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ABSTRACT 

Brayfield, Russell, S. M.S.N.E., Purdue University, December 2016. Optical Emission 

Spectroscopy of High Voltage Cold Atmospheric Plasma Generated Using Dielectric 

Barrier Discharges. Major Professor: Allen Garner. 

 

While numerous experiments have demonstrated the efficacy of high voltage cold 

atmospheric pressure plasmas for extending food shelf-life and sterilizing medical 

instrumentation in sealed packages, the influence of the packaging material and gas 

composition on the reactive gas species generated by the high voltage atmospheric cold 

plasma is poorly understood.  This study elucidates the impact of these parameters on 

plasma generation in sealed packages for four gases (ambient air, commercial grade 

compressed air, and high purity helium and nitrogen) placed in commercially available 

transparent plastic containers and bags.  After adequate gas flushing, we observed that the 

container and bag individually reduced signal intensity by 63% and 45% across the 

measured wavelengths of 200 nm to 1100 nm, demonstrating that they acted as 

broadband absorbers.  Neither the container nor bag influenced the wavelengths of the 

peak emissions, only the amplitude, indicating no significant effect on the types of 

species generated. Lissajous diagrams showed that the power dissipated by the nitrogen 

and ambient air plasma generated at 72  3.7 kV RMS were comparable to the 

compressed dry air discharge generated at 80  3.7 kV RMS.
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 The helium discharge at 37  3.7 kV RMS absorbed approximately 92% more 

power than these gases. We observed translational temperatures ranging from 1088 K for 

nitrogen to 1421 K for compressed air and rotational temperatures ranging from 285 K 

for helium to 479 K for compressed air. These results indicate that packaging materials 

have minimal effect on the most dominant peaks although further studies are required to 

elucidate the impact on less intense peaks observed. 

 

We next assessed the effect of voltage on species generation using a helium air 

plasma generated using the Phenix system with applied voltages of 36.4, 44.8, 58.1, and 

71.0 kV. The light from the plasma was collected using a fiber optic cable that was 

provided with the SP2500 spectrometer. The N2 Second Positive system of a helium air 

plasma generated at 36.4 kV was observed using the 1800 g/mm grating of a 

spectrometer. SPECAIR fits for the spectra show no real correlation to voltage. Higher 

voltage did not necessarily translate to higher plasma temperature although the relative 

intensities for the observed peaks increased with increasing voltage. This clearly showed 

that the increased voltage did not directly correlate to increased temperature of the bulk 

gas. 
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CHAPTER 1. INTRODUCTION 

Plasmas generated at or near atmospheric pressure are typically thermal plasmas 

with temperatures well above room temperature. For instance, a typical glow discharge 

used to deposit carbon films had a temperature between 300 K and 400 K [1]. The first 

ionization potential of helium, another common gas used for atmospheric pressure 

plasmas, is approximately 12000 K, which is well above room temperature [2]. These 

high plasma temperatures lead to thermal transfer between the plasma and any 

surrounding medium, which has been leveraged in many applications that call for high 

heat applications. For instance, steel processing facilities routinely use arc plasma heaters 

to melt raw metal for processing [3]. These heaters are placed in large crucibles to melt 

large quantities of metal for various foundry uses. Another industrial application has led 

to plasma cutters becoming commonplace in many shops today [3–5]. Thermal plasma 

has also been applied to creating thin diamond films with radio frequency (RF) generated 

discharges [6]. Ten minute applications of RF (4 MHz, 60 kW) argon, hydrogen, and 

methane plasmas formed 10-30 μm crystals with a deposition rate of 1 μm/min. 

 

While cold atmospheric plasmas (CAPs) have historically been used  in industries 

for etching, deposition, cleaning, and flat panel displays [7,8],recent studies have 

evaluated for biological applications [9]. 
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CAPs are non-equilibrium plasmas formed at or near room temperature. In plasma 

near room temperature, the high energy electrons do not collide as often with the low 

energy ions (gas particles); therefore, the electrons and various ions are not in 

thermodynamic equilibrium. Non-equilibrium plasmas are generated when the pressure is 

sufficiently low such that particle collisions in the gas are less frequent than at higher 

pressures [2]. Because relatively few collisions occur at low pressure, the bulk of the 

plasma and gas remain near room temperature [2]. To achieve this at atmospheric 

pressure, radio frequency (RF) or pulsed power systems generate high frequency 

electromagnetic fields to “pump” the electrons and create the discharge [2]. Generating 

CAP discharges requires minimizing operating voltage, discharge current, and the duty 

cycle of the “pumping” pulses [10].  

 

Figure 1: Sample DBD configurations from [11]. 

The most common method for CAP generation is the silent discharge, better known 

as a dielectric barrier discharge (DBD), which, due to a lack of sparks and streamers, 

produces minimal audible noise. Figure 1 shows that DBDs are made by insulating either 

one, both, or part of the electrodes with dielectric material, most commonly fused silica 

glass or plastics. System performance strongly depends on the frequency of the applied 

voltage and the working gas. DBD plasmas typically range from 1-100 kV, and result in 
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many filamentary discharges. The electrons remain on the dielectric surface and oppose 

the external electric field, resulting in short lived streamers with lifetimes ranging from 1 

to 10 ns [12]. 

 

1.1 Applications and Characterization of CAPs 

The wide range of CAP induced effects has motivated interest in multiple 

applications in bioscience and agriculture; however, system optimization requires 

elucidating the plasma properties and mechanisms involved. The voltages applied and the 

timescale of ion recombination, which can be on the order of hundreds of nanoseconds 

[13], hinder direct measurement of the plasma species by physical sampling. One can use 

optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS) to 

assess the light emitted and absorbed, respectively, to discern the chemical components 

over a specific time range in the bulk of the plasma or at a specific location [14]. 

 

Experiments studying DC corona discharges in air show that humidity plays a key 

role in increasing ozone generation, which alters plasma chemistry, while leaving the 

electron distribution unchanged for relative humidity up to 100% [15]. Plasmas can also 

abate volatile organic compounds through catalytic reactions involving oxidative species 

and photocatalytic reactions [16]. Ozone generation can also reduce microbial population 

in spinach, although it did discolor the leaves [17]. Applying the same system to Bacillus 

atrophaeus in a sealed package deactivated the spores after 60 s of treatment [18]. Three 

to five minute dielectric barrier discharge (DBD) treatment yielded 99.93% germicidal 
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efficiency for E. coli [19] with temperatures below 43 °C, which is well below the 

threshold for thermal inactivation. 

 

CAPs offer a novel method for sterilizing medical instruments [20], enhancing 

wound healing [21], enhancing food safety and shelf-life [22], and treating cancer [23]. 

Recent studies have demonstrated that CAPs effectively eliminated bacteria and the 

remaining microscopic remnants on surgical equipment such as scalpels and forceps [24]. 

CAP treatment of open wounds leverages similar bactericidal effects to reduce the risk of 

hospital acquired infections [25]. CAPs induce these effects by ions and charged radical 

chemical species bombarding the cell surface [26,27]. These same radical species and 

ions can also treat food products to eliminate microorganisms to promote food safety or 

shelf-life extension [27,28]. CAPs can avoid the side effects of current sterilization 

methods, such as chlorine washes and pasteurization, which potentially leave traces of 

carcinogens or alter the taste and texture of food due to heating and chemical toxicity 

[29]. The absence of induced bulk heating allows CAPs to maintain texture and flavor 

[30]. The athermal nature of CAPs enables application to numerous materials, ranging 

from metals to plastics [9]. 

 

1.2 Indirect and Direct Application of Plasmas to Samples 

One may characterize plasma delivery to a sample in one of three ways based on 

the current flow in the system [23]. Direct plasma treatment involves applying current 

directly to the sample, such as when the treated surface acts as an electrode as in Drexel’s 
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floating electrode dielectric barrier discharge [31]. Indirect treatment entails generating 

the plasma between two electrodes away from the sample surface and then propelling it 

toward the surface. The final method is a hybrid approach that generates plasma using a 

mesh electrode and then flows the species onto the surface without delivering current to 

the sample. 

