 

2.d   Couldn’t think about an example 

2.e   Bacteria Growth 

2.f   Leave Example 

2.g   Vague, Short Example 

Then, I added sub-categories under this category. “Personal Example” referred to 

examples that the participant personally experienced before, such as lab-related 

examples, real-life examples, and textbook examples. The example below is categorized 

as a “personal example” for the participant, a professor, learned this scenario from his or 

her research project. 

P1562: “Talking about actin… so spindle of actin, the actual length. And sometimes also 

shown as a percentage of total… of actin… It reflects the change in production of the F-

actin and it reaches… which must be below 100% because there must be some 

monomeric actin to keep the process going. So basically it means that you have 80%, 

90% F-actin and 10% or 20% G-actin that still at single and is being removed.” 

Earlier in Chapter 3, I mentioned that my thesis project is a part of a larger research 

project. My thesis project is the fourth task of the whole project, and in the first three 

tasks, participants were given a couple of pre-designed, detailed scenarios. These 

scenarios, including the bacteria growth example, moth comparison example, and leaf 

growth example, were classified under the sub-category “previous example”. I wanted to 

distinguish this sub-category from “personal example”, because using scenarios that were 

given in the previous interview questions might indicate a lack of personal graph 

knowledge and experiences. An example of “previous example” is presented below. 
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LUG6788: “You could use the moth example that we did in the previous example… the 

darker colored bars could represent the dark moths, and then the lighter colored are the 

white ones, and then each of the groupings represent the different time periods.” 

There are also cases that participants failed to think of a specific example. When a 

participant gave us a very vague example or could not think of an example at all, these 

scenarios were classified under the sub-category “vague example”.  

LUG7358, Graph3: “… In high school, plotting or something, but really… I am not 

sure.” 

After adding sub-categories and description, the category of “Example Type” looked like 

this: 

2. Example Type: The type of the specific example/scenario the participant generate; 

this is not to be confused with the type of graph source 

2.1 Personal Example: The type of example/scenario is based on participant’s 

personal knowledge, such as: personally experienced in life, research-related, 

teaching, etc. 

2.2 Previous Example: The type of example/scenario is based on examples that were 

given in previous tasks in the interview, including: bacteria growth, moth 

comparison, and leaves growth examples. 

2.3 Vague Example: The given example/scenario is very vague, lack of details, or 

the participant failed to give an example/scenario 

I modified and refined all the categories using the above processes. Then, three “main 

categories” in our coding scheme were developed and all categories were put under the 

three main categories: 1) Graph Description (basic description of the graph without 

further interpretation), 2) Graph and Data Analysis (local or global interpretation of the 

graph), and 3) Instantiation (concepts and reasoning that subjects engage in while 

populating the graph with data). For example, “graph type” belonged to Graph 

Description, because the subject did not need to do any interpretation to recognize the 

type of a graph. A category could sometimes be included in more than one of the main 

categories; for instance, “experimental design” was included in both “Graph and Data 

Analysis” and “Instantiation”. In this case, a code would be put in “Graph and Data 



26 
 

 
 

Analysis” if the subject was interpreting the given graph, or it would be put in 

“Instantiation” if the subject was talking about the specific scenario with which they 

came up. 

The idea and the development of these three main categories came from both our 

observation and the patterns summarized by other studies (see Table 4). This is a 

combination of inductive coding (our observation from the transcripts) and deductive 

coding (structured and formatted patterns by other researchers). While each coding 

methods have their advantages and disadvantages, they often come together in qualitative 

research (Schadewitz and Jachna, 2007). 

Under these three main categories, there are sub-categories that state precisely the 

definitions and the criteria that we were following. In further steps, some theoretical 

constructs (Form 1) was consulted to explain and evaluate the categories. After a coding 

scheme was constructed, we used the coding scheme to code the remaining data. The 

final coding scheme was included in Appendix A, with all details attached to the 

categories. 

 

Using the Coding Scheme to Code 

To better demonstrate the using of the coding scheme, an example is given below. In the 

example, a participant was given a histogram by the interviewer and was asked to answer 

the five questions. Using the coding scheme, we read through the transcript and found 

codes in it. In the example, codes in “Graph Description” category were highlighted in 

yellow; codes in “Graph and Data Interpretation” category were highlighted in green; and 

codes in “Instantiation” category were highlighted in blue.  

 

I: So here is your last graph. Please examine the graph and tell me your first impression. 

2212: This is a basically a bar graph. And because all the bars look at the same, this 

probably just represent just a single plot. You are just comparing it as different sets of 

your independent variables. So should I come up with a scenario? 
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I: Yes. 

2212: Okay. So I just chose a similar scenario with time and money, but this time I chose 

a bill statement. So this could be… let’s say at the first month, or maybe first two months, 

you don’t own anything. Let’s say January and February, and then March… Let’s say 

1000, 2000, 3000, 4000, 5000. So let’s say for the first two months, you don’t use that 

credit card at all. And then you began using it. So let’s say for the first two months you 

spend 1000 dollars, and then you spend around 3500 dollars, and then up to 4500 dollars, 

and then you began to decrease the money you are spending on that card. So that would 

be an example of the scenario. 

I: And why did you choose that specific scenario to fit this graph? 

2212: I feel like it would be a practical way representing this type of data. Because when 

people begin spending a certain amount of money they begin to decrease using it. So like 

save money and keep a steady budget. So maybe like kind of levels off there, like a 1000 

dollars. 

I: So have you encountered this scenario or this graph before? 

2212: Maybe not the exact same graph before, but the scenario is practical. 

I: So you’ve seen this graph before? Where? 

2212: I have seen this type of graph. Mainly textbooks. You don’t mainly deal with bar 

graph much so just general science graphs and textbooks you see bar graph a lot. 

I: And can you describe to me why you label your axes that way? 

2212: Sure. Because I am doing a credit card statement, you only see the amounts of each 

months. And like the time is the independent variable. And um, the amount of money on 

the bill is the dependent variable. So that depends on how much money you spend and 

you see at the end of each month. 

I: What type of trends does this type of graph helps to convey? 

2212: It generally convey the trend of a single plot sort of increases and decreases again. 

I: What is the take home message of your scenario? 

2212: So when you begin to use your card you are increase your spending rapidly, and 

then you reach the point past the mid-year and then you begin to decrease your spending. 

I: Anything else you want to tell me about this graph? 

2212: No. 

 

After reading the transcript and finishing the coding process, we counted the number of 

codes in each main category, which gave us: 
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LUG2212 

Graph: Histogram 

Graph 

Description 

Graph and Data 

Interpretation 

Instantiation 

Number of Codes 2 6 6 

 

After getting the number of codes, the proportion of codes in each category could also be 

calculated: 

LUG2212 

Graph: Histogram 

Graph 

Description 

Graph and Data 

Interpretation 

Instantiation 

Proportion of Codes 0.14 0.43 0.43 

 

This was an example of only one graph from one participant. Overall, we had 58 

participants and each of them had five graphs. All graphs from all participants were 

coded and calculated in the methods described above. 

 

The Rules of Counting the Same Code 

When we used the coding scheme to code the transcript, it was fairly common that the 

same code appeared more than one time. For instance, this participant (LUG8308) was 

talking about error bars and uncertainty: 

Interviewer: What do you mean by uncertain? 

LUG8308: It means… like I mentioned earlier, when we make measurement, say if you 

are measuring the mass of the leaves instead, so I am changing this… if you are 

measuring the mass of the leaves, you are using a measurement to measure the mass, you 

have to include the error bars to say that the mass is approximately in this range. I am 

sorry can you repeat the question? (Interviewer: So, what do you mean by uncertain?) So 

the mass is not known to be this value. It can be in this range. The uncertainty is the 

measure of a range that it could be truly located in. It’s larger here than it is over here. So 

in this case the uncertainty varies nearly the entire number of leaves. However, that is a 

bad application. If they are measuring the mass of the leaf, I am much better at it. So if 

you are measuring the mass of the leaf, this error bar says that there’s much more 

uncertainty in it. There is no method knowing the exact measure, however, it says that the 

general mass could line within this range. However, here it is smaller, it is known that the 

actual mass lies in a much more precise range. 
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Since the participant talked about collecting data by taking measurements, I highlighted 

the words “measurement” and “measure” in this part of the transcript and put this code 

into the “Instantiation > Graph Construction > Type of Data” category. However, in the 

above transcript, we observed that the participant mentioned the same code nine times. 

