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ABSTRACT 

Sarbada, Shashank. M.S.M.E., Purdue University, December 2016. Ultra Short Pulse 

Laser Surface Modification. Major Professor: Yung C. Shin, School of Mechanical 

Engineering. 

 

 

Surface structure plays an important role in determining the nature of interactions 

between materials and their surroundings. The optical, mechanical, thermal and other 

physical properties of surfaces can be modified and controlled through the careful design 

of the surface structure. Although there are several methods to modify surfaces to achieve 

the desired properties, each of these methods has certain limitations associated with it. In 

this thesis, ultra-short pulse femtosecond and picosecond lasers have been used to create 

surface structures on various materials to achieve desired surface properties. The 

advantages of using ultra-short pulse lasers for surface modification over other 

commonly used techniques have been highlighted.  

The first part of the thesis deals with the enhancement of the optical properties of 

solar cell surfaces. A picosecond laser is used to create nanostructures on the surface of 

silicon to modify the surface reflectance and improve the light trapping efficiency of 

solar cells. The effects of varying process parameters such as laser fluence, scan speed, 

overlapping ratio and polarization angle on the formation of surface structures are 

reported.  The experimental results are compared with finite difference time domain 
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(FDTD) simulations and are in good agreement, showing high predictably in reflectance 

values for different surface structures. 

In the next part of the thesis, the effects of surface structures on the wettability of 

surfaces are discussed. A femtosecond laser is used to create superhydrophobic surface 

structures on metal surfaces. A process to transfer surface structures from metal surfaces 

to polymers is demonstrated resulting in superhydrophobic polymer surfaces. Various 

surface micro and nanostructures are presented and their wetting properties are discussed. 

A fast and inexpensive method to create microfluidic devices with textured 

superhydrophobic inner channel walls is also presented. These channels allow a 

controllable fluid flow rate through microfluidic devices fabricated by taking advantage 

of the transferability of superhydrophobic surfaces onto polymers.   
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

Surface texturing at the micro scale has been demonstrated using many techniques 

over the past century. These methods include chemical etching, mechanical scribing, 

physical deposition, laser processing, reactive ion etching and several others. These 

modified surfaces have been used in many fields of engineering such as tribology, optics, 

metrology, electronics, and biology among others. Each texturing technique has certain 

advantages and limitations, which determine its suitability for an engineering application.  

Conventional surface texturing techniques such as mechanical scribing and 

milling are limited by the size of tools available. As the scale of the desired surface 

features reduces down to the micro scale, it becomes increasingly difficult to manufacture 

tools that can create these surface features. Complex surface geometries require the use of 

specialized tools which are expensive to manufacture. Micro tools also tend to wear 

rapidly and as a result have a short tool life. The range of parameters within which these 

micro tools function optimally is narrow and this limits the speeds of surface texturing. 

As a result, mechanical scribing is not suitable for texturing large areas. In addition to 

this, certain materials such as abrasive ceramics and materials harder than the tool cannot 

be textured easily using these techniques. Therefore, there are several limitations to using 

mechanical scribing and milling for large scale surface texturing. 
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Chemical and electrochemical etching processes are widely used and are capable 

of producing micro and nano scale roughness on surfaces. However, precise control of 

surface features is difficult to achieve with these methods. Well defined geometrical 

features are difficult to produce repeatably over large areas. Different materials require 

different chemical etchants, making the process limited to specific materials. The storage 

and disposal of chemical etchants is also expensive and often hazardous to the user and 

the environment. 

Methods such as focused ion beam milling and electron beam machining allow 

high precision down to the nano scale but are limited to small features. These methods 

are slow and are not scalable to large production. Lithography is a tool which is widely 

used to produce detailed micro and nano scale features on surfaces. However, the process 

involves multiple steps and requires the use of chemicals. It also requires a clean 

environment to prevent contamination that can negatively affect the process. 

Conventional laser scribing, using continuous wave (CW) lasers and micro to nano 

second pulsed lasers, is commonly used to produce micro scale features at high 

processing speeds on a wide range of materials. These lasers allow texturing of large 

areas with high reproducibility. The drawback of these laser systems arises due to the 

unwanted thermal effects of longer pulse widths and CW lasers which cause melting of 

materials and surface oxidation. These lasers are not ideal for the creation of sub-micron 

surface features. 

 Although several methods exist to modify surface features for engineering 

applications, the emergence of new technologies provides an opportunity to improve 

existing processes and establish new ones. With the rapid growth in the field of ultra-
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short pulse lasers over the past decade, new opportunities have emerged to improve 

surface texturing at the micro and nano scale. These lasers allow precise control of 

surface features at high processing speeds. The development of robust laser systems has 

allowed the adoption of these high precision systems in industrial applications. With the 

proper design of experiments and selection of process parameters, several engineering 

applications can be improved and made more efficient with the use of ultra-short pulse 

lasers. Two such applications are identified and serve as the motivation for this work. 

With the growing need for renewable energy sources, there is an increasing 

demand for cheap and high efficiency solar cells. Although high efficiency silicon solar 

cells with overall efficiencies over 25% [1] have been fabricated in laboratories, the high 

cost involved in manufacturing these high efficiency devices makes their commercial use 

impractical. Optical losses through front surface reflections lower the overall efficiency 

of solar cells since bare silicon reflects nearly 40% of incident solar radiation over the 

wavelength range of 200 nm to 1100 nm. Laser surface texturing is a technique used to 

minimize these optical losses thus increasing solar cell efficiency. By determining the 

optimal surface structures for light trapping and by optimizing process parameters of 

laser surface texturing of solar cells, high processing speeds required in industrial 

production can be achieved. This is meant to serve as an alternative to conventional anti-

reflective coatings (ARCs) which involve slow and expensive manufacturing processes. 

Surface texturing to create superhydrophobic surfaces has been a topic of interest 

for many researchers over the last few decades. Microfluidics is one field in which 

superhydrophobicity can play a pivotal role. The control of fluid flow through 

microfluidic devices is essential in many applications. Accurately controlling fluid flow 
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in these devices using surface texturing is challenging due to the small length scales 

involved and the lack of a good fabrication technique. Laser surface texturing is one 

potential technique to create superhydrophobic surfaces that can be used to manipulate 

fluid flow. This area needs to be further explored and is a motivation for this work. 

In the next few sections, these two applications of textured surface will be 

discussed in detail and the advantages of using laser surface texturing in these 

applications will be highlighted.

1.2 Background Information 

1.2.1 Laser surface texturing 

Laser surface texturing is a widely used method to produce micro and nano scale 

features on a wide variety of materials for a host of applications. Laser surface texturing 

has several advantages over other commonly used surface texturing methods. These 

advantages over conventional techniques such as machining and chemical etching include 

high dimensional accuracy, ability to create detailed structures down to the sub-micron 

scale, high processing speed and repeatability. In addition to this, laser processing does 

not require the use of chemicals and other consumables and does not generate waste.  

There has been a gradual shift in the scale of laser textured surface features 

reported in literature from micro to nano scale. This has been accompanied by a shift 

from longer pulse lasers and continuous wave lasers to short and ultra-short pulse lasers. 

Laser surface texturing to enhance material surface properties has been reported in 

literature since the 1990s. Some of the earliest reports of laser surface texturing for 
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surface property enhancement were aimed at improving the tribological performance of 

materials. Baumgart et al. [2] used an Nd:YLF nano second laser to create surface micro 

bumps on magnetic disc drives to improve tribological performance while Geiger et al. 

[3] used an excimer laser to create microstructures to improve the tribological behavior of 

ceramics. Etison et al. [4] improved mechanical seal performance by creating 

microstructures using laser surface texturing. In the early 2000s, laser surface texturing 

was reported to be used to reduce wear in metals [5] and to improve the tool life of 

forging dies [6]. Over the last decade there have been more studies reporting the 

enhancement of tribological properties using laser surface texturing [7,8], most of which 

were focused on creating micro scale features. More recently however, nano scale surface 

features have been utilized to improve tribological properties of surfaces created using 

ultra-short pulsed femtosecond and picosecond lasers, as reported by Bonse et al. [9] and 

Wang et al. [10]. This gradual shift towards ultra-short pulse lasers is due to the inherent 

advantages ultra-short pulse widths have over continuous wave (CW) and longer pulse 

width lasers. The pulse durations of ultra-short pulse lasers are shorter than the thermal 

diffusion time in materials ensuring minimum thermal damage, thus allowing cold 

ablation of material. Due to the high power density of ultra-short pulses the material is 

directly sublimated to plasma with negligible thermal debris. This creates highly 

localized interactions allowing high precision material processing. 

During the last decade there have also been a number of studies aimed at 

improving the optical and wetting properties of surfaces which will be discussed in 

greater detail in subsequent sections. 



6 

 

 

1.2.2 Picosecond laser induced periodic surface structures 

Laser induced periodic surface structures (LIPSS), as the name suggests, are 

grating like structures with a periodic spacing commonly observed on surfaces irradiated 

with lasers. Ripple structures having a period nearly equal to the wavelength of incident 

radiation are commonly referred to as low special frequency LIPSS (LSFL) and are 

formed orthogonal to the direction of the polarization of the laser. LIPSS with periods 

significantly shorter than the wavelength of the laser have also been commonly reported 

in literature and are formed when ultra-short pulsed lasers are used. These are known as 

high special frequency LIPSS (HSFL) and are oriented parallel or perpendicular to the 

direction of polarization. Figure 1-1 shows these two different type of LIPSS created on 

stainless steel using a femtosecond laser. The periodicity P of LIPSS is approximately 

given by the Equation (1.1). 

 𝑃 =
𝜆

𝑅𝑒[𝜂] ± 𝑆𝑖𝑛𝜃
  𝑤𝑖𝑡ℎ 𝑔 || 𝐸𝑡 (1.1) 

where 𝜆 is the incident light wavelength, 𝜂 = 𝜀𝑎𝑖𝑟 𝜀𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙/(𝜀𝑎𝑖𝑟 𝜀𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙)
1/2 is the 

effective refractive index of the air–material interface with 𝜀𝑎𝑖𝑟 𝑎𝑛𝑑 𝜀𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 being the 

dielectric constants of air and the material, Re [𝜂] is the real part of [𝜂], 𝜃 is the beam 

incident angle, g is the grating vector of LIPSS, and Et is the tangential component of 

electric field vector of the incident wave [11]. However, factors such as the number of 

pulses per spot also affect the LIPSS period and some modifications of this equation have 

been reported in literature [12]. 
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Figure 1-1. a) Low spatial frequency LIPSS and, b) High spatial frequency LIPSS, 

created on stainless steel using femtosecond laser pulses. 

