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Symbol Units Definition 

a m Cell length 

C J/m3K Volumetric Heat Capacity 

f s-1 Frequency of heat flux 

G W/m3K Electron to phonon energy 

transfer per unit volume or 

electron cooling rate 

h W/m2K Interfacial conductance 

hep W/m2K Electron-phonon 

conductance 

hpp W/m2K Phonon-phonon 

conductance 

J W/m2 Heat Flux 

k W/mK Themal Conductivity 

kB 1.38064E-23 m2kg/s2k Boltzmann Constant 

Ke W/mK Electron thermal 

conductivity 

kp W/mK Phonon thermal 

conductivity 

�̅� m-1 Wave vector 

L m Length of the system 

Lp m Penetration depth 

m amu Atomic mass 

MF,ώ Hz Modulation frequency 

nb  Number of basis atoms 

�̇� W/m3 Energy Generation term 

t s Time  

T K Temperature 

Te K Temperature of electron 

Tp K Temperature of phonon 

Vd  Volume fraction 

X m Position, Distance 

 

Greek 

α m2/s Thermal Diffusivity 
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 eV Interaction Potential 

ϵ eV Potential well depth 

𝝀 m Mean Free Path 

τ s Relaxation Time 

σ m Zero potential energy 

pairwise separation 

ν m/s Carrier Velocity 

ω Rad/s Phonon Angular frequency 
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ABSTRACT 

Gouthaman, Vignesh. M.S.M.E., Purdue University, August 2015. Unusual Thermal 

Transport in Graphene / Boron Nitride Single Interface & Superlattice Tuned by 

Interfacial Roughness. Major Professor: Xiulin Ruan, School of Mechanical Engineering. 

 

 

 Graphene combined with Boron Nitride is a superlattice that has a lot of potential 

in terms of tenability. There has been a lot of work that has gone into finding ways to tune 

the properties of this superlattice to improve its figure of merit. Interfacial roughness if 

strategically induced is thought to have the potential to increase the thermal conductivity 

without sacrificing any of the qualities of the superlattice. We perform equilibrium 

molecular dynamics via Green Kubo method on Graphene/Boron Nitride and study its 

thermal conductivity under the influence of various parameters that shape the superlattice 

and its properties. Green Kubo method involves generating the lattice structure and using 

a pair potential along with boundary conditions to implement equilibrium molecular 

dynamics. The simulation give us a heat current auto-correlation function (HCACF) which 

can be used to find the thermal conductivity of the system. 

 Some important aspects that were found were the importance of ensuring a 

perfectly periodic lattice structure to make predictions of thermal conductivity as the 

phonons are extremely sensitive to any irregularities at the interface between two materials.  

 The thermal conductivity of Graphene Boron Nitride superlattice is found to be 

dependent on the periodic length of the superlattice. It is found that at 5nm a critical 



x 

 

 

 

periodic length is reached where a large amount of medium energy phonons scatter causing 

the thermal conductivity to drop quickly and then continue rising after that. In terms of 

single interface there is a relation between the ratio of height and width of the teeth that are 

induced in the interface to simulate roughness and the thermal conductivity of the material. 

At a ratio of about 0.25 a maximum thermal conductivity is reached for the Graphene-

Boron Nitride superlattice. To enhance the thermal conductivity using interfacial 

roughness you would need to induce teeth that are 2.5Å in length in the interface which 

make it roughly the size of a unit cell hence not causing any disruptions to the phonons and 

at the same time increasing the thermal transport across the superlattice. 

 

 



1 

CHAPTER 1. INTRODUCTION

1.1 Motivation 

If there was one thing that one would say marked the emergence of the 21st century 

for mankind, it would be computing power. To put it into perspective, the computing power 

that National Aeronautics and Space Administration (NASA) had at their disposal to put a 

man on the moon is less than the computing power currently in all our cars.  The reason 

that computing power has reached such high levels is due to the fact that more transistors 

are being fit into a tiny chip. This brings us to one of the main hurdles faced today, which 

is Thermal Management. There is strong focus on research which deals with nanoscale 

energy transport at lengths comparable to the phonon mean free paths [1][2].  Graphene 

has been a hot topic in the thermoelectric research circles in the recent past and with good 

reason.  Graphene is probably the first true example of a two-dimensional material, and 

hence has extremely high thermal conductivity[3]. This is precisely why it is such an 

exciting material to research.  

Research has shown that suspending graphene above a substrate leads to 

substantially improving the quality of the device, but this kind of geometry poses many 

challenges in terms of functionality[4][5]. In the pursuit of identifying dielectrics that 

would allow substrate-supported geometry while holding on to the quality of that of a 
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suspended sample, we come across Boron Nitride[6].  Boron Nitride is especially 

intriguing because it has a lattice constant similar to Graphene, and it has large optical 

phonon modes and a large electrical bandgap[6].  

Now since graphene by itself has a very high thermal conductivity, there are many 

ways that are suggested to control the thermal conductivity of Graphene. One of the ways 

to suppress thermal conduction effectively is by introducing rough boundaries and weakly-

coupled interfaces between Graphene and Boron Nitride in the solid[3].  

1.2 Review of Thermoelectric Materials 

The thermoelectric effect involves the fundamental exchange of thermal energy to 

electrical energy and vice versa. There are two primary effects part of the broader 

thermoelectric effect. An electric voltage is generated when a temperature gradient is 

applied across the thermoelectric device, this effect is known as Seebeck Effect. 

Conversely, a temperature gradient is created when an electric voltage is applied across the 

device which is known as Peltier Effect. 

As shown in figure 1-1, when a conductive material is subjected to a thermal gradient, 

charge carriers mitigate along the gradient from the hot side to the cold side; this is Seebeck 

Figure 1-1: Temperature gradient causing charge carriers to flow. This imbalance of 

charge creates a potential difference which can be measured[32]. 
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effect. Electrons transfer heat by diffusing heat by the process of colliding with other 

electrons and by carrying the internal kinetic energy during transport. The process of 

carrying the internal kinetic energy during transport is known as Peltier effect. As one can 

see the Seebeck effect and Peltier Effect are the opposite of one another. The applications 

of the thermoelectric effect range from thermoelectric generators, which essentially 

function like heat engines. They have use in power plants converting waste heat back to 

energy. These also find applications in recovering waste heat from the exhaust of 

automobiles to increase fuel efficiency. 

Figure 1-2: ZT of many typical thermoelectric materials as a function of year 

[33]. 
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A dimensionless number called the figure of merit (ZT) is used to measure the 

effectiveness of a thermoelectric material. 