Does talking about the word “measurement” and “measure” repeatedly indicate that the 

participant knew more about data collecting methods? In the above example, the answer 

was most likely no, because the participant was only repeating the words without 

developing the idea into a deeper stage. 

The basic role we used for counting the same code was simple: If the same code appeared 

more than once, count the code only one time, unless the code was in a different context. 

Like in the above example, instead of counting the code nine times, we counted the code 

only one time.  

There were occasions that we needed to count a same code more than once: when the 

repeated code was in a different context. A good example is when a participant 

mentioned a same code in another graph type. For instance, if a participant talked about 

“measurements” when he or she saw the bar graph, and talked about “measurements” 

again when he or she looked at the histogram, then we counted the code twice: once in 

bar graph, once in histogram. 

In the same type of graph, a participant might talk about a same thing but within different 

contexts. For example, a participant (P8124) talked about treatment groups and 

conditions when she looked at the bar graph, telling us her first impression of the graph. 

(Interviewer: What is your first impression of this graph?) 

P8124: “…It looks like you’ve got, um, 2 measures for 2 different treatment groups.” 

 

Later, after answering several other questions, in a different context she talked about 

conditions and treatment groups again:  

(Interviewer: so why did you use the scenario?) 
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P8124: “…I don’t know, you had different colors, you had them grouped in two clearly 

separated… so that I could tell that these were two paired, two different pairs rather than 

just 4 bars of...equally....4 different conditions.” 

 

In this case, although the participant talked about the same code, she talked about it under 

a different context (answering another question). In addition, the participant did not simply 

repeat what she said when answering question 1 but developed the idea more deeply and 

provided the reasoning. We counted these two codes twice. 

 

Inter-Rater Reliability 

The inter-rater reliability was carried out by two other researchers. Due to the huge 

amount of data, the two raters did not go through all the transcripts. Instead, one rater 

coded two transcripts of each of the five graphs, and the other rater coded two transcripts 

of the bar graph and the growth curve. After comparison and discussion, the degree of 

agreement reached 80%. Thus, we concluded that the coding scheme was reliable.
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Qualitative Analysis of Transcripts 

The purpose of this qualitative study was to examine the differences in graph knowledge 

of experts and novices. Our analysis focused on the number and the identity of codes 

falling in different categories, and we identified patterns and trends which will be 

explained below. 

All of the 58 participants of our study were recruited from a large Midwestern university 

on a voluntary basis. Within the 58 participants, 8 were biology professors (P), 13 were 

biology graduate students (G), 13 were upper-level undergraduate students (UUG), and 

24 were lower-level undergraduate students (LUG). The professors were a group of 

research-active scientists who had acquired extensive knowledge on representations, and 

thus they were considered as “experts” due to their expertise of the field. The lower-level 

undergraduate students, i.e. freshmen and sophomores, were assumed to have had the 

least experiences on scientific representations, thus were considered as the “novices”. 

The upper-level undergraduate students, i.e. juniors and seniors, were assumed to have 

had more experiences with biology graphs then the UUGs, since they took more biology 

classes in college and had more opportunities to learn biology graphs in lecture or lab. 

The graduate students had finished all the undergraduate courses and were conducting 

their research projects, but they still had less experience with scientific graphs than the 

professors. Therefore, they were considered as between the professors and the 

undergraduate students, or the “intermediates”.  As such our population of participants 

provides us with an expert-novice continuum; The four groups, ordered from the most 
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expert to the least, are P, G, UUG, and LUG. We did not include other variables, such as 

age, gender, race and ethnicity, etc. in our analyses.  

In the previous chapters, we already described how the codes were generated and 

classified into different categories. All codes emerged from participant responses to 

different prompts in the interview that were designed to reveal their graph knowledge. 

Table 5 is a summary of the three main categories and sub-categories that are under them. 

A detailed summary of the codes with definitions and examples could be found in 

Appendix A. 

 

Table 5  The 3 main categories of the coding scheme with their definitions and the sub-

categories. The bolded sub-categories (i.e. Experimental Design and Graph Construction) 

were the two sub-categories that we did extra analysis on. 

 

To give the readers a better idea of what the answers from the participants of different 

education levels were like, an example of a professor’s answer for interview questions 

No.1 is presented below. 

 Definitions Sub-Categories 

1. Graph 

Description 

Explicit knowledge, or what 

people can get directly from the 

graph without further 

interpretation 

1.a   Description of Graph 

1.b   Type of Graph 

2. Graph and Data 

Interpretation 

Implicit knowledge, interpreting 

parts of a graph or see overall 

trend/function of the whole graph 

without a specific scenario 

2.a    Experimental Design 

2.b    General Conclusion 

2.c    Statistical Terms and 

Data Analysis 

2.d    Trends 

2.e    Variables 

3.  Instantiation Populating graphs with data and 

conceptual understanding of the 

graph with linking the reasoning 

with previous personal knowledge 

or experiences. 

3.a     Example Type 

3.b     Experimental Design 

3.c     Statistical Terms and 

Data Analysis 

3.d     Metacognition or 

Metacognitive Monitoring 

3.e     Graph Construction 

3.f     Mention of Other Graph 

3.g     Source of Graphs 

3.h     Trends 
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Interviewer: [Showed the bar graph to P1562] “What is your first impression of this 

graph?” 

P1562: “Well I see a bar graph with two axes. And I see no indication what the axes are 

and also no units. The bar graph representing what values… error bars that are most 

likely standard deviations or standard errors of the mean. And I see two groups, darker 

gray and lighter gray, probably comparing with… and whether there’s difference between 

the two pairs, on whether what these bars or axes belong. Looks like the first pair, there’s 

a difference between the dark bars and the lighter bars. It’s about two-fold increase and 

significant. For the second pair, the main values are similar and looks like these two 

groups are not significantly different. If I would compare, two darker grey bars are 

similar, while two lighter grey bars seem to be different.” 

 

The answer provided by Participant P1562 represented what a typical answer from a 

professor was like. In the answer, we noticed that after seeing “a bar graph with two 

axes”, the professor soon realized the lacking of important components of a bar graph: “I 

see no indication what the axes are” and “also no units”. Then, the professor not only saw 

“error bars”, but they also pointed out the meaning of those error bars: “that are most 

likely standard deviations or standard errors of the mean”. The professor started talking 

about the data in the graph (“I see two groups, darker gray and lighter gray”), followed by 

pointing out the trend or the function of the graph (“probably comparing with… and 

whether there’s difference between the two pairs”). Then, the professors noticed that the 

difference in the first pair is “about two-fold increase and significant”, and the second 

pair “are not significantly different.” After comparing within pairs, the professor then did 

a comparison between the two pairs, saying that the “two darker grey bars are similar” 

while “two lighter grey bars seem to be different”. In this detailed answer to the first 

question, we could see that the professor talked about a lot of things: graph type, graph 

shape, graph components that are missing, statistical terms, graph trend, graph function, 

and statistical analysis.  

In contrast with the answer from the professor, we present the below answers to the same 

question of the same graph, from a graduate student, an upper-level undergraduate 
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student, and a lower-level undergraduate student. These answers represented what typical 

answers from their education level were like. 

Interviewer: [Showed the bar graph to the participant] “What is your first impression of 

this graph?” 

G7476: So it’s comparing two different things shown by different color of the bars. And 

both of them depend on what’s on the x or on the y, it looks like whatever this lighter 

color bar is, it’s decreasing with respect to the x axis. Whereas the darker one is staying 

the same. Possibly a control experiment. It’s not changing, versus the lighter one is 

changing with respect to the x axis. 

UUG7222: Okay, so you are comparing two different items. And there are two different 

times or concentrations that you are comparing them in. For example, in physics they 

would call it an error bar but I am not sure. 

LUG8535: It doesn’t really tell me anything because it doesn’t have label on either axis. 

It’s probably some kind of statistical analysis with outliers. I’ve seen this type of graph in 

AP stats. 

