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ABSTRACT 

 

 

 

Hughes, Caroline E. MSE, Purdue University, December 2015. Understanding Yield 

Effects of Controlled Drainage through Soil Moisture Excess and Deficit Metrics. Major 

Professor: Jane R. Frankenberger. 

 

 

 

Understanding the risks or benefits to crop yields is an important factor in 

implementing a water management practice such as controlled drainage. Soil moisture 

from monitoring sites in Minnesota, Iowa, Indiana, and Ohio were used to compare 

deficit and excess moisture conditions in free-draining and controlled drainage sites and 

understand those inconsistent impacts. Time and magnitude of soil moisture deficit and 

excess stress were determined using metrics based on thresholds, depths in the soil 

profile, and corn growth stages. Seventeen metrics were found to show statistically 

significant correlation with yields as well as a difference in the quantity of stress between 

controlled and free-draining fields. Based on one metric of soil moisture deficit stress, 

free-draining plots experienced 77 additional cm-days of moisture deficit stress from the 

R3 stage until maturity compared to controlled plots and an additional 118 cm-days over 

the entire season. Meanwhile, controlled drainage plots were found to experience 

between 0.5 and 3.19 additional cm-days of excess stress during the period from seedling 

emergence to V6 compared to free-draining plots. In general at the sites studied, moisture 

deficits occurred during the latter half of the growing season while moisture excesses 
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occurred during the earlier half; both types of stress were shown, when quantified with 

several different metrics, to correlate negatively with yield. While moisture excess was 

greater with controlled drainage, the differences were small and often not statistically 

significant; meanwhile greater differences were found in moisture deficit between free 

and controlled drainage. Due to a reduction in soil moisture deficit, controlled drainage 

has the potential to provide yield benefits in years when deficit stress occurs. 
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CHAPTER 1 INTRODUCTION 

The availability of inexpensive soil moisture sensors has made soil moisture data 

more widely available and provided opportunities to study and characterize an important 

hydrologic variable. The field of drainage, and the study of drainage strategies such as 

controlled drainage, can benefit from soil moisture monitoring which contributes to more 

complete monitoring and understanding of controlled drainage impacts. Many controlled 

drainage studies have focused primarily on water quality impacts, especially nitrate-N 

reductions via decreased drainflow (Lalonde, et al. 1996, Skaggs et al. 2010, Evans et al. 

1995, Adeuya et al. 2012). While these impacts are fairly consistent, effects on crop yield 

remain difficult to understand and predict. For example, Cook and Verma (2012) found a 

nitrate load reduction averaging 61% over two years but no “consistent pattern” in yield 

effects Additional insights can be gained from monitoring additional environmental 

variables.

Measuring soil moisture means knowing the “temporal condition of water 

available to plants” (Legates, et al. 2011) and for this reason is useful in understanding 

the inconsistent yield effects of controlled drainage. For example, Madramootoo et al. 

(2001) monitored soil moisture over a 2-year study of a water table management 

experiment and found that in a year when soil moisture exceeded field capacity during 

June, corn yields in the managed field were 25% lower than that of a freely-draining 

field. When some aspect of a field’s hydrologic response is altered by a particular 
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drainage practice, it is important to not only characterize the change but determine what 

the end effect will be on other processes or properties, such as the field’s agricultural 

productivity.  Though pollution generation or contribution to flooding are also areas 

important to study, this work focuses on the use of soil moisture data to evaluate the 

performance of controlled drainage in terms of crop yield. 

When used for decision support, soil moisture data can be directly useful to 

farmers. Boyd (2015) reported that monitoring soil moisture at the field scale with 

capacitance probes is especially useful for scheduling irrigation. In rain-fed agriculture, 

the information can be used to optimize N and other inputs to maximize yield and reduce 

losses. Phillips et al. (2014) called for on-site soil moisture monitoring to be integrated 

with remotely sensed soil moisture as well as measurements of other environmental 

variables and used in predictive models for the purpose of comparing different cropping 

systems, including ones that introduce new or alternative crops to existing rotations.  

Researchers often call for measurements of soil moisture for the purpose of 

calibrating and validating hydrologic models that then predict soil moisture based on 

surrogate information (Vereecken, et al. 2008). In turn, this simulated soil moisture can 

be used to answer questions about agricultural management. For example, Narsimhand 

and Srinivasan (2005) developed the Soil Moisture Deficit Index for the SWAT model 

and found it to be highly correlated with wheat and sorghum yields. Soil moisture was 

chosen as the best hydrologic variable for the index (as opposed to some other measure 

like water table) because crops can extract water from different depths in the soil profile 

depending on their growth stage. Though their deficit index applied to a spatial scale 

larger than a field, analyzing soil moisture deficits can also be effective at the scale of an 
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individual field, without additional datasets or modeling software. When soil moisture 

and yield information is incorporated with information about controlled drainage, such as 

when or how much the soil moisture will be most affected by the drainage system, a 

better understanding of potential costs and benefits of a controlled drainage system can 

result. Though controlled drainage can offer important water quality benefits such as N 

load reductions, its widespread adoption will be more likely if questions about its yield 

impacts are more definitively answered.  

1.1 Objectives 

This work explores the yield impacts of controlled drainage through analysis of 

soil moisture across four controlled drainage study sites in the Midwest. Monitoring soil 

moisture at high temporal resolution and analyzing it based on soil properties at different 

locations requires the coordination of data from several sources and an efficient and 

consistent method for handling data gaps. The objectives for the work are: 

1. Create consistent and complete soil moisture datasets for four drainage sites 

by collecting, processing, and filling soil moisture monitoring data and 

assessing the quality of the resulting data.  

2. Quantify relationships between soil moisture excess and deficit stresses and 

corn crop yield under controlled and free drainage, by developing soil 

moisture stress metrics. 

3. Identify metrics that successfully correlate with yield and show differences 

between controlled and free drainage, and use the results to explain yield 

variation across years and sites. 
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1.2 Organization 

Objective 1 is addressed by Chapter 2, which describes data collection and 

handling and the effect of filling on data quality. Chapter 3 covers Objectives 2 and 3, 

including the analysis of soil moisture data from the four drainage sites; the 

determination of soil moisture excess and deficit; the relationship between excess or 

deficit to yield reductions; and a comparison of the soil moisture stresses in free-draining 

and controlled plots. Conclusions and suggestions for future research are presented in 

Chapter 4. 
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CHAPTER 2 SOIL MOISTURE DATA COLLECTION AND HANDLING 

This chapter describes each controlled drainage site analyzed for yield impact in 

Chapter 3, focusing on the methods of preparing soil moisture data for that analysis. The 

desired outcome of the data handling was to create a complete soil moisture time series 

during the growing seasons when corn was grown.

2.1 Sites 

Volumetric soil moisture was monitored continuously at four sites in the Midwest. 

The sites, located in Minnesota, Iowa, Indiana, and Ohio, had plots with both free 

drainage and controlled drainage, with two replicates each in Iowa and Indiana (Figure 

2.1). Three sites, in Indiana, Ohio, and Iowa, used probes manufactured by Decagon 

Devices (5TM, www.decagon.com) to measure soil moisture and recorded data on a 

Decagon Em50 data logger, while in Minnesota soil moisture was monitored with TDR 

probes also manufactured by Decagon and recorded data using a Campbell Scientific 

CR1000. Probes were buried at depths of 10 cm, 20 cm, 40 cm, 60 cm, and 100 cm. 

Temporal resolution was 5 minutes. Porosity, determined from bulk density 

measurements at several depths, was computed from a simple average of three to four 

sampling locations within each plot and a weighted average over the soil profile (Table 

2.1). 
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Figure 2.1 Indiana (DPAC), Iowa (SERF), Ohio (St. Johns), and Minnesota (SWROC) 

field site layouts. 

 

The Indiana site was located at the Davis Purdue Agricultural Center (DPAC), in 

Randolph County (40.26 N, 85.16 W). The field was divided into four plots about 4 ha in 

area. Two plots were conventionally drained and two had controlled drainage. During the 

years that corn was grown (2012 and 2014), the outlet depth was 0.4 m during the 

growing season and varied from 0.1 to the depth of the drain during the non-growing 

season (Figure 2.2). Soil moisture was monitored at one location in each plot; in the 

controlled plots, nests were located within the zone of influence of the outlet control 

structure. 
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The Iowa site was located at the Southeast Research and Demonstration Farm 

(SERF) in Crawfordsville, IA (41.2 N, 91.5 W). Two plots at this site had controlled 

drainage and two had conventional drainage. Only the continuous corn, planted on half of 

each plot in an area measuring 73.1 m wide by 24 rows of corn, was used in this analysis. 

One nest of soil moisture sensors was located in the continuous corn portion of each plot. 

Boards were kept at a depth of 0.4 m during early 2012, replaced at 0.76 m after planting 

in 2012, and maintained at this depth for 2013 and 2014 (Figure 2.2). 

The Ohio site, St. Johns, was on a private farm in Clay Township, Auglaize 

County, in northwestern Ohio (40.5 N, 84.1 W).  One field was divided into two plots, 

approximately 6.9 ha in area each, one having controlled drainage and one having free 

drainage. The depth of the boards at St. Johns varied from 1.0 to 0.2 m during the 

growing season and were 0.4 m during the winter. Soil moisture was monitored at three 

locations in each plot. 

The Minnesota site was located at the Southwest Research and Outreach Center in 

Lamberton, MN (44.3 N, 95.5 W). Field B was divided into two plots, one with 

controlled drainage and one with free drainage. Field G had four plots: controlled 

drainage, free drainage, no drainage, and drainage with subirrigation. Only the controlled 

and free-draining plots, GB and GA, were analyzed. The exact depths of the boards in the 

control structure not recorded. Soil moisture was monitored at a single location in each 

plot.  
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Figure 2.2 Key board and field management dates for each year and field site. 
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Table 2.1. Average porosity and soil series at DPAC, SERF, St. Johns, and SWROC 

Plot Porosity range 
Average 

Porosity 
Soil series 

DPACE NE 0.36 - .51 0.44 Blount silt loam 

DPAC NW 0.36 - 0.44 0.44 Condit silt loam 

DPAC SE 0.41 - 0.51 0.46 
Pewamo silty clay loam/Condit 

silt loam 

DPAC SW 0.42 - 0.50 0.45 Pewamo silty clay loam 

SERF 2 0.41 - 0.62 0.48 Taintor silty clay loam 

SERF 3 0.46 - 0.59 0.50 Kalona silty clay loam 

SERF 4 0.44 - 0.54 0.48 Taintor silty clay loam 

SERF 5 0.43 - 0.61 0.49 Kalona silty clay loam 

SJ N1 0.43 - 0.47 0.45 
Montgomery silty clay loam/ 

Blount silt loam 

SJ N2 0.40 - 0.48 0.43 
Montgomery silty clay loam/ 

Blount silt loam 

SJ N3 0.39 - 0.49 0.43 
Montgomery silty clay loam/ 

Blount silt loam 

SJ S1 0.41 - 0.46 0.43 
Montgomery silty clay loam/ 

Blount silt loam 

SJ S2 0.39 - 0.47 0.43 
Montgomery silty clay loam/ 

Blount silt loam 

SJ S3 0.42 - 0.59 0.44 
Montgomery silty clay loam/ 

Blount silt loam 

SWROC BE 0.44 - 0.56 0.52 Havelock clay loam 

SWROC BW 0.46 - 0.64 0.53 Havelock clay loam 

SWROC GA 0.44 - 0.59 0.52 Nishna silty clay 

SWROC GB 0.43 - 0.60 0.51 Nishna silty clay 

 

2.2 Missing data 

Sensor breakage, battery failure on the data logger, or sensor removal for farm 

operations such as tillage can result in missing time-stamps, time-stamps without data, or 

erroneous data. Data was processed to fill in time-stamp gaps, remove data known to be 

erroneous (e.g., sensors were moved to a different location during tillage and planting in 

2012 at DPAC). In addition, an hourly time series was created by selecting the 5 minute 

observation closest to the top of the hour. This processing was done using a MATLAB 
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(MathWorks, 2015) script developed by Lahdou (2014). An additional script was 

developed to identify and remove values that were less than zero or in excess of the soil 

porosity. The result is a complete set of time stamps with some missing observations. 

Missing data at DPAC was dominated by many short gaps of under six hours and a few 

very long gaps of several weeks. Out of 170 total gaps across all sensors, 84 were 6 hours 

or shorter and 44 were two weeks or longer. At SERF, 58 out of 355 total gaps lasted 

longer than two weeks and 157 lasted less than six hours. At St. Johns, 8 out of 75 total 

gaps were two weeks or longer and 57 were six hours or shorter. At SWROC, 76 out of 

479 total gaps were greater than two weeks in duration and 205 lasted six hours or less. 

The distribution of data availability and gaps is illustrated in Figures 2.3-2.6. 

 
 

Figure 2.3 Data availability at DPAC in each plot at the 10, 20, 40, and 100 cm sensor 

depths (2011 – 2015) 

SE 

SW 

NE 

NW 

10 cm 20 cm 40 cm 60 cm 100 cm 
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Figure 2.4 Data availability at SERF in each plot at the 10, 20, 40, and 100 cm sensor 

depths (2012 – 2014) 

  

Figure 2.5 Data availability at St. Johns in each plot at the 10, 20, 40, and 100 cm sensor 

depths (2013) 
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Figure 2.6 Data availability at SWROC in each plot at the 10, 20, 40, and 100 cm sensor 

depths (2013-2014) 

2.3 Data filling procedure 

A data filling method based on correlated sensor pairs was adapted from Lahdou 

(2014). The method was semi-automated to work at all sites with the goal of finding more 

data gaps than could be identified manually and determining how much data was missing 

both before and after filling, which had not been done previously. Filling was done on 

hourly-resolution data. For gaps of three hours in length or less, estimated values were 

determined by an average of the two values before and after the outage. For gaps longer 

than three hours, missing data was first filled in a semi-automated process using 

correlated sensors, when possible.  Finally, data was filled via linear interpolation, as 

described below. 

When gaps were longer than three hours, a nearby sensor was chosen as a 

replacement from which values were estimated. Replacement 1 was the best-correlated 

neighboring sensor in the same nest as the one with missing data. For example, if 40 cm 

BE 

BW 

GA 

10 cm 20 cm 40 cm 60 cm 100 cm 

GB 
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sensor data was missing, either the 20 cm or 60 cm may have been used as the 

replacement. A Pearson correlation coefficient was calculated between the sensor 

records, and the sensor with the highest correlation coefficient was selected as the 

replacement. 

Pearson correlation coefficients to select replacements were calculated over the 

entire soil moisture record. Because all raw data sets had some gaps, data were deleted 

from both data sets whenever either of them was missing data. As a result, the timestep 

between observations when calculating correlation was not always the same, so 

correlation was only possible with zero time lag.  

For DPAC only, a second replacement sensor, Replacement 2, was identified 

from among sensors at the same depth in another plot to be used in case Replacement 1 

would not work. Each quadrant at DPAC was matched with another quadrant based on 

which had the highest average correlation coefficient across all depths. This was the 

method used by Brooks (2013) and Lahdou (2014). This method was sometimes altered 

when the matching approach resulted in sensors being paired together despite being 

poorly correlated with each other, such that all sensor pairs were correlated with a 

coefficient of at least 0.5. For example, the SE and NE plots were paired because of their 

high average correlation, but because correlation coefficients between sensors in these 

plots at the 60 and 100 cm depth were below 0.5, Replacement 2 for the 60 and 100 cm 

sensors in the SE plot were from the NW plot instead (Table 2.2). With every sensor 

assigned two potential replacements, the choice between Replacement 1 and 

Replacement 2 was made independently for each outage. The records of both 

replacements were checked for gaps and the one with fewer gaps was selected as the 
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replacement for that outage. When the data logger’s batteries were dead, all the sensors in 

a single nest would contain gaps at the same time; this is an example of when 

Replacement 2 would be selected for filling. 

Table 2.2 Sensor pairs and correlation coefficients at DPAC for estimating missing data 

Outage Replacement 1 R Replacement 2 R 

SE 10 SE 20 0.94 NE 10 0.94 

SE 20 SE 10 0.94 NE 20 0.87 

SE 40 SE 60 0.94 NE 40 0.90 

SE 60 SE 40 0.94 NW 60 0.85 

SE 100 SE 60 0.84 NW 100 0.88 

NE 10 NE 20 0.99 SE 10 0.94 

NE 20 NE 10 0.99 SE 20 0.87 

NE 40 NE 20 0.82 SE 40 0.90 

NE 60 NW 60* 0.76 NE 40 0.48 

NE 100 NW 100 0.64 NW 100 0.64 

SW 10 SW 20 0.57 NW 10 0.85 

SW 20 SW 40 0.86 NW 20 0.95 

SW 40 SW 60 0.90 NE 40 0.91 

SW 60 SW 40 0.90 SE 60 0.86 

SW 100 SW 10 0.61 SE 100 0.88 

NW 10 NW 20 0.98 SW 10 0.94 

NW 20 NW 10 0.98 SW 20 0.95 

NW 40 NW 20 0.86 SW 40 0.84 

NW 60 NW 40 0.72 SE 60 0.85 

NW 100 NW 100 0.56 SE 100 0.88 

*In this case, because the best-correlated sensor in the same quadrant had a correlation of 

less than 0.5, Replacement 2 was used as Replacement 1. 

 

At SERF, St. Johns, and SWROC, sensors were generally not as well-correlated 

with each other as at DPAC, and selecting two replacement sensors with Pearson 

correlation coefficients greater than 0.5 was often not possible. Based on the best 

correlation coefficients, one replacement sensor was chosen for each sensor. The 

replacement sensors at SERF and St. Johns were selected from among any adjacent 

sensor in the same quadrant or any sensor at the same depth in another quadrant within 

the same treatment. At SWROC, each field had only one sensor nest in each treatment, so 
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the replacement sensor always came from the same nest. Correlation coefficients between 

sensors ranged from 0.5 to 0.92 (Tables 2.3, 2.4, and 2.5). If no correlation coefficient 

was found higher than 0.5 and missing data occurred in the record, these gaps were not 

filled by the correlated pair method but instead filled with linear interpolation. 

