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ABSTRACT 
 
 
 
Montgomery, Amanda Katherine. M.S., Purdue University, December 2015. Water 
Quality and Production Potential Effects of Cellulosic Biofuel Crops Grown on Marginal 
Land. Major Professors: Indrajeet Chaubey and Sylvie Brouder. 
 
 
With an increasing global demand for fossil fuels, there is a growing amount of concern 

about greenhouse gas releases. Concurrently, interest in alternative sources of energy, 

including bioenergy has expanded considerably in the recent years. The Energy 

Independence and Security Act of 2007 mandates that 136.3 billion liters of biofuels 

must be produced, with 60.5 billion liters coming from cellulosic biofuel crops by 2022. 

Potential sources of cellulosic biomass are: maize residue, sorghum, switchgrass, 

Miscanthus, and woody crops. The increase in biofuel crop production required to meet 

the mandate raises questions regarding the additional amount of agricultural land area 

needed, as well as the potential competition for land with food and feed production. 

The utilization of marginal lands, lands not suitable for crop growth due to infertility, 

slope, soil degradation or poor yields of common annual crops such as corn, is an 

alternative, but could come at a higher environmental cost. There has been little field 

research investigating the environmental consequences of using marginal land for 

biofuel crop production. The objectives of this research were to quantify surface and 

subsurface nutrient losses and determine production potential of six crops (Miscanthus, 
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switchgrass, maize, sorghum, poplar, and native prairie) when grown on marginal lands 

with varying rates of nitrogen (N), and varying phosphorus (P), and potassium (K) 

fertilizer rates or residual soil P and K levels. This study used previously-established 

research plots at the Throckmorton Purdue Agricultural Center (TPAC), in West 

Lafayette, IN. Switchgrass plots were established in 2007, Miscanthus in 2010, and 

maize and sorghum plots were established in 2011 at one site. Other plots were 

established in 2011. Yields were assessed in 2013 and 2014. Suction cup lysimeters 

permitted soil profile leachate to be sampled at a depth of approximately 30.5 cm. in a 

small subset of plots, and nutrient loading in surface water runoff was sampled during 

2014. Surface samples were collected in tanks at the bottom of the plots. Subsurface 

water samples were analyzed for nitrate-N (NO3-N) concentration and soluble reactive 

phosphorus (SRP) concentration, while surface runoff water samples were analyzed for 

NO3-N, SRP, total nitrogen (TN), total phosphorus (TP) and total suspended solids (TSS). 

Subsurface leachate concentrations of NO3-N from the perennial grass plots were 

significantly lower when compared to those extracted from the annual row crops. 

Miscanthus showed some leaching of phosphorus when fertilized with P fertilizer. One 

year of surface monitoring data indicated that surface nutrient loads were not 

significantly affected by crop. However, switchgrass had significantly lower nitrate loads 

than sorghum and Miscanthus. Many of the nutrient and TSS loads were higher at the 

start of the growing season (May) when planting and fertilization occurred as compared 

to later in the season after full plant growth. Miscanthus yield was significantly higher 

than all other crops in this study, averaging 22.6 t ha-1 on the dry weight basis. Fertilizer 
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rate did not make a significant difference in biomass production within a crop treatment 

on the plots with fertilizer trials. This study indicates perennial grasses may have 

markedly lower nutrient losses and can help reduce soil erosion, while also producing a 

significant biomass yield when grown on land considered marginal because of lower 

fertility and high erosivity. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

1.1.1 Global climate change 

The United States (U.S.) economy was dependent on gasoline and subject to price panic 

from disruption in supplies, as evidenced by shortages in the 1970s and after Hurricane 

Katrina (Energy, 2011; Ragauskas et al., 2006). A U.S. fuel mandate in 2007 fed by an oil 

crisis inspired a greater focus on evaluating biofuel crop potential as an alternative fuel 

source. Since that time, the U.S. has increased its oil production due to the increasing 

practice of fracking. Currently it is predicted that there are natural gas reserves of 

approximately 716 trillion m3 and domestic oil production in the U.S. is expected to 

increase by 15% over the next several decades (Vengosh et al., 2014). However, this 

increase in shale gas production has led to concern about the possible associated 

environmental consequences, including air pollution, greenhouse gas emissions, 

radiation and water contamination (Ragauskas et al., 2006; Vengosh et al., 2014). The 

review by Vengosh et al. (2014) notes that with the increased use of hydraulic fracturing 

for shale oil production, there are concerns about subsurface and surface water quality 

as well as concerns about water quantity. Ragauskas et al. (2006) assert that bio-based 

resources must replace petroleum as a part of the management of GHG emissions. One
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 possible alternative is liquid fuels derived from plant biomass. Though research on 

lignocellulosic biofuels has existed since the 1970’s (Ragauskas et al., 2006), just prior to 

the 2007 mandate, Ragauskas et al. (2006) set forth a plan for advancing biofuels in the 

review paper “The Path Forward for Biofuels and Biomaterials.” This article reiterates 

why dependence on fossil fuels is unsustainable and why a push towards developing 

renewable fuel sources is necessary. They specify that research should be completed to 

improve yields and help agricultural producers to integrate biofuels into their current 

production system. This research, while not specifically manipulating plant genetics, 

tests the production potential of different biofuel crops and their performance under 

different fertilizer rates to help identify the crops with the greatest production 

potential.  

 

1.1.2 Biofuels 

Many countries, including China, France, India, Japan, the United Kingdom, and the U.S., 

have set mandatory or voluntary bioenergy targets for their fuel sectors (Fargione et al., 

2010). Stimulating the U.S.’ push toward renewable fuel sources (RFS) was the passing 

of the Energy Independence and Security Act (EISA) of 2007 (Congress). The EISA of 

2007 enacted by the U.S. Congress set a goal of 136.3 billion liters of RFS produced by 

2022; of that amount, 60.5 billion liters are required to come from cellulosic bioenergy 

crops (Congress, 2007). In an ISI Web of Knowledge search completed April 2015 using 

search terms “biofuel conversion,” “biofuel environment,” and "biofuel water quality," 

the number of research publications on biofuel conversion technologies is twice the 
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number of research publications on the environmental effects of biofuel production and 

more than seven times the number of research publications on water quality and 

biofuel production. Research on water quality effects of biofuel crop production remains 

insufficient to support full-scale economic biofuel production. 

 

The EISA encourages both empirical research and the use of analytical tools to assess 

environmental and economic impacts from the biofuel crop production increase (Sec. 

232). Current biofuel production must be increased to meet the set standards, and 

therefore furthers the need to evaluate the environmental impacts that the increased 

biofuel production may have. Some of that increased production has been targeted to 

occur with dedicated, cellulosic crops grown on lands considered marginal for annual 

row crops (Sec. 202). While the mandate requires the production of biofuels, it also 

encourages determination of current and future environmental consequences and 

impacts (Sec. 204). The Department of Energy (DOE) is charged with setting goals for 

development of biofuel crops that are less resource and land intensive (Sec. 232). 

Research on biofuels has therefore begun to focus on the environmental impact of 

meeting the RFS, in addition to fuel conversion technologies. 

 

Depending on structural constituents, biomass can be converted through different 

processes into many different types of fuel. Some of these final products include: 

biohydrogen, bioethanol, biodiesel, biomethanol, and bio-oil (Demirbas, 2007b). Ethanol 

and biodiesel can be derived from both grain and residue of the high-value, annual row 
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crops traditionally grown as food or feed, and whose production requires high-quality 

agricultural land with lower slopes and good soil quality. However, bioethanol can be 

produced from an alternative cellulosic biomass such as herbaceous and woody crops, 

which many experts forecast may be highly productive on more marginal lands 

(Demirbas, 2007b). As a ratio of output to input, conversion of grass biomass can result 

in a 50-100% greater energy return than conventional maize biomass production 

(McLaughlin and Walsh, 1998). Based on a life-cycle assessment, cellulosic ethanol from 

switchgrass has been shown to produce 94% less GHG emissions than gasoline (Schmer 

et al., 2008). This versatility of processing practices and resulting products, as well as the 

implied environmental benefits, are the main reasons bioenergy crops have potential 

moving forward. 

 

According to the EPA federal register of 2012, soybeans are currently the most used 

feedstock for biodiesel production and corn oil is the second most common source. 

These crops are logical choices for bioenergy production because of their present 

dominance in U.S. agriculture. In 2014, there were 36.6 million hectares of maize and 

33.8 million hectares of soybeans planted in the U.S. (USDA NASS, 2015). The biodiesel 

conversion process from bio-oil is much more established than the ethanol conversion 

from cellulose. Biodiesel conversion dates back as far as the 1850s (Demirbas, 2007a).   

 

While maize grain and stover as a biomass source are readily available due to their 

historic presence in U.S. agriculture, this resource alone is not sufficient to reach the 
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EISA goal (Energy, 2011). Second generation bioenergy crops targeted for cellulosic 

ethanol, such as perennial grasses, like switchgrass and Miscanthus, and woody plants, 

like Populus L. (poplar) and Salix L. (willow) trees, can provide an alternative to the 

traditional bioenergy crops of maize and soybean. There are a few reasons these crops  

are an attractive feedstock moving forward: they are a renewable resource, the crop 

source is readily available, they can  have positive environmental benefits, and they will 

minimize competition with food sources (Demirbas, 2007b). While biofuel sources can 

be more globally spread, the benefit of ease of access may also be a downfall, as some 

believe they will suffer from a lack of energy density, making them less economically 

viable, as they will need to be collected and aggregated to produce any significant 

amount of bioenergy (Hoekman, 2009). The potential for low energy density, makes it a 

challenge to efficiently and cost effectively produce biofuels on a large scale. Currently, 

transportation costs are a major barrier to efficient production (Hoekman, 2009).  

 

Many studies have evaluated the GHG emissions of biomass production (e.g., Adler et 

al., 2007; Bailis et al., 2005; Schlamadinger et al., 1997; Schneider and McCarl, 2003; 

Searchinger et al., 2008), research on its impacts on water use and water quality is 

limited (Wu et al., 2014). If biofuel crops are poorly managed or unsuitable for a given 

area, there are potential pollution challenges such as fertilizer, pesticide, or sediment 

losses to surface and subsurface water For example, sediment in runoff is inversely 

affected by soil cover and directly affected by soil disturbance, such as tilling and 
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planting annual crops (Turner and Rabalais, 2003). Thus, maize and soybeans may result 

in greater sediment losses if planted in high erosion risk areas.  