 

Dielectric barrier discharges (DBDs) offer high power application compared to 

other discharge methods with limited material and electrical requirements for multiple 

applications [32]. Argon and carbon dioxide DBDs effectively inactivated Lactobacillus 

sakei and Photobacterium phosphoreum on agar slab samples [33]. A two-minute 14 kV 

discharge induced a 5 log reduction in Lactobacillus sakei population and a 6 log 

reduction in Photobacterium phosphoreum. OES showed the generation of atomic 

oxygen, N2
+, OH, and N radical species at room temperature. Observing these effects 

begs the question of what specific plasma parameters affect the sterilization and 

sanitization process. 

 

Spatial and temporal behavior of species within the gap may also impact treatment 

efficacy. Spatial and temporal evaluation of a DBD system with helium and impurities 

showed that gas ionization, and therefore radical species production, began at the anode 

[34]. OAS elucidated kinetic mechanisms for radical species formation and demonstrated 

that humidity played a key role in species generation but not in the plasma breakdown 

[35].  

 



 

 

6 

One can also construct flowing DBDs, which were investigated for N2 at 

atmospheric pressure [36] to sterilize small packages by flowing gas through narrow 

openings or polymerize a microcapillary [37]. These applications would be considered 

indirect treatments since the species are propelled toward the surface using flowing gas. 

This technique could also sterilize equipment without costly disassembly and down time. 

 

Analogous to flowing DBDs, one can also apply plasmas to biological specimens 

by using plasma jets, in which the plasma is formed away from the target and 

subsequently propelled (or blown) toward the target [38]. Figure 2 shows a typical 

plasma jet design. 

 

Figure 2: Typical plasma jet configuration from [38] 

The jet properties were explored when applied to a surface and not applied to a 

surface at all, allowing the species to interact with the bulk gas and surrounding medium. 

Ambient conditions and the gas used for the discharge influenced the species generated. 

Similar in nature is the cold plasma torch that is generated using an RF source, as shown 

in Figure 3. 
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Figure 3: Cold plasma torch schematic from [38]. 

An inexpensive plasma jet can be used to produce the same chemical species as 

more expensive setups [39]. OES measurements of the breakdown characteristics of a 

plasma jet showed that the applied current strongly influenced the discharge regime and 

electron, ion, gas, rotational, and vibrational temperatures [40]. Jets inducing biocidal 

effects have also been characterized by OES [41]. Carefully calibrated monochromator 

measurements of various species, such as atomic oxygen, ozone, and UV emission 

showed that UV emission greatly exceeded U.S. Environmental Protection Agency 

requirements for sterilization [41]. Thus, sterilization resulted from a combination of the 

species and UV radiation. The interaction of the jet with the surrounding ambient air 

strongly influenced ozone and atomic oxygen generation. Electrical and OES 

measurements for similar experiments with helium yielded similar results  [42].  
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Indirect application has also been studied for treating agricultural specimens and 

extending shelf life. Flowing air through a microwave induced plasma device and 

allowing the gas species to flow indirectly onto a sample of pork reduced bacterial 

colonies [43]. Two 2.5 min treatments were enough to maintain the microbial load to the 

detection limit of 102 CFU/g for a period of 20 days while stored at 5 °C.  Another study 

examined indirect plasma treatment of chronic wounds with active bacteria colonies [44]. 

Daily 5 min treatments with a 2.46 GHz, 86 W microwave plasma device flowing argon 

gas at 2.2 slm reduced wound healing time of diabetic foot disease by half. Pain in the 

associated limb also decreased within five days of treatment.  

 

1.3 OES Background 

OES measures the light emitted by a system and extracts information about the 

particles in the system through various analytical techniques. Every element can be 

excited and then de-excite by emitting energy in some form or another. When excited 

electrons return to a lower energy level, energy can be released in the form of various 

wavelengths of light, which can then be separated by a spectrometer using a grating that 

acts as a prism. The grating separates the light into its various wavelengths, which are 

directly related to the properties of the particular species. Over time, many techniques 

have been developed to extract information about the particles emitting the light [45–47]. 

One commonly used technique uses the Boltzmann equation, to relate the population of 

different excited energy levels to the temperature by  
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𝑁𝑗
𝑍

𝑁𝑍
=

𝑔𝑗 exp ⌊−
𝐸𝑗
𝑍

𝑘𝑇
⌋

𝑈𝑍(𝑇)
, 

(1.1) 

where 𝑁𝑗
𝑍  represents the population densities of the excited energy levels as a function of 

temperature T [48], the superscript Z represents the ionization stage, NZ is the number 

density, 𝐸𝑗
𝑍  and 𝑔𝑗  are the energy and degeneracy levels, respectively, 𝑈𝑍(𝑇)  is the 

partition function, an k is Boltzmann’s constant. The Saha equation relates densities of 

ionized species to temperature by 

 𝑁𝑒𝑁
𝑍

𝑁𝑍−1
=

2𝑈𝑍(𝑇)

𝑈𝑍−1(𝑇)
(
2𝜋𝑚𝑘𝑇

ℎ2
)
3/2

exp (−
𝐸∞
𝑍−1 − ∆𝐸∞

𝑍−1

𝑘𝑇
) , (1.2) 

where 𝑁𝑒 is the electron number density, 𝐸∞
𝑍−1 is the ionization energy of the Z-1 species, 

∆𝐸∞
𝑍−1 is the plasma correction for the ionization energy, h is Planck’s constant, and m is 

electron mass [48]. The applicability of the Boltzmann equation relies on the electrons 

and ions being at local thermodynamic equilibrium (LTE). Thermodynamic equilibrium 

requires that the temperature from the Saha and Boltzmann equations must equal the 

Maxwell-Boltzmann distribution of the free electrons [48], which requires  

𝑁𝑒 ≥ 1012𝑇1/2(∆𝐸)3cm−3, (1.3) 

where ∆𝐸  is the energy gap difference between the transition levels and T is the 

temperature of the equilibrium radiation field [48]. These equations and equilibrium 

principles are utilized in many modern spectral fitting codes. They automatically generate 

a synthetic spectrum and then alter the parameters of the equations to obtain a best fit to 

measured spectra. These types of codes are utilized in the work of this thesis and will be 

discussed in more detail in Chapters 2 and 3 as well as in Appendix A. 
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 One determines the electron density from the intensity shifts produced by Stark 

broadening [48]. Molecules also have excited states that can emit light that one can use to 

determine particle temperatures. Molecules exhibit various rotational, vibrational, 

translational, and electronic excited states. The emission from these states can be fit to 

calculated spectra using various fitting routines either calculated by hand or in software 

[48].  

 

OES is a powerful tool that has been applied to many different plasma 

applications [49–51]. One experiment developed a new method of determining relative 

concentration of reactive particles [52]. Monitoring the emission peak intensities of the 

reactive species and select noble gases allows relative species concentrations to be 

monitored as one alters plasma parameters [51]. Accurately determining the electron 

temperature and electron energy density function required carefully reviewing the 

calculation methods and the accepted electron impact excitation cross sections while 

developing correction factors to obtain better spectral fits and density calculations. The 

partial local thermal equilibrium (PLTE) model was validated for a 25 kHz, 15 kV, 2 W 

plasma jet and then used to map electron temperatures in the jet plume [53]. A fused 

silica tube, with a center ground electrode and ring high voltage electrode, generated a 

plasma jet and was analyzed using OES. The Boltzmann plot showed that the maximum 

electron temperature was 1.0 eV with a gas temperature of 100C. Ambient air leaked 

into the system and was ionized, contributing additional species to the argon emission 

spectrum. OES showed that applying 3 to 4 kV to a thin stainless steel electrode inserted 

into a Pyrex capillary and flowing either helium, argon, or oxygen through the tube 
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created a plasma jet that produced reactive species when applied to liquid water [54]. 