 

In the answer, the graduate student stated that the graph was “comparing two different 

things” which “depend on what’s on the x or the y (axis)”. He also stated that “the darker 

one is staying the same… possibly a control experiment”. The upper-level undergraduate 

student also talked about “comparing two different items” and “there are two different 

times or concentrations that you are comparing them in”. He also mentioned that he had 

seen “an error bar… in physics” but he was “not sure”. The lower-level undergraduate 

student said the graph “doesn’t really tell anything” because “it doesn’t have label on 

either axis”. He said the graph was “probably some kind of statistical analysis with 

outliers”, but instead of pointing out what type of statistical analysis, he only said that he 

had “seen this type of graph in AP stats”. 
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4.2 Quantitative Analysis of Qualitative Patterns 

 

Coding to reveal data patterns: The Number of Total Codes 

We coded all 58 transcripts using the coding methods described in Chapter 3. The codes 

for each participant were extracted from the verbatim transcripts and the number of codes 

were counted under each main category: 1) Graph Description, 2) Graph and Data 

Interpretation, and 3) Instantiation. We first added the number of codes in each main 

category together to get a number of total codes from each participant. There are four 

groups: Professors, or P (n=8); Graduate students, or G (n=13); Upper-level 

undergraduate students, or UUG (n=13); and Lower-level undergraduate students, or 

LUG (n=24). Figure 1 presents the number of total codes (i.e. all codes from a 

participant, including codes from all 5 graphs and all 3 main categories) of the four 

education levels.  

  

Figure 1   The raw number of codes of all five graphs of professors (n=8), graduate 

students (n=13), upper-level undergraduate students (n=13), and lower-level 

undergraduate students (n=24). The error bars represent one standard error. *p<0.05; 

**p<0.01, unpaired t test. 
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There was a significant difference in the number of total codes for professor (M=82.5, 

SD=17.12) and graduate students (M=66.85, SD=12.33), t(19)=2.44, p=0.025. 

Significant differences were also found between professors and upper-level 

undergraduate students (M=60.08, SD=10.99), t(19)=3.68, p=0.002; as well as between 

professors and lower-level undergraduate students (M=63.00, SD=12.45), t(30)=3.49, 

p=0.002. The code number of the three student groups do not have significant difference 

(for G and UUG, t(24)=1.48, p=0.15; for G and LUG, t(35)=0.900, p=0.37; for UUG and 

LUG, t(35)=0.709, p=0.48). 

 

The 3 Main Categories: Patterns graph knowledge codes across graph types. 

The three “main categories” that the codes were organized under were: 1) Graph 

Description (basic description of the graph without further interpretation), 2) Graph and 

Data Analysis (local or global interpretation of the graph), and 3) Instantiation (concepts 

and reasoning that subjects engage in while populating the graph with data) (Refer to 

Table 5 and Appendix A for detailed definitions and sub-categories). To look at the graph 

knowledge from the expert-novice perspective, we wanted to look at the patterns of codes 

for across the participant groups for the five graphs: the bar graph, the smooth line graph, 

the scatterplot, the varied line graph, and the histogram. The data of the five graphs (bar 

graph, smooth line graph, scatterplot, varied line graph, histogram) were collected and 

analyzed separately, and the results were presented in separate graphs. The independent 

variable was the education level of the participants. Figure 2 presents the average number 

of codes under each of the three main categories, Graph Description, Graph and Data 

Interpretation, and Instantiation (Table 5).  
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Figure 2   The average number of codes in the three main categories of the four 

education-level groups of the five graphs. The error bars represent the standard error. 

*p<0.05, calculated using 1-way ANOVA with a Tukey’s post-hoc test. 
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Figure 2 Continued 

 

 

Patterns of code numbers across the different graphs and different education groups were 

revealed in Figure 2. Both 1-way ANOVA with a post-hoc Tukey’s test (Table 6; also 

indicated by asterisks in Figure 2) and 2-way ANOVA were carried out to test the 

statistical significance of differences in the results. 

From the results of the 1-way ANOVA (see Table 6), we could see that professors are 

significantly different from the three student groups in many areas. In contrast, there is no 

significant difference among the student groups. The patterns of differences are unique 

for each graph. For the bar graph and the two line graphs, most of the significant 

differences are found in Instantiation category. For the scatterplot, it is the Graph and 

Data Interpretation that contains significant differences among different education levels. 

For the histogram, there is no significant differences in number of codes among education 

levels at all. 
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Table 6   Differences in number of codes in the three categories among different 

education levels. Calculated using 1-way ANOVA with a Tukey’s post-hoc test. Yellow 

background indicates significant difference. P=Professors, G=Graduate students; 

UUG=Upper-level undergraduate students; LUG=Lower-level undergraduate students. 

 

Using the 2-way ANOVA, we first looked at the influence of participants’ education 

level on their code numbers in the three main categories (regardless of graph types). The 

results from a post-hoc Tukey’s test indicated that professors have significantly fewer 

codes than lower-level undergraduate students in Graph Description category, but that 

they have significantly more codes in the Graph and Data Interpretation and Instantiation 

categories. Professors also have significantly more codes in Graph and Data 

Interpretation and Instantiation categories when comparing to graduate students and 

upper-level undergraduate students. There is no significant difference among the three 

student groups in any of the categories.  

When looking at the influence of graph type on the participants’ code numbers in the 

three main categories, the most significant differences are between bar graphs and the 

other four graphs. Participants talked about more things in bar graphs comparing to the 

  P vs G P vs UUG P vs LUG G vs UUG G vs LUG UUG vs 

LUG 

Bar Graph Description       

Interpretation       

Instantiation       

Smooth 

Line Graph 

Description       

Interpretation       

Instantiation       

Scatterplot Description       

Interpretation       

Instantiation       

Varied Line 

Graph 

Description       

Interpretation       

Instantiation       

Histogram Description       

Interpretation       

Instantiation       
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other graphs, especially to the smooth line graph. In all three main categories, participants 

talked more about bar graphs then the smooth line graph. 

Comparing across the 4 education-level groups in each graph, we could see that the 

trends were different according to the different categories. In the “Graph Description” 

category, the overall trend was that the number of codes increased from the most 

expertise group (professors) to the least expertise group (lower-level undergraduate 

students). On the other hand, in the “Graph and Data Interpretation” and the 

“Instantiation” categories, the overall trend was that the number of codes decreased from 

the most expertise group to the least expertise group. 

 

The Code Proportion 

During the interviewing and transcribing process, we noticed that the length of the talking 

and the number of codes might not represent the amount, variety, and distribution of the 

graph knowledge within the three categories appropriately. Some participants tended to 

“talk more” than the others, and did not necessarily have more graph knowledge. For 

example, a participant might talk a lot when he/she did not know what the graph meant 

but simply were finding all the different terms they could think of, hoping one of them 

would “make sense”. In other cases, some participants simply preferred to talk a lot, even 

including things that are relatively irrelevant to the questions. 

Thus, in order to take out the influence of speaking habits and to see if there were 

patterns in the distribution of codes across the three code categories, we decided to use 

“code proportion” rather than “code number” when we looked at the three categories. To 

get the “code proportion” of a category of a participant, we simply took “code number of 

a category” and divided it by “the total code number.” 

P1 = 
𝐶𝑜𝑑𝑒 # 𝑜𝑓 "𝐺𝑟𝑎𝑝ℎ 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛"

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑑𝑒 #
 

P2 = 
𝐶𝑜𝑑𝑒 # 𝑜𝑓 "𝐺𝑟𝑎𝑝ℎ 𝑎𝑛𝑑 𝐷𝑎𝑡𝑎 𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑡𝑖𝑜𝑛"

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑑𝑒 #
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P3 = 
𝐶𝑜𝑑𝑒 # 𝑜𝑓 "𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛"

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑑𝑒 #
 

Since all codes should fell into the three main categories, the sum of the three “code 

proportion” should equal to one. 

P1 + P2 + P3 = 1 

In order to present the data for better visualization, we developed a new type of graph – 

the “triangle graph”. As shown in Figure 3, there are three axes in a triangle graph, and 

each of them represent one of the three main categories: the bottom axis is Graph 

Description, the right axis is the Graph and Data Instantiation, and the left axis is the 

Instantiation. The scale on the axes runs from 0 to 1, corresponding to the proportion of 

codes in that category.  

In Figure 3, all 58 participants each had their own dot. Given the code proportion of the 

three main categories, which should add up to 1, a dot could be fixed at one single point 

on this graph. The four different education-level groups were represented by different 

symbols for comparison: The blue dots were professors (n=8), the red dots were graduate 

students (n=13), the green diamonds were upper-level undergraduates (n=13), and the 

gray squares were lower-level undergraduates(n=24).  