𝑍𝑇 =
𝜎𝑆2𝑇

𝜅𝑒+𝜅𝑙
      (1.1) 

In Equation (1.1) above ZT is the figure of merit, σ stands for the electrical 

conductivity, S stands for the seebeck coefficient, T for temperature in K and κ for the 

thermal conductivity due to electrons and phonons respectively. The higher the ZT value 

the more efficient the thermoelectric material. By taking into consideration the maximum 

refrigeration capacity that can be achieved in a thermocouple that is placed between the plates 

with two different temperatures (T1 and T2), ZT can be derived. 

The ratio of the output electric power and the input energy needed to generate the 

temperature differential is called the thermoelectric efficiency η. The maximum value of 

efficiency that can be achieved is,  

𝜂𝑚𝑎𝑥 =  
𝛥𝑇

𝑇ℎ
(1 −

1+
𝑇𝑐
𝑇ℎ

√1+𝑍𝑇+
𝑇𝑐
𝑇ℎ

)   (1.2) 

 Thermoelectric has been talked about for close to 200 years when Thomas Seebeck 

discovered it in 1821 but ZT remained very low (less than 1) for the most time, until not 

long ago when they have jumped to the 2-4 range with the introduction of nanostructures. 

Only now the thermoelectric materials can compete with their mechanical counterparts 

when it comes to efficiency.  

The effect of nanostructures are only beginning to show their own estimated potential. 

A lot of work needs to be carried out to further increase the efficiency of thermoelectric 

materials. 
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1.3 Review of Thermal Management 

As technology rapidly progresses on all frontiers; be it power electronics, batteries, 

personal electronics, computers or all forms of smart technology etc., the main issue that comes 

up time and time again is the need to extract heat from a small compact region in the body. 

Here the large scale cooling methods cannot be applied just because of the size constraint being 

dealt with. Due to exponential growth in power density in electronic chips as shown in figure 

1-3, a critical heat dissipation technical problem arises. If this accumulation of heat is not 

tackled can have a lot of dire consequences, such as affect performance of the appliance, cause 

failure of the system, reduce lifespan of the item, be a fire hazard etc.  

To address this problem of dissipating heat from the heat-generating electronic, the 

industry has thus far used cooling by air, cooling by liquid, and phase-change cooling etc. 

These methods usually involve fins, fans or heat sinks; basically methods where additional 

Figure 1-3: Processor power density over time [34]. 
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components have to attach to the electronic components. If these tactics are employed then the 

efficiency of cooling apart from depending on the cooling mechanism itself, they also depend 

on the thermal contact between the mechanism and heat source. Usually to mitigate the 

problem of improper contact, a thermal interfacial material (TIM) is applied to help the heat 

transfer from the heat source to the cooling mechanism. A widely used thermal interfacial 

material is the thermal grease made out of “silicone oil filled with metal oxides”[7]. The 

thermal conductivity of the silicone oil is 0.7 W/mK, which is much better as compared to 

air having 0.026 W/mK at room temperature.  

Thermal pads also are a way to increase thermal conductance from the heat source 

to the cooling mechanism. These are sturdy at room temperature which get soft at 

temperatures that the electronics operate at. Having discussed all these mechanisms used 

by the industry, these thermal interfacial materials do not dispose heat rapidly enough to 

Figure 1-4: Transistors per Die over time [34]. 
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keep the next generation of electronic components cool. To resolve this issue research has 

been done on carbon nano-tubes in various forms such as aligned CNT arrays and polymer 

with Carbon Nano Tube, graphene fillers[8][9][10]. Out of this recent research, graphene 

based thermal interfacial materials have turned out to be extremely immensely promising 

for the high thermal conductivity and its flexibility letting it conform to other surfaces. [7] 

All of the above techniques that have been discussed deal with external features being 

attached to the target heat source which will eventually have the issue of thermal interfacial 

resistance. This will reduce their effectiveness in removing the heat from the hot spots. 

With the power density in today’s chips reaching such astronomical levels, there are spots 

in the chips which reach a power density greater than 100 W/cm2 which calls of effective 

cooling techniques directly to the local hotspots. Here it is very interesting to explore the 

opportunity to use graphene and mesh them with the chips as part of the plane, hence acting as 

a planar heat dissipater. Graphene would potentially have all the right properties which are 

being extremely thin hence dissipating heat very effectively and having a high thermal 

conductivity hence not affecting the performance of the electronic chips. 

Now, when the question comes up as in what substrate will be used to integrate the 

graphene with, SiO2 substrates would be a standard choice. Graphene devices on SiO2 are 

very disordered and show intrinsic properties much lower than graphene itself. Graphene 

could be suspended above the substrate which leads to considerable improvement in the 

quality of the device but raises questions about the limitations about the functionality and 

sturdiness of such a device[6]. There is a need to identify dielectrics that will allow a 

substrate supported molecular structure and at the same time get to the same quality 

achieved by the suspended geometry. Boron Nitride comes up as an appealing substrate. 
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This is due to the fact that Boron Nitride has a lattice constant very similar to graphene, 

and on top of that it has large optical phonon modes and a large electrical bandgap. 

Graphene devices on Boron Nitride substrate have carrier inhomogeneities that are much 

better than devices on SiO2. The dielectric properties of Boron Nitride compare positively 

to those of SiO2 (є ≈3-4 and Vbreakdown ≈ 0.7 V nm-1) with no loss of functionality[11]. 

Hence, Graphene in combination with Boron Nitride form an excellent combination. 

1.4 Phonon Transport 

In the sections above we have reviewed thermoelectric effect, thermoelectric materials 

and basics of thermal management. Heat is mainly carried by phonons and electrons in a solid. 

Resistance to thermal transport is caused by any inelastic collisions that are faced by these heat 

carriers. In case of a near perfect bulk semiconductor or insulator, energy is mainly transmitted 

by the phonons and the conduction is mainly due to phonon-phonon scattering. The reason we 

will only be focusing on discussing thermal transport by phonons in this document is because: 

their electronic contribution to the k value is usually many orders smaller for graphene based 

systems as compared to from lattice contribution. Hence when dealing with a graphene system, 

dealing with just the phonon transport should be more than enough to get a good understanding 

of the thermal transport going on within the system. 