There have been many theories regarding the formation of LIPSS. The formation 

of LSFL was earlier attributed to the interference between the incident laser radiation and 

the surface scattered waves but was later improved by the efficacy factor theory of Sipe 

et al. [13]. The theory explains that LIPSS are formed due to inhomogeneous energy 

absorption just beneath the surface, induced by surface roughness. The incident laser 

pulse causes carrier generation in the conduction band, which transiently changes the 

optical properties of the sample. This transient change of the optical properties leads to 

the excitation of surface plasmon polaritons, which interfere with the incident laser beam 

and then leads to a modulated energy deposition into the material. The formation of 

HSFL is still not fully explained but has been attributed to the redistribution of the 

electric field over the surface due to the formation of LSFL [14]. The Sipe-Drude model 

attributes HSFL formation to the second harmonic generation of the laser, which 

additionally acts on the interference at the irradiated surface [15].  
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After the first observation in 1965 [16] LIPSS have been widely created using 

different types of lasers and are most commonly created using femtosecond lasers. There 

have also been some studies on the creation of LIPSS using picosecond lasers. LIPSS 

have been observed in picosecond laser studies as early as in 1982 [17] when surface 

ripples were observed on silicon and gallium under picosecond laser illumination. 

Picosecond lasers have since been used to create LIPSS on several materials including 

semiconductors [18,19], metals [20], polymers etc. Eichstädta et al. [21] conducted a 

study on the formation of LIPSS using picosecond lasers, which outlines the theory to 

determine the parameters required to create uniform LIPSS over a large area. The study 

took into account the overlap between subsequent pulses and the accumulated fluence 

received at the surface. This study and other studies on creating picosecond LIPSS 

[22,23], however, use high overlapping ratios which limit the maximum scan speed. The 

effect of using low overlapping ratios and the resulting benefit of achieving high 

processing speeds has not been studied in the past for creating LIPSS using picosecond 

lasers.

Although reports of LIPSS created using femtosecond lasers are more prevalent in 

literature, there are several advantages picosecond lasers pose over femtosecond lasers 

for the application of creating LIPSS especially on semiconductors such as silicon. One 

of the primary benefits of using ultra short laser pulses lies in the fact that when the time 

duration of the pulse is shorter than the heat diffusion time, unwanted thermal damage of 

the material is prevented. The use of femtosecond lasers in processing metals is 

advantageous as the thermal diffusion time is close to 1 picosecond. However, since this 

diffusion time is higher in the case of semiconductors, often in the range of 10 ps - 100 ps 
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[24], there is no necessity to use expensive femtosecond lasers to process these materials. 

In addition to this, higher pulse energy and repetition rates can be achieved at a lower 

cost with picosecond lasers. Picosecond lasers are also more robust and are less sensitive, 

than femtosecond lasers, to fluctuations in operating conditions such as temperature and 

humidity. The high repetition rates of picosecond laser allow for faster processing speeds. 

These factors make it more cost effective and practical to use picosecond lasers instead of 

expensive femtosecond lasers for most material processing. These inherent advantages of 

picosecond lasers in the creation of LIPSS make it necessary to explore the full benefits 

in terms of process parameters. There is at present a lack of comprehensive knowledge on 

the effects of fluence, scanning speed, polarization and overlapping ratio on LIPSS 

created using picosecond lasers. 

LIPSS have potential uses in several engineering applications such as creating 

hydrophobic surfaces and reducing fluid drag. Further, the tribological properties of 

materials such as friction and wear can be improved using LIPSS as has been 

demonstrated in studies using femtosecond lasers [9,25]. LIPSS due to their grating like 

structure can interact with incident light and alter the optical properties of the parent 

material. This can have several applications including light trapping for solar cell 

applications. There have been a number of studies on the light trapping properties of 

LIPSS, most of which have been using femtosecond lasers. Since high processing speeds 

at relatively lower costs can be achieved in creating LIPSS using picosecond lasers, it is 

required to study the properties of LIPSS created using picosecond lasers. The light 

trapping properties of LIPSS can be used to reduce surface reflections and thus reduce 

unwanted glare caused due to these reflections. The period of the LIPSS, which is 
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determined by the wavelength of the laser used and the accumulated fluence, can be 

varied to trap light over different wavelength ranges to create anti-reflective surfaces. 

This eliminates the need for ARCs which are expensive and susceptible to wear and 

damage. Since the period of LIPSS can be varied, certain wavelength ranges can be 

selectively absorbed resulting in a change in the color of the surface as has been 

demonstrated in some studies [26-28]. The light trapping properties of LIPSS will be 

discussed in detail in subsequent sections. 

1.2.3 Hydrophobic surfaces 

Surface wettability is commonly measured in terms of contact angle. Contact 

angle is the angle measured through the liquid, where a liquid–vapor interface meets a 

solid surface. Surfaces exhibiting a water contact angle below 90° are termed as 

hydrophilic surfaces while those with a water contact angle greater than 90° are termed as 

hydrophobic surfaces. Superhydrophobic surfaces have contact angles above 150°. 

Surface energy and roughness are the major contributing factors that determine whether a 

surface is wetting or non-wetting. The Cassie Baxter [29] and Wenzel [30] models are 

well-known empirical models that illustrate the nature of contact at the solid liquid 

interface. These models help predict the contact angle between surfaces and liquids. 

Another important parameter used to characterize the wetting nature of surfaces is the 

contact angle hysteresis. This can be measured as the difference between the advancing 

and receding contact angles at the instant before a droplet rolls off the surface as it is 

tilted. This is often used to characterize whether the surface is sticky or slippery. A small 
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contact angle hysteresis is desirable when slippery surfaces with low roll off angles are 

required. 

Surface chemistry plays an important role in determining the wettability of a 

surface. The presence of high surface energy chemical groups such as –OH, -NH2, -

COOH, -OSO3H, -NH3
+, -COO-, -OSO3

-, promotes hydrophilicity, whereas materials 

such as hydrocarbon, fluorocarbon or silicone based polymers have low surface energy 

and exhibit hydrophobicity. Table 1.1. shows the surface energy and water contact angle 

of some common materials. 

Table 1.1. Surface energy and water contact angle of some common materials. 

Material 

Surface Energy 

(dynes/cm2) 

Contact Angle 

(degrees) 

Clean glass 73 0 

Ordinary glass 70 20 

Polyester (PE) 47 70 

Polycarbonate (PC) 46 75 

Polyethylene terephthalate (PET) 42 76 

Polymethylmethacrylate (PMMA) 41 82 

Polypropylene (PP) 30 88 

Polydimethyl siloxane (PDMS) 23 98 

Paraffin 19 110 
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The two main forces acting to determine the shape of a liquid droplet are 

gravitational and surface tension forces. As the size of the liquid drop reduces the 

dominating force shifts from gravitational to surface tension. For water drops smaller 

than approximately 0.273 mm (one order of magnitude smaller than the capillary length 

of water = 2.73 mm) surface tension dominates. In addition to liquid-vapor surface 

tension (𝛾𝐿𝑉), interfacial tension exists for the solid-liquid (𝛾𝑆𝐿) and solid-vapor (𝛾𝑆𝑉) 

interfaces as well [31]. When a droplet remains on a surface in a partial wetting state, 

there is an equilibrium contact angle θe, at the edge of the droplet. This is the tangent 

angle of the liquid-vapor interface at the three-phase (solid–liquid–vapor) contact line. 

The contact angle does not depend on the droplet size and is described by the Young 

equation given by Equation (1.2). 

 𝐶𝑜𝑠𝜃𝑒 =
𝛾𝑆𝑉 − 𝛾𝑆𝐿

𝛾𝐿𝑉
 (1.2) 

If 𝛾𝑆𝑉 < 𝛾𝑆𝐿, the contact angle will be less than 90° and the surface is considered 

hydrophilic, whereas, if 𝛾𝑆𝑉 > 𝛾𝑆𝐿, the contact angle will be greater than 90° and the 

surface is described as hydrophobic. There are two more possible cases of water resting 

on a surface. In the first case, the water is in complete contact with the entire surface 

which results in an increased surface contact. This is known as the Wenzel case. In this 

case the contact angle θw is given by Equation (1.3) [32]. 

 𝐶𝑜𝑠𝜃𝑤 = 𝑟𝐶𝑜𝑠𝜃𝑒 (1.3) 
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Where r is the factor by which the surface area is increased due to surface roughness as 

compared to the flat surface. The effect of hydrophobicity/hydrophilicity is essentially 

amplified by a factor of r in the Wenzel case. The second case is the Cassie Baxter case 

in which the liquid droplet rest on the surface features without maintaining complete 

contact with the surface. The liquid bridges the gaps between surface features in the solid. 

In this case, the contact angle θCB is given by Equation (1.4) [33]. 

 𝐶𝑜𝑠𝜃𝐶𝐵 = 𝑓𝑠𝐶𝑜𝑠𝜃𝑒 − (1 − 𝑓𝑠) (1.4) 

Where fs is the fraction of the liquid contacted by the surface and the remainder (1- fs) is 

the fraction of the surface area between surface features. Figure 1-2. demonstrates the 3 

cases discussed. 

 

Figure 1-2. The different cases of liquid-solid interphase contact. 

Therefore, surface roughness or structure is an important factor that determines the 

wettability of a surface. In general, the Wenzel state enhances the inherent wetting 

properties of surfaces, whereas, the Cassie Baxter state promotes hydrophobicity, thus 

leading to an increase in contact angle [34]. In many practical cases, an intermediate state 

between the Wenzel and Cassie Baxter modes is observed. The Wenzel state is usually 

observed in cases when water condenses onto the surface filling the gaps between 
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structures. The Cassie Baxter case is usually found when liquid drops are added to the 

surface. 

There are several applications of hydrophobic and superhydrophobic surfaces in 

fields such as cell biological research, opto-fluidics, fuel cell research, drag reduction, 

printing, etc. The choice of materials, fabrication technique and degree of hydrophobicity 

required depends on the specific application. Microfluidics is one such field where 

surface wettability plays an important role. The contact angle and roll off angle of a 

liquid flowing through a micro channel influence the flow characteristics. Microfluidics 

are used in many applications such as DNA analysis, enzymatic analysis, clinical 

pathology among others, some of which require the flow rate in micro channels to be 

controllable. External flow control devices such as pressure generators and pumps are 

often used to control the flow rate through these devices. However, in cases where 

individual channels in a device are to be controlled, internal flow controls are required. 

This is often achieved by varying the channel cross section or by using flow control 

valves. A more space efficient alternative to this is to alter the wettability of channel 

walls so as to vary the flow rate through the channel. Chemical treatment of the channel 

inner walls is often done to achieve the desired contact angle. There are, however, 

disadvantages of using chemical methods to achieve hydrophobic channel walls. The cost 

of procuring, handling, storing and disposing chemicals adds to the fabrication cost. The 

presence of certain chemicals can interfere with and prohibit the use of some fluids in 

these devices. In addition to this, chemicals coatings can get washed away or deteriorate 

with time. There is currently the lack of quick and inexpensive techniques to accurately 

control the feature size and contact angle of features inside microfluidic channels.  
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The most commonly used material in microfluidics include polydimethylsiloxane 

(PDMS), silicon, glass, poly(methylmethacrylate) (PMMA), polycarbonate (PC), 

polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), hydrogels, 

paper and other composite materials. Of these, PDMS is the most popular for most 

applications as it has several advantages. It is a low cost and easy to micro fabricate 

material. It can be cast with nanometer resolution and is cheaper than glass and silicon. 