Table 2.3 Sensor pairs and correlation coefficients at SERF for estimating missing data 

Outage Replacement R Outage Replacement R 

F5 10 F5 20 0.80 D3 10 D3 20 0.83 

F5 20 F5 40 0.92 D3 20 D3 40 0.85 

F5 40 F5 20 0.92 D3 40 D3 20 0.85 

F5 60 F5 40 0.81 D3 60 D3 100 0.71 

F5 100 F5 60 0.64 D3 100 D3 60 0.71 

F2 10 F5 10 0.79 D4 10 D4 20 0.50 

F2 20 F2 40 0.58 D4 20 D4 40 0.81 

F2 40 F2 60 0.84 D4 40 D4 20 0.81 

F2 60 F2 40 0.84 D4 60 D4 40 0.80 

F2 100 None [<.5] D4 100 D4 60 0.66 

 

Table 2.4 Sensor pairs and correlation coefficients at St. Johns for estimating missing 

data 

Outage Replacement R Outage Replacement R 

N1 10 N2 10 0.71 S1 10 S3 10 0.82 

N1 20 N1 10 0.57 S1 20 S2 20 0.77 

N1 40 N1 60 0.61 S1 40 S1 60 0.69 

N1 60 N1 40 0.61 S1 60 S1 40 0.69 

N1 100 None [<.5] S1 100 S3 100 0.71 

N2 10 WN2 20 0.80 S2 10 S2 20 0.52 

N2 20 WN2 10 0.80 S2 20 S1 20 0.77 

N2 40 WN2 20 0.59 S2 40 S2 20 0.71 

N2 60 None [<.5] S2 60* S2 20 0.71 

N2 100 None [<.5] S2 100 S3 100 0.57 

N310 WN2 10 0.74 S310 S1 10 0.82 

N320 WN3 40 0.86 S320 S3 10 0.67 

N340 WN3 20 0.86 S340 None [<.5] 

N360 None [<.5] S360 None [<.5] 

N3100 None [<.5] S3100 S1 100 0.71 

* Sensor S2 20 was found to be correlated with S2 60 with an R-value of .71 during the 

season of the outage, so it was used as a working sensor despite not being adjacent to the 

60cm sensor. 
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Table 2.5 Replacement sensors and correlation coefficients assigned to each sensor for 

estimating missing data at SWROC 

Outage Replacement R Outage Replacement R 

BW 10 20 0.97 GA 10 20 0.81 

BW 20 10 0.97 GA 20 40 0.86 

BW 40 20 0.89 GA 40 20 0.86 

BW 60 40 0.81 GA 60 100 0.90 

BW 100 60 0.69 GA 100 60 0.90 

BE 10 20 0.7 GB 10 20 0.54 

BE 20 10 0.7 GB 20 40 0.78 

BE 40 60 0.96 GB 40 20 0.78 

BE 60 40 0.96 GB 60 100 0.72 

BE 100 60 0.82 GB 100 60 0.82 

 

Once a replacement sensor was selected and a period of missing data identified, a 

scaling ratio, S, was calculated based on the twelve-hour mean of soil moisture prior to 

the outage. Soil moisture immediately after the end of the outage were not used to 

calculate the scaling ratio because sensors may return erroneous data during the first few 

hours after they begin working again (Lahdou 2014). Filled values were calculated by 

multiplying the soil moisture in the replacement sensor by the scaling ratio for each hour 

of the outage: 

𝑆 =  
∑ 𝑂𝑢𝑡𝑎𝑔𝑒𝑖

𝑡0
𝑖= 𝑡0−12

∑ 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑖
𝑡0

𝑖= 𝑡0−12

 

𝐹𝑖𝑙𝑙𝑒𝑑𝑖 = 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 × 𝑆 

During time periods where the Replacement sensor was also not functioning (or 

Replacements 1 and 2 in the case of DPAC), the remaining gaps were filled using linear 

interpolation from the average of the 12 values before the outage started to the average of 

the 12 values after the outage ended. 
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 2.4 Filling Results 

The filling method based on correlated pairs worked to remove gaps unless both a 

sensor and its replacement had missing data at the same time (Table 2.6). At DPAC, 

partly because of the use of secondary replacements, this filling process removed almost 

all gaps except during the 2012 tillage and planting period during which the 10 cm and 20 

cm sensors were removed from all quadrants. The remaining gaps at the 10 cm depth in 

the SE and NE quadrants were filled using linear interpolation. 

Table 2.6 Data gaps as percent of total observations before and after filling with 

correlated pairs 

 

 

 

 

10 cm 20 cm 40 cm 60 cm 100 cm 

 

before after before after before after before after before after 

DPAC           

SE 26.4 2.4 21.2 0.0 18.8 0.0 18.8 0.9 34.3 0.0 

NE 5.3 2.4 5.1 0.0 0.5 0.0 57.6 0.0 9.6 0.0 

NW 34.8 0.01 8 0.0 1.8 0.0 18 8 0.1 0.0 

SW 1.4 0.0 1.4 0.0 0.01 0.0 0.0 0.0 0.0 0.0 

SERF           

F2 9.8 8.8 7.4 7.4 13.4 7.4 7.4 7.4 8.0 7.9 

F5 5.4 5.4 22.3 10.3 18.2 10.3 5.4 5.4 30.0 5.4 

D3 31.2 24.7 28.7 24.8 23.3 22.6 60.2 22.2 53.1 22.2 

D4 9.4 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 

St. Johns  

N1 5.1 4.8 4.8 4.8 0.0 0.0 0.0 0.0 0.0 0.0 

N2 0.0 0.0 11.7 <0.01 <.01 <.01 0.1 <.01 36.6 36.6 

N3 0.0 0.0 0.0 0.0 0.0 0.0 7.3 7.2 0.0 0.0 

S1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

S2 0.5 <.01 0.2 <0.01 0.1 <.01 0.0 0.0 0.0 0.0 

S3 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

SWROC         

GA 58.4 58.4 42.3 42.3 40.7 40.7 21.4 21.4 53.9 53.9 

GB 40.1 27.8 28.7 26.5 44.0 27.0 41.4 38.5 50.0 38.0 

BE 84.8 71.1 43.5 43.5 27.5 27.5 33.6 27.7 29.6 29.2 

BW 29.1 25.0 25.2 25.0 26.2 25.0 93.1 26.2 26.7 26.1 
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Despite only having one replacement sensor, the method of correlated pairs 

identified and removed most gaps in the data at SERF and St. Johns. At SERF, gaps 

during December of 2013 and 2014 remained because all sensors in every plot 

experienced an outage simultaneously. At St. Johns, large gaps were left behind in the 

records of sensors N1 10, N1 20, N2 100, and N3 60. For N1 10 and 20, the gap was left 

because these two sensors were paired for filling with each other but had gaps at the same 

time. In the other three cases, the gap was left because no replacement sensor could be 

found with a Pearson correlation coefficient greater than 0.5. These five sensor records 

were filled using linear interpolation. At SWROC, Many of the data gaps occurred at the 

same time in all sensors, so many data gaps remained after the automated filling process. 

Where gaps remained in the period needing to be analyzed, they were filled with linear 

interpolation. As will be discussed in section 3.1 and 3.2, due to the large overlaps in 

missing data at SWROC, some plots and years were not used in analysis after the filling 

process. 

After the three-step filling process, each plot had a complete volumetric water 

content time series from every sensor (Figures 2.7 to 2.15). The rapid changes in soil 

moisture from the 100 cm sensors at St. Johns S3, St. Johns N3, SERF F5, and SERF F2 

raised questions about whether these measurements at the 100 cm depth were reliable 

enough for analysis. At St. Johns N3, the data from the 100 cm sensor create a pattern 

unlike any of the other sensor measurements, suggesting a problem with the sensor 

caused by poor soil contact or an issue with the data logger. Though the rapid fluctuations 

in soil water content may represent preferential flow, there is also the possibility that the 

measurements were dissimilar to the others because of a change in the soil properties 
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between the 60 and 100 cm sensors. Finally, additional soil properties that were central to 

the analysis of excess and deficit stress, including water retention, were only measured to 

the depth of 60 cm, with no measurements available to represent the 80 – 100 cm soil 

layer associated with the 100 cm sensor. For these reasons, only the 10, 20, 40 and 60 cm 

volumetric water retention measurements were used in the analysis of excess and deficit 

soil moisture. 
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Figure 2.7 Filled volumetric soil moisture data from DPAC from July 1, 2011, to 

December 31, 2011 at the 10, 20, 40, 60, and 100 cm depths 

DPAC Plot SW 2011 

10 cm 20 cm 40 cm 60 cm 100 cm 
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Figure 2.8 Filled volumetric soil moisture data from DPAC for 2012 at the 10, 20, 40, 60, 

and 100 cm depths 

 

10 cm 20 cm 40 cm 60 cm 100 cm 
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Figure 2.9 Filled volumetric soil moisture data from DPAC for 2013 at the 10, 20, 40, 60, 

and 100 cm depths 

10 cm 20 cm 40 cm 60 cm 100 cm 
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Figure 2.10 Filled volumetric soil moisture data from DPAC for 2014 at the 10, 20, 40, 

60, and 100 cm depths 

10 cm 20 cm 40 cm 60 cm 100 cm 
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Figure 2.11 Filled volumetric soil moisture data from the controlled plots of SERF from 

April 22, 2012 to October 31, 2013 and November 1, 2013 to December 31, 2014 

10 cm 20 cm 40 cm 60 cm 100 cm 
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Figure 2.12 Filled volumetric soil moisture data from the free-draining plots of SERF 

from April 22, 2012 to October 31, 2013 and November 1, 2013 to December 31, 2014 

10 cm 20 cm 40 cm 60 cm 100 cm 
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Figure 2.13 Filled volumetric soil moisture data from the controlled plot of St. Johns for 

2013. 

10 cm 20 cm 40 cm 60 cm 100 cm 
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Figure 2.14 Filled volumetric soil moisture data from the free-draining plot of St. Johns 

for 2013. 

10 cm 20 cm 40 cm 60 cm 100 cm 
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Figure 2.15 Filled volumetric soil moisture data from SWROC from January 1, 2013, to 

December 31, 2014 at the 10, 20, 40, 60, and 100 cm depths 

 

10 cm 20 cm 40 cm 60 cm 100 cm 
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2.5 Effect of filling on data quality 

The effect of the filling procedure on data quality was investigated by comparing 

measured values and estimated values in periods when no outage actually occurred. 

Twenty gaps of 15 days duration and 20 gaps of 30 days duration were created in the 

hourly-resolution time series of each sensor at DPAC starting at randomly-selected times. 

These artificial gaps were created only during the 2012 or 2014 growing season during 

times without gaps in the record of the outage sensor and at least one of the two 

replacement sensors. Bias was calculated as the mean of the difference between the 

estimated and the observed data. A total of 40 values for bias were calculated for each 

treatment (20 from each of two quadrants) and an average bias was determined for these 

40 values. 

The overall average bias was fairly close to zero regardless of the duration of the 

outage in both free and managed plots. However, soil moisture was both over- and under-

estimated; values were close to 30% for some of the test periods at the 100 cm depth 

(Figure 2.16). 

 

 

 

 



30 

 

 

 

 

 
Figure 2.16 Spread of bias values from 40 test periods lasting 15 or 30 days in free and 

controlled plots  

Free 15 days 

Free 30 days 

Controlled 15 days 

Controlled 30 days 
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While the values that were estimated for the artificial gaps were often very close 

to the observed values (examples shown in Figure 2.17a for a 10 cm sensor and 2.17b for 

a 60 cm sensor), discrepancies also occurred. Estimations of soil moisture at the 10 cm 

depth can be overestimated, as in Figure 2.17c, which occurred during late summer, 

because soil was drying but is drying faster at the 10 cm depth than at the 20 cm depth 

from which estimates were being calculated. The 10 cm sensor also tends to show greater 

sensitivity to precipitation and greater variability than the 20 cm sensor, resulting in some 

estimated values, such as Figure 2.17d, that do not capture the peaks in the 10 cm record. 

Sometimes a large change in soil moisture in the replacement or the observation record 

result in a sudden jump in soil moisture at the end of the filing period, as shown in Figure 

2.17e. 
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Figure 2.17 Comparison of estimated to observed soil moisture (a) 10 cm with 20 cm 

replacement (b) 60 cm with 40 cm replacement (c) 10 cm with 20 cm replacement (d) 10 

cm with 20 cm replacement and (e) 60 cm with 40 cm replacement. 

  

(b) 60 cm from 40 cm (15 days) 

(e) 60 cm from 40 cm (15 days) 

(c) 10 cm from 20 cm (15 days) 

(d) 10 cm from 20 cm (15 days) 

(a) 10 cm from 20 cm (30 days) 
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2.6 Converting volumetric water content to equivalent depth 

The final step to prepare soil moisture data for growing season analysis was to 

convert the volumetric water content measurements to equivalent depth and aggregate the 

measurements to represent the entire soil profile or different sections of the soil profile. 

Each soil moisture sensor was assumed to represent the midpoint of a layer of soil with 

thickness ranging from 15 to 30 cm (Table 2.7). Equivalent depth was calculated by 

multiplying the volumetric measurement by the thickness of the represented layer. To 

analyze multiple layers, the equivalent depths determined at each layer were added. 

As described in section 3.3, core samples were taken from each field site in order 

to determine water retention properties at 0 – 10 cm, 10 – 20 cm, 20 – 40 cm, and 40 – 60 

cm. Each sampling location was assumed to represent one of the same layers as the soil 

moisture sensors. 

Table 2.7 Soil layers and thicknesses represented by soil moisture sensors and core 

samples 

Soil Layer (thickness) 
Core measurement 

depth 

Soil moisture sensor 

depth 

0 – 15 cm (15 cm) 0 – 10 cm 10 cm 

15 – 30 cm (15 cm) 10 – 20 cm 20 cm 

30 – 50 cm (20 cm) 20 – 40 cm 40 cm 

50 – 80 cm (30 cm) 40 – 60 cm 60 cm 

80 – 100 cm none 100 cm 

2.6 Soil moisture comparison with water table 

The quality of the datasets produced by the filling methods described in this chapter were 

further explored by comparing soil moisture to water table. Filled soil moisture from 

DPAC and water table measured in the same locations were plotted to illustrate their 

relationship (Figures 2.18– 2.19). Values that occurred at least 48 hours since any rainfall 
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and under non-frozen soil conditions are highlighted in the figures in black. As expected, 

the volumetric water content measurements at the 10 cm depth show almost no 

relationship with water table. Weak correlation between surface soil moisture and soil 

moisture at other depths were also found by Mahmoud and Hubbard (2007) under rainfed 

corn; surface soil moisture is influenced by different processes than subsurface soil 

moisture (Vereecken et al 2014; Vienken 2013). At the 60 cm depth, the agreement 

between the measurements is slightly clearer, especially in the managed plots (NW and 

SE), where the water table is often closer to the 60 cm depth. Finally, soil moisture as 

equivalent depth for a 0 – 100 cm soil column, more of the scatter in the relationship is 

removed. It was determined from the test periods described in section 2.3 that estimations 

of soil moisture have a small bias on average, but that both overestimation and 

underestimation occur in individual data outages. When four sensor measurements are 

used together, the overestimation by one sensor may be offset by underestimation in 

another sensor, resulting in what appears to be a more reliable dataset. 
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Figure 2.18 Water table vs. soil moisture in the free-draining DPAC plots for volumetric 

water content of the 10 cm sensor, volumetric water content of the 60 cm sensor, and 

total column soil moisture 

10 cm volumetric 60 cm volumetric 100-cm equiv. depth 

10 cm volumetric 60 cm volumetric 100-cm equiv. depth 

SW 

NE 

All values No frozen soils or precipitation 
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Figure 2.19 Water table vs. soil moisture in the controlled DPAC plots for volumetric 

water content of the 10 cm sensor, volumetric water content of the 60 cm sensor, and 

total column soil moisture 

 

2.7 Conclusions 

Despite efforts to maintain the monitoring systems established at the four field 

sites, data gaps occurred at all sites. These gaps were handled by estimating data from 

working sensors whenever possible, requiring an investigation into the relationships 

between all the sensors. Developing implementing, and evaluating the filling method 

resulted in these key findings: 

10 cm volumetric 60 cm volumetric 100-cm equiv. depth 

10 cm volumetric 60 cm volumetric 100-cm equiv. depth 

SE 

All values No frozen soils or precipitation 
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 Using a processing script to fill all gaps in the soil moisture record with a 

single method allowed for more thorough detection of gaps than treating each 

gap separately, and may be essential for managing large datasets, though it 

also results in some gaps being left behind. Opportunities to improve the 

method are discussed in Chapter 4. 

 Sensors were correlated with others at different depths generally just as well 

as with others at different locations and the same depth. This is somewhat 

inconsistent with the findings of Dumedah and Coulibaly (2011), who found 

that estimation from a different location at a similar depth was more accurate 

than estimation from the same location at a deeper or shallower depth. 

 Different soil properties at each site influence soil moisture. For example, 

DPAC and St. Johns receive similar amounts of rainfall due to their close 

proximity, but soil moisture at DPAC has a smaller range. 

 Bias values resulting from 15-day outages and 30-day outages were similar. 

Though Kornelson and Coulibaly (2014) found that the quality of their best-

performing filling methods declined steadily after gap lengths of a maximum 

of 100 hours, the longer gaps at the sites in this study were much longer than 

that, suggesting that there may also be a gap length beyond which the 

performance of the filling method will remain constant. 