1.4.1 What is a Phonon? 

In semiconductors and insulators, heat is carried primarily by vibrations in the 

crystal lattice known as phonons. A phonon is a collective excitation in a 

periodic, elastic arrangement of atoms or molecules in solids or liquids. Although it is the 

http://en.wikipedia.org/wiki/Collective_excitation
http://en.wikipedia.org/wiki/Elasticity_(physics)
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Molecule
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quantity of energy that gets transmitted from one end to another, it is designated as a quasi-

particle. In the simplest example, let take a one-dimensional chain of atoms connected by 

springs. We can take the equilibrium separation as d, mass to be m and note down each 

atom’s displacement from its equilibrium position as us where s is a character denoting the 

integer index of the plane. Using Hook’s law, we can write down the restoring force as, 

    𝐹𝑠 =  −𝐶(𝑢𝑠 − 𝑢𝑠+1) − 𝐶 (𝑢𝑠 − 𝑢𝑠−1)   (1.3) 

Which we can write as follows, using the equation of motion for displacements of atoms 

in the s-plane, 

𝑚
𝑑2𝑢𝑠

𝑑𝑡2 = −𝐶(2𝑢𝑠 − 𝑢𝑠+1 − 𝑢𝑠−1)   (1.4) 

When periodic boundary conditions are applied, we get, 

𝑢𝑠(𝑡) = 𝐴𝑒𝑖𝑘𝑠𝑑−𝑖𝜔𝑡     (1.5)  

Where A is the amplitude. The vector k, is related to the vibration frequency as follows, 

𝜔(𝑘) = 2√
𝐶

𝑚
|sin (

𝑘𝑑

2
)|    (1.6) 

The above example shows when we take a solid with only 1 type of atom. When dealing 

with a solid with more than one atom basis, we usually start with the standard structure 

with 2 atoms in a single unit cell and phonons propagating in the direction such that 

successive planes of atoms are all of one type[12]. Solids with more than one atom in its 

unit cell, exhibit two types of phonons: acoustic phonons and optical phonons. 
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1.4.2 Acoustic Phonons (Coherent Phonons) 

Acoustic Phonons are coherent movements of atoms of the lattice out of their 

equilibrium positions. If distortion of atoms is in the direction of propagation then, some 

atoms get closer to each other and some father away from each other. If the wavelength of 

a coherent phonon reaches infinity, it corresponds to a simple displacement of the crystal 

and it doesn’t take any energy. Acoustic phonons have a linear relationship between 

frequency and phonon wavevector for long wavelengths.  

1.4.3 Optical Phonons (Incoherent Phonons) 

Optical Phonons are incoherent phonons which are out-of-phase movements of the 

atoms in the lattice, so usually indicated by adjacent atoms moving in opposite directions. 

They are called optical because in ionic crystals, like sodium chloride, they are excited by 

infrared radiation. 

To indicate acoustic and optical phonons let’s take atoms with mass m1 and mass 

m2 that experience displacements from equilibrium us and vs respectively, then writing out 

the equations of motions gives us[12], 

𝑚1
𝑑2𝑢𝑠

𝑑𝑡2 =  −𝐶 (2𝑢𝑠 − 𝑣𝑠 − 𝑣𝑠−1)   (1.7) 

𝑚2
𝑑2𝑣𝑠

𝑑𝑡2
=  −𝐶 (2𝑣𝑠 − 𝑢𝑠+1 − 𝑢𝑠)   (1.8) 

Sine wave for each atom type will be written as follows, 

𝑢𝑠(𝑡) = 𝐴𝑒𝑖𝑘𝑠𝑑−𝑖𝜔𝑡    (1.9) 

𝑣𝑠(𝑡) = 𝐵𝑒𝑖𝑘𝑠𝑑−𝑖𝜔𝑡    (1.10) 
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When Equation (1.9) and Equation (1.10) are substituted in Equation (1.8), we get, 

𝑚1𝑚2𝜔4 − 2𝐶(𝑚1 + 𝑚2)𝜔2 + 2𝐶2(1 − cos(𝑘𝑑)) = 0   (1.11) 

Finally, the solution comes down to at (k=0) 

𝜔2(𝑘 = 0) = [ 
2𝐶 (

1

𝑚1
+

1

𝑚2
) (1 −

𝑘2𝑑2

4
) 𝑜𝑝𝑡𝑖𝑐

0 +
𝐶

2(𝑚1+𝑚2)
𝑘2𝑑2 𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐

]  (1.12) 

1.4.4 Superlattice and Its Importance 

A superlattice is a periodic structure of layers of two (or more) semiconductor 

materials. Typically, the thickness of one layer ranges from 1 to 10nm. The superlattice we 

are aiming to work with during the course of this thesis is of Graphene and Boron Nitride.  

The importance of superlattice stems from the fact that if a superlattice is made of 

two semiconductor materials with different bandgaps, each quantum well meshes together 

new filtering criteria for charges to flow through the structure. Advances have been made 

Figure 1-5: Snapshot of a typical Si/Ge superlattice nanowire used as model system in 

the MD simulations. The total length of the wire (L), cross-sectional width (D), and 

periodic length (Lp = LSi + LGe) are indicated. Color code: yellow: Si, blue: Ge. [35] 
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to make ultra-fine semiconductors or which are presently called quantum structures all due 

to the understanding about superlattices after the proposal in 1970 by Esaki and Tsu[13].  

Figure 1-5 gives a good illustration of what a superlattice looks like. This is a 

computer simulated model of a Si/Ge superlattice showing its periodic nature. 

1.5 Objective and Scope of Thesis 

Through the introduction, the importance of research on graphene based 

thermoelectric superlattices has been established. Boron Nitride has been shown to have 

very interesting properties when made into a superlattice with Graphene. If roughness were 

to be induced in the interface between graphene and boron nitride, it enhanced the contact 

area between the two materials but also disrupting smooth passage of phonons. The 

primary motivation behind this research project is, to understand the effect caused by 

induced roughness between Graphene and Boron Nitride, in single interface and in a 

superlattice; on thermal transport in the solid.  The way roughness has been simulated is 

by having teeth along the interface.  By varying the frequency of teeth and its size the 

interface can be simulated to be either rougher or less rough. This project will attempt to 

understand the effect of parameters such as periodic length, teeth length, and width between 

each tooth on the thermal conductivity of the superlattice. The objective is to understand 

the competing effects played by the coherent and incoherent phonons travelling through 

the superlattice. 
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CHAPTER 2. METHODOLOGY 

2.1 Overview 

The motivation, introduction and objectives behind this thesis having been discussed 

in the previous chapter, this chapter will delve into the methods that were employed to 

achieve the objectives. The thermal transport within the Graphene-Boron Nitride system 

has been studied using Molecular Dynamics simulations. This chapter provides basic 

insight about what molecular dynamics is and its importance. There are multiple methods 

of thermal conductivity prediction and the one used through this research is called Green-

Kubo method which is an Equilibrium Molecular Dynamics method. It is important to 

understand the physics behind the Green-Kubo method. The procedures followed in terms 

of simulation setup, generating the molecular structure and determining the boundary 

conditions have been discussed thoroughly.  

