# Purdue University Purdue e-Pubs

**Open Access Theses** 

Theses and Dissertations

January 2015

# TRAINING AND EVALUATION OF VIRTUAL SENSORS FOR ROOFTOP UNITS

Jebaraj Vasudevan Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open\_access\_theses

**Recommended** Citation

Vasudevan, Jebaraj, "TRAINING AND EVALUATION OF VIRTUAL SENSORS FOR ROOFTOP UNITS" (2015). *Open Access Theses*. 1082. https://docs.lib.purdue.edu/open\_access\_theses/1082

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

# PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

# By JEBARAJ VASUDEVAN

Entitled TRAINING AND EVALUATION OF VIRTUAL SENSORS FOR ROOFTOP UNITS

For the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Is approved by the final examining committee:

JAMES E. BRAUN
Co-chair
TRAVIS HORTON
Co-chair
ECKHARD GROLL

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University's "Policy of Integrity in Research" and the use of copyright material.

Approved by Major Professor(s): JAMES E. BRAUN

Approved by: \_\_\_\_\_

8/14/2015

Head of the Departmental Graduate Program

# TRAINING AND EVALUATION OF VIRTUAL SENSORS FOR ROOFTOP UNITS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Jebaraj Vasudevan

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Mechanical Engineering

December 2015

Purdue University

West Lafayette, Indiana

#### ACKNOWLEDGEMENTS

It is my pleasure to thank many people without whom this thesis may not have been possible. Foremost, I would like to express my sincere gratitude to my advisors Prof. James E. Braun and Prof. Travis Horton for their thoughtful suggestions and extended support throughout this work. I would like to especially thank Prof. James E. Braun for coping with my inexperienced writing and presentation skills and giving timely suggestions to improve them. I would also like to extend my thanks to Prof. Eckhard Groll for serving on my thesis committee and for his valuable suggestions.

Furthermore, I would like to thank Frank Lee and Bob Brown for helping me immensely to setup my experiments in a timely manner and being always there to assist me when needed. I would like to say a big thanks to my colleague Andy Hjortland for helping and guiding me throughout the course of my research. In addition to this many people have been a part of my graduate education and I am thankful to all of them.

Finally, I would like to thank Consortium for Building Energy Innovation (CBEI) and Lennox International for supporting this project.

# TABLE OF CONTENTS

| Page |
|------|
|------|

| LIST OF TABLES                                                 | v   |  |  |
|----------------------------------------------------------------|-----|--|--|
| LIST OF FIGURESvi                                              |     |  |  |
| NOMENCLATUREviii                                               |     |  |  |
| ABSTRACTx                                                      | ii  |  |  |
| CHAPTER 1. INTRODUCTION                                        | . 1 |  |  |
| 1.1 Background and Motivation                                  | . 1 |  |  |
| 1.2 Virtual Sensors Based FDD                                  | . 2 |  |  |
| 1.3 Research Objectives and Approach                           | . 3 |  |  |
| 1.4 Thesis Formulation                                         | . 4 |  |  |
| CHAPTER 2. EXPERIMENTATION AND DATA COLLECTION                 | . 6 |  |  |
| 2.1 Experimental Goals                                         | . 6 |  |  |
| 2.2 RTU Selection and Description                              | . 6 |  |  |
| 2.3 RTU Instrumentation and Data Acquisition                   | . 7 |  |  |
| 2.3.1 Refrigerant-Side Temperature Measurements                | . 9 |  |  |
| 2.3.2 Refrigerant-Side Pressure Measurements                   | . 9 |  |  |
| 2.3.3 Refrigerant Mass Flow Measurement                        | 10  |  |  |
| 2.3.4 Power Measurements                                       | 10  |  |  |
| 2.3.5 Methodology for Refrigerant Charge Adjustment            | 10  |  |  |
| 2.3.6 Air-Side Temperature Measurements                        | 11  |  |  |
| 2.3.7 Relative Humidity and Dew Point Temperature Measurements | 13  |  |  |
| 2.3.8 Air Flow Measurements                                    | 13  |  |  |
| 2.3.9 Data Acquisition System                                  | 14  |  |  |
| 2.3.10 Indoor Blower and Outdoor Fan Control                   | 14  |  |  |
| 2.3.11 Heat Exchanger Fouling                                  | 14  |  |  |
| 2.4 Data Analysis and Uncertainty                              | 15  |  |  |
| 2.4.1 Data Analysis                                            | 15  |  |  |
| 2.4.2 Uncertainty                                              | 17  |  |  |
| 2.5 Open Laboratory Training                                   | 18  |  |  |
| 2.5.1 Motivation                                               | 18  |  |  |
| 2.5.2 Methodology for Adjusting Operating Conditions           | 19  |  |  |
| 2.5.3 Open Lab Experimental Conditions                         | 20  |  |  |
| 2.6 Psychrometric Room Evaluation                              | 21  |  |  |
| 2.6.1 Motivation                                               | 21  |  |  |
| 2.6.2 Room Setup                                               | 21  |  |  |
| 2.6.3 Evaluation Matrix                                        | 23  |  |  |

| Р                                                                        | 'age |
|--------------------------------------------------------------------------|------|
| CHAPTER 3. EVALUATING VIRTUAL SENSOR ACCURACY AND COSTS                  | . 25 |
| 3.1 Introduction                                                         | . 25 |
| 3.2 Virtual Refrigerant Charge Sensor Model Descriptions                 | . 25 |
| 3.2.1 Description of Different Alternative Model Forms                   | . 26 |
| 3.2.2 Model Evaluation Approach                                          | . 28 |
| 3.2.3 Model Results and Discussion                                       | . 28 |
| 3.3 Virtual Compressor Power Sensor                                      | . 35 |
| 3.4 Virtual Cooling Capacity Sensor                                      | . 36 |
| 3.5 Virtual Sensor Implementation Costs and Savings Relative             |      |
| to Direct Measurements                                                   | . 40 |
| CHAPTER 4. MINIMIZING TRAINING COSTS FOR THE VRC SENSOR                  | . 44 |
| 4.1 Opportunities for Reducing Engineering Costs Using Open Lab Training | . 44 |
| 4.2 Algorithm for Minimizing the Number of Training Data Points          | . 45 |
| 4.3 Guidelines for Choosing Operating Conditions for Open Lab Training   | . 49 |
| 4.4 Validation of the Open Lab Training Methodology                      | . 53 |
| CHAPTER 5. SUMMARY AND RECOMMENDATIONS                                   | . 58 |
| 5.1 Summary                                                              | . 58 |
| 5.2 Recommendations for Future Work                                      | . 60 |
| LIST OF REFERENCES                                                       | . 61 |
| APPENDICES                                                               |      |
| Appendix A. Experimental Data From Psychrometric Chambers                | . 63 |
| Appendix B. Experimental Data From Open Lab Testing                      | . 81 |
| Appendix C. Open Lab Testing Matrix                                      | . 83 |
| Appendix D. Python Program Code                                          | . 85 |

# LIST OF TABLES

| Table     | J                                                                           | Page |
|-----------|-----------------------------------------------------------------------------|------|
| Table 1.  | Refrigerant sensors used and their application.                             | 8    |
| Table 2.  | Uncertainties of the different thermocouple grids in the RTU.               | 12   |
| Table 3.  | Data acquisition system functionalities.                                    | 14   |
| Table 4.  | Uncertainties of derived quantities.                                        | 17   |
| Table 5.  | Open lab test matrix for the RTU.                                           | 21   |
| Table 6.  | Evaluation test conditions for the virtual sensors                          | 24   |
| Table 7.  | Pearson correlation matrix.                                                 | 34   |
| Table 8.  | Ideal sensor inputs to virtual sensors.                                     | 41   |
| Table 9.  | Typical cost breakdown of virtual sensor implementation                     | 42   |
| Table 10. | Typical cost estimate for direct sensor measurements.                       | 43   |
| Table 11. | Optimal operating points for open lab training for first stage of operation | 49   |
| Table 12. | Optimal operating point for open lab training for second stage of operation | 51   |
| Table A.1 | L. Data for first stage of operation of air temperatures and power          | 63   |
| Table A.2 | 2. Data for first stage of operation of refrigerant temperatures            | 66   |
| Table A.3 | 3. Data for second stage of operation of refrigerant pressures              | 69   |
| Table A.4 | 4. Data for second stage of operation of air temperatures and power         | 72   |
| Table A.5 | 5. Dataa for second stage of operation of refrigerant temperatures          | 75   |
| Table A.e | 5. Data for second stage of operation of refrigerant pressures              | 77   |
| Table B.1 | . Data from open lab testing of refrigerant temperatures and pressures      | 81   |
| Table C.1 | . Open lab testing matrix for first stage of operation                      | 83   |
| Table C.2 | 2. Open lab testing matrix for second stage of operation                    | 84   |

# LIST OF FIGURES

| Figure                                                                     | Page |
|----------------------------------------------------------------------------|------|
| Figure 1. RTU used for experimentation.                                    | 7    |
| Figure 2. Refrigerant side instrumentation of the RTU.                     |      |
| Figure 3. Methodology used for addition/removal of charge from RTU         | 11   |
| Figure 4. Depiction of a vapor compression cycle condensing and            |      |
| evaporator pressure changes due to variable air flow on a P-h diagram.     |      |
| Figure 5. Psychrometric room setup of the RTU.                             |      |
| Figure 6. RTU duct configuration.                                          |      |
| Figure 7. VRC model I accuracy for (a) first stage of operation and (b)    |      |
| stage of operation.                                                        |      |
| Figure 8. VRC model I accuracy for both stages of operation                |      |
| using a single set of coefficients.                                        |      |
| Figure 9. VRC model II accuracy for (a) first stage of operation and (b)   |      |
| second stage of operation.                                                 |      |
| Figure 10. VRC model II accuracy for both stages of operation              |      |
| using a single set of coefficients.                                        |      |
| Figure 11. VRC model III accuracy for (a) first stage of operation and (b) |      |
| second stage of operation.                                                 |      |
| Figure 12. VRC model III accuracy for both stages of operation             |      |
| using a single set of coefficients.                                        |      |
| Figure 13. Virtual compressor power sensor performance                     |      |
| Figure 14. Virtual refrigerant mass flow rate sensor performance.          |      |
| Figure 15. Virtual cooling capacity sensor performance relative to         |      |
| refrigerant-side capacity                                                  |      |
| Figure 16. Virtual cooling capacity sensor performance relative to         |      |
| air-side capacity                                                          |      |
| Figure 17. Optimal experimental runs for the first stage of operation      |      |
| Figure 18. Optimal experimental runs for the second stage of operation     |      |
| Figure 19. Optimal operating points for open lab training for the first    |      |
| stage of operation (a) condenser fan PWM duty cycle points and             |      |
| (b) evaporator blower PWM duty cycle points                                |      |
| Figure 20. Optimal operating points for open lab training for the second   |      |
| stage of operation (a) condenser fan PWM duty cycle points and             |      |
| (b) evaporator blower PWM duty cycle                                       |      |
|                                                                            |      |

| igure                                                                    | Page |
|--------------------------------------------------------------------------|------|
| igure 21. Validation of open lab training methodology for the VRC the    |      |
| first stage of operation (a) VRC sensor when trained using all           |      |
| open lab training data and validated for all psychrometric room          |      |
| when trained using all psychrometric room data.                          | 54   |
| igure 22. VRC sensor prediction accuracy for first stage of operation    |      |
| when using optimal open lab training points in Table 11 but              |      |
| tested over all psychrometric data                                       | 55   |
| igure 23. Validation of open lab training methodology for the VRC        |      |
| for the second stage of operation (a) VRC sensor when trained using      |      |
| all open lab training data and validated for all psychrometric room      |      |
| and (b) VRC sensor when trained using all psychrometric room data        | 55   |
| igure 24. VRC sensor prediction accuracy for second stage operation when |      |
| trained using optimal open lab training points in Table 12 but tested    |      |
| over all psychrometric data                                              | 56   |

# NOMENCLATURE

# Symbols

| C <sub>pa,cond</sub>                   | Specific heat capacity of condenser air [J/kg-K]             |
|----------------------------------------|--------------------------------------------------------------|
| h                                      | Enthalpy [J/kg]                                              |
| $\mathbf{h}_{\mathrm{in,ref,evap}}$    | Evaporator inlet refrigerant enthalpy [J/kg]                 |
| $\mathbf{h}_{\mathrm{out,ref,evap}}$   | Evaporator outlet refrigerant enthalpy [J/kg]                |
| $\mathbf{h}_{in,ref,cond}$             | Condenser inlet refrigerant enthalpy [J/kg]                  |
| $\boldsymbol{h}_{\text{out,ref,cond}}$ | Condenser outlet refrigerant enthalpy [J/kg]                 |
| k <sub>dsh</sub>                       | Empirical coefficient for compressor discharge superheat [-] |
| k <sub>sc</sub>                        | Empirical coefficient for condenser subcooling [-]           |
| k <sub>sh</sub>                        | Empirical coefficient for evaporator superheat [-]           |
| k <sub>x</sub>                         | Empirical coefficient for evaporator inlet quality [-]       |
| •<br>m <sub>ref</sub>                  | Refrigerant mass flow rate [g/s]                             |
| •<br>m <sub>map</sub>                  | Compressor map based flow rate [g/s]                         |
| m <sub>charge,actual</sub>             | Actual amount of refrigerant charge [lb]                     |
| $\mathbf{m}_{\mathrm{charge,rated}}$   | Amount of refrigerant charge at the rated condition [lb]     |
| М                                      | Information matrix [-]                                       |
| Ν                                      | Matrix of candidate points [-]                               |

| P <sub>in,ref,comp</sub>  | Compressor inlet pressure [kPa]                           |  |  |
|---------------------------|-----------------------------------------------------------|--|--|
| P <sub>out,ref,comp</sub> | Compressor discharge pressure [kPa]                       |  |  |
| P <sub>out,ref,cond</sub> | Condenser outlet pressure [kPa]                           |  |  |
| $\cdot$ $Q_{cooling,ref}$ | Refrigerant cooling capacity [kW]                         |  |  |
| T <sub>sc</sub>           | Condenser outlet subcooling [C]                           |  |  |
| T <sub>sc,rated</sub>     | Condenser outlet subcooling at the rated condition [C]    |  |  |
| T <sub>sh</sub>           | Evaporator outlet superheat [C]                           |  |  |
| T <sub>sh,rated</sub>     | Evaporator outlet superheat at the rated condition [C]    |  |  |
| T <sub>dsh</sub>          | Compressor discharge superheat [C]                        |  |  |
| T <sub>dsh,rated</sub>    | Compressor discharge superheat at the rated condition [C] |  |  |
| T <sub>out,ref,evap</sub> | Evaporator refrigerant outlet temperature [C]             |  |  |
| $T_{out,ref,cond}$        | Condenser refrigerant outlet temperature [C]              |  |  |
| T <sub>sat,evap</sub>     | Saturation temperature of the evaporator [C]              |  |  |
| T <sub>sat,cond</sub>     | Saturation temperature of the condenser [C]               |  |  |
| T <sub>out,ref,comp</sub> | Compressor discharge temperature [C]                      |  |  |
| T <sub>out,air,cond</sub> | Condenser air outlet temperature [C]                      |  |  |
| $T_{\rm in,air,cond}$     | Condenser air inlet temperature [C]                       |  |  |
| $\dot{W}_{comp}$          | Compressor input power [W]                                |  |  |
| X                         | Design matrix of candidate points [-]                     |  |  |

| $ ho_{xy}$                          | Pearson product-moment correlation [-]                      |
|-------------------------------------|-------------------------------------------------------------|
| $ ho_{\scriptscriptstyle new}$      | Suction density at operating condition [kg/m <sup>3</sup> ] |
| $ ho_{map}$                         | Suction density at map-based condition [kg/m <sup>3</sup> ] |
| $\sigma_{\scriptscriptstyle T}$     | Individual thermocouple uncertainty [C]                     |
| $\sigma_{\scriptscriptstyle T,ave}$ | Average thermocouple uncertainty [C]                        |
| $\mathcal{O}_A$                     | Uncertainty in the calculated variable                      |
| $\omega_{zi}$                       | Uncertainty in the measured variable                        |
| $\Delta(x_i, x^j)$                  | Fedorov Delta function                                      |

Abbreviations

| AHRI | Air-conditioning, Heating and Refrigeration Institute |  |
|------|-------------------------------------------------------|--|
| ASME | American Society of Mechanical Engineers              |  |
| СОР  | Coefficient of Performance                            |  |
| ECM  | Electronically Commutated Motors                      |  |
| FDD  | Fault Detection and Diagnostics                       |  |
| HVAC | Heating, Ventilation and Air-conditioning             |  |
| LAN  | Local Area Network                                    |  |
| OEM  | Original Equipment Manufacturer                       |  |
| PWM  | Pulse Width Modulation                                |  |
| RMSE | Root Mean Square Error                                |  |
| RTU  | Rooftop unit                                          |  |
| SEER | Seasonal Energy Efficiency Ratio                      |  |

| TXV | Thermal Expansion Valve    |
|-----|----------------------------|
| VFD | Variable Frequency Drive   |
| VRC | Virtual Refrigerant Charge |
| VCP | Virtual Compressor Power   |

#### ABSTRACT

Vasudevan, Jebaraj. M.S.M.E., Purdue University, December 2015. Training and Evaluation of Virtual Sensors for Rooftop Units. Major Professors: James E. Braun and Travis Horton, School of Mechanical Engineering.

This thesis focuses on assessing and extending specific virtual sensors for rooftop units with micro-channel condensers, which are a growing part of the market. The rooftop unit virtual sensors provide low-cost measurements of the amount of refrigerant charge, cooling capacity and compressor power and are expected to be embedded within manufactured products in the factory. In addition, a low-cost approach for training the virtual refrigerant charge sensor in an open lab space was proposed and evaluated. The accuracy of virtual rooftop unit sensors were evaluated over a wide range of conditions using measurements obtained in environmental (psychrometric) chambers and were generally within  $\pm 10\%$  of the values determined from more direct measurements. The concept of low-cost open lab training for virtual charge sensor along with some guidelines to choose open lab training points was evaluated and found to give similar accuracy as sensors trained using a wide range of operating conditions. The total cost of embedding the three virtual sensors in a rooftop unit at a factory would be in the range of \$60 to \$120 per unit. This is much less than the cost of directly measuring only two of the three quantities: unit cooling capacity and compressor power. There is no practical direct measurement method for the amount of refrigerant charge to enable cost comparisons with the cost of virtual charge sensing.

## CHAPTER 1. INTRODUCTION

#### 1.1 Background and Motivation

In order to improve existing fault detection and diagnostics methodologies for heating, ventilation, and air-conditioning (HVAC) equipment, virtual sensor technology has been applied to systems to provide more useful diagnostic inputs and reduce initial sensor costs [1, 2, 3]. Virtual sensors are designed to measure quantities that are normally expensive or impossible to measure directly using other lower cost measurements and mathematical models relating these measurements to the desired quantity.

Previous work on virtual sensors for vapor compression cooling and heating equipment has focused on the development and evaluation of sensors for different types of equipment, including RTUs, split-type residential heat pumps, and variable refrigerant flow multi-split heat pumps [2, 4]. The equipment has included different types of components, including single-speed and variable-speed compressors and different types of expansion valves, including short-tube fixed orifices, thermostatic expansion valves, and electronic expansion valves. However, none of the previous work has considered equipment having a micro-channel condenser or evaporator. RTUs with micro-channel condensers are gaining market share and the use of micro-channel evaporators is likely to occur in the near term. Micro-channel heat exchangers have much less internal volume per unit surface and therefore contain much lower mass of refrigerant during operation.

The reduction in charge for units with micro-channel condensers can be on the order of 50% compared with similarly sized units with conventional fin-tube condensers. As a result, the sensitivity of RTU performance to the mass of refrigerant charge is greater than for units that employ conventional fin-tube heat exchangers and there is a need to evaluate the accuracy of virtual charge sensors for this type of equipment.

One other motivation for improved FDD tools is the regulatory requirements of future HVAC equipment. In response to the 2013 California Title 24 requirements, RTU manufacturers are required to provide integrated tools capable of detecting and diagnosing problems associated with outdoor air economizers (OAE) [5]. The next revision of California Title 24 requirements may include more RTU diagnostics requirements such as improper refrigerant charge levels or condenser and evaporator fouling [6]. Past studies have shown that approximately 50% of RTUs in the U.S. may be improperly charged [7, 8, 9]. This is important because improper charge levels result in reduced cooling capacity and cooling efficiency, leading directly to increased energy usage and operating costs.

#### 1.2 Virtual Sensors Based FDD

Virtual sensors use low-cost measurements and simple mathematical models to estimate quantities that would be expensive and/or difficult to measure directly. The use of virtual sensors can reduce costs significantly compared to the use of direct measurements. FDD is an acronym for fault detection and diagnosis. Fault detection works by comparing the expected and actual states of the system and identifies a fault in the system when the actual state of the system deviates from the expected/normal state. This provides earlier awareness of faults present in a system. Fault diagnosis works by isolating the fault from other faults present in a system and thereby provides an understanding of the nature and cause of the

fault in the system. In addition, diagnosis reduces costs for service since a service technician can more quickly determine and identify the root cause of the fault and perform corrective action to fix it.

Virtual sensor based FDD uses low-cost virtual sensors to detect and diagnose the faults present in a system. If the virtual sensors are chosen to be uniquely dependent on individual faults (e.g., air flow for fouling, refrigerant charge, etc.) then they naturally isolate individual faults from other types for diagnosis. This is a significant advantage over other residual-based diagnostics tools that often cannot handle simultaneous fault conditions. In addition, virtual sensors can be employed to provide continuous monitoring of cooling capacity, power consumption, and efficiency, which would be cost prohibitive using direct measurements. These higher-level measurements are useful for evaluating the impacts of faults within an FDD system.

#### 1.3 Research Objectives and Approach

This project is focused on extending and assessing specific virtual sensors for rooftop unit (RTU) air conditioners. The primary objective was to extend virtual refrigerant charge, capacity, and power sensors to RTUs having micro-channel condensers. This type of equipment is a growing part of the market and its performance is more sensitive to refrigerant charge because a micro-channel condenser has significantly lower internal volume for the same heat transfer area compared to conventional fin-tube condensers. One of our primary goals in assessing these virtual sensors was to demonstrate accuracy

within 10% and the cost savings potential of virtual sensor implementation as compared to direct measurements.

One of the key technical issues in applying virtual sensors is the "calibration" or "training" necessary for the virtual sensor to provide accurate estimates of a particular quantity. For virtual sensors embedded in RTU products, the process of training/calibration needs only be done for one unit of a particular model type and can then be implemented within the manufactured products for that model. However, it is expensive and time consuming to employ environmental test (psychrometric) chambers to generate the data necessary to train virtual sensors for each model of a manufacturer's line of RTUs. Therefore, another objective of this project was to minimize the training requirements for applying the virtual charge sensor to specific RTU model using open laboratory environment tests performed over a short period of time. The virtual sensor accuracy and training were assessed in this project using laboratory measurements for an RTU employing a micro-channel condenser.

#### 1.4 Thesis Formulation

This chapter presented an overview of previous work in the area of virtual sensors along with the motivation behind and the approach taken to provide the contributions of this thesis.

Chapter 2 provides a description of the experimental set-up, instrumentation and testing procedures used to develop and validate the virtual sensor models in this thesis.

Chapter 3 describes the various virtual sensor model forms for measuring refrigerant charge, compressor power and cooling capacity. Furthermore, these models are validated in this chapter. Also, the cost savings potential of virtual sensor implementation over direct measurements is presented.

A methodology to minimize the training requirements of the virtual charge sensor is presented in Chapter 4. The validation of this training methodology is also presented.

Finally, Chapter 5 summarizes the important results of the work reported in this thesis and gives recommendations for future work.

## CHAPTER 2. EXPERIMENTATION AND DATA COLLECTION

#### 2.1 Experimental Goals

Experiments were conducted in order to train the virtual charge sensor models and evaluate the accuracy of the charge, capacity, and power virtual sensors over a wide range of operating conditions. To support the goal of minimizing the training requirements for the virtual charge sensor models, data was collected with the rooftop unit running in an open lab environment space (see Chapter 4). Additional data was collected over a wide range of conditions with the rooftop unit operating in the psychrometric chambers and this data was used to evaluate the accuracy of all three virtual sensor models (see Chapter 3).