 Estimated data should not be used to analyze events on a sub-daily time scale.
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CHAPTER 3 QUANTIFYING SOIL MOISTURE STRESS TO ASSESS YIELD 

EFFECTS OF CONTROLLED DRAINAGE 

3.1 Background 

Because controlled drainage reduces the amount of water leaving fields through 

the drainage system, additional water in the soil profile may be used during the growing 

season to benefit crop growth. In a water balance assessment of the DPAC drainage site, 

Brooks (2013)  found that the controlled plots had 12% higher total soil moisture on an 

annual scale and may have also had higher ET based on unmeasured terms of the water 

balance. With less loss of water through drainage and more soil moisture in the root zone, 

fields with controlled drainage could prevent water shortages to crops and provide a yield 

benefit compared to freely draining fields. 

Field studies of the yield impacts of controlled drainage have shown mixed 

results. Of eight field studies reviewed by Skaggs et al. (2012) examining the effects of 

controlled drainage on corn yields, four studies found no statistically significant effect, 

one found a yield reduction, and three found yield increases.. Helmers et al. (2012) found 

that controlled drainage resulted in slightly reduced corn yields in a 4-year field study in 

Iowa. Ghane et al. (2012) found a yield increase in 6 out of 9 observations in 1-2 year 

studies of cornfields in Ohio. Poole (2011) found yield improvements in a 6-year study of 

corn. Delbecq et al. (2012) found an in increase between 5.8 and 9.8% during 5 years.

Modeling studies have predicted that controlled drainage could reduce corn yields 

due to excess soil moisture during the spring. The Stress Day Index concept to describe 

the effect of excess moisture on crop yields was initially proposed by Hiler (1969). The 
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stress day index is the product of the amount and duration of excess water, the “stress day 

factor,” as well as a “susceptibility factor,” which is related to the ability of the crop to 

withstand stress at a particular time. Hardjoamidjojo et al. (1982) used SEW30 as the 

stress day factor, the total cm-days of water table depth shallower than 30 cm below the 

soil surface, and developed crop susceptibility factors for corn using observed yields in 

Ohio and other field studies of excess water stress such as Chaudhary (1975) and Ritter 

and Beer (1969). The resulting linear model related Stress Day Index to relative yield, 

explaining between 75% and 79% of variation in crop yields, and was incorporated into 

DRAINMOD. Ale (2008) simulated a drainage water management strategy for 15 years 

using the Hardjoamidjojo model within DRAINMOD and found that controlled drainage 

resulted in a decrease in relative yield of 0.5%, which was not statistically significant; 

yields increased in plots with controlled drainage in some years of the simulation and 

decreased in others. Singh et al. (2007) also simulated yield response to controlled 

drainage with DRAINMOD and found yield reductions due to delayed planting and 

excess water stress. 

Corsi and Shaw (1971) proposed indices of deficit stress to crops, and concluded 

that the best one for predicting corn yield in Iowa was one minus the ratio of 

evapotranspiration to potential evapotranspiration. Shaw (1974) determined weighting 

factors for this index based on growth stages of crops, emphasizing the sensitivity of the 

silking period and applying additional weighting factors to account for the cumulative 

effects of extreme stress.  
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Liang, et al. (1994) developed a metric based on soil moisture to indicate 

transpiration stress in the VIC model called the stress factor. The factor is calculated as 

follows: 

𝑔 =  
𝑉𝑊𝐶 − 𝑊𝑃

𝑊𝑐𝑟 − 𝑊𝑃
 

Where WP is permanent wilting point and Wcr is the critical point or stress 

threshold, which they took to be 70% of field capacity. The stress factor is 0 if VWC falls 

below the wilting point and 1 when VWC is above the deficit threshold. 

While field studies have identified some yield effects from controlled drainage, 

they have often not related yields to the other environmental conditions monitored, such 

as periods of high water table that have been explored by modeling studies. More insight 

is needed into the conditions in the field that result in inconsistent yield effects of 

controlled drainage. By comparing both yield and soil moisture conditions in controlled 

and free-draining plots, it is possible to gain a better understanding of why the controlled 

plots may either improve or reduce yields. The objective of this chapter is to identify 

potential for yield benefits of controlled drainage by comparing soil moisture stress 

between managed and free-draining plots and relating that stress to corn yield. 

3.2 Soil moisture data 

Soil moisture was analyzed for the DPAC, SERF, St. Johns, and SWROC 

drainage sites during the years when corn was grown. Combining data from all sites and 

available years resulted in a total of 28 soil moisture data sets, of which 14 came from 

conventionally drained plots and 14 came from managed plots (Table 3.1).  
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Corn was grown every year at SERF, but there are large amounts of missing data 

in two of the SERF plots in 2014, so only 2012 and 2013 were analyzed in plots F2 and 

D3. Although corn was grown every year at SWROC, consistent monitoring of soil 

moisture did not begin until 6 weeks after planting in 2012, so only data from 2013 and 

2014 were considered. Some data quality issues at SWROC could not be addressed by 

the data handling methods described in Chapter 2. Gaps of duration longer than 30 

minutes with at least 4 of the 5 sensors recording no data occurred in plot GB 2014 and 

GA 2013. The soil moisture data record also ended more than 30 days prior to the 

maturity of the corn crop in 2014 plots BE and BW. As a result, the plot-years analyzed 

from SWROC were BE 2013, BW 2013, GA 2014, and GB 2013. 

Table 3.1. Available soil moisture data when corn was grown 

 
Number 

of plots 

Crop Total plot-

years used 2012 2013 2014 

IN, DPAC 4 Corn Soybean Corn 8 

IA, SERF 4 Corn Corn Cornb 8 

OH, St. Johns 2 Wheat Corn Soybean 2 (6 sensors) 

MN, SWROC 4 Corna Cornb Cornb 4 
adata not used due to gaps in monitoring 

bsome data used 

 

3.3 Soil moisture stress metrics 

Metrics were developed to quantify soil moisture excess and deficit periods based 

on soil moisture falling above or below a threshold value. Because the relationship 

between crop stress and soil moisture was unknown and crop stress was not directly 

monitored, many different stress metrics were initially calculated. Four characteristics 

were used to develop soil moisture metrics: a threshold determining the severity of the 

stress; the soil depth range over which the metric was considered; the crop growth stage 
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in which the stress occurred; and way the stress was integrated (Table 3.2). Each metric 

consisted of a unique combination of these four components.  

Table 3.2 Thresholds, depths, growth stages, and integration methods combined to create 

soil moisture metrics 

Thresholds Depths Growth stages Integration 

methods 

Excess: 

 .05 bar water retention 

Deficit: 

 60%, 70%, and 80% of 0.1 bar 

water retention (“field 

capacity”) 

 45%, 50%, 55% and 60% of 

0.1 bar water retention – 15 

bar water retention (“plant 

available water”) 

0 – 30 cm 

0 – 50 cm 

40 – 60 cm 

0 – 80 cm 

Plant – VE 

VE – V6 

V6 – V16 

V16 – R3 

R3 – R5 

R5 – R6 

Early: VE – V6 

Late: R3 – R6 

Whole: Plant – R6 

Time 

Magnitude 

 

3.3.1 Thresholds and depths 

Thresholds and depths were considered together in determining stress metrics. 

The thresholds were based on water retention data at different pressures, which were 

assumed to represent soil qualities like field capacity, wilting point, and plant available 

water. In total, 21 thresholds of excess and deficit were initially tested (Table 3.3). 
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Table 3.3 Initial excess and deficit thresholds and depths used to create soil moisture 

metrics 

# Value Depth analyzed Layers used 

Deficit Thresholds  

1 60% of retention at .1 bar 

0 - 80 cm 

0 – 15 

15 – 30 

30 – 50 

50 – 80 

2 65% of retention at .1 bar 

3 70% of retention at .1 bar 

4 75% of retention at .1 bar 

5 80% of retention at .1 bar 

6 
70% of retention at .1 bar 0 - 30 cm 

0 – 15 

15 - 30 

7 
70% of retention at .1 bar 30 - 80 cm 

30 – 50 

50 - 80 

8 45% of plant available water 

0 - 80 cm 

0 – 15 

15 – 30 

30 – 50 

50 – 80 

9 50% of plant available water 

10 55% of plant available water 

11 60% of plant available water 

12 
50% of plant available water 30 - 80 cm 

30 – 50 

50 - 80 

Excess thresholds  

13 90% of retention at .05 bar 

0 - 30 cm 
0 – 15 

15 – 30 14 95% of retention at .05 bar 

15 100% of retention at .05 bar 

16 90% of retention at .05 bar 
0 - 50 cm 

 

0 – 15 

15 - 30 

30 – 50 
17 95% of retention at .05 bar 

18 100% of retention at .05 bar 

19 90% of retention at .05 bar 
0 - 80 cm 

 

0 – 15 

15 – 30 

30 – 50 

50 – 80 

20 95% of retention at .05 bar 

21 100% of retention at .05 bar 

 

The deficit threshold was meant to capture the critical point at which crops begin 

experiencing transpiration limitation due to decreasing matric potential of the soil water. 

When soil moisture falls below the threshold value of readily available water (RAW), 

roots cannot extract moisture fast enough to keep up with transpiration and the plant will 
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begin to suffer stress (Allen 1998). Readily available water is related to total plant 

available water (PAW) by a factor p that varies from crop to crop, but is about 0.55 for 

grain corn (Allen 1998): 

RAW = pPAW 

Total plant available water is often assumed to be equal to the difference between 

field capacity and the wilting point in the root zone. 

Field capacity was defined by Veihmeyer and Hendrickson (1931) as the amount 

of moisture remaining in soil “after excess water has drained away,” and it is most 

commonly estimated based on water retention at benchmark pressures; 0.33 bar tension is 

often used for fine-grained soils and 0.1 bar tension for course-grained soil (Twarakavi, 

et al. 2009). Some researchers have proposed flux-based estimations of field capacity; for 

example, the amount of water remaining once drainage flux from the soil slows to 0.05 

cm/day (Hillel 1998). 

In this study, soil moisture at 0.1 bar tension was used for field capacity. The 

choice of 0.1 bar to estimate field capacity in this study follows the logic of estimating 

field capacity based on flux. The artificial drainage in the fields studied result in excess 

water draining until the water table reaches the depth of the tiles, at approximately 100 

cm below the surface. Thus matric potential at the soil surface is approximately 0.1 bar 

tension when the drain flow approaches zero. 

Because water content at field capacity and therefore the deficit threshold are 

uncertain, the factor p was varied to 0.45, 0.50, 0.55, and 0.60. The deficit thresholds 

based on plant available water were calculated as follows: 
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𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑝(𝐹𝑖𝑒𝑙𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑊𝑖𝑙𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡) + 𝑊𝑖𝑙𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 

where wilting point was estimated as water retention at 15 bar tension. 

Researchers have also estimated that the relationship between the ‘critical point’ 

of limited evapotranspiration and the field capacity of the soil is between 0.5 and 0.8 

(Shuttleworth 1993), which makes for an even simpler soil moisture deficit threshold. 

Thresholds of 60, 70, 75, and 80% of field capacity were tested. In soils with high water 

contents at their wilting points, the threshold based on readily available water was higher 

than the one based on field capacity alone. 

The excess threshold is based on assumption that plant roots will be affected by 

low oxygen conditions when the equilibrium water table is within 50 cm. For this reason, 

water retention at 0.05 bar tension was selected as the basis for the excess stress 

threshold. As listed in Table 3.3, excess thresholds were varied to 90%, 95%, and 100% 

of the water retention at .05 bar. 

Stress was quantified at different depths in the soil profile. During the early 

growing season, when excess stress was expected to occur the most, the roots of the corn 

plants most likely do not extend throughout the entire 80 cm depth of the soil profile. It 

was unknown whether excess water at depths below the extent of the root zone would 

affect crops or not, so stress was quantified at the surface (0 – 30 cm) and the top half of 

the root zone (0 – 50 cm) in addition to the entire profile (0 – 80 cm). Because of the 

variation in soil moisture with depth driven by different interactions with the atmosphere, 

drain, and water table, the location of deficit stress measurements were also varied to 

include a surface layer (0 – 30 cm) and the bottom half of the root zone (40 – 80 cm). 
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3.3.2 Water retention data used to determine thresholds 

Water retention at .05, 0.1, and 15 bar tension was measured using sand tables on 

core samples from each field site in 2011. Samples were taken from 0 – 10 cm, 10 – 20 

cm, 20 – 40 cm, and 40 – 60 cm depths. Each sample was assumed to represent a soil 

layer also represented by one of the soil moisture sensors (Table 2.7). Volumetric water 

retention was converted to an equivalent depth for each of these layers in a manner 

similar to that used for the conversion of soil moisture data (Tables A.1 – A.4).   

The values the excess and deficit thresholds were unique at each plot due to 

variations in water retention characteristics (Figure 3.1). Thresholds based on plant 

available water always falls between wilting point and field capacity, but the threshold of 

70% of field capacity alone falls below wilting point at St. Johns, where wilting point 

was higher than at the other sites. At SERF and SWROC, the thresholds of 50% of plant 

available water and 70% of field capacity were almost the same. 
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Figure 3.1 Field capacity, wilting point, and sample thresholds of 50% of plant available 

water and 70% of field capacity at each plot 

 

At SERF and SWROC, water retention data was not measured at all depths and 

pressures. At SERF, water retention data was not measured for .05 bar, 0.1 bar, or 1 bar 

pressure at the 20 – 40 and 40 – 60 cm depths. At SWROC, water retention was not 

measured for 15 bar pressure at the 20 – 40 and 40 – 60 cm depths. The Rosetta program 

(Schapp et al. 2001) was used to estimate the parameters of the Van Genuchten water 

retention curve at these locations based on measurements of bulk density and percent 

sand, silt, and clay that were taken at those depths (Table 3.4). Water content at the 

pressures needed were calculated based on these parameters. 

The values estimated by Rosetta for the 20 – 40 and 40 – 60 cm depths are higher 

than those measured at the 0 – 20 and 10 – 20 cm depths (Table 3.4). If the water content 

at wilting point were actually lower than what was estimated, the thresholds based on 

* 
Example threshold: 50% of plant available water 

Wilting point 

Field capacity 

Example threshold: 70% of field capacity 

SWROC plots 

DPAC plots 

St. Johns plots 

SERF plots 
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plant available water would be lower, resulting in less deficit stress at SERF and 

SWROC. Using estimated wilting points may have resulted in overestimating deficit 

stress at SERF and SWROC for the deficit thresholds based on plant available water. The 

uncertainty surrounding the exact value of soil moisture where crops begin experiencing 

stress highlights the importance of testing a variety of thresholds. 

Table 3.4 Measured and estimated volumetric water retention at 15 bar at SERF and 

SWROC 

Location 
SERF 

(all plots average) 
SWROC (Field G average) 

 
Water 

Retention 

% Sand, Silt, 

Clay 

Water 

Retention 

% Sand, Silt, 

Clay 

0 - 10 (measured) 0.11 13/48/39 0.12 2/45/53 

10 - 20 (measured) 0.09 12/48.5/38.5 0.12 3/44/53 

20 - 40 (estimated) 0.21 14/46/40 0.25 2.5/45.5/52 

40 - 60 (estimated) 0.21 13/47/40 0.26 1/46/53 

 

3.3.3 Growth stages 

Each soil moisture time series was divided into periods based on an estimation of 

corn growth stages at that site. Crop growth and development were estimated from 

growing degree days, calculated as the average of daily high and low temperatures above 

50 degrees (Fahrenheit): 

𝐺𝐷𝐷 =  
𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

2
− 50 

where Tmax is the smaller of the high temperature for the day or 86 F, and Tmin is 

the larger of the minimum temperature for the day or 50 F. 

The GDD required to reach the various growth stages for corn crops were based 

on Abendroth et al. (2011), which assumes that seedling emergence occurs 105 GDD 

after planting; that one new leaf appears every 84 GDD from VE to V10; that one new 



49 

 

leaf appears every 56 GDD from V10 to V18; and that start of the V18 growth stage 

coincided with R1 (Table 3.5). The additional GDD required to reach additional 

reproductive stages from the start of R1 were based on data from research trials 

conducted in Iowa (Abendroth et al. 2011). The V16 through R3 period was used to 

represent the entire transition from vegetative to reproductive growth, including tassel 

emergence and silking, because the sequence of development can vary during this period. 

A total of nine growth stages were considered. The estimation of growth stages is 

approximate and does not take into account the differences between crop varieties planted 

at each site. At Minnesota in 2014, R6 was allowed to occur after only 2400 days because 

the harvest date occurred before 2645 growing degree days had accumulated. The 

calendar day for each growth stage to be reached varied for each year and site (Table 

3.6). 

Table 3.5 Growing Degree Days (GDD) from planting for selected growth stages 

Growth Stage GDD for stage 

Planting to VE 0 - 105 

VE to V6 105 - 609 

V6 to V16 610 - 1279 

V16 to R3 1280 - 1792 

R3 to R5 1793 - 2042 

R5 to R6 2043 - 2645 

Entire early season (Planting – V6) 0 - 609 

Late reproductive (R3 – R6)  1793 - 2645 

Entire growing season (Planting – R6)  0 - 2645 
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Table 3.6 Planting dates and calendar dates of the start of growth stages estimated from 

growing degree days for each site and year 

 Plant VE V6 V16 R3 R5 R6 

DPAC 2012 04/23 05/04 06/08 07/06 07/26 08/06 09/06 

DPAC 2014 04/27 05/08 06/12 07/13 08/12 08/24 10/27 

SERF 2012 04/18 05/04 06/04 07/04 07/23 08/02 09/01 

SERF 2013 05/02 05/14 06/14 07/13 08/06 08/20 09/16 

SERF 2014 05/06 05/12 06/13 07/13 08/08 08/20 09/27 

St. Johns 2013 05/09 05/17 06/16 07/15 08/10 08/23 09/28 

SWROC 2013 05/24 06/06 07/01 08/01 08/28 09/08 10/10 

SWROC 2014 05/07 05/22 07/19 07/22 08/18 09/31 10/19* 

*Using 2400 GDD days to reach maturity 

 

3.3.4 Metric integration methods 

Two methods were used to integrate excess or deficit stress, which was calculated 

at every hour, into a single value. In the “magnitude” method, stress was calculated as the 

absolute value of the difference between the threshold and the present water content 

(mm), then summed over the length of the growth stage (hours). This integration method 

results in stress in mm-hours. 