Since it has a low surface tension, it is easy to peel off from templates after curing. It is 

also easy to seal and bond to various surfaces including glass, silicon, PDMS etc. Since it 

is gas permeable it is compatible for cell culture [35]. Given these inherent advantages 

and the fact that PDMS has a contact angle greater than 90°, making it mildly 

hydrophobic, it is a good choice for microfluidic applications. 

1.3 Literature Review 

1.3.1 Surface texturing for solar cell applications 

Texturing the surface of silicon wafers to suppress reflections has been commonly 

used to improve the efficiency of solar cells. Surface texturing for solar cell applications 

dates back to the late 1960s. In the 1970s, Gittleman et al. [36] created pillars on the 

surface of silicon using reactive sputter etching. Following this several studies were 

conducted on the fabrication [37,38] and modeling [39] of anti-reflective surface 

structures. The light trapping effect of surface structures on solar cell surfaces is 

attributed to multiple surface reflection which improves the probability of incident light 

being absorbed by the surface. In addition to this, some surface nano structures result in a 



16 

 

 

gradient refractive index, which decreases interfacial reflections by creating a continuous 

refractive index gradient between the bulk of the material and the surrounding medium as 

seen in Figure 1-3. ARCs on the other hand rely on destructive interference of reflected 

light and require the careful selection of coating materials and thickness. The AR effect 

of single layer ARCs is not broadband and the addition of multiple ARC layers increases 

production cost. 

 

Figure 1-3. a) Propagation of light through single layer ARC, b) Gradient refractive index 

due to subwavelength-size nanostructures, c) Schematic of the refractive index change 

due to nanostructures in b). 

The efficiency of a solar cell is calculated as the ratio of the maximum power 

output to the product of the incident radiation flux and the collection area. Reducing the 

surface reflectance increases the power output or makes the solar cell more compact. 

Since less of the incident light is lost to surface reflection, the cell is provided with more 
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photons for energy conversion. This increases the current density and as a result the 

power output increases. Thus a decrease in the surface reflectance of solar cells results in 

an increase in the overall efficiency of solar cells. The contributions to loss of efficiency 

from other factors such as recombination and thermalization remain constant and thus the 

overall efficiency improvement can be estimated based on the change in reflectance. A 

direct correlation between the two has been shown in several studies. Chen et al. [40] 

fabricated a nano patterned PMMA layer using e-beam lithography and chemical wet 

etching, which was used as an ARC on a silicon solar cell. The coating suppressed the 

surface reflectance in the range of 200 nm and 1000 nm to under 15%, resulting in the 

improvement of overall efficiency from 10.4% to 13.5%. Similarly, Song et al. [41] 

created submicron gratings on thin film crystalline silicon solar cells using interference 

lithography to reduce the surface reflectance in the wavelength range of 300 nm and 1200 

nm to less than 10%. This resulted in the improvement of overall solar cell efficiency 

from 8% to 14% for normal incidence of light. Alkaisi et al. [42] fabricated nanopyramid 

structures in crystalline silicon solar cells, which reduced the surface reflectance over the 

visible spectrum to under 10%. This resulted in an improvement in overall efficiency 

from 4.03% to 6.73%. The change in surface reflectance and the corresponding increase 

in efficiency in these and several other studies [43-46] reveals a nearly linear trend of 

increasing efficiency with decreasing reflectance. Therefore, a good estimate of 

efficiency improvement can be made based on absorptance improvement.  

Several different surface structures have been shown to greatly suppress surface 

reflections in solar cells. Sun et al. [47] created bio inspired broadband anti-reflective 

moth eye structures on single crystal silicon by templating, resulting in less than 2.5% 
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reflectance over the wavelength range of 350 nm to 850 nm. Zhu et al. [48] created 

nanodome structures on silicon through a multilayer deposition process to achieve 94% 

absorption over the wavelength range of 400 nm to 800 nm. Mavrokefalos el al. [49] 

fabricated inverted pyramids in crystalline silicon using wet etching. Wang et al. [50] 

analyzed the light trapping by nano cone structures in ultrathin silicon solar cells and 

recommended the fabrication via reactive ion etching while Hu et al. analyzed the optical 

absorption in silicon nanowire arrays [51]. Cao et al. [52] created pyramid and nanowire 

binary structures on silicon through a multi-step chemical etching process and achieved a 

0.9% reflectance over the wavelength range of 200 nm to 1000 nm. Despite the low 

reflectance values achieved, most of the methods discussed above are expensive, time 

intensive or require complex fabrication procedures. 

Laser surface texturing has also been widely used as a one-step process to 

suppress surface reflections in solar cell applications. Dobrzański et al. [53] textured 

multi crystalline silicon solar cells using an Nd:YAG laser creating various micro groove 

and grid patterns. Sedao et al. [54] used a femtosecond laser to create micro cones on 

silicon achieving under 7% reflectance over the wavelength range of 400 nm to 1200 nm.  

Vorobyev et al. [55] used direct femtosecond laser irradiation to create black silicon in 

the form of microgrooves textured with nanostructures. The reflectance of the surface 

was below 5% across the visible spectrum. 

Grating structures are also known to exhibit anti-reflective properties. Gaylord et 

al. [56,57] used a rigorous coupled-wave analysis to study the anti-reflective effect of 

high spatial frequency rectangular groove dielectric gratings. They reported that zero 

reflectivity can be achieved through grating structures and studied the dependence of 
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reflectivity on filling factor (defined as the percentage of the grating period consisting of 

solid), groove depth, angle of incidence, and polarization. Ono et al. [58] modeled the 

anti-reflective effect in holographic relief gratings based on the gradient refractive index 

effect. They showed that sinusoidal gratings are anti-reflective over broad wavelength 

ranges at almost any depth. Raguin et al. [59] theoretically studied the anti-reflective 

effect of one dimensional surface gratings. These and other studies [60] laid the 

foundation for  grating-based anti-reflective surfaces for solar cell applications. The 

wavelength range over which the surface reflections are suppressed is influenced by the 

geometry of the grating [61]. These structures are commonly used to create ARCs by 

methods such as mechanical scribing, lithography, etching, spin coating replication, 

vapor deposition, etc. [62-64]. 

There have been studies to determine the optimal period and height of periodic 

surface ripples to maximize light trapping in solar cells. Čampa et al. [65] conducted a 

study on silicon solar cells with periodic sinusoidal textured interfaces in order to 

optimize the spacing period (p) and the height (h) above the surface of periodic structures 

on the surface of silicon solar cells. A model was created using finite element method 

(FEM) to simulate structures that minimize total reflectance. The results showed a 

number of period and height combinations that suppress reflectivity in the wavelength 

range of 350 nm to 1000 nm. The optimum structure determined was a period of 700 nm 

and a corresponding feature height of 450 nm. The simulation predicted that this structure 

would increase the short circuit current density in a solar cell by 45% compared to a cell 

with a flat un-textured surface. Other configurations such as 600 nm in period with 150 

nm in height and 550 nm in period with 300 nm in height also result in large 
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improvements of 40% in short circuit current density. The simulations reveal that with 

taller surface features, a further increase in short circuit current can be achieved. It can be 

concluded that higher structures are favorable and must be generated to achieve higher 

absorptance; however, it is challenging to create structures with high aspect ratios (h/P). 

Devan et al. [66] investigated the optics of microcrystalline silicon thin-film solar 

cells with integrated light trapping periodic structures. The quantum efficiency and the 

short circuit current density were measured for different configurations of periodicities 

ranging from 300 nm to 500 nm and grating heights varying from 0 to 500 nm. The 

investigation was done by the numerical simulation of Maxwell’s equations utilizing the 

finite difference time domain (FDTD) algorithm. The wavelength range of incident light 

used in the study was 300 nm to 1000 nm corresponding to the bandgap of silicon. It was 

found that the optimal grating period is 600 nm and the optimal groove height is 300 nm. 

Solntsev et al. [67] studied the effect of submicron periodic gratings on light absorptivity 

in thin film silicon solar cells over the wavelength range of 0.66 µm to 1 µm. The 

photocurrent generated was simulated using FDTD simulations for a variety of 

periodicities and heights and compared to the photocurrent of a flat surface, from which 

the best combination of grating periodicity and height was determined. It was found that 

the maximum light absorptivity enhancement was observed for a grating periodicity of 

500 nm and a grating height of 550 nm. Several other studies on the effect of surface 

grating on the light absorptivity of solar cells have been conducted and the results are all 

similar to those of the studies discussed above. A study by Haase et al. [68] reported that 

the short current is maximized if the grating period is equal to 700 nm and the groove 

height is equal to 330 nm over the wavelength range of 700 to 1100 nm. A 50% fill factor 
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was assumed in this study. Another study by Catchpole [69] analyzed the coupling of 

light into a solar cell. They concluded that the optimal grating period is 650 nm and the 

optimal groove height is 300 nm to 350 nm for a ZnO/silicon grating structure. Yet 

another study by Ganapati et al. [70], which used electromagnetic optimization to design 

light trapping textures on subwavelength thickness solar cells , concluded that the optimal 

period is 710 nm. 

From the studies above, it can be concluded that the optimal period and structure 

height to suppress surface reflectivity and improve light absorptivity within the 

wavelength range best suited for solar cell applications are approximately 600 nm and 

300 nm respectively. One method to create grating like surface structures is through the 

formation of laser induced periodic surface structures (LIPSS). 

Vorobyev et al. [71] first studied the anti-reflective effect of LIPSS created on the 

surface of silicon in 2011. Using a femtosecond laser, uniform LIPSS were created with a 

period of 575 nm. The scan speed used in this study was only 1 mm/s and a high 

overlapping ratio between pulses was used. The resultant surface had a reflectance in the 

range of 10% to 30% over the wavelength range of 250 nm to 2500 nm. Ionin et al. [72] 

created femtosecond LIPSS on the surface of GaAs while maintaining a high pulse 

overlapping ratio and a scan speed of 375 µm/s using a cylindrical lens. A 744 nm 

wavelength laser was used to create LIPSS with a period of 650 nm. The study reported a 

42% decrease in surface reflectance at a wavelength of 2500 nm. More recently, Dar et 

al. [73] reported femtosecond LIPSS on titanium with broadband low reflectance. A scan 

speed of 0.2 mm/s was used to achieve 650 nm period LIPSS, which reduced the 

reflectance over the range of 800 nm to 2000 nm from approximately 46% to less than 
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1%. These studied however, were limited to high overlapping ratios and low processing 

speeds. 

1.3.2 Surface texturing for superhydrophobic surfaces 

The wettability of solid surfaces has been a subject of interest for many years due 

to the wide ranging applications involving such interactions. The earliest reports on 

hydrophobicity of surfaces date back to the early 1900s [74] and several studies have 

been reported on contact angle and wettability of different materials over the last few 

decades [75-79]. More recently, with the advancements in nano technologies, several 

studies have been reported on creating and analyzing hydrophobic surfaces, many of 

which have taken inspiration from naturally occurring hydrophobic surfaces such as the 

lotus leaf [80-82]. Patankar et al. [83] proposed a dual scale surface structure mimicking 

the lotus leaf and theoretically calculated the optimal structure geometry to achieve self-

cleaning superhydrophobic surfaces. 