#### 2.2 RTU Selection and Description

A Lennox 5-ton packaged high-efficiency rooftop unit with a SEER rating of 17.0 was used to perform the experiments. This rooftop unit has an all-aluminum micro-channel condenser coil with much smaller volume compared to a conventional round tube plate fin condenser and has only a nominal R410A refrigerant charge of 7.05 lbs. It also features a dual stage scroll compressor to respond efficiently to varying loads with operation in second stage for higher loads (e.g., on hot summer days) and first stage for milder loads. Furthermore, it has a thermal expansion valve (TXV) and a round tube plate fin evaporator. The indoor blower and outdoor fan are driven by variable-speed ECM direct drive motors for energy efficient multi-stage air volume operation. The rooftop unit is as shown in the Figure 1.



Figure 1. RTU used for experimentation.

# 2.3 RTU Instrumentation and Data Acquisition

Figure 2 presents a schematic of the refrigerant cycle that depicts the refrigerant measurement points. Table 1 defines whether each of these sensor measurements is used as an input to or validation for the virtual sensor models. The following subsections provide some description of the types of sensors used and their uncertainties.



Figure 2. Refrigerant side instrumentation of the RTU.

| No. | Sensors      | Location of sensors | Use of sensors               |
|-----|--------------|---------------------|------------------------------|
| 1   | T1-          | Evap. outlet temp.  | Virtual charge and capacity  |
|     | Thermocouple |                     | sensors                      |
| 2   | Т2-          | Compressor          | Virtual charge sensor        |
|     | Thermocouple | discharge temp.     |                              |
| 3   | Т3-          | Cond. outlet temp.  | Virtual charge and capacity  |
|     | Thermocouple |                     | sensors                      |
| 4   | T4-          | Mass flow meter     | Temperature drop in the mass |
|     | Thermocouple | outlet temp.        | flow meter                   |
| 5   | T5-          | Evap. inlet temp.   | Virtual charge sensor        |
|     | Thermocouple |                     |                              |

Table 1. Refrigerant sensors used and their application.

Table 1. Continued.

| 6  | P1- Pressure     | Evap. suction      | Virtual capacity and power        |  |
|----|------------------|--------------------|-----------------------------------|--|
|    | transducer       | pressure           | sensors                           |  |
| 7  | P2- Pressure     | Compressor         | Alternate measurement for         |  |
|    | transducer       | discharge pressure | virtual charge, power and         |  |
|    |                  |                    | capacity sensors                  |  |
| 8  | P3-Pressure      | Cond. pressure     | Virtual charge, power and         |  |
|    | transducer       |                    | capacity sensors                  |  |
| 9  | P4-Pressure      | Mass flow meter    | Pressure drop in the mass flow    |  |
|    | transducer       | outlet pressure    | meter                             |  |
| 10 | PW1-Power        | Compressor input   | Used to validate compressor       |  |
|    | transducer       | power              | input power                       |  |
| 12 | M-Coriolis mass  | Refrig. mass flow  | Used to validate virtual          |  |
|    | flow rate sensor | rate               | refrigerant mass flow rate sensor |  |

# 2.3.1 Refrigerant-Side Temperature Measurements

Surface mounted T-type thermocouples insulated with foam tape to ensure thermal insulation were installed on the external surfaces of tubes to measure refrigerant circuit temperatures at the following locations: evaporator outlet, compressor discharge, condenser outlet, refrigerant mass flow meter outlet and evaporator inlet. The rated accuracies of these T-type thermocouples used were  $\pm 1.0$  °C.

#### 2.3.2 Refrigerant-Side Pressure Measurements

Refrigerant pressure measurements were made at the compressor suction, compressor discharge, and condenser outlet using pressure transducers from Setra (model: M207) with

rated accuracy of  $\pm 0.13\%$ . The pressure sensors were calibrated using a Setra sensor calibration device.

#### 2.3.3 Refrigerant Mass Flow Measurement

A mass flow meter made by Micro motion (model: DH 25) with a rated accuracy of  $\pm 0.15\%$  was used to measure the refrigerant mass flow rate. The mass flow meter was installed between the exit of the condenser and the inlet of the expansion device. Since the refrigerant circuit had to be modified to facilitate the installation of the mass flow meter. proper care was taken to minimize the change in the refrigerant circuit length.

# 2.3.4 Power Measurements

The condenser fan power was measured using a power transducer made by Ametek Power Instruments (model: PCE-15) with a rated accuracy of  $\pm 4.5W$  ( $\pm 0.25\%$  FS). The indoor blower power was measured using a power transducer made by Ohio Semitronics (model: PC5-020C) with a rated accuracy of  $\pm 15W$  ( $\pm 0.5\%$  FS). Also, the compressor input power was also measured using a power transducer made by Ohio Semitronics (model: PC5-113C) with a rated accuracy of  $\pm 40W$  ( $\pm 0.5\%$  FS).

#### 2.3.5 Methodology for Refrigerant Charge Adjustment

Adjustments in refrigerant charge were made by connecting the compressor suction port to a refrigerant cylinder placed on a digital scale as shown in Figure 3. Charge was added or removed by opening a metering ball valve and solenoid valve under different operating conditions. A digital scale made by Ohaus Ranger (model: r71md35-am) having a rated accuracy of 0.001 lb. was used to determine the change in refrigerant mass within the cylinder due to adding or removing refrigerant charge to or from the system. At any time, the amount of refrigerant charge inside the system was taken as the previously known amount plus or minus the charge added or removed.



Figure 3. Methodology used for addition/removal of charge from RTU.

# 2.3.6 Air-Side Temperature Measurements

The temperatures of the air streams were measured using grids formed by T-type thermocouples in different locations of the rooftop unit. The return air, supply air and condenser outlet air temperatures were measured using horizontal three-by-one grids of T-type thermocouples. The air temperature at the inlet to the evaporator, which would normally be a mixed air temperature if an economizer were installed, was measured using an equally-spaced rectangular three-by-three temperature grid. Even though no economizer was installed in this study and the mixed air temperature and the air temperature in the return duct would be the nearly the same, the additional thermocouples to measure a mixed air temperature were installed to accommodate future testing with an economizer. In this

study, mixed air temperature was used because of its smaller average uncertainty (shown in Table 2) due to the use of more thermocouples in determining averages compared to the return air temperature. The condenser air inlet temperature was measured by placing five thermocouples along the entire length of the condenser diagonally and the average of these temperatures was used as the outdoor air ambient temperature to control the outdoor room temperature.

For each grid with n measurements, the average temperature  $T_{\!_{ave}}$  was calculated as an arithmetic mean of the individual sensor measurements, T<sub>i</sub>, as

$$T_{ave} = \frac{1}{n} \sum_{i=1}^{n} T_i$$
 (2.1)

The rated accuracy  $\,\sigma_{_T}\,$  of the individual T-type thermocouples was  $\pm 0.5$  C. The combined uncertainty for the measurement of  $T_{\mbox{\tiny ave}}$  was calculated as follows,

$$\sigma_{T_{ave}} = \frac{\sigma_T}{\sqrt{n}}$$
(2.2)

Table 2 shows the individual and combined uncertainties of each of the thermocouple grid measurements.

| Location      | N | $\sigma_{T}[^{\circ}C]$ | $\sigma_{T_{ave}}[^{\circ}C]$ |
|---------------|---|-------------------------|-------------------------------|
|               |   |                         |                               |
| Return air    | 3 | ±0.5                    | ±0.28                         |
| Supply air    | 3 | ±0.5                    | ±0.28                         |
| Condenser air | 3 | ±0.5                    | ±0.28                         |
| outlet        |   |                         |                               |
| Mixed air     | 9 | ±0.5                    | ±0.16                         |

Table 2. Uncertainties of the different thermocouple grids in the RTU.

#### 2.3.7 Relative Humidity and Dew Point Temperature Measurements

Relative humidity and dew point temperature measurements were measured in the return air stream before the evaporator coil and the supply air after the evaporator coil. The dew point temperature was measured using a General Eastern (model: D-2) dew point hygrometer with a two stage chilled mirror probe. It has a rated accuracy of  $\pm 0.15$  °C. The relative humidity was measured using a Vaisala (model: HMD 112) humidity sensor having a rated accuracy of  $\pm 2\%$ RH. Since the dew point hygrometers were not available during the initial phase of the testing for 30 data points, the relative humidity sensors were used to calculate the air side cooling capacity for those test data points. For all of the remaining 185 data points, dew point hygrometer measurements were used in place of relative humidity sensor measurements to calculate the air side cooling capacity. Since the relative humidity sensors were less accurate than the dew point hygrometers, they result in higher cooling capacity uncertainties as shown in Table 4.

#### 2.3.8 Air Flow Measurements

An ASME standard nozzle box was used to measure the supply air flow rate of the rooftop unit. The nozzle combinations of 4" and 6" nozzles were chosen such that the acceptable measurement range closely matched the target air flow rate. An Endress and Hauser (model Deltabar M PMD55) differential pressure transmitter with a rated accuracy of  $\pm 0.1\%$  was used to measure the nozzle pressure drop. In order to calculate the density of the supply air at the nozzle inlet, a dew point measurement of the supply air was used along with the dry bulb temperature measurement. A variable frequency driven booster fan was controlled downstream of the nozzles to make up for any pressure drop occurring in the duct configuration of the rooftop unit and through the nozzles.

#### 2.3.9 Data Acquisition System

A National Instruments embedded real time controller (NI-CRIO 9024) was used for data collection and control. Several modules having different functionalities were used with the real time controller to facilitate and perform data collection and control operations as summarized in Table 3.

| Modules | Functionality                   |  |
|---------|---------------------------------|--|
| NI 9213 | 16-ch thermocouple input        |  |
| NI 9205 | 16-ch differential analog input |  |
| NI 9265 | 4-ch analog output              |  |
| NI 9870 | 4-ch RS 232 serial input        |  |
| NI 9474 | 8-ch sourcing digital output    |  |

Table 3. Data acquisition system functionalities.

## 2.3.10 Indoor Blower and Outdoor Fan Control

The outdoor fan was a variable speed ECM motor driven fan that works on Pulse Width Modulation (PWM) signal input. A black box controller (model: EVO/ECM-VCU) from Evolution Controls was used to control the speed of the condenser fan by varying the duty cycle of the PWM signal. The speed of the indoor blower with a variable speed ECM motor was controlled by a built-in Lennox Prodigy controller.

# 2.3.11 Heat Exchanger Fouling

The fouling conditions of the heat exchangers were simulated by reducing the air flow across the heat exchangers. On the evaporator side, the target air flow for a given fouling level was achieved by running the nozzle box booster fan at a lower frequency along with a reduced speed of the indoor blower. On the condenser side, the fouling scenario was achieved by running the outdoor fan at a lower speed.

#### 2.4 Data Analysis and Uncertainty

#### 2.4.1 Data Analysis

The condenser outlet subcooling is calculated as the difference between the temperature of the refrigerant leaving the condenser and the saturated condensing temperature at the exit pressure. The temperature of the refrigerant leaving the condenser was measured using a T-type thermocouple. However, since the micro-channel condenser has only a single pass between the inlet and the outlet headers and doesn't have any return bends, a direct measurement of the condensing temperature using a surface mounted T-type thermocouple was impossible. Hence, a high side pressure measurement at the outlet of condenser was employed along with thermodynamic properties to determine condensing temperature.

$$T_{sc} = T_{sat,cond} - T_{out,ref,cond}$$
(2.3)

The evaporator outlet superheat is calculated as the difference between the temperature of the refrigerant leaving the evaporator and the saturated evaporating temperature. The temperature of the liquid leaving the evaporator was measured using a T-type thermocouple at the exit of the evaporator and the saturated evaporating temperature was measured at the inlet of the evaporator as the refrigerant entering the evaporator is a twophase mixture.

$$T_{sh} = T_{out, ref, evap} - T_{sat, evap}$$
(2.4)

The compressor discharge superheat is calculated as the difference between the temperature of the refrigerant leaving the compressor and the condensing temperature based on the compressor discharge pressure. But since the pressure drop across the micro-

channel condenser is typically small compared to a fin-tube condenser, condenser outlet pressure was used in place of the compressor discharge pressure.

$$T_{dsh} = T_{out, ref, comp} - T_{sat, cond}$$
(2.5)

The quality of the refrigerant entering the evaporator is obtained by using the pressure and temperature of the refrigerant exiting the condenser to obtain the enthalpy based on thermodynamic properties and assuming an isenthalpic expansion process along with the inlet evaporator refrigerant temperature. However, in case of a two-phase refrigerant mixture exiting the condenser, the refrigerant enthalpy and quality could not be calculated. In order to calculate the cooling capacity, the refrigerant enthalpies were calculated based on thermodynamic property relations using CoolProp [10]. The refrigerant enthalpies were calculated using refrigerant pressure and temperature measurements along different locations of the refrigerant cycle.

The refrigerant side cooling capacity is calculated as,

$$\dot{\mathbf{Q}}_{\text{cooling,ref}} = \dot{\mathbf{m}}_{\text{ref}} \left( \mathbf{h}_{\text{out,ref,evap}} - \mathbf{h}_{\text{in,ref,evap}} \right)$$
(2.6)

It should be noted that when two-phase occurs at the exit of the condenser, the refrigerant side cooling capacity cannot be calculated as the mass flow rate of the two-phase mixture could not be measured and the quality at the inlet of the evaporator could not be calculated. The airflow across the condenser coil is not measured and was estimated based on an energy balance as shown below,

$$\dot{\mathbf{m}}_{a,cond} = \frac{\dot{\mathbf{m}}_{ref} (\mathbf{h}_{in,ref,cond} - \mathbf{h}_{out,ref,cond}) + \dot{\mathbf{W}}_{cond,fan}}{c_{pa,cond} (\mathbf{T}_{out,air,cond} - \mathbf{T}_{in,air,cond})}$$
(2.7)

The dry bulb temperature of the air entering and leaving the condenser was measured using T-type thermocouples whereas the refrigerant enthalpies were calculated using thermodynamic property relations based on refrigerant temperature and pressure measurements. However in cases when the condenser subcooling is less than 2K, the refrigerant mass flow rate is not reliable and hence the condenser air flow rate for these points could not be calculated.

## 2.4.2 Uncertainty

The quality of the experimental test results depends on the uncertainty. In many cases, certain quantities are not directly measured but are calculated as a function of other directly measured quantities. The uncertainty in these measured quantities will affect the accuracy of the derived quantities. The uncertainty propagation of these derived quantities can be calculated using the Kline and McClintock method in EES, which can be expressed as,

$$\omega_{A} = \left[\sum_{i=1}^{j} \left(\frac{\partial A}{\partial Z_{i}} \omega_{zi}\right)^{2}\right]^{1/2}$$
(2.8)

where  $\omega_A$  is the uncertainty in the calculated variable A,  $Z_i$  is one of the measured variables which impacts the calculated variable and  $\omega_{zi}$  is the uncertainty associated with that measured variable. The average uncertainties of derived variables are shown Table 4.

Table 4. Uncertainties of derived quantities.

| Derived quantities             | Uncertainty (absolute or relative) |
|--------------------------------|------------------------------------|
| Condenser outlet subcooling    | ±1.0 °C                            |
| Evaporator outlet superheat    | ±1.4 °C                            |
| Compressor discharge superheat | ±1.0 °C                            |

| Evaporator inlet quality                | ±0.011       |
|-----------------------------------------|--------------|
| Refrigerant side cooling capacity       | ±1.2 %       |
| Condenser air flow rate                 | ±7.1 %       |
| Air side cooling capacity (based on RH  | $\pm 8.01\%$ |
| sensors)                                |              |
| Air side cooling capacity (based on dew | $\pm 6.0\%$  |
| point sensors)                          |              |

# 2.5 Open Laboratory Training

## 2.5.1 Motivation

In previous studies, virtual sensors for rooftop applications have required extensive training data obtained over a wide range of conditions in order to determine the required empirical parameters. For instance, training of the virtual refrigerant charge sensor has required varying the charge level of the system for a range of different outdoor and indoor test conditions. Previously this data has been obtained through extensive testing within psychrometric chambers. This is a big obstacle for equipment manufacturers considering the range of different models that they support and the high cost of instrumenting and testing equipment using psychrometric chambers.

In order to significantly reduce the cost of training virtual refrigerant charge (VRC) sensors, we propose to obtain data in an open space and artificially increase the condensing and lower evaporating temperatures by changing the air flows across the heat exchangers. It is still necessary to vary the refrigerant charge over the range of interest. However, the number of data points and time required for testing can be significantly reduced. Furthermore, the overall training cost is significantly reduced by eliminating the requirement for testing in psychrometric chambers that are heavily utilized for other purposes. For virtual capacity and compressor power sensors, it is proposed to utilize manufacturers compressor maps as described in Chapter 3 to avoid the need for model training.

#### 2.5.2 Methodology for Adjusting Operating Conditions

Figure 4 illustrates the concept of artificially changing the condensing and evaporating pressures (and temperatures) on a pressure – enthalpy diagram for a typical vaporcompression refrigeration cycle. At different operating conditions, the evaporator and condenser saturation pressures will reach equilibrium conditions that depend on both the ambient conditions and the ability of the heat exchangers to transfer heat. Thus, higher condenser air inlet temperatures lead to high condensing temperatures, while lower evaporator air inlet temperatures give lower evaporation temperatures. However, these same variations can be achieved in an open laboratory with constant air inlet temperatures by varying the air flow rates (and therefore the heat transfer rates) through the condenser and evaporator. Lower condenser airflow leads to higher condensing temperature (and pressure), while lower evaporator pressure (and temperature) results from a lower evaporator airflow rate.



Figure 4. Depiction of a vapor compression cycle condensing and evaporator pressure changes due to variable air flow on a P-h diagram.

Adjustments in air flow rate can be achieved in different ways depending on the system configuration. In the case of constant speed fans, a volume control damper could be installed downstream of the fans to adjust the flow resistance and affect the flow. For constant torque fans that use variable frequency drives to adjust the fan speed, a control input in the form of frequency can be used to directly change air flow without the need for dampers. In the case of ECM motor driven fans that use Pulse Width Modulation (PWM) signals to control the speed of the fans, a control input in the form of a PWM duty cycle can be directly used to change the speed of the fans and hence varying the air flow. This approach was employed for both the evaporator and condenser air flow adjustments in this study.

#### 2.5.3 Open Lab Experimental Conditions

The rooftop unit was made to run in an open lab space in Herrick labs and data at different charge levels, condensing temperatures, and evaporating temperatures were collected in the open laboratory for the virtual refrigerant charge sensor models. This data was used to train the virtual refrigerant charge sensor in Chapter 4. Table 5 shows the different operating conditions for the open lab testing of the rooftop unit.

| Charge level  | Compressor | Indoor blower PWM | Outdoor fan PWM |
|---------------|------------|-------------------|-----------------|
| [% of nominal | stage of   | duty cycle        | duty cycle      |
| charge level] | operation  | [%]               | [%]             |
| 60% - 120%    | First      | 60%; 40%; 20%     | 70%; 50%; 30%   |
| 60% - 120%    | Second     | 90%; 70%; 50%     | 100%; 80%; 60%  |

Table 5. Open lab test matrix for the RTU.

The charge level was varied from 60%-120% of the nominal charge in increments of 10% of the nominal charge for both stages of operation. The indoor blower and the outdoor fan were controlled by control inputs in the form of PWM duty cycle to control their speed.

# 2.6 Psychrometric Room Evaluation

The rooftop unit was installed in the psychrometric chambers of the Herrick laboratories to simulate different indoor and outdoor ambient conditions.

# 2.6.1 Motivation

The accuracy of the virtual charge, capacity, and compressor power sensors were evaluated over a wide range of operating conditions that a rooftop unit would typically run to ensure that the virtual sensor readings are reliable. In order to perform this evaluation, the rooftop unit was installed in the psychrometric chambers and the indoor and outdoor room conditions were controlled to simulate different operating conditions of the rooftop unit.

# 2.6.2 Room setup

The rooftop unit was installed in the psychrometric rooms as shown in Figure 5.



Figure 5. Psychrometric room setup of the RTU.

The rooftop unit was installed with air ducts connected to the supply and return air streams as shown in Figure 6. On the supply air side, the air ducts connected the rooftop unit to the air flow measurement nozzle box enabling measurement of the supply air flow rate. The nozzle box has a booster fan downstream of the measurement nozzles, which is controlled using a variable frequency drive (VFD) to overcome the pressure drop occurring in the air duct. On the return air side, ducts from the bottom of the mixing chamber connect the rooftop unit to the indoor room. The data acquisition device was installed next to the rooftop unit and was connected to the monitoring system outside the rooms via the building Local Area Network (LAN).


Figure 6. RTU duct configuration.

## 2.6.3 Evaluation Matrix

The virtual sensors were evaluated over a wide range of steady-state operating conditions using data obtained in the psychrometric chambers. The ranges of test operating conditions are shown in Table 6. The charge level was varied from 60% - 120% of normal charge at 10% increments for both stages of the operation of the rooftop unit. The indoor conditions were kept constant at 80°F and 50% relative humidity, while the outdoor air temperature was varied from 67°F to 108°F. The indoor and outdoor air flow rates of the unit were controlled to simulate fouling conditions for both evaporator and condenser. The three different air flow levels chosen to evaluate the virtual sensors are representative of conditions that could typically occur in a fouled condenser or evaporator. The total number of test points for evaluation of the virtual sensors was 215.

| Charge level  | Compressor | Ambient     | Indoor unit air | Outdoor unit air |
|---------------|------------|-------------|-----------------|------------------|
| [% of nominal | stage of   | Conditions  | flow levels     | flow levels      |
| charge level] | operation  | [°F]        | [% of nominal   | [% of nominal    |
|               |            |             | air flow level] | air flow level]  |
| 60% - 120%    | First      | 67; 82; 95  | 100%;83%;60%    | 100%;50%;30%     |
| 60% - 120%    | Second     | 82; 95; 108 | 100%;83%;63%    | 100%;60%;30%     |

Table 6. Evaluation test conditions for the virtual sensors.

## CHAPTER 3. EVALUATING VIRTUAL SENSOR ACCURACY AND COSTS

## 3.1 Introduction

This chapter presents detailed evaluations of the accuracies of the virtual sensors and provides an initial assessment of implementation costs for an embedded application. For virtual refrigerant charge, the accuracy of different model forms investigated using experimental data for the rooftop unit with micro-channel condenser. Section 3.2 explains the different model forms of the virtual refrigerant charge sensor used along with the model evaluation approach used to evaluate these virtual sensor models and their results. Section 3.3 and 3.4 focuses on virtual compressor power and virtual cooling capacity sensor performance results. Section 3.5 presents cost estimates for these virtual sensors implemented within manufactured RTUs as an embedded system and also provides estimates of cost savings compared to using direct sensor measurements.

### 3.2 Virtual Refrigerant Charge Sensor Model Descriptions

A number of different virtual refrigerant charge sensor models were investigated to determine the most appropriate model form for the rooftop unit with micro-channel condenser. The best model was determined by comparing the RMSE of the different virtual refrigerant charge sensor model forms over the range of charge levels of interest.

All the virtual refrigerant charge sensor models are gray-box models that correlate the amount of normalized refrigerant charge with parameters such as evaporator superheat, condenser subcooling, compressor discharge superheat and evaporator inlet quality relative to their values when the unit is properly charged at a rating condition. Previous studies have shown that these quantities have a significant sensitivity to charge level [11, 12]. It should also be noted that all these models were developed based on the assumption that the rooftop unit is running in steady-state operating conditions.

3.2.1 Description of Different Alternative Model Forms

#### Virtual Refrigerant Charge Sensor Model I

VRC sensor model I was developed by Li and Braun [11] and correlates the amount of normalized refrigerant charge in the unit to evaporator superheat and condenser subcooling with the following mathematical form,

$$\frac{m_{\text{charge,actual}}}{m_{\text{charge rotad}}} = 1 + k_{\text{sc}} (\Delta T_{\text{sc}} - \Delta T_{\text{sc,rated}}) + k_{\text{sh}} (\Delta T_{\text{sh}} - \Delta T_{\text{sh,rated}})$$
(3.1)

where  $m_{charge,actual}$  is the mass of actual refrigerant in the system,  $m_{charge,rated}$  is the mass of nominal (rated) refrigerant,  $k_{sc}$  is the empirical subcooling parameter,  $k_{sh}$  is the empirical evaporator superheat parameter,  $\Delta T_{sc}$ ,  $\Delta T_{sh}$  are the condenser subcooling and evaporator superheat at the operating conditions and  $\Delta T_{sc,rated}$ ,  $\Delta T_{sh,rated}$  are the condenser subcooling and evaporator superheat at the rating condition with the nominal charge.