At the beginning of the analysis, we predicted that the professors (the most expert group) 

would have a larger proportion of their codes in Instantiation category compared to the 

undergrads (the least expertise group), since we observed the pattern in Figure 2 when 

we were looking at number of codes. We also predicted that the undergrads (novices) 

would have a larger proportion of their code in Graph Description category compare to 

the professors (experts), since the novices tend to notice what was presented on the 

“surface” of a graph whereas the experts tend to look into the information that were not 

presented directly but were implied. 

However, what we observed seemed to be different from our prediction. Figure 3 is a 

visualization of the code proportions of the three main categories of the Bar Graph. We 

observed that all dots, excepted for the one at the very right of the graphic, were clustered 
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Figure 3   Visualization of the code proportions of the three main categories of the Bar 

Graph. The blue dots were professors (n=8), the red dots were graduate students (n=13), 

the green diamonds were upper-level undergrads(n=13), and the gray squares were lower-

level undergrads(n=24). 

 

together at the left of the triangle. This area corresponds to low proportion in Graph 

Description (0.1~0.3), relatively low proportion in Graph and Data Interpretation 

(0.2~0.45), and relatively high proportion in Instantiation (0.35~0.7). This means that the 

majority of the participants, regardless of their education-level groups, spent most of their 

time talking about codes in Instantiation. The four education-level groups were largely 

overlapping with each other, indicating that the intra-group difference was larger than the 

inter-group difference. However, we noticed that the dots representing the professors 



43 
 

 
 

were more closely clustered together comparing to the three other groups, which might 

indicate a similar reasoning pattern shared by these experts. 

The triangle graphs of the three main categories of the other four graphs (smooth line 

graph, scatterplot, varied line graph, histogram) expressed similar trend with the Bar 

Graph with few exceptions. These trends were 1) intra-group difference was larger than 

inter-group difference; 2) participants spend most of their time talking about codes in 

Instantiation; and 3) dots representing the professors were very closely clustered together.  

 

The 2 Sub-Categories of Instantiation: Experimental Design and Graph Construction 

Given our research focus, which was to “examine the difference of graph knowledge in 

experts and novices”, we decided to dig deeper into the sub-categories to find out trends 

and patterns in areas that have been associated with expert practices and areas of 

competence. In Chapter 2, we mentioned that experts are different from novices in their 

abilities to appropriately construct graphs. We also talked about the role of experimental 

design in biology research and data representation in Chapter 2. Both of these are related 

to critical MRC components with graphical representations: Invention, or students’ 

abilities to construct or design new representations; and Functioning, or students’ 

knowledge on the “why” and “how” of graphs. As such, we looked at the Instantiation 

sub-categories “Graph Construction” and “Experimental Design” (Table 5) to see 

whether the proportion of these sub-categories were different among experts and novices, 

as we would predict based on experience and expertise. 

Thus, to get the “code proportion” of a sub-category in category “Instantiation”, we take 

“code number of a sub-category” and divided it by “the total code number of 

Instantiation”. 

PE = 
𝐶𝑜𝑑𝑒 # 𝑜𝑓 "𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝐷𝑒𝑠𝑖𝑔𝑛"

𝐶𝑜𝑑𝑒 # 𝑜𝑓 "𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛"
 

PC = 
𝐶𝑜𝑑𝑒 # 𝑜𝑓 "𝐺𝑟𝑎𝑝ℎ 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛"

𝐶𝑜𝑑𝑒 # 𝑜𝑓 "𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛"
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PO = 
𝐶𝑜𝑑𝑒 # 𝑜𝑓 𝑎𝑙𝑙 𝑂𝑡ℎ𝑒𝑟 𝑠𝑢𝑏−𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 𝑖𝑛 "𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛"

𝐶𝑜𝑑𝑒 # 𝑜𝑓 "𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛"
 

PE + PC + PO = 1 

PO, in this circumstances, represents the proportion of codes in all other sub-categories in 

Instantiation. The sum of PE, PC and PO should again equal to one.  

 

Figure 4   Visualization of the code proportions of the sub-categories within the 

Instantiation of the Bar Graph. The blue dots were professors (n=8), the red dots were 

graduate students (n=13), the green diamonds were upper-level undergrads(n=13), and 

the gray squares were lower-level undergrads(n=24). 

 

Figure 4 is a visualization of the code proportions of sub-categories within Instantiation 

for Bar Graph. This time, a different trend was observed with inter-group differences 

becoming apparent; four education-level groups no longer overlapping with each other. 

While the proportion of codes in Graph Construction were similar among the four 



45 
 

 
 

education-level groups, the proportion of codes in Experimental Design were different 

among the four groups. There is a shifting of the dots, from the right of the graph to the 

left of the graph, when the expertise level of the participants shifting from high to low: 

professors had proportions of 0.3~0.6 in Experimental Design, while LUGs had 

proportions of only 0~0.3. The other two groups fell in the middle of these two extreme 

groups. 

To explore any statistically-significant differences between the four participant groups, a 

statistical model was built treating all participants as one single group, and another model 

was built treating the four different education-level groups as four groups. The two 

models were then compared with each other to see which one fit the data significantly 

better using a chi-square test. The test of “difference in likelihood” followed the equation: 

2 ∗ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∝ 𝜒2
𝑑𝑓

 

In the combined model, there were 3 parameters (the three instantiation subcategories); in 

the separated model, there were 12 parameters (4 participant groups * three instantiation 

subcategories). Thus the degree of freedom, or df, equaled 12 – 3, or 9. We then 

calculated the likelihood of the two models (83.74 for the combined model and 56.55 for 

the separated model), and that gave us the difference in likelihood, which is 83.74-56.55, 

or 27.19. Following the above equation, we calculated the p value under the chi-square 

formula. The p value was less than 0.001, and we could say there were significant 

differences among the four groups. 

The triangle graphs of the three main categories of the other four graphs (smooth line 

graph, scatterplot, varied line graph, histogram) did not express trends similar with the 

Bar Graph with few exceptions. Instead, it was difficult to find a clear trend in those 

graphs, except that the dots representing the professors were more closely clustered 

together then the other three groups. Figure 5 includes the visualization of the code 

proportions of the sub-categories within the Instantiation of the four graphs. 
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Figure 5   Visualization of the code proportions of the sub-categories within the 

Instantiation of the Smooth Line Graph (upper left), the Scatterplot (upper right), the 

Varied Line Graph (lower left), and the Histogram (lower right). The blue dots were 

professors (n=8), the red dots were graduate students (n=13), the green diamonds were 

upper-level undergrads(n=13), and the gray squares were lower-level undergrads(n=24). 

 

Appropriateness Levels of Specific Scenarios 

Within the three main categories (Graph Description, Graph and Data Analysis, and 

Instantiation), the participants spent the most of their time talking about the last category: 

Instantiation. When we looked into the transcripts, we saw some interesting trends when 

diving into the specific scenarios that the participants gave during interviews. For 

instance, a great proportion of scenarios that were given by professors were highly related 
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to their research and were full of details. On the other hand, students tended to describe 

scenarios that came from their day-to-day life, and some of them even tried to force one 

scenario into multiple graphs. We decided to extend our investigation of graph 

knowledge by evaluation the quality and attributes of the scenario examples given by the 

participants, for we not only wanted to evaluate whether the participants’ scenarios were 

appropriate for each graph type but also urged to explore the degree to which aspects of 

experimental concepts were incorporated, as appropriate, in the example scenarios.  

We reviewed all the transcripts and developed a 3-scale level system for the evaluation of 

the appropriateness of scenarios. 

Complete (the highest level): The scenario given by the participant a) contains 

the correct type of data; b) is appropriate for the graph type; c) includes important 

experimental concepts. Examples of each graph type are given below: 

Bar Graph: Categorical Independent Variables, Comparison, Treatment, 

Control/Experimental Conditions, Multiple trials, Error bars, etc. 

Line Graph (both): Continuous Variables, Change, Prediction, etc. 

Scatterplot: Multiple individuals, Association, Relationship, etc. 

Histogram: Continuous Independent Variables, Distribution, Normal 

Distribution, Skewed, etc. 

(Also see Table 3 for reference of the expected type of data and trends for 

the five graphs.) 

Incomplete (the medium level): The scenario given by the participant is mostly 

correct but lacking one or two of the three components of the Complete level. 