 Some of the steps taken to modify the molecular structure in the simulation system 

after initial results were analyzed have been discussed along with the importance of 

perfectly periodic representation of the superlattice. Finally, to wrap up this chapter, the 

procedure used to predict the thermal conductivity using the Green-Kubo method has been 

explained. Understanding of the system and the procedures used play a critical part in 

analyzing the results and making relevant conclusions. 
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2.2 Molecular Dynamics 

Computer simulations are carried out in the hope of understanding the properties of 

assemblies of molecules with respect to their structure and how they interact with each 

other in the microscopic scale. These complement the conventional experimental analysis, 

usually helping us to find out things that cannot be found out in other ways. The two main 

categories of simulation technique are molecular dynamics (MD) and Monte Carlo (MC); 

additionally there are a whole lot of hybrid techniques that combine features from the two 

techniques[14]. The advantage that MD has over Monte Carlo simulations is that it gives a 

route to dynamical properties of the system like time-dependent responses to perturbations, 

rheological properties and spectra. Computer simulations act as a bridge between 

microscopic length and time scales; and the macroscopic world.  

In a Molecular Dynamics simulation, the position and momentum space trajectories 

of a system of classical particles are predicted using Newton’s laws of motion[15]. The 

only inputs required are an atomic structure and an appropriate inter-atomic potential. 

Using the positions and momenta, it is possible to investigate the thermal transport at an 

atomic level. Molecular Dynamics simulations have peaked the interest of scientists in the 

past ten years due to its ability to study thermal transport going on in solids addressing the 

need to study thermal management in semi-conductors devices.   

The flowchart below gives a simplified explanation of the steps involved in the 

calculations for conducting molecular dynamics.
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Once the initial conditions are set, which is usually a random initial velocity given 

to the a few atoms, then using the forces between adjacent atoms, the position and velocity 

of the adjacent atoms are updated. Depending on the molecular dynamics simulation type 

the temperature or pressure is controlled. The time step is increased and the process is 

repeated until the total time of the simulation has completed. 

The forces are derived from the pair potential used which in this case is Tersoff 

potential between Carbon atoms and Boron Nitride atoms.  

Figure 2-1: Flowchart showing the steps of calculations involved in molecular 

dynamics simulation. 
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𝐹 =  −∇𝑉(𝑟)    (2.1) 

 𝐹𝑖 = ∑ 𝐹𝑖𝑗𝑗≠𝑖     (2.2) 

Equations of motion are solved with a finite difference algorithm, 

𝑟𝑖(𝑡 + 𝛿𝑡) = 𝑟𝑖(𝑡) + �⃗�𝑖(𝑡)𝛿𝑡) +
1

2
�⃗�𝑖(𝑡)𝛿𝑡2  (2.3) 

Although there are many advantages to MD simulations, they do have some 

shortcomings. Firstly, since all the calculations are based on classical Newtonian physics, 

quantum effects are not taken into account. Due to this, phonons are considered as classical 

particles as opposed to being considered as Bozons. At very low temperatures this issue 

causes inconsistencies in the results [16].  

Availability of classical potentials comes in as the second shortcoming. Developing 

classical potentials can be tedious and ensuring its accuracy can be tough. Hence, classical 

potentials for inorganic materials are usually difficult to find. This shortcoming can be 

accounted for “by using ab initio or tight-binding MD which can bypass the need for 

classical potentials” [7]. As mentioned earlier in this thesis, Tersoff potential has been used 

for Carbon and Boron Nitride atoms which was provided to me by my colleagues in the 

research group. 

2.2.1 Green-Kubo Method 

Two main techniques have been developed to predict the thermal conductivity of a 

dielectric material using Molecular Dynamics (MD) simulations. The first technique is a 

direct application of the Fourier Law which is a steady state, non-equilibrium approach 
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called the Direct Method or Non-Equilibrium Molecular Dynamics (NEMD) method. The 

second technique is called the Green-Kubo method which is an equilibrium molecular 

dynamics method.  

Although in theory the two techniques would produce the same results, the advantage 

of Green-Kubo is that it would need a much smaller size of system as compared to the 

NEMD method. As mentioned earlier, in this document we will concentrate on using the 

Green-Kubo method.  

Thermal conductivity using Green-Kubo method is determined based on the time it 

takes for the heat current fluctuations in the solid to dissipate. Several research groups have 

successfully used the Green-Kubo approach to predict the thermal conductivity of 

multitude of materials like silicon, graphene, Bi2Te3 and argon among many others 

[17][18][19][20]. Considering Green-Kubo’s linear response formulation [21], the 

equation for the lattice thermal conductivity for an anisotropic system is as follows [22]: 

𝜅𝑙,𝛼 =
1

𝑘𝐵𝑉𝑇2 ∫ < 𝑆𝛼(𝑡). 𝑆𝛼(0) > 𝑑𝑡, 𝛼 = 𝑥, 𝑦, 𝑧
∞

0
  (2.4) 

In the above Equation (2.4), V is the volume of the simulation domain, < 𝑆𝛼(𝑡). 𝑆𝛼(0) > 

is the heat current auto-correlation (HCACF) in a certain direction where < … > refers to 

the ensemble average, T refers to the temperature and t referring to time-step. In MD, the 

time dependent heat current vector is extracted from the time dependent position and 

energy of each atom: 

𝐒 =
𝑑

𝑑𝑡
∑ 𝐫𝑗𝐸𝑗 = 𝑗

𝑑

𝑑𝑡
∑ 𝐫𝑗 (𝐸𝑘,𝑗 + 𝐸𝑝,𝑗),𝑗     (2.5) 
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In Equation (2.5) 𝐫𝑗 refers to the position of the atom j, 𝐸𝑝,𝑗  𝑎𝑛𝑑 𝐸𝑘,𝑗 referring to the 

potential and kinetic energy of the atom j. To obtain the thermal conductivity value, the 

HCACF should be integrated over time. 

 In some materials where the fluctuations are long lived, the autocorrelation function 

dies out slowly. This means that it requires a very large simulation domain in the direction 

of the temperature gradient to accurately predict the thermal conductivity and eliminate the 

size effect. On the other hand in amorphous materials we don’t encounter this issue as the 

thermal fluctuations quickly dampen as the mean free path of the phonons are 

comparatively small [23]. 

2.3 Simulation Setup 

Prior to conducting the molecular dynamics simulation the setup needs a few key 

components to be arranged for. These include: the setting up of molecular structure which 

is in the form of a text file consisting of spatial coordinates of all the atoms in the system; 

the Tersoff potential file which consists of the potential between atoms of Carbon and 

Boron Nitride; setting up of boundary conditions and finally the job file that will execute 

the simulation with the help of the computing cluster.  

2.3.1 Molecular Structure 

Since, the aim is to study the effect of roughness at the interface between Graphene 

and Boron Nitride, there would be two broad types of system that would be set up. One 

system would be with smooth interface (no roughness induced at the interface) and the 
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other type of system would be with the roughness induced. Now, before we go into how 

we will create the lattice structure coordinate file, it is important to discuss how the 

roughness will be simulated at the interface.  