### Virtual Refrigerant Charge Sensor Model II

The VRC sensor model II includes the inlet quality of the evaporator in addition to the condenser subcooling and evaporator superheat to estimate the amount of refrigerant charge and was developed by Kim and Braun [12]. The quality of the refrigerant entering the evaporator is calculated from the measurements exiting the condenser along with the

inlet temperature of the evaporator assuming an isenthalpic expansion process. The form of the virtual charge sensor model is

$$\frac{m_{charge,actual}}{m_{charge,rated}} = 1 + k_{sc} (\Delta T_{sc} - \Delta T_{sc,rated}) + k_{sh} (\Delta T_{sh} - \Delta T_{sh,rated}) + k_{x} (x_{evap,in} - x_{evap,in,rated})$$
(3.2)

where  $k_x$  is the empirical parameter for inlet quality of the evaporator,  $x_{evap,in}$  is the inlet quality of the evaporator at the operating conditions and  $x_{evap,in,rated}$  is the inlet quality of the evaporator at the rated condition with the nominal charge.

#### Virtual Refrigerant Charge Sensor Model III

This VRC sensor model III replaces evaporator superheat in model II with compressor discharge superheat. The compressor discharge superheat is defined as the difference between the temperature of the refrigerant leaving the compressor and the saturated condensing temperature. The following model form is employed,

$$\frac{m_{charge,actual}}{m_{charge,rated}} = 1 + k_{sc} (\Delta T_{sc} - \Delta T_{sc,rated}) + k_{dsh} (\Delta T_{dsh} - \Delta T_{dsh,rated}) + k_{x} (x_{evap,in} - x_{evap,in,rated})$$
(3.3)

where  $k_{dsh}$  is an empirical parameter related to the discharge superheat of the compressor,  $\Delta T_{dsh}$  is the compressor discharge superheat at the operating conditions and  $\Delta T_{dsh,rated}$  is the discharge superheat of the compressor at the rated condition with the nominal charge.

Virtual Refrigerant Charge Sensor Model IV

This VRC sensor model correlates the normalized amount of refrigerant charge in the unit to condenser subcooling, evaporator superheat, compressor discharge superheat and inlet quality of the evaporator and was developed by Kim and Braun [3]. This VRC model is of the form,

 $(\mathbf{a}, \mathbf{a})$ 

$$\frac{m_{charge,actual}}{m_{charge,rated}} = 1 + k_{sc} (\Delta T_{sc} - \Delta T_{sc,rated}) + k_{dsh} (\Delta T_{dsh} - \Delta T_{dsh,rated}) + k_{x} (x_{evap,in} - x_{evap,in,rated}) + k_{sh} (\Delta T_{sh} - \Delta T_{sh,rated})$$
(3.4)

### 3.2.2 Model Evaluation Approach

The different rated constants in the virtual refrigerant charge sensor models such as  $\Delta T_{sc,rated}$ ,  $\Delta T_{dsh,rated}$ ,  $x_{evap,in,rated}$ ,  $\Delta T_{sh,rated}$  and  $m_{charge,rated}$  can be readily estimated from manufacturer's data or from test data. The rated conditions should be determined in the absence of any faults in the system and in steady-state operating conditions of the unit at a set of given indoor and outdoor conditions. For this study the rated condition is chosen as the AHRI 210/240 performance rating conditions for a rooftop unit with indoor conditions of 80°F/67°F dry bulb/wet bulb temperature and outdoor conditions of 82°F/65°F dry bulb/wet bulb temperature.

The empirical parameters  $k_{sc}$ ,  $k_{dsh}$ ,  $k_x$  and  $k_{sh}$  of the virtual refrigerant charge sensor models are learned by least squares regression applied to data. In order to compare the accuracy of the different model forms, the empirical coefficients were estimated based on the experimental data obtained from psychrometric room testing for the conditions shown in Table 6. The RMSE of the different VRC sensor models were compared over the entire range of interest and the model with the minimum RMSE is chosen as the best model. The accuracy of open laboratory testing was considered for the final model form in Chapter 4.

#### 3.2.3 Model Results and Discussion

Virtual Refrigerant Charge Sensor Model I



Figure 7. VRC model I accuracy for (a) first stage of operation and (b) second stage of operation.

Figure 7 shows the performance of the virtual refrigerant charge sensor with separate coefficients trained for each individual stage of operation. The first stage sensor has an RMSE of  $\pm 10.4\%$  while the second stage sensor has an RMSE of  $\pm 11.3\%$ . It could also be seen that this model has biased charge predictions especially for the second stage of operation. The VRC sensor model was also be trained with a single set of coefficients for both the stages of operation with results shown in Figure 8. In this case, the RMSE of the combined model for both stages of operation is  $\pm 11.4\%$ .



Figure 8. VRC model I accuracy for both stages of operation using a single set of coefficients.

Virtual Refrigerant Charge Sensor Model II



Figure 9. VRC model II accuracy for (a) first stage of operation and (b) second stage of operation.

Figure 9 shows the performance of the virtual refrigerant charge sensor II with separate coefficients trained for each individual stage of operation. The first stage sensor has an RMSE of  $\pm 8.2\%$  while the second stage sensor has an RMSE of  $\pm 3.7\%$ . It should also be

noted that the biases in the predictions are significantly reduced in this VRC model compared to VRC model I. Also, the VRC sensor model was trained with a single set of coefficients for both the stages of operation with results shown in Figure 10. In this case, the RMSE of the combined model for both stages of operation is  $\pm 8.0\%$ . While a few test points have prediction errors greater than the 10% error bounds, most of them are within  $\pm 10\%$ .



Figure 10. VRC model II accuracy for both stages of operation using a single set of coefficients.

It can be seen that the performance of the VRC model II is better than that of VRC model I with lower RSME.

Virtual Refrigerant Charge Sensor Model III



Figure 11. VRC model III accuracy for (a) first stage of operation and (b) second stage of operation.

VRC model III uses compressor discharge superheat in place of evaporator superheat in VRC model II. Figure 11 shows the performance of the virtual refrigerant charge sensor with separate coefficients trained for each individual stage of operation. The first stage sensor has an RMSE of  $\pm 5.6\%$  while the second stage sensor has an RMSE of  $\pm 5.5\%$ . The VRC sensor model trained with a single set of coefficients for both the stages of operation gives the results shown in Figure 12. In this case, the RMSE of the combined model for both stages of operation is  $\pm 6.6\%$ . The performance of this VRC sensor is particularly good in the range of 90%-110% of the nominal charge. Qualitatively this is a good behavior and should correctly identify refrigerant charge faults when the amount of charge is less than 90% and greater than 120% of the nominal charge.



Figure 12. VRC model III accuracy for both stages of operation using a single set of coefficients.

Virtual Refrigerant Charge Sensor Model IV

This model correlates the amount of normalized refrigerant charge to condenser subcooling, evaporator superheat, compressor discharge superheat and inlet quality of the evaporator as explained in section 3.2.1. During the process of evaluating this model form, issues of multicollinearity were identified and the evaporator superheat and compressor discharge superheat were found to be highly correlated as shown in the Pearson product-moment correlation matrix in Table 7. The Pearson product-moment correlation coefficient  $\rho_{xy}$  between two variables x and y is calculated as,

$$\rho_{xy} = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y}$$
(3.5)

where cov(x,y) is the covariance of the two variables and  $\sigma_x$ ,  $\sigma_y$  is the standard deviation of the variables x and y. The value of this coefficient ranges from +1 to -1 indicating strong positive correlation to strong negative correlation.

| Variables     | Evaporator | Condenser  | Compressor | Evaporator    |
|---------------|------------|------------|------------|---------------|
|               | superheat  | subcooling | discharge  | inlet quality |
|               |            |            | superheat  |               |
| Evaporator    | 1.0        | -0.78      | 0.96       | 0.62          |
| superheat     |            |            |            |               |
| Condenser     | -0.78      | 1.0        | -0.76      | -0.74         |
| subcooling    |            |            |            |               |
| Compressor    | 0.96       | -0.76      | 1.0        | 0.68          |
| discharge     |            |            |            |               |
| superheat     |            |            |            |               |
| Evaporator    | 0.62       | -0.74      | 0.68       | 1.0           |
| inlet quality |            |            |            |               |

Table 7. Pearson correlation matrix.

As shown in Table 7, the correlation between evaporator superheat and the compressor discharge superheat variables in this VRC sensor model is 0.96 which indicates very high positive correlation. Hence, this model has significant multicollinearity which would cause the variance of the model and the confidence interval of the coefficients estimated to be inflated resulting in any inference made from the model to be unreliable. Hence no further evaluations are presented for this model.

## 3.3 Virtual Compressor Power Sensor

The virtual compressor power sensor uses the standard AHRI compressor map that is typically available from the manufacturer. The standard map correlates the compressor input power to saturated condensing and evaporating temperature using a 10-coefficient polynomial equation as shown below [13],

$$\dot{W}_{\text{rated}} = c_1 + c_2 T_e + c_3 T_c + c_4 T_e^2 + c_5 T_e T_c + c_6 T_c^2 + c_7 T_e^3 + c_8 T_c T_e^2 + c_9 T_e T_c^2 + c_{10} T_c^3$$
(3.6)

where  $\dot{W}_{rated}$  is the compressor input power consumption,  $T_e$  is the saturation temperature corresponding to the compressor inlet (suction) pressure,  $T_c$  is the saturation temperature corresponding to the compressor outlet (discharge) pressure and  $c_1 - c_{10}$  are the empirical coefficients. Since these coefficients are readily available from the compressor manufacturer, there are no training requirements associated with this sensor. It should be noted that in this study since the compressor used was a dual stage scroll compressor, individual compressor maps were used for the respective stages of operation.



Figure 13. Virtual compressor power sensor performance.

Figure 13 shows the measured input compressor power compared to predicted compressor power of the unit based on the virtual compressor power sensor. The AHRI compressor map works very well for the entire data set with a maximum deviation of  $\pm 5.6\%$  with a RMSE of  $\pm 96.5$  W. There is a small bias with the model slightly under predicting the power compared to the measurements.

# 3.4 Virtual Cooling Capacity Sensor

The cooling capacity of a rooftop unit when operating at steady state is given by

$$\dot{\mathbf{Q}}_{\text{cooling,ref}} = \dot{\mathbf{m}}_{\text{ref}} \left( \mathbf{h}_{\text{out,ref,evap}} - \mathbf{h}_{\text{in,ref,evap}} \right)$$
(3.7)

The virtual cooling capacity is obtained by using a virtual refrigerant mass flow rate in place of the actual flow rate [13] such that

$$\dot{\mathbf{Q}}_{\text{cooling,ref,virtual}} = \dot{\mathbf{m}}_{\text{ref,virtual}} \left( \mathbf{h}_{\text{out,ref,evap}} - \mathbf{h}_{\text{in,ref,evap}} \right)$$
(3.8)

The virtual refrigerant mass flow rate sensor uses the AHRI based compressor map that correlates the refrigerant mass flow rate to the saturated condensing and evaporator temperatures using a third degree polynomial equation as shown below,

$$\mathbf{\dot{m}}_{map} = \mathbf{d}_{1} + \mathbf{d}_{2}T_{e} + \mathbf{d}_{3}T_{c} + \mathbf{d}_{4}T_{e}^{2} + \mathbf{d}_{5}T_{e}T_{c} + \mathbf{d}_{6}T_{c}^{2} + \mathbf{d}_{7}T_{e}^{3} + \mathbf{d}_{8}T_{c}T_{e}^{2} + \mathbf{d}_{9}T_{e}T_{c}^{2} + \mathbf{d}_{10}T_{c}^{3}$$
(3.9)

where  $m_{map}$  is the compressor map based flow rate,  $T_e$  is the saturation temperature corresponding to the compressor inlet (suction) pressure,  $T_c$  is the saturation temperature corresponding to the compressor outlet (discharge) pressure and  $d_1 - d_{10}$  are the empirical coefficients. Since these coefficients are readily available from the compressor manufacturer there are no training requirements associated with this sensor. Also, it should be noted that in this study since the compressor used was a dual stage scroll compressor, individual compressor maps was used for the respective stages.

The map based flow rate is then adjusted for the inlet superheat of the compressor based on the Rice correlation [14] as follows,

$$\frac{\dot{m}_{\text{new}}}{\dot{m}_{\text{map}}} = 1 + F\left(\frac{\rho_{\text{new}}}{\rho_{\text{map}}} - 1\right)$$
(3.10)

where  $m_{new}$  is the corrected refrigerant mass flow rate at the operating condition,  $m_{map}$  is the compressor map based flow rate, F is a correction factor to account for suction gas heating within a hermetic compressor which is assumed to be 0.75,  $\rho_{new}$  is the suction density at the operating condition and  $\rho_{map}$  is the suction density at the map based superheat.



Figure 14. Virtual refrigerant mass flow rate sensor performance.

Figure 14 shows comparisons between measured and predicted refrigerant mass flow rate based on the virtual refrigerant mass flow rate sensor. The installed mass-flow meter does not provide reliable measurements under conditions with a two-phase mixture. Hence, points having a condenser subcooling of less than 1.5 K were filtered out and not included in the comparison. Furthermore, the installed micro-motion mass flow meter did not have the proper range for the application and saturated at 90 g/s of refrigerant flow rate. Since most of the second stage operation had values of refrigerant mass flow rate higher than 90 g/s those points were also filtered out from the validation plot. It can be seen that the virtual refrigerant mass flow sensor based on AHRI map works well for both stages of operation with a RMSE of  $\pm 0.8$  g/s and a maximum deviation of  $\pm 3.56\%$ . Figure 15 compares the measured cooling capacity based on the installed mass flow meter and the predicted cooling capacity based on the virtual cooling capacity sensor.



Figure 15. Virtual cooling capacity sensor performance relative to refrigerant-side capacity.

Here again it can be seen that the virtual cooling capacity sensor works pretty well with a maximum deviation of  $\pm 3.56\%$  and a RMSE of  $\pm 0.16$  kW.



Figure 16. Virtual cooling capacity sensor performance relative to air-side cooling capacity.

Since there were not many reliable refrigerant-side capacity measurements, virtual cooling capacity sensor capacity predictions relative to measured air-side cooling capacity are shown in Figure 16. The differences are significantly larger than those associated with the virtual cooling capacity and refrigerant-side capacity comparisons. This could be because of the higher uncertainty in accurately measuring the air-side capacity as shown in Table 4. However the RMSE is reasonably good at around  $\pm 0.83$  kW while the maximum deviation is  $\pm 15.32\%$ .

3.5 Virtual Sensor Implementation Costs and Savings Relative to Direct Measurements The cost of implementing virtual sensors within manufactured RTUs is an important consideration. It is particularly important that the costs of the virtual sensor inputs are less than the cost of measuring each quantity directly. Ideally, the virtual compressor power and mass flow sensors (AHRI) would use compressor suction and discharge pressure along with compressor inlet temperature as inputs. These pressures would be used along with thermodynamic property relations to estimate saturation suction and discharge temperatures. The virtual capacity sensor also requires knowledge of the enthalpy entering the evaporator. The refrigerant enthalpy entering the evaporator is practically the same as the enthalpy leaving the condenser. If refrigerant pressure drop across the condenser is small (a good assumption for micro-channel condensers) then compressor discharge temperature and the refrigerant temperature leaving the condenser can be used along with thermodynamic properties to obtain a good estimate of the enthalpy entering the evaporator. The virtual charge sensor considered in this study requires condensing temperature (or pressure), liquid temperature leaving the condenser, evaporating temperature (or pressure), and compressor discharge temperature. The compressor discharge pressure can be used to

estimate the condensing pressure. The evaporating temperature can either be estimated using the compressor suction pressure (when evaporator superheat is needed) or using a surface mounted temperature at the inlet to the evaporator (when inlet quality is needed). As a result of these considerations, the following sensors shown in Table 8 are believed to be ideal as inputs for the 3 virtual sensors considered in this study.

| Ideal sensor inputs              | Virtual sensors                      |
|----------------------------------|--------------------------------------|
| Compressor suction pressure      | Virtual compressor power and cooling |
|                                  | capacity sensors                     |
| Compressor discharge pressure    | Virtual charge, compressor power and |
|                                  | cooling capacity sensors             |
| Compressor discharge temperature | Virtual charge sensor                |
| Condenser outlet temperature     | Virtual charge and cooling capacity  |
|                                  | sensors                              |
| Evaporator inlet temperature     | Virtual charge sensor                |
| Evaporator outlet temperature    | Virtual charge and cooling capacity  |
|                                  | sensors                              |

Table 8. Ideal sensor inputs to virtual sensors.

High volume OEM costs for temperatures sensors are around \$5 per sensor and \$20 for pressure sensors [15]. Hence, the total cost of these required sensors would be approximately \$60. If an additional pressure sensor were needed at the outlet of the condenser to get a more accurate subcooling measurement for fin-tube condensers (due to larger refrigerant pressure drops for this type of condenser), then the total sensor cost would be closer to \$80. It should be possible to implement the virtual sensor models within the existing RTU controller. However, if an additional microprocessor or enhanced micro-

controller were needed then this could add up to \$40 to the cost of the virtual sensors. Therefore, the virtual sensor costs would be in the range of \$60 to \$120 for an embedded RTU application. This cost structure is presented in Table 9.

| Typical OEM sensor costs for<br>temperature sensor | ~\$5   |
|----------------------------------------------------|--------|
| Typical OEM sensor costs for pressure              | ~\$20  |
| sensor                                             |        |
| Total cost of ideal virtual sensor inputs          | ~\$60  |
| Total cost of virtual sensor inputs with           | ~\$80  |
| condenser outlet pressure measurement              |        |
| Virtual sensor implementation using                | ~\$80  |
| existing RTU micro-controller                      |        |
| Virtual sensor implementation using                | ~\$100 |
| additional micro-controller.                       |        |

Table 9. Typical cost breakdown of virtual sensor implementation.

It is interesting to compare the virtual sensor costs to costs required for direct measurements. It is not possible to implement a direct measurement of refrigerant charge on board an RTU. Therefore, there is no baseline for comparison. On the other hand, power transducers are widely available but are relatively expensive. Retail prices for an appropriate power transducer are about \$500 per unit [16]. Assuming that OEM prices in quantity are 70% of retail costs, a reasonable price might be \$350 per unit. Direct measurement of refrigerant flow is extremely expensive (e.g. > \$4000 per sensor) and not practical. An alternative would be to measure air- side capacity using a hot-wire anemometer for velocity along with inlet and outlet temperatures and humidity. The

estimated cost of this approach would be \$350 per RTU. However, the accuracy could be poor due to the use of single-point measurements of velocity, temperature, and humidity and the well-known difficulty in reliably measuring humidity. Even so, the cost of \$700 per RTU for on-board power and capacity would be difficult to justify. This cost structure is presented in Table 10.

| Cost of power transducer (70% of the     | ~\$350       |
|------------------------------------------|--------------|
| retail costs)                            |              |
| Cost of directly measuring air-side      | ~\$350       |
| cooling capacity                         |              |
| Cost of measuring the refrigerant charge | Not possible |
| Total cost of direct measurements (for   | ~\$700       |
| compressor power and capacity only)      |              |

Table 10. Typical cost estimate for direct sensor measurements.

By comparing the virtual sensor implementation cost in Table 9 and the cost of direct measurements in Table 10, it is clear that the virtual sensor cost of \$100 would be more attractive and provides the additional output of virtual charge along with power and capacity.

## CHAPTER 4. MINIMIZING TRAINING COSTS FOR THE VRC SENSOR

This chapter focuses on minimizing the training requirements for the virtual refrigerant charge sensor using open lab training data (see section 4.1) with an algorithm that minimizes the number of training points (see section 4.2 and 4.3). Evaluation of how well the open lab training methodology works for the virtual refrigerant charge sensor is also presented in section 4.4.

4.1 Opportunities for Reducing Engineering Costs Using Open Lab Training

One of the main drawbacks of the VRC sensor has been the requirement for extensive training data obtained using psychrometric chambers. This involved varying the charge level for a range of different outdoor and indoor conditions. From a manufacturer's perspective, this time in the psychrometric chambers is expensive and would prohibit the VRC implementation. Therefore, it is advantageous to develop an alternative VRC training methodology that uses open lab training data to learn the VRC model as described in section 2.5.

In addition to eliminating the need for expensive setups in psychrometric chambers, the process of running through different operating conditions in an open laboratory environment could be automated leading to additional cost reductions. Furthermore, there is potential for applying this automated training approach to units installed in the field.

## 4.2 Algorithm for Minimizing the Number of Training Data Points

For the case considered in this thesis, the total number of open lab data points available for training is 35 for each stage (70 total). The specific conditions for this test data are shown in Table C.1. and Table C.2. It can be seen that the charge level was varied from 60% to 120% of the nominal charge level in steps of 10% increment. At each charge level, the total number of combinations of evaporator and condenser fan PWM duty cycle variations was chosen to be 5. These combinations were chosen so as to include three out of the four combinations of upper and lower fan settings (upper/lower, upper/upper, lower/upper) that are tested for each stage along with two combinations with one of the fan settings at the upper and the other at an intermediate setting (upper/intermediate, intermediate/upper).

It requires about 15 minutes to achieve steady state conditions for each test point and then the unit is run for an additional 5 minutes at steady state for data collection. With 70 training data points for open lab testing, this would require approximately 24 hours of RTU operation. Therefore, it would be advantageous to significantly reduce the time required for open lab testing. This is accomplished by determining the minimum number of open lab training points required and formulating a set of guidelines for choosing the specific open lab training data points.

The algorithm for selecting the optimal open lab training data points is based on the Fedorov's D-optimal algorithm [17, 18] which is explained as follows and was implemented using Python.

 Let N be the matrix of candidate points. In this matrix each row represents an experimental run and each column an independent model input variable. In our study, since each compressor stage has 35 open lab testing points and the VRC sensor has 3 independent input variables (condenser subcooling, evaporator superheat and inlet evaporator quality), this matrix of candidate points is a  $(35 \times 3)$  matrix.

- Start with a randomly chosen n-point design matrix X (n x p) from the matrix of candidate points N (35 for this study) where p is the number of independent input variables (also termed predictor variables) in the model, which is 3 for this study. For the first run, n is set equal to p.
- 3. Compute M,  $M^{-1}$  and |M| where  $M = X^T X$  is the information matrix. The n rows of the matrix X are n p-dimensional vectors  $x_i^T$ , i = 1...n. Also note that there are N distinct rows (candidate vectors)  $x^{jT}$  from the candidate matrix N.
- 4. Find simultaneously a vector  $x_i$  among n vectors of the current n-point design matrix X and a vector  $x^j$  among the N candidate vectors such that the Fedorov's delta function  $\Delta(x_i^T, x^{jT})$  is maximum. Exchange  $x_i$  with  $x^j$  and the new information matrix is related to the previous one by,

$$M_{0} = M_{1} - (x_{i} * x_{i}^{T}) + (x^{j} * x^{jT})$$
(4.1)

The corresponding determinants of the information matrices are linked by the relation

$$|M_1| = |M_0|^* (1 + \Delta(x_i, x^j))$$
(4.2)

where

$$\Delta(x_i, x^j) = d(x^j) - [d(x_i)d(x^j) - d^2(x_i, x^j)] - d(x_i)$$
  

$$d(x_i) = x_i^T (M_0)^{-1} x_i$$
  

$$d(x_i, x^j) = x_i^T (M_0) x^j$$

- 5. Repeat step 4 until the Fedorov delta function  $\Delta(x_i, x^j)$  is less than zero (negative) for all possible couples of  $(x_i, x^j)$ . The resulting n-point design matrix X is the D-optimal design for the n-point design matrices.
- Repeat step 2 to step 5 now with n+i- point design matrices X where i=1...N-n and at each run compute the determinant of the information matrix M corresponding to the D-optimal design.
- 7. Set a threshold on the maximum value of the determinant of the information matrices and choose the optimal experimental data points corresponding to that threshold value. In this study a threshold value of 90% of the maximum value of the determinant of the information matrix is chosen for both stages of operation. This threshold is justified by the fact that the slope of the trace of the inverse of the information matrix becomes relatively constant after this point as shown in Figure 17 and Figure 18.