There have been many studies to understand the effects of surface structure on the 

wettability of materials. Nosonovsky et al. [84] identified a set of requirements for 

optimized roughness distribution for achieving high contact angles. The following 

guidelines were provided for designing hydrophobic surfaces: 

1. Roughness should be hierarchical, with several scale sizes, from microbumps to 

nanobumps. Largest asperities should be small compared to maximum droplet 

size, given by the capillary length. 

2. Asperities should be high with their height limited by the requirement of their 

structural strength. It is known that the strength of geometrically similar structures 
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increases with decreasing scale, since forces (e.g., weight) are usually 

proportional to volume and therefore the third power of length, while strength is 

proportional to the cross-section area and thus to the second power of length. 

3. Asperities at each scale level should have small-width and large distance between 

them; however, this requirement is limited by some critical value of the spacing 

between asperities, providing the ability to support required pressure.  

4. Nanoasperities should be convex (bumps rather than grooves) to stabilize the 

liquid–air interface. 

5. For initially hydrophilic surface, a hydrophobic coating is required. 

Marmur [85] analyzed different wettability states in terms of thermodynamic 

equilibrium and stability. The study proposed mathematical conditions that promote non-

wetting and provided design principles for achieving non-wettability. Bormashenko [86] 

performed an extensive literature study highlighting the physical mechanisms of wetting 

transitions and the effect of surface roughness on such transitions. 

Several methods to create hydrophobic surface have been reported in literature, 

which include both chemical treatments to reduce surface energy and surface structuring 

to increase surface roughness. The methods to create hydrophobic surface structures 

include lithography, chemical vapor deposition, sol-gel process, plasma etching, laser 

texturing, crystal growth, and several others [87-90]. Figure 1-4. shows some 

superhydrophobic surfaces structures reported in literature using various fabrication 

processes. 
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Figure 1-4. Superhydrophobic surfaces prepared in different ways, highlighting the 

various topographies possible a), b), textile superhydrophobic surfaces; c), d) 

Lithographic patterns; e), f) Templating; g) h), phase separation; i) j), Etching; k), l), 

crystal growth; m), n) diffusion limited growth. 
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Laser texturing has been used as a one step process to create surface structures on 

various materials to achieve varying degrees of hydrophobicity. Kietzig et al. [91] 

conducted a parametric study using femtosecond laser irradiation to create self-formed 

superhydrophobic micro and nano structures on various steels and titanium alloys. 

Rukosuyev et al. [92] created micro grid patterns on the surface of stainless steel by 

femtosecond laser ablation and showed that the superhydrophobicity achieved was due to 

structure and not intrinsic material properties. Vorobyev et al. [93] created surface 

structures on Titanium using femtosecond laser pulses to achieve hydrophobicity as well 

as anti-reflective properties. Duong et al. [94] studied the conversion of nanosecond laser 

textured copper and brass from hydrophilic to hydrophobic and attributed the change to 

the partial de-oxidation of CuO into Cu2O. Baldacchini et al. [95] demonstrated laser 

treatment following chemical treatment such as silanization can be used to decrease the 

surface energy and achieve hydrophobicity. Following this, many studies utilized 

silanization of laser textured surfaces to achieve hydrophobicity. Wu et al. [96] created 

femtosecond LIPSS on stainless steel and silanized the surface to achieve 

superhydrophobicity. Jagdeesh et al. [97] used a picosecond laser to create dual scale 

micro nano structures on steel and titanium alloys followed by silanization to create 

superhydrophobic surfaces. Long et al. [98] also used a picosecond laser to create 

periodic nano structures on copper followed by silanization to achieve superhydrophbic 

and colorful surfaces. Over the last few years, several other researchers have used this 

technique to create superhydrophobic surfaces on different materials [99-101]. All these 

previous studies were done on metals and little work has been done in this area on 

polymer surfaces. 
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In the case of microfluidic channels, surface texturing to achieve 

superhydrophobicity is often done using chemical treatments. This is done using methods 

such as modification with octadecyltrichlorosilane (OTS) self-assembled monolayers 

(SAMs) [102], aerosol assisted chemical vapor deposition (AACVD) [103], plasma 

deposition of octafluorocyclobutane (C4F8) [104] and other methods [105]. Alternatively, 

attempts have been made to make the surface of the inner channel walls rough using 

methods such as plasma treatment [106]. Despite all these, there is currently the lack of 

quick and inexpensive techniques to accurately control the feature size and contact angle 

of features inside microfluidic channels. 

1.4 Research Objectives 

The primary objective of this research is to create desirable surface textures using 

ultra short pulse lasers to enhance material properties for engineering applications. The 

research is also focused on improving processing speeds and reducing cost to make 

processes adaptable to industrial requirements.  

The specific goals of the research are as follows: 

1) Improve solar cell overall efficiency through the design and fabrication of light 

trapping surface structures at high processing speeds. Optimize the geometry and 

enhance processing speed of LIPSS texturing to enhance light trapping in solar 

cells. 

2) Determine the predictability of surface reflectance of laser textured surfaces 

through computer simulations. 
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3) Design and fabricate superhydrophobic surface structures on metals and 

polymers.  

4) Enhance the fluid flow rate through microfluidic devices by incorporating 

superhydrophobic surface structures.

1.5 Overview of the Thesis 

This chapter deals with the background information, literature review, research 

objective of the thesis. Chapter 2 describes the experimental details of texturing silicon 

using a picosecond laser to improve solar cell efficiency. The experimental results are 

compared with computer simulations to determine the predictability of surface 

reflectance of textures surfaces. The texturing of CIGS thin film solar cells is also 

discussed. In Chapter 3 the experimental details of creating and characterizing 

superhydrophobic surfaces is discussed in detail. The transfer of surface nano structures 

from metals to polymers is discussed. In addition to this, a process to fabricate 

microfluidic devices with controllable fluid flow rate is presented. Chapter 4 enlists the 

key conclusions and findings of this work and also provides recommendations for future 

work. 
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CHAPTER 2. LIPSS IN SOLAR CELL APPLICATIONS 

As discussed in the previous chapter, periodic surface structures can be used to 

reduce the reflectivity of surfaces. The range of wavelengths for which reflectivity is 

suppressed depends on the geometry of the structures created. In order to determine the 

range of wavelength for which reflectivity must be reduced to improve solar cell 

efficiency, the intensity distribution of the solar spectrum was studied. Figure 2-1. shows 

that the majority of the solar energy received at the earth’s surface is in the visible and 

near infrared wavelength range. 

 

Figure 2-1. Solar irradiance spectrum [107].

By comparing the solar irradiance spectrum with the crystalline silicon 

photoelectric conversion spectrum it can be seen that within the bandgap range of silicon, 

the highest spectral irradiance at sea level for AM 1.5 G solar spectrum is between 400 
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nm and 900 nm. This can be seen in Figure 2-2. This is the ideal range for reflectance 

reduction to maximize silicon solar cell efficiency improvement. 

 

Figure 2-2. Solar spectrum and silicon solar cell optical bandgap [108]. 

The following sections describe the experimental details of creating light trapping 

surface nano structures to improve solar cell efficiency. The modelling of light trapping 

structures and FDTD simulations are discussed. The simulation results are compared with 

reflectance test results of the fabricated samples. 

2.1 Experimental Details 

2.1.1 Laser setup and imaging techniques 

A Lumera Rapid Picosecond laser was used to create LIPSS on silicon wafers. 

The laser generates linearly polarized pulses with a pulse duration of 10 ps at 1064 nm 
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and 532 nm with a variable repetition rate ranging from 10 KHz to 640 KHz. A half wave 

plate was used to rotate the angle of polarization. A beam expander was used to create a 

collimated and expanded beam which was directed into a laser scanner head. The scanner 

head contains high speed mirrors and an 80 mm focal length objective lens. The laser 

beam focal spot size used was 10 µm. A computer controlled precision 3-axis stage was 

used to position the silicon sample under the scanner head. The silicon samples used are 

127 mm diameter, 525 µm thick polished wafers. The silicon is N doped with 

phosphorous and its crystal orientation is (111) with the electrical resistivity less than 

0.006 ohm-cm. In order to create LIPSS, the laser was scanned over the surface of the 

wafer, which was positioned at the focal length of the objective lens. Long scans were 

made in the x direction with small shifts in the y direction to create a large scanned area. 

All experiments were conducted with ambient air as the irradiation atmosphere. Figure 

2-3. shows a schematic of the laser setup used to create LIPSS. 

 

Figure 2-3. Picosecond laser setup used to create LIPSS. 
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 To study the surface structures created on the sample, preliminary observations 

were made using an optical microscope, followed by SEM imaging. The samples were 

first cleaned in an ultrasonic cleaner with acetone, followed by methanol to dislodge 

loose particles and to free the sample from organic impurities that may have been present. 

Due to the low electrical conductivity of the sample, charging was expected during SEM 

imaging. To prevent charging, the silicon samples were sputter coated with platinum 

before imaging. AFM imaging was also done to study the profile of the structures 

formed. In order to study the composition and crystallinity of the silicon wafer before and 

after the creation of LIPSS on the surface, EDS and XRD analyses were performed.

2.1.2 Picosecond LIPSS on silicon 

Initial experiments to determine the parameters needed to achieve large area uniform 

LIPSS on the silicon surface were conducted at a laser wavelength of 1064nm. At a 

fluence value of 0.8 J/cm2, uniform LIPSS were created on a small area. SEM and AFM 

imaging was done to study the profile and geometry of the structures. Figure 2-4. shows 

an AFM image of the LIPSS created at 1064 nm wavelength. The average valley depth 

was measured to be 300 nm while the maximum valley depth was nearly 400 nm. As 

expected, the structures had a period of 1064 nm, which was the same as the wavelength 

of the laser used. Figure 2-5. shows an SEM image of LIPSS created using a 1064 nm 

wavelength laser. 
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Figure 2-4. AFM image of LIPSS created using a 1064 nm wavelength laser showing 

maximum valley depth. 

 

Figure 2-5. SEM image of LIPSS created using a 1064 nm wavelength laser. 

In order to determine the period required to achieve the lowest surface 

reflectance, FDTD simulations were conducted. The simulation set up is described in 
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detail in section 2.2. The period of the grating structures was varied and the effect on 

reflectance was studied. When the period was varied from 1100 nm to 400 nm in steps, it 

was determined that a period close to 450 nm was the most effective in suppressing 

reflections in the wavelength range of 200 nm to 1100 nm. This is the range of 

wavelengths in which silicon solar cells convert light energy to electrical energy. Since 

LSFL have a period nearly equal to the wavelength of incident laser radiation, the 532 nm 

wavelength of the picosecond laser was chosen. The focus in this study was to suppress 

reflections in the range of 400 nm to 860 nm, which is a range of high solar intensity for 

silicon solar cells. The 532 nm laser pulses were scanned over the silicon wafer at a 

repetition rate of 10 KHz. The scan speed was increased to gradually reduce the 

overlapping ratio from 99.9% to 50%. The power was simultaneously increased to 

maintain the fluence required to form LIPSS. It was observed that uniform LIPSS could 

be generated for overlapping ratios ranging from 99.9% down to 60%. Below 60%, gaps 

appeared between adjacent pulses and the LIPSS became discontinuous. In order to 

maximize processing speed, an overlapping ratio of 60% was chosen and a scan speed of 

60 mm/s was maintained. Uniform LIPSS over a large area were created through parallel 

line scans with small shifts normal to the scanning direction, while maintaining the 

overlapping ratio. 