 

 

In the figure 2-2 above, PL stands for Periodic Length of the superlattice, L stands 

for the length of the system, W stands for the width of the system, L0 stands for the length 

of the teeth and W0 stands for the separation between successive teeth.  

The roughness that is to be simulated at the interface between Graphene and Boron 

nitride will be in the form of teeth. Now for all the simulations that have been done on 

rough interfacial systems, it is modeled such that the teeth are equidistant from one another 

and the width of teeth is half of W0 shown in figure 2-2 above.  By controlling the length 

L0 of the teeth and the width W0 of the teeth at the interface we can simulate the controlled 

roughness effect at the interface. The larger the value for W0 is smoother the interface, the 

smaller the value for W0 the rougher the interface. Similarly, the higher the value of L0 

the rougher is the interface considered, and closer the value of L0 to zero the smoother it 

Figure 2-2: System with rough interface visualizing the different terms used. 
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is considered. For most cases the width W of the system has been arbitrarily set to be half 

of the length L of the system. The length however has been chosen according to the 

parameter that is being evaluated or with relative to the periodic length PL of the system. 

To generate the molecular structure in the form of a text file having the coordinates 

for all the atoms, a code in MATLAB was written. This code would act as the blueprint to 

generate the lattice structure irrespective of the parameters. The code was written in such 

a way that it would be universal for all the cases studied in this thesis. As mentioned above 

L0 refers to the length of the teeth and to produce the lattice structure for smooth interface 

all that had to be done was set L0 to be 0 and it should generate a smooth interface super-

lattice. 

The logic that was used to write the code was that, the length of the system would 

be divided by the periodic length to give number of periods in the x-direction, and similarly 

the width of the system would be divided by W0 to give the number of teeth pairs in the y-

direction. Number of unit cells were then calculated in the x direction by dividing the length 

of the system with length of the unit cell and rounding down the number. The length of the 

unit cell can be calculated by taking the average of the lattice constant of carbon and boron 

nitride. The length is the x direction is then reset to the value that one gets when multiplying 

the number of unit cells to the length of the unit cell. This is done so the system is the exact 

length of an integer multiple of atoms placed side by side. The coordinates are then started 

from [0 0 0] and written into a text file one by one updating every time one goes onto the 

next atom.  

When the MATLAB file is run, it generates two output files. The first file is a text 

file with coordinates of each atom in the system and the second is a .xyz file that can be 
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used to visualize the system using the VMD software. The figure 2-3(a) and (b) show 

the entire system with the smooth interface and a close up of the atoms. 

2.3.2 Boundary Conditions 

Periodic boundary conditions are applied in x-direction and y-direction which refer 

to the length and the width of the system which means the system goes on for infinite length 

Figure 2-3: (a) Visualization of entire system using VMD, (b) a close-up look 

at the carbon atoms, the interface and the boron nitride atom  (C – Cyan, B – 
Magenta, N – Blue). 
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and infinite width. What this means for the atoms on the boundary of the set system is that 

the particles interact across the boundary, and they can exit one end of the box and re-enter 

the other end. A periodic dimension can change in size due to constant pressure boundary 

conditions or box deformation.  

The boundary condition in the z-direction (depth) is set as non-periodic and shrink 

wrapped. This means that the particles do not interact across the boundary and do not move 

from one side of the box to the other. The position of the face is set so as to encompass the 

atoms in that dimension (shrink wrapping), no matter how far they move. 

2.3.3 Tersoff Potential 

Now that the lattice structure and boundary conditions have been explained, the 

potentials between carbon atoms and boron nitride atoms needed for the molecular 

dynamics simulations can be calculated using the Tersoff Potentials. The group of 

potentials developed by Tersoff [24] in 1988, based on the concept of bond order, means 

that the bond strength of two atoms is not constant, but depends on the local environment. 

This idea is to use the coordination of an atom as the variable controlling the energy. 

However, in semiconductors, instead of the focus being on the atoms is on the bonds: that 

is where the electronic charge is sitting in covalent bonds. 

 The Tersoff potential is a three-body potential function which specifically includes 

an angular contribution of the force. The potential; is widely used at preent in various 

applications for silicon, carbon, germanium etc. 

 It is written as following: 
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𝐸 =  ∑ 𝐸𝑖 =
1

2𝑖 ∑ 𝑉𝑖𝑗𝑖≠𝑗     (2.6)  

𝑉𝑖𝑗 = 𝑓𝐶(𝑟𝑖𝑗)[𝑓𝑅(𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑓𝐴(𝑟𝑖𝑗)]   (2.7) 

Where the potential energy is decomposed into a site energy 𝐸𝑖 and a bonding energy 𝑉𝑖𝑗, 

𝑟𝑖𝑗is a distance between the atoms i and j. 𝑓𝐴 and 𝑓𝑅are the attractive and repulsive pair 

potential respectively, and 𝑓𝐶  is a smooth cutoff function. 

𝑓𝑅(𝑟) = 𝐴𝑒−𝜆1𝑟     (2.8) 

𝑓𝐴(𝑟) = −𝐵𝑒−𝜆2𝑟     (2.9) 

𝑓𝐶(𝑟) = {

1,

1

2
−

1

2
sin (

𝜋

2
(𝑟−𝑅)

𝐷
) ,

0,

 
𝑟 < 𝑅 − 𝐷

𝑅 − 𝐷 < 𝑟 < 𝑅 + 𝐷
𝑟 > 𝑅 + 𝐷

   (2.10) 

R and D are chosen so as to include the first neighbor shell only for selected structure (for 

carbon R = 1.8Å). The 𝑓𝐶  function decreases from 1 to 0 in the range 𝑅 − 𝐷 < 𝑟 < 𝑅 + 𝐷.  

 The primary feature of this potential is the presence of the 𝑏𝑖𝑗 term. What this term 

means is that the strength of each bond depends on the local environment and is lowered 

when the number of neighbors is relatively high[25]. Tersoff potential is not a pair potential 

as 𝑏𝑖𝑗 is not constant. The basic idea is that a bond ij is weakened by the presence of other 

bonds such as for ex. ik involving atom i. The amount of weakening is determined by where 

these other bonds are located. Angular terms are necessary to build a realistic model [26].  
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2.4 Initial Results and Periodic Nature of the Structure 

Although this section is named as initial results, it deals more with an important 

lesson learnt from an initial set of results which caused a rethink on the process with which 

the lattice structure was generated. One of the trends that were to be studied and on the 

agenda was the variation of thermal conductivity with respect to varying periodic length 

keeping the length and width of the system, teeth length and teeth width constant.  