OES further demonstrated that changing the gas flowed in the capillary changed the gas 

temperature. For instance, the temperature ranged from 400 K for helium to between 

3000 K and 4000K for argon and oxygen. The electron densities calculated using Stark 

broadening were on the order of 1021 m-3 for helium and 1022 m-3 to 1023 m-3 for oxygen 

and argon. A plasma jet was generated in a quartz tube using 12.2 to 17 kV to study the 

effects of the species generated in an argon/water mixture [55]. Using axially and 

spatially resolved OES to determine the rotational temperature using Boltzmann plots 

showed that the gas temperature increased with water concentration in the inlet gas. The 

temperature ranged from 625 K for pure argon to 1125 K for 0.76% water to argon. The 

OH radicals achieved a maximum at 0.05% water in the argon/water vapor. 

 

 A quartz syringe was used to form a plasma jet to study the breakdown when 

generated using DC and AC voltages [56]. Spatially resolved OES showed the effects of 

using up to 10 kV of DC voltage or up to 30 kV peak to peak of an AC source. The 

plasma plume generated with DC was approximately twice as long as that generated with 

AC. The DC generated discharge also had current that was about two orders of 

magnitude larger than the AC discharge. The intensity of the OES spectra for the DC 

discharge was much higher than for the AC discharge. Synthetic spectrum fitting showed 

that the rotational temperature of the AC plasma was 30 K higher than the DC plasma. 

Using OES for another plasma generated using a quartz capillary in water gave the 

electron densities by finding the Stark broadening of the H lines and temperatures were 

found by the Boltzmann plot method [57]. For conductivity below 45 S cm-1, the 
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discharge occured in the liquid stage with a rotational temperature of 1900 ± 200 K. For 

conductivities above 45 S cm-1, the discharge took place in a bubble with a rotational 

temperature of 1600 ± 200 K. The electron density was 1021 m-3 for the liquid discharge 

while the electron density was 1020 m-3 for the bubble discharge.  

 

1.4 Thesis Purpose and Purview 

Despite numerous studies on jet and DBD discharges, few studies have addressed 

higher voltages above tens of kilovolts. Studies of a DBD discharge on a dielectric 

surface at 8.5 kV showed that oxidation, nitridation, and carbonization into glass surface 

occured after the DBD treatment [58]. Applying a 15 kV DBD plasma to E. coli showed 

a 1.5 log reduction for a 5 min exposure [28]. Further studies at 56 kV and 70 kV 

examined bactericidal effects, but not the effect of the container material [35]. The effects 

of the plasma species on bacteria were well characterized but the effect of the plasma on 

the material must be understood at these voltages. 

 

While many groups use “high voltages” to generate CAPs, the actual threshold at 

which one attains a high voltage CAP (HVCAP) is somewhat ambiguous.  For this 

purpose, we define HVCAPs as CAPs generated with voltages above 20 kV. The higher 

applied voltage increases the electric field for a given gap distance, potentially changing 

the excited species produced. The effects of the higher voltage on species generation and 

packaging materials remains unclear. The key issue for applying HVCAPs for treatment 

of sealed packages involves the interaction of the electric field and plasma species with 
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the packaging material. Specifically, do the plasmas alter the packaging material to 

release chemical species, do the materials alter OES and OAS measurements, or some 

combination of the two? The polymers in plastics can undergo changes when exposed to 

plasma discharges [59]. Plastics are known UV absorbers [60], altering the spectra 

obtained by either OES or OAS.  

 

 This thesis elucidates the effect of higher voltages on plasma generation using a 

DBD system. The work has two main thrusts: (1) Assessing the impact of food packaging 

materials on plasma species generated and detected within the containers and (2) 

Examining the change of plasma species while varying applied voltage from 30 kV to 90 

kV.  OES was performed to extract information about rotational temperatures represent 

the gas temperature in DBD type discharges. This data was analyzed by fitting a synthetic 

spectrum software called SPECAIR (SpectralFit S.A.S., Antony, France). This software 

estimates rotational, vibrational, translational, and electronic temperatures by fitting an 

artificial spectrum generated from available models of plasma discharge to the measured 

spectrum. The fit is then used to modify the model emission and estimate the plasma 

temperature. 

 

To examine the impact of the packaging materials, we conducted experiments using 

three different plastic containers and bags that are representative of the materials used in 

the food industry. We also selected common gases used in the food industry, namely dry 

air, humid air, helium, and nitrogen. This also allowed for direct benchmarking to 

previous work [17,18,28]. The spectra obtained were then analyzed using SPECAIR to 
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obtain the rotational temperatures. Current and voltage measurements yielded the power 

absorbed by the plasma so that variation with working gas could be determined. Lissajous 

diagrams, which parameterize the system with applied voltage, were created to calculate 

various electrical properties and characterize the plasma for each type of gas used [39,61]. 

This provides a means to calculate various properties such as power dissipated in the 

plasma, capacitance of the gap, and capacitance of the dielectric. This allows for a 

parameter space mapping of the DBD discharge to optimize the plasma for different 

applications.  

 

The second half of this thesis explores the effects of voltage on plasma species 

generation. A high resolution spectrometer was utilized to better characterize species with 

low concentrations and slight changes in species concentration that arise due to changing 

voltage.  Voltage and current measurements were again performed to examine the power 

dissipated by the gas for each voltage setting while using helium gas.
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CHAPTER 2. CHARACTERIZATION OF HIGH VOLTAGE COLD ATMOSPHERIC 

PLASMA GENERATION IN SEALED PACKAGES AS A FUNCTION OF 

CONTAINER MATERIAL AND FILL GAS 

2.1 Experimental Setup  

Figure 4 shows a schematic and circuit diagram of the experimental system.  The 

DBD system consisted of two 3 mm thick high density polyethylene sheets (IKEA, 

Sweden), which serve as dielectrics, on the top and bottom of a polypropylene container 

with dimension of 4.4 cm by 26.7 cm by 17 cm. The bottom and sides of the container 

were 0.12 cm thick and the top was 0.19cm thick. We contained the plasma and gaseous 

species generated during treatment with B4170 standard clear plastic food storage bags 

(Barrier Bag, Standard Air Corporation, Duncan SC, US) typically used for vacuum food 

storage. We connected a Phenix BK 130 Dielectric test set (Phenix Technologies, 

Accident, MD, USA) to two 6 in diameter aluminum disk electrodes placed on the top 

and bottom of the container. The Phenix system takes an input of 120 Volts at 60 Hz and 

outputs up to 130 kV with currents on the order of milliamperes. 
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Figure 4: Circuit schematic of the experimental setup for plasma generation and 

diagnostics. 

The electrical measurements were recorded using a LeCroy Waverunner 6zi 

oscilloscope (LeCroy, Chestnut Ridge, NY, USA) connected to a 10,000:1 Nicrom-

Electronic voltage divider (Nicrom-Electronic, Novazzano, Switzerland) and a Pearson 

Rogowski coil (Pearson Electronic, Palo Alto, CA, USA). Two LeCroy voltage probes 

(10:1 and 1000:1) were used to measure voltages across a capacitor and at the output of 

the voltage divider. The current probe and voltage divider were connected in parallel, 

running the output of the high voltage supply through the current probe. We connected a 

voltage divider directly to the output and the system ground to measure input voltage and 

across the top and bottom electrodes to measure the potential across the sample container, 

keeping it in parallel with the system. 
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We used an OceanOptics HR2000+ spectrometer to collect spectroscopy data. All 

background light was subtracted from the spectra using the OceanOptics OceanView 

software wizard for emission spectroscopy. The spectrometer used a custom made fiber 

optic cable with a 400 m opening with PEEK DSMA connectors. A 200-2000nm UV-

VIS collimating lens focused the light from the plasma onto the fibers of the cable. The 

lens was coated in Teflon tape to prevent arcing during plasma generation. We ran 

OceanView software on a Microsoft Surface to allow for portable use of the spectrometer. 