Inappropriate (the lowest level): The scenario given by the participant lacks all 

three components of the Complete level; or the scenario contains serious 

misconception; or the participant failed to give a scenario. 



48 
 

 
 

In Figure 6, the number and distribution of the three appropriateness level from all 58 

participants is illustrated in a heat map.  Each participant group was asked to provide a 

scenario for each of the 5 graphs types. From the figure, we could see that the majority of 

the professors’ examples were complete (green). Only 2 scenarios were incomplete 

(yellow), and none of them were inappropriate (pink/red). There are more scenarios that 

were incomplete and inappropriate in graduate students, and even more in upper-level 

undergraduate students. At the bottom of the graph, we could see that almost a half of the 

scenarios from the lower-level undergraduate students were classified as incomplete or 

inappropriate. The number of scenarios that were incomplete and inappropriate seemed to 

increase downward: from the most expertise group to the least expertise group. 

 

Figure 6  The appropriateness level of scenarios from all 58 participants. From the top to 

the bottom: professors (n=8), graduate students (n=13), upper-level undergrads(n=13), 

lower-level undergrads(n=24). Complete scenarios were colored in green; Incomplete 

scenarios were colored in yellow; Inappropriate scenarios were colored in red. 
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We could also make comparison across the graph type. While few participants made 

incomplete and inappropriate examples for the two line graphs (the smooth line graph 

and the varied line graph), more participants made incomplete and inappropriate 

examples for the bar graph, the scatterplot, and the histogram. The “top-ranked mistake” 

that the participants made in the three type of graphs were:  

Bar Graph: failed to mention experimental concepts, i.e., the error bars and 

multiple trails, the different conditions, the control and experimental groups, etc.; 

Scatterplot: had the misconception that the variable on the y axis should change 

with the continuous variable (time) on the x axis; 

Histogram: had the misconception that this was a bar graph and should have 

qualitative or categorical variables on the x axis. 
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CHAPTER 5: SUMMARY AND FUTURE DIRECTIONS 

 

 

Graphical representation in scientific communication is very common and extremely 

important, especially when reporting the quantitative results from scientific experiments. 

An increasing number of undergraduate students are now engaging in research according 

to a number of studies and recommendations (AAMC-HHMI, 2010; Dasgupta, Anderson, 

& Pelaez, 2014; Auchincloss et al., 2014; Wei, & Woodin, 2011, Laursen, Hunter, 

Seymour, Thiry, & Melton, 2010). It is thus crucial for college-level biology students to 

become familiar with representations, to be able to construct graphs from data, and to 

read and use graphs with experimental data appropriately. Although students from a 

variety of education-levels and disciplines are experiencing difficulties with graphing, we 

chose college-level biology students as our research targets particularly. 

In the Meta-Representational Competencies framework which was developed by Sherin 

and diSessa (2000), a number of competencies, such as disciplinary-related experiences, 

spatio-visuo knowledge, statistical knowledge, and so on, were necessary for a person to 

use graphs fully and correctly. In our study, we only focused on exploring people's graph 

knowledge, which is defined as the knowledge a person has about a particular type of 

graph, including the graph's name and type, the graph's function, data and trend that can 

be displayed with the graph, the graph's affordances and limitations. Using expert-novice 

comparison as our theoretical framework, our main research question was: What are the 

differences in graph knowledge among undergraduate biology students, graduate biology 

students, and biology professors? 

Using think-aloud interviewing as our method, we asked 58 participants from different 

education-levels in a department of biological sciences questions about five type of 
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commonly used graphs in biology to test their graph knowledge. This chapter will present 

the summary of findings from the study and the answer the research question. This 

chapter will also discuss the scope and the limitation of this study, talk about the 

implications, and address a number of future research directions. 

 

 

5.1 Summary of Findings 

 

 

Within the 58 participants, 8 were biology professors (P), 13 were biology graduate 

students (G), 13 were upper-level undergraduate students (UUG), and 24 were lower-

level undergraduate students (LUG). In terms of total number of codes in the entire 

interview, i.e. including their answers for all 5 questions and all 5 graphs, professors 

showed their expertise in analyzing graphs and creating scenarios. They had the largest 

number of codes compared to the other three groups, and this could be explained by 

looking at example answers from professors and from students.  

By analyzing example answers from the professors and the students (provided in Chapter 

4), it is easy to tell that professors’ answers were longer compared to those of students. 

The codes in professors’ answers were also more diverse compared to those of students in 

terms of number of different things they mentioned that relate to our definition of graph 

knowledge, such as graph's name and type, the graph's function, data and trend that can 

be displayed with the graph, the advantages and disadvantages of the type of the graph. 

This is the explanation of the result that professors have more codes overall than the three 

student groups (see Figure 1). Thus, we could say that there are expert-novice differences 

in graph knowledge. However, in order to analyze the differences and to identify the 

RQ: What are the differences in graph knowledge among undergraduate 

biology students, graduate biology students, and biology professors? 



52 
 

 
 

patterns in them, we need to take a step forward to look at the number and identity of 

codes across different levels. 

 

The Three Main Categories: Expert-Novice differences in code categories 

The three main categories in coding were discussed in Chapter 3 and Chapter 4: 1) Graph 

Description (basic description of the graph without further interpretation), 2) Graph and 

Data Analysis (local or global interpretation of the graph), and 3) Instantiation (concepts 

and reasoning that participants engage in while population the graph with data). At the 

beginning of the study, we predicted that the professors would spend more time talking 

about the Graph Interpretation and Instantiation, and that the students would spend more 

time talking about Graph Description compared to professors. Our reasoning included, 

but was not limited to, that experts tend to explore meaningful patterns and features when 

analyzing data, and they tend to recognize big ideas and core concepts when solving 

problems (Bransford, Brown, & Cocking, 1999). Experts are also capable of retrieving 

important relevant knowledge relatively effortless compared to novices (Bransford, 

Brown, & Cocking, 1999).  

Our results of the number of the codes showed that in the “Graph Description” category, 

the overall trend was that the number of codes increased from the most expertise group 

(professors) to the least expertise group (lower-level undergraduate students); and in the 

“Graph and Data Interpretation” and the “Instantiation” categories, the overall trend was 

that the number of codes decreased from the most expertise group to the least expertise 

group (see Figure 2). Since we only counted unique codes, the number of codes also 

represented the diversity of things that participants mentioned. In Chapter 2, we 

mentioned that compared to the novices, the experts tend to look less at what were 

already presented in the graph but to recognize meaningful features and patterns from the 

graphs and to retrieve previous relevant experiences relatively effortless (Bransford, 

Brown, & Cocking, 1999). The previous part of results matched our prediction of the 

differences in the graph knowledge of the four education levels. 
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Our results also showed that the four education levels exhibited the same distribution of 

number of codes in the three main categories. Around half of the codes fell into the 

Instantiation category; some codes fell into the Graph and Data Analysis category; and 

the least codes fell into the Graph Description category (see Figure 3). This distribution 

of codes is not entirely unexpected because the five interview questions were developed 

to examine the graph knowledge and previous experiences of the participants with 

graphs. Questions 3 (Can you think of a specific scenario to fit the graph?) and Question 

4 (Why did you choose that specific scenario?), especially, were asked to direct the 

participants to think of a specific example. Thus, it was not surprising that most of the 

codes under these two questions fell into the Instantiation category. Question 5 (What 

kind of trend can be represented by this type of graph?) directed the participants to think 

about the trend and function of the graph, and Question 2 (What type of data can fit this 

graph?) asked the participants to examine the type and the pattern of the data. Thus, it 

could be predicted that most of the codes under these two questions would fall into the 

Instantiation category and the Graph and Data Interpretation category, regardless the 

amount of graph knowledge the participant actually had.  While the similar distribution of 

codes across the categories between the participant groups is not unexpected, the identity 

of those codes was different for some of the graphs. 

 

Expert-Novice differences in Instantiation 

We were not able to distinguish trends in graph knowledge at the main category level; the 

professors and the students had a similar distribution of the number of codes falling into 

the three main categories. We then decided to move forward to the sub-category level.  