As the results came in something seemed out of place. As shown in figure 2-4 the 

thermal conductivity values for cases with periodic length from 10Å to 40Å seem 

Figure 2-4: Initial results: Studying variation in Thermal Conductivity in smooth 

interface and rough interface systems with varying periodic lengths keeping system 

length, width and teeth length and width constant. Red circle points to the unexpectedly 

low k values. 
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unexpectedly low i.e below 100 W/mK when the expected values should come in around 

150 W/mK. The values for the higher periodic lengths (50Å - 200Å) are around expected 

values. 

To understand the issue, the molecular structure was visualized for the lower periodic 

lengths. The structure as shown in figure 2-5 showed that due to the periodic lengths being 

small and only a few multiples higher than the lattice constant of carbon and boron nitride, 

were causing the atomic placement to be inconsistent from period to period. 

This means that the method in which the molecular structure was being generated 

has to be modified. Although at higher periodic lengths (50Å - 200Å) the structure is 

perfectly periodic but as the periodic lengths decrease even small variations cause the loss 

of the periodic nature of the super-lattice and when the PL comes down to 10Å the amount 

of variation almost completely takes the periodic nature out of the system hence resulting 

in very low thermal conductivity due to very high levels of phonon scattering at the 

Figure 2-5: Visualization of the molecular structure produced for the case with PL = 

10Å. Due to the periodic length being very small the structure doesn’t seem periodic 

at all (C – Cyan, B – Magenta, N – Blue). 
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interfaces. This level of randomness in the molecules almost compares to interfacial mixing 

which causes disruptions of superlattice phonons as shown by Huberman et all causing the  

thermal conductivity to drop [27].  Hence, the MATLAB code used to generate the lattice 

structure was modified. 

2.4.1 Revised MATLAB Code to Generate Molecular Structure 

The goal was to ensure perfect periodicity of the atoms. For this, the length of the 

system was divided by the periodic length for that case and round the number to get the 

number of periods. The new length would be the perfect integral of unit cells. All of these 

steps are still the same as was done before. What was changed in the revised code was that 

once the number of unit cells needed for one period was calculated, the period was 

constructed and then for every period after the first period was perfectly replicated. The 

first atom in the first period would be the first atom in the second period. Due to this, at 

very small periodic lengths we ended up with situations such that the graphene band would 

Figure 2-6: Revised visualization of the molecular structure produced for the 
case with PL = 10Å using the revised MATLAB code. The lattice structure is 
now perfectly periodic in nature (C – Cyan, B – Magenta, N – Blue). 
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be slightly wider or narrower than the boron nitride band but more importantly the super-

lattice was perfectly periodic. Figure 2-6 shows the exact same case as in figure 2-5 with 

PL = 10Å but constructed with the revised MATLAB code. 

2.4.2 Importance of Periodicity 

The importance of having a perfectly periodic lattice structure has been underscored 

by the need for the above revision in the MATLAB code. The periodicity is the main aspect 

of a superlattice. There has been research conducted studying the effects of interfacial 

mixing, which means irregularities at the interface where atoms of one element swap places 

with atoms of another element. This causes heavy disruptions of superlattice phonons 

decrease thermal conductance at the interface by a considerable amount [27].  Lacking a 

perfectly periodic structure does disrupt the phonons but not to the extent that interfacial 

mixing does as one still has a consistently uniform interface even though the atoms at the 

interface are not consistent through different periods. It will be evident from the results 

discussed in the next chapter the influence that perfect periodicity has on the thermal 

conductivity. The perfectly periodic structure produces considerably higher thermal 

conductivity values and are consistent with expected values for a Graphene-Boron Nitride 

superlattice. 
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2.5 Using Green Kubo Method to Predict Thermal Conductivity 

Thermal conductivity for the Graphene-Boron Nitride super-lattice is simulated with 

the use of equilibrium molecular dynamics (Green-Kubo theory) [21]. The heat current 

vector for a pair potential can be written as follows: 

𝐒 =
1

2
∑ (𝐅𝑖𝑗. 𝐯𝑖)𝐫𝑖𝑗,𝑜𝑖,𝑗     (2.11) 

Where 𝐯𝑖 refers to the atom i velocity and 𝐅𝑖𝑗 refers to the force between the two atoms (i 

& j). As the atoms in a solid vibrate in a local vicinity, the heat current S(t) can be written 

in terms of the distance between the two atoms denoted by 𝐫𝑖𝑗,𝑜. The thermal conductivity 

is deduced using the heat current auto-correlation function [28]. 

𝜅𝑙,𝛼 =
1

𝑘𝐵𝑉𝑇2 ∫ < 𝑆𝛼(𝑡). 𝑆𝛼(0) > 𝑑𝑡,
∞

0
   (2.12) 

Figure 2-7: HCACF plotted against time steps. 
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In Equation (2.12), V is the volume of the domain, T being the temperature, kB is the 

boltzmann constant and < 𝑆𝛼(𝑡). 𝑆𝛼(0) >  is the heat current auto-correlation function 

(HCACF).  

 The simulation is first run in NPT 5000000 time steps where each time step is 0.5 

fs (5𝑥10−16𝑠)  that means the NPT runs for about 2.5 ns. We then change to NVE for the 

whole system. The values for HCACF are obtained after processing of data obtained from 

the last full cycle of time steps as shown in figure 2-8 below. The direct integral of Heat 

Figure 2-8: Integrated values of the Heat Current Auto-Correlation Function 

plotted against Time steps. As explained, the plot seems to plateau at about 

25000 time steps and later diverge.  



30 

 

 

 

Current Auto-Correlation Function plateaus initially then diverges later on. This is a very 

common feature of Molecular Dynamics simulations [29]. 

 The value at which this integral curve converges is plugged into Equation (2.12) 

where all the constants are then plugged in such as Boltzman constant kB, set Temperature 

T and Volume of the simulation domain. This is how the thermal conductivity is calculated 

using the Green Kubo Method of Equilibrium Molecular Dynamics.  
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CHAPTER 3. RESULTS AND DISCUSSION 

3.1 Introduction 

The aim of this research is to gain understanding of how interfacial roughness 

impacts the thermal conductivity of Graphene-Boron Nitride superlattice. We will aim to 

simulate cases to understand the impact of varying periodic length, varying the roughness 

in the form of teeth size and spacing of the teeth at the interface, and understanding effect 

of a roughness in a single interface system. At the end of this chapter, apart from discussing 

the results from this research, results that have been recently researched by the scientific 

community will be discussed.  

As mentioned earlier, the roughness in the interface has been simulated in the form 

of teeth. The length of the teeth and the width/separation between consecutive teeth can be 

controlled hence controlling roughness per say. The more the length of the tooth the 

rougher it is considered and vice versa. Similarly is the teeth are far apart it is considered 

to be smoother as compared to having teeth extremely close to each other. 
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3.2 Effect of Non-Periodicity of Superlattice 

 

Although we discussed about these initial results in the previous chapter, it is still 

useful to discuss what we can learn from those results which were unintended but at the 

same time very informative. The parameters that were kept constant for this setup were the 

length of the system which was maintained at L = 200Å for all the cases except when PL 

= 100 Å and PL = 200 Å where the system had to be longer. The tooth length was set at L0 

= 2.5 Å and the width or separation between consecutive teeth W0 = 20 Å. 