 

The primary water quality concerns associated with current agricultural systems in the 

Midwestern US are nitrogen (N) and phosphorus (P) from crop fertilizers, as well as soil 

erosion and increased runoff (Buck et al., 2004; Tong and Chen, 2002; Turner and 

Rabalais, 1991, 2003). The consequences of too much agricultural fertilizer run off can 

be readily observed in the Gulf of Mexico where a growing hypoxic zone developed in 

part as a result of fertilizer application to annual grain crops in the Midwest 

(Dominguez-Faus et al., 2009; Sahu and Gu, 2009; Wu and Liu, 2012). The quantity of 

water and nutrients used for biomass production, however, can vary greatly, based on 

feedstock, production technology, regional climate and environmental conditions, as 

reviewed by Wu et al. (2014). For example, Cadoux et al. (2012) indicated optimal N 

fertilizer rates for Miscanthus are 49-98 kg N ha-1 for a yield of 10-20 t ha-1, while Vogel 

et al. (2002) indicated optimal N fertilizer rates for switchgrass are 50-120 kg N ha-1 for 

yields of 10-12 t ha-1. These are considerably lower N fertilizer rates when compared 

with those commonly applied to maize, which typically requires from 110-220 kg N ha-1 

for optimal grain yields (Vogel et al., 2002). While there have been some comparison 

studies of these crops, they have often been done on what is considered prime 

agricultural land (e.g. McIsaac et al., 2010; Trybula, 2012). There is a knowledge gap in 

the published research for field-scale, side-by-side comparisons of predominant 

biofeedstock crops (annual row crops such as soybean and maize) and second 
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generation bioenergy crops (perennial grasses and woody crops) on marginal land, lands 

not suitable for intensive crop production (Thomas et al., 2014; Varvel et al., 2008). If 

marginal lands are to be utilized for production of cellulosic bioenergy crops, associated 

environmental impacts must be quantified. The potential for biomass production from 

second generation bioenergy crops to be less nutrient input intensive could begin to 

address water quality concerns in the U.S. At present, there are no other known studies 

examining water quality implications of maize, switchgrass, and Miscanthus production 

on marginal lands in the Midwest (Thomas et al., 2014).   

 

1.1.3 Marginal Lands 

The increase in bioenergy crop production required to meet the EISA mandate has led to 

concern about the amount of land needed (Escobar et al., 2009). If bioenergy crops are 

grown on existing food/feed crop lands, there is a potential for competition between 

food production and the ability to grow enough crops for bioenergy. When attempting 

to avoid this competition, if pastureland or retired crop land [Conservation Reserve 

Program (CRP) land] is dedicated to bioenergy production, the increase in agricultural 

land could have environmental consequences. In order to increase bioenergy 

production while minimizing environmental impacts, alternative land resources must be 

evaluated. 

 

The amount of marginal lands feasibly available for biofuel production in the United 

States and the implications of using these lands for bioenergy is still uncertain (Gelfand 
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et al., 2013). In a review by Milbrant et al. (2014), approximately 865,000 km2 or 11% of 

land area in the 48 contiguous states were characterized as marginal land suitable for 

biomass production. These authors included abandoned crop land, abandoned mine 

lands, EPA sites (including Brownfield, Superfund sites, and Resource Conservation & 

Recovery Act sites), landfills, right-of-ways, and barren lands in their marginal land 

classification. Although these lands are potential candidates for biofuel production, they 

are often less fertile, higher sloping with greater erosion potential, and could require 

more nutrient inputs to produce desired yields leading to potentially higher edge-of-

field nutrient losses (Thomas et al., 2014). Research by Mbonimpa et al. (2014) 

examined the environmental challenges that can arise from the potential loss of CRP 

land to continuous maize as an effort to meet the RFS. Using statistical models, the 

authors determined that while precipitation is a major influence on total suspended 

solids (TSS) and total phosphorus (TP) in streams, other factors such as land cover, soils, 

slope, and management practices can also play a role in environmental impact. In-field 

research is required to better quantify environmental risks of  devoting marginal lands 

to bioenergy feedstock production (Thomas et al., 2014).  

 

It is important to note that, while perennial grasses as bioenergy crops are generally 

anticipated to require less fertilizer and be higher producing on marginal land, this has 

not been conclusively demonstrated through field experimentation. Most of the existing 

research in this area involves environmental simulation models, with little field 

monitoring data available to validate them. Some of the processes associated with 
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perennial grasses, such as greater extraction of soil water due to longer growing season, 

are less accurately predicted than for annual crops (Thomas et al., 2014). Cibin et al. 

(2015) noted the Soil Water Assessment Tool (SWAT) model does not yet accurately 

predict environmental water quality effects of many bioenergy crops, such as 

Miscanthus and switchgrass, and there is limited information on crop growth validation 

for bioenergy crops. Without this information, other poorly represented processes could 

include nutrient translocation within the plant, belowground nutrient storage, and 

extended evapotranspiration periods (Cibin et al., 2015). There are few existing studies 

that determine nutrient load to surface and subsurface water systems as a result of 

second generation biofuel crop systems (Lesur et al., 2014; Mbonimpa et al., 2014).   

 

1.2 Overall goal 

The main goal of this research was to determine the water quality impacts of growing 

different bioenergy crops on marginal lands and to comparatively analyze how 

effectively these crops produce biomass on marginal land. This research focused on six 

bioenergy crops: Miscanthus, switchgrass, poplar, a native prairie grass mix, and 

sorghum, using hybrid maize as a control. 

 

1.3 Objectives 

The specific objectives of this study were to: 

1. Characterize subsurface nutrient losses as a result of annual and perennial 

bioenergy crop production. 
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2. Quantify sediment and nutrients in surface runoff as a result of annual and 

perennial bioenergy crop production. 

3. Quantify the relative production potential of five cropping systems when grown 

on land considered marginal for maize-based annual row crop systems. 

 

1.4 Significance of work 

The data collected from this research can be used to better inform and calibrate 

environmental models for representing the dynamics of non-traditional biofuel crops 

when grown on farmland considered marginal for intensive, row crop production. These 

models, once adequately parameterized, can then be used to help predict the 

watershed scale effects of meeting the cellulosic fuel demand outlined in the EISA. 

Through this subsequent modeling work, results can inform decisions about where 

within an agricultural landscape cellulosic biofuel crops can be effectively grown with 

minimal water quality impact and the maximum net energy value.
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CHAPTER 2. LITERATURE REVIEW 

2.1 Annual row crops 

At the time the EISA was promulgated, the one staple crop of the Midwest that was 

readily available to be converted to ethanol was maize. However, converting land from 

CRP land or maize-soy rotations to continuous single crop (maize or sorghum) to 

increase ethanol production may not be an ideal long-term solution, primarily due to 

environmental consequences and interference with food and feed production. Even 

when grown on prime agricultural lands, maize has one of the greatest fertilizer and 

pesticide input rates of the potential ethanol crops (Committee on Water Implications 

of Biofuels Production in the United States, 2008). Increasing row crop production to 

meet the EISA 2007 standard could result in negative environmental consequences as a 

result of more land being tilled and fertilized (Dominguez-Faus et al., 2009). Many 

environmental experts have expressed concern that extending production of annual row 

crops, particularly maize, will worsen the well-known nutrient pollution problems long 

associated with maize’s predominance in the Midwest U.S (Barbieri et al., 2008; 

Dominguez-Faus et al., 2009; U.S. Environmental Protection Agency, 2011). 
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2.1.1 Maize 

Maize is currently the most widely used crop for ethanol production, in part due to its 

prevalence (Sindelar et al., 2013). Using strictly maize production to meet the renewable 

fuel sources mandate will make it difficult to simultaneously meet the total maximum 

daily load (TMDL) limits for nutrients and soil set by the EPA in the Clean Water Act 

(2012) (Khanal et al., 2014). High fertilizer application, particularly in the Midwest, 

reduces N and P uptake efficiency (Barbieri et al., 2008). Harvesting maize stover could 

also have adverse effects on soil health and quality, including potential decreases in soil 

organic carbon and soil microbial activity, and increases in compaction, runoff and 

erosion (Moebius-Clune et al., 2008; Khanal et al., 2014; Sindelar et al., 2013; Thomas et 

al., 2014). In a study by Sindelar et al. (2013), it was shown that moderate stover 

removal, particularly in areas with cool early-season temperatures, can improve corn 

production in continuous corn systems. However, the authors caution that plans for 

stover removal over long time periods must consider those potential negative effects.  

In a recent modeling study, sediment yield to surface water increased 29% when 70% of 

stover was removed for use as a biofeedstock (Cibin et al., 2012). These simulated 

increases in sediment erosion occurred  from December until plant maturity in August 

(Cibin et al., 2012). Nitrogen and P are the main causes of nutrient pollution problems in 

waterways and it is estimated that organic N and organic P loading in watersheds will 

increase as stover removal rates are increased (Cibin et al., 2012). Studies have also 

shown some stover removal could actually reduce the amount of mineralizable N 

leaching off the fields, but over-removal could lead to a plant available nitrogen deficit 
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and other environmental problems (Cibin et al., 2012; Khanal et al., 2014; Moebius-

Clune et al., 2008). This reduction in nitrate leaching is due to the reduction in 

mineralizable N that may occur when stover is removed (Cibin et al., 2012; Khanal et al., 

2014). Maize stover removal as a biomass source could also have long term negative 

environmental effects, with greater nutrient losses to surface waters (Osborne et al., 

2014).  Nitrogen balance in a system using maize stover for biofeedstock is driven by 

fertilizer application, and it has been shown that 30-75% of maize stover can be 

harvested safely to maintain this balance (Khanal et al., 2014). Osborne et al. (2014) 

determined that a lower level of residue removal resulted in a greater amount of large 

soil aggregates, which stabilize soil, help supply nutrients to plants, hold water, and 

prevent soil erosion. The same study also evaluated the effects of residue removal rates 

on erodibility of the soils, including effects from cover crops and fertilizer application. 

They found that with stover removal, erosion is likely to increase, however cover crops 

can temper the effect (Osborne et al., 2014). While there are other treatments for maize 

production that can affect soil health and erosion, stover removal rate had the greatest 

effect on soil erosion (Osborne et al., 2014) 

 

2.1.2 Sorghum 

In the Midwest sorghum can be viewed as a relatively low-risk transition crop for 

farmers interested in producing a dedicated bioenergy crop because the maize planting 

and harvesting equipment only need minor adjustments for sorghum (Espinosa and 

Kelley, 2014). Many Midwest farmers already grow sorghum or have grown it in the 
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past, so the familiarity with it makes it more suitable for initial bioenergy crop growth. 