We aligned the fiber optic probe using an OceanOptics SPL-1DH Deuterium-Halogen 

light source. Once aligned, we taped the probe 4.5 cm from the edge of the container to 

maintain alignment throughout data acquisition. 

 

2.2 Methods 

The OceanOptics spectrometer requires a 30 s exposure time to obtain spectra due 

to the diffuse nature of our plasma. The OceanOptics HR2000+ is a Charge Coupled 

Device (CCD) sensor for taking the spectra.  We took a series of spectra with and without 

a light source to optimize the averaging of the exposure time and then measured the 

background and signal to noise ratio. Averaging six 5 s scans gave the highest signal to 

noise for the plasma generated in the experiments. 

 

We used OES to determine how the container and bag material impact OES 

measurements and species generation. To assess the bag effect, we generated ambient air 

plasma in a container in two different ways. The first method used a plastic container 
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with a hole drilled in the side that is not sealed in a bag. This allowed for direct 

observation of the plasma through the container, effectively eliminating the influence of 

the container material on the recording itself. The second method assessed the impact of 

the container on the measurement by generating the plasma in the container sealed in a 

bag while still taking the spectra through a hole. We compared the spectra by analyzing 

the peak intensity for the N2 2nd positive system to establish a reproducible peak across 

all conditions. We wrote a MATLAB script that took the raw OES data and gave a list of 

peak intensity and its corresponding wavelength. We also analyzed the species between 

runs (within the resolution of our spectrometer) to ensure consistency of the plasma. We 

accounted for experimental variation by collecting three measurements and averaging 

them to obtain the wavelength and intensity for the peaks and determined the error bars 

by taking the standard deviation of the three measurements. 

 

2.3 Results 

We first performed OES measurements to assess the effect of the plastic container 

material in the container on the emission spectrum. The intensity of the peaks decreased 

across the measured wavelength range with no wavelength shift. Figure 5 shows 

representative spectra for the of ambient air plasma at 72  3.7 kV RMS to  assess the 

decreased intensity of the spectrum. Repeating the experiment three times showed that 

the plasma composition remained consistent for repeated experiments. Table 1 shows the 

peaks identified, which did not change composition by introducing the container. 
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Figure 5: Representative spectra of ambient air plasma at 72  3.7 kV RMS from 

Container 1 measured (a) indirectly and (b) directly through the container material, 

demonstrating that the container altered the intensities of the peaks, but not the 

wavelengths, which correspond to the species generated. 

Table 1: Species identified from Figure 2 present in both spectra (a) and (b). 

Wavelength (nm) Species 

316.102 N2 

337.453 N2 

353.665 N2 

357.829 N2 

375.391 N2 

380.469 N2 

399.828 N2 

405.812 N2 

426.953 N2+ 

(a) (b) 
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We also benchmarked the containers against each other to account for variation in 

the material by comparing the intensity of the three most intense peaks across the three 

containers in Figure 6. The error bars demonstrate the reproducibility of the 

measurements for a given container. 

 

Figure 6:Comparison of peak intensity for directly observed 72 3.7 kV RMS ambient air 

plasma showing reproducibility between containers. 

As is typical of OES, slight variations arose in the peak intensity of the spectra. 

Despite maintaining ambient conditions, such as pressure and temperature, we observed 

intensity variations that were consistent across all the tests. Numerous other factors not 

easily controlled can also impact gas breakdown, such as humidity of the ambient air [62]. 

Thus, we consider variations of intensity for relative comparisons between averaged peak 

intensity data. One of the three containers exhibited higher intensities than the others, 

which we attribute to minor variances in the transparency of the plastic container. The 
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consistency of the distortion across all wavelengths permitted correction in subsequent 

analyses. Examining relative intensity and relative peak heights across the spectrum 

allowed qualitative comparison of plasma generation.  

 

Figure 7: Comparison of peak intensities for plasma observed by direct line of sight and 

through container material showing that the container decreased intensity by an average 

of 63.1% ± 0.94%. 

Figure 7 demonstrates the impact of the container by comparing the intensity of 

the three most dominant peaks in an ambient air spectrum by either measuring through 

the container or through a hole in the container.  Figure 7 shows that the container 

material decreased the intensity by an average of 63.1% ± 0.94% for each peak across 

the measured spectra, allowing a direct comparison of the two spectra. We observed no 

change in molecular species of the plasma in the spectra as evident by minimal change in 

the wavelengths corresponding to these peaks. 
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Figure 8: Percent change in intensity of peaks, showing the container decreased peak 

intensity by an average of 63.1% ± 0.94%. 

Figure 8 indicate that the container material simply serves as a broadband 

absorber. The change in intensity for each peak varies between 61.9% 63.2%, and 64.2% 

with a standard deviation of 0.94%. This slight change in intensity can be considered 

uniform for our purposes. This means that the container material will not affect the ratio 

of the peak intensities, preserving any detail that can be obtained from fitting. 
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Figure 9: Intensity variation of spectra peaks with and without a plastic bag sealing the 

container showing the plastic bag reduced intensity by an average of 44.8% ± 0.49%. 

We next performed the same measurement with the container sealed in a plastic 

food grade bag typically used for storage with vacuum sealers to assess the impact of the 

bag on species generation. Figure 9 shows the variation of intensity between the OES 

measurements conducted through the bag or without the bag. As for the container, the 

bag reduces the intensity with no observable change in wavelength. Figure 10 shows that 

the intensity of the three most intense peaks observed with and without the plastic bag 

material changed by an average of 44.8% ±  0.49% across the entire portion of the 

spectrum we analyzed.  
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Figure 10: Percent change in intensity of peaks, showing the bag material decreased peak 

intensity by an average of 44.8% ± 0.49%. 

The change in intensity for each peak varied between 44.9%, 44.2%, and 45.4% 

with a standard deviation of 0.49%. Again the slight change in intensity over the 

observed wavelength range can be considered uniform for our purposes. This means that 

the seal bag material will not affect the ratio of the peak intensities preserving any detail 

that can be obtained from fitting. Thus, the bag also acts as a broadband absorber with 

minimal change on species generation as demonstrated by minimal change in the 

wavelengths of the peaks.   

 

Figures 5 – 10 showed that molecular nitrogen (N2) emissions from 300 to 440 

nm dominated the DBD spectra. We corrected all the spectra for background light and 

noise inside the CCD. The OceanView wizard for these corrections gave a signal to noise 
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ratio of at least 100:1 when gated at 5 s and averaged over six readings for a total of 30 s 

of plasma duration. Figure 11 shows a representative spectrum showing the N2 band that 

dominates all peaks in the spectrum. This allows comparison of the N2 bands across all 

spectra measured. 

 

 

Figure 11: Representative optical emission spectrum for the dielectric barrier discharge 

system demonstrating nitrogen spectrum at 72  3.7 kV RMS for a duration of 30 s. 

We can also analyze spectra, such as Figure 11, to determine the rotational and 

vibrational temperatures using the SPECAIR 3.0 (SpectralFit S.A.S., Antony, France) 

fitting program. We chose nitrogen, helium, and compressed air as the fill gases for 

plasma generation. The nitrogen, helium and compressed air were obtained from the 

Purdue University Stores (West Lafayette, IN USA) in gas cylinders minimize the 

variability of the humidity and allow for controlled flushing of the containers.  
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Figure 12: (a) Measured optical emission spectrum for a compressed air plasma generated 

with 80  3.7 kV RMS and (b) the fitted spectra using SPECAIR. 