The relationships among experiments, data, and representation in biology are strong: the 

data that are represented in graphs come from experiments. Undergraduate students have 

difficulties with scientific experiments had already been documented in a number of 

studies (Wei & Woodin, 2011; Shi, Power, & Klymkowsky, 2011; Dasgupta, Anderson, 

& Pelaez, 2014). Could the students’ lack of experiences with scientific experiments be 

one of the causing factors of their difficulties in graphing? Particularly, could the 
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difficulties that the students had were due to difficulties in linking data representation 

with experimental design, or that students were unable to plot experimental data 

appropriately in graphs? To explore this topic, we chose two sub-categories within the 

Instantiation category to study the pattern of the code distribution: “Experimental 

Design” and “Graph Construction”. 

While no difference in Graph Construction is observed, our analysis reveals interesting 

patterns in Experimental Design. In Bar Graph only, while all four education groups 

spent a lot of time talking about Instantiation, the four groups spent different proportion 

of their codes talking about Experimental Design, which is the description of experiment-

related design in the participant’s example or scenario of the graph (See Figure 4). This 

sub-category includes, but was not limited to, multiple trials, different conditions, 

treatments, measurements, experimental/control groups, observational data, or the 

participant simply mentioning “experiment” or “experimental design” (See the full 

coding scheme in Appendix A for reference). There are significant differences in the 

proportion of experimental design: professors spent the most of their codes talking about 

things related to experiments, followed by the graduate students, then the upper-level 

undergraduate students; the lower-level undergraduate students spend the least of their 

codes talking about experiments-related stuff.  

From the above results from Experimental Design sub-category of the bar graph, the 

professors appear to have been very familiar with creating and analyzing graphs with 

experimental data. This could be due to the considerable amount of experiences they had 

with their own research, from reading graphs in journal papers and textbooks, such as 

teaching their students about graphs, and so on. Professors understood that the graphs 

were used for summarizing data, conveying trends, and efficiently communicating, thus 

they were trained for years to read and create graphs and they knew that the graph could 

not exist without data from experiments or observations. 

The graduate students also presented a relatively good understanding of the importance of 

experimental design. This could be because they also spent a lot of time doing their 

research and studying papers, although not as much trained as professors. Given that 
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most of the graduate students were also teaching assistant, they might also be reinforced 

the importance of graphs in their preparation of teaching. 

The two groups of the undergraduate students were the two groups spent the least of their 

codes of experimental design, which not necessarily indicated their unfamiliarity with 

experiments but strongly suggested their unawareness of the linkage between data 

representation and scientific experiments. They were ‘not thinking about where the data 

came from’ when they were looking at the graph with data in it; even with the lead of the 

question “Can you think of a specific scenario to fit this graph?”, most of them still had 

difficulties talking about the source of the data or the scenario. This phenomenon could 

be due to that the undergraduate students were lacking one or more components in the 

MRC; particularly, they were having difficulties in understanding the purpose of the 

representations and why we use them. The students in LUG and UUG groups, especially 

the former, are the ones that had the least experiences with biological science compared 

to the professors and the graduate students. Thus, they were relatively unfamiliar with 

disciplinary-related knowledge and experiences, as well as statistical knowledge and 

spatio-visual knowledge, all of which were necessary for appropriately using graphs.  

We need to point out here, that the above pattern of codes in Experimental Design only 

existed in the Bar Graph. The other four graphs did not have a clear pattern in distribution 

compared to the Bar Graph. We were not surprised to find it out, for in the five graphs, 

the bar graph with error bars is the one that was used the most in biology experiments 

and, thus, should be easiest for the participants to talk about (Weissgerber, Milic, 

Winham, & Garovic, 2015. Also see Table 3). The advantages of bar graphs are to 

compare categorical data, percentages, or summary statistics from multiple groups 

(Schriger & Cooper, 2001), which is suitable for scientific experiments with control 

groups and treatment(s). Thus, some of the experimental terms such as “experimental 

group and control group” and “significant difference”, is best aligned with the bar graph 

but not the other four graph types.  
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Understanding the Graphs: Appropriateness of Scenarios 

After analyzing the identity and distribution of graph knowledge of the participants, we 

extended our investigation by evaluation the quality and attributes of the scenario 

examples given by the participants, not to see certain codes were or were not present but 

were they appropriate and was the scenario aligned with a specific graph type.  

In Chapter 4, we presented the results of the scenario evaluation. Three appropriateness 

levels were created and used: Complete (the scenario given by the participant a) contains 

the correct type of data; b) is appropriate for the graph type; c) includes important 

experimental concepts); Incomplete (the scenario given by the participant is mostly 

correct but lacking one or two of the three components of the Complete level); and 

Inappropriate (the scenario given by the participant lacks all three components of the 

Complete level; or the scenario contains serious misconception; or the participant failed 

to give a scenario). See Chapter 4 and Table 3 for reference of the expected type of data 

and trends for the five graphs. 

From the results, we concluded that the ability to analyze graphs correctly and make 

appropriate scenarios increased with the expertise level (Figure 6). I.e., the professors 

(experts) were more likely than the undergraduate students (novices) to be able to read 

and understand a graph, to link the graph with previous personal experiences, to think of 

a type of experimental data that could be presented in the graph, and to come up with 

specific data that could fit the graph.  

This pattern existed in all five graphs. Thinking back to the analysis of the previous 

results, we could conclude that having graph knowledge in Graph and Data Interpretation 

and Instantiation would largely contribute to appropriately understanding graphs and 

data, particularly an awareness of the linkage between scientific graph and experimental 

data. 

When looking at scenario appropriateness across the graph type instead of the 

participants’ education-level (see Figure 6), we could see that the participants did well 

with the two line graphs (the smooth line graph and the varied line graph). Only a few of 
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them gave incomplete or inappropriate scenarios. On the contrast, all groups did not as 

well in the other three graphs: the bar graph, the scatterplot, and the histogram. Almost a 

half of participants gave incomplete or inappropriate scenarios, and the reasons behind 

each graph were unique. For the bar graph, many participants failed to provide detailed 

explanation for their scenarios, particularly when it came to experimental concepts, such 

as treatments, conditions, control and experimental groups, multiple trials, etc. The 

participants named variables and put them on the axes without giving any further 

explanation of their scenarios, and this could be because the lack of awareness of the 

relationship between graphs and experiments. For the scatterplot, lots of participants had 

misconceptions on the relationship between the two variables: they gave inappropriate 

types of variables and believed that the variable on the y axis should change with the 

variable on the x axis. A number of participants tried to fit previous examples (from what 

they gave for the smooth line graph) into the scatterplot by putting time on the x axis. For 

the histogram, many participants think it as a bar graph and gave inappropriate 

independent variables, such as qualitative or categorical variables. This could be due to 

an incomplete or partial understanding of the type of graph and the data that can be 

displayed in it. 

 

 

5.2 Scope, Limitation, Future Directions, and Implications for Instruction 

 

Scope, Limitations and Future Research Directions 

Our study provides an explanation of students’ difficulties of biology graphs in terms of 

graph knowledge. Our results also have major implications for biology teaching and 

course design. However, this study only targeted the higher-education students, collecting 

data from college-level students, graduate students, and professors. Although students 

have learned about graphs and obtained graph knowledge since K-12, we did not have the 

chance to look at the graph knowledge of younger students, which limited the scope of 
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this study. This could serve as a future direction of the study of biology graph and graph 

knowledge.  

Another limitation could be that we only used five commonly used graphs to test our 

participants’ graph knowledge: a bar graph, two line graphs, a scatterplot, and a 

histogram. Compare to other studies of external representations (such as Cox, Romero, 

du Boulay, & Lutz, 2004, which used 90 different representations in the experiments), 

this could be a limitation of scope. Nevertheless, we want to point out that the five graphs 

we used were carefully chosen by twelve biology faculty members from within the 

department that the student populations were recruited, according to the importance of 

knowing the graph and the frequency of using the graph in teaching. We believed that, 

although we only used five graphs, these graphs appropriately represented the most 

important types of graphs that college-level students should become familiar with and 

know how to use.  

In Chapter 4, we used the triangle graphs to provide the visualization of the results of 

code distribution. The triangle graph is developed with the help of Purdue Statistic 

Consulting Program, and the graph is good at showing distribution of the 3-dimension 

positions of groups of individuals. It is able to show the inter-group differences and the 

intra-group differences clearly, especially when there are multiple individuals in each 

groups and there are multiple groups. On the other hand, outliers in triangle graphs could 

get unwanted attention from readers; also, if there are points overlapping with each other, 

the readers might not notice the overlaps and could get misled from the data. Overall, the 

triangle graph serves as a great tool to visualize multiple data points that fall in multiple 

groups, especially in a 3-dimension environment.  