Sorghum originates in arid areas of north-east Africa (Rooney et al., 2007). In the US, 

sorghum is grown more often in the South and West instead of the Midwest, and the 

majority of the sorghum in the world is grown in Africa and Asia. Sorghum has potential 

as a bioenergy crop for reasons including: yield potential and composition, water-use 

efficiency and drought tolerance, salinity resistance, and potential for genetic 

improvements (Almodares and Hadi, 2009; Miller and McBee, 1993; Rooney et al., 

2007). Thus, when compared to maize, it is adapted to a wider range of U.S. 

agroecozones (Almodares and Hadi, 2009; Miller and McBee, 1993; Rooney et al., 2007). 

Further, different varieties of sorghum can be chosen based upon the type of conversion 

pathway desired. Grain sorghums provide starch for conversion, sweet sorghums 

provide sugars, and cellulosic sorghums (high biomass) produce structural 

carbohydrates (lignin, cellulose, and hemi-cellulose) (Rooney et al., 2007).  

 

When producing sorghum for biofuel conversion, there are multiple genetic traits that 

are more desirable based on the targeted conversion strategy. In reviews by Almodares 

and Hadi (2009) and Rooney et al. (2007), it is noted that these traits include: lignin 

content, mineral uptake and content, non-structural carbohydrate concentration and 

dhurrin levels. Sorghum cultivars with lower levels of lignin are more desirable in the 

conversion pathway because less methane is produced. However, these cultivars also 

tend to be a smaller size, yielding less raw material for conversion to energy (Miller and 

McBee, 1993). The genetic mutation known as brown mid-rib in sorghum results in a 
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reduced level of lignin, and therefore vegetative tissues digest more completely in some 

conversion processes (Miller and McBee, 1993; Rooney et al., 2007). Despite these 

virtues of sorghum as a biofuel crop, some disadvantages and concerns with production 

may hinder its use. Because sorghum is not currently a high-value crop, such as maize or 

soybeans in the Midwest, it is not as advanced in research targeting crop improvement 

and management, in terms of best crop management practices. This, along with a 

continuous cropping system, can lead to weed control problems; and control is 

important to maintain as modification moves forward (Saballos, 2008; Zegada-Lizarazu 

and Monti, 2012). There are pre-emergence herbicides available for use with sorghum 

(Saballos, 2008). Due to the resilience of sorghum, pests and diseases are often not a 

serious problem (Saballos, 2008; Zegada-Lizarazu and Monti, 2012). However most 

varieties of sorghum are sensitive to organophosphorus pesticides, so other pest 

controls may be needed (Zegada-Lizarazu and Monti, 2012). Given annual bioenergy 

crops are expected to underperform on marginal lands, with or without fertilizer use, 

there is concern that pathogens and pests will become a greater threat (Reddy and Zehr, 

2014). Overall, this potential for genetic modification to improve the crop for the 

conversion pathway and its ability for growth with less pesticides, herbicides and 

nutrients than annual crops in many regions of the U.S. are reasons sorghum is a viable 

crop for maize farmers to transition to for biofuel production.  
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2.2 Perennial grasses 

As of 2006, just prior to the release of the EISA, the biofuel industry was not yet 

established and associated research not yet sufficiently complete for perennial grasses 

to garner as much attention as annual row crops (Ragauskas et al., 2006), but both have 

expanded since that time. Following the Ragauskas et al. (2006) review, a committee 

was created by the Water Science Technology Board to examine potential water quality 

effects of biofuel crop production. Studies evaluated by this committee have shown 

potential environmental advantages to perennial grasses as feedstock, including low 

nutrient use and low pesticide requirements (Committee on Water Implications of 

Biofuels Production in the United States, 2008). Perennial grasses also have the 

potential to contribute to soil, water, and nutrient conservation, and decreased runoff 

and chemical losses due to their extensive root system and extensive spatial and 

temporal aboveground coverage (Christian and Riche, 1998; Helmers et al., 2009; 

McIsaac et al., 2010). By definition, perennial grasses can be grown and harvested for 

multiple years without any replanting and associated soil disruption. The lack of soil 

disruption leads to increased soil organic matter and decreased soil erosion, thereby 

increasing soil water and nutrient retention (Borjesson, 1999; McLaughlin and Walsh, 

1998). Hydrologic modeling of switchgrass and Miscanthus production has shown that 

production of these crops may reduce erosion when compared to maize, wheat and 

soybeans (Cibin et al., 2015; Thomas et al., 2014). Theoretically, perennial grasses have 

positive environmental effects partially due to lower fertilizer requirements and 
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seasonal cycling of nutrients (Burks, 2013; Wedin and Tilman, 1990). The extensive and 

persistent root systems of perennial grasses have many benefits including efficient 

water and nutrient uptake and more stability during stress years (McLaughlin and 

Walsh, 1998). These root systems also reach much deeper than annual crop root 

systems and permit greater access to water and nutrient resources (Burk, 2013; 

Neukirchen et al., 1999). A recent study suggests that, even during their establishment 

phases, annual NO3-N losses from unfertilized Miscanthus and switchgrass are very 

similar and much lower than from maize (Lesur et al., 2014). It is important to note, 

however, that, even with all of these benefits, there could be some disadvantages to 

growing perennial crops for biofuel production. These disadvantages can include low 

yields during the establishment phase.  

 

Miscanthus is more widely grown and studied in Europe, where it has been shown to 

produce high yields, while switchgrass has often been the focus in the U.S. where it is 

native (Heaton et al., 2008). Prior to 2008 there were no peer-reviewed articles 

available presenting results from rigorous side-by-side comparisons of Miscanthus and 

switchgrass. Since the culmination of the study reported here, two such comparisons 

have been completed, but both were conducted on prime agricultural land; comparative 

outcomes on marginal lands remain undocumented (Trybula, 2012, McIsaac et al., 

2010). Those studies moved forward the knowledge-base of these crops, but not fill the 

knowledge gap regarding perennial grasses grown on marginal lands. 
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2.2.1 Miscanthus 

Although originally studied more widely in European countries (Lesur et al., 2014; 

Lewandowski et al., 2000), some studies of Miscanthus have begun at American 

universities, such as the University of Illinois (Heaton et al., 2008). Miscanthus is a 

perennial, warm-season grass, and the species Miscanthus x giganteus is a sterile hybrid 

that, at present, must be established by rhizome planting (Lewandowski et al., 2000). 

Miscanthus has the advantage of higher yields, up to 20-30 t ha-1 dry matter, as 

compared to 12 t ha-1 total dry matter (grain and 51% stover removal) from maize 

(Burks, 2013; Heaton et al., 2008; Varvel et al., 2008) and around 8-26 t ha-1 dry matter 

from switchgrass (Burks, 2013; Heaton et al., 2008; Lesur et al., 2014; Lewandowski et 

al., 2000). Miscanthus also has lower fertilizer inputs than traditional row crops, typically 

60 kg N ha-1 (Lesur et al., 2014; Lewandowski et al., 2000), compared to 100-200 kg N 

ha-1 for maize (Vitosh et al., 2000). The lower fertilizer requirements are expected to 

lead to lower nutrient losses to surface and subsurface waters. Burks (2013) found an 

establishing stand could accumulate up to 14 Mg dry matter ha-1 in rhizomes. By doing 

that, Miscanthus can store nitrogen below the surface for use in early spring growth, 

again allowing for lower fertilizer requirements (Neukirchen, et al., 1999). In an 

establishment-phase field study by Lesur et al. (2014), NO3-N leaching to subsurface 

water was determined to be very low, although leaching losses in the first winter (11 kg 

N ha-1) were higher than in the second winter (2 kg N ha-1); an expected result given that 

the crops are not yet established and therefore did not reach their potential growth. 
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This study as well as others used a hydrological model that estimated replacing maize-

soybean rotations with Miscanthus would reduce the NO3-N loading in a watershed 

(Lesur et al., 2014; Thomas et al., 2014; Trybula, 2012). These simulation studies are 

further supported by the fact that Miscanthus can continue to take up nutrients from 

soil into the fall (Lesur et al., 2014).  Some potential disadvantages to the use of 

Miscanthus as a biofuel crop have been identified and include decreased soil moisture 

and low winter hardiness (McIsaac et al., 2010). For example, McIsaac et al. (2010) 

found that Miscanthus reduced soil moisture throughout the growing season when 

compared with either maize-soybean or switchgrass, which could impact the water cycle 

by increasing the low flow season of nearby creeks and rivers while soil moisture levels 

recharge. The crop is also sensitive to low temperatures and has poor winter hardiness 

during extreme weather, especially during the establishment years (Lewandowski et al., 

2000). Another disadvantage to Miscanthus is that it must be established by 

transplanting rhizomes, which is time consuming and currently done by hand (McIsaac 

et al., 2010). Miscanthus has a narrow genetic base in the field because it is vegetatively 

propagated through rhizomes which means each plant is a genetic clone. A narrow 

genetic base can lead to susceptibility to catastrophic stand losses when adverse 

conditions prevail, as the response will be uniform across the crop system (Lewandowski 

et al., 2000). While these disadvantages should be further investigated, many prime 

agricultural land studies (Lesur et al., 2014; Lewandowski et al., 2000; McIsaac et al., 

2010) have demonstrated that Miscanthus has advantages that may help to meet the 

EISA goal for biofuel production while having minimal impact on water quality.  
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2.2.2 Switchgrass 

Switchgrass is a prairie grass native to regions of North America. After a succession of 

trials, the U.S. DOE chose switchgrass to be one of the main focuses of further biofuel 

studies due to switchgrass the broad adaptation throughout the U.S., high yields on 

marginal lands, and its ability to be harvested using conventional hay-harvesting 

equipment (Vogel et al., 2002, Wu and Liu, 2012). The upland ecotype of switchgrass is 

found mostly in drier soils and northern climates, while the lowland ecotype is found 

more often in wetter soils and southern climates (Stroup et al., 2003; Wullschleger et 

al., 2010). Lowland cultivars have demonstrated ability to adjust to adverse 

environmental conditions and produce higher yields than upland types (Alexopoulou et 

al., 2008; Stroup et al., 2003).  Liberty switchgrass is a high-yielding, lowland cultivar 

bred at the University of Nebraska-Lincoln. It is the product of two cultivars, Summer 

and Kanlow, and is bred in part to survive the harsh Midwest winters like an upland 

ecotype while maintaining superior yields (Vogel et al., 2014).  