For the “time” method, time in excess or deficit was integrated by summing the 

number of hours during each growth stage that the water content fell above (excess) or 

below (deficit) the threshold and dividing by the duration of the growth stage to account 

for the variation in the duration of each growth stage due to temperature variation. 

The stress analysis resulted in one set of stress quantities for each of 9 growth 

periods and two integration methods. There were 12 deficit thresholds, resulting in a total 

of 216 different metrics of deficit stress, and 9 excess thresholds, for 162 different 

metrics of excess stress. 

Figures 3.2 to 3.6 show a time series of soil moisture as equivalent depth for the 0 

– 80 cm soil column for every plot-year. Vertical lines indicate the VE, V6, V16, R3, and 
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R5 growth stages. The duration of each plot extends from the planting date that actually 

occurred on the field that year until the R6 growth period was reached, regardless of 

harvest date, which occurred after the corn reached R6. Field capacity, wilting point, the 

aeration stress level, and two sample thresholds are also included. Soil moisture at DPAC 

fell below wilting point for portions of 2012 and 2014. While soil moisture was expected 

to be low during 2012, there may also be measurement errors that cause discrepancies 

between the water retention and soil moisture data. The lack of site-specific calibration in 

the sensors installed at the study sites is one source of error. Volumetric water content 

measurements by decagon’s 5TE soil moisture probes can be influenced by salt content 

and soil temperature when using the manufacturer-supplied calibration functions, and 

may only reach manufacturer-specified accuracy when calibrated for a specific soil type 

and field location (Varble and Chavez 2011). Four different low-cost soil moisture 

sensors in a clay loam soil in Switzerland were found not to measure manufacturer-

specified accuracy when compared against a high-quality TDR measurement system 

(Mittelbach et al. 2014). Another source of error is that core samples and soil probes 

measure soil properties in a small volume of soil but are assumed to represent larger 

volumes. Water retention values at DPAC at 15 bar tension were as high as 0.28 at the 40 

– 60 cm depth in the NW plots, with values above 0.2 reported in at least one of the soil 

layers in all plots (Table A.1).  
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Figure 3.2 DPAC soil moisture time series for the GDD-estimated growing season based 

on 0 – 80 cm soil column for each plot-year with water retention 0 .1, and 15 bar tension, 

three sample thresholds, and vertical lines indicating the start of growth stages VE, V6, 

V16, R3, and R5 

Water retention at .1 bar (field capacity) 

Water retention at 15 bar (wilting point) 

Sample threshold– 50% of plant available water 

Sample threshold—100% of 0.05 bar 

(excess threshold) 

Sample threshold– 70% of field capacity 
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Figure 3.3 SERF soil moisture time series based on 0 – 80 cm soil column for each free-

draining plot-year with growth stages VE, V6, V16, R3, and R5 indicated with vertical 

lines, water retention values at .05, .1, and 15 bar tension, and two sample deficit 

thresholds  

 
  

Water retention at .1 bar (field capacity) 

Water retention at 15 bar (wilting point) 

Sample threshold– 50% of plant available water 

Sample threshold—100% of 0.05 bar 

(excess threshold) 

Sample threshold– 70% of field capacity 
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Figure 3.4 SERF soil moisture time series for the GDD-estimated growing season based 

on 0 – 80 cm soil column for each controlled-drainage plot-year with water retention 0 .1, 

and 15 bar tension, three sample thresholds, and vertical lines indicating the start of 

growth stages VE, V6, V16, R3, and R5  

  

Water retention at .1 bar (field capacity) 

Water retention at 15 bar (wilting point) 

Sample threshold– 50% of plant available water 

Sample threshold—100% of 0.05 bar 

(excess threshold) 

Sample threshold– 70% of field capacity 
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Figure 3.5 St. Johns soil moisture time series for the GDD-estimated growing season 

based on 0 – 80 cm soil column for each plot-year with water retention 0 .1, and 15 bar 

tension, three sample thresholds, and vertical lines indicating the start of growth stages 

VE, V6, V16, R3, and R5  

  

Water retention at .1 bar (field capacity) 

Water retention at 15 bar (wilting point) 

Sample threshold– 50% of plant available water 

Sample threshold—100% of 0.05 bar 

(excess threshold) 

Sample threshold– 70% of field capacity 
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Figure 3.6 SWROC soil moisture time series for the GDD-estimated growing season 

based on 0 – 80 cm soil column for each plot-year with water retention 0 .1, and 15 bar 

tension, three sample thresholds, and vertical lines indicating the start of growth stages 

VE, V6, V16, R3, and R5  

3.4 Yield data 

Yield was determined as kg/ha at 15.5% moisture for each plot (Table 3.7). At 

SERF, St. Johns, and SWROC, only average yield for each plot was available. Yield 

monitor data at DPAC allowed for yield to be determined in a small area near the soil 

moisture sensor so that yield values represent a similar area to that which was measured 

by the soil moisture sensors. A circular areas with radius 15 m was selected to stay within 

the field boundaries, which included about 60 data points in each quadrant (Figure 3.7).  

 

Water retention at .1 bar (field capacity) 

Water retention at 15 bar (wilting point) 

Sample threshold– 50% of plant available water Water retention at .05 bar (excess threshold) 

Sample threshold– 70% of field capacity 
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Table 3.7 Yield for each plot-year 

Controlled plot-years Free-draining plot-years 

Plot & Year Yield (kg/ha) Plot & Year Yield (kg/ha) 

DPAC SE 2012 8,220 DPAC NE 2012 7,372 

DPAC SE 2014 11,293 DPAC NE 2014 11,570 

DPAC NW 2012 7,023 DPAC SW 2012 7,745 

DPAC NW 2014 10,262 DPAC SW 2014 9,315 

SERF D4 2012 8,976 SERF F5 2012 4,896 

SERF D4 2013 7,982 SERF F5 2013 6,128 

SERF D4 2014 12,588 SERF F5 2014 13,736 

SERF D3 2012 5,753 SERF F2 2012 7,095 

SERF D3 2013 4,146 SERF F2 2013 6,503 

SJ WN 2013 14,248 SJ WS 2013 14,427 

SWROC BW 2013 8,859 SWROC BE 2013 8,735 

SWROC GB 2013 8,190 SWROC GA 2014 0 
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Figure 3.7 Yield monitor data (kg/ha) at DPAC in 2014, locations of soil moisture 

sensors, and the 15 m radius circles used to determine local yield values. 

 

A paired t-test was used to determine that there was no statistically significant 

difference between yield at the controlled plots and yield in the conventionally drained 

plots at all sites (p = 0.82), with a mean difference between pairs of 112 kg/ha higher in 

the controlled plots. 

480 – 5,893 

5,893 – 8,476 

8,476 – 10,257 

10,257 – 11,808 

11,808 – 21,118 

15 m radius circles 

Soil moisture sensor nest 

locations 
Plot boundaries 
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3.5 Evaluation of outliers 

The plots and years with the most stress were compared to determine whether the 

values seemed reasonable or suggested a problem with measurement such as a lack of 

contact between sensors and soil. The plot-years with the highest values of stress across 

all excess thresholds and all deficit thresholds, both integration methods, and all periods, 

were identified based on the magnitude of stress at each as a factor of the median stress. 

A median stress value was found across all plot-years and the stress at each individual 

plot-year was divided by this value to determine stress as a factor of the median. 

The top three plot-years with high wet stress had similar values of stress as a factor of the 

median (Table 3.8). These three plot-years were also known to be wetter than others. The 

area of the field where the soil moisture sensors are located in the NW quadrant of DPAC 

is known to have ponded water when the rest of the field at DPAC does not. Field G at 

SWROC had no crop over the entire field in 2014 due to flooding as well as in one 

sample area of Plot A during 2013, so this field is also expected to have very high levels 

of excess stress. Based on these observations and the check for extreme values, it was 

determined to be likely that the measurements taken at these fields were describing the 

soil moisture conditions with reasonable accuracy. 

Table 3.8 Plot-years with extremely high deficit and stress 

Deficit Excess 

Plot-year 

Stress magnitude as 

factor of the median Plot-year 

Stress magnitude as 

factor of the median 

SWROC BW 

2013 
8.65 DPAC NW 2014 4.00 

DPAC SW 2012 1.87 SWROC GA 2014 4.21 

SERF D4 

2012 
1.69 SWROC GB 2013 3.19 
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Three plot-years had high deficit stress, but Field B, plot W at SWROC stood out 

with deficit stress of 8.65 times the median (Table 3.7). DPAC, and SERF received 

similar amounts of rainfall during these growing seasons (exact values in Table 3.20), but 

did not have similar values of deficit stress to this plot-year at SWROC. In fact, the total 

column soil moisture fell below permanent wilting point from July to the end of the 

growing season, but the recorded yield of 8,859 kg/ha, similar to the yield of 8,735 kg/ha 

in Plot E of the same field, does not reflect any serious problems with crop growth. For 

these reasons, it was determined that Field B, Plot W had such unusually low soil 

moisture that it should be excluded from further analysis. 

3.6 Identifying useful stress metrics 

Stress was quantified a total of 378 different ways, each with a unique threshold 

or depth, period of the growing season, and method of integration (magnitude or time). 

Table 3.9 shows the mean stress magnitudes for controlled and free-draining plot-years 

from all deficit metrics and all excess metrics at each growth period. 

Table 3.9 Mean stress magnitudes (cm-days) for all excess and deficit metrics at each 

growth stage 

 
Plant - 

VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Season 

Late 

Season 

Whole 

Season 

Deficit--

controlled 
3.24 5.63 12.00 31.65 21.87 36.05 8.86 57.9 110.3 

Deficit--

free 
4.00 6.49 13.49 43.64 28.10 62.30 10.48 92.6 157.8 

Excess--

controlled 
1.11 8.47 6.98 3.22 0.98 1.35 9.67 2.38 22.07 

Excess--

free 
0.60 5.33 5.62 1.59 0.55 0.63 5.92 1.18 14.28 

 

Some initial insights can be drawn from this summary of quantified stress. The 

controlled plots, on average, show less deficit stress in every stage of the growing season 
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but more excess stress than the free-draining plots. Deficit stress is more prevalent in the 

mid to late season than the early season. 

Due to the large number of different stress metrics, it was necessary to narrow 

them down to the ones that offered the most insight in the relationship between soil 

moisture, yield, and controlled drainage. Statistical analysis was conducted to identify 

stress metrics that (1) correlated with yield and (2) showed differences in stress between 

free and controlled drainage. A Pearson correlation coefficient was determined to relate 

yield to the stress metrics without distinguishing between free and controlled drainage. A 

paired t-test was used to compare stress quantities between free and controlled drainage 

(pairs in Table 3.10). Because it was common for many plot-years to have zero stress at 

certain times, some stress metrics were not considered in this analysis; the small sample 

size would reduce the power of hypothesis testing. Only those stress metrics with at least 

10 plot-years having some amount of stress were included. 
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Table 3.10 T-test pairs of free and controlled plot-years 

Controlled plot-year Free-draining plot-year 

DPAC SE 2012  DPAC NE 2012 

DPAC SE 2014  DPAC NE 2014 

DPAC NW 2-12  DPAC SW 2012 

DPAC NW 2014  DPAC SW 2014 

SERF D4 2012 SERF F5 2012 

SERF D4 2013 SERF F5 2013 

SERF D4 2014 SERF F5 2014 

SERF D3 2012 SERF F2 2012 

SERF D3 2013 SERF F2 2013 

St. Johns N1 2013 St. Johns S1 2013 

St. Johns N2 2013 St. Johns S2 2013 

St. Johns N3 2013 St. Johns S3 2014 

 

Pearson correlation coefficients relating stress to yield for all soil stress metrics 

are included in Tables A.5 and A.6 in the appendix. Many metrics showed statistically 

significant correlation with yield despite low correlation coefficients. Excess stress 

during the VE – V6 period and Early (Planting – V6) period showed statistically 

significant correlation with yield at a significance level of alpha = 0.05 for almost all of 

the thresholds when measured in both time and magnitude. Deficit stress during the R3 – 

R5, R5 – R6, and late season periods (R3 – R6) were often correlated with yield 

regardless of the threshold or whether measured in time or magnitude. Tables 3.11 and 

3.12 show which thresholds and periods resulted in significant yield correlations using 

time as the metric, and 3.13 and 3.14 show results for magnitude. Late-season excess  
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stress and early-season deficit stress were uncommon and almost never correlated with 

yield, so they are excluded from Tables 3.11 through 3.14, but are included in the 

Appendix.  

For the paired t-test, each controlled plot-year was matched with a free-draining 

plot-year from the same site, and the test is used to determine if the mean difference in 

stress of all the pairs is significant. The p-values, test statistics, and mean difference in 

stress from the paired t-test are also included in Tables A.5 and A.6 in the appendix. The 

fields at SWROC were excluded from this test because they could not be paired; pairs are 

shown in Table 3.9. Significant differences in stress between controlled and free-draining 

plot-years were less common than correlation with yield (Tables 3.11 – 3.14). A total of 

five different excess stress metrics during the early season were found to show significant 

differences between treatments; meanwhile, 43 metrics from this same period correlated 

with yield. Late-season deficit was more often found to show significant differences in 

stress levels between treatments. 
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Table 3.11 Statistical significance of yield correlation and difference in stress between 

free and controlled drainage pairs-- deficit metrics, integrated as time 

Threshold: 1 2 3 4 5 6 7 8 9 10 11 12 

V16 - 

R3 

Yield 

Correlation * * ** * * * * * * * *   

Difference 

in Stress                         

R3 - 

R5 

Yield 

Correlation   * ** ** ** ** * * * * ** * 

Difference 

in Stress                         

R5 - 

R6 

Yield 

Correlation * ** ** ** ** * **   ** ** ** ** 

Difference 

in Stress         **   ** *       ** 

Late 

Season 

Yield 

Correlation * ** ** ** ** ** ** ** ** ** ** ** 

Difference 

in Stress         **   **         * 

Whole 

Season 

Yield 

Correlation * ** ** **     *           

Difference 

in Stress             ** *         

** indicates significance at alpha = 0.05 

*indicates significance at alpha = 0.1 

Threshold values and numbers are given in Table 3.4 

 

Table 3.12 Statistical significance of yield correlation and difference in stress between 

free and controlled drainage pairs-- excess metrics, integrated as time 

Threshold: 13 14 15 16 17 18 19 20 21 

Plant - 

VE 

Yield 

Correlation * **           ** ** 

Difference 

in Stress                   

VE - 

V6 

Yield 

Correlation ** ** ** ** **  **   ** ** 

Difference 

in Stress               *   

Early 

Season 

Yield 

Correlation ** ** ** ** ** **  ** ** 

Difference 

in Stress          

V6 - 

V16 

Yield 

Correlation                   

Difference 

in Stress                   

** indicates significance at alpha = 0.05 

*indicates significance at alpha = 0.1 

Threshold values and numbers are given in Table 3.4 
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Table 3.13 Statistical significance of yield correlation and difference in stress between 

free and controlled drainage pairs-- deficit metrics, integrated as magnitude 

Threshold number: 1 2 3 4 5 6 7 8 9 10 11 12 

V16 - 

R3 

Yield 

Correlation   * * * *               

Difference in 

Stress           *   *       ** 

R3 - R5 

Yield 

Correlation   * * ** ** ** *     * **   

Difference in 

Stress             *         * 

R5 - R6 

Yield 

Correlation   * ** ** ** *   * * ** **   

Difference in 

Stress               ** ** ** ** ** 

Late 

Season 

Yield 

Correlation   * ** ** ** *   * ** ** **   

Difference in 

Stress               * * * * ** 

Whole 

Season 

Yield 

Correlation     ** ** **   *   * * *   

Difference in 

Stress                 * *   ** 

* indicates significance at alpha = 0.05 

**indicates significance at alpha = 0.1 

Threshold values and numbers are given in Table 3.4 

 

Table 3.14 Statistical significance of yield correlation and difference in stress between 

free and controlled drainage pairs-- excess thresholds, integrated as magnitude 

Threshold number: 13 14 15 16 17 18 19 20 21 

Plant - 

VE 

Yield 

Correlation ** **     *   ** ** ** 

Difference 

in stress                   

VE - 

V6 

Yield 

Correlation ** ** * ** ** * ** **   

Difference 

inStress         * *   *   

Early 

Season 

Yield 

Correlation ** ** * ** ** * ** ** ** 

Difference 

in Stress           *       

V6 – 

V16 

Yield 

Correlation                   

Difference 

in Stress                   

** indicates significance at alpha = 0.05 

*indicates significance at alpha = 0.1 

Threshold values and numbers are given in Table 3.4 



66 

 

Seventeen deficit metrics and five excess metrics met the criteria for both 

correlation with yield and difference in stress between treatments; they are highlighted in 

Tables 3.11 – 3.14 and listed in Tables 3.15-17. Excess stress was higher in the controlled 

plots and deficit stress was higher in the free-draining plots, as indicated by the mean 

differences. The difference in stress between the paired plot-years for the five metrics 

with the highest correlations are shown in Figures 3.8 and 3.9. Two of the best-correlated 

metrics were deficit stresses that used a threshold of 80% of field capacity over the whole 

soil column and measured stress in time during the R5 – R6 period and the late season. 