To study the effects of changing the laser beam polarization angle, a half wave 

plate was used in the beam path. The wave plate was rotated to change the angle of 

polarization and the resultant LIPSS were studied. Varying the angle of polarization 

resulted in a change in the orientation of LIPSS without a change in the LIPSS period or 

profile. As the polarization angle was rotated from being normal to the scanning direction 
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to being parallel to the scanning direction, the LIPSS rotated by 90°. When the LIPSS 

were no longer parallel to the scan direction, it became necessary for the pulses in the 

adjacent parallel scan lines to be aligned such that continuous LIPSS could be formed 

normal to the new polarization direction. This was achieved through small changes in the 

scan length to ensure a perfect overlap between pulses in adjacent scan lines. For the 

remaining experiments, the polarization direction was chosen normal to the scanning 

direction so that LIPSS were parallel to the scanning direction. EDS and XRD analyses 

revealed no change in composition and crystallinity of the sample before and after the 

creation of LIPSS. 

It was observed that below the fluence of 0.7 J/cm2, no damage was visible on the 

surface of silicon. Above this fluence, LIPSS were formed and the structures were more 

prominent with deeper valleys as the fluence was further increased. In order to maximize 

the processing speed, the repetition rate was gradually increased from 10 KHz to 640 

KHz in steps. At each step the power and the laser beam scan speed were increased to 

maintain the overlapping ratio and fluence required for the formation of LIPSS. It was 

observed that as long as the fluence was maintained, the scan speed had no impact on the 

structures formed. At 640 KHz a scan speed of 4000 mm/s was used to create uniform 

LIPSS over an area of 4 cm by 4 cm. 

SEM images revealed that the LIPSS had a period of 532 nm and a fill factor of 

75%. The depth of the channels was found to increase with increasing fluence. At 0.7 

J/cm2, ripples were faintly visible with minimal variation in height between crests and 

troughs. At 0.8 J/cm2 highly uniform structures were obtained with no surface material 

removal. The periodic structures appeared to have flat top surface with filleted edges and 
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deep narrow valleys. The depth of the valleys was determined through AFM imaging and 

found to range from 150 nm to 350 nm. Figure 2-6. shows SEM images of the highly 

periodic LIPSS created at a fluence of 0.8 J/cm2. Figure 2-7. shows the progressive 

changes on the formed nanostructures with increasing laser fluence. At 1 J/cm2 some 

material removal was observed and the deeper valleys were formed Figure 2-7. b. The 

structures were still periodic and the ripples were continuous with minor breakages. At 

1.2 J/cm2 the material removal caused breakage of the LIPSS and the structures were not 

continuous Figure 2-7. d. The surface also appeared dull grey possibly due to mild 

oxidation on the surface and lower surface reflectance. The valleys however appeared 

deeper and smaller nanostructures were present on the surface. These nanostructures may 

have resulted from the sputtering of the parent silicon onto surrounding areas. 

 

Figure 2-6. SEM images of highly uniform LIPSS created at a fluence of 0.8 J/cm2. a) at 

5000x magnification b) at 8000x magnification. 
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Figure 2-7. SEM image of nanostructures created at a fluence of a) 0.95 J/cm2 b) 1 J/cm2 

c) 1.1 J/cm2 d) 1.2 J/cm2 e) 1.3 J/cm2. 
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Visual observation of the textured silicon wafer revealed iridescence when viewed 

under a broadband light source as shown in Figure 2-8. Different viewing angles 

measured from the horizontal, resulted in different colors. This is attributed to structural 

coloration as a result of interference effects caused by the grating like LIPSS. At 0° the 

sample appeared grey as seen in Figure 2-8. a. As the angle was increased from 3.5° to 

11.5° in steps of 2° various colors were observed. This iridescent effect was seen only in 

structures created at fluence values between 0.7 J/cm2 and 1 J/cm2. Above this fluence 

value the surfaces began to appear dull and grey possibly due to increased light trapping. 

 

Figure 2-8. Photographs showing iridescent effect of area covered with LIPSS when 

viewed at different angles to the horizontal: a) 0° b) 3.5° c) 5.5° d) 7.5° e) 9.5° f) 11.5°.

2.1.3 Reflectance tests 

In order to measure the broadband reflectance of the sample, a Perklin Elmer 

Lambda 950 spectrophotometer with an integrating sphere accessory was used. First the 

sample was checked for opacity and then the spectral reflectance (R) and transmittance 

(T) were measured over the wavelength range of 200 nm to 1200 nm. A monochromator 
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was used to resolve the wavelength. A blank wafer with no texturing was used to 

calibrate the machine and its reflectance values were used for comparison with textured 

samples. Reflectance tests were conducted on the samples to study the effect of LIPSS on 

surface reflectance. Structures created at the same fluence value exhibited the same 

reflectance across the wavelength range of 200 nm to 1100 nm, irrespective of the scan 

speed and repetition rate used. Structures created with the same fluence appeared 

identical under the SEM and thus were expected to exhibit the same reflectance. 

Structures made with increasing fluence values exhibited a trend of decreasing average 

reflectance value. As the fluence was increased from 0.95 J/cm2 to 1.4 J/cm2, the average 

reflectance over the wavelength range of 400 nm to 860 nm decreased from 25.79% to 

19.84%. As compared to the reflectance of bare silicon which was measured to be 

35.93% over the same wavelength range, a 44.8% decrease in reflectance was achieved 

for the case of texturing at 1.4 J/cm2. This drop is attributed to the increasing depth of 

channels and increasing irregularities on the surface.  

At fluence values close to 0.8 J/cm2, highly periodic and continuous LIPSS are 

formed with shallow valleys which are not very effective in trapping incident light. At 

higher fluence values up to 1 J/cm2 the valley depth was found to increase and light was 

trapped more effectively. At a fluence of 1.1 J/cm2, deep and continuous LIPSS were 

formed resulting in an average reflectance of 23.1% corresponding to a 35.7% decrease 

in average reflectance compared to bare silicon. At even higher fluence values up to 1.2 

J/cm2, deep valleys were created with irregularities due to material removal. This resulted 

in even lower reflectance values due to increased scattering of light below the surface of 

the material. Beyond this fluence value, the structures no longer appeared periodic. Deep 
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craters and surface irregularities were formed which further enhanced scattering and light 

trapping below the surface, thus decreasing the average reflectance. Figure 2-9. shows the 

reflectance curves for structures created at different fluence values, across the wavelength 

range of 400 nm to 860 nm. A clear decreasing trend in reflectance is seen as the fluence 

is increased. Above this fluence, material removal causes severe damage to the surface. 

 

Figure 2-9. Reflectance curves showing a decreasing trend in reflectance with increasing 

fluence values. 

The results indicate that random nanostructures are more effective in reducing 

surface reflection than periodic structures. As the fluence was increased and the 

structures transitioned from being highly periodic to random structures, there was a drop 

in average reflectance as well. This is in agreement with a study on disordered arrays of 

silicon nano-wires by Bao et al. [109], which also reported lower reflectance values with 

random surface structuring when compared with periodic uniform structures. To study 

the effects of a thin oxide layer on the textured surface, simulations were run and are 
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discussed in section 3.3. The results show that the effect of a thin oxide layer, if present, 

is negligible. Prior to reflectance testing, the samples were chemically cleaned in an 

ultrasonic bath. This ensures all organic impurities and surface particles which are 

loosely held are removed and do not influence the surface reflectance.

2.2 Finite Difference Time Domain Simulations 

In order to validate the experimental results and to study the predictability of the 

reflectance values of LIPSS, computer simulations were conducted. In addition to this, 

simulations were conducted with different periodic geometries to study the effect of 

changing profiles on the reflectance. The commercial software Lumerical FDTD was 

used in this study. The software solves Maxwell’s curl equations in non-magnetic 

materials. The governing equations are given by Equations (2.1) to (2.3). 

 
𝜕�⃑⃑� 

𝜕𝑡
= 𝛻 × �⃑⃑�  (2.1) 

 �⃑⃑� (𝜔) = 𝜀0𝜀𝑟(𝜔)�⃑� (𝜔) (2.2) 

 
𝜕�⃑⃑� 

𝜕𝑡
= −

1

𝜇0
𝛻 × �⃑�  (2.3) 

where H, E, and D are the magnetic, electric, and displacement fields, respectively, 

while 𝜀𝑟 is the complex relative dielectric constant. 

Simulations were performed to calculate the reflectance value over a unit cell of 

the structured silicon wafer. To validate the experimental results, the profile of the unit 
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cell was modeled based on the AFM and SEM images of the structures formed in 

experiments. Since the structures were highly periodic, a single unit cell was sufficient to 

fully represent the surface structure. Also, a 2D simulation was sufficient to represent the 

structure as the grating cross section remained constant in the third dimension. The mesh 

size was set using the conformal mesh technology, which determines the required non 

uniform mesh size to ensure convergence. A high accuracy mesh setting was used, which 

provides a typical mesh size of 26 to 30 points per wavelength. The time step is 

automatically calculated from the simulation mesh size based on the Courant stability 

criterion. A periodic boundary condition was used along the x axis (parallel to the silicon 

surface) to simulate a repetitive structure. For the y- axis, (normal to the surface) 

perfectly matched layer (PML) boundary condition was used to absorb unwanted 

reflections and prevent them from re-entering the simulation domain. A plane wave 

source was used to normally inject electromagnetic energy on the surface. The resultant 

reflectance spectrum was multiplied with the AM 1.5G solar spectrum to simulate 

sunlight incident on the surface. Comparative studies between experiments and 

simulations were done for the periodic structures formed at a fluence value of 0.85 J/cm2. 

The fill factor, defined as the percentage of the grating period consisting of silicon, was 

measured to be 75% and the depth was 350 nm. The top surfaces of the ripples appeared 

flat and the edges were rounded. 

A good match between experimental and simulated values of reflectance was 

obtained as can be seen from Figure 2-10. a. LIPSS formed using the 1064 nm 

wavelength laser were also subjected to reflectance testing using the spectrophotometer. 

These results were also compared with FDTD simulations. The fill factor was measured 
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to be 75% and the depth of valleys was measured to be 350 nm. Once again a good 

agreement between experimental and simulated results can be seen in Figure 2-10. b. 

 
Figure 2-10. Comparison between experimental and simulated reflectance curves for 

LIPSS having a period of a) 532 nm b) 1064 nm. 

Simulations were conducted to study the effect on reflectance due to an oxide 

layer on surface structures. It was found that the effects were negligible for oxide layers 

smaller than 10 nm as seen in Figure 2-11. which shows the case of 532 nm period simple 

grating with a valley depth of 300 nm. An oxide layer, if at all, present is not likely to 

affect the average reflectance since it is expected to be very thin for such small exposure 

times to high temperatures. 
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Figure 2-11. Reflectance curves for simple grating structures with and without an oxide 

layer. 