 

Switchgrass has stiff, upright stems, and grows very densely. This, along with its 

extensive root system, slows water runoff and allows nutrients and soil to settle out of 

the water instead of running off, a potential benefit on marginal lands (Meyer, et al., 

1995). Switchgrass has been shown to produce a large amount of small roots, in 

contrast to Miscanthus producing mostly rhizomes. It can produce around 5.2 Mg ha-1 of 

rhizomes and 5.5 Mg ha-1 of small roots (Burks, 2013). McLaughlin and Walsh (1998) 
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noted that switchgrass has high water use efficiency, giving it the ability to keep 

producing even in summer months when water becomes more scarce. Furthermore, a 

more recent review by Domiguez-Faus et al. (2009) noted that switchgrass has a lower N 

requirement thereby reducing fertilizer losses to surface waters. The years of 

experience growing switchgrass as a forage or hay crop has led to a large knowledge-

base demonstrating switchgrass' ability to be productive on rain-fed, marginal lands 

(Mitchell et al., 2008). In a study on marginal land at the University of Nebraska, 

switchgrass was shown to have the same or greater potential ethanol yield as maize 

grain and stover (Varvel et al., 2008). Natural adaptation coupled with recent crop 

improvement efforts suggest switchgrass may be more competitive with Miscanthus in 

terms of biomass production while retaining advantageous ecosystem services 

associated with native crops and reducing concern for invasive take-over (Mitchell et al., 

2008). 

 

2.3 Short-rotation woody crops (SRWC) 

Many poplar species are native to the Northern Hemisphere and the United States, and 

breeders have developed a hybrid suitable for bioenergy production. Because of 

perceived importance in feedstock conversion, the focus of genetic modifications has 

been on the density of the wood and on lignin and cellulose composition (Sannigrahi et 

al., 2010). Common poplar species, upon maturity, can grow to approximately 26 m in 

height with trunk diameters of 60 cm (Sannigrahi et al., 2010), however this is a much 

longer time than poplar stands are expected to grow prior to harvest.  A suggested 
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practice for poplars grown for biomass is to harvest every 3 years, with stands being 

viable for 25-30 years and an anticipated yield between 7 and 12 t ha-1 (Rowe et al., 

2009). Poplar stands may be able to grow without fertilizer input, reducing nitrate 

leaching when compared to traditional crops. However, it is likely that commercial 

SRWC will be fertilized to maintain maximum yield (Rowe et al., 2009). Poplars can 

provide extensive ground cover, roots, and increased interception of stormwater, 

therefore reducing erosion risk (Rowe et al., 2009). Using short rotation poplar has the 

potential to also increase ecosystem benefits and biodiversity such as increased flora 

and avian diversity (Gasol et al., 2009; Ledin, 1998; Rowe et al., 2009). One significant 

disadvantage to poplar and SRWC is the comparatively high water demand, which is 

expected to constrain production to areas with either ample rainfall or access to 

supplemental irrigation. This is, in part, due to higher transpiration rates for SRWC, 

which can average 6 mm day-1 as compared to 2.3 mm day-1 for Miscanthus (Rowe et al., 

2009). This water demand can also have an effect on the local hydrology by potentially 

lessening flow to groundwater or local streams, further limiting where this crop can be 

suitably grown (Gasol et al., 2009).  

 

A few studies have evaluated the environmental effects of replacing crop land with 

SRWC (Dominguez-Faus et al., 2009; Perry et al., 2001; Updegraff et al., 2004). These 

studies use computer modeling and assume crops will be produced on prime farmland. 

These models indicate a positive environmental effect of growing SRWC in place of 

traditional crops, including a reduction in runoff (up to 29%), erosion (up to 65%), and 
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nitrogen loading in runoff (up to 35%), but with an increase in phosphorus loading in 

runoff (up to 29%) (Updegraff et al., 2004).
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CHAPTER 3. METHODS 

3.1 Study Area 

The study area was located at Throckmorton Purdue Agricultural Center (TPAC) in 

Lafayette, IN; latitude 41o17’45, longitude -86o54’13 (Figure 3.1). During the study 

period, January 2013-November 2014, the average high and low temperatures were 

34.2oC and -23.1oC, respectively; annual precipitation averaged 95.1 cm. Over the 

previous years (2004-2012), the average high and low temperatures were 34.4oC and -

22.6oC, respectively; the average annual precipitation was 103.4 cm. There were two 

experimental sites located within TPAC. These are designated TPAC West and TPAC East 

and are described in greater detail below. 
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Figure 3.1 Throckmorton Purdue Agricultural Center (TPAC). Location within Tippecanoe Co., IN. Both 
sites, TPAC West and TPAC East are designated. 
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3.2 TPAC West 

At TPAC West, there were four plant nutrition/soil fertility studies for candidate 

bioenergy crops already ongoing. For the work reported here, a leachate monitoring 

study was superimposed on these existing studies by equipping selected plots for 

subsurface water sampling (Figure 3.2). The soils in the plots were mostly silt loam; the 

soil series were Toronto (fine-silty, mixed, superactive, mesic Udollic Epiaqualfs), 

Octagon (fine-loamy, mixed, active, mesic Mollic Oxyaquic Hapludalfs), Lauramie (fine- 

loamy, mixed, active, mesic Mollic Hapludalfs), and Drummer (fine-silty, mixed, 

superactive, mesic Typic Endoaquolls). These soils were classified as eroded with 2-6% 

slopes and generally low in soil fertility according to regional soil testing 

recommendations (Vitosh et al, 1995) and can thus be considered marginal for annual 

row-crop production (Milbrandt et al., 2014). Leachate samples were collected from 

spring 2013 through the fall harvest of 2014 using a suction cup lysimeter (Soil Moisture 

soil water samplers 1900L12) inserted to a depth of approximately 30 cm. The four 

ongoing experiments used in this study were nutrient trials with switchgrass, 

Miscanthus, native prairie, and sorghum and maize (Figure 3.2).  

 

 The “Shawnee” switchgrass plots were planted in 2007 (Figures 3.2 and 3.3). Prior to 

that, the experimental area was planted with alfalfa (1997 to 2006) followed by one 

year of maize production (2006). “Shawnee” switchgrass was no-till drilled into corn 

stubble. The switchgrass was seeded at a rate of 6.7 kg ha-1. The historic alfalfa P/K 

experiment had four treatments arranged in a random complete block design with four 
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replicates. The P/K treatments applied were 0/0, 0/400, 75/0, and 75/400 kg ha-1 yr-1 P 

and K, respectively. Applications occurred annually from 2001 to 2004, inclusive (Berg et 

al., 2009). The on-going switchgrass bioenergy experiment overlaid the historic plot with 

an N rate experiment where 4 rates of N (0, 50, 100, 150 kg ha-1 yr-1) are applied 

annually as a randomly assigned split-plot treatment within the P/K main plots. 

Individual N rate subplots measured 3 x 9 m. For the leachate monitoring work reported 

here, we chose only two of the four historic P/K treatments (0,0 and 75,400 kg P,K ha-1 

yr-1). The historical P and K rates led to this site having higher residual P and K soil levels 

in half of the plots (Table 3.1). 

 

The Miscanthus experiment (Figures 3.2 and 3.3) was established in Spring 2009 by 

hand-transplanting plants propagated from rhizomes, at 1 per square meter, for a total 

plot size of 4 x 10 m. The previous crops for this experiment were alfalfa (1997-2005), 

maize (2006) and switchgrass (2007-2008). The switchgrass was tilled under spring 2009, 

prior to the planting of Miscanthus. The Miscanthus plots (Figure 3.3) were planted in a 

randomized complete block split plot design with four replicates and a main treatment 

of four N rates (0, 50, 100, 150 kg ha-1 yr-1), and two subplot treatments: without P and 

K or with P and K added at 30 kg ha-1 yr-1 and 300 kg ha-1 yr-1, respectively.   

 

The last perennial experiment used in the leachate study was a comparison of 

Miscanthus and Liberty switchgrass with mixed species stands of native prairie grasses 

grown without supplemental fertilizer; these plot were 6 x 9 m (Figures 3.2 and 3.4). The 
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plots were established in 2011 following a cropping history of alfalfa (2000-2005), 

soybeans (tilled, 2006), maize (no-tilled, 2007), soybeans (no-tilled, 2008), wheat (tilled, 

winter of 2008-2009), and soybeans (tilled, 2009-2010). Following tillage, the mixed 

prairie was planted in 2011 by hand broadcasting seed (4.5 kg ha-1, each of indiangrass 

and big bluestem) and finishing with a culti-packer. Within the ongoing prairie 

comparative experiment, only the four replicates of mixed native prairie plots were 

selected for this study.  

 

Prior to the 2011 implementation of the annual maize/sorghum experiment (Figures 3.2 

and 3.4), the cropping history for the land area was as described for the mixed prairie 

plots (above). The annual plots were arranged in a 4x5 factorial split plot design (Figure 

3.4) with four replicates and plots sized 4.5 x 6 m. The main plot treatments included 

five N rates (0, 50, 100, 150, 200 kg ha-1 yr-1). Subplots were four annual crops (dual 

purpose sorghum, photoperiod sensitive sorghum, sweet sorghum and maize) randomly 

assigned as split plots within main plot treatments. For this leachate monitoring study, 

we selected only the dual purpose sorghum and maize (control) with the N rates of 0 

and 150 kg N ha-1.  
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Figure 3.3 Randomized complete block split-plot layout of the TPAC West experiments including 
separate experiments for Miscanthus, switchgrass, sorghum, maize and native prairie. Each experiment 
has four replicates. 

Figure 3.2 TPAC West perennial grass experiments; locations of lysimeters are shown and numbered 
sequentially by replicate (e.g. replicate 1, lysimeter 1 & 2). 
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3.2.1 TPAC West Field Management 

All experiments were rain fed and no tillage was used to manage residue. The seeding 

rates for maize and sorghum were set at 79,040 and 269,230 seeds ha-1, respectively. 

Maize and sorghum were planted in early June (6/7/13, 6/7/14) using a John Deere 

7200 MaxEmerge2.  Annual fertilizer applications were made once in May (5/7/13, 

5/6/14) for the perennials and in late June (6/27/13, 7/2/14) for the annual row crops. 