Third was a deficit stress metric that used a threshold of 50% of plant available water in 

the 40 – 60 cm soil layer and measured stress in time during the R5 – R6 period. Two 

excess stress metrics were also identified as having a high correlation coefficient, both 

using 95% of aeration stress over the whole soil column as a threshold, with stress 

measured in either magnitude or time during the VE – V6 period.  

Table 3.15 Metrics of stress resulting in yield correlation and difference between 

treatments—deficit metrics integrated as time 

Period R (yield) Mean Difference in Stress 

Deficit threshold 5:  80% of field capacity, 0 – 80 cm 

R5 – R6 -0.56** 0.30** hr/hr 

Late Season -0.63** 0.22** hr/hr 

Deficit threshold 7: 70% of field capacity, 40 – 60 cm 

R5 – R6 -0.40** 0.25** hr/hr 

Late Season -0.41** 0.23** hr/hr 

Whole season -0.38* .11** hr/hr 

Deficit Threshold 12: 50% of plant available water, 40 – 60 cm 

R5 – R6 -0.57** 0.27** hr/hr 

Late season -0.53** 0.20* hr/hr 

**statistically significant at alpha = 0.05 

*statistically significant at alpha = 0.1 
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Table 3.16 Metrics of stress resulting in yield correlation and difference between 

treatments—deficit metrics integrated as magnitude 

Period R (yield) 
Mean difference in 

stress 

Deficit threshold 8: 45% of plant available water, 0 – 80 cm 

R5 – R6 -0.35* 52.0** cm-days 

Deficit threshold 9: 50% of plant available water, 0 – 80 cm 

R5 – R6 -0.38** 58.8** cm-days 

Late Season -0.40** 71.788* cm-days 

Whole Season -0.34* 112.1* cm-days 

Deficit threshold 10: 55% of plant available water, 0 – 80cm 

R5 – R6 -0.42** 63.8** cm-days 

Late Season -0.43** 77.0* cm-days 

Whole Season -0.35* 117.7* cm-days 

Deficit Threshold 11: 60% of plant available water 0 – 80 cm 

R5 – R6 -0.45** 65.9* cm-days 

Late Season -0.46** 79.0 cm-days* 

**statistically significant at alpha = 0.05 

*statistically significant at alpha = 0.1 

 

Table 3.17 Metrics of stress resulting in yield correlation and difference between 

treatments—excess metrics 

Threshold R (yield) 
Mean difference in 

stress 

Excess threshold 17: 95% of aeration threshold, 0 – 30 cm 

VE – V6 -0.46** -1.45* cm-days 

Excess threshold 18: 100% of aeration threshold, 0 – 50 cm 

VE – V6 -0.34* -0.54* cm-days 

Plant – V6 -0.35* -0.54* cm-days 

Excess threshold 20: 95% of aeration threshold, 0 – 80 cm (magnitude) 

VE – V6 -0.58** -3.19* cm-days 

Excess threshold 20: 95% of aeration threshold, 0 – 80 cm (time) 

VE – V6 -0.59** -0.06* hr/hr 

**statistically significant at alpha = 0.05 

*statistically significant at alpha = 0.1 
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Figure 3.8 Difference in stress between pairs for the best-correlated deficit metrics: (a) 

Threshold 12 R5 – R6, (b) Threshold 5 R5 – R6,  (c)  Threshold 5 Late Season. 
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Figure 3.9 Difference in stress between pairs for the best-correlated excess metrics: (a) 

Threshold 20 VE – V6, time, and (b) Threshold 20, VE – V6 (magnitude). 

 

The relationship between stress and yield for the five best-correlated stress 

metrics are shown in Figure 3.10 (deficit stress) and 3.11 (excess stress). A number of 

plot-years had zero excess stress but a large range of yields. A low yield despite zero 

excess stress indicates that other factors were influencing yield. High deficit stress later in 

the season may have been one of those factors. For example, three plots showed very low  
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values of early-season excess and very high values of late-season deficit: free-draining 

plot F5 in 2012 at SERF; controlled plot D4 in 2014 at SERF; and free-draining plot BE 

in 2013 at SWROC. 

 

 
 

 

 
Figure 3.10 Stress-yield relationships for the best-correlated deficit metrics: (a) Threshold 

12 R5 – R6, (b) Threshold 5 Late Season, (c) Threshold 5 R5 – R6  

(a) 
(b) 

(c) 

* 
Controlled plot Free-draining plot 
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Figure 3.11 Stress-yield relationships for the best-correlated excess metrics: (a) Excess 

threshold 20 VE – V6, time, and (b) Excess threshold 20, VE – V6 (magnitude). 

3.6.1 Combination stress metrics 

Yield can be affected by both excess and deficit in the same season, suggesting 

that metrics that capture both excess and deficit could be more useful than either on their 

own. Combination metrics were created by adding together stress as quantified using the 

original deficit and excess thresholds listed below: 

 Deficit 5: 80% of field capacity 0 – 80 cm (significant on its own) 

 Deficit 6: 70% of field capacity 0 – 30 cm 

 Deficit 9: 50% of plant available water 0 – 80 cm  

 Deficit 12: 50% of plant available water 40 – 60 cm (significant on its own) 

 Excess 14: 95% of 0.05 bar water retention, 0 – 30 cm 

 Excess 17: 95% of 0.05 bar water retention, 0 – 50 cm 

 Excess 20: 95% of 0.05 bar water retention, 0 – 80 cm (significant on its own) 

 

These seven represented all the different depths in the soil profile originally tested and 

the three soil characteristics on which thresholds were based (field capacity, plant 

available water, and aeration limit). There were 12 combination thresholds based on these 

four deficit and three excess thresholds, and stress was determined for all nine growth 

(a) (b) 

* 
Controlled plot Free-draining plot 
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periods and both integration methods for a total of 24 new combination metrics. For 

magnitude, stresses were added. The time-based metrics were averaged because the 

values were normalized by the duration of growth stages with different lengths; they 

could be added if time were not normalized. The results of the statistical tests for the 

combination metrics are included in Tables A.5 and A.6. 

 Eight of the 24 combination metrics resulted in statistically significant yield 

correlation and also showed a significant difference in stress quantities between free and 

controlled plot-years with p < 0.1 (Table 3.18). All time-based combination stress metrics 

in Table 3.17 included deficit stress measured by Deficit 5 (threshold of 80% of field 

capacity at 0 – 80 cm). Deficit 5 was significant in these same periods when used to 

measure deficit stress only. These combination metrics were only significant during the 

R5 – R6 and late season periods, but during these times, excess stress was close to zero 

for most plot-years, so the stress quantified by these combination metrics was almost all 

due to the deficit stress. The dominance of the deficit stress in combination metrics 28, 

29, and 30 suggest that the differences in deficit stresses are actually more important, 

especially since significance was found regardless of the excess threshold paired with it. 

Stress measured over the entire season would be more likely to include substantial 

quantities of both excess and deficit stresses and would be the most logical combination 

metric. The combination metrics integrated as magnitude more often resulted in 

significance when including the whole season, and three of the five identified thresholds 

included excess threshold 20, which resulted in significant relationships when used to 

measure excess only, suggesting that both excess and deficits were represented by these 

combinations. 



73 

 

Table 3.18 Combination stress metrics resulting in yield correlation and difference 

between treatments 

Stress metric R (yield) 
Mean stress, 

Free-draining 

Mean stress, 

Controlled 

Mean 

difference in 

stress1 

Time-based (units of hr/hr) 

Combination threshold 22 (5 + 14) 

 
R5 – R6 -0.57** 0.43 0.30 0.13** 

Late -0.63** 0.40 0.33 0.13** 

Combination threshold 23 (5 + 17) 

 
R5 – R6 -0.63** 0.42 0.31 .09** 

Late -0.58** 0.40 .33 .09* 

Combination threshold 24 (5 + 20) 

 
R5 – R6 -0.54** 0.42 0.30 0.12* 

Late  -0.61** 0.40 0.32 0.1** 

Magnitude-based (units of cm-days) 

Combination threshold 28 (9 + 14) 
R5 – R6 -0.38* 85.6  42.8 57.9** 

Late -0.39** 123  70.8  71.0* 

Whole -0.37* 220 140  107.6*  

Combination threshold 29 (9 + 17) 
R5 – R6 -0.37* 85.6  42.4  58.3**  

Late -0.38* 126 71.2  70.6*  

Whole -0.37* 225 146  104.2*  

Combination threshold 30 (9 + 20) 
R5 – R6 -0.7* 85.6 42.2 58.6** 

Late -0.39* 123 70.9 70.6* 

Whole -0.48** 235 167 98.8* 

Combination threshold 33 (12 + 20) 

 
Whole -0.45** 165 109 80.73* 

**statistically significant at alpha = 0.05 

*statistically significant at alpha = 0.1 
1As evaluated by the paired t-test, meaning that this value does not include SWROC 

fields. SWROC fields were included in the calculations of mean stress at free and 

controlled plots in this table. 
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3.6.2 Crop susceptibility factors 

As discussed in the introduction, the Stress Day Index approach to yield-stress 

relationships uses not only magnitude to quantify stress but also a susceptibility factor 

that weights stress more heavily during sensitive growth stages of the crop. 

Hardjoamidjojo (1982) used 0.51 during vegetative growth, 0.33 during silking to soft 

dough, and 0.02 after soft dough as the susceptibility factors for excess moisture stress. 

The growing season was divided based on calendar days after planting. The effect of 

weighting the excess stress metrics based on growth stage was investigated by re-

calculating whole-season stress for the excess metrics using the weighting factors listed 

in Table 3.19. 

Table 3.19 Crop susceptibility factors assigned to growth periods for excess stress 

General period Value Period for this paper 

Vegetative 0.51 Planting through V16 

Silking to soft dough .33 V16 through R3 

After soft dough .02 R3 through R6 

 

New Pearson correlation coefficients were calculated and an additional t-test was 

conducted using the weighted values of total season excess stress. Though correlations 

with yield remain low for this stress metric, the results do shift toward higher correlation 

coefficients and more statistically significant mean differences in stress (Table 3.20). 

Though the difference in stress appears to decrease as a result of weighting, this is due to 

the fact that each stress value was multiplied by a fraction less than 1, not because of a 

shift toward a smaller difference in stress between free-draining and controlled plots. In 

all cases, the free-draining plots exhibit less stress than the controlled plots, indicating 
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that controlled plots have more excess stress not only in general but also at yield-critical 

times according to Hardjoamidjojo’s estimates of susceptibility. 

Table 3.20 T-test and yield correlation statistics with and without weighting the excess 

stress by growth stage 

Excess threshold 
Correlation coefficients 

Mean difference in 

Stress 

(mm-days) 

Weighted Unweighted Weighted Unweighted 

90% of aeration threshold 40 - 60 cm -0.35 -0.28 42.6* 132.6 

95% of aeration threshold 0 - 30 cm -0.35 -0.31 20.1* 47.4 

100% of aeration threshold 0 - 30 cm -0.28 -0.24 8.1 2.9 

90% of aeration threshold 0 - 30 cm -0.15 -0.04 52.8 114.5 

95% of aeration threshold 0 - 50 cm -0.19 -0.08 30.0 50.3 

100% of aeration threshold 0 - 50 cm -0.15 -0.07 9.8 18.1 

90% of aeration threshold 0 - 50 cm -0.31 -0.22 84.7 290.4 

95% of aeration threshold 0 - 80 cm -0.40 -0.33 55.3** 166.1 

100% of aeration threshold 0 - 80 cm -0.41 -0.36 13.0** 25.5 

**statistically significant at alpha = 0.05 

*statistically significant at alpha = 0.1 

 

Sudar et al. (1979) determined crop susceptibility factors for deficit stress to corn 

by combining values from the literature, but did not report values for specific growth 

stages. In general, the peak vulnerability of corn occurs later for deficit stress than excess 

stress. 

3.7 Precipitation and management 

Precipitation variability from year-to-year affects crop growth but may also change 

the impact of controlled drainage. When there is no crop or boards are not in place, the 

controlled plots do not have the ability to impact yield, because precipitation occurring 

during these times is not conserved. More precipitation during the period when controlled 
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drainage has the potential to impact yield may enhance benefits. In a field study of yield 

effects of controlled drainage, Poole et al. (2013) found that controlled drainage affected 

yield due to the amount of drainage water conserved and the timing of that conservation, 

rather than water table height or rainfall in the growing season. One of the greatest yield 

benefits during that study, when plots with controlled drainage yield 21% more than free-

draining plots, occurred in a year with normal rainfall during the early growing season 

(January to April) followed by very little rainfall from May to August. Tan et al. (2002) 

found that controlled drainage with subirrigation produced significantly higher soil water 

content during dry years but not wet years. This finding is consistent with that of Poole’s 

in suggesting that controlling the water table has a greater potential to provide benefits 

over free-draining fields when the free-draining plots are actually threatened by water 

deficit. In wet years, both treatments may have enough water late in the season to prevent 

any adverse yield effects, or excess stress in the controlled plots may negate the benefits 

of having higher soil moisture later. 

Total precipitation at each field site during the yield impact period, defined as the 

time when boards were in place and a crop was growing on the field, was determined and 

found to range from about 25% to over half of annual precipitation (Table 3.21). At some 

sites, for example, SERF in 2012 and St. Johns in 2013, the amount of precipitation 

during the yield impact period was fairly low even though the total precipitation for the 

year was high or normal. 
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Table 3.21 Total precipitation, precipitation during yield impact period, and precipitation 

during the rest of the year for each site 

 

Yield impact Other Total 

 

(mm) (mm) (mm) 

DPAC 2012 363 549 912 

DPAC 2014 626 481 1107 

SERF 2012 207 630 837 

SERF 2013 348 575 923 

SERF 2014 690 399 1089 

St. Johns 2013 222 874 1096 

SWROC 2013 330 251 581 

SWROC 2014 520 394 914 

 

Figure 3.12 shows how yield-impact precipitation in the years observed relate to 

the mean difference in stress between free-draining and controlled plots. The mean 

difference in stress is across all growth periods and all deficit thresholds and integrated as 

magnitude. For the period observed, there is no apparent relationship, suggesting that a 

wider range of precipitation values may be needed to explore the possible effects of 

precipitation on the performance of controlled drainage. 

 

Figure 3.12. Relationship between precipitation during the yield impact period and the 

mean stress value across all thresholds for each plot-year, (a) for deficit and (b) for excess 

 

 

(a) (b) 
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3.8 Discussion 

The analysis of the DPAC, SERF, St. Johns, and SWROC drainage sites revealed 

generally lower quantities of soil moisture deficit in plots with controlled drainage and 

higher quantities of excess stress. While both excess and deficit stress were related to 

yield reductions, late-season deficit stress showed the strongest differences between 

treatments. Meanwhile the amount of excess stress between the free-draining and 

controlled groups was usually not statistically significant. 

The approximate division of the growing season into different developmental 

stages of the corn crops was intended to identify the periods most sensitive to moisture 

stresses, and worked well although the period expected to be most important, V16 – R3, 

did not result in significant correlations or differences in stress. Water stress during 

tasseling and silk formation have been found to greatly reduce crop yields, even in 

irrigated plots with only slight water deficits caused by omitted irrigation treatments 

(Cakir 2004). Meanwhile, Abrecht (1991) found that earlier water deficits could delay 

crop phenology and reduce plant height or biomass but not necessarily reduce grain 

yields. In the sites studied, the later season deficit stresses occurring from R3 until 

maturity were found to be more closely related to yield impacts, although they were not 

necessarily more prevalent. From the time series, it is apparent that soil moisture deficits 

did occur during the V16 – R3 stage. Soil moisture monitoring from V16 onward would 

be most useful in identifying differences between free-drainage and managed plots. 

Although only a few of the deficit thresholds resulted in stress metrics that met the 

criteria of statistically significant difference in stress and correlation with yield, there is 

little difference in general in the performance of the deficit thresholds in identifying 
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stresses that show a statistically significant correlation with yield. Even the deficit 

threshold that only considered the top 30 cm of soil worked approximately as well as 

other thresholds during the R5- R6 period. If monitoring the entire soil profile is cost-

prohibitive, soil moisture in the upper layers may be sufficient to get a general picture of 

whether or not stress is occurring. 

Given the correlations between deficit stress and yield reductions, the effect of 

controlled drainage seems to depend on the amount of soil moisture conserved during the 

late growing season. Mejia, et al. (2000) found consistent yield increases a in water table 

management experiment that included subirrigation that maintained the water table at 0.5 

or 0.75 m below the surface for the entire growing season as opposed to passively 

controlling the water table as is done with controlled drainage. Compared with 

subirrigation, water conservation with drainage water management is less predictable, but 

the cost and level of management required is also much less. The timing of precipitation 

and board removal will affect how much water is actually conserved in the controlled 

plots. As shown in Figure 2.2, boards in the controlled plots at SERF in 2013 and 2014 

and DPAC in 2012 and 2014 were never removed during the planting period. Removing 

the boards during planting may have reduced the excess stress in the controlled plots 

during this time, particularly in years with more rainfall like 2014. However, leaving the 

boards in place could also have provided additional conservation of water from 

precipitation and snowmelt occurring before planting. 
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3.9 Conclusions 

Despite the lack of significant differences in yields between the free-draining and 

controlled plots, the soil moisture data allowed instead for an assessment based on soil 

moisture conditions that were linked to yield. No single soil moisture stress metric could 

be identified as the best way to quantify stress and assess controlled drainage. However, 

the metrics that did satisfy criteria for significance were similar to each other, allowing 

some conclusions to be drawn on the relationships between stress, yield, and controlled 

drainage: 

 Late-season deficit and early-season excess soil moisture were indicators of yield 

reductions. Measured with a variety of thresholds, excess that occurred early in 

the season and deficit that occurred late in the season resulted in correlation with 

yield. 