The D-optimal design minimizes the volume of the confidence ellipsoid of the parameter estimates of the VRC model. The volume of this ellipsoid is inversely proportional to the square root of the determinant of the information matrix. This implies that the D-optimal design maximizes the determinant of the information matrix M. The D-optimal design criteria was chosen over other optimal designs like A-optimal design because the D-optimal design's relatively simple formula has resulted in the development of computer algorithms for the construction of optimal designs for linear regression models. In addition, a D-optimal design also satisfies the criteria of an A-optimal design which minimizes the average variance of the parameter estimates of the VRC model by reducing the trace of the inverse of the information matrix M as shown in Figure 17 and Figure 18.



Figure 17. Optimal experimental runs for the first stage of operation.



Figure 18. Optimal experimental runs for the second stage of operation.

The number of optimal training points for the first stage of operation is 17 whereas the number of optimal points for the second stage of operation is 18. Therefore, the total number of open lab training points has been reduced to 35 from 70 data points or a 50% reduction in the time required for open lab testing.

# 4.3 Guidelines for Choosing Operating Conditions for Open Lab Training



Figure 19. Optimal operating points for open lab training for the first stage of operation (a) condenser fan PWM duty cycle points and (b) evaporator blower PWM duty cycle points.

| Charge    | Condenser PWM duty | Evaporator PWM duty |
|-----------|--------------------|---------------------|
| level [-] | cycle [%]          | cycle [%]           |
| 0.6       | 70                 | 20                  |
| 0.6       | 30                 | 60                  |
| 0.6       | 70                 | 60                  |
| 0.6       | 50                 | 60                  |
| 0.6       | 70                 | 40                  |
| 0.7       | 70                 | 20                  |
| 0.7       | 30                 | 60                  |
| 0.8       | 30                 | 60                  |

Table 11. Optimal operating points for open lab training for the first stage of operation.

| 0.9 | 30 | 60 |
|-----|----|----|
| 1   | 30 | 60 |
| 1.1 | 30 | 60 |
| 1.1 | 70 | 20 |
| 1.2 | 70 | 60 |
| 1.2 | 50 | 60 |
| 1.2 | 70 | 40 |
| 1.2 | 30 | 60 |
| 1.2 | 70 | 20 |

Table 11. Continued.

Figure 19 and Table 11 show the optimal test input conditions for charge level and condenser and evaporator fan PWM duty cycles for open lab testing with first stage of compressor operation. These test inputs were determined using the algorithm explained in section 4.2 and include all of the charge levels with diverse combinations of condenser and evaporator fan control inputs that span the range of possible values. A total of 17 test points were chosen from the candidate number of 35 for this study.



Figure 20. Optimal operating points for open lab training for the second stage of operation (a) condenser fan PWM duty cycle points and (b) evaporator blower PWM duty cycle.

| Charge level | Condenser PWM duty | Evaporator PWM duty |
|--------------|--------------------|---------------------|
| [-]          | cycle [%]          | cycle [%]           |
| 0.6          | 100                | 70                  |
| 0.6          | 80                 | 90                  |
| 0.6          | 100                | 50                  |
| 0.6          | 100                | 90                  |
| 0.6          | 60                 | 90                  |
| 0.7          | 100                | 50                  |
| 0.7          | 60                 | 90                  |
| 0.8          | 60                 | 90                  |
| 0.9          | 60                 | 90                  |
| 1            | 60                 | 90                  |
| 1.1          | 60                 | 90                  |

Table 12. Optimal operating points for open lab training for second stage of operation.

| 1.1 | 100 | 50 |
|-----|-----|----|
| 1.1 | 80  | 90 |
| 1.2 | 80  | 90 |
| 1.2 | 60  | 90 |
| 1.2 | 100 | 70 |
| 1.2 | 100 | 50 |
| 1.2 | 100 | 90 |

Table 12. Continued.

Figure 20 and Table 12 show the optimal open lab test conditions in second stage operation for model training in terms of charge level and condenser and evaporator fan PWM duty cycles. The results are similar to those for first stage with a total 18 operating points out of the candidate set of 35.

Though these operating conditions were chosen a-posteriori based on applying the algorithms in section 4.2 to experimental data, some heuristic guidelines can be formulated for open lab testing based on these results. These guidelines are useful in generalizing the results of this study so that near-optimal test input conditions could be identified for training a VRC sensor for other models of RTU using open lab testing. These can be applied for reducing the time taken for open lab testing for training of the VRC sensor. The guidelines for choosing open lab test inputs for each compressor stage of operations are described as follows:

1. Vary the refrigerant change over the entire range of interest (e.g, 60% to 120% of nominal charge in this study) in increments of 10%. This guideline is derived

directly from the results of Table 11 and Table 12 where all of the refrigerant charge levels were included in the optimal set of training data.

- 2. At the extreme ends of the charge level domain 60% and 120% of nominal charge level in this study), the condenser and evaporator fan controls should be modulated to include the three out of the four combinations of upper and lower fan settings to be considered for each stage (upper/lower, upper/upper, lower/upper) along with two combinations with one of the fan settings at the upper value and the other at an intermediate setting (upper/intermediate, intermediate/upper).
- 3. At charge levels other than those at the upper and lower bounds, only employ two combinations of the upper and lower fan settings that are employed for each stage (upper/lower and lower/upper) with no intermediate fan settings. These approximately represent the optimal results of Table 11 and Table 12.

4.4 Validation of the Open Lab Training Methodology

In order to assess the limitations of training a VRC sensor model using open laboratory data, prediction results are compared with those obtained when the model was trained with all of the available data over the entire range of conditions considered. This comparison provides a measure of how well the open lab training data represents the entire range of operating conditions of a typical rooftop unit.



Figure 21. Validation of open lab training methodology for the VRC sensor for the first stage of operation (a) VRC sensor when trained using all open lab training data and validated for all psychrometric room data (b) VRC sensor when trained using all psychrometric room data.

Figure 21 shows how well the open lab training methodology works for the VRC sensor model III for the first stage of operation when trained using all of the open lab training data (35 data points) shown in Table C.1. The comparisons are performed using all of the data (216 points) obtained within the psychrometric chambers. The accuracy of the model in predicting charge level is somewhat worse than the model trained using all of 216 available data points. However, the lower accuracy primarily occurs at low charge levels. The errors close to the nominal charge are less than 10% such that a fault detection algorithm should generally be able to flag charge faults that are outside of this 10% range. The impact of charge on performance is relatively small within 10% of nominal charge so that this is sufficient accuracy for a virtual refrigerant charge sensor.



Figure 22. VRC sensor prediction accuracy for first stage of operation when trained using optimal open lab training points in Table 11 but tested over all psychrometric data.

Figure 22 shows the performance of the VRC sensor for first stage when trained with the 17 optimal open lab training data points shown in Table 11. Comparing Figure 21(a) and Figure 22, it can be seen that the optimal data points represent the overall open lab training data points very well. The performance of the VRC sensor has not changed significantly even though the number of training data points has been reduced by 50%.



Figure 23. Validation of open lab training methodology for the VRC sensor for the second stage of operation (a) VRC sensor when trained using all open lab training data

and validated for all psychrometric room data (b) VRC sensor when trained using all psychrometric room data.

Figure 23 shows how well the open lab training methodology works for the VRC sensor for the second stage of operation. The errors in charge prediction for training with the 35 open lab training points in Table C.2. are only slightly larger than those associated with training using the 215 data points obtained within the psychrometric rooms at a wide range of conditions. The overall accuracy of the model for second stage operation is quite good with almost all of the predicted charge values within  $\pm 10\%$  bounds of the actual charge level.



Figure 24. VRC sensor prediction accuracy for second stage operation when trained using optimal open lab training points in Table 12 but tested over all psychrometric data.

Figure 24 shows the performance of the VRC sensor when trained with only the 18 optimal open lab training data points shown in Table 12. Comparing Figure 23(a) and Figure 24, it can be seen that the performance of the VRC sensor has not changed significantly even

though the number of training data points has been reduced by almost 50%. Overall, the optimal training data points represent the overall open lab training data points well.

## CHAPTER 5. SUMMARY AND RECOMMENDATIONS

## 5.1 Summary

The study presented here extended virtual sensors for measuring refrigerant charge, compressor power and refrigerant mass flow rate to rooftop units having micro-channel condensers. In addition, a methodology to minimize the training requirements for virtual refrigerant charge sensors was developed that significantly reduces the training costs and time associated with implementing virtual charge sensors for new equipment.

Analysis of virtual refrigerant charge sensor results showed that accuracy is improved when including inlet evaporator quality as an input variable along with condenser subcooling and either evaporator superheat or compressor discharge superheat. The use of three independent input variables decreased the bias and RMSE for model predictions of refrigerant charge compared to the original model form that only employed two input variables. Overall, the performance of the virtual charge sensor was good with most of the charge predictions within  $\pm 10\%$  of the actual refrigerant charge.

The virtual compressor power sensor, which is based on the AHRI compressor map, worked very well for both stages of operation over the entire range of operating conditions tested. The virtual cooling capacity sensor, which is based on a virtual

refrigerant mass flow rate sensor determined with the AHRI map, also was shown to work very well for conditions where reliable direct mass flow measurements weravailable.
However, only limited direction measurements were available for second stage operation because of saturation of the micro-motion mass flow meter. The results for first stage and limited second stage test points were excellent.

Cost estimates for implementation of the virtual sensors within an embedded system were performed and compared with cost estimates associated with using direct measurements. It was shown that the cost of virtual sensor implementation would be in the range of \$60 - \$100 per unit, depending on whether the algorithm could be deployed within the existing controller or an additional microprocessor were necessary. In contrast, the cost of implementing a monitoring system with direct measurements of only compressor power consumption and cooling capacity would be about \$700 per unit and doesn't include a refrigerant charge sensor. There is not a practical way of directly measuring the amount of refrigerant charge while the unit is in operation.

The methodology that was developed for minimizing the training costs and time for the virtual refrigerant charge sensor involves running the unit in an open lab space instead of the psychrometric chambers. In addition, an algorithm was implemented to determine the minimum number of open lab training points required and the results of this analysis were used to establish a set of guidelines for specifying near-optimal input conditions for running the open lab testing. An evaluation of the open lab training methodology was carried out and it was shown to provide virtual sensor performance similar to that obtained using all of the data from psychrometric room test data for training.

The virtual sensors could be implemented in a micro-controller and could be made as an embedded part of the rooftop unit. Furthermore, the open lab training methodology could be entirely automated and implemented as a training kit with necessary hardware, sensors and software to modulate the amount of refrigerant charge, condenser and evaporator air flow rate and collect the required data to train the virtual charge sensor. This training kit based on open lab testing could significantly speed up the process and reduce the cost of acquiring the calibration data for virtual charge sensors and thus could improve the overall economics of applying virtual sensors for a whole RTU product line.

5.2 Recommendations for Future Work

Future work could include a direct evaluation of how the accuracy of the virtual charge sensor is influenced by the type of condenser, since the condenser is one of the primary locations for refrigerant mass. This goal could be accomplished by replacing the existing micro-channel condenser of the case study RTU with a conventional round-tube, finned condenser and then repeating the virtual charge sensor evaluation. In addition, it would be useful to evaluate virtual charge sensors for units having micro-channel heat exchangers for both the evaporator and condenser.

LIST OF REFERENCES

#### LIST OF REFERENCES

- H. Li and J. Braun, "Decoupling Features and Virtual Sensors for Diagnosis of Faults in Vapor Compression Air Conditioners," *International Journal of Refrigeration*, vol. 30, no. 3, pp. 546-564, 2007.
- [2] H. Li and J. Braun, ""Development, Evaluation, and Demonstration of a Virtual Refrigerant Charge Sensor," *HVAC&R Research*, vol. 15(1), pp. 117-136, 2009.
- [3] W. Kim and J. Braun, Fault Detection And Diagnosis For Air Conditioners And Heat Pumps Based On Virtual Sensors, West Lafayette, IN: Purdue University, 2013.
- [4] W. Kim and J. Braun, "Virtual Refrigerant Mass Flow and Power Sensors for Variable-Speed Compressors," in *International Refrigeration and Air Conditioning Conference*, West Lafayette, IN, 2012.
- [5] CEC, "California Energy Commission," 2013. [Online]. Available: http://www.energy.ca.gov/title24/.
- [6] CEC, "California Energy Commission," 2016. [Online]. Available: http://www.energy.ca.gov/title24/2016standards/index.html.
- [7] A. Cowan, "Review of recent commercial roof top unit field studies in the Pacific Northwest and California," Portland, Oregon, 2004.
- [8] J. Proctor and T. Downey, "Heat Pump and Air conditioner Performance," in *Affordable Comfort Conference*, Pittsburgh, PA., 1995.
- [9] H. Li and J. Braun, "Apparatus and method for determining refrigerant charge level," U.S. Patent Application serial number 11/624,377., 2006.

- [10] I. H. Bell, J. Wronski, S. Quoilin and V. Lemort, "Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp," *Industrial and Engineering Chemistry Research*, vol. 53, no. 6, pp. 2498-2508, 2014.
- [11] H. Li and J. Braun, "Development, Evaluation and Demonstration of a virtual refrigerant charge sensor," *HVAC&R Research*, vol. 15, no. 1, pp. 117-136, 2009.
- [12] W. Kim and J. Braun, "Fault detection and diagnosis for air conditioners and heat pumps based on virtual sensors," West Lafayette, 2013.
- [13] W. Kim and J. Braun, "Virtual Refrigerant Mass Flow and Power sensors for variable speed compressors," in *International Refrigeration and Air conditioning conference*, West Lafayette, 2012.
- [14] Rice. C and A. E. Dabiri, "A compressor simulation model with corrections for the level of suction gas superheat," in *ASHRAE transactions*, 1981.
- [15] TIAX, "Energy impact of commerical building controls and performance diagnostics," 2005.
- [16] "Omega online catalog," [Online]. Available: http://sea.omega.com/sg/pptst.
- [17] V. Fedorov, Theory of optimal experiments, New York: Academic Press, 1972.
- [18] P. Aguiar, B. Bourguignon, M. Khots and D. Massart, "D-optimal designs," *Chemometrics and intelligent laboratory systems*, vol. 30, pp. 199-210, 1995.

APPENDICES

#### Table A.1.

Data for the first stage of compressor operation comprising of air temperatures, refrigerant mass flow rate and compressor input power.

| Test | $T_{in,air,cond}$ | T <sub>out,air,cond</sub> | m <sub>ref</sub> | W <sub>comp</sub> |
|------|-------------------|---------------------------|------------------|-------------------|
| [-]  | [°C]              | [°C]                      | [g/s]            | [W]               |
| 0    | 22.43394241       | 25.49263525               | 36.32654         | 1785.19           |
| 1    | 22.79553145       | 25.80611714               | 34.65998         | 1789.205          |
| 2    | 22.21122946       | 25.382644                 | 39.70964         | 1802.751          |
| 3    | 21.82822128       | 26.1058156                | 31.99426         | 1830.331          |
| 4    | 21.80091429       | 30.91178231               | 51.91887         | 2086.725          |
| 5    | 21.83865672       | 26.39328358               | 32.47617         | 1827.915          |
| 6    | 29.46528182       | 34.24419697               | 62.86456         | 2280.578          |
| 7    | 29.40466005       | 38.46052936               | 69.91184         | 2555.181          |
| 8    | 30.1706215        | 33.36165109               | 64.82031         | 2230.897          |
| 9    | 29.43312736       | 34.21767296               | 62.35271         | 2266.739          |
| 10   | 30.15382809       | 33.6572956                | 65.58174         | 2241.71           |
| 11   | 30.20792771       | 33.76819277               | 65.95397         | 2236.479          |
| 12   | 30.43991816       | 35.01087809               | 72.21886         | 2712.824          |
| 13   | 30.45565803       | 40.5382038                | 73.53286         | 3078.299          |
| 14   | 30.43332011       | 34.84375826               | 71.35874         | 2709.956          |
| 15   | 30.82344754       | 35.0503212                | 70.46739         | 2675.715          |
| 16   | 31.03397556       | 35.35021045               | 72.15642         | 2688.205          |
| 17   | 31.01965125       | 35.47228944               | 72.88418         | 2682.493          |
| 18   | 36.50295749       | 41.21847875               | 64.92204         | 2239.78           |
| 19   | 36.58531178       | 45.69987683               | 62.48562         | 2308.609          |
| 20   | 36.4875702        | 40.98928367               | 70.43046         | 2601.25           |
| 21   | 35.54646964       | 39.88935223               | 61.42157         | 2275.597          |
| 22   | 36.95583404       | 40.46387943               | 65.14756         | 2240.376          |
| 23   | 37.11963065       | 40.58673215               | 64.77249         | 2247.086          |
| 24   | 36.59945098       | 41.43098856               | 87.37117         | 3739.817          |
| 25   | 36.49617993       | 46.54254902               | 81.98407         | 3325.44           |
| 26   | 36.572216         | 41.22848                  | 81.04918         | 3384.896          |
| 27   | 37.29132237       | 41.64458882               | 78.2287          | 3405.485          |
| 28   | 37.37905367       | 41.97056026               | 34.45416         | 1819.539          |
| 29   | 36.68399174       | 41.91235537               | 49.42304         | 2083.915          |
| 30   | 43.67526606       | 48.00766055               | 40.70334         | 1805.708          |
| 31   | 43.63700234       | 53.21437939               | 35.0145          | 1796.784          |

| 32 | 43.91644097 | 49.28727431 | 34.58022 | 1795.86  |
|----|-------------|-------------|----------|----------|
| 33 | 43.93794828 | 47.93751232 | 36.90188 | 1794.639 |
| 34 | 44.18440797 | 48.23767236 | 72.10793 | 2738.812 |
| 35 | 43.80634453 | 48.32081618 | 74.51495 | 3076.661 |
| 36 | 30.43244344 | 33.25386124 | 72.28311 | 2741.698 |
| 37 | 29.4872449  | 34.82414966 | 72.16177 | 2673.28  |
| 38 | 29.4182801  | 39.18769861 | 73.38778 | 2698.632 |
| 39 | 29.40503812 | 34.73880743 | 73.95893 | 2703.897 |
| 40 | 29.90655138 | 33.64509607 | 69.12954 | 2698.046 |
| 41 | 30.44087526 | 33.86985685 | 70.45228 | 2697.845 |
| 42 | 30.45324031 | 41.35102067 | 67.41281 | 2742.243 |
| 43 | 30.52733333 | 35.66628019 | 70.48898 | 3298.016 |
| 44 | 31.53541104 | 35.8197137  | 67.83358 | 2802.51  |
| 45 | 30.59604934 | 35.58340923 | 69.74901 | 2712.005 |
| 46 | 21.77783673 | 26.38339002 | 68.23432 | 2686.648 |
| 47 | 21.59034615 | 30.87415501 | 65.48475 | 2245.909 |
| 48 | 21.73075177 | 26.42908983 | 58.38487 | 2324.983 |
| 49 | 22.68452109 | 25.33991729 | 59.30414 | 2302.755 |
| 50 | 22.93641566 | 25.78917671 | 61.6798  | 2237.332 |
| 51 | 22.89698165 | 25.99227829 | 60.8382  | 2234.44  |
| 52 | 36.41256734 | 41.3848042  | 41.72439 | 1844.09  |
| 53 | 36.4794716  | 46.0337037  | 54.46489 | 2155.765 |
| 54 | 36.43738053 | 41.69991888 | 50.17522 | 1846.596 |
| 55 | 37.283385   | 40.05343333 | 33.91261 | 1807.984 |
| 56 | 37.3797622  | 40.44757114 | 38.29058 | 1785.14  |
| 57 | 37.44565957 | 40.68092199 | 45.4397  | 1783.255 |
| 58 | 36.8634569  | 42.97109914 | 61.16078 | 2702.794 |
| 59 | 36.54464894 | 48.00352837 | 55.41272 | 2262.587 |
| 60 | 36.74648988 | 42.58595142 | 57.46521 | 2408.699 |
| 61 | 37.24258431 | 41.92911765 | 57.77205 | 2264.986 |
| 62 | 37.88138617 | 42.40450815 | 51.05132 | 2259.333 |
| 63 | 38.17851966 | 42.56797151 | 64.94363 | 3217.439 |
| 64 | 30.61682008 | 35.89       | 62.43232 | 2828.883 |
| 65 | 30.8082     | 35.10059184 | 61.1804  | 2730.916 |
| 66 | 43.7523466  | 49.05277127 | 61.29863 | 2741.308 |
| 67 | 43.66907669 | 54.97283231 | 62.95802 | 2744.478 |
| 68 | 44.1118843  | 50.65444628 | 36.22437 | 1804.565 |
| 69 | 41.94343628 | 48.48306347 | 54.52613 | 2149.973 |
| 70 | 43.49607449 | 49.02729872 | 53.29781 | 1851.993 |
|    |             |             |          |          |
|    |             | •           | •        | •        |

Table A.1. Continued.

| 70  | 43.49607449 | 49.02729872 | 53.29781 | 1851.993 |
|-----|-------------|-------------|----------|----------|
| 71  | 44.47057908 | 49.3213417  | 47.4152  | 1798.853 |
| 72  | 36.84262913 | 40.2340712  | 54.79651 | 1801.378 |
| 73  | 36.58279607 | 40.59785422 | 50.71437 | 2303.202 |
| 74  | 36.47782215 | 41.66810192 | 59.87818 | 2309.828 |
| 75  | 36.84004762 | 47.97271825 | 55.8526  | 2432.494 |
| 76  | 36.55822503 | 42.34702065 | 61.71323 | 2737.263 |
| 77  | 35.17693555 | 40.69516286 | 59.16574 | 2370.049 |
| 78  | 29.52608416 | 40.29040429 | 70.77434 | 2319.15  |
| 79  | 29.87552174 | 33.64078502 | 57.36894 | 2770.972 |
| 80  | 29.46980344 | 35.09931204 | 71.06417 | 2769.226 |
| 81  | 29.3898895  | 35.12383978 | 77.83772 | 2770.71  |
| 82  | 30.40052807 | 33.72399168 | 51.83853 | 1854.959 |
| 83  | 30.09389648 | 33.92722567 | 57.57059 | 2202.493 |
| 84  | 21.80743729 | 27.05893785 | 57.10646 | 1857.714 |
| 85  | 21.80816949 | 32.51926554 | 49.43364 | 1835.269 |
| 86  | 21.82140909 | 27.4534596  | 60.92188 | 1835.458 |
| 87  | 21.26581301 | 25.52819783 | 73.02037 | 1824.506 |
| 88  | 22.64479191 | 25.76988439 | 71.74113 | 2798.308 |
| 89  | 22.7324573  | 26.03067952 | 77.29598 | 2787.883 |
| 90  | 31.06339535 | 35.10192389 | 80.19139 | 2794.887 |
| 91  | 30.42492212 | 42.07101765 | 62.90185 | 2331.473 |
| 92  | 30.54575263 | 35.83979825 | 75.36356 | 2302.805 |
| 93  | 31.26847415 | 35.60562686 | 78.87014 | 2308.664 |
| 94  | 30.55164792 | 35.63528932 | 54.18844 | 1832.17  |
| 95  | 31.29994937 | 35.85438819 | 74.84331 | 1821.738 |
| 96  | 36.89279116 | 42.95505355 | 77.39009 | 1831.213 |
| 97  | 36.52305747 | 47.85795402 | 73.61101 | 2758.175 |
| 98  | 36.72421557 | 42.5476181  | 77.45019 | 2882.742 |
| 99  | 38.43507021 | 42.18671727 | 77.60694 | 2964.704 |
| 100 | 38.13714188 | 42.42703134 | 78.07833 | 3606.178 |
| 101 | 38.21391111 | 42.68410826 | 79.08085 | 3027.768 |
| 102 | 43.95230099 | 49.89755116 | 79.24416 | 2762.033 |
| 103 | 43.58763291 | 54.93651195 | 72.79821 | 2360.299 |
| 104 | 43.80209368 | 49.70577674 | 77.41099 | 2448.652 |
| 105 | 44.6891547  | 49.07812615 | 77.22734 | 2357.866 |
| 106 | 44.88376873 | 49.44559975 | 79.44547 | 2904.287 |
| 107 | 44.71103098 | 49.68386021 | 79.47655 | 2473.051 |
| 108 | 29.47882178 | 40.31554455 | 79.78933 | 2369.849 |
|     |             |             |          |          |

Table A.1. Continued.

| 109 | 30.15361995 | 34.02600158 | 71.79251 | 1889.206 |
|-----|-------------|-------------|----------|----------|
| 110 | 29.74994138 | 36.38414943 | 76.54537 | 1840.616 |
| 111 | 29.64349145 | 34.2051567  | 76.3523  | 1906.039 |
| 112 | 30.05484281 | 33.80429208 | 79.84697 | 2271.727 |
| 113 | 36.50610384 | 47.1520015  | 79.16944 | 1818.599 |
| 114 | 36.52279913 | 42.44729985 | 79.04282 | 1926.147 |

Table A.1. Continued.