Different grating profiles were compared through simulations to study their 

effects on reflectance. Four profiles were compared namely, a simple grating having a 

rectangular profile, grating with a rounded top, grating with an elliptical profile and a 

grating with a flat top having curved edges. These profiles were chosen as they were most 

similar to the experimental LIPSS obtained. Figure 2-12. shows the cross sectional view 

of the different profiles modeled. Although the profiles appear similar, their effect on 

reflectance varies significantly. The different profiles chosen were each simulated for 

multiple valley depths (varied from 200 nm to 400 nm in 50 nm intervals) and fill factors 

(varied from 55% to 75% in 5% intervals) and the results were analyzed. The elliptical 

profile resulted in the lowest average reflectance amongst the chosen profiles for all 

valley depths greater than 250nm and all fill factors. The gratings with flat tops having 

curved edges resulted in the highest average reflectance values. The cases of simple 

grating and round top gratings were intermediate to the previous two cases and were 
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dependent on the valley depth. For small valley depths of 200 nm to 250 nm, simple 

gratings provided lower average reflectance values while at higher valley depths of 

300nm to 400nm, gratings with round top resulted in lower average reflectance. This can 

be seen in Fig. 10a) for the case of 65% fill factor. 

 

Figure 2-12. Profiles used in reflectance simulation a) simple grating b) rounded top c) 

elliptical profile and d) flat top with curved edges. 

Simulations were also performed to study the effect of fill factor on the 

reflectance. The fill factor was varied from 50% to 80% in steps, by increasing the profile 

width while keeping the period and the depth of structures constant. This range was 

chosen as experimental data of LIPSS fill factors ranged between 60% and 75%. It was 

found that a fill factor of 50% was the most effective in suppressing surface reflectance. 

For fill factors higher than 50%, it was found that and as the fill factor was increased, the 
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average reflectance also increased as can be seen in Figure 2-13. b. Figure 2-13. b. shows 

the case of a constant valley depth of 300 nm. For all profile types, there is an increase in 

average reflectance with higher fill factors. 

 

Figure 2-13. a) Average reflectance vs valley depth for different profiles for the case of 

65% fill factor b) Average reflectance vs fill factor for different profiles for the case of 

300 nm valley depth c) Sensitivity of average reflectance value to changes in valley depth 

for different fill factors. 
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The effect of changing the valley depth was also studied through simulations. The 

depth of the LIPSS valleys was varied from 200 nm to 400 nm in steps. This range was 

chosen as experimental data of LIPSS valley depths ranged between these values. It was 

found that the fill factor influenced the effect of changes in valley depth on the 

reflectance. At lower fill factors of 50% to 60%, deeper valleys resulted in lower 

reflectance values. This is explained by the fact that deeper valleys cause increased 

scattering and trap light more effectively. At slightly higher fill factors of 60% to 70%, a 

similar trend of decreasing average reflectance values with increasing valley depths was 

observed. However, it was observed that the average reflectance was less sensitive to 

changes in valley depth. At even higher fill factors ranging from 70% to 80%, the 

reflectance remained almost constant as the valley depth was increased from 200 nm to 

400 nm. In some cases, even a small increase in average reflectance of up to 1% was 

observed over the wavelength range of 400 nm to 1100 nm. This is attributed to the fact 

that at high fill factors, the incoming light radiation is incident onto a larger front surface 

area as compared to the case of a lower fill factor. This would cause an increase in the 

surface reflectance. The sensitivity of average reflectance to increasing valley depth 

reduced as the fill factor increased as can be seen in Figure 2-13. c. Figure 2-13. c. 

represents the case of structures with a rounded top and the same trend was observed for 

all the different profiles simulated. 

The simulations revealed that the ideal LIPSS for light trapping had a 450 nm 

period, a 50% fill factor and the deepest possible valleys. For a valley depth of 400 nm, 

the lowest simulated average reflectance was nearly 15% over the wavelength range of 

400 nm to 900 nm. However, the average reflectance achieved experimentally was higher 
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than this value since the lowest achievable fill factor in experiments was 60% while the 

lowest achievable period was around 500 nm.  Also, to avoid material ablation associated 

with higher fluence values, the valley depth was limited to below 400 nm. By using a 

lower wavelength laser, the optimal period can be achieved which will result in a further 

reduction in average reflectance. 

The drop in reflectance in silicon textured with optimized LIPSS is comparable 

with that of single layer ARCs. The highest drop in average reflectance in the wavelength 

range of 400 nm to 1100 nm for silicon solar cells using single layer ARCs is from 40% 

down to around 15%. In the case of an optimized double layer ARC this value decreases 

to around 7% [110]. However, the time and cost involved in coating solar cells with 

ARCs is very high making LIPSS texturing a viable alternative to using ARCs.

2.3 LIPSS on CIGS Thin Film Solar Cells 

In order to improve the efficiency of Copper Indium Gallium Selenium (CIGS) 

thin film solar cells, a similar approach to the one discussed in the case of silicon solar 

cells was applied. Unlike silicon solar cells, the CIGS thin film solar cell consists of 

several layers stacked on top of each other. The total cell thickness is of the order of a 

few microns. Figure 2-14. shows the construction of a typical CIGS solar cell. 



48 

 

 

  

Figure 2-14. a) Layers in a typical CIGS thin film solar cell [111] b) Cross section image 

of a CIGS thin film solar cell [112]. 

In order to maximize light trapping in the CIGS thin film solar cell, it was decided 

to texture the CIGS absorber layer. Since the absorber layer is below the CdS and ZnO 

layer in completed thin film solar cell, an incomplete cell without the upper layers added 

was obtained from the industry. FDTD simulations were run to determine the ideal LIPSS 

period and height to minimize surface reflectance. A period between 550 nm and 750 nm 

was found to be ideal for light trapping in the desired wavelength range of 300 nm to 

1100 nm. A Ti:Sapphire femtosecond laser was used to irradiate the surface. A repetition 

rate of 1 KHz was used and the pulse width was 100 fs. 

Parameters were identified to create LIPSS on the CIGS absorber layer. Initial 

experiemtns were conducted to determine the laser fluence required to create LIPSS on 

the surface of CIGS without ablating the entire layer. The spot size was set to 60 µm and 

the speed was set to 0.5 mm/s. Initially a high fluence of 2 J/cm2 was used. This caused 

the top layers of the cell to be ablated exposing the stainless steel back plate. During this 

process, LIPSS were created on all layers of the cell as seen in Figure 2-15. 
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Figure 2-15. SEM image (above) and X ray map (below) of LIPSS created on various 

layers of a CIGS thin film solar cell. 



50 

 

 

The fluence was reduced to below 1 J/cm2 to prevent ablation of the CIGS layer. 

Since the original CIGS surface was rough due to the manufacturing process involved in 

depositing the layer, two laser scans were used to generate LIPSS on the surface. The 

first pass was used to melt and flatten the CIGS crystals to obtain a smooth surface for 

LIPSS formation. It was found that two laser scans each at the fluence of 0.9 J/cm2 were 

ideal to create uniform LIPSS on the CIGS surface as seen in Figure 2-16. The LIPSS 

period was measured to be nearly 650 nm. 

 

Figure 2-16. Uniform LIPSS created on the CIGS absorber layer. 

The textured CIGS surface was tested for surface reflectance using a 

spectrophotometer as was discussed in the case of silicon earlier. This data was compared 

with the FDTD simulation results for LIPSS with a fill factor of 65% a depth of 300 nm 

and a period of 650 nm. The results are seen in Figure 2-17. 
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Figure 2-17. Reflectance vs wavelength curve showing simulated and experimental data 

for CIGS textured with LIPSS. 

The simulation results matched the experimental data well. The average reflectance 

was reduced by 10% as compared to perfectly flat CIGS. However, since the initial 

surface of CIGS was also rough, a net improvement of only 0.4% was observed from the 

rough surface to the LIPSS textured surface, making the process uneconomical for 

industrial use.

2.4 Summary 

By utilizing the light trapping properties of periodic grating structures, silicon wafers 

with average reflectance values of 23.1% were fabricated by texturing the surface with a 
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picosecond laser. These structures were created at high laser scanning speeds of 4000 

mm/s and low pulse overlapping ratios of 60%. This method provides an inexpensive and 

rapid process to create low reflectance silicon wafers which can be used in photovoltaic 

applications. Although there have been many studies on the anti-reflective properties of 

LIPSS [113] created by femtosecond lasers, little work has been done in this area using 

picosecond lasers. Moreover, LIPSS formed by a picosecond laser has not been reported 

at high scan speeds exceeding 3000 mm/s, which is an important attribute to lowering the 

fabrication costs of solar cells. In addition, the anti-reflective properties of large area 

LIPSS created with low overlapping ratios of less than 65% have been rarely reported, 

which were addressed in this work. A decreasing trend in average reflectance was 

observed when the LIPSS were created with increasing fluence values up to 1.4 J/cm2. 

Beyond this value material ablation was observed. The experimentally achieved 

reflectance values for highly periodic LIPSS have been validated through FDTD 

simulations that displayed a high degree of predictability. Various periodic geometries 

were simulated to study their impact on surface reflectance. Elliptical profiles resulted in 

the lowest average reflectance amongst the profiles simulated. The effects of changing 

valley depth and fill factor in each of these structures were also studied, showing that 

higher fill factors resulted in higher average reflectance values. A steady drop in 

sensitivity of average reflectance to change in valley depth is reported as the fill factor is 

increased above 50%. The results presented provide guidelines for optimal design of 

periodic structures for light trapping in silicon solar cells.
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CHAPTER 3. SUPERHYDROPHOBIC SURFACE STRUCTURES 

3.1 Experimental Details 

A Ti-Sapphire femtosecond laser (Spectra Physics - Spitfire Pro) was used to 

create superhydrophobic surface structures on metal surfaces as seen in Figure 3-1. The 

laser generates a linearly polarized Gaussian beam with a wavelength of 800 nm. The 

pulse width is 100 fs with a pulse repetition rate of 1 kHz. The set up consisted of a half 

wave plate and a thin film polarizer to control the power output. A high speed shutter was 

used to control the laser beam for marking. This was followed by a quarter wave plate to 

achieve circular polarization. The beam was focused using a 45 mm focal length 

objective lens. A high precision nano positioning 3 axis computer controlled stage 

(Aerotech ANT130-XY and ANT130-5-V) was used to mount and position the target 

sample in the laser beam focal plane.
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Figure 3-1. Femtosecond laser setup used to create hydrophobic surface structures. 