Figure 3-1: Initial results: Studying variation in Thermal Conductivity in smooth 

interface and rough interface systems with varying periodic lengths keeping system 

length, width and teeth length and width constant. Red circle points to the unexpectedly 

low k values. 
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The thermal conductivity for the different systems were all expected to lie in the 

range of 125W/mK to 250W/mK but as we see in figure 2-4 cases with PL less than 50 Å 

it was not the case. Almost all the cases with low periodic length returned extremely low 

thermal conductivity values. 

 Although the reason behind this is understood and rectified for all cases that came 

afterward, it is interesting to see the effects of disrupting the periodicity of a superlattice 

by as little as one extra layer of certain atoms or one less layer of certain atoms. In the 

scientific paper written by Huberman et all, they have discussed the effects of interfacial 

mixing and they have showed how this mixing is extremely disruptive to medium 

frequency phonons which dominate the in-plane thermal transport resulting in under 

prediction of thermal conductivity [27]. The atomic structure created due to small periodic 

lengths aren’t as disruptive as interfacial mixing, but we get the idea about how it affects 

the thermal conductivity prediction.  

 The thermal conductivity prediction for PL =50 Å and higher are consistent with 

the other cases and expected results.  

3.3 Effects of Periodic Length on Thermal Conductivity Prediction of Graphene-Boron 

Nitride. 

In this case study we take four cases, each with its mini cases. The graph that we 

would be interested to generate will have these four cases in comparison to each other. The 

first case has periodic length set at PL = 100Å and Teeth length L0 = 10Å, the second case 

has periodic length PL = 100 Å and Teeth length L0 = 2.5 Å, the third case has periodic 

length PL = 200Å and Teeth Length L0 = 10 Å and finally the fourth case has periodic 
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length PL = 50 Å and Teeth length L0 = 2.5 Å. The four cases were chosen to get an idea 

of the trend due to two factors, primarily periodic lengths 50 Å, 100 Å and 200 Å and Teeth 

Lengths 2.5 Å and 10 Å. 

The aim of this case was to find out how roughness affects the thermal conductivity 

of the system. The aim was to check if in any of the cases induced roughness was able to 

actually increase the thermal conductivity of the system where our datum was the thermal 

conductivity obtained from the smooth case (no teeth). Hence, in the figure 3-2 above, all 

the thermal conductivity values are relative to the value for the smooth case set in their 

Figure 3-2: Plot of various cases with different periodic length with varying width of 

teeth (separation between teeth). The different thermal conductivity values are plotted 

relative to the value of the smooth condition in their respective cases. 
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respective parameters. This will show us the trend of the thermal conductivity due to 

induced roughness depending on periodic length.  

From the figure 3-2 above we see that for the case with periodic length PL = 50Å 

and teeth length L0 = 2.5Å the thermal conductivity values for the rough cases are actually 

higher than what it is for the smooth condition without teeth at the interface. This means in 

this condition the roughness is actually enhancing the thermal transport capacity of this 

system.  

Since the result for the case is distinctly separate from the other cases, the results 

were verified a few more times to be sure and every way that was simulated confirmed the 

results shown in figure 3-2. The physics behind this phenomenon is due to coherent and 

incoherent phonons. Now, coherent phonons are phonons that have a wavelength greater 

than the periodic length of the superlattice while incoherent phonons have wavelengths less 

than the periodic length of the superlattics. In common man’s terms incoherent phonons 

‘see’ the interface and scatter at the interface. When the periodic length is small the 

incoherent phonons do scatter at the interface but bulk of the energy is transported by the 

coherent phonons hence this doesn’t affect the thermal conductivity to a great extent. On 

the other extreme when the periodic length is extremely large, the coherent phonons which 

need to have a wavelength larger than the periodic length carry little to no energy at all due 

to its very large wavelength and almost all of the energy is transported by the incoherent 

phonons. Since the periodic lengths are very large in this case, the incoherent phonon 

scattering at the interface does not affect the thermal conductivity to a huge extent. Having 

said this, there lies a region where the periodic length is about the same size as the 

wavelength of a large number of phonons. As the period of superlattice increases to a 
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critical value near 5 nm the lattice thermal conductivity drops sharply to a minimum, and 

beyond that it smoothly increases with the period. Ertekin et all have shown that the 

minimum in the thermal conductivity arises from a competition between lattice dispersion 

and anharmonic effects such as interface scattering [30]. They have also shown that this 

5nm critical period is irrespective of the length of the system and is dependent on the 

material properties which also makes sense and is supported by the results that we have 

gotten.  

The above explanation gives the reason as to why the smooth interface has a sudden 

dip in thermal conductivity but the reason the thermal conductivity is actually increasing 

for the cases with teeth in the interface are due to a couple of reasons. One could be due to 

increased surface area at the rough interface. Second could be because of angled bonds at 

the rough interface between Carbon and either Boron or Nitride. It has been shown that 

angled bands transmit thermal energy much more effectively than perpendicular atomic 

bonds. 

3.4 Relation of L0/W0 or h/w of Teeth for Near Single Interface Systems (Few 

Interfaces) 

During one of the simulation studies of a system with PL = 200Å the thermal 

conductivity values for the smooth case was coming to be lower than the case with teeth 

length 2.5Å and 10Å. This seemed strange because according to size effect: when the 

length of the system becomes larger the thermal conductivity from the smooth case 

becomes higher than the k value from the cases with teeth / induced roughness. The length 



37 

 

 

 

of the system was 400Å. Having a periodic length of 200Å meant that there were only 2 

periods in the systems. This meant the interfaces were quite far away from one another.  

 

This is very similar to having a single interface and calculating the effect of teeth in 

the interface on the thermal conductivity. The peak of 198.91 W/mK is reached in the case 

of L0 being 2.5Å and W0 being 20Å. Since W0 refers to the distance between two 

consecutive teeth, it would be equal to 2*w as shown in the figure 3-3. Hence the highest 

point of 198.91 W/mK is reached at a ratio of 0.25. Comparing the above figure 3-3 

showing results from this research with a figure 3-4 worked on by my colleague Zuyuan 

Wang from the same research group but using NEMD on a truly single layer setup: 

Figure 3-3: Relation thermal conductivity w.r.t h/w or L0/W0 in a 

case symbolic of single interface system. 
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 As you can see that the trend of the curve is exactly the same but the ratio at which 

the peak is reached in this figure 3-4 is approximately 0.8~1.0 whereas the ratio at which 

the peak was reached in figure 3-3 according to my results is 0.25. This might be due to 

the fact that our case is not strictly a single interface, having 3 to 4 interfaces to help the 

conductance.  