The N fertilizer was Agrotaine-coated urea for the Miscanthus and switchgrass plots, 

broadcast applied, and urea ammonium nitrate (UAN, 28%), knifed in, for sorghum and 

maize plots. The P fertilizer applied to Miscanthus plots was super triple phosphate (0-

46-0; P2O5). The K fertilizer applied to the Miscanthus and switchgrass plots was a 

muriate of potash (0-0-60; KCl). Both P and K fertilizers were broadcast applied. The 

annuals are also treated with pre-emergent herbicides (glyphosate, ammonium sulfate, 

atrazine, and crop oil). Miscanthus, switchgrass, maize, and sorghum were harvested 

after first frost in late October-November. During this study, Miscanthus was harvested 

10/28/13 and 12/10/14, switchgrass 10/28/13 and 12/3/14, and maize/sorghum 

10/28/13 and 12/1/14. These plots were harvested using a CIBUS-S Wintersteiger with a 

Kemper silage head forage chopper. Harvest samples were collected using a 

Harvestmaster. Subsamples were dried in a forced air oven at 60oC and percent dry 

weight was calculated using Equation 1. 

Equation 1: % 𝐷𝑊 =  
𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑡 (𝑔)𝑑𝑟𝑖𝑒𝑑

𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑡 (𝑔)𝑤𝑒𝑡
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 Total harvest dry matter weight was calculated using a total harvest weight and the 

percent DW calculated from the subsample. Yield was calculated using length and width 

of the harvester passes to measure area and total harvest dry matter weight (Equation 

2). 

Equation 2: 𝑌𝑖𝑒𝑙𝑑 =
𝑡𝑜𝑡𝑎𝑙 𝐷𝑀 (𝑘𝑔)

ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 (ℎ𝑎)
 

Prior to machine harvesting of sorghum and maize plots, a 10-plant subsample was 

harvested by hand, cutting close to the soil surface. These subsamples were partitioned 

into grain and stover and dried to constant weight. Because they were removed from 

the rows that were then harvested with the Wintersteiger, the 10-plant dry weight was 

then added back to the dry weight of machine harvested yields.  
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Figure 3.4 TPAC west annual row plots and native prairie plots with green dots to indicate 
subsurface lysimeter sampling. 

Table 3.1 Soil test values measured in the experimental main plots of the Shawnee switchgrass 
(Figure 3.2). Values shown for 0-10 and 10-20 cm depth increments are means of four replicates. 
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3.3 TPAC East 

An additional experiment was located on the east side of TPAC. This site was selected 

because it was on a sloping land (6-12%) and highly erodible (Figure 3.5). The soils at 

this location are characterized as Octagon (fine-loamy, mixed, active, mesic Mollic 

Oxyaquic Hapludalfs) that have been overlaid with soil removed during the building of a 

nearby road. Prior to the establishment of the experiment, the land was planted to a 

maize and soybean rotation using zero tillage. The experiment features five crops: 

Miscanthus x giganteus, Liberty switchgrass, dual purpose sorghum, and hybrid poplars 

(Populus alba), with maize grown as a control. Crops are grown in a randomized 

complete block design with 4 replicates; each plot is 13m x15m. These plots were 

established in May 2011, and measurements for this experiment were collected from 

January 2013 to November 2014. One replicate of the study site was set up for water 

quality and quantity monitoring (Figure 3.6). Plots within this replicate were separated 

by metal plates (15m in length) vertically inserted in the soil to prevent any overland 

water flow between adjacent plots. Ground berms running across the top and bottom of 

the replicate prevented the run-on and uncontrolled runoff of water into the plots. The 

flow of water across the plot was funneled into metal flumes, located in the north 

corners, which directed all water into large collection tanks. Located inside the tanks 

was a Solinst Levelogger model 3001 to quantify the volume of runoff water. All plots 

equipped with flumes also contained three suction cup lysimeters for subsurface water 

sampling. Lysimeters were located in a diagonal downhill pattern from the southeast 

corner to the north corner with each lysimeter inserted to a depth of approximately 30 
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cm. The center of each plot also housed soil moisture sensors (Campbell Scientific 

CS655) located at three different depths (10, 20, and 30 cm). A weather station was also 

located next to these plots that collected data on: precipitation, air temperature, wind 

speed, relative humidity, and solar radiation. Soils were sampled in 2012 and sent to A & 

L Great Lakes laboratory for analysis of phosphorus, potassium, magnesium, calcium, 

soil pH, cation exchange capacity. Results from soil phosphorus testing done prior to the 

start of this experiment are shown in Table 4.6 and Appendix C. 
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Figure 3.5 Randomized design of all four replicates of biofuel 
crops at TPAC east. 

Figure 3.6 Water quality and quantity sampling setup at TPAC east, replicate 
one. 



36 

 

3
6
 

3.3.1 TPAC East Field Management 

In general, crop management for TPAC East followed best management practices for 

fertilizer rates (Figure 3.7) (Cadoux et al., 2012; Miguez et al., 2008; Muir et al., 2001; 

Vitosh et al. 2000; Vogel et al., 2002) . Seeding rates, planting and tillage practices were 

the same as described for TPAC West. Annuals were planted 6/7/13 and 6/7/14. 

Perennial grasses received 50 kg N ha-1 of Agrotaine-coated Urea on 5/14/13 and 

5/6/14, while the annual row crops received 150 kg N ha-1 urea ammonium nitrate (UAN 

28%) on 6/27/13 and 6/23/14. The poplar tree plots did not receive any fertilizer. Due to 

equipment limitations, the Agrotaine-coated Urea was broadcast by hand on these 

plots, and the UAN was knifed in as described for TPAC West. Miscanthus, switchgrass, 

maize, and sorghum were then harvested on 11/25/13 and 12/10/14, after frost. These 

plots were harvested as described for TPAC West. In 2013, Rep 1 (equipped for water 

quality sampling), was hand-harvested using a walk-behind sickle mower and hand 

collecting all aboveground biomass. This was due to equipment limitations with the 

harvester on steeply sloping ground. Biomass yields were calculated as described for 

TPAC West. 
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Figure 3.7 TPAC East, all crops and fertilizer treatments. Pictures taken at field site, October 2014. 
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3.4   Sample Collection 

Surface runoff samples were collected following every major storm event. Over the 

study period, there were 21 storm events and 86 lysimeter collection dates, resulting in 

74 and 996 surface and subsurface samples, respectively; these occurred between 

spring 2013 and the fall harvest of 2014. To collect runoff water samples, the tanks were 

shaken to make sure the samples were well-mixed and 500 mL of water were collected 

from each tank per sampling visit. Event runoff volume was calculated using 

Leveloggers. The runoff collection tanks were emptied after each collection to preserve 

the integrity of runoff volume measurements and quality of samples from the next 

event. After rainfall events, an aliquot of the runoff collected from each tank was 

analyzed for nutrient content (described below), and nutrient loads were calculated as 

follows: 

Equation 3: 𝑣𝑜𝑙𝑢𝑚𝑒 (𝐿) ∗ 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝑚𝑔

𝐿
∗

1

0.02 ℎ𝑎
= 𝑙𝑜𝑎𝑑 

𝑚𝑔

ℎ𝑎
 

where volume is the total volume recorded for each storm event, concentration is 

nutrient concentration measured from the aliquot collected, and 0.02 ha is the area of 

each plot. Sub-surface lysimeter samples were collected with varying frequency. During 

the wettest months of April and May (Appendix A), samples were collected three times 

per week. As the weather got warmer and rain events decreased, sampling decreased to 

twice a week, followed by once per week until harvest (Appendix B). Subsurface 

sampling did not occur in the winter due to extremely cold conditions. Subsurface 

samples were collected using long plastic tubing and a 60 mL syringe. The tubing was 
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fed into the lysimeter until it rested on the bottom and then the syringe was used to 

extract the sample. The syringe was rinsed with water between sequential samplings. 

Samples ranged anywhere from 5-250 mL in volume, with just one sample saved per 

lysimeter per visit. 

 

3.5 Analysis 

3.5.1 Laboratory Analysis 

Subsurface samples were analyzed for NO3-N and soluble reactive phosphorus (SRP). 

Surface samples were analyzed for NO3-N, SRP, total nitrogen (TN), total phosphorus 

(TP), and total suspended solids (TSS). Nutrient analyses for samples were completed 

with a Seal AQ2 Auto Analyzer ©. The NO3-N (NOx) test protocol was method no: EPA-

114-A Rev. 9, equivalent to USEPA Method 353.2. This method was a colorimetric test 

using a cadmium coil to reduce nitrate to nitrite and a sulfanilaminde and N-(1-

naphthyl)-ethylenediamine dihydrochloride reagent to detect nitrite. The SRP (o-PO4) 

test was AQ2 method: EPA-118-A Rev. 5, equivalent to USEPA Method 365.1. The TP 

samples were digested and analyzed with method: EPA-199-A Rev. 7, equivalent to 

USEPA 365.1. These tests used an ammonium molybdate and antimony potassium 

tartrate reagent to react with ascorbic acid to form a blue color that can then be 

detected with colorimetric analysis. The TN samples were digested following the Water-

Resources Investigations Report 03-4174 and analyzed with AQ2 method for NO3-N. The 

TSS were analyzed using EPA method 160.2. This method filters a known volume of 
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sample through a fiberglass filter, using a vacuum, and the amount of solids left on the 

filter were then dried overnight at 105oC and weighed to determine the TSS. 

 

3.5.2 Statistical Analysis 

TPAC West plots were distinguished by crops and fertilizer rate, and TPAC East plots 

were distinguished only by crop. Because TPAC East had only one replicate equipped 

with water quality sampling equipment, the three lysimeters located within each plot 

were treated as pseudo-replicates for the study. Subsurface water quality data was 

analyzed using an analysis of covariance (ANCOVA) (R, version 3.1.1) to test the main 

and interaction effects of the factors while controlling for the effects of the covariate. 