 Though excess soil moisture stress is correlated with crop yield, very few 

significant differences were found in excess stress between free and controlled 

drainage. Thus yield reductions such as those predicted in simulations by Singh et 

al. (2007). were not realized at the years and sites studied. The fact that 2012 at all 

sites and 2013 at SERF and SWROC received little rainfall during the growing 

season may have contributed to the avoidance of excess moisture stress. The 

outlet managed outlet depths in this study ranged from 0.4 to 0.76 m below the 

surface for the growing season, similar to the depth used in Singh et al (2007). 

 Low deficit stress thresholds, such as 60% of field capacity, that would represent 

a very severe deficit stress, were not found to correlate with yield or show 

differences in stress between fields, partly because the soil moisture often did not 
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fall below these thresholds. Meanwhile, the higher deficit thresholds did result in 

yield correlation, suggesting that yield can be affected even when extreme stress 

does not occur. 

 In contrast to the results of the deficit analysis, the lower excess thresholds 

(representing less severe stress) were not as effective as those based on 95% or 

100% of the aeration stress limit. 

 The timing of excess stress is important, with statistical evaluation of the 

correlation of excess stress with yield as well as the difference in stress between 

free and controlled drainage improving when a weighting factor was applied to 

emphasize stress that occurs during early vegetative growth. This finding was 

consistent with the use of susceptibility factors as part of the stress day index 

model (Hiler 1969). 

 Though the benefits of controlled drainage probably vary from year to year, the 

specific ways in which they were measured and the timing of precipitation at the 

sites and years studied failed to show these effects. 

 The deficit and excess stress metrics are limited in the sense that each one ignores 

the impact of the other, and combination metrics that quantify stress over the 

entire growing season result in a more complete assessment of soil conditions, but 

the combinations should be comprised of an excess and a deficit threshold that 

each successfully quantify stress on their own. 
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CHAPTER 4 CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

4.1 Soil moisture and crop yield impacts 

Through the analysis of soil moisture excesses and deficits, several relationships 

were identified between soil moisture stress metrics and crop yield where a difference 

was also found between the mean values of the stress metrics in the controlled and free-

draining groups. Plots with controlled drainage were found to have more early-season 

excess stress than the free-draining plots and less late-season deficit stress. However, the 

differences in soil moisture stress was found to be more pronounced in late-season 

deficits than in early season excess. This suggests that controlled drainage may offer 

protection against yield reductions due to deficit stress in years when it is severe enough 

to be a problem, whereas in wet years when both free-draining and controlled plots have 

plenty of water, the ability of controlled drainage to abate deficit stresses may be 

immaterial.

Future research should continue to define the conditions under which controlled 

drainage will be beneficial. To do this, it will be necessary to investigate the differences 

in precipitation patterns that impact the amount of water conserved by controlled 

drainage. As the record of data from the four study sites analyzed here continues to grow, 

differences in precipitation during the growing season when boards are in place should be 

tracked. The amount of conserved water should be related to a reduction in soil moisture  
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deficits. Experimenting with different combination stress metrics can also lead to more 

effective soil moisture metrics. Following the same board management strategy across all 

sites and years studied can also help reduce noise. 

Provided enough data, the analysis of crop yields with respect to soil moisture 

stress could be expanded to include other crops. Then the information available to 

farmers about controlled drainage would not simply point toward whether or not crop 

reductions will occur, but which crops would be best. Estimating the development of 

soybeans through growing degree days is not as common as with corn, but given the lack 

of time-sensitivity of the soil moisture metrics found in this study (metrics covering the 

late, early, and whole seasons worked as well as those covering single growth stages), 

even simpler divisions of the growing season may still be effective. 

Finally, predicting the future effectiveness of controlled drainage given future 

climate variability is an important modeling question. More sporadic but intense rainfall 

could result in either increased excess soil moisture or increased drought stress, which 

may make controlled drainage could either more or less effective compared to free 

drainage. 

4.2 Volumetric water content 

The development and application of a single method for filling soil moisture data 

at all four field sites involved a thorough analysis of correlation between sensors that 

highlighted its spatial and temporal variability. The filling method could be further 

analyzed for effect on data quality—for example, root mean squared error as opposed to  
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bias as the metric of the error. However, the raw volumetric water content data could also 

simply be used to characterize soil moisture. The relationship between mean soil 

moisture and variance is often studied (Vereecken 2008). 

Chapter 2 concluded by stating that the filled soil moisture data was probably best 

used for analysis on a resolution of at least 1 day, but the raw volumetric water content 

measurements during periods when all data was recorded can still be used to study 

hydrologic processes. The data can be used to determine wetting front velocity, 

antecedent moisture conditions, time required for soil to saturate, and to detect 

preferential flow during rainfall events. This type of analysis has been done in other field 

studies using non-sequential response of soil moisture sensors as evidence for preferential 

flow (Hardie et al. 2012; Lin and Zhou 2008). The practical implication of a change in 

the wetting characteristics of a field is the potential for rapid transport of agro-chemicals 

via preferential flow. Bauters (2000) and Hardie (2012) concluded that higher antecedent 

moisture conditions resulted in reduced preferential flow, which could mean that fields 

with controlled drainage plots exhibit preferential flow less than free-draining fields. 

Meanwhile, a more classical wetting front under higher antecedent moisture conditions 

may result in more rapid saturation and generation of surface runoff. 

The first step in using soil moisture to analyze infiltration is to identify events 

when soil moisture sensors record a response and corroborate them with precipitation 

events. Quantities like time to saturation or sensor response order do require the selection 

of a definitive starting point, which may be challenging since soil moisture response and  
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precipitation do not always coincide simply. However, once a methodology is clearly 

established, the size of the volumetric water content datasets at DPAC is large enough to 

analyze at least 75 precipitation/response events.
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Table A.1 Water retention as volumetric water content and equivalent depth for each plot 

and soil layer at DPAC 

Site: DPAC 

      0.05 bar 0.1 bar 15 bar 

Plot 

Measured 

Layer 

Represented 

Layer VWC 

equiv. 

depth 

(mm) VWC 

equiv. 

depth 

(mm) VWC 

equiv. 

depth 

(mm) 

NE 

0 - 10 0 - 15 0.34 51 0.33 49 0.18 26 

10 - 20 15 - 30 0.34 51 0.34 50 0.20 30 

20 - 40 30 - 50 0.38 76 0.37 75 0.26 53 

40-60 50 - 80 0.38 114 0.37 112 0.25 76 

NW 

0 - 10 0 - 15 0.33 50 0.32 47 0.16 24 

10 - 20 15 - 30 0.33 50 0.32 49 0.19 29 

20 - 40 30 - 50 0.39 78 0.39 77 0.27 54 

40-60 50 - 80 0.39 116 0.38 114 0.28 85 

SE 

0 - 10 0 - 15 0.39 59 0.38 57 0.24 36 

10 - 20 15 - 30 0.40 60 0.39 59 0.25 37 

20 - 40 30 - 50 0.40 81 0.40 79 0.25 50 

40-60 50 - 80 0.40 120 0.39 118 0.24 72 

SW 

0 - 10 0 - 15 0.38 57 0.38 57 0.24 36 

10 - 20 15 - 30 0.39 58 0.38 57 0.26 39 

20 - 40 30 - 50 0.39 79 0.39 77 0.27 55 

40-60 50 - 80 0.41 123 0.40 121 0.27 82 
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Table A.2 Water retention as volumetric water content and equivalent depth for each plot 

and soil layer at SERF 

Site: SERF 

      0.05 bar 0.1 bar 15 bar 

Plot 

Measured 

Layer 

Represented 

Layer VWC 

equiv. 

depth 

(mm) VWC 

equiv. 

depth 

(mm) VWC 

equiv. 

depth 

(mm) 

F2 

0 - 10 0 - 15 0.43 65 0.42 63 0.12 19 

10 - 20 15 - 30 0.45 68 0.45 67 0.07 11 

20 - 40 30 - 50 0.44* 87 0.40* 79 0.21* 42 

40-60 50 -80 0.42* 127 0.39* 116 0.21* 63 

D3 

0 - 10 0 - 15 0.44 66 0.43 65 0.13 20 

10 - 20 15 - 30 0.47 71 0.47 71 0.09 14 

20 - 40 30 - 50 0.44* 88 0.40* 80 0.21* 42 

40-60 50 -80 0.43* 129 0.39* 117 0.21* 62 

D4 

0 - 10 0 - 15 0.44 66 0.43 65 0.12 18 

10 - 20 15 - 30 0.45 68 0.45 68 0.07 11 

20 - 40 30 - 50 0.43* 87 0.39* 79 0.21* 42 

40-60 50 -80 0.42* 126 0.38* 115 0.20* 60 

F5 

0 - 10 0 - 15 0.43 64 0.42 63 0.08 11 

10 - 20 15 - 30 0.47 70 0.44 67 0.13 20 

20 - 40 30 - 50 0.43* 87 0.39* 79 0.21* 42 

40-60 50 -80 0.43* 129 0.39* 118 0.20* 61 

*values estimated with Rosetta 

  



95 

Table A.3 Water retention as volumetric water content and equivalent depth for each plot 

and soil layer at St. Johns 

Site: St. Johns 

      0.05 bar 0.1 bar 15 bar 

Plot 

Measured 

Layer 

Represented 

Layer VWC 

equiv. depth 

(mm) VWC 

equiv. depth 

(mm) VWC 

equiv. depth 

(mm) 

N1 

0 - 10 0 - 15 0.41 62 0.40 61 0.29 43 

10 - 20 15 - 30 0.36 55 0.36 54 0.29 43 

20 - 40 30 - 50 0.41 81 0.40 80 0.31 63 

40-60 50 - 80 0.45 134 0.44 133 0.24 71 

N2 

0 - 10 0 - 15 0.40 60 0.39 58 0.28 42 

10 - 20 15 - 30 0.38 57 0.37 56 0.28 42 

20 - 40 30 - 50 0.40 81 0.40 79 0.30 60 

40-60 50 - 80 0.41 123 0.40 121 0.31 94 

N3 

0 - 10 0 - 15 0.40 60 0.39 58 0.25 38 

10 - 20 15 - 30 0.38 58 0.38 56 0.26 39 

20 - 40 30 - 50 0.37 75 0.37 73 0.27 54 

40-60 50 - 80 0.40 120 0.39 118 0.29 88 

S1 

0 - 10 0 - 15 0.39 59 0.38 57 0.24 36 

10 - 20 15 - 30 0.37 55 0.36 54 0.25 38 

20 - 40 30 - 50 0.38 76 0.38 75 0.26 52 

40-60 50 - 80 0.39 118 0.39 116 0.32 96 

S2 

0 - 10 0 - 15 0.41 61 0.40 60 0.27 41 

10 - 20 15 - 30 0.41 62 0.41 61 0.28 43 

20 - 40 30 - 50 0.41 83 0.41 82 0.29 58 

40-60 50 - 80 0.39 116 0.38 114 0.27 81 

S3 

0 - 10 0 - 15 0.37 55 0.36 54 0.23 35 

10 - 20 15 - 30 0.40 59 0.39 59 0.27 41 

20 - 40 30 - 50 0.40 79 0.39 78 0.27 54 

40-60 50 - 80 0.40 119 0.39 118 0.32 96 
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Table A.4 Water retention as volumetric water content and equivalent depth for each plot 

and soil layer at SWROC 

Site: SWROC               

      0.05 bar 0.1 bar 15 bar 

Plot 

Measured 

Layer 

Represented 

Layer VWC 

equiv. depth 

(mm) VWC 

equiv. depth 

(mm) VWC 

equiv. depth 

(mm) 

BW 

0 - 10 0 - 15 0.44 67 0.41 61 0.22 33 

10 - 20 15 - 30 0.45 68 0.41 61 0.19 29 

20 - 40 30 - 50 0.41 82 0.38 77 0.20 40 

40-60 50 - 80 0.44 131 0.41 124 0.18 54 

BE 

0 - 10 0 - 15 0.45 67 0.41 61 0.22 33 

10 - 20 15 - 30 0.45 67 0.42 63 0.19 29 

20 - 40 30 - 50 0.43 86 0.40 79 0.20 41 

40-60 50 - 80 0.43 129 0.41 122 0.17 50 

GA 

0 - 10 0 - 15 0.45 67 0.41 62 0.13 19 

10 - 20 15 - 30 0.42 63 0.43 65 0.11 17 

20 - 40 30 - 50 0.42 83 0.40 80 0.25* 50* 

40-60 50 - 80 0.46 138 0.43 129 0.28* 84* 

GB 

0 - 10 0 - 15 0.45 68 0.41 62 0.10 16 

10 - 20 15 - 30 0.43 64 0.40 61 0.12 18 

20 - 40 30 - 50 0.42 83 0.39 78 0.24* 49* 

40-60 50 - 80 0.43 130 0.40 119 0.25* 74* 

*values estimated with Rosetta   
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Table A.5 Statistical results for all thresholds—time 

 

Plant 

- VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Season 

Late 

Season 

Whole 

Season 

1. 60% of field capacity 0 - 80 cm 

mean difference -- -- -- 0.08 0.16 -- -- 0.11 0.05 

test statistic (t test) -- -- -- 0.70 1.46 -- -- 1.34 1.08 

p-value (t test) -- -- -- 0.50 0.17 -- -- 0.21 0.30 

yield correlation coefficient -- -- -- -0.35 -0.32 -- -- -0.36 -0.37 

p-value (yield correlation) -- -- -- 0.08 0.11 -- -- 0.07 0.06 

2. 65% of field capacity 

mean difference -- -- -- 0.15 0.09 0.03 -- 0.04 0.04 

test statistic (t test) -- -- -- 1.31 0.54 0.26 -- 0.33 0.65 

p-value (t test) -- -- -- 0.22 0.60 0.80 -- 0.75 0.53 

yield correlation coefficient -- -- -- -0.40 -0.40 -0.65 -- -0.64 -0.58 

p-value (yield correlation) -- -- -- 0.04 0.04 0.00 -- 0.00 0.00 

3. 70% of field capacity 0 - 80 cm 

mean difference -- -- -- 0.10 0.09 0.10 -- 0.09 0.03 

test statistic (t test) -- -- -- 0.91 0.66 0.84 -- 0.76 0.51 

p-value (t test) -- -- -- 0.38 0.52 0.42 -- 0.46 0.62 

yield correlation coefficient -- -- -- -0.42 -0.34 -0.69 -- -0.66 -0.58 

p-value (yield correlation) -- -- -- 0.03 0.08 0.00 -- 0.00 0.00 

4. 75% of field capacity 0 - 80 cm 

mean difference -- -- -0.02 0.09 -0.01 0.20 -- 0.14 0.01 

test statistic (t test) -- -- -0.37 0.70 -0.09 1.71 -- 1.46 0.17 

p-value (t test) -- -- 0.72 0.50 0.93 0.12 -- 0.17 0.87 

yield correlation coefficient -- -- -0.21 -0.35 -0.50 -0.69 -- -0.70 -0.44 

p-value (yield correlation) -- -- 0.28 0.07 0.01 0.00 -- 0.00 0.02 

5. 80% of field capacity 0 - 80 cm 

mean difference -- -- -0.08 -0.05 -0.01 0.30 -- 0.22 0.05 

test statistic (t test) -- -- -0.78 -0.53 -0.29 2.88 -- 2.53 0.54 

p-value (t test) -- -- 0.45 0.60 0.78 0.01 -- 0.03 0.60 

yield correlation coefficient -- -- -0.22 -0.37 -0.65 -0.56 -- -0.63 -0.32 

p-value (yield correlation) -- -- 0.27 0.06 0.00 0.00 -- 0.00 0.11 

6. 70% of field capacity 0 - 30 cm 

mean difference -- -- -0.21 -0.11 0.10 0.02 -- 0.03 -0.11 

test statistic (t test) -- -- -1.39 -0.81 0.66 0.17 -- 0.24 -0.91 

p-value (t test) -- -- 0.19 0.43 0.52 0.87 -- 0.82 0.38 

yield correlation coefficient -- -- -0.09 -0.36 -0.47 -0.33 -- -0.39 -0.15 

p-value (yield correlation) -- -- 0.64 0.07 0.01 0.09 -- 0.05 0.47 

7. 70% of field capacity 40 - 60 cm 

mean difference -- -- -- 0.18 0.18 0.25 -- 0.23 0.11 

test statistic (t test) -- -- -- 2.52 1.78 2.51 -- 2.47 2.63 

p-value (t test) -- -- -- 0.03 0.10 0.03 -- 0.03 0.02 

yield correlation coefficient -- -- -- -0.35 -0.37 -0.40 -- -0.41 -0.38 

p-value (yield correlation) -- -- -- 0.07 0.06 0.04 -- 0.03 0.05 

 

 



98 

Table A.5 continued 

  