Figure 12 shows the original spectrum obtained for the air plasma and the data fit 

in SPECAIR. The N2 2nd positive system from 300 to 400 nm dominated the spectra, as 

shown by Figure 12 [63]. The presence of multiple states for the system facilitates the 

fitting of the vibrational temperature. Figure 13 repeats this analysis for the nitrogen 

discharge and again shows that N2 2nd positive system dominates the spectra with no 

other transitions. Figure 14 shows that although helium peaks arise between 600 nm and 

700 nm, the N2 2nd positive system also dominates the helium discharge. We observed 

nitrogen peaks despite our best efforts to isolate the containers and flush with pure helium 

to purge the system of any air. We currently hypothesize that the nitrogen arises due to 

leakage of air into the container during the sealing process, particularly during the 

removal of the tubes used for flushing helium through the container.  Previous assessment 

of a similar experiment showed that approximately 16% of a bag filled with helium 

contained air, resulting in the presence of nitrogen in the spectrum even though helium 

(a) (b) 
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was the gas used to fill the sealed bag [28]. Since nitrogen has a lower ionization energy 

than helium [64,65], it will ionize more easily at lower applied voltages and will 

dominate the spectrum. Although a pure helium environment would be ideal for scientific 

assessments of the impact of fill gas, the actual measurement condition containing 

nitrogen likely better represents more relevant conditions for treating food products in an 

industrial environment. 

 

 

 

 

Figure 13: (a) Measured optical emission spectrum for a nitrogen plasma generated at 72 

 3.7 kV RMS and (b) the fitted spectra using SPECAIR. 

(a) (b) 
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Figure 14: (a) Measured optical emission spectrum for a helium plasma contaminated 

with air generated at 37  3.7 kV RMS and (b) the fitted spectra using SPECAIR. Note 

the presence of nitrogen is due to the flushing method used for the bag container setup. 

 

Table 2: Translational (Ttrans), vibrational (Tvib), and rotational (Trot) temperatures 

calculated using SPECAIR for nitrogen, helium, and compressed air plasmas. 

Gas Ttrans (K) Tvib (K) Trot (K) 

Nitrogen 1088  100 2025  100 415  100 

He 1307  100 2323  100 479  100 

Compressed Air 1431  100 2303  100 385  100 

Table 2 shows the translational, vibrational, and rotational temperatures of the 

tests for nitrogen, helium, and compressed air as fill gases. The rotational temperatures 

ranged from 479  100 K for helium to 285  100 K for compressed air. Translational 

temperatures ranged from 1088 K for nitrogen to 1421  100 K for compressed air. This 

(a) (b) 
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is in contrast to values obtained in previous work conducted at 15 kV, showing the 

translational temperature to be 300  100 K [28]. This suggests that the higher voltage 

impacts the energy of the species produced.  

 

We next considered waveforms for compressed air, atmospheric air, nitrogen and 

helium to compare power dissipated in different plasmas. Figure 15 shows the electrical 

measurements when the container is sealed with a food grade vacuum seal bag and then 

flushed with compressed dry air.  

 

Figure 15: Measured voltage and current for a compressed dry air plasma generated at 80 

 3.7 kV RMS. 

The voltage was measured to be 80  3.7 kV RMS with current peaking around 7.88 mA. 

The current and voltage exhibited the filamentary discharge expected of the DBD 
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[11,66,67]. Figure 16 shows the electrical measurements for helium, nitrogen, and 

ambient air DBDs. Current spikes 90 out of phase with the voltage change still arise. 

  

 

Figure 16: Voltage and current waveforms for (a) helium at 37  3.7 kV RMS, (b) 

nitrogen at 72  3.7 kV RMS, and (c) ambient air at 72 3.7 kV RMS. 

We can then use the voltage and current measured across the discharge gap and a 

capacitor in series with the gap, as shown in the circuit diagram in Figure 4, to generate 

Lissajous diagrams to further elucidate the power dissipation by these various plasmas 

[68].  One obtains a Lissajous diagram by plotting the applied voltage as a function of the 

(a) (b) 

(c) 
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voltage measured across the capacitor to create a parallelogram that represents various 

properties of the discharge. The change in the slope of the sides of the parallelogram 

indicates a change in capacitance, or charge transfer [68]. The power dissipated by the 

plasma is given by  

P=CSf, (2.1) 

 

where the capacitance of the series capacitor, C, and the AC frequency (f = 60 Hz) are 

fixed, allowing the comparison of power dissipated by using the ratio of the plot area S of 

the various gases. Figure 17 shows the Lissajous diagrams for ambient air, compressed 

air, nitrogen, and helium plasmas.  The slope and area remain relatively constant across 

the different gases except for helium, which has an elongated shape indicating a change 

in the gap capacitance of the DBD. This also suggests that residual charged species are 

left in the gap after the microdischarges have extinguished [69]. 
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Figure 17: Lissajous figure showing changes in power dissipation and charge transfer 

characteristics for different gases. 

 

Table 3: Power dissipated in the plasma for the different gases. 

Gas Power Dissipated (W) 

Compressed Air 0.334 

Nitrogen 0.288 

Helium 0.0252 

Ambient Air 0.284 

Table 3 shows that the compressed air dissipated the most power while the helium 

dissipated the least. This can be attributed to not controlling ambient humidity during the 
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experiment. To better compare these values we looked at the percent change in the power 

dissipated and evaluated the slope of the side of the parallelogram. 

Table 4: Percent change in power dissipation as compared to compressed dry air. 

Gas % Change in Power Dissipation % Change in Slope 

Nitrogen -13.76 12.72 

Helium -92.44 -12.36 

Ambient Air -14.92 36.00 

Table 4 compares the area and slope of the Lissajous parallelogram for nitrogen, 

helium, and ambient air to compressed air. The helium discharge dissipated 

approximately 92% less power than the air and nitrogen plasmas. The nitrogen and 

ambient air plasma varied from compressed dry air by 13.76% and 14.92%, respectively, 

exhibiting the effect of ambient humidity on the discharge. Nitrogen, ambient air, and 

compressed air have similar measurements because nitrogen is the most abundant 

constituent for these gases.  Helium has a higher ionization energy than nitrogen [64,65], 

meaning that less of the applied power will go into the discharge and more will go into 

ionizing the ground state helium. This suggests that more of the power of the device is 

being used to ionize the helium than actually going into producing reactive species. 

Reactive species are needed to produce the sterilizing effect, so the reduction of these 

would be seen as a determent to using helium mixtures for treatment. A more in-depth 

study is needed to quantify the reduction of the species, to determine the potential impact 

to the sterilization efficacy. 
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CHAPTER 3. CHARICTERIZATION OF EFFECT OF HIGH VOLTAG ON PLASMA 

GENERATION 

3.1 Experimental Setup 

As in the setup from the initial OES experiments outlined in Chapter 2, two 3 mm 

thick high density polyethylene sheets (IKEA, Sweden), served as dielectrics. They were 

placed on the top and bottom of a polypropylene box with dimensions of 4.4 cm by 26.7 

cm by 17 cm. The bottom and sides of the box were 0.12 cm thick and the top was 

0.19cm thick. The plasma and gaseous species generated during treatment were contained 

with the same B4170 standard clear plastic food storage bags (Barrier Bag, Standard Air 

Corporation, Duncan, SC, US). We applied 60 Hz voltage using the Phenix BK 130 

Dielectric test set (Phenix Technologies, Accident, MD, USA) to two 6 in aluminum disk 

electrodes placed on the top and bottom of the box. Figure 18 shows a schematic and 

circuit diagram of the experimental system used to elucidate the effect of voltage on the 

discharge.
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Figure 18: Circuit schematic of the experimental setup for plasma generation and 

diagnostics. 