# Table A.2.

Data for the first stage of compressor operation comprising of refrigerant temperatures.

| Test | T <sub>out,ref,evap</sub> | $T_{out,ref,comp}$ | T <sub>out,ref,cond</sub> | T <sub>sat,evap</sub> |
|------|---------------------------|--------------------|---------------------------|-----------------------|
| [-]  | [°C]                      | [°C]               | [°C]                      | [°C]                  |
| 0    | 24.61921466               | 59.72243455        | 25.79633508               | 7.608664921           |
| 1    | 25.05672451               | 59.25481562        | 26.10852495               | 8.43791757            |
| 2    | 23.79569405               | 59.838017          | 25.72167139               | 6.662691218           |
| 3    | 24.6072766                | 60.03442553        | 26.76995745               | 8.259702128           |
| 4    | 25.00265306               | 64.08293878        | 31.22865306               | 10.14436735           |
| 5    | 24.94522388               | 59.56421642        | 26.97955224               | 8.925149254           |
| 6    | 25.47336364               | 68.74011364        | 34.52477273               | 10.50581818           |
| 7    | 25.71977667               | 72.73545906        | 38.49094293               | 12.29811414           |
| 8    | 24.60018692               | 68.92436916        | 33.33205607               | 8.979742991           |
| 9    | 25.75033019               | 68.0592217         | 34.48556604               | 11.08462264           |
| 10   | 25.42654088               | 68.64926625        | 33.64092243               | 10.03150943           |
| 11   | 25.76679518               | 68.09491566        | 33.84154217               | 10.56648193           |
| 12   | 26.38076063               | 76.54548098        | 41.35742729               | 13.06120805           |
| 13   | 26.49810624               | 82.16660508        | 45.53595843               | 13.92612009           |
| 14   | 26.0274212                | 76.95830946        | 41.08604585               | 12.47805158           |
| 15   | 25.44607287               | 76.52635628        | 39.64226721               | 11.07593117           |
| 16   | 26.14714894               | 76.78734043        | 40.17431915               | 12.01468085           |
| 17   | 26.24679764               | 76.24717092        | 40.36119843               | 12.41119843           |
| 18   | 23.470181                 | 66.50735294        | 33.47074661               | 9.991312217           |
| 19   | 24.89119898               | 67.035             | 35.01239796               | 11.54114796           |
| 20   | 25.1429484                | 71.47675676        | 39.24825553               | 13.20764128           |
| 21   | 25.10407625               | 66.33369501        | 34.99296188               | 12.08554252           |
| 22   | 24.67586466               | 66.28130326        | 33.72834586               | 11.13626566           |
| 23   | 25.06196319               | 65.84746421        | 34.13257669               | 11.89832311           |
| 24   | 25.07503876               | 78.79678295        | 41.64717054               | 11.46833333           |
| 25   | 25.02855072               | 72.99402899        | 36.30446377               | 10.20005797           |
|      |                           |                    |                           |                       |

| 26 | 25.08629857 | 73.53206544 | 36.29977505 | 10.35912065 |
|----|-------------|-------------|-------------|-------------|
| 27 | 24.74910816 | 73.85047438 | 35.93231499 | 9.603870968 |
| 28 | 24.22268707 | 57.68792517 | 26.98363946 | 9.563571429 |
| 29 | 24.65314685 | 61.19337413 | 31.07751748 | 11.57267483 |
| 30 | 24.66620567 | 56.80964539 | 26.9864539  | 10.38847518 |
| 31 | 22.94722084 | 57.69754342 | 25.93059553 | 7.989851117 |
| 32 | 24.11918675 | 57.62051205 | 26.3663253  | 9.434126506 |
| 33 | 24.58490826 | 57.02323394 | 26.57779817 | 10.22830275 |
| 34 | 25.01234957 | 75.37412607 | 41.45123209 | 13.05318052 |
| 35 | 25.74977778 | 80.52419753 | 45.92691358 | 14.73479012 |
| 36 | 25.68849558 | 75.05902655 | 41.7494469  | 13.75584071 |
| 37 | 24.024425   | 74.6613     | 40.11545    | 12.091325   |
| 38 | 25.05704268 | 74.65634146 | 40.44640244 | 12.9977439  |
| 39 | 25.59804965 | 74.27170213 | 40.71758865 | 13.63592199 |
| 40 | 23.04141748 | 73.42765049 | 40.28732039 | 12.11765049 |
| 41 | 24.57594595 | 73.5344226  | 40.58039312 | 13.27938575 |
| 42 | 25.17480499 | 76.10911076 | 41.82405616 | 12.97332293 |
| 43 | 25.97306548 | 84.38916667 | 47.99547619 | 14.38372024 |
| 44 | 25.85042984 | 76.41480405 | 42.5211378  | 13.65831858 |
| 45 | 25.14428274 | 72.93906445 | 40.59293139 | 13.72471933 |
| 46 | 24.98668317 | 72.04158416 | 40.15487624 | 13.71064356 |
| 47 | 22.39985507 | 64.24014493 | 33.63601449 | 10.88351449 |
| 48 | 23.88164619 | 66.05810811 | 35.25339066 | 11.61152334 |
| 49 | 24.64433702 | 65.46450276 | 35.3509116  | 12.47149171 |
| 50 | 23.90068607 | 64.55767152 | 33.86116424 | 11.90345114 |
| 51 | 24.46975155 | 64.14349896 | 34.13981366 | 12.46248447 |
| 52 | 23.78589831 | 57.01762712 | 27.52037288 | 10.24128814 |
| 53 | 24.26508475 | 61.87661017 | 32.61101695 | 12.13325424 |
| 54 | 24.39723485 | 56.54818182 | 27.85424242 | 11.15719697 |
| 55 | 22.08247967 | 55.35373984 | 25.90487805 | 8.868373984 |
| 56 | 23.76222543 | 55.88586705 | 26.30803468 | 10.24511561 |
| 57 | 24.35245179 | 55.44413223 | 26.59016529 | 11.11889807 |
| 58 | 24.50012376 | 72.22725248 | 40.44378713 | 13.19376238 |
| 59 | 23.27890736 | 64.22213777 | 34.21947743 | 11.9656057  |
| 60 | 24.56493103 | 67.01605172 | 36.58463793 | 12.48213793 |
| 61 | 24.08128205 | 63.73760684 | 34.45544872 | 12.74352564 |
| 62 | 21.50464883 | 63.69648829 | 33.9348495  | 10.87050167 |
| 63 | 24.83819413 | 82.35419865 | 47.28241535 | 14.12487585 |
| 64 | 24.81141921 | 75.83585153 | 42.66971616 | 13.38340611 |

Table A.2. Continued.

| 65         21.37078189         72.331893         40.54794239         11.91314815           66         23.18079332         73.14638831         41.07392484         12.9458037c           67         24.17343348         72.86184549         41.37914163         13.853305c           68         21.30221402         54.26380074         26.26693727         9.415940955           69         24.20848837         61.75639535         32.47549419         12.1302907           70         24.28689873         56.46528481         27.9125         11.2191772           71         22.867840849         54.60403183         26.84267905         11.52023872           73         20.28982587         63.73447761         34.11696517         10.0675237           74         22.309375         64.07805556         34.64835648         11.67217592           75         22.57108527         66.36418605         36.4100775         11.61271318           76         23.39818182         71.2644289         40.80578089         13.104037296           77         23.68818182         65.33703896         36.10163363         12.46145455           78         23.42550218         63.74646288         34.87334061         12.64617904           79            |     |             |             |             |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-------------|-------------|-------------|
| 66         23.18079332         73.14638831         41.07392484         12.94580376           67         24.17343348         72.86184549         41.37914163         13.85339055           68         21.30221402         54.26380074         26.26693727         9.415940955           69         24.20848837         61.75639535         32.47544919         12.1302907           70         24.28689873         56.46528481         27.9125         11.21917722           71         22.86374603         54.81653968         26.476         10.4972381           72         23.67840849         54.60403183         26.84267905         11.52023873           73         20.28982587         63.73447761         34.11696517         10.06756219           74         22.309375         64.07805556         34.6435648         11.67217392           75         22.57108527         66.36418605         36.46100775         11.61271318           76         23.39818182         71.6244289         40.80578089         13.14037296           77         23.68818182         65.33703896         36.10163636         12.46145455           78         23.42550218         63.74646288         34.87334061         12.6461790           79         20.4   | 65  | 21.37078189 | 72.331893   | 40.54794239 | 11.91314815 |
| 67         24.17343348         72.86184549         41.37914163         13.85339056           68         21.30221402         54.26380074         26.26693727         9.415940955           69         24.20848837         61.75639535         32.47549419         12.1302907           70         24.28689873         56.46528481         27.9125         11.2191772           71         22.86374603         54.81653968         26.476         10.4972381           72         23.67840849         54.60403183         26.84267905         11.52023873           73         20.28982587         63.73447761         34.11696517         10.06756219           74         22.309375         64.07805556         34.64835648         11.67217593           75         22.57108527         66.36418605         36.4610075         11.61271318           76         23.39818182         71.6244289         40.80578089         13.14037296           77         23.68818182         65.33703896         36.10163636         12.46145455           78         23.42550218         63.74646288         34.87334061         12.6461790           79         20.45543767         72.60241379         40.87774536         11.27549077           80         22.59   | 66  | 23.18079332 | 73.14638831 | 41.07392484 | 12.94580376 |
| 68         21.30221402         54.26380074         26.26693727         9.415940955           69         24.20848837         61.75639535         32.47549419         12.1302907           70         24.28689873         56.46528481         27.9125         11.21917722           71         22.86374603         54.81653968         26.476         10.4972381           72         23.67840849         54.60403183         26.84267905         11.52023873           73         20.28982587         63.73447761         34.11696517         10.06756219           74         22.309375         64.07805556         34.64835648         11.67217593           75         22.57108527         66.36418605         36.4016363         12.4614545           78         23.42550218         65.3703896         36.1016363         12.4614545           78         23.42550218         63.74646288         34.87334061         12.6461790           79         20.45543767         72.60241379         40.87774536         11.27549072           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573   | 67  | 24.17343348 | 72.86184549 | 41.37914163 | 13.85339056 |
| 69         24.20848837         61.75639535         32.47549419         12.1302907           70         24.28639873         56.46528481         27.9125         11.21917722           71         22.86374603         54.81653968         26.476         10.4972381           72         23.67840849         54.60403183         26.84267905         11.52023872           73         20.28982587         63.73447761         34.11696517         10.06756219           74         22.309375         64.07805556         34.64835648         11.67217593           75         22.57108527         66.36418605         36.46100775         11.61271318           76         23.39818182         71.6244289         40.80578089         13.14037290           77         23.68818182         65.3703896         36.10163636         12.46145455           78         23.42550218         63.74646288         34.87334061         12.6414790           79         20.45543767         72.60241379         40.8774536         11.27549072           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.22917241           82         22.395   | 68  | 21.30221402 | 54.26380074 | 26.26693727 | 9.415940959 |
| 70         24.28689873         56.46528481         27.9125         11.21917722           71         22.86374603         54.81653968         26.476         10.4972381           72         23.67840849         54.60403183         26.84267905         11.52023873           73         20.28982587         63.73447761         34.11696517         10.06756216           74         22.309375         64.07805556         34.64835648         11.61271318           76         23.39818182         71.6244289         40.80578089         13.14037296           77         23.68818182         65.33703896         36.10163636         12.46145455           78         23.42550218         63.74646288         34.87334061         12.64145455           78         23.42550218         63.74646288         34.87334061         12.64145455           78         23.42550218         67.75832184         41.07708046         13.52917241           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23   | 69  | 24.20848837 | 61.75639535 | 32.47549419 | 12.1302907  |
| 71         22.86374603         54.81653968         26.476         10.4972381           72         23.67840849         54.60403183         26.84267905         11.52023873           73         20.28982587         63.73447761         34.11696517         10.06756219           74         22.309375         64.07805556         34.64835648         11.67217593           75         22.57108527         66.36418605         36.46100775         11.61271318           76         23.39818182         71.6244289         40.80578089         13.14037296           77         23.68818182         65.33703896         36.10163636         12.46145455           78         23.42550218         63.74646288         34.87334061         12.64617904           79         20.45543767         72.60241379         40.8774536         11.27549072           80         22.5925408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375722           84            | 70  | 24.28689873 | 56.46528481 | 27.9125     | 11.21917722 |
| 72         23.67840849         54.60403183         26.84267905         11.52023873           73         20.28982587         63.73447761         34.11696517         10.06756215           74         22.309375         64.07805556         34.64835648         11.67217593           75         22.57108527         66.36418605         36.46100775         11.61271316           76         23.39818182         71.6244289         40.80578089         13.14037296           77         23.68818182         65.33703896         36.10163636         12.46145455           78         23.42550218         63.74646288         34.87334061         12.64617904           79         20.45543767         72.60241379         40.87774536         11.27549072           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.077080461         3.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.2337572           84         23.25145205         55.11030137         27.82649315         11.32687611           85     | 71  | 22.86374603 | 54.81653968 | 26.476      | 10.4972381  |
| 73         20.28982587         63.73447761         34.11696517         10.06756219           74         22.309375         64.07805556         34.64835648         11.67217593           75         22.57108527         66.36418605         36.46100775         11.61271318           76         23.39818182         71.6244289         40.80578089         13.14037296           77         23.68818182         65.33703896         36.10163636         12.46145455           78         23.42550218         63.74646288         34.87334061         12.64617904           79         20.45543767         72.60241379         40.87774536         11.27549077           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375725           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.1721212         26.38886364         8.955505051           86     | 72  | 23.67840849 | 54.60403183 | 26.84267905 | 11.52023873 |
| 74         22.309375         64.07805556         34.64835648         11.67217592           75         22.57108527         66.36418605         36.46100775         11.61271318           76         23.39818182         71.6244289         40.80578089         13.14037296           77         23.68818182         65.3703896         36.10163636         12.46145452           78         23.42550218         63.74646288         34.87334061         12.64617904           79         20.45543767         72.60241379         40.87774536         11.27549072           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375723           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.1721212         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611973           87      | 73  | 20.28982587 | 63.73447761 | 34.11696517 | 10.06756219 |
| 75         22.57108527         66.36418605         36.46100775         11.61271318           76         23.39818182         71.6244289         40.80578089         13.14037296           77         23.68818182         65.33703896         36.10163636         12.46145455           78         23.42550218         63.74646288         34.87334061         12.64617907           79         20.45543767         72.60241379         40.87774536         11.27549077           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375723           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.11212121         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611973           87         23.13851385         54.07511335         27.0002267         11.73380353           88   | 74  | 22.309375   | 64.07805556 | 34.64835648 | 11.67217593 |
| 76         23.39818182         71.6244289         40.80578089         13.14037296           77         23.68818182         65.33703896         36.10163636         12.46145455           78         23.42550218         63.74646288         34.87334061         12.64617904           79         20.45543767         72.60241379         40.87774536         11.27549072           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         25.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375723           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.11212121         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611973           87         23.13851385         54.07511335         27.0002267         11.73380353           88         18.63882206         71.37258145         40.95323308         11.25451128           89   | 75  | 22.57108527 | 66.36418605 | 36.46100775 | 11.61271318 |
| 77         23.68818182         65.33703896         36.10163636         12.46145455           78         23.42550218         63.74646288         34.87334061         12.64617904           79         20.45543767         72.60241379         40.87774536         11.27549072           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375723           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.11212121         26.3886364         8.95550505           86         22.17813747         54.39789357         26.82181818         10.60611973           87         23.13851385         54.07511335         27.0002267         11.7380353           88         18.63882206         71.37258145         40.95323308         11.25451122           89         21.03569647         71.62777547         41.15806653         12.9243244           90      | 76  | 23.39818182 | 71.6244289  | 40.80578089 | 13.14037296 |
| 78         23.42550218         63.74646288         34.87334061         12.64617904           79         20.45543767         72.60241379         40.87774536         11.27549072           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375723           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.11212121         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611977           87         23.13851385         54.07511335         27.0002267         11.73380353           88         18.63882206         71.37258145         40.95323308         11.25451128           89         21.03569647         71.62777547         41.15806653         12.93243243           90         22.85283447         71.83875283         40.44598639         13.91825397           91  | 77  | 23.68818182 | 65.33703896 | 36.10163636 | 12.46145455 |
| 79         20.45543767         72.60241379         40.87774536         11.27549072           80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375722           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.11212121         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611972           87         23.13851385         54.07511335         27.0002267         11.73380352           88         18.63882206         71.37258145         40.95323308         11.25451128           89         21.03569647         71.62777547         41.15806653         12.93243243           90         22.85283447         71.83875283         40.44598639         13.91825397           91         17.46157233         60.97814465         34.13858491         10.06849057           92  | 78  | 23.42550218 | 63.74646288 | 34.87334061 | 12.64617904 |
| 80         22.59285408         73.0316309         41.26802575         12.67420601           81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375722           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.11212121         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611973           87         23.13851385         54.07511335         27.0002267         11.73380353           88         18.63882206         71.37258145         40.95323308         11.25451128           89         21.03569647         71.62777547         41.15806653         12.93243243           90         22.85283447         71.83875283         40.44598639         13.91825397           91         17.46157233         60.97814465         34.13858491         10.06849057           92         21.16682573         62.60474359         33.25457265         12.64632479           93  | 79  | 20.45543767 | 72.60241379 | 40.87774536 | 11.27549072 |
| 81         23.83567816         72.75832184         41.07708046         13.52917241           82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375725           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.11212121         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611975           87         23.13851385         54.07511335         27.0002267         11.73380353           88         18.63882206         71.37258145         40.95323308         11.25451128           89         21.03569647         71.62777547         41.15806653         12.93243243           90         22.85283447         71.83875283         40.44598639         13.91825397           91         17.46157233         60.97814465         34.13858491         10.06849057           92         21.16682573         62.60474359         33.25457265         12.64632479           93         22.43200855         62.60474359         33.25457265         12.64632479           94 | 80  | 22.59285408 | 73.0316309  | 41.26802575 | 12.67420601 |
| 82         22.39573134         55.52373134         27.54173134         10.29202985           83         23.07089595         61.04881503         32.93179191         12.23375722           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.11212121         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611973           87         23.13851385         54.07511335         27.0002267         11.73380353           88         18.63882206         71.37258145         40.95323308         11.25451128           89         21.03569647         71.62777547         41.15806653         12.93243243           90         22.85283447         71.83875283         40.44598639         13.91825397           91         17.46157233         60.97814465         34.13858491         10.06849057           92         21.16682573         62.60474359         33.25457265         12.64632479           93         22.43200855         62.60474359         33.25457265         12.64632479           94         18.49960289         51.893213         26.3599639         9.213429603           95    | 81  | 23.83567816 | 72.75832184 | 41.07708046 | 13.52917241 |
| 83         23.07089595         61.04881503         32.93179191         12.23375725           84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.11212121         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611973           87         23.13851385         54.07511335         27.0002267         11.73380353           88         18.63882206         71.37258145         40.95323308         11.25451128           89         21.03569647         71.62777547         41.15806653         12.93243243           90         22.85283447         71.83875283         40.44598639         13.91825397           91         17.46157233         60.97814465         34.13858491         10.06849057           92         21.16682573         62.79454357         34.27877593         11.76342324           93         22.43200855         62.60474359         33.25457265         12.64632479           94         18.49960289         51.893213         26.3599639         9.213429603           95         20.94167102         53.13770235         26.19877285         10.8902611           96     | 82  | 22.39573134 | 55.52373134 | 27.54173134 | 10.29202985 |
| 84         23.25145205         55.11030137         27.82649315         11.32687671           85         20.32613636         54.11212121         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611973           87         23.13851385         54.07511335         27.0002267         11.73380353           88         18.63882206         71.37258145         40.95323308         11.25451128           89         21.03569647         71.62777547         41.15806653         12.93243243           90         22.85283447         71.83875283         40.44598639         13.91825397           91         17.46157233         60.97814465         34.13858491         10.06849057           92         21.16682573         62.79454357         34.27877593         11.76342324           93         22.43200855         62.60474359         33.25457265         12.64632479           94         18.49960289         51.893213         26.3599639         9.213429603           95         20.94167102         53.13770235         26.19877285         10.8902611           96         22.00797654         53.25577713         25.10002933         11.69832845           97     | 83  | 23.07089595 | 61.04881503 | 32.93179191 | 12.23375723 |
| 85         20.32613636         54.11212121         26.38886364         8.955505051           86         22.17813747         54.39789357         26.82181818         10.60611973           87         23.13851385         54.07511335         27.0002267         11.73380353           88         18.63882206         71.37258145         40.95323308         11.25451128           89         21.03569647         71.62777547         41.15806653         12.93243243           90         22.85283447         71.83875283         40.44598639         13.91825397           91         17.46157233         60.97814465         34.13858491         10.06849057           92         21.16682573         62.79454357         34.27877593         11.76342324           93         22.43200855         62.60474359         33.25457265         12.64632479           94         18.49960289         51.893213         26.3599639         9.213429603           95         20.94167102         53.13770235         26.19877285         10.8902611           96         22.00797654         53.25577713         25.10002933         11.69832845           97         17.67752809         69.6058427         38.07525843         10.89739326           98      | 84  | 23.25145205 | 55.11030137 | 27.82649315 | 11.32687671 |
| 86         22.17813747         54.39789357         26.82181818         10.60611973           87         23.13851385         54.07511335         27.0002267         11.73380353           88         18.63882206         71.37258145         40.95323308         11.25451128           89         21.03569647         71.62777547         41.15806653         12.93243243           90         22.85283447         71.83875283         40.44598639         13.91825397           91         17.46157233         60.97814465         34.13858491         10.06849057           92         21.16682573         62.79454357         34.27877593         11.76342324           93         22.43200855         62.60474359         33.25457265         12.64632479           94         18.49960289         51.893213         26.3599639         9.213429603           95         20.94167102         53.13770235         26.19877285         10.8902611           96         22.00797654         53.25577713         25.10002933         11.69832845           97         17.67752809         69.6058427         38.07525843         10.89739326           98         20.47922078         72.27928571         37.85272727         12.54655844           99      | 85  | 20.32613636 | 54.11212121 | 26.38886364 | 8.955505051 |
| 8723.1385138554.0751133527.000226711.733803538818.6388220671.3725814540.9532330811.254511288921.0356964771.6277754741.1580665312.932432439022.8528344771.8387528340.4459863913.918253979117.4615723360.9781446534.1385849110.068490579221.1668257362.7945435734.2787759311.763423249322.4320085562.6047435933.2545726512.646324799418.4996028951.89321326.35996399.2134296039520.9416710253.1377023526.1987728510.89026119622.0079765453.2557771325.1000293311.698328459717.6775280969.605842738.0752584310.897393269820.4792207872.2792857137.8527272712.546558449920.0224100773.7610791439.5135251812.7229136710022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                            | 86  | 22.17813747 | 54.39789357 | 26.82181818 | 10.60611973 |
| 88         18.63882206         71.37258145         40.95323308         11.25451128           89         21.03569647         71.62777547         41.15806653         12.93243243           90         22.85283447         71.83875283         40.44598639         13.91825397           91         17.46157233         60.97814465         34.13858491         10.06849057           92         21.16682573         62.79454357         34.27877593         11.76342324           93         22.43200855         62.60474359         33.25457265         12.64632479           94         18.49960289         51.893213         26.3599639         9.213429603           95         20.94167102         53.13770235         26.19877285         10.8902611           96         22.00797654         53.25577713         25.10002933         11.69832845           97         17.67752809         69.6058427         38.07525843         10.89739326           98         20.47922078         72.27928571         37.85272727         12.54655844           99         20.02241007         73.76107914         39.51352518         12.72291367           100         22.11634409         85.09724731         41.4228172         13.9372043           101     | 87  | 23.13851385 | 54.07511335 | 27.0002267  | 11.73380353 |
| 8921.0356964771.6277754741.1580665312.932432439022.8528344771.8387528340.4459863913.918253979117.4615723360.9781446534.1385849110.068490579221.1668257362.7945435734.2787759311.763423249322.4320085562.6047435933.2545726512.646324799418.4996028951.89321326.35996399.2134296039520.9416710253.1377023526.1987728510.89026119622.0079765453.2557771325.1000293311.698328459717.6775280969.605842738.0752584310.897393269820.4792207872.2792857137.8527272712.546558449920.0224100773.7610791439.5135251812.7229136710022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88  | 18.63882206 | 71.37258145 | 40.95323308 | 11.25451128 |
| 9022.8528344771.8387528340.4459863913.918253979117.4615723360.9781446534.1385849110.068490579221.1668257362.7945435734.2787759311.763423249322.4320085562.6047435933.2545726512.646324799418.4996028951.89321326.35996399.2134296039520.9416710253.1377023526.1987728510.89026119622.0079765453.2557771325.1000293311.698328459717.6775280969.605842738.0752584310.897393269820.4792207872.2792857137.8527272712.546558449920.0224100773.7610791439.5135251812.7229136710022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89  | 21.03569647 | 71.62777547 | 41.15806653 | 12.93243243 |
| 9117.4615723360.9781446534.1385849110.068490579221.1668257362.7945435734.2787759311.763423249322.4320085562.6047435933.2545726512.646324799418.4996028951.89321326.35996399.2134296039520.9416710253.1377023526.1987728510.89026119622.0079765453.2557771325.1000293311.698328459717.6775280969.605842738.0752584310.897393269820.4792207872.2792857137.8527272712.546558449920.0224100773.7610791439.5135251812.7229136710022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90  | 22.85283447 | 71.83875283 | 40.44598639 | 13.91825397 |
| 9221.1668257362.7945435734.2787759311.763423249322.4320085562.6047435933.2545726512.646324799418.4996028951.89321326.35996399.2134296039520.9416710253.1377023526.1987728510.89026119622.0079765453.2557771325.1000293311.698328459717.6775280969.605842738.0752584310.897393269820.4792207872.2792857137.8527272712.546558449920.0224100773.7610791439.5135251812.7229136710022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91  | 17.46157233 | 60.97814465 | 34.13858491 | 10.06849057 |
| 9322.4320085562.6047435933.2545726512.646324799418.4996028951.89321326.35996399.2134296039520.9416710253.1377023526.1987728510.89026119622.0079765453.2557771325.1000293311.698328459717.6775280969.605842738.0752584310.897393269820.4792207872.2792857137.8527272712.546558449920.0224100773.7610791439.5135251812.7229136710022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92  | 21.16682573 | 62.79454357 | 34.27877593 | 11.76342324 |
| 9418.4996028951.89321326.35996399.2134296039520.9416710253.1377023526.1987728510.89026119622.0079765453.2557771325.1000293311.698328459717.6775280969.605842738.0752584310.897393269820.4792207872.2792857137.8527272712.546558449920.0224100773.7610791439.5135251812.7229136710022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93  | 22.43200855 | 62.60474359 | 33.25457265 | 12.64632479 |
| 9520.9416710253.1377023526.1987728510.89026119622.0079765453.2557771325.1000293311.698328459717.6775280969.605842738.0752584310.897393269820.4792207872.2792857137.8527272712.546558449920.0224100773.7610791439.5135251812.7229136710022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94  | 18.49960289 | 51.893213   | 26.3599639  | 9.213429603 |
| 9622.0079765453.2557771325.1000293311.698328459717.6775280969.605842738.0752584310.897393269820.4792207872.2792857137.8527272712.546558449920.0224100773.7610791439.5135251812.7229136710022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95  | 20.94167102 | 53.13770235 | 26.19877285 | 10.8902611  |
| 9717.6775280969.605842738.0752584310.897393269820.4792207872.2792857137.8527272712.546558449920.0224100773.7610791439.5135251812.7229136710022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 96  | 22.00797654 | 53.25577713 | 25.10002933 | 11.69832845 |
| 98         20.47922078         72.27928571         37.85272727         12.54655844           99         20.02241007         73.76107914         39.51352518         12.72291367           100         22.11634409         85.09724731         41.4228172         13.9372043           101         21.94391685         74.57564551         38.26407002         13.49925602           102         22.03261702         70.97580851         36.20359574         13.33097872           103         16.13369186         60.60639535         30.99488372         9.738023256           104         19.874875         63.707425         33.2523         11.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97  | 17.67752809 | 69.6058427  | 38.07525843 | 10.89739326 |
| 99         20.02241007         73.76107914         39.51352518         12.72291367           100         22.11634409         85.09724731         41.4228172         13.9372043           101         21.94391685         74.57564551         38.26407002         13.49925602           102         22.03261702         70.97580851         36.20359574         13.33097872           103         16.13369186         60.60639535         30.99488372         9.738023256           104         19.874875         63.707425         33.2523         11.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98  | 20.47922078 | 72.27928571 | 37.85272727 | 12.54655844 |
| 10022.1163440985.0972473141.422817213.937204310121.9439168574.5756455138.2640700213.4992560210222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99  | 20.02241007 | 73.76107914 | 39.51352518 | 12.72291367 |
| 101         21.94391685         74.57564551         38.26407002         13.49925602           102         22.03261702         70.97580851         36.20359574         13.33097872           103         16.13369186         60.60639535         30.99488372         9.738023256           104         19.874875         63.707425         33.2523         11.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 | 22.11634409 | 85.09724731 | 41.4228172  | 13.9372043  |
| 10222.0326170270.9758085136.2035957413.3309787210316.1336918660.6063953530.994883729.73802325610419.87487563.70742533.252311.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101 | 21.94391685 | 74.57564551 | 38.26407002 | 13.49925602 |
| 103         16.13369186         60.60639535         30.99488372         9.738023256           104         19.874875         63.707425         33.2523         11.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 102 | 22.03261702 | 70.97580851 | 36.20359574 | 13.33097872 |
| 104 19.874875 63.707425 33.2523 11.889275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103 | 16.13369186 | 60.60639535 | 30.99488372 | 9.738023256 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104 | 19.874875   | 63.707425   | 33.2523     | 11.889275   |