Another limitation exists in the using of expert-novice comparison. In our study, we 

treated the results from professors as if they were experts who had acquired excessive 

amount of graphing experiences that they represented the highest expertise level. 

However, although these faculty members showed expertise in graph construction and 

evaluation, a few of them gave incomplete or inappropriate answers to our questions. 

This fact is actually consistent with a number of Roth’s studies, in which he pointed out 
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that even professors had difficulties communicating using graphs. In Roth’s most recent 

study (2013), he conducted an ethnographic study of a science laboratory aimed at 

studying the absorption of light in the eyes of salmonid fish. He found out that, when 

these science experts used graphs that are generated many steps downstream from their 

study, even if the graphs show the results of their own data, these scientists started to 

experience difficulties understanding and interpreting the graphs correctly. Roth and 

Thom’s earlier study (2009) also indicated a similar trend: 17 physicists and 16 biologists 

were asked to interpret graphs from biology introductory courses, and the results showed 

that only 27% of the scientists were able to give correct answers on a graph that is similar 

to the oxygen-shrimp frequency graph. He took one more step to look at these 27% of 

scientists, and noticed that out of these 9 people, 7 of them were biologists who were 

teaching at undergraduate levels.  

In an effort to improve the quality of science communication at the highest level, 

scientific research journals have begun to advocate for more transparent and appropriate 

graphing of data featuring editorials and regular pieces on data displays.  A paper by 

Rougier, Droettboom, and Bourne (2014) targeted at scientists who used graphs to 

visualize their data. The researchers called for an improvement of figure and graph design 

and explained some common pitfalls in using graphs in communication for scientists. In a 

paper by Weisenberger et al. (2015), the authors also suggested that scientists urgently 

need to improve their usage of appropriate representations to present the data, and they 

strongly recommended training investigators in data presentation, especially the selection 

of graph types according to data types. Specifically, they suggest replacing graph types 

such as the bar graph to graphs which display all of the data such as categorical dot plots.   

Finally, BioMed Central has a regular series called ‘What’s Wrong with this Picture’ that 

aims to educate its readership on the potential misrepresentations of data. Future studies 

could be directed to solve this issue by studying and exploring the relationship between 

scientists’ issues with graphs and their graph knowledge. 
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Implications for Instruction 

The results of our study align with the MRC framework, indicating that multiple 

competences are required for students to use graphs fully and correctly. Instructional 

design of graphing should be targeted at improving students’ graph knowledge, to help 

students perform better in science curriculum. Scientific graphing should be incorporated 

into courses, in which students should be taught common graph knowledge that would 

help them perform better in graph construction, interpretation, and evaluation. 

Specifically, the implication for future biology instruction from our study is to improve 

students’ graphing competency by emphasizing the linkage between scientific 

representations and experimental data. For instance, when students are involved in 

research and lab work, instructors should encourage the students to collect the data, to 

make representations using the data, and to draw conclusions from the representations. 

When instructors use graphs in lectures to convey ideas or theories to students, they 

should talk about the resource of the data in the graphs and the experimental or 

observational settings to help students understand the graph. By showing students that 

scientific experiments, data, and graphs are interconnected, students should be able to get 

a big picture of the process of scientific research, which would support their future career 

as scientists. 
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APPENDIX         

The Coding Scheme with Examples 

 

 

1) Graph Description: Explicit knowledge, or what people can get directly from the 

graph without further interpretation 

1.a    Description of Graph: The description of components or shape of a graph 

without any interpretation 

1.b    Type of Graph: The mention of the type of graph 

 

Code No. Code  Definition and Example 

1.a.1 Description 

about the axes 

The description of the axis of the graphs, such as the 

name on the axis, the scale and the unit of axis, etc. 

Example: [P1562, Graph1] “Well I see a bar graph 

with two axes… no indication what the axes and also 

no units on axes.” 

1.a.2 Description 

about the graph 

The description of the data and/or the elements in the 

graphs, such as data points, bars, lines, error bars, etc. 

Example: [LUG6788, Graph1] “There’s just two 

different colored bars in what looks like two different 

sections.” 

1.a.3 Lack of 

resources 

When a participant point out that the graph is lacking 

a resource, such as best fit line, the key, the labels, the 

title, etc. 

Example: [LUG3423, Graph1] “It doesn’t have either 

axis labeled, it doesn’t have a title…” 

1.b.1 Right type of 

graph 

The mention of the right type of graph. 

Example: [G3427, Graph3] “It’s a scatterplot.” 

1.b.2 Wrong type of 

graph 

The mention of the wrong type of graph. 

Example: [G6984, Graph5] “It is a bar graph.” 

 

 

2) Graph and Data Interpretation: Implicit knowledge, interpreting parts of a graph or 

see overall trend/function of the whole graph without a specific scenario 

2.a    Experimental Design: The mention of experimental design using 

information provided by the graphs, not from their own scenario 
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2.b    General Conclusion: A general conclusion about the function of the graph or 

the take home message of the scenario 

2.c    Statistical Terms and Data Analysis: The mention of specific statistical 

terms or functions 

2.d    Trends: The description of the partial or overall trend of a graph 

2.e    Variables: The direct reference to a variable 

 

Code No. Code  Definition and Example 

2.a.1 Multiple Trails 

and 

Measurement 

The mention of using multiple trails/times to get an 

average and/or error bars 

Example: [G0963, Graph1] “They have error bars, 

shows that they’ve done a lot of trails.”  

2.a.2 Treatment 

Groups 

Difference between treatment groups, such as mention 

of a control group and/or experimental group 

Example: [LUG0364, Graph1] “…the two bars are 

about the same height, it’s probably a control group; 

your experimental condition… is probably this one that 

is significantly different from the other three.” 

2.a.3 Conditions Mention of different conditions without pointing out 

specific name or type of the conditions 

Example: [UUG8315, Graph1] “Like I said, probably 

something with two conditions here and here.” 

2.b.1 Graph Function The mention of the function of a type of graph 

Example: [UUG9632, Graph5] “This one can show like 

if it’s a bell curve or if it’s left skewed or right 

skewed.” 

2.b.2 Take Home 

Message 

The description of the summary or the take home 

message of a specific scenario 

Example: [G5322, Graph1] “That betf expression at 6 

hour is much higher in activated cells than non-

activated cells, and that the betf expression is higher at 

6 hours than at 12 hours.” 

2.c.1 Statistical Terms The mention of statistical terms, such as: average, 

standard errors, mode, median, range, variance, etc. 

Example: [UUG7290, Graph1] “So… these bars are 

not discrete individuals but some kind of average of 

individuals and we are looking at the variation… in 

these individuals.” 

2.c.2 Statistical 

Analysis 

The mention of types of statistical analysis, such as: 

trendline or best-fit-line, R^2, degree of correlation, 

statistical significance 

Example: [P6436, Graph3] “A good correlation, it’s 

very tight.” 
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2.d.1 Association The description of the trend of a graph as association 

between variables, such as correlation and/or 

regression 

Example: [G4235, Graph3] “This is a classic example 

of a regression, or a linear regression, so you have a lot 

of data and you can see the trend in here…” 

2.d.2 Comparison The description of the trend of a graph as comparison 

Example: [G6984, Graph1] “Any data which is a 

comparison of… two groups, where same measurement 

if being made…” 

2.d.3 Difference or 

Change 

The description of the trend of a graphs as difference 

between variables, changes over time, or growth rate, 

etc. 

Example: [G0180, Graph2] “This graph shows the rate 

of something. It’s time for quantitation…” 

2.d.4 Distribution The description of the trend of a graph as showing 

distribution 

Example: [P4969, Graph5] “It’s the probability of 

something, like a distribution of students’ grade in the 

class… kind of a like a bell-shape curve.” 

2.e.1 Independent 

Variables 

The direct mention of the phrase “independent 

variable” 

Example: [LUG6788, Graph1] “If you want to, but 

they’re being graphed against the same independent 

and dependent variables.” 

2.e.2 Dependent 

Variables 

The direct mention of the phrase “dependent variable” 

Example: [G4235, Graph4] “I mean a first phase in 

which the independent variable increase as the 

dependent variable increases.” 

2.e.3 General 

reference to a 

variable 

Mention of “variable” without specifying variable type 

Example: [LUG9391, Graph3] “They’re not related 

any other way besides the two variables that you are 

looking at.” 