The electrical measurements were recorded using the same LeCroy Waverunner 

6zi oscilloscope (LeCroy, Chestnut Ridge, NY, USA) connected to a 10,000:1 Nicrom-

Electronic voltage divider (Nicrom-Electronic, Novazzano, Switzerland) and a Pearson 

Rogowski coil (Pearson Electronic, Palo Alto, CA, USA). The current probe and voltage 

divider were connected in parallel, running the output of the high voltage supply through 

the current probe. We connected a voltage divider directly to the output and the system 

return to measure input voltage and across the top and bottom electrodes to measure the 

potential across the sample box. The OES measurements were taken using a PI-MAX4 

Intensified Charge Coupled Device (ICCD) (Princeton Instruments, Trenton, NJ, USA) 

with a timing resolution of 10 ps, a timing jitter of 35 ps RMS, an insertion delay below 

27 ns, an internal timing generator from 0.05 Hz to 1 MHz, 10241024 imaging array, 

and less than 500 ps gating for high temporal resolution to enable effective background 

discrimination. We used a Princeton Instruments SP2500 (Princeton Instruments, Trenton, 

NJ, USA) spectrometer with a 500 mm focal length, and a 0 to 1400 nm scan range. 
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3.2 Methods 

We applied 36.4, 44.8, 58.1, and 71.0 kV to generate a helium air discharge 

sealed inside of a container using the B4170 seal bags. We collected the light from the 

plasma using a fiber optic cable that was provided with the SP2500 spectrometer. The 

fiber was coupled to a 200-2000 nm UV-VIS collimating lens, which focused the light of 

the plasma onto the fibers of the cable. The fiber optic probe was aimed using an 

OceanOptics SPL-1DH Deuterium-Halogen light source to ensure that the lens collected 

light from the center of the diffuse discharge. We used a laptop running Lightfield 

software (Princeton Instruments, Trenton, NJ, USA) to interface with the camera and 

spectrometer to collect data from the ICCD. We used two different settings for the PI-

MAX4 ICCD depending on the measurement. Spectra focused around 355 nm required 

setting a gain of 80 on the intensifier, a gate delay of 30 ns and a gate width of 1000 ms 

for six on chip accumulations. Larger “step and glue” sections of spectra ranging from 

250 to 500 nm required setting a gain of 80 on the intensifier with a gate delay of 30 ns, 

and a gate width of 1000 ms for six on chip accumulations, each consisting of one 

exposure. 

 

This study aims to elucidate how plasma species vary with the high voltages 

(from 36.4 to 71.0 kV RMS) typically used for this particular DBD setup by taking the 

same electrical and OES measurements [28,35]. We also sought to obtain higher 

resolution spectra to better observe rotational structure to more accurately calculate 

plasma temperature The spectrometer used the 1800 g/mm grating to maximize the 
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resolution while still transmitting enough light for ICCD detection. We obtain electrical 

and OES data simultaneously at 36.4, 44.8, 58.1, and 71.0 kV RMS and then processed it 

using custom MATLAB scripts (included in Appendix B) to obtain plots of the current 

and voltage, N2 Second Positive system, spectra ranging from 250 to 500 nm to observe 

species generation, and text files that were fed into SEPCAIR (SpectralFit S.A.S., Antony, 

France) to obtain fits for rotational, vibrational, and translational temperatures. 

3.3 Results 

We first used the 1800 g/mm grating to assess the N2 second positive system to 

obtain rotational temperature information for the plasma generated at each setting. Figure 

19 shows a representative spectrum that was obtained and later fed into SPECAIR for 

processing. 

  

Figure 19: Comparison of (a) Helium air plasma generated at 37 kV RMS taken with the 

OceanOptics system in chapter 2 and (b) N2 Second Positive system of a helium air 

plasma generated at 36.4 kV RMS using the 1800 g/mm grating. 

(a) (b) 
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Figure 19 shows that the rotational structure is more prevalent than in the previous 

spectra shown in chapter 2. The increased resolution and sensitivity of the Princeton 

Instruments system reveals much more detail than the Ocean Optics system. The spectra 

obtained for this voltage was very dim compared to the higher voltages, which was 

expected since the plasma was barely visible to the naked eye. Despite being the dimmest 

spectrum obtained, the signal to noise ratio of 100:1 was still sufficient to permit a 

SPECAIR fit. All of the spectra obtained for the N2 Second Positive system at various 

voltages were taken with the same setting that produced Figure 19, to directly compare 

the temperatures from one voltage to the next. 

  

Figure 20: Helium air plasma generated at 36.4 kV RMS (a) measured spectrum and (b) 

is the SPECAIR fit 

Figure 20 shows the SPECAIR fit for the helium air plasma generated at 36.4 kV 

RMS. The rotational temperature was 440  100 K, vibrational temperature was 3730  

100 K, and the translational temperature was 468  100 K. Since the rotational 

temperature of the N2 Second Positive system provides a good measure of the bulk gas 

(a) (b) 
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temperature, this shows that the temperature is slightly above room temperature, which 

we attribute to the 4 min plasma run time required to achieve a good signal to noise ratio. 

  

Figure 21: Helium air plasma generated at 44.8 kV RMS (a) measured spectrum and 

(b) is the SPECAIR fit 

Figure 21 shows the SPECAIR fit for helium air plasma generated at 44.8 kV 

RMS. The rotational temperature was 479  100 K, vibrational temperature was 3990  

100 K, and the translational temperature was 523  100 K. These peaks are clearly more 

defined than those from Figure 20 since the plasma is brighter. This also makes more of 

the rotational structure visible in Figure 21 (a), which allows SPECAIR to obtain a more 

accurate fit, as shown in Figure 21 (b). The peak near 350 nm also exhibits a higher 

intensity, suggesting that more nitrogen is being ionized, which increases the 

concentration at this voltage. 

(a) (b) 
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Figure 22: Helium air plasma generated at 58.1kV RMS (a) measured spectrum and (b) 

is the SPECAIR fit 

Figure 22 shows the SPECAIR fit for helium air plasma generated at 58.1 kV 

RMS. The rotational temperature was 423  100 K, vibrational temperature was 3441  

100 K, and the translational temperature was 441  100 K. Again, the plasma exhibited 

increased intensity overall due to increased brightness, which also results in a more 

defined rotational structure in the spectrum. Increasing the voltage to 71.0 kV resulted in 

an increased intensity of the plasma as has been seen with the previous measurements. 

The same OES measurements were again conducted at this voltage to measure any 

change in temperature and speciation. Figure 23 shows the resulting spectrum as well as 

the SPECAIR fitting results for temperatures. 

 

(a) (b) 
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Figure 23: Helium air plasma generated at 71.0 kV RMS (a) measured spectrum and 

(b) is the SPECAIR fit 

Figure 23 shows the SPECAIR fit for helium air plasma generated at 71.0 kV 

RMS. The rotational temperature was 404  100 K, vibrational temperature was 3763  

100 K, and the translational temperature was 445  100 K. The plasma generated at this 

voltage was the brightest and, thus, yielded the most spectral detail. The results clearly 

show that the increasing the voltage did not directly increase the bulk gas temperature. 

The rotational temperatures were 440  100 K, 479  100 K, 423  100 K, and 404  100 

K for 36.4, 44.8, 58.1, and 71.0 kV RMS applied, respectively. Table 5 reports the 

plasma temperatures for each voltage setting. 

Table 5: The rotational temperature (TR), vibrational temperature (Tv), electronic 

temperature (Te), and the translational temperature (TT) for a Helium air plasma are 

reported with   100 K error. 

 

Voltage (kV) TT  Te TV TR 

36.4 468 10000 3730 440

44.8 523 10000 3990 479

58.1 441 10000 3441 423

71.0 445 10000 3736 404

(a) (b) 
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The next measurement was obtained to better understand how the increased 

power affects the plasma since temperature does not necessarily increase.  The “Step and 

Glue” function of the spectrometer was utilized to observe any change in the species 

generated in the plasma over the 250 to 500 nm wavelength range. This function starts at 

250 nm and goes to 500 nm in sections of approximately 10 nm and stitches them 

together to form a larger wavelength range. Figure 24 shows a representative spectrum of 

the “Step and Glue” process.  

 

Figure 24: Spectrum ranging from 250 to 500 nm for a helium air plasma generated using 

36.4 kV RMS with high noise. The N2 second positive system can still be seen in detail. 

Figure 3.7 shows the “Step and Glue” spectrum ranging from 250 to 500 nm with 

high noise observed in the signal. Periodic spikes arise with roughly equal intensity 

across the entire spectrum. The noise is due to the large gain required by intensifier to 

obtain a signal from the very dim diffuse discharge. The movement of the grating to 
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obtain a larger wavelength range also creates noise when the sections are glued together. 