The independent variable was the pollutant (NOx, o-PO4, TN, TP, TSS) or yield and the 

factors were crop, fertilizer (high, low; only applies to TPAC West), and season. A 

Tukey's HSD test was used to determine factor significance. Because surface water 

samples have only one replicate, they were statistically examined as a comparison of 

means of multiple populations. This was done using R statistical package and a simple 

ANOVA test with crop as the only factor; a Tukey's HSD test determined factor 

significance. Linear regressions were done using Microsoft Excel.
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CHAPTER 4. RESULTS & DISCUSSION 

4.1 Results 

4.1.1 Nutrient leachate concentrations in subsurface waters 

4.1.1.1 Nitrate-N 

At TPAC West, significantly greater concentrations of NO3-N to subsurface waters 

(p<0.05) occurred in the maize and sorghum treatment receiving 150 kg N ha-1 (maize-

high and sorghum-high) when compared to maize and sorghum plots with zero N 

applied. Subsurface NO3-N concentrations of the perennial bioenergy crops ranged in 

average from 0.52 mg L-1 N to 4.3 mg L-1 N and were not significantly different, 

regardless of fertilizer treatment. The perennial treatments and zero N maize/sorghum 

treatments were not significantly different. The maximum concentrations of NO3-N for 

high-fertilized maize and sorghum were two-fold or more (220.8 mg L-1 N and 176.9 mg 

L-1 N) than the maximums observed for the other crops and treatments (Table 4.1).  

 

At TPAC East, most crop treatments were associated with a wide range of NO3-N 

concentrations, but sorghum was the only crop with a statistically higher mean (p<0.05). 

Sorghum's maximum nitrate concentration (233.5 mg L-1 N) was almost three-fold the 
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maximum concentration in maize (87.5 mg L-1 N), and more than three-fold that 

observed in all other crops (Table 4.2).   
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Table 4.1 Mean and maximum concentrations 
of nitrate in TPAC west plots. 

Figure 4.1 Effects of fertilizer rate and crop on NO3-N concentration in lysimeter leachate 
measured at TPAC West. Crops labeled 'A' or 'B' have been found to have sample means that 
are significantly different (Tukey's HSD, p<0.05).Data shown include all samples from all 
replicates 
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Table 4.2 Mean and maximum concentrations of nitrate measured in 
TPAC East lysimeter samples. 

Figure 4.2 Effects of crop on subsurface NO3-N concentration in leachate 
measured at TPAC East plots. Crops labeled 'A' or 'B' have been found to 
have sample means that are significantly different (Tukey's HSD, p<0.05). 
Data shown are from all samples in the three pseudo-replicates per plot. 
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4.1.1.2 Soluble reactive phosphorus 

At TPAC West, no significant differences (p<0.05) among all crops and treatments were 

found in the SRP concentration in lysimeter leachate (Figure 4.3). Maximum SRP 

concentrations ranged from a high of 4.6 mg L-1 in the prairie treatment to 0.81 mg L-1 in 

the Miscanthus zero P treatment (Table 4.3).  

 

 Although no crops are treated with phosphorus fertilizer at TPAC East, switchgrass and 

poplar showed statistically (p<0.05) lower SRP concentrations in leachate when 

compared to maize and sorghum (Figure 4.4). Miscanthus SRP concentrations fell in the 

middle range and the mean SRP was not statistically different from concentrations in 

other crops. The SRP maximum concentrations ranged from 0.96 mg L-1 in poplar 

treatment to 3.03 mg L-1 in sorghum treatment. 
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Table 4.3 Mean and maximum concentrations of SRP measured in 
lysimeters at TPAC West. 

Figure 4.3  Effects of fertilizer rate and crop on SRP concentrations measure 
in lysimeters at TPAC West. No one treatment is significantly different from 
the others. Data shown are from all samples and replicates. 
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Table 4.4 Mean and maximum concentrations of SRP measured in 
lysimeter samples from TPAC East. 

Figure 4.4 Effects of crop treatment on subsurface SRP concentrations in lysimeters at 
TPAC East. These plots receive no P fertilizer. Crops labeled 'A' or 'B' have been found 
to have sample means that are significantly different (Tukey's HSD, p<0.05). 
Miscanthus is not significantly different from any other treatment. Data shown are for 
all samples from all plots.  
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4.1.2 Nutrient losses to surface runoff 

Figures 4.5-4.10 show 2014 water quality data collected from surface water runoff at 

TPAC East. Table 4.5 shows runoff volume for all events that generated runoff from at 

least one of the TPAC East plots in 2014. The runoff volume weakly correlates with 

precipitation values (Figure 4.5), while Miscanthus had an R value of 0.71 and sorghum 

an R value of 0.72. Each typically showed lower volumes of runoff during times of lower 

precipitation. Runoff volume also appears to be weakly correlated with the maximum 

intensity of precipitation during a storm event, but all r values were less than 0.5 (Figure 

4.6). Some of the weather metrics were included here. For those not included, data can 

be found in Appendix A. Some data have been excluded as outliers, but are also 

included in Appendix A. September 11, 2014 data have been removed as outliers. There 

is no precipitation or soil moisture data to indicate the high runoff volumes observed by 

Leveloggers.
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Table 4.5 Runoff volumes measured per plot at TPAC East. Data shown are for all 2014 
samples. Volumes are calculated per each 24 storm event. 
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Figure 4.5 Scatterplot of runoff volume from an individual plot at TPAC East as affected by precipitation 
in a 24 hr period.  
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Figure 4.6 Scatterplot of runoff volume from an individual plot at TPAC East as affected by the maximum 
intensity of precipitation during a storm event.  
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4.1.2.1 Nitrate-N and Total nitrogen (TN) 

Reflecting both fewer runoff events and generally low runoff volumes (Table 4.5), NO3-N 

load losses in surface water from the switchgrass plots tended to be lower when 

compared to all other crops. Nitrate-N mean load losses ranged from 5.9 mg ha-1 N in 

switchgrass to 219 mg ha-1 N in sorghum. However, the mean load loss in switchgrass 

was not significantly different from that of maize, 123 mg ha-1 N, and poplar, 119.3 mg 

ha-1 N (Figure 4.7). The mean NO3-N load for Miscanthus (217.2 mg ha-1 P) and sorghum 

were significantly higher (p<0.05) than switchgrass. Event based NO3-N load losses for 

Miscanthus had among the highest load losses across all events, with the loads 

consistent throughout the growing season following fertilization. Peak event-based NO3-

N load losses from maize occurred during August, while sorghum's peak load losses 

occurred in early June (Figure 4.8). Total N loads were not statistically different among 

the five crops (p<0.05). Switchgrass had low values, with a mean of 416.2 mg ha-1 N due 

to the low runoff generated from these plots. Miscanthus TN loads varied greatly over 

the year sampling period, with a mean of 1149.8 mg N ha-1 and a maximum load of 8764 

mg N ha-1. Load values for all crops varied throughout the growing season, but did show 

some slight correlation between the TN load and the total amount of precipitation 

during the storm event (Figure 4.9). Poplar total N load losses remained relatively low, 

with a mean of 811.6 mg ha-1 N throughout the sampling period. Maximum TN load 

losses ranged from 2540 mg ha-1 N in switchgrass to 9309 mg ha-1 N in maize.  
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Figure 4.7 Time series showing event-based NO3-N loss in surface runoff at TPAC East. Data shown are for 
2014 samples collected from one replicate of all crops. Each load is calculated per storm event.  

Figure 4.8 Nitrate-N event-based runoff load over the sampling year as affected by crop at TPAC 
East. Data shown are from 2014 samples collected from 1 replicate. Means with different letters 
are significantly different (Tukey's HSD, p<0.05). 
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Figure 4.9 Scatter plot showing TN load as affected by the amount of precipitation received during a 24 hr 
period. Data shown are for 2014 samples collected from one replicate of all crops. Each load is calculated 
per storm event. 
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4.1.2.2 Soluble reactive phosphorus (SRP) and total phosphorus (TP) 

It is expected that TP losses from runoff will likely be considerably higher than SRP 

losses when the runoff contains considerable amounts of sediment. These data 

indicated that soil P levels were very high prior to the start of these treatments, with 

levels ranging from 50 mg P g-1 (ppm) to 58 mg P g-1 (ppm) in the replicate equipped for 

water sampling. There was no clear time of peak SRP loading, but higher loads occurred 

during the early part of the season (May). Figure 4.10 indicates the SRP loads to surface 

runoff may be weakly correlated with the amount of precipitation in a storm event. 

Maximum SRP load losses range from 300 mg ha-1 P in poplar to 2591 mg P ha-1 in 

sorghum. The SRP loads are not statistically different among crops (p<0.05), with means 

for each crop ranging from 75 mg P ha-1 P to 593 mg P ha-1. Event-based TP maximum 

load losses, ranging from 462 mg ha-1 P in poplar to 3684 mg ha-1 P in sorghum, occurred 

in the early growing season. All crops tended to follow the same trend of higher values 

early in the growing season (May-June) and decreasing values through the rest of the 

growing season (Figure 4.9).   
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Table 4.6 Soil phosphorus (STP) test results from 
2012. Data shown includes means of all four 
replicates. 

Figure 4.10 Scatter plot showing how precipitation during a storm event affects SRP load to surface 
waters. Data shown include all 2014 samples collected from one replicate of all crops. Each load is 
calculated per storm event. The r values for these series are less than 0.6, except switchgrass which is 
0.72, but biased by the large number of 0 values for runoff volume. 
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Figure 4.11 Time series of TP load losses in surface runoff at TPAC East. Data shown are for 2014 
samples collected from one replicate of all crops. Each load is calculated per storm event. 
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4.1.2.3 Total suspended solids 

Losses of TSS were also not statistically different among crops. As shown in time-series, 

all crops followed a similar trend, with higher erosion in the early season (May) that 

generally decreased during the subsequent months (Figure 4.10). Event-based TSS 

maximum load losses over the entire sample period ranged from 7.4 E4 mg ha-1 in poplar 

to 1.7 E6 mg ha-1 in maize, while the means over the sample period ranged from 1.9 E4 

mg ha-1 to 6.8 E5 mg ha-1.   
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Figure 4.12 Time series showing event-based over a 24 hour period TSS load losses in surface runoff at 
TPAC East. Data shown are for 2014 samples collected from one replicate of all crops. Each load is 
calculated per storm event. 
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Figure 4.13 Scatterplot of TSS load as affected by precipitation occurring over a 24 hr period. There was 
no clear correlation, except that switchgrass remains very low due to lack of runoff events, leading the r 
value to be 0.74. The highest loads originated in the maize and sorghum plots. 
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4.1.3 Biomass production as a function of species and fertilizer rate 

At TPAC West, all crops except Miscanthus showed an expected response to N fertilizer, 

with higher yields in the plots that received N fertilizer when compared to the crop-

specific, 0 N control (Figure 4.14). Irrespective of fertilizer, Miscanthus produced greater 

amounts of biomass (an average of 24 Mg ha-1 for TPAC West and 18 Mg ha-1 for TPAC 

East) when compared to all other crops at both locations (TPAC West and TPAC East). 