3.1.1 Nanostructure transfer to polymers 

Copper was used as the metallic sample in the study due to its excellent 

formability. The sample thickness was chosen to be 50 µm for its ease of handling and 

forming. Initial experiments were conducted to determine if nanostructures would 

successfully transfer from the metal surface onto PDMS. To evaluate the possibility of 

transferring the nanostructures from a metallic surface to PDMS, the copper surface was 

textured with laser induced periodic surface structures (LIPSS) using femtosecond laser 

pulses. The laser fluence was varied in the range of 4 J/cm2 and 12 J/cm2 while 

maintaining a 90% overlapping ratio, to create LIPSS of varying depths. The textured 
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surface was imaged under the SEM. The LIPSS period was measured to be between 670 

nm and 700 nm while the depth varied between 300 nm and 500 nm. PDMS base, mixed 

with the curing agent was poured onto the textured surfaces and allowed to cure, 

following which, the PDMS was peeled off the surfaces of the metals. Since PDMS is 

non-conductive, the surface was sputter coated with platinum before SEM imaging to 

create a conductive top layer to prevent sample charging. However, it was found that due 

to the flexibility of PDMS, the sputter coated platinum layer was broken and cracked 

easily, making SEM imaging difficult. In order to study the surface of PDMS, an 

environmental SEM was used at low vacuum. This allowed imaging of the non-

conductive PDMS without a conductive coating. It was found that the surface nano 

structures were successfully transferred onto PDMS with no damage to the surface 

features as seen in Figure 3-2. The details of the surface were maintained and the PDMS 

surface was found to replicate the copper surface. 

 

Figure 3-2. LIPSS created on the surface of copper (left) and transferred onto PDMS 

(right) using transfer molding. 
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3.2 Femtosecond Laser Surface Structuring 

3.2.1 Surface nano structures 

Hydrophobic surface structures were created on copper and transferred to PDMS 

to increase the water contact angle and reduce contact angle hysteresis. Initial 

experiments were conducted to study the effects of LIPSS and random nano roughness on 

the surface wettability of copper and PDMS. The textured copper and PDMS surfaces 

were tested for water contact angle using an automated goniometer. For each type of 

nano structure created, the contact angle achieved for copper and PDMS are shown in 

Figure 3-3. and Figure 3-4. as inserts. The parameters used to create each surface 

structure and the corresponding contact angle values achieved on copper and PDMS are 

discussed below. 

In order to study the effect of periodic nano structures, LIPSS were created on the 

surface of copper by varying the femtosecond laser fluence between 4 J/cm2 and 20 

J/cm2. A 50 µm spot size was used and parallel scans were made 40 µm apart. A scan 

speed of 15 mm/s was used resulting in a pulse overlapping ratio of 70%. The resultant 

LIPSS had a period of 700 nm and a depth between 300 nm and 500 nm. These structures 

were completely transferred onto PDMS. For fluence values lower than 10 J/cm2, the 

surface of the textured copper appeared iridescent due to the grating effect of shallow 

LIPSS. As the fluence was increased beyond this value the appearance became dull and 

eventually darker. This is attributed to the light trapping nature of LIPSS which is 

amplified as the depth of features increases. The SEM and ESEM images of the copper 

and PDMS surfaces respectively are shown in Figure 3-3. The highest water contact 
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angle of 147° was measured on the surface of copper textured with LIPSS using a fluence 

value of 14 J/cm2. The corresponding PDMS surface resulted in a contact angle of 125°. 

The goniometer images of water droplets on the surfaces of copper and PDMS are also 

shown in Figure 3. 

 

Figure 3-3. LIPSS created on copper showing a water contact angle of 147° (left) and on 

PDMS showing a contact angle of 125° (right). 

The LIPSS textured surface was compared with a surface covered in random nano 

bumps. In order to create a surface covered with nano scale roughness, the fluence used 

was in the range of 60 J/cm2 and 100 J/cm2. The surface was scanned in a grid pattern at a 

scan speed between 1 mm/s and 2 mm/s with a 10 µm spacing between adjacent passes. 

These structures were transferred onto PDMS as can be seen in Figure 4. The highest 

contact angle achieved in the case of copper was 148° while PDMS showed 

superhydrophobicity with a contact angle of 151°. The roll off angle for this surface, 

however, was nearly 40° making it unsuitable for drag reduction applications. From these 
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results it was observed that nano bumps were more effective in increasing the contact 

angle as compared to periodic ripples. This is attributed to the fact that the surface area in 

contact with the liquid is minimized in the case of random nano roughness leading to 

reduced forces of adhesion at the interface. 

 

Figure 3-4. Nano roughness created on copper showing a water contact angle of 148° 

(left) and on PDMS showing a contact angle of 151° (right).

3.2.2 Dual scale micro/nano surface structures 

Nano structured surfaces were found to increase the contact angle but due to the 

high contact angle hysteresis observed on these surfaces, the roll off angles were high. 

This is undesirable for surface drag reduction applications. In order to reduce the 

hysteresis, dual scale features were created to promote the Cassie Baxter state of wetting. 

It was decided to create convex microstructures covered with smaller nano scale features. 

Multi scale features were used to reduce the size of features required to achieve 
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superhydrophobicity. The largest feature height was limited to 15 µm above the surface. 

The aspect ratio and spacing between features were varied to optimize the water contact 

angle. Various surface structures were created on the copper surfaces using femtosecond 

laser pulses as shown in Figure 3-5. and Figure 3-5. These structures were transferred 

onto PDMS and the water contact angles were measured using the goniometer. 

3.2.2.1 Micro grooves 

Parallel micro grooves with nano LIPSS were created as seen in Figure 3-5. a. 

Parallel scans were made on the surface of copper and the fluence was varied between 80 

J/cm2 and 120 J/cm2. The spacing between channels was varied between 10 µm and 50 

µm and the overlapping ratio between 75% and 90%. The highest contact angles were 

achieved for a spacing of 25 µm and a fluence value of 95.5 J/cm2. The features were 

measured to be 8 µm in height. The PDMS replica showed some micro bumps on top of 

grooves due to the valley texture of the copper grooves. This resulted in a 147.5° contact 

angle with a low roll of angle under 8° in the case of PDMS.  

By increasing the fluence and varying the overlapping ratio between 90% and 

95%, microchannels with nano bumps were created on copper as seen in Figure 3-5. b. 

The highest contact angles were achieved for a groove spacing of 25 µm and a feature 

height of 10 µm. These structures were also found to be highly hydrophobic and 

exhibited contact angles of over 160° in the case of copper and over 140° in the case of 

PDMS. The PDMS replica showed slightly different top surface nano structures due to a 

difference in the valley texture in the copper grooves. This resulted in a lower contact 

angle of 143° in the case of PDMS. A low roll off angle of less than 5° was observed for 
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this structure on copper. The roll off angle on PDMS was slightly higher but was found to 

be under 10°. In both the cases of micro grooves, it was observed that nano bumps are 

more effective in increasing the contact angle and reducing hysteresis as compared to 

nano ripples. 

 

Figure 3-5. (a) Micro-grooves with nano-ripples created on copper showing a water 

contact angle of 158.1° (left) and on PDMS showing a contact angle of 147° (right), (b) 

Micro-grooves with nano-bumps created on copper showing a water contact angle of 

162° (left) and on PDMS showing a contact angle of 143° (right). 
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3.2.2.2 Micro bumps 

In order to further reduce the contact area of water on the surface and enhance the 

Cassie Baxter state of wetting, micro bump features were created on the surface of 

copper. Micro bumps covered with nano scale LIPSS were created by scanning the 

surface in the shape of a grid with lines normal to each other. A spot size of 20 µm was 

used and the spacing between scan lines was varied between 10 µm and 50 µm to achieve 

different micro bump profiles. The surface features were varied by changing the fluence 

between 15 J/cm2 and 40 J/cm2. High overlapping ratios of 90% to 95% were used. These 

structures were completely transferred onto PDMS as seen in Figure 3-6. a. The highest 

contact angles achieved were 157°on copper and 126° on PDMS and corresponded to a 

spacing of 30 µm and a fluence of 32 J/cm2. The micro bumps were measured to be 8 µm 

in height. The LIPSS on the surface had a period of 700 nm and a height of nearly 400 

nm. 

As in previous cases, varying the nano scale features on the surface was expected 

to change the wettability of the surface. Instead of nano ripples, nano bumps were created 

on the surface of micro features by varying the fluence between 80 J/cm2 to 200 J/cm2 

and the overlapping ratios between 75% and 90%. These structures were transferred onto 

PDMS as seen in Figure 3-6. b. Both the copper and PDMS surfaces were found to 

behave superhydrophobic. The highest contact angles achieved were 165°on copper and 

153° on PDMS and corresponded to a spacing of 25 µm and a fluence of 95.5 J/cm2. The 

features were measured to be 12 µm in height while the nano bumps were found to range 

from 100 nm to 1 µm.  The contact angle hysteresis was found to be very low for this 

structure leading to low roll off angles of less than 5° on both copper and PDMS. Once 
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again it was observed that nano bumps were more effective in increasing the contact 

angle and reducing the contact angle hysteresis. 

 

Figure 3-6. (a) Micro-bumps with nano-ripples created on copper showing a water 

contact angle of 157° (left) and on PDMS showing a contact angle of 126° (right), (b) 

Micro-bumps with nano-bumps created on copper showing a water contact angle of 165° 

(left) and on PDMS showing a contact angle of 150° (right).
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Table 3.1. Summary of contact angle (CA) values for different surface structures. 

Surface structure CA Copper (°) CA PDMS (°) 

LIPSS 147 125 

Nano roughness 148 151 

Micro grooves with nano ripples 158 147.5 

Micro grooves with nano bumps 162 143 

Micro bumps with nano ripples 157 126 

Micro bumps with nano bumps 165 153 

 

The water contact angles of the textured surfaces are summarized in Table 3.1. 

Summary of contact angle (CA) values for different surface structures. The highest 

contact angles of 165° for copper and 153° for PDMS were achieved in the cases of 

microbumps with a spacing between 25 µm and 30 µm created at a fluence of 95 J/cm2. 

A high contact angle was also achieved on surfaces textured with micro grooves with 

nano ripples having a spacing of 25 µm created at a fluence of 95 J/cm2. Based on these 

results it can be concluded that nano scale features play an important role in determining 

the wettability of a surface. In all cases, nano bumps were found to be more effective than 

nano ripples in enhancing the surface wettability. It can also be concluded that various 

contact angles can be achieved on both metals and polymers by varying the surface 

geometry. This can be used in several applications including controlling fluid flow in 
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microfluidics as will be discussed in subsequent sections. Several other surface structures 

were created on the surface of copper. The SEM images these surface textures and their 

corresponding contact angle measurements can be seen in the Appendix. 

It was observed that the contact angle of copper was reduced, immediately after 

laser texturing. This is attributed to the fact that copper is inherently hydrophilic and the 

surface roughness leads to an increase in this hydrophilicity. However, after PDMS is 

poured on the surface for the texture transfer, silanization of the copper occurs, making it 

highly hydrophobic. It was also observed that the samples which were not treated with 

PDMS, when exposed to the ambient atmosphere for 10 to 15 days, eventually exhibited 

hydrophobicity. This is attributed to the addition of low surface energy carbon groups to 

the textured surface due to the decomposition of atmospheric CO2. The contact angle 

measured on copper samples exposed to the atmosphere for 15 days, were found to be 

similar to the contact angles achieved on copper immediately after the PDMS transfer. 

3.3 Fabrication and Testing of Textured Microfluidic Devices 

One of the many potential applications of superhydrophobic polymer surfaces is 

in microfluidics. The flow rate of fluids through micro-channels is an important 

parameter in the design of microfluidic devices. Chemical treatment is commonly used to 

change the wettability of microfluidic channel inner walls to vary the flow rate. As 

discussed earlier, there are limitations to using chemical treatments to vary the wettability 

of micro fluidic channel walls. The process discussed below allows the fabrication of 
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textured hydrophobic microfluidic inner channel walls. This reduces the fluid drag at the 

microchannel walls and therefore allows control over the flow rate through the channel. 