The noise spikes occur at the locations of the “gluing” process of the multiple spectra 

taken. The N2 Second Positive system, from 300 to 400 nm, is still seen in detail although 

surrounded by noise. While this spectrum provides no real information for 36.4 kV RMS, 

higher voltage settings produced more favorable spectra. 

  

 

Figure 25: “Step and Glue” spectra showing 250 to 500 nm for a helium air plasma 

generated at a) 44.8 RMS, (b) 58.1 kV RMS, and (c) 71.0 kV RMS. 

(a) (b) 

(c) 
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Figure 25 shows the “Step and Glue” spectrum ranging from 250 to 500 nm for 

44.8 kV RMS, 58.1 kV RMS, and 71.0 kV RMS. Increasing the voltage changed the 

species observed in the plasma with more of the N2 Second Positive system observed 

higher relative intensities.  Table 6 shows the observed species in plasmas generated by 

(a) 36.4 kV RMS, (b) 44.8 kV RMS, (c) 58.1 kV RMS, and (d) 71.0 kV RMS. For the 

36.4 and 44.8 kV RMS plasmas, only N2 and N2
+ are observed in the 250 to 500 nm range. 

For the plasmas generated at 58.1 and 71.0 kV RMS N2, N2
+, and OH are observed. This 

shows that increasing the system voltage impacts the species production rather than 

increasing the temperature. The relative intensities have been plotted in Figure 26 to 

show the change in relative intensity and therefore concentration.  

Table 6: Species observed in plasma generated by (a) 36.4 kV RMS, (b) 44.8 kV RMS, (c) 

58.1 kV RMS, (d) 71.0 kV RMS applied to the helium air mixture. 

 

Wavelength Species
Plasma which species 

were observed

295.12 OH d

296.24 OH c,d

315.93 N2 a,b,c,d

337.13 N2 a,b,c,d

353.67 N2 b,c,d

357.69 N2 a,b,c,d

375.54 N2 b,c,d

380.49 N2 b,c,d

399.84 N2 b,c,d

405.94 N2 b,,c,d

427.81 N+
2 b,c,d
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Figure 26: Relative intensities of the peaks in Table 6 showing the intensity of the peaks 

and thus concentration, increased with higher voltage.  

Figure 26 shows that the change in the relative intensity of all the peaks 

corresponds to changes in voltage, suggesting that higher voltages lead to more species 

production for N2, N2
+, and OH reactive species. This may potentially mean that shorter 

treatment times can be used to treat samples, which could potentially reduce any thermal 

effects that could arise due to extended time periods in field. It should be noted that the 

absence of peaks in the 36.4 kV plasma does not mean that the species were not present. 

The ICCD and spectrometer system have noise associated with each measurement that 

limits the lowest peak detectable. Therefore, the absence of peaks most likely implies that 

the species were just too dim to be detected by our system. The combination of ICCD 

sensitivity, gain setting of the intensifier, and light lost during collection could make the 

weaker peaks indistinguishable from this noise.  
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The voltage applied was measured to ensure that all parameters were accounted 

for and that the applied voltage was accurately presented. Figure 27 shows voltage 

waveforms that would be expected of a DDB type discharge for an applied voltage of 

36.4 kV RMS. Noise is observed on the waveform as can be seen by the voltage spikes 

that are in Figure 27. 

 

Figure 27: Voltage and current waveform for 36.4 kV RMS showing DBD type current 

spikes. 
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Figure 28: Voltage and current waveforms for a helium air plasma generated at a) 44.8 

kV RMS, (b) 58.1 kV RMS, and (c) 71.0 kV RMS. 

Figure 28 shows the waveforms for the voltage measurement for the applied 44.8, 

58.1, and 71.0 kV RMS. The noise appears to increase with the higher applied voltage, as 

shown in part (c) of Figure 28. We hypothesize that this arises because of the induced 

voltage caused by the high electric fields generated by the system. Improperly shielded 

electronics and materials can pick up charge and malfunction. Even when shielded, we 

observed noise in most cases, although the noise observed here is sufficiently low to not 

(a) (b) 

(c) 
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skew the measurement of the applied voltage. Therefore, we could accurately capture the 

voltage applied to the system for all OES measurements.  
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CHAPTER 4.  CONCLUSION 

This thesis elucidated how plasma properties, particularly species generation, voltage, 

and current, varied with container material and applied voltage.  HVCAPs offer a safe, 

cost effective treatment method for food products. Previous work characterized the 

bactericidal effects of HVCAPs to demonstrate their viability as an alternative to many 

costly and potentially toxic methods currently used in industry [27,29]. Most prior work 

focused on sterilization efficacy and treatment time [17,28], which left a gap in 

understanding how the plasma itself and container material influenced the measurement 

and treatment processes. The current work specifically explored how packaging and fill 

gas altered OES measurements and various plasma temperature parameters.  

 

OES measurements showed that the container material decreased the intensity by 

61.9% 63.2%, and 64.2% with a standard deviation of 0.94% while the bag decreased 

intensity for each peak by between 44.2% and 45.4% with a standard deviation of 0.49% 

with no change in the species composition of the plasma. This suggests that the choice of 

material to seal the container may not influence the chemistry of the process. Further 

analysis utilizing a higher resolution spectrometer will better elucidate this phenomenon.



 

 

50 

 We further observed that the rotational temperatures ranged from 1088 K  100 for 

nitrogen to 1421  100 K for compressed air while rotational temperatures ranged from 

479  100 K for helium to 285  100 K for compressed air. This differs from values 

obtained in previous work conducted at 15 kV, showing the translational temperature to 

be 300  100 K [28]. Lissajous diagrams showed that the power dissipated by the 

nitrogen and ambient air plasmas were comparable to the compressed dry air discharge 

while helium discharges absorbed approximately 92% more power.  

 

The species and power measurements indicate that an ambient air plasma induces 

similar species at similar or lower power dissipations than other gases used in this study. 

This suggests that it may be more economical to forgo purchasing other fill gases and 

simply treat food product in ambient air. However, this study only explores a small 

number of voltage parameters and does not provide a comprehensive analysis of all 

species generated. Further investigation with a higher resolution spectrometer will more 

fully assess the species generated, particularly those that may arise in low concentrations, 

and enable studies into their importance for sterilization. Ultimately, tuning species 

generation to bactericidal efficacy while retaining food quality require both microbiology 

experiments and a better understanding of the fundamental biophysical phenomena. 

Although effective, practical applications of CAPs for treating sealed food packages 

require elucidating the impact of the packaging material to optimize treatment efficacy 

and verifying the absence of potential hazardous molecules and species from the package 

[70]. This is particularly important since plasmas are well known for modifying surface 

and material properties.  For instance, a 12kV DBD increased the OH concentration on a 
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glass surface for etching [58]. Thus, potential industrial applications would motivate the 

selection of materials more resistant to chemical breakdown to prevent the release of 

potentially hazardous molecules. Combining these efforts with an enhanced 

understanding of the fundamental biophysical phenomena [71,72] will allow us to 

understand how the species created induce the desired effect and how to design 

appropriate systems to create these species for system optimization.  

 

We next assessed the effect of voltage on species generation using a helium air 

plasma generated using the Phenix system with applied voltages of 36.4, 44.8, 58.1, and 

71.0 kV. The light from the plasma was collected using a fiber optic cable that was 

provided with the SP2500 spectrometer. We simultaneously measured electrical and OES 

data and processed it using custom MATLAB scripts to plot the current and voltage, N2 

Second Positive system, spectra ranging from 250 to 500 nm to observe species 

generation, and text files that were fed into SEPCAIR to calculate temperatures.  