| 105 | 19.87580838 | 61.98457086 | 32.1396008  | 11.78694611 |
|-----|-------------|-------------|-------------|-------------|
| 106 | 21.77977578 | 72.23246637 | 35.61121076 | 13.38257848 |
| 107 | 21.70792952 | 64.6088326  | 32.35209251 | 12.9035022  |
| 108 | 21.6860479  | 62.26313373 | 31.28984032 | 12.84870259 |
| 109 | 15.54623853 | 50.33189602 | 25.69266055 | 8.896911315 |
| 110 | 19.47667656 | 50.41005935 | 25.00014837 | 11.0579822  |
| 111 | 19.67437318 | 52.37052478 | 26.5135277  | 11.07104956 |
| 112 | 20.24813953 | 58.56860465 | 30.45965116 | 12.69372093 |
| 113 | 21.05991736 | 50.99280992 | 24.49177686 | 11.99367769 |
| 114 | 21.1957732  | 53.17810997 | 25.66171821 | 12.09388316 |

| I able A.Z. Continued |  | Table | A.2. | Continued. |
|-----------------------|--|-------|------|------------|
|-----------------------|--|-------|------|------------|

### Table A.3.

Data for the first stage of compressor operation comprising of refrigerant pressures.

| Test | P <sub>in,ref,comp</sub> | $P_{out,ref,comp}$ | $P_{\text{out,ref,cond}}$ |
|------|--------------------------|--------------------|---------------------------|
| [-]  | [kPa]                    | [kPa]              | [kPa]                     |
| 0    | 982.8123141              | 1780.631984        | 1698.783398               |
| 1    | 1001.243247              | 1793.352527        | 1709.782985               |
| 2    | 956.8721048              | 1781.270861        | 1701.668289               |
| 3    | 991.1056851              | 1818.199996        | 1733.175749               |
| 4    | 1041.436865              | 2053.788273        | 1963.19202                |
| 5    | 1013.312728              | 1839.449575        | 1752.796649               |
| 6    | 1053.480602              | 2215.766445        | 2122.618007               |
| 7    | 1098.607052              | 2459.343313        | 2361.355385               |
| 8    | 1013.175638              | 2153.398217        | 2063.961294               |
| 9    | 1068.463068              | 2215.503811        | 2122.213455               |
| 10   | 1040.763495              | 2172.109352        | 2080.671057               |
| 11   | 1063.231373              | 2184.111595        | 2092.812147               |
| 12   | 1117.057875              | 2602.594038        | 2503.114987               |
| 13   | 1146.692169              | 2893.245102        | 2794.961843               |
| 14   | 1104.333762              | 2586.063223        | 2488.37255                |
| 15   | 1075.637223              | 2532.315316        | 2433.610526               |
| 16   | 1097.317853              | 2552.805213        | 2455.574168               |
| 17   | 1108.708365              | 2560.320088        | 2463.671212               |
| 18   | 1037.950339              | 2168.793774        | 2080.232412               |
| 19   | 1091.226179              | 2252.292298        | 2162.966684               |
| 20   | 1138.109354              | 2519.016698        | 2426.868555               |
| 21   | 1107.156988              | 2249.870305        | 2161.535026               |
|      |                          |                    |                           |

| 22 | 1089.230484 | 2203.11201  | 2109.95989  |
|----|-------------|-------------|-------------|
| 23 | 1102.611519 | 2212.484851 | 2121.19038  |
| 24 | 1044.439624 | 2683.414806 | 2577.270663 |
| 25 | 1015.12422  | 2348.373041 | 2243.9056   |
| 26 | 1017.879562 | 2358.534949 | 2249.788838 |
| 27 | 995.501962  | 2344.178907 | 2235.532567 |
| 28 | 1040.205864 | 1843.163956 | 1763.365752 |
| 29 | 1083.754386 | 2053.856566 | 1968.905598 |
| 30 | 1063.62623  | 1846.245777 | 1765.401277 |
| 31 | 992.3962233 | 1795.033891 | 1713.474816 |
| 32 | 1036.363142 | 1822.267461 | 1737.679774 |
| 33 | 1060.515225 | 1833.305273 | 1749.132362 |
| 34 | 1131.571696 | 2622.249014 | 2529.629415 |
| 35 | 1179.570578 | 2930.302316 | 2838.757279 |
| 36 | 1152.13944  | 2644.255657 | 2552.321403 |
| 37 | 1091.047195 | 2542.819365 | 2446.12086  |
| 38 | 1121.108241 | 2569.83671  | 2472.71846  |
| 39 | 1149.104014 | 2589.838465 | 2494.152323 |
| 40 | 1102.125317 | 2567.178159 | 2472.461289 |
| 41 | 1143.937192 | 2595.861393 | 2498.527926 |
| 42 | 1126.139384 | 2639.756226 | 2551.381017 |
| 43 | 1175.898542 | 3075.862926 | 2994.673208 |
| 44 | 1150.536603 | 2682.973802 | 2595.488383 |
| 45 | 1170.242058 | 2615.108501 | 2518.618272 |
| 46 | 1152.840183 | 2579.96748  | 2492.538812 |
| 47 | 1068.620268 | 2185.777888 | 2094.020511 |
| 48 | 1102.259985 | 2273.003504 | 2184.195658 |
| 49 | 1129.380307 | 2281.116072 | 2194.133641 |
| 50 | 1102.006888 | 2206.118913 | 2112.8008   |
| 51 | 1130.022197 | 2228.09617  | 2134.992164 |
| 52 | 1068.007654 | 1878.915976 | 1795.292539 |
| 53 | 1120.214698 | 2153.446298 | 2066.709322 |
| 54 | 1096.596958 | 1897.781659 | 1813.381242 |
| 55 | 1024.702199 | 1802.892455 | 1718.075215 |
| 56 | 1063.271168 | 1828.927561 | 1742.093795 |
| 57 | 1090.31408  | 1843.091804 | 1755.704251 |
| 58 | 1147.085186 | 2594.530116 | 2513.021275 |
| 59 | 1116.9482   | 2240.009919 | 2148.41415  |
| 60 | 1132.315395 | 2351.745445 | 2270.098203 |

Table A.3. Continued.

| 61  | 1143.489073 | 2253.941199 | 2163.492043 |
|-----|-------------|-------------|-------------|
| 62  | 1073.25496  | 2204.850465 | 2120.826301 |
| 63  | 1175.659422 | 3029.429542 | 2954.486655 |
| 64  | 1151.077223 | 2703.011127 | 2625.835155 |
| 65  | 1101.617243 | 2590.835436 | 2502.565216 |
| 66  | 1136.16918  | 2623.116163 | 2538.077438 |
| 67  | 1165.674562 | 2642.05973  | 2556.058455 |
| 68  | 1037.151266 | 1815.133317 | 1733.009162 |
| 69  | 1116.370567 | 2145.93091  | 2063.332044 |
| 70  | 1097.645991 | 1903.561291 | 1821.512244 |
| 71  | 1078.586429 | 1847.349016 | 1756.917438 |
| 72  | 1108.876891 | 1866.134851 | 1775.835446 |
| 73  | 1057.910107 | 2224.696371 | 2143.531179 |
| 74  | 1110.302269 | 2262.762833 | 2179.328831 |
| 75  | 1109.17614  | 2353.092147 | 2273.234341 |
| 76  | 1153.66252  | 2630.136538 | 2552.08703  |
| 77  | 1138.182029 | 2332.890047 | 2252.197678 |
| 78  | 1145.554358 | 2284.437417 | 2201.134384 |
| 79  | 1092.057966 | 2613.489424 | 2538.067233 |
| 80  | 1137.310541 | 2643.954925 | 2566.790835 |
| 81  | 1171.064625 | 2661.322593 | 2582.694906 |
| 82  | 1074.346409 | 1889.499839 | 1808.227821 |
| 83  | 1120.805777 | 2174.704509 | 2092.395014 |
| 84  | 1104.121288 | 1905.362904 | 1822.680156 |
| 85  | 1028.250316 | 1836.564159 | 1754.103144 |
| 86  | 1081.310596 | 1863.851477 | 1776.971408 |
| 87  | 1119.135237 | 1886.377476 | 1798.285378 |
| 88  | 1093.054459 | 2636.17194  | 2564.23509  |
| 89  | 1146.483538 | 2667.204823 | 2591.674459 |
| 90  | 1179.675478 | 2690.910057 | 2613.145417 |
| 91  | 1054.827541 | 2231.854884 | 2162.319991 |
| 92  | 1116.414386 | 2269.947923 | 2189.656938 |
| 93  | 1150.458321 | 2289.275103 | 2209.11138  |
| 94  | 1033.996011 | 1831.104715 | 1756.244238 |
| 95  | 1092.337611 | 1874.767546 | 1790.914833 |
| 96  | 1122.84324  | 1894.078235 | 1810.03056  |
| 97  | 1088.16422  | 2616.363715 | 2552.010843 |
| 98  | 1143.989461 | 2723.067844 | 2657.851422 |
| 99  | 1143.63282  | 2796.764777 | 2733.748043 |
| 100 | 1185.212056 | 3315.337619 | 3259.341763 |
| •   | •           | •           | •           |

Table A.3. Continued.

| 101 | 1173.483939 | 2851.245298 | 2789.245223 |
|-----|-------------|-------------|-------------|
| 102 | 1168.672464 | 2665.359798 | 2602.618017 |
| 103 | 1045.926163 | 2251.446355 | 2182.838299 |
| 104 | 1124.757155 | 2377.434493 | 2308.070243 |
| 105 | 1118.704527 | 2301.1002   | 2230.180036 |
| 106 | 1171.676247 | 2762.924244 | 2697.785632 |
| 107 | 1158.464828 | 2414.235515 | 2344.78452  |
| 108 | 1156.172375 | 2332.672046 | 2261.091723 |
| 109 | 1018.518343 | 1859.509661 | 1788.083272 |
| 110 | 1096.911795 | 1867.95665  | 1792.810383 |
| 111 | 1103.143493 | 1929.432548 | 1849.42679  |
| 112 | 1151.045012 | 2254.696233 | 2183.589314 |
| 113 | 1134.771335 | 1891.530727 | 1813.98407  |
| 114 | 1140.344134 | 1978.026962 | 1897.438052 |

Table A.3. Continued.

#### Table A.4.

Data for the second stage of compressor operation comprising of air temperatures, refrigerant mass flow rate and compressor input power.

| Test | $T_{in,air,cond}$ | $T_{\rm out,air,cond}$ | $\mathbf{m}_{ref}$ | $\mathbf{W}_{\mathrm{comp}}$ |
|------|-------------------|------------------------|--------------------|------------------------------|
| [-]  | [°C]              | [°C]                   | [g/s]              | [W]                          |
| 0    | 36.91311523       | 40.47872428            | 72.21923095        | 3259.707018                  |
| 1    | 37.06919833       | 40.87477383            | 82.33412642        | 3646.685254                  |
| 2    | 37.21170815       | 41.15905579            | 70.30445354        | 3271.730909                  |
| 3    | 22.8157048        | 25.77856089            | 70.25650343        | 3278.188944                  |
| 4    | 21.73973256       | 32.23625               | 72.87113727        | 3316.717501                  |
| 5    | 21.88638608       | 27.48540084            | 74.17480605        | 3346.421744                  |
| 6    | 22.2504127        | 26.03077249            | 84.08584902        | 3729.763311                  |
| 7    | 22.66017507       | 26.31201592            | 91.72954256        | 4181.303003                  |
| 8    | 36.5025614        | 48.05046784            | 83.5066996         | 3728.75536                   |
| 9    | 36.50048254       | 42.16621164            | 83.38874918        | 3794.889562                  |
| 10   | 38.08319933       | 42.65508654            | 85.94254732        | 3854.817768                  |
| 11   | 36.13528736       | 41.97072797            | 88.19180014        | 3864.170888                  |
| 12   | 38.07939552       | 42.92146766            | 87.78883807        | 4268.984789                  |
| 13   | 30.81490802       | 35.70137639            | 94.15568946        | 4777.564258                  |
| 14   | 29.44193855       | 41.02359404            | 90.86124792        | 4446.129432                  |
| 15   | 29.44781328       | 34.86638313            | 90.71450172        | 4322.641477                  |
| 16   | 31.28003475       | 35.88692407            | 92.65808354        | 4341.003659                  |

Table A.4. Continued.

| 17 | 31.2338125  | 36.14245833 | 93.75607476 | 4400.313539 |
|----|-------------|-------------|-------------|-------------|
| 18 | 43.9373361  | 50.72260489 | 87.91761552 | 3854.117353 |
| 19 | 43.91452399 | 49.24396064 | 96.36639309 | 4302.386569 |
| 20 | 42.93189    | 49.36048333 | 89.04941397 | 3789.086905 |
| 21 | 42.87116585 | 48.96854472 | 88.44688941 | 3864.64459  |
| 22 | 30.46429353 | 33.76751244 | 90.62597656 | 3880.868703 |
| 23 | 30.41788426 | 34.31426698 | 91.36109726 | 3883.194246 |
| 24 | 29.80448062 | 36.35395349 | 78.46122008 | 3346.646234 |
| 25 | 29.41795338 | 40.65104118 | 73.93597918 | 3334.40979  |
| 26 | 29.58393766 | 35.86067532 | 95.5182808  | 4349.271368 |
| 27 | 30.09026638 | 34.55352256 | 101.7581868 | 4793.958814 |
| 28 | 36.76180371 | 40.5183466  | 98.7622805  | 4558.139145 |
| 29 | 36.63096137 | 40.90574392 | 94.74901409 | 4456.789112 |
| 30 | 35.97646437 | 41.02050575 | 97.32478081 | 4491.461572 |
| 31 | 21.83434627 | 27.13845771 | 99.34498678 | 4477.182587 |
| 32 | 21.75076879 | 32.70183044 | 76.92563087 | 3324.410829 |
| 33 | 21.80393973 | 27.45122374 | 91.55728567 | 3789.056798 |
| 34 | 22.93021212 | 25.77228114 | 89.32963211 | 3373.958116 |
| 35 | 23.02913525 | 26.29266075 | 83.81583458 | 3373.086929 |
| 36 | 23.06872544 | 26.63723762 | 81.48166699 | 3351.867567 |
| 37 | 31.28553875 | 35.73389414 | 89.04581646 | 3416.254443 |
| 38 | 31.56998795 | 36.29547523 | 88.82903353 | 3877.234478 |
| 39 | 31.73098491 | 36.64922013 | 96.81081011 | 4337.533285 |
| 40 | 36.23365696 | 41.99981661 | 91.56120479 | 3814.786607 |
| 41 | 38.37315572 | 43.08399625 | 89.50031765 | 3816.432063 |
| 42 | 37.9639386  | 42.73869152 | 91.48538188 | 3894.381891 |
| 43 | 44.42420915 | 50.25030501 | 94.10122632 | 3922.602484 |
| 44 | 44.56843004 | 49.74101129 | 96.60227505 | 4479.618568 |
| 45 | 44.41648675 | 49.56264349 | 101.6524308 | 4921.84619  |
| 46 | 36.89380451 | 40.71944862 | 98.44292389 | 4414.388876 |
| 47 | 37.00767152 | 41.17295911 | 96.0531279  | 4389.769959 |
| 48 | 36.85172789 | 41.37996221 | 99.43122849 | 4458.777889 |
| 49 | 29.45222642 | 33.86901468 | 101.0750026 | 4504.668896 |
| 50 | 29.99850622 | 34.20596127 | 99.45612667 | 4239.317498 |
| 51 | 29.44017949 | 34.40440171 | 95.08454159 | 3763.813203 |
| 52 | 22.92305415 | 25.77086643 | 94.5690263  | 3907.115782 |
| 53 | 22.99437598 | 26.1808007  | 92.9189046  | 3847.992853 |
| 54 | 22.82767155 | 26.44360704 | 100.4507142 | 3926.736535 |
| 55 | 37.02671933 | 42.84786556 | 86.65688513 | 3363.5402   |

Table A.4. Continued.

| 56 | 37.7965082  | 43.02744991 | 95.36337263        | 3757.813355 |
|----|-------------|-------------|--------------------|-------------|
| 57 | 36.97304425 | 42.67544985 | 98.46082718        | 3324.794241 |
| 58 | 30.42985409 | 35.68723013 | 90.19895309        | 3396.400133 |
| 60 | 30.96847505 | 36.31556221 | 101.8750082        | 4579.227855 |
| 61 | 43.73782955 | 49.58030303 | 101.4515961        | 4487.217432 |
| 62 | 44.01624484 | 49.39177974 | 103.1224247        | 4520.311343 |
| 63 | 43.84274094 | 49.21433557 | 101.6052095        | 4370.326973 |
| 64 | 36.60070562 | 39.90493633 | 94.06404612        | 3379.957482 |
| 65 | 36.86735065 | 41.20428571 | 100.9720496        | 3457.514127 |
| 66 | 36.50865468 | 42.76092326 | 103.0416928        | 3479.134362 |
| 67 | 36.55497634 | 47.90639427 | 100.4332634        | 3834.724492 |
| 68 | 36.47819694 | 42.64345004 | 103.2677189        | 3941.461201 |
| 69 | 36.52710213 | 39.73025532 | 103.2695539        | 3933.098713 |
| 70 | 29.54405233 | 33.49637597 | 102.2164906        | 4577.689407 |
| 71 | 29.67261    | 35.92290833 | 103.2527455        | 4539.063866 |
| 72 | 30.80550499 | 34.44286094 | 103.2555868        | 4573.234705 |
| 73 | 29.13404933 | 41.13784006 | 103.3174358        | 4041.174418 |
| 74 | 29.62771806 | 36.03735683 | 103.2722016        | 4040.482172 |
| 75 | 30.6997006  | 34.58896873 | 102.1263064        | 3942.233261 |
| 76 | 23.61793272 | 26.14603466 | 100.5148203        | 3409.231692 |
| 77 | 22.8472819  | 26.077636   | 102.8010553        | 3457.524806 |
| 78 | 21.74840233 | 27.59025267 | 103.2880834        | 3518.788267 |
| 79 | 21.41516279 | 33.42155039 | 103.1396449        | 4644.495225 |
| 80 | 22.60905785 | 26.3892011  | 103.2421701        | 4695.953836 |
| 81 | 21.81235052 | 28.23155785 | 103.2532776        | 4702.671862 |
| 82 | 36.34943602 | 41.02240126 | 101.2390668        | 4091.325848 |
| 83 | 36.56601143 | 40.15961905 | 103.3481406        | 3986.521194 |
| 84 | 36.5375666  | 41.44601723 | 103.2616372        | 4061.429435 |
| 85 | 36.60466465 | 48.7227996  | 103.2604733        | 4953.184758 |
| 86 | 36.52643492 | 40.44821164 | 103.2891841        | 4002.026173 |
| 87 | 36.83242254 | 43.08139906 | 103.2294254        | 4330.980014 |
| 88 | 30.62259914 | 43.78545977 | 103.2515828        | 4296.720584 |
| 89 | 30.43279638 | 34.69816742 | 99.61193597        | 3534.925163 |
| 90 | 31.31550746 | 36.9480908  | 103.3258937        | 3647.100373 |
| 91 | 31.75222914 | 35.95448373 | 103.2994324        | 3594.677919 |
| 92 | 31.40806849 | 37.08615677 | 103.2979454        | 3718.853285 |
| 93 | 31.88457944 | 36.14866044 | 103.3104174        | 3610.714708 |
| 94 | 44.46826442 | 48.03517628 | 103.2911984        | 5008.981101 |
| 05 | 42 66052007 | 16 11220715 | 00 806/8801        | 1719 097977 |
| 95 | 43.00032997 | 40.41520/15 | <u>77.07040001</u> | 4/10.90/0// |