In order to create superhydrophobic inner walls in PDMS microfluidic channels, 

metallic molds were created using aluminum blocks as seen in Figure 3-7. a. The final 

microfluidic channel diameter was chosen to be 200 µm. Therefore, the mold channel 

was made 300 µm in diameter to compensate for the 50 µm thickness of the copper foil. 

The molds were designed to accommodate for the inlet and outlet ports of the 

microfluidic device. Different micro end mills were used to create the channel and the 

outlets. The molds were used to mechanically form 50 µm thin copper foil into the 

desired channel shape. The formed copper foils were textured using the femtosecond 

laser and placed in a petri-dish as seen in Figure 3-7. b. Micro bumps with nano bumps 

were chosen as the surface structure to achieve superhydrophobicity in the channels due 

to the high contact angles and low roll off angles achieved with these structures. These 

structures were selected to reduce the drag produced due to adhesive forces on water 

flowing inside the channel. The parameters used to create these surfaces were similar to 

the parameters discussed in section 3.2.2.2. The textured channels were used as molds 

and PDMS was poured onto the textured foil. The cured PMDS was peeled off to reveal 

micro channels in the surface with textured inner walls. This formed one half of the micro 

fluidic device while and a second half was fabricated by the same process.  The two 

PDMS halves were bonded together to form a completed microfluidic device as seen in 

Figure 3-7. c. A small amount of PDMS curing agent was used between the two halves 

which were aligned together and allowed to form a strong bond. Samples were prepared 

having both textured and un-textured channels but the channel length and diameter were 
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kept contact in both cases. Needles with tubing were used to supply water to the devices 

to measure fluid flow. The textured copper and PDMS channels were imaged using an 

SEM and ESEM as seen in Figure 3-8. a and Figure 3-8. b respectively. A 3D optical 

profiler was used to image the copper channel as seen in Figure 3-8. c. 

 

Figure 3-7. (a) Micro machined Aluminum microchannel mold, (b)Formed and textured 

copper foil immersed in PDMS, (c) PDMS microfluidic device with fluid inlet and outlet 

connections. 
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Figure 3-8. (a) SEM image of formed and textured copper microchannel, (b) ESEM 

image of transferred PDMS microchannel, (c) 3D optical profiler image of a textured 

copper microchannel. 

In order to compare the flow rate through the textured and un-textured devices, 

water was supplied through both devices at a constant pressure. A common pressure 

source was used and a bifurcation in flow was created to supply fluid at an equal pressure 

to both devices. The flow rate through the device was calculated by collecting fluid at the 

outlets of the two devices for a fixed period of time and weighing the fluid collected at 

each outlet using a high precision weighing scale. A color dye was supplied through the 
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channels to identify leaks in the devices. Several trials were run and it was found that in 

the case of the un-textured device, an average flow rate of 0.773 ml/min was achieved. 

For the same constant input pressure, the average flow rate though the textured sample 

was found to be 2.227 ml/min as seen in Figure 3-9. Therefore, a 186% increase in flow 

rate was achieved by texturing the inner walls of the microfluidic channel. The higher 

flow rate through the textured sample is attributed to the reduction in drag due to the 

superhydrophobic inner walls. By varying the hydrophobicity of the inner channel walls 

using different surface structures, the drag can be controlled accurately to achieve the 

desired flow rate through channels. 

 

Figure 3-9. Flow rate measurements through textured and un-textured microfluidic 

channels. 

This process can be used in applications where the resistance to flow though 

micro channels is to be reduced or controlled. Some examples of such applications are in 
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fluid supply tubing, controlled mixing of fluids, syringes etc. Surface structures which 

help achieve high contact angles but also high contact angle hysteresis as seen in section 

3.2.1 can be used to restrict flow through channels. This can be used to create flow 

control valves in microfluidic devices. A byproduct of this process is superhydrophobic 

copper. Although the copper surfaces turn superhydrophobic by exposure to ambient 

atmosphere, the PDMS treatment makes this process faster. The superhydrophobic 

copper surfaces can be used in applications such as MEMS, compact heat exchangers to 

increase thermal efficiency, water resistant electronics, drag reduction etc. 

The die is not damaged during the transfer process and can be reused. A single die 

can be textured and used to fabricate multiple microfluidic devices.

3.4 Summary 

Various surface structures were designed and created on the surface of copper 

using femtosecond laser pulses with the objective of increasing the water contact angle 

and decreasing the contact angle hysteresis. Surface nano structures were found to have a 

strong impact on the contact angle of microstructured surfaces. Nano bumps were found 

to be more effective in increasing the contact angle as compared to periodic nano ripples 

for the same surface micro structure. Surfaces textured with micro bumps covered with 

smaller nano bumps were found to be the most effective in increasing water contact angle 

and achieving superhydrophobicity. These surface textures resulted in water contact 

angles over 165° and contact angle hysteresis less than 5° in the case of copper. The 

structures were transferred onto PDMS through transfer molding to achieve 
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superhydrophobic PDMS surfaces with a water contact angle of over 153°. The metal and 

polymer replica showed similar trends in wettability with changing surface structures. 

 A process to create microfluidic channels with superhydrophobic inner channel walls 

was described in detail. Formed and laser textured copper foils were used as 

microchannel molds and transferred to PDMS via transfer molding. The hydrophobicity 

of the inner wall surfaces is controllable through surface structure and can be used to 

reduce drag and vary the flow rate through microfluidic devices. By creating dual scale 

superhydrophobic surface structures on inner channel walls, the fluid flow rate through 

PDMS microfluidic devices was increased by 186% compared to un-textured devices. 
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CHAPTER 4. CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

Laser surface texturing has several advantages over other surface texturing 

methods. It has wide ranging applications, some of which were explored as part of this 

work. 

1. Laser surface texturing was used to create LIPSS on the surface of silicon to 

improve its optical properties for solar cell applications. The surface reflectance 

of silicon was reduced from 40% to under 20% over the wavelength range of 400 

nm to 850 nm by creating light trapping LIPSS. The lowest reflectance was 

achieved in the case of LIPSS with a period of 532 nm and a feature depth of 

around 350 nm created at a fluence of 1.4 J/cm2. 

2. Uniform LIPSS can be created at a high speed by reducing the pulse to pulse 

overlapping ratio. A 60% pulse overlap ratio was found to be the lowest 

achievable overlap while still creating uniform and continuous LIPSS. 

3. FDTD computer simulations of LIPSS reflectance matched closely with 

experimental results showing high predictability. The lowest simulated silicon 

reflectance value of 15% was observed in the case of LIPSS with an elliptical 

profile. The optimal LIPSS period  was found to be 450 nm and the optimal fill 

factor was found to be 50% 
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4. Nano structures such as LIPSS were transferred from the surface of metals to 

polymers using transfer molding. This shows that it is possible to completely and 

accurately transfer surface structures from metal surfaces to polymers down to the 

nano scale. This can be used to create structures on polymers which are otherwise 

difficult to produce by direct laser texturing. 

5. A wide range of contact angles and contact angle hysteresis values can be 

achieved by changing surface micro and nano structures independently. The 

impact of nano structures on wettability of microstructured surfaces was found to 

be significant and the nano structures strongly influenced the contact angle and 

contact angle hysteresis of the microstructured surface. 

6. The highest contact angle of 165° with a CAH value of under 5° was achieved by 

creating micro bumps with nano bumps on the surface of copper. This surface 

when transferred to PDMS resulted in a contact angle of 153° and a contact angle 

hysteresis of less than 5°. 

7. Microfluidic devices can be fabricated by transfer molding. This process allows 

the creation of micro and nano scale features on the inner channels of the device 

which can be used to control the fluid flow properties of the microchannel. A 

single textured die can be used to produce multiple microfluidic devices making 

this an economical and scalable process. A flow rate increase of 186% was 

achieved by texturing the inner walls of a PMDS microchannel with micro bumps 

covered in nano bumps. 



73 

 

 

4.2 Recommendations for Future Work 

1. Nano structuring to improve solar cell absorptivity can be extended to other thin 

film solar cell technologies such as cadmium telluride (CdTe), copper zinc tin 

sulfide (CZTS), dye-sensitized solar cells (DSSCs) and perovskite solar cells. 

2. Further understanding of the formation mechanism of high spatial frequency 

LIPSS is required. This will improve the predictability of formation of nano 

structures for a given set of process parameters and allow simulation of LIPSS 

texturing processes. 

3. The effects of using ARCs on LIPSS to reduce surface reflectance can be studied. 

Also, the effect of textured ARCs on flat silicon can be studied, which would 

reduce the surface recombination losses caused by increased silicon surface area. 

4. Microfluidic devices with gradient hydrophobicity can be created using the 

process described in this work. This can be used to drive flow through 

microfluidic channels with the help of differences in forces of attraction without 

the use of external pressure. 

5. The influence of superhydrophobic surfaces in heat exchangers could be studied 

to optimize the surface structure desirable for this application. Copper and its 

alloys are a good material choice for this application due to their high thermal 

conductivity, high formability and resistance to corrosion. 

6. Multi-functional surfaces with properties such as broadband antireflection and 

superhydrophobicity can be studied from the standpoint of photovoltaics. 
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APPENDIX 

Some additional surface textures made on copper are shown below.  

1) Micro-protrusions: 

a. Without overlap 

Micro protrusions were made on copper using single pulses at a fluence of 

17 J/cm2. A scan speed of 20 mm/s was used to prevent overlapping. Grids 

with a line spacing of 20 µm, 30 µm and 40 µm were used and the 

resultant structures are shown below in Figure A-1. 

 

Figure A- 1. Micro protrusions  without overlap made on the surface of copper.
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b. With overlap 

Next, micro protrusions were made on copper using single pulses at a 

fluence of 17 J/cm2 using scan speeds of 10 mm/s and 5 mm/s. This 

resulted in an overlapping ratio of 67% and 83% respectively. These 

protrusions were distributed in grids with a line spacing of 30 µm and 50 

µm and the resultant structures are shown in Figure A-2. 

 

Figure A- 2. Micro protrusions with overlap made on the surface of copper. 

2) Micro-protrusions and LIPSS 

a. With overlap 

LIPSS were created on copper at a fluence below 2 J/cm2. Protrusions 

were made over this surface at 10 mm/s as seen in Figure A-3.  
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Figure A- 3. Micro protrusions with overlap and LIPSS made on the surface of copper. 

b. Without overlap 

The surface was initially covered with LIPSS formed at a fluence of 10 

J/cm2 above which micro protrusions were formed with the same 

parameters as in case 1b. This is seen is Figure A-4. 
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Figure A- 4. Micro protrusions without overlap and LIPSS made on the surface of 

copper. 

In all the cases discussed, the contact angle for copper ranged between 110° and 

130°. The PDMS surface created by transferring the features made on copper exhibited 

contact angle values in the range of 120° and 135°. 
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