 

The N2 Second Positive system of a helium air plasma generated at 36.4 kV was 

observed using the 1800 g/mm grating of a spectrometer. The spectra obtained for this 

voltage was very dim compared to the higher voltages, which was expected since the 

plasma was barely visible to the naked eye. SPECAIR fits for the spectra are summarized 

in Table 5 and show no real correlation to voltage. Higher voltage did not necessarily 

translate to higher plasma temperature. This suggests that it is possible to optimize a high 

voltage system to obtain reactive species while maintaining low temperatures. 
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We next evaluated the species generated during the plasma treatment. The relative 

intensities for the observed peaks for each voltage were plotted and shown to increase 

with a corresponding increase in voltage. It was clearly seen that the increased voltage 

did not directly correlate to increased temperature of the bulk gas as presented in Table 5. 

For the 36.4 and 44.8 kV plasma, only N2 and N2
+ are observed in the 250 to 500 nm 

range. For the plasmas generated at 58.1 and 71.0 kV N2, N2
+, and OH are observed as 

shown in Table 6 for each voltage setting. This showed that increasing system 

voltage/power produced higher species concentrations rather than increasing the 

temperature.  

 

 The voltage was recorded for each data run to ensure that every parameter was 

accounted for in the evaluation of the plasma properties. Figures 27 and 28 show the 

measured waveforms for each of the OES data runs. Although noise existed for each case, 

it did not skew the measured voltage. It was seen that the noise increased for the higher 

voltage settings as would be expected from our system. High levels of noise are 

commonly induced due to the high electric fields the systems creates, routinely 

interrupting electronics in the room. This was accounted for and shielded to the best of 

our ability and did not affect the data collected. It was observed that the plasma voltages 

were 36.4, 44.8, 58.1, and 71.0 kV RMS for the respective OES runs. This covered the 

entire range that is sustained by the system at this time.  

 

 This work has shown the potential of CAPs to treat products at low temperatures 

and still be able to produce reactive species. It is now clear that a parameter space can be 
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explored to optimize the treatment process without concern for the effects of the 

container material used to hold the working gas and product. It was also shown that 

higher voltages generate higher concentrations of radical species while not directly 

correlating to an increase in intensity. The higher voltages also appeared to have minimal 

effect on the container material, as no change in speciation was observed in the 

wavelength range chosen for the study. Still, future studies for HVCAPs must address 

species generation at higher voltages in different wavelength ranges and with different 

gases. The spectroscopy system used in these experiments was extremely sensitive to the 

200-500 nm range, which provides some detail about the plasma properties and species. 

Light above that range was too dim for our system to distinguish with the settings used. 

Better understanding radical species generation requires expanding the setup and 

optimizing the analysis to better characterize wavelengths above 500 nm. The high 

voltage settings for this system have only been explored as a function of voltage for 

helium air mixtures. The food industry uses numerous gas blends that must also be 

explored for safety and reliability. This will provide a detailed parameter space that can 

be used to industrialize this technology. 
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 Appendix A 

SPECAIR is a software program from Spectral Fit in Antony, France that uses 

discharge models to calculate a spectrum, and then fits that synthetic spectrum to 

measured data. This Appendix will describe the process used to obtain spectral fits and 

temperatures. 

 Figure 29 shows the initial screen that the user encounters upon opening the 

software. 

 

Figure 29: Initial Screen presented to user when opening SPECAIR. 

From this screen, the user can access all the needed tools to find temperatures. The left-

hand window displays the calculation options that may either be entered by the user or 

obtained from the software by fitting to measured spectra. The center blue screen will 

display the selected spectra that are displayed on the right in the “spectra” section. The 

white area below the “spectra” section will display the relevant properties of the selected 
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spectra. To analyze the data, the user will first verify the slit function. This requires 

clicking on the “Tools” dropdown menu and selecting “Slit function” as shown in Figure 

30. 

 

Figure 30: Tools drop down menu for altering calculation options and modifying slit 

function.  

This subsequently displays a new screen shown in Figure 31 that allows the user to 

modify the slit function. The user may import a measured slit function or specify an 

estimated function in the window shown in Figure 31. The SPECAIR manual provides a 

detailed explanation of the slit function and methods for estimating it.  
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Figure 31: Slit function settings menu allowing for user entered parameters or importing 

measured functions.  

Next, the user goes to the “File” tab of the top drop down menus and imports the 

measured spectrum. The software can recognize certain formats, such as SPE files, so I 

always convert mine to text file consisting of two columns giving wavelength and 

intensity, which works well. Figure 32 shows the spectrum displayed in the center screen 

following successful importing. 
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Figure 32: Imported spectrum displayed in center window of SPECAIR ready to undergo 

fitting. 

The user may then identify transitions and start the fitting process. The user should 

ensure that the imported spectrum is selected in the window on the right, as shown in 

Figure 33, since other spectra will appear in this window during the fitting process. 

 

Figure 33: Properly selected spectra to conduct transition identification and fitting. 

Once selected the next step is to go into the “Tools” menu and select “Find Transition”, 

which identifies the transitions in SPECAIR’s database present in the spectrum and 
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available to be fit via the synthetic spectrum. Figure A.6 illustrates the window that pops 

up to identify transitions. 

 

Figure 34: Window to find transitions present in the measured spectrum showing the 

identified transition and measured spectrum. 

It is also necessary to select the appropriate resolution for the system that was used to 

collect the spectrum to achieve the most accurate fit as possible by using the slider shown 

in the bottom left of Figure 34. To identify transitions, simply click the “Find transition” 

button. The spectrum will look as it does in Figure 34 with the measured input spectrum 

in red and the identified transition in black. Next, click “Update settings” to conduct the 

initial calculation of the synthetic spectrum. The window shown in Figure 35 will pop up 

asking for initial parameters to generate the spectrum. 
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Figure 35: Initial parameters to calculate the synthetic spectrum. 

As shown in figure 35 the settings should come up by default as shown except one. For 

non-equilibrium plasmas, the user must check the box next to “Fix Telectronic” to establish 

a high enough ionization to produce a transition, while this setting will not affect the 

temperatures calculated, it does mean that the electronic temperature is an extremely 

rough estimate that should not be taken as accurate. When the software finishes the initial 

calculations, it will display the spectra as shown in Figure A.8.  
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Figure 36: Initial synthetic spectrum overlaid on the imported measured spectrum.  

Figure 36 shows the possibility of slight wavelength discrepancies between the measured 

spectrum and the fitted spectra. This can be corrected in the “Data” drop down menu at 

the top of the screen. One must select “Set X Values” from the options available in the 

“Data” dropdown menu shown in Figure 37 (a) and 37 (b). 
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Figure 37: Data option available to correct any issues present in imported spectra. 

Select the “Set X Values” as shown in Figure 37 (a) and a window shown in Figure 37 (b) 

will be displayed. Figure 37 (b) shows the window to correct the X values of the selected 

spectrum. From this window any correction needed can be made. You can add, subtract, 

multiply, divide, or take the natural or base 10 logarithm of the x values to make it match 

the accepted values. This facilitates the minimization of the residual during the fitting 

process to obtain the most accurate temperatures possible Once the initial synthetic 

spectrum matches the measured spectrum in the desired wavelength range the user can 

begin the final fitting process. For non-equilibrium plasma, this requires alternating 

between fitting the rotational and vibration temperatures while holding all other constant. 

Select “Fit to spectrum” from the “Tools” menu and the window presented in Figure 38 

pops up.  

(a) 

(b) 
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Figure 38: Fitting window that will be used to alternate fitting rotational and vibrational 

temperatures. 

Leave the “Spectrum with final settings” box checked as this will display the new 

synthetic fitted spectrum on top of the initial spectra. For non-equilibrium plasmas, the 

only two temperatures that will matter in the fitting are the rotational and vibrational. To 

fit the spectra, select all the check boxes except either rotational or vibration but not both 

at once. The unchecked box is the temperature that will be fit. Click “optimize” and let it 

finish. Close the window and ensure the original imported spectrum is selected. Then 

repeat the process for the temperature held constant for the first fit. Alternate this 

procedure until an acceptable fit is achieved.  

.
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Appendix B 

The custom MATLAB scripts were utilized to obtain normalized peak information to 

compare intensities of the measurements made with and without container material and 

bags.  

 

Figure 39: Custom MATLAB scripts to obtain peaks for plotting. 
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