### Table A.4. Continued.

| 97 | 43.68276098 | 48.53963144 | 103.2338602 | 4919.800459 |
|----|-------------|-------------|-------------|-------------|
| 98 | 43.73807279 | 47.46101098 | 103.2430333 | 4762.040244 |

### Table A.5.

Data for the second stage of compressor operation comprising of refrigerant temperatures.

| Test | T <sub>out,ref,evap</sub> | T <sub>out,ref,comp</sub> | T <sub>out,ref,cond</sub> | T <sub>sat,evap</sub> |
|------|---------------------------|---------------------------|---------------------------|-----------------------|
| [-]  | [°C]                      | [°C]                      | [°C]                      | [°C]                  |
| 0    | 25.59289003               | 75.16641944               | 35.74882353               | 8.673299233           |
| 1    | 25.74129534               | 80.55398964               | 40.84373057               | 10.1473057            |
| 2    | 25.22985836               | 75.37611898               | 35.59563739               | 8.128441926           |
| 3    | 24.7485439                | 76.25059957               | 35.30788009               | 7.128436831           |
| 4    | 25.41971487               | 76.41360489               | 35.65678208               | 7.944154786           |
| 5    | 25.77640569               | 76.22462633               | 35.82822064               | 8.501067616           |
| 6    | 26.11352941               | 82.0702451                | 41.9347549                | 10.36272059           |
| 7    | 26.2367474                | 87.5499308                | 46.70764706               | 11.75581315           |
| 8    | 25.7115                   | 82.2533                   | 41.81698                  | 9.99056               |
| 9    | 25.06924342               | 83.52458882               | 41.69638158               | 8.983256579           |
| 10   | 25.9044774                | 83.70858757               | 42.09882768               | 9.916468927           |
| 11   | 26.31363636               | 83.46564738               | 41.98752066               | 10.33982094           |
| 12   | 26.10449541               | 91.27545872               | 48.30940367               | 11.27715596           |
| 13   | 26.83688525               | 96.71599532               | 53.30826698               | 13.54266979           |
| 14   | 26.70848958               | 92.26755208               | 49.43838542               | 12.13694444           |
| 15   | 25.92730296               | 91.17598522               | 47.91805419               | 11.31393473           |
| 16   | 26.57651803               | 91.37794592               | 48.31671252               | 12.06064991           |
| 17   | 26.76693391               | 91.0766143                | 48.35589924               | 12.38358072           |
| 18   | 25.29657328               | 81.40681034               | 43.27090517               | 11.35810345           |
| 19   | 25.64968085               | 86.24723404               | 47.8493617                | 13.33010638           |
| 20   | 25.56991903               | 80.6248583                | 43.01259109               | 11.8692915            |
| 21   | 24.20268627               | 81.18427451               | 42.07309804               | 10.36376471           |
| 22   | 25.09091062               | 81.44411467               | 42.59131535               | 11.38177066           |
| 23   | 25.54102564               | 81.23376068               | 42.82731624               | 12.03591453           |
| 24   | 24.64698745               | 73.45577406               | 36.41623431               | 9.709958159           |
| 25   | 23.95179592               | 73.87918367               | 35.53267347               | 8.580673469           |
| 26   | 25.48206089               | 88.72                     | 49.26461358               | 13.02599532           |
| 27   | 26.56837423               | 95.02880368               | 54.65636503               | 15.35846626           |
| 28   | 26.45482645               | 90.26333884               | 50.71252893               | 14.00061157           |
| 29   | 24.82283358               | 88.81832084               | 48.20053973               | 12.1673913            |

| 30 | 25.74060948 | 89.30935666 | 48.91137698 | 13.21046275 |
|----|-------------|-------------|-------------|-------------|
| 31 | 26.39695397 | 89.33866946 | 49.34642678 | 14.04268619 |
| 32 | 22.68310782 | 71.60866808 | 35.45926004 | 9.178287526 |
| 33 | 25.23975078 | 78.71358255 | 42.17146417 | 12.29956386 |
| 34 | 25.20952632 | 72.52115789 | 36.41139474 | 11.02578947 |
| 35 | 23.87003565 | 71.84650624 | 35.97294118 | 10.56522282 |
| 36 | 24.50117359 | 72.87787286 | 36.2600978  | 10.09745721 |
| 37 | 24.67164557 | 71.48873418 | 36.09848101 | 11.54544304 |
| 38 | 24.95833333 | 80.78369478 | 43.31034137 | 11.67301205 |
| 39 | 25.52335632 | 85.58303448 | 47.86763218 | 13.60004598 |
| 40 | 25.52217565 | 79.90381238 | 43.0098004  | 12.37856287 |
| 41 | 22.75072106 | 79.46178368 | 42.37206831 | 11.05388994 |
| 42 | 24.03699145 | 79.43300855 | 42.61581197 | 12.07495726 |
| 43 | 24.68705983 | 79.29015385 | 42.87682051 | 12.86247863 |
| 44 | 23.96582178 | 87.5450297  | 49.9630099  | 13.34619802 |
| 45 | 24.80822785 | 94.03599156 | 55.02527426 | 15.09424051 |
| 46 | 24.74320843 | 87.23824356 | 49.92192037 | 13.91327869 |
| 47 | 23.33642265 | 87.59502762 | 49.03298343 | 12.9121547  |
| 48 | 24.67800185 | 87.85521739 | 49.47100833 | 13.96788159 |
| 49 | 25.34644956 | 87.80299444 | 49.71069102 | 14.57168388 |
| 50 | 24.51873684 | 84.89182456 | 48.16189474 | 13.60526316 |
| 51 | 24.40387302 | 78.1715873  | 42.56809524 | 12.4031746  |
| 52 | 22.99509213 | 77.88450586 | 42.87458961 | 12.5381072  |
| 53 | 21.66936782 | 76.55264368 | 42.17094828 | 11.82663793 |
| 54 | 24.02315299 | 78.00649254 | 43.08154851 | 13.40712687 |
| 55 | 21.62534247 | 69.63735812 | 35.92156556 | 10.382818   |
| 56 | 24.16840782 | 75.91122905 | 41.1273743  | 12.31589385 |
| 57 | 24.22834025 | 69.66454357 | 35.23607884 | 11.20755187 |
| 58 | 22.77272201 | 70.24866795 | 36.14789575 | 11.07596525 |
| 59 | 23.68502083 | 70.08295833 | 36.247375   | 12.10683333 |
| 60 | 25.27181189 | 88.69767635 | 50.94784232 | 14.23556017 |
| 61 | 23.74795203 | 86.68642066 | 49.40896679 | 13.72856089 |
| 62 | 24.7052     | 86.41666667 | 49.1752     | 14.38615    |
| 63 | 22.73434146 | 85.50256098 | 49.11568293 | 13.54478049 |
| 64 | 19.33155009 | 67.99860113 | 35.57172023 | 9.789867675 |
| 65 | 21.64307229 | 69.16128514 | 35.52218876 | 11.29267068 |
| 66 | 22.72301887 | 69.55122642 | 35.10588679 | 12.18307547 |
| 67 | 19.00977346 | 74.65838188 | 41.7479288  | 11.40349515 |
| 68 | 22.95902439 | 76.78356473 | 41.884803   | 13.85679174 |

Table A.5. Continued.

| 69 | 21.68528509 | 76.29364035 | 42.06320175 | 12.80166667 |
|----|-------------|-------------|-------------|-------------|
| 70 | 19.72265795 | 85.46496732 | 48.65405229 | 13.17204793 |
| 71 | 22.95792342 | 85.61562592 | 47.83213549 | 14.57602356 |
| 72 | 21.96715232 | 85.22346026 | 48.39218543 | 13.93887417 |
| 73 | 19.6772973  | 74.80276507 | 39.25413721 | 12.63401247 |
| 74 | 20.90319672 | 75.89300546 | 38.90887978 | 13.15617486 |
| 75 | 16.86307522 | 74.46013274 | 38.84334071 | 11.00966814 |
| 76 | 16.0313879  | 64.87683274 | 33.00619217 | 9.748042705 |
| 77 | 19.85440882 | 67.42182365 | 33.02747495 | 11.13106212 |
| 78 | 21.44776447 | 68.03656687 | 32.53996008 | 12.10127745 |
| 79 | 17.27916667 | 84.89405303 | 44.47649621 | 12.24835227 |
| 80 | 20.24883481 | 85.46668142 | 44.92348083 | 13.59842183 |
| 81 | 21.51418792 | 85.82374497 | 44.38805369 | 14.10238926 |
| 82 | 16.18277251 | 76.39509479 | 35.80338863 | 10.3935545  |
| 83 | 19.1048     | 74.75994286 | 35.67725714 | 11.80942857 |
| 84 | 19.05548708 | 76.07395626 | 36.44459245 | 12.0326839  |
| 85 | 19.91202417 | 86.8031571  | 41.14697885 | 13.7576435  |
| 86 | 19.99895238 | 73.75019048 | 35.79163492 | 12.87628571 |
| 87 | 20.1923662  | 77.43895775 | 37.88549296 | 13.40490141 |
| 88 | 19.67881466 | 78.24778017 | 36.02984914 | 12.81571121 |
| 89 | 15.65095023 | 66.41468326 | 29.36780543 | 9.23800905  |
| 90 | 18.73190299 | 68.59227612 | 31.2344403  | 11.29893657 |
| 91 | 18.87571429 | 67.265686   | 30.49205092 | 11.20304102 |
| 92 | 20.29616438 | 69.25365297 | 31.2053653  | 12.26207763 |
| 93 | 20.46641121 | 68.08231776 | 30.45020561 | 12.22988785 |
| 94 | 19.79647837 | 90.78112981 | 43.45040865 | 13.09280048 |
| 95 | 16.47028391 | 85.77050473 | 42.47927445 | 11.23899054 |
| 96 | 18.73135392 | 88.10171021 | 43.35349169 | 12.93083135 |
| 97 | 20.04494309 | 88.4023252  | 43.66744715 | 14.00352846 |
| 98 | 20.11610052 | 86.44951473 | 43.07466205 | 13.84386482 |

Table A.5. Continued.

# Table A.6.

Data for the second stage of compressor operation comprising of refrigerant pressures.

| Test | $P_{in,ref,comp}$ | $\mathbf{P}_{\text{out,ref,comp}}$ | $P_{out,ref,cond}$ |
|------|-------------------|------------------------------------|--------------------|
| [-]  | [kPa]             | [kPa]                              | [kPa]              |
| 0    | 961.7093197       | 2301.625481                        | 2195.394171        |
| 1    | 996.3769948       | 2613.796896                        | 2504.240611        |
|      |                   |                                    |                    |

| 2  | 951.6407989 | 2293.214204 | 2190.444742 |
|----|-------------|-------------|-------------|
| 3  | 927.6153619 | 2283.445214 | 2182.250251 |
| 4  | 949.4155601 | 2301.636051 | 2198.786236 |
| 5  | 968.5004911 | 2314.920673 | 2209.904075 |
| 6  | 1001.043203 | 2661.935017 | 2554.621662 |
| 7  | 1037.410121 | 2989.66892  | 2878.653422 |
| 8  | 983.985762  | 2647.305494 | 2539.770294 |
| 9  | 971.1162796 | 2653.01049  | 2550.211551 |
| 10 | 990.4419153 | 2679.112825 | 2575.025114 |
| 11 | 1004.17343  | 2684.705004 | 2579.812876 |
| 12 | 1002.165298 | 3060.441229 | 2953.609046 |
| 13 | 1060.072108 | 3435.182752 | 3326.112691 |
| 14 | 1027.803655 | 3154.955925 | 3047.366953 |
| 15 | 1017.677398 | 3055.413956 | 2950.322465 |
| 16 | 1036.397339 | 3077.755344 | 2970.582448 |
| 17 | 1050.091878 | 3091.200556 | 2985.453087 |
| 18 | 1038.237302 | 2767.195047 | 2662.260265 |
| 19 | 1086.342777 | 3088.445822 | 2981.441059 |
| 20 | 1055.244947 | 2752.721834 | 2646.841296 |
| 21 | 1007.586102 | 2709.912022 | 2600.589788 |
| 22 | 1035.115    | 2738.441976 | 2628.371853 |
| 23 | 1055.502402 | 2752.865338 | 2642.627014 |
| 24 | 995.9169623 | 2357.664142 | 2253.013322 |
| 25 | 968.0286837 | 2315.835143 | 2210.125639 |
| 26 | 1069.193763 | 3152.453946 | 3044.18718  |
| 27 | 1136.359983 | 3571.96204  | 3463.739486 |
| 28 | 1103.730469 | 3272.635873 | 3163.43045  |
| 29 | 1062.748777 | 3136.325244 | 3023.311948 |
| 30 | 1086.990431 | 3172.545558 | 3058.499315 |
| 31 | 1105.520308 | 3186.830577 | 3074.121581 |
| 32 | 984.4118964 | 2320.64471  | 2212.404854 |
| 33 | 1068.513994 | 2725.327131 | 2617.552162 |
| 34 | 1038.897232 | 2366.802234 | 2260.002724 |
| 35 | 1029.28654  | 2357.640542 | 2244.861148 |
| 36 | 1012.036944 | 2351.87991  | 2248.486716 |
| 37 | 1056.671848 | 2377.451025 | 2260.577013 |
| 38 | 1050.093554 | 2774.506275 | 2671.266295 |
| 39 | 1101.017106 | 3094.793754 | 2988.555678 |
| 40 | 1069.95423  | 2753.248507 | 2648.268154 |
| 41 | 1022 038011 | 2721 544989 | 2611 327245 |

Table A.6. Continued.

| 42 | 1058.216674 | 2746.588944 | 2633.439244 |
|----|-------------|-------------|-------------|
| 43 | 1086.444279 | 2769.546851 | 2657.230072 |
| 44 | 1088.208491 | 3225.866244 | 3120.459529 |
| 45 | 1137.419348 | 3607.987996 | 3507.518778 |
| 46 | 1106.828733 | 3217.62437  | 3113.41281  |
| 47 | 1067.633318 | 3165.87407  | 3055.852815 |
| 48 | 1108.97837  | 3200.954543 | 3088.536798 |
| 49 | 1127.768565 | 3221.493871 | 3109.946543 |
| 50 | 1106.647863 | 3123.364649 | 3019.645091 |
| 51 | 1079.339698 | 2740.125495 | 2633.758724 |
| 52 | 1078.876218 | 2776.851678 | 2664.032677 |
| 53 | 1055.710678 | 2721.141736 | 2614.427549 |
| 54 | 1110.764815 | 2800.843306 | 2687.613511 |
| 55 | 1021.220256 | 2350.101045 | 2239.399352 |
| 56 | 1078.099017 | 2672.869492 | 2561.854763 |
| 57 | 1054.219525 | 2325.722315 | 2212.052971 |
| 58 | 1049.408541 | 2382.711467 | 2264.851948 |
| 59 | 1081.376254 | 2406.645573 | 2284.364421 |
| 60 | 1131.2794   | 3311.944154 | 3210.420975 |
| 61 | 1115.296456 | 3214.057292 | 3109.621011 |
| 62 | 1148.36294  | 3238.779662 | 3131.668853 |
| 63 | 1097.785334 | 3173.118651 | 3072.994695 |
| 64 | 1009.370879 | 2372.845624 | 2259.19924  |
| 65 | 1056.126207 | 2414.560574 | 2296.700323 |
| 66 | 1086.389626 | 2444.496504 | 2324.372632 |
| 67 | 1042.466411 | 2728.792375 | 2621.420019 |
| 68 | 1121.085287 | 2822.212015 | 2709.540319 |
| 69 | 1091.66732  | 2795.306496 | 2685.623031 |
| 70 | 1079.590682 | 3284.296673 | 3184.814797 |
| 71 | 1137.831449 | 3273.529853 | 3169.74399  |
| 72 | 1117.493515 | 3250.730257 | 3146.765738 |
| 73 | 1098.005318 | 2851.144728 | 2743.176541 |
| 74 | 1119.278811 | 2879.290954 | 2773.741913 |
| 75 | 1039.324332 | 2817.690376 | 2724.659867 |
| 76 | 1007.666868 | 2377.233847 | 2274.525377 |
| 77 | 1061.268916 | 2425.35199  | 2312.118768 |
| 78 | 1095.897373 | 2457.230627 | 2341.445447 |
| 79 | 1062.656091 | 3333.488386 | 3251.337801 |
| 80 | 1115.433816 | 3340.616864 | 3245.93282  |
|    |             |             |             |

Table A.6. Continued.

| 00 |
|----|
|    |

| 81 | 1139.836987 | 3365.510239 | 3272.506515 |
|----|-------------|-------------|-------------|
| 82 | 1029.921531 | 2922.787339 | 2841.262495 |
| 83 | 1082.326526 | 2846.948423 | 2760.132909 |
| 84 | 1085.776085 | 2929.926674 | 2841.3247   |
| 85 | 1134.372739 | 3527.09174  | 3445.079446 |
| 86 | 1115.460251 | 2844.513341 | 2750.376387 |
| 87 | 1126.859718 | 3036.683899 | 2944.380532 |
| 88 | 1120.367978 | 3085.192291 | 2993.102375 |
| 89 | 1002.678984 | 2454.010738 | 2363.815034 |
| 90 | 1071.529349 | 2572.555715 | 2474.865642 |
| 91 | 1068.302479 | 2509.025344 | 2410.703963 |
| 92 | 1107.352817 | 2610.961614 | 2510.312489 |
| 93 | 1104.288542 | 2543.726045 | 2442.650398 |
| 94 | 1104.359276 | 3577.021998 | 3497.752438 |
| 95 | 1044.078874 | 3392.741546 | 3319.739644 |
| 96 | 1097.457095 | 3531.330675 | 3451.157081 |
| 97 | 1142.463496 | 3576.00955  | 3494.599125 |
| 98 | 1141.186799 | 3473.612392 | 3393.421024 |

Table A.6. Continued.

# Table B.1.

Data from open lab testing comprising of refrigerant temperatures and pressures.

| Test | Compressor | T <sub>out,ref,evap</sub> | T <sub>out,ref,comp</sub> | $T_{\rm out, ref, cond}$ | T <sub>sat,evap</sub> | $P_{in,ref,comp}$ | P <sub>out,ref,cond</sub> |
|------|------------|---------------------------|---------------------------|--------------------------|-----------------------|-------------------|---------------------------|
|      | stage      |                           |                           |                          |                       |                   |                           |
| [-]  | [-]        | [°C]                      | [°C]                      | [°C]                     | [°C]                  | [kPa]             | [kPa]                     |
| 0    | 1          | 19.28                     | 62.41                     | 26.71                    | 3.77                  | 862.97            | 1753.04                   |
| 1    | 1          | 20.47                     | 60.68                     | 26.91                    | 5.43                  | 906.4             | 1764.08                   |
| 2    | 1          | 21.12                     | 66.08                     | 33.45                    | 8.81                  | 989.56            | 2082.07                   |
| 3    | 1          | 21.07                     | 61.18                     | 29.35                    | 7.77                  | 966.05            | 1869.59                   |
| 4    | 1          | 21.26                     | 59.89                     | 27.4                     | 6.61                  | 940.65            | 1789.87                   |
| 5    | 1          | 18.73                     | 60.34                     | 27.31                    | 5.41                  | 901.83            | 1772.1                    |
| 6    | 1          | 20.37                     | 58.96                     | 27.73                    | 7.51                  | 967.37            | 1804.78                   |
| 7    | 1          | 20.9                      | 58                        | 27.92                    | 8.41                  | 999.08            | 1818.61                   |
| 8    | 1          | 20.9                      | 59.87                     | 29.86                    | 8.98                  | 1008.59           | 1907.76                   |
| 9    | 1          | 20.79                     | 65.35                     | 34.15                    | 9.74                  | 1022.94           | 2133.09                   |
| 10   | 1          | 17.5                      | 58.93                     | 27.58                    | 5.72                  | 915.95            | 1794.86                   |
| 11   | 1          | 19.55                     | 57.72                     | 27.92                    | 7.9                   | 987.18            | 1822.78                   |
| 12   | 1          | 19.18                     | 65.5                      | 33.88                    | 8.51                  | 987.41            | 2124.06                   |
| 13   | 1          | 19.24                     | 59.56                     | 29.28                    | 7.8                   | 977.83            | 1885.11                   |
| 14   | 1          | 20.46                     | 56.64                     | 28.1                     | 9.1                   | 1014.83           | 1836.5                    |
| 15   | 1          | 15.16                     | 57.07                     | 26.97                    | 4.87                  | 893.91            | 1774.47                   |
| 16   | 1          | 18.46                     | 57.23                     | 28.29                    | 7.83                  | 980.75            | 1845.11                   |
| 17   | 1          | 18.97                     | 65.43                     | 35.13                    | 9.51                  | 1018.67           | 2205.23                   |
| 18   | 1          | 19.21                     | 59.45                     | 30.46                    | 8.79                  | 1006.17           | 1947.94                   |
| 19   | 1          | 19.68                     | 56.67                     | 28.51                    | 8.98                  | 1018.32           | 1861.16                   |
| 20   | 1          | 14.76                     | 56.49                     | 28.02                    | 6.11                  | 930.04            | 1834.29                   |
| 21   | 1          | 18.47                     | 55.71                     | 28.49                    | 8.97                  | 1018.52           | 1870.89                   |
| 22   | 1          | 19.58                     | 65.23                     | 36.72                    | 11.44                 | 1092.82           | 2321.51                   |
| 23   | 1          | 19.83                     | 58.41                     | 31.41                    | 10.73                 | 1072.35           | 2018.96                   |
| 24   | 1          | 19.37                     | 54.8                      | 28.48                    | 9.99                  | 1050.01           | 1876                      |
| 25   | 1          | 11.87                     | 54.98                     | 27.53                    | 5.13                  | 914.48            | 1840.57                   |
| 26   | 1          | 15.61                     | 54.19                     | 27.62                    | 7.85                  | 996.52            | 1856.88                   |
| 27   | 1          | 16.97                     | 63.94                     | 33.44                    | 9.96                  | 1061.4            | 2298.62                   |
| 28   | 1          | 17.28                     | 56.48                     | 29.48                    | 9.59                  | 1044.72           | 1987.86                   |
| 29   | 1          | 17.71                     | 53.57                     | 26.91                    | 9.48                  | 1044.33           | 1865.06                   |
| 30   | 1          | 15.2                      | 55.29                     | 25.79                    | 8.08                  | 1004.09           | 1924.96                   |
| 31   | 1          | 16.68                     | 67.26                     | 30.92                    | 9.96                  | 1058.49           | 2440.38                   |
| 32   | 1          | 17.04                     | 58.34                     | 27.22                    | 9.63                  | 1050.23           | 2076.86                   |