Plant - 

VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Season 

Late 

Season 

Whole 

Season 

8. 45% of plant available water 0 - 80 cm 

mean difference -- -- 0.07 0.08 0.02 0.30 -- 0.24 0.16 

test statistic (t test) -- -- 1.78 0.89 0.16 1.88 -- 1.56 2.01 

p-value (t test) -- -- 0.10 0.39 0.88 0.09 -- 0.15 0.07 

yield correlation coefficient -- -- -0.18 -0.36 -0.34 -0.37 -- -0.40 -0.27 

p-value (yield correlation) -- -- 0.36 0.06 0.08 0.06 -- 0.04 0.18 

9. 50% of plant available water 0 - 80 cm 

mean difference -0.05 -- 0.09 0.06 0.08 0.26 -- 0.22 0.12 

test statistic (t test) -0.31 -- 1.21 0.61 0.55 1.78 -- 1.55 1.46 

p-value (t test) 0.76 -- 0.25 0.56 0.59 0.10 -- 0.15 0.17 

yield coefficient -0.03 -- -0.11 -0.38 -0.35 -0.41 -- -0.43 -0.18 

p-value (yield correlation) 0.89 -- 0.59 0.05 0.08 0.03 -- 0.03 0.36 

10. 55% of plant available water 0 - 80 cm   

mean difference -0.14 -- 0.05 0.04 0.07 0.15 -- 0.14 0.05 

test statistic (t test) -0.89 -- 0.53 0.32 0.50 1.12 -- 1.06 0.58 

p-value (t test) 0.39 -- 0.61 0.76 0.62 0.28 -- 0.31 0.58 

yield correlation coefficient -0.04 -- -0.08 -0.36 -0.36 -0.46 -- -0.47 -0.12 

p-value (yield correlation) 0.85 -- 0.71 0.07 0.06 0.02 -- 0.01 0.54 

11. 60% of plant available water 0 - 80 cm   

mean difference -- -- 0.04 -0.01 -0.03 0.07 -- 0.05 -0.01 

test statistic (t test) -- -- 0.36 -0.08 -0.27 0.56 -- 0.37 -0.14 

p-value (t test) -- -- 0.73 0.94 0.79 0.59 -- 0.72 0.89 

yield correlation coefficient -- -- -0.04 -0.34 -0.41 -0.47 -- -0.49 -0.07 

p-value (yield correlation) -- -- 0.84 0.08 0.03 0.01 -- 0.01 0.74 

12. 50% of plant available  water 40-60 cm   

mean difference -0.02 -- 0.15 0.09 0.01 0.27 0.11 0.20 0.14 

test statistic (t test) -0.18 -- 1.65 1.15 0.06 2.57 1.33 1.83 1.96 

p-value (t test) 0.86 -- 0.13 0.27 0.96 0.03 0.21 0.09 0.08 

yield correlation coefficient -0.04 -- -0.15 -0.32 -0.35 -0.56 -0.03 -0.53 -0.30 

p-value (yield correlation) 0.84 -- 0.46 0.10 0.07 0.00 0.87 0.00 0.12 

13. 90% of aeration threshold 0 - 30 cm   

mean difference -0.08 -0.13 -0.13 -0.07 -0.06 -0.08 -0.12 -0.09 -0.10 

test statistic (t test) -1.04 -1.64 -1.53 -0.78 -1.04 -0.93 -1.56 -1.04 -1.52 

p-value (t test) 0.32 0.13 0.15 0.45 0.32 0.37 0.15 0.32 0.16 

yield coefficient -0.33 -0.44 -0.12 0.24 0.29 0.15 -0.43 0.18 -0.11 

p-value (yield correlation) 0.09 0.02 0.55 0.23 0.14 0.46 0.03 0.36 0.60 

14. 95% of aeration threshold 0 - 30 cm   

mean difference -0.02 -0.08 -0.10 -0.04 -0.02 -0.04 -0.06 -0.04 -0.06 

test statistic (t test) -0.74 -1.42 -1.51 -0.72 -0.73 -0.75 -1.34 -0.79 -1.31 

p-value (t test) 0.47 0.18 0.16 0.49 0.48 0.47 0.21 0.44 0.22 

yield coefficient -0.44 -0.49 -0.20 0.29 0.26 0.10 -0.49 0.12 -0.17 

p-value (yield correlation) 0.02 0.01 0.32 0.14 0.20 0.63 0.01 0.56 0.39 
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Table A.5 continued 

  

Plant - 

VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Season 

Late 

Season 

Whole 

Season 

15. 100% of aeration threshold 0 - 30 cm   

mean difference -0.01 -0.05 -0.05 0.01 -0.01 -0.01 -0.04 -0.01 -0.02 

test statistic (t test) -1.17 -1.33 -1.10 0.66 -0.27 -0.59 -1.36 -0.55 -1.00 

p-value (t test) 0.27 0.21 0.30 0.52 0.79 0.57 0.20 0.59 0.34 

yield coefficient -0.19 -0.43 -0.30 0.30 0.14 0.14 -0.42 0.14 -0.29 

p-value (yield correlation) 0.35 0.03 0.13 0.13 0.48 0.49 0.03 0.49 0.14 

16. 90% of aeration threshold 0 - 50 cm       

mean difference -0.02 -0.05 -0.08 0.00 0.00 -0.01 -0.04 -0.01 -0.03 

test statistic (t test) -0.19 -1.12 -0.65 -0.01 0.02 -0.09 -0.76 -0.07 -0.32 

p-value (t test) 0.85 0.29 0.53 0.99 0.99 0.93 0.46 0.95 0.76 

yield coefficient 0.06 -0.50 0.05 0.44 0.41 0.40 -0.42 0.40 0.16 

p-value (yield correlation) 0.76 0.01 0.79 0.02 0.04 0.04 0.03 0.04 0.43 

17. 95% of aeration threshold 0 - 50 cm   

mean difference -0.01 -0.04 -0.10 -0.03 -0.08 -0.03 -0.03 -0.04 -0.05 

test statistic (t test) -0.34 -1.25 -1.27 -0.31 -0.89 -0.85 -1.21 -0.86 -0.92 

p-value (t test) 0.74 0.24 0.23 0.76 0.39 0.42 0.25 0.41 0.38 

yield coefficient 0.03 -0.60 -0.03 0.44 0.32 0.32 -0.60 0.32 0.05 

p-value (yield correlation) 0.90 0.00 0.87 0.02 0.10 0.11 0.00 0.11 0.81 

18. 100% of aeration threshold 0 - 50 cm   

mean difference 0.00 -0.02 -0.04 -0.07 -0.03 0.00 -0.01 -0.01 -0.03 

test statistic (t test) 0.21 -1.72 -0.97 -0.82 -0.87 -0.07 -1.53 -0.64 -0.98 

p-value (t test) 0.83 0.11 0.35 0.43 0.40 0.95 0.15 0.53 0.35 

yield coefficient -0.34 -0.60 0.06 0.30 0.29 0.42 -0.65 0.35 0.04 

p-value (yield correlation) 0.08 0.00 0.78 0.13 0.15 0.03 0.00 0.08 0.83 

19. 90% of aeration threshold 0  - 80 cm   

mean difference -0.18 -0.05 0.01 0.10 0.00 -0.01 -0.08 -0.01 0.00 

test statistic (t test) -1.66 -0.73 0.05 1.00 -0.03 -0.16 -1.20 -0.10 -0.08 

p-value (t test) 0.13 0.48 0.96 0.34 0.97 0.88 0.26 0.92 0.94 

yield coefficient 0.15 -0.28 0.10 0.43 0.52 0.43 -0.19 0.46 0.21 

p-value (yield correlation) 0.46 0.15 0.61 0.03 0.01 0.03 0.34 0.01 0.29 

20. 95% of aeration threshold 0 - 80 cm   

mean difference -0.02 -0.06 -0.10 -0.06 -0.08 -0.02 -0.05 -0.03 -0.05 

test statistic (t test) -0.60 -1.84 -1.71 -0.67 -1.17 -0.84 -1.71 -0.98 -1.51 

p-value (t test) 0.56 0.09 0.12 0.52 0.27 0.42 0.12 0.35 0.16 

yield coefficient -0.54 -0.59 -0.16 0.29 0.29 0.36 -0.62 0.32 -0.20 

p-value (yield correlation) 0.00 0.00 0.42 0.15 0.14 0.06 0.00 0.10 0.32 

21. 100% of aeration threshold, 0 - 20 cm   

mean difference 0.01 -0.02 -0.06 -0.06 -0.02 0.00 -0.01 0.00 -0.03 

test statistic (t test) 1.71 -1.60 -1.55 -1.04 -0.82 -0.02 -0.99 -0.58 -1.39 

p-value (t test) 0.11 0.14 0.15 0.32 0.43 0.99 0.34 0.57 0.19 

yield coefficient -0.63 -0.65 -0.29 0.34 0.29 0.37 -0.66 0.35 -0.32 

p-value (yield correlation) 0.00 0.00 0.14 0.08 0.14 0.05 0.00 0.07 0.10 
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Table A.5 Continued 

  

Plant - 

VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Season 

Late 

Season 

Whole 

Season 

22. Deficit 5 + Excess 14   

mean difference 0.04 -0.06 -0.09 -0.04 -0.01 0.13 -0.03 0.09 0.00 

test statistic (t test) 0.53 -0.87 -1.79 -0.83 -0.58 2.87 -0.51 2.48 -0.09 

p-value (t test) 0.61 0.40 0.10 0.42 0.57 0.02 0.62 0.03 0.93 

yield coefficient -0.05 -0.16 -0.34 -0.31 -0.61 -0.57 -0.14 -0.63 -0.41 

p-value (yield correlation) 0.82 0.42 0.08 0.11 0.00 0.00 0.47 0.00 0.03 

23. Deficit 5 + Excess 17   

mean difference 0.04 -0.04 -0.09 -0.04 -0.04 0.13 -0.02 0.09 0.00 

test statistic (t test) 0.56 -0.56 -1.51 -0.59 -0.93 2.75 -0.25 2.08 0.04 

p-value (t test) 0.59 0.58 0.16 0.57 0.37 0.02 0.81 0.06 0.97 

yield coefficient 0.03 -0.19 -0.26 -0.18 -0.53 -0.52 -0.14 -0.58 -0.34 

p-value (yield correlation) 0.90 0.34 0.19 0.37 0.00 0.00 0.47 0.00 0.08 

24. Deficit 5 + Excess 20   

mean difference 0.04 -0.05 -0.09 -0.05 -0.05 0.14 -0.03 0.10 0.00 

test statistic (t test) 0.51 -0.71 -1.67 -0.86 -1.15 2.88 -0.38 2.34 -0.03 

p-value (t test) 0.62 0.49 0.12 0.41 0.27 0.01 0.71 0.04 0.98 

yield coefficient -0.21 -0.27 -0.37 -0.28 -0.57 -0.54 -0.29 -0.61 -0.47 

p-value (yield correlation) 0.29 0.17 0.06 0.15 0.00 0.00 0.15 0.00 0.01 

25. Deficit 6 + Excess 14   

mean difference -0.04 -0.16 -0.15 -0.08 0.04 -0.01 -0.13 0.00 -0.09 

test statistic (t test) -0.64 -2.11 -2.16 -1.17 0.60 -0.13 -1.98 -0.06 -1.52 

p-value (t test) 0.54 0.06 0.05 0.26 0.56 0.90 0.07 0.96 0.16 

yield coefficient -0.07 0.04 -0.21 -0.30 -0.45 -0.32 0.02 -0.39 -0.23 

p-value (yield correlation) 0.73 0.83 0.30 0.13 0.02 0.10 0.94 0.05 0.25 

26. Deficit 6 + Excess 17   

mean difference -0.03 -0.14 -0.15 -0.07 0.01 -0.01 -0.11 -0.01 -0.08 

test statistic (t test) -0.58 -1.89 -2.34 -1.34 0.20 -0.08 -1.79 -0.11 -1.69 

p-value (t test) 0.57 0.09 0.04 0.21 0.84 0.94 0.10 0.92 0.12 

yield coefficient 0.01 0.02 -0.12 -0.15 -0.35 -0.27 0.02 -0.32 -0.14 

p-value (yield correlation) 0.96 0.92 0.54 0.47 0.08 0.17 0.92 0.11 0.49 

27. Deficit 6 + Excess 20   

mean difference -0.04 -0.15 -0.15 -0.09 0.01 0.00 -0.12 0.00 -0.08 

test statistic (t test) -0.67 -2.05 -2.29 -1.54 0.17 0.06 -1.92 0.01 -1.64 

p-value (t test) 0.52 0.07 0.04 0.15 0.87 0.96 0.08 0.99 0.13 

yield coefficient -0.24 -0.06 -0.22 -0.25 -0.39 -0.30 -0.12 -0.35 -0.25 

p-value (yield correlation) 0.22 0.76 0.26 0.20 0.04 0.13 0.55 0.08 0.22 

28. Deficit 9 + Excess 14   

mean difference -0.03 0.00 -0.01 0.01 0.03 0.11 -0.01 0.09 0.03 

test statistic (t test) -0.46 0.03 -0.19 0.22 0.45 1.62 -0.16 1.37 0.90 

p-value (t test) 0.65 0.98 0.86 0.83 0.66 0.13 0.88 0.20 0.39 

yield coefficient -0.11 0.12 -0.22 -0.32 -0.30 -0.39 0.07 -0.40 -0.27 

p-value (yield correlation) 0.60 0.56 0.26 0.11 0.12 0.04 0.73 0.04 0.17 
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Table A.5 Continued 

  

Plant 

- VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Seaso

n 

Late 

Seaso

n 

Whole 

Seaso

n 

29. Deficit 9 + Excess 17   

mean difference -0.03 0.02 0.00 0.02 0.00 0.11 0.01 0.09 0.04 

test statistic (t test) -0.38 0.33 -0.08 0.23 -0.01 1.70 0.14 1.39 0.84 

p-value (t test) 0.71 0.75 0.94 0.83 0.99 0.12 0.89 0.19 0.42 

yield coefficient -0.03 0.09 -0.13 -0.18 -0.20 -0.35 0.08 -0.35 -0.18 

p-value (yield correlation) 0.90 0.67 0.52 0.36 0.31 0.07 0.70 0.07 0.38 

30. Deficit 9 + Excess 20   

mean difference -0.03 0.01 0.00 0.00 0.00 0.12 0.00 0.10 0.03 

test statistic (t test) -0.44 0.18 -0.10 0.04 -0.03 1.76 -0.01 1.45 0.80 

p-value (t test) 0.67 0.86 0.92 0.97 0.98 0.11 0.99 0.17 0.44 

yield coefficient -0.29 -0.03 -0.24 -0.27 -0.24 -0.38 -0.12 -0.38 -0.32 

p-value (yield correlation) 0.15 0.88 0.24 0.17 0.22 0.05 0.55 0.05 0.10 

31. Deficit 12 + Excess 14   

mean difference -0.02 0.04 0.02 0.03 0.00 0.11 0.02 0.08 0.04 

test statistic (t test) -0.32 0.88 0.52 0.56 -0.07 1.73 0.52 1.24 0.95 

p-value (t test) 0.75 0.40 0.61 0.59 0.95 0.11 0.62 0.24 0.36 

yield coefficient -0.11 -0.30 -0.25 -0.26 -0.31 -0.47 -0.26 -0.45 -0.34 

p-value (yield correlation) 0.57 0.12 0.20 0.20 0.12 0.01 0.19 0.02 0.08 

32. Deficit 12 + Excess 17   

mean difference -0.02 0.06 0.03 0.03 -0.03 0.12 0.04 0.08 0.05 

test statistic (t test) -0.26 1.39 0.43 0.48 -0.44 2.20 0.91 1.33 1.03 

p-value (t test) 0.80 0.19 0.68 0.64 0.67 0.05 0.38 0.21 0.33 

yield coefficient -0.04 -0.37 -0.17 -0.12 -0.22 -0.51 -0.29 -0.46 -0.30 

p-value (yield correlation) 0.85 0.06 0.41 0.55 0.27 0.01 0.14 0.02 0.13 

33. Deficit 12 + Excess 20   

mean difference -0.02 0.05 0.03 0.02 -0.04 0.13 0.03 0.08 0.04 

test statistic (t test) -0.33 1.18 0.49 0.29 -0.48 2.44 0.72 1.52 1.04 

p-value (t test) 0.75 0.26 0.64 0.78 0.64 0.03 0.49 0.16 0.32 

yield coefficient -0.30 -0.44 -0.26 -0.20 -0.25 -0.53 -0.43 -0.49 -0.42 

p-value (yield correlation) 0.12 0.02 0.18 0.31 0.20 0.00 0.02 0.01 0.03 
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Table A.6 Statistical results for all thresholds—magnitude  

 

Plant - 

VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Season 

Late 

Season 

Whole 

Season 

1. 60% of field capacity 0 - 80 cm 

mean difference -- -- 0.35 6.89 6.66 15.53 -- 22.16 29.38 

test statistic (t test) -- -- 0.69 1.54 1.23 1.08 -- 1.13 1.30 

p-value (t test) -- -- 0.50 0.15 0.24 0.30 -- 0.28 0.22 

yield coefficient -- -- -0.10 -0.31 -0.30 -0.25 -- -0.27 -0.30 

p-value (yield 

correlation) -- -- 0.62 0.11 0.13 0.20 -- 0.17 0.13 

2. 65% of field capacity 0 - 80 cm 

mean difference -- -- 0.17 11.32 9.32 18.24 -- 27.53 38.99 

test statistic (t test) -- -- 0.07 1.42 1.23 1.00 -- 1.08 1.22 

p-value (t test) -- -- 0.95 0.18 0.24 0.34 -- 0.30 0.25 

yield coefficient -- -- -0.13 -0.34 -0.34 -0.36 -- -0.37 -0.39 

p-value (yield 

correlation) -- -- 0.52 0.08 0.08 0.06 -- 0.06 0.05 

3. 70% of field capacity 0 - 80 cm 

mean difference -- -- 0.93 15.65 10.29 21.14 -- 31.41 46.93 

test statistic (t test) -- -- 0.20 1.36 1.00 0.93 -- 0.97 1.08 

p-value (t test) -- -- 0.84 0.20 0.34 0.37 -- 0.35 0.30 

yield coefficient -- -- -0.17 -0.37 -0.37 -0.49 -- -0.47 -0.47 

p-value (yield 

correlation) -- -- 0.38 0.06 0.06 0.01 -- 0.01 0.01 

4. 75% of field capacity 0 - 80 cm 

mean difference -3.33 -- 0.25 19.26 11.27 28.40 -- 39.64 50.81 

test statistic (t test) -1.12 -- 0.04 1.24 0.88 1.14 -- 1.07 0.96 

p-value (t test) 0.29 -- 0.97 0.24 0.40 0.28 -- 0.31 0.36 

yield coefficient -0.06 -- -0.20 -0.38 -0.40 -0.58 -- -0.55 -0.51 

p-value (yield 

correlation) 0.78 -- 0.32 0.05 0.04 0.00 -- 0.00 0.01 

5. 80% of field capacity 0 - 80 cm 

mean difference -3.47 -- -2.05 19.27 10.53 44.53 -14.90 55.02 57.30 

test statistic (t test) -0.61 -- -0.23 1.01 0.77 1.71 -0.97 1.40 0.92 

p-value (t test) 0.55 -- 0.82 0.33 0.46 0.12 0.35 0.19 0.38 

yield coefficient -0.08 -- -0.22 -0.37 -0.45 -0.62 0.00 -0.59 -0.51 

p-value (yield 

correlation) 0.70 -- 0.27 0.06 0.02 0.00 1.00 0.00 0.01 

6. 70% of field capacity 0 - 30 cm 

mean difference -7.27 -- -14.28 -11.41 -4.72 -11.34 -- -16.04 -69.53 

test statistic (t test) -1.78 -- -1.83 -1.20 -0.90 -0.93 -- -0.94 -1.73 

p-value (t test) 0.10 -- 0.09 0.25 0.39 0.37 -- 0.37 0.11 

yield coefficient -0.03 -- -0.07 -0.31 -0.41 -0.36 -- -0.38 -0.23 

p-value (yield 

correlation) 0.89 -- 0.73 0.12 0.03 0.07 -- 0.05 0.25 

 