Switchgrass yielded an average of 10.7 Mg ha-1 at TPAC West and 13.5 Mg ha-1 at TPAC 

East. Maize yielded an average of 9.5 Mg ha-1 at TPAC West and 4.7 Mg ha-1 at TPAC 

East, while sorghum yielded 12.3 Mg ha-1 at TPAC West and 6.6 Mg ha-1 at TPAC East.  
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Figure 4.14 TPAC West yield. Data shown are for 2013-2014 samples collected from all 
crops. Means with different letters are significantly different (Tukey's HSD, p<0.05). 
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Figure 4.15 TPAC east yields. Data shown for all treatments and replicates sampled 
in 2013 & 2014. Means with different letters are significantly different (Tukey's 
HSD, p<0.05). 
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Table 4.7 Mean crop yields. Data shown for both TPAC West & East samples collected from all treatments 
in 2013 & 2014. High and low refers to N fertilizer rates given in Table 3.1. 
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4.2 Discussion 

4.2.1 Nutrient leachate concentration in subsurface waters 

There are several noted advantages to using suction cup lysimeters such as those used 

in this study. The decision to use suction cup lysimeters in this study draws mainly from 

these benefits: they cause minimal soil disturbance, are easy to install, and allow for 

sampling at the same location in the field for extended periods of time (Geibe et al., 

2006; Grossman and Udluft, 1991; Zotarelli et al., 2007). Suction cup lysimeters have a 

potential field disturbance of up to 1 m in all directions, however the radius of recharge 

is much smaller at 0.1-0.5 m (Grossman and Udluft, 1991). There are some uncertainties 

involved when using suction cup lysimeters for water quality sampling. It can be difficult 

to determine exactly where the water comes from and there is concern that large soil 

pores could create preferential flow (Geibe et al., 2006; Magid et al., 1992; Webster et 

al., 1993). This possibility of preferential flow from large soil pores can result in suction 

cup samples reflecting a static soil status than moving flux concentration (Magid et al., 

1992). Because of the small potential field and recharge area, there is question as to 

how many samplers are needed in an area to overcome spatial heterogeneity (Webster 

et al., 1993).  

4.2.1.1 Nitrate-N 

This study indicates relatively less NO3-N leaching to subsurface waters from perennial 

grasses when compared to maize on marginal lands. Nitrogen often acts along with P to 
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regulate phytoplankton growth in water, especially in seawaters where N is generally 

found to be the limiting nutrient for primary productivity (Turner and Rabalais, 1991). 

Nitrogen fertilizer is also more prevalently applied to farmland in the Midwest 

compared to the rest of the country (Turner and Rabalais, 1991).  Because of an 

intensive root system and lower fertilizer requirements for perennial grasses, it can be 

expected that nutrient losses will be lower when compared to annual crops with greater 

fertilizer requirements. In a winter-time study by Christian and Riche (1998), the authors 

also observed low NO3-N losses to subsurface water from Miscanthus plots (less than 5 

mg L-1), similar to data from winter month's samples from all three Miscanthus 

experiments in this study. Christian and Riche (1998) described a maximum 

concentration of 60 mg L-1 in the first year from the highest N-fertilized (120 kg N ha-1) 

Miscanthus plots in their study. This maximum peak decreased in subsequent years to a 

low of 40 to 50 mg N L-1 observed three years after stand establishment (Christian and 

Riche, 1998). This study is comparable to the work reported here because the soil type 

is similar and the study was completed using suction cup lysimeters, although a greater 

difference could occur because they were sampled at a more shallow depth of 16 cm. 

The fertilization rate is similar to the Miscanthus-high plots of this study. The data from 

TPAC West and TPAC East indicated that on these marginal lands, the maximum 

concentrations were lower than the 60 mg N L-1 value reported by Christian and Riche 

(1998) over the entire study period (Tables 4.1 & 4.2), with the Miscanthus-high plots 

having a maximum value within the 40-50 mg N L-1 values observed by the authors. In a 

field study completed at Iowa State University using subsurface drainage flow-weighted 
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samples, switchgrass plots yielded low NO3-N concentrations (<5 mg L-1), with a slight 

increase in the summer following spring fertilization (Helmers et al., 2009).  

 

In accordance with the findings reported here, a few studies identified a significantly 

(p<0.05) greater NO3-N leaching loss from maize and sorghum plots than switchgrass 

and Miscanthus (McIsaac et al., 2010; Thomas et al., 2014; Trybula, 2012). However, 

unlike this study at TPAC, these plots were located on prime agricultural land (McIsaac 

et al., 2010; Trybula, 2012).  It is expected to see greater nutrient losses from marginal 

lands than prime agricultural lands due to high fertilizer rates and smaller crop growth. 

In a study using data from a nearby location, the Water Quality Field Station (WQFS) (21 

km), but on land considered prime for traditional row cropping, continuous maize 

showed subsurface nitrate drainage concentrations ranging from 4.1 mg L-1 to 25.5 mg L-

1 (Trybula, 2012). This is similar to the observed values at TPAC, however the maize-high 

plots on TPAC west had even higher nitrate losses to subsurface drainage than the 

values reported by Trybula (2012). These higher observed NO3-N leaching losses could 

be attributed to poor crop growth on marginal land. As observed, yields are lower on 

marginal land, as low as 25% of the expected yield, so there is less plant N removed with 

harvest. Another study completed on prime agricultural land with sorghum and maize 

indicated an average of 6.0 mg L-1 of nitrate loss to subsurface waters, similar to the 

unfertilized plots in this study (Long, 2015). 
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A study by Jaynes et al. (2001), demonstrated a correlation between fertilizer rate and 

nitrate concentration in subsurface drainage water with maize crops. This TPAC study 

reaffirms those results with observed statistical difference between both maize (0 N) 

and sorghum (0 N) and their higher fertilized counterparts (Figure 4.1). This can also be 

seen in the higher concentrations observed in the fertilized maize and sorghum plots in 

TPAC east.  

 

Contrary to this study’s findings, in both a computer modeling study and field study, 

switchgrass has sometimes been shown to have a slight increase in subsurface nitrate 

loading when fertilized at the same rate as Miscanthus (Cibin et al., 2015; Trybula, 

2012). The greater loss from switchgrass was attributed to the possibility that 

Miscanthus has a higher nitrogen uptake than switchgrass. This was not observed in the 

concentration measurements taken in this study. However our measurements were only 

of concentration without volume for load calculations to be directly compared to the 

study by Cibin et al. (2015).  

 

4.2.1.2 Soluble reactive phosphorus 

While phosphorus is a major water quality parameter of concern in the Midwest, 

measurements on subsurface losses are very limited. In general, this study did not 

indicate significant SRP leaching to subsurface waters from crops not receiving fertilizer. 

This is likely due to low soil P levels (Appendix C). The Miscanthus treatments with 
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varied levels of P fertilizer applied (0, 30 kg ha-1) indicated some phosphorus loss from 

plots that are fertilized. However, it has been noted that phosphorus does not travel 

quickly vertically through the soil profile (Eghball et al., 1996; Heckrath et al., 1995). 

Because these lysimeters are located at a 30 cm depth, it is possible some of the soil P 

effects can only be seen in the upper soil surface layers and not at this depth. Appendix 

C shows soil P levels as a result of treatment in the perennial plots. In a 2-year study 

completed in a nearby location, on prime agricultural land, maize and soybean, treated 

with different fertilizers and rates and untreated prairie grasses were compared for 

subsurface nutrient loss (Hernandez-Ramirez et al., 2011). In a 2-year study, the authors 

indicate no significant difference between the treatments and phosphorus loss except 

for continuous maize fertilized in the fall with swine manure (Hernandez-Ramirez et al., 

2011). The TPAC east plots received no phosphorus fertilizer; therefore the 

concentrations and statistical differences seen in Figure 4.4 are more likely related to 

the Soil test P (STP) levels shown in Table 4.6 and Appendix C. Simulation studies have 

indicated a reduction in SRP ranging from 2.6% to 36% when bioenergy crops replace 

maize/soybean rotations (Cibin et al., 2015). However, empirical studies including no 

phosphorus fertilizer application, indicate very low phosphorus levels in subsurface 

drainage from all crops (Trybula, 2012). A recent review by King et al. (2015) indicated 

increased interest in phosphorus transport via subsurface pathways, especially tile 

drainage. The authors indicated that while interest and studies have increased, the 

complex nature of subsurface phosphorus transport made definitive results difficult to 
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obtain. Losses of phosphorus were reported to be greater in the non-growing season 

and dependent on weather variables, such as rain storm events (King et al., 2015).  

 

4.2.2 Nutrient losses to surface runoff 

4.2.2.1 Nitrate-N and total nitrogen 

Perennial grasses are expected to have lower NO3-N loads to surface runoff when 

compared to annual row crops. Previous work has demonstrated switchgrass can reduce 

the amount of sediment and nutrients in runoff, corresponding with findings in this 

study. A field study by Lee et al. (1999) showed a 31-51% reduction in TN, and a 28-47% 

reduction in NO3-N when using switchgrass as a buffer strip for traditional row cropping 

when compared to traditional row cropping without a buffer. Watershed modeling 

studies have suggested that both switchgrass and Miscanthus can decrease the amount 

of sediment and NO3-N in runoff as well as the overall amount of runoff (Cibin et al., 

2015; Nelson et al., 2006; Thomas et al., 2014; Trybula, 2012). These modeling 

predictions are contrary to what was observed at TPAC East where the Miscanthus 

treatment NO3-N surface losses were not significantly different from annual row 

cropping treatments. However, Miscanthus on this plot did not produce biomass yield at 

the rate expected for the Midwest region or at TPAC West; some of these nutrient 

losses can be attributed to a poor biomass production. While switchgrass had lower 

surface runoff losses, it was only significantly different from sorghum and Miscanthus. 

These results are potentially different from modeling results due to performance of the 
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crops on marginal land. Miscanthus on marginal land at TPAC East produced only 75% 

the amount of above-ground biomass as TPAC West, and only 63% the biomass 

expected on prime agricultural land (Heaton et al., 2008). The trend in surface nutrient 

loss was weakly correlated to sediment loading for adsorbed nutrients (organic N and 

P). 