| 33 | 1 | 17.38 | 54.83 | 26.14 | 9.79  | 1053.4  | 1943.16 |
|----|---|-------|-------|-------|-------|---------|---------|
| 34 | 1 | 11.6  | 55.74 | 25.69 | 5.14  | 917.73  | 1890.58 |
| 35 | 2 | 20.09 | 67.59 | 27.9  | 2.83  | 809.94  | 1818.18 |
| 36 | 2 | 20.54 | 66.86 | 28.16 | 3.64  | 835.96  | 1833.67 |
| 37 | 2 | 21.26 | 68.68 | 31.32 | 5.94  | 885.95  | 1975.07 |
| 38 | 2 | 21.17 | 66.7  | 29.38 | 5.47  | 874.86  | 1877.81 |
| 39 | 2 | 20.85 | 66.51 | 28.46 | 4.24  | 853.38  | 1849.61 |
| 40 | 2 | 20.15 | 65.67 | 28.76 | 5.32  | 877.6   | 1861.64 |
| 41 | 2 | 20.6  | 64.94 | 28.95 | 6.19  | 900.86  | 1873.93 |
| 42 | 2 | 20.85 | 64.47 | 29.17 | 6.78  | 918.71  | 1885.67 |
| 43 | 2 | 20.73 | 66.76 | 31.5  | 7.21  | 919.13  | 1990.75 |
| 44 | 2 | 20.84 | 64.81 | 29.59 | 6.96  | 917.59  | 1900.93 |
| 45 | 2 | 18.92 | 64    | 28.91 | 5.85  | 893.77  | 1878.18 |
| 46 | 2 | 19.64 | 63.39 | 29.1  | 6.93  | 923.36  | 1892.39 |
| 47 | 2 | 19.86 | 66.23 | 32    | 7.67  | 932.06  | 2023.34 |
| 48 | 2 | 19.44 | 64.18 | 29.42 | 6.48  | 905.47  | 1899.84 |
| 49 | 2 | 20.15 | 63.04 | 29.34 | 7.69  | 955.24  | 1910.93 |
| 50 | 2 | 17.67 | 62.32 | 28.71 | 6.2   | 902.72  | 1880.02 |
| 51 | 2 | 18.59 | 61.68 | 28.83 | 7.38  | 936.04  | 1892.51 |
| 52 | 2 | 18.75 | 64.2  | 31.66 | 8.17  | 955.72  | 2032.87 |
| 53 | 2 | 19.11 | 62.34 | 29.62 | 8.05  | 956.76  | 1940.55 |
| 54 | 2 | 19.17 | 61.07 | 28.85 | 8.41  | 970.77  | 1908.86 |
| 55 | 2 | 15.44 | 59.88 | 28.43 | 6.35  | 910.3   | 1896.21 |
| 56 | 2 | 16.99 | 59.81 | 28.2  | 7.55  | 944.69  | 1899.5  |
| 57 | 2 | 17.96 | 63.06 | 31.15 | 9.05  | 988.99  | 2077.47 |
| 58 | 2 | 18.72 | 61.22 | 28.85 | 9.13  | 996.73  | 1978.47 |
| 59 | 2 | 18.11 | 60.27 | 27.6  | 8.22  | 967.51  | 1925.65 |
| 60 | 2 | 13.9  | 58.78 | 26.04 | 6.62  | 932.12  | 1946.04 |
| 61 | 2 | 15.81 | 58.71 | 25.83 | 7.9   | 969.81  | 1949.33 |
| 62 | 2 | 18.46 | 62.76 | 27.91 | 10.46 | 1048.46 | 2174.42 |
| 63 | 2 | 18.48 | 60.31 | 25.89 | 10.05 | 1035.68 | 2037    |
| 64 | 2 | 16.85 | 59.72 | 25.06 | 8.16  | 980.61  | 1964.07 |
| 65 | 2 | 12.79 | 59.48 | 23.5  | 6.05  | 923.67  | 2012.39 |
| 66 | 2 | 14.55 | 59.47 | 23.69 | 7.37  | 961.03  | 2024.87 |

25.37

24.16

23.78

985.72

986.63

991.39

2217.93

2079.74

2041.3

8.29

8.21

8.4

67

68

69

2

2

2

15.49

15.75

16.13

63.35

60.47

59.8

Table B.1. Continued.

# Appendix C. Open Lab Testing Matrix

# Table C.1.

# Open lab testing matrix for the first stage of operation

| Charge level | Condenser PWM duty | Evaporator PWM duty |  |  |
|--------------|--------------------|---------------------|--|--|
| [-]          | cycle [%]          | cycle [%]           |  |  |
| 0.6          | 70                 | 20                  |  |  |
| 0.6          | 70                 | 40                  |  |  |
| 0.6          | 30                 | 60                  |  |  |
| 0.7          | 70                 | 20                  |  |  |
| 0.7          | 70                 | 40                  |  |  |
| 0.7          | 70                 | 60                  |  |  |
| 0.7          | 50                 | 60                  |  |  |
| 0.7          | 30                 | 60                  |  |  |
| 0.8          | 70                 | 20                  |  |  |
| 0.8          | 70                 | 40                  |  |  |
| 0.8          | 70                 | 60                  |  |  |
| 0.8          | 50                 | 60                  |  |  |
| 0.8          | 30                 | 60                  |  |  |
| 0.9          | 70                 | 20                  |  |  |
| 0.9          | 70                 | 40                  |  |  |
| 0.9          | 70                 | 60                  |  |  |
| 0.9          | 50                 | 60                  |  |  |
| 0.9          | 30                 | 60                  |  |  |
| 1            | 70                 | 20                  |  |  |
| 1            | 70                 | 40                  |  |  |
| 1            | 70                 | 60                  |  |  |
| 1            | 50                 | 60                  |  |  |
| 1            | 30                 | 60                  |  |  |
| 1.1          | 70                 | 20                  |  |  |
| 1.1          | 70                 | 40                  |  |  |
| 1.1          | 70                 | 60                  |  |  |
| 1.1          | 50                 | 60                  |  |  |
| 1.1          | 30                 | 60                  |  |  |
| 1.2          | 70                 | 20                  |  |  |
| 1.2          | 70                 | 40                  |  |  |
| 1.2          | 70                 | 60                  |  |  |
| 1.2          | 50                 | 60                  |  |  |
| 1.2          | 30                 | 60                  |  |  |

# Table C.2.

| Charge level | Condenser PWM duty | Evaporator PWM duty |
|--------------|--------------------|---------------------|
| [-]          | cycle [%]          | cycle [%]           |
| 0.6          | 100                | 50                  |
| 0.6          | 100                | 70                  |
| 0.6          | 100                | 90                  |
| 0.7          | 100                | 50                  |
| 0.7          | 100                | 70                  |
| 0.7          | 100                | 90                  |
| 0.7          | 80                 | 90                  |
| 0.7          | 60                 | 60                  |
| 0.8          | 100                | 50                  |
| 0.8          | 100                | 70                  |
| 0.8          | 100                | 90                  |
| 0.8          | 80                 | 90                  |
| 0.8          | 60                 | 60                  |
| 0.9          | 100                | 50                  |
| 0.9          | 100                | 70                  |
| 0.9          | 100                | 90                  |
| 0.9          | 80                 | 90                  |
| 0.9          | 60                 | 60                  |
| 1            | 100                | 50                  |
| 1            | 100                | 70                  |
| 1            | 100                | 90                  |
| 1            | 80                 | 90                  |
| 1            | 60                 | 60                  |
| 1.1          | 100                | 50                  |
| 1.1          | 100                | 70                  |
| 1.1          | 100                | 90                  |
| 1.1          | 80                 | 90                  |
| 1.1          | 60                 | 60                  |
| 1.2          | 100                | 50                  |
| 1.2          | 100                | 70                  |
| 1.2          | 100                | 90                  |
| 1.2          | 80                 | 90                  |
| 1.2          | 60                 | 60                  |

# Open lab testing matrix for the second stage of operation

#### Appendix D. Python Program Code

#### C.1. Virtual Refrigerant Charge Sensor

# -\*- coding: utf-8 -\*-Created on Wed Jan 29 18:47:32 2014

@author: Jebaraj

#### #Importing the necessary libraries for code

import os import pylab import numpy as np import statsmodels.api as sm from sklearn.metrics import mean\_squared\_error import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from pandas import \*

#Clearing system memory

os.system('cls')

#### #Importing necessary data files for analysis

types= read\_excel(r'C:\Users\Jebaraj\_PC\SkyDrive\Research\Diagnostics
thesis\Diagnostics thesis\Lennox Microchannel\Data\Open lab
training\training\_data.xlsx',
'Firststage\_VRC\_training')
data = DataFrame(types)

#Formulating x1 to contain the necessary independent variables in the model x1 = data[['Del\_T\_sub','Del\_T\_sh','Del\_Q']]

#Formulating y1 to contain the dependent variable
y1= data['m\_ratio\_act']
y1=y1-1.0
#weights= data['norm weights']

#### #Learning the coefficients of the model using OLS routine

model = sm.OLS(y1,x1)
#model\_wls = sm.WLS(y1,X,weights)
#fit\_WLS= model\_wls.fit()
#print fit\_WLS.summary()
#param=fit\_WLS.params
fit = model.fit()
print fit.summary()

```
param = fit.params
#Using the learned coefficients to predict the dependent variable
y=
np.ones(len(y1)).T+param[0]*x1['Del_T_sub']+param[1]*x1['Del_T_sh']+param[2]*x1['
Del_Q']
y1=y1+1.
y=y*100.
y1=y1*100
```

#### #Calculating the root mean square error of the model

```
rms = np.sqrt(mean_squared_error(y1,y))
x= data['m_ratio_act']
print rms
f=plt.figure()
mad = max(np.abs(y - y1))
print mad
```

#plotting the predicted and measured values of the dependent variable by means of a scatter plot

```
ax = f.add\_subplot(111)
p=ax.scatter(y1, y, marker='o',color='b')
x_{lims} = [50, 140]
y_{lims} = [50, 140]
lims = (min(x_lims[0], y_lims[0]), max(x_lims[1], y_lims[1]))
\# lims = (min(np.min((x, y), axis=1)), max(np.max((x, y), axis=1)))
ax.plot(lims,lims,'k-')
#x lims = plt.xlim()
#y_lims = plt.ylim()
plt.axis('scaled')
a=10
ax.set_xlim(x_lims)
ax.set_ylim(y_lims)
ax.plot(np.array(lims), np.array(lims) + a,'k--')
ax.plot(np.array(lims), np.array(lims) - a,'k--')
ax.set_xlabel('Measured Refrigerant charge[%]',fontsize=15,fontweight="bold")
ax.set ylabel('Predicted Refigerant charge[%]',fontsize=15,fontweight="bold")
ax.tick_params(axis='both', which='major', labelsize=13)
ax.legend()
ax.grid(True)
plt.show()
plt.text(0.65,0.9,r"Maximum deviation=$\pm$%0.1f"%(mad)+"%", ha='right',
va='bottom', transform=ax.transAxes, fontsize=14)
```

ax.text(0.95,0.1,r"RMSE=\$\pm\$%0.1f"%(rms)+"%", ha='right', va='bottom', transform=ax.transAxes, fontsize=14) #ax.legend([p1,p2],['First stage', 'Second stage'],loc='upper left', ncol=1) ax.text(0.4,0.55,'+10%', ha='center', va='center', transform=ax.transAxes, fontsize=14,rotation=45) ax.text(0.55,0.4,'-10%', ha='center', va='center', transform=ax.transAxes, fontsize=14,rotation=45) plt.savefig(r'C:\Users\Jebaraj\_PC\SkyDrive\Research\Latex Files\Thesis final\Thesis outline\Thesis plots\VRC sensor\VRC\_model3\_1stage.png', bbox\_inches='tight')

C.2. Algorithm for Selecting Optimal Open lab testing Data

# -\*- coding: utf-8 -\*-""" Created on Sat Jul 25 20:17:14 2015

@author: Jebaraj\_PC

#importing necessary libraries for the code

import numpy as np import pdb import pandas as pd import statsmodels.api as sm import os import matplotlib.pyplot as plt from sklearn.metrics import mean\_squared\_error import matplotlib as mpl from mpl\_toolkits.mplot3d import Axes3D os.system('cls') plt.close('all')

def data\_train(filepath=r'C:\Users\Jebaraj\_PC\SkyDrive\Research\Diagnostics thesis\Diagnostics thesis\Lennox Microchannel\Data\Open lab training\_training\_data.xlsx', sheetname='Secondstage\_VRC\_training'):

return data

def data\_test(filepath=r'C:\Users\Jebaraj\_PC\SkyDrive\Research\Diagnostics thesis\Diagnostics thesis\Lennox Microchannel\Data\Psychroom\Test data\Overall\_Summary-Jebaraj.xlsx', sheetname='Secondstage\_VRC\_testing'):

```
# Read the test data from excel spreadsheet into a data frame.
```

data = pd.read\_excel(filepath, sheetname)

return data

def plotting(x1,X):

```
#Function to plot the independent variables against each other in a 2d-scatter plot
       data = data train()
       f= plt.figure(**dict(figsize=(8, 6)))
       ax = f.add\_subplot(111)
       cb ax, cb kw = mpl.colorbar.make axes([ax], pad=0.05)
       X=np.array(X)
       cmap=plt.cm.jet
       z = data['m_ratio_act']
       #tick locator = mpl.ticker.MaxNLocator(nbins=4)
       \#color = colors.next()
       p = ax.scatter(x1['Del_T_sh'], x1['Del_T_sub'], c=z,s=200)
       ax.grid(True)
       ax.scatter(X[:,2], X[:,1],color='black',s=70,marker='D')
       v=[0.6,0.7,0.8,0.9,1.0,1.1,1.2]
       cb = f.colorbar(p,cax=cb ax, ticks=v,cmap=cmap, **cb kw)
       cb.ax.tick_params(labelsize=15)
       cb.solids.set edgecolor('face')
       cb.set_label('Charge level [-]', fontsize=15,fontweight="bold",
       rotation=270,labelpad=15)
       ax.set xlabel('T sh-T sh$\mathbf{ {rated}}$
       [$^{\circ}$C]',fontsize=15,fontweight="bold")
       ax.set ylabel('T sub-T sub$\mathbf{ {rated}}$[$^{\circ}$C]',
       fontsize=15,fontweight="bold")
       ax.set title('5-point optimal design',fontsize=15,fontweight="bold")
       ax.tick_params(axis='both', which='major', labelsize=15)
       plt.savefig(r'C:\Users\Jebaraj_PC\SkyDrive\Research\Diagnostics
       thesis\Diagnostics thesis\Lennox Microchannel\Data\Psychroom\Test
       data\Images\Optimality\plot2d sub sh.png', bbox inches='tight')
       return
```

def plotting3D(x1,X):

#Function to plot the independent variables against each other in a 3d-scatter plot

data = data\_train()
f= plt.figure(\*\*dict(figsize=(8, 6)))
ax= f.add\_subplot(111,projection='3d')

```
cb_ax, cb_kw = mpl.colorbar.make_axes([ax], pad=0.05)
X=np.array(X)
cmap=plt.cm.jet
z = data['m_ratio_act']
#tick locator = mpl.ticker.MaxNLocator(nbins=4)
#color = colors.next()
p = ax.scatter(x1['Del_T_sub'], x1['Del_T_sh'], x1['Del_Q'], c=z, s=200)
p.set_edgecolors = p.set_facecolors = lambda *args:None
ax.grid(True)
ax.scatter(X[:,1], X[:,2], X[:,3],color='black',s=70,marker='D')
v=[0.6,0.7,0.8,0.9,1.0,1.1,1.2]
cb = f.colorbar(p,cax=cb_ax, ticks=v,cmap=cmap, **cb_kw)
cb.ax.tick params(labelsize=15)
cb.solids.set_edgecolor('face')
cb.set_label('Charge level [-]', fontsize=15,fontweight="bold",
rotation=270,labelpad=15)
ax.set xlabel('T sub-T sub$\mathbf{ {rated}}$
[$^{\circ}$C]',fontsize=15,fontweight="bold")
ax.set_ylabel('T_sh-T_sh$\mathbf{_{rated}}$[$^{\circ}$C]',
fontsize=15,fontweight="bold")
ax.set_zlabel('x_evap-x_evap$\mathbf{_{rated}}$[-]',
fontsize=15,fontweight="bold")
ax.set title('optimal design',fontsize=15,fontweight="bold")
ax.xaxis._axinfo['label']['space_factor'] = 2.1
ax.yaxis._axinfo['label']['space_factor'] = 2.1
ax.zaxis._axinfo['label']['space_factor'] = 2.1
ax.tick params(axis='both', which='major', labelsize=15)
plt.savefig(r'C:\Users\Jebaraj PC\SkyDrive\Research\Diagnostics
thesis\Diagnostics thesis\Lennox Microchannel\Data\Psychroom\Test
data\Images\Optimality\plot3d optimalpoints firststage.png',
bbox inches='tight')
return
```

def train(X):

#Function takes in the optimal experimental points from optimal function and learns the coefficient of the VRC model

```
data = data_train()
z = data['m_ratio_act']
#indices= np.where(np.in1d(x1['Del_T_sub'],X[:,1])==True)
y=[]
indices=[]
x1 = data[['Del_T_sub','Del_T_sh','Del_Q']]
```

```
x1=np.matrix(x1)
for i in range(len(X[:,0:4])):
    for j in range(len(x1)):
        if np.array_equal(X[:,0:4][i],x1[j]):
            y.append(z[j])
            indices.append(j)
```

y=np.array(y) print y y=y-1.0

# #Learn the model coefficients using OLS routine model = sm.OLS(y,X) fit = model.fit() print fit.summary() param = fit.params

#### #Formulating x1 to include the independent variables in the model

 $x1 = data[['Del_T_sub','Del_T_sh','Del_Q']]$  y1 = param[0]\*X[:,0]+param[1]\*X[:,1]+param[2]\*X[:,2]# print y1
#pdb.set\_trace() q=np.empty(np.shape(y1))e=np.empty(np.shape(y1))
for i in range(len(indices)):  $q[i]= data.ix[indices]['Cond_PWM'].values[i]$ e[i]=data.ix[indices]['Evap\_PWM'].values[i]
print q
print e  $data = data_test()$   $z = data['m_ratio_act']$ Pred\_Charge=np.ones(len(z)).T+param[0]\*data['Del\_T\_sub']+param[1]\*data['Del\_T\_sh']+param[2]\*data['Del\_Q']

# #Plotting the scatter plot for the predicted and measured values of the dependent variable

```
f= plt.figure(**dict(figsize=(8, 6)))

ax= f.add_subplot(111)

plt.plot(z, Pred_Charge, 'o',markersize=5)

x_lims = [0.5,1.3]

y_lims = [0.5,1.3]

lims = (min(x_lims[0], y_lims[0]), max(x_lims[1], y_lims[1]))

plt.plot(lims,lims,'k-')

plt.axis('scaled')

a=0.1

plt.xlim(lims)
```

```
plt.ylim(lims)

plt.plot(np.array(lims), np.array(lims) + a,'k--')

plt.plot(np.array(lims), np.array(lims) - a,'k--')

plt.xlabel('Actual Refrigerant charge[-]',fontsize=15,fontweight="bold")

plt.ylabel('Virtual Refigerant charge[-]',fontsize=15,fontweight="bold")

rms = np.sqrt(mean_squared_error(z,Pred_Charge))

print rms

plt.text(0.95,0.1,r"RMSE=$\pm$%0.2f"%(rms) , ha='right', va='bottom',

transform=ax.transAxes, fontsize=14)

plt.tick_params(axis='both', which='major', labelsize=13)

plt.legend()

plt.grid(True)

plt.show()
```

def optimal(p):

#Function takes in the number of points and returns the optimal experimental runs corresponding to the input number of data points

```
data = data_train()
x1 = data[['Del_T_sub', 'Del_T_sh', 'Del_Q']]
Epsilon=x1
Epsilon=np.matrix(Epsilon)
rand= np.random.permutation(len(Epsilon))
n=len(Epsilon)-p
X = Epsilon[rand[0:p],:]
Epsilon2=np.matrix(np.empty((n,p)))
Epsilon2=Epsilon[rand[p:],:]
d=np.empty((n,p))
while True:
       #pdb.set_trace()
       #print np.linalg.det(X.T*X)/p
       for i in range(n):
       d_j=Epsilon2[i]*(X.T*X).I*Epsilon2[i].T
               for j in range(p):
                       d_i = X[j,:] (X.TX).IX[j,:].T
                       d_i = X[i] \times (X.T \times X).I \times Epsilon2[i].T
                       d[i,j] = d_j - (d_i * d_j - d_i j * d_i j) - d_i
       #print d
       if np.max(d) > 0:
               ix,ij=np.where(d==np.max(d))
               a=Epsilon2[ix]
               Epsilon2[ix]=X[ij,:]
               X[ij,:]=a
       else:
```

break

train(X)

```
if name == ' main ':
       data = data_train()
       x1 = data[['Del_T_sub','Del_T_sh','Del_Q']]
       Epsilon=x1
       #Epsilon = sm.add\_constant(x1)
       Epsilon=np.matrix(Epsilon)
       det = []
       trace=[]
       rand= np.random.permutation(len(Epsilon))
       for p in range(3,len(x1)):
              n=len(Epsilon)-p
              X = Epsilon[rand[0:p],:]
              Epsilon2=np.matrix(np.empty((n,p)))
              Epsilon2=Epsilon[rand[p:],:]
              d=np.empty((n,p))
              while True:
                      #pdb.set_trace()
                      #print np.linalg.det(X.T*X)/p
                      for i in range(n):
                             d_j=Epsilon2[i]*(X.T*X).I*Epsilon2[i].T
                             for j in range(p):
                                     d_i = X[j,:] * (X.T * X).I * X[j,:].T
                                     d_i_j = X[j,:]*(X.T*X).I*Epsilon2[i].T
                                     d[i,j] = d_j - (d_i * d_j - d_i j * d_i j) - d_i
                      #print d
                      if np.max(d) > 0:
                             ix,ij=np.where(d==np.max(d))
                             a=Epsilon2[ix]
                             Epsilon2[ix]=X[ij,:]
                             X[ij,:]=a
                      else:
                             det.append((np.linalg.slogdet(X.T*X)[1]))
                             trace.append(np.log(np.trace((X.T*X).I)))
                             #print det
                             break
det=np.array(det)
```

#Threshold of 90% of the maximum determinant of the information matrix
opt= len(det[det<=0.9\*np.max(det)])+3
print opt</pre>
#Plotting the change in determinant and trace of the information matrix f=plt.figure()  $ax = f.add\_subplot(211)$ plt.plot(range(3,len(x1)),det) xlim=[3,34] ax.set\_xlim(xlim) #plt.plot((17, 17), (0, 0), 'k-') ax.axvline(x=opt,c="black",linewidth=2.0,zorder=0) ax.axhline(y=0.9\*np.max(det),c="black",linewidth=2.0,zorder=0) plt.legend() plt.grid(True) ax.text(0.85,0.8,r"90% of max(det(X\$^{T}\$X))", ha='right', va='bottom', transform=ax.transAxes, fontsize=12) plt.ylabel('det(X\$^{T}\$X)',fontsize=15,fontweight="bold") plt.tick\_params(axis='both', which='major', labelsize=13)  $ax=f.add\_subplot(212,sharex=ax)$ ax.set xlim(xlim) plt.plot(range(3,len(x1)),trace) ax.axvline(x=opt,c="black",linewidth=2.0,zorder=0) plt.ylabel('trace((X\$^{T}\$X)\$^{-1}\$)',fontsize=15,fontweight="bold") plt.legend() plt.grid(True) plt.xlabel('No. of optimal experimental runs',fontsize=15,fontweight="bold") f.tight\_layout() plt.show() plt.savefig(r'C:\Users\Jebaraj\_PC\SkyDrive\Research\Diagnostics thesis\Diagnostics thesis\Lennox Microchannel\Data\Psychroom\Test data\Images\Optimality\DetVsnoofruns first stage', bbox inches='tight') print opt

#Calling the respective functions

optimal(opt) plotting3D(x1,X) plotting(x1,X) train(X)