 

 



103 

Table A.6 continued 

  

Plant - 

VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Season 

Late 

Season 

Whole 

Season 

7. 70% of field capacity 40 - 60 cm                 

mean difference 0.38 0.02 0.43 12.07 10.20 19.90 0.41 30.07 42.94 

test statistic (t test) 1.00 1.00 0.15 1.90 2.18 1.69 1.00 1.89 2.11 

p-value (t test) 0.34 0.34 0.89 0.08 0.05 0.12 0.34 0.09 0.06 

yield coefficient -0.11 -0.11 -0.14 -0.29 -0.33 -0.30 -0.11 -0.33 -0.36 

p-value (yield correlation) 0.60 0.60 0.48 0.14 0.09 0.12 0.60 0.10 0.07 

8. 45% of plant available water 0 - 80 cm               

mean difference 4.20 -- 4.98 20.44 12.84 52.04 10.64 64.83 100.83 

test statistic (t test) 1.63 -- 0.98 1.83 1.40 2.46 1.79 2.18 2.40 

p-value (t test) 0.13 -- 0.35 0.09 0.19 0.03 0.10 0.05 0.04 

yield coefficient -0.14 -- -0.18 -0.23 -0.32 -0.35 -0.05 -0.37 -0.33 

p-value (yield correlation) 0.49 -- 0.36 0.25 0.10 0.07 0.82 0.06 0.10 

9. 50% of plant available water 0 - 80 cm               

mean difference 4.34 -- 6.06 21.63 12.95 58.81 -- 71.71 112.12 

test statistic (t test) 1.34 -- 1.05 1.68 1.21 2.41 -- 2.08 2.25 

p-value (t test) 0.21 -- 0.32 0.12 0.25 0.03 -- 0.06 0.05 

yield coefficient -0.12 -- -0.18 -0.25 -0.35 -0.38 -- -0.40 -0.34 

p-value (yield correlation) 0.54 -- 0.36 0.20 0.08 0.05 -- 0.04 0.08 

10. 55% of plant available water 0 - 80 cm               

mean difference 2.58 -- 6.85 22.44 13.34 63.77 -- 77.05 117.72 

test statistic (t test) 0.63 -- 0.99 1.50 1.09 2.36 -- 2.01 2.03 

p-value (t test) 0.54 -- 0.35 0.16 0.30 0.04 -- 0.07 0.07 

yield coefficient -0.12 -- -0.18 -0.28 -0.37 -0.42 -- -0.43 -0.35 

p-value (yield correlation) 0.56 -- 0.37 0.16 0.06 0.03 -- 0.03 0.07 

11. 60% of plant available water 0 - 80 cm               

mean difference 0.53 -- 6.85 22.58 13.13 65.91 6.33 78.99 114.66 

test statistic (t test) 0.10 -- 0.80 1.31 0.99 2.29 0.40 1.92 1.73 

p-value (t test) 0.92 -- 0.44 0.22 0.34 0.04 0.69 0.08 0.11 

yield coefficient -0.10 -- -0.17 -0.29 -0.39 -0.45 0.15 -0.46 -0.35 

p-value (yield correlation) 0.62 -- 0.39 0.14 0.04 0.02 0.46 0.02 0.07 

12. 50% of plant available water 50 - 60 cm               

mean difference 2.96 6.56 4.37 18.47 11.45 50.36 9.51 61.76 94.05 

test statistic (t test) 1.01 1.56 1.36 2.53 1.89 2.69 1.34 2.60 2.80 

p-value (t test) 0.33 0.15 0.20 0.03 0.09 0.02 0.21 0.02 0.02 

yield coefficient -0.12 -0.06 -0.18 -0.23 -0.31 -0.29 -0.09 -0.31 -0.29 

p-value (yield correlation) 0.56 0.75 0.37 0.24 0.12 0.14 0.66 0.12 0.15 

13. 90% of aeration threshold 0 - 30 cm               

mean difference -0.33 -3.94 -3.40 -- -- -- -4.25 -- -11.35 

test statistic (t test) -0.91 -1.54 -1.47 -- -- -- -1.48 -- -1.21 

p-value (t test) 0.38 0.15 0.17 -- -- -- 0.17 -- 0.25 

yield coefficient -0.47 -0.47 -0.27 -- -- -- -0.47 -- -0.22 

p-value (yield correlation) 0.01 0.01 0.17 -- -- -- 0.01 -- 0.28 
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Table A.6 continued 

  

Plant - 

VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Season 

Late 

Season 

Whole 

Season 

14. 95% of aeration threshold 0 - 30 cm               

mean difference -0.11 -2.18 -1.66 -- -- -- -2.28 -- -4.55 

test statistic (t test) -0.95 -1.42 -1.25 -- -- -- -1.43 -- -0.98 

p-value (t test) 0.36 0.18 0.24 -- -- -- 0.18 -- 0.35 

yield coefficient -0.40 -0.43 -0.28 -- -- -- -0.44 -- -0.27 

p-value (yield correlation) 0.04 0.03 0.15 -- -- -- 0.02 -- 0.18 

15. 100% of aeration threshold 0 - 30 cm               

mean difference -0.06 -1.10 -0.52 -- -- -- -1.15 -- -1.28 

test statistic (t test) -1.22 -1.41 -1.04 -- -- -- -1.49 -- -0.74 

p-value (t test) 0.25 0.19 0.32 -- -- -- 0.17 -- 0.48 

yield coefficient -0.09 -0.35 -0.19 -- -- -- -0.36 -- -0.24 

p-value (yield correlation) 0.64 0.07 0.35 -- -- -- 0.07 -- 0.23 

16. 90% of aeration threshold 0 - 50 cm               

mean difference -0.10 -3.06 -5.23 -- -- -- -3.14 -- -13.27 

test statistic (t test) -0.17 -1.72 -1.01 -- -- -- -1.65 -- -0.75 

p-value (t test) 0.87 0.11 0.33 -- -- -- 0.13 -- 0.47 

yield coefficient -0.22 -0.51 -0.04 -- -- -- -0.53 -- 0.01 

p-value (yield correlation) 0.28 0.01 0.84 -- -- -- 0.00 -- 0.95 

17. 95% of aeration threshold 0 - 50 cm               

mean difference 0.10 -1.45 -2.66 -- -- -- -1.34 -- -7.96 

test statistic (t test) 0.56 -1.98 -1.13 -- -- -- -1.81 -- -1.01 

p-value (t test) 0.59 0.07 0.28 -- -- -- 0.10 -- 0.34 

yield coefficient -0.38 -0.46 -0.05 -- -- -- -0.47 -- -0.07 

p-value (yield correlation) 0.05 0.02 0.81 -- -- -- 0.01 -- 0.72 

18. 100% of aeration threshold 0 - 50 cm             

mean difference -0.01 -0.54 -0.60 -- -- -- -0.54 -- -2.07 

test statistic (t test) -0.12 -2.23 -0.73 -- -- -- -2.05 -- -0.77 

p-value (t test) 0.91 0.05 0.48 -- -- -- 0.07 -- 0.45 

yield coefficient -0.29 -0.34 0.00 -- -- -- -0.35 -- -0.10 

p-value (yield correlation) 0.14 0.08 1.00 -- -- -- 0.07 -- 0.62 

19. 90% of aeration threshold 0 - 80 cm               

mean difference -1.08 -6.06 -6.89 -- -- -- -7.12 -- -21.43 

test statistic (t test) -0.73 -1.71 -1.28 -- -- -- -1.74 -- -1.22 

p-value (t test) 0.48 0.11 0.23 -- -- -- 0.11 -- 0.25 

yield coefficient -0.45 -0.56 -0.20 -- -- -- -0.57 -- -0.20 

p-value (yield correlation) 0.02 0.00 0.31 -- -- -- 0.00 -- 0.33 

20. 95% of aeration threshold 0 - 80 cm             

mean difference 0.42 -3.19 -5.36 -- -- -- -2.75 -- -13.32 

test statistic (t test) 0.75 -2.06 -1.65 -- -- -- -1.52 -- -1.54 

p-value (t test) 0.47 0.06 0.13 -- -- -- 0.16 -- 0.15 

yield coefficient -0.71 -0.58 -0.27 -- -- -- -0.62 -- -0.35 

p-value (yield correlation) 0.00 0.00 0.17 -- -- -- 0.00 -- 0.08 
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Table A.6 continued 

  

Plant - 

VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Season 

Late 

Season 

Whole 

Season 

21. 100% of aeration threshold 0 - 80 cm             

mean difference 0.27 -1.22 -1.03 -- -- -- -0.94 -- -2.75 

test statistic (t test) 0.90 -1.57 -1.12 -- -- -- -1.10 -- -1.31 

p-value (t test) 0.39 0.14 0.29 -- -- -- 0.29 -- 0.22 

yield coefficient -0.57 -0.53 -0.29 -- -- -- -0.55 -- -0.39 

p-value (yield correlation) 0.00 0.00 0.14 -- -- -- 0.00 -- 0.04 

22. 5 + 14                   

mean difference -3.58 -13.61 -3.71 19.33 10.77 43.61 -17.18 54.35 52.75 

test statistic (t test) -0.63 -1.37 -0.41 1.01 0.79 1.68 -1.13 1.39 0.86 

p-value (t test) 0.54 0.20 0.69 0.33 0.44 0.12 0.28 0.19 0.41 

yield coefficient -0.09 -0.09 -0.28 -0.37 -0.45 -0.62 -0.09 -0.59 -0.54 

p-value (yield correlation) 0.67 0.67 0.16 0.06 0.02 0.00 0.66 0.00 0.00 

23. 5 + 17                   

mean difference -3.37 -12.88 -4.71 16.46 9.86 44.03 -16.23 53.86 49.34 

test statistic (t test) -0.60 -1.29 -0.51 0.84 0.72 1.69 -1.07 1.37 0.79 

p-value (t test) 0.56 0.22 0.62 0.42 0.49 0.12 0.31 0.20 0.45 

yield coefficient -0.09 -0.18 -0.24 -0.34 -0.44 -0.62 -0.16 -0.59 -0.54 

p-value (yield correlation) 0.65 0.38 0.22 0.08 0.02 0.00 0.44 0.00 0.00 

24. 5 + 20                   

mean difference -3.06 -14.63 -7.41 15.15 9.65 44.29 -17.65 53.91 43.98 

test statistic (t test) -0.57 -1.50 -0.79 0.76 0.70 1.70 -1.21 1.37 0.69 

p-value (t test) 0.58 0.16 0.44 0.46 0.50 0.12 0.25 0.20 0.50 

yield coefficient -0.24 -0.43 -0.39 -0.34 -0.44 -0.62 -0.40 -0.59 -0.62 

p-value (yield correlation) 0.23 0.03 0.04 0.09 0.02 0.00 0.04 0.00 0.00 

25. 6 + 14                   

mean difference -7.38 -22.79 -15.93 -11.36 -4.48 -12.25 -30.14 -16.72 -74.08 

test statistic (t test) -1.80 -2.25 -2.09 -1.20 -0.87 -1.00 -2.18 -0.99 -1.88 

p-value (t test) 0.10 0.05 0.06 0.26 0.40 0.34 0.05 0.35 0.09 

yield coefficient -0.04 -0.01 -0.13 -0.30 -0.41 -0.35 -0.02 -0.38 -0.26 

p-value (yield correlation) 0.86 0.97 0.53 0.13 0.03 0.07 0.93 0.05 0.20 

26. 6 + 17                   

mean difference -7.17 -22.06 -16.94 -14.22 -5.39 -11.83 -29.19 -17.21 -77.48 

test statistic (t test) -1.79 -2.18 -2.29 -1.46 -1.09 -0.99 -2.13 -1.05 -2.04 

p-value (t test) 0.10 0.05 0.04 0.17 0.30 0.34 0.06 0.32 0.07 

yield coefficient -0.04 -0.08 -0.09 -0.24 -0.38 -0.34 -0.07 -0.36 -0.24 

p-value (yield correlation) 0.84 0.68 0.67 0.24 0.05 0.08 0.72 0.06 0.23 

27. 6 + 20                   

mean difference -6.85 -23.80 -19.64 -15.53 -5.60 -11.57 -30.61 -17.15 -82.85 

test statistic (t test) -1.85 -2.43 -2.72 -1.57 -1.12 -0.96 -2.34 -1.04 -2.21 

p-value (t test) 0.09 0.03 0.02 0.14 0.29 0.36 0.04 0.32 0.05 

yield coefficient -0.20 -0.31 -0.26 -0.22 -0.39 -0.34 -0.30 -0.37 -0.33 

p-value (yield correlation) 0.32 0.11 0.19 0.27 0.04 0.08 0.13 0.06 0.10 
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Table A.6 continued 

  

Plant - 

VE 

VE - 

V6 

V6 - 

V16 

V16 - 

R3 

R3 - 

R5 

R5 - 

R6 

Early 

Season 

Late 

Season 

Whole 

Season 

28. 9 + 14                   

mean difference 4.23 6.29 4.40 21.68 13.20 57.89 10.51 71.04 107.57 

test statistic (t test) 1.31 1.21 0.75 1.68 1.25 2.39 1.31 2.08 2.21 

p-value (t test) 0.22 0.25 0.47 0.12 0.24 0.04 0.22 0.06 0.05 

yield coefficient -0.14 -0.14 -0.24 -0.25 -0.34 -0.38 -0.15 -0.39 -0.37 

p-value (yield correlation) 0.49 0.50 0.23 0.21 0.08 0.05 0.46 0.04 0.06 

29. 9 + 17                   

mean difference 4.44 7.02 3.40 18.82 12.29 58.31 11.46 70.55 104.17 

test statistic (t test) 1.38 1.32 0.53 1.36 1.15 2.41 1.40 2.06 2.06 

p-value (t test) 0.20 0.21 0.61 0.20 0.27 0.03 0.19 0.06 0.06 

yield coefficient -0.15 -0.27 -0.20 -0.21 -0.33 -0.37 -0.26 -0.38 -0.37 

p-value (yield correlation) 0.46 0.18 0.31 0.29 0.10 0.06 0.19 0.05 0.06 

30. 9 + 20                   

mean difference 4.75 5.28 0.70 17.51 12.08 58.57 10.04 70.60 98.80 

test statistic (t test) 1.49 0.96 0.10 1.23 1.13 2.41 1.21 2.06 1.92 

p-value (t test) 0.16 0.36 0.92 0.24 0.28 0.03 0.25 0.06 0.08 

yield coefficient -0.40 -0.52 -0.35 -0.20 -0.33 -0.37 -0.55 -0.39 -0.48 

p-value (yield correlation) 0.04 0.01 0.08 0.31 0.09 0.06 0.00 0.05 0.01 

31. 12 + 14                   

mean difference 2.85 4.38 2.72 18.53 11.69 49.44 7.23 61.09 89.50 

test statistic (t test) 0.97 0.98 0.88 2.54 1.90 2.63 0.99 2.54 2.64 

p-value (t test) 0.35 0.35 0.40 0.03 0.08 0.02 0.34 0.03 0.02 

yield coefficient -0.13 -0.31 -0.26 -0.23 -0.29 -0.28 -0.26 -0.30 -0.32 

p-value (yield correlation) 0.51 0.11 0.19 0.26 0.14 0.15 0.19 0.13 0.11 

32. 12 + 17                   

mean difference 3.06 5.11 1.71 15.67 10.78 49.86 8.17 60.59 86.10 

test statistic (t test) 1.06 1.15 0.41 1.79 1.69 2.65 1.12 2.49 2.37 

p-value (t test) 0.31 0.27 0.69 0.10 0.12 0.02 0.29 0.03 0.04 

yield coefficient -0.15 -0.41 -0.20 -0.16 -0.27 -0.28 -0.37 -0.29 -0.31 

p-value (yield correlation) 0.47 0.03 0.32 0.41 0.17 0.16 0.06 0.15 0.11 

33. 12 + 20                   

mean difference 3.38 3.37 -0.99 14.36 10.57 50.13 6.75 60.65 80.73 

test statistic (t test) 1.19 0.71 -0.20 1.54 1.69 2.67 0.90 2.52 2.17 

p-value (t test) 0.26 0.49 0.84 0.15 0.12 0.02 0.39 0.03 0.05 

yield coefficient -0.43 -0.59 -0.36 -0.15 -0.28 -0.28 -0.61 -0.29 -0.45 

p-value (yield correlation) 0.03 0.00 0.06 0.45 0.15 0.15 0.00 0.14 0.02 
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