2.e.4 Variable type Mention of variable type, such as: categorical, 

continuous, numerical, observational, etc. 

Example: [G1906, Graph5] “Again I would say this is 

for continuous variables.” 

 

 

3) Instantiation: Populating graphs with data and conceptual understanding of the graph 

with linking the reasoning with previous personal knowledge or experiences. 

3.a     Example Type: The type of the specific example/scenario the participant 

generate; this is not to be confused with the type of graph source 
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3.b     Experimental Design: The description of experiment-related design in the 

participant’s example/scenario of the graph 

3.c     Statistical Terms and Data Analysis: The mention of specific statistical 

terms or functions 

3.d     Metacognition or Metacognitive Monitoring: The “knowing about 

knowing”; students’ reflection on their own knowledge and thought processes in 

real time 

3.e     Graph Construction: The description of graph components when drawing 

their graphs according to their examples/scenarios 

3.f     Mention of Other Graph: When participants mention other graphs 

3.g     Source of Graphs: The mention of the previous experiences with the graph 

3.h     Trends: The description of the partial or overall trend of a graph 

 

Code No. Code  Definition and Example 

3.a.1 Personal 

Example 

The type of example/scenario is based on participant’s 

personal knowledge, such as: personally experienced in 

life, research-related, teaching, etc. 

Example: [P1562, Graph2] “Talking about actin… so 

spindle of actin, the actual length. And sometimes also 

shown as a percentage of total… of actin… It reflects 

the change in production of the F-actin and it reaches… 

which must be below 100% because there must be 

some monomeric actin to keep the process going. So 

basically it means that you have 80%, 90% F-actin and 

10% or 20% G-actin that still at single and is being 

removed.” 

3.a.2 Previous 

Example 

The type of example/scenario is based on examples that 

were given in previous tasks in the interview, 

including: bacteria growth, moth comparison, and 

leaves growth examples. 

Example: [LUG6788, Graph1] “You could use the 

moth example that we did in the previous example… 

the darker colored bars could represent the dark moths, 

and then the lighter colored are the white ones, and 

then each of the groupings represent the different time 

periods.” 

3.a.3 Vague Example The given example/scenario is very vague, lack of 

details, or the participant failed to give an 

example/scenario 

Example: [LUG7358, Graph3] “… In high school, 

plotting or something, but really… I am not sure.” 

3.b.1 Experimental 

Function 

The description of experimental design in specific 

scenarios, such as: multiple trails, different conditions, 

treatment groups, etc. 
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Example: [G0963, Graph1] “So I would’ve done is, the 

first two is before treatment with drug, and this is the 

mutant, treatment with drug.” 

3.c.1 Statistical Terms The mention of statistical terms in the 

scenario/example, such as: average, standard errors, 

mode, median, range, variance, etc. 

Example: [P6490, Graph1] “…these are most likely 

standard deviations or standard errors of the mean.” 

3.c.2 Statistical 

Analysis 

The mention of types of statistical analysis in the 

scenario/example, such as: trendline or best-fit-line, 

R^2, degree of correlation, statistical significance 

Example: [G6092, Graph1] “…You’ll find the whole 

group who didn’t wash their hands, the bacteria 

number increase significantly, but not will the group 

who have washed hands.” 

3.d.1 Appropriateness Participant evaluate their own example/scenario, 

without providing any correction 

Example: [G1706, Graph5] “…I know it’s a very bad 

explanation but that’s the best I can do now.” 

3.d.2 Correction of 

Example 

Participant evaluate their own example/scenario and 

provide correction of the same example/scenario 

Example: [G0963, Graph2] “Growth initially with 

time… it shouldn’t be like this. It goes up. Okay, I’ll 

rewrite. So this time, growth on the x axis, and time on 

the y axis.”  

3.d.3 Provide Another 

Example 

Participant evaluate their own example/scenario and 

provide a better example/scenario 

Example: [G6092, Graph5] “I think they have to be 

something has equal difference. Oh! There might be a 

better example… okay now I found out that in the 

center the values are high… looks like something 

follow normal distribution, so…” 

3.e.1 Naming Axis When participants attribute specific names to axes 

Example: [UUG8369, Graph3] “x is the growth rate, y 

is the ROS, so that works better, it’s hard to get a third 

thing here.” 

3.e.2 Attribute 

General 

Variables to 

Axis 

When participants attribute a type of variable to axes 

Example: [LUG8308, Graph1] “So just use a general 

practice, placing the dependent variable on the y axis, 

and x axis with the independent variable.” 

3.e.3 Naming Variable When participants attribute specific names to types of 

variables 

Example: [LUG2212, Graph1] “…For most of graphs I 

dealt with, time is a very comment independent 

variable.” 
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3.e.4 Type of Data The description of the types of data used in specific 

examples/scenarios 

Example: [UUG6367, Graph5] “Maybe some data that 

are not continuous… They have separate categories.” 

3.e.5 Adding a Title When participants attribute a title to the graph 

 

3.f.1 Another Type of 

Data 

The mention of a different type of graph other than the 

current graph 

Example: [LUG2212, Graph1] “It can’t be percentage, 

because it would then be a pie chart.” 

3.f.2 Ideal Graph The mention of an ideal graph of the current graph 

Example: [G5322, Graph5] “A normal distribution – it 

might be a little bit skewed. But it’s pretty much a 

normal distribution.” 

3.f.3 Same Type of 

Graph in 

Different Shapes 

The mention of the same type of the graph as the 

current graph but in different shapes 

Example: [LUG0364, Graph1] “Lot of graphs lie this 

are in the paper s that I read, and… actually most of 

them are usually opposite… so you see a decrease in 

one group relative to the control.” 

3.g.1 Cannot 

Remember 

Source 

When the participants fail to remember their previous 

experience with the type of graph 

Example: [G0180, Graph4] “(So have you seen this 

graph before?) I might have… but I don’t remember 

anything.” 

3.g.2 Learning in 

Class 

The mention of encountering/using the type of graph in 

classes 

Example: [UUG7290, Graph2] “Professor (Name) 

made us do so many of these… drilled into me.” 

3.g.3 Personal 

Experienced in 

Life 

The mention of encountering/using the type of graph in 

personal life 

Example: [LUG3423, Graph4] “Well I was looking at 

the weather this morning, and it was a graph like this. 

That’s what I’ve seen it most used for.” 

3.g.4 Previous 

Examples 

The mention of encountering/using the type of graph in 

previous examples in the same interview, including: 

bacteria growth, moth comparison, and leaves growth 

examples. 

Example: [UUG1318, Graph1] “Just because the entire 

bacteria situation was fresh in my mind, and it was 

easy to take it from the previous example and change it 

a little bit to fit this graph.” 

3.g.5 Research or 

Laboratory 

Related 

The mention of encountering/using the type of graph in 

research or laboratory related experiences 
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Example: [P1562, Graph1] “Yes, in my research. And 

in other people’s research.” 

3.g.6 Teaching or 

Mentoring 

The mention of encountering/using the type of graph in 

teaching or mentoring students 

Example: [P6490, Graph2] “I think it’s because I teach 

this. When I am teaching population dynamics and I 

have the students look at this.” 

3.g.7 Textbook or 

Scientific Papers 

The mention of encountering/using the type of graph in 

textbook or scientific papers 

Example: [P6490, Graph4] “I think it’s mainly because 

I’ve seen data in textbooks and lectures that are plotted 

this way to show how population numbers change over 

time.” 

3.h.1 Association The description of the trend of a graph as association 

between variables, such as correlation and/or 

regression 

Example: [UUG9397, Graph3] “(What is the take 

home message?) So test 1 and test 2 scores are 

positively correlated.” 

3.h.2 Comparison The description of the trend of a graph as comparison 

Example: [LUG8095, Graph1] “It’s really just trying to 

show a side by side comparison for each trial, so tube 1 

and tube 2 you just have a comparison between the 

two.” 

3.h.3 Difference or 

Change 

The description of the trend of a graphs as difference 

between variables, changes over time, or growth rate, 

etc. 

Example: [LUG2477, Graph2] “It shows the trend of 

the rate of reaction over time…? Like how the rate 

changes over time.” 

3.h.4 Distribution The description of the trend of a graph as showing 

distribution 

Example: [P6931, Graph 5] “It tells you about how 

evenly distributed the species are in the community.” 
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