3.5 Effect of Interfacial Roughness on Thermal Conductivity of System with Respect 

to the Length of the Teeth and Periodic Length. 

In section 3.3 of this chapter, we discuss the importance of 5nm as the periodic length 

and how it’s the critical period where a big chunk of phonons have their wavelengths and 

hence causes a drop in thermal conductivity. Now in that section we had simulated using 

Figure 3-4: Effect of teeth on thermal conductivity of a 

Single Interface. Figure by Zuyuan Wang. 
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PL = 50Å and teeth length L0 = 2.5Å. Does that mean however rough the interface is the 

thermal conductivity will be greater than the one for the smooth interface case? To find out 

how the system behaves under different teeth length, the cases simulated were such that 

the width between consecutive teeth were kept constant at W0 = 20Å, the length of the 

system constant at 200Å for all cases except for PL = 100Å and PL = 200 Å for which the 

system length of 400 Å has been chosen. The cases have the following PL= 20 Å, 30 Å, 40 

Å, 50 Å, 66 Å, 100 Å, and 200 Å. The conditions are similar to the ones shown in the initial 

results setup where the irregular periodicity was encountered. For this time, the revised 

MATAB code was used to generate the coordinate files which will form the perfectly 

periodic system. 

Figure 3-5: Effect of interfacial roughness on thermal conductivity of 

system with respect to the length of the teeth and periodic length. 
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In figure 3-5 above the graph in black refers to the thermal conductivity of the system 

with smooth interfaces, the blue graph refers to the thermal conductivity values of the 

system with teeth 5Å in length and the red graph refers to the thermal conductivity values 

of the system with teeth 2.5Å in length.  

Starting from the left of the graph we can see that for very small periodic lengths 

such as PL = 20Å, 30Å and 40Å the system with the smooth interfaces have a considerably 

higher thermal conductivity as the interfaces with the teeth would be very close to each 

other due to the small period length and this would provide for a lot of scattering and hence 

loss in thermal conductivity. 

Before, we tackle what happens between PL=50Å and PL = 100Å, we see that at PL 

= 100Å the smooth interface system has once again become the system with highest 

Figure 3-6: Size Effect showing that the thermal conductivity of a system 

will keep increasing for the smooth interface system and plateau off for 

the system with the rough interface. 
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thermal conductivity as expected. They will continue to rise from there on as the size of 

the system keeps increasing, this is known as size effect. It has been shown by my colleague 

Tianli Feng that as the size of the system keeps increasing the thermal conductivity of the 

system with the smooth interface will continue to rise while the system with the rough 

interface tapers off. Refer figure 3-6 for this discussion.  

 As expected, in figure 3-5 we see a big drop at PL = 50Å for the black graph, 

which is due to the fact that at 5nm you have a critical period where many medium 

wavelength phonons begin to scatter at the interface causing sudden dip in thermal 

conductivity. When we look at what happens to the other two graphs at PL = 50Å, it 

becomes very interesting. Both having the same number of teeth separated by the same 

distance, the only difference being one having teeth that is 2.5Å and another having teeth 

that is 5Å long. The thermal conductivity for the system with teeth length = 2.5Å rises 

steeply and at PL = 50Å has the highest thermal conductivity of all the systems. On the 

other hand the system with teeth length = 5Å has thermal conductivity less than its 

smooth counterpart despite the sharp drop for the smooth interface system. 

This behavior tells us that there is such a thing as optimum roughness. At teeth 

length = 5Å it seems like the teeth are disrupting the phonons at the interface causing a dip 

in the thermal conductivity. On the other hand the system with teeth length = 2.5Å which 

is denoted as the red graph is benefiting from the teeth which are essentially one unit cell 

thick and are increasing the area over which the phonons are being transmitted to the next 

material without disrupting the phonon flow. Not only does the added area help the thermal 

conductivity, but research show that the thermal conductance is much higher in an angled 

bond between Graphene and Boron Nitride compared to an arm-chair bond which is 
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horizontal [31]. And since the teeth is only 2.5Å there are a whole lot of bonds between 

graphene and boron nitride which help in increasing the thermal conductivity of the system.  

Additionally, as shown in figure 3-4, it does matter if the atoms linked are Carbon 

to Nitrogen or Carbon to Boron, and they play a part in deciding the amount of thermal 

transport taking place.  
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CHAPTER 4. CONCLUSION AND FUTURE WORK

4.1 Conclusion 

The turn of the nano-technology age has brought a plethora of challenges for 

mankind to solve. As we go towards the age or faster and faster computing, thermal 

management will become one of the world top challenges and solving the world’s thermal 

management problems start with the research that goes into the new materials or to find 

methods to tune upcoming materials.  

Graphene and Boron Nitride are materials that have excellent properties with which 

a very potent superlattice can be formed. The most crucial part about this is superlattice is 

that the qualities and its properties can be completely tunable.  

Through this thesis project we have tried to get a better understanding of the impact 

of interfacial roughness on a single interface and superlattice of Graphene Boron Nitride. 

We have delved into using Equilibrium Molecular Dynamics Green Kubo method to 

simulate this superlattice. Through this thesis project we have been able to gather 

understanding about the challenges facing research in thermoelectrics as well as get a better 

understanding of how the different parameters such as periodic length, teeth length, teeth 

width, or roughness in general affects the thermal conductivity of a superlattice. I hope this 
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knowledge is a small step in taking this line of work forward and making an impact on the 

world. 

In conclusion, due to the wonderful properties of Graphene and Boron Nitride, the 

thermal transport can be tuned to cater one’s need. It is important to understand the different 

properties of this system as it has tremendous potential to become the material of the future 

especially for the semi-conductor industry. This thesis has pursued deeper understanding 

of the unusual thermal transport in Graphene Boron Nitride in single interface and 

superlattice tuned by interfacial roughness. 

4.2 Future Work 

The future for this stream is going to be based on getting a full grasp on these 

materials enough to tune them to incredible accuracy. Immediate future work could 

include trying to mesh the concept of interfacial mixing and interfacial roughness to 

enhance the properties being sought out.  

The future lies in harnessing any form of heat to put it to our use. Maybe the future 

holds building made out of thermos electric materials which only let in sun’s heat come 

in and none to go out during frigid winters. As for now, this is a step towards a more 

prosperous world. As they say, “All you can do is the best you can do”, I hope all of us 

keep striving to achieve the best we can achieve and no doubt the world would be filled 

with wonders. 

Finally, I would like to once again thank Prof. Ruan for guiding me on this 

extremely fulfilling and interesting project and to all those who have guided me and 

inspired me along the way! 
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