 

4.2.2.2 Soluble reactive phosphorus and total phosphorus 

There is some indication of higher P losses to surface runoff early in the growing season, 

April through early June. Because the perennial grasses are much smaller during this 

time and because the maize and sorghum had recently been planted (thus, disturbing 

the soil), more soil was exposed directly to rainfall, increasing the likelihood of soil 

erosion and phosphorus load increases. It has already been shown that soil test P levels 

directly correlate to the amount of dissolved P in runoff (Edwards et al., 1993; Pote et 

al., 1999; Shreiber, 1988; & Yli-Halla et al., 1995). The soil in TPAC East plots had a high 

phosphorus concentration (50-58 Bray-1 equiv ppm-P) (Table 4.6), and, according to 

regional fertilizer recommendations, would require no additional fertilizer (Vitosh et al., 

2000). Because the soil in these plots had high phosphorus, it is expected that rainfall 

during a time of exposed soil on this higher sloping land would result in greater 

phosphorus (SRP and TP) loads to surface water. Therefore, one possible reason 

switchgrass, Miscanthus, and poplar showed slightly lower phosphorus loads could be 

due to the lack of soil disruption and extensive root systems that help prevent soil 
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erosion (Romkens et al., 1973; Andraski et al., 1985; Puustinen et al., 2005). Switchgrass 

has been simulated to reduce TP by 39-55% and SRP by 38-36% when used as a buffer 

strip, when compared to agricultural land without a buffer (Lee et al., 1999; Thomas et 

al., 2014). However, on the TPAC East plots, SRP and TP did not show statistically 

different results among crops. 

 

4.2.2.3 Total suspended solids 

The data shows no clear pattern over the year of this study for TSS, and no one crop had 

a statistically significant effect on TSS (p<0.05). The data show greater loads during the 

early months of the growing season, when there is more exposed soil. The loads 

generally decreased throughout the growing season. Maize and sorghum show greater 

loads again later in the season likely due to the exposed soil between rows and greater 

runoff volumes shown in Table 4.5. Other field studies have also indicated that land 

cover and less tillage help prevent erosion (Nyakatawa et al., 2006; Puustinen et al., 

2005). Poplar forms a protective soil barrier, with its canopy, fallen leaves on soil 

surface, and an extensive root system (Wilkinson, 1999; Kort et al., 1998). At the time of 

this study, the poplars were in years 3 and 4 of growth and therefore the surface soil 

was not disturbed by a recent planting or harvesting. 

 

 Modeling studies have estimated the amount of soil erosion to increase as more maize 

stover is removed for biofuels (Cibin et al., 2012; Wu and Liu, 2012). This soil erosion 
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estimation may likely also apply to sorghum, as it is managed for planting and tillage in 

the same way as maize and has similar growth patterns. Erosion rates have been 

estimated by watershed models to be similar for Miscanthus and switchgrass, with a 

reduction ranging from 0.2% to 24% when these bioenergy crops were grown in place of 

traditional row crops (Cibin et al., 2015), and even greater decreases seen with that 

scenario, 30-70%, in a study by Thomas et al. (2014). Perennial grasses, requiring no 

tillage and keeping a root system underground all year, show a great reduction in soil 

erosion (Cibin et al., 2015; Lee et al., 1999; Nyakatawa et al., 2006; Wu and Liu, 2012). 

The results of this study are consistent with both published data and simulation results, 

with perennial grasses exhibiting less erosion than annual row crops. The data is not 

statistically significant in this TPAC East study, possibly due to the low number of 

samples over only one year of data collection and only one replicate. This data be 

considered highly preliminary. 

 

4.2.3 Production as a factor of species and fertilizer rate 

This study indicates a greater production of biomass from Miscanthus than any other 

crop at both experimental sites. The Miscanthus yield results from this study were 

comparable to a study by Heaton et al. (2008), which indicated Miscanthus grown in the 

Midwest can produce an average of 29.6 t ha-1. The TPAC West yields were comparable 

in value at an average of 24.4 t ha-1. However, the TPAC East plots underperformed, 

producing an average of 18.8 t ha-1. This is likely due to the higher slope and drier soils 

at TPAC East. A SWAT modeling study using an improved model representation of 
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perennial grasses indicated that, on higher sloping land (>2%), Miscanthus can produce 

around 21.6 t ha-1 and switchgrass 10.7 t ha-1 (Cibin et al., 2015). Similarly, Heaton et al. 

(2008) indicated Cave-in-Rock switchgrass, an upland ecotype, could produce around 

10.4 t ha-1 in the Midwest. The TPAC study indicated switchgrass production of that 

amount or higher. Switchgrass is estimated to produce 5-9.4 t ac-1 by the Department of 

Energy's Billion Ton Update Report (2011). It performed especially well on the TPAC East 

plots, where Liberty switchgrass was grown. Liberty switchgrass has been shown to have 

a production potential 20% greater than Shawnee switchgrass variety (Vogel et al., 

2014). The yields of Liberty switchgrass at TPAC East are slightly lower than the 18.1 t 

ha-1 indicated by Vogel et al. (2014), however this can be attributed to poorer growth on 

marginal lands. Lower yields of most cellulosic biofuel crops can occur because soils on a 

slope are typically drier (Plaster, 2014). However, switchgrass is reported to have a 

lower water requirement per unit biomass (Heaton, et al., 2004) and is therefore better 

able to perform on marginal lands. The Shawnee switchgrass yields on TPAC west are 

similar, with fertilizer, to expected yields of 12.5 t ha-1 (Vogel et al., 2014). In a study by 

Heaton et al. (2004), Miscanthus had a greater yield response to water quantity and 

switchgrass had a greater yield response to N fertilizer rates. In another field study 

located at WQFS, the same variety of sorghum was observed to produce between 14-22 

Mg ha-1 of aboveground biomass, with an average yield over five years of 17.67 Mg ha-1 

(Long, 2015). The sorghum yields of this TPAC study were much lower, particularly on 

TPAC east. Maize had indicated an aboveground biomass yield of 10-20 Mg ha-1, with a 

five year average of 16.68 Mg ha-1 (Linden et al., 2000; Long, 2015). At both TPAC West 
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and TPAC East sites, the maize yields were low compared with expected yields on 

agricultural land in the region, with TPAC East having markedly lower yields. It is 

generally expected that annual row crop yield will be less on marginal land than on 

prime agricultural land. The maize yields in this TPAC study were much lower, between 

8-11 t ha-1 at TPAC West and 4 t ha-1 at TPAC East. Sorghum can be found to produce 

greater biomass during high stress times. During the drought in 2012 when there was 

only 812 total mm of total precipitation, sorghum out produced maize by 5-7 t ha-1 

(Long, 2015). In 2014, the yields for row crops (maize and sorghum) were much lower 

than in 2013, this may reflect weed pressure in the plots (Ryan Dierking, Purdue 

University, personal communication, 4 February 2015).While in this TPAC study, 

sorghum typically yielded higher than maize, both were significantly outperformed by 

Miscanthus (p<0.05). 
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CHAPTER 5. SUMMARY, CONCLUSIONS, POTENTIAL LIMITATIONS AND 
RECOMMENDATIONS FOR FUTURE RESEARCH 

5.1 Summary & Conclusions 

This study has demonstrated that with or without fertilizers, perennial grasses 

(switchgrass and Miscanthus) have a less negative water quality impact (nutrient loss 

and soil erosion) than maize and sorghum with added fertilizer. The perennial grasses 

also demonstrate a greater biomass production potential than annual row crops when 

grown on lands considered agriculturally marginal. This leads to the conclusion that 

perennial grasses treated with N fertilizer, particularly Miscanthus, may be better 

alternatives for biofuel production on marginal land.  

 Objective 1: Perennial grasses show less subsurface NO3-N losses than annual 

row crops, with averages of 2.4 mg N L-1 and 19.1 mg N L-1, respectively. Most of 

the study plots did not receive P fertilizer, therefore subsurface SRP 

concentrations are more likely related to STP levels. However, of the perennial 

plots treated with P fertilizer, Miscanthus shows significantly more SRP losses 

than switchgrass. Miscanthus had a mean loss of 0.33 mg P L-1 and switchgrass 

had a mean loss of 0.1 mg P L-1. 
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 Objective 2: In one year of data collection, the five crops evaluated in this study 

generally showed no significant effect on nutrient losses or soil erosion. 

Switchgrass had significantly less NO3-N surface loads than Miscanthus and 

sorghum, with mean loads of 14.8 mg N ha-1, 543.1 mg N ha-1, and 549.8 mg N 

ha-1, respectively. No other nutrient or test parameter was significantly affected 

by crop treatment in one year of this study.  

 Objective 3: Miscanthus has the highest production potential, with a mean yield 

of 22.5 t ha-1. Switchgrass produced a mean biomass of 11.6 t ha-1, while maize 

and sorghum produced 7.9 t ha-1 and 10.4 t ha-1, respectively. Native prairie 

grasses produced the least biomass at 6.1 t ha-1.  

 

5.2 Potential limitations of study 

There are a few potential limitations of this study. The timeframe of this study was 

limited to only two years of subsurface nutrient concentration data and only one year of 

surface loading data. The subsurface data collected was only concentration and did not 

include loads. The phosphorus loss as a result of nutrient application is limited to only 

TPAC West switchgrass and Miscanthus and does not include any maize or sorghum 

plots; therefore this data is not indicative of all crop effects on phosphorus losses. TPAC 

East only has one replicate equipped for water quality monitoring, allowing only for 

statistics with pseudo-replicates and basic mean comparisons instead of replicates for 

significance. There are no poplar yield data included due to time restrictions for this 
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study. Because the poplar plot had not been harvested, the harvest effects on water 

quality were not examined.  

 

5.3 Future research 

Future research in the field study of biofuel crops on marginal land and the 

environmental consequences of this production can include improvements to this study, 

such as an expansion of this field setup to include all four replicates of surface water 

monitoring. Another potential improvement to this study is to determine P application 

effects on all crops. This expansion will allow for statistical significance testing between 

replicates. Coupling these data with an environmental model, such as the SWAT model, 

would improve model representation of biofuel management and production on 

marginal lands. To take this study another step further, more types of marginal lands 

could be evaluated, such as those mentioned by Milbrandt et al. (2014). 
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Appendix A Weather Matrices and Surface Runoff 
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Appendix B Sample dates with number of subsurface and surface samples collected  



90 
 

 

9
0
 

Appendix C Soil Analysis Results. A&L Laboratories (Fort Wayne, IN) 
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